
Programming Excel with VBA and .NET
By Steve Saunders, Jeff Webb
...
Publisher: O'Reilly
Pub Date: April 2006
Print ISBN-10: 0-596-00766-3
Print ISBN-13: 978-0-59-600766-9
Pages: 1114

Table of Contents | Index

Why program Excel? For solving complex calculations and presenting results, Excel is amazingly complete with every
imaginable feature already in place. But programming Excel isn't about adding new features as much as it's about
combining existing features to solve particular problems. With a few modifications, you can transform Excel into a
task-specific piece of software that will quickly and precisely serve your needs. In other words, Excel is an ideal
platform for probably millions of small spreadsheet-based software solutions.

The best part is, you can program Excel with no additional tools. A variant of the Visual Basic programming language,
VB for Applications (VBA) is built into Excel to facilitate its use as a platform. With VBA, you can create macros and
templates, manipulate user interface features such as menus and toolbars, and work with custom user forms or
dialog boxes. VBA is relatively easy to use, but if you've never programmed before, Programming Excel with VBA and
.NET is a great way to learn a lot very quickly. If you're an experienced Excel user or a Visual Basic programmer,
you'll pick up a lot of valuable new tricks. Developers looking forward to .NET development will also find discussion of
how the Excel object model works with .NET tools, including Visual Studio Tools for Office (VSTO).

This book teaches you how to use Excel VBA by explaining concepts clearly and concisely in plain English, and
provides plenty of downloadable samples so you can learn by doing. You'll be exposed to a wide range of tasks most
commonly performed with Excel, arranged into chapters according to subject, with those subjects corresponding to
one or more Excel objects. With both the samples and important reference information for each object included right
in the chapters, instead of tucked away in separate sections, Programming Excel with VBA and .NET covers the entire
Excel object library. For those just starting out, it also lays down the basic rules common to all programming
languages.

With this single-source reference and how-to guide, you'll learn to use the complete range of Excel programming
tasks to solve problems, no matter what you're experience level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Excel with VBA and .NET
By Steve Saunders, Jeff Webb
...
Publisher: O'Reilly
Pub Date: April 2006
Print ISBN-10: 0-596-00766-3
Print ISBN-13: 978-0-59-600766-9
Pages: 1114

Table of Contents | Index

 Programming Excel with VBA and .NET

 Preface

 Part I: Learning VBA

 Chapter 1. Becoming an Excel Programmer

 Section 1.1. Why Program?

 Section 1.2. Record and Read Code

 Section 1.3. Change Recorded Code

 Section 1.4. Fix Misteakes

 Section 1.5. Start and Stop

 Section 1.6. View Results

 Section 1.7. Where's My Code?

 Section 1.8. Macros and Security

 Section 1.9. Write Bug-Free Code

 Section 1.10. Navigate Samples and Help

 Section 1.11. What You've Learned

 Chapter 2. Knowing the Basics

 Section 2.1. Parts of a Program

 Section 2.2. Classes and Modules

 Section 2.3. Procedures

 Section 2.4. Variables

 Section 2.5. Conditional Statements

 Section 2.6. Loops

 Section 2.7. Expressions

 Section 2.8. Exceptions

 Section 2.9. What You've Learned

 Chapter 3. Tasks in Visual Basic

 Section 3.1. Types of Tasks

 Section 3.2. Interact with Users

 Section 3.3. Do Math

 Section 3.4. Work with Text

 Section 3.5. Get Dates and Times

 Section 3.6. Read and Write Files

 Section 3.7. Check Results

 Section 3.8. Find Truth

 Section 3.9. Compare Bits

 Section 3.10. Run Other Applications

 Section 3.11. Control the Compiler

 Section 3.12. Not Covered Here

 Section 3.13. What You've Learned

 Chapter 4. Using Excel Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.1. Objects and Their Members

 Section 4.2. Get Excel Objects

 Section 4.3. Get Objects from Collections

 Section 4.4. About Me and the Active Object

 Section 4.5. Find the Right Object

 Section 4.6. Common Members

 Section 4.7. Respond to Events in Excel

 Section 4.8. The Global Object

 Section 4.9. The WorksheetFunction Object

 Section 4.10. What You've Learned

 Chapter 5. Creating Your Own Objects

 Section 5.1. Modules Versus Classes

 Section 5.2. Add Methods

 Section 5.3. Create Properties

 Section 5.4. Define Enumerations

 Section 5.5. Raise Events

 Section 5.6. Collect Objects

 Section 5.7. Expose Objects

 Section 5.8. Destroy Objects

 Section 5.9. Things You Can't Do

 Section 5.10. What You've Learned

 Chapter 6. Writing Code for Use by Others

 Section 6.1. Types of Applications

 Section 6.2. The Development Process

 Section 6.3. Determine Requirements

 Section 6.4. Design

 Section 6.5. Implement and Test

 Section 6.6. Integrate

 Section 6.7. Test Platforms

 Section 6.8. Document

 Section 6.9. Deploy

 Section 6.10. What You've Learned

 Section 6.11. Resources

 Part II: Excel Objects

 Chapter 7. Controlling Excel

 Section 7.1. Perform Tasks

 Section 7.2. Control Excel Options

 Section 7.3. Get References

 Section 7.4. Application Members

 Section 7.5. AutoCorrect Members

 Section 7.6. AutoRecover Members

 Section 7.7. ErrorChecking Members

 Section 7.8. SpellingOptions Members

 Section 7.9. Window and Windows Members

 Section 7.10. Pane and Panes Members

 Chapter 8. Opening, Saving, and Sharing Workbooks

 Section 8.1. Add, Open, Save, and Close

 Section 8.2. Share Workbooks

 Section 8.3. Program with Shared Workbooks

 Section 8.4. Program with Shared Workspaces

 Section 8.5. Respond to Actions

 Section 8.6. Workbook and Workbooks Members

 Section 8.7. RecentFile and RecentFiles Members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 8.7. RecentFile and RecentFiles Members

 Chapter 9. Working with Worksheets and Ranges

 Section 9.1. Work with Worksheet Objects

 Section 9.2. Worksheets and Worksheet Members

 Section 9.3. Sheets Members

 Section 9.4. Work with Outlines

 Section 9.5. Outline Members

 Section 9.6. Work with Ranges

 Section 9.7. Range Members

 Section 9.8. Work with Scenario Objects

 Section 9.9. Scenario and Scenarios Members

 Section 9.10. Resources

 Chapter 10. Linking and Embedding

 Section 10.1. Add Comments

 Section 10.2. Use Hyperlinks

 Section 10.3. Link and Embed Objects

 Section 10.4. Speak

 Section 10.5. Comment and Comments Members

 Section 10.6. Hyperlink and Hyperlinks Members

 Section 10.7. OleObject and OleObjects Members

 Section 10.8. OLEFormat Members

 Section 10.9. Speech Members

 Section 10.10. UsedObjects Members

 Chapter 11. Printing and Publishing

 Section 11.1. Print and Preview

 Section 11.2. Control Paging

 Section 11.3. Change Printer Settings

 Section 11.4. Filter Ranges

 Section 11.5. Save and Display Views

 Section 11.6. Publish to the Web

 Section 11.7. AutoFilter Members

 Section 11.8. Filter and Filters Members

 Section 11.9. CustomView and CustomViews Members

 Section 11.10. HPageBreak, HPageBreaks, VPageBreak, VPageBreaks Members

 Section 11.11. PageSetup Members

 Section 11.12. Graphic Members

 Section 11.13. PublishObject and PublishObjects Members

 Section 11.14. WebOptions and DefaultWebOptions Members

 Chapter 12. Loading and Manipulating Data

 Section 12.1. Working with QueryTable Objects

 Section 12.2. QueryTable and QueryTables Members

 Section 12.3. Working with Parameter Objects

 Section 12.4. Parameter Members

 Section 12.5. Working with ADO and DAO

 Section 12.6. ADO Objects and Members

 Section 12.7. DAO Objects and Members

 Section 12.8. DAO.Database and DAO.Databases Members

 Section 12.9. DAO.Document and DAO.Documents Members

 Section 12.10. DAO.QueryDef and DAO.QueryDefs Members

 Section 12.11. DAO.Recordset and DAO.Recordsets Members

 Chapter 13. Analyzing Data with Pivot Tables

 Section 13.1. Quick Guide to Pivot Tables

 Section 13.2. Program Pivot Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 13.3. PivotTable and PivotTables Members

 Section 13.4. PivotCache and PivotCaches Members

 Section 13.5. PivotField and PivotFields Members

 Section 13.6. CalculatedFields Members

 Section 13.7. CalculatedItems Members

 Section 13.8. PivotCell Members

 Section 13.9. PivotFormula and PivotFormulas Members

 Section 13.10. PivotItem and PivotItems Members

 Section 13.11. PivotItemList Members

 Section 13.12. PivotLayout Members

 Section 13.13. CubeField and CubeFields Members

 Section 13.14. CalculatedMember and CalculatedMembers Members

 Chapter 14. Sharing Data Using Lists

 Section 14.1. Use Lists

 Section 14.2. ListObject and ListObjects Members

 Section 14.3. ListRow and ListRows Members

 Section 14.4. ListColumn and ListColumns Members

 Section 14.5. ListDataFormat Members

 Section 14.6. Use the Lists Web Service

 Section 14.7. Lists Web Service Members

 Section 14.8. Resources

 Chapter 15. Working with XML

 Section 15.1. Understand XML

 Section 15.2. Save Workbooks as XML

 Section 15.3. Use XML Maps

 Section 15.4. Program with XML Maps

 Section 15.5. XmlMap and XmlMaps Members

 Section 15.6. XmlDataBinding Members

 Section 15.7. XmlNamespace and XmlNamespaces Members

 Section 15.8. XmlSchema and XmlSchemas Members

 Section 15.9. Get an XML Map from a List or Range

 Section 15.10. XPath Members

 Section 15.11. Resources

 Chapter 16. Charting

 Section 16.1. Navigate Chart Objects

 Section 16.2. Create Charts Quickly

 Section 16.3. Embed Charts

 Section 16.4. Create More Complex Charts

 Section 16.5. Choose Chart Type

 Section 16.6. Create Combo Charts

 Section 16.7. Add Titles and Labels

 Section 16.8. Plot a Series

 Section 16.9. Respond to Chart Events

 Section 16.10. Chart and Charts Members

 Section 16.11. ChartObject and ChartObjects Members

 Section 16.12. ChartGroup and ChartGroups Members

 Section 16.13. SeriesLines Members

 Section 16.14. Axes and Axis Members

 Section 16.15. DataTable Members

 Section 16.16. Series and SeriesCollection Members

 Section 16.17. Point and Points Members

 Chapter 17. Formatting Charts

 Section 17.1. Format Titles and Labels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 17.1. Format Titles and Labels

 Section 17.2. Change Backgrounds and Fonts

 Section 17.3. Add Trendlines

 Section 17.4. Add Series Lines and Bars

 Section 17.5. ChartTitle, AxisTitle, and DisplayUnitLabel Members

 Section 17.6. DataLabel and DataLabels Members

 Section 17.7. LeaderLines Members

 Section 17.8. ChartArea Members

 Section 17.9. ChartFillFormat Members

 Section 17.10. ChartColorFormat Members

 Section 17.11. DropLines and HiLoLines Members

 Section 17.12. DownBars and UpBars Members

 Section 17.13. ErrorBars Members

 Section 17.14. Legend Members

 Section 17.15. LegendEntry and LegendEntries Members

 Section 17.16. LegendKey Members

 Section 17.17. Gridlines Members

 Section 17.18. TickLabels Members

 Section 17.19. Trendline and Trendlines Members

 Section 17.20. PlotArea Members

 Section 17.21. Floor Members

 Section 17.22. Walls Members

 Section 17.23. Corners Members

 Chapter 18. Drawing Graphics

 Section 18.1. Draw in Excel

 Section 18.2. Create Diagrams

 Section 18.3. Program with Drawing Objects

 Section 18.4. Program Diagrams

 Section 18.5. Shape, ShapeRange, and Shapes Members

 Section 18.6. Adjustments Members

 Section 18.7. CalloutFormat Members

 Section 18.8. ColorFormat Members

 Section 18.9. ConnectorFormat Members

 Section 18.10. ControlFormat Members

 Section 18.11. FillFormat Members

 Section 18.12. FreeFormBuilder

 Section 18.13. GroupShapes Members

 Section 18.14. LineFormat Members

 Section 18.15. LinkFormat Members

 Section 18.16. PictureFormat Members

 Section 18.17. ShadowFormat

 Section 18.18. ShapeNode and ShapeNodes Members

 Section 18.19. TextFrame

 Section 18.20. TextEffectFormat

 Section 18.21. ThreeDFormat

 Chapter 19. Adding Menus and Toolbars

 Section 19.1. About Excel Menus

 Section 19.2. Build a Top-Level Menu

 Section 19.3. Create a Menu in Code

 Section 19.4. Build Context Menus

 Section 19.5. Build a Toolbar

 Section 19.6. Create Toolbars in Code

 Section 19.7. CommandBar and CommandBars Members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 19.8. CommandBarControl and CommandBarControls Members

 Section 19.9. CommandBarButton Members

 Section 19.10. CommandBarComboBox Members

 Section 19.11. CommandBarPopup Members

 Chapter 20. Building Dialog Boxes

 Section 20.1. Types of Dialogs

 Section 20.2. Create Data-Entry Forms

 Section 20.3. Design Your Own Forms

 Section 20.4. Use Controls on Worksheets

 Section 20.5. UserForm and Frame Members

 Section 20.6. Control and Controls Members

 Section 20.7. Font Members

 Section 20.8. CheckBox, OptionButton, ToggleButton Members

 Section 20.9. ComboBox Members

 Section 20.10. CommandButton Members

 Section 20.11. Image Members

 Section 20.12. Label Members

 Section 20.13. ListBox Members

 Section 20.14. MultiPage Members

 Section 20.15. Page Members

 Section 20.16. ScrollBar and SpinButton Members

 Section 20.17. TabStrip Members

 Section 20.18. TextBox and RefEdit Members

 Chapter 21. Sending and Receiving Workbooks

 Section 21.1. Send Mail

 Section 21.2. Work with Mail Items

 Section 21.3. Collect Review Comments

 Section 21.4. Route Workbooks

 Section 21.5. Read Mail

 Section 21.6. MsoEnvelope Members

 Section 21.7. MailItem Members

 Section 21.8. RoutingSlip Members

 Part III: Extending Excel

 Chapter 22. Building Add-ins

 Section 22.1. Types of Add-ins

 Section 22.2. Code-Only Add-ins

 Section 22.3. Visual Add-ins

 Section 22.4. Set Add-in Properties

 Section 22.5. Sign the Add-in

 Section 22.6. Distribute the Add-in

 Section 22.7. Work with Add-ins in Code

 Section 22.8. AddIn and AddIns Members

 Chapter 23. Integrating DLLs and COM

 Section 23.1. Use DLLs

 Section 23.2. Use COM Applications

 Chapter 24. Getting Data from the Web

 Section 24.1. Perform Web Queries

 Section 24.2. QueryTable and QueryTables Web Query Members

 Section 24.3. Use Web Services

 Section 24.4. Resources

 Chapter 25. Programming Excel with .NET

 Section 25.1. Approaches to Working with .NET

 Section 25.2. Create .NET Components for Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 25.2. Create .NET Components for Excel

 Section 25.3. Use .NET Components in Excel

 Section 25.4. Use Excel as a Component in .NET

 Section 25.5. Create Excel Applications in .NET

 Section 25.6. Resources

 Chapter 26. Exploring Security in Depth

 Section 26.1. Security Layers

 Section 26.2. Understand Windows Security

 Section 26.3. Password-Protect and Encrypt Workbooks

 Section 26.4. Program with Passwords and Encryption

 Section 26.5. Workbook Password and Encryption Members

 Section 26.6. Excel Password Security

 Section 26.7. Protect Items in a Workbook

 Section 26.8. Program with Protection

 Section 26.9. Workbook Protection Members

 Section 26.10. Worksheet Protection Members

 Section 26.11. Chart Protection Members

 Section 26.12. Protection Members

 Section 26.13. AllowEditRange and AllowEditRanges Members

 Section 26.14. UserAccess and UserAccessList Members

 Section 26.15. Set Workbook Permissions

 Section 26.16. Program with Permissions

 Section 26.17. Permission and UserPermission Members

 Section 26.18. Add Digital Signatures

 Section 26.19. Set Macro Security

 Section 26.20. Set ActiveX Control Security

 Section 26.21. Distribute Security Settings

 Section 26.22. Using the Anti-Virus API

 Section 26.23. Common Tasks

 Section 26.24. Resources

 Part IV: Appendixes

 Appendix A. Reference Tables

 Section A.1. Dialogs Collection Constants

 Section A.2. Common Programmatic IDs

 Appendix B. Version Compatibility

 Section B.1. Summary of Version Changes

 Section B.2. Macintosh Compatibility

 About the Author

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Excel with VBA and .NET
by Jeff Webb and Steve Saunders

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800)
998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent, John Osborn

Production Editor: Sanders Kleinfeld

Copyeditor: Norma Emory

Indexer: Ellen Troutman-Zaig

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:
April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Programming Excel with VBA and .NET, the image of a shoveler duck, and related trade dress are trademarks of
O'Reilly Media, Inc.

Microsoft, the .NET logo, Visual Basic .NET, Visual Studio .NET, ADO.NET, Excel, Windows, and Windows 2000 are
registered trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 0-596-00766-3

[M]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
I was lucky enough to be at Microsoft when Visual Basic was added to Excel. I had just wrapped up working on OLE
Automationthe technology used to make Excel objects programmableand I remember that meetings with the Excel
group were, at times, difficult. Why should a premier Microsoft product like Excel put so much effort into adding a low-
profit item like Visual Basic when it already had a macro language?

"Because BillG said so" takes you only so far, even at Microsoft. The facts are that programmability doesn't sell
products the way some other whizbang feature might, it adds risk to delivering the product bug-free and on time, and
(we found out) it poses a security hazard.

What programmability does do is make your product a platform for others. Today, Excel is the foundation for probably
millions of small spreadsheet-based software solutions and is used by certainly thousands of very large and
sophisticated applications. That sells products.

It also makes the skill of programming Excel extremely valuable. The community of Excel programmers is large,
knowledgeable, and (I hope) well paid.

Learn by Doing
There are always new Excel programmers joining our ranks. If you are new to Excel or new to programming, I welcome
you. This book isn't a beginner series, but if you read the early chapters and are motivated, I think you'll find this book
a great way to learn a lot very quickly.

If you are an experienced Excel user or a Visual Basic programmer, howdy! I've got a lot to show you.

Don't Force It
If you get stuck, there are a number of ways to resume your progress:

Try turning on macro recording (Tools Macros Record a New Macro), performing the task in Excel,
and then turning off recording and examining the code that Excel generates.

Search MSDN (http://www.microsoft.com/msdn) to see if Microsoft has addressed your problem.

Search newsgroups (http://groups.google.com/groups) to see if someone else has solved your problem.

And of course, you can always check http://excelworkshop.com to see if I've solved the problem!

If something still seems too difficult, examine your approach. I generally go fishing in that situation and come back to
the problem later. If you don't live somewhere with good fishing, I guess you're just stuck.

Excel Versions
This book was developed with Excel 2003 Professional Edition and is designed to be compatible with Excel 2000 and
later. If a feature is not available in Excel 2000, I make an effort to note that, but if you are developing for a specific
version of Excel, please check Appendix B for specific version compatibility and read Chapter 6 for information on
developing design requirements and testing for compatibility.

If you are developing with .NET, I strongly recommend that you target Excel 2003 or later. The code shown in this book
is written in the Visual Basic Applications Edition, but parallel .NET samples are provided online (see the next section).

Get the Samples
The samples for this book are available at http://excelworkshop.com. You'll need them, so go get them now. The
examples come in a Windows compressed folder (.zip) that you'll need to expand on your computer.

The samples are organized by chapter, and each chapter has parallel samples written as Visual Studio .NET projects.
Each chapter uses one main workbook (ch01.xls, ch02.xls, etc.) as a starting point to provide instructions and
navigation.

What's in This Book

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapters in this book are organized by programming task. I cover the most common tasks for each subject within a
chapter. Subjects usually correspond to one or more Excel objects, and I include important reference information for
those objects within each chapter, rather than pushing that information to the back of the book.

I don't expect this book will be your only resource, and I try not to duplicate stuff you
already have (like online Help), so I include cross-references to other sources. I've also
included those resources as hyperlinks in the sample workbooks (see the Resources
sheet). Mostly, those links deal with much more specific issues related to the topic, but
they also include links to toolkits and other software you may need.

Here is a brief overview of each chapter:

Chapter 1, Becoming an Excel Programmer, is meant for those new to Excel programming. It covers how to
record, change, run, and debug code in the Excel Visual Basic Editor. Experienced Excel programmers can skip
this chapter, although they may want to read the section "Write Bug-Free Code."

Chapter 2, Knowing the Basics, explains the parts of a program: classes, modules, procedures, properties,
events, variables, constants, and all the other programming fundamentals. Experienced programmers might
want to skip right to "Objects" and "Exceptions" in this chapter.

Chapter 3, Tasks in Visual Basic, teaches how to use core Visual Basic features to display simple dialog boxes,
perform calculations, work with text, read and write files, check results, and run other applications. Experienced
readers will be most interested in the section "Compare Bits."

Chapter 4, Using Excel Objects, shows you how objects work and helps you find the right object for any given
task in Excel. The object diagrams in this chapter are a road map to the many objects that Excel provides. This
is the first place to look when searching for the appropriate object for a particular task.

Chapter 5, Creating Your Own Objects, goes in-depth about object-oriented programming (OOP). You'll learn
how to construct classes, methods, properties, collections, and events. I also explain why it is important to
destroy your creations once you are done using them.

Chapter 6, Writing Code for Use by Others, is about taking your skills to the next level. I cover the types of
applications you can create, explain the development process, and show how to properly deploy a completed
application.

Chapter 7, Controlling Excel, begins the task-specific part of this book. It shows how to use the top-level
Application object to open and close Excel windows, display dialogs, and get references to other Excel objects.

Chapter 8, Opening, Saving, and Sharing Workbooks, teaches you how to work with Excel document files
(workbooks). As a bonus, I cover how to work with XML and use SharePoint workspaces from Excel.

Chapter 9, Working with Worksheets and Ranges, covers the two most-used objects in Excel. Almost everything
you do in Excel involves worksheets and ranges in some way.

Chapter 10, Linking and Embedding, discusses how to add comments, hyperlinks, and objects from other
applications to a worksheet. I also show how to make Excel speak out loudweird but true!

Chapter 11, Printing and Publishing, is about sending output to the printer or the Web. I show how to control
paging, change printer settings, filter output, preview results, and publish ranges to a web page.

Chapter 12, Loading and Manipulating Data, is all about connecting to databases. I show how to use Query
Tables and use the ADO and DAO object models.

Chapter 13, Analyzing Data with Pivot Tables, shows how to program with one of Excel's most celebrated
features. I show how to reorganize data from a wide variety of data sources, including OLAP data cubes.

Chapter 14, Sharing Data Using Lists, goes into detail on one of Excel's newest features: data lists. I show how
to use them to sort, filter, and even share lists across the network through SharePoint.

Chapter 15, Working with XML, is also a ground-breaker, by showing how to convert XML datafiles into Excel
workbooks and vice versa. I provide a brief introduction to XML and XSL, then dive to the heart of how to
import XML data to lists through XML maps.

Chapter 16, Charting, covers how to create different types of charts and control the main parts of a chart.
Charting is a large and complex topic in Excel, so I also include a road map to the chart objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Charting is a large and complex topic in Excel, so I also include a road map to the chart objects.

Chapter 17, Formatting Charts, explains how to control the fonts, backgrounds, and 3-D effects used on a chart.
It is the companion to Chapter 16.

Chapter 18, Drawing Graphics, is really just for fun. Excel's drawing tools let you create diagrams and other
graphics from data, but you need to know about a couple gotchas. I cover those here.

Chapter 19, Adding Menus and Toolbars, helps you hook your application into the Excel user interface. I also
show how to distribute the menus and toolbars with your code.

Chapter 20, Building Dialog Boxes, is about creating data entry and User Forms to get input or display results to
users. I cover the controls included in the Microsoft Forms libraries here.

Chapter 21, Sending and Receiving Workbooks, shows all the ways to send email from Excel.

Chapter 22, Building Add-Ins, covers how to create and distribute your program as an Excel Add-In. This
chapter begins the advanced programming material.

Chapter 23, Integrating DLLs and COM, shows how to use code from Windows itself or other applications within
your Excel programs.

Chapter 24, Getting Data From the Web, explains how to scrape data from web pages using web queries and
how to execute web services to perform tasks remotely across a network.

Chapter 25, Programming Excel with .NET, teaches how to use .NET code from within Excel, use Excel code
from .NET, or integrate between Excel and .NET using Visual Studio Tools for Office (VSTO).

Chapter 26, Exploring Security in Depth, discusses Windows security, encryption, passwords, protection, and
Information Rights Management (IRM) within Excel. I also show how well (or poorly) certain security features
perform.

Font Conventions
This book follows certain conventions for font usage. Understanding these conventions up front makes it easier to use
this book.

Italic is used for:

Pathnames, filenames, program names, compilers, options, and commands

New terms where they are defined

Internet addresses, such as domain names and URLs

Constant width is used for:

Anything that appears literally in a Visual Basic program, including keywords, data types, constants, method
names, variables, class names, and interface names

Command lines and options that should be typed verbatim on the screen

All code listings

HTML documents, tags, and attributes

Constant width italic is used for:

General placeholders that indicate that an item is replaced by some actual value in your own program

Constant width bold is used for:

Text in code examples that is typed by the user

Highlighting code additions or changes that should be noted by the reader

This icon designates a note, which is an important aside to the nearby text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning relating to the nearby text.

Syntax Conventions
Books about computer languages require a way to express the kinds of information you need to provide on one or more
lines as you type. That is called the syntax of the language and Backus-Naur Form (BNF) is the format used in this book
and most others. In BNF notation, the following conventions apply:

Example Meaning

Keyword Roman (non-italic) words are keywords that must be typed exactly as shown.

Argument Italics indicate an item you must provide, such as an object variable a setting.

[] Square brackets indicate an optional item.

choice1 | choice2 A straight bar indicates a choice between two or more items.

{choice1 | choice2} Braces indicate that you must choose one of the indicated settings.

[choice1 | choice2] Square brackets indicate that the choice is optional.

These conventions are used in headings within the reference sections of this book and also within the text sometimes.
You'll also see them in the online help from Microsoft.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Programming Excel with VBA and .NET, by Jeff Webb and Steve Saunders. Copyright 2006 O'Reilly Media,
Inc., 0-596-00766-3."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/progexcel/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com/

Acknowledgments
It takes a long time and a great deal of help to write a book this big. I would like to thank Steve Saunders for joining
the effort and contributing Chapters 9 and 12. Steve and I go back a very long way, through years at Microsoft and
Digital Equipment Corp. Steve's an Access expert and a great writer, and he sings well, too.

I'd also like to thank Simon St.Laurent for his work throughout the project. We've done four books together nowthat's
close to 2000 pages. Finishing this together is like climbing a mountain: his company improved the ascent and it's great
to stand with him here at the summit. Nice view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: Learning VBA
These chapters teach you how to write professional-quality code using Excel Visual Basic (VBA). This is
more than an entry-level tutorial to a macro language: it's a full set of lessons for readers who are
serious about programming. Once you've finished these chapters, you'll be ready to program Excel,
Word, or any other application that exposes objects to Visual Basic.

Chapter 1, Becoming an Excel Programmer

Chapter 2, Knowing the Basics

Chapter 3, Tasks in Visual Basic

Chapter 4, Using Excel Objects

Chapter 5, Creating Your Own Objects

Chapter 6, Writing Code for Use by Others

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Becoming an Excel Programmer
How do you become an excellent Excel programmer? The first step for most folks is to buy a book. I'm glad you bought
this one. Next, you've got to learn the programming tools that Excel provides. Visual Basic is ideally suited as a learning
tool because it lets you get started without a lot of pedagogical preparation. That's an alliterative way of saying that you
can learn the rules as you go.

So let's go!

Code used in this chapter and additional samples are available in ch01.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1. Why Program?
Excel is a mature product with every imaginable featuredoesn't it do everything it needs to already? Excel is amazingly
complete, but programming Excel isn't really about adding new features as much as it is about combining existing
features to solve specific problems.

Excel is a platform for solving complex calculations and presenting results. Programming transforms that general
platform into a task-specific piece of software. The phrase task-specific piece of software is kind of a mouthful, and
most folks use the word solution instead. In my opinion, that's awfully vague but probably better than a new acronym.

The reason to program Excel is to make some task easier or more reliable. Programming languages make things easier
because they are great at performing repetitive operations and following a logical path without getting tired or bored.
They make things more reliable because they slavishly follow your directions and never, ever get creative.

Having such a devoted servant comes with a lot of responsibility, however. For instance, if you tell Excel to "lather,
rinse, repeat" like it says on the back of a shampoo bottle, it's liable to scrub the hair right off your head since you
never told it when to stop repeating. (Hint: if that ever happens to you, press Ctrl-Break and step out of the shower.)

You need to understand the basic rules common to all programming languages before you can write real programs in
Excel (see Chapter 2). That's kind of dry stuff, though, so right now I'm going to jump ahead to something more fun.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2. Record and Read Code
The best way to learn about Excel objects, properties, and methods is by recording code . It's even better than online
Help. Recording will almost always tell you what you need to know if you know how to use it. When Excel records code,
it translates your actions into Visual Basic code. This lets you reverse-engineer recorded actions or simply cut and paste
recorded actions into other procedures.

For example, suppose that you have a workbook containing multiple sheets of sales data as shown in Figure 1-1. You
want to format the data on each of the sheets and add a chart comparing units sold and revenue. This is a great
opportunity to record some code.

Figure 1-1. An example for recording code

To record your code:

1. Choose Tools Macros Record New Macro. Excel displays the Record Macro dialog (Figure 1-2).

Figure 1-2. Step 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Select the range A1:C16 and choose Format AutoFormat. Excel displays the AutoFormat dialog (Figure 1-
3).

Figure 1-3. Step 2

3. Select the Simple format and click OK. Excel formats the range.

4. Press Shift-Up to deselect the Total row and then choose Insert Chart. Excel displays the Chart Wizard
(Figure 1-4).

Figure 1-4. Step 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Click Finish to insert a chart on the sheet as shown in Figure 1-5.

6. Finally, choose Tools Macro Stop Recording to turn off recording.

Now you could repeat this task by selecting one of the other worksheets and run the recorded code by pressing Alt-F8
and running Macro1, but the data would have to be in the same location on the active worksheet and the new chart
would appear on the 2002 worksheet, not the active one. Instead, press Alt-F8 and click Edit. Excel starts the Visual
Basic Editor (VBE) and displays your recorded code, as shown here:

 Sub Macro1() '<---------- Name of procedure.
 '
 ' Macro1 Macro <----------- Comments describing procedure.
 ' Macro recorded 5/26/2004 by Jeff
 '

 '
 Range("A1:C16").Select '<---- Following lines record what you did.
 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 Range("A1:C15").Select
 Charts.Add

 ActiveChart.ChartType = xlColumnClustered
 ActiveChart.SetSourceData Source:=Sheets("2002").Range("A1:C15"), PlotBy:= _
 xlColumns ' Long lines are continued using an underscore ---------^
 ActiveChart.Location Where:=xlLocationAsObject, Name:="2002"
 End Sub '<---------- End of procedure.

Figure 1-5. Step 5

I added some labels in the recorded code to identify its parts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I added some labels in the recorded code to identify its parts:

Each procedure in a workbook has a unique name. Excel assigns the names Macro1, Macro2, and so on to
recorded code.

Anything that appears after ' is a comment. Comments are descriptive text that don't run as code.

Lines of text that aren't comments are executable statements . Statements tell Visual Basic what to do in Excel.

Lines that are longer than about 80 characters are continued on the next line using the _ character. Excel does
that for readability. Actually, Visual Basic allows lines of code to be much longer if you don't mind horizontal
scrolling.

Procedures always include an End statement to tell Visual Basic where to stop.

So now that you've recorded code, what can you do with it? That's up next.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3. Change Recorded Code
Recorded code is a great way to learn, but it's not really a program. Real programs are much more flexible, and
recorded code always has the following limitations:

Follows a linear path

Excel can't infer logic from the user's actionseven if the user repeats an action, Excel only records the action
twice. It doesn't know how to record "repeat until end" or "do this task if..." Excel can "replace all" and perform
other global actions, but that's still linear logic.

Actions apply to the active item

Excel bases recorded actions on whatever worksheet, range, or chart is currently selected by the user. If you
want your code to work with other sheets or ranges, you need to either change the active selection or add
object references that tell the code which items to work with.

Uses cell addresses

For example, Range("A1:C16"). Although Excel keeps references on worksheets up-to-date, Excel can't update
addresses in code. That means if your data is moved on the worksheet, the code won't work correctly. To fix
this, use Excel range properties or named ranges instead of addresses in code.

Methods include all the default arguments

That means lines of code are sometimes longer and more complicated than they really need to be. You can
often simplify recording by removing unneeded default arguments.

Doesn't use variables

Most programs create names to identify things that can change as the code executes. These names are called
variables. Recorded code doesn't use variables because the logic is always linearvariables are required only if
the code repeats or makes decisions.

So if you want the code you just recorded to repeat the formatting and charting tasks for all worksheets in your
workbook, you'll need to make a few changes. I'll do that in a number of steps so it's clearer. First, add the logic to
repeat the formatting for each worksheet:

 Sub Macro1()
 '
 ' Macro1 Macro
 ' Macro recorded 5/26/2004 by Jeff
 '

 '
 For Each ws In Worksheets '<--- Added to repeat actions for each worksheet.
 Range("A1:C16").Select
 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 Range("A1:C15").Select
 Charts.Add
 ActiveChart.ChartType = xlColumnClustered
 ActiveChart.SetSourceData Source:=ws.Range("A1:C15"), PlotBy:= _
 xlColumns
 ActiveChart.Location Where:=xlLocationAsObject, Name:=ws.Name '"2002"
 ' Change Name to match the worksheet's name ----------^
 Next '<--- End of actions to repeat.
 End Sub

The preceding For Each statement tells Excel to repeat the following task for every worksheet in the workbook. The Next
statement ends the set of tasks to repeat. In programming, this kind of logic is called a loop because the flow of
execution runs around and around in a circle until told to stop. In this case, the loop stops after it reaches the last
worksheet in the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet in the workbook.

There's something subtle about the previous code: the For Each statement gets a reference for each worksheet as it
loops and stores it using the name ws. We need to use that name (called a variable) to get the location where Excel
should insert the chart. Thus, ws replaces Sheets("2002"), so each time Excel creates a chart, it inserts it on the right
worksheet. Remember to search for literal references like this and replace them with variables any time you are adding
logic to recorded code.

That was step 1, adding logic. If you run the code now, Excel will repeat the task for each worksheet in your workbook
and it will work correctly as long as each worksheet has its sales figures in the range A1:C16. If that's not the case, the
code won't format or chart the right range. To handle data in other locations, change Range("A1:C16") to use Excel's
UsedRange property as shown here:

 Sub Macro1b()
 '
 ' Macro1b Macro
 ' Change absolute ranges to relative ones.
 '

 '
 For Each ws In Worksheets
 'Range("A1:C16").Select
 Set rng = ws.UsedRange '<-- Get all the cells with data.
 'Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 ' :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 ' Use reference (below) rather than Selection (above).
 rng.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 'Range("A1:C15").Select
 ' Remove the last row (Total) from the range.
 Set rng = ws.Range(ws.Cells(rng.Row, rng.Column), _
 rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0))
 Charts.Add
 ActiveChart.ChartType = xlColumnClustered
 'ActiveChart.SetSourceData Source:=Sheets("2002").Range("A1:C15"), PlotBy:= _
 ' xlColumns
 ActiveChart.SetSourceData Source:=rng, PlotBy:=xlColumns
 ' Use the range reference here ----^
 ActiveChart.Location Where:=xlLocationAsObject, Name:=ws.Name
 Next
 End Sub

UsedRange was introduced in Excel 97, and it is one of those incredibly useful properties that
you'll be seeing over and over again.

The preceding changes use the UsedRange property to get all the cells on the worksheet that contain data. The hard part
comes with the second change that removes the Total row from the range to chart:

 Set rng = ws.Range(ws.Cells(rng.Row, rng.Column), _
 rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0))

Wow, that's complicated! To break it down a bit, ws.Cells (rng.Row, rng.Column) gets the first cell in the range, and
rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0) gets the last cell minus one row (omitting the Total row). The enclosing
ws.Range(...) method combines those start and end points into a rectangular block of cells. Don't worry if you don't
completely understand at this point; you'll find much more material on working with ranges of cells in later chapters.

Finally, I changed the chart's Source argument to use this new range. Now if you run the code, Excel will format and
chart sales data on each of the worksheets regardless of where the data is on each worksheet. The code is still a bit
rough, though, because it doesn't declare the variables it uses, it includes some arguments that aren't really needed,
and it is still named Macro1, which isn't descriptive at all. Here's a cleaned-up version with all the fixes:

 Sub FormatAndChart()
 ' AutoFormats and Charts all of the worksheets in a workbook.
 ' Designed to work with Sales Data tables.
 ' 5/28/04 by Jeff Webb
 '
 Dim rng As Range, ws As Worksheet
 ' Repeats actions for all Worksheets in the workbook.
 For Each ws In Worksheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each ws In Worksheets
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat Format:=xlRangeAutoFormatSimple
 ' Omit the Total row from the range.
 Set rng = ws.Range(ws.Cells(rng.Row, rng.Column), _
 rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0))
 ' Create a chart.
 Charts.Add
 ' Set chart properties.
 ActiveChart.ChartType = xlColumnClustered
 ActiveChart.SetSourceData Source:=rng, PlotBy:=xlColumns
' Insert the chart on the worksheet.
 ActiveChart.Location Where:=xlLocationAsObject, Name:=ws.Name
 Next
 End Sub

Declaring the variables enables handy Visual Basic features like Auto Complete (I discuss
that later).

You might notice that I also rewrote the comments in this final version. It's always a good idea to write out in words
what your code is doing. Even if the code is only for your personal use, it's surprising how easy it is to forget what you
did.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4. Fix Misteakes
Mistakes are a fact of life, and Visual Basic is fairly intolerant of them. If you followed along with the preceding lab, you
probably already encountered that fact. Sometimes it's pretty easy to tell what you've done wrong, and sometimes it's
almost impossibleeven for experienced programmers! What marks the difference between beginning and expert
programmers is how they go about solving those problems.

To help you understand fixing mistakes, you need to know that there are four different kinds of errors that are
generally identified by where or why they happen:

Syntax errors

Occur when you mistype a statement, such as omitting a closing parenthesis or omitting some part of the
statement that is required. Visual Basic detects these errors right away and highlights them in red as soon as
you move to the next line of code.

Semantic errors

Are also often the result of a typo, but they appear valid to Visual Basic as you type. Examples of this kind of
error include misspelling a method or property name or using a variable or procedure name that isn't defined
yet. Visual Basic checks for these errors the moment you run your code (for instance, when you press F5). At
that point, Visual Basic converts your code into a form that Excel understands (this is called compiling), and if
any of the names you used aren't found, compiling stops and Visual Basic highlights the error. Semantic errors
are sometimes called compile-time errors for that reason.

Logic errors

Can be the hardest to detect. These errors occur when your code simply doesn't do what you expected it to do.
Infinite loops (lather, rinse, repeat...) are an example, as are unexpected results such as formatting code that
doesn't format everything it should. Logic errors can sometimes halt your code while it is running, and for that
reason they are often called runtime errors .

Expected errors

Aren't your fault, but you need to deal with them all the same. These are another type of runtime error, and
they are usually the result of using resources outside of Excel, such as trying to get a file from disk or trying to
connect to a database somewhere. In those cases, you need to anticipate the possibility of a problem using a
technique called exception handling (which I cover in Chapter 2).

The real name for expected errors is exceptions . (Since you expect them, they aren't really errors, are they?)

For now, let's look at fixing the errors that are your fault.

1.4.1. Fix Syntax Errors

Visual Basic can detect many kinds of typos as you move from line to line in the code window. This is the most common
type of error you'll make as you learn programming. Fortunately, Visual Basic can generally tell what you did wrong, as
shown in Figure 1-6.

Figure 1-6. Visual Basic stops you when you make a syntax error

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click OK but don't fix the error, Visual Basic leaves the line colored red as a reminder that you should fix it. If you
look at the SyntaxErrors sample, you'll see that it looks like a Christmas tree with all the green comments and red
errors that I've deliberately included to illustrate the different ways errors in syntax can occur.

If you don't understand the error dialog box Visual Basic displays, you can either click Help to get more information
about the error or click OK, select the item you have a question about, and press F1 as shown in Figure 1-7.

Figure 1-7. Select If and press F1 to find out about it

Help often tells you what you need to know about a specific Visual Basic statement. Sometimes it's less helpful about
Excel methods, but it's always a good first place to look since it's only a key press away. Another good, easy way to
figure things out is by using Visual Basic's Auto Complete feature. By default, Visual Basic displays lists of items that
could complete statements as you type, as shown in Figure 1-8.

Figure 1-8. Visual Basic lists items that could complete a statement as you type it

To insert one of the items from the list, use the arrow keys or mouse to select the item and press the spacebar to insert
the item in your code. A similar thing happens when you add a statement that takes arguments, as shown in Figure 1-
9. (Arguments are additional pieces of information that a statement needs to accomplish its task.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-9. Visual Basic also lists the arguments that a statement takes

In this case, the arguments are shown in italics with the current one shown in bold. Arguments are always separated by
commas and once you type a comma, the next argument becomes bold. Square brackets mean that an argument can
be omitted.

Visual Basic's automatic syntax checking and Auto Complete features can help you learn the language, but some
programmers find the error dialogs and pop-up text annoying in some situations. Visual Basic lets you turn off these
features by choosing Tools Options and selecting the Editor tab as shown in Figure 1-10.

Figure 1-10. You can change Code Settings to turn off Visual Basic's syntax
checking and Auto Complete features

Don't do it! Syntax checking and Auto Complete are incredibly useful if you are learning the language.

1.4.2. Fix Compile-Time Errors

In some cases, statements look correct to Visual Basic as you are writing them, but they don't make sense when Visual
Basic tries to compile them into a program. This occurs because there are some things Visual Basic has to ignore as you
are writing the code but can't ignore when you try to run it.

A simple example is when your code calls a procedure that you haven't written yet. Visual Basic doesn't flag that
statement as a syntax error, because it assumes you'll get around to writing the procedure. If you forget to do that,
Visual Basic reminds you when you try to run the code (Figure 1-11).

Figure 1-11. Visual Basic couldn't find ChangeSheets, so it displays an error during
compilation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compilation

Visual Basic alerts you to compile-time errors one at a time, so if you fix the one shown in Figure 1-11 and then try to
run again, another error will pop up on the SyntaxError linethat's a case of a simple misspelling, it should be SyntaxErrors.

Visual Basic is strict about spelling and doesn't guess at what you meant to write. It would
be cool if it were that intuitive, but it would cause bigger problems if it guessed wrong!

Sometimes compile-time errors are similar to syntax errors, such as when you omit a required argument or don't
terminate a statement that spans multiple lines, such as a loop or a decision statement. In those cases, Visual Basic
flags the End Sub or End Function statement because it searched to the end of the procedure without finding the end of the
previous block (Figure 1-12).

The missing End If is pretty obvious in Figure 1-12 because the procedure is not very long, but it can be much harder to
locate where the End If should go in longer passages of code. For that reason, programmers usually indent blocks of
code that are logically related, for example:

 ' Activate the next worksheet or chart, depending on
 ' what type of sheet is currently active. Return to
 ' first sheet when the end is reached.
 Sub ChangeSheets()
 Select Case TypeName(ActiveSheet)
 Case "Worksheet"
 If ActiveSheet.Index < Worksheets.Count Then
 Worksheets(ActiveSheet.Index + 1).Activate
 Else
 Worksheets(1).Activate
 End If
 Case "Chart"
 If ActiveSheet.Index < Charts.Count Then
 Charts(ActiveSheet.Index + 1).Activate
 Else
 Charts(1).Activate
 End If
 Case Else
 Debug.Print TypeName(ActiveSheet), ActiveSheet.Name
 End Select
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-12. Visual Basic flags End Sub because it couldn't find End If before it

In this case, indents make it easier for you to match the begin and end statements for various blocks of code (seen
here with all the details removed):

 Sub
 Select Case
 Case
 If
 ' task
 Else
 ' task
 End If
 Case
 If
 ' task
Else
 ' task
 End If
 Case Else
 ' task
 End Select
 End Sub

Indenting is a standard practice that helps you avoid errors by making it easier to read and interpret logically related
pieces of your code. It is not required by Visual Basic, and adding or omitting indents does not affect how your code
runs.

1.4.3. Fix Runtime Errors

Boy, it seems like a lot of things can go wrong! However, most of these problems are pretty obvious and easy to fix.
That's not so true for errors that occur when your program is running. Unlike other types of errors, Visual Basic can't
detect these until the program actually tries to execute the statement. That makes it harder to tell where the error
occurred and why it happened. For example, Figure 1-13 shows a procedure with a runtime error.

Figure 1-13. Runtime error displayed after pressing F5; doesn't highlight the line
where the error occurred

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where the error occurred

You don't know which line the error occurred on, although you might guess it was the Worksheets("Resource").Activate
statement because I said so in my comments. If you want to confirm that's the error, press F8 instead of F5 to step
through the procedure (Figure 1-14).

In this case, you have to ask yourself why Excel couldn't find the Resource worksheet. Well, it's because the worksheet is
actually named Resources. I don't mean to beat you over the head with this, but spelling is important!

Figure 1-14. Press F8 to run the procedure one line at a time to locate runtime
errors

Runtime errors occur for a variety of reasons. For instance, there is a limit to how big a number can be in Visual Basic
and 100 ^ 100 ^ 100 exceeds that limit (Visual Basic calls that an overflow). Other errors are harder to find with F8, for
example the EasyRTErrors statement calls itself over and over again indefinitely. That's similar to an infinite loop, but since
it's calling itself, it's referred to as infinite recursion instead. If you try F8 on that line, you'll see that you can execute it
more than 5000 times without an error. In that case, you just need to remember that an Out of stack space error usually
means you've got an infinite recursion.

Another type of runtime error that's very common but difficult to find is misspelled variable names . For example, the
following code displays a dialog box, but never says "Howdy" no matter what the user clicks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code displays a dialog box, but never says "Howdy" no matter what the user clicks:

 Sub SubtleRTErrors()
 ' I misspelled answer, you never hear Howdy:
 answer = MsgBox("Click OK to hear Howdy.")
 If aswer = vbOK Then Application.Speech.Speak "Howdy"
 End Sub

The Speech object was added to Excel in 2002. If you have an earlier version, use MsgBox
instead of Application.Speech.Speak for this sample.

There's nothing technically wrong with the code, other than the fact that it doesn't work! This problem occurs because
Visual Basic lets you create variables without ever declaring them. That makes life easier in the beginning (about 30
minutes) but adds a tremendous burden later on trying to locate and fix this type of subtle error. Fortunately, there's a
fix: turn off automatic variables by choosing Tools Options and selecting the Editor tab, then selecting Require
Variable Declaration as shown in Figure 1-15.

Figure 1-15. Require Variable Declaration will avoid subtle runtime errors

When you select Require Variable Declaration, Visual Basic adds an Option Explicit statement any time it creates a new
class or module. If you wrote code before changing that option, you need to add Option Explicit yourself. The Option Explicit
statement causes a compile-time error whenever it encounters an undefined variable, as shown in Figure 1-16.

Figure 1-16. Option Explicit helps identify misspelled variable names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-16. Option Explicit helps identify misspelled variable names

Using Option Explicit creates a little more work writing code, but it saves a lot of work fixing code later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5. Start and Stop
I've already touched on how to run code from Excel or Visual Basic a little bit, and Table 1-1 lists the handy keys and
key combinations that you can use to start and stop code in Excel.

Table 1-1. Useful keys to start and stop code
Press To

Alt-F8 Run or edit a Visual Basic procedure from an Excel workbook.

Esc or
Ctrl-Break Stop code that is running out of control.

F8 Run one line at a time in Visual Basic.

Shift-F8 Run one line as a single statement (without stepping in to another procedure) in Visual Basic.

Shift-Ctrl-
F8

Finish running the current procedure and return to the procedure that called the current one. In other
words, step out of the current procedure and go up one level.

Ctrl-F8 Run all the code from the beginning of a procedure to the current cursor position in Visual Basic.

F5 Run a procedure from beginning to end in Visual Basic.

F9 Set or remove a stopping point (called a breakpoint) in code.

Ctrl-Shift-
F9 Remove all breakpoints from all classes and modules.

Of these, F9 to add a breakpoint combined with F5 and F8 are perhaps the most useful combinations to help solve
runtime errors or just to help figure out how the code works. When you set a breakpoint in code, Visual Basic highlights
the whole line by making its background red (Figure 1-17).

Now if you run the code, it will stop if the active sheet is not a worksheet or a chart (for instance, it might be an old-
style dialog sheet). Breakpoints change the focus from Excel to Visual Basic, so they are a great way to step in to a
procedure that is triggered by Excel in some way (for example, through an event).

Basically, any time you have a question about what code is doing, set a breakpoint somewhere before the point that
you have a question about, then run the code. When Visual Basic hits the breakpoint, it will stop and you can press F8
to step through the code one line at a time.

Running to a breakpoint puts the code in context by filling in variables with live data from Excel. Looking at the values
Excel fills in is what I cover next.

Figure 1-17. You can also set/clear a breakpoint by clicking to the left of the line
of code (where the dot is)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.6. View Results
There are a number of ways to display results from code in Excel. One common way that is used a lot in Help is to
display a message box:

 Sub ShowMessage()
 Dim x As Integer
 x = Sheets.Count
 MsgBox "This workbook contains " & x & " sheets."
 End Sub

This code displays the number of sheets in the workbook using a simple dialog box as shown in Figure 1-18.

Figure 1-18. It's easy to display results using MsgBox

But that's not the same as getting data into a worksheet, which is more commonly what you want to do. To do that,
you set the value of a Range object. For example:

 Sub ChangeRange()
 Dim x As Double
 x = InputBox("Enter a number.")
 Range("J5") = x ^ (1 / 3)
 End Sub

That code gets a number from the user and displays the cube root of that number in cell J5. As mentioned previously,
it's not a good idea to use range addresses in code so the following version uses a named range instead of an address:

 Sub ChangeRange()
 Dim x As Double
 x = InputBox("Enter a number.")
 Range("targetRange") = x ^ (1 / 3)
 End Sub

To name a range in Excel, select the range (in this case cell J5) and type the name in the Name box as shown in Figure
1-19.

Figure 1-19. It's better to use named ranges in code

To see all of the named ranges in a workbook, choose Insert Name Define.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see all of the named ranges in a workbook, choose Insert Name Define.

You can even display results in a range using the formula bar if your procedure returns a value. The following code
shows changes to make to repackage the cube root calculation for use in a formula:

 Public Function CubeRoot(x As Double) As Double
 CubeRoot = x ^ (1 / 3)
 End Function

In order to use a procedure in a formula, the procedure must:

Not be Private (the Private keyword hides functions from the formula bar).

Return a value (that is, it must be a Function)

Be part of a module, not a class

If the procedure follows those rules, you can enter its name in the formula bar as shown in Figure 1-20.

Figure 1-20. You can use public functions in formulas

Visual Basic procedures that can be used in the formula bar are sometimes called user-
defined functions, or UDFs for short.

In other cases, you might want to view a result, but not show that result to users. A good example of this is when
you're developing your code or when you're making sure it works correctly. In that situation, you usually set a
breakpoint in your code, then view the values in variables using watches . There are three kinds of watches in Visual
Basic, and none of them go ticktock:

Automatic watches

Display the value of a simple variable or property when you move the cursor over the item after stopping at a
breakpoint.

Quick watches

Display the value of a variable or property when you select the item and press Shift-F9. Quick watches can
display returned values, such as TypeName(ActiveSheet), which automatic watches can't.

Watch points

Display the value of a variable or property in the Watch window. Watch points can also stop code if an item
reaches a certain value. In that way, they function as conditional breakpoints.

Figures 1-21 through 1-23 show the different types of watches in action.

Figure 1-21. Automatic watches display simple values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-21. Automatic watches display simple values

Figure 1-22. Select an item and press Shift-F9 to see a quick watch

Figure 1-23. Select an item and choose Debug Add Watch to display the value
of that item in the watch window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Watches are the best way to look at a value at one point in time, but when you need to track how a value changes,
they are kind of limited. In those situations, it's often best to display your results in the Immediate window using the
Debug.Print statement. An easy way to illustrate this is to go back to the runtime error sample we showed earlier that
causes an infinite recursion. I've made some changes (in bold) to show how to track how many levels deep the
recursion goes before failing:

 Sub EasyRTErrors()
 ' Previous code deleted for this example.
 Static i
 i = i + 1
 ' Show how many times recusion will run before error.
 Debug.Print i
 ' Infinite recursion, stack overflow:
 EasyRTErrors
 End Sub

Now, if you run this code, a stream of numbers will display in the Immediate window (Figure 1-24). If you don't see the
Immediate window in VBE, press Ctrl-G to redisplay it.

Figure 1-24. Use Debug.Print to display results in the Immediate window

You can also use the Immediate window to run procedures and perform quick calculations. In effect, it functions as a
single-line Visual Basic interpreter as shown in Figure 1-25.

Figure 1-25. Type statements in the Immediate window to see their result,
err...immediately

The ? character is a shortcut for Print in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ? character is a shortcut for Print in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.7. Where's My Code?
Excel stores Visual Basic code in the workbook (.xls), template (.xlt), or add-in (.xla) file when you save it. File formats
other than those omit the Visual Basic code the same way that special formatting is lost when you save a workbook as
a text (.txt) or comma-delimited file (.csv).

You can view the code in a currently open Excel file by pressing Alt-F11, by choosing Tools Macro Visual
Basic Editor or by clicking the Visual Basic Editor button on the Visual Basic toolbar (Figure 1-26).

Figure 1-26. The Visual Basic toolbar lets you edit, run, or stop code; create
controls; and set macro security

Within the editor, code is organized into modules and classes . Modules are static code files that typically contain
recorded code and public procedures that you want users to be able to call directly from Excel. Classes are associated
with an instance of an object in Excel, such as a workbook or worksheet. Classes usually contain code that responds to
Excel events, such as when a command button is clicked or when the user opens the workbook.

Excel creates a new module called Module1 when you first record code as shown earlier in this chapter. Excel provides a
class for each new sheet you add to a workbook. Similarly, Excel deletes that sheet's class when you delete the sheet
from the workbook, so be careful when deleting sheets while programming! You can see a workbook's classes and
modules in the editor's Project window (Figure 1-27).

You can also use the Project window to export classes or modules to text files and to import code stored as text into the
workbook. Unfortunately, there's no easy way to store code separately from the workbook (which would be nice when
more than one person is working on code).

Visual Basic displays information about each class or module in the Properties window below the Project window, as
shown in Figure 1-28. As you select a different item in the Project window, the item displayed in the Properties window
changes.

You can use the Properties window to rename modules or classes or to control various aspects of a class. For example,
to rename Module1 something descriptive, like RecordedCode, select Module1 in the Project window and type RecordedCode in
the (Name) property of the Properties window. You can also use the Properties window to hide sheets by setting the
class's Visible property.

Figure 1-27. Double-click on a class or module to open it in a code window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-28. Select ThisWorkbook in the Project window to see the workbook's
properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.8. Macros and Security
When you open a workbook that contains code, Excel displays a security warning suggesting you might want to disable
the code, as shown in Figure 1-29.

Microsoft included this warning because, once a user enables the macros in a workbook, that code has full access to the
user's system and can do some pretty nasty things (such as changing or deleting files) without the user knowing it.
Microsoft deals with this problem differently in different programming tools, and in Excel Visual Basic they put the
burden on the user for determining whether code should or should not be trusted.

Figure 1-29. Excel's macro security warning is pretty dire

Unfortunately, users are often the least-qualified people to make this judgment. Who knows where ch01.xls came from
or what it will do if I open it? The way to answer those questions is to add a digital signature. A digital signature
identifies the author of the content or the macros contained in a workbook, template, or add-in. By digitally signing a
workbook's code, you add a unique identifier that says the code came from you (or your organization) and thus the
user may have more confidence that the workbook won't insert the word Wazoo in all your correspondence.

I once received a work-for-hire contract from Microsoft legal that occasionally declared
Wazoo! I thought they were just checking to make sure I read the thing....

There's a lot more information on security and digital signatures in Chapter 26, but for now I'll tell you how to eliminate
the warning in Figure 1-29 for Excel Visual Basic code you create and use on your own computer. Doing that involves
two major steps:

1. Create a personal digital signature for signing your workbooks.

2. Sign your workbooks with that certificate.

These steps are detailed in the following procedures.

To create a personal digital signature:

1. From the Windows Programs menu, choose Microsoft Office Microsoft Office Tools Digital Certificate
for VBA Projects. Windows runs SelfCert.exe and displays the Create Digital Certificate dialog box (Figure 1-30).

2. Type the name you want displayed within the signature and click OK. SelfCert.exe creates a local certificate and
displays a success message.

Figure 1-30. Creating a personal digital signature

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-30. Creating a personal digital signature

SelfCert.exe is provided with Office 2000 and later. If it is not installed on your system,
run Office Setup and install Office Tools Digital Signature for VBA Projects.

This certificate is valid on only the machine on which you created it. Therefore, its use is really limited to signing macros
on your own machine to avoid the security prompt you get each time you open a workbook containing macros you've
written.

To sign a Visual Basic project in a workbook, follow these steps:

1. From within the workbook, open the Visual Basic Editor.

2. Choose Tools Digital Signature. Visual Basic displays the Digital Signature dialog box (Figure 1-31).

3. Click Choose. Visual Basic displays a dialog box containing all the digital signatures installed on your system
(Figure 1-32).

4. Select the certificate to use, and click OK. Then click OK again to close the Digital Signature dialog box.

Once the code is signed, you may see the security warning in Figure 1-33 when you open a workbook, template, or
add-in containing the code you just signed.

If you select the option to "Always trust macros from this publisher" and click Enable Macros, you won't see this
warning every time you open your own signed workbooks.

Figure 1-31. Signing a Visual Basic project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-32. Choosing a signature

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.9. Write Bug-Free Code
I encourage a guided, trial-and-error approach to learning how to program. This is mainly because I don't think anyone
can remember all the facts and information you need to know without having some way to apply that information in a
practical way. Also, I think most of us are impatient by nature and want to get started as soon as possible.

However, I don't want you to confuse this approach with disorganization or sloppiness. Either of those bad habits will
make your programming experience difficult and frustrating. The following list is a collection of good habits that will pay
off as you learn and develop your career:

Figure 1-33. Your digital signature now appears in the macro security warning

Declare all your variables

Adding Option Explicit to the top of each class or module helps make sure you don't accidentally misspell a variable
name and cause a subtle error that can be hard to locate.

Type carefully

Many names in Excel, such as worksheet names or named ranges, can't be checked through Option Explicit and
misspelling one of those in code can lead to similarly hard-to-locate errors.

Use short, descriptive names

There are different conventions for naming variables and procedures but the crux of all of them is to be short
and descriptive. Be careful not to be too descriptive though. I try to keep variable names down to a few
characters and I tend to use whole words when naming procedures.

Avoid ActiveSheet and Selection

I know Excel records code this way, but it is much better to get a worksheet or range by name if possible.
Relying on which worksheet or range is selected makes it harder to debug and reuse your code. The exception
to this guideline is when you really want to act on the ActiveSheet or Selection, such as when you are creating
general tools that work on any worksheet or range.

Try to think clearly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try to think clearly

For complicated tasks, it can help to write out what you want to do on a pad of paper, then try to do those
steps in Excel with macro recording on. Often it helps to break a task up into several different steps and make
those steps procedures that you can call from one central procedure.

Rely on friends

There are a lot of programmers in the Excel community and they communicate through a number of very active
newsgroups. Those are great places to look for answers and to find samples.

Copy others

I don't mean you should plagiarize copyright-protected work, but it's OK to copy most code snippets, and it's
good practice to follow the coding style of others if you find it elegant.

Share with others

This is the other side of relying on friends and copying others. Don't be afraid of feedback, either.

Take a break

The best programmers I know lead balanced lives. You'll be surprised how many problems seem to solve
themselves once you relax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.10. Navigate Samples and Help
I've organized my samples by chapter, so the samples for this chapter are in ch01.xls, the next chapter is ch02.xls, and
so on. Within each sample, I include a Start Here sheet that provides general instructions on using the samples, a
Resources sheet that includes links to other sources of information, and in between I include sheets related to the
specific topics covered in the chapter (Figure 1-34).

Figure 1-34. Chapter samples are stored in a workbook; topics are covered on
individual sheets

In some cases, a chapter's samples may include other files or folders, but in all cases, links to those locations are found
in the main chapter sample.

In other words, I've tried to organize stuff as simply as possible.

Excel's Visual Basic Help is also organized fairly simply, however there are a couple gotchas:

Make sure that you have installed Visual Basic Help for Excel . Earlier versions of Excel did not install Help for
Visual Basic by default. If you press F1 in Visual Basic and Help is not displayed, you probably need to run the
Excel Setup program to update your installation so it includes Visual Basic Help.

If you are using Excel 2003 you may want to start Help by opening the Help file directly rather than through
pressing F1. Excel 2003 provides navigation tools in a Help task pane rather than in the Help window (Figure 1-
35 versus Figure 1-36), and it's harder to navigate that way!

Figure 1-35. Excel 2003 navigates Help from the task pane on the right

Figure 1-36. Earlier Excel versions, or opening the file directly, provides navigation
as part of the Help window, on the left

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as part of the Help window, on the left

To open the Excel 2003 Help file directly, either click on the link on the Resources sheet or double-click on the Help file
in Windows Explorer. The Excel 2003 Help file is stored at C:\Program Files\Microsoft
Office\OFFICE11\1033\VBAXL10.CHM by default. The Visual Basic language reference is stored at C:\Program
Files\Common Files\Microsoft Shared\Vba\Vba6\1033\VBLr6.chm by default.

The graphic in Figure 1-36 shows how the Excel objects are organized. If you click on one of the boxes, you'll get more
information about that object, as shown in Figure 1-37.

Figure 1-37. Help on the Worksheet object

Excel's Help often does a good job of explaining what a specific object is, but it often lacks good direction on why you
might use the object. Those are the blanks I'll try to fill in for you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.11. What You've Learned
So far, you've learned how to record a macro from Excel and then modify that code to repeat the task globally. In the
process, you learned how to use the Visual Basic Editor to step through code, fix errors, and get online Help.

You should have turned on Option Explicit for all your code and created a digital signature that you can use to avoid the
macro security warning when working on your code.

Come back to this chapter later if you need help finding and fixing errors or using the Visual Basic Editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Knowing the Basics
Visual Basic comes from a long line of Basics. In fact, BASIC was Microsoft's first product. Bill Gates and Paul Allen
developed a BASIC interpreter for use on the Altair personal computer in their Harvard dorm rooms many years ago.

Back at Microsoft, I got to play a small role in the evolution of computer languages. I was
the guy who changed BASIC to Basic. Death to acronyms!

The Visual Basic language is distinct from the objects, properties, and methods that Excel provides. If you know Visual
Basic, you can program Word or PowerPoint, or even Windows. I'll teach you the fundamental elements of the language
here.

Code used in this chapter and additional samples are available in ch02.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1. Parts of a Program
A program is made up of the basic parts shown in Figure 2-1.

Project

Is the workbook where the program is stored. Each workbook has one Visual Basic project.

Classes and modules

Store the code associated with the workbook and the sheets the workbook contains. Classes and modules help
organize the procedures in your program.

Procedures

Perform the program's work. You can't do anything in Visual Basic without creating at least one procedure.

Figure 2-1. The main parts of a program

Variables

Store values used by your program.

Conditional statements

Make decisions within procedures.

Loops

Repeat actions. Together, conditional statements and loops form the logic that your procedure uses to
accomplish its task.

Expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Expressions

Evaluate a combination of items to return a single result. Expressions are the smallest unit of work in a program
and they usually involve operators such as +, -, *, or & (combine strings).

The following sections describe these parts in detail. If you are new to programming, I recommend that you follow
along with the samples carefully. I take a top-down approach and I've tried to be clear about how, when, and why you
use each part.

If you're an experienced programmer, the top-down organization of this chapter should work well for you as a
reference. If you think you know this already, I recommend that you read the sections "Classes and Modules," "Events,"
and "Exceptions" just to make sure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2. Classes and Modules
Excel stores recorded code in modules and stores code associated with workbooks and worksheets in classes . Here's
why:

Modules are static

That is, they exist without having to be created in memory at runtime. That means the code in modules is
always available to Excel; however, it limits what type of code they can contain. Specifically, modules can't
contain event procedures.

Classes are dynamic

They must be instantiated at runtime (that means an instance of an object must be created from the class at
runtime). Classes can contain event procedures because of this relationship with an object.

Workbook, chart, and worksheet classes are automatically instantiated by Excel because those classes are associated
with visible Excel objects: the current workbook and each of the sheets it contains. Because of that relationship, Visual
Basic shows those classes as Microsoft Excel Objects in the Project window (Figure 2-2).

Figure 2-2. Excel Visual Basic projects store code in three different folders

Because Excel instantiates classes automatically, how you create objects from classes is mostly hidden and therefore
often not completely understood. To see how creating an object from a class works, create a new workbook in Excel,
start the Visual Basic Editor, and follow these steps:

1. Choose Insert Class Module. Visual Basic creates a new class and adds it to the Class Modules folder of the
Project window.

2. Select the Properties window and rename the class PublicClass and set the Instancing property to 2 - PublicNotCreatable,
as shown in Figure 2-3.

Figure 2-3. Create a user class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-3. Create a user class

Click on the class's Code window and type the following code:

 ' From PublicClass class
 Dim m_name As String

 Public Sub SetName(name As String)
 m_name = name
 End Sub

 Public Sub ShowName()
 Debug.Print m_name
 End Sub

Now move the cursor to the ShowName procedure and press F5. Excel doesn't run the procedure; instead, it displays the
Macros dialog, and it's empty! (See Figure 2-4.)

Figure 2-4. Procedures in user classes don't show up here because they don't have
an instance

In order to run the ShowName procedure, you need to choose Insert Module and add the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In order to run the ShowName procedure, you need to choose Insert Module and add the following code:

 ' From Tests module.
 Sub TestUserClass()
 Dim obj As New PublicClass
 obj.SetName ("New object")
 obj.ShowName
 End Sub

TestUserClass creates an instance of PublicClass as a new object named obj, then calls the SetName and ShowName methods of
that object. In short, you can't do anything with a class until you create an object from it. Why is that useful? Because
each object has its own storage. For example, you can create three different objects from the same class if you like:

 ' From Tests module.
 Sub MultipleObjects()
 Dim obj1 As New PublicClass, obj2 As New PublicClass, obj3 As New PublicClass
 obj1.SetName ("First object")
 obj2.SetName ("Second object")
 obj3.SetName ("Third object")
 obj1.ShowName
 obj2.ShowName
 obj3.ShowName
 End Sub

The preceding code displays each object's name in the Immediate window:

 First object
 Second object
 Third object

You can't do that with code stored in a module because the m_name variable changes each time you call SetName. With
modules, you have only one instance, and you can't create that instance:

 ' From Tests module.
 Sub MultipleModules()
 ' Code in modules is static, there's no such thing as:
 'Dim mod As New PublicProcedures
 PublicProcedures.SetName ("First object")
 PublicProcedures.SetName ("Second object")
 PublicProcedures.SetName ("Third object")
 ' All display "Third object"
 PublicProcedures.ShowName
 PublicProcedures.ShowName
 PublicProcedures.ShowName
 End Sub

Most programmers omit the module name when calling procedures from a module, but you
can include it if you like, as shown by this example. The module name is required only if
there is a procedure with the same name in two or more modules.

The classes that Excel provides for sheets and workbooks are single-instance classes . That means they follow some
special rules that are different from user classes. You can create multiple variables that refer to a single-instance class,
but all those variables refer to the same object. For example, the following code creates object variables that refer to
the same worksheet:

 ' From Tests module
 Sub TestSheetClass()
 Dim obj1 As New Sheet1, obj2 As New Sheet1
 obj1.Name = "New name"
 Debug.Print obj2.Name
 End Sub

When you run the preceding code, Debug.Print displays New Name in the Immediate window! This limitation comes from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you run the preceding code, Debug.Print displays New Name in the Immediate window! This limitation comes from
Excelyou can't have two sheets with the same name in a single Excel workbook, and you can't have two workbooks with
the same name open at the same time in Excel.

Since Excel handles the creation of workbook and sheet classes, the New keyword in the preceding code is misleading:
you can't really create new instances of those classes. However, you can create new instances of generic versions of
those objects using Excel's Add method:

 ' Creates a new, blank worksheet
 Sub NewWorksheet()
 Dim ws As Worksheet
 Set ws = Worksheets.Add
 ws.Name = "New sheet"
 End Sub

One other quirk of workbook and sheet classes is that you can run their procedures from the Code window by pressing
F5. You don't need to first create an instance of those classesExcel's already done it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3. Procedures
Procedures are named blocks of code that perform a task. I've shown a lot of procedures already and I feel a little bad
about waiting this long to define that term. Procedures can have arguments , which let you pass values in to the
procedure from somewhere, and they may return values through their name. Figure 2-5 illustrates these parts using
the CubeRoot example from Chapter 1.

Visual Basic has four kinds of procedures:

Sub procedures

Perform a task but don't have return values.

Function procedures

Perform a task and return a value as their result.

Figure 2-5. Parts of a procedure

Property procedures

Get or set a value in an object or module.

Event procedures

A special kind of Sub procedure that respond to events that occur in Excel. Only classes can contain event
procedures.

The following sections explain these different types of procedures and how you use them.

2.3.1. Arguments and Results

I've heard some people say "Sub procedures don't return a value; Function procedures do." I may have said that myself
once or twice, but it's not exactly true. Actually Sub and Function procedures can both return values through their
arguments. Only Function procedures return a value as their result. In other words, only Function procedures can be used
on the righthand side of the equals sign (=).

For example, the CubeRoot procedure in Figure 2-5 can return a result and store that result in a variable as shown here:

 x = CubeRoot(42)

You couldn't do that if it were a Sub procedure. But what if it were? Here's what CubeRoot might look like if it were
rewritten as a Sub (changes are in bold):

 Public Sub CubeRoot2(x As Double, result As Double)
 result = x ^ (1 / 3)
 End Sub

This Sub just returns the result as an argument rather than through the function name. Using the CubeRoot2 procedure is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This Sub just returns the result as an argument rather than through the function name. Using the CubeRoot2 procedure is
a lot more awkward than using CubeRoot, however:

 ' Use the CubeRoot2 Sub
 Sub TestCubeRoot2()
 Dim res As Double
 CubeRoot2 42, res
 Debug.Print res
 End Sub

One problem is that it isn't always clear which argument you are passing in and which argument returns the resultI
named the second argument result to make that clearer. It's more common to use Subs to change arguments when you
want the input argument to change to the result, like this:

 ' Change the passed-in argument
 Public Sub GetCubeRoot(x As Double)
 x = x ^ (1 / 3)
 End Sub

Now the Sub changes the value of whatever argument you pass in:

 Sub TestGetCubeRoot()
 Dim x As Double
 x = 42
 GetCubeRoot x
 Debug.Print x
 End Sub

This works because Visual Basic passes arguments by reference. That means the argument x is not really 42; it's
actually an address in memory that contains the value 42. You can change this by declaring the argument as ByVal:

 ' Doesn't change the passed-in argument
 Public Sub GetCubeRoot2(ByVal x As Double)
 x = x ^ (1 / 3)
 End Sub

The preceding code doesn't change the argument since it is passed by value. To confirm that it doesn't change, try this:

 Sub TestGetCubeRoot2()
 Dim x As Double
 x = 42
 GetCubeRoot2 x
 Debug.Print x
 End Sub

The preceding code displays 42, not the result you probably want. The default is to pass arguments by reference, and
you can include the optional ByRef keyword if you want to be absolutely clear what you are doing:

 Public Sub CubeRoot2(ByVal x As Double, ByRef result As Double)
 result = x ^ (1 / 3)
 End Sub

Now, it is clearer which argument is for input (x) and which is for output (result).

2.3.2. Optional Arguments

Sometimes you can avoid having an argument. The Optional keyword tells Visual Basic than an argument can be omitted.
The following code shows changes to the ChangeSheets procedure from Chapter 1 to add an optional argument:

 Sub ChangeSheets2(Optional index As Integer = 1)
 Select Case TypeName(ActiveSheet)
 Case "Worksheet"
 If ActiveSheet.index < Worksheets.Count Then
 Worksheets(ActiveSheet.index + index).Activate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Worksheets(ActiveSheet.index + index).Activate
 Else
 Worksheets(1).Activate
 End If
 Case "Chart"
 If ActiveSheet.index < Charts.Count Then
 Charts(ActiveSheet.index + index).Activate
 Else
 Charts(1).Activate
 End If
 Case Else
 Debug.Print TypeName(ActiveSheet), ActiveSheet.Name
 End Select
 End Sub

Now, you can call the procedure with or without an index argument:

 Sub TestChangeSheets2()
 ' Activates the sheet three sheets away.
 ChangeSheets2 3
 ' Activates the next sheet (omits argument)
 ChangeSheets2
 End Sub

Visual Basic illustrates the optional argument and its default as you type, using the autocompletion feature as shown in
Figure 2-6.

Figure 2-6. Optional arguments are shown with their default values

In some cases, you might want to fill in the default value of an optional argument with a value that is available only
while the code is running instead of using a fixed setting. To do that, omit the default setting and test to see if the
argument is Nothing in code. For example, the following procedure automatically formats the active worksheet if the ws
argument is omitted:

 Public Sub Reformat(Optional ws As Worksheet)
 ' Check if argument was omitted.
 If TypeName(ws) = "Nothing" Then
 ' Check the type of the active sheet.
 If TypeName(ActiveSheet) = "Worksheet" Then
 ' Format the active worksheet.
 Set ws = ActiveSheet
 Else
 ' You can't reformat nonworksheets.
 MsgBox "Select a worksheet and try again."
 Exit Sub
 End If
 End If
 Dim rng As Range
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat xlRangeAutoFormatSimple
 End Sub

Most of the preceding code is devoted to checking whether the argument is missing and whether the active sheet is a
worksheet. That is usually the case in this situation; you need to be careful to make sure the selected item will work
with the rest of your code when filling in a default value this way.

In a few rare cases, you might want to write a procedure that takes any number of similar arguments. In that situation,
declare the argument as a ParamArray as shown here:

 Public Sub Reformat2(ParamArray sheets() As Variant)
 ' If argument is ommitted, call Reformat
 If IsMissing(sheets) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If IsMissing(sheets) Then
 Reformat
 Exit Sub
 End If
 ' Otherwise, go through each argument in the array.
 Dim var As Variant, ws As Worksheet
 For Each var In sheets
 If TypeName(var) = "Worksheet" Then
 ' Convert the type to Worksheet.
 Set ws = var
 ' Call Reformat.
 Reformat ws
 End If
 Next
 End Sub

The Reformat2 procedure can have any number of arguments, including none: the IsMissing function checks for that case.
ParamArray arguments can only be Variants, so you need to check each argument as shown in the For Each loop to make
sure it's the right type. Reformat2 simply reuses the Reformat procedure I created earlier to do the real work. Reusing
existing code is always a good idea.

The keyword ParamArray points up a terminology detail I'd rather ignore: the names used
between parentheses in a procedure definition are called arguments; the variables passed
in when the procedure is called are referred to as parameters. Confused? That's why I just
call them all arguments.

To see how ParamArray works, call Reformat2 as shown here:

 Sub TestReformat2()
 ' Format two worksheets
 Reformat2 Worksheets("2002"), Worksheets("2003")
 ' Format the active worksheet
 Reformat2
 End Sub

2.3.3. Named Arguments

Visual Basic lets you include the name of arguments when you call a procedure. This is most obvious in recorded code:

 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True

The name before the := is the name of the argument and the item after it is the value of that argument. This is handy if
you want to use mostly default values; for instance, the following code reformats a selection without adding borders or
changing column widths:

 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Border:=False, Width:=False

You can do the same thing without names by relying on the positions of the arguments instead. The following line does
exactly the same thing as the preceding one:

 Selection.AutoFormat xlRangeAutoFormatSimple, , , , False, , False

I tend to omit named arguments because I feel they are often too verbose and because
the next generation of Visual Basic (Visual Basic .NET) doesn't use them. Feel free to
disagree with me on this one, though.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An approach that works better than named arguments in my opinion is using Visual Basic's Auto Complete feature. That
feature doesn't work with generic types of objects like Selection and ActiveSheet, so you must first get the specific type of
object as shown in Figure 2-7.

Figure 2-7. Auto Complete makes named arguments unnecessary in my opinion

2.3.4. Properties

Function procedures return a result and so can be used on the righthand side of an assignment:

 x = CubeRoot(42)

But what if you want to put a procedure name on the lefthand side? That's what properties do. Property procedures can
be assigned to or assigned fromthey can appear on either side of =. For example, the following code defines a Name
property for a module:

 ' Code in PublicProcedures module
 Dim m_name As String

 ' Assign the name.
 Public Property Let Name(arg As String)
 m_name = arg
 End Property

 ' Return the name
 Public Property Get Name() As String
 Name = m_name
 End Property

Code outside the module can set or return the value from m_name by calling the Name property:

 Sub TestProperties()
 PublicProcedures.Name = "Module name"
 Debug.Print PublicProcedures.Name
 End Sub

You could do something similar by just making m_name a public variable, but properties allow you special control that
you don't get with that technique. For example, the following code makes sure that Name is set only once:

 Public Property Let Name(arg As String)
 If arg <> "" And m_name = "" Then
 m_name = arg
 Else
 MsgBox "Name is already set to: " & m_name
 End If
 End Property

You can make a property read-only by not defining a Let procedure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can make a property read-only by not defining a Let procedure:

 Const m_date = #6/5/2004#

 ' Read-only property (no Let procedure)
 Public Property Get Created()
 Created = m_date
 End Property

Properties can represent objects if they use Set instead of Let. For example, the following read/write property keeps
track of a range of cells currently in use by the module:

 ' Object property (uses Set instead of Let)
 Public Property Set CurrentRange(arg As Range)
 Set m_range = arg
 End Property

 Public Property Get CurrentRange() As Range
 Set CurrentRange = m_range
 End Property

You can use an object property as part of a Set statement as shown here:

 Set PublicProcedures.CurrentRange = Selection
 Debug.Print PublicProcedures.CurrentRange.Address

All of the property samples I show here are part of a module. It is more common to find properties defined in classes .
In those cases, you must first create an instance of an object from the class before using the property. For example, if
you created the preceding properties in a class module named PublicClass, you'd use the following code to test them:

 Sub TestObjectProperties()
 Dim obj As New PublicClass
 ' Read-write property.
 obj.Name = "Module name"
 Debug.Print obj.Name
 ' Read-only property
 Debug.Print obj.Created
 ' Object property
 Set obj.CurrentRange = Selection
 Debug.Print obj.CurrentRange.Address
 End Sub

2.3.5. Events

The last kind of procedure is special type of Sub called an event procedure. Event procedures are where you write code
that responds to things that happen in Excel, such as the user opening a workbook, clicking on a button, or changing a
selection.

Events can exist only in classes, so it's easiest to see them by looking somewhere like the ThisWorkbook class shown in
Figure 2-8.

Figure 2-8. Predefined events in the Workbook class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To view the events that Excel defines for a class:

1. Open the class module in a Code window.

2. Select an object from the Code window's object list.

3. Select an event from the Code window's event list. Visual Basic inserts the event definition for the selected
event in the Code window.

The event definition is a Sub procedure that matches to the event's name and argument list. Some events, such as Open,
don't have any arguments; others, such as SheetSelectionChange, have several. Any code you add to an event definition is
run whenever that event occurs in Excel. You can see how this works by adding the following event procedure to the
ThisWorkbook class:

 Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As Range)
 MsgBox "Sheet: " & Sh.Name & " " & " Selected range: " & Target.Address
 End Sub

The preceding code displays the sheet name and range address any time you click on a new cell in the Excel workbook.
There's more on Excel's built-in events later in this book. Right now, I'd like to tell you how to create your own events.

There are two phases to creating your own events in a class:

1. Declare the event using the Event keyword.

2. Trigger the event using the RaiseEvent keyword.

Go back to the PublicClass example I've been using, and add the following lines shown in bold:

 ' Code in PublicClass class

 ' Class-level variables used by properties
 Dim m_name As String
 Const m_date = "6/5/2004"
 Dim m_range As range

 ' Event declaration
 Public Event RangeChange(rng As range)

 ' Assign the Name property
 Public Property Let Name(arg As String)
 If arg <> "" And m_name = "" Then
 m_name = arg
 Else
 MsgBox "Name is already set to: " & m_name
 End If
 End Property

 ' Return the Name property
 Public Property Get Name() As String
 Name = m_name
 End Property

 ' Read-only property (no Let procedure)
 Public Property Get Created()
 Created = CDate(m_date)
 End Property

 ' Object property (uses Set instead of Let)
 Public Property Set CurrentRange(arg As range)
 Set m_range = arg
 ' Trigger the event
 RaiseEvent RangeChange(m_range)
 End Property

 Public Property Get CurrentRange() As range
 Set CurrentRange = m_range
 End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Property

Now objects created from PublicClass will include a RangeChange event that occurs whenever the class's CurrentRange property
is set. To use this event from another class, such as ThisWorkbook, you must:

1. Declare an object using the WithEvents keyword. That adds the object to the Code window's events list.

2. Create an instance of the object.

3. Add an event definition for the event.

4. Do something to trigger the event.

To see the new event at work, open the ThisWorkbook class in a Code window and make the following changes:

 ' Code in ThisWorkbook class
 Dim WithEvents obj As PublicClass

 ' Respond to the RangeChange event.
 Private Sub obj_RangeChange(rng As range)
 ' Display the new current range.
 MsgBox "Current range: " & rng.Address
 End Sub

 Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As range)
 'MsgBox "Sheet: " & Sh.Name & " " & " Selected range: " & Target.Address
 ' Create object if it has not already been created.
 If TypeName(obj) = "Nothing" Then Set obj = New PublicClass
 ' Set the object's current range to trigger the event.
 Set obj.CurrentRange = Target
 End Sub

Now when you click on cells in the workbook, your code changes the CurrentRange property which triggers the RangeChange
event and displays a message box with the current setting. It might be useful to set a breakpoint in
Workbook_SheetSelectionChange and step through the code to see how the code executes.

If an event procedure takes arguments, you can't run it by pressing F5. Instead, you have
to set a breakpoint and then trigger the event in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4. Variables
Variables are names that your code uses to refer to pieces of information. I've already shown lots of variables in code
and used the word many timesyou can't say much about programming without doing that and fortunately variables
aren't a difficult concept to grasp, but there's a lot of details to know about them.

The following sections tell you all you need to know (possibly all there is to know) about variables in Visual Basic.

2.4.1. Names

Anything that you name in Visual Basic (variables, procedures, classes, etc.) has to follow certain rules. For example, if
you try to name module 1Off, you'll get an error (Figure 2-9).

Figure 2-9. Not all names are allowed in Visual Basic

To be valid in Visual Basic, a name must:

Start with a letter (A-Z)

Not include any of the restricted characters listed in Table 2-1

Not be one of the Visual Basic restricted words listed in Table 2-1

Be less than 256 characters long

Be unique within its scope (more on scope later)

Table 2-1. Characters you can't use in Visual Basic names
(space) ~ ´ `

" . ^ *

() - +

= < > ?

/ \ []

{ } | :

; : % !

& $ # @

The last seven characters in Table 2-1 (in bold) are allowed if used as the last character in a namein that case, they
identify the data type of the variable. That is a holdover from older versions of Basic and it's not a good idea to use that
practice in modern programs.

The words listed in Table 2-2 are restricted because Visual Basic couldn't determine the meaning of certain statements
if they were allowed as variable or procedure names. In some cases, the word is no longer commonly used in Visual
Basic programs (Rem, GoSub), but the restriction remains for compatibility with earlier versions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Basic programs (Rem, GoSub), but the restriction remains for compatibility with earlier versions.

Table 2-2. Words that can't be used as names in Visual Basic
AddressOf And Any As Boolean

ByRef Byte ByVal Call Case

CBool CByte CCur CDate CDbl

CInt CLng Close Const CSng

CStr Currency CVar CVErr Date

Debug Declare DefBool DefByte DefCur

DefDate DefDbl DefInt DefLng DefObj

DefSng DefStr DefVar Dim Do

Double Each Else Empty End

Enum Eqv Erase Event Exit

False For Friend Function Get

Global GoSub GoTo If Imp

Implements In Input Integer Is

LBound Len Let Like Lock

Long Loop LSet Me Mod

New Next Not Nothing Null

On Open Option Optional Or

ParamArray Preserve Print Private Public

Put RaiseEvent ReDim Rem Resume

Return RSet Seek Select Set

Single Spc Static Stop String

Sub Tab Then To True

Type UBound Unlock Variant Wend

While With WithEvents Write Xor

2.4.2. Declarations

Visual Basic has automatic variables by default. That means a new variable is created the first time you use it. This
makes life somewhat easier for beginning programmers, but it makes things harder when writing and maintaining
complex programs. For that reason, most experts recommend that you require variable declarations by adding Option
Explicit to the beginning of each class or module.

Option Explict turns off Visual Basic's automatic variables and thus requires that you declare each variable before you use
it. To declare a variable, use the Dim statement:

 Dim x As Integer

The preceding code declares that the name x is a variable that can contain an integer. The 12 different types of
variables in Visual Basic are listed in Table 2-3.

Table 2-3. Data types for variables in Visual Basic
Type Kind of data Size Values

Boolean True/false
choices 2 bytes True (0), False (-1)

Byte Binary data 1 byte 0-255

Currency Monetary
values 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date A date or
time 8 bytes 1 January 100 to 31 December 9999

Double Large decimal
numbers 8 bytes 1.79769313486231E308 to -4.94065645841247E-324 for negative values and

from 4.94065645841247E-324 to 1.79769313486232E308 for positive values

Integer Whole
numbers 2 bytes -32,768 to 32,767

Long Large whole
numbers 4 bytes -2,147,483,648 to 2,147,483,647

Object An instance
of a class 4 bytes Address of the object in memory

Single Decimal
values 4 bytes 3.402823E38 to -1.401298E-45 for negative values and from 1.401298E-45 to

3.402823E38 for positive values

String Text values 4 bytes 0 to approximately 2 billion (231) characters

String
(fixed)

Fixed-length
text values

1 byte
per
character

1 to 10,000 characters

Variant
Data that
might be any
type

4 bytes Same as numeric and String types

If you don't specify a type when declaring a variable, Visual Basic makes it a Variant by
default.

You can use any of the types listed in Table 2-3 as part of a Dim statement. For example, the following line declares
integer, single, and string variables:

 Dim i as Integer, s As Single, str As String

Most of the types in Table 2-3 are value types . Those types are stored as real values in an area of memory called the
stack . The stack is a place that Visual Basic can access very quickly, but it has a limited size and can accommodate
only variables that have fixed lengths. Some types, such as Object, String, and Variant don't have fixed lengths and so
Visual Basic handles those as reference types . Reference types store a 4-byte number on the stack that resolves to the
address where the data is actually stored.

String variables are kind of a special case because they can be value types or reference types depending on whether or
not they have a fixed length. Most strings have a variable lengththat is, they can grow or shrink as needed to fix the
data they are assigned. However, you can define the length of a string if you like:

 Dim fs As String * 12

The preceding line declares a fixed-length string 12 characters long. Visual Basic stores fs as a value type on the stack,
but it truncates any strings that are more than 12 characters:

 fs = "This is way too long for a 12-character string."

Becomes This is way. Fixed-length strings are mainly used in combination with advanced programming techniques such as
reading binary files.

Modern computers come with lots of memory, and you're not likely to run out while programming in Excel. So why
show size in Table 2-3? A few reasons:

The size of a variable helps you understand its limits. For example, Integers are 2 bytes (which is 16 bits) and so
have 65,536 (2^16) possible values. When you divide that between negative and positive numbers, you get a
range of -32,768 to 32,767. Numbers outside that range result in an overflow error if assigned to an Integer
variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable.

Size matters when converting from one data type to another. Larger types can cause overflow errors when
converted to smaller types.

You need to know the size of data types when creating user-defined types, reading binary data, or performing
bitwise operations.

2.4.3. Conversions

Visual Basic automatically converts between data types during assignment. If one variable doesn't exactly match the
type of another, Basic changes the value to fit. You can see this easily if you perform the following assignments:

 Sub Conversions()
 Dim d As Double, s As Single, i As Integer
 d = WorksheetFunction.Pi
 s = d
 i = d
 Debug.Print d, s, i
 End Sub

The preceding code displays the following output in the Immediate window:

 3.14159265358979 3.141593 3

You need to be aware of automatic conversion , because it can result in the unintended
loss of precision.

Here the conversion is done by rounding the number up or down to reflect the precision of the variable receiving the
assignment. Not all conversion can be done by rounding. For example, the following lines convert pi to a string:

 Dim str As String
 str = WorksheetFunction.Pi

Warning: not all conversions succeed. The following line causes a type mismatch error because d is a numeric variable
and the "Pi" can't be converted to a number:

 d = "Pi"

Conversions may also fail if the assignment exceeds the limit of the target variable. For example, the following lines
result in an overflow error since the positive limit for Integers is 32,627:

 Dim l As Long
 l = 32768
 i = l

You can explicitly perform any of these automatic conversions using the Visual Basic conversion functions listed in Table
2-4.

Table 2-4. Visual Basic type conversion functions
CBool CByte CCur CDate CDbl

CDec CInt CLng CSng CStr

CVar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It would be nice if you could turn off Visual Basic's automatic conversions and use the explicit conversion functions
shown in Table 2-4 only when needed. But you can't. In addition to the conversion functions, Visual Basic provides
other keywords that are useful when working with types; they are listed in Table 2-5.

Table 2-5. Visual Basic keywords for working with types
Keyword Use to

IsDate Return True if the variable is a date

IsEmpty Return True if the variable hasn't been initialized

IsNull Return True if a Variant variable does not contain valid data

IsNumeric Return True if the variable can be converted to a numeric value

IsObject Return True if the variable is a reference to an object

TypeName Return the name of the variable's type as a string

TypeOf Determine the type of an object variable within an If statement

2.4.4. Scope and Lifetime

Dim is not the only way to declare a variable. The full list of declaration keywords is shown in Table 2-6.

Table 2-6. Visual Basic declaration statements
Statement Use to declare Available

Dim A variable with the default scope Inside or outside a
procedure

Public A variable or procedure that is available from other modules or classes Outside a procedure only

Private A variable or procedure that is not available from other modules or
classes Outside a procedure only

Static A variable that retains its value between procedure calls Inside a procedure only

Which statement you use to declare a variable and where you declare it determines the scope and lifetime of that
variable. Scope is the range of places from which a name is visible. Dim, Public, and Private are statements that specify
scope. Lifetime is how long Visual Basic retains the value of a variable; Static specifies lifetime.

There are three levels of scope in a Visual Basic project:

Local variables are declared with Dim inside a procedure and are visible only from within that procedure.

Module-level variables are declared outside of a procedure with Dim or Private and are visible only from all
procedures within that module or class.

Global variables are declared outside of a procedure with Public and are visible from all procedures in all modules
and classes within the project.

Figure 2-10 illustrates the different levels of scope within a Visual Basic project.

It's a common practice to prefix global variables with g_ and module-level variable names
with m_ as shown in Figure 2-10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-10. If Option Explicit is specified, you get an error when a variable is not
visible

A variable defined at one level of scope can be shadowed by another defined at a lower level of scope. Shadowing hides
the higher-level variable from the local use. For example, Proc1 in Figure 2-10 could shadow m_Var by declaring it at the
procedure level as shown here in bold:

 Sub Proc1()
 ' Procedure-level
 Dim localVar
 ' Shadow module-level variable.
 Dim m_Var
 ' Set values.
 m_Var = "Private module-level"
 m_PublicVar = "Public module-level"
 m_PrivateVar = "Private module-level"
 localVar = "Procedure-level"
 End Sub

In this case, Proc1 creates a new, local version of m_Var and sets its value. Proc2 can't see that value but it can still see
the module-level version of m_Var, which doesn't contain a value. If you run Main, the output is this (note the blank space
where m_Var should be):

 Public module-level Private module-level

Shadowing is often a mistake, rather than an intentional technique. Using a scope prefix like g_ or m_ for global and
module-level variables helps to avoid this problem.

Declaring a local variable as Static tells Visual Basic to retain the variable's value between procedure calls. Ordinarily,
local variables are created when a procedure is called, then destroyed when the procedure ends. This means local
variables have a very short lifetime. Static tells Visual Basic to keep the variable alive as long as the program is
runningfor Excel Visual Basic projects, that lifetime begins when the user opens the workbook and ends when he closes
it.

As a practical matter, you can do much the same thing with global and module-level variables since they are also
created when Excel opens the workbook and destroyed when the workbook closes. The difference is scope ; Static
variables are local and so can't be changed outside of the procedure where they are declared. The following example
demonstrates using a Static variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

demonstrates using a Static variable:

 Sub StaticVariable()
 ' Static variables
 are local.
 Static staticVar As Integer
 staticVar = staticVar + 1
 ' This variable is global.
 g_GlobalVar = g_GlobalVar + 1
 ' They both retain their value.
 Debug.Print staticVar, g_GlobalVar
 End Sub

Both staticVar and g_GlobalVar display the same value. If you run StaticVariable repeatedly, you'll see their values increment.
The difference is that other procedures can see (and change) the value of g_GlobalVar.

Why is this important? Because restricting the scope of variables is one of the keys to preventing accidental errors in
your code. The more global variables you have, the more likely you are to have adverse interactions between
procedures.

Keep variables as private as possible. Use arguments to pass values between procedures.
Use module-level or global variables for values that need to be shared by most or all
procedures.

2.4.5. Scope for Procedures

You may have guessed that procedures have levels of scope, too. In fact, Visual Basic uses the same keywords (plus
one) to define the scope of a procedure. The following procedure declarations show the scope and lifetime keywords in
use (in bold):

 Private Sub Proc1()
 ' Private procedures are local to the module or class.
 End Sub

 Public Sub Proc2()
 ' Public procedures are global to all open projects.
 End Sub

 Friend Sub Proc3()
 ' Friend procedures are public to the project that contains them.
 ' This is available only in classes.
 End Sub

 Private Static Sub Proc3()
 ' In Static procedures
, all local variables are Static.
 ' Static procedures may be Private, Public, or Friend.
 End Sub

The default scope for procedures is public, so omitting the scope keyword is the same as declaring the procedure as
Public. Most of the procedures you create will probably be public. Use Private or Friend when you want to restrict how
others use a procedure. For example, declaring a function in a module as Private prevents users from using it as a user-
defined function in an Excel formula.

2.4.6. Constants and Enumerations

Constants are names that have fixed values. Visual Basic and Excel each defines many constants that are used to
identify commonly used settings and values. For example, the constant vbCrLf is used to start new paragraphs within
strings:

 Debug.Print "This" & vbCrLf & "and that"

To declare your own constants, use the Const statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To declare your own constants, use the Const statement:

 ' Module level
 Const AUTHOR = "Jeff Webb"
 Const VERSION = 1.1
 Const CHANGED = #6/5/2004#

It's a common practice to capitalize constant names in code. It's also common to avoid
using local (procedure-level) constants since they may shadow global or module-level
constants.

Constant have global (Public), module-level (Private), or local scope and they can be shadowed. However, you can't assign
to a constant after it is declared. That is what distinguishes constants from variables! The following code demonstrates
using the preceding module-level constants in a procedure:

 Sub Constants()
 ' Constants can be shadowed.
 Const AUTHOR = "Joey"
 Debug.Print AUTHOR, VERSION, "Days since changed: " & Round(Now - CHANGED)
 End Sub

If you run the code, you'll see the following output in the Immediate window:

 Joey 1.1 Days since changed: 4

You don't specify a type when declaring constants, but Visual Basic assigns one based on the value you set. The # signs
in the preceding declarations identify the value as a date, so Visual Basic can use those values to evaluate how much
time has passed since the last change. You can use the other type-declaration characters if you want to use a special
data type for the constant, such as Currency (@):

 Public Const PRICE = 24.95@

Enumerations are a special type of constant that organizes a group of values by name. There are all sorts of
enumerations used in Visual Basic itself; a good example is the VbMsgBoxResult enumeration:

 Sub GetResponse()
 ' Declare variable as an enumerated value
 Dim res As VbMsgBoxResult
 ' Get the response.
 res = MsgBox("What's your response?", vbYesNoCancel)
 ' Test the response against possible values.
 Debug.Print "Response is:", Switch(res = vbYes, "Yes", _
 res = vbNo, "No", res = vbCancel, "Cancel")
 End Sub

In the preceding code, the variable res can contain any of the possible message box results. The Switch function
compares the variable to each of the possible responses to display an appropriate string in the Immediate window.

These enumerations are handy in part because they enable Auto Complete for the variable in the Visual Basic code
window. If you type res = or VbMsgBoxResult, you'll automatically see the possible settings for the variablethat really helps
you remember the Visual Basic constant names, which are sometimes very long.

You can create your own enumerations by using the Enum keyword. Enum is kind of like a block Const statement:

 Enum Numbers
 One = 1
 Two = 2
 Three = 3
 End Enum

You can use the Numbers enumeration in code, just as you would any Visual Basic enumeration:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can use the Numbers enumeration in code, just as you would any Visual Basic enumeration:

 Sub DemoEnum()
 ' Declare a variable as a user-defined enumerated value.
 Dim res As Numbers
 ' Set the value of the variable.
 res = One
 ' Display its value.
 Debug.Print res
 End Sub

2.4.7. Arrays

Arrays are variables that identify a set of values. That set has one or more dimensions, and each item within the set is
identified by an index within that dimension, as illustrated in Figures 2-11 and 2-12.

Figure 2-11. One-dimensional arrays are simply lists

Figure 2-12. Arrays with two dimensions are tables

Arrays can have more than two dimensions, but that starts to get hard to illustrate on paper. One- and two-dimensional
arrays are by far the most common. You use arrays whenever you have a set of data that you want to work with as a
unitlists and tables are typical examples of when to use an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unitlists and tables are typical examples of when to use an array.

The items in an array must all have the same data type , but that's not very restrictive considering that you can have
arrays of Variants, which can assume any other type. For example, the following array contains the names of products
and their prices. To prove that the stored prices are numbers, I calculate the tax on each price before displaying the
table in the Immediate window:

 Sub ShowVariantArray()
 Const RATE = 0.06
 Dim PriceChart(4, 1) As Variant
 PriceChart(0, 0) = "Grudgeon"
 PriceChart(0, 1) = 24.95@
 PriceChart(1, 0) = "Pintle"
 PriceChart(1, 1) = 11.15@
 PriceChart(2, 0) = "Tiller"
 PriceChart(2, 1) = 93.75@
 PriceChart(3, 0) = "Rudder"
 PriceChart(3, 1) = 42.49@
 Dim i As Integer
 Debug.Print "Item", "Price", "Tax"
 For i = 0 To UBound(PriceChart) - 1
 Debug.Print PriceChart(i, 0), PriceChart(i, 1), _
 Round(PriceChart(i, 1) * RATE, 2)
 Next
 End Sub

The preceding arrays have a fixed number of items, set when the array was declared. That's realistic if you know that
the number of items won't change frequently, but it's much more handy to be able to change the number of items
dynamically at runtime. To create a dynamic array, declare the array with an empty number of dimensions, then use
ReDim to declare the bounds . For example, the following code declares an array named Values, resizes the array to fit the
number of cells selected in Excel, then copies the values from the selected range of cells into that array (key items in
bold):

 Sub DynamicArray()
 Dim Values() As Variant
 ' Get rows and columns of selected range
 Dim rows As Integer, cols As Integer
 rows = Selection.rows.count
 cols = Selection.Columns.count
 ReDim Values(1 To rows, 1 To cols)
 ' If multiple cells are selected, Selection returns an array.
 If IsArray(Selection) Then
 Values = Selection
 Dim i As Integer, j As Integer, str As String
 For i = 1 To rows
 str = ""
 For j = 1 To cols
 str = str & vbTab & Values(i, j)
 Next
 Debug.Print str
 Next
 End If
 End Sub

By default, arrays' bounds start at 0, but you can change that as shown by ReDim Values(1 To
rows, 1 To cols). I do that so the Values array matches the bounds used by the array returned
by Excel's Selection method. Arrays returned by Excel always start at 1.

Dynamic arrays are usually cleared any time you call ReDim. The exception to that rule occurs if you are using a one-
dimensional array (a list) and you qualify ReDim with Preserve to save the existing data in the array. Here's our Flavors
array again, but this time you can add items:

 Sub DynamicArrayPreserve()
 Dim Flavors() As String
 ' Set the inital size of the array.
 ReDim Flavors(4)
 ' Set some values.
 Flavors(0) = "Vanilla"
 Flavors(1) = "Chocolate"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Flavors(1) = "Chocolate"
 Flavors(2) = "Strawberry"
 Flavors(3) = "Peach"
 ' Add items to the list, enlarging it as needed.
 Dim str As String, count As Integer
 Do
 ' Get the count of items in list.
 count = UBound(Flavors)
 str = InputBox("Enter a flavor.")
 ' Exit if nothing entered.
 If str = "" Then Exit Do
 ' Make the array bigger.
 ReDim Preserve Flavors(count + 1)
 ' Set the value of the new item
 Flavors(count) = str
 Loop
 ' Display the items
 Dim i As Integer
 For i = 0 To UBound(Flavors) - 1
 Debug.Print Flavors(i)
 Next
 End Sub

Visual Basic can make arrays larger at runtime because all arrays are reference types. The value represented by the
array name in Visual Basic is the address of where the array starts. Table 2-7 lists the keywords that Visual Basic
provides for working with arrays.

Table 2-7. Visual Basic array keywords
Keyword Use to

Array Create an array from a list of values.

Erase Clear the values in an array.

IsArray Determine whether or not a variable is an array.

LBound Get the lower bound of an array dimension.

Option Base Change the default lower bound of arrays. (This is not generally a good practice and is mainly provided for
compatibility with earlier Basics.)

UBound Get the upper bound of an array dimension.

2.4.8. User-Defined Types

You can create your own composite types out of the existing Visual Basic types. These composite types are called user-
defined types in Visual Basic and they are used primarily for advanced tasks such as reading and writing binary files or
working with Windows API functions .

Use the Type statement to define a user-defined type:

 ' Code in Variables module
 Private Type POINTAPI
 x As Long
 y As Long
 End Type

 Private Declare Function GetCursorPos _
 Lib "user32" (lp As POINTAPI) As Long

The preceding module-level definition creates a type named POINTAPI that contains two Long types. This definition
matches the argument returned by the GetCursorPos Windows API function, and it enables you to get at the values
returned by that function in code. For example, the following procedure displays the location of the cursor:

 Sub ShowCursorPosition()
 Dim point As POINTAPI
 GetCursorPos point
 MsgBox point.x & " " & point.y
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The preceding code declares the point variable using the POINTAPI type defined earlier; then it calls the Windows
GetCursorPos function to fill in the value of point. It is common for Windows API functions to return values through user-
defined types in this way (Windows calls user-defined types structures). Variables with user-defined types use the
period to get items from within the type. Thus, point.x gets the value of the x-coordinate in the preceding example.

2.4.9. Objects

Object is the general term for an instance of a class. Visual Basic has an Object type that you can use to create variables
that reference any generic object; however, you usually want to create variables of a specific class of object. Objects
are a special kind of variable because you can control when they are created. Other types of variables in Visual Basic
are initialized whenever they are declared, but that's not true with objects .

The easiest way to create an object variable is to include the New keyword in the variable declaration. For example, the
following line creates a new object variable from the PublicClass class definition:

 Dim obj As New PublicClass

Once created, you can use that object's properties and methods to do whatever it is you want to do. New is an
executable statement; if you use it at the module level, the actual creation of the object is delayed till the first time the
object is referenced within a procedurea confusing situation that is best to avoid. If you declare an object variable at
the module level, omit New, then create the object within a procedure explicitly. For example, the following code creates
a global object variable and creates the object the first time UseObject runs:

 ' Global object variable
 Public g_obj As PublicClass

 Sub UseObject()
 ' Create global object variable
 If g_obj Is "Nothing" Then Set g_obj = New PublicClass
 ' Show that the object exists
 Debug.Print g_obj.CREATED
 End Sub

There are a few significant things to point out about the preceding code:

The module-level declaration uses a specific class type. That makes the class's methods and properties
available to Visual Basic's Auto Complete feature as you write code.

TypeName(g_obj) = "Nothing" is True if the object has not been created. In that case, the Set statement creates a
new instance of the object.

Visual Basic also provides an IsEmpty function to check if an object has been created, but that works only with
the generic Object typeit doesn't work with specific classes.

To destroy an object, set the object variable to Nothing:

 Set g_obj = Nothing

This is not necessary when the object is a local variable, since those are automatically destroyed when the procedure
ends. However, global, module-level, and Static variables exist as long as the workbook is open unless you explicitly
destroy them.

Excel provides many objects that you can use from Visual Basic, but they can be created only through other Excel
objects. For example, the following two statements are equivalent, and neither one creates a new worksheet!

 Dim ws1 As Worksheet
 Dim ws2 As New Worksheet

To create an object from Excel, you usually use the Add method of the object's collection class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create an object from Excel, you usually use the Add method of the object's collection class:

 Sub CreateExcelObject()
 ' Declare a Worksheet object variable
 Dim ws As Worksheet
 ' Create the Worksheet
 Set ws = Worksheets.Add
 End Sub

Since Excel controls the creation of its objects, it also controls their destruction. Setting ws to Nothing just destroys the
object reference; it doesn't remove the worksheet. To destroy an Excel object, you usually use the object's Delete
method as shown here:

 ws.Delete

Visual Basic includes the keyword With to create blocks of code that work with a specific object. The With statement
creates a shorthand for repeatedly referring to the same object, and you will frequently see it in recorded code. For
example, the following code creates a new worksheet and sets the object's properties using With:

 Sub UseWith()
 ' Create a new worksheet in a With statement

 With Worksheets
.Add
 .Name = "New Worksheet"
 .Range("A1") = "Some new data..."
 ActiveWindow.DisplayGridlines = False
 End With
 End Sub

The Worksheets.Add method returns a reference to the worksheet object that is then used by the subsequent properties.
Each property begins with a period inside of the With block. Statements that don't refer to the object, such as
ActiveWindow, simply omit the period.

There's nothing wrong with using With, but I prefer to use the variable name explicitly.
That's just my style.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5. Conditional Statements
One of the fundamental elements of programming is making decisions based on inputs. Visual Basic provides the If
statement for making either/or decisions and the Select statement for making multiple-choice decisions. These two
statements form the core of any logic your program uses to adjust to different conditions, and for that reason they are
called conditional statements .

The If statement has several different forms:

A very simple one-line form:

 If IsArray(Selection) Then MsgBox "Multiple cells selected."

A block form that can contain multiple lines and alternative actions:

 Dim str As String
 If IsArray(Selection) Then
 str = "Grand total: " & _
 WorksheetFunction.Sum(Selection)
 Else
 str = "Please select more than one cell"
 End If
 MsgBox str

A block form with multiple conditions and alternate actions:

 If IsArray(Selection) Then
 str = "Grand total: " & _
 WorksheetFunction.Sum(Selection)
 ElseIf TypeName(ActiveSheet) = "Worksheet" Then
 str = "Worksheet total: " & _
 WorksheetFunction.Sum(ActiveSheet.UsedRange)
 Else
 str = "Please select a worksheet"
 End If
 MsgBox str

You can have multiple ElseIf statements within an If block as shown by the following general form:

 If condition Then
 ' Do something
 [ElseIf condition Then
 ' Do something else]
 [ElseIf condition Then
 ' Can repeat ElseIf]
 [Else
 ' Do something else]
 End If

For more complex logic, you can include If statements within an enclosing If statement, or you can use the Select Case
statement. The following Select Case statement compares the current time against a list of literal times to determine
which message to display:

 Dim str As String
 Select Case Time
 Case Is > #10:00:00 PM#
 str = "Bed time!"
 Case Is > #7:00:00 PM#
 str = "Time to relax."
 Case Is > #6:00:00 PM#
 str = "Dinner time!"
 Case Is > #5:00:00 PM#
 str = "Drive time."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 str = "Drive time."
 Case Is > #1:00:00 PM#
 str = "Work time."
 Case Is > #12:00:00 PM#
 str = "Lunch time!"
 Case Is > #8:00:00 AM#
 str = "Work time."
 Case Is > #7:00:00 AM#
 str = "Breakfast time!"
 Case Else
 str = "Too early!"
 End Select
 MsgBox str

Select statements are evaluated from the top down. Select exits after the first match, so only one of the messages is set.

Visual Basic provides one more conditional statement, though it is not commonly used. The Switch statement is similar to
Select, but rather than executing statements, Switch returns a value based on different conditions. The following code is
equivalent to the preceding example, except it uses Switch rather than Select:

 Dim str As String
 str = Switch(Time > #10:00:00 PM#, "Bed time!", _
 Time > #7:00:00 PM#, "Time to relax.", _
 Time > #6:00:00 PM#, "Dinner time!", _
 Time > #5:00:00 PM#, "Drive time.", _
 Time > #1:00:00 PM#, "Work time.", _
 Time > #12:00:00 PM#, "Lunch time!", _
 Time > #8:00:00 AM#, "Work time.", _
 Time > #7:00:00 AM#, "Breakfast time!", _
 Time >= #12:00:00 AM#, "Too early!")
 MsgBox str

Perhaps the reason Switch isn't used more often is because it results in long statements that must be broken over
multiple lines to be readable in the Code window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6. Loops
The other fundamental part of programming logic is the ability to repeat a set of actions until some condition is met.
This type of logic is called looping . I talked a little about loops in Chapter 1; here I'll show you the different types of
loops Visual Basic provides. Table 2-8 lists the looping statements in Visual Basic.

Table 2-8. Visual Basic statements for repeating actions
Statement Use to

Do...Loop or While...Wend Repeat a set of actions until a condition is met

For...Next Repeat a set of actions a number of times using a counter

For Each Repeat as set of actions for each item in a collection

Do...Loop and While...Wend are similar, but Do...Loop is more flexible so most programmers simply ignore While...Wend. I'm
going to follow their leadif you're interested, you can read about While...Wend in Help.

The Do...Loop statement repeats a set of actions until a condition is met; you can include the condition at the beginning
or the end of the loop. For example, the following code speaks any words you type in an input box and exits if you don't
type anything:

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 Application.Speech.Speak str
 Loop While str <> ""
 End Sub

The preceding code executes the Speak method one time more than it really needs to after the user cancels the input.
This isn't a big problem, but you can avoid it by using an Exit Do statement instead of testing the condition at the end of
the loop (change shown in bold):

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 If str = "" Then Exit Do
 Application.Speech.Speak str
 Loop
 End Sub

It's not good style to use Exit Do within long, complicated loops. In those situations, it's important to be able to easily
locate the exit condition, and burying it within the body of the loop makes it harder to find. If the unneeded Speak
method still bothers you, just change the loop as shown here:

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 If str <> "" Then _
 Application.Speech.Speak str
 Loop While str <> ""
 End Sub

Now the loop executes no unneeded statements. There's one last step in this example: the Speech object was introduced
in Excel 2002. If you want the preceding code to work with previous versions of Excel, you need to add some
conditional logic as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conditional logic as shown here:

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 ' Speech was added in Excel 10
 If Application.VERSION >= 10 And str <> "" Then
 Application.Speech.Speak str
 ' This is boring, but it works with all versions!
 ElseIf str <> "" Then
 MsgBox str, , "Repeat after me."
 End If
 Loop While str <> ""
 End Sub

This example shows how loops and conditional statements are often used together.
Together they form the logical path that your program follows.

Placing the condition first in a Do...Loop prevents the loop from running unless the condition is true to start with. You can
choose between While and Until when testing a condition; they are inverses of each other so While str <> "" is the same as
Until str = "". The basic form of a Do...Loop is as follows:

 Do [While condition | Until condition]
 ' action
 [If condition Then Exit Do]
 Loop [While condition | Until condition]

For...Next statements perform an action a set number of times as determined by a variable used as a counter. In many
situations, you know how many times you want to repeat an action, but the most common is probably when working
with lists or tables of items from an array. In that case, you know the start point (the lower bound of the array) and the
end point (the upper bound of the array), as shown by this code from an earlier sample:

 ' Display the items in the Flavors array
 Dim i As Integer
 For i = 0 To UBound(Flavors) - 1
 Debug.Print Flavors(i)
 Next

By default, For...Next increments the counter (i) by one each time the loop executes. Thus, Flavors(i) gets each element of
the array from 0 to one less than the upper bound. That last bit might seem a little odd, but UBound returns the number
of elements in the array, not the maximum index of the array; in this case, the array starts at 0, so the maximum index
is one less than the upper bound. If the lower bound is 1 (as it is for arrays returned by Excel methods), then the
For...Next loop looks like this:

 Sub ForNextLoop()
 If Not IsArray(Selection.Value) Then Exit Sub
 Dim i As Integer, j As Integer, str As String
 For i = 1 To UBound(Selection.Value, 1)
 str = ""
 For j = 1 To UBound(Selection.Value, 2)
 str = str & vbTab & Selection(i, j)
 Next
 Debug.Print str
 Next
 End Sub

In the preceding code, Selection.Value returns an array if more than one cell is selected. Since Excel arrays start at 1, the
count of elements in the array is the same as the array's upper bound.

You can change the increment used by For...Next by using the Step keyword as shown by the following general version of
the For...Next statement:

 For counter = start To stop [Step increment]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For counter = start To stop [Step increment]
 ' action
 [If condition Then Exit For]
 Next [counter]

Use a negative number for increment to count backward. For example, the following code performs a 10-second
countdown:

 Sub CountDown()
 Dim i As Integer
 For i = 10 To 1 Step -1
 Debug.Print i
 Application.Wait Now + #12:00:01 AM#
 Next
 Debug.Print "Blast off!"
 End Sub

In some cases, it is more convenient to perform an action on each item in a group, rather than relying on the number
of items in the group. For those situations, Visual Basic provides the For Each statement. The following code displays a
list of the workbook's worksheets in the Immediate window:

 Dim ws As Worksheet
 For Each ws In Worksheets
 Debug.Print ws.Name
 Next

For Each works only with collections , which are a special type of object that contains a group of other objects. All
collections have a special, hidden property called an enumerator that allows them to work with For Each. Collections also
usually have an Add method and a Count property and are usually named using the plural form of the name of the object
they contain. Thus the Worksheets collection contains Worksheet objects.

Excel doesn't always follow these rules for collections. That's why I say usually here.

For Each sets the object variable to the next object in the collection each time the loop executes and automatically ends
after it reaches the last object. There's no Step keyword to skip objects or count backward; the general form of the
statement looks like this:

 For Each object In collection
 ' action
 [If condition Then Exit For]
 Next [object]

The type of object must be the same as the type of objects in collection. Some collections, such as the collection returned
by the Excel Sheets method, can contain objects of more than one type. Therefore, the following code would cause a
type-mismatch error if a workbook contains a Chart sheet:

 Sub ForEachLoop()
 Dim ws As Worksheet
 For Each ws In Sheets ' Possible error!
 Debug.Print ws.Name
 Next
 End Sub

If you want to work with a mixed collection like Sheets, use a generic object as shown here:

 Sub ForEachLoop()
 Dim obj As Object
 For Each obj In Sheets
 Debug.Print obj.Name, TypeName(obj)
 Next
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

Now the code displays a list of all the sheets in the workbook, along with their type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7. Expressions
In programming languages, expressions are anything that produces a result. You use expressions to evaluate
something, such as a math calculation or a true/false condition. In Visual Basic, the Immediate window functions as an
expression evaluator, so it's a good place to try out different expressions, as shown in Figure 2-13.

Figure 2-13. Use the Immediate window to quickly evaluate expressions

Expressions can return values of any type, including arrays or references to objects. The Immediate window can't
display those types, however. Within a program, expressions are usually found to the right of the equals sign:

 res = CubeRoot(42)

But they can also be used as part of any statement that takes a value:

 If IsArray(Selection) Then MsgBox("You selected multiple cells.")

Simple expressions can be combined to form complex ones using operators . Visual Basic provides different sets of
operators depending on the type of the expression, as listed in Table 2-9.

Table 2-9. Visual Basic operators
Numeric
operators

Comparison operators (return Boolean
values)

Logical
operators

String
operators

Object
operators

^ = And & Is

- <> Eqv Like Set (assign)

* < Imp = (assign)

/ > Not

\ <= Or

Mod >= Xor

+

= (assign)

The Like and Is operators in Table 2-9 return Boolean values, but I group them with the String and Object types because

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Like and Is operators in Table 2-9 return Boolean values, but I group them with the String and Object types because
they operate on those types exclusively.

Expressions are often the result of a function call. There are many built-in functions for working with numbers, dates,
times, strings, and objects in Visual Basic. I discuss those in Chapter 3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8. Exceptions
Exceptions are runtime errors that you anticipate. Generally, exceptions occur as the result of using resources outside
of Excel, such as trying to get a file from disk or trying to connect to a database. It's very difficult to anticipate all the
things that could go wrong and unnecessarily complex to try to write code for situations that may occur only rarely.
That's what exception handling is for.

In Visual Basic, you turn on exception handling using the On Error statement. On Error tells Visual Basic to watch for
exceptions and provides instructions on what to do if one happens. For example, the following code starts Notepad from
Excel; if Notepad isn't installed or can't be found, Excel displays a warning message:

 Sub ShowNotepad()
 On Error Resume Next
 Shell "notepad.exe", vbNormalFocus
 If Err Then MsgBox "Notepad could not be found.", , "Warning"
 End Sub

This style of exception handling is called inline because On Error Resume Next tells Visual Basic to execute the rest of the
procedure one line at a time even if a problem occurs. With this technique you typically test the value of Err after each
line that you think might cause an exception.

Err returns an Error object if an error occurred. The Error object's default property is the error code number, and the
preceding code simply tests if that value is not zero (False). In some cases you may want to test the value within a
Select Case statement. On Error provides an alternate syntax that causes any error to jump to a generalized exception-
handling routine, as shown here:

 Sub GetFile()
 Dim str As String
 On Error GoTo errGetFile
 ' Open a file
 Open "a:\datafile.txt" For Input As #1
 Exit Sub
 ' Handle possible exceptions
 errGetFile:
 Select Case Err
 Case 53
 str = "File not found. Insert data disk in drive A."
 Case 55
 str = "File in use by another application. " & _
 "Close the file and retry."
 Case 71
 str = "Insert disk in drive A."
 Case Else
 str = Err.Description
 End Select
 MsgBox str, , "Error"
 End Sub

If an exception occurs in the preceding code, execution jumps to the errGetFile label and the Select statement sets the
message to display based on the error code. You must include an Exit statement before the label to prevent the
procedure from displaying a message if no exception occurs.

This style of exception handling allows you provide specific responses to different types of exceptions, but as a practical
matter it isn't as useful as inline exception handling since knowing the line where an exception occurred is usually more
informative than the error code.

It can be difficult to debug procedures when exception handling is turned on, since
exceptions don't immediately stop the code and display a message.

To turn off exception handling within a procedure, use this statement:

 On Error Goto 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error Goto 0

You should turn off exception handling after you've completed the statements you think might cause an exception.
Visual Basic automatically turns off exception handling after the procedure completes, so you need to worry about this
only if your procedure calls other procedures or if you have a very long procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.9. What You've Learned
In this chapter you learned how Visual Basic programs are constructed. You should be able to create procedures that
use arguments and variables and to call one procedure from another.

You should be comfortable using the sample code, creating conditional statements and loops, using arrays, and creating
expressions that use the Visual Basic operators.

Come back here later if you need help with optional arguments, properties, events, data types, or exceptions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Tasks in Visual Basic
Once you're comfortable recording and changing code in Excel and you're familiar with the structure of a Visual Basic
program, you can focus your effort on doing real work with your programs. By real work, I mean: performing
calculations, composing text, comparing dates and times, and accomplishing the other tasks provided by the Visual
Basic language.

As with Chapter 2, most of the tasks I cover here are not unique to Excel, and if you learn them well, you can use these
skills to program Word, PowerPoint, or even Windows itself. This chapter is the companion to Chapter 2; between the
two chapters you'll learn most of what you need to know about the Visual Basic programming language.

Code used in this chapter and additional samples are available in ch03.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1. Types of Tasks
You can perform several broad categories of tasks with the Visual Basic language. Since we're talking about Visual Basic
(not Excel), these tasks tend to be very general. More specific tasks are usually handled through Excel objects.

I've organized this chapter so the simplest tasks are first. By the end, things get pretty advanced, so if you feel
overwhelmed at any point, feel free to come back lateryou may just need some time to digest these concepts. Table 3-
1 organizes the sections in this chapter to give you a bit of an overview .

Table 3-1. An overview of Visual Basic programming tasks
Category Section Overview

Users Interact with Users Use simple dialog boxes to get or display information.

Data Do Math Perform calculations.

 Work with Text Compose and modify strings of text.

 Get Dates and Times Get current dates and times and perform calculations on dates and times.

Storage Read and Write Files Open, read, write, and close files stored on disk.

Expressions Check Results Find what kind of data was returned by an operation.

 Find Truth Combine expressions to create complex conditions.

 Compare Bits Get multiple pieces of information from a single value.

Interoperate Run Other Applications Exchange data with other Windows applications.

Compiler Control the Compiler Create debug and release versions of code within the same source file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2. Interact with Users
Visual Basic provides two simple ways to interact with users:

Use InputBox to get text input.

Use MsgBox to display short messages and get button-click responses.

I've already used InputBox and MsgBox a number of times in previous examples, but one more sample won't hurt:

 Sub MsgBoxInputBox()
 Dim str As String, val As VbMsgBoxResult
 ' InputBox gets simple text input.
 str = InputBox("Enter some text.", "Chapter 3", "Some text")
 ' Use If to test if a value was entered.
 If str <> "" Then
 ' You can combine style constants in MsgBox.
 val = MsgBox(str, vbQuestion + vbOKCancel, "Chapter 3")
 ' Return value indicates which button was clicked.
 If val = vbOK Then Debug.Print "OK" Else Debug.Print "Cancel"
 End If
 End Sub

The preceding code displays a simple dialog box to get text, then displays the text in another simple dialog box, as
shown in Figure 3-1.

The MsgBox function can display many different styles and buttons, depending on the Button argument setting. All of the
VbMsgBoxStyle settings are listed in Table 3-2.

Figure 3-1. InputBox and MsgBox functions display simple dialog boxes

Table 3-2. VbMsgBoxStyle settings
Setting Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting Description

Button

vbOKOnly Displays OK button.

vbOKCancel Displays OK, Cancel buttons.

vbAbortRetryIgnore Displays Abort, Retry, Ignore buttons.

vbYesNoCancel Displays Yes, No, Cancel buttons.

vbYesNo Displays Yes, No buttons.

vbRetryCancel Displays Retry, Cancel buttons.

Icon

vbCritical Adds Critical icon (red x).

vbQuestion Adds Question icon (?).

vbExclamation Adds Exclamation icon (!).

vbInformation Adds Information icon (i).

Default setting

vbDefaultButton1 First button is default.

vbDefaultButton2 Second button is default.

vbDefaultButton3 Third button is default.

vbDefaultButton4 Fourth button is default.

Focus

vbApplicationModal Halts workbook until dialog box is closed (this is the default in Excel).

vbSystemModal Halts all applications until dialog box is closed.

vbMsgBoxSetForeground Displays dialog in the foreground (this is the default in Excel).

Miscellaneous

vbMsgBoxHelpButton Adds a Help button to the dialog.

vbMsgBoxRight Right-aligns text (default is left-aligned).

vbMsgBoxRtlReading Swaps icon and button positions for right-to-left reading languages such as Arabic.

Compatible settings in Table 3-2 can be combined using addition. For instance, you can combine button, icon, and
default settings in a single message box as shown here:

 val = MsgBox("Unable to continue.", _
 vbCritical + vbAbortRetryIgnore + vbDefaultButton2, "Error")

The value returned by MsgBox is a VbMsgBoxResult constant that indicates which button the user clicked. Typically, you
compare that result to the button constants listed in Table 3-2 in an If or Select statement:

 If val = VbMsgBoxResult.vbAbort Then ...

If you are displaying a dialog with only a single OK button, you probably don't care about the value returned by MsgBox.
In that case, you can omit the parentheses:

 MsgBox "The answer is " & val, , "Chapter 3"

In addition to Visual Basic's built-in InputBox and MsgBox functions, there are several other ways to display much more
complex dialog boxes and data-entry forms from Excel (see Table 3-3).

Table 3-3. Ways to display complex data-entry forms and dialog boxes
Technique Use to See

User forms Create custom dialog boxes or data-entry forms for display from Visual Basic Chapter
20

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User forms Create custom dialog boxes or data-entry forms for display from Visual Basic 20

Excel's built-in
dialogs

Display the standard Excel dialog boxes to get filenames, printer settings, or other
common tasks

Chapter
7

InfoPath forms Collect data in XML format Chapter
26

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3. Do Math
Visual Basic provides built-in operators and functions that perform many of the same calculations that you are used to
using from Excel formulas. If you are new to programming, the way you write mathematical formulas in Visual Basic
may seem backward:

 x = 43 + 37 / 2 ' Not 43 + 37 / 2 = x

That's because the equals sign (=) performs an operation called assignment . The result of the preceding calculation is
assigned to the variable x. In Visual Basic, the assignment operation is always performed last, after all other operations.
Other operators are evaluated in the sequence shown in Table 3-4.

Table 3-4. Visual Basic mathematical operators' order of precedence (left to right)
() group ^ exponent - negation * multiply / divide

\ integer divide Mod modulus + add - subtract = assign

Most of these operators are self-explanatory, but there are two exceptions:

Use \ to divide two numbers and ignore the remainder.

Use Mod to divide two numbers and return only the remainder.

For example, the following simple function divides two numbers and returns the result as a string:

 Function IntegerMath(numerator As Integer, denominator As Integer) As String
 Dim quotient As Integer, remainder As Integer
 ' Find the quotient.
 quotient = numerator \ denominator
 ' Find the remainder
 remainder = numerator Mod denominator
 ' Return the result
 IntegerMath = "Result is " & quotient & " remainder " & denominator
 End Function

Mod is frequently used in loops to perform some task once every N number of times. For example, the following code
fragment builds a single string out of an array of words and adds a paragraph break every five words:

 For i = 0 To UBound(words) - 1
 str = str & words(i) & " "
 If i <> 0 And i Mod 5 = 0 Then _
 str = str & vbCrLf
 Next

Visual Basic also provides a set of math functions to perform some common tasks. Since these functions are built in to
the language, they are called intrinsic functions . Excel provides equivalent worksheet functions for the intrinsic
trigonometric and financial functions listed in Table 3-5. That duplication reflects the fact that Visual Basic is a general
programming language used by many different applications.

Table 3-5. Visual Basic math functions
General

Abs Exp Fix Int Log

Rnd Sgn Sqr
Trigonometric

Atn Cos Sin Tan
Financial

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DDB FV IPmt IRR MIRR

NPer NPV Pmt PPmt PV

Rate SLN SYD

As with the operators, most of the functions in Table 3-5 are self-explanatory with a couple of exceptions:

Use the Fix or Int function to get the whole-number portion of a decimal number.

Use Rnd to generate random numbers.

The Rnd function returns a random number between 0 and 1. To generate a random integer between two numbers, use
the following formula:

 ' Returns a random integer that is > min and < max.
 Function Random(min As Integer, max As Integer) As Integer
 ' Initialize the random-number generator.
 Randomize
 ' Calculate a random integer.
 Random = Int((max - min + 1) * Rnd + min)
 End Function

The Randomize statement initializes the random-number generator. You can repeat sequences of the generated numbers
by calling Randomize with a negative number, for example Randomize -1.

You can derive complex functions from Visual Basic's intrinsic functions using the formulas shown in Table 3-6. These
functions are also provided in the sample workbook and there are some worksheet function equivalents as well.

Table 3-6. Derived math functions
Function Formula

Secant (Sec) 1 / Cos(x)

Cosecant (Cosec) 1 / Sin(x)

Cotangent (Cotan) 1 / Tan(x)

Inverse Sine (Arcsin) Atn(x / Sqr(-x * x + 1))

Inverse Cosine (Arccos) Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)

Inverse Secant (Arcsec) Atn(x / Sqr(x * x - 1)) + Sgn((x) - 1) * (2 * Atn(1))

Inverse Cosecant (Arccosec) Atn(Sgn(x) / Sqr(x * x 1))

Inverse Cotangent (Arccotan) 2 * Atn(1) - Atn(x)

Hyperbolic Sine (HSin) (Exp(x) - Exp(-x)) / 2

Hyperbolic Cosine (HCos) (Exp(x) + Exp(-x)) / 2

Hyperbolic Tangent (HTan) (Exp(x) - Exp(-x)) / (Exp(x) + Exp(-x))

Hyperbolic Secant (HSec) 2 / (Exp(x) + Exp(-x))

Hyperbolic Cosecant (HCosec) 2 / (Exp(x) - Exp(-x))

Hyperbolic Cotangent (HCotan) (Exp(x) + Exp(-x)) / (Exp(x) - Exp(-x))

Inverse Hyperbolic Sine (HArcsin) Log(x + Sqr(x * x + 1))

Inverse Hyperbolic Cosine (HArccos) Log(x + Sqr(x * x - 1))

Inverse Hyperbolic Tangent (HArctan) Log((1 + x) / (1 x)) / 2

Inverse Hyperbolic Secant (HArcsec) Log((Sqr(-x * x + 1) + 1) / x)

Inverse Hyperbolic Cosecant (HArccosec) Log((Sgn(x) * Sqr(x * x + 1) + 1) / x)

Inverse Hyperbolic Cotangent (HArccotan) Log(x + Sqr(x * x - 1))

Logarithm to base N (LogN) Log(x) / Log(n)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-5 lists Visual Basic's financial functions. Excel provides its own (larger) set of financial functions, which are
covered in Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4. Work with Text
Working with text is probably just as common as working with numbers in most programs. Visual Basic refers to text
data as strings and it provides a set of string operators and functions just as it does for math. Since strings and
numbers are very different types of data, the nature of operators and functions are very different, as shown by Tables
3-7 and 3-8.

Table 3-7. Visual Basic string operators
& (join) Like (compare) = (assign)

Table 3-8. Visual Basic string functions
Task Function Use to

Compare Option Compare Change the string comparison rules

 Instr Find one string inside of another

 StrComp Compare one string to another

Convert Asc Convert a character to its numeric ANSI value

 Chr Convert a numeric ANSI value to a character

 Format Convert a number or a date to a string using a specific format

 LCase Make a string lowercase

 UCase Make a string uppercase

 StrConv Change the capitalization, locale, or encoding of a string

 Val Get the numeric value of a string

Arrays Split Convert a string to a one-dimensional array

 Join Convert a one-dimensional array to a string

Change Left Get a number of characters from the left side of the string

 Len Get the length of a string

 LTrim Remove spaces from the left side of a string

 LSet Copy one string to another, left-aligning the result

 Mid Get a specified number of characters from within as string

 Replace Search and replace words or characters in a string

 Right Get a number of characters from the right side of a string

 RSet Copy one string to another, right-aligning the result

 RTrim Remove spaces from the right side of a string

 trim Remove spaces from the right and left sides of a string

Repeat Space Create a string containing a number of spaces

 String Create a string containing a repeating character

The following sections explain how to use the string functions to perform the major tasks listed in Table 3-8.

3.4.1. Compare Strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By default, Visual Basic compares strings in a case-sensitive way. That means "Jeff" and "jeff" are not considered the
same. You can change that by adding an Option Compare Text statement at the beginning of a module or class, as shown
here:

 ' Ignore case when comparing
 strings.
 Option Compare Text

 Sub CompareStrings()
 ' Displays True if Option Compare is Text.
 Debug.Print "Jeff" = "jeff"
 End Sub

Option Compare applies to all the ways to compare string (=, Like, StrComp) throughout the module or class. You can achieve
a similar result on a smaller scale by temporarily converting the strings to upper- or lowercase before comparing them:

 Debug.Print LCase("Jeff") = LCase("jeff")

That approach is actually more common than changing Option Compare since it allows you to use both case-sensitive and
case-insensitive comparisons within a class or module.

The Like operator is similar to = in Visual Basic, except it also allows you to match patterns of characters using the
comparison characters listed in Table 3-9.

Table 3-9. Pattern-matching characters
Use To match

? Any single character

* Zero or more characters

Any single digit

[list] Any single character in list

[!list] Any single character not in list

For example, the following function returns True if a passed-in argument is formatted as a Social Security number:

 Function IsSSN(ssn As String) As Boolean
 If ssn Like "###-##-####" Then
 IsSSN = True
 Else
 IsSSN = False
 End If
 End Function

The Instr function returns the location of one string within another string. This is one of the most-used functions in Visual
Basic, since it allows you to break up strings and to do all sorts of search-and-replace tasks.

The StrComp function compares two strings for sorting . If the first string sorts before the second string, StrComp returns -
1; if they sort the same, it returns 0; and if the first string sorts after the second string, StrComp returns 1. The following
example demonstrates how to use StrComp to sort an array:

 Sub SortArray(arr As Variant, _
 Optional compare As VbCompareMethod = vbBinaryCompare)
 Dim lb As Integer, ub As Integer, i As Integer, str As String
 Dim j As Integer
 ' If argument is not an array, then exit.
 If Not IsArray(arr) Then Exit Sub
 lb = LBound(arr)
 ub = UBound(arr)
 ' If only one element, then exit.
 If lb = ub Then Exit Sub
 For i = lb To ub
 str = arr(i)
 For j = lb To ub
 ' Swap values if out of order.
 If StrComp(str, arr(j), compare) = -1 Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If StrComp(str, arr(j), compare) = -1 Then
 str = arr(j)
 arr(j) = arr(i)
 arr(i) = str
 End If
 Next
 Next
 End Sub

There are more efficient sorting routines than the one shown here. I chose this one for its
simplicity.

The SortArray procedure lets you specify whether or not to ignore the case of characters when sorting. The default is to
use vbBinaryCompare for case-sensitive sorting. You can use the SortArray function to create a function that sorts strings:

 Function SortString(str As String, Optional ignorecase = False)
 Dim arr As Variant
 ' Covert the string to an array.
 arr = Split(str, " ")
 ' Sort the array case-sensitive or case-insensitive.
 If ignorecase Then
 SortArray arr, vbTextCompare
 Else
 SortArray arr, vbBinaryCompare
 End If
 ' Convert the array back to a string and return it.
 SortString = Join(arr, " ")
 End Function

To see how these functions work together, step through the following code in the sample worksheet:

 Sub DemoSort()
 Dim str As String, arr As Variant
 str = "Q z v w p x f g J l h r y D k i e T s u o n M a c b"
 ' Show case-sensitive sort.
 Debug.Print SortString(str, False)
 ' Show case-insensitive sort.
 Debug.Print SortString(str, True)
 End Sub

I have an ulterior motive for showing you these procedures: I'm often asked how you break tasks into procedures and I
think this set of procedures illustrates the logical division of tasks very well. SortString and SortArray both make sense as a
stand-alone procedure because they might be reused any number of ways elsewhere in the program. Writing effective,
reusable procedures is one of the key skills that identify you as an excellent programmer. The best way to learn that
skill is by studying good examples and then practicing on your own!

3.4.2. Convert Strings

I touched on two very common conversion functions already: LCase and UCase convert a string to lower- or uppercase,
usually because you want to ignore case while comparing strings. Your computer can perform these conversions and
comparisons because it actually stores strings as numbers using something called ANSI character codes .

The Asc function converts characters to their numeric ANSI character codes; Chr converts those numeric codes back to
characters. The following code displays the ANSI character codes in the Immediate window (Figure 3-2):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters. The following code displays the ANSI character codes in the Immediate window (Figure 3-2):

 Sub ShowAnsiCodes()
 Dim i As Integer, str As String
 For i = 0 To 255
 str = str & i & ": " & Chr(i) & vbTab
 If i Mod 10 = 0 Then
 Debug.Print str
 str = ""
 End If
 Next
 End Sub

Not all character codes have an appearance. Chr(0), Chr(9), Chr(10), and Chr(13) represent the
null, tab, line-feed, and carriage-return characters respectively.

Looking at Figure 3-2, you can see that you can convert individual characters from upper- to lowercase by adding 32 or
from lower- to uppercase by subtracting 32. UCase and LCase just make those conversions easier.

The StrConv function is related to UCase and LCase. It can perform the same conversions, plus it can convert the words in a
string to use initial capitalization as is used in proper names:

 ' Displays St. Thomas Aquinas
 Debug.Print StrConv("st. thomas aquinas", vbProperCase)

StrConv also converts strings to or from other encodings or locales. Those are pretty
advanced topics and I'm just going to skip them here.

Figure 3-2. ANSI character codes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Format function converts various types of data into strings using predefined or custom formats. The Val function
converts strings containing numeric data back into numeric data types. This simple example illustrates how these
functions work:

 Sub ShowFormatVal()
 Dim num As Double, str As String
 str = Format(Now, "Short Time")
 num = Val(str)
 ' If the time is 4:31 PM, displays: 16:31 16
 Debug.Print str, num
 End Sub

You might notice that Val doesn't do anything fancyit just gets the first part of the string that is numeric and returns it
as a number. Val can recognize a few special strings as numbers. For instance, it interprets &HFF as the hexadecimal
(base 16) number 255 and &o77 as the octal (base 8) number 63. Format is really more interesting, since it provides
useful built-in formats as listed in Table 3-10.

Table 3-10. The Format function's built-in formats

Category Named
format Converts

Numeric General
Number Number to string without thousands separator. This is the default.

 Currency Number to string using the decimal, separator, and currency characters that are appropriate
for the locale. Negative values are enclosed in parentheses.

 Fixed Number to string with at least one digit to the left of the decimal and two digits to the right
of the decimal.

 Standard Same as Fixed but includes a thousands separator.

 Percent Multiplies number by 100 and includes at least two digits to the right of the decimal.

 Scientific Number to string using standard scientific notation.

 Yes/No Zero to No, nonzero to Yes.

 True/False Zero to False, nonzero to True.

 On/Off Zero to Off, nonzero to On.

Date/Time General
Date

Number or date to string using MM/DD/YY HH:MM:SS format. Omits time if number is a
whole number.

 Long Date Number or date to string using your system's long date format.

 Medium
Date Number or date to string using your system's medium date format.

 Short
Date Number or date to string using your system's short date format.

 Long Time Number or date to string using your system's long time format. Includes hours, minutes,
and seconds.

 Medium
Time

Number or date to string in 12-hour time format. Includes hours, minutes, and AM/PM
designator.

 Short
Time Number or date to string in 24-hour time format. Includes hours and minutes.

If the built-in formats don't give you what you need, you can build your own format strings using the Format function's
formatting codes listed in Table 3-11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-11. The Format function's formatting codes
Category Code Use to

String @ Include a character or space if there is no character in this position (creates fill spaces
for columns).

 & Include a character (no fill).

 < Force lowercase.

 > Force uppercase.

 ! Right-align string (default is left-align).

 \ Include characters that otherwise have special meaning in the format string (e.g., use
\@ to include the @ character).

 ""literal"" Include literal characters in a format string.

Numeric None Include number with no special formatting.

 0 Include a digit or zero if there is no digit in this position (creates zero fill).

 # Include a digit (no fill).

 . Include decimal placeholder.

 % Convert number to percentage and include % sign.

 , Include a thousands separator.

 E,-E+, e-,e+ Convert to scientific notation.

 -, +, $, () Include these literal characters (no double quotes or \ is required to include these
characters in numeric strings).

Date/Time : Include time separator.

 / Include date separator.

 c Same as General Date.

 d, dd Include day of month as digit.

 ddd Include day of week as an abbreviation.

 dddd Include full day of week.

 ddddd Same as Short Date.

 dddddd Same as Long Date.

 aaaa Include localized name of the weekday.

 w Include day of week as a number (1 to 7).

 ww Include week or year as number.

 m, mm Include month as number. (Exception: includes minutes if it follows the hour, e.g.,
hh:mm.)

 mmm Include month as an abbreviation.

 mmmm Include full month name.

 oooo Include full, localized month name.

 q Include quarter of year (1 to 4).

 y Include day of year (1 to 366).

 yy, yyyy Include year as digit.

 h, hh Include hour.

 n, nn Include minute (or you can use m, mm if following hour).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s, ss Include second.

 ttttt Same as Long Time.

 AM/PM, am/pm,
A/P, a/p Use 12-hour time and include the specified meridian designator.

 AMPM, ampm Use 12-hour time and include the system meridian designator.

Some of the format codes in Tables 3-10 and 3-11 refer to system or localized settings. Those codes allow you to use
the calendar and time features from the user's system, rather than using the default Visual Basic settings, which are
based on the Julian calendar and English month and weekday names. It's important to be aware of those settings if
your program is for use outside of the English-speaking world.

You can combine formatting code to produce quite sophisticated results. For example:

 Debug.Print Format(Now, """Today is ""dddd, mmmm d, yyyy" & _
 """ the ""y""th day of the year. The time is now"" ttttt.")

displays this result:

 Today is Thursday, June 17, 2004 the 169th day of the year. The time is now
 10:28:22 AM.

3.4.3. Change Strings

A lot of programming tasks involve getting or changing parts of a string. For simple replacement tasks, use the Replace
method as shown here:

 Sub DemoSearchAndReplace()
 Dim str As String
 str = "this is some text and some more text"
 str = Replace(str, "some", "different")
 Debug.Print str
 End Sub

The preceding code replaces all instances of some with different in a case-sensitive way. Replace also provides option for
replacing a certain number of occurrences, starting at a specific position within the string and doing case-insensitive
searches. Replace also replaces one string with another regardless of their length. If the strings are the same length, you
could use the Mid statement to change the source string, instead:

 Mid(str, InStr(1, str, "text")) = "word"
 Debug.Print str
 ' Displays: this is different word and different more text

The Mid statement is unusual in that it receives an assignmentin this case the replacement string "word". Since Mid can't
make strings longer or shorter, it is mainly useful for modifying string data that is in a fixed-width format or for
replacing single characters, such as punctuation.

Visual Basic also provides a set of functions to remove leading, trailing, or leading and trailing whitespace characters
from a string: LTrim, RTrim, and trim. Excel does Visual Basic one better by adding the trim worksheet function, which
removes repeated internal spaces as well. The following code demonstrates each of the different trim functions:

 Sub DemoTrims()
 Dim str As String
 str = " this is a string to trim. "
 Debug.Print "LTrim:", ">"; LTrim(str); "<"
 Debug.Print "RTrim:", ">"; RTrim(str); "<"
 Debug.Print "Trim:", ">"; Trim(str); "<"
 Debug.Print "Excel Trim:", ">"; _
 WorksheetFunction.Trim(str); "<"
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The preceding code produces the following output in the Immediate window:

 LTrim: >this is a string to trim. <
 RTrim: > this is a string to trim.<
 Trim: >this is a string to trim.<
 Excel Trim: >this is a string to trim.<

3.4.4. Repeat Characters

Finally, Visual Basic includes a couple of simple functions that create strings of repeated characters . The Space function
returns a string containing spaces, and the String function returns a string containing a repeated character. Those
functions are sometimes used in combination with Chr when creating reports or drawing text borders as shown here:

 ' Draws a little box in the Immediate window.
 Sub DrawBox()
 Debug.Print Chr(1) & String(20, Chr(6)) & Chr(2)
 Debug.Print Chr(5) & Space(20) & Chr(5)
 Debug.Print Chr(5) & Space(20) & Chr(5)
 Debug.Print Chr(5) & Space(20) & Chr(5)
 Debug.Print Chr(3) & String(20, Chr(6)) & Chr(4)
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5. Get Dates and Times
Visual Basic stores dates and times as decimal numbers. The digits to the left of the decimal represent the number of
days since December 30, 1899, and the digits to the right of the decimal represent the fraction of the day that has
passed (for instance, 0.5 = noon).

This means that dates and times use the same operators as numeric types. For example, the following expression
shows yesterday's date:

 Debug.Print Date - 1

This also means that you can use date or time literals to work with dates. For example, if you type #0.0# in the Code
window, Visual Basic automatically changes what you typed into the time literal for midnight shown here:

 dt = #12:00:00 AM#

You can edit that literal to add a certain number of seconds, minutes, or hours to the time. For example, the following
code pauses Excel for five seconds:

 Sub TakeFive()
 Dim dt As Date
 ' Five seconds.
 dt = #12:00:05 AM#
 Debug.Print "Paused..."
 ' Wait till five seconds from now.
 Application.Wait Now + dt
 Debug.Print "Resumed."
 End Sub

Visual Basic provides a whole set of functions for working with dates and times, as listed in Table 3-12.

Table 3-12. Visual Basic functions for working with date and time
Category Function Use to

Current Date Get or set the system date

 Now Get the current date and time

 Time Get or set the system time

 Timer Get the number of seconds since midnight (often used to measure performance)

Date DateSerial Convert year, month, and day numbers into a date

 DateValue Convert a string into a date

 Day Get the day of the month from a date

 Month Get the month of the year from a date

 Weekday Get the weekday from a date (1 to 7)

 Year Get the year from a date

Time Hour Get the hour from a time

 Minute Get the minute from a time

 Second Get the second from a time

 TimeSerial Convert hour, minute, and second numbers into a time

 TimeValue Convert a string into a time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For most conversions, the Format function works better than the functions listed in Table 3-12. The date/time functions
are mainly used for simple operations, such as getting the current year:

 Debug.Print Year(Now)

The Timer function is very handy when developing programs since it lets you see how long your code takes to run. When
developing large or complex programs, it is pretty common to record the Timer value at the start of the process, then
display the difference between that value and the current Timer when the task completes, as shown by the following
changes to DemoSort:

 Sub DemoSort()
 Dim str As String, arr As Variant, d As Double
 ' Time this operation.
 d = Timer
 str = "Q z v w p x f g J l h r y D k i e T s u o n M a c b"
 ' Show case-sensitive sort.
 Debug.Print SortString(str, False)
 ' Show case-insensitive sort.
 Debug.Print SortString(str, True)
 ' Display how long the task took.
 Debug.Print Timer - d
 End Sub

You should use the Double data type when measuring performance since many tasks take only a fraction of a second. On
my computer, DemoSort takes only about 0.00128 seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6. Read and Write Files
There are a number of different ways to read and write files in Visual Basic, and which you choose depends on what you
are trying to do, as described in Table 3-13.

Table 3-13. File-access techniques in Excel Visual Basic
Technique Use to Look here

Intrinsic functions Read or write simple datafiles This section

FileSystemObject Create files, folders, and control file attributes Chapter 6

Workbooks, Workbook objects Create, open, and save Excel workbook files; import datafiles into workbooks Chapter 8

XMLMap object Import or export XML datafiles from a workbook Chapter 15

In short, you shouldn't assume the Visual Basic intrinsic functions are the best way to read and write files in all
situations. Actually, I prefer the FileSystemObject for most general file-access tasks, but it's important to be thorough, so
I'll cover the intrinsic file-access functions here (Table 3-14).

Table 3-14. Visual Basic's intrinsic file-access functions
Category Function Use to

Access Close Close an open file

 FileCopy Copy a file

 FreeFile Get a file number for Open

 Lock...Unlock Prevent others from accessing all or part of a file

 LOF Get the length of an open file in bytes

 Open Open a file

 Reset Close all open files

Attributes FileAttr Get the attributes of an open file

 FileDateTime Get the date that a file was created or changed

 FileLen Get the length of a file in bytes before opening it

 GetAttr Get the attributes of a file, folder, or volume label

 SetAttr Change the attributes of a file, folder, or volume label

Drives ChDir Set the current folder

 ChDrive Set the current drive

 CurDir Get the current folder

 MkDir Create a new folder

 RmDir Delete an empty folder

Manage Dir List files in a folder

 Kill Delete a file

 Name Rename a file

Read Get Read data from an open binary or random-access file

 EOF Test you have reached the end of the file

 Input # Read records from an open sequential file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Line Input # Read a line from an open sequential file

 Loc Return the current position within a file

 Seek Get or set the current position within a file

Write Print # Write a line to an open sequential file

 Put Write data to an open binary or random-access file

 Spc Insert blank spaces in a sequential file

 Tab Insert tab characters in a sequential file

 Width # Set the width of a sequential file

 Write # Write records to a sequential file

The functions in Table 3-14 reflect the fact that there are three different types of file access in Visual Basic:

Sequential access

Reads files one line at a time

Random access

Reads files as a collection of fixed-length records

Binary access

Reads files as an arbitrary number of bytes

All of these types of access follow the same pattern, which is based on a very old programming concept called file
handles :

1. Use FreeFile to get a number that is available for use as a file handle.

2. Open the file using that number and the chosen file-access method.

3. Read data from the file using Input # (sequential access) or Get (random or binary access), or write data using
Print #, Write # (sequential), or Put (random or binary).

4. Close the file handle.

The modern approach, such as that used by the FileSystemObject, is to use object references
rather than numeric file handles.

Of the three types of file access, binary is the most useful in today's world because it allows you to read an entire file
into a variable with a single statement. It is by far the fastest way to get the contents of a file. The following QuickRead
function opens and reads a file and returns the data it contains as a string variable:

 ' Reads a file into a string.
 Function QuickRead(fname As String) As String
 Dim i As Integer, res As String, l As Long
 ' Get a free file handle.
 i = FreeFile
 ' Get the length of the file
 l = FileLen(fname)
 ' Create a string to contain the data.
 res = Space(l)
 ' Open the file.
 Open fname For Binary Access Read As #i
 ' Read the whole file into res.
 Get #i, , res

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get #i, , res
 ' Close the file
 Close i
 ' Return the string.
 QuickRead = res
 End Function

How big of a file can you read this way? Pretty big! I had no problem loading an 8.4 MB art file using this technique.
String variables can be very large in Visual Basic. Similarly, you can write files very quickly with binary access. The
following QuickWrite function saves a string as a file and returns True if it succeeded:

 ' Writes data to a file.
 Function QuickWrite(data As String, fname As String, _
 Optional overwrite As Boolean = False) As Boolean
 Dim i As Integer, l As Long
 ' If file exists and overwrite is True, then
 If Dir(fname) <> "" Then
 If overwrite Then
 ' delete the file.
 Kill fname
 Else
 ' else, return False and exit.
 QuickWrite = False
 Exit Function
 End If
 End If
 ' Get a free file handle.
 i = FreeFile
 ' Get the length of the file
 l = Len(data)
 ' Open the file.
 Open fname For Binary Access Write As #i Len = l
 ' Write the string to the file.
 Put #i, , data
 ' Close the file
 Close i
 ' Return True.
 QuickWrite = True
 End Function

This approach was first pointed out to me by Mark Chase, senior developer on Basic at Microsoft. He deserves credit for
clear thinking and also for being a darn nice guy. You can test that these functions work by running the following code
from the sample workbook:

 Sub DemoQuickReadWrite()
 Dim pth As String, data As String
 ' Get the folder that this workbook is in.
 pth = ThisWorkbook.Path
 ' Read the ReadMe.txt file.
 data = QuickRead(pth & "\in.txt")
 ' Display the file
 Debug.Print data
 ' Change the file.
 data = Replace(data, "text", "data")
 ' Save the file.
 Debug.Print QuickWrite(data, pth & "\out.txt", True)
 End Sub

3.6.1. Sequential Access

Sequential access reads and writes files one line at a time. In the past, sequential access was often used to write
reports or other data to human-readable files. For example, the following WriteArray function writes a two-dimensional
array to disk as a comma-delimited file using sequential access:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array to disk as a comma-delimited file using sequential access:

 ' Writes a two-dimensional array to a comma-delimited file.
 ' (Use to create CSV file out of a selected range.)
 Function WriteArray(arr As Variant, fname As String, _
 Optional overwrite As Boolean = False) As Boolean
 Dim lb1 As Long, lb2 As Long, ub1 As Long, ub2 As Long
 Dim i As Integer, rows As Long, cols As Long, rec As String
 ' If arr isn't an array, return False and exit.
 If Not IsArray(arr) Then WriteArray = False: Exit Function
 ' Get bounds for For loops.
 lb1 = LBound(arr, 1)
 lb2 = LBound(arr, 2)
 ub1 = UBound(arr, 1)
 ub2 = UBound(arr, 2)
 ' If file exists and overwrite is True, then
 If Dir(fname) <> "" Then
 If overwrite Then
 ' delete the file.
 Kill fname
 Else
 ' else, return False and exit.
 WriteArray = False
 Exit Function
 End If
 End If
 ' Get a free file handle.
 i = FreeFile
 ' Open the file.
 Open fname For Append As #i
 ' For each row in the array.
 For rows = lb1 To ub1
 ' For each column in the array.
 For cols = lb2 To ub2
 rec = rec & arr(rows, cols) & ", "
 Next
 ' Remove the last ", " from rec.
 rec = Left(rec, Len(rec) - 2)
 ' Write rec to the file.
 Print #i, rec
 ' Clear rec
 rec = ""
 Next
 ' Close the file
 Close i
 ' Return True.
 WriteArray = True
 End Function

That looks complicated, but the actual file-access code (in bold) is really very simple and follows the pattern described
previously: get a file handle, open the file, read or write to the file, close the file. Sequential access is suited to this task
since you are building the string data one line at a time as you loop over the rows in the array.

Perhaps a better approach to this task would be to build a string from the array in one procedure and then save that
string using the QuickWrite function. That approach would isolate file access in one place (QuickWrite) instead of integrating
it into the task of converting the array into a string. The following code shows that alternate approach:

 ' Better approach -- don't integrate file access within
 ' array conversion task.
 Function TableToCSV(arr As Variant) As String
 Dim lb1 As Long, lb2 As Long, ub1 As Long, ub2 As Long
 Dim rows As Long, cols As Long, rec As String
 ' If arr is not an array, return "" and exit.
 If Not IsArray(arr) Then TableToCSV = "": Exit Function
 ' Get bounds for For loops.
 lb1 = LBound(arr, 1)
 lb2 = LBound(arr, 2)
 ub1 = UBound(arr, 1)
 ub2 = UBound(arr, 2)
 For rows = lb1 To ub1
 For cols = lb2 To ub2
 rec = rec & arr(rows, cols) & ", "
 Next
 ' Remove last ", " and add carriage return/line feed.
 rec = Left(rec, Len(rec) - 2) & vbCrLf
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 TableToCSV = rec
 End Function

Using TableToCSV instead of WriteArray involves the extra step of calling QuickWrite, but the logic is still very clear:

 Sub DemoTableToCSV()
 Dim arr As Variant, data As String, pth As String
 pth = ThisWorkbook.Path
 ' Get cells from the active worksheet.
 arr = ActiveSheet.UsedRange.Value
 ' If the range contains cells.
 If IsArray(arr) Then
 ' Convert array to CSV.
 data = TableToCSV(arr)
 If data <> "" Then
 ' Save the result
 QuickWrite data, pth & "\selection.csv", True
 ' Display the result
 Debug.Print data
 End If
 End If
 End Sub

3.6.2. Random Access

Random-access files are read or written one record at a time. In this case, record usually means a fixed-size data
structure identified by a user-defined type. Because Visual Basic knows the length of each record, you can jump to any
record in the file using the Seek statement (that's what makes the access random).

In order to use random access , you must first define the structure of your record with a Type statement. You then
declare a variable with that type and use it to read and/or write records to the file. I'm not going to show you how to do
all that, because XML files and databases both provide a much better approach for storing and retrieving structured
data. I cover those topics in Chapters 12 and 15.

Why is random access not such a great approach? A few reasons:

The records are fixed-length by definition, which means names, addresses, and other variable-length data must
be stored in fixed-length strings. You have to correctly guess the maximum size of those items during design.

Changes to your data structure, such as adding a field, means you have to convert all of your existing datafiles.
You have to write code to open, convert, and save files using the new structure. (In programming circles this is
called tying your data structure to your implementation, and it's a bad thing.)

You're programming in Excel! You already have better tools for doing these types of tasks.

3.6.3. Common Tasks

In addition to reading and writing files, you also often need to manage the files on a computer. The most common tasks
are listed in Table 3-15.

Table 3-15. Common tasks for Visual Basic's intrinsic file functions
Task Function Comments

Check if file exists Dir Also used to list files in a folder.

Delete a file Kill Deletes a file if it is not locked or read-only.

Get the current
folder CurDir Excel may change the current folder when a workbook is saved or opened by the

user.

Change current
folder ChDir You can use characters like .. to move up one folder.

Change current
drive ChDrive Only the first letter from the argument is used.

Create a folder MkDir May include path specifiers like . (current folder) or .. (up one folder). Does not
change the current folder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Delete a folder RmDir Folder must be empty before it can be deleted.

Get/change file
attributes FileAttr File attributes include hidden, read-only, archive.

Make a backup copy FileCopy Copies an existing file to a new filename.

Rename a file Name Changes a filename.

In general, it is not a good idea to get the current folder (CurDir) or change the current folder (ChDir) from Visual Basic
when working with Excel because saving or opening a file from the Excel user interface may subsequently change the
current folder. It is a better practice to use the path properties provided by Excel objects when working with folders in
Excel.

For example, the following code displays the paths available for various Excel objects:

 Sub ShowPaths()
 Dim wbPth As String, appPth As String, stPth As String, _
 altPth As String, tpPth As String, adPth As String
 wbPth = ThisWorkbook.Path
 appPth = Application.Path
 stPth = Application.StartupPath
 altPth = Application.AltStartupPath
 tpPth = Application.TemplatesPath
 adPth = Application.AddIns(1).Path
 Debug.Print "Workbook path:", wbPth
 Debug.Print "Application path:", appPth
 Debug.Print "Startup path: ", stPth
 Debug.Print "Alt startup path:", altPth
 Debug.Print "Template path:", tpPth
 Debug.Print "Add-in path: ", adPth
 End Sub

I often use ThisWorkbook.Path within my samples to get or save files associated with the current workbook. That strategy
keeps all of the related files in the same folder, so it is easier to copy the samples to a new location or to install them
on your computer. Alternately, you may choose to create a fixed folder location for use in your code such as shown
here:

 ' A fixed path.
 Const SAMPLEPTH = "\Excel\Samples"

 ' Run once to create folder.
 Sub CreateSamplesFolder()
 ' Create the SAMPLEPTH folder
 On Error Resume Next
 MkDir "\Excel"
 MkDir "\Excel\Samples"
 If Err Then _
 MsgBox ("Couldn't create folder. It may already exist.")
 End Sub

Using a fixed location for your files poses the problem illustrated by the preceding exception handling: the folder may
already exist! That's another reason to use the ThisWorkbook.Path approach.

You can use the Dir function to check whether a file exists in a folder or to get a list of all of the files in a folder. When
getting a list of files, Dir acts a little strangely. The first time you call it, specify the folder you want to search; then call
Dir without an argument to get the next file in the folder, as shown here:

 Function GetFiles(filepath As String) As Variant
 Dim arr() As String, fname As String, count As Integer
 ' Get the first file.
 fname = Dir(filepath & "*")
 Do Until fname = ""
 count = count + 1
 ReDim Preserve arr(count)
 arr(count - 1) = fname
 ' Get next file.
 fname = Dir()
 Loop
 ' Return the array
 GetFiles = arr
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function

Dir does not order the files it returns alphabetically, so you may need to sort the list before displaying it. For example,
the following code uses the GetFiles function to list the files in the current workbook's folder:

 Sub DemoGetFiles()
 Dim flist As Variant, str As String
 flist = GetFiles(ThisWorkbook.Path)
 ' Sort the file list
 Text.SortArray (flist)
 str = Join(flist, vbCrLf)
 Debug.Print str
 End Sub

The FileSystemObject provides more extensive methods for working with files, folders, and drives. See Chapters 6 and 23
for information on performing these tasks using the FileSystemObject rather than Visual Basic's intrinsic functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7. Check Results
In many situations, you need to check the result of an operation to tell if it succeeded. The result-checking functions in
Visual Basic let you test results before you take actions that might otherwise cause an error. Table 3-16 lists the result-
checking functions.

Table 3-16. Visual Basic result-checking functions
Category Function Use to

Boolean tests IsArray Tell if a variable is an array

 IsDate Tell if a variable contains data that can be converted to a Date

 IsEmpty Tell if a variable has not yet been initialized

 IsError Tell if a variable contains an Error object

 IsMissing Tell if a ParamArray argument was omitted

 IsNull Tell if a variable contains no valid data

 IsNumeric Tell if a variable contains a value that can be converted to a number

 IsObject Tell if a variable is a reference to a valid object

Type tests TypeName Get the name of the variable's type as a string

 TypeOf Test the type of a variable within an If block

 VarType Get the variable's type as a VbVarType constant

Most of these tests are used with variables that were declared as Variant or Object data types. Those types of variables
can contain many different kinds of data, so it is often necessary to test what the variable contains before proceeding in
code.

There are several common uses of this in Excel. The first is ActiveSheet.property, which may refer to a Worksheet, Chart, or
other object:

 Sub ChangeSheets()
 Select Case TypeName(ActiveSheet)
 Case "Worksheet"
 If ActiveSheet.Index < Worksheets.Count Then
 Worksheets(ActiveSheet.Index + 1).Activate
 Else
 Worksheets(1).Activate
 End If
 Case "Chart"
 If ActiveSheet.Index < Charts.Count Then
 Charts(ActiveSheet.Index + 1).Activate
 Else
 Charts(1).Activate
 End If
 Case Else
 Debug.Print TypeName(ActiveSheet), ActiveSheet.Name
 End Select
 End Sub

The preceding code uses a Select statement to perform different actions based on the TypeName of the active sheet. You
usually combine TypeName with Select when there are more than two possibilities as shown in the preceding block.
TypeName is also handy for checking whether or not an optional argument has been omitted:

 Public Sub Reformat(Optional ws As Worksheet)
 ' Check if argument was omitted.
 If TypeName(ws) = "Nothing" Then
 ' Check the type of the active sheet.
 If TypeName(ActiveSheet) = "Worksheet" Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If TypeName(ActiveSheet) = "Worksheet" Then
 ' Format the active worksheet.
 Set ws = ActiveSheet
 Else
 ' You can't reformat nonworksheets.
 MsgBox "Select a worksheet and try again."
 Exit Sub
 End If
 End If
 Dim rng As Range
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat xlRangeAutoFormatSimple
 End Sub

In the preceding code, the choices are either/or: if the argument is omitted, check the active sheet; if that sheet is a
worksheet, use it. Alternately, you can use the TypeOf keyword within an If statement; however, TypeOf can't test if the
variable is Nothing. To do that, you need to use either TypeName or the Is operator, as shown by this different version of
the preceding code:

 Public Sub Reformat2(Optional ws As Worksheet)
 ' Check if argument was omitted.
 If ws Is Nothing Then
 ' Check the type of the active sheet.
 If TypeOf ActiveSheet Is Worksheet Then
 ' Format the active worksheet.
 Set ws = ActiveSheet
 Else
 ' You can't reformat nonworksheets.
 MsgBox "Select a worksheet and try again."
 Exit Sub
 End If
 End If
 Dim rng As Range
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat xlRangeAutoFormatSimple
 End Sub

Reformat and Reformat2 are equivalent. I tend to use the TypeName test rather than TypeOf or Is because it lets me use a
consistent test for all types of objects, but that's really just a personal preference.

The IsNumeric and IsDate functions are useful when receiving data from a user. Rather than returning specific information
about the type of the variable, they let you know if the data in the variable can be converted to those types. For
instance, the following code checks the value entered in an InputBox to determine the type of entry the user made:

 Sub CheckEntry()
 Dim var As String, msg As String
 var = InputBox("Enter a number, word, or date.")
 ' Use Boolean tests to check an entry.
 If IsNumeric(var) Then
 msg = "number."
 ElseIf IsDate(var) Then
 msg = "date."
 ElseIf var = "" Then
 msg = "empty."
 Else
 msg = "string."
 End If
 Debug.Print "Entry is a " & msg
 End Sub

IsNumeric and IsDate are a good way to check values before calling conversion functions like CDate or CDouble.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8. Find Truth
If statements and Do loops rely on Boolean expressions to control what they do. Those Boolean expressions are usually
shown as a condition placeholder in the statement's syntax:

 If condition Then ...

and:

 Do While condition ...

A Boolean expression is simply an item that Visual Basic can determine to be either True or False. Mostly those
expressions are very obvious. The fragment If str = "" Then says "if the variable str is an empty string, then execute the
following lines of code." In this case, the equal sign (=) works as a comparison operator, not an assignment operator.
Visual Basic can use the operator both ways because it understands that the context of an If statement is different from
the standalone statement:

 str = ""

That line performs an assignment, not a comparison! This type of dual use is called overloading . If you hear someone
say "operators are overloaded in Visual Basic," they are just stating that = can be used two different ways.

There's something else you need to know about Boolean expressions, though. In Visual Basic, any nonzero value is
considered to be True. I know that's weird, but it's important because it means the following two fragments are
equivalent:

 If str = "" Then ...

 If Len(str) Then ...

The second form literally says "if the length of str, then..." which doesn't make any sense unless you know that 0 equals
False and any other value equals True. This second form used to be a common optimization technique because Visual
Basic returns the length of a string very quickly. These types of optimizations are less popular today, because the
clarity of code is now considered more important than saving a few processor cycles.

Table 3-17 lists the Visual Basic operators that are used to perform comparisons that result in Boolean expressions.

Table 3-17. Visual Basic comparison operators
Operator Comparison Operator Comparison

= Equal to <> Not equal to

< Less than > Greater than

<= Less than or equal to >= Greater than or equal to

Like Pattern match (strings) Is Exact match (objects)

Expressions can also be combined to form compound Boolean expressions using the operators listed in Table 3-18.

Table 3-18. Visual Basic Boolean operators truth table
exp1 Operator exp2 = Result

True And True True

True Or False True

False Or True True

Not False True

True Eqv True True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

False Eqv False True

True Imp True True

False Imp True True

False Imp False True

True XOR False True

False XOR True True

The most-used Boolean operators are And, Or, and Not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.9. Compare Bits
Computers use binary numbers internally. That's because they don't have 10 fingers to count on; they have only 2: on
and off, which represent 1 and 0, respectively. Knowing that helps you understand another use for the operators in
Table 3-18Boolean operators can also be used in mathematical operations to change the individual bits that make up a
number, as illustrated by the following code:

 Sub ToBorNotToB()
 Dim b As Byte
 b = 93
 Debug.Print b, Not b, b Or Not b
 ' Displays: 93 162 255
 End Sub

In the preceding code, Not and Or have a mathematical effect on b. Specifically, Not returns the bits that are 0 (255 - b)
and Or combines the bits in b and Not b (93 + 162). These are called bitwise operations and they make more sense if
you look at b as a binary number (Figure 3-3).

Bitwise operations are used to determine if a number contains one or more bit flags . Bit flags are numeric constants
that can be combined in a single number without interfering with each other, as shown in Figure 3-4.

Figure 3-4 illustrates that the result of the VarType function can contain both the vbArray flag and any of the other type
flags. For instance, vbArray And vbVariant indicates an array of variants. You can test if a variable contains an array of
variants by combining the type flags with the Or operator:

Figure 3-3. Evaluating bitwise operations

Figure 3-4. VbVarType constants are bit flags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Sub TestArrayType()
 Dim arr, vt As VbVarType
 arr = Array(1, 2, 3, 4, 5)
 vt = VarType(arr)
 If vt And (vbArray Or vbVariant) Then _
 MsgBox "Variable arr is an array of variants."
 End Sub

If the bit pattern of vt and vbArray Or vbVariant match, the expression is True and the message is displayed. That kind of
test is sometimes called a bit mask . Bit masking is also used to extract parts of a variable. For instance, the Excel Color
property returns a Long integer value that contains three byte values indicating the red, green, and blue components of
the color as shown by the following code:

 Sub ShowColors()
 Dim i As Integer, rng As Range, rgb As Long
 Set rng = Range("ColorTable")
 For i = 1 To 56
 rng.Offset(i, 0).Interior.ColorIndex = i
 rgb = rng.Offset(i, 0).Interior.Color
 rng.Offset(i, 1).Value = rgb And &HFF
 rng.Offset(i, 2).Value = rgb \ &H100 And &HFF
 rng.Offset(i, 3).Value = rgb \ &H10000 And &HFF
 Next
 End Sub

The expression rgb And &HFF returns any of the bits in the first byte of rgb that are 1. The subsequent expressions use
integer division to shift to the next byte, getting the second and third bytes from rgb, which are then masked. It often
helps to see the bits in a variable when working with bitwise operators, so I wrote the following functions to convert
numbers into strings that represent the bit values:

 Function ByteToBin(byt As Byte) As String
 Dim i As Integer, bin As String
 For i = 0 To 7
 If byt And 2 ^ i Then
 bin = "1" & bin
 Else
 bin = "0" & bin
 End If
 Next
 ByteToBin = bin
 End Function

 Function IntToBin(itg As Integer) As String
 Dim i As Integer, bin As String
 For i = 0 To 15
 If itg And 2 ^ i Then
 bin = "1" & bin
 Else
 bin = "0" & bin
 End If
 Next
 IntToBin = bin
 End Function

 Function LngToBin(lng As Long) As String
 Dim i As Integer, bin As String
 ' Note that this omits 2 ^ 31 because of overflow.
 For i = 0 To 30
 If lng And 2 ^ i Then
 bin = "1" & bin
 Else
 bin = "0" & bin
 End If
 Next
 LngToBin = bin
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.10. Run Other Applications
Being able to start one application from another is one of the significant advantages of Windows. Within Visual Basic
you may want to start another application to load data from Excel, to display a web page, to edit text files, or to
perform some other task not easily done in Excel itself. Visual Basic provides the functions shown in Table 3-19 to run
other applications.

Table 3-19. Visual Basic functions for running other applications
Function Use to

AppActivate Switch focus to a running application

CreateObject Start an ActiveX application and get an object reference to that application

GetObject Get a running ActiveX application and get an object reference to that application

SendKeys Send keystrokes to a running Windows application

Shell Start an application using its file (.exe) name

CreateObject and GetObject work only with Windows applications that have support for ActiveX automation built in to them.
Most Microsoft products and many other Windows products support that type of automation, which is sometimes also
called OLE automation .

ActiveX or OLE automation allows you to use the internal objects, properties, and methods of the application in the
same way that you control Excel from Visual Basic. For example, the following code starts Microsoft Word from Excel,
creates a new document, inserts some text, and saves the file:

 Sub UseWord()
 Dim word As Object, doc As Object
 Set word = CreateObject("Word.Application")
 ' Show Word (otherwise it's invisible).
 word.Visible = True
 ' Create document.
 Set doc = word.Documents.Add
 ' Insert some text
 doc.Range.InsertAfter "Some text to insert."
 ' Save the file
 doc.SaveAs ThisWorkbook.Path & "\StartWord.doc"
 End Sub

You can use GetObject to get a running instance of an application. For example, the following code uses a running
instance of Word to open the document created by the preceding code:

 Sub GetWord()
 Dim word As Object, doc As Object
 ' Get a running instance of Word.
 Set word = GetObject(, "Word.Application")
 ' Open a document.
 Set doc = word.documents.Open(ThisWorkbook.Path & "\StartWord.doc")
 word.Visible = True
 End Sub

In the preceding code, GetObject fails if Word is not already running. You can use GetObject with a filename to start the
application associated with the file if it is not already running, as shown here:

 Sub GetDocument()
 Dim word As Object, doc As Object
 ' Get the demo document whether or not is it open.
 Set doc = GetObject(ThisWorkbook.Path & "\StartWord.doc")
 ' Show the document.
 doc.Application.Visible = True
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, GetObject starts Word if it is not already running and loads the document. If Word is running or if the
document is already open, the code just returns a reference to that object without starting a new instance.

Both CreateObject and GetObject do something called late binding . Late binding means that the type of the object is not
checked until the application is running. It's often better to use early binding , since that allows Visual Basic to check
that types match when the code is compiled, which helps correct type-mismatch errors.

Early binding requires that you add a reference to the library for the application you want to use from Excel. To add a
reference to an application in Visual Basic:

1. Select Tools References. Visual Basic displays the References dialog box, shown in Figure 3-5.

Figure 3-5. Visual Basic lists all the ActiveX libraries installed on your
computer

2. Scroll down the list of applications installed on your system and select the ones you want by clicking the box
next to the application's name.

3. Click OK when done.

There may be quite a few libraries installed on your computer, and sometimes it is difficult to find the one you want.
Microsoft groups most of its libraries under the company name so they sort together, and most other companies do the
same.

If you distribute your Visual Basic code to others, any applications you use must also be
installed on their computer, otherwise the code will fail.

Once you have added a reference to another application, you can use objects from that application in the same way
that you use Excel objects. For example, the following code creates a new document in Word and inserts some text:

 ' Requires reference to Microsoft Word object library.
 Sub EarlyBinding()
 Dim doc As New Word.Document
 doc.Range.InsertAfter "This is early-bound."
 doc.Application.Visible = True
 End Sub

One of the key advantages of using explicit types, such as Word.Document, is that it enables Visual Basic's Auto Complete
features to help you navigate through the various objects, properties, and methods that an application provides. Figure
3-6 shows the Auto Complete feature in action for the Word objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3-6 shows the Auto Complete feature in action for the Word objects.

Figure 3-6. References and explicit types enable Auto Complete

Table 3-20 lists some common applications that provide ActiveX objects you can use from Visual Basic. Be aware that
most of these applications provide a very complex set of objects that may be organized differently from Excel's objects.
Using the objects from other applications often requires a good deal of research and learning.

Table 3-20. Some applications that you can automate from Visual Basic

Application name Library name (for References
dialog)

Programmatic IDs (for
CreateObject/GetObject)

Microsoft Word Microsoft Word 11.0 Object Library
Word.Application

Word.Document

Microsoft PowerPoint Microsoft PowerPoint 11.0 Object
Library

PowerPoint.Application

PowerPoint.Show

PowerPoint.Slide

Microsoft Access Microsoft Access 11.0 Object Library

Access.Application

Access.Workgroup

Access.Project

Microsoft Excel Microsoft Excel 11.0 Object Library

Excel.Application

Excel.Sheet

Excel.Chart

Microsoft Graph Microsoft Graph 11.0 Object Library
MSGraph.Application

MSGraph.Chart

Microsoft Outlook Microsoft Outlook 11.0 Object Library Outlook.Application

Microsoft Internet
Explorer Microsoft Internet Controls InternetExplorer.Application

Not all applications support ActiveX, however. Some of the simple (and common) applications can be started only with
the Shell function. Shell runs the application using its filename and returns a nonzero number if the application started
successfully. You can combine Shell with SendKeys to automate applications in a simple way:

 Sub StartNotepad()
 Dim id As Integer
 id = Shell("notepad.exe", vbNormalFocus)
 ' If id is not zero, then Shell worked. This is some text to insert
 If id Then
 SendKeys "This is some text to insert", True
 SendKeys "^s", True
 SendKeys ThisWorkbook.Path & "\StartNote.txt", True
 SendKeys "~", True
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The preceding code starts Notepad, inserts some text, and saves the file. You can send keystrokes to only the
application that currently has focus in Windows. If the user changes the focus while your code is running, the
keystrokes may go to the wrong application. This makes debugging the preceding code very difficult. If you try to step
through the code, the keystrokes are sent to the Code window, rather than to Notepad!

You can switch the focus to another application using the AppActivate function. AppActivate uses the text displayed in the
window's titlebar to select the window to grant focus. If you run the preceding code, the Notepad window will contain
the text "StartNote.txt Notepad", so the following code will switch focus to that window to make some changes:

 Sub GetNotepad()

 Dim id As Integer
 On Error Resume Next
 AppActivate "StartNote.txt - Notepad", True
 If Err Then MsgBox ("StartNote.txt is not open."): Exit Sub
 SendKeys "{end}", True
 SendKeys ". Some more text to insert.", True
 SendKeys "^s", True
 End Sub

You can also use the ID returned by the Shell function with AppActivate to activate a running application. SendKeys uses the
predefined codes listed in Table 3-21 to send special keys, such as Enter or Page Up, to an application.

Table 3-21. SendKeys codes
Key Code Key Code

Shift + Ctrl ^

Alt % Backspace {BACKSPACE}, {BS}, or {BKSP}

Break {BREAK} Caps Lock {CAPSLOCK}

Del or Delete {DELETE} or {DEL} Down Arrow {DOWN}

End {END} Enter {ENTER} or ~

Esc {ESC} Help {HELP}

Home {HOME} Ins or Insert {INSERT} or {INS}

Left Arrow {LEFT} Num Lock {NUMLOCK}

Page Down {PGDN} Page Up {PGUP}

Print Screen {PRTSC} Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK} Tab {TAB}

Up Arrow {UP} F1-F16 {F1}-{F16}

I should point out here that Excel provides methods for running two of the most commonly used applications. Use the
FollowHyperlink method to display a web page in the default browser or to create a new email message. Use the SendMail
method to send a workbook as an attachment. The following code demonstrates these different approaches:

 Sub BrowserAndMail()
 ' Starts browser and displays page.
 ThisWorkbook.FollowHyperlink "http://www.mstrainingkits.com"
 ' Creates a new, blank mail message
 ThisWorkbook.FollowHyperlink "mailto:exceldemo@hotmail.com"
 ' Sends the workbook as an attachment without displaying message.
 ThisWorkbook.SendMail "exceldemo@hotmail.com"
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.11. Control the Compiler
Visual Basic includes two instructions that tell the compiler to take special actions, as listed in Table 3-22.

Table 3-22. Visual Basic compiler directives
Directive Use to

#Const Define a literal constant. The compiler replaces these constants will their literal value in the compiled
code.

#If...Then...#End
If Conditionally compile code based on a literal constant.

These directives are commonly used to switch between debug and release versions of code. Often, debug versions
include extra statements that display output in the Immediate window. That makes it easier to locate problems while
debugging, however you might not want that code to run in the released version. Rather than remove the statements
manually, you can simply turn them off by changing a global setting, as shown here:

 #Const ISDEBUG = True

 Sub DemoDirectives()
 #If ISDEBUG Then
 MsgBox "Running in Debug mode."
 #Else
 MsgBox "Running in Release mode."
 #End If
 End Sub

Changing the value of ISDEBUG changes which code runsin fact, Visual Basic actually omits the unused code in its internal
compiled version (the source code isn't affected, however). The constant ISDEBUG isn't really a symbol: you can't see its
value with a watch. Instead, it's a literal value that the compiler replaces throughout your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.12. Not Covered Here
Chapters 2 and 3 give you a lot to think about. Still, there are a few things about Visual Basic I haven't touched on. The
two reasons I haven't covered everything yet:

Some functions are obsolete or not particularly useful from Excel.

Other Visual Basic keywords are very advanced.

Table 3-23 lists the Visual Basic functions that are obsolete or aren't often used in Excel. Table 3-24 lists advanced
keywords.

Table 3-23. Obsolete or obscure Visual Basic functions
Function Use to

Beep Play a beep through the computer's speaker.

Environ Get strings from the operating system's environment string table. For instance, Environ("path") returns the
MS-DOS PATH environment variable.

Command Get command-line arguments. Excel applications don't use command-line arguments.

Table 3-24. Advanced Visual Basic keywords
Category Keyword

System registry DeleteSetting

 GetSetting

 GetAllSettings

 SaveSetting

Windows APIs Declare

 AddressOf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.13. What You've Learned
This chapter taught you about the core language of Visual Basicthat is, all the statements and functions that perform
general programming tasks. At this point in the book, you've covered all the Visual Basic fundamentals: using the
editor, constructing a program, and performing tasks. Congratulations!

You should now be comfortable displaying simple dialogs and working with numbers, strings, and arrays, and you
should know something about working with files.

Don't worry if you're not an expert at working with dates, comparing bits, or running other applications. You can always
come back later for a refresher on those topics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Using Excel Objects
Programming Excel is all about objects . In Chapter 2, I defined what objects are and showed you a little about how
they work. In this chapter, I'll take a closer look at the Excel object library and give you the tools you need to find the
right Excel object for any task you want to perform.

Code used in this chapter and additional samples are available in ch04.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1. Objects and Their Members
The most obvious difference between objects and other parts of the Visual Basic language is the dot notation. Objects
use the period (or dot) to separate the object name from the member name as shown in Figure 4-1.

Figure 4-1. The dot separates the object from the member

Member is the general term for a property, method, enumeration, or constant that belongs to the object. Objects help
organize members by grouping them into functional units. Objects are used throughout Visual Basic to organize things.
In fact, if you type VBA. in the Code window, you'll see a list of the functions that are part of the Visual Basic language
(Figure 4-2).

Figure 4-2. Visual Basic uses objects to organize its members

The VBA object library even uses dot syntax to organize other objects. For example, type VBA.Strings. and you'll see a list
of the string functions. The symbols in the Auto Complete list identify the type of member, as shown in Figure 4-3.

Figure 4-3. Objects can use other objects to organize members, and the type of
member is illustrated by an icon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Figure 4-3, the Library symbol identifies a grouping of related members ; the Enumeration symbol identifies a
grouping of related constants. Visual Basic uses these same icons in the Object Browser a tool that lets you explore the
objects contained in any of the object libraries (Figure 4-4). To see the Object Browser, press F2.

The Object Browser lists only the object libraries that you have established references to. That means the libraries listed
in the Object Brower's drop-down list match the checkboxes selected in the Visual Basic References dialog box (Figure
4-5).

You may notice that not all of the Visual Basic language is listed in the VBA object library. Keywords like If, Sub, Function,
and End are structural components and so aren't part of the library. I covered those keywords (sometimes called
reserved words) in Chapter 2, and I covered the members of the VBA object library in Chapter 3.

Figure 4-4. Use the Object Browser (F2) to explore objects and search for
members

Figure 4-5. Choose Tools References to add or list object library references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You need to know about two other icons in the Object Browser (see Figure 4-6):

Global members

Members for which you can omit the object name. In the case of the VBA object library, all members are global
so you never have to type VBA.. In the case of the Excel object library, the global members are often
synonymous with the Application object. That means that Application.ActiveSheet and ActiveSheet are equivalent
expressions.

Figure 4-6. Listing global members and events

Events

Procedures that execute automatically when something happens in Excel. They take the form
objectname_eventname in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2. Get Excel Objects
In Excel, you always get one object from another, and everything starts with the Application object. So, if you want to
change the font of cell C2 to bold, you would simply type:

 Application.ActiveWorkbook.ActiveSheet.Range("C2").Font.Bold = True

Not really! Application, ActiveWorkbook, and ActiveSheet are all global members in Excel, so you can shorten your code to:

 ActiveWorkbook.ActiveSheet.Range("C2").Font.Bold = True

or:

 ActiveSheet.Range("C2").Font.Bold = True

or more likely:

 Range("C2").Font.Bold = True

Each of the members in the original line of code returns an object reference that navigates from the top-level object
(the Excel Application object) to the low-level object (a Font object) for which you want to set the Bold property. The order
of objects looks like this:

Application Workbook Worksheet Range Font (set Bold property)

In other words, Excel's objects are arranged hierarchically, but global members provide shortcuts through that
hierarchy. Table 4-1 lists some commonly used shortcuts for navigating to Excel objects.

Table 4-1. Excel's global shortcut members
Member Returns Use to

ActiveCell Range object containing
a single cell

Work with the currently selected cell or get the upper-lefthand corner of a
selected block of cells.

ActiveChart Chart object Get the chart that currently has focus.

ActiveSheet Worksheet, Chart, or
other sheet object.

Get the sheet that has focus. The returned object may be a Worksheet, a Chart, or
one of the obsolete sheet types.

ActiveWorkbook Workbook object Get the workbook that has focus.

Cells Range object Work with cells on the active worksheet.

Range Range object Work with a specific set of cells on the active worksheet.

Selection Varies Get the selected object. That may be a range of cells, a chart, or some other
object.

Sheets
Collection of Worksheet,
Chart, or other sheet
objects

Get a sheet by its numeric index or name.

ThisWorkbook Workbook object
Get the workbook that contains the current Visual Basic project. This contrasts
with ActiveWorkbook, which may be different from ThisWorkbook if the user has
switched focus.

UsedRange Range object Get the block of cells on the active worksheet that contains data.

Workbooks Collection of Workbook
objects Get a workbook by its numeric index or name.

Worksheets Collection of Worksheet
objects Get a worksheet by its numeric index or name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In general, the members that return only one type of object are easier to work with than members that can return
various types. This is probably best demonstrated by contrasting the Sheets and Worksheets methods. Sheets can return
several different types of objects: Worksheet, Chart, DialogSheet (which is obsolete), and so on. Worksheets returns only
Worksheet objects. That means Visual Basic knows the object type when you are working with Worksheets, but not when
working with Sheets. You can tell that because Auto Complete doesn't work with Sheets. It also means you have to be
careful what methods you call objects returned by Sheets, since trying to use a Worksheet method, like Range, will fail if the
object is a Chart.

Therefore, if you want to do something to all worksheets in a workbook, you use the Worksheets method:

 Sub UseWorksheets()
 Dim ws As Worksheet
 For Each ws In Worksheets

 ' Do some task
 Next
 End Sub

If you want to do something to all of the sheets in workbook, use the Sheets method as shown here:

 Sub UseSheets()
 Dim obj As Object, ws As Worksheet, chrt As Chart
 For Each obj In Sheets
 Select Case Typename(obj)
 Case "Worksheet"
 ' OK to use Worksheet methods.
 Set ws = obj
 Case "Chart"
 ' OK to use Chart methods.
 Set chrt = obj
 Case Else
 ' An obsolete sheet type.
 End Select
 Next
 End Sub

In the preceding code, I set the generic object returned by Sheets to a specific Worksheet or Chart type so that I could make
sure I wasn't using any members that weren't allowed for the object. If I were doing a task that is common to all
objects, such as setting the Name property, I could avoid that step and just use the returned obj variable.

This points up a problem for Excel programmers: there is no ActiveWorksheet property. The ActiveSheet property returns a
generic object typethat might be a Worksheet, a Chart, or something else. Sometimes you definitely know that the sheet
that has focus is a Worksheetfor example, when you create a new worksheet in code. In this case, you can safely use the
Worksheet members. Otherwise, you need to test if the object is a worksheet before proceeding as shown here:

 If TypeName(ActiveSheet) = "Worksheet" Then
 ' OK to use Worksheet members on ActiveSheet
 End If

This isn't really an oversight by the Excel team. If they did provide an ActiveWorksheet property, it would return Nothing if a
chart sheet had focus. You'd still have to write similar code to test for that condition!

Checking and working with specific types of objects, rather than using the generic Object
type, is sometimes called type-safe programming , and it's a good technique to help
prevent errors in your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3. Get Objects from Collections
Excel members like Workbooks, Worksheets, Charts, Sheets, and Range return groups of objects called collections. Collections
are special because they provide a hidden enumerator method that lets you use them with the For Each statement as
well as Item and Count methods that let you get specific objects from the group.

In Excel, collections are usually (but not always) named as the plural form of the objects they contain: so the Workbooks
collection contains Workbook objects, the Worksheets collection contains Worksheet objects, and so on. There are some
obvious exceptions: Sheets contains various types of sheet objects, and Range contains other Range objects, each of which
contains a single cell. The Range collection is definitely weird, but Excel has no Cell object so that's just the way things
work!

In Excel, you get collections using a property from the collection's parent object. The property usually has the same
name as the returned collection, which can make using Help a little frustrating (Figure 4-7).

Figure 4-7. Pressing F1 on Workbooks displays the Workbooks property, not the
Workbooks collection you might expect!

To see Help on the collection, including a list of its members, click the link for the collection object on the property Help
topic. Figure 4-8 shows the Help for the Workbooks collection object.

The graphic in Figure 4-8 shows how you navigate from the Application object to the Workbook object. You can interpret
that graphic as saying "Use the Application object's Workbooks property to get the Workbooks collection, which contains
Workbook objects, from which you can use other properties to get other objects." You can see why they used a graphic
instead of words! If you click on any of the boxes in the graphic, you'll get Help on that object. If you click on the
Multiple Objects box, you'll see a list of the objects you can get from the Workbook object (Figure 4-9).

Figure 4-8. It takes an extra click to get Help on collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-8. It takes an extra click to get Help on collections

You often need to use Help to figure out how to navigate to the object you need. Excel's object library is complicated,
as shown by Figure 4-10. Knowing how to navigate it is one of the key skills you must develop as an Excel programmer.

In fact, Figure 4-10 cheats by using shortcut methods like Application.Range to simplify the hierarchy. The real hierarchy is
Application Workbooks Workbook Worksheets Worksheet Range, but that really wouldn't fit!

You get specific objects from a collection using the collection's Item property:

 ' Show the name of the first worksheet.
 Debug.Print Application.Workbooks.Item(1).Worksheets.Item(1).Name

Wait! That's not the way it's usually shown. You can omit Item because it is the default property of the collection. You
can also omit Application.Workbooks since Worksheets is a global method. The way you'd usually write that code is this:

 ' Show the name of the first worksheet (simplified)
 Debug.Print Worksheets(1).Name

Figure 4-9. Click on the graphic to navigate to other objects in Help

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-10. Excel's object hierarchy doesn't fit on one Help screen (look at the
scrollbar)

Or you can use the collection with For Each to show a list of all worksheets:

 Dim ws As Worksheet
 ' Show names of all worksheets.
 For Each ws In Worksheets
 Debug.Print ws.Name
 Next

Most collections have two types of indexes . The first type is numeric (Worksheets(1)), and
the second type uses the item's name (Worksheets("Sheet1")).

Collections are also usually the way you create new objects in Excelmost collections provide an Add method for creating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collections are also usually the way you create new objects in Excelmost collections provide an Add method for creating
new instances of objects and adding them to the collection. Interestingly, you usually delete items from Excel
collections using the individual object's Delete method. The following code illustrates adding and deleting a worksheet:

 ' Create a new workhseet
 Set ws = Worksheets.Add
 ' Delete that sheet
 ws.Delete

Table 4-2 lists the members that are common to most collections .

Table 4-2. Common members for collection objects
Member Use to Example

Add Create a new object and add it to the collection. Workbooks.Add

Count Get the number of objects in the collection.

' Alternative to For Each
For i = 1 to Sheets.Count
 Debug.Print Sheets(i).Name
Next

Item Get an object from the collection. This member name is usually
omitted since it is the default member. Worksheets("Objects").UsedRange.AutoFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4. About Me and the Active Object
The Visual Basic Me keyword provides a way to refer to an instance of the object created by the current class. I know
that's a little confusing; here's how it works: if you write code in the ThisWorkbook class, Me is the same as ThisWorkbook, as
shown by Figure 4-11.

If you write that same code for one of the Worksheet classes, you get a different result as shown by the following code:

 ' In Objects sheet class.
 Sub AboutMe() ' Displays:
 Debug.Print Me.Name ' Objects
 Debug.Print ThisWorkbook.Name ' ch04.xls
 Debug.Print Me Is Sheets("Objects") ' True
 End Sub

Figure 4-11. ThisWorkbook and Me are the same here

That's because Excel creates an object out of the class at runtime, and Me refers to that object. You can use Me to refer
to members of the class using the dot notation:

 Sub DemoMe()
 Me.AboutMe ' Calls preceding AboutMe procedure.
 End Sub

You can't use Me in a Module. It's valid only in classes since it refers to the instance of the object created from the class
and modules don't have instancesmodules are static code.

Excel provides a number of properties that return objects that currently have focus in the Excel interface. Some of
these properties were included in the list of shortcuts shown in Table 4-1, but they bear repeating in Table 4-3.

Table 4-3. Active object properties
Property Returns

ActiveCell Range containing the cell that currently has focus for input

ActiveChart Chart that has focus

ActiveMenuBar MenuBar currently displayed in Excel

ActivePane Pane within the active window

ActivePrinter Name of the default printer in Excel (not an object)

ActiveSheet Worksheet, Chart, or other sheet type that has focus

ActiveWindow Window that has focus

ActiveWorkbook Workbook that has focus

Selection Selected item (may be a Range, Chart, drawing object, or other object)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These properties are very useful in code because they tell you what the user is looking at. Often you'll want your code
to affect that itemfor example, you might want to display a result in the active cell. Normally, the user can change the
active object in Excel by clicking on a worksheet tab, switching to a new window, and the like, but she can't do that
while a Visual Basic procedure is running, as shown in Figure 4-12.

Figure 4-12. The user can't change the active object while a procedure runs

Code can change the active object, however. Many objects provide Activate methods that switch focus within Excel, and
some objects, such as Window, provide ActivateNext and ActivatePrevious methods as well. If you rely on active objects, you
need to be careful about changing the active object in code.

Many Excel programmers rely on activation a little too much in my opinion, as shown here:

 Sub DemoActivation1()
 Dim cel As range
 ' Make sure a range is selected.
 If TypeName(Selection) <> "Range" Then Exit Sub
 For Each cel In Selection
 ' Activate the cell.
 cel.Activate
 ' Insert a random value
 ActiveCell.Value = Rnd
 Next
 End Sub

In reality, there's no good reason to do this since you've got a perfectly good object reference (cel) that you can use
instead:

 Sub DemoActivation2()
 ' Make sure a range is selected.
 If TypeName(Selection) <> "Range" Then Exit Sub
 Dim cel As range
 For Each cel In Selection
 ' Insert a random value
 cel.Value = Rnd
 Next
 End Sub

DemoActivation2 runs faster because it avoids an unneeded Activate step in the For Each loop. There's nothing wrong with
using the active object when you need it; I just see it overused a lot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5. Find the Right Object
The hardest part about Excel programming is finding the right object for the job. Excel's object library is huge and not
always easy to understand. One way to tackle that problem is to categorize the objects by task. The chapters later in
this book take that approach, as shown by Table 4-4.

Table 4-4. How this book organizes Excel objects by task
Chapter Description Covers these objects

7,
Controlling
Excel

Control Excel's general options and
display and respond to application-level
events

Application, AutoCorrect, AutoRecover, ErrorChecking, Windows, and Panes

8, Opening,
Saving, and
Sharing
Workbooks

Access workbooks and their properties
and respond to workbook events Workbook and RecentFile

9, Working
with
Worksheets
and Ranges

Perform general tasks on ranges of
cells including inserting values, search
and replace, and formatting and
respond to worksheet events

Worksheet and Range

10, Linking
and
Embedding

Add comments, hyperlinks, and various
OLE objects to worksheets Comment, Hyperlink, OLEObject, Speech, and UsedObjects

11, Printing
and
Publishing

Create hardcopy and online output
from workbooks

AutoFilter, Filter, HPageBreak, VPageBreak, PageSetup, Graphic,
PublishObject, DefaultWebOptions, and WebOptions

12, Loading
and
Manipulating
Data

Bring data into a workbook from a
database or other data source

Parameter and QueryTable

ADO objects: Command, Connection, Field, Parameter, and RecordSet

DAO objects: Database, DbEngine, Document, QueryDef, and Recordset

13,
Analyzing
Data with
Pivot Tables

Organize, sort, and filter data through
pivot tables

CalculatedField, CalculatedMember, CubeField, PivotCache, PivotCell,
PivotField, PivotFormula, PivotItem, PivotItemList, PivotLayout, and
PivotTable

14, Sharing
Data Using
Lists

Use lists for data entry, filtering,
sorting, and sharing data ListObject, ListRow, ListColumn, and ListDataFormat

15, Working
with XML

Import XML data into Excel and export
data from workbooks in XML format XmlMap, XmlDataBinding, XmlNamespace, XmlSchema, and XPath

16, Charting Display numeric data graphically Axis, Chart, ChartGroup, ChartObject, DataTable, Point, Series, and
SeriesLines

17,
Formatting
Charts

Change low-level aspects of the chart

ChartArea, ChartColorFormat, ChartFillFormat, Corners, DataLabel,
DownBars, DropLines, ErrorBars, Floor, Gridlines, HiLoLines, LeaderLines,
Legend, LegendEntry, LegendKey, PlotArea, TickLabels, trendline, trendlines,
UpBars, and Walls

18, Drawing
Graphics Create graphics on Excel worksheets

Adjustments, CalloutFormat, ColorFormat, ConnectorFormat, ControlFormat,
FillFormat, FreeFormBuilder, GroupShapes, LineFormat, LinkFormat,
PictureFormat, ShadowFormat, Shape, ShapeNode, ShapeRange,
TextEffectFormat, TextFrame, and THReeDFormat

19, Adding
Menus and
Toolbars

Add items to the Excel user interface CommandBar, CommandBarButton, CommandBarComboBox, and
CommandBarPopup

20, Building
Dialog
Boxes

Create forms and use controls in Excel
Forms 2.0 objects: UserForm, CheckBox, ComboBox, CommandButton,
Control, Frame, Image, Label, ListBox, MultiPage, OptionButton, RefEdit,
ScrollBar, SpinButton, TabStrip, and ToggleButton

21, Sending
and
Receiving
Workbooks

Send mail from Excel MsoEnvelope, MailItem, and RoutingSlip

22, Building
Add-ins

Load and use add-ins as well as create
and distribute new ones AddIn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add-ins and distribute new ones AddIn

26,
Exploring
Security in
Depth

Limit edits to sheets and ranges of cells AllowEditRange, Protection, Permission, UserAccess, UserAccessList

To give you an overview of how the Excel object library is organized, the following sections break the Excel object
library into parts and illustrate how the objects are organized graphically. These illustrations are similar to those found
in online Help as shown in Figure 4-10 earlier but are a little more complete (and I think more accurate) than Excel's
Help.

4.5.1. Top-Level Objects

Excel's top-level objects control Excel's application options, such as automatic correction, and provide ways to navigate
to lower-level objects, such as workbooks. Figure 4-13 shows the objects you can get directly from the Application object
with the most significant ones shown in bold. You can also use the Application object's ActiveSheet, ActiveCell, ActiveChart, and
other methods to get lower-level objects directly (see Table 4-1).

4.5.2. Workbook Objects

Excel files are called workbooks and Excel controls its files through the Workbook object. This object is the next major
object in the Excel object library, right after the Application object, as shown in Figure 4-14. You use the Workbook objects
to share, email, and publish workbooks as well as to get to the contents of the workbook through lower-level Worksheet
and Chart objects.

4.5.3. Worksheet and Range Objects

You use the Worksheet and Range objects to control the contents of a workbook. These are perhaps the two most-
important objects in the Excel object library because they let you get at cell values and objects displayed on
worksheets, as shown in Figure 4-15.

Figure 4-13. Top-level objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.4. Chart Objects

You use the Chart objects to display data graphically. Excel charts may exist on their own sheets or be embedded on a
worksheet, so you can get at Excel charts through the Charts collection (for chart sheets) or the ChartObjects collection (for
embedded charts), as shown in Figure 4-16. This part of the Excel object library is many levels deep, because it
provides control over every graphic object on a chart...right down to the individual points in a series.

Figure 4-14. Objects for working with workbook files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-15. Objects for working with worksheets and ranges of cells

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-16. Objects for charting and formatting charts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.5. Data List and XML Objects

Data lists are new in Excel 2003 and are closely related to Excel's new XML features. That's why I show them together
in Figure 4-17. Excel controls data lists through the ListObjects collection and can import or export XML data using the
XmlMaps collection.

Figure 4-17. Objects for working with lists and importing/exporting XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.6. Database Objects

Excel interacts with databases through PivotTable and QueryTable objects , as shown in Figure 4-18. There are also a couple
of special-purpose objects at the application level for getting data-access errors and for interacting with real-time data
servers (RTD).

Figure 4-18. Objects for working with databases and pivot tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.7. Dialog Box and Form Objects

Excel's Dialogs collection lets you display any of the application's built-in dialog boxes or get information from one of
Excel's file dialog boxes. However, you display custom dialog boxes using the Microsoft Forms object library not the
Excel object library. Figure 4-19 shows the dialog box objects from both object libraries.

Figure 4-19. Objects for displaying dialog boxes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Early versions of Excel used the DialogSheets collection to display custom dialog boxes, but
that technique is now obsolete.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6. Common Members
Most objects in Excel have several members in common as listed in Table 4-5.

Table 4-5. Common Excel object members
Member Description Use to

Application Returns the Excel Application
object

This isn't really useful from within Excel since the Application object is readily
available anyway. It's somewhat useful when programming Excel from
other applications, however.

Creator
Returns a numeric code
identifying the application that
created the object

Again, this isn't really useful from within Excel. You can pretty much ignore
this property.

Parent Returns the next-higher object
in Excel's object hierarchy Map Excel's object hierarchy.

Name Returns a string describing the
object

Display information about an object or get a specific object from a
collection.

You might be able to tell from Table 4-5 that the Name property is the most useful of the common members . Most (but
not all) Excel objects have a Name property that identifies the object within its containing collection. For example,
Worksheets("Sheet1") returns the worksheet with the Name property Sheet1.

That's not true for all objects, however. The Range object, for instance, has an Address property instead of a Name
property. Other objects, such as Window, use the Caption property, instead. Table 4-6 categorizes some of the common
members that aren't as universal as those listed in Table 4-5, but are actually more useful to know.

Table 4-6. Other useful, common members by category
Category Member Use to

General Activate Set focus on an object.

 Caption Set or return the text that appears in an object's titlebar.

 Value Set or return the value displayed by an object. This is often the default property of an object.

Collections Add Create a new object and add it to the collection.

 Count Get the number of objects in a collection.

 Index Get the position of an object within a collection (use on the object, not the collection).

 Item() Get an object by name or index from a collection. This is the default property of most
collections.

 Delete Remove an object from a collection (use on the object, not the collection).

Appearance Height Set or return the height of an object in points. (There are 72 points in an inch.)

 Left Set or return the horizontal position of an object in points.

 Top Set or return the vertical position of an object in points.

 Visible Show or hide an object (True/False).

 Width Set or return the width of an object in points.

Printing PrintOut Print an object.

 PrintPreview View the object before printing.

The following sections explain using these common members.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6.1. Activate Objects: Get Names and Values

You can use the Activate method to set focus on the following objects:

Chart
ChartObject
OLEObject
Pane
Range
Window
Workbook
Worksheet

Usually, you'll use Activate in combination with one of the collection methods to set focus on a member of the collection.
For example, the following line sets focus on the first sheet in a workbook:

 Sheets(1).Activate

Similarly, the following line sets focus on the last sheet:

 Sheets(Sheets.Count).Activate

As mentioned previously, not all objects have a Name property. In those cases, the Caption or Address property is
sometimes equivalent. The following procedure uses exception handling to return the name of an object of any type:

 Function GetName(obj) As String
 Dim res As String
 ' Use exception handling in case object
 ' doesn't support Name property
.
 On Error Resume Next
 res = obj.Name
 If Err Then res = obj.Address
 If Err Then res = obj.Caption
 If Err Then res = obj.Index

 If Err Then res = "no name"
 On Error GoTo 0
 GetName = res
 End Function

Some objects (such as points within a chart series) don't have any identifiers. In that case, GetName returns no name. The
Range and Hyperlink objects use the Address property, and the following objects have Caption properties:

Application AxisTitle Characters

ChartTitle CheckBox1 CommandButton1

DataLabel Frame1 Label1

OptionButton1 Menu MenuBar

MenuItem Page1 Tab1

ToggleButton1 UserForm1
1 These objects are part of the Microsoft Forms object library that ships with Excel.

In some cases, objects may have both a Name and a Caption property. For example, the following code changes the text
displayed in the Excel titlebar:

 Application.Caption = "Programming Excel Rules!"

Many objects also have a Value property. This is usually the default property of an object, so you don't often see Value in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many objects also have a Value property. This is usually the default property of an object, so you don't often see Value in
code. Usually it looks like this:

 Range("A2") = 42

Sometimes Value is synonymous with the Name property. For example, both of the following lines display "Microsoft
Excel":

 Debug.Print Application.Value ' Displays Microsoft Excel
 Debug.Print Application.Name ' Displays Microsoft Excel

Why did Microsoft do this? I have no idea. The main thing you need to know is that the following objects all have Value
properties:

Application Borders CheckBox1

ComboBox1 CommandButton1 ControlFormat

CubeField CustomProperty Error

ListBox1 MultiPage1 Name

OptionButton1 PivotField PivotItem

PivotTable Range ScrollBar1

SpinButton1 Style TextBox1

ToggleButton1 Validation XmlNamespaces

XPath
1 These objects are part of the Microsoft Forms object library that ships with Excel.

4.6.2. Add or Delete Objects Through Collections

I already showed how to get objects from a collection and how collections help organize the Excel object library. Here, I
would like to emphasize that you create new objects in Excel using the collection's Add method and that you can usually
delete objects using the individual object's Delete method.

For example, the following code creates a new chart from a selected range and adds it to the active worksheet:

 Sub AddChart()
 Dim sel
 Set sel = Selection
 If TypeName(sel) = "Range" Then
 Charts.Add
 ActiveChart.Location xlLocationAsObject, sel.Parent.name
 End If
 End Sub

Run the preceding code a number of times, and you'll wind up with numerous charts on the worksheet. To clean that
up, use this code:

 Sub RemoveChart()
 Dim chrt As ChartObject, ans As VbMsgBoxResult
 For Each chrt In ActiveSheet.ChartObjects
 chrt.Activate
 ans = MsgBox("Delete " & chrt.name & "?", vbYesNo)
 If ans = vbYes Then _
 chrt.Delete
 Next
 End Sub

OK, these two procedures are a little tricky. The AddChart actually creates the chart as a separate sheet, but then moves
it onto the active worksheet as a Chart object using the Location method. RemoveChart then uses the worksheet's ChartObjects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it onto the active worksheet as a Chart object using the Location method. RemoveChart then uses the worksheet's ChartObjects
collection to selectively delete charts from the worksheet. It would be easier to create the chart as a separate chart
sheet, then delete it as shown here:

 ' Not as much fun...
 Sub SimpleAddDelete()
 Dim chrt As Chart
 If TypeName(Selection) = "Range" Then
 Set chrt = Charts.Add
 ' Wait five seconds.
 Application.Wait Now + #12:00:05 AM#
 ' Delete the chart
 chrt.Delete
 End If
 End Sub

Notice that the Add method returns the object that was created. The line Set chrt = Charts.Add gets a reference to the new
chart, which is later used to delete the chart. But you could just as easily use that reference to set the formatting, title,
or other attributes of the chart.

Not all collections provide an Add method, however. For example, there is no Range.Add. There is, however, an Insert
method for the Columns and Rows collections:

 Sub InsertRows()
 ' Insert rows at top of sheet. Shift other rows down.
 Range("1:1").Rows.Insert True
 End Sub

 Sub InsertColumns()
 ' Insert columns at beginning of sheet. Shift columns right.
 Range("A:A").Columns.Insert True
 End Sub

In other words, Excel collections are not always consistent. This is further illustrated by the fact that the Rows and
Columns collections provide a Delete method:

 Sub DeleteRows()
 ' Insert rows at top of sheet. Shift other rows down.
 Range("1:1").Rows.Delete True
 End Sub

 Sub DeleteColumns()
 ' Insert columns at beginning of sheet. Shift columns right.
 Range("A:A").Columns.Delete True
 End Sub

4.6.3. Change Size and Position of Objects

The following objects have Left, Top, Height, and Width properties that control their size and position:

Application Axis AxisTitle

ChartArea ChartObject ChartObjects

ChartTitle DataLabel DisplayUnitLabel

Legend LegendEntry LegendKey

MS Form controls OLEObject OLEObjects

PlotArea Range Shape

ShapeRange Window

Excel measures objects in points . A point is a typographical measure equal to 1/72nd of an inch, but since the size and
resolution of monitors varies, these units aren't useful as an absolute measure. Instead, they are used to size and
position objects relative to one another.

For example, the following code resizes Excel to half of the screen height and width and centers the window onscreen:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the following code resizes Excel to half of the screen height and width and centers the window onscreen:

 Sub ResizeExcel()
 Dim maxHeight As Double, maxWidth As Double
 ' Maximize window to get the full height/width
 Application.WindowState = xlMaximized
 maxHeight = Application.Height
 maxWidth = Application.Width
 ' Set the window style back to normal.
 Application.WindowState = xlNormal
 ' Resize the application window.
 Application.Height = maxHeight / 2
 Application.Width = maxWidth / 2
 ' Reposition the application window
 Application.Top = maxHeight / 2 - Application.Height / 2
 Application.Left = maxWidth / 2 - Application.Width / 2
 End Sub

In addition, most of the preceding objects also have a Visible property that you can use to hide or show the object. The
Visible property is mainly useful for hiding worksheets or form controls. For example, the following code hides the Objects
worksheet:

 Worksheets("Objects").Visible = False

To hide columns or rows on a worksheet, use the Hidden property instead:

 Columns("C:C").Hidden = True

You can also use the Visible property to hide the Excel application, but that's a little risky since hiding Excel prevents the
user from closing the application other than by pressing Ctrl-Alt-Delete. Just to show how this works, the following code
hides Excel for five seconds:

 Sub HideExcel()
 Application.Visible = False
 Application.Wait Now + #12:00:05 AM#
 Application.Visible = True
 End Sub

4.6.4. Print Objects

These objects provide PrintOut and PrintPreview methods:

Chart
Charts
Range
Sheets
Window
Workbook
Worksheet
Worksheets

For example, the following code prints the currently selected range:

 If TypeName(Selection) = "Range" Then Selection.PrintOut

Interestingly, the UserForm object in the Microsoft Forms object library uses the PrintForm method rather than PrintOut.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7. Respond to Events in Excel
Chapter 2 discussed events in a general way and showed you how to create your own events. Excel introduced real
events to its object library in 1997, and they are one of the key improvements that allow Excel applications to be truly
interactive with users.

The most obvious events occur for the Workbook, Worksheet, and Chart objects since those objects include accompanying
classes that you can view in the Visual Basic Editor (Figure 4-20).

Figure 4-20. Finding events in the Visual Basic Editor

You can list the events for Workbook, Worksheet, or Chart objects by clicking on the object and event listboxes in the Code
window, or you can refer to Table 4-7.

Table 4-7. Events available from Excel objects
Object Event

Application NewWorkbook

 SheetActivate

 SheetBeforeDoubleClick

 SheetBeforeRightClick

 SheetCalculate

 SheetChange

 SheetDeactivate

 SheetFollowHyperlink

 SheetPivotTableUpdate

 SheetSelectionChange

 WindowActivate

 WindowDeactivate

 WindowResize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WorkbookActivate

 WorkbookAddinInstall

 WorkbookAddinUninstall

 WorkbookAfterXmlExport

 WorkbookAfterXmlImport

 WorkbookBeforeClose

 WorkbookBeforePrint

 WorkbookBeforeSave

 WorkbookBeforeXmlExport

 WorkbookBeforeXmlImport

 WorkbookDeactivate

 WorkbookNewSheet

 WorkbookOpen

 WorkbookPivotTableCloseConnection

 WorkbookPivotTableOpenConnection

 WorkbookSync

Chart Activate

 BeforeDoubleClick

 BeforeRightClick

 Calculate

 Deactivate

 DragOver

 DragPlot

 MouseDown

 MouseMove

 MouseUp

 Resize

 Select

 SeriesChange

QueryTable AfterRefresh

 BeforeRefresh

Workbook Activate

AddinInstall

 AddinUninstall

 AfterXmlExport

 AfterXmlImport

 BeforeClose

 BeforePrint

 BeforeSave

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BeforeSave

 BeforeXmlExport

 BeforeXmlImport

 Deactivate

 NewSheet

 Open

 PivotTableCloseConnection

 PivotTableOpenConnection

 SheetActivate

 SheetBeforeDoubleClick

 SheetBeforeRightClick

 SheetCalculate

 SheetChange

 SheetDeactivate

 SheetFollowHyperlink

 SheetPivotTableUpdate

 SheetSelectionChange

 Sync

 WindowActivate

 WindowDeactivate

Worksheet Activate

 BeforeDoubleClick

 BeforeRightClick

 Calculate

 Change

 Deactivate

 FollowHyperlink

 PivotTableUpdate

 SelectionChange

You'll notice that some of the same events occur for a number of objects. For example, the SheetActivate event occurs for
the Application, Workbook, Worksheet, and Chart objects (for Worksheet and Chart, it's simply called the Activate event). In this
case, the Application-level event is the most general event handler since it receives SheetActivate events from all sheets in
all open workbooks; the Workbook-level event is next, receiving SheetActivate events only from sheets in the open
workbook; and the Worksheet- or Chart-level events are the most specific, receiving the Activate event only from that
specific Worksheet or Chart object.

Events occur at the most specific level first; then move up to more general levels. So, if the SheetActivate event is handled
at all three levels, the Worksheet-level event procedure runs first, then the Workbook-level event procedure, and finally the
Application-level procedure.

The object and event lists are built in to the Code window for Workbook and Worksheet objects (Figure 4-20), but how do
you use events for other objects, like Application? To do so:

1. Declare a variable for the object using the WithEvents keyword.

2. Initialize that object in code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Initialize that object in code.

3. Visual Basic adds the object variable to the Code window's object and event lists, which you can then use to add
event procedures.

For example, the following code from the Workbook class creates an object variable m_app for the Application object,
initializes that object in the Workbook_Activate event, then uses an Application-level event:

 Dim WithEvents m_app As Application ' (1)

 Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 ' Initialize the object variable if it was not already.
 If m_app Is Nothing Then _
 Set m_app = Application ' (2)
 ' Indicate the Workbook-level event occurred.
 MsgBox "Workbook-level event"
 End Sub

 Private Sub m_app_SheetActivate(ByVal Sh As Object) ' (3)
 ' Indicate the Application-level event occurred.
 MsgBox "App-level event"
 End Sub

The initialization step (previous) occurs in a Workbook event so that it happens automatically. I could have placed it in the
Workbook_Open event, but that would have required me to close and reopen the workbook to see the code work. It's
easier to place the initialization step in an event that happens more frequently (such as SheetActivate) and test if the
variable has already been initialized with the If m_app Is Nothing conditional statement.

Another interesting aspect of Excel events are the Before events, like BeforeRightClick. It would be pretty neat if Excel really
did know what the user was about to do, but that's not quite how it works. Instead, the Before events are simply
processed after the user action, but before Excel does anything with them. That lets you intercept and (optionally)
cancel Excel's default action for those events. To see how this works, add the following code to the ThisWorkbook class:

 Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)
 Dim ans As VbMsgBoxResult
 ans = MsgBox("Excel is about to process right-click, proceed?", vbYesNo)
 ' If no, then cancel the action.
 If ans = vbNo Then Cancel = True
 End Sub

Now, when you right-click on a sheet, you'll see a message asking if the action should be processed. If you select Yes,
Excel displays the sheet's pop-up menu (that's the default action for a right-click). If you select no, the menu is not
displayed.

That's a simple example that doesn't do much, but Before events are really pretty handyfor example, you can require
that a user saves a workbook as shown by the following code:

 Private Sub Workbook_BeforeClose(Cancel As Boolean)
 ' Require the user to save.
 If Not ThisWorkbook.Saved Then
 MsgBox "You must save this workbook before closing."
 Cancel = True
 End If
 End Sub

Try it!

Finally, you can turn Excel's event processing off and on using the Application object's EnableEvents property. Setting
EnableEvents to False tells Excel to ignore any event procedures you've written in Visual Basicthe events still occur in Excel
(so choosing File Save saves the file, for instance) but none of your event procedures are run.

EnableEvents affects only Excel events, so controls from the Microsoft Forms object library will still respond to events. You
can see this by adding a checkbox to a worksheet and then writing the following code:

 Private Sub chkEvents_Click()
 ' Turn off Excel events if checkbox cleared.
 Application.EnableEvents = chkEvents.Value
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.8. The Global Object
As mentioned earlier in this chapter, Excel provides shortcuts into its object hierarchy through properties like ActiveCell
and the Sheets collection. Those shortcuts are actually members of the Global object, which is a sort of default object that
Excel uses if you omit an object name. This allows you to write code like:

 ActiveCell = 42

rather than:

 Application.ActiveCell = 42

The Global object includes many of the same members as the Application object, as shown in this list:

ActiveCell ActiveChart ActiveDialog

ActiveMenuBar ActivePrinter ActiveSheet

ActiveWindow ActiveWorkbook AddIns

Application Assistant Calculate

Cells Charts Columns

CommandBars Creator DDEAppReturnCode

DDEExecute DDEInitiate DDEPoke

DDERequest DDETerminate DialogSheets

Equals Evaluate Excel4IntlMacroSheets

Excel4MacroSheets ExecuteExcel4Macro Intersect

MenuBars Modules Names

Parent Range Rows

Run Selection SendKeys

Sheets ShortcutMenus ThisWorkbook

Toolbars Union Windows

Workbooks WorksheetFunction Worksheets

Many of these members return objects or collections, so they look like absolute references. In reality, they are all
members of the Global object (even Application is a property of the Global object). In short, the Global object is the
granddaddy of all the Excel objects.

You don't have to understand the Global object to use Excel's object library, but knowing something about it helps
explain why the same objects turn up at various levels in the Excel object hierarchy. It also helps to explain how the
Excel team implemented their objects, which is useful for advanced tasks, such as using the Excel object library from
other programming languages, like Visual Basic .NET and C#.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.9. The WorksheetFunction Object
Another useful top-level object to know about is the WorksheetFunction object. That object provides the functions from the
Excel formula bar to your Visual Basic code. Some of these members are redundant with those provided by the VBA
object library, however, others provide very useful (and advanced) analytical and statistical functions, as described in
Table 4-8.

Table 4-8. Members of the WorksheetFunction object
Member Description

Acos Returns the arccosine, or inverse cosine, of a number. The arccosine is the angle whose cosine is a
number. The returned angle is given in radians in the range 0 to p.

Acosh Returns the inverse hyperbolic cosine of a number.

And The same as the Visual Basic And operator.

Asc Converts double-byte characters to single-byte characters.

Asin Returns the arcsine, or inverse sine, of a number. The arcsine is the angle whose sine is the given
number. The returned angle is given in radians in the range -p/2 to p/2.

Asinh Returns the inverse hyperbolic sine of a number.

Atan2 Returns the arctangent, or inverse tangent, of the specified x- and y-coordinates.

Atanh Returns the inverse hyperbolic tangent of a number.

AveDev Returns the average of the absolute deviations of data points from their mean. AveDev is a measure of the
variability in a data set.

Average Returns the average (arithmetic mean) of the arguments.

BetaDist Returns the beta cumulative distribution function.

BetaInv Returns the inverse of the cumulative distribution function for a specified beta distribution.

BinomDist Returns the individual term binomial distribution probability.

Ceiling Returns a number rounded up, away from 0, to the nearest multiple of significance.

ChiDist Returns the one-tailed probability of the chi-squared distribution.

ChiInv Returns the inverse of the one-tailed probability of the chi-squared distribution.

ChiTest Returns the test for independence. Determines whether hypothesized results are verified by an
experiment.

Choose Uses an index to return a value from the list of value arguments.

Clean Removes all nonprintable characters from text.

Combin Returns the number of combinations for a given number of items.

Confidence Returns a value that you can use to construct a confidence interval for a population mean.

Correl Returns the correlation coefficient of two cell ranges.

Cosh Returns the hyperbolic cosine of a number.

Count Counts the number of cells that contain numbers and also numbers within the list of arguments.

CountA Counts the number of cells that are not empty and the values within the list of arguments.

CountBlank Counts empty cells in a specified range of cells.

CountIf Counts the number of cells within a range that meet the given criteria.

Covar Returns covariance, the average of the products of deviations for each data point pair.

CritBinom Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a
criterion value.

DAverage Averages the values in a column of a list or database that match conditions you specify.

Days360 Returns the number of days between two dates based on a 360-day year (12 30-day months), which is
used in some accounting calculations.

Db Returns the depreciation of an asset for a specified period using the fixed-declining-balance method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DCount Counts the cells that contain numbers in a column of a list or database that match conditions you specify.

DCountA Counts the nonblank cells in a column of a list or database that match specified conditions.

Ddb Returns the depreciation of an asset for a specified period using the double-declining-balance method or
some other method you specify.

Degrees Converts radians into degrees.

DevSq Returns the sum of squares of deviations of data points from their sample mean.

DGet Extracts a single value from a column of a list or database that matches specified conditions.

DMax Returns the largest number in a column of a list or database that matches specified conditions.

DMin Returns the smallest number in a column of a list or database that matches specified conditions.

Dollar Formats a number as currency using the local currency symbol.

DProduct Multiplies the values in a column of a list or database that match conditions you specify.

DStDev Estimates the standard deviation of a population based on a sample by using the numbers in a column of
a list or database that match specified conditions.

DStDevP Calculates the standard deviation of a population based on the entire population, using the numbers in a
column of a list or database that match specified conditions.

DSum Adds the numbers in a column of a list or database that match specified conditions.

DVar Estimates the variance of a population based on a sample by using the numbers in a column of a list or
database that match conditions you specify.

DVarP Calculates the variance of a population based on the entire population by using the numbers in a column
of a list or database that match specified conditions.

Even Returns a number rounded up to the nearest even integer.

ExponDist Returns the exponential distribution.

Fact Returns the factorial of a number.

FDist Returns the F probability distribution.

Find Finds the location of one string within another (similar to Instr).

FindB Finds the location of one double-byte string within another (similar to Instr).

FInv Returns the inverse of the F probability distribution.

Fisher Returns the Fisher transformation at x. This transformation produces a function that is normally
distributed rather than skewed.

FisherInv Returns the inverse of the Fisher transformation. Use this transformation when analyzing correlations
between ranges or arrays of data.

Fixed Rounds a number to the specified number of decimals, formats the number in decimal format using a
period and commas, and returns the result as text.

Floor Rounds a number down, toward 0, to the nearest multiple of significance.

Forecast Calculates, or predicts, a future value by using existing values.

Frequency Calculates how often values occur within a range of values and then returns a vertical array of numbers.

FTest Returns the result of an F-test. An F-test returns the one-tailed probability that the variances in array1 and
array2 are not significantly different.

Fv Returns the future value of an investment based on periodic, constant payments and a constant interest
rate.

GammaDist Returns the gamma distribution. You can use this function to study variables that may have a skewed
distribution. The gamma distribution is commonly used in queuing analysis.

GammaInv Returns the inverse of the gamma cumulative distribution.

GammaLn Returns the natural logarithm of the gamma function (x).

GeoMean Returns the geometric mean of an array or range of positive data. For example, you can use GeoMean to
calculate average growth rate given compound interest with variable rates.

Growth Calculates predicted exponential growth by using existing data.

HarMean Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the arithmetic mean of
reciprocals.

HLookup Searches for a value in the top row of a table or an array of values and then returns a value in the same
column from a row you specify in the table or array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column from a row you specify in the table or array.

HypGeomDist Returns the hypergeometric distribution. Hypergeometric distribution is the probability of a given number
of sample successes, given the sample size, population successes, and population size.

Intercept
Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. The
intercept point is based on a best-fit regression line plotted through the known x-values and known y-
values.

Ipmt Returns the interest payment for a given period for an investment based on periodic, constant payments
and a constant interest rate.

Irr Returns the internal rate of return for a series of cash flows represented by the numbers in values.

IsErr Returns True if a cell contains an error other than #N/A.

IsError Returns True if a cell contains an error.

IsLogical Returns True if a cell contains a Boolean value.

IsNA Returns True if a cell contains the #N/A error value.

IsNonText Returns True if a cell does not contain text.

IsNumber Returns True if a cell contains a numeric value.

Ispmt Calculates the interest paid during a specific period of an investment.

IsText Returns True if a cell contains a string.

Kurt Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness or flatness of a
distribution compared with the normal distribution.

Large Returns the kth largest value in a data set. You can use this function to select a value based on its
relative standing.

LinEst Calculates the statistics for a line by using the least-squares method to calculate a straight line that best
fits your data, and returns an array that describes the line.

Ln Returns the natural logarithm of a number.

Log Returns the logarithm of a number to the specified base.

Log10 Returns the base-10 logarithm of a number.

LogEst Calculates an exponential curve that fits your data and returns an array of values that describes the
curve. Returns an array of values.

LogInv Returns the inverse of the lognormal cumulative distribution function of x, where ln(x) is normally
distributed with parameters mean and standard_dev.

LogNormDist Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed with parameters
mean and standard_dev.

Lookup Finds a value in an array and returns that value. For two-dimensional arrays, it is better to use HLookup or
VLookup.

Match Returns the relative position of an item in an array that matches a specified value in a specified order.

Max Returns the largest value in a set of values.

MDeterm Returns the matrix determinant of an array.

Median Returns the median of the given numbers.

Min Returns the smallest number in a set of values.

MInverse Returns the inverse matrix for the matrix stored in an array.

MIrr Returns the modified internal rate of return for a series of periodic cash flows.

MMult Returns the matrix product of two arrays. The result is an array with the same number of rows as array1
and the same number of columns as array2.

Mode Returns the most frequently occurring, or repetitive, value in an array or range of data.

NegBinomDist Returns the negative binomial distribution. NegBinomDist returns the probability that there will be number_f
failures before the number_sth success, when the constant probability of a success is probability_s.

NormDist Returns the normal distribution for the specified mean and standard deviation. This function has a wide
range of applications in statistics, including hypothesis testing.

NormInv Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.

NormSDist Returns the standard normal cumulative distribution function. The distribution has a mean of 0 and a
standard deviation of 1. Use this function in place of a table of standard normal curve areas.

NormSInv Returns the inverse of the standard normal cumulative distribution. The distribution has a mean of 0 and
a standard deviation of 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NormSInv a standard deviation of 1.

NPer Returns the number of periods for an investment based on periodic, constant payments and a constant
interest rate.

Npv Calculates the net present value of an investment by using a discount rate and a series of future
payments (negative values) and income (positive values).

Odd Returns a number rounded up to the nearest odd integer.

Or The same as the Visual Basic Or operator.

Parent Returns the parent object for the specified object.

Pearson Returns the Pearson product moment correlation coefficient, r, a dimensionless index that ranges from -
1.0 to 1.0 inclusive and reflects the extent of a linear relationship between two data sets.

Percentile Returns the kth percentile of values in a range. You can use this function to establish a threshold of
acceptance. For example, you can decide to examine candidates who score above the 90th percentile.

PercentRank Returns the rank of a value in a data set as a percentage of the data set.

Permut Returns the number of permutations for a given number of objects that can be selected from number
objects. A permutation is any set or subset of objects or events in which internal order is significant.

Phonetic Extracts the phonetic (furigana) characters from a text string.

Pi Returns the number 3.14159265358979, the mathematical constant p, accurate to 15 digits.

Pmt Calculates the payment for a loan based on constant payments and a constant interest rate.

Poisson Returns the Poisson distribution. A common application of the Poisson distribution is predicting the
number of events over a specific time, such as the number of cars arriving at a toll plaza in one minute.

Power Returns the result of a number raised to a power.

Ppmt Returns the payment on the principal for a given period for an investment based on periodic, constant
payments and a constant interest rate.

Prob Returns the probability that values in a range are between two limits. If upper_limit is not supplied, returns
the probability that values in x_range are equal to lower_limit.

Product Multiplies all the numbers given as arguments and returns the product.

Proper Capitalizes the first letter in a text string and any other letters in text that follow any character other than
a letter. Converts all other letters to lowercase letters.

Pv
Returns the present value of an investment. The present value is the total amount that a series of future
payments is worth now. For example, when you borrow money, the loan amount is the present value to
the lender.

Quartile Returns the quartile of a data set. Quartiles often are used in sales and survey data to divide populations
into groups.

Radians Converts degrees to radians.

Rank Returns the rank of a number in a list of numbers. If you sort a list, the rank of the number is its position
in the list.

Rate Returns the interest rate per period of an annuity.

Replace Replaces part of one string with another.

ReplaceB Replaces part of one double-byte string with another.

Rept Repeats text a given number of times.

Roman Formats an Arabic numeral as a Roman numeral.

Round Rounds a number to a specified number of digits.

RoundDown Rounds a number down, toward 0.

RoundUp Rounds a number up, away from 0.

RSq Returns the square of the Pearson product moment correlation coefficient through data points in known_y's
and known_x's.

RTD Retrieves real-time data from a program that supports automation.

Search Finds the location of one string within another (similar to Instr).

SearchB Finds the location of one double-byte string within another (similar to Instr).

Sinh Returns the hyperbolic sine of a number.

Skew Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry of a distribution
around its mean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Skew around its mean.

Sln Returns the straight-line depreciation of an asset for one period.

Slope
Returns the slope of the linear regression line through data points in known_y's and known_x's. The slope is
the vertical distance divided by the horizontal distance between any two points on the line, which is the
rate of change along the regression line.

Small Returns the kth smallest value in a data set. Use this function to return values with a particular relative
standing in a data set.

Standardize Returns a normalized value from a distribution characterized by mean and standard deviation.

StDev Estimates standard deviation based on a sample. The standard deviation is a measure of how widely
values are dispersed from the average value (the mean).

StDevP Calculates standard deviation based on the entire population given as arguments. The standard deviation
is a measure of how widely values are dispersed from the average value (the mean).

StEyx Returns the standard error of the predicted y-value for each x in the regression. The standard error is a
measure of the amount of error in the prediction of y for an individual x.

Substitute Substitutes new_text for old_text in a text string.

Subtotal Returns a subtotal in a list or database.

Sum Adds all the numbers in a range of cells.

SumIf Adds cells that meet specified criteria.

SumProduct Multiplies corresponding components in the given arrays and returns the sum of those products.

SumSq Returns the sum of the squares of the arguments.

SumX2MY2 Returns the sum of the difference of squares of corresponding values in two arrays.

SumX2PY2 Returns the sum of the sum of squares of corresponding values in two arrays. The sum of the sum of
squares is a common term in many statistical calculations.

SumXMY2 Returns the sum of squares of differences of corresponding values in two arrays.

Syd Returns the sum-of-years digits depreciation of an asset for a specified period.

Tanh Returns the hyperbolic tangent of a number.

tdist
Returns the percentage points (probability) for the student t-distribution where a numeric value (x) is a
calculated value of t for which the percentage points are to be computed. The t-distribution is used in the
hypothesis testing of small sample data sets.

Text Converts a value to text in a specific number format.

TInv Returns the t-value of the student t-distribution as a function of the probability and the degrees of
freedom.

transpose Returns a vertical range of cells as a horizontal range or vice versa.

TRend Returns values along a linear trend. Fits a straight line (using the method of least squares) to the arrays
known_y's and known_x's. Returns the y-values along that line for the array of new_x's that you specify.

trim Removes all spaces from text except for single spaces between words.

trimMean
Returns the mean of the interior of a data set. trimMean calculates the mean taken by excluding a
percentage of data points from the top and bottom tails of a data set. You can use this function when you
wish to exclude outlying data from your analysis.

TTest Returns the probability associated with a student t-test. Use TTest to determine whether two samples are
likely to have come from the same two underlying populations that have the same mean.

USDollar Formats a number as U.S. currency.

Var Estimates variance based on a sample.

VarP Calculates variance based on the entire population.

Vdb
Returns the depreciation of an asset for any period you specify, including partial periods, using the
double-declining-balance method or some other method you specify. VDB stands for variable declining
balance.

VLookup Searches for a value in the leftmost column of a table and then returns a value in the same row from a
column you specify in the table.

Weekday Returns the day of the week corresponding to a date. The day is given as an integer, ranging from 1
(Sunday) to 7 (Saturday), by default.

Weibull Returns the Weibull distribution. Use this distribution in reliability analysis, such as calculating a device's
mean time to failure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ZTest Returns the one-tailed probability-value of a z-test. For a given hypothesized population mean, that is,
the observed sample mean.

There is no Help for members in Table 4-8 from Visual Basic, but you can look up these functions in the Excel Help file
as shown in Figure 4-21.

Figure 4-21. Use Excel Help to find information on the WorksheetFunction
members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.10. What You've Learned
By now you should have a pretty good grasp on how to get around in the Excel object library, find the object you need
for a task, and do some simple things like switch focus to an object, get its value or name, and so on. You should also
understand how to respond to events that occur in Excel so that your code runs automatically in response to user
actions.

The Excel object library is extremely large and complex, however, so don't worry if you're a little confused about which
object to use for a specific taskthat's really what the later chapters are about.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Creating Your Own Objects
Chapter 4 showed you how to use Excel's objects; now you get to create your own. This chapter shows you how to
define custom classes and instantiate objects from those classes to create in-memory representations of visual or
functional elements.

In the process, I try to explain why you'd use classes and how you perform specific tasks that are unique to object-
oriented programming. You'll also learn how to send mail from Excel, which is kind of handy.

Code used in this chapter and additional samples are available in ch05.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1. Modules Versus Classes
The main difference between the modules and classes is how you use them:

Code contained in modules can be used from formulas entered in cells.

Code stored in a class can respond to events that occur in Excel.

That distinction determines where you put your codewhether you create it in a module or a class. In general, put your
code in a module if it performs a general-purpose task that you plan on reusing many different places. Put your code in
a class if it responds to events or represents a visual component.

Those are just guidelines. The following two sections illustrate the differences more fully.

5.1.1. Modules

For example, to create a module containing new mathematical functions, you can use in-cell formulas:

1. In Excel, open a workbook and choose Tools Macro Visual Basic Editor to start programming.

2. In the Visual Basic Editor, choose Insert Module. Visual Basic adds a new module to the Project window
and displays the new, empty module in an Edit window.

3. Select Name in the module's Properties window and type Math to rename the module.

4. Add the following code by typing in the module's Edit window:

 ' Math module.
 Public Function Inverse(x As Double) As Double
 If x = 0 Then Inverse = 0 Else Inverse = 1 / x
 End Function

 Public Function CubeRoot(x As Double) As Double
 If x < 0 Then CubeRoot = 0 Else CubeRoot = x ^ (1 / 3)
 End Function

To use these new functions from Excel, include them in a formula as shown in Figure 5-1.

Figure 5-1. Use modules to create user-defined functions

To use these functions from Visual Basic, include them in an expression as shown here:

 Sub TestMathFunctions()
 Dim result As Double, value As Double, str As String
 value = 42
 result = Inverse(value)
 str = "The inverse of " & value & " is " & result
 result = CubeRoot(value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 result = CubeRoot(value)
 str = str & " and the cube root is " & result
 MsgBox str, , "Test Math Functions"
 End Sub

Here, result = Inverse(value) calculates the inverse and assigns that number to result. Alternately, I could write that as
Math.Inverse(value); including the module name is optional and it's a good idea if it makes the code clearer or if you reuse
the procedure name in another project.

5.1.2. Classes

Excel provides built-in classes for each workbook and sheet. You can add code directly to those classes to respond to
events on those objects as described in Chapter 4. You can also create your own custom classes that you can use
elsewhere in code.

Custom classes need to be instantiated as objects before they can be used. This allows you to create multiple instances
of the code, each running at the same time and acting independently of one another.

To create a new class:

1. In Excel, open a workbook and choose Tools Macro Visual Basic Editor to start programming.

2. In the Visual Basic Editor, choose Insert Class Module. Visual Basic adds a new class to the Project window
and displays the new, empty class in an Edit window.

3. Select Name in the class's Properties window and type String to rename the class.

4. Add the following code by typing in the class's Edit window:

 ' Message class
 Public Value As String
 Public Title As String

 Public Sub Show()
 MsgBox value, , title
 End Sub

You can't run this class just by pressing F5; instead, you must first create an instance of the class from a module, then
use the class in some way as shown here:

 ' TestMessage module
 Sub TestMessageClass()
 Dim msg1 As New Message, msg2 As New Message
 msg1.Title = "Msg1 Object"
 msg1.Value = "This message brought to you by Msg1."
 msg2.Title = "Msg2 Object"
 msg2.Value = "This message brought to you by Msg2."
 msg1.Show
 msg2.Show
 End Sub

The preceding code creates two objects from the Message class, msg1 and msg2, to demonstrate that each has different
value and title settings. This independence is sometimes called encapsulation , because outside forces can't change the
object without having a direct reference to it. That allows objects to represent a visual element, such as a worksheet or
a message box, and respond to events on that particular object as illustrated in Figure 5-2.

Figure 5-2. Using classes to create multiple objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can't do that with modules! You can have only one, fixed instance of any given module, and variables within that
module aren't encapsulated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2. Add Methods
Methods are Sub or Function procedures within a class. You use methods to define actions within a class, such as
calculating a result. For example, the following addition to the Message class sends the message via email:

 ' Send method: sends the message via email.
 Public Sub Send(ToAddress As String)
 Dim msgToSend As String, result As Double
 msgToSend = "mailto:" & ToAddress
 msgToSend = msgToSend & "?SUBJECT=" & Title
 msgToSend = msgToSend & "&BODY=" & Value
 ThisWorkbook.FollowHyperlink msgToSend, , True
 End Sub

To use this method from code, create an object and call Send with the email address of the recipient:

 ' TestMessage module
 Sub TestMessageSend()
 Dim msg1 As New Message
 msg1.Title = "Message to Send"
 msg1.Value = "This message brought to you by Excel."
 msg1.Send ("ExcelDemo@hotmail.com")
 End Sub

If you run TestMessageSend, Excel creates a new mail message using your email client, as illustrated in Figure 5-3.

Figure 5-3. Sending mail from Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3. Create Properties
Properties are values stored by a class. Simple properties , often called fields, may just be public variables within the
class, as shown by the Title and Value properties of the Message class earlier. More complex properties are created using
Property procedures.

Why would a property need to be complex? Several possible reasons:

Most often, properties are complex if they represent a value that is calculated in some way, such as the count
of a list of items.

In other cases, a property may represent information that can be read, but not changed. These are called read-
only properties.

Less often, a property may represent information that can be set only once, but never changed. These are
called write-once properties.

Finally, a property may represent a value that can be set but never read. You almost never need to do that, but
if you do, you'd call it a write-only property.

Let's continue on with the Message class example a bit to create two new properties that extend its email capabilities.
The Recipients property that follows is another simple property that accepts a list of email addresses to send the message
to:

 ' Message class
 Public Recipients As String

To use this property from the Send method, we make these changes shown in bold:

 Public Sub Send(Optional ToAddress As String)
 Dim msgToSend As String, result As Double
 If (ToAddress = "") Then ToAddress = Recipients
 msgToSend = "mailto:" & ToAddress
 msgToSend = msgToSend & "?SUBJECT=" & Title
 msgToSend = msgToSend & "&BODY=" & Value
 ThisWorkbook.FollowHyperlink msgToSend, , True
 End Sub

Now, you can add Recipients as a list of email addresses separated by semicolons, just as they would be in a regular
email message. Send no longer requires a ToAddress; if omitted, it uses the Recipients property. For example, this code
sends a message to two recipients:

 ' TestMessage module
 Sub TestMessageRecipients1()
 Dim msg1 As New Message
 msg1.Title = "Message to Send"
 msg1.Recipients = "ExcelDemo@hotmail.com;BeigeBond@hotmail.com"
 msg1.value = "This message brought to you by Excel."
 msg1.Send
 End Sub

That was a pretty easy, but what if the addresses come from a range of cells? It would be nice if the class were smart
enough to convert those settings. To do that, you need to add Property procedures that convert values from a range of
cells into a string of email addresses. You'd want Recipients to accept string values as well, so you need to create three
different types of Property procedures: a Set procedure to accept the range setting, a Let procedure to accept a string
setting, and a Get procedure to return the setting as a string. The following sample shows those additions to the Message
class:

 ' Message class
 Private m_Recipients As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private m_Recipients As String

 ' Accept Range settings.
 Property Set Recipients(value As Range)
 Dim cel As Range
 m_Recipients = ""
 For Each cel In value
 m_Recipients = m_Recipients & cel.value & ";"
 Next
 End Property

 ' Accept String settings as well.
 Property Let Recipients(value As String)
 ' Set the internal variable.
 m_Recipients = value
 ' Exit if ""
 If value = "" Then Exit Property
 ' Make sure last character is ;
 If Mid(value, Len(value) - 1, 1) = ";" Then
 m_Recipients = value
 Else
 m_Recipients = value & ";"
 End If
 End Property

 ' Return the internal string variable.
 Property Get Recipients() As String
 Recipients = m_Recipients
 End Property

Notice that I used a private variable, m_Recipients, to store the property setting within the class. That's a common
practice with Property proceduresthe Set, Let, and Get procedures control access to that internal variable. In programming
circles, those procedures are called accessor functions ; often, you use accessors to validate a setting. For example, you
might want to check whether email addresses are valid before allowing the property to be set.

To test the new Recipients property, enter some email addresses in A1:A3 and run the following code:

 ' TestMessage module
 Sub TestMessageRecipients2()
 Dim msg1 As New Message
 msg1.Title = "Message to Send"
 msg1.value = "Some message text."
 ' Set the property as a range.
 Set msg1.Recipients = [a1:a3]
 ' Show the addresses (gets property as string).
 MsgBox "About to send to: " & msg1.Recipients
 ' Create message.
 msg1.Send
 End Sub

5.3.1. Read-Only Properties

Recipients is a read/write property. To create a read-only property, omit the Let and Set procedures. For example, the
following code creates a RecipientCount property that returns the number of people set to receive a message:

 ' Read-only property to get the number of recipients.
 Property Get RecipientCount() As Integer
 Dim value As Integer
 If m_Recipients <> "" Then
 value = UBound(Me.AddressArray)
 Else
 value = 0
 End If
 RecipientCount = value
 End Property

 ' Read-only property to get an array of recipients.
 Property Get AddressArray() As String()
 Dim value() As String
 If m_Recipients <> "" Then
 ' This is why m_Recipients must end with ;
 value = VBA.Split(m_Recipients, ";")
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 AddressArray = value
 End Property

OK, I got a little tricky there and created two read-only properties. RecipientCount uses AddressArray to convert the string of
recipients into an array, and then it counts the number of items in the array. There are other ways to get the count, but
this way demonstrates using Me to call a property from within the class itself. Besides, AddressArray might come in handy
later on...

5.3.2. Write-Once/Write-Only Properties

These types of properties are rarely needed and I thought about omitting them, but in the interest of being thorough, I
decided to include some discussion here. It's easy to create a write-only propertyjust omit the Get procedurebut it's hard
to even think of a situation in which that's useful to anyone...maybe setting a password or something:

 Private m_Password As String

 ' Write-only property, rarely used.
 Property Let Password(value As String)
 m_Password = value
 End Property

Because there is only a Let procedure and m_Password is Private, users can set the Password property but they can't get it.
That might also be useful for database connection strings that can include username and password information that you
should keep secure.

Write-once properties are somewhat more useful because they can represent information used to initialize an object.
Once they are initialized, you usually don't want those settings to change, so a write-once property makes sense.

Write-once properties check to see if they have been previously set, and if they have, they raise an error:

 Private m_Connection As String

 ' Write-once property, use to initialize object settings.
 Property Let ConnectionString(value As String)
 If m_Connection <> "" Then
 Err.Raise 2001, "ConnectionString", "Property already set"
 Else
 m_Connection = value
 End If
 End Property

In this case, ConnectionString is both write-once and write-only since I don't want others to see the setting once it is
established. If the connection needs to change, the only way to do it is to create a new object with a new ConnectionString.

Anything you can do with write-only properties can be done equally well using methods.
Defining Password or ConnectionString as Sub procedures, rather than as Property Let procedures,
results in equivalent code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4. Define Enumerations
Enumerations are a handy way to publish the possible settings for a property. For example, the following addition to the
Message class allows users to set the icon that appears on the message when it is shown:

 Public Icon As IconType

 Enum IconType
 None
 Critical = VbMsgBoxStyle.vbCritical
 Warning = VbMsgBoxStyle.vbExclamation
 Question = VbMsgBoxStyle.vbQuestion
 Information = VbMsgBoxStyle.vbInformation
 End Enum

 ' Show method: displays the message.
 Public Sub Show()
 MsgBox value, Me.Icon, Title
 End Sub

I added Me.Icon to the Show method to display the appropriate icon in the MsgBox. The point of using an enumeration is
that the available settings are now automatically listed when you set the property, as shown in Figure 5-4.

You can use enumerations within methods as well. For example, the following changes allow the Show method to accept
an icon setting:

 Public Sub Show(Optional icon As IconType = -1)
 If (icon = -1) Then icon = Me.icon
 MsgBox value, icon, Title
 End Sub

In the preceding code, I made icon an optional argument with a default setting outside of the possible IconType values so
I can tell whether or not the argument was set. If icon is omitted, I use the setting from the Icon property instead. In this
case, the icon argument overrides the Icon property.

When you use Show, Visual Basic displays the possible settings for the icon argument, as shown in Figure 5-5.

Figure 5-4. Use enumerations to publish available settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-5. Enumerations are handy in methods as well

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5. Raise Events
I mentioned earlier that, unlike modules, classes can include events . Classes define events using an Event statement
and then raise those events using RaiseEvent. For example, the following additions (in bold) create an event that occurs
whenever a message is shown or sent using the Message class:

 ' Message class
 Public Event OnShow(arg As MessageType)

 ' Show method: displays the message.
 Public Sub Show(Optional icon As IconType = -1)
 If (icon = -1) Then icon = Me.icon
 MsgBox value, icon, Title
 RaiseEvent OnShow(MessageType.MessageBox)
 End Sub

 ' Send method: sends the message via email.
 Public Sub Send(Optional ToAddress As String)
 Dim msgToSend As String, result As Double
 If ToAddress = "" Then ToAddress = m_Recipients
 msgToSend = "mailto:" & ToAddress
 msgToSend = msgToSend & "?SUBJECT=" & Title
 msgToSend = msgToSend & " &BODY=" & value
 ThisWorkbook.FollowHyperlink msgToSend, , True
 RaiseEvent OnShow(Email)
 End Sub

Responding to the OnShow event from within code that uses the Message class requires a few steps:

1. Write your code in a classyou can't intercept events from a module. For example, write your code in a Sheet
object within Visual Basic.

2. Declare the object at the class level using WithEvents.

3. Initialize that object by creating an instance of the class.

4. Create an event procedure to respond to the event.

The following sample illustrates the steps to using the OnShow event from a Sheet object:

1. Create code in Sheet object.

2. Declare Message object using WithEvents:

 Dim WithEvents msg As Message

This code runs when the user double-clicks a certain range on the sheet:

 Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
 Select Case Target.address
 Case [ShowPreview].address
 CreateMsg
 msg.Show (Information)
 Case [SendMail].address
 CreateMsg
 msg.Send
 Case Else
 ' Do nothing
 End Select
 End Sub

3. Initialize the Message class:

 Sub CreateMsg()
 Set msg = New Message
 msg.Title = "Values from Class worksheet"
 Set msg.Recipients = [Addresses]
 msg.value = RangeToString([SendRange])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 msg.value = RangeToString([SendRange])
 End Sub

 Function RangeToString(rng As Range) As String
 Dim cel As Range, result As String
 For Each cel In rng
 result = result & cel.value & ", "
 Next
 RangeToString = result
 End Function

4. Respond to the event:

 Private Sub msg_OnShow(arg As MessageType)
 Select Case arg
 Case MessageType.Email
 Application.StatusBar = "Sending message..."
 Case MessageType.MessageBox
 Application.StatusBar = "Preview complete."
 End Select
 End Sub

When you declare an object WithEvents at the class level, Visual Basic adds the events for that object to the object list as
shown in Figure 5-6.

Figure 5-6. WithEvents adds events to the event list

The object is declared at the class level, but it must be initialized within a procedure. In the preceding example, that
occurs in CreateObject, which is called by the Sheet object's Worksheet_BeforeDoubleClick event. If you are working within the
ThisWorkbook object, you should initialize your objects in the Workbook_Open event so that the objects are created once at
start-up. Unfortunately, the Sheet object doesn't have an equivalent event.

If you run the preceding example, you'll notice that the OnShow event occurs after the Message class displays a message
box, but before the email message is displayed. There's a good reason for that: the message box runs within the Excel
application, whereas the email message is displayed by your email application (e.g., Outlook). When working within
Excel, Visual Basic waits for statements to complete before it continues. When working outside of Excel, it doesn't wait.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.6. Collect Objects
Earlier I included a small procedure that converts values from a Range to a String:

 Function RangeToString(rng As Range) As String
 Dim cel As Range, result As String
 For Each cel In rng
 result = result & cel.value & ", "
 Next
 RangeToString = result
 End Function

The For Each loop in that code works because Range is a collection. A collection is a special type of object that includes a
way to enumerate items contained by the object. Excel uses collections to organize its objects into a hierarchy, which is
sometimes called the Excel object model . Figure 5-7 shows how collections are used to organize part of the Excel
object model.

Figure 5-7. Excel uses collections to create an object hierarchy

You can create the same sort of hierarchy among your own objects by defining collections. To create a collection:

1. Create a new class that provides at least one method that returns a Collection object.

2. Provide a method in the class that allows others to add items to that collection.

3. Optionally, provide methods to remove and count items in the collection.

Most collections provide the following methods: Items, Item, Add, Remove, and Count. It's a good idea to follow that
convention unless there's a specific reason not to enable one of those tasks. The following code shows the Messages
collection, which, as the name suggests, provides a collection of Message objects:

 ' Messages class.
 ' Internal variable to contain the collection.
 Private m_col As Collection

 ' Standard members provided by most collections:
 ' Items, Item, Add, Remove, Count.
 Public Function Items() As Collection
 Set Items = m_col
 End Function

 Public Function Item(index) As Message
 Set Item = m_col(index)
 End Function

 Public Sub Add(msg As Message)
 ' Initialize the collection on first Add.
 If m_col Is Nothing Then _
 Set m_col = New Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set m_col = New Collection
 m_col.Add msg
 End Sub

 Public Sub Remove(index)
 m_col.Remove index
 End Sub

You can use the preceding code as a template for any collection you need to create. Just change the data types of the
Item method and the msg argument in the Add method to match the class of your collected object.

To use this collection in code, create new Message objects and add them to the collection. The following code shows a
simple demo of the Messages collection. The first procedure creates three new Message objects and adds them to the
collection. The second procedure displays each of the Messages from the collection:

 ' TestMessage module
 Dim m_Messages As Messages

 Sub TestInitializeCollection()
 ' Intialize the Messages collection.
 Set colMessages = New Messages
 ' Create some messages
 Dim msg1 As New Message
 msg1.Title = "Msg1"
 msg1.Value = "From collection."
 msg1.icon = Information
 m_Messages.Add msg1
 Dim msg2 As New Message
 msg2.Title = "Msg2"
 msg2.Value = "From collection."
 msg2.icon = Warning
 m_Messages.Add msg2
 Dim msg3 As New Message
 msg3.Title = "Msg3"
 msg3.Value = "From collection."
 msg3.icon = Critical
 m_Messages.Add msg3
 End Sub

 Sub TestCollection()
 Dim msg As Message
 For Each msg In m_Messages.Items
 msg.Show
 Next
 End Sub

In the real world, you would probably initialize the collection in the ThisWorkbook class's Workbook_Open event procedure so
that the collection is created automatically on start-up.

The previous TestCollection procedure shows one key difference between custom collections and Excel's built-in
collections: custom collections don't have a default property. In other words, you must write For Each msg in
m_Message.Items, whereas Excel collections can omit the Items property.

Excel's Visual Basic doesn't provide a way to designate a default property for a class. That's probably a good thing
though, because default properties go away entirely in the .NET Framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.7. Expose Objects
The objects you create within a workbook are usually private to that workbook. That means outside applications can't
see them or use them in their code. In some rare cases, you may want to expose a custom object so that other
applications can use it. To do so:

1. Declare the object as Public.

2. Initialize the object. Usually you do that on start-up when the workbook loads.

3. Change the class's Instancing property to 2 - Public not creatable.

To see how this works, select the Messages class in the Visual Basic Project window and change the Instancing property
as shown in Figure 5-8.

Repeat that for the Message class, and then add the following code to the ThisWorkbook object:

 ' ThisWorkbook object.
 Public g_Messages As Messages

 Private Sub Workbook_Open()
 ' Intialize the Messages collection.
 Set g_Messages = New Messages
 ' Create some messages
 Dim msg1 As New Message
 msg1.Title = "Msg1"
 msg1.Value = "From collection."
 msg1.icon = Information
 g_Messages.Add msg1
 Dim msg2 As New Message
 msg2.Title = "Msg2"
 msg2.Value = "From collection."
 msg2.icon = Warning
 g_Messages.Add msg2
 End Sub

Figure 5-8. The Instancing property exposes objects outside Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The preceding code creates two Message objects and adds them to the Messages collection. That collection is then exposed
through the g_Messages collection.

Save and close the workbook, and then reopen it to run the Workbook_Open procedure. If you forgot to set the Instancing
property of the Message class, you'll see the error message in Figure 5-9.

Figure 5-9. This error occurs if you try to expose an object without setting its
Instancing property

Once the workbook is open and the Messages collection has been created, other applications can get at the object. One
common way to get at these objects is through VBScript a sort of lightweight Visual Basic built-in to Windows. You can
create the following file in Notepad, save it as TestCollection.vbs and then run it by double-clicking on the file name in
Windows Explorer:

 ' TestCollection.vbs
 dim xl, path, fso, wb, msg
 ' Start Excel and make it visible.
 set xl = CreateObject("Excel.Application")
 xl.Visible = True
 ' Use this object to get the current path.
 set fso = CreateObject("Scripting.FileSystemObject")
 path = fso.getfolder(".")
 ' Open the sample workbook.
 set wb = xl.Workbooks.Open(path & "\ch05.xls")
 ' Display the number of messages.
 MsgBox "Ch05.xls exposes " & wb.g_Messages.Count & " messages."
 ' Show each message.
 For each msg in wb.g_Messages.Items
 msg.Show
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.8. Destroy Objects
In Visual Basic, objects remain in memory as long as there is a reference to them in scope. What's that mean? Scope is
determined by where the variable is declared. So, a Message declared within a procedure is in scope while that procedure
executes. When the procedure ends, the Message goes out of scope and it is removed from memory (some people say it
gets destroyed).

At that point, the object is no longer available and any property settings it contained are lost. A way to prevent that is
to make a reference at another level of scope. For instance, the following m_Messages variable keeps the Message collection
around after TestInitializeCollection ends:

 ' TestMessage module
 Public m_Messages As Messages

 Sub TestInitializeCollection()
 ' Intialize the Messages collection.
 Set m_Messages = New Messages
 ' Create some messages
 Dim msg1 As New Message
 msg1.Title = "Msg1"
 msg1.Value = "From collection."
 msg1.icon = Information
 m_Messages.Add msg1
 ' and so on...
 End Sub

The trick here is that the msg1 object is also preserved, even though it is declared within the procedure that just ended.
In this case, the collection holds a reference to that Message object, which keeps it in memory until the workbook closes
or the object is explicitly destroyed. There are several ways to explicitly destroy the Message object:

Remove it from the collection.

Set the collection to Nothing.

Set the m_Messages variable to a new Messages collection.

This code illustrates each technique:

 ' You must run TestInitializeCollection
 ' before running this one.
 Sub TestDestroyObject()
 ' Remove a single object.
 m_Messages.Remove (1)
 ' Destroy the whole collection.
 Set m_Messages = Nothing
 ' Create a new collection (destroys prior one)
 Set m_Messages = New Messages
 End Sub

The concept of references is important in Excel because it is possible to leave large, invisible objects in memory
inadvertently. As long as someone holds a reference to an object, it is kept alive. Accidental references like that can
result in memory leaks a situation in which unused objects take up memory and slow your computer down
unnecessarily.

To see how bad that can be, run this code:

 Public m_xl As New Collection

 Sub DemoMemoryLeak()
 Dim i As Integer
 For i = 1 To 10
 m_xl.Add (CreateObject("Excel.application"))
 Next
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you switch to the Windows Task Manager (Figure 5-10), you'll see that there are now 11 instances of Excel loaded on
your computer even though you can see only one of them.

Don't panic! You can make the hidden instances go way by setting m_xl to Nothing in the Immediate window as shown
here:

 Set m_xl = Nothing

My point is simple: be very careful when creating large objects that the user can't see. Watch out for module-level and
class-level object variablesespecially collectionsand remember to set them to Nothing when you are done.

Figure 5-10. Yow, 11 instances of Excel! That can't be good.

The system of keeping track of objects as described here is called reference counting , and
it's used by all Microsoft Office applications. The .NET Framework uses a more reliable
system that periodically checks whether or not objects are still in use. That approach is
called garbage collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.9. Things You Can't Do
If you are familiar with an object-oriented programming language such as Java or Visual Basic .NET you might be
waiting for me to discuss constructors, inheritance, and overloading. You'll have a long wait, because Excel's Visual
Basic can't do any of those. There are also some limits on things you might assume you can do from looking at the
Excel objects. For instance, you can't create default properties. Table 5-1 lists these language limitations and provides
some detail.

Table 5-1. Object-oriented features not available in Excel
Feature Limitation and workaround

Constructors Only a default constructor is available. If you want to initialize an object, you must implement an Initialize
method or something similar.

Destructors Only a default destructor is available. If you want to free nonmemory resources used by an object, you
must implement a separate Dispose method or something similar.

Collection
types

There is only one collection type: Collection. To implement a collection, create a class that "wraps" that
type as shown earlier in "Collect Objects."

Default
properties Not available in custom classes. Properties must be called by name.

Inheritance Not available. You can't base one class on another.

Interfaces Not available. You can't create a prototype for a class.

Overloaded
methods Not available. Use the Optional keyword to create methods that accept different sets of arguments.

I include Table 5-1 because it's hard to know what's missing simply by omission. It's not meant to denigrate Excel or to
make you feel limitedyou can still do a lot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.10. What You've Learned
Congratulations, you are now an object-oriented programmer (OOP). You've learned most of the key terms that relate
to objects and should have an inkling of how to use them to impress your friends.

I hope you remember that classes allow you to create events and that a single class can be used to create multiple
instances of an object in memory. Don't worry if you still feel a bit at sea regarding collections and exposing objects to
other applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Writing Code for Use by Others
Programming Excel for personal use is very common and it's how most of us get started. But what happens when you
graduate to creating code for others? Once your audience expands from just yourself to your friends, your coworkers,
or even the world, you'll find that expectations changeit's no longer OK if a procedure occasionally fails or that you have
to know where to copy files to make them work. In short, programming for a wide audience requires a new set of skills.

This chapter walks you through the process of developing and distributing Excel Visual Basic code as workbooks,
templates , and add-ins. I include information about testing your code because that's probably the most important (and
most overlooked) aspect of Visual Basic programming.

Code used in this chapter and additional samples are available in ch06.xls, ch06.xlt,
ch06.xla, ch06TemplateSetup.vbs, ch06AddinSetup.vbs, and ch06AddinRemove.vbs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1. Types of Applications
You can create three different types of applications from within Excel. Which type you choose determines how the
application is used and distributed:

Workbooks

Package code as part of a unique document. The code is stored with the workbook file (.xls) and is available
whenever the user opens that file in Excel. If the user copies the file, the code is copied along with the rest of
the workbook.

Templates

Include code as part of a template for new Excel workbooks. When a user creates a new workbook file (.xls)
from the template (.xlt), the code contained in the template is available in that new workbook though the code
is not actually copied to the workbook.

Add-ins

Include code as a file that can be loaded into the Excel application. If a user loads an add-in file (.xla), code
from that add-in is available for any workbook a user opens.

Table 6-1 describes the relative advantages of these different types of applications.

Table 6-1. Ways to distribute code in Excel
Code
stored in Available to Advantage Disadvantage

Workbook
(.xls)

Currently loaded
workbooks

No installation required;
easy to distribute.

Updates are difficult because the workbooks may be
copied/renamed and there's no way to merge new code.

Template
(.xlt)

Workbooks
based on the
template

Single file; code applies to
specific type of workbook. Templates must be installed.

Add-in
(.xla) All workbooks Single file; code most

widely available. Add-ins must be installed; don't include worksheets.

One of the major differences between templates and add-ins is that templates include worksheets, charts, and
document-based elements from Excel. Add-ins don't automatically include those visual elements.

You develop each of these application types starting from a workbook (.xls), then you save that workbook as the
appropriate type, as shown in Figure 6-1.

After you save the workbook in the target format, you can still open it for editing in Excel, but you may have to look for
the file in a different location. Excel stores templates in the C:\Documents and Settings\user\Application
Data\Microsoft\Templates folder, and it stores add-ins in C:\Documents and Settings\user\Application
Data\Microsoft\AddIns. You can save to any location; these are just the defaults.

Understanding these different application types is important before you begin the development process . The rest of this
chapter describes that process as it applies to Excel. Most of that information applies to other types of programming as
well, though it is hardly the final word. See "Resources" at the end of this chapter for further reading on how to develop
software professionally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2. The Development Process
A friend of mine jokes that developing software is like constructing a house: the first step is to build the roof. His point
is that nobody thinks you're crazy if you start implementing the user interface before you've thought through the
design, organized your tools, and built a foundation.

Figure 6-1. Saving a workbook as a template or add-in

The purpose of having a development process is to avoid that upside-down approach. Following a process helps you:

Detect problems as early as possible

Create reproducible results

Know when you're done

Much has been written on the development process; I won't try to cover all the approaches or explain their differences
here. Instead, I'll give you some practical tips specifically oriented toward working with Excel.

In my experience, the best advice is to use a test-driven approach and to get feedback as early as possible by following
these general steps:

1. Determine requirements.

2. Create an initial design.

3. Implement features and unit tests.

4. Integrate features and test their interaction.

5. Test on target platforms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Test on target platforms.

6. Document the software and create training materials for users.

7. Deploy the software.

8. Archive what was deployed and get ready for the next version.

Each of these steps includes an implicit "Gather feedback and revise" step before proceeding to the next. How you
gather and manage feedback must be tailored to your situationyour process may include formal approvals and
management sign-off, or it may be as simple as a series of email messages. My point is that you need some series of
steps to know where to start and how to proceed. The following sections describe these steps in greater detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3. Determine Requirements
Requirements may be clearly laid out by your manager, or you may be completely responsible for determining them
yourself. In either case, it is helpful to test assumptions at this point and get direct feedback from those who will use
the product to make sure the requirements are realistic and that nothing was omitted.

It's important to understand the difference between requirements and design: Requirements define what the product
does; design determines how the product does it. In other words, it is a requirement that users log on before using the
product, but determining how the username and password are validated is a design issue.

Requirements answer specific questions that help later with design, testing, and documentation. Table 6-2 categorizes
some of the common questions.

Table 6-2. Common requirements questions
Category Question

Function What tasks does the product perform?

Audience What level of experience do the users have with the tasks and with Excel in general?

Compatibility What version or versions of Excel must the product work with?

 Do users have PCs, Macs, or both?

Deployment Will the product be distributed on disk or from a network share or downloaded over the Internet?

Dependencies Are there other components that must be installed for the product to work?

 Will this product be used by other products as a component?

 Does the product use external data, and if so what is the data source?

Obviously, these general questions may need to be followed up on for more detail. The purpose of the requirements is
to state clearly what is expected and to create an understanding between those who will use the product and those who
are building it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4. Design
Design creates a framework for the product based upon requirements. Design documents usually include the following:

General description of how the product performs the tasks described in the requirements

Lists of menus presented to the user

Sketches of screens that the product displays

Conventions used in menus and screens

Descriptions of data sources used by the product

Details about any components used

Special considerations, such as how platform differences are handled

A good design document tells programmers what they need to do but not how to do it. Designs are subject to change,
so it is best if they aren't so complex that they are difficult to read or revise.

It is easiest to make changes during design, and it's important to take time to think things through. However, it's
unrealistic to think a design is ever perfect. Devote a reasonable amount of time to the initial design, then plan on
making updates along the way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5. Implement and Test
Finally, you get to write some code! But since this code is going out to a wide audience, you need to do some extra
work to make sure it functions correctly. In short, you need to test as you implement your code.

Each procedure that you write should have a unit test written to test it. Unit tests are procedures that call the functional
procedures to make sure they work correctly. I use unit tests in all of the sample workbooks; for example, the
TestMathFunctions unit test from ch05.xls tests the Inverse and CubeRoot procedures:

' Unit test
Sub TestMathFunctions()
 Dim result As Double, Value As Double, str As String
 Value = 42
 result = Inverse(Value)
 str = "The inverse of " & Value & " is " & result
 result = CubeRoot(Value)
 str = str & " and the cube root is " & result
 MsgBox str, , "Test Math Functions"
End Sub

' Functional code
Public Function Inverse(x As Double) As Double
 If x = 0 Then Inverse = 0 Else Inverse = 1 / x
End Function

' Functional code
Public Function CubeRoot(x As Double) As Double
 If x < 0 Then CubeRoot = 0 Else CubeRoot = x ^ (1 / 3)
End Function

I prefix the names of unit tests and the modules that contain them with Test to make their purpose clear. You'll see that
again and again throughout this book.

Unit testing is not the same as stepping through the functional procedures manually. Manual testing, sometimes called
ad hoc testing , is an important way to find errors during development but it does not create a reproducible result. Unit
tests can be run repeatedly, and the result should always be the same. This allows you to automate the testing process
as described in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6. Integrate
The TestMathFunctions unit test in the preceding section is a bit of a cheat because it combines the tests for two
procedures: Inverse and CubeRoot. In general, unit tests and procedures have a one-to-one correspondence to make it
easier to locate problems when they occur. Also, unit tests are easier to use if they don't display message boxes,
because that requires you to manually click through the test.

For those reasons, I generally follow these conventions when writing unit tests:

Return a string indicating pass/fail from each test.

Where the results aren't pass/fail, return the result of the operation.

Call the unit tests from a TestxxxMain procedure and display the results in the Immediate window using Debug.Print.

The following code shows unit tests for the QuickRead and QuickWrite procedures from Chapter 3 written with those
conventions in mind:

Const fpathtest = "c:\temp.txt"

Sub TestFilesMain()
 Debug.Print TestQuickWrite
 Debug.Print TestQuickRead
End Sub

Private Function TestQuickWrite() As String
 Dim s As String
 Dim result As String
 result = "failed"
 s = "This is some sample text."
 If Files.QuickWrite(s, fpathtest, True) Then result = "passed"
 TestQuickWrite = "TestQuickWrite " & result
End Function

Private Function TestQuickRead() As String
 Dim s1 As String, s2 As String
 Dim result As String
 result = "failed"
 s1 = "This is some sample text."
 s2 = Files.QuickRead(fpathtest)
 If s1 = s2 Then result = "passed"
 TestQuickRead = "TestQuickRead " & result
End Function

These tests create a new text file, c:\temp.txt, then open that file and check its contents. When run within the Visual
Basic Editor, the results appear in the Immediate window as shown in Figure 6-2.

Figure 6-2. Unit tests write output to the Immediate window

Because these two unit tests are interdependent, the combined test checks their integration as well. Furthermore, if
there are any changes to QuickRead or QuickWrite, you can rerun the test to check for regressions. Finally, you can run all
of the tests of each of the different target platforms to check for compatibility problems. Table 6-3 describes each of
these different types of tests.

Table 6-3. Types of tests

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-3. Types of tests
Test type Verifies that

Unit test The individual pieces work correctly.

Integration tests The pieces work together.

Regression test Changes to pieces don't break existing features.

Platform tests The product works correctly on various operating systems and hardware configurations.

These different tests are used together during the development process as illustrated in Figure 6-3.

In the preceding example, TestQuickRead and TestQuickWrite are the unit tests and TestFilesMain is the integration test. After
any changes, you rerun TestFilesMain as a regression test. And at the end of the cycle you run it again on each different
set of hardware as a platform test.

If a problem is reported after deployment, you can create a new unit test to help you identify and fix the bug. That new
test then becomes part of the testing cycle in Figure 6-3 to ensure the quality of future releases.

Figure 6-3. Testing is integral to the development process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7. Test Platforms
Although Excel runs on both PCs and Macs, there are quite a few differences between the objects Excel provides for
each of those operating systems. Also, code written for the PC often relies on external components that are not
available on the Mac or on early versions of Windows. In other words, it is very difficult to get the same code to work
correctly on multiple operating systems.

The easiest solution to this problem is to require a specific operating system. The second easiest solution is to pick one
operating system as your primary target and provide a reduced feature set on the others.

You can tell which operating system is in use by checking Application.OperatingSystem. The following code checks the
operating system when the workbook loads and warns the user if it is not the primary target:

' ThisWorkbook class
Private Sub Workbook_Open()
 Select Case GetOS
 Case OS.Win32
 ' Full features, no message.
 Case OS.Mac
 ' Reduced features, display a warning.
 MsgBox "Running in compatibilty mode. "& _
 "Some features are disabled.", vbExclamation
 Case OS.Win16
 ' Not supported at all!
 MsgBox "This application requires Windows NT or XP.", vbCritical
 Application.Quit
 End Select
End Sub

' Platform module
Enum OS
 Win16
 Win32
 Mac
End Enum

Function GetOS() As OS
 Dim result As OS
 Dim s As String
 s = Application.OperatingSystem
 If InStr(1, s, "Windows") Then
 If InStr(1, s, "32-bit") Then
 result = Win32
 Else
 result = Win16
 End If
 Else
 result = Mac
 End If
 GetOS = result
End Function

Similarly, different versions of Excel can pose problems since early versions support fewer features than later ones. If
your requirements specify a particular version of Excel, it is best to do all your development using that version. Then,
compatibility with later versions is (almost) guaranteed.

What! Later versions of Excel don't always include all of the previous versions' features?
No, Excel is not always forward-compatible. In particular, Windows and Mac versions are
out of sync, so code written for Excel 2003 (Windows) may not run on Excel 2004 (Mac).

If your requirements don't specify an Excel version, it's important to determine the version compatibility of your code
before you deploy it. The easiest way to do that is to run the integration tests under different versions of Excel. For
instance, you may develop a workbook using Excel 2003, then open the workbook in Excel 2000 and run the integration
test to verify compatibility. If the test passes, you can assume compatibility; otherwise, you may need to test for the
version at start-up as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

version at start-up as shown here:

' ThisWorkbook class
Private Sub Workbook_Open()
 TestVersion
End Sub

Sub TestVersion()
 If Application.Version < 10 Then
 MsgBox "This application requires Excel 2002 or later.", _
 vbCritical
 Application.Quit
 End If
End Sub

Hardware issues such as screen size, processor speed, and peripheral devices such as printers can also pose problems.
It is best to try to detect those problems before you deploy and set some minimum requirements. It may not be
necessary to test for those requirements thoroughly on start-up; it's often sufficient just to specify them in a
Readme.txt file or some other documentation .

A final word of advice: don't try to write code that dynamically adjusts features for different platforms unless you've got
a really good reason to do so. That approach requires a lot of effort in both development and testing and usually just
confuses users. Instead, code for a specific set of minimum requirements, such as "Windows Excel 2000 or later." If
you need to support two platforms, consider creating a separate version specifically for the secondary platform after
completing the primary one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.8. Document
Documentation has evolved over the last several years to the point where most Help is provided over the Internet. That
makes updating content easier, allows feedback, and probably most importantly maintains contact with customers.

You can create HTML documentation for your application using Word, FrontPage, or another editing toolI wind up using
Notepad more than I'd expect. HTML documents can be posted to a web server or they can be copied to the user's
machine along with the application.

Then, you simply link items to help pages using hyperlinks on the worksheets or by using the Application.Help or
Workbook.FollowHyperlink method in code:

Sub TestShowHelp()
 Dim result As VbMsgBoxResult
 result = MsgBox("An error occured. Click OK to show help.", _
 vbOKCancel, "Error")
 If result = vbOK Then
 ' Display Help in Help window.
 Application.Help ("http://excelworkshop.com/Help/error51.htm")
 ' Alternate approach: display Help in browser.
 'ThisWorkbook.FollowHyperlink _
 ' ("http://excelworkshop.com/Help/error51.htm")
 End If
End Sub

The Help method displays the page in Excel's Help window. The FollowHyperlink method displays the page in the browser.
Using the browser provides better navigation tools, but the Help window shares the screen with Excel a little better.

You can also add links to Help from menu items in Excel. To do so:

1. Choose Tools Customize Commands and select the Window and Help category.

2. Drag Contact Us from the Commands list to the Help menu as shown in Figure 6-4.

Figure 6-4. Drag a new item to the Help menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Expand the Help menu and right-click on the Contact Us item you just added. This puts that item in edit mode,
which is available only when the Customize dialog box is displayed.

4. Rename the menu item by typing in the Name property as shown in Figure 6-5.

5. Choose Assign Hyperlink Open to set the address of the page to display when the user selects the menu
item.

6. When finished, choose Close in the Customize dialog box.

Figure 6-5. Rename and assign a hyperlink to the new menu item

Linking an application directly to HTML pages in this way is a little different than using some of Excel's built-in help
features. For example, the MsgBox function allows you to link a Help button to a compiled help file (.chm) or a local HTML
file, but not one located on the Web:

Sub TestContextHelp()
 Dim path As String
 path = ThisWorkbook.path
 ' This works:
 MsgBox "An unexpected error occurred.", vbMsgBoxHelpButton, , _
 path & "/ch06.chm::Error51.htm", 0
 ' And so does this:
 'MsgBox "An unexpected error occurred.", vbMsgBoxHelpButton, , _
 ' path & "/error51.htm", 0
 ' But this doesn't work:
 'MsgBox "An unexpected error occurred.", vbMsgBoxHelpButton, , _
 ' "http://www.excelworkshop.com/Help/ch06.htm", 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The preceding code displays a message box with OK and Help buttons. If the user clicks Help, Excel displays the
error51.htm topic from the ch05.chm using Windows Help. Compiled Help is harder to create than regular HTML pages
and it offers few advantages over the HTML approach. Compiled help files are built using the Microsoft HTML Help
Workshop , which is a free download from Microsoft (see "Resources," at the end of this chapter).

Finally, you can provide help on user-defined functions by specifying a help file in the Visual Basic project properties. To
do so:

1. Right-click on the Project window in Visual Basic and select VBA Project Properties.

2. Enter the address of the help file in Help File Name and choose OK to close the dialog. You can use a web
address (e.g., http://excelworkshop.com/help/Ch06.htm), a local HTML file, or a local .chm file.

Now, the user can get help on the function from the Excel Insert Function dialog box as shown in Figure 6-6.

Figure 6-6. Set VBA Project Properties to specify a help file for user-defined
functions

Since not all users have Internet access, you may want to combine approaches and install a help file locally that links to
the Web for more detailed help and updates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.9. Deploy
Excel Visual Basic applications aren't compiled in the conventional sense. Instead, the code is saved in the file and it is
interpreted at runtime. In the old days, before viruses and security concerns, you could just save an Excel workbook
and then distribute it to your users without a second thought. Now, you need to take additional steps to make sure your
users will be able to trust the code you send them:

1. Protect your code to prevent users from seeing or changing it.

2. Digitally sign the files and provide instructions on setting macro security to allow the application to run.

3. Create an installation program to copy the files to the user's system.

The following sections describe these steps in more detail.

6.9.1. Protect Code

To protect your Visual Basic code from changes:

1. Right-click on the Project window in Visual Basic and choose VBA Project Properties.

2. Choose the Protection tab, select Lock Project for Viewing and enter a password as shown in Figure 6-7.

3. Choose OK to close the dialog box. The changes take effect after you close and reopen the workbook.

Figure 6-7. Protect your Visual Basic code

6.9.2. Sign Files

Any files that contain code for use by others should be signed with a digital signature. Chapter 1 showed you how to
self-sign macros so that the code you create for your own use can run without a security warning. If others try to run
code that you signed in that way, they will see a warning that the certificate can't be verified (Figure 6-8).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-8. Self-signed macros aren't trusted on other users' machines

Other users can't choose to trust macros that you've self-signed because they can't be authenticated through a
certificate authority.

To create code that others can choose to trust:

1. Get a digital signature from a certificate authority, such as Verisign , Inc., or CAcert.org.

2. In Visual Basic, sign your code with that digital signature (Tools Digital Signature Choose).

3. Save and close the file.

There are several types of digital signatures , which are also called digital IDs or certificates. You'll need one that
permits code signing. Other types are used to sign email messages or to identify web servers online. Licenses for digital
signatures used to be very cheap, but they've gone up to several hundred dollars a yearwhich is a significant expense
for an individual. For a company with multiple developers, this expense is less significant since a company generally
uses the same digital signature to sign all of its published code, which distributes the cost.

Lower-cost digital signatures are available from the nonprofit certificate authority CAcert. Digital signatures from CAcert
support code signing. See "Resources," at the end of this chapter, for links to more information.

Digital signatures may also be generated internally by your company if your company has a server with the certificate
authority service installed. If you think this is the case for your company, you should contact your IT department for
more information.

Once you've signed your code with a digital signature from a certificate authority (CA), the new signature appears when
users open your workbook. Because the signature can be authenticated from the CA, users can add it to their list of
trusted publishers so they will not be prompted each time they open a file from you. Figure 6-9 shows opening a
workbook that uses a signature from CAcert.

Figure 6-9. Signatures from a CA (even a free one) can be trusted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.9.3. When Signatures Expire

Digital signatures have expiration dates to help ensure their authenticity. When a user opens a signed Excel file after
the signature's expiration date, she sees a security warning saying that the signature has expired. To avoid this
problem, you can timestamp signatures so that Excel compares the signature expiration to the timestamp rather than
the current date.

Unfortunately, timestamps aren't automatic in Excel. In order to get it working, you need to edit your system registry to
use a timestamp service provided by your certificate authority. For example, the following registry entries configure
your system to use Verisign's timestamp service (timestamp.reg):

Windows Registry Editor Version 5.00
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security]
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security\TimeStampRetryCount]
@="10"
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security\TimeStampRetryDelay]
@="10"
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security\TimpeStampURL]
@="http://timestamp.verisign.com/scripts/timstamp.dll"

To merge these entries into your system registry, double-click on the sample file timestamp.reg in Windows Explorer.
Before you rely on timestamps, you should test this procedure on your machine by signing code in an Excel file, closing
it, changing your system date, then reopening the file in Excel. Please contact your certificate authority if you have
problems.

6.9.4. Install Workbooks

Workbooks are easy to distribute since they are usually just a single file that contains code. You can distribute them as
email attachments, from a network share, by disk, or from an Internet address. Then, the user can choose where to
install the file on his machine.

If your workbook uses support files, such as a local help file or database query (.iqy), you may want to package files as
a compressed folder. To use the Windows XP compression tool to package a group of files:

1. Select the files in Windows Explorer.

2. Right-click on the files and select Send to Compressed (zipped) Folder. Windows creates a single .zip file
containing the files.

If you don't have Windows XP, you can use the WinZip tool from WinZip Computing, Inc. (see "Resources," at the end
of this chapter).

6.9.5. Install Templates and Add-ins

Templates and add-ins must be installed at specific locations on the user's machine in order to appear automatically in
Excel. Where you install the file determines whether it is available only to the current user or to all users. Table 6-4 lists
the various locations used by Excel for templates and add-ins.

Table 6-4. Install locations for workbooks, templates, and add-ins
Name Location Comments

Startup %ProgramFiles%\Microsoft
Office\OFFICE11\XLSTART

Excel loads workbooks in this folder on startup. Excel
includes templates in this folder on the General page of the
Templates dialog.

Alt startup Configured by the user on the General
page of the Options dialog.

Workbooks and templates copied to this folder are loaded
automatically on start-up in the same way as \XLSTART.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Network
templates

If the user specified a shared network
folder in Alt startup before, Excel loads
templates from that location.

If set, this folder is returned as the Application object's
NetworkTemplatesPath property.

Add-ins
library

%ProgramFiles%\Microsoft
Office\OFFICE11\Library

Add-ins copied to this folder appear in the Available Add-Ins
list of the Add-Ins dialog.

Spreadsheet
solutions
library

%ProgramFiles%\Microsoft
Office\Templates\1033

Displays templates in the Spreadsheet Solutions page of the
Templates dialog.

User add-
ins

%UserProfile%\Application
Data\Microsoft\AddIns

This is the default location when the user saves a file as an
add-in. Add-ins copied to this folder appear in the Available
Add-Ins list of the Add-Ins dialog.

User
templates

%UserProfile%\Application
Data\Microsoft\Templates

This is the default location when a user saves a file as a
template. Templates copied to this folder appear on the
General page of Templates dialog.

For earlier versions of Windows, the locations vary depending on whether user profiles are enabled. Table 6-5 lists the
folders used by earlier versions of Windows.

Table 6-5. Install locations for Windows NT and earlier
Name User profiles disabled User profiles enabled

User
templates

%windir%\Application
Data\Microsoft\Templates

%UserProfiles%\Application
Data\Microsoft\Templates

User add-ins %windir%\Application Data\Microsoft\AddIns %UserProfiles%\Application Data\Microsoft\AddIns

The values %ProgramFiles%, %UserProfile%, and %windir% are environment variables that map
to special folders on your system. For example, %ProgramFiles% is usually C:\Program Files.

There are many ways to create installation programs that install templates or add-ins to these locations. Perhaps the
simplest way is to use the WinZip self-extractor to create a compressed folder that runs a simple installation script
when finished.

See "Resources," at the end of this chapter, for information on where to get the WinZip self-extractor. That tool
includes information on how to run installation scripts after the extraction completes. You can write the installation
script as a batch file, but I prefer to use VBScript since it leverages what we already know about Visual Basic and Excel.

Templates are simply copied to one of the template locations that Excel uses. For example, this VBScript installs the
template ch06.xlt so that it shows up when the user chooses to look for templates "installed on my computer":

' Ch06TemplateSetup.vbs
' Get the objects used by this script.
Dim oXL, fso
Set oXL = CreateObject("Excel.Application")
Set fso = CreateObject("Scripting.FileSystemObject
")
' Make Excel visible (always a good idea)
oXL.Visible = True
' Get the current folder (must add "\")
srcpath = fso.GetFolder(".").Path & "\"
' Get the Excel template folder
destpath = oXL.TemplatesPath
' Copy the file to the template folder.
fso.CopyFile srcpath & "ch06.xlt", destpath & "ch06.xlt"
' Close Excel
oXL.Quit
Set oXL = Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add-ins can be installed from any location, but it is a good idea to copy them to one of the standard folders listed in
Table 6-4 so that users can find them easily. Add-ins also have an Installed property that loads them in Excel. For
example, the following VBscript installs the add-in ch06.xla:

' Ch06AddinSetup.vbs
' Get the objects used by this script.
Dim oXL, oAddin, fso, wsh, srcPath, destPath
Set oXL = CreateObject("Excel.Application")
Set fso = CreateObject("Scripting.FileSystemObject")
Set wsh = WScript.CreateObject("WScript.Shell
")
' Make Excel visible in case something goes wrong.
oXL.Visible = True
' Create a temporary workbook (required to access add-ins)
oXL.Workbooks.Add
' Get the current folder.
srcpath = fso.GetFolder(".")
destPath = wsh.Environment("PROCESS")("HOMEDRIVE") & _
 wsh.Environment("PROCESS")("HOMEPATH") & _
 "\Application Data\Microsoft\Addins"
' Copy the file to the template folder.
fso.CopyFile srcpath & "\ch06.xla", destpath & "\ch06.xla"
' Add the add-in to Excel.
Set oAddin = oXL.AddIns.Add(destpath & "\ch06.xla", true)
' Mark the add-in as installed so Excel loads it.
oAddin.Installed = True
' Close Excel.
oXL.Quit
Set oXL = Nothing

The preceding script copies ch06.xla to the user's add-ins folder, then marks the add-in as installed in Excel so the code
is available immediately.

You remove templates and add-ins by deleting them from the folder where they were copied. For add-ins, it is a good
idea to set their Installed property to False before deleting so Excel does not display an error when it no longer finds the
deleted add-in. The following script shows how to remove ch06.xla after it is installed:

' Ch06AddinRemove.vbs
' Get the objects used by this script.
Dim oXL, oAddin, fso, wsh, srcPath, destPath
Set oXL = CreateObject("Excel.Application")
Set fso = CreateObject("Scripting.FileSystemObject")
Set wsh = WScript.CreateObject("WScript.Shell")
' Make Excel visible in case something goes wrong.
oXL.Visible = True
' Create a temporary workbook (required to access add-ins)
oXL.Workbooks.Add
' Mark the add-in as not installed.
oXL.AddIns("ch06").Installed = False
' Get the add-ins folder.
destPath = wsh.Environment("PROCESS")("HOMEDRIVE") & _
 wsh.Environment("PROCESS")("HOMEPATH") & _
 "\Application Data\Microsoft\Addins"
' Delete the file.
fso.GetFile(destpath & "\ch06.xla").Delete
' Close Excel.
oXL.Quit
Set oXL = Nothing

See "Resources" for links to information on VBScript, the FileSystemObject, and WScript.Shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.10. What You've Learned
By now, you should understand what it takes to deliver professional-quality code to the world. Understanding is
different from being able to accomplish something, however. It takes a great deal of practice to develop the skills you
are ready to acquire.

Be patient and develop experience with the Excel objects described in the rest of this book. As you program, look for
ways to integrate testing into your process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.11. Resources

For information on Look here

The development process Extreme Programming Explained: Embrace Change (Addison-Wesley)

Purchasing digital signatures http://www.verisign.com

Learning about nonprofit digital
signatures http://www.cacert.org

Adding timestamps to digital signatures http://searchsupport.verisign.com/content/kb/vs5069.html

Configuring a server to provide digital
certificates

Search the Windows 2003 Server Help for "Installing and configuring a
certification authority"

Digital signatures for normal people https://www.cacert.org/help.php?id=2

Compiled help files Search http://www.microsoft.com/downloads for "Help Workshop"

WinZip and WinZip self-extractor http://www.winzip.com

VBScript http://msdn.microsoft.com/library/en-us/script56/html/vtoriVBScript.asp

FileSystemObject http://msdn.microsoft.com/library/en-us/script56/html/fsooriScriptingRun-
TimeReference.asp

WScript.Shell http://msdn.microsoft.com/library/en-us/script56/html/wsObjWshShell.asp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Excel Objects
These chapters provide a comprehensive guide to using the Excel objects to perform specific tasks.
Each chapter in this part combines how-to sections and extensive examples with reference sections for
the objects used to perform the tasks. This combined approach helps you navigate the vast set of
objects, properties, and methods that Excel provides.

Chapter 7, Controlling Excel

Chapter 8, Opening, Saving, and Sharing Workbooks

Chapter 9, Working with Worksheets and Ranges

Chapter 10, Linking and Embedding

Chapter 11, Printing and Publishing

Chapter 12, Loading and Manipulating Data

Chapter 13, Analyzing Data with Pivot Tables

Chapter 14, Sharing Data Using Lists

Chapter 15, Working with XML

Chapter 16, Charting

Chapter 17, Formatting Charts

Chapter 18, Drawing Graphics

Chapter 19, Adding Menus and Toolbars

Chapter 20, Building Dialog Boxes

Chapter 21, Sending and Receiving Workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Controlling Excel
I talked a little about the Application object back in Chapter 4. Application is where everything starts in Excel: it's the
grandma of all the other objects. You use the Application object to:

Perform top-level actions, such as quitting Excel, showing dialog boxes, or recalculating all workbooks

Control the Excel options, such as the settings on the Tools Options dialog box

Get references to the other objects in Excel

In this chapter, you will learn about those tasks in detail. This chapter includes task-oriented reference information for
the following objects: Application, AutoCorrect, AutoRecover, ErrorChecking, Windows, and Panes.

Code used in this chapter and additional samples are available in ch07.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1. Perform Tasks
Use Application object to perform top-level tasks in Excel. The following sections describe how to:

Quit the Excel application from code

Turn user interaction and screen updates off and on

Open, close, and arrange Excel windows

Display Excel dialog boxes

These are the most common tasks for the Application object.

7.1.1. Quit Excel

Use the Quit method to quit Excel. If there are any workbooks with unsaved changes, Excel displays a dialog box asking
the user if those changes should be saved. There are several ways to change that behavior:

Save all workbooks before quitting.

Set the all workbooks Saved property to True.

Set DisplayAlerts to False.

The following code shows how to save all open workbooks before closing without prompting the user:

Sub QuitSaveAll()
 Dim wb As Workbook
 For Each wb In Workbooks
 wb.Save
 Next
 Application.Quit
End Sub

Conversely, this code quits Excel without saving any of the workbooks:

Sub QuitSaveNone()
 Dim wb As Workbook
 For Each wb In Workbooks
 ' Mark workbook as saved.
 wb.Saved = True
 Next
 Application.Quit
End Sub

Setting the Saved property fools Excel into thinking that it doesn't need to save changes and they are lost when Excel
quits.

There's one other handy member to know about when quitting Excel : the SaveWorkspace method lets you save an .xlw
file that you can use to restore the workbooks and windows currently in use. The following code saves those settings as
Resume.xlw:

Sub QuitWithResume()
 Application.SaveWorkspace "Resume.xlw"
 Application.Quit
End Sub

7.1.2. Lock Out User Actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes you want to prevent users from interrupting Excel while you perform some time-consuming task in code.
The Application object provides these ways to limit user interaction:

Set DisplayAlerts to False to hide standard Excel dialogs while code runs

Set Interactive to False to lock users out of Excel completely

Set ScreenUpdating to False to hide changes as they are made by code

Each of these approaches should include some code at the end of the procedure to change the settings back to their
defaults when your code finishes. Otherwise, you might lock a user out permanently!

The following code demonstrates how to lock out user actions temporarily while a long task executes:

Sub LockOutUser()
 Dim cel As Range
 ' Show the hourglass cursor.
 Application.Cursor = xlWait
 ' Turn off user interaction, screen updates.
 Application.Interactive = False
 Application.ScreenUpdating = False
 ' Simulate a long task.
 For Each cel In [a1:iv999]
 cel.Select
 Next
 ' Restore default settings.
 Application.Interactive = True
 Application.ScreenUpdating = True
 Application.Cursor = xlDefault
 [a1].Select
End Sub

One of the side benefits of setting ScreenUpdating to False is that the preceding code executes more quickly since Excel
doesn't have to update the screen or scroll the worksheet as cells are selected. Again, just be sure to turn screen
updates back on when done.

7.1.3. Open and Close Excel Windows

The Application object provides a Windows collection that lets you open, arrange, resize, and close Excel's child windows.
For example, the following code opens a new child window and then cascades the open windows for the active
workbook:

Sub OpenCascadeWindows()
 ActiveWindow.NewWindow
 Application.Windows.Arrange xlArrangeStyleCascade, True
End Sub

You close and maximize child windows using methods on the Window object. For example, the following code closes the
window opened in the preceding code and restores the original window to a maximized state in Excel:

Sub CloseMaximize()
 ActiveWindow.Close
 ActiveWindow.WindowState = xlMaximized
End Sub

Closing the last child window for a workbook also closes the workbook.

Finally, you can control the Excel parent window using the Application object's WindowState and DisplayFullScreen properties:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, you can control the Excel parent window using the Application object's WindowState and DisplayFullScreen properties:

Sub ChangeExcelWindowState()
 Application.WindowState = xlMaximized
 API.Sleep 1000
 Application.WindowState = xlMinimized
 API.Sleep 1000
 Application.WindowState = xlNormal
 API.Sleep 1000
 Application.DisplayFullScreen = True
 API.Sleep 1000
 Application.DisplayFullScreen = False
End Sub

7.1.4. Display Dialogs

The three different sorts of dialog boxes in Excel are built-in dialogs that perform actions, built-in dialogs that return
information, and custom dialogs you build from Visual Basic forms. The Application object gives you several ways to
display the first two types:

Use the FindFile method to let the user select a file to open in Excel.

Use the Dialogs collection to display Excel's other built-in dialog boxes to perform those specific actions.

Use FileDialog method to get file and folder names from the user.

Use the InputBox method to get ranges or formulas.

For example, the following code displays Excel's built-in Open dialog box and then opens the file selected by the user:

Sub OpenFile1()
 On Error Resume Next
 Application.FindFile
 If Err Then Debug.Print "User cancelled import."
End Sub

You can do the same thing using the Dialogs collection:

Sub OpenFile2()
 On Error Resume Next
 Application.Dialogs(XlBuiltInDialog.xlDialogOpen).Show
 If Err Then Debug.Print "User cancelled import."
End Sub

Both of the preceding samples display the Open dialog box and open the file in Excel. You have to include error-
handling statements in case the user chooses a non-Excel file then cancels importing the fileotherwise that action halts
your code with an application error.

The Dialogs collection can display any of the Excel dialog boxes. See Appendix A for a list of those dialogsabout 250 of
them! Displaying a dialog that way is just like displaying it through the user interface: Excel uses its current settings
and takes whatever actions the user chooses from the dialog.

Sometimes you don't want Excel to perform its standard action after the user closes the dialog; instead, you'd rather
get the information from the dialog and take your own actions in code. The most common example of this is when you
want to get a file or folder name. In that case, use the FileDialog method.

FileDialog displays the built-in Excel Open dialog box, but doesn't open the file. You can change the caption, file filter, and
other settings as well. The following code uses the FileDialog to open a web file in the browser:

Sub OpenWebFile()
 With Application.FileDialog(msoFileDialogFilePicker)
 ' Set dialog box options
 .Title = "Show web file"
 .Filters.Add "Web files (*.htm)", "*.htm;*.html;*.xml", 1
 .FilterIndex = 1
 .AllowMultiSelect = False
 ' If the user chose a file, open it in the browser.
 If .Show = True Then _
 ThisWorkbook.FollowHyperlink .SelectedItems(1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ThisWorkbook.FollowHyperlink .SelectedItems(1)
 End With
End Sub

Finally, the Application object's InputBox method lets you get Excel ranges and formulas from the user. This method is
otherwise identical to the Visual Basic InputBox. Figure 7-1 shows the Excel InputBox in action.

The Type argument of InputBox determines the kind of data the user can enter. The most common settings are 0 for a
formula, 1 for a number, or 8 for a range. The following code displays the input box shown in Figure 7-1:

Sub GetRange()
 Dim rng As Range
 Set rng = Application.InputBox("Select a range", _
 "Application InputBox", , , , , , 8)
 rng.Select
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2. Control Excel Options
All of the Excel settings and options can be controlled in code through Application object properties. Quite a few of the
Application properties are devoted to Excel settings and options, but you only occasionally need to change these settings
in code-- it is usually a better idea to let the users maintain their own settings.

Figure 7-1. Use Application.InputBox to get ranges and formulas

If you do change Excel options in code, it is polite to restore the user's settings when you are done. To do that, save
the original setting in a module-level variable and restore that setting before exiting.

7.2.1. Set Startup Paths

Excel uses several predefined folders to load workbooks, add-ins, and templates. You can get or set these folders from
code using the properties in Table 7-1.

Table 7-1. Application properties for predefined folders
Property Use to

AltStartupPath Get or set the user folder used to load add-ins and workbooks automatically

DefaultFilePath Get or set the default folder to which workbooks are saved

LibraryPath Get the built-in Excel add-in library folder

NetworkTemplatesPath Get the AltStartupPath if it is a network share

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Path Get the folder where Excel is installed

StartupPath Get the built-in folder Excel uses to load add-ins and workbooks automatically (XLSTART)

TemplatesPath Get the user folder Excel from which loads templates

You use these properties when installing templates and add-ins, as covered in Chapter 6, and when your code relies on
specific locations. For example you might want to change the DefaultFilePath to a specific folder while your application
runs:

Dim m_originalPath As String
Const APP_PATH = "c:\ExcelDocs"

Sub SetPath()
 ' Store the user settng.
 m_oringalPath = Application.DefaultFilePath
 ' Use this setting while application runs.
 Application.DefaultFilePath = APP_PATH
End Sub

Sub RestorePath()
 ' Restore the user setting before exit.
 Application.DefaultFilePath = m_originalPath
End Sub

7.2.2. View System Settings

There are a great many other settings and options in Excel. Chapter 6 showed how to find operating system and
version information from the Application object. You can also get and set the options set through the Excel Options dialog
box (Figure 7-2) using individual Application properties.

For example, to select the R1C1 reference style in Figure 7-2, use this code:

Sub SetReferenceStyle()
 Application.ReferenceStyle = xlR1C1
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3. Get References
As the top-level object in Excel, Application is the source of all other object references. However, the object name
Application isn't always used in code because Excel includes shortcuts (called global members) that let you omit it. For
instance, the following two lines are equivalent:

Application.Selection.Clear ' Clear selected cells.
Selection.Clear ' Same thing!

Figure 7-2. Use Application properties to get or set these options

In this case, Selection returns the selected cells on the active worksheet as a Range object. Table 7-2 lists the Application
members that return references to other objects.

Table 7-2. Application object members that return object references
ActiveCell ActiveChart ActivePrinter

ActiveSheet ActiveWindow ActiveWorkbook

AddIns Assistant AutoCorrect

AutoRecover Cells Charts

Columns COMAddIns CommandBars

Dialogs ErrorCheckingOptions FileDialog

FileFind FileSearch FindFile

FindFormat International Intersect

LanguageSettings Names NewWorkbook

ODBCErrors OLEDBErrors PreviousSelections

Range RecentFiles Rows

RTD Selection Sheets

SmartTagRecognizers Speech SpellingOptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SmartTagRecognizers Speech SpellingOptions

ThisCell ThisWorkbook Union

UsedObjects Watches Windows

Workbooks WorksheetFunction Worksheets

Most of the names of the members in Table 7-2 are descriptive of the objects they return. The exceptions to that rule
are the members that can return a mixed collection of objects, such as Selection, and members that return Range objects:
ActiveCell, Cells, Columns, Range, Rows, and ThisCell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4. Application Members
The Application object has the following members. Key members (shown in bold) are covered in the following reference
section:

ActivateMicrosoftApp ActiveCell ActiveChart

ActivePrinter ActiveSheet ActiveWindow

ActiveWorkbook AddChartAutoFormat AddCustomList

AddIns AlertBeforeOverwriting AltStartupPath

Application ArbitraryXMLSupportAvailable AskToUpdateLinks

Assistant AutoCorrect AutoFormatAsYouType ReplaceHyperlinks

AutomationSecurity AutoPercentEntry AutoRecover

Build Calculate CalculateBeforeSave

CalculateFull CalculateFullRebuild Calculation

CalculationInterruptKey CalculationState CalculationVersion

Caller CanPlaySounds CanRecordSounds

Caption CellDragAndDrop Cells

CentimetersToPoints Charts CheckAbort

CheckSpelling ClipboardFormats ColorButtons

Columns COMAddIns CommandBars

CommandUnderlines ConstrainNumeric ControlCharacters

ConvertFormula CopyObjectsWithCells Creator

Cursor CursorMovement CustomListCount

CutCopyMode DataEntryMode DecimalSeparator

DefaultFilePath DefaultSaveFormat DefaultSheetDirection

DefaultWebOptions DeleteChartAutoFormat DeleteCustomList

Dialogs DisplayAlerts DisplayClipboardWindow

DisplayCommentIndicator DisplayDocumentActionTaskPane DisplayExcel4Menus

DisplayFormulaBar DisplayFullScreen DisplayFunctionToolTips

DisplayInsertOptions DisplayNoteIndicator DisplayPasteOptions

DisplayRecentFiles DisplayScrollBars DisplayStatusBar

DisplayXMLSourcePane DoubleClick EditDirectlyInCell

EnableAnimations EnableAutoComplete EnableCancelKey

EnableEvents EnableSound ErrorCheckingOptions

Evaluate ExtendList FeatureInstall

FileConverters FileDialog FileFind

FileSearch FindFile FindFormat

FixedDecimal FixedDecimalPlaces GenerateGetPivotData

GetCustomListContents GetCustomListNum GetOpenFilename

GetPhonetic GetSaveAsFilename Goto

Height Help Hinstance

Hwnd InchesToPoints InputBox

Interactive International Intersect

Iteration LanguageSettings LargeButtons

Left LibraryPath MacroOptions

MailLogoff MailLogon MailSession

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MailLogoff MailLogon MailSession

MailSystem MapPaperSize MaxChange

MaxIterations MoveAfterReturn MoveAfterReturnDirection

Name Names NetworkTemplatesPath

NewWorkbook NextLetter ODBCErrors

ODBCTimeout OLEDBErrors OnKey

OnRepeat OnTime OnUndo

OnWindow OperatingSystem OrganizationName

Parent Path PathSeparator

PivotTableSelection PreviousSelections ProductCode

PromptForSummaryInfo Quit Range

Ready RecentFiles RecordMacro

RecordRelative ReferenceStyle RegisteredFunctions

RegisterXLL Repeat ReplaceFormat

RollZoom Rows RTD

Run SaveWorkspace ScreenUpdating

Selection SendKeys SetDefaultChart

Sheets SheetsInNewWorkbook ShowChartTipNames

ShowChartTipValues ShowStartupDialog ShowToolTips

ShowWindowsInTaskbar SmartTagRecognizers Speech

SpellingOptions StandardFont StandardFontSize

StartupPath StatusBar TemplatesPath

ThisCell ThisWorkbook ThousandsSeparator

Top TransitionMenuKey TransitionMenuKeyAction

TransitionNavigKeys Undo Union

UsableHeight UsableWidth UsedObjects

UserControl UserLibraryPath UserName

UseSystemSeparators Value VBE

Version Visible Volatile

Wait Watches Width

Windows WindowsForPens WindowState

Workbooks WorksheetFunction Worksheets

Worksheets Worksheets Worksheets

[Application.]ActivateMicrosoftApp(XlMSApplication)

Starts or activates another Microsoft Office application. XlMSApplication can be one of the following settings:

xlMicrosoftWord

xlMicrosoftPowerPoint

xlMicrosoftMail

xlMicrosoftAccess

xlMicrosoftFoxPro

xlMicrosoftProject

xlMicrosoftSchedulePlus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method causes an error if the requested application is not installed. xlMicrosoftMail activates the user's default mail
application.

[Application.]ActivePrinter [= setting]

Sets or returns the printer that Excel will use. When setting this property, the printer name must include the port
number, for example:

Sub SetPrinter()
 ActivePrinter = "\\wombat2\Lexmark Z52 Color Jetprinter on Ne04:"
End Sub

The preceding code tells Excel to use a shared printer over the network. The port number used by Excel is Nenn: for
virtual ports but is LPTn: or COMn: for physical ports. The following code gets an array of the available printers in a format
that can be used by Excel:

Function GetPrinters() As String()
 ' Use a suitably large array (supports up to 100 printers).
 ReDim result(100) As String
 Dim wshNetwork As Object, oPrinters As Object, temp As String
 ' Get the network object
 Set wshNetwork = CreateObject("WScript.Network")
 Set oPrinters = wshNetwork.EnumPrinterConnections
 ' Get the current active printer
 temp = ActivePrinter
 ' Printers collection has two elements for each printer.
 For i = 0 To oPrinters.Count - 1 Step 2
 ' Set the default printer.
 wshNetwork.SetDefaultPrinter oPrinters.Item(i + 1)
 ' Get what Excel sees.
 result(i \ 2) = ActivePrinter
 ' For debug purposes, show printer.
 Debug.Print ActivePrinter
 Next
 ' Trim empty elements off the array.
 ReDim Preserve result(i \ 2)
 ' Change back to original printer
 ActivePrinter = temp
 ' Return the result.
 GetPrinters = result
End Function

Application.AddChartAutoFormat(Chart, Name, [Description])

Creates a new chart type based on an existing chart.

Argument Setting

Chart A chart object to get formatting from

Name The name to add to the chart autoformat list

Description A description of the chart type

The following code adds a custom chart type to Excel based on an existing chart in the current workbook:

Sub TestAddChartType()
 Application.AddChartAutoFormat Charts(1), _
 "new custom", "my description"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

To see the new chart type, select some data on a worksheet and choose Insert Chart Custom Types
User Defined.

Application.AddCustomList(ListArray, [ByRow])

Creates a new automatic list based on an array or a range of cells.

Argument Setting

ListArray The array or range of cells containing the items for the list.

ByRow True creates the list from rows in a range; False creates the list from columns in the range. Ignored if
ListArray is a single row or column. Causes an error if ListArray is not a range.

The first item in each list must be unique. An error occurs if a list with an identical first item already exists. The
following code creates a new custom list from a range on the active worksheet:

Sub TestCustomList()
 Application.AddCustomList [a1:a10]
End Sub

To see the new list, choose Tools Options Custom Lists.

Application.AlertBeforeOverwriting [= setting]

True displays an alert if a drag-and-drop changes cells that contain data; False does not. The default is True.

Application.AltStartupPath

Sets or returns the folder from which to automatically load templates and add-ins.

Application.ArbitraryXMLSupportAvailable

Returns True if Excel accepts custom XML schemas. This property is available only in Excel 2003.

Application.AskToUpdateLinks [= setting]

True asks prompts before updating external links when a workbook is opened; False does not prompt before updating.
The default is True.

Application.Assistant

Returns a reference to the annoying Office Assistant character . For example, the following code displays the assistant
and then animates its departure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and then animates its departure:

Sub TestAssistant()
 Application.Assistant.Visible = True
 With Application.Assistant.NewBalloon
 .Text = "Ciao for now!"
 .Show
 End With
 Application.Assistant.Animation = msoAnimationGetArtsy
 Application.Assistant.Animation = msoAnimationGoodbye
End Sub

As of Office 2003, the assistant is no longer installed by default.

Application.AutoCorrect

Returns a reference to the AutoCorrect object. That object determines how Excel makes automatic corrections to user
data entry.

Application.AutoFormatAsYouTypeReplaceHyperlinks [=
setting]

True automatically reformats entries that begin with http://, ftp://, mailto:, and other protocols as hyperlinks; False does
not. The default is True.

Application.AutomationSecurity [=MsoAutomationSecurity]

Set or returns the macro security setting used when opening Office documents in code. Possible settings are:

msoAutomationSecurityLow

Enable all macros. This is the default.

msoAutomationSecurityByUI

Use the security setting specified in the Security dialog box.

msoAutomationSecurityForceDisable

Disable all without showing any security alerts.

These settings apply only to files opened in code. Files opened by the user apply the settings in the Security dialog box.

The default setting for this property is a security hole created to provide backward compatibility with multifile macros
written for earlier versions of Excel. You should close this hole in your own code by setting the property to
msoAutomationSecurityByUI before opening files, as shown here:

Sub TestMacroSecurity()
 ' Enable macro security on file to open
 Application.AutomationSecurity = msoAutomationSecurityByUI
 With Application.FileDialog(msoFileDialogOpen)
 .AllowMultiSelect = False
 ' Get a file
 .Show
 ' Open it.
 Application.Workbooks.Open .SelectedItems(1)
 End With
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.AutoPercentEntry [= setting]

True multiplies values formatted as percentage by 100 when displayed (e.g., entering 99 displays 9900%); False does
not. Default is True.

Application.AutoRecover

Returns the AutoRecover object, which controls Excel's automatic file recovery features.

Application.Build

Returns the Excel build number. The following code displays Excel's version, build number, and calculation engine
version:

Sub ShowVersion()
 Debug.Print Application.Version; Application.Build; _
 Application.CalculationVersion
End Sub

[Application.]Calculate()

Recalculates the formulas in all open workbooks.

Application.CalculateBeforeSave [= setting]

True recalculates workbooks before they are saved; False does not. Default is True.

Application.CalculateFull()

Forces a full recalculation of all formulas in all workbooks.

Application.CalculateFullRebuild()

Forces a full recalculation of all formulas and rebuilds dependencies in all workbooks.

Application.Calculation [= XlCalculation]

Sets or returns the calculation mode. Can be one of the following settings:

xlCalculationAutomatic

Recalculates cells as data is entered (default)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recalculates cells as data is entered (default)

xlCalculationManual

Recalculates only when the user chooses Calculate Now (F9)

xlCalculationSemiautomatic

Recalculates all cells except data tables automatically

Application.CalculationInterruptKey [=
XlCalculationInterruptKey]

Sets or returns which key halts recalculation. Can be one of the following settings:

xlAnyKey (default)

xlEscKey

xlNoKey

Application.CalculationState

Sets or returns a constant indicating the state of all open workbooks. Can be one of the following:

xlCalculating

xlDone

xlPending

Application.CalculationVersion

Returns the version number of the calculation engine.

Application.Caller

Returns information about how the macro was called, as described in the following table:

When called from Returns

A formula entered in a cell A Range object for the cell

An array formula in a range of cells A Range object for the range of cells

VBA code, the Run Macro dialog box, or anywhere
else Error 2023

An Auto_Open, Auto_Close, Auto_Activate, or Auto_Deactivate
macro The name of the workbook (Obsolete)

A macro set by the OnDoubleClick or OnEntry property The name of the chart or cell to which the macro applies
(Obsolete)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.Caption [= setting]

Sets or returns the text displayed in the Excel titlebar. For example, the following code replaces "Microsoft Excel" with
"Funky Monkey" in the titlebar:

Sub TestCaption()
 Application.Caption = "Funky Monkey"
End Sub

Application.CellDragAndDrop [= setting]

True enables drag-and-drop; False disables. Default is true.

[Application.]Cells[(row, column)]

Returns a range of cells on the active worksheet. For example, the following code selects cell B1 on the active
worksheet:

Sub TestCells()
 Cells(1, 2).Select
End Sub

Application.CentimetersToPoints(Centimeters)

Converts centimeters to points. This is the same as multiplying by 0.035.

[Application.]Charts([index])

Returns a reference to the Charts collection.

Application.CheckAbort([KeepAbort])

Aborts recalculation. The argument KeepAbort accepts a Range object to continue recalculating. This lets you stop
recalculation for all but a specific range of cells.

Application.CheckSpelling(Word, [CustomDictionary],
[IgnoreUppercase])

Returns True if Word is spelled correctly; False if it is not.

Argument Setting

Word The word to spellcheck.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The word to spellcheck.

CustomDictionary The filename of the custom dictionary to use if the word isn't found in the main dictionary. Defaults to
the user setting.

IgnoreUppercase True excludes words that are all uppercase; False includes them. Defaults to the user setting.

Application.ClipboardFormats

Returns an array of XlClipboardFormat constants indicating the types of data currently on the clipboard. Possible array
values are:

xlClipboardFormatBIFF xlClipboardFormatBIFF2

xlClipboardFormatBIFF3 xlClipboardFormatBIFF4

xlClipboardFormatBinary xlClipboardFormatBitmap

xlClipboardFormatCGM xlClipboardFormatCSV

xlClipboardFormatDIF xlClipboardFormatDspText

xlClipboardFormatEmbeddedObject xlClipboardFormatEmbedSource

xlClipboardFormatLink xlClipboardFormatLinkSource

xlClipboardFormatLinkSourceDesc xlClipboardFormatMovie

xlClipboardFormatNative xlClipboardFormatObjectDesc

xlClipboardFormatObjectLink xlClipboardFormatOwnerLink

xlClipboardFormatPICT xlClipboardFormatPrintPICT

xlClipboardFormatRTF xlClipboardFormatScreenPICT

xlClipboardFormatStandardFont xlClipboardFormatStandardScale

xlClipboardFormatSYLK xlClipboardFormatTable

xlClipboardFormatText xlClipboardFormatToolFace

xlClipboardFormatToolFacePICT xlClipboardFormatVALU

xlClipboardFormatWK1

Use ClipboardFormats to determine the type of data available on the clipboard before taking other actions, such as Paste.
For example, this code copies a chart into the clipboard, then pastes it into Paint:

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Sub TestClipBoardFormats()
 Dim fmt, chrt As Chart
 ' Copy a chart image into the clipboard.
 Set chrt = Charts(1)
 chrt.CopyPicture xlScreen, xlBitmap
 For Each fmt In Application.ClipboardFormats
 ' If the bitmap is in the clipboard
 If fmt = xlClipboardFormatBitmap Then
 ' Start Paint
 Shell "mspaint.exe", vbNormalFocus
 ' Wait a half second to catch up.
 Sleep 500
 ' and paste the Chart image.
 SendKeys "%EP", True
 Exit For
 End If
 Next
End SubEnd Sub

The Sleep API shown in the preceding code is required to wait for focus to change to the newly opened Paint
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Application].Columns([index])

Returns one or more columns on the active worksheet as a Range object. For example, the following code selects column
C on the active worksheet:

Sub TestColumns()
 Columns(3).Select
End Sub

Application.COMAddIns([index])

Returns a collection of the installed COM add-ins. If there are no COM add-ins installed, causes an error. The following
code lists the COM add-ins:

Sub TestCOMAddins()
 Dim c As COMAddIn
 On Error Resume Next
 For Each c In Application.COMAddIns
 If Err Then Debug.Print "No COM addins."
 Debug.Print Join(Array(c.Description, c.progID, c.Application, _
 c.Connect), ", ")
 Next
End Sub

Application.CommandBars([index])

Returns one or more command bars. The following code displays a list of the command bars with their status:

Sub TestCommandbars()
 Dim cb As CommandBar
 Debug.Print "Name", "Visible?", "BuiltIn?"
 For Each cb In Application.CommandBars
 Debug.Print cb.Name, cb.Visible, cb.BuiltIn
 Next
End Sub

Application.CommandUnderlines [= xlCommandUnderlines]

(Macintosh only.) Sets or returns how commands are highlighted. Can be one of the following settings:

xlCommandUnderlinesOn

xlCommandUnderlinesOff

xlCommandUnderlinesAutomatic

For Windows, CommandUnderlines always returns xlCommandUnderlinesOn and cannot be set.

Application.ConstrainNumeric [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Windows for Pen only.) True restricts handwriting recognition to numbers and punctuation; False allows the full
alphabet.

Application.ControlCharacters [= setting]

(Right-to-left language display only.) True displays control characters for right-to-left languages ; False hides the
characters.

Application.ConvertFormula(Formula, FromReferenceStyle,
[ToReferenceStyle], [ToAbsolute], [RelativeTo])

Converts cell references in a formula between the A1 and R1C1 reference styles, between relative and absolute
references, or both.

Argument Description Settings

Formula The formula you want to convert.
Must be a valid formula
beginning with an
equals sign

FromReferenceStyle The XlReferenceStyle of the formula. xlA1 xlR1C1

ToReferenceStyle
The XlReferenceStyle style you want returned. If this argument is omitted, the
reference style isn't changed; the formula stays in the style specified by
FromReferenceStyle.

xlA1 xlR1C1

ToAbsolute The converted XlReferenceStyle. If omitted, the reference type isn't changed.
Defaults to xlRelative.

xlAbsolute
xlAbsRowRelColumn
xlRelRowAbsColumn
xlRelative

RelativeTo The cell that references are relative to. Defaults to active cell. Range object

The following code converts a formula to R1C1 style relative to cell A1:

Sub TestConvertFormula()
 Dim str As String
 str = "=Sum(A1:A20)"
 Debug.Print Application.ConvertFormula(str, xlA1, xlR1C1, _
 xlRelative, [a1])
End Sub

Application.CopyObjectsWithCells [= setting]

True copies objects, such as buttons, with selected cells; False omits objects. Default is True.

Application.Cursor [= XlMousePointer]

Sets or returns the mouse pointer image. Can be one of these settings:

xlDefault

xlIBeam

xlNorthwestArrow

xlWait

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.CursorMovement [= setting]

Sets or returns whether a visual cursor or a logical cursor is used. Can be one of these settings:

xlVisualCursor

xlLogicalCursor

Application.CustomListCount

Returns the number of custom lists. To view custom lists, select Tools Options Custom Lists.

Application.CutCopyMode [= setting]

Sets or returns whether or not the user is currently cutting or copying cells. Return settings are:

False, Excel is not in either mode

xlCopy

xlCut

Setting CutCopyMode to True or False cancels the current mode.

Application.DataEntryMode [= setting]

Sets or returns whether or not Excel is in data-entry mode. Can be one of these settings:

xlOn

xlOff

xlStrict, prevents the user from exiting the mode by pressing Esc

Data-entry mode restricts users to unlocked cells. By default, cell protection is set to Locked, so you must unlock a
range to demonstrate this feature. The following code restricts data entry to range A1:D4; the user can return to
regular mode by pressing Esc, as shown by the following code:

Sub TestDataEntryMode()
 Range("a1:d4").Locked = False
 Application.DataEntryMode = xlOn
End Sub

Application.DecimalSeparator [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the character used as the decimal separator.

Application.DefaultFilePath [= setting]

Sets or returns the path Excel uses by default when opening files.

Application.DefaultSaveFormat [= XlFileFormat]

Sets or returns the file format used by Excel when saving. Can be one of these settings:

xlAddIn xlCSV xlCSVMac

xlCSVMSDOS xlCSVWindows xlCurrentPlatformText

xlDBF2 xlDBF3 xlDBF4

xlDIF xlExcel2 xlExcel2FarEast

xlExcel3 xlExcel4 xlExcel4Workbook

xlExcel5 xlExcel7 xlExcel9795

xlHtml xlIntlAddIn xlIntlMacro

xlSYLK xlTemplate xlTextMac

xlTextMSDOS xlTextPrinter xlTextWindows

xlUnicodeText xlWebArchive xlWJ2WD1

xlWJ3 xlWJ3FJ3 xlWK1

xlWK1ALL xlWK1FMT xlWK3

xlWK3FM3 xlWK4 xlWKS

xlWorkbookNormal xlWorks2FarEast xlWQ1

xlXMLSpreadsheet

Application.DefaultSheetDirection [= setting]

Sets or returns the default reading direction. Can be one of these settings:

xlRTL

xlLTR

Application.DefaultWebOptions

Returns a DefaultWebOptions object that determines how Excel saves workbooks as web pages.

Application.DeleteChartAutoFormat(Name)

Removes a custom chart type. The following code removes the custom chart type created earlier in AddChartAutoFormat:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Removes a custom chart type. The following code removes the custom chart type created earlier in AddChartAutoFormat:

Sub TestDeleteChartType()
 Application.DeleteChartAutoFormat "new custom"
End Sub

[Application.]DeleteCustomList(ListNum)

Removes a custom list. The following code removes the list created earlier in AddCustomList:

Sub TestDeleteCustomList()
 ' Delete the last list.
 Application.DeleteCustomList Application.CustomListCount
End Sub

Application.Dialogs(XlBuiltInDialog)

Returns the collection of Excel's dialog boxes. Use Dialogs to display any of the Excel dialog boxes from code. The
following code displays the Activate Workbook dialog box:

Sub TestDialogs()
 Application.Dialogs(XlBuiltInDialog.xlDialogActivate).Show
End Sub

Excel has hundreds of dialog boxes. See Appendix A for a list of them.

Application.DisplayAlerts [= setting]

True displays standard Excel dialogs while a macro runs; False hides those dialogs and automatically uses the default
response for each. Default is True.

Set this property to False for batch operations in which you don't want user intervention; be sure to reset the property
to True when done. For example, the following code closes all workbooks but the current one without saving or
prompting the user:

Sub CloseAllNoSave()
 Dim wb As Workbook
 ' Turn off warnings.
 Application.DisplayAlerts = False
 For Each wb In Workbooks
 ' Close all workbooks but this one.
 If Not (wb Is ThisWorkbook) Then _
 wb.Close
 Next
 ' Turn warnings back on.
 Application.DisplayAlerts = True
End Sub

Application.DisplayClipboardWindow [= setting]

True displays the Clipboard window; False hides it. For example, the following code copies a chart and displays the
Clipboard window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard window:

Sub TestClipBoardWindow()
 Dim chrt As Chart
 ' Copy a Chart image into the Clipboard.
 Set chrt = Charts(1)
 chrt.CopyPicture xlScreen, xlBitmap
 Application.DisplayClipboardWindow = True
End Sub

Application.DisplayCommentIndicator
[=XlCommentDisplayMode]

Sets or returns the icon displayed for comments. Can be one of the following settings:

xlNoIndicator

xlCommentIndicatorOnly (default)

xlCommentAndIndicator

Application.DisplayDocumentActionTaskPane [= setting]

For Smart documents, True displays the Document Action task pane , and False hides it. Setting this property causes an
error if the workbook is not a Smart document.

Application.DisplayExcel4Menus [= setting]

True uses Excel Version 4.0 menus; False uses the current version menus. Default is False.

Application.DisplayFormulaBar [= setting]

True displays the Formula bar ; False hides it. Default is True.

Application.DisplayFullScreen [= setting]

True displays Excel in full-screen mode ; False uses the standard window mode. Default is False.

Application.DisplayFunctionToolTips [= setting]

True displays the function tool tips ; False does not. Default is True.

Application.DisplayInsertOptions [= setting]

True displays a dialog with special options, such as Clear Formatting, when inserting cells; False does not display the
dialog. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dialog. Default is True.

Application.DisplayNoteIndicator [= setting]

True displays an icon indicating cells with notes; False hides the icon. Default is True.

Application.DisplayPasteOptions [= setting]

True displays a dialog with special options when pasting cells; False does not display the dialog. Default is True.

Application.DisplayRecentFiles [= setting]

True displays a list of recently opened files on the File menu; False does not. Default is True.

Application.DisplayScrollBars [= setting]

True displays scrollbars for workbooks; False does not. Default is True.

Application.DisplayStatusBar [= setting]

True displays application status bar; False does not. Default is True.

Application.DisplayXMLSourcePane([XmlMap])

(Excel 2003 Professional Edition only.) Displays the XML Source task pane.

Argument Setting

XmlMap The XmlMap object to display in the task pane

Application.DoubleClick()

Double-clicks the active cell. This method emulates the user action.

Application.EditDirectlyInCell [= setting]

True allows editing in cells; False requires edits to be made in the Formula bar. Default is True.

Application.EnableAnimations [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True animates insertions and deletions; False does not animate those operations. Default is True.

[Application.]EnableAutoComplete [= setting]

True automatically completes words; False does not. Default is True.

Application.EnableCancelKey [= XlEnableCancelKey]

Sets or returns how Excel handles the Esc, Ctrl-Break, and Command-Period (Macintosh) keys. Can be one of these
settings:

xlDisabled

Cancel key trapping disabled.

xlErrorHandler

Cancel key causes error 18, which can be trapped by an On Error statement.

xlInterrupt

Cancel interrupts the current procedure, and the user can debug or end it (default).

Application.EnableEvents [= setting]

True turns on Excel events; False turns off Excel events. Default is True. Setting this property to False prevents code
written for Workbook, Worksheet, and other object events from running.

Application.EnableSound [= setting]

True allows Excel to play sounds; False disables sounds. Default is True.

Application.ErrorCheckingOptions

Returns the ErrorCheckingOptions object, which controls Excel's settings for automatic error checking.

[Application.]Evaluate(Name)

Evaluates an expression and returns the result. Evaluate is equivalent to enclosing the expression in square brackets ([]).

Argument Setting

Name A range address, a named range, or a formula

It is common to use the bracket notation for the Evaluate method since it is shorter. The following code displays various

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is common to use the bracket notation for the Evaluate method since it is shorter. The following code displays various
values from the active sheet:

Sub TestEvaluate()
 ' Show value of cell A1.
 Debug.Print [a1]
 ' Show total of A1:A3.
 Debug.Print [sum(a1:a3)]
 ' Show table of named ranges
 Dim n As Name, str As String
 Debug.Print "Name", "# w/data", "Address"
 For Each n In Names
 str = "Count(" & n.Name & ")"
 Debug.Print n.Name, Evaluate(str), [n]
 Next
End Sub

Using the bracket notation with a Name object returns the address of the name.

Application.ExtendList [= setting]

True extends formatting and formulas to new data added to a custom list; False does not. Default is True.

Application.FeatureInstall [= MsoFeatureInstall]

Determines how to handle calls to methods and properties that require features that aren't yet installed. Can be one of
these settings:

msoFeatureInstallNone

Doesn't install; causes an error when uninstalled features is called (default)

msoFeatureInstallOnDemand

Prompts the user to install feature

msoFeatureInstallOnDemandWithU

Automatically installs the feature; doesn't prompt the user

Application.FileConverters[(Index1, Index2)]

Returns an array of installed file converters.

Argument Setting

Index1 The full name of the converter including file type

Index2 The path of the converter's DLL

If arguments are omitted, FileConverters returns Null if there are no converters or a two-dimensional array containing the
name, DLL path, and extension for each converter. The following code displays a table of the installed converters:

Sub TestFileConverters()
 Dim cnv As Variant, i As Integer
 cnv = Application.FileConverters
 ' Display table columns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Display table columns
 Debug.Print "Name", "DLL", "Extension"
 ' Check if converters are installed
 If Not IsNull(cnv) Then
 For i = 1 To UBound(cnv, 1)
 Debug.Print cnv(i, 1), cnv(i, 2), cnv(i, 3)
 Next
 Else
 Debug.Print "No converters installed."
 End If
End Sub

Application.FileDialog (MsoFileDialogType)

Returns the FileDialog object.

Argument Description Settings

MsoFileDialogType Determines which Excel dialog to return

msoFileDialogFilePicker

msoFileDialogFolderPicker

msoFileDialogOpen

msoFileDialogSaveAs

The following code displays the file picker dialog box and lets the user select a text file to open in Notepad:

Sub TestFileDialog()
 Dim fname As String
 With Application.FileDialog(msoFileDialogFilePicker)
 .AllowMultiSelect = False
 .Filters.Add "Text files (*.txt)", "*.txt", 1
 .FilterIndex = 1
 .Title = "Open text file"
 If .Show = True Then _
 Shell "notepad.exe " & .SelectedItems(1)
 End With
End Sub

Application.FileFind

(Macintosh only.) Returns the FileFind object. The following code displays all of the files by Jeff:

Sub TestFind() ' Macintosh only
 Dim s
 With Application.FileFind
 .Author = "Jeff"
 .Execute
 For Each s In .Results
 Debug.Print s
 Next
 End With
End Sub

Application.FileSearch

(Windows only.) Returns the FileSearch object. The following code displays all of the text files in the current folder:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Windows only.) Returns the FileSearch object. The following code displays all of the text files in the current folder:

Sub TestSearch() ' Windows only
 Dim s
 With Application.FileSearch
 .LookIn = ThisWorkbook.Path
 .Filename = ".txt"
 .Execute
 For Each s In .FoundFiles
 Debug.Print s
 Next
 End With
End Sub

Application.FindFile()

Displays the Open File dialog box and opens the selected file in Excel.

Application.FindFormat

Returns the CellFormat object used by the Find method. For example, the following code selects the first bold cell on the
active worksheet:

Sub TestFindFormat()
 With Application.FindFormat
 .Font.Bold = True
 End With
 Cells.Find("", , , , , , , , True).Select
End Sub

Application.FixedDecimal [= setting]

True assumes a fixed decimal place for data entries; False assumes each entry has a variable decimal place. Default is
False.

Application.FixedDecimalPlaces [= setting]

Sets the placement of the decimal assumed during data entry. Default is 2. The following code configures Excel to treat
the entry 1000 as 0.1, 45000 as 4.5, and so on:

Sub TestDecimal()
 ' Turn on fixed decimal.
 Application.FixedDecimal = True
 ' Set the decimal place.
 Application.FixedDecimalPlaces = 4
End Sub

Application.GenerateGetPivotData [= setting]

True turns the GenerateGetPivotData command on; False turns the command off. The GenerateGetPivotData command
substitutes cell references for GETPIVOTDATA worksheet functions in formulas.

Application.GetCustomListContents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns an array of items from a custom list. For example, the following code displays all of the items in each of the
custom lists:

Sub TestListContent()
 Dim i As Integer, lst(), str As String, num As Integer
 Debug.Print "List Number", "Contents"
 For i = 1 To Application.CustomListCount
 lst = Application.GetCustomListContents(i)
 str = Join(lst, ", ")
 num = Application.GetCustomListNum(lst)
 Debug.Print num, str
 Next
End Sub

Application.GetCustomListNum(ListArray)

Returns the index of a custom list.

Argument Setting

ListArray The array of custom list items to look up.

Application.GetOpenFilename([FileFilter], [FilterIndex], [Title],
[ButtonText], [MultiSelect])

Displays the Open File dialog box and returns a filename or False if no file is selected. Does not open the file.

Argument Setting

FileFilter A filter to use in the drop-down list on the dialog box. Each filter is a pair separated by a comma:
DisplayString, Type. See the following example.

FilterIndex The index of the filter to display initially.

Title The caption for the dialog box. Default is Open.

ButtonText (Macintosh only.) The caption to show on the action button. Default is Open.

MultiSelect True allows the user to select multiple files.

The following code displays the File Open dialog box for web file types; if the user selects a file, the code opens the file
in Notepad:

Sub TestGetOpen()
 Dim fname As String, fltr As String
 fltr = "Web page (*.htm),*.htm,XML data (*.xml),*.xml," & _
 "XML Style Sheet (*.xsl),*.xsl"
 fname = Application.GetOpenFilename(fltr, _
 1, "Open web file", , False)
 If fname <> "False" Then _
 Shell "Notepad.exe " & fname
End Sub

Application.GetPhonetic([Text])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Japanese phonetic text of a string. Available only with Japanese language support.

Application.GetSaveAsFilename([InitialFilename], [FileFilter],
[FilterIndex], [Title], [ButtonText])

Displays the Save File As dialog box and returns a filename or False if no file is selected. Does not save the file.

Argument Setting

InitialFileName The name to display in the File text box

Other arguments See "Application.GetOpenFilename"

The following code saves the active workbook as a web page, closes the newly saved file, and reopens the original
workbook in XLS format:

Sub TestGetSaveAs()
 Dim fname1 As String, fname2 As String, fname3 As String
 Dim fltr As String
 ' Save changes
 ActiveWorkbook.Save
 ' Get current filename.
 fname1 = ActiveWorkbook.Name
 ' Get filename for web page.
 fname2 = Replace(fname1, "xls", "htm")
 fltr = "Web page (*.htm),*.htm,XML data (*.xml),*.xml," & _
 "XML Style Sheet (*.xsl),*.xsl"
 ' Show the Save As dialog.
 fname3 = Application.GetSaveAsFilename(fname2, fltr, _
 1, "Export to web")
 ' If not cancelled, save the file as a web page.
 If fname3 <> "False" Then _
 ActiveWorkbook.SaveAs fname3, xlHtml
 ' Reopen the original file.
 Workbooks.Open fname1
 ' Close the web page file.
 Workbooks(fname2).Close
End Sub

Application.Goto([Reference], [Scroll])

Selects a range of cells and activates the sheet containing the cells.

Argument Setting

Reference A range, named range, or string that evaluates to one of those.

Scroll True scrolls the sheet so that the selection is in the upper-left corner.

Goto is similar to Select, except Select does not activate the sheet.

Application.Height

Returns the height of the Excel window in pixels. Use the WindowState property to maximize window or minimize Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.Help([HelpFile], [HelpContextID])

Displays a help topic in Excel's Help window.

Argument Setting

HelpFile The file to display. Can be compiled Help (.chm or .hlp) or a web page (.htm). Defaults to the Excel help
file.

HelpContextID For compiled help files, the numeric ID of the topic to display. Ignored for web pages.

See Chapter 6 for details on creating and displaying Help. The following code displays an error message help page in
the Help window:

Sub TestApplicationHelp()
 ' Display Help in Help window.
 Application.Help ("http://excelworkshop.com/Help/error51.htm")
End Sub

Application.Hinstance

Returns a handle to the Excel application instance.

Application.Hwnd

Returns a handle to the top-level Excel window. You use handles with the Windows API to do low-level tasks not
available through Excel objects. For example, the following code displays the Excel always on top of all other windows,
even if Excel doesn't have focus:

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
 ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
 ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long
Const SWP_NOSIZE = &H1
Const SWP_NOMOVE = &H2
Const HWND_TOPMOST = -1
Const HWND_NOTOPMOST = -2

Sub TestShowXLOnTop()
 ' Change to False to return to normal.
 ShowXLOnTop True
End Sub

Public Function ShowXLOnTop(ontop As Boolean)
 Dim hXl As Long, setting As Long
 If ontop Then setting = HWND_TOPMOST _
 Else setting = HWND_NOTOPMOST
 hXl = Application.hwnd
 SetWindowPos hXl, setting, 0, 0, _
 0, 0, SWP_NOSIZE Or SWP_NOMOVE
End Sub

Application.InchesToPoints(Inches)

Converts a measurement from inches to points. This is the same a multiplying the value by 72.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Application.]InputBox(Prompt, [Title], [Default], [Left], [Top],
[HelpFile], [HelpContextID], [Type])

This is the same as the Visual Basic InputBox method with one addition: Application.InputBox allows you to get a selected
range using the Type argument which accepts the settings in the following table:

Setting Input is

0 A formula

1 A number

2 Text (a string)

4 A logical value (True or False)

8 A cell reference, as a Range object

16 An error value, such as #N/A

64 An array of values

The following code demonstrates getting a range using InputBox:

Sub TestInputBox()
 Dim rng As Range
 On Error Resume Next
 Set rng = Application.InputBox(_
 "Select a cell", , , , , , , 8)
 If Not (rng Is Nothing) Then
 Debug.Print rng.Count & " cells selected."
 Else
 Debug.Print "Input cancelled."
 End If
End Sub

See Chapter 3 for details on the Visual Basic InputBox method.

Application.Interactive [= setting]

True allows users to interact with Excel; False prevents user actions. Set the Interactive property to False to prevent user
actions while performing time-consuming operations in code. Be sure to set Interactive back to True when done.

Application.International(XlApplicationInternational)

Returns an array of locale settings . XlApplicationInternational can be one of the settings from the following table:

Category Setting Returns

Cell references xlLeftBrace Character used instead of the left brace ({) in array literals.

 xlLeftBracket Character used instead of the left bracket ([) in R1C1-style relative
references.

 xlLowerCaseColumnLetter Lowercase column letter.

 xlLowerCaseRowLetter Lowercase row letter.

 xlRightBrace Character used instead of the right brace (}) in array literals.

 xlRightBracket Character used instead of the right bracket (]) in R1C1-style references.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Character used instead of the right bracket (]) in R1C1-style references.

 xlUpperCaseColumnLetter Uppercase column letter.

 xlUpperCaseRowLetter Uppercase row letter (for R1C1-style references).

Country/Region xlCountryCode Excel country/region version setting.

 xlCountrySetting Windows country/region setting.

 xlGeneralFormatName Name of the General number format.

Currency xlCurrencyBefore True if the currency symbol precedes the currency values; False if it follows
them.

 xlCurrencyCode Currency symbol.

 xlCurrencyDigits Number of decimal digits to be used in currency formats.

 xlCurrencyLeadingZeros True if leading zeros are displayed for zero currency values.

 xlCurrencyMinusSign True if a minus sign indicates negative numbers; False if using parentheses.

 xlCurrencyNegative

Currency format for negative currency values:

0, parentheses, ($nnn) or (nnn$)

1, minus before, -$nnn or -nnn$

2, minus mid, $-nnn or nnn-$

3, minus after, $nnn- or nnn$-

 xlCurrencySpaceBefore True adds a space before the currency symbol.

 xlCurrencyTrailingZeros True displays trailing zeros for zero currency values.

 xlNoncurrencyDigits Number of decimal digits to be used in noncurrency formats.

Date and Time xl24HourClock True uses 24-hour time; False uses 12-hour time.

 xl4DigitYears True uses four-digit years; False uses two-digit years.

 xlDateOrder

Order of date elements:

0, month-day-year

1, day-month-year

2, year-month-day

 xlDateSeparator Date separator (/).

 xlDayCode Day symbol (d).

 xlDayLeadingZero True includes leading zero in days.

 xlHourCode Hour symbol (h).

 xlMDY True orders dates month-day-year in the long form; False orders dates day-
month-year.

 xlMinuteCode Minute symbol (m).

 xlMonthCode Month symbol (m).

 xlMonthLeadingZero True includes leading zero in months displayed as numbers.

 xlMonthNameChars Obsolete, always returns 3.

 xlSecondCode Second symbol (s).

 xlTimeLeadingZero True includes leading zero in times.

 xlTimeSeparator Time separator (:)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xlWeekdayNameChars Obsolete, always returns 3.

 xlYearCode Year symbol in number formats (y).

Measurement xlMetric True is metric system in use; False if the English measurement system is in
use.

 xlNonEnglishFunctions True if functions are not displayed in English.

Separators xlAlternateArraySeparator Alternate array item separator to be used if the current array separator is the
same as the decimal separator.

 xlColumnSeparator Character used to separate columns in array literals.

 xlDecimalSeparator Decimal separator.

 xlListSeparator List separator.

 xlRowSeparator Character used to separate rows in array literals.

 xlThousandsSeparator Zero or thousands separator.

[Application.]Intersect(Arg1, Arg2, [Argn], ...)

Returns the Range object containing the overlapping region of the ranges Arg1 through Argn.

Argument Setting

Arg1 The first Range object to intersect

Arg2 The second Range object to intersect

Argn Any number of additional Range objects to intersect

Application.Iteration [= setting]

True uses iteration to calculate formulas that refer to themselves (this is called a circular reference); False causes an
error for circular references . Default is False. Use the MaxChange and MaxIterations properties to control how many
calculations are performed during iteration.

Application.LanguageSettings

Returns a LanguageSettings object containing information about the user's locale.

Application.LargeButtons [= setting]

True displays large toolbar buttons; False displays regular-size buttons. Default is False.

Application.Left [= setting]

Sets or returns the distance between the left edge of the screen and the left edge of the Excel window in pixels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.LibraryPath

Returns the path to the Excel add-in library, for example C:\Program Files\Microsoft Office\OFFICE11\LIBRARY.

Application.MacroOptions([Macro], [Description], [HasMenu],
[MenuText], [HasShortcutKey], [ShortcutKey], [Category],
[StatusBar], [HelpContextId], [HelpFile])

Sets the description and help files displayed for a macro or user-defined function.

Argument Setting

Macro The name of the macro to set.

Description A description that appears in the Macro or Formula dialog box.

HasMenu Ignored.

MenuText Ignored.

HasShortcutKey True assigns a shortcut key to the macro.

ShortcutKey The shortcut key to assign.

Category The name of a category for the user-defined function. Default is User Defined.

StatusBar Ignored.

HelpContextId The context ID for the help topic within the compiled help file. Ignored for other help file types.

HelpFile The name of the help file to display for user-defined functions.

The usable arguments are different for macros (Subs) and user-defined functions (Functions). The Macro dialog box
doesn't use Category, HelpContextId, or HelpFile arguments. The Insert Function dialog box doesn't use HasShortcutKey or
ShortcutKey arguments.

The following code sets the options for the ShowXlOnTop user-defined function:

Sub TestMacroOptions()
 Application.MacroOptions "ShowXlOnTop", _
 "Set Excel as the top-most window.", , , , , _
 "Windows", "Excel On Top", , _
 "http:\\excelworkshop.com\Help\ch07.htm"
End Sub

After this code runs, Excel displays the options on the Insert Function dialog as shown in Figure 7-3.

Figure 7-3. How Excel displays macro options for user-defined functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.MailLogoff()

Ends a MAPI mail session.

Application.MailLogon([Name], [Password],
[DownloadNewMail])

Closes any existing MAPI sessions and creates a new one, starting the Microsoft Mail spooler. Returns True if Mail is
started successfully, False if not.

Argument Setting

Name The username for the mail session.

Password User password.

DownloadNewMail True downloads new mail immediately. Default is False.

Application.MailSession

Returns the MAPI session number begun by Excel. Returns Null if there is no session.

Application.MailSystem

Returns the XlMailSystem setting indicating the users installed mail system. Can be one of these settings:

xlMAPI

xlNoMailSystem

xlPowerTalk

Application.MapPaperSize [= setting]

True adjusts printing to map from the standard paper size of one locale to another; False does not adjust.

Application.MaxChange [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The maximum amount of change allowed in resolving circular references using iteration. Once the change is less than
this amount, iteration stops.

Application.MaxIterations [= setting]

The maximum number of calculations performed when resolving a circular reference.

Application.MoveAfterReturn [= setting]

True activates the next cell after the user presses Enter; False keeps the current cell active. Default is True.

Application.MoveAfterReturnDirection [=XlDirection]

Sets or returns which cell is activated after the user presses Enter. Can be one of these settings:

xlDown (default)

xlToLeft

xlToRight

xlUp

Application.Names([index])

Returns the collection of named ranges in the active workbook. The following code displays a table of named ranges:

Sub TestNames()
 Dim n As Name
 Debug.Print "Name", "Address"
 For Each n In Names
 Debug.Print n.Name, n.RefersTo
 Next
End Sub

Application.NetworkTemplatesPath

Returns the AltStartupPath property if that setting is a network share. Otherwise, returns an empty string.

Application.NewWorkbook

Returns an Office NewFile object that represents an item on the New Workbook task pane. You can use this object to add
or remove items from the task pane. For example, the following code adds the Invoice template and displays the task
pane:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pane:

Sub TestNewWorkbook()
 With Application.NewWorkbook
 .Add "Invoice.xlt", _
 MsoFileNewSection.msoNewfromTemplate, _
 "New Invoice", MsoFileNewAction.msoCreateNewFile
 End With
 Application.CommandBars("Task Pane").Visible = True
End Sub

See the Office VBA help file (VBAOF11.CHM) for information about the NewFile object.

Application.NextLetter()

(Macintosh with PowerTalk mail only.) Opens the next unread mail message in the In Tray.

Application.ODBCErrors

Returns the ODBCErrors collection generated by the most recent query table or PivotTable report.

Application.ODBCTimeout [= setting]

Sets or returns the time limit for ODBC queries. Default is 45 seconds.

Application.OLEDBErrors

Returns the OLEDBErrors collection generated by the most recent OLE DB query.

Application.OnKey(Key, [Procedure])

Assigns a macro to run when a key is pressed. Can also be used to disable built-in Excel key combinations.

Argument Setting

Key The key combination to assign. The character codes are the same as for SendKeys. See Chapter 3 for the
SendKeys codes.

Procedure The name of the macro to run. Setting to "" disables any built-in action for those keys; omitting this
argument restores the built-in action.

The following code demonstrates how to reassign, disable, and restore a built-in key assignment:

Sub TestOnKey()
 ' Reassign Ctrl+C
 Application.OnKey "^c", "CopyMsg"
 ' Disable Ctrl+C
 'Application.OnKey "^c", ""
 ' Restore Ctrl+C
 ' Application.OnKey "^c"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Application.OnKey "^c"
End Sub

Sub CopyMsg()
 MsgBox "You can't copy right now."
End Sub

Application.OnRepeat(Text, Procedure)

Reassigns the Repeat item on the Edit menu (Ctrl-Y).

Argument Setting

Text The text to display instead of Repeat...

Procedure The procedure to run when the user chooses Edit Repeat or presses Ctrl-Y.

The following code replaces the Repeat item on the Edit menu with the item Do Over and runs the DoOver procedure with
the user selects the item:

Sub TestOnRepeat()
 Application.OnRepeat "Do over", "DoOver"
End Sub

Application.OnTime(EarliestTime, Procedure, [LatestTime],
[Schedule])

Sets the name of a procedure to run at a specified time.

Argument Setting

EarliestTime The earliest time you want to run the procedure.

Procedure The name of the procedure to run.

LatestTime The latest time you want to run the procedure. Default is no limit.

Schedule True schedules the procedure to run; False removes the procedure from the schedule to run. Default is
True.

Application.OnUndo(Text, Procedure)

Reassigns the Undo item on the Edit menu (Ctrl-Z). The arguments are the same as for OnRepeat.

Application.OnWindow [= setting]

Sets or returns a procedure to run when a window is activated.

Application.OperatingSystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the name, version, and address model of the operating system. For example, "Windows (32-bit) NT 5.01"
indicates Windows XP Professional.

Application.OrganizationName

Returns the name of the user's organization as entered during installation.

Application.Path

Returns the path to the folder where Excel is installed.

Application.PathSeparator

Returns "\" in Windows and ":" on the Macintosh.

Application.PivotTableSelection [= setting]

True enables structured selection PivotTable reports; False disables. Default is False.

Application.PreviousSelections([index])

Returns one of the four last-selected ranges entered in the Go To dialog box.

Application.ProductCode

Returns the programmatic ID (ProgId) of Excel. This value is a globally unique identifier (GUID) used in Windows
programming.

Application.PromptForSummaryInfo [= setting]

True prompts the user for the workbook properties when files are first saved; False does not prompt. Default is False.

Application.Quit()

Exits Excel. Excel prompts to save changes before closing unless DisplayAlerts is set to False or the workbook's Saved
property is set to True.

[Application.]Range([cell1],[cell2])

Returns a range of cells.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a range of cells.

Argument Setting

cell1 The upper-left corner of the range

cell2 The lower-right corner of the range

The three ways to specify the Range method are cell references, strings, or brackets. The following three lines all select
the same range:

Range(Cells(1, 1), Cells(3, 3)).Select
Range("A1", "C3").Select
[A1:C3].Select

Application.Ready

Returns True if Excel is ready for input, False otherwise. Excel is not "ready" while a user is editing a cell (edit mode) or
when a dialog box is displayed. In those situations, macros must wait to run.

Application.RecentFiles([index])

Returns the RecentFiles collection. RecentFiles represents the list of recently used files displayed at the bottom of the File
menu. For example, the following code displays the path- and filenames for each file in the Recent Files list:

Sub TestRecentFiles()
 Dim f As RecentFile
 For Each f In Application.RecentFiles
 Debug.Print f.Path
 Next
End Sub

Application.RecordMacro([BasicCode], [XlmCode])

Sets the code for Excel to record if the user selects Tools Macro Record New Macro and then performs a task
that runs this macro.

Argument Setting

BasicCode The string to record in place of the default

XlmCode Obsolete

By default, Excel records Application.Run "workbook!macro" whenever a user runs a macro while recording. To prevent
recording, set BasicCode to "" for the macro:

Sub SecretMacro()
 ' Don't record this!
 Application.RecordMacro ""
 ' Secret stuff...
End Sub

Application.RecordRelative [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True uses relative references when recording; False uses absolute references. Default is False.

Application.ReferenceStyle [=XlReferenceStyle]

Sets or returns the style Excel uses to refer to cells. Can be one of these settings:

xlA1

xlR1C1

Application.RegisteredFunctions

Returns an array of DLL functions registered with Excel. The following code displays a list of the registered functions:

Sub TestRegisteredFunctions()
 Dim i As Integer, func
 func = Application.RegisteredFunctions
 Debug.Print "DLL", "Function", "Arguments/Return type"
 If Not IsNull(func) Then
 For i = 1 To UBound(func, 1)
 Debug.Print func(i, 1), func(i, 2), func(i, 3)
 Next
 Else
 Debug.Print "No functions registered."
 End If
End Sub

Application.RegisterXLL(Filename)

Loads an Excel DLL (XLL) and registers it.

Argument Setting

Filename The name of the file to register

Application.Repeat()

Repeats the last user action.

Application.ReplaceFormat [= setting]

Sets or returns the CellFormat object used when reformatting during search and replace. For example, the following code
replaces all bold with italic:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replaces all bold with italic:

Sub TestReplaceFormat()
 Dim fBold As CellFormat, fItal As CellFormat
 Set fBold = Application.FindFormat
 Set fItal = Application.ReplaceFormat
 fBold.Font.Bold = True
 fItal.Font.Bold = False
 fItal.Font.Italic = True
 Cells.Replace "", "", , , , , True, True
End Sub

Application.RollZoom [= setting]

True sets the IntelliMouse wheel to zoom the display rather than scroll it; False sets the wheel to scroll. Default is False.

[Application.]Rows([index])

Returns a range containing the cells in a row on the active worksheet. For example, the following code selects row 3:

Rows(3).Select

Application.RTD

Returns a real-time data object.

Application.Run([Macro], [Args])

Runs a macro.

Argument Setting

Macro The name of the macro to run

Args Arguments for the macro

This method is mainly used by Excel itself when recording user actions that run macros. However, you can also use it to
run automated tests during development.

Application.SaveWorkspace([Filename])

Saves the current settings as an Excel workspace file.

Argument Setting

Filename The name of the file to save. Default is RESUME.XLW.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel workspace files include the open documents, window placement, and other settings that are restored when the
user opens the file. Don't confuse this with shared workspaces, which is a way to share a workbook with others through
SharePoint.

Application.ScreenUpdating [= setting]

True updates the Excel display as tasks are performed; False hides updates. Default is True. Setting ScreenUpdating to
False speeds up lengthy operations, such as changing all the cells on a worksheet. Be sure to set this property back to
True when done.

Application.Selection

Returns the currently selected objects on the active worksheet. Returns Nothing if no objects are selected. Use the Select
method to set the selection, and use TypeName to discover the kind of object that is selected. The following code displays
information about the current selection:

Sub TestSelection()
 Dim str As String
 Select Case TypeName(Selection)
 Case "Nothing"
 str = "Please select something."
 Case "Range"
 str = "You selected the range: " & Selection.Address
 Case "Picture"
 str = "You selected a picture."
 Case Else
 str = "You selected a " & TypeName(Selection) & "."
 End Select
 MsgBox str
End Sub

Application.SendKeys(Keys, [Wait])

This method is the same as the Visual Basic SendKeys method. See Chapter 3 for details.

Application.SetDefaultChart([FormatName], [Gallery])

Sets the default chart type used by Excel.

Argument Setting

FormatName Can be one of the XlChartType constants, xlBuiltIn, or the name of a custom chart type

Gallery Not used

For example, the following code sets the default chart type to a 3-D style:

Sub TestSetChartType()
 Application.SetDefaultChart XlChartType.xl3DArea
End Sub

[Application.]Sheets([index])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Worksheet and Chart objects in the active workbook. Sheets is a mixed collection, so you can't count on every
item being a specific type. Instead, you must test check the TypeName before calling methods on the object, as shown by
the following code:

Sub TestSheet()
 Dim itm As Object, ws As Worksheet, ct As Chart
 For Each itm In Sheets
 Select Case TypeName(itm)
 Case "Worksheet"
 Set ws = itm
 Debug.Print ws.UsedRange.Address
 Case "Chart"
 Set ct = itm
 If ct.HasTitle Then _
 Debug.Print ct.ChartTitle
 Case Else
 Debug.Print TypeName(itm)
 End Select
 Next
End Sub

Use the Worksheets or Charts method to get those specific object types.

Application.SheetsInNewWorkbook [= setting]

Gets or sets the number of worksheets automatically included in new workbooks. Default is 3.

Application.ShowChartTipNames [= setting]

True shows the names of items on a chart as tool tips; False hides the names. Default is True.

Application.ShowChartTipValues [= setting]

True includes the values of series points in the tool tips displayed on a chart; False hides the values. Default is True.

Application.ShowStartupDialog [= setting]

True displays the New Workbook task pane when the user chooses File New; False creates the workbook without
displaying the task pane. Default is True.

Application.ShowToolTips [= setting]

True displays pop-up tool tips when the mouse pointer pauses over a toolbar button; False does not display tool tips.
Default is True.

Application.ShowWindowsInTaskbar [= setting]

True displays each open workbook as a separate instance of Excel with its own item on the Windows task bar ; False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True displays each open workbook as a separate instance of Excel with its own item on the Windows task bar ; False
collects all workbooks into a single instance of Excel with only one task bar item. Default is True.

ShowWindowsInTaskbar affects only how Excel appears in Windows. It doesn't affect how much memory it uses or the
number of processes running for Excel.

Application.SmartTagRecognizers

Returns a collection of SmartTagRecognizer objects.

Application.Speech

Returns a Speech object that can be used to say words. Using Speech causes an error if the feature is not installed. The
following code tries to say "Hazelnootpasta":

Sub TestSpeech()
 On Error Resume Next
 Application.Speech.Speak "Hazelnootpasta"
 If Err Then MsgBox "Speech not installed."
End Sub

Application.SpellingOptions

Returns a SpellingOptions object that you can use to control how Excel performs spellchecking. The following code displays
the main spelling option settings:

Sub TestSpellingOptions()
 With Application.SpellingOptions
 Debug.Print .DictLang
 Debug.Print .IgnoreCaps
 Debug.Print .IgnoreMixedDigits
 Debug.Print .IgnoreFileNames
 Debug.Print .SuggestMainOnly
 End With
End Sub

Application.StandardFont [= setting]

Sets or returns the standard font name. For Windows, the default is Arial.

Application.StandardFontSize [= setting]

Sets or returns the standard font point size. For Windows, the default is 10.

Application.StartupPath

Returns the path to the XLSTART directory .

Application.StatusBar [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the text in the Excel status bar.

Application.TemplatesPath

Returns the path to the user's Templates folder.

Application.ThisCell

Returns the Range object of the cell calling the current user-defined function.

Application.ThisWorkbook

Returns the Workbook object of the Excel file that contains the current procedure. ThisWorkbook is different from
ActiveWorkbook in that ActiveWorkbook changes based on the current selection, whereas ThisWorkbook always refers to the file
that contains the running code.

Application.ThousandsSeparator [= setting]

Sets or returns the character used to separate thousands.

Application.Top [= setting]

Sets or returns the distance between the top of the Excel window and the top of the screen.

Application.Undo()

Cancels the last user action.

[Application.]Union(Arg1, Arg2, [Argn])

Joins two or more Range objects into a single Range.

Argument Setting

Arg1 The first Range object to join

Arg2 The second Range object to join

Argn Any number of additional Range objects to join

Application.UsableHeight

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the maximum height of the usable area of Excel in points. This is the Height minus the title, menu, tool, status
bars, and column header.

Application.UsableWidth

Returns the maximum width of the usable area of Excel in points. This is the Width minus the scrollbar and row header.

Application.UsedObjects

Returns a collection of all the objects used in Excel. This code displays the names and types of all the objects currently
in use by Excel:

Sub TestUsedObjects()
 Dim o, name As String
 On Error Resume Next
 Debug.Print "Type", "Name"
 For Each o In Application.UsedObjects
 name = o.name
 Debug.Print TypeName(o), name
 Next
End Sub

Application.UserControl

Returns True if Excel is visible, False if Excel was started programmatically and is not visible. When UserControl is False,
Excel quits if there are no references to it.

Application.UserLibraryPath

Returns the path to the user's Addins folder.

Application.UserName [= setting]

Sets or returns the user's name.

Application.UseSystemSeparators [= setting]

True uses the operating system settings for thousands and decimal separators ; False uses the Excel settings. Default is
True.

Application.VBE

Returns the VBE object that represents the Visual Basic Editor. The following code displays the Visual Basic Editor:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the VBE object that represents the Visual Basic Editor. The following code displays the Visual Basic Editor:

Private Sub cmdViewCode_Click()
 On Error Resume Next
 Application.VBE.MainWindow.Visible = True
 ' An error occurs if security settings prohibit this.
 If Err Then
 MsgBox "You must change Macro security options " & _
 "before you can view code in this way. " & _
 "Choose Tools>Macro>Security>Trusted Publishers and " & _
 "select Trust access to Visual Basic Project."
 End If
End Sub

Application.Version

Returns the Excel version number. For example, Excel 2003 returns 11.0.

Application.Visible [= setting]

True if the Excel window is visible; False if it is hidden. When Excel is not visible, it doesn't appear on the task bar, and
the only way to close the application may be to use the Task Manager (Ctrl-Delete) in Windows.

Application.Volatile([Volatile])

Marks a user-defined function for recalculation whenever any cells on the worksheet are recalculated.

Argument Setting

Volatile True causes the function to recalculate when any cell on the worksheet is recalculated; False recalculates
only when the input values change. Default is True.

Application.Wait(Time)

Pauses Excel.

Argument Setting

Time The time to resume Excel

You can specify an interval of time to wait by incrementing Now. The following code uses that technique to create a
procedure that pauses for an interval specified in milliseconds (the same as the Windows API Sleep function):

Sub TestSleep()
 ' Wait 5 seconds.
 Sleep 5000
 MsgBox "Time's up!"
End Sub

Sub Sleep(milsecs As Long)
 Dim dt As Date
 ' 0.00001 = 1 second in the Date type.
 dt = Now + (milsecs / 100000000)
 Application.Wait (dt)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Application.Watches([index])

Returns a collection of Watch objects that represent items in a Watch window.

Application.Width [= setting]

Sets or returns the width of the Excel window in pixels.

Application.Windows([index])

Returns a collection of Window objects that represent the windows displayed by Excel.

Application.WindowsForPens

Returns True if Excel is running under Windows for Pen Computing, False otherwise.

Application.WindowState [= XlWindowState]

Sets or returns the state of the Excel window. Can be one of these settings:

xlMaximized

xlNormal

xlMinimized

[Application.]Workbooks([index])

Returns a collection of Workbook objects that represent workbooks that are currently open in Excel.

[Application.]WorksheetFunction

Returns the WorksheetFunction object, which is used to access Excel's built-in functions. See Chapter 4 for a description of
the available functions.

[Application.]Worksheets([index])

Returns a collection containing the Worksheet objects in the active workbook. This is different from the Sheets collection,
which returns Worksheet, Chart, and other types of sheet objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5. AutoCorrect Members
The AutoCorrect object has the following members. Key members (shown in bold) are covered in the following reference
section:

AddReplacement Application

AutoExpandListRange CapitalizeNamesOfDays

CorrectCapsLock CorrectSentenceCap

Creator DeleteReplacement

DisplayAutoCorrectOptions Parent

ReplacementList ReplaceText

TwoInitialCapitals

The AutoCorrect object provides a set of properties that determine how Excel handles automatic correction. Most of the
AutoCorrect members are True/False properties that enable or disable specific Auto Correct options. The following code
displays a list of the current Auto Correct settings in Excel:

Sub ShowAutoCorrectSettings()
 With Application.AutoCorrect
 Debug.Print .AutoExpandListRange
 Debug.Print .CapitalizeNamesOfDays
 Debug.Print .CorrectCapsLock
 Debug.Print .CorrectSentenceCap
 Debug.Print .DisplayAutoCorrectOptions
 Debug.Print .ReplaceText
 Debug.Print .TwoInitialCapitals
 End With
End Sub

These properties correspond to the settings on the AutoCorrect dialog box (Figure 7-4). To see that dialog, choose
Tools AutoCorrect Options.

Figure 7-4. Displaying the AutoCorrect options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoCorrect.AddReplacement(What, Replacement)

Adds an item to the replacement list shown at the bottom of Figure 7-4.

Argument Setting

What The typed sequence to automatically correct

Replacement The correction to use

AutoCorrect.DeleteReplacement(What)

Deletes an item from the replacement list.

Argument Setting

What The typed sequence to delete from the replacement list

AutoCorrect.ReplacementList

Returns the replacement list. The following code displays the list of items that Excel will automatically replace and the
replacements that will be used:

Sub ShowReplacementList()
 Dim i As Integer
 With Application.AutoCorrect
 Debug.Print "Replace", "With"
 For i = 1 To UBound(.ReplacementList, 1)
 Debug.Print .ReplacementList(i)(1), _
 .ReplacementList(i)(2)
 Next
 End With
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6. AutoRecover Members
The AutoRecover object has the following members. Key members (shown in bold) are covered in the following reference
section:

Application

Creator

Enabled

Parent

Path

Time

AutoRecover.Enabled [= setting]

True enables automatic recovery; False disables it.

AutoRecover.Path [= setting]

Sets or returns the path where Excel stores the files used by automatic recovery.

AutoRecover.Time [= setting]

Sets or returns the number of minutes between when automatic recovery files are saved. Must be between 1 and 120.
Default is 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.7. ErrorChecking Members
The ErrorChecking object has the following members:

Application BackgroundChecking

Creator EmptyCellReferences

EvaluateToError InconsistentFormula

IndicatorColorIndex ListDataValidation

NumberAsText OmittedCells

Parent TextDate

UnlockedFormulaCells

Most of the ErrorChecking members are True/False properties that enable or disable specific error-checking options. The
following code displays a list of the current error-checking settings in Excel:

Sub ShowErrorCheckingSettings()
 With Application.ErrorCheckingOptions
 Debug.Print .BackgroundChecking
 Debug.Print .EmptyCellReferences
 Debug.Print .EvaluateToError
 Debug.Print .InconsistentFormula
 Debug.Print .IndicatorColorIndex
 Debug.Print .ListDataValidation
 Debug.Print .NumberAsText
 Debug.Print .OmittedCells
 Debug.Print .TextDate
 Debug.Print .UnlockedFormulaCells
 End With
End Sub

These properties correspond to the settings on the Error Checking dialog box shown in Figure 7-5. To see the dialog,
choose Tools Error Checking Options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.8. SpellingOptions Members
The SpellingOptions object has the following members:

ArabicModes DictLang

GermanPostReform HebrewModes

IgnoreCaps IgnoreFileNames

IgnoreMixedDigits KoreanCombineAux

KoreanProcessCompound KoreanUseAutoChangeList

SuggestMainOnly UserDict

Figure 7-5. Displaying error-checking options

The SpellingOptions object provides a set of properties that determine how Excel handles spellchecking. All of the Spelling
members are read/write properties that enable or disable specific options. The following code displays a list of the
current spell-checking settings in Excel:

Sub ShowSpellCheckSettings()
 With Application.SpellingOptions
 Debug.Print .DictLang
 Debug.Print .IgnoreCaps
 Debug.Print .IgnoreMixedDigits
 Debug.Print .SuggestMainOnly
 Debug.Print .UserDict
 End With
End Sub

These properties correspond to the settings on the Spelling tab of the Options dialog box (Figure 7-6). To see that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These properties correspond to the settings on the Spelling tab of the Options dialog box (Figure 7-6). To see that
dialog, choose Tools Options Spelling.

Language-specific settings in Figure 7-6 are disabled because my selected language is
English (U.S.). You must install those language versions of Excel to use those settings.

Figure 7-6. Displaying the spellchecking options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.9. Window and Windows Members
The Window object and Windows collection have the following members . Key members (shown in bold) are covered in the
following reference section:

Activate ActivateNext ActivatePrevious

ActiveCell ActiveChart ActivePane

ActiveSheet Application2 Arrange1

BreakSideBySide1 Caption Close

CompareSideBySideWith1 Count1 Creator2

DisplayFormulas DisplayGridlines DisplayHeadings

DisplayHorizontalScrollBar DisplayOutline DisplayRightToLeft

DisplayVerticalScrollBar DisplayWorkbookTabs DisplayZeros

EnableResize FreezePanes GridlineColor

GridlineColorIndex Height Index

LargeScroll Left Panes

Parent1 PointsToScreenPixelsX PointsToScreenPixelsY

RangeFromPoint RangeSelection ResetPositionsSideBySide1

ScrollColumn ScrollIntoView ScrollRow

ScrollWorkbookTabs SelectedSheets Selection

SmallScroll Split SplitColumn

SplitHorizontal SplitRow SplitVertical

SyncScrollingSideBySide1 TabRatio Top

Type UsableHeight UsableWidth

View Visible VisibleRange

Width WindowNumber WindowState

Zoom
1 Collection only

2 Object and collection

Use the Windows collection and Window objects to control which window has focus in Excel and to open, close, arrange,
and control the appearance of Excel windows. Use the Application object's ActiveWindow property to get the window that
currently has focus, or use the Windows collection to choose a specific window.

The following code demonstrates the most common window tasks:

Sub TestWindows()
 Dim i As Integer, wnd As Window
 Dim curWnd As Window, curState As XlWindowState
 ' Save the current settings
 Set curWnd = ActiveWindow
 curState = curWnd.WindowState
 ' Create four new windows.
 For i = 1 To 4
 Set wnd = curWnd.NewWindow
 wnd.Caption = "New Window: " & i
 Next
 ' Cascade the windows.
 Application.Windows.Arrange (xlArrangeStyleCascade)
 ' Activate each in turn.
 For Each wnd In Application.Windows
 wnd.Activate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wnd.Activate
 ' Wait 1 second.
 API.Sleep (1000)
 Next
 ' Close created windows
 For Each wnd In Application.Windows
 If wnd.Caption Like "New Window: ?" Then wnd.Close
 Next
 ' Restore original window and state.
 curWnd.Activate
 curWnd.WindowState = curState
End Sub

window.Activate()

Sets focus on the window, bringing it to the top.

window.ActivateNext()

Sets focus to the next window in the Excel windows list.

window.ActivatePrevious()

Sets focus to the previous window in the Excel windows list.

windows.Arrange([ArrangeStyle], [ActiveWorkbook],
[SyncHorizontal], [SyncVertical])

Arranges the Excel windows.

Argument Setting

ArrangeStyle Can be one of these XlArrangeStyle settings: xlArrangeStyleCascade, xlArrangeStyleTiled (default),
xlArrangeStyleHorizontal, xlArrangeStyleVertical.

ActiveWorkbook True arranges only the windows of the active workbook; False arranges all workbooks. Default is False.

SyncHorizontal True links the windows so that they scroll together horizontally; False allows independent scrolling.
Default is False. Ignored if ActiveWorkbook is not True.

SyncVertical True links the windows so that they scroll together vertically; False allows independent scrolling.
Default is False. Ignored if ActiveWorkbook is not True.

windows.BreakSideBySide()

Ends the side-by-side comparison of two workbooks. See CompareSideBySideWith for details.

window.Close([SaveChanges], [Filename], [RouteWorkbook])

Close the window. Closing the last open window for a workbook closes the workbook, so Close has these arguments in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Close the window. Closing the last open window for a workbook closes the workbook, so Close has these arguments in
the following table that determine what to do in that case:

Argument Setting

SaveChanges True saves changes to the workbook; False abandons changes. Prompts the user if omitted.

Filename The name of the file to save the workbook as; default is the current filename.

RouteWorkbook If the workbook has a routing slip attached, True routes the workbook to the next recipient; False does
not route. Prompts the user if omitted.

windows.CompareSideBySideWith(WindowName)

Starts side-by-side comparison between the active window and another window. Side-by-side comparison links the
scrolling of the two windows so that you can more easily compare different versions of a workbook. Use BreakSideBySide to
turn off this comparison.

The following code demonstrates turning side-by-side comparison on and off. Ordinarily, you would open two existing
versions of a workbook, but I create the second version here so that the demonstration is self-contained:

Sub TestBeginSideBySide()
 Dim fpath As String, wnd As Window
 ' Get the window for active workbook.
 Set wnd = Application.ActiveWindow
 ' Get the workbook's full filename.
 fname = ActiveWorkbook.Path & "\" & ActiveWorkbook.name
 ' Change it to a new filename.
 fname = VBA.Replace(fname, ".xls", "_v2.xls")
 ' Save a copy of the workbook.
 ActiveWorkbook.SaveCopyAs fpath
 ' Open the copy (makes the copy the active window).
 Application.Workbooks.Open fname
 ' Turn on side-by-side comparision.
 Application.Windows.CompareSideBySideWith wnd.Caption
End Sub

Sub TestEndSideBySide()
 ' Turn off side-by-side comparision.
 Application.Windows.BreakSideBySide
End Sub

window.DisplayFormulas [= setting]

True displays formulas in cells; False displays result of formulas (values). Default is False.

window.DisplayGridlines [= setting]

True displays gridlines showing cell boundaries; False hides gridlines. Default is True.

window.DisplayHeadings [= setting]

True displays column headings (A, B, C, ...); False hides headings. Default is True.

window.DisplayHorizontalScrollBar [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True displays the horizontal scrollbar; False hides it. Default is True.

window.DisplayOutline [= setting]

True displays outlining symbols; False hides them. Default is True. To outline a worksheet, choose Data Group and
Outline Auto Outline. The outlining symbols appear to the left of the row numbers.

window.DisplayRightToLeft [= setting]

True displays Excel in right-to-left fashion; False displays Excel left-to-right. DisplayRightToLeft is used for locales with left-
to-right languages, such as Saudi Arabia.

window.DisplayVerticalScrollBar [= setting]

True displays the vertical scrollbar; False hides it. Default is True.

window.DisplayWorkbookTabs [= setting]

True displays the sheet tabs at the bottom of the workbook; False hides them. Default is True.

window.DisplayZeros [= setting]

True displays zero values as 0 in cells; False hides zero values. Default is True.

window.EnableResize [= setting]

True allows the user to resize the window; False prohibits resizing. Default is True. Accessing this property causes an
error if WindowState is not xlNormal. The following code prevents the user from changing the active window's size:

Sub TestDisableResize()
 If ActiveWindow.WindowState = xlNormal Then _
 ActiveWindow.EnableResize = False
End Sub

window.FreezePanes [= setting]

True locks panes to prevent horizontal and vertical scrolling; False allows panes to scroll. Default is False.

window.GridlineColor [= setting]

Sets or returns the color of gridlines as an RGB color. RGB colors are long integers that you can create using the RGB
function or (commonly) by specifying a value in hexadecimal. The following code changes the grid color to red, green,
blue, and back to normal:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

blue, and back to normal:

Sub TestGridlineColor()
 ' Change grid color using hexidecimal values.
 ActiveWindow.GridlineColor = &HFF ' Red
 ' Wait 1 second.
 API.Sleep (1000)
 ActiveWindow.GridlineColor = &HFF00 ' Green
 API.Sleep (1000)
 ActiveWindow.GridlineColor = &HFF0000 ' Blue
 API.Sleep (1000)
 ' Restore the default.
 ActiveWindow.GridlineColorIndex = xlColorIndexAutomatic
End Sub

window.GridlineColorIndex [=xlColorIndexAutomatic]

Sets or returns the color of the gridlines based on the index into the color palette. Default is xlColorIndexAutomatic.

window.LargeScroll([Down], [Up], [ToRight], [ToLeft])

Scrolls the window a number of pages in a given direction. You can combine arguments to scroll diagonally.

Argument Setting

Down Number of pages to scroll down

Up Number of pages to scroll up

ToRight Number of pages to scroll right

ToLeft Number of pages to scroll left

window.Panes

Returns the collection of Panes objects for the window. Windows that are not split return one pane.

window.PointsToScreenPixelsX(Points)

Converts an application width measurement of points to a screen measurement in pixels. The following code displays
the screen dimensions in pixels:

Sub TestPointsToPixels()
 Application.DisplayFullScreen = True
 Debug.Print Application.Windows(1).PointsToScreenPixelsX(Application.Width)
 Debug.Print Application.Windows(1).PointsToScreenPixelsX(Application.Height)
 Application.DisplayFullScreen = False
End Sub

window.PointsToScreenPixelsY(Points)

Converts the application height measurement of points to a screen measurement in pixels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window.RangeFromPoint(x, y)

Returns the Range object at the specified x and y coordinates. Coordinates are in pixels, not points.

window.RangeSelection

Returns a Range object containing the selected cells on the window. RangeSelection is slightly different from Selection, since
Selection can include drawing objects as well as ranges.

windows.ResetPositionsSideBySide()

Restores the side-by-side comparison display after one of the windows is maximized or minimized while the user is
doing a comparison.

window.ScrollColumn [= setting]

Sets or returns the column number displayed in the leftmost side of the Excel window.

window.ScrollIntoView(Left, Top, Width, Height, [Start])

Scrolls the window to a rectangular region on the worksheet.

Argument Setting

Left The left edge of the rectangle in points.

Top The top edge of the rectangle in points.

Width The width of the rectangle in points.

Height The height of the rectangle in points.

Start True scrolls the upper-left corner of the rectangle to the upper-left corner of the window; False scrolls
the lower-right corner of the rectangle to the lower-right corner of the window. Default value is True.

window.ScrollRow [= setting]

Sets or returns the row number displayed at the top of the Excel window.

window.ScrollWorkbookTabs([Sheets], [Position])

Scrolls the worksheet tabs displayed at the bottom of a workbook.

Argument Setting

Sheets The number of tabs to scroll in either direction. Positive values scroll to the right; negative values scroll
left.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

left.

Position Can be one of the following settings: xlFirst, xlLast.

window.SelectedSheets

Returns the collection of worksheets and charts selected in the window. More than one sheet can be selected by
multiselecting the sheet tabs at the bottom of the window.

window.Selection

Returns the objects selected on the window.

window.SmallScroll([Down], [Up], [ToRight], [ToLeft])

Scrolls the window a number of rows or columns in a given direction. You can combine arguments to scroll diagonally.

Argument Setting

Down Number of rows to scroll down

Up Number of rows to scroll up

ToRight Number of columns to scroll right

ToLeft Number of columns to scroll left

window.Split [= setting]

True splits the window into panes; False displays the window as a single pane. Default is False. Use Split in combination
with the following properties to divide a window into panes. For example, the following code splits the active window
vertically at column C:

Sub TestSplitVertically()
 With ActiveWindow
 .SplitColumn = 3
 .SplitRow = 0
 .Split = True
 End With
End Sub

window.SplitColumn [= setting]

Sets or returns the column number at which to split a window vertically.

window.SplitHorizontal [= setting]

Sets or returns the location in points at which to split a window horizontally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window.SplitRow [= setting]

Sets or returns the row number at which to split a window horizontally.

window.SplitVertical [= setting]

Sets or returns the location in points at which to split a window vertically.

windows.SyncScrollingSideBySide [= setting]

True synchronizes the two windows displayed during side-by-side comparison so that scrolling one window scrolls the
other window an equal amount; False allows the windows to scroll independently.

window.TabRatio [= setting]

Sets or returns the ratio between the width of the tab area and the width of the window's horizontal scrollbar. Default is
0.6.

window.View [= XlWindowView]

Sets or returns whether page breaks are displayed. Can be one of these settings:

xlNormalView

xlPageBreakView

window.VisibleRange

Returns the Range object that is visible on the window.

window.WindowNumber [= setting]

Returns the number portion of the window caption. For example, the window captioned ch07.xls:2 returns 2.

window.WindowState [= XlWindowState]

Sets or returns the state of the window. Can be one of these settings:

xlMaximized

xlNormal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlMinimized

window.Zoom [= setting]

Sets or returns a percentage by which to magnify the window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.10. Pane and Panes Members
The Pane object and Panes collection have the following members . These members are the same as the Window members
of the same name.

Activate Application2

Count1 Creator2

Index LargeScroll

Parent2 ScrollColumn

ScrollIntoView ScrollRow

SmallScroll VisibleRange

1 Collection only

2 Object and collection

Pane objects represent the regions of a window. By default, Excel windows have one pane; additional panes are created
when the user or code splits the window into two or four regions.

The following code demonstrates splitting the active window into four panes, then scrolling each of those panes:

Sub TestPanes()
 Dim pn As Pane, down As Integer, right As Integer
 Dim i As Integer
 With ActiveWindow
 ' Set the location for the split.
 .SplitColumn = 10
 .SplitRow = 16
 ' Split into four panes.
 .Split = True
 For i = 1 To .Panes.Count
 down = i * 2
 right = i + 3
 ' Scroll each pane.
 .Panes(i).SmallScroll down, , right
 Next
 End With
End Sub

The preceding code demonstrates two key things:

The Panes collection can't be used in a For Each statement. Instead, you must use For Next.

Scrolling is cumulative for pairs of panes . In other words, the horizontal pairs of panes are always on the same
row and the vertical pairs are always on the same column.

To close panes, set the Window object's Split property to False:

Sub TestClosePanes()
 ActiveWindow.Split = False
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Opening, Saving, and Sharing Workbooks
Workbooks represent documents in Excel. Use the Workbooks collection to create new documents, to open existing ones,
or to perform operations on all open documents. Use the Workbook object to add worksheets and to save or otherwise
change a single, open document.

The Workbook object is one of the central objects in Excel and most of the code you write will use Workbook in some way.
Partly because of this, the Workbook object is also complex, providing more than 150 different properties and methods as
well as two dozen or so events. I've tried to lay out the most common tasks in this chapter first, before delving into
those details.

In this chapter, I show how to:

Create new workbooks and open existing ones

Save changes to a workbook and close without saving

Base a new workbook on a template

Create workbooks from text files

Create workbooks from XML data

Share a single workbook among multiple users

Use a workbook as part of a shared workspace through a SharePoint server

Respond to events that occur within a workbook

This chapter includes task-oriented reference information for the following objects and their related collections: Workbook
and RecentFile.

Code used in this chapter and additional samples are available in ch08.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1. Add, Open, Save, and Close
Use Workbook objects to open, save, and control files in Excel. To create a new, empty file in Excel, use the Add method
on the Workbooks collection:

Dim wb As Workbook
Set wb = Application.Workbooks.Add

Use the Workbook object 's Save or SaveAs method to name the workbook and save the file to disk. The default save
location in Excel is set in the Application object's DefaultFilePath property, which is usually My Documents. For example, the
following line saves the workbook created before as NewWorkbook.xls in My Documents:

wb.SaveAs "NewWorkbook"

The Save method is similar to SaveAs, except it uses the default filename (Bookn.xls) the first time a file is saved. Use
SaveAs the first time you save a file or to save an existing workbook in a new file; use Save when you want to keep the
workbook's current name.

Use the Close method to close an open workbook. Closing does not automatically save changes to the workbook, but if
there are any changes, Excel displays a Save Changes dialog box before closing. You must close a workbook before it
can be deleted. Excel doesn't provide objects to delete workbooks since they are simply files stored on disk. Instead,
you use the Kill method or a similar technique to delete a workbook. The following code closes the workbook created
previously and deletes it:

wb.Close
VBA.Kill "NewWorkbook.xls"

If you want to open an existing workbook, use the Open method:

Set wb = Application.Workbooks.Open("MyBook.xls")

As with Save, Excel looks first in the current default directory, which may or may not be where the workbook is located.
In this book, I often use the Workbook's Path property to tell Excel to look in the same folder that the current workbook
resides in:

Set wb = Application.Workbooks.Open(ThisWorkbook.Path & "\MyBook.xls")

This works well for me because I've structured my samples so that related ones are all in the same folder. Also, I don't
know where that folder might be installed on your machineI just assume they'll be kept together in the same folder.

8.1.1. Templates

The way Excel comes from Microsoft, new workbooks contain three worksheets and no charts or other sheets. You can
change this by setting Excel's Options (Tools Options General tab), but sometimes you just want to create a
workbook with one worksheet in code, leaving the Option settings alone. There's an easy way to do this:

Set wb = Workbooks.Add(XlWBATemplate.xlWBATWorksheet)

The preceding line creates a new workbook containing one worksheet. You can use a similar line to create a workbook
containing one chart:

Set wb = Workbooks.Add(XlWBATemplate.xlWBATChart)

Of course, you can also use the Add method to create a new workbook based on a template, as shown here:

Set wb = Workbooks.Add("C:\Program Files\Microsoft
Office\Templates\1033\timecard.xlt")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office\Templates\1033\timecard.xlt")

8.1.2. Open as Read-Only or with Passwords

The Open method is actually quite complex. If you type Workbooks.Open in the Code window, Visual Basic displays a
dizzying array of possible arguments (Figure 8-1).

Figure 8-1. The Open method can be complex

Thankfully, only Filename is required! Most of these are pretty special-purpose (you can read about them later); the most
important ones are ReadOnly, Password, and Format. Opening a file as read-only is handy if a workbook is stored at a
network location and might be open by another userin that case you can open the file only as read-only:

Set wb = Workbooks.Open("//wombat1/public/copy of files.xls", , True)

If you try to open a workbook that has a password in code, Excel will prompt the user for that password. You can avoid
this by putting the password in code:

Set wb = Workbooks.Open(ThisWorkbook.Path & "/security.xls", , , , "Excel2003")

Of course, that's a spectacularly bad idea if you are at all concerned about security: never write passwords, usernames,
email addresses, or other sensitive data in code. The only reason to use this approach is if your passwords are merely
intended to prevent accidental accessthe analogy would be closing your front door rather than locking it, locking it and
setting the alarm, or locking it, setting the alarm, and releasing ravening hounds; you get the idea.

Finally, the Format argument lets you open text files as Excel workbooks. If Format is 1, Excel interprets tab characters in
the file as new columns. Each line in the file is a new row. For example, a text file that looks like Figure 8-2 can be
opened as a workbook using this code:

Set wb = Workbooks.Open(ThisWorkbook.Path & "/data.txt", , , 1)

resulting in a workbook that looks like Figure 8-3.

Figure 8-2. A tabbed text file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-3. The tabbed file open in Excel

That said, the Format argument is a bit obsolete. Instead, you can use the OpenText method to do the same task and have
much more control over how the text file is interpreted. The next section discusses that technique.

8.1.3. Open Text Files

Reading data from text files into Excel is probably the most common programming task in Excel. No, it's not exciting (at
all) but there is a surprising amount of data coming from text files into Excel. Tab-delimited and comma-delimited text
files are a sort of universal data formatmost systems can read and write those formats. Excel is very good at it.

First some basics. There are two sorts of text datafiles: delimited files (just mentioned) and fixed-width files. Delimited
files use commas, tabs, semicolons, or some other character to separate fields of data. In fixed-width files, each field
begins at a fixed location. If data in a field doesn't fill that field, the rest of the field contains spaces.

Each line in a datafile represents a record. Line is an imprecise term, however. Different systems have different
standards for what is considered a line. On Windows systems, a newline is indicated by the carriage-return and line-
feed characters (Chr(13) and Chr(10) or vbCrLf in Visual Basic). On Macintosh and Linux systems, it's just line feed (Chr(10)).

When Excel opens a text file, it needs to know how the fields and records are identified. Once it has that information, it
can read the text file, place fields into columns, and create a new row for each record. Excel can guess at a lot of
thatfor example, it just assumes that the file was created by the operating system that Excel is currently running
underand you can see these assumptions by choosing File Open txtfile to run the Excel Text Import Wizard
(Figure 8-4).

You can choose Tools Macro Record Macro before running the Text Import Wizard to generate the code
needed to import a particular text file. For example, the following code was recorded when I imported my sample text
file in Excel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file in Excel:

' Recorded code.
Sub Macro1()
 Workbooks.OpenText Filename:= _
 "C:\Documents and Settings\Jeff\My Documents\Programming Excel\products.txt"_
 , Origin:=xlWindows, StartRow:=1, DataType:=xlDelimited, TextQualifier _
 :=xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=False, Semicolon:= _
 False, Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(Array(_
 1, 9), Array(2, 1), Array(3, 9), Array(4, 9), Array(5, 1), _
 Array(6, 1), Array(7, 1), Array(8, 9), Array(9, 9), Array(10, 9)), _
 TrailingMinusNumbers:=True
End Sub

Figure 8-4. Excel's Text Import Wizard

The key parts of this code are the Filename, StartRow, DataType, Comma (delimiter), and FieldInfo. If you are going to reuse
this code, it makes sense to reorganize it a bit, as shown here:

' Modifications to recorded code.
Sub TestOpenTextModifiedCode()
 Dim fld, fil As String
 ' Filename to open (look in this workbook's folder)
 fil = ThisWorkbook.Path & "\products.txt"
 ' Array describing how to format or omit columns.
 fld = Array(Array(1, xlSkipColumn), Array(2, xlGeneralFormat), _
 Array(3, xlSkipColumn), Array(4, xlSkipColumn), _
 Array(5, xlGeneralFormat), Array(6, xlGeneralFormat), _
 Array(7, xlGeneralFormat), Array(8, xlSkipColumn), _
 Array(9, xlSkipColumn), Array(10, xlSkipColumn))
 ' Create a workbook and load the text file.
 Workbooks.OpenText fil, , 1, xlDelimited, , , , , True, , , , fld
End Sub

The changes to the recorded code are spelled out here:

1. Replaced the absolute path- and filenames with a variable using the current workbook's path. This makes it
easier to adapt the code for other files in the future.

2. Rewrote the FieldInfo arrays to use the Excel constants. The first element of each array is the column number;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Rewrote the FieldInfo arrays to use the Excel constants. The first element of each array is the column number;
the second element describes whether or not to include the column and the format for the column. In this case,
1 = xlGeneralFormat and 9 = xlSkipColumn. Using the constants makes it easier to understand what is going on.
Table 8-1 lists these constants for your reference.

3. Removed the default arguments from the OpenText method. Items that I didn't change in the Text Import Wizard
can simply be omitted. In code, this makes the important items stand out more. I also removed the argument
namesMicrosoft eliminated the concept of named arguments in .NET and I think that indicates they aren't really
very helpful.

Some of these changes are a matter of preferencefor instance, you may like named arguments and want to keep them.
My point here is to show you how the Text Import Wizard can help you tackle the multifaceted OpenText method.

Table 8-1. FieldInfo xlColumnDataType constants and values
Constant Value Constant Value

xlGeneralFormat 1 xlMYDFormat 6

xlTextFormat 2 xlDYMFormat 7

xlMDYFormat 3 xlYDMFormat 8

xlDMYFormat 4 xlSkipColumn 9

xlYMDFormat 5 xlEMDFormat 10

8.1.4. Open XML Files

Important XML features are part of Excel 2003 Professional and standalone versions for
Windows. Earlier and Macintosh versions of Excel support only limited access to XML files.

Text files may be the universal data format of today, but the future belongs to XML. XML is actually a type of text file,
since XML files are stored as text. But unlike delimited text files, they are self-describing. That means Excel doesn't
have to guess where a field or record starts; the information is right there in the file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Order>
 <ID>2002</ID>
 <BillTo>
 <Address>
 <Name>Biege Bond</Name>
 <Street1>55 Lost Lane</Street1>
 <City>Anywhere</City>
 <State>AR</State>
 <Zip>67832</Zip>
 </Address>
 </BillTo>
 <Line>
 <Number>10</Number>
 <Description>Qt Microballoons</Description>
 <Quantity>1</Quantity>
 <UnitPrice>95</UnitPrice>
 <Taxible>No</Taxible>
 <Total>95</Total>
 </Line>
</Order>

In the preceding XML, items surrounded by brackets identify the data, <tag> and </tag> notation shows where a data
item starts and ends, and the fact that some tags contain others establishes the relationships between items. You'll
notice that this is not a strict row/column relationshipnot all data is grid oriented! This means that Excel often has to be
told where to put XML items on a worksheet.

The easiest way to see how this works is to follow these steps:

1. Open an XML file in Excel. Choose File Open, select an XML file, and click OK. Excel displays a dialog box
asking how you want to open the file (Figure 8-5).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

asking how you want to open the file (Figure 8-5).

Figure 8-5. You can open XML files in several different modes

2. Select "Use the XML Source task pane" and click OK. Excel may tell you that the file doesn't contain a schema;
if this happens, click OK. Excel creates a new workbook and displays the structure of the XML file in the
righthand task pane as shown in Figure 8-6.

3. Drag items from the task pane to cells on the worksheet. Nonrepeating items, such as Address, create
nonrepeating cells; repeating items, such as Line, create lists of data.

4. Click Refresh XML Data (Data XML Refresh XML Data) to import the data from the XML file (Figure 8-
7).

I need to explain a few key concepts here:

Excel interprets XML through an XML map. That's the thing you created in Step 2. The XML map is displayed in
the XML Source task pane.

Dragging items from the XML Source task pane creates a data binding between items on a worksheet and the
XML map.

Figure 8-6. The Source task pane lets you map XML items to cells or ranges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-7. Drag items to create a mapping, then click Refresh XML Data to
display the data

Refreshing loads the XML data through the XML map and then updates the data bindings.

If you record the preceding steps, you'll get code that looks like this:

Sub Macro2()
 Workbooks.OpenXML Filename:= _
 "C:\Documents and Settings\Jeff\My Documents\Programming Office\ch08_2002.xml" _
 , LoadOption:=xlXmlLoadMapXml
 ActiveWorkbook.XmlMaps("Order_Map").DataBinding.Refresh
End Sub

The first line (OpenXML) handles the first two steps. The last line (DataBinding.Refresh) handles Step 4. Step 3 is simply
missingExcel can't record your drag actionsand if you run the recorded code, you'll get an error. Although you can
establish these data bindings in code, it is laborious and (really) unnecessary.

Instead, set up your XML the way you want it displayed, then save the workbook as an Excel template. Then you can
create new workbooks based on that template and import XML using the ImportXML method as shown here:

Sub TestImportToXMLTemplate()
 Dim xmap As XmlMap, wb As Workbook
 ' Create a workbook using the Order template.
 Set wb = Workbooks.Open(ThisWorkbook.Path & "\ch08_order.xlt")
 ' Get the XML Map.
 Set xmap = wb.XmlMaps("Order_Map")
 ' Import the data.
 wb.XmlImport ThisWorkbook.Path & "\ch08_2002.xml", xmap
End Sub

This approach takes advantage of the fact that the format of XML doesn't change as often as the content does. By using
a template, you automatically get the XML map you need to interpret data from similar XML files. Of course, if the XML
format changes (items are added, moved, or deleted), you'll need to create a new template containing a revised XML
map.

8.1.5. Close Workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you close a workbook that has unsaved changes, Excel prompts whether you want to save before closing . This works
the same way whether you close a workbook through the user interface or through code. You can turn off the prompt in
code by setting the SaveChanges argument, however:

ThisWorkbook.Close True

The preceding code saves the current file, then closes it. You can just as easily discard changes by setting SaveChanges to
False:

ThisWorkbook.Close False

In either case, Excel closes the workbook without displaying any prompts. You can even use Close to save a workbook to
a new file, as shown here:

ThisWorkbook.Close True, "Copy of " & ThisWorkbook.Name

That's a little unusual, but it comes in handy if you are creating workbooks from some other source, such as text or
XML data, as shown by the following bold additions to the previous example:

Sub TestImportToXMLTemplate()
 Dim xmap As XmlMap, wb As Workbook
 ' Create a workbook using the Order template.
 Set wb = Workbooks.Open(ThisWorkbook.Path & "\ch08_order.xlt")
 ' Get the XML Map.
 Set xmap = wb.XmlMaps("Order_Map")
 ' Import the data.
 wb.XmlImport ThisWorkbook.Path & "\ch08_2002.xml", xmap
 ' Save the file in Excel format and close.
 wb.Close True, wb.Name
End Sub

In this case, Excel creates a new workbook, imports XML data, then saves and closes the workbook. You can work
through a long list of XML files this way converting them to workbooks for later use.

If you use the Close method on the Workbooks collection, Excel closes all open workbooks. This version of Close doesn't
accept arguments so Excel always prompts whether there are unsaved changes:

Sub TestCloseAll()
 Workbooks.Close
End Sub

What's interesting about this is that Excel closes all open workbooks, but doesn't close itself. In this way, Workbooks.Close
is different from Application.Quit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2. Share Workbooks
Excel lets teams collaborate on workbooks through two main approaches:

Shared workbooks

Allow multiple users to edit a single workbook file stored in a public location. The history of changes to the
workbook can be stored with the file, and edits can be rolled back or accepted by date, user, or range of cells.

Shared workspaces

Manage collaboration through SharePoint Services, allowing users to open, check out, view revision history, and
manage contributors from a central web site.

These two approaches provide many of the same features through very different means. The most obvious difference is
that shared workspaces require Windows Server 2003 with SharePoint Services installed to be available somewhere on
the user's network, whereas shared workbooks require only read and write access to a public network address.

To create a shared workbook:

1. Choose Tools Shared Workbook. Excel displays the Share Workbook dialog box (Figure 8-8).

2. Select "Allow changes by more than one user at the same time" and click OK. Excel saves the workbook and
enables it for shared access.

Figure 8-8. Sharing a workbook

Once a workbook is shared, multiple users can open the file from a public network address and save the file back to
that address. Excel maintains a change history and merges changes automatically where it can. How conflicting changes
are resolved is determined by the share settings on the Advanced tab of the Share Workbook dialog (Figure 8-9).

Shared workspaces are created differently. To create a shared workspace:

1. Choose Tools Shared Workspace. Excel displays the Shared Workspace pane in the Task window (Figure
8-10).

2. Type the address of your SharePoint site in the Location for New Workspace text box and click Create to save
the document to the SharePoint site and create a document workspace for it there.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the document to the SharePoint site and create a document workspace for it there.

Once a shared workspace is created, users can get updates, receive alerts, check out, edit, and view revision history for
the document through the Shared Workspace pane of the Task window. How automatic updates and alerts are handled
is determined by clicking Options at the bottom of the Shared Workspace pane, which displays the Service Options
dialog (Figure 8-11).

Figure 8-9. Advanced settings determine how conflicting changes are handled

Figure 8-10. Creating a document workspace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-11. Service Options determines how shared workspace documents are
updated

Whether you choose to collaborate through shared workbooks or shared workspaces will probably depend on whether
you have access to a SharePoint server. Shared workspaces provide a more complete solution for collaborating,
including the ability to check workbooks out while editing, notify teammates of changes, and request online meetings to
discuss changes. Still, shared workbooks do provide a practical solution for sharing work among small teams and are
the only approach supported for versions of Excel prior to 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3. Program with Shared Workbooks
Once you share a workbook, any Visual Basic project it contains is no longer accessible. Excel can't deal with multiple
users editing the same macros, so it simply prevents changes to those macros. You can't record new macros, either.
However, you can run macros from shared workbooks.

Use the SaveAs method to share a workbook from within code. For example, the following code saves the active
workbook for sharing:

Sub SaveAsShared()
 ActiveWorkbook.SaveAs , , , , , , xlShared
End Sub

Once you share a workbook, you can no longer edit the macros it contains. The macros
still exist and they can still run; you just can't change them. That's because Excel doesn't
support shared editing in Visual Basic. To edit the macros, remove sharing.

To remove sharing, use the ExclusiveAccess method:

Sub RemoveSharing()
 If ThisWorkbook.MultiUserEditing Then _
 ThisWorkbook.ExclusiveAccess
End Sub

Removing sharing in this way erases change history and prevents other users who currently have the file open from
saving their changes to the file. An alternate, kinder way to remove sharing is to save the workbook as a new file with
the xlExclusive setting as shown here:

Sub SaveCopyAs()
 fil = ThisWorkbook.Path & "\" & "Copy of " & _
 ThisWorkbook.Name
 ThisWorkbook.SaveAs fil, , , , , , xlExclusive
End Sub

You can't remove sharing in this way without renaming the file. The SaveAs method doesn't change the access mode if
you don't specify a new filename.

When you save a shared workbook, your changes to the file are synchronized with any changes that have been saved
by others while you have been editing. If both you and another user happened to change the same item (such as the
value of a cell), Excel displays the Resolve Conflicts dialog box during your save as shown in Figure 8-12.

If edits from other users don't conflict with any changes you've made, those edits automatically update your workbook
when you save. This is a slightly curious situation, because the act of saving changes the workbook you are working on.
To help avoid confusion about this, Excel displays a notice telling you what has happened.

You can determine whether a workbook is shared by checking its MultiUserEditing property. It is important to check
MultiUserEditing before calling other sharing-related methods because many of them cause runtime errors if the workbook
is not shared. For example, the following code verifies that a workbook is shared before accepting changes made by
others:

If ThisWorkbook.MultiUserEditing Then _
 ThisWorkbook.AcceptAllChanges

Figure 8-12. Excel lets you resolve conflicting changes to shared workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-12. Excel lets you resolve conflicting changes to shared workbooks

The AcceptAllChanges and RejectAllChanges methods let you specify a date, user list, or range of cells that you want to accept
or reject changes from. It's important to remember that these methods affect the underlying server-side copy of the
shared workbook, not just the local copy you are working on. Multiuser editing may cause the user who made those
changes some confusionhey, where'd my work go? Excel adds a note to items that changed another user's edits (Figure
8-13).

Figure 8-13. Edits from other users can change your workbook when you save

Any user who has access to the network address where the workbook is saved can open the workbook and make
changes. You can restrict access to the workbook by restricting the users who are allowed to view or open files at the
network address and/or by specifying a password for the workbook. You can view information about users who have
the workbook open using the UserStatus property. For example, the following code displays the names, time opened, and
access mode for all current users of a shared workbook:

Sub TestUserStatus
 Dim usr(), msg As String, i As Integer
 usr = ThisWorkbook.UserStatus
 For i = 1 To UBound(usr)
 msg = msg & usr(i, 1) & " Opened: " & _
 usr(i, 2) & " Shared? " & _
 (usr(i, 3) = 2) & vbCrLf
 Next
 MsgBox msg
End Sub

Finally, you can change the workbook's sharing options using the following properties:

AutoUpdateFrequency

Sets the number of minutes between automatically checking for updates

AutoUpdateSave

Determines whether current changes are sent to other users when the workbook is automatically updated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Determines whether current changes are sent to other users when the workbook is automatically updated

PersonalViewListSettings

Determines whether sorting and filter settings are shared with other users

PersonalViewPrintSettings

Determines whether print settings are shared with other users

These properties correspond to items on the Advanced tab of the Share Workbook dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4. Program with Shared Workspaces
Shared workbooks provide no infrastructure for managing users and very little ability to administer changes to a
workbook. Shared workspaces address those shortcomings by allowing users to check out files before making edits,
automatically notify others when changes occur, assign tasks, and add or remove team members.

Workbooks included in a shared workspace don't lock out changes to macros or prevent macro recording since the
change-tracking mechanism is provided externally through SharePoint Services rather than by Excel.

Don't confuse shared workspaces with Excel workspace files (.xlw). Excel workspace files
save the state of Excel's windows and open files so you can easily return to some point in
your work.

Use the Workbook object's SharedWorkspace property to share the workbook, update the workbook, and navigate among
other elements in the shared workspace. For example, use the SharedWorkspace object's CreateNew method to create a new
shared workspace and add a workbook to it:

Sub CreateWorkspace()
 ThisWorkbook.Save
 ThisWorkbook.SharedWorkspace.CreateNew "http://wombat2/", _
 "Team Wombat"
End Sub

You must save the workbook before adding it to a shared workspace; otherwise, the CreateNew method fails. The
preceding code adds the current workbook to the SharePoint site on the Wombat2 server. If you click on Open Site in
Browser in the Excel Shared Workspace pane, Excel displays the new workspace site created at
http://wombat2/Team%20Wombat, as shown in Figure 8-14.

Figure 8-14. Excel creates a new SharePoint site when you call the CreateNew
method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you call CreateNew from another workbook using the same workspace name, Excel creates another, new SharePoint
site and increments the site name to http://wombat2/Team%20Wombat(1). To add a workbook to an existing
SharePoint site instead of creating a new site, follow these steps:

1. Open an existing document from the SharePoint site.

2. Get a reference to that document's SharedWorkspace object.

3. Add workbooks to the SharedWorkspace object's Files collection.

The following code demonstrates how to add files to the current workbook's workspace:

' Run to add a file to workspace
Sub AddFile()
 Dim fname As String
 ' Check to make sure this workbook is shared.
 If ThisWorkbook.SharedWorkspace.Connected Then
 ' Show file dialog box
 With Application.FileDialog(msoFileDialogFilePicker)
 .AllowMultiSelect = False
 .Title = "Choose file to add to workspace"
 .Show
 fname = .SelectedItems(1)
 End With
 ' If a filename was selected, add it to the workspace.
 If fname <> "" Then
 ThisWorkbook.SharedWorkspace.Files.Add fname, , _
 True, True
 End If
 End If
End Sub

The key to this procedure is getting the SharedWorkspace object from a workbook that already belongs to the workspace.
In this case, the current workbook already belongs to the workspace, so the process is easy. On the other hand, if you
want to add the current workbook to an existing workspace, you must first open a workbook from the workspace, as
shown here:

Sub JoinExistingWorkspace()
 Dim wb As Workbook
 ' Get a workbook from the workspace.
 Set wb = Workbooks.Open _
 ("http://wombat2/Team Wombat/Shared Documents/ch08.xls")
 ' Save this workbook.
 ThisWorkbook.Save
 ' Make sure the workbook is part of the workspace.
 If wb.SharedWorkspace.Connected Then
 ' Add this workbook to the workspace.
 wb.SharedWorkspace.Files.Add ThisWorkbook.Path & "\" _
& ThisWorkbook.Name, , True
 End If
 ' Close the workbook.
 wb.Close
End Sub

Even though you have added the workbook file to the workspace, the currently open workbook is the local version, not
the shared version. You can't close the current workbook from code and then open it from the SharePoint site for two
reasons:

The code stops running the moment you close the current workbook.

You can't have two workbooks with the same name open at one time.

The easiest way to work around this is to display the SharePoint site and allow the user to reopen the shared workbook
from there. The following code demonstrates that last approach:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from there. The following code demonstrates that last approach:

Sub OpenWorkbookFromWorkspace()
 Dim wb As Workbook
 Set wb = Application.Workbooks.Open _
 ("http://wombat2/Team Wombat/Shared Documents/Ch08.xls")
 If MsgBox("Click Yes to close this workbook " & _
 "and then open the workbook from the SharePoint site.", vbYesNo, _
 "Workbook added to shared workspace.") = vbYes Then
 ' Open the SharePoint site in IE.
 ThisWorkbook.FollowHyperlink wb.SharedWorkspace.url, , True
 ' Close the temporary workbook.
 wb.Close
 ' Close this workbook.
 ThisWorkbook.Close
 End If
End Sub

Now, if the user clicks Yes, Excel displays the SharePoint web site and closes the current and temporary workbooks.

You can tell if a workbook belongs to a shared workspace by checking the Connected
property. Make sure the Connected property is True before using SharedWorkspace methods,
otherwise an error may occur.

8.4.1. Open Workbooks from a Shared Workspace

If you double-click on a workbook in the workspace, Excel opens the workbook as read-only. To open the workbook for
editing, select Edit in Microsoft Office Excel from the pop-up menu on the site as shown in Figure 8-15.

Figure 8-15. Opening a workbook from a shared workspace

To open a workbook from a shared workspace in code, simply use the Open method with the address of the workbook
from the workspace. For example, the following code opens a workbook from http://wombat2/TeamWombat:

Workbooks.Open "http//wombat2/Team Wombat/Shared Documents/ch08.xls"

If you want exclusive access to a file, you can choose Check Out from the pop-up menu before opening the workbook
for editing--checking out doesn't open the file; it just reserves it so other users can't make changes. You won't be able
to check the workbook out if other users have the file open, however.

To check a file out from code, use the Workbook object's CanCheckOut property and the CheckOut method. For example, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To check a file out from code, use the Workbook object's CanCheckOut property and the CheckOut method. For example, the
following code attempts to check out a file, and if it is successful, it opens the file in Excel:

Sub CheckOut()
 fil = " http//wombat2/Team Wombat/Shared Documents/ch08.xls"
 If Application.Workbooks.CanCheckOut(fil) Then
 Application.Workbooks.CheckOut fil
 Set wb = Application.Workbooks.Open(fil)
 MsgBox wb.Name & " is check out to you."
 End If
End Sub

The CheckOut method doesn't open the workbook, so you need to add the Open method as shown in the preceding code.
Checking a file in automatically closes the file as shown here:

Sub CheckIn()
 Set wb = Application.Workbooks("ch08.xls")
 If wb.CanCheckIn Then
 ' CheckIn closes the file.
 wb.CheckIn True, "Minor change"
 MsgBox "File was checked in."
 Else
 MsgBox wb.Name & " could not be checked in."
 End If
End Sub

In some cases, a file may not be able to be checked in. For instance, you can't check in the current workbook from
within its own code:

If ThisWorbook.CanCheckIn Then ' Always False!

In those cases, you can display the workspace to provide a way to check the workbook back in.

8.4.2. Link a Workbook to a Workspace

Only one user at a time may open a workbook from the workspace. However, workbooks may also be stored locally and
linked to the workspace copy. To create a local copy of the workbook that is linked to the workspace:

1. Open the workbook from the workspace.

2. Save the workbook to your computer.

3. Excel displays a prompt (Figure 8-16) asking if you want to link the local copy to the workspace. Choose Yes.

Once you've linked a workbook to the workspace, changes you make are synchronized with changes from other users.
If changes conflict, you resolve them using the Document Updates task pane (Figure 8-17).

Figure 8-16. Linking a local copy to the workspace

Figure 8-17. Resolving conflicting changes with linked files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-17. Resolving conflicting changes with linked files

8.4.3. Remove Sharing

There are two levels of removing sharing from a workbook stored in a shared workspace. You can:

Delete the file from the workspace. This breaks the connection that other users share.

Disconnect the file from the workspace. This breaks the connection only between the local copy of the workbook
and the shared workbook.

Use the RemoveDocument method to delete the current document from the shared workspace as shown by the following
code:

Sub TestRemove()
 If ThisWorkbook.SharedWorkspace.Connected Then _
 ThisWorkbook.SharedWorkspace.RemoveDocument
End Sub

The preceding code leaves local copies that users have downloaded from the shared workspace, but they become
disconnected since the shared workbook no longer exists. Alternately, you can leave the workbook in the shared
workspace, but disconnect your local copy with this code:

Sub TestDisconnect()
 If ThisWorkbook.SharedWorkspace.Connected Then _
 ThisWorkbook.SharedWorkspace.Disconnect
End Sub

Now, the local copy can no longer be updated from or send updates to the shared workbook. If you want an updatable
copy, you must reopen the workbook from the shared workspace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copy, you must reopen the workbook from the shared workspace.

You can also use the Files collection to remove workbooks from a shared workspace. This technique works well if you
want to remove a file other than the current workbook. For example, the following code removes ch08.xls from the
current workbook's shared workspace:

Sub TestRemoveFile()
 Dim file As Office.SharedWorkspaceFile
 If ThisWorkbook.SharedWorkspace.Connected Then
 For Each file In ThisWorkbook.SharedWorkspace.Files
 If InStr(1, file.urlThisWorkbook, "ch08.xls") Then _
 file.Delete
 Next
 End If
End Sub

In the preceding case, you need to locate the file to remove using the Instr function --the Files collection doesn't provide
a way to locate the file by name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5. Respond to Actions
The Workbook object provides events you can use to respond to user actions. In order to use these events, write your
code in the ThisWorkbook module of the workbook (in the Visual Basic Editor, double-click on ThisWorkbook in the Project
window). Visual Basic displays the Workbook events in the event list at the top of the Code window as shown in Figure 8-
18.

Selecting an event from the event list inserts a template for the event in the Code window, as shown here:

Figure 8-18. Select Workbook events from the Code window events list

Private Sub Workbook_Activate()

End Sub

Any code you add to this procedure executes when the event occursin this case when the workbook receives focus. This
event doesn't just occur when the user activates the workbook, it also occurs when code activates the workbook.

The names of most events are pretty self-explanatory and I won't bore you with circular definitions. Instead, here is the
list of events that the Workbook object provides:

Private Sub Workbook_Activate()
End Sub

Private Sub Workbook_AddinInstall()
End Sub

Private Sub Workbook_AddinUninstall()
End Sub

Private Sub Workbook_AfterXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal Result As XlXmlExportResult)
End Sub

Private Sub Workbook_AfterXmlImport(ByVal Map As XmlMap, _
 ByVal IsRefresh As Boolean, ByVal Result As XlXmlImportResult)
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
End Sub

Private Sub Workbook_BeforePrint(Cancel As Boolean)
End Sub

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _
 Cancel As Boolean)
End Sub

Private Sub Workbook_BeforeXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, Cancel As Boolean)
End Sub

Private Sub Workbook_BeforeXmlImport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
End Sub

Private Sub Workbook_Deactivate()
End Sub

Private Sub Workbook_NewSheet(ByVal Sh As Object)
End Sub

Private Sub Workbook_Open()
End Sub

Private Sub Workbook_PivotTableCloseConnection(_
 ByVal Target As PivotTable)
End Sub

Private Sub Workbook_PivotTableOpenConnection(_
 ByVal Target As PivotTable)
End Sub

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
End Sub

Private Sub Workbook_SheetBeforeDoubleClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)
End Sub

Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)
End Sub

Private Sub Workbook_SheetCalculate(ByVal Sh As Object)
End Sub

Private Sub Workbook_SheetChange(ByVal Sh As Object, _
 ByVal Target As Range)
End Sub

Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)
End Sub

Private Sub Workbook_SheetFollowHyperlink(ByVal Sh As Object, _
 ByVal Target As Hyperlink)
End Sub

Private Sub Workbook_SheetPivotTableUpdate(ByVal Sh As Object, _
 ByVal Target As PivotTable)
End Sub

Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As Range)
End Sub

Private Sub Workbook_Sync(_
 ByVal SyncEventType As Office.MsoSyncEventType)
End Sub

Private Sub Workbook_WindowActivate(ByVal Wn As Window)
End Sub

Private Sub Workbook_WindowDeactivate(ByVal Wn As Window)
End Sub

Private Sub Workbook_WindowResize(ByVal Wn As Window)
End Sub

As you can see, some events come in pairs that occur before and after user actions take place. The word before isn't
quite right; Excel doesn't anticipate user actions. In this case, before means after the user does something but before

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

quite right; Excel doesn't anticipate user actions. In this case, before means after the user does something but before
Excel acts on it.

Before events usually include a Cancel argument that lets you prevent Excel from acting on the user action. For instance,
this simple event procedure prevents the user from closing the workbook without saving it first:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 If Not ThisWorkbook.Saved Then Cancel = True
End Sub

Pretty handy! You can use the Before events' Cancel argument any time you want to prevent something. Just set Cancel to
False and Excel throws away the action.

Some of the Workbook events echo events from other Excel objects. For example, both the Worksheet and Workbook objects
have events that respond to the selected cell changing (Worksheet_SelectionChange and Workbook_SheetSelectionChange). If there
is code written for both event procedures, Excel processes the worksheet-level event first; then it processes the
workbook-level event.

Sometimes this is explained as events "bubbling up" through the object hierarchy. My point is simply that an event may
be handled in more than one placethey don't just stop the first time they are handled (even if Cancel is set to True).

Handling a single event multiple places isn't common, but it's important to know that high-level objects like Application
and Workbook can provide general handlers for events that may also occur on lower-level objects, such as Worksheets. So,
for instance, if you want some code to run every time a selection changes on any worksheet, put the code in the
Workbook_SheetSelectionChange event. If you want the code to run only when the selection changes on a single worksheet,
put the code in the Worksheet_SelectionChange event.

Finally, the ThisWorkbook class isn't the only place that Workbook events are available. You can hook in to Workbook events in
any class module by declaring a class-level Workbook variable WithEvents, then initializing that variable with the workbook.
For example, the following code declares a Workbook object variable in a Worksheet class; Worksheet_Activate hooks the
events up to the m_wb variable, and m_wb_SheetChange responds to worksheet change events for all worksheets in the
workbook:

Dim WithEvents m_wb As Workbook

' Initialize Workbook object if it wasn't already
Private Sub Worksheet_Activate()
 If TypeName(m_wb) = "Nothing" Then Set m_wb = ThisWorkbook
End Sub

' Workbook-level handler for Sheet change events.
Private Sub m_wb_SheetChange(ByVal Sh As Object, ByVal Target As Range)
 If Target.Address = "A1" Then _
 Sh.[a2] = Sh.[a1] ^ 2
End Sub

Whenever you declare an object variable WithEvents at the class level, Visual Basic adds that object's events to the event
list Code window. You can write code for those events, but that code won't execute unless the class-level object
variable is initialized as shown earlier in the Worksheet_Activate procedure. It's easy to forget that step. It's also important
to know that you can "unhook" the events by setting the object variable to Nothing:

' Unhook Workbook events.
Private Sub Worksheet_Deactivate()
 Set m_wb = Nothing
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6. Workbook and Workbooks Members
Use the Workbooks collection to create new and open existing workbooks in Excel. Use the Application object's Workbooks
method to get a reference to this collection. Use the Workbook object to save and control individual workbooks. The
Workbooks collection and Workbook object have the following members. Key members (shown in bold) are covered in the
following reference section:

Password and protection members are covered in Chapter 26.

AcceptAllChanges AcceptLabelsInFormulas Activate

ActiveChart ActiveSheet Add1

AddToFavorites Application2 Author

AutoUpdateFrequency AutoUpdateSaveChanges BreakLink

BuiltinDocumentProperties CalculationVersion CanCheckIn

CanCheckOut1 ChangeFileAccess ChangeHistoryDuration

ChangeLink Charts CheckIn

CheckOut1 Close2 CodeName

Colors CommandBars Comments

ConflictResolution Container (obsolete) Count1

CreateBackup Creator2 CustomDocumentProperties

CustomViews Date1904 DeleteNumberFormat

DialogSheets (obsolete) DisplayDrawingObjects DisplayInkComments

DocumentLibraryVersions EnableAutoRecover EndReview

EnvelopeVisible Excel4IntlMacroSheets Excel4MacroSheets

ExclusiveAccess FileFormat FollowHyperlink

ForwardMailer FullName FullNameURLEncoded

HasMailer HasPassword HasRoutingSlip

HighlightChangesOnScreen HighlightChangesOptions HTMLProject

InactiveListBorderVisible IsAddin IsInplace

Item1 KeepChangeHistory Keywords

LinkInfo LinkSources ListChangesOnNewSheet

Mailer MergeWorkbook Modules (obsolete)

MultiUserEditing Name Names

NewWindow OnSave (obsolete) OnSheetActivate (obsolete)

OnSheetDeactivate (obsolete) Open1 OpenDatabase1

OpenLinks OpenText1 OpenXML1

Parent2 Password PasswordEncryptionAlgorith

PasswordEncryptionFile Properties PasswordEncryptionKeyLength PasswordEncryptionProvider

Path Permission PersonalViewListSettings

PersonalViewPrintSettings PivotCaches PivotTableWizard

Post PrecisionAsDisplayed PrintOut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintPreview Protect ProtectSharing

ProtectStructure ProtectWindows PublishObjects

PurgeChangeHistoryNow ReadOnly ReadOnlyRecommended

RecheckSmartTags RefreshAll RejectAllChanges

ReloadAs RemovePersonalInformation RemoveUser

Reply ReplyAll ReplyWithChanges

ResetColors RevisionNumber Route

Routed RoutingSlip RunAutoMacros

Save SaveAs SaveAsXMLData

SaveCopyAs Saved SaveLinkValues

SendFaxOverInternet SendForReview SendMail

SendMailer SetLinkOnData SetPasswordEncryptionOptions

SharedWorkspace Sheets ShowConflictHistory

ShowPivotTableFieldList SmartDocument SmartTagOptions

Styles Subject TemplateRemoveExtData

Title ToggleFormsDesign Unprotect

UnprotectSharing UpdateFromFile UpdateLink

UpdateLinks UpdateRemoteReferences UserStatus

VBASigned VBProject WebOptions

WebPagePreview Windows Worksheets

WritePassword WriteReserved WriteReservedBy

Xmlimport XmlImportXml XmlMaps

XmlNamespaces
1 Collection only

2 Object and collection

workbook.AcceptAllChanges([When], [Who], [Where])

For shared workbooks, commits the changes to the workbook.

Argument Settings

When A string indicating the time after which to accept changes

Who A string indicating the user from which to accept changes

Where A string indicating a range of cells for which to accept changes

It's easiest to see the effect of AcceptAllChanges when you combine it with RejectAllChanges. For example, the following code
accepts all of the changes made to the range A2:D4, but rejects changes to other cells if they were made within the last
minute:

If ThisWorkbook.MultiUserEditing Then
 [a1] = "Value rejected": [b2] = "Value kept"
 ThisWorkbook.AcceptAllChanges , , "A2:D4"
 ' Reject other changes made in the last minute.
 ThisWorkbook.RejectAllChanges CStr(Now - 0.001)
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.AcceptLabelsInFormulas [= setting]

True allows formulas to include range labels as if they were named ranges; False disables the use of labels in formulas.
Default is True.

The following code creates some column headings and then makes those headings usable as labels in formulas that
display the sum of each column:

' Create two column headings.
[a1] = "col1": [b1] = "col2"
' Add some data.
[a2] = 2: [a3] = 10: [a4] = 12: [a5] = 5
[b2] = 9: [a3] = 17: [b4] = 2: [b5] = 13: [b6] = 29
' Allow labels in formulas.
ThisWorkbook.AcceptLabelsInFormulas = True
' Create labels out of the column headings.
[a1:b1].FormulaLabel = xlColumnLabels
' Use the labels in formulas
[c1] = "=sum(col1)"
[c2] = "=sum(col2)"

If you set AcceptLabelsInFormulas to False in the preceding code, C1 and C2 display an error.

workbook.Activate()

Activates the workbook giving it focus in Excel and making it the ActiveWorkbook. For example, the following code opens a
new workbook, then returns the focus to the current workbook:

Workbooks.Open (ThisWorkbook.Path & "\blank.xls")
ThisWorkbook.Activate

workbook.ActiveChart

Returns a reference to the Chart object that currently has focus in Excel. If some other type of object has focus, returns
Nothing. The following code captures a bitmap of the active chart and pastes the image into Microsoft Paint:

If Not (ActiveChart Is Nothing) Then
 ActiveChart.CopyPicture xlScreen, xlBitmap, xlScreen
 Shell "mspaint.exe", vbNormalFocus
 DoEvents
 AppActivate "Untitled - Paint", True
 SendKeys "^v", True
End If

workbook.ActiveSheet

Returns a reference to the worksheet, chart sheet, Excel 4.0 macro sheet, or Excel 5.0 dialog sheet that currently has
focus. In most cases, ActiveSheet returns a reference to the active worksheet, but it is important to make sure that it is a
worksheet before proceeding in code. For example, the following code checks whether ActiveSheet is a worksheet before
performing some task:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performing some task:

Dim ws As Worksheet
If TypeName(ActiveSheet) = "Worksheet" Then
 Set ws = ActiveSheet
 ws.Cells(1, 1) = 42
 ' Some other code...
Else
 MsgBox "Please activate a worksheet."
End If

workbooks.Add([Template])

Creates a new workbook and opens it in Excel.

Argument Settings

Template
The filename of a template to base the new workbook on. Alternately, this argument may be one of the
following XlWBATemplate settings: xlWBATChart, xlWBATExcel4IntlMacroSheet, xlWBATExcel4MacroSheet, or
xlWBATWorksheet. In those cases, the new workbook contains a single sheet of the specified type.

After calling Add, the new workbook becomes the ActiveWorkbook in Excel. The following line creates a workbook and
returns a reference to the new Workbook object:

Set wb = Application.Workbooks.Add

workbook.AddToFavorites

Adds a link to the workbook in the Internet Explorer Favorites menu. The link appears on the Favorites menu in this
form: filename.xls#[filename.xls]sheetname.

workbook.Author [= setting]

Sets or returns the name of the author displayed in the workbook's properties.

workbook.AutoUpdateFrequency [= setting]

For shared workbooks, sets or returns the number of minutes before the workbook is automatically refreshed.

workbook.AutoUpdateSaveChanges [= setting]

For shared workbooks, True saves changes to the current workbook back to the shared version when the workbook is
automatically refreshed; False does not send those changes on during automatic refresh. The default is True.

workbook.BreakLink(Name, Type)

Breaks links to other workbooks or OLE objects. When a link is broken, the data is retained at the site of the link, but
the ability to refresh the data from its source is lost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the ability to refresh the data from its source is lost.

Argument Settings

Name The name of the link to break. Link names are returned by the LinkSources method.

Type Use xlLinkTypeExcelLinks to break a link to a Microsoft Excel source; use xlLinkTypeOLELinks to break a link to an
OLE source.

For example, the following code iterates through the Excel links in a workbook and asks the user whether each link
should be broken:

Dim link, linkSources
linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If MsgBox("Break link to " & link) = vbOK Then _
 ThisWorkbook.BreakLink link, xlLinkTypeExcelLinks
 Next
End If

workbook.BuiltinDocumentProperties

Returns the collection of Excel's built-in document properties. In some cases, properties may not be initialized, so you
must use error handling when getting their values. The following code displays the names and settings of all of a
workbook's built-in properties:

Dim prop As DocumentProperty
On Error Resume Next
For Each prop In ActiveWorkbook.BuiltinDocumentProperties
 Debug.Print prop.Name, prop.Value
 If Err Then Debug.Print prop.Name, "Not set."
 Err.Clear
Next
On Error GoTo 0

workbook.CalculationVersion

Returns a number representing the major and minor versions of Excel last used to recalculate the workbook. For
example, the following code displays "114210" on my machine, where "11" is the major version of Excel (2003 is
Version 11) and "4210" is the minor, or build version:

Debug.Print ThisWorkbook.CalculationVersion

workbook.CanCheckIn

For workbooks belonging to shared workspaces, returns True if the workbook has been checked out from the workspace
and can be checked in; returns False if the workbook cannot be checked in. Use CanCheckIn before calling CheckIn.

workbooks.CanCheckOut(Filename)

For workbooks that are part of a shared workspace, verifies that the workbook is available to be checked out. Use
CanCheckOut to verify that the file is available before calling the CheckOut method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Filename The address of the file on the SharePoint server for which to verify the status

Returns True if the current user can check out a shared workbook from the SharePoint server. Returns False if the
workbook cannot be checked out. Causes an error if the SharePoint server or file can't be found.

The following code checks out a file from a SharePoint server, first verifying that it is available:

fil = "//wombat2/Team Wombat/Shared Documents/ch08.xls"
If Application.Workbooks.CanCheckOut(fil) Then
 Application.Workbooks.CheckOut (fil)
 Set wb = Application.Workbooks.Open(fil)
 If wb.SharedWorkspace.Connected Then _
 msg = "ch08.xls is check out to you."
Else
 msg = "ch08.xls could not be checked out."
End If
MsgBox msg

workbook.ChangeFileAccess(Mode, [WritePassword], [Notify])

Changes a workbook to read-only or read/write access.

Argument Settings

Mode xlReadOnly changes the access to read-only; xlReadWrite changes access to read/write.

WritePassword The password required for write access if the workbook is write-protected.

Notify True displays a message if the file is not available for read/write access, perhaps because it is open for
another user; False does not notify. Default is True.

Switching a read-only workbook to read/write may reload the file in Excel. The following code demonstrates changing
file-access modes on the current workbook:

' Save changes.
ThisWorkbook.Save
' Change to read-only.
ThisWorkbook.ChangeFileAccess xlReadOnly
' Change back. (May reload file.)
ThisWorkbook.ChangeFileAccess xlReadWrite

workbook.ChangeHistoryDuration [= setting]

For shared workbooks, sets or returns the number of days changes are tracked. The KeepChangeHistory property must be
True for this property to have an effect. The following code tracks changes for seven days if the workbook is shared:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.KeepChangeHistory = True
 ThisWorkbook.ChangeHistoryDuration = 7
End If

workbook.ChangeLink(Name, NewName, [Type])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changes the source of a link.

Argument Settings

Name The name of the link to change. Link names are returned by the LinkSources method.

NewName The source of the new link.

Type Use xlLinkTypeExcelLinks to change a link from a Microsoft Excel source; use xlLinkTypeOLELinks for an OLE
source.

For example, the following code iterates through the Excel links in a workbook and changes links from the test1.xls file
to test2.xls:

Dim link, linkSources, newLink As String
newLink = ThisWorkbook.Path & "\test2.xls"
linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If InStr(link, "test1.xls") Then _
 ThisWorkbook.ChangeLink link, newLink, xlLinkTypeExcelLinks
 Next
End If

workbook.Charts

Returns a collection of chart sheets as Chart objects. Does not return charts that are embedded in worksheets. The
following code saves each of the chart sheets as JPEG files:

For Each chrt In ThisWorkbook.Charts
 chrt.Export ThisWorkbook.Path & "/" & _
 chrt.Name & ".jpg", "jpeg"
Next

workbook.CheckIn([SaveChanges], [Comments], [MakePublic])

For workbooks that are part of a shared workspace, checks the workbook back in to the SharePoint server and closes
the workbook.

Argument Settings

SaveChanges True saves current changes back to the server before checking the workbook in; False does not save
current changes to the server.

Comments Comments to save with changes.

MakePublic True allows all users of the shared workspace to read the workbook; False denies read-only users access
to the workbook.

The following code saves changes and checks a workbook back into the shared workspace:

Set wb = ThisWorkbook
If wb.SharedWorkspace.Connected And wb.CanCheckIn Then
 ThisWorkbook.CheckIn True, "Minor change"
 MsgBox ThisWorkbook.Name & " is checked in."
Else
 MsgBox "Could not check in " & ThisWorkbook.Name
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbooks.CheckOut(Filename)

For workbooks that are part of a shared workspace, checks out a workbook from the SharePoint server. Excel returns
an error if the workbook could not be checked out, so use the CanCheckOut method before calling CheckOut.

Argument Settings

Filename The address of the file on the SharePoint server to check out

The CheckOut method doesn't open the file or download it from the SharePoint server. Use the Open method to open the
file after checking it out, as shown here:

fil = "//wombat1/Team Wombat/Shared Documents/blank.xls"
If Application.Workbooks.CanCheckOut(fil) Then
 Application.Workbooks.CheckOut fil
 Application.Workbooks.Open fil
End If

workbook.Close([SaveChanges], [Filename], [RouteWorkbook])

Closes an open workbook and optionally saves changes or distributes that workbook to a routing list. When used with
the Workbooks collection, closes all open workbooks in the current instance of Excel. The following arguments apply to
closing a single workbook.

Argument Settings

SaveChanges True saves current changes; False does not save changes. The default is to prompt the user.

Filename If SaveChanges is True, the filename with which to save the workbook. The default is to prompt for the
filename.

RouteWorkbook If the workbook has a routing list, True routes the workbook; False does not route. The default is to
prompt.

The Close method does not run Auto_Close macros, but it does trigger the Before_Close event.

The following code closes all open workbooks. If any of the workbooks has unsaved changes, the user is prompted
whether they should be saved:

Workbooks.Close

workbook.CodeName

Returns ThisWorkbook for workbook objects.

workbook.Colors [= setting]

Returns the collection of RGB colors in the workbook's color palette. Workbooks have 56 colors that can be used. The
following code displays the RGB value for each of a workbook's colors in hexadecimal:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code displays the RGB value for each of a workbook's colors in hexadecimal:

For Each clr In ThisWorkbook.Colors
 Debug.Print Hex(clr)
Next

RGB values are often expressed in hexadecimal. For example, &hff0000 is red, &hff00 is green, &hff is blue, &hffffff is white,
and &h0 is black.

workbook.CommandBars

Returns a collection containing the command bars associated with a workbook. Returns Nothing if the workbook has no
command bars. The following code displays the name of visible workbook-level command bars:

If Not (ThisWorkbook.CommandBars Is Nothing) Then
 For Each bar In ThisWorkbook.CommandBars
 If bar.Visible Then _
 Debug.Print bar.Name
 Next
Else
 Debug.Print "No workbook-level command bars."
End If

workbook.Comments [= setting]

Sets or returns the comments property for the workbook. Comments are displayed in the workbook's Properties dialog
box.

workbook.ConflictResolution [= setting]

For shared workbooks, determines how conflicting changes are handled. Setting may be one of the following values:

xlLocalSessionChanges

Local changes overwrite changes from other users.

xlOtherSessionChanges

Changes from other users overwrite local changes.

xlUserResolution

Displays a dialog box to resolve the conflict.

workbook.Container

For workbooks contained in Office Binder documents, returns the containing binder object.

workbook.CreateBackup [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True creates a backup copy of the workbook when the workbook is saved; False does not create a backup. Default is
False.

workbook.CustomDocumentProperties

Returns a collection of custom document properties. The following code displays the settings of a workbook's custom
properties:

For Each prop In ActiveWorkbook.CustomDocumentProperties
 Debug.Print prop.Name, prop.Value
Next

workbook.CustomViews

Returns a collection containing the custom views of a workbook . Use the CustomViews collection's Add method to create
new views.

workbook.DeleteNumberFormat(NumberFormat)

Removes a custom number format from a workbook.

workbook.DisplayDrawingObjects [= setting]

Sets or returns how drawing objects are displayed. Possible settings are:

xlDisplayShapes

Shows shapes (default)

xlPlaceholders

Shows placeholders

xlHide

Hides shapes

workbook.DisplayInkComments [= setting]

True displays comments entered using digital ink ; False hides those comments. Default is True.

workbook.DocumentLibraryVersions

For workbooks that are part of a shared workspace, returns a collection containing the revision history for the
workbook. For example, the following code displays revisions tracked for a workbook in a shared workspace:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook. For example, the following code displays revisions tracked for a workbook in a shared workspace:

Dim ver As DocumentLibraryVersion
If ThisWorkbook.SharedWorkspace.Connected Then
 For Each ver In ThisWorkbook.DocumentLibraryVersions
 Debug.Print ver.ModifiedBy, ver.Modified, ver.Comments
 Next
End If

workbook.EnableAutoRecover [= setting]

True enables Excel to automatically recover files if an error or hardware problem closes Excel unexpectedly; False
disables Auto Recover. Default is True.

workbook.EndReview

Ends the review of a workbook distributed for review by the SendForReview method. After you use this method on the
source workbook, you will not be able to automatically merge comments from reviewers.

workbook.EnvelopeVisible [= setting]

True displays the email composition header and the envelope toolbar; False hides those items.

workbook.ExclusiveAccess

For shared workbooks, removes sharing and grants the current user exclusive access to the workbook. The following
code removes sharing from a workbook:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.ExclusiveAccess
End If

workbook.FileFormat

Returns a constant indicating the file format of the workbook. May be one of the following:

xlAddIn xlCSV xlCSVMac

xlCSVMSDOS xlCSVWindows xlCurrentPlatformText

xlDBF2 xlDBF3 xlDBF4

xlDIF xlExcel2 xlExcel2FarEast

xlExcel3 xlExcel4 xlExcel4Workbook

xlExcel5 xlExcel7 xlExcel9795

xlHtml xlIntlAddIn xlIntlMacro

xlSYLK xlTemplate xlTextMac

xlTextMSDOS xlTextPrinter xlTextWindows

xlUnicodeText xlWebArchive xlWJ2WD1

xlWJ3 xlWJ3FJ3 xlWK1

xlWK1ALL xlWK1FMT xlWK3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlWK3FM3 xlWK4 xlWKS

xlWorkbookNormal xlWorks2FarEast xlWQ1

xlXMLSpreadsheet

workbook.FollowHyperlink(Address, [SubAddress],
[NewWindow], [AddHistory], [ExtraInfo], [Method], [HeaderInfo])

Displays a web page in the default browser.

Argument Settings

Address The address of the web page to display.

SubAddress A target within the requested web page.

NewWindow True displays the browser window; False maximizes the browser window. Default is False.

AddHistory Not used.

ExtraInfo A string or byte array that specifies additional information for HTTP to use to resolve the hyperlink.

Method
msoMethodGet sends the request as an HTTP GET method; ExtraInfo is sent as a string appended to the
address. msoMethodPost sends the request as an HTTP POST method; ExtraInfo is posted as a string or byte
array.

HeaderInfo A string specifying the HTTP header to be sent with the request.

For example, the following code displays my web site in a new, maximized browser window:

ThisWorkbook.FollowHyperlink "http://www.excelworkshop.com", , False

workbook.ForwardMailer()

For Macintosh users with PowerTalk mail systems, creates a mailer used to forward the workbook after it has been
received from another user. ForwardMailer creates the mailer; use SendMailer to send the workbook.

workbook.FullName

Returns the full name of the workbook file, including path and filename extension.

workbook .FullNameURLEncoded

Returns the full name of the workbook file, including path and filename extension. If the file was opened from a web
address, this method returns the name as it is encoded. For example, spaces are replaced with %20.

workbook.HasMailer

For Macintosh users with PowerTalk mail systems; returns True if the workbook has a mailer, False otherwise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.HasPassword

Returns True if the workbook has a password, False otherwise.

workbook.HasRoutingSlip [= setting]

Returns True if the workbook has a routing slip, False otherwise. Setting this property to True creates a routing slip.

workbook.HighlightChangesOnScreen [= setting]

For shared workbooks, True highlights changes from other users; False does not. Default is False.

workbook.HighlightChangesOptions([When], [Who], [Where])

For shared workbooks, controls which changes are highlighted.

Argument Settings

When One of the following constants: xlSinceMyLastSave, xlAllChanges, or xlNotYetReviewed.

Who A string indicating the user from which to accept changes. Can be "Everyone," "Everyone but Me," or the
name of one of the users of the shared workbook.

Where A string indicating a range of cells for which to accept changes.

The following code turns on change highlighting, makes some changes to highlight, then accepts those changes:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.HighlightChangesOnScreen = True
 ThisWorkbook.HighlightChangesOptions xlSinceMyLastSave
 [b2] = "Value kept"
 MsgBox "Pause: Highlighted changes"
 ThisWorkbook.AcceptAllChanges
 MsgBox "Pause: Changes accepted"
End If

workbook.HTMLProject

Returns a reference to the workbook's HTMLProject object. For example, the following code opens the current workbook
as HTML in the Microsoft Script Editor:

ThisWorkbook.HTMLProject.Open

workbook.InactiveListBorderVisible [= setting]

True displays borders around lists even if they do not have focus; False displays a border only if the list has focus.
Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.IsAddin [= setting]

Setting IsAddin to True causes Excel to treat the workbook as an add-in; False treats the workbook as a regular
workbook. In Excel, add-ins hide any macros or worksheets they contain. To see how this works, step through the
following code in a workbook:

ThisWorkbook.IsAddin = True
ThisWorkbook.IsAddin = False

When the first line runs, all worksheets are hidden and macros no longer appear in the Run Macros dialog box. When
the second line runs, the workbook returns to its normal state.

workbook.IsInplace

True if the workbook is embedded as an OLE object and is being edited in place in another document; False if the
workbook is being edited in Excel.

workbook.KeepChangeHistory [= setting]

For shared workbooks, True tracks changes; False does not track changes. Use in combination with the
ChangeHistoryDuration property.

workbook.Keywords [= setting]

Sets or returns keywords from the workbook's Properties dialog box.

workbook.LinkInfo(Name, LinkInfo, [Type], [EditionRef])

Returns information about a link. The information returned depends on the type of link.

Argument Settings

Name The name of the link.

LinkInfo Determines the type of information to return. Possible settings are xlEditionDate, xlLinkInfoStatus.

Type The type of link to get information about. Possible settings are xlLinkInfoOLELinks, xlLinkInfoPublishers,
xlLinkInfoSubscribers.

EditionRef If the link is an edition, EditionRef specifies the edition reference. Required if there's more than one
publisher or subscriber with the same name in the workbook.

For example, the following code displays a message telling the user to update Excel links that are out-of-date:

linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If ThisWorkbook.LinkInfo(link, xlLinkInfoStatus, _
 xlLinkTypeExcelLinks) = XlLinkStatus.xlLinkStatusOld Then
 MsgBox "Update link: " & link
 End If
 Next
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

workbook.LinkSources([Type])

Returns an array containing the links in a workbook.

Argument Settings

Type The type of links to return. Possible settings are xlExcelLinks (default), xlOLELinks, xlPublishers, xlSubscribers.

The following code displays the Excel links in a workbook:

linkSources = ThisWorkbook.linkSources(xlOLELinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 Debug.Print link
 Next
End If

workbook.ListChangesOnNewSheet [= setting]

For shared workbooks, True displays changes from other users on a new worksheet; False displays changes on the
existing worksheet.

workbook.Mailer

For Macintosh users with PowerTalk mail systems; returns the Mailer object attached to a workbook.

workbook.MergeWorkbook(Filename)

Merges one workbook with another. For example, the following code merges the current workbook with Test2.xls:

ThisWorkbook.MergeWorkbook ThisWorkbook.Path & "\Test2.xls"

workbook.MultiUserEditing

True if the workbook is shared; False if the workbook is not shared. Use this method to test if the workbook is a shared
workbook before calling sharing-related methods. For example:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.KeepChangeHistory = True
End If

workbook.Names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Names collection containing all the names in the workbook. For example, the following code displays all of
the names in a workbook, allowing you to delete them individually:

Dim nm As Name
For Each nm In ThisWorkbook.Names
 If MsgBox("Delete " & nm.Name & "?", vbYesNo) = vbYes Then _
 nm.Delete
Next

workbook.NewWindow

Displays a new window for the workbook.

workbooks.Open(Filename, [UpdateLinks], [ReadOnly],
[Format], [Password], [WriteResPassword],
[IgnoreReadOnlyRecommended], [Origin], [Delimiter],
[Editable], [Notify], [Converter], [AddToMru], [Local],
[CorruptLoad])

Opens an existing workbook and adds it to the Workbooks collection . Returns a reference to the workbook that was
opened.

Argument Settings

Filename The file to open.

UpdateLinks
One of these settings: 0, don't update; 1, update external links but not remote links; 2,
update remote links but not external links; 3, update all links. The default is to prompt the
user.

ReadOnly True opens the workbook as read-only; False opens as read/write. Default is False.

Format
When opening a text file, this argument specifies the column separator character as
follows: 1, tab; 2, comma; 3, space; 4, semicolon; 5, no separator; 6, character specified in
Delimiter argument. Default is 1.

Password If the workbook requires a password, this is the password to open the file. The default is to
prompt the user.

WriteResPassword If the workbook has a password for write access, this is the password to write to the file.
The default is to prompt the user.

IgnoreReadOnlyRecommended True does not display Excel's Read Only Recommended dialog if the file was saved with that
option; False displays the prompt. Default is False.

Origin Indicates the operating system that created the file. One of the following xlPlatform settings:
xlWindows, xlMSDOS, xlMacintosh. The default is the current platform.

Delimiter When opening text files with the Format argument set to 6, this is the delimiter character
used to identify new columns.

Editable

For workbook templates (.xlt): True opens the template for editing; False creates a new
workbook based on the template. Default is False.

For Excel 4.0 add-ins: True displays the add-in in a window and does not run Auto_Open
macros; False hides the add-in. Default is False.

Notify
For shared workbooks, True opens the workbook read-only if it is not available for
read/write and notifies the user when it becomes available for read/write; False causes Open
to fail if the file is not available for the requested access type. Default is False.

Converter
The index of the converter to try first when opening the file. If the file does not match the
file type, other converters are tried in turn. This index corresponds to the first-dimension
index in the array returned by Application.FileConverters.

AddToMru True adds the workbook to Excel's list of recently used files; False does not. Default is
False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local True sets the save language for the workbook to the local language; False sets it to the
Visual Basic language (usually English). Default is False.

CorruptLoad Indicates how to handle workbooks that may be corrupted. One of the following xlCorruptLoad
settings: xlNormalLoad, xlRepairFile, xlExtractData.

The following code opens a workbook and returns a reference to the Workbook object:

Dim wb As Workbook
Set wb = Workbooks.Open("new.xls")

If the workbook does not exist, Open causes an error.

workbooks.OpenDatabase(Filename, [CommandText],
[CommandType], [BackgroundQuery], [ImportDataAs])

Creates a new workbook and imports data from a database into it. Returns a reference to the new workbook.

Argument Settings

Filename The database file to open, or an Office Data Connection (.odc) file specifying the data source.

CommandText A command to execute on the database. Typically, this is a SQL command.

CommandType The type of command to execute. This seems to be ignored, but you can specify "SQL", "Table", or
"Default" if you like.

BackgroundQuery True retrieves the data asynchronously in the background; False retrieves the data synchronously.
Default is False.

ImportDataAs It is not clear how this argument is used.

When working with file-based databases, such as from Microsoft Access, you can specify the filename to use as the data
source as shown here:

cnn = "C:\Program Files\Microsoft Office\OFFICE11" & _
 "\SAMPLES\Northwind.mdb"
sql = "SELECT * FROM Employees"
Set wb = Application.Workbooks.OpenDatabase(cnn, sql, , False)

The preceding code creates a new workbook and imports the Employees table from the Northwind Access database.

When working with server-based databases, such as from Microsoft SQL, you must specify the connection information
in an Office Data Connection file (.odc). For example, the following code creates a new workbook and imports invoice
information from the Northwind SQL database:

Dim wb As Workbook, cnn As String, sql As String
cnn = ThisWorkbook.Path & "\NWindInvoices.odc"
Set wb = Application.Workbooks.OpenDatabase(cnn, , , True)
MsgBox "Performing query..."

The preceding code also demonstrates asynchronous access. In this case, the message box is displayed before the
query is complete.

workbook.OpenLinks(Name, [ReadOnly], [Type])

Opens the source document from a link.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Opens the source document from a link.

Argument Settings

Name The name of the link.

ReadOnly True opens the source document as read-only; False opens the document as read/write.

Type The type of link to get information about. Possible settings are xlExcelLinks, xlOLELinks, xlPublishers, xlSubscribers.

For example, the following code opens the sources of each of the Excel links in a workbook:

linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 ThisWorkbook.OpenLinks (link)
 Next
End If

workbooks.OpenText(Filename, [Origin], [StartRow],
[DataType], [TextQualifier], [ConsecutiveDelimiter], [Tab],
[Semicolon], [Comma], [Space], [Other], [OtherChar], [FieldInfo],
[TextVisualLayout], [DecimalSeparator], [ThousandsSeparator],
[TrailingMinusNumbers], [Local])

Opens a text file and interprets it as a workbook. How OpenText interprets the text file is determined by the method's
many arguments.

Argument Settings

Filename The text file to open.

Origin The platform to create the text file; can be one of the following xlPlatform settings: xlWindows,
xlMSDOS, xlMacintosh. The default is the current platform.

StartRow The row within the file at which to start parsing. Default is 1 for the first row.

DataType Determines how the columns are delimited; can be one of the following xlTextParsingType settings:
xlDelimited or xlFixedWidth. If omitted, Excel tries to determine the correct setting.

TextQualifier Determines how text values are identified; can be one of the following xlTextQualifier settings:
xlTextQualifierDoubleQuote (default), xlTextQualifierNone, xlTextQualifierSingleQuote.

ConsecutiveDelimiter True parses consecutive delimiters as indicating a single column; False parses consecutive
delimiters as multiple, empty columns. Default is False.

Tab True parses the tab character as the column delimiter; False does not.

Semicolon True parses the semicolon as the column delimiter; False does not.

Comma True parses the comma as the column delimiter; False does not.

Space True parses the space character as the column delimiter; False does not.

Other True uses the character specified in OtherChar as the column delimiter; False does not.

OtherChar If Other is True, the character to use as the column delimiter.

FieldInfo A two-dimensional array containing the Excel number format to use for each column.

TextVisualLayout
One of the following xlTextVisualLayoutType settings:

xlTextVisualLTR (default) or xlTextVisualRTL.

DecimalSeparator The character used as the decimal separator in the text file. Default is the system decimal
separator (for example, "." in the U.S.; "," in most of Europe).

ThousandsSeparator The character used as the thousands separator in the text file. Default is the system decimal
separator (for example, "," in the U.S.; "." in most of Europe).

TrailingMinusNumbers True interprets hyphens after numbers as negative numbers; False does not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local True sets the save language for the workbook to the local language; False sets it to the Visual
Basic language (usually English). Default is False.

By default, Excel makes a best guess as to how to interpret data from a text file. It will use commas or tabs as the
column delimiter, depending on which is found first. For example, the following code loads a simple comma-delimited
text file as a single worksheet in a new workbook:

Workbooks.OpenText "data.csv"

This is similar to using the Open method with the Format argument set to 2. The advantage of using OpenText is the level of
control you have over how the text file is parsed. For example, you can use the FieldInfo array to interpret columns of
data as specific data types:

fld = Array(Array(1, xlGeneralFormat), Array(2, xlMDYFormat), _
Array(4, xlSkipColumn), Array(5, xlSkipColumn), Array(6, xlSkipColumn), _
Array(7, xlSkipColumn), Array(8, xlSkipColumn), Array(9, xlSkipColumn), _
Array(10, xlSkipColumn), Array(11, xlSkipColumn), Array(12, xlSkipColumn), _
Array(13, xlSkipColumn), Array(14, xlSkipColumn), Array(15, xlGeneral))
Workbooks.OpenText "data.txt", , 2, , , , True, , , , , , fld

In these cases, it is usually easiest to record the code generated by the Text Import Wizard and then modify it to get
the results you want.

workbooks.OpenXML(Filename, [Stylesheets], [LoadOption])

Creates a new workbook and loads an XML file into it. Returns a reference to the new workbook.

Argument Settings

Filename The name of the XML file to load.

Stylesheets A number or an array of numbers indicating the XML Style Sheet (XSL) instructions to execute.

LoadOption Determines how the XML file is interpreted or loaded; may be one of the following xlXMLLoadOption
settings: xlXmlLoadImportToList, xlXmlLoadMapXml, xlXmlLoadOpenXml, xlXmlLoadPromptUser.

The idea of executing a limited number of XSL processing instructions seems strange and there are no examples of this
provided in Help. Excel ignores the argument if there are no processing instructions in the XML file.

Use the LoadOption argument to control how Excel loads the XML. For example, complex XML files are "flattened" by
default, which often isn't what you want. By using the LoadOption xmlLoadMapXml, you can load the XML as an XML map and
allow the user to choose the items to import into the worksheets as lists. The following code imports an XML file as an
XML map:

 Set wb = Workbooks.OpenXML(_
 "http://www.mstrainingkits.com/excel/excelobjects.xml", , _
 XlXmlLoadOption.xlXmlLoadMapXml)

workbook.Path

Returns the path of the workbook. This property is useful for locating other files in the workbook's folder. For example,
the following code lists all the workbooks in the current workbook's folder:

fname = Dir(ThisWorkbook.Path & "*.xls")
Do While fname <> ""
 Debug.Print fname
 fname = Dir()
Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loop

workbook.PersonalViewListSettings [= setting]

For shared workbooks, True saves sort and filter settings in the user's personal view of the workbook; False does not
save those settings. Default is True.

workbook.PersonalViewPrintSettings [= setting]

For shared workbooks, True saves print settings in the user's personal view of the workbook; False does not save those
settings. Default is True.

workbook.PivotCaches

Returns the collection of PivotCache objects contained in a workbook. Pivot caches are the in-memory data sets used by
pivot tables. See Chapter 13 for examples of working with pivot caches.

workbook.PivotTableWizard([SourceType], [SourceData],
[TableDestination], [TableName], [RowGrand], [ColumnGrand],
[SaveData], [HasAutoFormat], [AutoPage], [Reserved],
[BackgroundQuery], [OptimizeCache], [PageFieldOrder],
[PageFieldWrapCount], [ReadData], [Connection])

Creates a pivot table in the workbook.

Argument Settings

SourceType One of these settings: xlConsolidation, xlDatabase (default), xlExternal, xlPivotTable.

SourceData Any of a number of possible sources, such as a Range object, an array of ranges, the name of
another pivot table, or an array of strings containing the SQL query string.

TableDestination A Range object indicating where to place the pivot table. The default is the active range.

TableName A name for the pivot table.

RowGrand True displays grand totals for rows; False does not.

ColumnGrand True displays grand totals for columns; False does not.

SaveData True saves the data with the pivot table; False saves only the pivot table definition.

HasAutoFormat True applies automatic formatting to the pivot table; False does not.

AutoPage If SourceType is xlConsolidation, true automatically creates page field; False does not.

Reserved Not used.

BackgroundQuery True performs the query asynchronously in the background; False performs the query
synchronously.

OptimizeCache True optimizes the pivot cache; False does not (default).

PageFieldOrder One of these settings: xlDownThenOver or xlOverThenDown (default).

PageFieldWrapCount The number of page fields in each column or row. Default is 0.

ReadData True reads all data into the pivot cache; False allows data to be read into the pivot cache by page.
Use False for queries that return large amounts of data.

Connection The ODBC connection string for the query that creates the pivot cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.Post([DestName])

For Microsoft Exchange clients, posts a workbook to a Microsoft Exchange server. The DestName argument is ignored.

workbook.PrecisionAsDisplayed [= setting]

True calculates results using the displayed precision of numbers; False uses full precision. Default is False.

workbook.PrintOut([From], [To], [Copies], [Preview],
[ActivePrinter], [PrintToFile], [Collate], [PrToFileName])

Prints the workbook.

Argument Settings

From The starting page number to print.

To The ending page number to print.

Copies The number of copies to print.

Preview True previews the workbook before printing; False does not (default).

ActivePrinter The name of the printer to use.

PrintToFile True sends output to a file; False sends output to the printer (default).

Collate True prints in collated order; False prints from first page to last (default).

PrToFileName If PrintToFile is True, the name of the file to create; Excel prompts for a filename if PrintToFile is True and
this argument is omitted.

The following code prints the first page of the current workbook:

ThisWorkbook.PrintOut 1, 1

workbook.PrintPreview([EnableChanges])

Displays the workbook in Print Preview mode.

Argument Settings

EnableChanges True allows the user to change margins from the print preview before printing; False does not allow
changes. Default is True.

workbook.PublishObjects

Returns the PublishObjects collection for the workbook. A PublishObject represents an item that has been saved to a web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the PublishObjects collection for the workbook. A PublishObject represents an item that has been saved to a web
page and can be refreshed from its source in Excel.

workbook.PurgeChangeHistoryNow(Days, [SharingPassword])

For a shared workbook, removes change history for a workbook.

Argument Settings

Days The number of days of history to keep

SharingPassword The password for the workbook if the workbook has one

workbook.ReadOnly

True if the workbook is open for read-only access; False if the workbook is read/write.

workbook.ReadOnlyRecommended

True if the workbook is read-only recommended; False if the workbook is read-only or read/write.

workbook.RecheckSmartTags

Forces Excel to scan the workbook for items that SmartTags may apply to. Generally, SmartTags are applied as the
user enters data; however, they may not be applied if data is imported through code.

workbook.RefreshAll

Refreshes external data ranges and pivot tables in the workbook.

workbook.RejectAllChanges([When], [Who], [Where])

For shared workbooks, rolls back changes made by others. RejectAllChanges can remove changes that are in the
workbook's change history that have not yet been committed by an AcceptAllChanges method.

Argument Settings

When A string indicating the time after which to reject changes.

Who A string indicating the user from which to reject changes. Can be "Everyone", "Everyone but Me", or the name
of one of the users of the shared workbook.

Where A string indicating a range of cells for which to reject changes.

For example, the following code rejects all of the changes made within the last 24 hours:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.RejectAllChanges CStr(Now - 1)
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

workbook.ReloadAs(Encoding)

Reloads a workbook that was based on an HTML document.

Argument Settings

Encoding An MsoEncoding constant that indicates the character encoding to use when interpreting the HTML

For example, this line reloads a workbook using the UTF8 (Unicode) character encoding:

ThisWorkbook.ReloadAs (MsoEncoding.msoEncodingUTF8)

workbook.RemovePersonalInformation [= setting]

True removes personal information, such as author name, from a workbook when it is saved; False retains that
information (default). The following code saves the workbook, omitting personal information:

ThisWorkbook.RemovePersonalInformation = True
ThisWorkbook.Save

The user receives a security warning if the workbook contains macros, since they may contain personal information that
Excel can't remove.

workbook.RemoveUser(Index)

For shared workbooks, disconnects a user from editing the workbook.

Argument Settings

Index The index of the user to disconnect

Use the UserStatus method to get an array containing the users editing a shared workbook. The following code allows you
to disconnect users from a shared workbook:

If ThisWorkbook.MultiUserEditing Then
 Dim usr(), msg As String
 usr = ThisWorkbook.UserStatus
 For i = 1 To UBound(usr)
 msg = "Disconnect user " & usr(i, 1) & "?"
 If MsgBox(msg, vbYesNo) = vbYes Then _
 ThisWorkbook.RemoveUser (i)
 Next
End If

workbook.Reply

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Macintosh users with PowerTalk mail systems, creates a copy of the workbook and attaches it as a reply to the
person who sent the workbook.

workbook.ReplyAll

For Macintosh users with PowerTalk mail systems, creates a copy of the workbook and attaches it as a reply to the
sender and recipients of the workbook.

workbook.ReplyWithChanges([ShowMessage])

For workbooks that have been distributed using the SendForReview method, this method sends notification to the original
sender letting him know that the review is complete.

Argument Settings

ShowMessage True displays the email message before sending; False does not display the message first. Default is
True.

workbook.ResetColors

Resets the workbook's color palette to the Excel defaults.

workbook.RevisionNumber

For shared workbooks, returns the number of times the workbook has been saved locally.

workbook.Route

Sends the workbook using the workbook's routing slip.

workbook.Routed

True if the workbook has been sent to the next recipient in the workbook's routing slip; False if the workbook has not
yet been sent.

workbook.RoutingSlip

Returns the workbook's RoutingSlip object. Use HasRoutingSlip to create a routing slip and to determine if a workbook has a
routing slip. The following code creates a routing slip and routes a workbook:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

routing slip. The following code creates a routing slip and routes a workbook:

ThisWorkbook.HasRoutingSlip = True
With ThisWorkbook.RoutingSlip
 .Recipients = Array("Beige Bond", "Jeff Webb")
 .Message = "For your review"
 .Subject = "New budget"
 .Delivery = xlOneAfterAnother
End With
ThisWorkbook.Route

workbook.RunAutoMacros(Which)

Runs a workbook's automacros. This method is provided for compatibility with versions of Excel that did not support
events.

Argument Settings

Which One of these settings: xlAutoActivate, xlAutoClose, xlAutoDeactivate, or xlAutoOpen

workbook.Save

Saves the workbook.

workbook.SaveAs([Filename], [FileFormat], [Password],
[WriteResPassword], [ReadOnlyRecommended],
[CreateBackup], [AccessMode], [ConflictResolution],
[AddToMru], [TextCodepage], [TextVisualLayout], [Local])

Saves the workbook and sets the workbook's file properties.

Argument Settings

Filename The name of the file to save. Default is current filename.

FileFormat

One of the following xlFileFormat settings: xlCS, xlCSVMSDOS, xlCurrentPlatformText, xlDBF3, xlDIF,
xlExcel2FarEast, xlExcel4, xlAddIn, xlCSVMac, xlCSVWindows, xlDBF2, xlDBF4, xlExcel2, xlExcel3, xlExcel4Workbook,
xlExcel5, xlExcel7, xlExcel9795, xlHtml, xlIntlAddIn, xlIntlMacro, xlSYLK, xlTemplate, xlTextMac, xlTextMSDOS,
xlTextPrinter, xlTextWindows, xlUnicodeText, xlWebArchive, xlWJ2WD1, xlWJ3, xlWJ3FJ3, xlWK1, xlWK1ALL,
xlWK1FMT, xlWK3, xlWK3FM3, xlWK4, xlWKS, xlWorkbookNormal, xlWorks2FarEast, xlWQ1, xlXMLSpreadsheet.

Password A password the user must enter to open the file.

WriteResPassword A password the user must enter to open the file for read/write access.

ReadOnlyRecommended True causes Excel to display a dialog box recommending the file be opened for read-only access
when the user opens the file; False does not display the dialog box. Default is False.

CreateBackup True creates a backup version of the file when the file is saved; False does not create a backup.
Default is False.

AccessMode One of the following xlSaveAccessMode settings: xlExclusive, xlNoChange (default), xlShared. Use xlShared
to share a workbook, xlExclusive to remove sharing.

ConflictResolution For shared workbooks, one of the following xlSaveConflictResolution settings: xlUserResolution (default),
xlLocalSessionChanges, xlOtherSessionChanges.

AddToMru True adds this workbook to Excel's most recently used file list on the File menu; False omits this
workbook from the list. Default is False.

TextCodepage For foreign-language versions of Excel only, the code page to save the workbook with.

TextVisualLayout For foreign-language versions of Excel only, orientation to use when presenting data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For foreign-language versions of Excel only, orientation to use when presenting data.

Local True saves the workbook against the local user language; False saves the workbook against the
language used in Visual Basic (typically, English).

The following code saves the workbook for single-user access using a new filename:

fil = ThisWorkbook.Path & "\Copy of " & ThisWorkbook.Name
ThisWorkbook.SaveAs fil, , , , , , xlExclusive

This code saves the workbook as an XML spreadsheet using the current filename (note that warnings are displayed if
the file contains macros or drawing objects):

ThisWorkbook.SaveAs , xlXMLSpreadsheet

workbook.SaveAsXMLData(Filename, Map)

Exports a workbook to an XML datafile through an XML map contained in the workbook.

Argument Settings

Filename The name of the XML datafile to create when the export is complete

Map A reference to an XMLMap object contained in the workbook

Use the XMLMap object's IsExportable property to test if data can be exported through the map before calling SaveAsXMLData.
In some cases, data loaded through an XML map cannot be exported through the same map.

The following code gets a reference to an XML map, checks if the workbook's data can be exported, then exports the
data to a new XML file:

Set xmap = ThisWorkbook.XmlMaps("Order_Map")
If xmap.IsExportable Then
 ThisWorkbook.SaveAsXMLData ThisWorkbook.Path & "\data.xml", xmap
Else
 MsgBox "XML data could not be exported."
End If

workbook.SaveCopyAs([Filename])

Saves a copy of the workbook without changing the name of the open workbook.

Argument Settings

Filename The filename with which to save the copy

Although Filename is optional, CopyAs may fail if it tries to use the current filename to save to the current folder since the
source workbook may be open. It is a good idea to supply a filename to avoid this problem.

The following code saves a copy of the current workbook, giving it a new name without changing the name of the
current workbook:

ThisWorkbook.SaveCopyAs "Copy of " & ThisWorkbook.Name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.Saved [= setting]

True indicates there are no unsaved changes to the workbook; False indicates that changes have not been saved.
Setting Saved to True allows you to close a workbook without being prompted to save changes, discarding any changes
since the last save.

workbook.SaveLinkValues [= setting]

True saves the values of external links with the workbook; False saves the link but not the data, refreshing the data
when the workbook is opened. Default is True.

workbook.SendFaxOverInternet([Recipients], [Subject],
[ShowMessage])

Sends a fax over the Internet using a fax service provider. If no fax service provider is configured for your system,
Excel displays a prompt directing you to providers.

Argument Settings

Recipients The email names or phone numbers of fax recipients.

Subject A subject line to include with the fax.

ShowMessage True displays the fax before sending; False does not.

The following code sends the current workbook as a fax:

ThisWorkbook.SendFaxOverInternet "ExcelDemo@Hotmail.com", _
 "Workbook Samples"

workbook.SendForReview([Recipients], [Subject],
[ShowMessage], [IncludeAttachment])

Sends a workbook via email, beginning the review process. In order to track reviewers' comments, the workbook must
be shared.

Argument Settings

Recipients The email names or aliases of the reviewers.

Subject A subject line to include with the email.

ShowMessage True displays the email message before sending; False does not. Default is True.

IncludeAttachment True includes the workbook as a file attachment; False includes a link to the workbook (file must be
saved at a network address). Default is True.

The following code sends a workbook for review, previewing the message before sending. If the workbook is not
already shared, Excel displays a prompt asking if you would like to save it as a shared workbook before sending:

ThisWorkbook.SendForReview "ExcelDemo@Hotmail.com", "Workbook samples"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ThisWorkbook.SendForReview "ExcelDemo@Hotmail.com", "Workbook samples"

Use the EndReview method to end the review process.

workbook.SendMail(Recipients, [Subject], [ReturnReceipt])

Sends a workbook via email as an attachment.

Argument Settings

Recipients The email names or aliases of the recipients.

Subject A subject line to include with the email.

ReturnReceipt True notifies the sender when the recipient receives the mail; False does not (default).

The following line sends the current workbook as an email:

ThisWorkbook.SendMail "ExcelDemo@Hotmail.com", "Workbook samples"

workbook.SendMailer([FileFormat], [Priority])

For Macintosh users with PowerTalk mail systems, sends a workbook as a PowerTalk email message.

Argument Settings

FileFormat An xlFileFormat setting that determines the format of the file to send.

Priority An xlPriority setting determining the priority of the email. Default is xlPriorityNormal.

workbook.SetLinkOnData(Name, [Procedure])

Sets a procedure to run whenever a DDE link is updated.

Argument Settings

Name The name of the OLE or DDE link as returned by the LinkSources property

Procedure The name of a procedure to run when the link is updated

The following code sets the OnUpate procedure to run whenever a DDE link is updated within the workbook:

linkSources = ThisWorkbook.linkSources(xlOLELinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If InStr(1, link, "DDE") Then _
 ThisWorkbook.SetLinkOnData link, "OnUpdate()"
 Next
End If

workbook.SharedWorkspace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For workbooks that are part of a shared workspace, returns the SharedWorkspace object used to connect to and maintain
the workbook through the SharePoint server. The SharedWorkspace object exists even if the workbook is not shared via
SharePoint Services. You can tell whether or not a workbook is part of a shared workspace by checking the object's
Connected property. For example, the following code checks if a workbook is part of a shared workspace before adding
another workbook to the shared workspace:

Dim sw As Office.SharedWorkspace
Set sw = ThisWorkbook.SharedWorkspace
If sw.Connected Then
 sw.Files.Add ThisWorkbook.Path & "\" & "new.xls"
End If

workbook.Sheets

Returns a collection of all the sheets in a workbook. There is no "Sheet" object type, so the Sheets collection returns a
varied collection of objects that may include Worksheet, Chart, and DialogSheet objects.

DialogSheet objects are now considered obsolete by Microsoft and are no longer
documented. The same applies to the xlExcel4MacroSheet and xlExcel4IntlMacroSheet subtypes of
the Worksheet object. However, Excel still supports their creation and you may encounter
them when working with the Sheets collection.

In general, it is a good idea to use specific types for objects if at all possible. For instance, the Worksheets collection
returns the collection of Worksheet objects in the workbook, and the Charts collection returns the collection of Chart sheet
objects in the workbook.

The Sheets collection is most useful when you want to work with general aspects that apply to all sheets, such as their
order in a workbook. For instance, this code moves the currently active sheet to be the first one in the active workbook:

ActiveSheet.Move Sheets(1)

In the preceding case, it doesn't matter what type of sheet it isthe workbook is reordered.

workbook.ShowConflictHistory [= setting]

For shared workbooks, True displays the conflict history worksheet; False does not. Default is False.

workbook.ShowPivotTableFieldList [= setting]

True displays pivot table field lists; False does not. Default is True.

workbook.SmartDocument

Returns a reference to the workbook's SmartDocument object.

workbook.SmartTagOptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a reference to the workbook's SmartTagOptions object. The SmartTagOptions object controls how SmartTags are
displayed. For example, the following code displays the SmartTag button, omitting the SmartTag indicator in cells:

ThisWorkbook.SmartTagOptions.DisplaySmartTags = xlButtonOnly

By default, Excel displays both the SmartTag indicator and button.

workbook.Styles [= setting]

Returns the collection of Style objects in the workbook. The following code displays information about each style in the
current workbook:

Dim sty As Style
For Each sty In ThisWorkbook.Styles
 Debug.Print sty.Name, sty.NumberFormat, sty.Font.Name
Next

workbook.Subject [= setting]

Sets or returns the Subject item in the workbook's Properties page.

workbook.TemplateRemoveExtData [= setting]

True removes references to external data if the workbook is saved as a template; False does not remove references.
Default is False.

workbook.Title [= setting]

Sets or returns the Title item in the workbook's Properties page.

workbook.ToggleFormsDesign [= setting]

This method is undocumented. It seems to turn on and off the ability to edit Visual Basic Forms, but it is not clear how
that is useful.

workbook.UpdateFromFile

For workbooks opened as read-only, updates the open workbook with the most recent version saved to disk. Causes an
error if the workbook is not read-only. The following code updates a read-only workbook:

If ThisWorkbook.ReadOnly Then _
 ThisWorkbook.UpdateFromFile

workbook.UpdateLink([Name], [Type])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Updates a link in a workbook.

Argument Settings

Name The name of the link to update as returned by the LinkSources property.

Type The xlLinkType of the link; possible settings are xlLinkTypeExcelLinks (default) or xlLinkTypeOLELinks.

The following code updates each of the Excel links in a workbook:

Dim link, linkSources
linkSources = ThisWorkbook.linkSources(xlExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 ThisWorkbook.UpdateLink Name, XlLinkType.xlLinkTypeExcelLinks
 Next
End If

workbook.UpdateLinks [= setting]

Changes the way OLE links are updated when the workbook is opened. Possible xlUpdateLink settings are:

xlUpdateLinksAlways

Updates links when the workbook is opened, does not alert the user

xlUpdateLinksNever

Does not update links when the workbook is opened or alert the user

xlUpdateLinksUserSetting

Alerts the user if the workbook contains links when the workbook is opened and asks if those links should be
updated (default)

workbook.UpdateRemoteReferences [= setting]

True updates remote references in the workbook; False does not update. Default is True.

workbook.UserStatus

Returns an array containing information about each user who is currently connected to a workbook. This property is
primarily used for listing the users of a shared workbook. The following code displays a list of the users for the current
workbook:

Dim usr(), msg As String
usr = ThisWorkbook.UserStatus
For i = 1 To UBound(usr)
 msg = msg & usr(i, 1) & " Opened: " & _
 usr(i, 2) & " Shared? " & _
 (usr(i, 3) = 2) & vbCrLf
Next
MsgBox msg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.VBASigned

Returns True if the Visual Basic project contained in the workbook was digitally signed, otherwise, returns False.

workbook.VBProject

Returns a reference to the Visual Basic project that the workbook contains.

workbook.WebOptions

Returns the WebOptions object for a workbook. Use the WebOptions object to determine how a workbook is saved as a web
page. The following code sets the workbook's web options to support Internet Explorer, Version 3.0, then saves the
workbook as a web page:

Dim wo As WebOptions
Set wo = ThisWorkbook.WebOptions
wo.TargetBrowser = msoTargetBrowserV3
ThisWorkbook.SaveAs ThisWorkbook.Path & "\new.HTML", XlFileFormat.xlHtml

Excel's web file format features don't work well with non-Microsoft browsers.

workbook.WebPagePreview

Previews a workbook in the default web browser.

workbook.Windows [= setting]

Returns the collection of Excel windows in which the workbook is displayed. Use the NewWindow method to open new
windows, the Window Close method to close existing windows, and the Windows Arrange method to arrange open windows. If
you close the last window displaying a workbook, Excel prompts the user to save any changes before closing.

The following code opens two new windows for the current workbook, arranges them, then closes the three new
windows:

ThisWorkbook.NewWindow
ThisWorkbook.NewWindow
ThisWorkbook.Windows.Arrange
If MsgBox("Click OK to close new windows.", vbOKCancel) Then
 ThisWorkbook.Windows(3).Close
 ThisWorkbook.Windows(2).Close
End If
ThisWorkbook.Windows.Arrange

workbook.Worksheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a collection containing all the worksheets in a workbook. Use the Worksheets collection to get a specific
worksheet from a workbook. For example, the following code gets a reference to the General worksheet and assigns it
to an object variable:

Dim ws As Worksheet
Set ws = ThisWorkbook.Worksheets("General")

workbook.XmlImport(Url, ImportMap, [Overwrite], [Destination])

Imports an XML file into a list in the workbook. Returns an xlXMLImportResult value indicating whether the import
succeeded.

Argument Settings

Url The address of the XML file to import. The file may be stored on the local machine or at a network
address.

ImportMap An XMLMap object from the workbook to use to interpret the XML. If omitted, Excel creates an XML map
for the XML data.

Overwrite True overwrites any data previously imported through the XML map; False appends data. Default is True.

Destination A Range object identifying the upper-left corner of the destination for the imported data.

The ImportMap argument is required, but it doesn't have to be initialized, since XmlImport creates the XML map if none
exists. For example, the following code imports an XML file into a new worksheet and creates the XML map based on
the XML source file:

Dim ws As Worksheet, xmap As XmlMap, msg As String
' Create a new worksheet for the imported data.
Set ws = ThisWorkbook.Worksheets.Add
ret = ThisWorkbook.XmlImport(_
 "http://www.mstrainingkits.com/excel/ExcelObjects.xml", _
 xmap, , ws.Range("A1"))
Select Case ret
 Case XlXmlImportResult.xlXmlImportElementsTruncated
 msg = "Data was truncated."
 Case XlXmlImportResult.xlXmlImportSuccess
 msg = "XML data imported successfully."
 Case XlXmlImportResult.xlXmlImportValidationFailed
 msg = "XML was not valid."
End Select
MsgBox msg

The return value of XmlImport indicates one of three possible conditions:

xlXmlImportSuccess

The data was successfully imported.

xlXmlImportElementsTruncated

The entire XML file could not be downloaded for some reason, perhaps because there were more elements than
would fit on a spreadsheet.

xlXmlImportValidationFailed

The XML either wasn't valid according to the XML map's schema, or the XML simply wasn't valid XML.

workbook.XmlImportXml(Data, ImportMap, [Overwrite],

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.XmlImportXml(Data, ImportMap, [Overwrite],
[Destination])

Imports XML data into a list in the workbook. Returns an xlXMLImportResult value indicating whether the import succeeded.

This method is identical to XmlImport, however, it accepts a string argument containing the XML data, rather than the
address of an XML file. This allows you to use XML data returned from web services and to perform XSL transformations
before displaying XML data in Excel.

The following code performs an XSL transformation to limit the data displayed when importing XML data to a new
worksheet:

' Requires reference to Microsoft XML
Dim ws As Worksheet, xmap As XmlMap
Dim msg As String, xml As String
Dim xdoc As New DOMDocument, xstyle As New DOMDocument
' Create a new worksheet for the data.
Set ws = ThisWorkbook.Worksheets.Add
' Load XML.
If Not xdoc.Load("http://www.mstrainingkits.com/excel/ExcelObjects.xml") Then _
 MsgBox "Error loading XML source."
' Load XSL transform.
If Not xstyle.Load("http://www.mstrainingkits.com/excel/ObjByDate.xslt") Then _
 MsgBox "Error loading XSL transform."
' Transform XML.
xml = xdoc.transformNode(xstyle)
' Display results.
ret = ThisWorkbook.XmlImportXml(xml, xmap, , ws.Range("A1"))
Select Case ret
 Case XlXmlImportResult.xlXmlImportElementsTruncated
 msg = "Data was truncated."
 Case XlXmlImportResult.xlXmlImportSuccess
 msg = "XML data imported successfully."
 Case XlXmlImportResult.xlXmlImportValidationFailed
 msg = "XML was not valid."
End Select
MsgBox msg

workbook.XmlMaps

Returns the collection of XML maps in a workbook. Use this collection to select an existing XML map to use for importing
data or when refreshing XML data displayed in a list. The following code uses the XmlMaps collection to get the ExcelObjects
map and then refreshes the data displayed through that map:

Dim xmap As XmlMap
Set xmap = ThisWorkbook.XmlMaps("ExcelObjects")
xmap.DataBinding.Refresh

workbook.XmlNamespaces

Returns the collection of XmlNamespace objects in a workbook. The XmlNamespaces collection is primarily used to install and
manage XML expansion packs that provide SmartDocument features in Excel.

For example, the following code installs one of the sample expansion packs from the Smart Document SDK for all users:

sdoc = "C:\Program Files\Microsoft Office 2003 Developer Resources" & _
 "\Microsoft Office 2003 Smart Document SDK\Samples\SimpleSample" & _
 "\SourceFiles\manifest.xml"
ThisWorkbook.XmlNamespaces.InstallManifest sdoc, True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.7. RecentFile and RecentFiles Members
Use the RecentFiles collection to get the list of recently opened files from the Excel File menu. Use the Application object's
RecentFiles method to get a reference to this collection. Use the RecentFile object to open or remove files from this list. The
RecentFiles collection and RececentFile object have the following members. Key members (shown in bold) are covered in
the following reference section:

Add2 Application2

Count1 Creator2

Delete Index

Item1 Maximum1

Name Open

Parent2 Path

1 Collection only

2 Object and collection

By default, Excel doesn't add files opened programmatically to the recent file list. To add those files, use the Open
method with the AddToMRU argument set to True or use the RecentFiles collection's Add method.

recentfiles.Add(Name)

Adds a file to the recent-files list. If the file already appears in the recent-files list, the list does not change.

Argument Settings

Name The path and name of the file to add to the list. Excel does not check that the file exists before it is
added to the list.

The following code updates the recent-files list to make sure all currently open files are included:

Sub UpdateRecentFiles()
 Dim wb As Workbook
 For Each wb In Application.Workbooks
 Application.RecentFiles.Add wb.FullName
 Next
End Sub

Use the Workbook's FullName property when adding workbooks to the list so that Excel can
set the recent file's Path property correctly.

recentfile.Delete()

Removes a file from the recent files list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recentfiles.Maximum [= setting]

Sets or returns the number of files allowed in the recent-files list. Once this maximum is met, least-recent files are
removed as new files are added. Must be between 0 and 9.

recentfile.Name

Returns the name of the file as it appears in the recent-files list.

recentfile.Open

Attempts to open the recent file in Excel. This method may fail if the file has been deleted or moved.

recentfile.Path

Returns the full filename and path of the recent file if it is available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Working with Worksheets and Ranges
If workbooks are the documents of Excel, then worksheets and ranges are the chapters and paragraphs, and individual
cells are the words. Most of the work you do takes place on a worksheet and involves manipulating ranges of cells or
individual cells. From a programmer's perspective, you are most often working with Worksheet and Range objects,
although of course you use other objects to accomplish specific tasks.

One concept that any beginning Excel programmer encounters is that, within the world of Excel objects, a cell is not a
Cell objectit is a single-cell Range object. So you will often use a Range object to manipulate individual cells. You use a
Worksheet object to control what happens at the worksheet level, and you use a Range object whenever you work with a
cell or cells.

In this chapter, I show how to:

Work with worksheets

Get cells in a worksheet

Work with the Sheets collection

Work with outlines

Work with ranges

Find and replace text in a range

Use named ranges

Format and change text

Work with scenarios

This chapter includes task-oriented reference information for the following objects and their related collections:
Worksheet, Outline, Range, and Scenario.

Code used in this chapter and additional samples are available in ch09.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1. Work with Worksheet Objects
Worksheets are the workhorses of Excel. Most of the time when you program Excel, you are doing something with a
worksheet, either with the active sheet or some other sheet that you specify. Use the Worksheets collection to create new
worksheets or to refer to a specific worksheet. For example, to create a new, empty worksheet in Excel, use the Add
method on the Sheets or Worksheets collection:

Dim ws1 As Worksheet
Dim ws2 As Sheet

Set ws1 = Worksheets.Add
Set ws2 = Sheets.Add

Once you've declared a worksheet variable and assigned it a reference to a Worksheet object, as in the previous code for
creating a new worksheet, you can use the variable to refer to the worksheet's properties and methods. You can also
use the ActiveSheet method to refer directly to the worksheet that currently has the focus, or refer to a specific worksheet
as a member of the Worksheets collection.

For example, to set the text for all cells in the current worksheet to bold, you can use either of the variables in the
preceding example to return an object that represents all the cells in the worksheet:

ws1.Cells.Font.Bold = True

You could accomplish the same task for the current worksheet by using the ActiveSheet property, which represents the
active worksheet. This is the most common way to refer to the properties and methods of the currently active
worksheet:

ActiveSheet.Cells.Font.Bold = True

You can also refer to a specific worksheet as a member of the Worksheets collection:

Worksheets("WombatBattingAverages").Cells.Font.Bold = True

9.1.1. Get Cells in a Worksheet

As you saw in the previous examples, you can use the Cells property of a worksheet to work with all the cells on a
worksheet as a group. Two other ways you can work with ranges of cells in a worksheet are to:

Use the Range property to work with a specific range of cells

Use the UsedRange property to work with only cells that have data

For example, you could use the Range property to set the text of cells in the range C5:D10 on the active worksheet to
bold type:

ActiveSheet.Range("C5:D10").Font.Bold = True

The Range property may be the most commonly used property in Excel programming. You will use it a lot!

The UsedRange property returns the rectangular block of cells that contain values. The upper-left corner of the block is
the first cell that contains a value, and the lower-right corner of the block is the last cell that contains a value. In
between there may or may not be empty cellsthe range is contiguous. It's more efficient to work with UsedRange than the
Cells property because it returns a smaller, more specific range of cells. For example, the following code selects all of the
cells that have negative values on the active worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cells that have negative values on the active worksheet:

Sub DemoUsedRange()
 Dim cel As Range, str As String
 For Each cel In ActiveSheet.UsedRange
 If cel.Value < 0 Then str = str & cel.Address & ","
 Next
 If str <> "" Then _
 ActiveSheet.Range(Left(str, Len(str) - 1)).Select
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2. Worksheets and Worksheet Members
Use the Worksheets collection to create new and get existing worksheets in Excel. Use the Workbook object's Worksheets
method to get a reference to this collection. Use the Worksheet object to activate and work with ranges on individual
worksheets. The Worksheets collection and Worksheet object have the following members. Key members (shown in bold)
are covered in the following reference section:

Activate Add1 Application2

AutoFilter AutoFilterMode Calculate

Cells ChartObjects CheckSpelling

CircleInvalid CircularReference ClearArrows

ClearCircles CodeName Columns

Comments ConsolidationFunction ConsolidationOptions

ConsolidationSources Copy2 Count1

Creator2 CustomProperties Delete

DisplayPageBreaks DisplayRightToLeft EnableAutoFilter

EnableCalculation EnableOutlining EnablePivotTable

EnableSelection Evaluate FillAcrossSheets1

FilterMode HPageBreaks2 Hyperlinks

Index Item ListObjects

MailEnvelope Move2 Name

Names Next OLEObjects

Outline PageSetup Parent2

Paste PasteSpecial PivotTables

PivotTableWizard Previous PrintOut2

PrintPreview2 Protect ProtectContents

ProtectDrawingObjects Protection ProtectionMode

ProtectScenarios QueryTables Range

ResetAllPageBreaks Rows SaveAs

Scenarios Scripts ScrollArea

Select2 SetBackgroundPicture Shapes

ShowAllData ShowDataForm SmartTags

StandardHeight StandardWidth Tab

TransitionExpEval TransitionFormEntry Type

Unprotect UsedRange Visible2

VPageBreaks2 XmlDataQuery XmlMapQuery

1 Collection only

2 Object and collection

worksheet.Activate()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Activates the specified worksheet giving it focus. For example, the following code activates the WombatBattingAverages
worksheet:

Worksheets("WombatBattingAverages").Activate

worksheets.Add(Before, After, Count, Type)

Creates one or more worksheets. If you create a single worksheet, it is the active sheet. If you create more than one
worksheet, the last sheet created is the active sheet.

Argument Settings

Before Specifies an existing worksheet if you want to place the new worksheet before that sheet.

After Specifies an existing worksheet if you want to place the new worksheet after that sheet.

Count Specifies the number of sheets to be added if you want to create more than one sheet.

Type Use xlChart to insert a chart, xlExcel4MacroSheet to insert a macro sheet, or the path to a template if you are
inserting a sheet based on an existing template.

The following code creates two worksheets after the WombatBattingAverages worksheet:

ActiveWorkbook.Sheets.Add After:=Worksheets("WombatBattingAverages"), Count:=2

worksheet.Calculate()

Calculates the formulas on the specified worksheet. For example, the following code calculates the formulas for the
batting averages of a renowned softball team:

Worksheets("WombatBattingAverages").Calculate

worksheet.Cells

Returns a Range object that represents cells on the worksheet. The syntax shows the Cells property without arguments,
which returns all the cells in a worksheet as a Range object. However, you can also enter the specific range you want to
return as if you were using the syntax for a Range object.

The following code sets the font size to 12 for every cell in the WombatBattingAverages worksheet so the athletes can
easily read them:

Worksheets("WombatBattingAverages").Cells.Font.Size = 12

The following code highlights batting averages .300 and over:

Dim rwIndex As Integer
For rwIndex = 1 To 3
 With Worksheets("WombatBattingAverages").Cells(rwIndex, 2)
 If .Value >= 0.3 Then
 .Font.Color = RGB(255, 0, 0)
 End If
 End With
Next rwIndex

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet.CheckSpelling(CustomDictionary, IgnoreUppercase,
AlwaysSuggest, SpellLang)

Checks the spelling of text on the specified worksheet and displays the Spelling dialog box.

The following code checks the spelling of text in the cells of the WombatBattingAverages worksheet:

Worksheets("WombatBattingAverages").CheckSpelling

worksheet.Columns([Index])

Returns a Range object that represents the column specified by Index or all the columns in a worksheet.

The following code selects the second column (column B) in the active worksheet:

ActiveSheet.Columns(2).Select

worksheet.Comments

Returns the collection of comments on a worksheet.

The following code deletes comments by Jeff Webb:

Dim cmt As Comment
For Each cmnt in ActiveSheet.Comments
 If cmnt.Author = "Jeff Webb" Then cmnt.Delete
Next

worksheet.Copy(Before, After)

Copies the specified sheet to another location in the workbook.

Argument Settings

Before Specifies an existing worksheet if you want to place the copied worksheet before that sheet

After Specifies an existing worksheet if you want to place the copied worksheet after that sheet

The following code copies the KarmaFactor worksheet after the WombatBattingAverages worksheet:

ActiveWorkbook.Worksheets("KarmaFactor").Copy
After:=Worksheets("WombatBattingAverages")

worksheet.DisplayPageBreaks

Set this property to True to display page breaks for the worksheet.

worksheet.EnableCalculation [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet.EnableCalculation [= setting]

True allows calculations on the worksheet; False disables calculations. Default is True.

worksheet.EnableOutlining [= setting]

Set this property to True to automatically enable outlining symbols on the worksheet.

worksheet.EnablePivotTable [= setting]

Set this property to True to automatically enable PivotTable controls and actions on the worksheet.

worksheet.EnableSelection [= setting]

Set this property to:

xlNoSelection

To prevent any selection on the worksheet

xlNoRestrictions

To allow any cell to be selected

xlUnlockedCells

To allow selection of only unlocked cells

worksheet.Hyperlinks

Returns the collection of hyperlinks on a worksheet.

The following code updates the names of the hyperlinks on a worksheet from one year to another:

For Each hlink in Worksheets("WombatBattingAverages").Hyperlinks
 If hlink.Name = "2005Stats" Then hlink.Name = "2006Stats"
Next

worksheet.Move(Before, After)

Moves the specified sheet to another location in the workbook.

Argument Settings

Before Specifies an existing worksheet if you want to place the worksheet before that sheet

After Specifies an existing worksheet if you want to place the worksheet after that sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code moves the KarmaFactor worksheet after the WombatBattingAverages worksheet:

ActiveWorkbook.Worksheets("KarmaFactor").Move
After:=Worksheets("WombatBattingAverages")

worksheet.Outline

Returns an Outline object that represents the outline of a worksheet.

The following code enables automatic outlining for the active worksheet and then shows the top-level view of the
outline:

ActiveSheet.Cells.AutoOutline
ActiveSheet.Outline.ShowLevels 1, 1

worksheet.PageSetup

Returns a PageSetup object that represents the page setup attributes for the worksheet.

The following code sets the page orientation of the WombatBattingAverages worksheet to landscape:

With Worksheets("WombatBattingAverages")
 .PageSetup.Orientation = xlLandscape
End With

worksheet.Paste([Destination], [Link])

Pastes the contents of the clipboard onto the specified worksheet.

Argument Settings

Destination A Range object that specifies where the clipboard contents are pasted

Link True to establish a link between the pasted clipboard contents and their source

The following code copies the range of cells B1:B3 to the range E1:E3:

Worksheets("WombatBattingAverages ").Range("B1:B3").Copy
ActiveSheet.Paste Destination:=Worksheets("WombatBattingAverages ").Range("E1:E3")

worksheet.PasteSpecial([Format], [Link], [DisplayAsIcon],
[IconFileName], [IconIndex], [IconLabel], [NoHTMLFormatting])

Pastes the contents of the clipboard, including formatting, onto the specified worksheet.

Argument Settings

Format The format of the clipboard contents to paste, using one of the strings specified in the As list box of
the Paste Special dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Format the Paste Special dialog box

Link True to establish a link between the pasted clipboard contents and their source

DisplayAsIcon True to display the pasted clipboard contents as an icon

IconFileName The name of the file containing the icon to display

IconIndex The numeric index of the icon within the icon file

IconLabel The label to display with the icon

NoHTMLFormatting True to remove all HTML formatting from the clipboard contents

The following code pastes the contents of the clipboard into cell D2 as a hyperlink:

Worksheets("WombatBattingAverages ").Range("D2").Select
ActiveSheet.PasteSpecial Format:= "Hyperlink"

worksheet.Protect([Password], [DrawingObjects], [Contents],
[Scenarios], [UserInterfaceOnly], [AllowFormattingCells],
[AllowFormattingColumns], [AllowFormattingRows], [
AllowInsertingColumns], [AllowInsertingRows],
[AllowInsertingHyperlinks], [AllowDeletingColumns], [
AllowDeletingRows], [AllowSorting], [AllowFiltering],
[AllowUsingPivotTables])

Prevents changes to a worksheet.

Argument Settings

Password A case-sensitive password string.

DrawingObjects True prevents changes to shapes.

Contents True prevents changes to the contents of cells.

Scenarios True prevents changes to scenarios.

UserInterfaceOnly True prevents changes to the user interface, but not macros.

AllowFormattingCells True allows formatting changes to cells.

AllowFormattingColumns True allows formatting changes to columns.

AllowFormattingRows True allows formatting changes to rows.

AllowInsertingColumns True allows inserting of columns.

AllowInsertingRows True allows inserting of rows.

AllowInsertingHyperlinks True allows inserting of hyperlinks.

AllowDeletingColumns True allows deleting of columns.

AllowDeletingRows True allows deleting of rows.

AllowSorting True allows sorting on the worksheet.

AllowFiltering True allows filtering on the worksheet.

AllowUsingPivotTables True allows pivot tables on the worksheet.

worksheet.ProtectContents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set this property to True to prevent changes to a worksheet.

worksheet.ProtectDrawingObjects

Set this property to True to prevent changes to shapes.

worksheet.Protection

Returns a Protection object that represents the protection attributes of the worksheet.

The following code displays a message if you can't delete rows in a worksheet:

If ActiveSheet.Protection.AllowDeletingRows = False Then
 MsgBox "Sorry, you can't delete this row."
End If

worksheet.ProtectionMode

Returns True if the user interface is protected. To protect the user interface, use the Protect method with the
UserInterfaceOnly argument set to True.

worksheet.ProtectScenarios

Returns True if scenarios are protected.

worksheet.QueryTables

Returns the QueryTables collection of the worksheet's query tables.

worksheet.Range([Cell1], [Cell2])

Returns a Range object that represents a range of cells.

The following code highlights batting averages .300 and over:

For Each c in Worksheets("WombatBattingAverages").Range("B1:B10")
 If c.Value >= 0.3 Then
 .Font.Color = RGB(255, 0, 0)
 End If
Next c

worksheet.Rows([Index])

Returns a Range object that represents the row specified by Index or all the rows in a worksheet.

The following code selects the second row in the active worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code selects the second row in the active worksheet:

ActiveSheet.Rows(2).Select

worksheet.Scenarios([Index])

Returns a Scenario object that represents the scenario specified by Index or all the scenarios in a worksheet.

worksheet.ScrollArea

Sets the cell range where scrolling is allowed.

The following code sets the scroll area for the WombatBattingAverages worksheet:

Worksheets("WombatBattingAverages").ScrollArea = "B1:B10"

worksheet.SetBackgroundPicture([Filename])

Displays the specified graphic as the background for the worksheet.

worksheet.Shapes

Returns the collection of the Shape objects in the worksheet's drawing layer, such as the AutoShapes, freeforms, OLE
objects, or pictures.

worksheet.StandardHeight

Returns the default height of rows, in points.

worksheet.StandardWidth

Returns the default width of columns, in normal font character widths or the width of the zero character (0) for
proportional fonts.

worksheet.Type [= setting]

Returns or sets the type of worksheet: xlChart, xlDialogSheet, xlExcel4IntlMacroSheet, xlExcel4MacroSheet, or xlWorksheet.

worksheet.Unprotect([Password])

Allows changes to a worksheet.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password A case-sensitive password string

worksheet.UsedRange

Returns a Range object that represents the cell range that contains data.

The following code returns the cell range on the WombatBattingAverages worksheet that contains the worksheet's data.

Worksheets("WombatBattingAverages").UsedRange.Address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3. Sheets Members
Use the Sheets collection to access all the sheets in the active workbook, including both Chart and Worksheet objects. For
example, the following code inserts a worksheet after the first sheet in the active workbook and then inserts a chart
after the new worksheet:

Sheets.Add type:=xlWorksheet, after:=Sheets(1)
Sheets.Add type:=xlChart, after:=Sheets(2)

The Sheets collection has the following members . Key members (shown in bold) are covered in the following reference
section:

Add Copy

Count Delete

FillAcrossSheets HPageBreaks

Item Move

PrintOut PrintPreview

Select Visible

VPageBreaks

Sheets.Copy(Before, After)

Copies the specified sheet to another location in the workbook.

Argument Settings

Before Specifies an existing worksheet if you want to place the copied worksheet before that sheet

After Specifies an existing worksheet if you want to place the copied worksheet after that sheet

Sheets.FillAcrossSheets(Range, Type)

Copies the specified range to the same location on all the worksheets in the workbook.

Argument Settings

Range Specifies a Range object representing the range to copy to the worksheets

Type Specifies how to copy the range: xlFillWithAll, xlFillWithContents, or xlFillWithFormats

Sheets.Move(Before, After)

Moves the specified sheet to another location in the workbook.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Before Specifies an existing worksheet if you want to place the worksheet before that sheet

After Specifies an existing worksheet if you want to place the worksheet after that sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4. Work with Outlines
Outlining lets you quickly switch between the big picture and the details of a summary worksheet. In Figure 9-1, you
can see the detail view of a summary worksheet, and in Figure 9-2 you can see the corresponding big picture.

You can control outlining programmatically by using the Outline property of a Worksheet object to return an Outline object.
You can use the properties and methods of the Outline object to control how the outline is displayed and how levels are
assigned.

The following code creates an AutoOutline and displays the outline levels:

ActiveSheet.UsedRange.AutoOutline
ActiveSheet.Outline.AutomaticStyles = True
ActiveSheet.Outline.ShowLevels 1, 1

If you have an outline with many levels, the following code displays all levels. An outline can have up to eight levels:

ActiveSheet.Outline.ShowLevels 8,8

Figure 9-1. A detail view of team sales

Figure 9-2. The corresponding big picture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5. Outline Members
Use the Outline object to control the level of summary displayed for an outlined range. Use the Worksheet object's Outline
property to get a reference to this object. The Outline object has the following members . Key members (shown in bold)
are covered in the following reference section:

Application AutomaticStyles

Creator Parent

ShowLevels SummaryColumn

SummaryRow

outline.AutomaticStyles

True if the outline uses automatic styles.

outline.ShowLevels(RowLevels, ColumnLevels)

Displays a specified number of row and column levels for the outline.

Argument Settings

RowLevels The number of row levels to display

ColumnLevels The number of column levels to display

outline.SummaryColumn

Sets or returns the location of the outline's summary columns, either xlSummaryOnRight to position the summary column
to the right of the detail columns or xlSummaryOnLeft to position the summary columns to the left of the detail columns.

outline.SummaryRow

Sets or returns the location of the outline's summary rows, either xlSummaryBelow to position the summary column below
the detail rows or xlSummaryAbove to position the summary columns above the detail rows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.6. Work with Ranges
When you want to do just about anything in code with a cell or group of cells in a worksheet, you do it using a Range
object. It is the most frequently used object in Excel programming.

It can also be confusing. You can return a Range object in many ways in your code, and it can represent both individual
cells and groups of cells, depending on the circumstances. Compounding the confusion, the Excel programming
reference topics do not document Range as an object, even though Range objects are referred to frequently throughout
the reference documentation, and you often declare variables of type Range. Once you become familiar with Range
objects, however, they are not difficult to use.

The most common way to return a Range object is using the Range property, which lets you specify a single cell or a
range of cells. The following code returns the value of cell A9 on the currently active worksheet:

ActiveSheet.Range("A9")

The following code selects all the cells in the range A1:A9:

ActiveSheet.Range("A1:A9").Select

Another common way to return a Range object is to use the Cells property to return an individual cell based on its row
and column position in a worksheet. For example, the following code sets the value of cell F4 (the cell in the fourth row
and sixth column) to 12:

ActiveSheet.Cells(4, 6)=12

The advantage of using the Cells property to return a range is that you can use variables to represent the row or column
values. For example, the following code uses the variable rwIndex to iterate through rows of a worksheet:

Dim r As Range
Dim rwIndex As Integer

For rwIndex = 1 To 3
 Set r = ActiveSheet.Cells(rwIndex, 2)
 With r
 If .Value >= 0.3 Then
 .Font.Bold = True
 End If
 End With
Next rwIndex

Other common ways to return a Range object are:

The Columns property

Returns all the cells in a specified worksheet column

The Rows property

Returns all the cells in a specified worksheet row

The UsedRange property

Returns all the cells in a worksheet that contain data

There are other ways to return a Range object, but those are the techniques you will likely use most often.

9.6.1. Find and Replace Text in a Range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finding and replacing text is a familiar operation to anyone who has spent quality time with a word processing program
such as Microsoft Word, or even good old Notepad. It's a pretty common operation in many other applications as well,
including Excel.

You would think, then, that performing an Excel find and replace operation in code would be a pretty straightforward
thing. Unfortunately, it can be a little quirky.

As you might expect, you use the Find method and its close relatives, the FindNext and FindPrevious methods, to find text,
numbers, or cell formatting in a worksheet. You use the Replace method to replace what you found. Here are a couple of
things that you might not expect:

If you specify a range in which to perform the Find operation, the first cell in the range is, by default, the current
cell. So even if that first cell contains what you are looking for, the Find operation will move to the next
occurrence in the range if one exists, rather than keeping the focus on the first cell.

If the search is not successful and your code then uses the Select method to attempt to select the result, it will
return an error.

The following code finds the first occurrence of the string "Ichiro" in the specified range:

Dim myrange As Range
Dim foundcell As Range
Dim strSearch As String

Set myrange = ActiveSheet.Range("A1:A7")
strSearch = "Ichiro"
' Check the first cell in the range.
If myrange(1).Value = strSearch Then
 myrange(1).Select
Else
 Set foundcell = myrange.Find(strSearch, LookIn:=xlValues)
 ' Check to see if the string is found before selecting the cell.
 If Not foundcell Is Nothing Then
 foundcell.Select
 Else
 MsgBox "String not found."
 End If
End If

Note that if the first cell in the range contains the string, it will be selected. If you do not explicitly check to see if the
first cell contains what you are looking for, the code will move to the next occurrence of the search string. Note also
that the code checks to see whether the string is found before selecting the cell.

The following code uses the FindNext method to find the next occurrence of the current search string:

Dim curCell As Range
Dim foundcell As Range

Set curCell = ActiveCell
Set foundcell = ActiveSheet.Range("A1:A7").FindNext(curCell)
foundcell.Select

The following code uses the Replace method to replace all occurrences of the string "Ichiro" in the specified range with the
string "Suzuki":

Dim r As Range

Set r = ActiveSheet.Range("A1:A7")
r.Replace "Ichiro", "Suzuki"

9.6.2. Use Named Ranges

Sometimes it is easier and clearer to refer to a particular range of cells by name than by notation, particularly if you
plan to refer to that range frequently. For example, if the range of cells between A1 and F10 contains monthly sales
information, you could refer to it by the name "MonthlySales" rather than Range("A1:F10").

You create a named range by defining the range that it applies to and then adding the name to the Names collection for
the workbook. For example, the following code establishes the name "MonthlySales" for the range of cells between A1 and
F10 on Sheet1:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

F10 on Sheet1:

Names.Add "MonthlySales", "=Sheet1!A1:F10"

You can use the ListNames method to display a list of all the named ranges in a workbook. The following code pastes a list
of the current named ranges into cell A1 on Sheet 2:

Worksheets("Sheet2").Range("A1").ListNames

Once you have defined a named range, you can use the name rather than specifying the beginning and ending of the
range when you want to change attributes of the range. For example, the following code changes the font of all the cells
in the specified named range to bold type:

Range("MonthlySales").Font.Bold = True

You can use the GoTo method to select the cells in the specified named range:

Application.GoTo "MonthlySales"

If you need to refer to a named range in a worksheet other than the current worksheet, you must include the name of
the worksheet when you specify the named range. For example, if the current worksheet is Sheet1, the following code
selects the MonthlySales named range on Sheet2:

Application.GoTo "Sheet2!MonthlySales"

9.6.3. Format and Change Text

Changing the appearance of text in cells is one of the most common operations when you are working with a
worksheet. You can spend hours getting your worksheet to look just the way you like.

When you want to use code to set or change the format of text in a cell, you have two choices:

Use the Font property to return a Font object , which lets you set or change the format of the entire cell.

Use the Characters collection to set or change the format of individual characters within a cell.

The following code uses the Font property to format the cells in the specified range in bold type:

ActiveSheet.Range("A1:A7").Font.Bold = True

The following code uses the Characters collection to change the font to bold type for the first six characters in cell A7. For
example, if the first word in the cell is "urgent," the following code displays only that word in bold type:

ActiveSheet.Range("A9").Characters(1, 6).Font.Bold = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.7. Range Members
Use the Range collection to work with cells on a worksheet. Use the Worksheet object's Cells, Range, UsedRange, Columns, or
Rows method to get a reference to this object. The Range collection has the following members. Key members (shown in
bold) are covered in the following reference section:

Activate AddComment AddIndent

Address AddressLocal AdvancedFilter

AllowEdit Application ApplyNames

ApplyOutlineStyles Areas AutoComplete

AutoFill AutoFilter AutoFit

AutoFormat AutoOutline BorderAround

Borders Calculate Cells

Characters CheckSpelling Clear

ClearComments ClearContents ClearFormats

ClearNotes ClearOutline Column

ColumnDifferences Columns ColumnWidth

Comment Consolidate Copy

CopyFromRecordset CopyPicture Count

CreateNames CreatePublisher Creator

CurrentArray CurrentRegion Cut

DataSeries Delete Dependents

DialogBox DirectDependents DirectPrecedents

Dirty End EntireColumn

EntireRow Errors FillDown

FillLeft FillRight FillUp

Find FindNext FindPrevious

Font FormatConditions Formula

FormulaArray FormulaHidden FormulaLabel

FormulaLocal FormulaR1C1 FormulaR1C1Local

FunctionWizard GoalSeek Group

HasArray HasFormula Height

Hidden HorizontalAlignment Hyperlinks

ID IndentLevel Insert

InsertIndent Interior Item

Justify Left ListHeaderRows

ListNames ListObject LocationInTable

Locked Merge MergeArea

MergeCells Name NavigateArrow

Next NoteText NumberFormat

NumberFormatLocal Offset Orientation

OutlineLevel PageBreak Parent

Parse PasteSpecial Phonetic

Phonetics PivotCell PivotField

PivotItem PivotTable Precedents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PivotItem PivotTable

PrefixCharacter Previous PrintOut

PrintPreview QueryTable Range

ReadingOrder RemoveSubtotal Replace

Resize Row RowDifferences

RowHeight Rows Run

Select SetPhonetic Show

ShowDependents ShowDetail ShowErrors

ShowPrecedents ShrinkToFit SmartTags

Sort SortSpecial Speak

SpecialCells Style SubscribeTo

Subtotal Summary Table

Text TextToColumns Top

Ungroup UnMerge UseStandardHeight

UseStandardWidth Validation Value

Value2 VerticalAlignment Width

Worksheet WrapText XPath

range.Activate()

Activates the specified cell, giving it focus. The following code activates cell B2 on the current worksheet:

ActiveSheet.Range("B2").Activate

range.AddComment()

Adds a comment to the specified range. The following code adds a comment to cells with batting averages .300 and
over:

Dim r As Range
Dim rwIndex As Integer

For rwIndex = 1 To 3
 Set r = Worksheets("WombatBattingAverages").Cells(rwIndex, 2)
 With r
 If .Value >= 0.3 Then
 .AddComment "All Star!"
 End If
 End With
Next rwIndex

range.AddIndent[= setting]

Set this property to True to automatically indent text cells that have distributed alignment. Use the HorizontalAlignment and
VerticalAlignment properties to set distributed alignment.

range.Address([RowAbsolute], [ColumnAbsolute],
[ReferenceStyle], [External], [RelativeTo])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the range reference for the specified range.

Argument Settings

RowAbsolute True (default) returns the row reference as an absolute reference.

ColumnAbsolute True (default) returns the column reference as an absolute reference.

ReferenceStyle xlA1 (default) returns an A1-style reference. Use xlR1C1 to return an R1C1 reference.

External False (default) returns a local reference, without including a workbook and worksheet reference.

RelativeTo The Range object that defines the starting point for a relative range. Use this argument if RowAbsolute and
ColumnAbsolute are False, and ReferenceStyle is R1C1.

range.AllowEdit

True if the specified range on a protected worksheet can be edited.

range.Areas([Index])

Returns a collection of Range objects representing the ranges in a multiple-area selection or the range in the area
specified by Index. The following code displays the range references for each range in a multiple-area selection:

Dim r As Range

For each r in Selection.Areas
 MsgBox r.Address
Next r

range.AutoFill(Destination, [Type])

Automatically fills in the cells in a specified destination range based on the specified source range.

Argument Settings

Destination The cells to be filled, including the source range.

Type
The default value is xlFillDefault, which attempts to select the most appropriate fill type based on the
source range. You can also explicitly specify the type using one of the following constants: xlFillDays,
xlFillFormats, xlFillSeries, xlFillWeekdays, xlGrowthTrend, xlFillCopy, xlFillMonths, xlFillValues, xlFillYears, xlLinearTrend.

If the value of cell A1 is 1, the following code automatically fills in the remaining cells in the range A1:A5 with the
values 2 through 5:

Dim srcRange As Range
Dim destRange As Range

Set srcRange = ActiveSheet.Range("A1")
Set destRange = ActiveSheet.Range("A1:A5")
srcRange.AutoFill destRange, xlFillSeries

range.AutoFit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sizes the height and width of the cells in the specified range to fit their contents.

range.BorderAround([LineStyle], [Weight], [ColorIndex], [Color])

Adds a border around the specified range of cells.

Argument Settings

LineStyle
The line style of the border. The default value is xlContinuous, which uses a continuous line. You can also
explicitly specify the line style using one of the following constants: xlDash, xlDashDot, xlDashDotDot, xlDot,
xlDouble, xlLineStyleNone, xlSlantDashDot, xlLineStyleNone.

Weight The thickness of the border line. The default value is xlThin, which uses a thin line. You can also explicitly
specify the weight style using one of the following constants: xlHairline, xlMedium, xlThick.

ColorIndex The border color, as an index of the color in the current color palette or as one of the following
constants: xlColorIndexAutomatic (default) and xlColorIndexNone.

Color The border color as an RGB value.

range.Borders([Index])

Returns the collection of Border objects representing the borders of the specified range or a Border object representing a
border specified by one of the following constants: xlDiagonalDown, xlDiagonalUp, xlEdgeBottom, xlEdgeLeft, xlEdgeRight, xlEdgeTop,
xlInsideHorizontal, or xlInsideVertical.

The following code adds a border around the specified range:

With ActiveSheet.Range("B2:B5")
 .Borders(xlEdgeBottom).LineStyle = xlContinuous
 .Borders(xlEdgeLeft).LineStyle = xlContinuous
 .Borders(xlEdgeRight).LineStyle = xlContinuous
 .Borders(xlEdgeTop).LineStyle = xlContinuous
End With

range.Calculate()

Calculates the formulas in the specified range.

range.Cells([RowIndex], [ColumnIndex])

Returns a Range object representing all the cells in the specified range or a subset indexed by row number and/or
column number.

Argument Settings

RowIndex The row number of the cells to return

ColumnIndex The column number of the cells to return

The following code changes the font to bold type for cells in the specified range with batting averages over .300:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code changes the font to bold type for cells in the specified range with batting averages over .300:

Dim r As Range
Dim rwIndex As Integer

Set r = Worksheets("WombatBattingAverages").Range("B1:B3")

For rwIndex = 1 To 3
 With r.Cells(rwIndex)
 If .Value >= 0.3 Then
 .Font.Bold = True
 End If
 End With
Next rwIndex

range.Characters([Start], [Length])

Returns a Characters object representing all the characters in a text cell or a specified string within the text.

Argument Settings

Start The position of the first character in the string. The default is the first character.

Length The number of characters in the string. The default is the remaining characters in the cell.

The following code changes the font to bold type for the first six characters in cell A9. For example, if the first word in
the cell is "urgent," the following code displays only that word in bold type:

ActiveSheet.Range("A9").Characters(1, 6).Font.Bold = True

range.CheckSpelling([CustomDictionary], [IgnoreUppercase],
[AlwaysSuggest], [SpellLang])

Checks the spelling of the words in the specified range.

Argument Settings

CustomDictionary The filename of a custom dictionary. The custom dictionary is checked if a word isn't found in the main
dictionary.

IgnoreUppercase True ignores uppercase words.

AlwaysSuggest True displays suggested alternate spellings.

SpellLang An msoLanguageID constant specifying the Language ID used for the spellcheck.

range.Clear()

Clears the cells in the specified range.

range.ClearContents()

Clears the cells in the specified range but preserves formatting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.ClearFormats()

Clears the formatting of cells in the specified range.

range.Column

Returns the number of the first column in the specified range. For example, column A is 1, column B is 2, and so on.
The following code returns 2:

ActiveSheet. Range("B3").Column

range.Columns([Index])

Returns a Range object that represents the columns in the specified range or the column specified by Index. The following
code changes the font in column A of the specified range to bold type:

ActiveSheet.Range("A1:B4").Columns(1).Font.Bold = True

range.ColumnWidth

Sets the width of columns in the specified range. If all the columns have the same width, returns the width; otherwise,
returns Null.

range.Copy([Destination])

Copies the specified range to the specified destination range or to the clipboard.

Argument Settings

Destination Specifies the destination range. If this argument is omitted, the range is copied to the clipboard.

range.CopyFromRecordset([Data, MaxRows, MaxColumns])

Copies the contents of a Recordset object into the specified range.

Argument Settings

Data The Recordset object to copy.

MaxRows If you do not want to copy all records, this argument specifies the maximum number of records to copy.

MaxColumns If you do not want to copy all fields, this argument specifies the maximum number of fields to copy.

range.Cut([Destination])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cuts the specified range to the specified destination range or to the clipboard.

Argument Settings

Destination Specifies the destination range. If this argument is omitted, the range is copied to the clipboard.

range.Delete([Shift])

Deletes the specified range and shifts the cells based on the shape of the specified range or the specified Shift argument.

Argument Settings

Shift Specifies whether cells are shifted up (xlShiftUp) or to the left (xlShiftToLeft) when the specified range of cells
is deleted. If you don't supply a Shift argument, the cells are shifted according to the shape of the range.

range.Dependents

Returns a Range object that represents the cell or cells whose values depend directly or indirectly on cells in the specified
range. If cell F2 contains a formula that uses cell B2, and cell G2 contains a formula that uses cell F2, the following code
selects both cell F2 and cell G2:

Dim r As Range

Set r = ActiveSheet.Range("B2")
r.Dependents.Select

range.DirectDependents

Returns a Range object that represents the cell or cells whose values depend directly on cells in the specified range. If
cell F2 contains a formula that uses cell B2, and cell G2 contains a formula that uses cell F2, the following code selects
only cell F2:

Dim r As Range

Set r = ActiveSheet.Range("B2")
r.DirectDependents.Select

range.DirectPrecedents

Returns a Range object that represents the cell or cells that directly use the cells in the specified range. If cell F2
contains a formula that uses cell B2, and cell G2 contains a formula that uses cell F2, the following code selects only cell
F2:

Dim r As Range

Set r = ActiveSheet.Range("G2")
r.DirectPrecedents.Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.End([Direction])

Returns a Range object that represents the cell at the end a region of cells containing the specified range, in the
specified direction. The following code selects the cell at the bottom end of the region containing cell A2:

Dim r As Range

Set r = ActiveSheet.Range("A2")
r.End(xlDown).Select

range.EntireColumn

Returns a Range object that represents the entire column or columns containing the specified range.

range.EntireRow

Returns a Range object that represents the entire row or rows containing the specified range.

range.FillDown

Fills the contents and formatting of the top cell or cells in the specified range to all cells in the range in the downward
direction.

range.FillLeft

Fills the contents and formatting of the right cell or cells in the specified range to all cells in the range to the left.

range.FillRight

Fills the contents and formatting of the left cell or cells in the specified range to all cells in the range to the right.

range.FillUp

Fills the contents and formatting of the bottom cell in the specified range to all cells in the range in the upward
direction.

range.Find(What, [After], [LookIn], [LookAt]), [SearchOrder],
[SearchDirection], [MatchCase], [MatchByte], [SearchFormat])

Returns a Range object representing the cell containing the first occurrence of the specified item within the specified
range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

What The item to search for. Can be a string or Excel data type.

After The cell after which the search begins.

LookIn Specify xlFormulas, xlValues, or xlNotes to limit the search to those types of information.

LookAt xlPart (default) searches within the cell contents; xlWhole searches whole cells.

SearcbOrder xlByRows (default) searches one row at a time; xlByColumns searches one column at a time.

SearchDirection xlNext (default) searches down and to the right; xlPrevious searches up and to the left.

MatchCase False (default) ignores case; True performs a case-sensitive search.

MatchByte

If double-byte language support is enabled:

True matches double-byte characters.

False matches double-byte characters to their single-byte equivalents.

SearchFormat True uses the FindFormat property setting to find cells with specific formatting; False ignores the
FindFormat property. Default is False.

The following code selects the first cell in row A that contains the string "Ichiro". Note that the code checks whether the
Find method returns Nothing. If you don't check for Nothing and the Find item isn't found, the Select method returns an error.

Dim r As Range
Dim foundCell As Range

Set r = ActiveSheet.Range("A1:A6")
Set foundCell = r.Find("Ichiro", LookIn:=xlValues)
If Not foundCell Is Nothing Then
 foundCell.Select
Else
 MsgBox "String not found."
End If

range.FindNext([After])

Repeats the last Find operation and returns a Range object representing the cell containing the next occurrence of the
specified item within the specified range.

Argument Settings

After The cell after which the search begins

range.FindPrevious([After])

Repeats the last Find operation and returns a Range object representing the cell containing the previous occurrence of the
specified item within the specified range.

Argument Settings

After The cell after which the search begins

range.Font

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a Font object that lets you set Font properties for the specified range. The following code formats the cells in the
specified range in bold type:

ActiveSheet.Range("A1:A5").Font.Bold = True

range.Formula

Sets or returns a formula for the specified cell or range in A1-style notation. The following code sets a formula for cell
E1:

ActiveSheet.Range("E1").Formula = "=B1*C1"

range.FormulaR1C1

Sets or returns a formula for the specified cell or range in R1C1-style notation. It is easier to work with formulas in code
using this notation. The following code sets a formula for cell E1:

ActiveSheet.Range("E1").FormulaR1C1 = "=Sum(R2C:R[-1]C)"

range.Hidden

True if the specified row or column is hidden. The following code hides column D:

Dim r As Range

Set r = ActiveSheet.Columns("D")
r.Hidden = True

range.HorizontalAlignment

Sets or returns the horizontal alignment for the specified range. xlGeneral (default) left-aligns text and right-aligns
numbers; xlLeft left-aligns values; xlRight right-aligns values; xlCenter centers values within each cell; xlCenterAcrossSelection
centers values across the range; xlJustify and xlDistributed justify wrapped text within cells; xlFill repeats values to fill each
cell.

range.Hyperlinks

Returns a Hyperlinks collection that represents the hyperlinks in the specified range. The following code changes the
address of hyperlinks in the specified range that have the address "\\koala\bear":

Dim r As Range
Dim h As Hyperlink

Set r = ActiveSheet.Range("D1:D7")
For Each h In r.Hyperlinks
 If h.Address = "\\koala\bear" Then
 h.Address = "\\wombat\mojo"
 End If
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next

range.Insert([Shift])

Inserts the current cut or copied range into the specified range and shifts the cells based on the shape of the specified
range or the specified Shift argument.

Argument Settings

Shift
Specifies whether cells are shifted to the right (xlShiftToRight) or down (xlShiftDown) when the specified
range of cells is inserted. If you don't supply a Shift argument, the cells are shifted according to the shape
of the range.

range.Interior

Returns an Interior object that represents the interior of the range. The following code changes the color of the specified
range to red:

ActiveSheet.Range("A1:A5").Interior.ColorIndex = 3

range.Item(RowIndex, [ColumnIndex])

Returns a Range object representing a cell within the specified range.

Argument Settings

RowIndex The row index of the row to return, relative to the first cell of the range

ColumnIndex The column index of the column to return, relative to the first cell of the range

The following code changes the color of the cell in the second row and column of the range to green:

Dim r As Range

Set r = ActiveSheet.Range("A1:B5")
r.Item(2, 2).Interior.ColorIndex = 4

range.Justify

Justifies text within cells in the range.

range.Locked

If the worksheet is protected, True prevents changes to the cells in the range, and False enables changes to the cells.

range.Merge([Across])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Merges the cells of the range.

Argument Settings

Across True merges cells in each row as separate merged cells.

range.MergeArea

Returns a Range object that represents the merged range containing the specified cell.

range.MergeCells

True if the range contains merged cells.

range.Next

Returns a Range object that represents the next cell on the worksheet if the specified range is a single cell. If the range
contains multiple cells, returns the next cell starting with the first cell in the range.

range.NoteText([Text], [Start], [Length])

Sets or returns the text of the note for the first cell in the specified range.

Argument Settings

Text The text of the note

Start The position of the first character within the note to set or return

Length The number or characters to set or return

The following code adds a note if the specified cell is greater than the specified value:

With ActiveSheet.Range("B3")
 If .Value >= 0.3 Then
 .NoteText "All Star!"
 End If
End With

range.NumberFormat

Sets or returns the number formatting for the specified range. Returns Null if the range has mixed formats. The format
code corresponds to the Format Codes option in the Format Cells dialog box. The following code changes the color of
the specified range to red:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the specified range to red:

Dim w As Worksheet

Set w = Worksheets("WombatBattingAverages")
w.Range("B1:B5").NumberFormat = "#.000"

range.NumberFormatLocal

Sets or returns the number formatting for the specified range based on the language in the current system settings.

range.Offset([RowOffset], [ColumnOffset])

Returns a Range object representing a range of cells offset from the specified range by a specified number of rows or
columns.

Argument Settings

RowOffset The number of rows by which the range should be offset. A negative value offsets the rows upward.

ColumnOffset The number of columns by which the range should be offset.

The following code activates a range one row down and one column to the right of the specified range:

Dim r As Range

Set r = ActiveSheet.Range("A1:B5")
r.Offset(1, 1).Activate

range.PageBreak

Sets or returns the location of a page break. The following code sets a page break at row 40:

ActiveSheet.Row(40).PageBreak = xlManual

range.PasteSpecial([Paste], [Operation], [SkipBlanks],
[Transpose])

Inserts the contents of the clipboard to the specified range.

Argument Settings

Paste An xlPasteType constant indicating the part of the range to be pasted. The default is xlAll, which pastes all
cell values and attributes.

Operation
xlNone (default) replaces the contents of the range; xlAdd adds the pasted values to the range; xlSubtract
subtracts the pasted values; xlMultiply multiplies values; xlDivide divides the current values by the pasted
ones.

SkipBlanks True ignores blank cells on the clipboard so existing cells aren't replaced with blank ones.

Transpose True transposes rows and columns on the clipboard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.Precedents

Returns a Range object that represents the cell or cells whose values are used directly or indirectly to calculate the
values of the specified range. If cell E1 contains a formula that uses cells B1 and C1, the following code selects cells B1
and C1:

Activesheet.Range("E1").Precedents.Select

range.Previous

Returns a Range object that represents the previous cell on the worksheet if the specified range is a single cell. If the
range contains multiple cells, returns the cell previous to the first cell in the range.

range.PrintOut([From], [To], [Copies], [Preview], [ActivePrinter],
[PrintToFile], [Collate], [PrToFileName])

Prints the specified range.

Argument Settings

From The number of the first page to print.

To The number of the last page to print.

Copies The number of copies to print.

Preview True to display Print Preview.

ActivePrinter The name of the active printer.

PrintToFile True prints to a file.

Collate True to collate multiple copies.

PrToFileName If PrintToFile is True, specifies the name of a file to print to.

range.PrintPreview

Displays Print Preview for the specified range.

range.Replace(What, Replacement, [LookAt]), [SearchOrder],
[MatchCase], [MatchByte], [SearchFormat], [ReplaceFormat])

Replaces text within the cells in the specified range.

Argument Settings

What The string to search for.

Replacement The replacement string.

LookAt xlPart (default) searches within the cell contents; xlWhole searches whole cells.

SearcbOrder xlByRows (default) searches one row at a time; xlByColumns searches one column at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MatchCase False (default) ignores case; True performs a case-sensitive search.

MatchByte

If double-byte language support is enabled:

True matches double-byte characters.

False matches double-byte characters to their single-byte equivalents.

SearchFormat The search format.

ReplaceFormat The replace format.

The following code replaces all occurrences of the string "Ichiro" in the specified range with the string "Suzuki":

Dim r As Range

Set r = ActiveSheet.Range("A1:A6")
r.Replace "Ichiro", "Suzuki"

range.Resize([RowSize]), [ColumnSize])

Resizes the specified range.

Argument Settings

RowSize The number of rows in the resized range

ColumnSize The number of columns in the resized range

range.Row

Returns the row number of the first cell in the specified range.

range.RowDifferences(Comparison)

Returns a Range object that represents all the cells whose contents are different from those of the specified comparison
cell in each row.

Argument Settings

Comparison A cell whose value should be compared to the cell values in the specified range

range.RowHeight

Sets or returns the height of rows in the specified range, measured in points. Returns Null if all rows are not the same
height.

range.Rows([Index])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a Range object that represents the row specified by Index in the specified range or all the rows in the range.

The following code selects the second row in the range:

Dim r As Range

Set r = ActiveSheet.Range("A1:A6")
r.Rows(2).Select

range.Select

Selects the specified range of cells.

range.Show

If the specified range is a single cell and not currently displayed, scrolls the worksheet to display it. The following code
displays cell F216:

Dim r As Range

Set r = ActiveSheet.Range("F216")
r.Show

range.ShowDependents([Remove])

Shows or removes the tracer arrows between a range and its dependents.

range.ShowDetail [= setting]

True displays rows or columns that are part of an outline. False hides them.

range.ShowErrors()

Draws tracer arrows to the cell that is the source of the error.

range.ShowPrecedents([Remove])

Shows or removes the tracer arrows between a range and its precedents.

range.ShrinkToFit [= setting]

True displays if text shrinks to fit the column width.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.Sort([Key1]), [Order1], [Key2], [Type], [Order2], [Key3],
[Order3], [Header], [OrderCustom], [MatchCase], [Orientation],
[SortMethod], [DataOption1], [DataOption2], [DataOption3])

Sorts the current active region or a specific range of cells using the specified range, which must be a single cell.

Argument Settings

Key1 The first row or column to sort. Can be either a single cell range or heading text.

Order1 xlAscending (default) sorts in ascending order; xlDescending sorts in descending order.

Key2 The second row or column to sort.

Type Specifies which elements should be sorted if you are sorting a PivotTable report.

Order2 Same as Order1.

Key3 The third row or column to sort.

Order3 Same as Order1.

Header
Specifies whether the first row or column contains header information. xlNo (default) sorts the entire row
or column; xlYes does not include the first row or column in the sort; xlGuess lets Excel determine if there
is a header.

OrderCustom The index of a custom sort order from the Sort Options dialog box.

MatchCase True to perform a case-sensitive search.

Orientation xlSortRows sorts by row; xlSortColumns sorts by column.

SortMethod For non-English sorts, xlStroke sorts by the quantity of strokes in each character; xlPinYin (default) uses
phonetic Chinese sort order.

DataOption1 xlSortTextAsNumber TReats text as numeric data for the sort for Key1.

DataOption2 xlSortTextAsNumber treats text as numeric data for the sort for Key2.

DataOption3 xlSortTextAsNumber treats text as numeric data for the sort for Key3.

The following code sorts column G:

Dim r As Range

Set r = ActiveSheet.Range("G1")
r.Sort ActiveSheet.Range("G1")

range.SpecialCells(Type, [Value])

Returns a Range object representing cells of the specified type.

Argument Settings

Type

xlCellTypeAllFormatConditions returns cells of any format; xlCellTypeAllValidation returns cells having validation
criteria; xlCellTypeBlanks returns empty cells; xlCellTypeComments returns cells containing notes;
xlCellTypeConstants returns cells containing constants; xlCellTypeFormulas returns cells containing formulas;
xlCellTypeLastCell returns the last cell in the used range; xlCellTypeSameFormatConditions returns cells having the
same format; xlCellTypeSameValidation returns cells having the same validation criteria; xlCellTypeVisible returns
all visible cells.

Value
It Type is xlConstants or xlFormulas, xlNumbers returns cells containing numbers; xlTextValues returns cells
containing text; xlLogical returns cells containing logical values; and xlErrors returns cells containing error
values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.Style

Returns a Style object representing the style of cells in the specified range or Null if the range contains a mix of styles.

range.Table([RowInput], [ColumnInput])

Creates a data table based on input values and formulas defined on a worksheet.

Argument Settings

RowInput A cell to use as the basis for row values of the data table

ColumnInput A cell to use as the basis for column values of the data table

range.Text

Returns the text in cells in the specified range if all the cells contain the same value or Null if the cells do not all contain
the same value.

range.TextToColumns([Destination]), [DataType],
[TextQualifier], [ConsecutiveDelimiter], [Tab], [Semicolon],
[Comma], [Space], [Other], [OtherChar], [FieldInfo],
[DecimalSeparator], [ThousandsSeparator],
[TrailingMinusNumbers])

Breaks a column containing text into several columns.

Argument Settings

Destination A Range object specifying the cell where the columns should be placed.

DataType xlDelimited (default) if the text is delimited; xlFixed if it has a fixed length.

TextQualifier xlDoubleQuote (default) uses double quotes to indicate text; xlSingleQuote uses single quotes;
xlNone evaluates fields to see if they are text or numbers.

ConsecutiveDelimiter True inteprets consecutive delimiters as a single delimiter.

Tab True uses tabs as the delimiter.

Semicolon True uses semicolons as the delimiter.

Comma True uses commas as the delimiter.

Space True uses spaces as the delimiter.

Other True uses OtherChar as the delimiter.

OtherChar Specifies a character to use as a delimiter.

FieldInfo An array that describes the data types of fields in the text.

DecimalSeparator The decimal separator to use when recognizing numbers.

ThousandsSeparator The thousands separator to use when recognizing numbers.

TrailingMinusNumbers True interprets numbers followed by - as being negative; False interprets numbers followed
by - as a string. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code breaks the specified column containing semicolon-delimited text into two columns beginning at cell
J3:

Dim r As Range

Set r = ActiveSheet.Range("I1:I5")
r.TextToColumns Destination:=ActiveSheet.Range("J3"), Semicolon:=True

range.UnMerge

Returns a merged area of cells to separate cells. The following code returns a merged area containing cell C3 to
separate cells:

ActiveSheet.Range("C3").UnMerge

range.UseStandardHeight [= setting]

Returns True if all cells in the specified range are the standard height or Null if they aren't.

range.UseStandardWidth [= setting]

Returns True if all cells in the specified range are the standard width or Null if they aren't.

range.Value([RangeValueDataType]) [= setting]

Sets or returns the value of the specified range.

Argument Settings

RangeValueDataType

xlRangeValueDefault returns Empty if the specified range is empty or an array of values if the range
contains more than one cell; xlRangeValueMSPersistXML returns the recordset representation of the
range in XML format; xlRangeValueXMLSpreadsheet returns the values, formatting, formulas, and names
of the specified range in XML spreadsheet format.

The following code returns the values of the specified range in XML format:

ActiveSheet.Range("G1:G5").Value(xlRangeValueMSPersistXML)

range.VerticalAlignment

Sets or returns the vertical alignment for the specified range.

range.Worksheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Worksheet object that contains the specified range.

range.WrapText[= setting]

True wraps text in cells within the specified range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.8. Work with Scenario Objects
When you need to look at the possible consequences of applying different sets of values to your worksheet calculations,
it can be useful to define scenarios for each possibility. You can do this in code by creating a scenario and adding it to
the Scenarios collection, which contains all the scenarios for the specified worksheet. For example, you can create one
scenario that uses conservative sales results and another that is more optimistic, and then compare what happens to
your bottom line.

The following code adds a formula to a worksheet cell to show the sum of a set of values and then creates a scenario
for a set of values that is very conservative:

With ActiveSheet
 ' Set cell A6 as the sum of cells A1 through A5.
 .Range("A6") = "=Sum(A1:A5)"
 ' Create a low-value scenario.
 .Scenarios.Add "Low", .Range("A1:A5"), Array(10, 20, 30, 40, 50)
 .Scenarios("Low").Show
End With

The following code creates a second scenario with a set of values that is more optimistic:

With ActiveSheet
 ' Create a high-value scenario.
 .Scenarios.add "High", .Range("A1:A5"), Array(100, 200, 300, 400, 500)
 .Scenarios("High").Show
End With

If you want to change the values in a particular scenario, you can use the ChangeScenario method. The following code
upgrades the values in the "Low" scenario:

With ActiveSheet.Scenarios("Low")
 ' Change the values of the low value scenario.
 .ChangeScenario ChangingCells:=ActiveSheet.Range("A1:A5"), Values:=Array(15,
 25, 35, 45, 55)
 .Show
End With

If you want to view a summary of your current scenarios, you can use the CreateSummary method. The following code
summarizes the results of the current scenarios:

ActiveSheet.Scenarios.CreateSummary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.9. Scenario and Scenarios Members
Use the Scenarios collection to create new scenarios. Use the Worksheet object's Scenarios method to get a reference to this
collection. Use the Scenario object to set the criteria of the scenario. The Scenarios collection and Scenario object have the
following members . Key members (shown in bold) are covered in the following reference section:

Add1 Application2

ChangeScenario ChangingCells

Comment Count1

Creator2 CreateSummary1

Delete Hidden

Index Item1

Locked Merge1

Name Parent2

Show Values

1 Collection only

2 Object and collection

scenario.ChangeScenario(ChangingCells, [Values])

Resets the scenario to a new set of changing cells and values.

Argument Settings

ChangingCells A Range object that specifies a new set of changing cells

Values An optional array of new values

scenario.ChangingCells

Returns a Range object that specifies a new set of changing cells. This is equivalent to the ChangingCells argument of the
ChangeScenario method.

scenario.Comment [= setting]

Sets or returns a comment associated with the scenario.

scenario.Hidden [= setting]

True if the scenario is hidden.

scenario.Locked [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scenario.Locked [= setting]

True if the scenario is locked.

scenario.Show

Inserts the scenario values on the active worksheet.

scenario.Values

Returns an array containing the values of the scenario's changing cells.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.10. Resources
Additional information about the topics in this section is available from the following online source:

Topic Source

Smart Document SDK http://msdn.microsoft.com/library/en-us/sdsdk/html/sdconGettingStartedAbout.asp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Linking and Embedding
Linking and embedding are ways to include information other than numbers and formulas on a worksheet. There are
quite a few different types of information you might want to include: text comments , links to web pages, controls, or
even whole documents from other applications.

In this chapter, I show how to include the most common types of information through the Excel user interface, and I
show how to create and control those items through code. I also cover how to make Excel read aloudI didn't know
where else to put that!

This chapter includes task-oriented reference information for the following objects and their collections: Comment,
Hyperlink, OLEObject, Speech, and UsedObjects.

Code used in this chapter and additional samples are available in ch10.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1. Add Comments
Comments are a way to annotate cells on a worksheet with descriptive text. To add a comment in Excel:

1. Right-click the cell.

2. Choose Insert Comment from the pop-up menu.

3. Type your comment in the Edit region.

Cells with comments have a comment indicator in their upper-right corner. When the cursor pauses over the cell, the
comment pops up as shown in Figure 10-1.

Each comment is anchored to a specific cell, so you create comments in code using the Range object's AddComment
method. Once a worksheet contains comments, you can get at them through the Worksheet object's Comments collection or
through the Next and Previous methods of the Comment object. This is a little different from the way most collections work:
there is no Add method for the Comments collection. The following code adds a comment to each cell on a worksheet that
contains a non-numeric value:

Figure 10-1. Use comments to annotate cells

Sub AddAuditComments()
 Dim cel As Range, cmt As Comment
 For Each cel In ActiveSheet.UsedRange
 If Not IsNumeric(cel.Value) Then
 cel.AddComment.Text "Audit:" & vbLf & "Should be a number?"
 End If
 Next
End Sub

You remove comments using the Delete method. For example, the following code removes the audit comments inserted
by the preceding code:

Sub RemoveAuditComments()
 Dim cmt As Comment
 For Each cmt In ActiveSheet.Comments
 If InStr(1, cmt.Text, "Audit:") Then cmt.Delete
 Next
End Sub

You can't set a comment's Author property from code. Comments inserted from code have a null Author property. The
preceding samples work around that by adding Audit: & vbLf to the comment text and then checking for that string before
deleting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2. Use Hyperlinks
Most of us think of hyperlinks as links that take you to a web page when you click them; Excel uses a broader
definition. Yes, Excel hyperlinks can take you to a web page, but they can also:

Create a new document or open an existing one for editing

Take you to a reference in an Excel workbook

Compose an email

To create a hyperlink in Excel:

1. Right-click a cell.

2. Choose Hyperlink from the pop-up menu.

3. Choose the type of link and set the link properties in the Edit Hyperlink dialog box (Figure 10-2).

Figure 10-2. Creating a hyperlink in Excel

To create a hyperlink in code, use the Hyperlinks collection's Add method. Like comments, hyperlinks are anchored to a
cell address that you specify in Add. For example, the following code adds a link at cell A3 to my web site:

 ActiveSheet.Hyperlinks.Add [a3], "http:\\excelworkshop.com\", _
 , "Go to Jeff's site.", "Excel Workshop"

To link to a location on a worksheet , set the Add method's Address argument to "" and the SubAddress argument to the
target location. SubAddress has this format:

sheetName!targetAddress

However, the targetAddress part can't include dollar signs, like normal Excel addresses. To use normal Excel addresses,
you must strip out the dollar signs using VBA.Replace. For instance, the following code adds hyperlinks that link to the first
and last cells of a worksheet; the ConvertAddress helper function reformats the target Range to the correct form for the Add
method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method:

' Adds links to beginning and end of worksheet.
Sub AddLinkToLocation()
 Dim ws As Worksheet, celEnd As Range
 Set ws = ActiveSheet
 ' Get the last cell in column A.
 Set celEnd = ws.Cells(ws.UsedRange.Rows.Count, 1)
 ' Add a link to the last cell.
 ws.Hyperlinks.Add [a5], "", ConvertAddress(celEnd), , _
 "Go to end"
 ' Add a link back to the first cell.
 ws.Hyperlinks.Add celEnd, "", ConvertAddress(ws.[a1]), , _
 "Go to start"
End Sub

' Converts a cell reference to a Hyperlink address.
Function ConvertAddress(cel As Range) As String
 Dim result As String
 ' Start with the worksheet name.
 result = cel.Worksheet.Name & "!"
 ' Add the address, but remove "$"
 result = result & VBA.Replace(cel.Address, "$", "")
 ' Return result
 ConvertAddress = result
End Function

To link to a range in another workbook, include the workbook's filename in the Address argument of the Add method:

ActiveSheet.Hyperlinks.Add [a7], "ch08.xls", , , "Go to Ch08.xls"

To remove hyperlinks, use the Delete method. Delete applies to both the Hyperlinks collection and the Hyperlink object. For
example, this code removes all of the hyperlinks on the active worksheet:

ActiveSheet.Hyperlinks.Delete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3. Link and Embed Objects
You can include objects created by other applications in an Excel worksheet by linking or embedding the object:

Linked objects

Display a bitmap image of the object that opens the object's file in its source application when the user edits the
object.

Embedded objects

Also display a bitmap image, but the data for the object is stored within the workbook. Editing the object opens
the object in place so Excel still appears to have focus and changes don't affect the original source file, only the
embedded copy.

This feature was originally called OLE, for Object Linking and Embedding, but Microsoft later renamed it ActiveX and
now sometimes calls it COM, for Component Object Model. All those names basically refer to the same thing when
dealing with Excel.

Any Windows application can provide these objects, but it is up to the developers of that source application to do it
correctlysometimes that is a tall order. Crashes, printing problems, and quirky displays are hallmarks of many linked or
embedded objects . However, Microsoft has invested a great deal of effort to make OLE work within the Microsoft Office
product suite, and linked and embedded objects usually work correctly within that family of products.

In general, it is a good idea to use linking and embedding only among Office or other well-
tested applications and to be very careful when using it with workbooks you plan on
distributing to others. That is because all users must have the source application to edit
linked or embedded objects. Different platforms, configurations, or even application
versions can cause significant hurdles to using a workbook that contains embedded objects
from other applications.

So should you just avoid OLE altogether? No, in fact that's not even likely given the level of integration with Excel. Form
controls , charts, and other objects are all embedded as OLE objects when they appear on a worksheet. Here are some
considerations for making OLE objects trouble-free:

You can assume that objects provided with Excel work correctly; that includes form controls.

Check whether other objects are installed before using them.

Test the object before you distribute your workbook. If the source application is not part of the Office suite,
make sure the linked or embedded object displays correctly, can be opened for editing, and prints correctly.

The following sections discuss the most common OLE object tasks.

10.3.1. Embed Controls

Embedded form controls let you get input from the user through standard controls like text boxes, command buttons,
listboxes, and so on. They are handy for collecting values that populate ranges of cells or to simply get and display
values in something other than a grid.

To embed a control on a worksheet:

1. Choose View Toolbars Control Toolbox to display the Controls Toolbox.

2. Click the control to add and then click and drag on the worksheet to draw the control as shown in Figure 10-3.

3. Excel embeds the control on the worksheet.

4. Click the Properties button to edit the control's appearance.

5. Click the Code button to add an event procedure for the control.

6. Click the Design button when finished to switch out of design mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Click the Design button when finished to switch out of design mode.

You can link embedded controls to values entered in cells . For example, to link the text box in Figure 10-3 to cell A3,
set its LinkCell property to A3. Now changes to the TextBox update cell A3 and vice versa (Figure 10-4).

Figure 10-3. Adding form controls to a worksheet

Figure 10-4. Linking cells to controls through the LinkedCell property

To create an event procedure for a control so it responds to user actions:

1. Click the Design button to enter design mode.

2. Select the control.

3. Click the View Code button. Excel opens the Visual Basic Editor and creates an event procedure in the
worksheet object's class.

You can also select events from the list in the Code window to add event procedures as shown in Figure 10-5.

Excel puts event procedures in the worksheet class because only classes can respond to events. This is one of the key
differences between controls created using the Controls Toolbox and those created using the older Forms toolbar
(Figure 10-6). Controls from the Forms toolbar don't have these events and instead run a single macro from a module
in response to their default action.

Controls from the Forms toolbar still work, but they provide fewer properties, can't link to cells, and are now hidden in
the Help and object model. I think that's a tip-off from Microsoft that they are included only for compatibility with earlier
versions and that you should now avoid them.

Figure 10-5. Adding event procedures for embedded controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-5. Adding event procedures for embedded controls

Figure 10-6. Control Toolbox versus Forms toolbars

10.3.2. Use OleObjects in Code

You can create new linked and embedded objects dynamically by using the OleObjects Add method. For embedded objects,
the Add method requires that you know the programmatic ID (progID) of the object you are creating. For linked objects,
you can simply provide the source file name. Table 10-1 lists the progIDs of the most common objects.

Table 10-1. ProgIDs of common Office objects
Application Object ProgID

Controls CheckBox Forms.CheckBox.1

 ComboBox Forms.ComboBox.1

 CommandButton Forms.CommandButton.1

 Frame Forms.Frame.1

 Image Forms.Image.1

 Label Forms.Label.1

 ListBox Forms.ListBox.1

 MultiPage Forms.MultiPage.1

 OptionButton Forms.OptionButton.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ScrollBar Forms.ScrollBar.1

 SpinButton Forms.SpinButton.1

 TabStrip Forms.TabStrip.1

 TextBox Forms.TextBox.1

 ToggleButton Forms.ToggleButton.1

 Calendar MSCal.Calendar

Microsoft Access Application Access.Application

 CodeData Access.CodeData

 CurrentData Access.CurrentData

 CodeProject Access.CodeProject

 CurrentProject Access.CurrentProject

 DefaultWebOptions Access.DefaultWebOptions

Microsoft Excel Add-in Excel.AddIn

 Application Excel.Application

 Chart Excel.Chart

 Worksheet Excel.Sheet

Microsoft Graph Application MSGraph.Application

 Chart MSGraph.Chart

Microsoft Office Web Components ChartSpace OWC.Chart

 DataSourceControl OWC.DataSourceControl

 ExpandControl OWC.ExpandControl

 PivotTable OWC.PivotTable

 RecordNavigationControl OWC.RecordNavigationControl

 Spreadsheet OWC.Spreadsheet

Microsoft Outlook Application Outlook.Application

Microsoft PowerPoint Application PowerPoint.Application

Microsoft Word Application Word.Application

 Document Word.Document

 Global Word.Global

 Template Word.Template

Not all of the objects listed in Table 10-1 can be embedded in a worksheet. For example, the Application objects are used
to access specific applications programmaticallynot to embed one application inside of another. You can use the progIDs
of those objects with CreateObject to create an instance of those objects for use within Excel.

Before using an external application in code, you should make sure the application is installed on the user's system. The
following helper function allows you to test a progID to make sure it is installed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following helper function allows you to test a progID to make sure it is installed:

' Checks the registry to see if a given progID is installed.
Function IsInstalled(progID As String) As Boolean
 Dim wsh As Object, result As Boolean, key As String
 result = False
 Set wsh = CreateObject("WScript.Shell")
 On Error Resume Next
 key = wsh.RegRead("HKEY_CLASSES_ROOT\" & progID & "\CLSID\")
 If Not Err And key <> "" Then _
 result = True
 IsInstalled = result
End Function

After you've checked for the application, you can create new objects in code. For example, the following code embeds a
Word document in an Excel worksheet:

Sub EmbedWordObject()
 Dim ws As Worksheet, ole As OleObject, progID As String
 progID = "Word.Document"
 ' Make sure Word is installed.
 If IsInstalled(progID) Then
 Set ws = ActiveSheet
 ' Create the object.
 Set ole = ws.OleObjects.Add(progID, , , , , , , 60, 60, 200, 400)
 ' Name the object so you can get it later.
 ole.Name = "WordDocument"
 ' Activate the object for editing.
 ole.Activate
 End If
End Sub

Set the object's Name property so you can get it from the OleObjects collection easily.

Use the Object property to get the underlying programmable object from an OleObject. For example, the following code
gets the Word Document object from the embedded document created by EmbedWordObject, then uses that object's
methods to insert some text:

' Assumes AddWordObject has run.
Sub EditWordObject()
 Dim ws As Worksheet, ole As OleObject
 Set ws = ActiveSheet
 ' Get the object by name and insert some text.
 ws.OleObjects("WordDocument").Object.Range.InsertAfter "Some text."
End Sub

That technique is useful when working with embedded controls. For example, the following code creates a new text box,
sets the value of its Text property, and links that control to a cell:

Sub CreateTextBox()
 Dim ws As Worksheet, ole As OleObject
 Set ws = ActiveSheet
 ' Create a new text box.
 Set ole = ws.OleObjects.Add("Forms.TextBox.1")
 ' Name the object.
 ole.Name = "TextBox"
 ' Set the text.
 ole.Object.text = "Some text"
 ' Link the control to a cell.
 ole.LinkedCell = "a3"
End Sub

Notice that you need to use the Object property to get to the control's underlying Text property, but not to get to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that you need to use the Object property to get to the control's underlying Text property, but not to get to
LinkedCell. That's because LinkedCell is provided by OleObject, not the text box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4. Speak
Speech is fun to demo, but it's not really a mainstream feature. Most often it is used to enable people with disabilities to
read spreadsheets, but you can use it to read any text. For example, the following code reads comments aloud
whenever a cell with a comment receives focus:

' ThisWorkbook object
Dim WithEvents g_app As Application

' Hook up the global Application object handler when this
' workbook opens.
Private Sub Workbook_Open()
 If Not (g_app Is Nothing) Then _
 Set g_app = Application
End Sub

' Read comments aloud when cell is selected.
Private Sub g_app_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As Range)
 ' If the cell has a comment.
 If Not (Target.Comment Is Nothing) Then
 On Error Resume Next
 ' Read the comment text aloud.
 Application.Speech.Speak Target.Comment.Text
 End If
End Sub

' Unhook handler
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Set g_app = Nothing
End Sub

It is important to turn on error handling in case speech is not installed on the user's system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.5. Comment and Comments Members
Use the Range object's AddComment method to create comments. Use the Comment object to get the author of a comment,
get or set comment text, and delete comments. The Comments collection and Comment object have the following members
. Key members (shown in bold) are covered in the following reference section:

Application2 Author

Count1 Creator2

Delete Item1

Next Parent2

Previous Shape

Text Visible

1 Collection only

2 Object and collection

comment.Author

Returns the name of the comment's author.

comment.Delete

Deletes a comment. The following code deletes all of the comments on the active sheet:

Sub DeleteComments()
 Dim cmt As Comment
 For Each cmt In ActiveSheet.Comments
 cmt.Delete
 Next
End Sub

comment.Shape

Returns the Shape object that represents the comment. The appearance of comments is built in to Excel and can't be
changed by setting Shape object properties.

comment.Text([Text], [Start], [Overwrite])

Gets or sets the text displayed in a comment.

Argument Settings

Text The text to display in the comment.

Start The character position at which to insert the text. If omitted, any existing comment is overwritten.

Overwrite True replaces the existing comment; False appends. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code creates four new comments on the active worksheet:

Sub CreateComments()
 Dim cel As Range
 For Each cel In [a1:b2]
 cel.AddComment "Comment for " & cel.Address
 Next
End Sub

The Text method also returns the text of the comment. For example, the following code lists all of the comments on the
active sheet:

Sub ShowComments()
 Dim cmt As Comment
 Debug.Print "Author", "Text"
 For Each cmt In ActiveSheet.Comments
 Debug.Print cmt.Author, cmt.Text
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.6. Hyperlink and Hyperlinks Members
Use the Hyperlinks collection to add hyperlinks. Use the Worksheet or Chart object's Hyperlinks method to get a reference to
this collection. Use the Hyperlink object to follow the hyperlink. The Hyperlinks collection and Hyperlink object have the
following members . Key members (shown in bold) are covered in the following reference section:

Add Address

AddToFavorites Application1

Count1 CreateNewDocument

Creator1 Delete2

EmailSubject Follow

Item1 Name

Parent1 Range

ScreenTip Shape

SubAddress TextToDisplay

Type
1 Collection only

2 Object and collection

hyperlinks.Add(Anchor, Address, [SubAddress], [ScreenTip],
[TextToDisplay])

Adds a hyperlink.

Argument Settings

Anchor A Range or Shape object to set as the location of the hyperlink.

Address The URL to navigate to when the hyperlink is clicked.

SubAddress A location on the page. SubAddress is appended to Address and preceded by #.

ScreenTip A tool tip to display when the mouse pointer pauses over the hyperlink.

TextToDisplay The text to show on screen in place of the hyperlink.

For example, the following code adds a hyperlink to range A1:

Sub AddHyperlink()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ws.Hyperlinks.Add [a1], "http:\\excelworkshop.com\", _
 , "Go to Jeff's site.", "Excel Workshop"
End Sub

hyperlink.Address [= setting]

Sets or returns the URL of the hyperlink.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the URL of the hyperlink.

hyperlink.AddToFavorites()

Adds the URL to the user's Favorites folder in Internet Explorer.

hyperlink.CreateNewDocument(Filename, EditNow, Overwrite)

Sets the hyperlink to create a new file when clicked.

Argument Settings

Filename The name of the file to create.

EditNow True opens the file for editing when the method runs; False waits until the user clicks the hyperlink to
edit the document.

Overwrite True replaces any existing file of the same name with a new, blank file when the method runs; False
causes an error if the file already exists.

Excel may lock up if EditNow is True and Filename is a workbook (.xls).

Excel opens the file in the user's default editor for the given file type. For example, the following code creates a new
text file and opens it for editing in Notepad:

Sub CreateLinkedFile()
 Dim ws As Worksheet, hyp As Hyperlink, path As String
 Set ws = ActiveSheet
 path = ThisWorkbook.path
 Set hyp = ws.Hyperlinks.Add([a3], path & "\ch10_Readme.txt", _
 , "Click to edit the text file.", "Application Notes")
 hyp.CreateNewDocument path & "\ch10_Readme.txt", True, True
End Sub

hyperlink.EmailSubject [= setting]

Gets or sets the subject line of a mailto: link. This property overrides the subject setting included in the URL. For
example, the following code creates an email link with a subject, but then changes the subject line:

Sub CreateMailLink()
 Dim ws As Worksheet, hyp As Hyperlink
 Set ws = ActiveSheet
 ' Create an email link.
 Set hyp = ws.Hyperlinks.Add([a3], _
 "mailto:someone@microsoft.com&subject=Help on Excel", _
 , "Click to send mail.", "Contact Microsoft")
 ' Change the subject...
 hyp.EmailSubject = "Different subject"
End Sub

hyperlink.Follow([NewWindow], [AddHistory], [ExtraInfo],
[Method], [HeaderInfo])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Navigates to the URL of the hyperlink. This is the same as clicking on the link.

Argument Settings

NewWindow This argument is ignored when used with a link that appears on a worksheet. Links always appear in a
new browser window.

AddHistory This argument is ignored.

ExtraInfo A string or array of bytes that includes information passed to the URL.

Method The way to send ExtraInfo to the URL. Possible settings are msoMethodGet or msoMethodPost.

HeaderInfo Header information to send with the HTTP request.

The following code navigates to each of the links on the page:

Sub TestLinks()
 Dim hyp As Hyperlink
 For Each hyp In ActiveSheet.Hyperlinks
 hyp.Follow
 Next
End Sub

hyperlink.Range

Returns the link's location on the worksheet as a Range object.

hyperlink.ScreenTip [= setting]

Sets or returns a pop-up tool tip to display when the mouse pointer pauses over the link.

hyperlink.Shape

If the link is anchored to a shape, returns the link's location as a Shape object.

hyperlink.SubAddress [= setting]

Sets or returns the location within the URL for the link. The URL is composed of the Address and SubAddress properties as
follows:

Address#SubAddress

hyperlink.TextToDisplay [= setting]

Sets or returns the text to show on the worksheet as the link.

hyperlink.Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not used; always returns 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.7. OleObject and OleObjects Members
Use the OleObjects collection to add linked or embedded objects . Use the Worksheet object's OleObjects method to get a
reference to this collection. Use the OleObject object to control the location and appearance of a linked or embedded
object. The OleObjects collection and OleObject object have the following members . Key members (shown in bold) are
covered in the following reference section:

Activate Add1 Application2

AutoLoad2 AutoUpdate Border2

BottomRightCell BringToFront2 Copy2

CopyPicture2 Count1 Creator2

Cut2 Delete2 Duplicate2

Enabled2 Group1 Height2

Index Interior2 Item1

Left2 LinkedCell ListFillRange

Locked2 Name Object

OLEType OnAction2 Parent2

Placement2 PrintObject2 progID

Select2 SendToBack2 Shadow2

ShapeRange2 SourceName2 Top2

TopLeftCell Update Verb

Visible2 Width2 ZOrder2

1 Collection only

2 Object and collection

oleobject.Add([ClassType], [Filename], [Link], [DisplayAsIcon],
[IconFileName], [IconIndex], [IconLabel], [Left], [Top], [Width],
[Height])

Creates a new OLE object on a sheet.

Argument Settings

ClassType The programmatic ID of the object to create. For example "Word.Document" or "MSGraph.Chart".

Filename The filename of the object to create. You must specify ClassType or Filename.

Link True links the object to Filename; False makes a copy of Filename to store in the workbook.

DisplayAsIcon True displays the object as an icon or a picture; False renders the object in the worksheet.

IconFileName If DisplayAsIcon is True, specifies a file containing the icon to display.

IconIndex If DisplayAsIcon is True, specifies the index of the icon within the icon file. Default is the first icon in the file.

IconLabel If DisplayAsIcon is True, specifies the text to display beneath the icon.

Left The distance between cell A1 and the left edge of the object in point.

Top The distance between cell A1 and the top edge of the object in point.

Width The width of the object in points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Height The height of the object in points.

The Width and Height arguments aren't absolute. Their actual result depends on the OLE
object being created.

The following code creates a new embedded Word document on the active worksheet:

Sub AddObject()
 Dim ws As Worksheet, ole
 Set ws = ActiveSheet
 ' Create the object.
 Set ole = ws.OleObjects.Add("Word.Document", , , , , , , 60, 60, 200, 400)
 ' Activate the object for editing.
 ole.Activate
End Sub

If you run the preceding code, the initial height of the object is set to fit the text you enter in the object.

oleobject.AutoLoad [= setting]

True reloads and rerenders the object when the workbook is opened; False does not rerender the object and instead
uses the image stored when the workbook is saved. Default is False. Setting AutoLoad to True can cause significant
delays when opening a workbook.

oleobject.AutoUpdate [= setting]

For objects with OleType of xlLink, true updates the object when the source changes; False does not automatically update
the object.

oleobject.BottomRightCell

Returns the Range object for the cell that is under the lower-right corner of the object.

oleobject.BringToFront()

Displays the object on top of all others.

oleobject.Copy()

Copies the object to the clipboard.

oleobject.CopyPicture([Appearance], [Format])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copies an image of the object to the clipboard.

Argument Settings

Appearance Specifies the resolution of the image. Can be one of these settings: xlPrinter, xlScreen. Default is xlScreen.

Format Specifies the image format. Can be one of these settings: xlBitmap, xlPicture. Default is xlPicture.

oleobject.Duplicate()

Creates a copy of the object and returns a reference to the copy. The following code creates a copy of an object and
moves it beneath the original:

Sub CopyObject()
 Dim ole1 As OleObject, ole2 As OleObject
 ' Get the object.
 Set ole1 = ActiveSheet.OleObjects(1)
 ' Create a copy.
 Set ole2 = ole1.Duplicate
 ' Move copy under first object.
 ole2.Top = ole1.Top + ole1.Height
End Sub

oleobjects.Group()

Groups the objects on a worksheet so they can be selected, moved, or deleted as a single item together.

oleobject.LinkedCell

For embedded controls linked to the value of a cell, returns the address of that cell.

oleobject.ListFillRange [= setting]

For an ActiveX list control linked to a range of cells, returns the address of that range.

oleObject.Object

Returns the underlying object. Use the Object property to get at the properties of embedded controls and to
programmatically control objects from other applications such as Word.

oleobject.OLEType

Returns xlOLELink if the object is linked to a source file, xlOLEEmbed if the object is embedded in the worksheet.

oleobject.OnAction [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the name of a macro to run when the object is clicked.

oleobject.Placement [= xlPlacement]

Sets or returns how the OLE object is moved or sized in relation to its underlying cells. Can be one of these settings:

xlMove (default)

xlMoveAndSize

xlFreefloating

Set to xlFreefloating to prevent the object from moving when the cells beneath it are moved.

oleobject.progID [= setting]

Returns the programmatic identifier (progID) for the object. progIDs identify the source application and type of the
object.

oleobject.Shadow [= setting]

True displays a shadow with the object; False does not. Default is False.

oleobject.ShapeRange

Returns a ShapeRange object for the OLE object. ShapeRange is used to control the appearance of graphic objects on a
worksheet. OLE objects don't support some of the changes you can make through ShapeRange. See Chapter 18 for more
information about the ShapeRange object.

oleobject.SourceName

For objects with OleType of xlLink, returns the name of the source document.

oleobject.Update()

For objects with OleType of xlLink, updates the link and rerenders the object.

oleobject.Verb([Verb])

Opens or performs the default verb on the object. The default verb is usually to edit the object.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Verb Can be one of these settings: xlOpen, xlPrimary. Default is xlPrimary.

oleobject.ZOrder

Returns the z-order of the object. Z-order determines which objects appear on top of others: a z-order of 1 indicates
the topmost object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.8. OLEFormat Members
Use the OLEFormat object to get an OleObject from a Shape object. The OLEFormat object has the following members :

Activate

Application

Creator

Object

Parent

progID

Verb

The following code demonstrates getting OLE objects from the Shapes collection rather than the OleObjects collection:

Sub GetOleObjectFromShapes()
 Dim shp As Shape, ole As OleObject
 ' Get the object.
 For Each shp In ActiveSheet.Shapes
 If shp.Type = msoEmbeddedOleObject Then
 ' Get the OleObject
 Set ole = shp.OLEFormat.Object
 ' Display some information.
 Debug.Print ole.progID
 End If
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.9. Speech Members
Use the Speech object to read words or ranges aloud. To get the Speech object, use the Application object's Speech property.
The Speech object has the following members. Key members (shown in bold) are covered in the following reference
section:

Direction

Speak

SpeakCellOnEnter

speech.Direction [= XlSpeakDirection]

Sets or returns the direction in which cells are read out loud. Possible settings are:

xlSpeakByColumns

xlSpeakByRows

speech.Speak(Text, [SpeakAsync], [SpeakXML], [Purge])

Reads text out loud.

Argument Settings

Text The text to read out loud.

SpeakAsync True executes the next statement without waiting for the reading to complete; False pauses code until
Text has been completely read. Default is False.

SpeakXML True interprets Text as XML or HTML, skipping tags; False reads all text. Default is False.

Purge True stops the current text being read and starts reading the new text immediately; False waits for
current text to complete before reading new text. Default is False.

The following code reads a short poem:

Sub ReadPoem()
 Dim spch As Speech, poem As String
 Set spch = Application.Speech
 poem = "Some men lead lives of quiet desperation. " & _
 "Our Joey lays in silent anticipation, " & _
 "of morsels dropped from Sophie's eating station."
 spch.Speak poem
End Sub

speech.SpeakCellOnEnter [= setting]

True reads the contents of a cell aloud when the user selects it; False does not read the cell aloud. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.10. UsedObjects Members
Use the UsedObjects collection to get a mixed collection of all of the objects currently loaded in Excel. The UsedObjects
collection has the following members :

Application
Count
Creator
Item
Parent

The following code displays a list of all the objects loaded in Excel. The code uses error handling to skip over properties
not available for the different types of objects included in the UsedObjects collection:

Sub ShowObjects()
 Dim obj As Object, str As String
 On Error Resume Next
 Debug.Print "Type", "Name", "ProgID"
 For Each obj In Application.UsedObjects
 str = TypeName(obj)
 str = str & vbTab & obj.Name
 str = str & vbTab & obj.progID
 Debug.Print str
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Printing and Publishing
Excel provides objects and methods for printing and previewing workbooks, worksheets, ranges, and other objects. It
also allows you to publish those objects to the Web as an interactive alternative to printing and distributing hardcopies.
This chapter explains how you print and publish objects from Visual Basic for Applications (VBA) as well as how to
control the various aspects of printing such as printer settings, page breaks, and views. Some general features such as
autofilters and default web options are most closely related to printing and publish, so they are covered here as well.

This chapter includes task-oriented reference information for the following objects and their related collections: AutoFilter,
Filter, CustomView, HPageBreak, VPageBreak, PageSetup, Graphic, PublishObject, DefaultWebOptions, and WebOptions.

Code used in this chapter and additional samples are available in ch11.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1. Print and Preview
Use the PrintOut or PrintPreview method to print or preview objects from code. These objects can print:

Charts, Chart

Range

Sheets, Worksheets, Worksheet

Window

Workbook

The syntax and arguments for PrintOut and PrintPreview are the same for all objects, so see the Workbook object reference
section in Chapter 8 for that information. These methods also apply to the current selection; for instance, the following
code previews and prints the selected range:

Sub PrintSelection()
 ' Print with preview
 Selection.PrintOut , , , True
End Sub

In my sample code, I set the Preview argument to True so you can see what will print
without wasting paper. Simply click Close on the preview window to cancel printing.

You can turn printing on or off for some objects embedded on a worksheet using the PrintObject property. The following
code prints a worksheet but omits any embedded controls or other OLE objects:

Sub PrintWithOutObjects()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Prevent printing of controls.
 ws.OLEObjects.PrintObject = False
 ' Print with preview.
 ws.PrintOut , , , True
 ' Restore printing for controls.
 ws.OLEObjects.PrintObject = True
End Sub

You can further control printing through the Workbook object's BeforePrint event. For instance, this code prevents the user
from printing any part of the workbook:

' ThisWorkbook module

' Cancel print jobs before they are processed.
Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Cancel = True
 ' Display a message
 MsgBox "Printing is disabled for this workbook."
End Sub

That's a neat trick, but it works only if macros are enabled for the workbook. If macros are disabled because of security
settings, the user can still print.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2. Control Paging
Use the HPageBreaks and VPageBreaks collections to add manual page breaks to a worksheet in code. For example, this code
adds horizontal page breaks to a worksheet every specified number of rows:

Sub AddHBreaks(rows As Integer)
 Dim ws As Worksheet, hpb As HPageBreak, i As Integer
 Set ws = ActiveSheet
 For i = rows To ws.UsedRange.rows.Count Step rows
 ws.HPageBreaks.Add ws.rows(i)
 Next
End Sub

Use the HPageBreak and VPageBreak objects' Delete method to remove individual page breaks or use the Worksheet object's
ResetAllPageBreaks method to remove all manual page breaks as shown here:

Sub RemoveBreaks()
 ActiveSheet.ResetAllPageBreaks
End Sub

The page break collections contain only manual page breaks. Even though there is a Type property that suggests you
might be able to get automatic page breaks, you can't. That means the Count properties of the collections return only
the number of manual page breaks. For example, this code displays the page count of a worksheet that contains only
manual page breaks:

Sub ShowPageCount()
 Dim ws As Worksheet, hb As Integer, vb As Integer
 Set ws = ActiveSheet
 hb = ws.HPageBreaks.Count + 1
 vb = ws.VPageBreaks.Count
 If vb = 0 Then vb = 1
 MsgBox "This worksheet has " & hb * vb & " pages."
End Sub

The only way to control automatic page breaks is to change the page margins using the PageSettings object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3. Change Printer Settings
Use the Worksheet or Chart objects' PageSettings property to get or set the printer settings before printing. The PageSettings
object provides a set of read/write properties that correspond to the Page Setup dialog box (Figure 11-1).

For example, this procedure displays common printer settings in some named ranges on a worksheet:

Sub GetProperties()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 Set ps = ws.PageSetup
 [BlackAndWhite] = ps.BlackAndWhite
 [Draft] = ps.Draft
 [BottomMargin] = ps.BottomMargin
 [TopMargin] = ps.TopMargin
 [RightMargin] = ps.RightMargin
 [LeftMargin] = ps.LeftMargin
 [Zoom] = ps.Zoom
End Sub

Figure 11-1. The PageSettings object provides properties that control these
settings

This procedure changes the print settings by applying the settings from the named ranges back to the PageSettings
object:

Sub SetProperties()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 Set ps = ws.PageSetup
 ps.BlackAndWhite = [BlackAndWhite]
 ps.Draft = [Draft]
 ps.BottomMargin = [BottomMargin]
 ps.TopMargin = [TopMargin]
 ps.RightMargin = [RightMargin]
 ps.LeftMargin = [LeftMargin]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ps.LeftMargin = [LeftMargin]
 ps.Zoom = [Zoom].Value
End Sub

You have to use the Value property of the named range when setting Zoom in the preceding code because the Zoom
property is a Variant type. Variants accept objects, so Visual Basic doesn't automatically call the default property of the
range; you have to call Value explicitly.

You can see the effects of the changes by running PrintPreview:

Sub PrintPreview()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 ws.PrintOut , , , True
End Sub

The print settings are stored with the worksheet or chart. When you create a new worksheet, that object uses the
default settings. Therefore, you can restore the defaults by creating a temporary worksheet, getting its PageSettings
object, and assigning the property values from that object, as shown here:

Sub RestoreDefaultPageSetup()
 Dim ps As PageSetup
 ' Get the default settings (creates a temporary worksheet).
 Set ps = DefaultPageSetup
 ' Restore the active sheet's settings.
 With ActiveSheet.PageSetup
 .BlackAndWhite = ps.BlackAndWhite
 .Draft = ps.Draft
 .BottomMargin = ps.BottomMargin
 .TopMargin = ps.TopMargin
 .RightMargin = ps.RightMargin
 .LeftMargin = ps.LeftMargin
 .Zoom = ps.Zoom
 End With
 ' Silently delete the temporary worksheet.
 Application.DisplayAlerts = False
 ps.Parent.Delete
 Application.DisplayAlerts = True
End Sub

Function DefaultPageSetup() As PageSetup
 Dim ws As Worksheet, result As PageSetup
 Set ws = ThisWorkbook.Worksheets.Add()
 Set result = ws.PageSetup
 Set DefaultPageSetup = result
End Function

You can't assign one PageSetting object to another. The worksheet and chart object's PageSettings property is read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4. Filter Ranges
Filters work by hiding rows that don't meet certain criteria. Filter criteria are selected from drop-down lists in a column's
heading. You can select built-in criteria, such as Top 10, or enter your own custom criteria. To create a filter in Excel:

1. Select the header row of the rows you want to filter.

2. Choose Data Filter AutoFilter. Excel adds a filter drop-down list to each of the selected columns.

Lists provide a more powerful and flexible tool for filtering ranges . Lists are available only
in Excel 2003, however.

To apply the filter, select the criteria from one of the drop-down lists as shown in Figure 11-2. Excel hides the rows
below that don't match the criteria. You can apply filters for more than one column to further narrow the range of
displayed rows.

Figure 11-2. Applying a filter to a stock price history table

To create a filter in code, use the Range object's AutoFilter method without arguments. To apply a filter, call AutoFilter again
with the column to filter and the criteria as arguments. The following ApplyFilter procedure creates a filter and applies a
filter to display 10 days with the most volume (column 6 in Figure 11-2):

Sub ApplyFilter()
 Dim header As Range
 Set header = [e21:k21]
 ' Create filter
 header.AutoFilter
 ' Apply filter to show top 10 volume days.
 header.AutoFilter 6, "10", XlAutoFilterOperator.xlTop10Items
End Sub

You've got to call AutoFilter twice: once to create the filter and once to apply a filter. If you
try to create and apply a filter in a single statement, you'll get an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To remove filtering, call AutoFilter again without arguments. Because AutoFilter toggles filtering on and off, you need to
check the worksheet's AutoFilter property to make sure the filter exists before removing it. The following code removes
filtering from the table in Figure 11-2:

' If worksheet is filtered, remove the filter.
Sub RemoveFilter()
 Dim header As Range, ws As Worksheet
 Set ws = ActiveSheet
 Set header = [e21:k21]
 If ws.AutoFilterMode Then _
 header.AutoFilter
End Sub

The Worksheet object also has an AutoFilter member, but it's a property that returns a reference to autofilters on the
worksheet, which in turn provides a collection of read-only Filter objects that represent each of the filtered columns. You
can't change or apply filters through the Filters collection; you can only read the settings and then only if the filter is on.
That's not too useful, but I illustrate it later in this chapter in "AutoFilter Members" in case you're curious.

The Range object's AdvancedFilter method lets you hide blocks of cells or copy those blocks to a new location. The
AdvancedFilter method is the code equivalent of choosing Data Filter Advanced Filter and it doesn't add
dropdowns to the column headings as does autofilter. For example, the following code displays the first five rows from
the table in Figure 11-2:

Sub AdvancedFilter()
 ' Show first five rows.
 [d21:k224].AdvancedFilter xlFilterInPlace, [d21:d26], False
End Sub

AdvancedFilter removes the autofilter if there is one. AdvancedFilter provides a quick way to hide duplicate rows (including
empty rows), as shown here:

Sub HideDuplicates()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Hide nonunique rows
 ws.UsedRange.AdvancedFilter xlFilterInPlace, ws.UsedRange, False, True
End Sub

Finally, the Worksheet object's ShowAllData method turns off all of the filters on a worksheet and redisplays any hidden
rows:

Sub ShowAll()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Turn off all filters.
 ws.ShowAllData
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5. Save and Display Views
Views store printer and hidden range settings for a workbook. For example, you might create two views for a complex
worksheet: one named Summary that hides detail rows and one named Detail that hides no rows. Users can then
switch between those views easily. Similarly, you can use views to store printer settings to make switching between
portrait and landscape modes more convenient.

To use views in Excel, start with the default settings you want to use and then follow these steps:

1. Choose Views Custom Views Add. Excel displays the Add View dialog.

2. Enter a name for the default view and click OK.

3. Select rows or columns to hide in the new view and choose Format Row/Column Hide.

4. Choose File Print Properties and set the printer properties to use in the view.

5. Repeat Step 1 and name the new view.

To switch between views in Excel:

1. Choose Views Custom Views. Excel displays the Custom Views dialog.

2. Select the view to display and click Show.

Since autofilters work by selectively hiding rows, views can be used to store filter criteria.
You can then quickly switch between criteria using the views.

To create a view in code, use the Add method of the CustomViews collection. For example, the following code creates
Summary and Detail views for a worksheet:

Sub CreateViews()
 Dim ws As Worksheet, wb As Workbook
 Set ws = ActiveSheet
 Set wb = ThisWorkbook
 ' Create Detail view
 ' Show all cells.
 ws.UsedRange.EntireRow.Hidden = False
 ' Hide an unneeded header from the web query.
 ws.Rows("10:20").EntireRow.Hidden = True
 ' Create the view.
 wb.CustomViews.Add "Detail", False, True
 ' Hide price history detail.
 [PriceHistory].EntireRow.Hidden = True
 ' Create summary view
 wb.CustomViews.Add "Summary", False, True
End Sub

Use the Show method to switch between views. For example, the following command button code switches between the
Summary and Detail views created in the preceding code:

Private Sub cmdSwitchView_Click()
 Static view As String
 ' Toggle setting.
 If view = "" Or view = "Summary" Then
 view = "Detail"
 Else
 view = "Summary"
 End If
 ' Activate the view.
 ThisWorkbook.CustomViews(view).Show
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.6. Publish to the Web
Publishing items to the Web is an alternative to printing and distributing workbooks or worksheets manually. Unlike
printed copies, published items may be interactive and can update automatically when you save changes to a
workbook. To use these features you must have Excel 2000 or later and have write access to a web site or a network
share. SharePoint document libraries support Excel publishing features, so I'll use the document library
http://www.excelworkshop.com/Ch11Sample/ as the publishing location throughout this chapter.

To publish an item from Excel :

1. Select the item to publish and choose File Save, then select "Web Page (*.htm; *.html)" from the "Save
as Type" listbox. Excel displays the publish options on the Save As dialog box (Figure 11-3).

2. Choose a public location such as a network share, FTP address, or URL to save the web page to and click
Publish. Excel displays the Publish as Web Page dialog box (Figure 11-4).

3. Choose additional publishing options and click Publish to save the item as a web page.

If you select Add Interactivity With in Figure 11-4, Excel adds the following ActiveX control to the web page:

<object id="ch11_publish_Spreadsheet"
 classid="CLSID:0002E559-0000-0000-C000-000000000046">
 <param name=DisplayTitleBar value=false>
 <param name=Autofit value=true>
 <param name=DataType value=XMLData>
 <param name=XMLData value="...">
 <p style='margin-top:100;font-family:Arial;font-size:8.0pt'>To use this Web
 page interactively, you must have Microsoft!!R!! Internet Explorer 5.01 Service
 Pack 2 (SP2) or later and the Microsoft Office 2003 Web Components.</p>
 <p style='margin-top:100;font-family:Arial;font-size:8.0pt'>See the Microsoft
 Office Web site for more information.</p>
</object>

This ActiveX control runs only if you:

Have the Office Web Components installed. Search http://www.microsoft.com/downloads for "Office Web
Components" to download.

Are browsing with Internet Explorer (IE) 5.01 SP2 or later.

Figure 11-3. Use Save As to publish a workbook or a selected item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-4. Set additional options before publishing

Are viewing the page from an intranet or trusted Internet site or have set your IE security settings to a low
level (not a good idea).

Non-Microsoft browsers don't support ActiveX controls . In fact, ActiveX controls pose a
significant security risk, so it is important to run them only if they are from trusted
vendors or from trusted locations.

If you meet those conditions, you can enter values in cells on the interactive web page and see results as shown in
Figure 11-5.

Figure 11-5. A published, interactive range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To publish objects from code , use the PublishObjects collection's Add method to create a PublishObject, then call the Publish
method to publish the object. You get the PublishObjects collection from the Workbook object; the following code
demonstrates publishing a workbook to a web site:

Sub PublishWorkbook()
 Dim wb As Workbook, po As PublishObject
 Set wb = ActiveWorkbook
 ' Create a publish object .
 Set po = wb.PublishObjects.Add(XlSourceType.xlSourceWorkbook, _
 "http://www.excelworkshop.com/Ch11Sample/Ch11_WB1.htm", _
 , , XlHtmlType.xlHtmlCalc)
 ' Publish the worksheet.
 po.Publish True
End Sub

The PublishObject is saved with the workbook; you can retrieve the object from its collection to republish it or to change
its properties as shown here:

Sub RepublishAll()
 Dim po As PublishObject
 For Each po In ActiveWorkbook.PublishObjects
 ' Show properties in the Immediate window.
 Debug.Print po.Source, po.Filename, po.Title
 ' Republish.
 po.Publish True
 Next
End Sub

Alternately, you can set the AutoRepublish property to republish the web pages every time the workbook is saved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.7. AutoFilter Members
Use the AutoFilter object to get the Filter object for a column. Use the Range object's AutoFilter method to create a new
filtered range. Use the Worksheet object's AutoFilter property to get a reference to the autofilters on a worksheet. The
AutoFilter object has the following members. The key member (shown in bold) is covered in the following reference
section:

Application
Creator
Filters
Parent

autofilter.Filters(index)

The Filters collection returns a Filter object with read-only properties that list the state and criteria for each filtered column
on the worksheet. You can't change or apply filters through the Filters collection; you can only read the settings and then
only if the filter is on as shown here:

Sub ShowFilters()
 Dim ws As Worksheet, flt As Filter, i As Integer
 Set ws = ActiveSheet
 ' If there are filters
 If ws.AutoFilterMode Then
 ' Get each Filter object
 For i = 1 To ws.AutoFilter.Filters.Count
 Set flt = ws.AutoFilter.Filters(i)
 ' And if the filter is on, show its criterion.
 If flt.On Then
 Debug.Print "Column " & i & ": " & flt.Criteria1
 End If
 Next
 End If
End Sub

Use the Range object's AutoFilter method to set Filter properties and apply filters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.8. Filter and Filters Members
Use the Filters collection to get the state and settings of autofilters on a worksheet. Use the AutoFilter object's Filters
property to get a reference to this collection. The Filters collection, and Filter object have the following members . Key
members (shown in bold) are covered in the following reference section:

Application2

Count1

Creator2

Criteria1

Criteria2

Item1

On

Operator

Parent2

1 Collection only

2 Object and collection

filter.Criteria1

Returns the first criterion for a filter as a string.

filter.Criteria2

Returns the second criterion for a filter as a string.

filter.On

Returns True if the filter is applied to the range, False if not. The other Filter properties return values only if On is True;
otherwise they return Nothing.

filter.Operator

Returns an xlAutoFilterOperator constant indicating the filter's operator. Possible settings are:

xlAnd

xlBottom10Percent

xlTop10Items

xlBottom10Items

xlOr

xlTop10Percent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.9. CustomView and CustomViews Members
Use the CustomViews collection to save print settings and hidden cells as a special view of a workbook. Use the Workbook
object's CustomViews property to get a reference to this collection. Use the CustomView object's Show method to display the
view. The CustomViews collection and CustomView object have the following members . Key members (shown in bold) are
covered in the following reference section:

Add1 Application2

Count1 Creator2

Delete Item1

Name Parent2

PrintSettings RowColSettings

Show
1 Collection only

2 Object and collection

customviews.Add(ViewName, [PrintSettings], [RowColSettings])

Creates a new view for the workbook.

Argument Settings

ViewName The name of the view to create.

PrintSettings True saves printer settings with the view; False omits them. Default is True.

RowColSettings True saves hidden cell settings with the view; False omits them. Default is True.

For example, the following code creates a new view that prints all worksheets in landscape orientation. The code also
restores the original view:

Sub CreateLandscapeView()
 Dim ws As Worksheet, vw As CustomView, wb As Workbook
 Set ws = ActiveSheet
 Set wb = ThisWorkbook
 ' Save current settings.
 wb.CustomViews.Add ("Default")
 ' Set worksheets to print landscape.
 For Each ws In wb.Worksheets
 ws.PageSetup.Orientation = xlLandscape
 Next
 ' Save print settings as a view.
 wb.CustomViews.Add "Landscape", True, False
 ' Restore the previous settings.
 wb.CustomViews("Default").Show
End Sub

customview.PrintSettings

Returns True if printer settings are stored with the view, False otherwise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

customview.RowColSettings

Returns True if filters and hidden ranges are included with the view, False otherwise.

customview.Show

Makes a view active. This may or may not change the display. For example, the following code switches to the
Landscape view created earlier, prints the workbook, then restores the default view. Because the Landscape view
includes only print settings, the appearance of the worksheets does not change.

Sub PrintLandscape()
 Dim wb As Workbook
 Set wb = ThisWorkbook
 ' Set landscape view.
 wb.CustomViews("Landscape").Show
 wb.PrintOut , , , True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.10. HPageBreak, HPageBreaks, VPageBreak, VPageBreaks
Members
Use the HPageBreaks and VPageBreaks collections to add manual page breaks to a worksheet. Use the Worksheet object's
HPageBreaks and VPageBreaks properties to get a reference to those collections. Use the HPageBreak and VPageBreak objects to
remove manual page breaks. The HPageBreaks, HPageBreak, VPageBreak, and VPageBreaks objects have the following members .
Key members (shown in bold) are covered in the following reference section:

Add1 Application2

Count1 Creator2

Delete DragOff

Extent Item1

Location Parent2

Type
1 Collection only

2 Object and collection

pagebreaks.Add(Before)

Adds a manual page break to a worksheet.

Argument Settings

Before A Range object indicating the location of the page break. Breaks are inserted above or to the left of this
location.

pagebreak.DragOff(Direction, RegionIndex)

Used to record deleting a page break during macro recording. Use Delete instead in code.

pagebreak.Extent

Returns xlPageBreakFull if the break is full-screen, xlPageBreakPartial if the break is only within the print area.

pagebreak.Location

Returns the Range object indicating the location of the break. The following code displays the locations of manual page
breaks in the Immediate window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

breaks in the Immediate window:

Sub ShowBreakLocations()
 Dim ws As Worksheet, hpb As HPageBreak
 Set ws = ActiveSheet
 For Each hpb In ws.HPageBreaks
 Debug.Print hpb.Location.Address
 Next
End Sub

pagebreak.Type

Returns xlPageBreakManual (2).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.11. PageSetup Members
Use the PageSetup object to control the printer settings for a worksheet or chart. Use the Worksheet and Chart objects'
PageSetup property to get a reference to this object. The PageSetup object has the following members . Key members
(shown in bold) are covered in the following reference section:

Application BlackAndWhite BottomMargin

CenterFooter CenterFooterPicture CenterHeader

CenterHeaderPicture CenterHorizontally CenterVertically

ChartSize Creator Draft

FirstPageNumber FitToPagesTall FitToPagesWide

FooterMargin HeaderMargin LeftFooter

LeftFooterPicture LeftHeader LeftHeaderPicture

LeftMargin Order Orientation

PaperSize Parent PrintArea

PrintComments PrintErrors PrintGridlines

PrintHeadings PrintNotes PrintQuality

PrintTitleColumns PrintTitleRows RightFooter

RightFooterPicture RightHeader RightHeaderPicture

RightMargin TopMargin Zoom

pagesetup.BlackAndWhite [= setting]

True prints in black and white; False prints in color if it is available.

pagesetup.BottomMargin [= setting]

Sets or returns the bottom margin in points.

pagesetup.CenterFooter [= setting]

Sets or returns a string to print in the center footer region.

pagesetup.CenterFooterPicture

Returns the Graphic object to print in the center footer region.

pagesetup.CenterHeader [= setting]

Sets or returns a string to print in the center header region.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pagesetup.CenterHeaderPicture

Returns the Graphic object to print in the center header region.

pagesetup.CenterHorizontally [= setting]

True centers the worksheet or chart horizontally on the page when printing; False aligns the page to the top margin.

pagesetup.CenterVertically [= setting]

True centers the worksheet or chart vertically on the page when printing; False aligns the page to the lefthand margin.

pagesetup.ChartSize [= setting]

Sets or returns an xlObjectSize constant that determines how a chart is sized; causes an error for worksheet objects. Can
be one of the following settings:

xlFitToPage

Prints the chart as large as possible, while retaining the chart's height-to-width ratio.

xlFullPage

Prints the chart to fit the page, adjusting the height-to-width ratio (this is the default).

xlScreenSize

Prints the chart the same size as it appears on the screen.

pagesetup.Draft [= setting]

True omits graphics when printing; False includes graphics.

pagesetup.FirstPageNumber [= setting]

Sets or returns the starting number used for page numbering. Default is xlAutomatic.

pagesetup.FitToPagesTall [= setting]

For worksheets, specifies the number of worksheet pages to include vertically on a single print page. Ignored if the Zoom
property is True; causes an error for charts.

pagesetup.FitToPagesWide [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For worksheets, specifies the number of worksheet pages to include horizontally on a single print page. Ignored if the
Zoom property is True; causes an error for charts.

pagesetup.FooterMargin [= setting]

Sets or returns the distance from the bottom of the page to the footer in points.

pagesetup.HeaderMargin [= setting]

Sets or returns the distance from the top of the page to the header in points.

pagesetup.LeftFooter [= setting]

Sets or returns a string to print in the left footer region.

pagesetup.LeftFooterPicture

Returns the Graphic object to print in the left footer region.

pagesetup.LeftHeader [= setting]

Sets or returns a string to print in the left header region.

pagesetup.LeftHeaderPicture

Returns the Graphic object to print in the left header region.

pagesetup.LeftMargin [= setting]

Sets or returns the size of the left margin in points.

pagesetup.Order [= setting]

Sets or returns an XlOrder constant that determines how multiple pages are printed. Possible settings are:

xlDownThenOver (default)

xlOverThenDown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pagesetup.Orientation [= setting]

Sets or returns an XlPageOrientation constant that determines whether the page prints in portrait or landscape mode.
Possible settings are:

xlPortrait (default)

xlLandscape

pagesetup.PaperSize [= setting]

Sets or returns an XlPaperSize constant that determines the paper size used by the printer. Possible settings are:

xlPaper10x14 xlPaper11x1

xlPaperA3 (297 mm x 420 mm) xlPaperA4 (210 mm x 297 mm)

xlPaperA4Small (210 mm x 297 mm) xlPaperA5 (148 mm x 210 mm)

xlPaperB4 (250 mm x 354 mm) xlPaperB5 (148 mm x 210 mm)

xlPaperCsheet xlPaperDsheet

xlPaperEnvelope9 (3 7/8 in. x 8 7/8 in.) xlPaperEnvelope10 (4 1/8 in. x 9 1/2 in.)

xlPaperEnvelope11 (4 1/2 in. x 10 3/8 in.) xlPaperEnvelope12 (4 1/2 in. x 11 in.)

xlPaperEnvelope14 (5 in. x 11 1/2 in.) xlPaperEnvelopeB4 (250 mm x 353 mm)

xlPaperEnvelopeB5 (176 mm x 250 mm) xlPaperEnvelopeB6 (176 mm x 125 mm)

xlPaperEnvelopeC3 (324 mm x 458 mm) xlPaperEnvelopeC4 (229 mm x 324 mm)

xlPaperEnvelopeC5 (162 mm x 229 mm) xlPaperEnvelopeC6 (114 mm x 162 mm)

xlPaperEnvelopeC65 (114 mm x 229 mm) xlPaperEnvelopeDL (110 mm x 220 mm)

xlPaperEnvelopeItaly (110 mm x 230 mm) xlPaperEnvelopeMonarch (3 7/8 in. x 7 1/2 in.)

xlPaperEnvelopePersonal (3 5/8 in. x 6 1/2 in.) xlPaperEsheet

xlPaperExecutive (7 1/2 in. x 10 1/2 in.) xlPaperFanfoldLegalGerman (8 1/2 in. x 13 in.)

xlPaperFanfoldStdGerman (8 1/2 in. x 13 in.) xlPaperFanfoldUS U.S. (14 7/8 in. x 11 in.)

xlPaperFolio (8 1/2 in. x 13 in.) xlPaperLedger (17 in. x 11 in.)

xlPaperLegal (8 1/2 in. x 14 in.) xlPaperLetter (8 1/2 in. x 11 in.)

xlPaperLetterSmall (8 1/2 in. x 11 in.) xlPaperNote (8 1/2 in. x 11 in.)

xlPaperQuarto (215 mm x 275 mm) xlPaperStatement (5 1/2 in. x 8 1/2 in.)

xlPaperTabloid (11 in. x 17 in.) xlPaperUser (User-defined)

pagesetup.PrintArea [= setting]

Sets or returns the address of the range to be printed as a string using A1-style references. Causes an error for charts.

pagesetup.PrintComments [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns an XlPrintLocation constant that determines how comments are printed. Possible settings are:

xlPrintInPlace

xlPrintNoComments (default)

xlPrintSheetEnd

pagesetup.PrintErrors [= setting]

Sets or returns an XlPrintErrors constant that determines how error values are printed. Possible settings are:

xlPrintErrorsBlank

xlPrintErrorsDash

xlPrintErrorsDisplayed (default)

xlPrintErrorsNA

pagesetup.PrintGridlines [= setting]

True prints gridlines; False hides them. Default is False. Causes an error for charts.

pagesetup.PrintHeadings [= setting]

True prints row numbers and column letters with the worksheet; False does not print those headings. Default is False.
Causes an error for charts.

pagesetup.PrintNotes [= setting]

True prints cell notes at the end of the worksheet; False does not print notes. Default is False. Causes an error for
charts.

pagesetup.PrintQuality(index) [= setting]

Sets or returns the horizontal and vertical print resolution as a two-element array. Some printers do not support
multiple resolutions, and setting PrintQuality causes an error if the setting is not available or if the object is a chart. The
following code displays the printer resolution settings:

Sub ShowResolution()
 Dim ws As Worksheet, x As Integer, y As Integer
 Set ws = ActiveSheet
 x = ws.PageSetup.PrintQuality(1)
 y = ws.PageSetup.PrintQuality(2)
 MsgBox "Printer resolution is " & x & "x" & y
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pagesetup.PrintTitleColumns [= setting]

Sets or returns the address of a column to repeat at the top of each printed page as column headings. The address is
specified as a string.

pagesetup.PrintTitleRows [= setting]

Sets or returns the address of a row to repeat at the left of each printed page as row headings. The address is specified
as a string.

pagesetup.RightFooter [= setting]

Sets or returns a string to print in the right footer region.

pagesetup.RightFooterPicture

Returns the Graphic object to print in the right footer region.

pagesetup.RightHeader [= setting]

Sets or returns a string to print in the right header region.

pagesetup.RightHeaderPicture

Returns the Graphic object to print in the right header region.

pagesetup.RightMargin [= setting]

Sets or returns the size of the right margin in points.

pagesetup.TopMargin [= setting]

Sets or returns the size of the top margin in points.

pagesetup.Zoom [= setting]

Sets or returns a percentage between 10 and 400 percent to scale the worksheet by when printing. Default is 100.
Causes an error for charts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.12. Graphic Members
Use the Graphic object to add pictures to headers and footers through the PageSetup object. Use the PageSetup object's
CenterFooterPicture, CenterHeaderPicture, LeftFooterPicture, LeftHeaderPicture, RightFooterPicture, or RightHeaderPicture methods to get a
reference to this object. The Graphic object has the following members, most of which are shared by the PictureFormat
object. Unique, key members (shown in bold) are covered in the following reference section:

Application Brightness

ColorType Contrast

Creator CropBottom

CropLeft CropRight

CropTop Filename

Height LockAspectRatio

Parent Width

To add a graphic to a header or footer in code:

1. Use one of the PageSetup object's header or footer picture methods to get a reference to the Graphic object.

2. Set the Filename property of the Graphic object.

3. Set the PageSetup object's corresponding header or footer property to &G.

The following code demonstrates adding a bitmap to the center footer of the active worksheet and previews the result
before printing:

Sub AddFooterGraphic()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 Set ps = ws.PageSetup
 ps.CenterFooterPicture.Filename = _
 ThisWorkbook.Path & "\wombatright.bmp"
 ps.CenterFooter = "&G"
 ws.PrintOut , , , True
End Sub

To remove the graphic from the header or footer, remove the &G from the header or footer as shown here:

Sub RemoveFooterGraphic()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ws.PageSetup.CenterFooter = ""
End Sub

graphic.Filename [= setting]

Sets or returns the name of the graphic file to include in the header or footer.

graphic.LockAspectRatio [= setting]

True retains the aspect ratio when the height or width is set; False stretches or squashes the image to match the height
or width settings. The following code demonstrates the result of both settings; notice that the image filename must be
reset to restore the original proportions after resizing the image:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reset to restore the original proportions after resizing the image:

Sub GraphicAspectRatio()
 Dim gr As Graphic
 ' Add the footer image.
 ActiveSheet.PageSetup.CenterFooterPicture.Filename = _
 ThisWorkbook.Path & "\wombatright.bmp"
 ActiveSheet.PageSetup.CenterFooter = "&G"
 ' Get the graphic object.
 Set gr = ActiveSheet.PageSetup.CenterFooterPicture
 ' Squash the image (height stays the same)
 gr.LockAspectRatio = False
 gr.Height = 20
 ActiveSheet.PrintOut , , , True
 ' Restore the footer image.
 ActiveSheet.PageSetup.CenterFooterPicture.Filename = _
 ThisWorkbook.Path & "\wombatright.bmp"
 ' Scale image to this width
 gr.LockAspectRatio = True
 gr.Height = 20
 ActiveSheet.PrintOut , , , True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.13. PublishObject and PublishObjects Members
Use the PublishObjects collection to publish items from a workbook to the Web. Use the Workbook object's PublishObjects
property to get a reference to this collection. Use the PublishObject object to save the item as a web page and to control
the appearance of that web page. The PublishObjects collection and PublishObject object have the following members . Key
members (shown in bold) are covered in the following reference section:

Add1 Application2

AutoRepublish Count1

Creator2 Delete2

DivID Filename

HtmlType Item1

Parent2 Publish2

Sheet Source

SourceType Title

1 Collection only

2 Object and collection

publishobjects.Add(SourceType, Filename, [Sheet], [Source],
[HtmlType], [DivID], [Title])

Creates an object that can be published from the workbook as a web page.

Argument Settings

SourceType

An XlSourceType constant identifying the type of object to publish. Can be one of these settings:

xlSourceAutoFilter
xlSourceChart
xlSourcePivotTable
xlSourcePrintArea
xlSourceQuery
xlSourceRange
xlSourceSheet
xlSourceWorkbook

Filename The full URL of the web page to create.

Sheet If SourceType is xlSourceSheet or xlSourcePrintArea, this is the name of the worksheet to publish.

Source
If SourceType is xlSourceAutofilter or xlSourceRange, this argument is the address of the range, or the name of
the range to publish entered as a string. If SourceType is xlSourceChart, xlSourcePivotTable, or xlSourceQuery, this
argument is the name of the chart, pivot table, or query to publish.

HtmlType

An XlHTMLType constant identifying whether the published object is interactive. Can be one of these
settings:

 xlHtmlCalc (interactive range)
 xlHtmlChart (interactive chart)
 xlHtmlList (interactive list)
 xlHtmlStatic (noninteractive)

DivID The ID attribute of a <DIV> element in the target web page to replace. This argument allows you to
replace part of a web page with the published item.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Title A title to include in the <Title> element on the web page.

The arguments used by Add are complicated and their meanings vary based on the published source and target. It is
easiest to turn on macro recording, publish the item, turn off recording, then use the generated Add method as a
starting point for writing your code.

publishobject.AutoRepublish [= setting]

True automatically republishes the item when the workbook is saved; False does not automatically republish. Default is
False.

publishobject.DivID

Returns the ID attribute of the <DIV> element on the web page to be replaced when the item is published. This property
is set by the Add method.

publishobject.Filename [= setting]

The URL of the web page to publish.

publishobject.HtmlType [= setting]

Sets or returns an XlHTMLType constant identifying whether the published object is interactive. See the Add method
HtmlType argument for a list of settings.

publishobjects.Publish([Create])

Publishes the item by saving it as a web page.

Argument Settings

Create True replaces an existing file with a new file; False appends the item to the file if it already exists. In
either case, the file is created if it does not already exist.

publishobject.Sheet

Returns the name of the sheet being published. Use the Add method's Sheet argument to set this property.

publishobject.Source

Returns the address or name of the item being published. Use the Add method's Source argument to set this property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

publishobject.SourceType

Returns the type of item being published. Use the Add method's SourceType argument to set this property.

publishobject.Title [= setting]

Sets or returns the title included in the <Title> element of the published web page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.14. WebOptions and DefaultWebOptions Members
Use the WebOptions and DefaultWebOptions objects to set the default web publishing options at the application or workbook
levels. Use the Application object's DefaultWebOptions property or the Workbook object's WebOptions property to get a reference
to these objects. The WebOptions and DefaultWebOptions objects have the following members. Key members (shown in bold)
are covered in the following reference section:

AllowPNG AlwaysSaveInDefaultEncoding1

Application CheckIfOfficeIsHTMLEditor1

Creator DownloadComponents

Encoding FolderSuffix

Fonts1 LoadPictures1

LocationOfComponents OrganizeInFolder

Parent PixelsPerInch

RelyOnCSS RelyOnVML

SaveHiddenData1 SaveNewWebPagesAsWebArchives1

ScreenSize TargetBrowser

UpdateLinksOnSave UseLongFileNames

1 The DefaultWebOptions members are a superset of the WebOptions members. These members apply to DefaultWebOptions
only.

Excel saves graphics with only noninteractive web pages. Interactive web pages
automatically omit pictures, controls, and other Shape objects, and image-related web
options have no effect.

options.AllowPNG [= setting]

True allows web page graphics to be saved in Portable Network Graphics (PNG) format, which can improve the
resolution and performance of the graphic. Not all browsers support PNG, however, so the default is False.

defaultweboptions.AlwaysSaveInDefaultEncoding [= setting]

True uses the Encoding property when updating existing web pages, overriding the file settings. Default is False.

defaultweboptions.CheckIfOfficeIsHTMLEditor [= setting]

True causes Excel to check if Microsoft Office is the default HTML editor whenever Excel starts. Default is True.

options.DownloadComponents [= setting]

True automatically downloads the Office Web Components from the URL in LocationOfComponents if the user does not have

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True automatically downloads the Office Web Components from the URL in LocationOfComponents if the user does not have
those components installed before viewing the web page. The user must have Microsoft Office 2000 or later installed,
however. Default is False.

options.Encoding [= msoEncoding]

Sets or returns the msoEncoding constant for the code page or character set to use on the web page. The default is the
system code page.

options.FolderSuffix

Returns the folder suffix used if UseLongFileNames and OrganizeInFolder are set to True. By default, the name of the
supporting folder is the name of the web pageplus an underscore (_), a period (.), or a hyphen (-)--and the word files.

defaultweboptions.Fonts

Returns a WebPageFonts collection that represents the fonts Excel uses when saving a web page. Changing the font name
or size properties of the returned WebPageFont objects does not seem to have an effect on web pages published from
Excel:

Sub WebFonts()
 Dim fnt As WebPageFont
 Set fnt = _
 Application.DefaultWebOptions.Fonts _
 (msoCharacterSetEnglishWesternEuropeanOtherLatinScript)
 ' Show the current settings.
 Debug.Print fnt.FixedWidthFont
 Debug.Print fnt.FixedWidthFontSize
 Debug.Print fnt.ProportionalFont
 Debug.Print fnt.ProportionalFontSize
End Sub

defaultweboptions.LoadPictures [= setting]

True loads images when an Excel file is opened for a web address; False if the images are not loaded. Default is True.

options.LocationOfComponents [= setting]

Sets or returns the URL from which to download the Office Web Components (owc10.exe or owc11.exe) if they are not
installed on the user's machine. The default is the drive from which Office was originally installed (usually the CD drive).

You can copy the Office Web Components to a folder on your web server, then set this property to ensure the
components will be installed automatically if needed, as shown here:

Sub SetDownload()
 Dim wo As DefaultWebOptions
 Set wo = Application.DefaultWebOptions
 wo.LocationOfComponents = _
 "http://www.excelworkshop.com/Ch11Sample/owc11.exe"
 wo.DownloadComponents = True
End Sub

options.OrganizeInFolder [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True saves supporting files such as graphics in a subfolder created at the location of the web page; False saves
supporting files in the same folder as the web page. Default is True.

options.RelyOnCSS [= setting]

True creates a cascading stylesheet (CSS) file and saves it with the supporting files for formatting set through Excel
styles; False saves the formatting information in the web page. Default is True.

options.RelyOnVML [= setting]

True does not render Vector Markup Language (VML) graphics as image files when saving; not all browsers support
VML, so the default is False.

defaultweboptions.SaveHiddenData [= setting]

True saves values that lie outside of the published range but that are referenced within the published range with the
web page; False converts those references to static values. Default is True.

defaultweboptions.SaveNewWebPagesAsWebArchives [=
setting]

True allows web pages to be saved in Multipurpose Internet Mail Extension HTML (MHTML) format , which includes
graphics and embedded contents in a single file. Default is True.

options.ScreenSize [= msoScreenSize]

Sets or returns the msoScreenSize constant that determines the target screen size for the web page. Possible settings are:

msoScreenSize1152x882 msoScreenSize1280x1024

msoScreenSize1800x1440 msoScreenSize544x376

msoScreenSize720x512 msoScreenSize1024x768

msoScreenSize1152x900 msoScreenSize1600x1200

msoScreenSize1920x1200 msoScreenSize640x480

msoScreenSize800x600

options.TargetBrowser [= msoTargetBrowser]

Sets or returns the msoTargetBrowser constant that determines browser capabilities to target when generating the web
page. Possible settings are:

msoTargetBrowserIE4

msoTargetBrowserIE5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

msoTargetBrowserIE6

msoTargetBrowserV3

msoTargetBrowserV4

defaultweboptions.UpdateLinksOnSave [= setting]

True updates linked values before saving as a web page; False does not automatically update links. Default is True.

options.UseLongFileNames [= setting]

True allows long filenames when saving web pages; False uses the DOS filename format (8.3).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Loading and Manipulating Data
A lot of data is managed in and never leaves an Excel worksheet. But much of the data that Excel users work with
comes from external databases such as SQL Server, Oracle, or Microsoft Access. You can work with data in various
ways in Excel, usually by importing an entire table of data from a database or by using a query to import data that
meets specific criteria. From a developer's perspective, you also have great programmatic control over the data you
expose to users.

The Excel object model lets you create and manipulate queries from a variety of sources using the QueryTable object. If
you want more programmatic control over your data, you have a choice of two programming interfaces. The ActiveX
Data Objects (ADO) interface gives you access to data from a variety of data sources. The Data Access Objects (DAO)
interface, which is native to Access databases, provides an easy-to-use interface for working with Access data.

In this chapter, I show how to:

Work with QueryTable objects

Work with Parameter objects

Work with the ADO and DAO database programming interfaces

This chapter contains reference information for the following objects and their related collections: QueryTable, Parameter,
ADO.Command, ADO.Connection, ADO.Field, ADO.Parameter, ADO.Record, ADO.RecordSet, DAO.Database, DAO.DbEngine, DAO.Document,
DAO.QueryDef, and DAO.Recordset.

Code used in this chapter and additional samples are available in ch12.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1. Working with QueryTable Objects
The QueryTable object gives you programmatic access to the database queries that are native to Excel. These database
queries let you retrieve data from a variety of data sources and insert the data into your worksheets. In the Excel
interface, you create a database query by clicking Import External Data, New Database Query on the Data menu.

In code, you create a database query by adding a QueryTable object to the QueryTables collection. When you do this, you
supply a connection string to your data source as well as a destination on your worksheet where you want the results of
the query to be inserted. For example, the following code inserts information for a specific product from the Products
table of the Northwind Traders sample database into the current worksheet, starting with the first cell of the worksheet:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh

You can also use the ADO or DAO programming interfaces to create a recordset, and use the resulting Recordset object
as your data source. To use either of these programming interfaces in Excel, you need to add a reference to the
appropriate object library. On the Tools menu in the VBA programming environment, select References, then select the
appropriate object library from the list. For example, the following code creates a query table using the Employees table
in the Northwind Traders sample database and inserts the recordset name and data in the active worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 "OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

The ADO and DAO programming interfaces are discussed later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2. QueryTable and QueryTables Members
Use the QueryTables collection to create new query tables and add them to a worksheet. Use the Worksheet object's
QuertyTables property to get a reference to this collection. Use the QueryTable object to refresh the data in the query table
and to control other aspects of the query. The QueryTables and QueryTable objects have the following members . Key
members (shown in bold) are covered in the following reference section:

Web query members are covered in Chapter 24.

Add1 AdjustColumnWidth

AfterRefresh Application2

BackgroundQuery BeforeRefresh

CancelRefresh CommandText

CommandType Connection

Count1 Creator2

Delete Destination

EditWebPage EnableEditing

EnableRefresh FetchedRowOverflow

FieldNames FillAdjacentFormulas

Item1 ListObject

MaintainConnection Name

Parameters Parent2

PostText PreserveColumnInfo

PreserveFormatting QueryType

Recordset Refresh

Refreshing RefreshOnFileOpen

RefreshPeriod RefreshStyle

ResetTimer ResultRange

RobustConnect RowNumbers

SaveAsODC SaveData

SavePassword SourceConnectionFile

SourceDataFile TextFileColumnDataTypes

TextFileCommaDelimiter TextFileConsecutiveDelimiter

TextFileDecimalSeparator TextFileFixedColumnWidths

TextFileOtherDelimiter TextFileParseType

TextFilePlatform TextFilePromptOnRefresh

TextFileSemicolonDelimiter TextFileSpaceDelimiter

TextFileStartRow TextFileTabDelimiter

TextFileTextQualifier TextFileThousandsSeparator

TextFileTrailingMinusNumbers TextFileVisualLayout

WebConsecutiveDelimitersAsOne WebDisableDateRecognition

WebDisableRedirections WebFormatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WebDisableRedirections WebFormatting

WebPreFormattedTextToColumns WebSelectionType

WebSingleBlockTextImport WebTables

1 Collection only

2 Object and collection

querytables.Add(Connection, Destination, [Sql])

Creates a new query table and adds it to the worksheet. Returns a QueryTable object.

Argument Description

Connection A string or object reference identifying the source of the data.

Destination A Range object identifying the upper-lefthand corner of the destination of the query table.

Sql If the Connection argument is an ODBC data source, this argument is a string containing the SQL query to
perform. Otherwise, including this argument either causes an error or is ignored.

querytable.AdjustColumnWidth [= setting]

Set this property to False to disable the automatic adjustment for the best fit for columns in the specified query table.

querytable.BackgroundQuery[= setting]

True refreshes data in the query table asynchronously. False refreshes data synchronously. Default is True.

The BeforeRefresh and AfterRefresh events occur whether or not the query is refreshed synchronously or asynchronously.
When synchronous, both events occur before the Refresh method completes. When asynchronous, only the BeforeRefresh
event occurs before the Refresh method completes, then program flow continues.

querytable.CancelRefresh

Cancels an asynchronous query. You can't refresh or delete a query while that query has refresh pending. When
working with asynchronous queries, you should check the query table's Refreshing property and (possibly) cancel the
pending refresh before deleting or refreshing that query again.

The following code cancels any pending refreshes before refreshing a query:

If qt.Refreshing Then qt.CancelRefresh
qt.Refresh

querytable.CommandText[= setting]

Sets or returns the command string for the specified query table. The following code returns the results of a query with
the specified command string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the specified command string:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"
Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))

qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh

querytable.CommandType[= setting]

Sets or returns the type of command string used by the specified query table. The type can be xlCmdSQL, a SQL string
(default); xlCmdCub, a cube name for an online analytical processing (OLAP) data source; xlCmdDefault, command text that
the OLE DB provider understands; or xlCmdTable, a table name for accessing OLE DB data sources.

querytable.Connection[= setting]

Sets or returns the connection string for the specified query table. The following code creates a query table, returns its
results, and displays the connection string in cell A6:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh
ActiveSheet.Range("A6") = qt.Connection

querytable.Delete

Deletes a query table. If the query table is refreshing asynchronously, Delete causes an error. Deleting a query table
does not remove data from cells on a worksheetit just removes the ability to refresh those cells from their data source.

The following code deletes all of the query tables on the active worksheet and clears their data:

Dim qt As QueryTable
For Each qt In ActiveSheet.QueryTables
 If qt.Refreshing Then qt.CancelRefresh
 qt.Delete
Next
ActiveSheet.UsedRange.Clear

querytable.Destination

Returns a Range object containing the cell in the upper-lefthand corner of the query table.

The following code selects the first cell of a query table on the active worksheet and asks if the user wants to delete it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code selects the first cell of a query table on the active worksheet and asks if the user wants to delete it:

For Each qt In ActiveSheet.QueryTables
 qt.Destination.Select
 If MsgBox("Delete query table?", vbYesNo) = vbYes Then
 If qt.Refreshing Then qt.CancelRefresh
 qt.ResultRange.Clear
 qt.Delete
 End If
Next

querytable.EnableEditing[= setting]

True allows the user to change the query definition through the Data menu's Import External Data submenu. False
disables the Import External Data menu items. Default is True.

querytable.EnableRefresh[= setting]

True allows the user to refresh the query through the Data menu's Refresh Data item. False disables the Refresh Data
menu item. Default is True.

querytable.FetchedRowOverflow[= setting]

True if the number of rows returned by the last refresh of the specified query table is greater than the available number
of rows.

querytable.FieldNames[= setting]

True if field names from the data source are displayed as column headings for the returned data. The following code
specifies that field names will not be displayed in the query table:

ActiveSheet.QueryTables(1).FieldNames = False

querytable.FillAdjacentFormulas[= setting]

True causes calculated cells to the right of the query table to be repeated for each row when the query table is
refreshed. False does not repeat adjacent formulas. Default is False.

Set FillAdjacentFormulas to True in order to create row totals, or other calculations, for each row in the query table
automatically. To use this feature, create a query table, add a formula for the first row in the query table, set
FillAdjacentFormulas to True, then refresh the data. For more information, see Chapter 24.

querytable.MaintainConnection[= setting]

This property returns True if the connection to the specified query table's data source is maintained after a refresh
operation. You can set this property for queries to OLEDB sources only.

querytable.Parameters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a Parameters collection object that represents the parameters of the specified query table. Working with Parameter
objects is covered later in this chapter.

querytable.PreserveColumnInfo[= setting]

True preserves the column sorting, filtering, and layout information when the specified query table is refreshed. False
does not preserve formatting. Default is False.

querytable.PreserveFormatting[= setting]

True preserves the cell formatting of the query table when data is refreshed. False does not preserve formatting.
Default is False.

If PreserveFormatting is True and a refresh imports new rows of data, formatting common to the first five rows of the query
table is automatically applied to the new rows.

querytable.QueryType[= setting]

Returns a value identifying the type of data source used by the query table. Possible values are:

xlTextImport

xlOLEDBQuery

xlWebQuery

xlADORecordset

xlDAORecordSet

xlODBCQuery

querytable.Recordset[= setting]

Sets or returns a Recordset object that serves as the data source for the specified query table. The following code creates
a query table using the Employees table in the Northwind Traders sample database as the recordset and inserts the
name of the recordset as well as the recordset data in the active worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 "OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

querytable.Refresh([BackgroundQuery])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refreshes a query table from its data source. Returns True if the refresh was submitted successfully, False if the user
canceled the refresh.

Argument Description

BackgroundQuery True refreshes the data asynchronously; False refreshes the data synchronously. Default is True.

Most types of query table store connection and data source information that is used by Refresh. The exception is
recordset queriesyou must set a new recordset before calling Refresh for query tables based on recordsets. See the
Recordset property for an example.

When refreshing asynchronously, check the Refreshing property before calling Refresh. Otherwise, pending refreshes will
cause an error. The following code cancels any pending asynchronous refresh before refreshing a query table:

If qt.Refreshing Then qt.CancelRefresh
qt.Refresh

querytable.Refreshing

Returns True if an asynchronous refresh is pending for this query table, False if no refresh is pending.

querytable.RefreshOnFileOpen[= setting]

True refreshes the query table when the workbook is opened; False does not refresh on open. Default is False.

querytable.RefreshPeriod[= setting]

Sets or returns the number of minutes between automatic refreshes. The default is 0, for no automatic refreshing. You
can set automatic refreshing on synchronous or asynchronous queries. RefreshPeriod is ignored for query tables created
from recordsets.

The following code creates a query table from an ODBC data source and sets the query table to refresh once a minute:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn="ODBC;DRIVER=SQL Server;SERVER=.;UID=Jeff;APP=Microsoft Office "& _
"XP;WSID=WOMBAT2;DATABASE=pubs;Trusted_Connection=Yes"
strSQL = "SELECT titles.title, titles.price, titles.pubdate, titles.ytd_sales
FROM pubs.dbo.titles titles"
Set qt = ActiveSheet.QueryTables.Add(strConn, [QueryDestination], strSQL)
qt.RefreshPeriod = 1
qt.Refresh

querytable.RefreshStyle[= setting]

Determines how the query affects surrounding items on the worksheet when the query table is refreshed.

Setting Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlInsertDeleteCells Inserts or deletes new rows and columns created by the query, moving surrounding items up or
down and to the right or left as needed (default).

xlOverwriteCells No new rows or columns are added to the worksheet. Surrounding items are overwritten as
needed.

xlInsertEntireRows Inserts a new row for each record returned by the query. Shifts existing items down as needed to
accommodate the number of records returned.

The following code modifies an existing query table to insert new rows on the worksheet as needed, shifting existing
items on the worksheet down:

Set qt = ActiveSheet.QueryTables(1)
qt.RefreshStyle = xlInsertEntireRows
qt.Refresh

If a subsequent query reduces the number of records returned, the contents of the query table are replaced, but the
rows that were previously shifted down are not shifted back up again as they would be if RefreshStyle was set to
xlInsertDeleteCells.

querytable.ResetTimer

Resets the timer used for periodic queries, in effect delaying when a query occurs. Use the RefreshPeriod property to
automatically refresh a query periodically.

querytable.ResultRange

Returns the range containing the results of the query. For example, the following code clears the results from a query
table on the active worksheet:

ActiveSheet.QueryTables(1).ResultRange.Clear

If a query table has been created but not yet refreshed, accessing ResultRange causes an error. There's no direct way to
test whether a query table has been refreshed. One solution to this problem is to write a helper function similar to the
following to check if a query table has a result before accessing ResultRange elsewhere in code:

Public Function HasResult(qt As QueryTable) As Boolean
 Dim ret As Boolean
 On Error Resume Next
 Debug.Print qt.ResultRange.Address
 If Err Then ret = False Else ret = True
 On Error GoTo 0
 HasResult = ret
End Function

Now, you can easily test if a query table has a result before clearing the result range or performing other tasks as
shown here:

Set qt = ActiveSheet.QueryTables(1)
If HasResult(qt) Then qt.ResultRange.Clear

querytable.RowNumbers[= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set this property to True to display row numbers in the first column of the specified query table. The numbers do not
display until the query table is refreshed. They will be reset each time the query table is refreshed. The following code
adds row numbers to the first query table on the active worksheet:

With ActiveSheet.QueryTables(1)
 .RowNumbers = True
 .Refresh
End With

querytable.SavePassword[= setting]

Set this property to True to save password information in an ODBC connection string with the specified query table.

querytable.TextFileColumnDataTypes[= setting]

Sets or returns an array of constants specifying the data types applied to a text file being imported into the specified
query table.

querytable.TextFileCommaDelimiter[= setting]

True if you are using a comma delimiter when you are importing a text file into the specified query table.

querytable.TextFileConsecutiveDelimiter[= setting]

True if consecutive delimiters are treated as a single delimiter when you are importing a text file into the specified
query table.

querytable.TextFileDecimalSeparator[= setting]

Sets or returns the decimal separator used when you are importing a text file into the specified query table.

querytable.TextFileFixedColumnWidths[= setting]

Sets or returns an array of integers that correspond to the widths of the columns in the text file that you are importing
into the specified query table. The following code imports text from a sample file and places the characters in each row
of the active worksheet as follows:

The first five characters are placed in the first column.

The next four characters are placed in the second column.

The remaining characters are placed in the third column:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim strCnn As String
Dim qt As QueryTable

strCnn = "TEXT;C:\My Documents\qtsample.txt"
Set qt = ActiveSheet.QueryTables.Add(Connection:=strCnn,& _
 Destination:=ActiveSheet.Range("A1"))
With qt
 .TextFileParseType = xlFixedWidth
 .TextFileFixedColumnWidths = Array(5, 4)
 .Refresh
End With

querytable.TextFileOtherDelimiter[= setting]

Sets or returns the character used as a delimiter when you are importing a text file into the specified query table.

querytable.TextFileParseType[= setting]

Set this property to xlFixedWidth if the column data in the text file you are importing into the specified query table has a
fixed width. Set this property to xlDelimited (default) if the column data in the text file is separated by a delimiter
character.

querytable.TextFilePlatform[= setting]

Set this property to xlMacintosh if the text file you are importing into the specified query table originated on the Macintosh
operating system. Set this property to xlMSDOS if the text file originated on the MS-DOS operating system. Set this
property to xlWindows if the text file originated on the Windows operating system.

querytable.TextFilePromptOnRefresh[= setting]

True if you want to be prompted for the name of the text being imported into the specified query table each time the
query table is refreshed.

querytable.TextFileSemicolonDelimiter[= setting]

True if you are using a semicolon delimiter when you are importing a text file into the specified query table.

querytable.TextFileSpaceDelimiter[= setting]

True if you are using a space character delimiter when you are importing a text file into the specified query table.

querytable.TextFileTabDelimiter[= setting]

True if you are using a tab character delimiter when you are importing a text file into the specified query table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

querytable.TextFileTextQualifier[= setting]

Set this property to xlTextQualifierSingleQuote if the text file you are importing into the specified query table uses single
quotes rather than double quotes to indicate what is enclosed between the quotes is text. Set this property to
xlTextQualifierNone if the file does not use quotes to indicate a text string. Set this property to xlTextQualifierDoubleQuote
(default) if the file uses double quotes as a text qualifier.

querytable.TextFileThousandsSeparator[= setting]

Sets or returns the thousands separator used when you are importing a text file into the specified query table.

querytable.TextFileTrailingMinusNumbers[= setting]

True if numbers imported into the specified query table that begin with the hyphen character (-) are treated as negative
numbers. False if they are treated as text.

querytable.TextFileVisualLayout[= setting]

Sets or returns the left-to-right layout of text for text imported into the specified query table. When the property is set
to 1, layout is left-to-right. When the property is set to 2, the layout is right-to-left.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3. Working with Parameter Objects
The Parameter object lets you supply parameter criteria to limit the data returned by a query. This is useful if you want to
create a query that returns a general set of data but you want to work with different subsets of that data or different
individual records. You can supply different parameters rather than creating a new query for each subset or record.

You create a parameter by adding a Parameter object to the Parameters collection of a QueryTable object. You can then supply
a specific parameter value or use a value in a cell on your worksheet. For example, the following code creates a query
table that uses the value in cell A1 as the parameter:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("C1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlRange, Range("A1")
qt.Refresh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4. Parameter Members
Use the Parameters collection to add parameters to the SQL query used by a query table. Use the QueryTable object's
Parameters property to get a reference to this collection. Use the Parameter object to set the contents of the parameter. The
Parameters collection and Parameter object have the following members . Key members (shown in bold) are covered in the
following reference section:

Add1 Application2

Count1 Creator2

DataType Delete

Item1 Name

Parent2 PromptString

RefreshOnChange SetParam

SourceRange Type

Value
1 Collection only

2 Object and collection

parameters.Add(Name, [iDataType])

Creates a new query parameter. Returns a Parameter object.

Argument Description

Name A string that identifies the parameter.

iDataType

If you want to specify a data type for the parameter, use one of the following constants:

xlParamTypeBigInt
xlParamTypeBinary
xlParamTypeBit
xlParamTypeChar
xlParamTypeDate
xlParamTypeDecimal
xlParamTypeDouble
xlParamTypeFloat
xlParamTypeInteger
xlParamTypeLongVarBinary
xlParamTypeWChar
xlParamTypeNumeric
xlParamTypeLongVarChar
xlParamTypeReal
xlParamTypeSmallInt
xlParamTypeTime
xlParamTypeTimeStamp
xlParamTypeTinyInt
xlParamTypeUnknown
xlParamTypeVarBinary
xlParamTypeVarChar

The following code creates a query table that uses a parameter to supply the product ID to the underlying query. The ?
character is a placeholder for the query value, which in this case is the value 10 for the ProductID:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

character is a placeholder for the query value, which in this case is the value 10 for the ProductID:

Dim strConn As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlConstant, 10
qt.Refresh

parameter.DataType[= setting]

Sets or returns the data type of the specified parameter. See the Add method for a list of possible values.

parameter.Delete

Deletes the specified parameter.

parameter.PromptString[= setting]

If the specified parameter uses a prompt string, this property returns the prompt string. The following code creates two
parameter query tables on the active worksheet and uses the same prompt string for both:

Dim strConn As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt1 = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt1.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param1 = qt1.Parameters.Add("ProductsParam1")
param1.SetParam xlPrompt, "Please enter a Product ID."

Set qt2 = ActiveSheet.QueryTables.Add(Connection:=strConn, _
Destination:=ActiveSheet.Range("A5"))
qt2.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param2 = qt2.Parameters.Add("ProductsParam2")
param2.SetParam xlPrompt, param1.PromptString

qt1.Refresh
qt2.Refresh

parameter.RefreshOnChange[= setting]

If the specified parameter uses a single-cell range as a parameter value, this property refreshes the query table
whenever the cell value changes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

whenever the cell value changes.

parameter.SetParam[= setting]

Defines the specified parameter. The following code creates a query table that uses the value in cell A1 as the
parameter:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("C1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlRange, Range("A1")
qt.Refresh

parameter.SourceRange[= setting]

If the specified parameter uses a single-cell range as its parameter, returns the corresponding Range object.

parameter.Type[= setting]

Sets or returns the type of the specified parameter, either xlConstant if the parameter is a constant, xlPrompt if it is a
prompt string, or xlRange if it is a single-cell range.

parameter.Value[= setting]

Sets or returns the value of the specified parameter, either a constant, a prompt string, or a single-cell Range object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.5. Working with ADO and DAO
If you want to be able to manage all the details of working with data in your worksheets, you can manipulate data
programmatically using one of the two programming interfaces: ActiveX Data Objects (ADO) and Data Access Objects
(DAO).

DAO came first. It was developed in conjunction with Microsoft Access and is the native programming interface for the
Jet database engine, the built-in data engine for Access. ADO came later, incorporating some of the database cursor
optimization that came with Microsoft's acquisition of FoxPro. It is more flexible, better suited for high-performance
applications, and designed to be more neutral in dealing with different data sources. But, truth be told, many
experienced and respected Access developers still do most of their work in DAO.

To use either of these programming interfaces in Excel, you need to add a reference to the appropriate object library.
On the Tools menu in the VBA programming environment, select References, then select the appropriate object library
from the list.

A full discussion of ADO and DAO is beyond the scope of this book, but we will touch on some of the key objects and
members of each interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6. ADO Objects and Members
The ADO object model includes the key objects listed in the following table. There are additional objects, but these
cover the fundamentals of working with ADO. For information about the additional objects, see the ADO Help.

Object Description

Command Defines a specific commandsuch as a SQL statement, table name, or stored procedurethat returns data
from a data source.

Connection Represents a connection to a data source.

Field Represents a field of data from a data source.

Parameter Represents a parameter associated with a specific command.

Record Represents a single record in a recordset.

Recordset Represents a set of records from a table or command.

Descriptions of the members of these objects follow. Key members (shown in bold) are covered in the following
reference sections.

12.6.1. ADO.Command Members

ActiveConnection Cancel

CommandStream CommandText

CommandTimeout CommandType

CreateParameer Dialect

Execute Name

Prepared Properties

State

command.ActiveConnection[= setting]

Sets or returns the connection used by the specified command. The following code returns a record by executing a SQL
command using the active connection:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath
cnn.Open
Set cmd.ActiveConnection = cnn
cmd.CommandText = "SELECT * FROM Employees Where EmployeeID = 9;"
Set rs = cmd.Execute

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Destination:=ActiveSheet.Range("A3"))
qt.Refresh

ActiveSheet.Range("A1") = qt.Recordset.Source
rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

command.CommandText[= setting]

Sets or returns the command text used by the specified command. See the ActiveConnection code example for an example
of using CommandText.

command.CommandType[= setting]

Sets or returns the type of the specified command: adCmdUnspecified, adCmdText, adCmdTable, adCmdStoredProc, adCmdUnknown,
adCmdFile, or adCmdTableDirect.

command.CreateParameter

Creates a new parameter for the specified command.

command.Execute

Executes the specified command. See the ActiveConnection code example for an example of using Execute.

command.Name[= setting]

Sets or returns the name of the specified command.

12.6.2. ADO.Connection Members

Attributes BeginTrans

Cancel Close

CommandTimeout CommitTrans

ConnectionString ConnectionTimeout

CursorLocation DefaultDatabase

Execute IsolationLevel

Mode Open

OpenSchema Provider

RollbackTrans State

Version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection.BeginTrans

Begins a transactiona series of operations performed as a whole (committed) or canceled (rolled back). The following
code wraps the code example used for the Command object's ActiveConnection method around a transaction so that it can be
committed or rolled back:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath
cnn.Open
Set cmd.ActiveConnection = cnn
cnn.BeginTrans

cmd.CommandText = "SELECT * FROM Employees Where EmployeeID = 9;"
Set rs = cmd.Execute

' Prompt user to commit all changes made
If MsgBox("Save all changes?", vbYesNo) = vbYes Then
 cnn.CommitTrans
 Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))
 qt.Refresh
 ActiveSheet.Range("A1") = qt.Recordset.Source
Else
 cnn.RollbackTrans
End If

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

connection.Cancel

Cancels the specified connection object's last Execute or Open operation.

connection.CommandTimeout[= setting]

Specifies the time to wait, in seconds, while executing a command on the specified connection before terminating it.

connection.CommitTrans

Saves any changes made during a transaction. See the BeginTrans code example for an example of using CommitTrans.

connection.ConnectionString[= setting]

Specifies the connection string used to connect to a data source. See the BeginTrans code example for an example of
using ConnectionString.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using ConnectionString.

connection.ConnectionTimeout[= setting]

Specifies the time to wait, in seconds, while establishing a connection before terminating it.

connection.Open

Opens the specified connection. See the BeginTrans code example for an example of using Open.

connection.RollbackTrans

Cancels any changes made during a transaction. See the BeginTrans code example for an example of using RollbackTrans.

connection.Version[= setting]

Returns the ADO version number.

12.6.3. ADO.Field and ADO.Fields Members

ActualSize Append1

AppendChunk Attributes

CancelUpdate1 Count1

DefinedSize Delete1

GetChunk Item1

Name NumericScale

OriginalValue Precision

Refresh1 Resync1

Status Type

UnderlyingValue Update1

Value
1 Collection only

field.ActualSize[= setting]

Returns the actual size of the data in a field. Use the DefinedSize property to return the size of data that the field is
capable of holding.

field.AppendChunk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appends data to a large text or binary field.

fields.CancelUpdate

Cancels any updates made to the specified Fields collection.

field.DefinedSize[= setting]

Returns the size of data that the field is capable of holding. Use the ActualSize property to return the actual size of the
data in a field.

field.GetChunk(Size)

Returns all or a specified portion of a large text or binary file.

Argument Description

Size The number of bytes or characters that you want to return

field.NumericScale[= setting]

Sets or returns the number of decimal places to use for numeric values.

field.OriginalValue[= setting]

Returns the value of a field before any changes were made. Use this property with the UnderlyingValue property in a
multiuser environment when you want to make sure that you are using the most current data.

field.UnderlyingValue[= setting]

Returns the current value of a field. Use this property with the OriginalValue property in a multiuser environment when
you want to make sure that you are using the most current data.

field.Value[= setting]

Sets or returns the value of data stored in the specified field.

12.6.4. ADO.Parameter and ADO.Parameters Members

Append1 AppendChunk

Attributes Count1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Delete1 Direction

Item1 Name

NumericScale Precision

Properties Refresh1

Size Type

Value
1 Collection only

Parameter.AppendChunk

Appends data to a large text or binary field.

Parameter.Name[= setting]

Sets or returns the name of the specified parameter.

Parameter.NumericScale[= setting]

Sets or returns the number of numeric decimal places in the specified parameter.

Parameter.Precision[= setting]

Sets or returns the maximum number of digits in a numeric parameter value.

parameter.Size[= setting]

Sets or returns the maximum size of the specified parameter, in bytes or characters.

parameter.Value[= setting]

Sets or returns the parameter's value.

12.6.5. ADO.Record Members

ActiveConnection Cancel

Close CopyRecord

DeleteRecord GetChildren

Mode MoveRecord

Open ParentURL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties RecordType

Source State

record.ActiveConnection[= setting]

Sets or returns the connection used by the specified record.

record.Cancel

Cancels a pending CopyRecord, DeleteRecord, MoveRecord, or Open operation.

record.GetChildren

Returns a Recordset object whose rows are children of the specified record in a parent-child relationship.

record.Open([Source], [ActiveConnection], [Mode]),
[CreateOptions], [Options], [UserName], [Password])

Opens the record.

Argument Description

Source If the record source has not already been specified, you can specify a Command, Record, or Recordset
object; table; or SQL statement as the source.

ActiveConnection If the connection has not already been specified, you can specify a Connection object or connect stiring.

Mode

If the mode has not already been specified, you can specify a ConnectModeEnum constant value that
specifies the access mode. The value can be adModeRead, adModeReadWrite, adModeRecursive,
adModeShareDenyNone, adModeShareDenyRead, adModeShareDenyWrite, adModeShareExclusive, adModeUnknown,
adModeWrite.

CreateOptions Lets you specify whether an existing file or directory should be opened or a new file or directory
should be created.

Options Lets you specify options for opening the record. The value can be adDelayFetchFields, adDelayFetchStream,
adOpenAsync, adOpenExecuteCommand, adOpenRecordUnspecified, or adOpenOutput.

UserName Lets you specify a username granting access to Source.

Password Lets you specify a password for the username.

record.RecordType

Returns the Record object type, either adSimpleRecord, adCollectionRecord, adRecordUnknown, or adStructDoc.

record.Source[= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the data source for the record.

record.State

Returns the state of the record, either adStateClosed, adStateOpen, adStateConnecting, adStateExecuting, or adStateFetching.

12.6.6. ADO.Recordset Members

AbsolutePage AbsolutePosition

ActiveCommand ActiveConnection

AddNew BOF

Bookmark CacheSize

Cancel CancelBatch

CancelUpdate Clone

Close CompareBookmarks

CursorLocation CursorType

DataMember DataSource

Delete EditMode

EOF Filter

Find GetRows

GetString Index

LockType MarshalOptions

MaxRecords Move

MoveFirst MoveLast

MoveNext MovePrevious

NextRecordset Open

PageCount PageSize

RecordCount Requery

Resync Save

Seek Sort

Source State

Status StayInSync

Supports Update

UpdateBatch

recordset.AbsolutePosition[= setting]

Sets or returns the ordinal position of the current record in the recordset.

recordset.ActiveCommand[= setting]

Returns the Command object used to create the recordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Command object used to create the recordset.

recordset.ActiveConnection [= setting]

Sets or returns the connection string or Connection object used by the recordset.

recordset.AddNew([FieldList], [Values])

Creates a new record.

Argument Description

FieldList A single field name or an array of names or ordinal numbers specifying the fields in the new record

Values A single field value or an array of values for the fields

The following code adds a new record to the Employees table in the Northwind Traders sample database using cell
values on the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim strConnect As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Employees", cnn, adOpenDynamic, adLockOptimistic, adCmdTable

rs.AddNew
rs!LastName = ActiveSheet.Range("B4")
rs!FirstName = ActiveSheet.Range("C4")
rs.Update

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

recordset.BOF[= setting]

True if the current record position is before the first record in the recordset.

recordset.Cancel

Cancels the last Open operation for the recordset.

recordset.CancelUpdate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cancels any pending changes for the current record.

recordset.Delete([AffectRecords])

Deletes the current record or a group of records.

Argument Description

AffectRecords A constant that specifies the records affected by the delete operation, either adAffectAll, adAffectAllChapters,
adAffectCurrent, or adAffectGroup.

recordset.EOF[= setting]

True if the current record position is after the last record in the recordset. The following code uses the EOF property to
test for the end of the recordset, adding names from the Employees table in the Northwind Traders sample database to
the first column of the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim intIdx As Integer

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Employees", cnn, adOpenStatic, adLockReadOnly, adCmdTable

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!FirstName & " " & rs!LastName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

recordset.Filter[= setting]

Sets or returns a filter for the recordset. You can use filters to work with different sets of data in a table without having
to open separate recordsets. The following code adds product names for all beverages from the Products table in the
Northwind Traders sample database to the first column of the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim intIdx As Integer

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Products", cnn, adOpenStatic, adLockReadOnly, adCmdTable
rs.Filter = "CategoryID = 1"

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!ProductName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

recordset.MoveFirst

Moves to the first record in the recordset.

recordset.MoveLast

Moves to the last record in the recordset.

recordset.MoveNext

Moves to the next record in the recordset. See the EOF and Filter code examples for examples of using MoveNext.

recordset.MovePrevious

Moves to the previous record in the recordset.

recordset.Open([Source], [ActiveConnection], [CursorType] ,
[LockType] , [Options])

Opens the recordset for database operations.

Argument Description

Source The source of the recordset. The source can be a Command object, an SQL statement, a table name, a
stored procedure call, a URL, or the name of a file or Stream object.

ActiveConnection A Connection object or connection string.

CursorType The type of database cursor to use for the recordset. The cursor can be adOpenDynamic, adOpenForwardOnly
(default), adOpenKeyset, adOpenStatic, or adOpenUnspecified.

LockType The type of locking to use for the recordset. The cursor can be adLockBatchOptimistic, adLockOptimistic,
adLockPessimistic, adLockReadOnly, or adLockUnspecified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adLockPessimistic, adLockReadOnly, or adLockUnspecified.

Options A constant specifying how a command source should be interpreted or executed.

recordset.RecordCount[= setting]

Returns the number of records in the recordset.

recordset.Requery

Updates the recordset by running the query on which it is based.

recordset.Source[= setting]

Returns a string or Command object indicating the source of the recordset.

recordset.Update([Fields], [Value])

Saves changes made to the current record.

Argument Description

Fields The name of the field being updated or an array of names or ordinal positions if you are updating
multiple fields

Value The updated value of the field or an array of values if you are updating multiple fields

See the AddNew code example for an example of using Update.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.7. DAO Objects and Members
The DAO object model includes the key objects listed in the following table. There are additional objects, but these
cover the fundamentals of working with DAO. For information about the additional objects, see the DAO Help.

Object Description

Database/Databases The Database object represents an open database. The Databases collection contains all open
databases.

DbEngine Represents the Jet database engine. It is the top-level object in the DAO object model.

Document/Documents The Document object represents information about an instance of a Microsoft Access object, such as
a form or report. The Documents collection contains all the Document objects of the same type.

QueryDef/QueryDefs The QueryDef object represents a Microsoft Access query. The QueryDefs collection contains all the
queries in a database.

Recordset/Recordsets The Recordset object represents a set of records from a table or query. The Recordsets collection
contains all open recordsets in a database.

Descriptions of the members of these objects follow. Key members (shown in bold) are covered in the following
reference sections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.8. DAO.Database and DAO.Databases Members

Close CollatingOrder

Connect Connection

Containers Count1

CreateProperty CreateQueryDef

CreateRelation CreateTableDef

DesignMasterID Execute

MakeReplica Name

NewPassword OpenRecordset

PopulatePartial Properties

QueryTimeout RecordsAffected

Refresh1 Relations

ReplicaID Synchronize

Transactions Updatable

Version
1 Collection only

database.Connection

Returns the Connection object for the database.

database.Execute(Source, [Options])

Executes an action query or SQL statement.

Argument Description

Source An SQL statement or the name of a query.

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

database.OpenRecordset(Source, [Type], [Options]),
[LockEdits])

Opens the record.

Argument Description

Source The source of the recordset: a table name, query name, or SQL statement.

Type The type of recordset to open: dbOpenTable, dbOpenDynamic, dbOpenDynaset, dbOpenSnapshot, or
dbOpenForwardOnly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type dbOpenForwardOnly.

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

LockEdits The locking used by the recordset: dbReadOnly, dbPessimistic, dbOptimistic, dbOptimisticValue, or dbOptimisticBatch.

The following code example opens the Employees table in the Northwind Traders sample database as a recordset and
displays its contents on the active sheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

12.8.1. DAO.DbEngine Members

BeginTrans CommitTrans

CompactDatabase CreateDatabase

CreateWorkspace DefaultPassword

DefaultType DefaultUser

Errors Idle

IniPath LoginTimeout

OpenConnection OpenDatabase

Properties RegisterDatabase

Rollback SetOption

SystemDB Version

Workspaces

dbengine.CompactDatabase(olddb, newdb, [locale]), [options] ,
[password])

Copies and compacts a database. The database must be closed.

Argument Description

olddb The name and path of the existing database file.

newdb The name and path of the compacted database file.

locale An optional collating order used in creating the compacted database file. See DAO Help for more
information about collating order settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

password An optional password string.

dbengine.OpenDatabase(dbname, [options], [read-only],
[connect])

Copies and compacts a database. The database must be closed.

Argument Description

dbname The name and path of the existing database file.

options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

read-only Use True if you want to open the database for read-only access.

connect A connection string.

See the Database.OpenRecordset method for an example of using OpenDatabase. Note that you use the OpenDatabase method
without explicitly specifying the DbEngine object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.9. DAO.Document and DAO.Documents Members

AllPermissions Container

Count1 CreateProperty

DateCreated LastUpdated

Name Owner

Permissions Properties

Refresh1 UserName

1 Collection only

Document.Container

Returns the name of the container to which the document belongs.

Document.Name

Returns the name of the specified table, query, form, or report. The following code example displays the names of all
the reports in the Northwind Traders sample database in the first column of the active worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim docRpt As DAO.Document
Dim intIdx As Integer

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
intIdx = 0
With db.Containers!Reports
 For Each docRpt In .Documents
 ActiveSheet.Cells(intIdx + 1, 1) = .Documents(intIdx).Name
 intIdx = intIdx + 1
 Next docRpt

End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.10. DAO.QueryDef and DAO.QueryDefs Members

Append1 CacheSize

Cancel Close

Connect Count1

CreateProperty DateCreated

Delete1 Execute

LastUpdated MaxRecords

Name ODBCTimeout

OpenRecordset Prepare

RecordsAffected Refresh1

ReturnsRecords SQL

StillExecuting Type

Updatable
1 Collection only

querydef.Execute([Options])

Executes the specified action query.

Argument Description

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

querydef.MaxRecords[= setting]

For and ODBC data source, returns the maximum number of records to return from the query.

querydef.OpenRecordset([Type], [Options]), [LockEdits])

Opens the record.

Argument Description

Type The type of recordset to open: dbOpenTable, dbOpenDynamic, dbOpenDynaset, dbOpenSnapshot, or
dbOpenForwardOnly.

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

LockEdits The locking used by the recordset: dbReadOnly, dbPessimistic, dbOptimistic, dbOptimisticValue, or dbOptimisticBatch.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code example displays the contents of the recordset produced by the Invoices query in the Northwind
Traders sample database on the active sheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim qry As DAO.QueryDef
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set qry = db.QueryDefs("Invoices")
Set rs = qry.OpenRecordset

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A1"))

qt.Refresh

querydef.SQL[= setting]

Sets or returns the query's SQL string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.11. DAO.Recordset and DAO.Recordsets Members

AbsolutePosition AddNew BatchCollisionCount

BatchCollisions BatchSize BOF

Bookmark Bookmarkable CacheSize

CacheStart Cancel CancelUpdate

Clone Close Connection

CopyQueryDef Count1 DateCreated

Delete Edit EditMode

EOF FillCache Filter

FindFirst FindLast FindNext

FindPrevious GetRows Index

LastModified LastUpdated LockEdits

Move MoveFirst MoveLast

MoveNext MovePrevious Name

NextRecordset NoMatch OpenRecordset

PercentPosition RecordCount RecordStatus

Refresh1 Requery Restartable

Seek Sort StillExecuting

Transactions Type Updatable

Update UpdateOptions ValidationRule

ValidationText
1 Collection only

recordset.AddNew

Adds a new record to the recordset. The following code adds a new record to the Employees table in the Northwind
Traders sample database using cell values on the current worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

rs.AddNew
rs!LastName = ActiveSheet.Range("B4")
rs!FirstName = ActiveSheet.Range("C4")
rs.Update

recordset.BOF[= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True if the current record position is before the first record in the recordset.

recordset.EOF[= setting]

True if the current record position is after the last record in the recordset. The following code uses the EOF property to
test for the end of the recordset, adding names from the Employees table in the Northwind Traders sample database to
the first column of the current worksheet:

recordset.MoveFirst Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!FirstName & " " & rs!LastName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

recordset.MoveFirst

Moves to the first record in the recordset.

recordset.MoveLast

Moves to the last record in the recordset.

recordset.MoveNext

Moves to the next record in the recordset. See the EOF code example for an example of using MoveNext.

recordset.MovePrevious

Moves to the previous record in the recordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Analyzing Data with Pivot Tables
When you create a spreadsheet, you have to be careful how you organize the columns and rows because that affects
how you can sort, filter, or chart the data later. When you import data from an external source, such as a database,
web query, SharePoint list, or CSV file, you usually don't have a choice how the spreadsheet is organizedthe data just
comes in the way it was in the source.

Pivot tables let you reorganize data by dragging and dropping the columns from a data source to different locations on
a target worksheet. You can then sort, filter, or chart the results as you like. That makes pivot tables Excel's key data
analysis tool.

This chapter includes task-oriented reference information for the following objects and their related collections:
CalculatedField, CalculatedMember, CubeField, PivotCache, PivotCell, PivotField, PivotFormula, PivotItem, PivotItemList, PivotLayout, and
PivotTable.

Code used in this chapter and additional samples are available in ch13.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1. Quick Guide to Pivot Tables
Not everyone is familiar with pivot tables, and they can seem confusing at first. The easiest way to explain them is a
quick tutorial to demonstrate how they are useful. Use these general steps to create a pivot table:

1. Create the table using the PivotTable Wizard.

2. Format the table to make it readable.

3. Change field properties such as how totals are calculated.

4. Chart the results (optional).

The following sections walk you through these steps using data that accompanies this chapter's sample workbook.

13.1.1. Create a Pivot Table

Pivot tables are commonly used to plot multiple data values over time. For example, the worksheet in Figure 13-1
contains the sales ranks of books collected from Amazon.com.

Figure 13-1. In source data, rows have mixed content

I'd like to compare each book's sales rank over time, but there's no way to chart that using the worksheet in Figure 13-
1 because the rows contain multiple product names. Ideally, each row should reflect a date, each column should be a
product name, and each cell should be the sales rank. You can make those changes by creating a pivot table from the
source worksheet.

To create a pivot table in Excel :

1. Select the columns to include in the pivot table (A$:D$ in Figure 13-1) and choose Data Pivot Table and
Pivot Chart Report. Excel starts the PivotTable Wizard (Figure 13-2).

2. Click Finish to create the pivot table on a new worksheet or click Next to walk through the pivot table options
using the wizard. Excel creates a new pivot table.

3. Drag ProductName from the PivotTable Field List to the column area, drag Date to the row area, and drag
SalesRank to the data items area as shown in Figure 13-3.

4. The default formula for data fields is Count, which is always 1 in this case, so right-click on the data field in the
upper-left corner of the pivot table, select Field Settings and change the formula to Sum, as shown in Figure
13-4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13-4.

5. Pivot tables do not automatically update, so if the source worksheet changes, click Refresh Data on the Pivot
Table toolbar to update the table, as shown in Figure 13-5.

Figure 13-2. Step 1: use this wizard to create the pivot table

Figure 13-3. Step 3: drag columns onto the pivot table

Figure 13-4. Step 4: change the data field formula from Count to Sum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-4. Step 4: change the data field formula from Count to Sum

Figure 13-5. Step 5: refresh table to get changes from data source

13.1.2. Apply Formatting

Pivot tables usually look pretty awful when you first create them. In the preceding example, the ProductName columns
are very wide at first (see Figure 13-3). I adjusted them manually to get a nice screenshot for Figure 13-5, but if you
click Refresh Data the columns revert to wide.

There are two ways to change pivot table formatting :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are two ways to change pivot table formatting :

Set table formatting manually.

Apply an autoformat to the table.

To set the formatting manually:

1. Select the pivot table and choose Pivot Table Table Options from the pivot table toolbar. Excel displays
Figure 13-6.

2. Clear the AutoFormat Table option and click OK to close the dialog.

3. Set column widths and cell formatting in the usual way. Those changes are now preserved when you refresh the
table.

Figure 13-6. Deselect AutoFormat Table to preserve manual formatting

The Preserve Formatting option in Figure 13-6 preserves cell formatting, such as fonts and
colors. That option is on by default, so you don't have to change it.

Even with reasonable column widths, the pivot table in Figure 13-5 isn't as readable as it could be. To autoformat the
table:

1. Select the pivot table and click the Format Report button on the PivotTable toolbar. Excel displays the
AutoFormat dialog box.

2. Choose a format and click OK to apply it to the table. Figure 13-7 shows the result.

Figure 13-7. Apply an autoformat to create a nice-looking report

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-7. Apply an autoformat to create a nice-looking report

13.1.3. Change Totals

The totals shown in Figure 13-7 are the sums of the sales rank for each book. It makes more sense to display the
average sales rank. To change the total:

1. Right-click on the total field and choose Field Settings. Excel displays the PivotTable Field dialog for the total
(similar to Figure 13-4).

2. Select Average and click OK. Excel changes the total formula from Sum to Average.

It doesn't matter which ProductName total you select in Step 1. Changing the formula for one total changes all of the
equivalent total fields in the table.

13.1.4. Chart the Data

The final step is to display the data graphically using a chart. To chart the data from a pivot table:

1. Select the pivot table and click the Chart Wizard button on the PivotTable toolbar. Excel creates a default pivot
chart.

2. Select the chart area and change the chart type to a line chart.

3. Drag the ProductName field to the chart legend. Figure 13-8 shows the result of these changes.

Figure 13-8. A pivot chart created with the PivotChart Wizard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That last step illustrates how pivot charts are different from ordinary Excel charts: you can reposition the fields to get
different views of the data. Changing the field layout on the chart also changes the layout on the original pivot table. If
you want to preserve the pivot table layout, create a new pivot chart based on the original source data.

To create an independent pivot chart:

1. Select the columns to chart on the source worksheet (Figure 13-1).

2. Choose Data Pivot Table and Pivot Chart Report; select "PivotChart report" on the wizard (Figure 13-2)
and click Next to follow the wizard steps or just click Finish to create the chart quickly. Excel creates a new
pivot table and pivot chart based on the original source data.

3. Drag fields from the Field List onto the chart, select the chart type, and format the chart as you would normally.

Each pivot chart must have an underlying pivot table. If you click Next in Step 2, Excel asks if you want to base your
new pivot table on the existing pivot table, as shown in Figure 13-9. If you choose Yes, Excel uses the same pivot cache
for both the original pivot table and the new one that will be used by the chart.

Figure 13-9. Excel asks if you want to share the pivot cache

The pivot cache is a hidden data store used to refresh each pivot table. There are several advantages to sharing the
pivot cache among pivot tables:

Refreshing a pivot table refreshes the pivot cache, so other tables that share that pivot cache are also
automatically refreshed.

The layout of each pivot table or pivot chart can be unique, even though they share the same source. That lets
you move the fields on a pivot chart without changing the layout of your pivot report.

The amount of memory required by the workbook and the size of the workbook on disk are reduced.

Don't use a shared pivot cache if you want to refresh pivot tables independently. Also, you can't use a shared pivot
cache if the pivot tables don't use the same source. Pivot tables based on worksheets must use exactly the same range
in order to share a pivot cache.

13.1.5. Change the Layout

The process of dragging fields from the Field List onto the pivot table as shown in Figure 13-3 is called setting the pivot
table layout. You can change that layout by dragging fields to different locations on the pivot table. Figure 13-10 shows
the areas to which you can drag fields.

Excel doesn't call these parts of the pivot table areas. It just refers to fields in those
locations as page fields, column fields, row fields, or data fields.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-10. Setting pivot table layout

Each of the fields in the PivotTable Field List corresponds to a column in the data source. It's difficult to discuss the
effect of dragging fields to the different areas of a pivot table; it is easier to just show you as I did earlier. However, I
left out one area: use the page area to create individual views for each item in a field.

For example, if you drag ProductName in Figure 13-7 to the page area, you get a report for a single book, as shown in
Figure 13-11.

If you drag ProductName from the legend of the pivot chart in Figure 13-8 to the page area, Excel charts each book
separately. Use page fields to summarize large amounts of datathey are kind of overkill for this example, however.

13.1.6. Connect to an External Data Source

Pivot tables based on worksheet data are handy, but it is probably more common to use pivot tables with external data
sources such as databases. To get pivot data from a database:

1. Create a new worksheet and choose Data Pivot Table and Pivot Chart Report. Excel starts the PivotTable
Wizard (Figure 13-2).

2. Select External Data Source, click Next, and then click Get Data. Excel displays the Choose Data Source dialog
(Figure 13-12).

Figure 13-11. Use page fields to view individual items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-12. Use the Query Wizard to connect to an external data source

3. Follow the Query Wizard steps to connect to the data source. The information required and steps displayed vary
based on the type of database. After you connect, the Query Wizard allows you to compose a query to retrieve
data from the database as shown in Figure 13-13.

4. Click Next and follow the Query Wizard steps to complete the query. When done, Excel displays Figure 13-14.

5. Choose Return Data to Microsoft Office Excel and click Finish. Excel returns you to the PivotTable Wizard.

6. Click Finish to create the pivot table.

The completed pivot table appears like any other pivot table. You can drag fields from the PivotTable Field List onto the
pivot areas, add formatting, and chart the data as you like. Figure 13-15 shows a completed pivot table created from
the Northwind sample SQL Server database.

Figure 13-13. Compose the query using the Query Wizard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-14. Complete the query and return the data to Excel

Unlike the pivot table in Figure 13-7, the pivot table in Figure 13-15 doesn't have an underlying worksheet. Instead, the
data is retrieved using a database query file (.dqy). Excel stores .dqy files in the C:\Documents and
Settings\user\Application Data\Microsoft\Queries folder. You can open those files in Notepad to view or modify the
query directly. Figure 13-16 shows the query for the preceding pivot table with a description of its parts.

You can compose a query using the Query Wizard, then open it in Notepad to get the
ODBC connection string or SQL query to use in code.

Figure 13-15. A pivot table based on Northwind product inventory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-16. You can edit the query directly in Notepad

13.1.7. Create OLAP Cubes

Online analytical processing (OLAP) is a data analysis layer that optimizes database queries. OLAP providers take a
snapshot of a relational database and restructure it into a data cube, which provides faster query results for
multidimensional analysis than a traditional SQL query to the original data source.

Most database vendors, including Microsoft, Oracle, IBM, and SAP, offer OLAP providers. Microsoft's OLAP provider is
called SQL Server Analysis Services, which is installed as an optional component with Microsoft SQL Server.

You can connect to one of those OLAP providers using the steps described earlier in "Connect to External Data" or you
can create an offline OLAP data cube file (.cub) from any database by choosing "Create an OLAP Cube from this query"
in Step 5 of that section (see Figure 13-14).

If you choose to create an OLAP cube, Excel starts the OLAP Cube Wizard (Figure 13-17).

Figure 13-17. Use this wizard to create OLAP cubes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an offline OLAP cube file is usually the best approach, since changes to the pivot
table in Excel often requery the OLAP data source. Using an offline cube file yields the best
performance.

There is quite a lot to learn about OLAP, and not enough space here to cover that topic. A web search on "OLAP" will
turn up some useful introductions, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2. Program Pivot Tables
You can navigate to pivot table objects from the Workbook, Chart, Worksheet, or Range objects as shown in Figure 13-18.

Figure 13-18. Navigating the pivot table objects

Although pivot tables expose a full set of objects, the most common set of programming tasks deal with this narrow set
of problems:

Create a pivot table.

Refresh a pivot table automatically when the source data changes.

Build a pivot table from an external data source.

The following sections explain how to program those tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2.1. Create Pivot Tables

There are several ways to create a pivot table in code:

Use the PivotTableWizard method to quickly create a pivot table from a Worksheet or PivotTable object.

Use the Workbook object's PivotCache collection to create a new pivot table one step at a time. This is sometimes
clearer than using the PivotTableWizard method.

Use an existing PivotCache object's CreatePivotTable method to create a pivot table that shares the cache of an
existing pivot table.

If you are programming for multiple Excel versions, be sure to test any code using the
PivotCache object on the earliest version of Excel you plan to support. A large number of that
object's members were added in 2002.

To quickly create a new pivot table in code:

1. Call the Worksheet object's CreatePivotTableWizard method.

2. Set the layout of the fields on the pivot table.

For example, the following code creates a pivot table from data on the current worksheet:

Sub QuickPivotTable()
 Dim pt As PivotTable
 ' Exit if active sheet is not a worksheet
 If TypeName(ActiveSheet) <> "Worksheet" Then Exit Sub
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ActiveSheet.PivotTableWizard(xlDatabase, ActiveSheet.UsedRange, _
 Worksheets.Add.[a3], "QuickPivot")
 ' Select the table so user can set layout.
 pt.TableRange1.Select
End Sub

Selecting the pivot table range in the last line of code displays the PivotTable Field List from which the user can drag
items onto the new pivot table.

Pivot tables are created from an underlying PivotCache object, so it is often clearer to create that object first, then use the
PivotCache object to create the pivot table. To use that approach, follow these general steps:

1. Create a new PivotCache using the PivotCache collection's Add method.

2. Create a new worksheet on which to place the pivot table.

3. Use the PivotCache object's CreatePivotTable method to create the pivot table.

4. Use the PivotTable object's AddFields method to set the pivot table layout.

5. Use the AddDataField method to add the data field and set its formula.

6. Optionally use the Charts collection's Add method to chart the pivot table.

The following code creates a new pivot table and pivot chart from the currently active worksheet:

Sub CreatePivotTable()
 Dim pc As PivotCache, pt As PivotTable, ws As Worksheet
 ' Get the active sheet.
 Set ws = ActiveSheet
 ' 1) Create a new pivot cache.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlDatabase, ws.UsedRange)
 ' 2) Create a new worksheet for the pivot table.
 Set ws = ActiveWorkbook.Worksheets.Add()
 ' 3) Create a pivot table on the worksheet.
 Set pt = pc.CreatePivotTable(ws.[a3], "BookSales")
 ' 4) Set the layout: add the column and row fields.
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
 ' 5) Add the data field and set its formula.
 pt.AddDataField pt.PivotFields(1), , xlSum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pt.AddDataField pt.PivotFields(1), , xlSum
 ' 6) Create a line chart.
 Charts.Add().ChartType = xlLine
End Sub

The preceding code sets the pivot table layout using the positions of the fields from the source data range. If the
selected worksheet contains fewer than four columns of data, an error occurs. You can use the field positions or the
field names to set the layout; however, you must know the contents of each source column. In other words, your data
source must have a fixed format. This is often the case when using an SQL query as the data source since the SELECT
statement can define the field names and field order. If you don't know the contents of the columns beforehand, you
should omit the layout step and let the user perform that task.

Create a pivot table from an existing pivot cache to generate a new view of an existing pivot table. This approach
shares the pivot cache between both pivot tables, which keeps the two tables in sync. See "Chart the Data," earlier in
this chapter, for an explanation of shared pivot caches.

To create a new pivot table from an existing pivot cache, follow the same steps as the preceding procedure but replace
Step 1 with this step:

1. Use the existing PivotTable object's PivotCache property to get the existing PivotCache object.

The following code creates a pivot table that shares the PivotCache of the pivot table on the active worksheet:

Sub CreateSharedCachePivotTable()
 Dim pc As PivotCache
 ' Exit if pivot table doesn't exist.
 If ActiveSheet.PivotTables.Count < 1 Then Exit Sub
 ' Get pivot cache.
 Set pc = ActiveSheet.PivotTables(1).PivotCache
 ' Create new pivot table.
 pc.CreatePivotTable Worksheets.Add().[a3], "SharedCachePivot"
 ' Select the pivot table.
 ActiveSheet.PivotTables(1).TableRange1.Select
End Sub

I didn't set the layout in the preceding code, since the main point of creating the new table is to use a different layout
than the prior table.

13.2.2. Refresh Pivot Tables and Charts

You can get pivot tables to refresh automatically when the workbook opens by selecting Refresh on Open in the
PivotTable Options dialog (Figure 13-6). That option is off by default because refreshing a pivot table may take a long
time, depending on the size of the pivot table data.

If the pivot table is based on an external data source, you can also select periodic updates on the PivotTable Options
dialog. That option isn't available for pivot tables based on worksheet data and, as mentioned earlier, pivot tables don't
automatically refresh when the source data changes.

To implement automatic refresh for pivot tables based on worksheets, add the following code to the workbook's class
module:

' ThisWorkbook class
Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)
 Dim pc As PivotCache
 ' Get each of the pivot caches.
 For Each pc In ThisWorkbook.PivotCaches
 ' If cache is based on a worksheet.
 If pc.SourceType = xlDatabase Then
 ' Update the cache based on the deactivated worksheet.
 If InStr(1, pc.SourceData, Sh.Name) Then _
 pc.Refresh
 End If
 Next
End Sub

The preceding code checks whether the deactivated worksheet is the source of PivotCache objects. If it is, the code
refreshes that pivot cache, which updates any pivot tables or charts based on the cache. This approach is more efficient
than using the PivotTable object because more than one pivot table may share the same cache.

You could make the code even more efficient by checking if any source data had changed before refreshing, but the
benefit is incremental and the change adds complexity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

benefit is incremental and the change adds complexity.

13.2.3. Connect to External Data

To connect a pivot table to an external data source in code, set the PivotCache object's Connection and CommandText
properties. The PivotTableWizard method sets those properties automatically from a passed-in array argument. The
following code creates a new pivot table from a SQL Server database using PivotTableWizard:

Sub QuickDBPivotTable()
 Dim ws As Worksheet, pt As PivotTable
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ws.PivotTableWizard(xlExternal, _
 Array("SELECT Date, SalesRank, ProductName FROM Amazon"), _
 Worksheets.Add.[a1], "QuickDBPivot", , , , , , , , , , , , _
 "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Sales;Trusted_Connection=True")
 ' Set layout
 pt.AddFields "Date", "ProductName"
 pt.AddDataField pt.PivotFields("SalesRank"), , xlAverage
End Sub

If you have trouble composing the connection string, create a connection to the database using the Query Wizard; then
use the connection string that the wizard generates in the .dqy file as described earlier in this chapter in "Connect to an
External Data Source." Prefix that connection string with ODBC; as shown in the preceding code.

The TRusted_Connection=True element in the connection string tells Excel to use Windows integrated security when
connecting to the data source. That approach uses the user's network identity when connecting to the data source
rather than a database user ID and password. Integrated security requires a domain-based network, but it is a much
more secure approach than hardcoding usernames and passwords in to connection strings.

13.2.4. OLAP Data Cubes

Two pivot table objects apply only to OLAP: CubeField and CalculatedMember. In addition, many of the other pivot table
members are not available for OLAP pivot tables. Those items are noted in the following reference sections.

Finally, OLAP field names include square brackets and use dot notation to indicate hierarchyfor example, [Customers].
[Country].

The following code demonstrates how to create an OLAP pivot table from an external OLAP provider, in this case
Microsoft SQL Server Analysis Services:

Sub CreateOLAPPivotTable()
 Dim pc As PivotCache, pt As PivotTable, pf As PivotField, _
 ws As Worksheet
 ' Create a new pivot cache for database query.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Create a connection string and SQL query.
 pc.Connection = "OLEDB;Provider=MSOLAP.2;Data Source=users;" & _
 "Initial Catalog=FoodMart 2000;Client Cache Size=25;Auto Synch Period=10000"
 pc.CommandType = xlCmdCube
 pc.CommandText = Array("Sales")
 pc.MaintainConnection = False
 ' Create a new worksheet for the pivot table.
 Set ws = ActiveWorkbook.Worksheets.Add()
 ' Create a pivot table.
 Set pt = ws.PivotTables.Add(pc, ws.[a3], "FoodMart Sales", False)
 ' Set the layout: add the column and row fields.
 pt.CubeFields("[Customers]").Orientation = xlRowField
 pt.CubeFields("[Product]").Orientation = xlColumnField
 ' Add the data field.
 pt.CubeFields("[Measures].[Unit Sales]").Orientation = xlDataField
 pt.CubeFields("[Measures].[Sales Average]").Orientation = xlDataField
 ' Update the pivot table
 pc.Refresh
 ' Rename the sheet to match the table
 On Error Resume Next
 Worksheets(pt.name).Delete
 On Error GoTo 0
 ws.name = pt.name
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3. PivotTable and PivotTables Members
Use the PivotTables collection to get existing pivot tables. Use the Worksheet object's PivotTables property to get a reference
to this collection. Use the PivotTable object to set the pivot table layout and options. The PivotTables collection and PivotTable
object have the following members . Key members (shown in bold) are covered in the following reference section:

Add2 AddDataField AddFields

Application2 CacheIndex CalculatedFields

CalculatedMembers ColumnFields ColumnGrand

ColumnRange Count1 CreateCubeFile

Creator2 CubeFields DataBodyRange

DataFields DataLabelRange DataPivotField

DisplayEmptyColumn DisplayEmptyRow DisplayErrorString

DisplayImmediateItems DisplayNullString EnableDataValueEditing

EnableDrilldown EnableFieldDialog EnableFieldList

EnableWizard ErrorString Format

GetData GetPivotData GrandTotalName

HasAutoFormat HiddenFields InnerDetail

Item1 ListFormulas ManualUpdate

MDX MergeLabels Name

NullString PageFieldOrder PageFields

PageFieldStyle PageFieldWrapCount PageRange

PageRangeCells Parent2 PivotCache

PivotFields PivotFormulas PivotSelect

PivotSelection PivotSelectionStandard PivotTableWizard

PreserveFormatting PrintTitles RefreshDate

RefreshName RefreshTable RepeatItemsOnEachPrintedPage

RowFields RowGrand RowRange

SaveData SelectionMode ShowCellBackgroundFromOLAP

ShowPageMultipleItemLabel ShowPages SmallGrid

SourceData SubtotalHiddenPageItems TableRange1

TableRange2 TableStyle Tag

TotalsAnnotation Update VacatedStyle

Value Version ViewCalculatedMembers

VisibleFields VisualTotals
1 Collection only

2 Object and collection

pivottables.Add(PivotCache, TableDestination, [TableName],
[ReadData], [DefaultVersion])

Creates a new pivot table from an existing pivot cache and returns the created PivotTable object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

PivotCache The PivotCache object to use as the data source for the pivot table.

TableDestination The Range object indicating the location of the upper-left corner for the pivot table.

TableName A name to assign to the pivot table. Default is PivotTablen.

ReadData For database queries, True reads all of the fields from the data source; False delays retrieving the data
until the pivot cache is refreshed. Default is True.

DefaultVersion The Excel version assigned to pivot table. Can be xlPivotTableVersion10, xlPivotTableVersion2000, or
xlPivotTableVersionCurrent.

This method is equivalent to the PivotCache object's CreatePivotTable method. The following code creates a pivot cache from
a database query and then uses that pivot cache to create a pivot table:

Sub CreateSalesThisWeekPT()
 Dim pc As PivotCache, pt As PivotTable, pf As PivotField, _
 ws As Worksheet
 ' Create a new pivot cache for database query.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Create a connection string and SQL query.
 pc.Connection = "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=jeff;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Sales;Trusted_Connection=True"
 pc.CommandType = xlCmdSql
 pc.CommandText = "SELECT SalesRank, ProductName, Date FROM Amazon " & _
 "WHERE Date > GetDate() - 7"
 pc.MaintainConnection = False
 ' Create a new worksheet for the pivot table.
 Set ws = ActiveWorkbook.Worksheets.Add()
 ' Create a pivot table.
 Set pt = ws.PivotTables.Add(pc, ws.[a3], "SalesThisWeek", False)
 ' Set the layout: add the column and row fields.
 pt.AddFields "Date", "ProductName"
 ' Add the data field and set its formula.
 Set pf = pt.AddDataField(pt.PivotFields("SalesRank"), , xlAverage)
 ' Update the pivot table
 pc.Refresh
End Sub

pivottable.AddDataField(Field, [Caption], [Function])

Adds a field to the data area of a pivot table.

Argument Settings

Field The PivotField to add to the data area.

Caption A name to display for the field.

Function
An xlConsolidationFunction constant indicating the type of calculation to perform on the data field items. Can
be one of these settings: xlAverage, xlCountNums, xlMin, xlStDev, xlSum, xlVar, xlCount, xlMax, xlProduct, xlStDevP, or
xlVarP.

See the preceding topic for an example of how to add a data field.

pivottable.AddFields([RowFields], [ColumnFields], [PageFields],
[AddToTable])

Adds fields to the row, column, or page areas of a pivot table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adds fields to the row, column, or page areas of a pivot table.

Argument Settings

RowFields The PivotField objects to add to the row area.

ColumnFields The PivotField objects to add to the column area.

PageFields The PivotField objects to add to the page area.

AddToTable True appends the fields to any existing fields in the table; False replaces any existing fields in the table
with the new ones.

To add multiple fields to an area, use an array of PivotField objects for the RowFields, ColumnFields, or PageFields arguments.

pivottable.CacheIndex [= setting]

Sets or returns the index of the pivot cache used by the pivot table. Changing the CacheIndex assigns a different pivot
cache to the pivot table, changing the fields and data included in the table.

pivottable.CalculatedFields()

Returns a collection of PivotField objects that are calculated from other fields.

pivottable.CalculatedMembers

For OLAP pivot tables, returns a collection of CalculatedMember objects containing all the calculated members and
calculated measures in the OLAP data cube.

pivottable.ColumnFields

Returns a collection of PivotField objects that are in the column area of the pivot table.

pivottable.ColumnGrand [= setting]

True displays grand totals for column fields; False omits grand totals. Default is true. The following code turns column
grand totals on and off:

Sub ToggleColumnTotals()
 ' Ignore error if sheet doesn't have a pivot table.
 On Error Resume Next
 ' Turn totals on/off.
 ActiveSheet.PivotTables(1).ColumnGrand = _
 Not ActiveSheet.PivotTables(1).ColumnGrand
 On Error GoTo 0
End Sub

pivottable.ColumnRange

Returns the Range object for the column area of the pivot table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Range object for the column area of the pivot table.

pivottable.CreateCubeFile(File, [Measures], [Levels], [Members],
[Properties])

For OLAP pivot tables, saves the table as a view of the OLAP data cube.

Argument Settings

File The name of the file to create.

Measures An array of names of the OLAP measures to include in the file.

Levels An array of names of the OLAP level names to include in the file.

Members An array of the names of top-level members in the dimension to include in the file.

Properties True includes member property settings in the file; False omits properties. Default is True.

The following code saves an OLAP pivot table as a local cube file:

Sub SaveOLAPCube()
 Dim pt As PivotTable
 ' Run CreateOLAPPivotTable to create this pivot table.
 Set pt = Worksheets("FoodMart Sales").PivotTables(1)
 ' Save table as a local cube file.
 pt.CreateCubeFile ThisWorkbook.Path & "\" & pt.Name & ".cub"
End Sub

pivottable.CubeFields

For OLAP pivot tables, returns a collection of CubeField objects from the pivot table.

pivottable.DataBodyRange

Returns the Range object for the data area of the pivot table.

pivottable.DataFields

Returns a collection of PivotField objects that are in the data area of the pivot table.

pivottable.DataLabelRange

Returns the Range object for the cells containing the labels for the data fields on the pivot table.

pivottable.DataPivotField

Returns the PivotField object that represents all the fields in the pivot table's data area. This property is similar to the
DataFields property, only DataFields returns a collection and DataPivotField combines multiple fields into a single PivotField
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object.

pivottable.DisplayEmptyColumn [= setting]

For OLAP pivot tables, True displays fields containing no data and False hides fields with no data. For other types of
pivot tables, causes an error.

pivottable.DisplayEmptyRow [= setting]

For OLAP pivot tables, True displays records containing no data and False hides records with no data. For other types of
pivot tables, causes an error.

pivottable.DisplayErrorString [= setting]

True displays a custom error when pivot table cells contain errors; False displays the standard error. Default is False.

Set this property to True and ErrorString to "" to turn off error messages, such as #DIV/0!, in the data area of a pivot table.
The following code switches error messages on and off for a pivot table on the active worksheet:

Sub ToggleDataFieldErrors()
 Dim pt As PivotTable
 ' Run CreateOLAPPivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Turn error messages on/off.
 pt.DisplayErrorString = Not pt.DisplayErrorString
 pt.ErrorString = ""
End Sub

pivottable.DisplayImmediateItems [= setting]

True displays row and column fields even when the data area of a pivot table is empty; False hides row and column
fields when the data area is empty. Default is True.

pivottable.DisplayNullString [= setting]

True displays the value of the NullString property for data field values of ""; False displays 0 for null strings. Default is
True.

The NullString property is empty by default, so the default behavior is to display nothing for null strings.

pivottable.EnableDataValueEditing [= setting]

True allows users to change values in the data area of a pivot table; False prohibits changes and displays an alert if the
user attempts to change a value. Default is False.

pivottable.EnableDrilldown [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True allows users to get additional detail about a data field item from the data source by clicking the Show Detail
button; False disables getting additional detail. Default is True. For OLAP pivot tables, this property can't be set to
False.

pivottable.EnableFieldDialog [= setting]

True displays the PivotTable Field dialog box (see Figure 13-4) when the user double-clicks a field label; False does not
display the dialog. Default is true.

pivottable.EnableFieldList [= setting]

True displays the PivotTable Field List (see Figure 13-10) when the pivot table is selected; False hides the PivotTable
Field List.

pivottable.EnableWizard [= setting]

True allows users to create pivot tables using the PivotTable Wizard (see Figure 13-2); False disables the wizard.
Default is True.

pivottable.ErrorString [= setting]

Sets or returns a custom error string to display when calculation errors occur in data field items. This string replaces the
built-in Excel error message if DisplayErrorString is set to True.

pivottable.Format(Format)

Applies an autoformat to the pivot table.

Argument Settings

Format An xlPivotFormatType constant indicating the autoformat to apply. Can be one of these settings: xlPTNone,
xlPTClassic, xlReport1 to xlReport10, xlTable1 to xlTable10.

The following code applies an autoformat to a pivot table on the active worksheet:

Sub ApplyAutoFormat()
 Dim pt As PivotTable
 ' Run CreateOLAPPivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Apply format
 pt.Format xlReport1
End Sub

pivottable.GetData(Name)

Retrieves a value from the pivot table's data area.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Name The column and row names that describe the data item to return

The following code returns the average sales rank from the pivot table created earlier (see Figure 13-7 for an
illustration of the pivot table):

Sub GetPivotTableData1()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Display data in Immediate window.
 Debug.Print pt.GetData(" 'Essential SharePoint' 'Average of SalesRank'")
End Sub

pivottable.GetPivotData([DataField], [Field1], [Item1], [Fieldn],
[Itemn])

Returns the Range object containing the items described by the method arguments.

Argument Settings

DataField The name of the data field within which to get the range

Field1 The name of the page, row, or column field within which to get the range

Item1 The value to look up within the page, column, or row specified by Field1

Fieldn, Itemn Additional field and value pairs that define the data value range to retrieve

If you omit all arguments, GetPivotData returns the Range object for the cell containing the grand total for the pivot table.
If GetPivotData can't find the item using the criteria in the arguments, an error occurs.

The following code gets a value from the pivot table created earlier (see Figure 13-7 for an illustration of the pivot
table):

Sub GetPivotTableData2()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Display data in Immediate window.
 Debug.Print pt.GetPivotData("SalesRank", "ProductName", _
 "Essential SharePoint", _
 "Date", #11/3/2005 9:02:56 AM#).Value
End Sub

pivottable.GrandTotalName [= setting]

Sets or returns the label displayed for the pivot table's grand total. Default is "Grand Total".

pivottable.HasAutoFormat [= setting]

True automatically adjusts column widths when the pivot table is refreshed; False preserves column widths when the
table is refreshed. Setting this property to False also removes any autoformat that was applied to the table.

pivottable.HiddenFields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pivottable.HiddenFields

Returns a collection of PivotField objects that are in the PivotTable Field List but do not appear on the pivot table.

pivottable.InnerDetail [= setting]

Sets or returns the name of the field to show when the user selects a pivot data item and then clicks Show Detail.
Cannot be set for OLAP pivot tables.

pivottable.ListFormulas()

Creates a new worksheet containing a summary of the formulas used for calculated fields and calculated items on a
pivot table.

pivottable.ManualUpdate [= setting]

True causes RefreshTable to clear data from the pivot table, rather than refreshing it; False allows RefreshTable to work
normally. Default is False. This property is reset to False automatically after the calling procedure ends.

pivottable.MDX

For OLAP pivot tables, returns the Multidimensional Expression (MDX) query used to populate the data cube used by the
pivot table. MDX is a SQL-like query language.

pivottable.MergeLabels [= setting]

True merges the pivot table's outer row item, column items, subtotal, and grand total labels with their rows or columns;
False uses unmerged cells for the labels. Default is False. Use the following code to see the effect of merged versus
unmerged labels:

Sub ToggleMergedLabels()
 Dim pt As PivotTable
 ' Active worksheet must contain a pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Switch merged labels on/off.
 pt.MergeLabels = Not pt.MergeLabels
End Sub

pivottable.NullString [= setting]

Sets or returns the value to display for data field values of "" (null value). Default is "".

pivottable.PageFieldOrder [= xlOrder]

Sets or returns the order in which page fields are added to the page area of the pivot table . Can be xlDownThenOver
(default) or xlOverThenDown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(default) or xlOverThenDown.

pivottable.PageFields

Returns a collection of PivotField objects that are in the page area of the pivot table.

pivottable.PageFieldWrapCount [= setting]

Sets or returns the number of page fields per column in the page area of the pivot table.

pivottable.PageRange

Returns the Range object for the page area of the pivot table.

pivottable.PageRangeCells

Returns the Range object for the page area of the pivot table.

pivottable.PivotCache()

Returns the PivotCache object used by the pivot table.

pivottable.PivotFields

Returns a collection of PivotField objects containing all the pivot fields in the pivot table.

pivottable.PivotFormulas

Returns a collection of PivotFormula objects containing all of the formulas used in the pivot table.

pivottable.PivotSelect(Name, [Mode], [UseStandardName])

Selects part of a pivot table.

Argument Settings

Name The name of the field or item to select.

Mode An xlPTSelectionMode constant indicating the item within Name to select. Can be xlBlanks, xlButton,
xlDataAndLabel (default), xlDataOnly, xlFirstRow, xlLabelOnly, or xlOrigin.

UseStandardName True uses U.S. English formats for numbers, currency, dates, and times within the Name argument;
False uses localized formats.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code selects the rows for Essential SharePoint from the pivot table created earlier (see Figure 13-7 for an
illustration of the pivot table):

Sub SelectPivotItem()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Select one item.
 pt.PivotSelect "ProductName[Essential SharePoint]"
 ' This line is equivalent to preceding line:
 'pt.PivotSelection = "ProductName[Essential SharePoint]"
End Sub

pivottable.PivotSelection [= setting]

Sets or returns the selected item in the pivot table. Setting this property is equivalent to calling PivotSelect without
optional arguments.

pivottable.PivotSelectionStandard [= setting]

Same as PivotSelection, only uses U.S. English formats for numbers, currency, dates, and times.

pivottable.PivotTableWizard([SourceType], [SourceData],
[TableDestination], [TableName], [RowGrand], [ColumnGrand],
[SaveData], [HasAutoFormat], [AutoPage], [Reserved],
[BackgroundQuery], [OptimizeCache], [PageFieldOrder],
[PageFieldWrapCount], [ReadData], [Connection])

Quickly creates a pivot table and returns a reference to the created PivotTable object.

Argument Settings

SourceType An xlPivotTableSourceType constant indicating the source of the data to use in the pivot table. Can be
xlConsolidation, xlDatabase, xlExternal, or xlPivotTable.

SourceData
If SourceType is xlConsolidation, xlDatabase, or xlPivotTable, a Range object containing the source for the pivot
table. If SourceType is xlExternal, an array containing the SQL query string used to retrieve the data for
the pivot table.

TableDestination The Range object indicating the location of the upper-left corner for the new pivot table.

TableName A name to assign to the pivot table. Default is PivotTablen.

RowGrand True displays grand totals for rows; False omits row totals. Default is True.

ColumnGrand True displays grand totals for columns; False omits column totals. Default is True.

SaveData If SourceType is xlExternal, TRue reads all of the fields from the data source and False delays retrieving
the data until the pivot cache is refreshed. Default is True.

HasAutoFormat True automatically adjusts column widths when the pivot table is refreshed; False preserves column
widths when the table is refreshed. Default is True.

AutoPage If SourceType is xlConsolidation, true automatically creates a page field for the consolidation.

Reserved Do not use this argument.

BackgroundQuery If SourceType is xlExternal, TRue queries the data source asynchronously when refreshing the pivot
table; False performs synchronous queries. Default is False.

OptimizeCache True optimizes the pivot cache; False does not optimize. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True optimizes the pivot cache; False does not optimize. Default is False.

PageFieldOrder The order in which page fields are added to the page area of the pivot table. Can be xlDownThenOver
(default) or xlOverThenDown.

PageFieldWrapCount The number of page fields per column in the page area of the pivot table.

ReadData If SourceType is xlExternal, true reads all of the fields from the data source; False delays retrieving the
data until the pivot cache is refreshed. Default is True.

Connection If SourceType is xlExternal, the ODBC connection string used to connect to the external data source.

Use SourceType xlDatabase if the pivot table's data source is a worksheet. The following code creates a quick pivot table
from the active worksheet:

Sub QuickPivotTable()
 Dim ws As Worksheet, pt As PivotTable
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ws.PivotTableWizard(xlDatabase, ws.UsedRange, _
 Worksheets.Add.[a1], "Quick Pivot")
 ' Set layout
 pt.AddDataField pt.PivotFields(1), , xlAverage
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
End Sub

Use SourceType xlExternal if the pivot table's data source is a database. The following code creates a quick pivot table using
a query to a Microsoft SQL Server database:

Sub QuickDBPivotTable()
 Dim ws As Worksheet, pt As PivotTable
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ws.PivotTableWizard(xlExternal, Array("SELECT * FROM Amazon"), _
 Worksheets.Add.[a1], "QuickDBPivot", , , , , , , , , , , , _
 "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Sales;Trusted_Connection=True")
 ' Set layout
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
 pt.AddDataField pt.PivotFields(1), , xlAverage
End Sub

PivotTableWizard doesn't display the PivotTable Wizard dialog. To do so, use this line of code:

Application.Dialogs(xlDialogPivotTableWizard).Show

pivottable.PreserveFormatting [= setting]

True preserves cell formatting when the pivot table is refreshed; False removes cell formatting when the pivot table is
refreshed. Default is True.

pivottable.PrintTitles [= setting]

True uses print titles from the pivot table; False uses print titles from the worksheet. Default is False. The following
code demonstrates the effect of PrintTitles by using print preview:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code demonstrates the effect of PrintTitles by using print preview:

Sub PivotPrintPreview()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Change property settings.
 pt.PrintTitles = True
 pt.RepeatItemsOnEachPrintedPage = True
 ' Print preview
 pt.Parent.PrintOut , , , True
End Sub

pivottable.RefreshDate

Returns the date and time when the pivot table was last refreshed.

pivottable.RefreshName

Returns the name of the user who last refreshed the pivot table.

pivottable.RefreshTable()

Refreshes the pivot table's PivotCache object and updates the table.

pivottable.RepeatItemsOnEachPrintedPage [= setting]

True repeats item labels on each printed page; False does not repeat labels. Default is True.

pivottable.RowFields

Returns a collection of PivotField objects that are in the row area of the pivot table.

pivottable.RowGrand [= setting]

True displays grand totals for row fields; False omits grand totals. Default is True.

pivottable.RowRange

Returns the Range object for the row area of the pivot table.

pivottable.SaveData [= setting]

True saves the pivot cache data with the workbook; False omits the data when saving. For OLAP pivot tables, this
property can't be set to True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property can't be set to True.

pivottable.SelectionMode [= xlPTSelectionMode]

Sets or returns the pivot table's structured selection mode. Can be one of these settings:

xlBlanks xlButton

xlDataAndLabel (default) xlDataOnly

xlFirstRow xlLabelOnly

xlOrigin

pivottable.ShowCellBackgroundFromOLAP [= setting]

For OLAP pivot tables, True sets cell BackColor properties to match the formatting specified by the OLAP MDX query and
False omits formatting. Default is False.

pivottable.ShowPageMultipleItemLabel [= setting]

True displays "(Multiple Items)" when more than one item is selected within a page field; False displays the first item
selected. Default is True.

pivottable.ShowPages([PageField])

Creates a new pivot table for each item in the page field. Each pivot table appears on a new worksheet.

Argument Settings

PageField The name of the page field to split into separate pivot tables

This method is not available for OLAP pivot tables.

pivottable.SourceData

Returns the data source for the pivot table. The information returned depends on the SourceType set when the pivot table
was created, as described in the following table.

SourceType SourceData returns

xlDatabase The address of the source range.

xlExternal An array containing the database connection string and SQL query string divided into 255-character
elements.

xlConsolidation A two-dimensional array. Each row consists of a reference and its associated page field items.

xlPivotTable One of the preceding kinds of information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can find a pivot table's SourceType by checking the SourceType property of the underlying PivotCache object.

pivottable.SubtotalHiddenPageItems [= setting]

True includes hidden page fields in totals; False omits them. Default is False.

pivottable.TableRange1

Returns a Range object containing the pivot table minus the page area.

pivottable.TableRange2

Returns a Range object containing the pivot table including the page area.

pivottable.TableStyle [= setting]

Sets or returns the style name to apply to the pivot table. Choose Format Style to see a list of available styles in
Excel.

pivottable.TotalsAnnotation [= setting]

For OLAP pivot tables, True displays an asterisk on totals, indicating that hidden items are included in the total; False
omits the asterisk. Default is True.

pivottable.Update()

Refreshes the pivot table's PivotCache object and updates the table.

pivottable.VacatedStyle [= setting]

Sets or returns the style name to apply to pivot table cells in that are cleared when the pivot table is refreshed. Choose
Format Style to see a list of available styles in Excel.

pivottable.Value [= setting]

Sets or returns the name of the pivot table.

pivottable.Version

Returns the Excel version used to create the pivot table. Can be xlPivotTableVersion10, xlPivotTableVersion2000, or
xlPivotTableVersionCurrent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlPivotTableVersionCurrent.

pivottable.ViewCalculatedMembers [= setting]

For OLAP pivot tables, True displays calculated members and False hides calculated members. Default is True.

pivottable.VisibleFields

Returns the collection of PivotField objects that are included in the page, column, row, or data areas of the pivot table.

pivottable.VisualTotals [= setting]

For OLAP pivot tables, True recalculates totals when items are hidden on the pivot table and False does not recalculate
totals when items are hidden. Default is False, which includes hidden items in the totals.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4. PivotCache and PivotCaches Members
Use the PivotCache collection to create new pivot caches. Use the Workbook object's PivotCaches property to get a reference
to this collection. Use the PivotCache object to create new pivot tables from the cache, to set the data source, and to
refresh the cache. The PivotCaches collection and PivotCache object have the following members. Key members (shown in
bold) are covered in the following reference section:

Add1 ADOConnection

Application2 BackgroundQuery

CommandText CommandType

Connection Count1

CreatePivotTable Creator2

EnableRefresh Index

IsConnected Item1

LocalConnection MaintainConnection

MakeConnection MemoryUsed

MissingItemsLimit OLAP

OptimizeCache Parent2

QueryType RecordCount

Recordset Refresh

RefreshDate RefreshName

RefreshOnFileOpen RefreshPeriod

ResetTimer RobustConnect

SaveAsODC SavePassword

SourceConnectionFile SourceData

SourceDataFile SourceType

Sql UseLocalConnection

1 Collection only

2 Object and collection

pivotcaches.Add(SourceType, [SourceData])

Creates a new pivot cache and returns a PivotCache object.

Argument Settings

SourceType An xlPivotTableSourceType constant indicating the source of the data to use in the pivot table. Can be
xlConsolidation, xlDatabase, xlExternal, or xlPivotTable.

SourceData If SourceType is xlConsolidation, xlDatabase, or xlPivotTable, a Range object containing the source for the pivot
table. If SourceType is xlExternal, use the Connection and CommandText property to set the data source.

To create a pivot cache from a worksheet, use SourceType xlDatabase as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a pivot cache from a worksheet, use SourceType xlDatabase as shown here:

Sub CreateWSPivotTable()
 Dim pc As PivotCache, pt As PivotTable, rng As Range
 ' Create a new pivot cache (assumes active sheet is a worksheet).
 Set pc = ActiveWorkbook.PivotCaches.Add(xlDatabase, ActiveSheet.UsedRange)
 ' Create a pivot table.
 Set pt = pc.CreatePivotTable(Worksheets.Add().[a3])
 ' Set the layout: add the column and row fields.
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
 ' Add the data field and set its formula.
 pt.AddDataField pt.PivotFields(1), , xlSum
End Sub

To create a pivot cache from a database query, use SourceType xlExternal and then set the Connection and CommandText
properties. The following code creates a pivot cache and pivot table from an SQL query to the Northwind SQL Server
database:

Sub CreateNwindPivotCache()
 Dim pc As PivotCache, pt As PivotTable, rng As Range
 ' Create a new pivot cache.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Set database connection.
 pc.Connection = "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Northwind;Trusted_Connection=True"
 ' Create SQL query.
 pc.CommandText = "SELECT CategoryID, ProductName, UnitsInStock, " & _
 "UnitPrice FROM Products"
 ' Create a pivot table.
 Set pt = pc.CreatePivotTable(Worksheets.Add().[a3])
 ' Set the layout: add the column and row fields.
 pt.AddFields "ProductName", , "CategoryID"
 ' Add the data field and set its formula.
 pt.AddDataField pt.PivotFields("UnitsInStock"), , xlSum
End Sub

pivotcache.ADOConnection

For pivot caches based on ADO database connections, returns the ADO Connection object used by the pivot cache.

pivotcache.BackgroundQuery [= setting]

For pivot caches based on database queries, True refreshes the cache asynchronously and False refreshes
synchronously. This property is always False for other types of pivot caches, including OLAP caches.

pivotcache.CommandText [= setting]

For pivot caches based on database queries, sets or returns the command used to generate the cache. The form of this
command depends on the CommandType property.

pivotcache.CommandType [= xlCmdType]

For pivot caches based on database queries, sets or returns the type of command used in CommandText as described in
the following table.

Setting CommandText is

xlCmdCube The name of the OLAP cube

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The name of the OLAP cube

xlCmdDefault A query string defined by the OLE DB provider

xlCmdSql A SQL SELECT command

xlCmdTable A table name from the data source

You can set CommandType only if QueryType is xlOLEDBQuery.

pivotcache.Connection [= setting]

For pivot caches based on database queries, sets or returns the connection string used to connect to the data source.

pivotcache.CreatePivotTable(TableDestination, [TableName],
[ReadData], [DefaultVersion])

Creates a pivot table from the pivot cache and returns the created PivotTable object.

Argument Settings

TableDestination The Range object indicating the location of the upper-left corner for the new pivot table.

TableName A name to assign to the pivot table. Default is PivotTablen.

ReadData If SourceType is xlExternal, true reads all of the fields from the data source and False delays retrieving the
data until the pivot cache is refreshed. Default is True.

DefaultVersion The Excel version assigned to pivot table. Can be xlPivotTableVersion10, xlPivotTableVersion2000, or
xlPivotTableVersionCurrent.

The following code creates a new pivot table from an existing pivot cache:

Sub CreatePivotTableFromExistingCache()
 Dim pc As PivotCache, pt As PivotTable
 ' Get an existing pivot cache.
 Set pc = ActiveWorkbook.PivotCaches(1)
 ' Create a new pivot table (shares cache).
 Set pt = pc.CreatePivotTable(Worksheets.Add().[a3], "NewPivotTable")
 ' Select the pivot table.
 pt.TableRange2.Select
End Sub

pivotcache.EnableRefresh [= setting]

True allows the user to refresh the pivot cache; False disables refreshes.

pivotcache.IsConnected

For pivot caches based on OLE DB database queries, returns True if the cache currently holds an open database
connection and False if the database connection is closed.

pivotcache.LocalConnection [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For OLAP pivot caches, True uses a local cube file and False uses a remote OLAP provider. Default is False. The
following code saves an OLAP pivot table as a local cube file, then uses that data source offline:

Sub UseOLAPOffline()
 Dim pc As PivotCache, pt As PivotTable, fname As String
 ' Run earlier example to create pivot table.
 CreateOLAPPivotTable
 ' Get pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Get the pivot cache.
 Set pc = pt.PivotCache
 ' Save local cube file.
 fname = ActiveWorkbook.Path & "\" & pt.Name & ".cub"
 pt.CreateCubeFile fname
 ' Take cache offline.
 pc.LocalConnection = "OLEDB;Provider=MSOLAP;Data Source=" & fname
 pc.UseLocalConnection = True
End Sub

pivotcache.MaintainConnection [= setting]

For pivot caches based on OLE DB database queries, True keeps the database connection open between refreshes and
False closes the connection after refreshing.

pivotcache.MakeConnection()

For pivot caches based on OLE DB database queries, opens database connection before refreshing.

pivotcache.MemoryUsed

Returns the amount of memory used by the pivot cache in bytes. The following code displays the total memory used by
pivot caches in the Immediate window:

Sub CountCache()
 Dim pc As PivotCache, mem As Long
 For Each pc In ActiveWorkbook.PivotCaches
 mem = mem + pc.MemoryUsed
 Next
 Debug.Print "#PivotCaches", "Mem Used"
 Debug.Print ActiveWorkbook.PivotCaches.Count, mem \ 1024 & "K"
End Sub

pivotcache.MissingItemsLimit [= setting]

Sets or returns the maximum number of items per field that are retained even when they have no data in the cache.
Must be between -1 (default) and 32,500. This property can't be set for OLAP pivot caches.

pivotcache.OLAP

Returns True if the pivot cache is from an OLAP data source, otherwise returns False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pivotcache.OptimizeCache [= setting]

For pivot caches based on database queries to non-OLE DB data sources, True optimizes the pivot cache when the
initial query occurs and False does not optimize the query. Default is False. Optimizing degrades initial cache creation
but improves subsequent refreshes.

pivotcache.QueryType

For pivot caches based on database queries, returns the type of query used to create the pivot cache. Can be one of
these xlQueryType constants:

xlOLEDBQuery
xlADORecordset
xlODBCQuery

pivotcache.RecordCount

Returns the number of records in the pivot cache.

pivotcache.Recordset [= setting]

Sets or returns the ADO RecordSet object used to create the pivot cache. The following code demonstrates how to use an
ADO recordset created from a SQL Server database query to create a pivot cache and pivot table:

' Requires reference to Microsoft ActiveX Data Object library
Sub CreateADOPivotCache3()
 Dim pc As PivotCache, pt As PivotTable
 Dim cnn As New ADODB.Connection, cmd As New ADODB.Command, _
 rs As New ADODB.Recordset
 ' Create ADO recordset.
 cnn.ConnectionString = "Provider=sqloledb;data source=USERS;" & _
 "initial catalog=Northwind;Integrated Security=SSPI;" & _
 "persist security info=True;packet size=4096;Trusted_Connection=True"
 cmd.CommandText = "SELECT CategoryName, ProductName, UnitsInStock, " & _
 "UnitPrice FROM Products, Categories"
 cnn.Open
 Set cmd.ActiveConnection = cnn
 Set rs = cmd.Execute
 ' Create a new pivot cache.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Use the ADO recordset as the data source.
 Set pc.Recordset = rs
 ' Create a pivot table based on the new pivot cache.
 Set pt = pc.CreatePivotTable(Worksheets.Add().[A3])
 ' Set the layout: add the column and row fields.
 pt.AddFields "ProductName", , "CategoryName"
 ' Add the data field and set its formula.
 pt.AddDataField pt.PivotFields("UnitsInStock"), , xlSum
 ' Close the recordset and database connection.
 rs.Close
 cnn.Close
End Sub

pivotcache.Refresh()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refreshes the pivot cache data from the data source.

pivotcache.RefreshOnFileOpen [= setting]

True automatically refreshes the pivot cache when the workbook is opened; False does not refresh on open. Default is
False.

pivotcache.RefreshPeriod [= setting]

For pivot caches based on database queries other than OLAP data sources, sets or returns the number of minutes
between automatic refreshes of the pivot cache. Default is 0, which turns automatic refreshes off.

pivotcache.ResetTimer()

Resets the timer used for the RefreshPeriod property.

pivotcache.RobustConnect [= xlRobustConnect]

For pivot caches based on database queries, sets or returns how the pivot cache reconnects to its data source when the
cache is refreshed. Can be one of the settings described in the following table:

Setting Use this property to connect to data source

xlAlways SourceConnectionFile or SourceDataFile

xlAsRequired Connection

xlNever Does not reconnect

pivotcache.SaveAsODC(ODCFileName, [Description],
[Keywords])

For pivot caches based on ODBC database queries, saves the connection and query information as a Microsoft Office
Data Connection (.odc) file.

Argument Settings

ODCFileName The name of the file to create

Description A description included in the connection file

Keywords Keywords included in the connection file

Excel saves .odc files to C:\Documents and Settings\user\My Documents\My Data Sourcesby default.

pivotcache.SavePassword [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For pivot caches based on ODBC database queries, True saves password information in the .odc file when SaveAsODC is
called and False omits the password. Default is False.

pivotcache.SourceConnectionFile [= setting]

For pivot caches based on ODBC database queries, the Microsoft Office Data Connection (.odc) file used to establish the
database connection.

pivotcache.SourceDataFile

For pivot caches based on file-based databases, such as Access, returns the filename of the data source.

pivotcache.SourceType

Returns an xlPivotTableSourceType constant indicating the source of the cache data. Can be one of these settings:

xlConsolidation
xlDatabase
xlExternal
xlPivotTable
xlScenario

pivotcache.Sql [= setting]

For pivot caches based on database queries, returns the SQL query used to create the cache.

pivotcache.UseLocalConnection [= setting]

True uses the LocalConnection property to connect to the data source; False uses the Connection property to connect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5. PivotField and PivotFields Members
Use the PivotFields collection to get fields from a pivot table. Use the PivotTable object's PivotFields, PageFields, ColumnFields,
RowFields, DataFields, or HiddenFields properties to get a reference to this collection. Use the PivotField object to set the layout
of a pivot table, to filter and sort items, and to get the items in a field. The PivotFields collection and PivotField object have
the following members . Key members (shown in bold) are covered in the following reference section:

AddPageItem Application2 AutoShow

AutoShowCount AutoShowField AutoShowRange

AutoShowType AutoSort AutoSortField

AutoSortOrder BaseField BaseItem

CalculatedItems Calculation Caption

ChildField ChildItems Count1

Creator2 CubeField CurrentPage

CurrentPageList CurrentPageName DatabaseSort

DataRange DataType Delete

DragToColumn DragToData DragToHide

DragToPage DragToRow DrilledDown

EnableItemSelection Formula Function

GroupLevel HiddenItems HiddenItemsList

IsCalculated IsMemberProperty Item1

LabelRange LayoutBlankLine LayoutForm

LayoutPageBreak LayoutSubtotalLocation MemoryUsed

Name NumberFormat Orientation

Parent2 ParentField ParentItems

PivotItems Position PropertyOrder

PropertyParentField ServerBased ShowAllItems

SourceName StandardFormula SubtotalName

Subtotals TotalLevels Value

VisibleItems
1 Collection only

2 Object and collection

pivotfield.AddPageItem(Item, [ClearList])

For OLAP pivot tables, selects an item in a page field.

Argument Settings

Item The name of the pivot item to select.

ClearList True deselects all items from the page field before selecting the new one; False retains the current list of
items.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To be able to select individual items in an OLAP page field, you must first select Select Multiple Items as shown in
Figure 13-19. Use the CubeField object's EnableMultiplePageItems property to select or deselect this option in code.

Figure 13-19. Enabling multiselect in OLAP page fields

The following code selects a single item from the FoodMart Sales OLAP pivot table created in an earlier example:

Sub ViewSingleStore()
 Dim pt As PivotTable, cf As CubeField
 ' Uncomment this line to create OLAP pivot table.
 'CreateOLAPPivotTable
 ' Get OLAP pivot table.
 Set pt = Worksheets("FoodMart Sales").PivotTables(1)
 ' Get cube field
 Set cf = pt.CubeFields(pt.PageFields(1).Name)
 ' Enable multiselect.
 cf.EnableMultiplePageItems = True
 ' Select one store.
 pt.PageFields(1).AddPageItem "[Store].[All Stores].[USA].[CA].[Alameda]", True
End Sub

pivotfield.AutoShow(Type, Range, Count, Field)

Applies a filter to a pivot field.

Argument Settings

Type The setting xlAutomatic applies the filter; xlManual removes the filter.

Range The setting xlTop shows the top Count of records; xlBottom shows the bottom Count of records.

Count The number of records to show.

Field The data field to use as the criterion of the filter.

These settings are equivalent to the Top 10 AutoShow options on the PivotTable Field Advanced Options dialog box,
shown in Figure 13-20.

Figure 13-20. Setting advanced field options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-20. Setting advanced field options

The following code shows the bottom ProductName item based on the data field (sales rank, lower is better):

Sub ShowBestSeller()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment next line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("ProductName")
 ' Set autoshow.
 pf.AutoShow xlAutomatic, xlBottom, 1, pt.DataFields(1).name
End Sub

pivotfield.AutoShowCount

Sets or returns the Count argument setting from the AutoShow method. Since all the AutoShow arguments are required, you
must use the Autoxxx properties to remove filtering from a pivot field, as shown here:

Sub ResetAutoShowAutoSort()
 Dim pt As PivotTable, pf As PivotField
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot fields
 For Each pf In pt.PivotFields
 pf.AutoShow xlManual, pf.AutoShowRange, _
 pf.AutoShowCount, pf.AutoShowField
 pf.AutoSort xlManual, pf.AutoSortField
 Next
End Sub

pivotfield.AutoShowField

Returns the Field argument setting from the AutoShow method.

pivotfield.AutoShowRange

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Range argument setting from the AutoShow method.

pivotfield.AutoShowType

Returns the Type argument setting from the AutoShow method.

pivotfield.AutoSort(Order, Field)

Sort items in a pivot field

Argument Settings

Order Can be xlAscending, xlDescending, or xlManual (unsorted)

Field The data field to sort

These settings are equivalent to the AutoSort Options on the PivotTable Field Advanced Options dialog box shown in
Figure 13-20.

The following code sorts items in the ProductName field by sales rank:

Sub SortBySalesRank()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("ProductName")
 ' Sort items
 pf.AutoSort xlAscending, pt.DataFields(1).name
End Sub

pivotfield.AutoSortField

Returns the Field argument setting from the AutoSort method.

pivotfield.AutoSortOrder

Returns the Order argument setting from the AutoSort method.

pivotfield.BaseField [= setting]

Sets or returns the base field name used for a custom calculation. Not available for OLAP pivot fields.

pivotfield.BaseItem [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the base item value used for a custom calculation. Not available for OLAP pivot fields.

pivotfield.CalculatedItems()

Returns a collection of PivotItem objects containing the items in the pivot field that are calculated.

pivotfield.Calculation [= xlPivotFieldCalculation]

Sets or returns the calculation used for items in this field. Can be one of these settings:

xlDifferenceFrom xlIndex

xlNoAdditionalCalculation xlPercentDifferenceFrom

xlPercentOf xlPercentOfColumn

xlPercentOfRow xlPercentOfTotal

xlRunningTotal

OLAP pivot fields are always xlNoAdditionalCalculation.

pivotfield.Caption [= setting]

Sets or returns the caption displayed for the field.

pivotfield.ChildField

For grouped fields, returns a collection of child PivotItems for the field. Not available for OLAP pivot fields.

pivotfield.ChildItems

For grouped fields, returns a collection of child PivotItems for the field. Not available for OLAP pivot fields.

pivotfield.CubeField

For OLAP pivot fields, returns the CubeField object for the pivot field.

pivotfield.CurrentPage [= setting]

For page fields, sets or returns the currently selected item. The following code displays ProductName as a page field,
then selects one book from the list:

Sub ViewBook()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment this line to create pivot table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("ProductName")
 ' Make it a page field.
 pf.Orientation = xlPageField
 ' Select my book.
 pf.CurrentPage = "Essential SharePoint"
End Sub

pivotfield.CurrentPageList [= setting]

For OLAP page fields with EnableMultiplePageItems set to True, sets or returns an array of names of selected items in the
page field.

pivotfield.CurrentPageName [= setting]

For OLAP page fields with EnableMultiplePageItems set to False, sets or returns the name of the selected item in the page
field. For example, the following code selects a single store in the FoodMart Sales pivot table:

Sub ViewSingleStore2()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment this line to create pivot table.
 'CreateOLAPPivotTable
 ' Get pivot table.
 Set pt = Worksheets("Foodmart Sales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("[Store]")
 ' Disable multiselect.
 pf.CubeField.EnableMultiplePageItems = False
 ' Select single store.
 pf.CurrentPageName = "[Store].[All Stores].[USA].[CA].[Alameda]"
End Sub

pivotfield.DatabaseSort [= setting]

For OLAP row or column fields, returns True if field items are ordered as they were retrieved from the database; False if
the items have been reordered. Setting this property to False allows items to be reordered by dragging. Setting this
property to True also restores the order from the database.

pivotfield.DataRange

Returns a Range object of the cells that contain the pivot field.

pivotfield.DataType

Returns an xlPivotFieldDataType constant indicating the type of data in the field. Can be xlDate, xlNumber, or xlText.

pivotfield.Delete()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For calculated fields, deletes the field. This method is not available for other types of fields.

pivotfield.DragToColumn [= setting]

True if the field can be placed in the column area, False otherwise.

pivotfield.DragToData [= setting]

True if the field can be placed in the data area, False otherwise.

pivotfield.DragToHide [= setting]

True if the field can be removed from the pivot table, False otherwise.

pivotfield.DragToPage [= setting]

True if the field can be placed in the page area, False otherwise.

pivotfield.DragToRow [= setting]

True if the field can be placed in the row area, False otherwise.

pivotfield.DrilledDown [= setting]

For OLAP pivot fields, True views the detail for the field and False hides the detail.

pivotfield.EnableItemSelection [= setting]

True enables the field drop-down selection box, False disables the dropdown. Default is True. Figure 13-19 shows the
drop-down selection box for a page field.

pivotfield.Formula [= setting]

For calculated fields, set or returns the localized formula used to generate the field values. Use StandardFormula to get the
nonlocalized formula. Check the IsCalculated property before using this property. For example:

If pf.IsCalculated Then Debug.Print pf.Formula

pivotfield.Function [= xlConsolidationFunction]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For data fields, sets or returns the function used to calculate the value displayed in the data area. Can be one of these
settings:

xlAverage xlCount

xlCountNums xlMax

xlMin xlProduct

xlStDev xlStDevP

xlSum xlUnknown

xlVar xlVarP

pivotfield.GroupLevel

Returns the placement of a field within a group of fields. For ungrouped fields, returns 1. Not available for OLAP fields.

pivotfield.HiddenItems

Returns a collection of PivotItems that are not currently displayed for the pivot field. Not available for OLAP fields.

pivotfield.HiddenItemsList [= setting]

For OLAP fields, sets or returns an array of strings containing the items not currently displayed for the pivot field.

pivotfield.IsCalculated

Returns True if the pivot field is calculated and has a formula, False otherwise.

pivotfield.IsMemberProperty

For OLAP fields, returns True if the pivot field contains member properties and False otherwise.

pivotfield.LabelRange

Returns the Range object for the cells containing the pivot field's label.

pivotfield.LayoutBlankLine [= setting]

For row fields, True inserts a blank line after the field when the field detail is collapsed and False does not insert a blank
line. Default is False.

pivotfield.LayoutForm [= xlLayoutFormType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns whether gridlines appear within the pivot table. Can be xlTabular (default, with gridlines) or xlOutline (no
gridlines).

pivotfield.LayoutPageBreak [= setting]

For row fields, True inserts a page break after each row and False breaks pages normally. Default is False. The page
breaks appear only if the pivot field isn't the innermost (lowest-level) row field.

pivotfield.LayoutSubtotalLocation [= XlSubtototalLocationType]

Sets or returns the location for field totals. Can be xlAtTop or xlAtBottom (default).

pivotfield.NumberFormat [= setting]

For data fields, sets or returns the Excel number format string used to format values displayed in the data area.

pivotfield.Orientation [= xlPivotFieldOrientation]

Sets or returns the layout of the pivot field on the pivot table. Can be one of these settings, which correspond to the
pivot table layout areas:

xlColumnField
xlDataField
xlHidden
xlPageField
xlRowField

pivotfield.ParentField

For grouped fields, returns the pivot field's parent.

pivotfield.PivotItems([Index])

Returns the collection of PivotItems for the field. The following code displays the pivot fields and items from a pivot table
in the Immediate window:

Sub ShowPivotTableValues()
 Dim pt As PivotTable, pf As PivotField, pi As PivotItem
 ' Exit if pivot table doesn't exist.
 If ActiveSheet.PivotTables.Count < 1 Then Exit Sub
 ' Get pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Get pivot fields
 For Each pf In pt.PivotFields
 ' Display pivot fields and items in outline form.
 Debug.Print pf.name
 For Each pi In pf.PivotItems
 Debug.Print , pi.Value
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 Next
End Sub

pivotfield.Position [= setting]

Sets or returns the position of the field within its page, column, row, or data area on the pivot table.

pivotfield.PropertyOrder [= setting]

For OLAP member property fields, sets or returns the order of the field within the field's parent. Check the
IsMemberProperty before using this property.

pivotfield.PropertyParentField

For OLAP member property fields, returns the field's parent. Check the IsMemberProperty before using this property.

pivotfield.ServerBased [= setting]

For pivot tables based on non-OLAP database queries, True retrieves values only for the current page field when the
pivot table is refreshed, and False retrieves all values.

pivotfield.ShowAllItems [= setting]

True displays all items in the field, even if they don't contain data; False hides empty items. Default is False. This
property is not available for OLAP pivot fields.

pivotfield.SourceName

Returns the name of the pivot field as it appears in the original data souce.

pivotfield.StandardFormula [= setting]

Sets or returns the U.S. English version of the Formula property.

pivotfield.SubtotalName [= setting]

Sets or returns the label displays for the field total.

pivotfield.Subtotals [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns an array of values that determine which totals are displayed for a field. Set items in the array to True to
add that item to the list of totals. The following table lists the array indexes and their meaning:

Index Meaning

1 Automatic

2 Sum

3 Count

4 Average

5 Max

6 Min

7 Product

8 Count Nums

9 StdDev

10 StdDevp

11 Var

12 Varp

For OLAP fields, only the first item in the array can be set.

pivotfield.TotalLevels

For grouped fields, returns the number of levels in the group. For ungrouped fields, returns 1.

pivotfield.VisibleItems

Returns a collection of PivotItem objects that are visible for the pivot field. Returns True for OLAP pivot fields.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6. CalculatedFields Members
Use the CalcualtedFields collection to add new calculated fields to the pivot fields list. Use the PivotTable object's
CalculatedFields property to get a reference to this collection. The CalculatedFields collection has the following members . The
key member (shown in bold) is covered in the following reference section:

Add
Application
Count
Creator
Item
Parent

calculatedfields.Add(Name, Formula, [UseStandardFormula])

Adds a calculated pivot field to the pivot table's fields list and returns the PivotField object.

Argument Settings

Name The name of the pivot field to create.

Formula The Excel formula for the calculation.

UseStandardFormula True evaluates field names using U.S. English settings; False evaluates names using the user's
locale settings. Default is False.

The Formula argument omits the equals sign (=) and can't include cell references. The lack of cell references means you
have to calculate relative values in code if you want to use them in a calculated field. The following code finds the
minimum value of SalesRank and then uses that value to create a RelativeRank calculated field:

Sub NewCalcField()
 Dim pt As PivotTable, pfProduct As PivotField, _
 pfCalc As PivotField, min As Single
 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Show detail for Product name field.
 Set pfProduct = pt.PivotFields("ProductName")
 pfProduct.Orientation = xlRowField
 pfProduct.LabelRange.ShowDetail = True
 ' Find the minimum sales rank.
 min = WorksheetFunction.min(pt.DataFields(1).DataRange)
 'Debug.Print "Min rank: " & min
 ' Delete field if it exists, ignore error if it doesn't.
 On Error Resume Next
 pt.PivotFields("RelativeRank").Delete
 On Error GoTo 0
 ' Create calculated pivot field.
 Set pfCalc = pt.CalculatedFields.Add("RelativeRank", _
 "Round(SalesRank / " & min & ", 1)", True)
 ' Add to data area.
 pfCalc.Orientation = xlDataField
 ' Hide detail.
 pfProduct.LabelRange.ShowDetail = False
End Sub

The Delete method in the preceding code removes the calculated field if it already exists. That allows you to rerun
NewCalcField to update the calculation as needed. Also, you must show detail before calculating min because only visible
items are included; later, you can hide the detail as shown in the code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.7. CalculatedItems Members
Use the CalculatedItems collection to add calculated items to a pivot field. Use the PivotField object's CalculatedItems property
to get a reference to this collection. The CalculatedItems collection has the following members. The key member (shown in
bold) is covered in the following reference section:

Add
Application
Count
Creator
Item
Parent

pivotitem.Add(Name, Formula, [UseStandardFormula])

Adds a calculated pivot item to the pivot field list and returns the created PivotItem object.

Argument Settings

Name The name of the pivot item to create.

Formula The Excel formula for the calculation.

UseStandardFormula True evaluates field names using U.S. English settings; False evaluates names using the user's
locale settings. Default is False.

You can't add calculated items if a pivot table contains a custom subtotal such as Average or StdDev. The following
code creates a new calculated item and then displays the pivot table calculations on a new worksheet as shown in
Figure 13-21:

Figure 13-21. Viewing calculated fields and items from a pivot table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub NewCalcItem()
 Dim pt As PivotTable, pf As PivotField, pi As PivotItem, min As Integer
 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field
 Set pf = pt.PivotFields("SalesRank")
 ' Delete field if it exists, ignore error if it doesn't.
 On Error Resume Next
 pf.PivotItems("MinRank").Delete
 On Error GoTo 0
 ' Turn off custom subtotals.
 pt.RowFields(1).Subtotals = Array(True, False, False, False, _
 False, False, False, False, False, False, False, False)
 ' Find the minimum sales rank.
 min = WorksheetFunction.min(pt.DataFields(1).DataRange)
 ' Create calculated pivot item.
 Set pi = pf.CalculatedItems.Add("MinRank", min, True)
 ' Show formulas on a worksheet.
 pt.ListFormulas
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.8. PivotCell Members
Use the PivotCell object to get pivot table information from a Range object. Use the Range object's PivotCell property to get a
reference to this object. The PivotCell object has the following members:

Application ColumnItems

Creator CustomSubtotalFunction

DataField Parent

PivotCellType PivotField

PivotItem PivotTable

Range RowItems

Use PivotCell when working with user selections to find information about the selected cells. The following code displays
pivot table information about the currently selected range:

Sub GetPivotCell()
 Dim pc As PivotCell
 On Error Resume Next
 ' Get the pivot cell
 Set pc = Selection.PivotCell
 Debug.Print pc.PivotCellType, _
 pc.PivotField.name, pc.PivotTable.name
 If Err Then Debug.Print "Selection is not in a pivot range."
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.9. PivotFormula and PivotFormulas Members
Use the PivotFormulas collection to get the formulas of calculated pivot items. Use the PivotTable object's PivotFormulas
property to get a reference to this collection. Use the PivotFormula object to get information about the calculated item.
The PivotFormulas collection and PivotFormula object have the following members:

Add1 Application2

Count1 Creator2

Delete Formula

Index Item1

Parent2 StandardFormula

Value
1 Collection only

2 Object and collection

The following code displays the formulas of calculated items in a pivot table:

Sub GetPivotFormula()
 Dim pt As PivotTable, pfa As PivotFormula
 ' Uncomment next line to add a calculated pivot item.
 'NewCalcItem
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Show formulas for calculated items.
 For Each pfa In pt.PivotFormulas
 Debug.Print pfa.Value
 Next
End Sub

The PivotFormulas collection doesn't include formulas from calculated pivot fields. Use the CalculatedFields collection to get
those formulas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.10. PivotItem and PivotItems Members
Use the PivotItems collection to get the items in a pivot field. Use the PivotField object's PivotItems property to get a
reference to this collection. Use the PivotItem object to get information about an item. The PivotItems collection and
PivotItem object have the following members:

Add1 Application2

Caption ChildItems

Count1 Creator2

DataRange Delete

DrilledDown Formula

IsCalculated Item1

LabelRange Name

Parent2 ParentItem

ParentShowDetail Position

RecordCount ShowDetail

SourceName SourceNameStandard

StandardFormula Value

Visible
1 Collection only

2 Object and collection

PivotItem objects represent the individual values stored in each pivot field. The following code displays a pivot table's
data hierarchically in the Immediate window:

Sub ListAllItems()
 Dim pt As PivotTable, pf As PivotField, _
 pi1 As PivotItem, pi2 As PivotItem
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Show table name.
 Debug.Print pt.name
 For Each pf In pt.PivotFields
 ' Show each field name.
 Debug.Print , pf.name
 For Each pi1 In pf.PivotItems
 ' Show each item value.
 Debug.Print , , pi1.name
 For Each pi2 In pi1.ChildItems
 ' Show subitems (not available for OLAP).
 Debug.Print , , , pi2.name
 Next
 Next
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.11. PivotItemList Members
Use the PivotItemList collection to find the row and column of a PivotCell. Use the PivotCell object's RowItems and ColumnItems
properties to get a reference to this collection. The PivotItemList collection has the following members:

Application
Count
Creator
Item
Parent

The following code displays the row and column of a selected cell in a pivot table's data area:

Sub GetRowAndColumn()
 Dim pc As PivotCell, pi As PivotItem
 On Error Resume Next
 ' Get the pivot cell
 Set pc = Selection.PivotCell
 ' Show the row this item belongs to.
 For Each pi In pc.RowItems
 Debug.Print "Row: " & pi.Value
 Next
 ' Show the column this item belongs to.
 For Each pi In pc.ColumnItems
 Debug.Print "Column: " & pi.Value
 Next
 If Err Then Debug.Print "Selection is not in the data area."
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.12. PivotLayout Members
Use the PivotLayout object to access the pivot table of a pivot chart. Use the Chart object's PivotLayout property to get a
reference to this object. The PivotLayout object has the following members:

AddFields Application

ColumnFields Creator

CubeFields DataFields

HiddenFields InnerDetail

PageFields Parent

PivotCache PivotFields

PivotTable RowFields

VisibleFields

If the active worksheet contains a pivot table and you call Charts.Add, Excel automatically creates a pivot chart for the
pivot table. You can then use the chart's PivotLayout property to navigate back to the underlying pivot table to set the
pivot chart layout or change other elements. For example, the following code creates a new pivot chart then changes
the layout of the pivot chart:

Sub ChangeChartLayout()
 Dim chrt As Chart, pt As PivotTable, pf As PivotField
 ' Activate a pivot table.
 Sheets("BookSales").Activate
 ' Create a pivot chart
 Set chrt = Charts.Add
 ' Set chart properties.
 chrt.ChartType = xlLine
 chrt.Axes(xlCategory).TickLabelPosition = xlNone
 ' Get the pivot table.
 Set pt = chrt.PivotLayout.PivotTable
 ' Change layout
 pt.PivotFields("ProductName").Orientation = xlPageField
 ' Clear data fields (ignore errors).
 On Error Resume Next
 pt.DataPivotField.Orientation = xlHidden
 pt.PivotFields("RelativeRank").Orientation = xlDataField
 pt.PivotFields("SalesRank").Orientation = xlHidden
 On Error GoTo 0
 ' Select a page field
 pt.PageFields("ProductName").CurrentPage = "Essential SharePoint"
 ' Rename the chart sheet.
 RenameChart chrt, pt.name & "Chart"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.13. CubeField and CubeFields Members
Use the CubeFields collection to get pivot fields from an OLAP pivot table. Use the PivotTable object's CubeFields property to
get a reference to this collection. Use the CubeField object to set the layout and change other properties of fields on an
OLAP pivot table. The CubeFields collection and CubeField object provide a subset of the PivotField members ; unique
members (shown in bold) are covered in the following reference section:

CubeFields and CubeField apply only to OLAP pivot tables.

AddMemberPropertyField AddSet2

Application2 Caption

Count1 Creator2

CubeFieldType Delete

DragToColumn DragToData

DragToHide DragToPage

DragToRow EnableMultiplePageItems

HasMemberProperties HiddenLevels

Item1 LayoutForm

LayoutSubtotalLocation Name

Orientation Parent2

PivotFields Position

ShowInFieldList TreeviewControl

Value
1 Collection only

2 Object and collection

cubefield.AddMemberPropertyField(Property, [PropertyOrder])

Adds a member property field from the fields list to the cube field.

Argument Settings

Property The name of the member property to add.

PropertyOrder The index of the property within the property list. The default is to append the property to the end of the
list.

cubefields.AddSet(Name, Caption)

Creates a new CubeField and returns the created object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a new CubeField and returns the created object.

Argument Settings

Name A name of an existing calculated member

Caption The caption to display for the field in the pivot table

cubefield.CubeFieldType

Returns an xlCubeFieldType constant identifying the type of the cube field. Can be xlHierarchy, xlMeasure, or xlSet.

cubefield.EnableMultiplePageItems [= setting]

For page fields, True enables multiple selection and False disables multiple selection. The property reflects the setting
on the page field drop-down box (Figure 13-19).

cubefield.HasMemberProperties

Returns True if the cube field contains member properties, False if not.

cubefield.HiddenLevels [= setting]

For cube fields with CubeFieldType of xlHierarchy, sets or returns the number of levels that are hidden. Default is 0, for no
hidden levels.

cubefield.ShowInFieldList [= setting]

True displays the cube field in the PivotTable Fields List; False hides the field. Default is True.

cubefield.TreeviewControl

This property is used for macro recording. It is not intended for other uses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.14. CalculatedMember and CalculatedMembers Members
Use the CalculatedMembers collection to add new calculated members to an OLAP pivot table. Use the PivotTable object's
CalculatedMembers property to get a reference to this collection. Use the CalculatedMember object to get the member's formula
and to delete calculated members. The CalculatedMembers collection and CalculatedMember object have the following
members. The key member (shown in bold) is covered in the following reference section:

CalculatedMembers and CalculatedMember apply only to OLAP pivot tables.

Add1 Application2

Count1 Creator2

Delete Formula

IsValid Item1

Name Parent2

SolveOrder SourceName

Type
1 Collection only

2 Object and collection

calculatedmembers.Add(Name, Formula, [SolveOrder], [Type])

Adds a new calculated member to the OLAP pivot table and returns the created CalculatedMember object.

Argument Settings

Name The name of the pivot item to create.

Formula The MDX expression to evaluate.

SolveOrder A number indicating the solve order of this calculation when refreshing the pivot table. Default is 0.

Type An xlCalculatedMemberType constant. Can be xlCalculatedMember or xlCalculatedSet.

See the MDX sample application that ships with Microsoft SQL Analysis Services for help creating MDX expressions. That
sample also includes Help on the MDX language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. Sharing Data Using Lists
In Microsoft Excel 2003, lists are ranges of cells that can easily be sorted, filtered, or shared. Lists are a little different
from the AutoFilter feature available in earlier versions of Excel, in that lists are treated as a single entity, rather than
just a range of cells. This unity is illustrated by a blue border that Excel draws around the cells in a list, as shown in
Figure 14-1.

Figure 14-1. A list (left) and an AutoFilter range (right)

Lists have other nice-to-have advantages over AutoFilter ranges:

Lists automatically add column headers to the range.

Lists display a handy list toolbar when selected.

It is easy to total the items in a list by clicking the Toggle Total button.

XML data can be imported directly into a list.

Excel automatically checks the data type of list entries as they are made.

Lists can be shared and synchronized with teammates via Microsoft SharePoint Services.

That last item is the key advantage of listsreally, lists are just a way to share information that fits into columns and
rows.

This chapter contains reference information for the following objects and their related collections: ListObject, ListRow,
ListColumn, ListDataFormat, and the SharePoint Lists Web Service.

Code used in this chapter and additional samples are available in ch14.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1. Use Lists
Lists reflect a range of cells within a workbook, rather than the entire workbook file itself. By sharing only the germane
range of cells, you avoid publishing the underlying data and macros, which protects the original. The shared list can
then be included in different workbooks used by others.

The main limitation of lists is that they can be shared only through Windows Server 2003 running SharePoint Services.
That's because the sharing and maintenance of lists is provided through the ASP.NET Active Server Pages and Web
Services that SharePoint provides. Other types of network shares are simply not supported. Another less important
hitch is that you can't include a shared list in a shared workbook. If you want to add a list to a shared workbook, you
first need to convert the workbook to single-user.

If you don't have a Windows 2003 server at your site, you can try out SharePoint Services through a hosting provider,
such as Apptix or Verio. Check out http://www.sharepointtrial.com for a free trial.

When a list is published, SharePoint Services creates an Active Server Page that teammates can use to view or modify
the list's data, as shown in Figure 14-2.

SharePoint Services stores lists as XML files. Each list has two different sorts of XML: XML that describes the list and
provides its user interface and XML that contains the list data. You can edit or link to a list through its ASPX page, or
you can use the SharePoint Lists Web Service to access the list directly through code.

14.1.1. Supported Data Types

Excel lists can contain only data that can be easily represented as XML. Objects such as charts, diagrams, and OLE
objects cannot be included in lists. Excel formulas are evaluated and converted to a numeric value when a list is
synchronized.

For numeric data, leading and trailing zeros are omitted and positive values are displayed without a plus sign (+)
regardless of whether or not it was entered. Excel provides up to 15 significant digits of precision.

Figure 14-2. SharePoint Services provides an ASPX page to view and manage a list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the following Excel date/time formats are not directly supported and are converted to text once a list is
synchronized:

hh:mm:ssZ
Hh:mm:ss.f-f
yyyy-mm-ddThh:mm:ssZ
yyyy-mm-ddThh:mm:ss+/-hh:mm
yyyy-mm-ddThh:mm:ss.f-f
yyyy-mm-ddZ
yyyy-mm-dd+/-hh:mm
yyyy+/-hh:mm
yyyy-mm+/-hh:mm

14.1.2. Resolve Conflicts

Since lists can't include formulas or objects, they are best suited to sharing two classes of information from Excel:

Results of calculated or summarized information

Detail information for summary or calculation on clients

In the first case, an author may collect information, generate some results, then share those results for review by
others. Alternately, a list may consist of raw data with one or more authors contributing items. Those authors and
additional users may read the list and summarize or filter the list in many different workbooks.

In a many-to-many relationship, more than one author may change a particular cell. When this occurs, the second
author to synchronize her list sees the Resolve Conflicts and Errors dialog, shown in Figure 14-3.

Figure 14-3. When two authors change the same cell, the second author to
synchronize must decide what to do

14.1.3. Authorization and Authentication in Shared Lists

In order to share a list through SharePoint Services, an author must have privileges on the SharePoint server.
SharePoint provides an easy-to-use interface for adding users and maintaining their passwords, shown in Figure 14-4.

When a user shares a list from Excel, SharePoint authenticates the user with the Connect dialog box, shown in Figure
14-5.

Once the user is authenticated, Excel maintains a session for the user for a period of time determined by the SharePoint
settings so that the user doesn't have to sign in again every time he accesses a shared list. When the user closes Excel,
his SharePoint session is ended and he will be reauthenticated if he starts Excel and accesses a shared list again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

his SharePoint session is ended and he will be reauthenticated if he starts Excel and accesses a shared list again.

These same rules apply whether the user is accessing a shared list through the Excel user interface or through Visual
Basic code.

Figure 14-4. Use the SharePoint Add Users page to add new user accounts and set
user privileges

Figure 14-5. SharePoint authenticates users before connecting to a shared list

14.1.4. Create a List in Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the Add method of the ListObjects collection to create a list in code. The ListObjects collection is exposed as a property
of the Worksheet object. The following code creates a new list for all the contiguous data starting with the active cell:

ActiveWorksheet.ListObjects.Add

Use the Add method's arguments to create a list out of a specific range of cells. For example, the following code creates
a list out of the range A2:D5:

Sub CreateList1()
 Dim ws As Worksheet, rng As Range
 Set ws = ActiveSheet
 Set rng = ws.Range("A2:D5")
 ws.ListObjects.Add xlSrcRange, rng
End Sub

When Excel creates the preceding list, it automatically adds column headings to the list either by converting the first
row into column headings or by adding a new row and shifting the subsequent data rows down. It's hard to know
exactly what will happen because Excel evaluates how the first row is intended. You can avoid this assumption by
supplying the HasHeaders argument, as shown here:

ws.ListObjects.Add xlSrcRange, rng, , xlNo

Now, the preceding code adds headers to row 2 and shifts the range down one row.

Lists always include column headers. To avoid shifting the range down one row each time you create a list, include a
blank row at the top of the source range and specify xlYes for HasHeaders as shown here:

Sub CreateList2()
 Dim ws As Worksheet, rng As Range
 Set ws = ActiveSheet
 Set rng = ws.Range("A1:D5")
 ' Use first row as headers.
 ws.ListObjects.Add xlSrcRange, rng, , xlYes
End Sub

Since column headers and new rows added to a list cause the subsequent rows to shift down, it is a good idea to avoid
placing data or other items in the rows below a list. If you do place items there, you receive a warning any time the list
expands.

When creating lists in code, it is also a good idea to name the list so that subsequent references to the list can use its
name rather than its index on the worksheet. To name a list, set the Name property of the ListObject:

Sub CreateList3()
 Dim ws As Worksheet, rng As Range, lst As ListObject
 Set ws = ActiveSheet
 Set rng = ws.Range("A1:D5")
 ' Use first row as headers.
 Set lst = ws.ListObjects.Add(xlSrcRange, rng, , xlYes)
 ' Name list
 lst.Name = "Test List"
End Sub

Now, you can get a reference to the named list using the Worksheet object's ListObjects property:

Sub ToggleTotals()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 ' Get named list.
 Set lst = ws.ListObjects("Test List")
 ' Turn totals on/off.
 lst.ShowTotals = Not lst.ShowTotals
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1.5. Share a List

Once a list exists on a worksheet, you can share that list using the Publish method. The first argument of the Publish
method is a three-element string array containing the address of the SharePoint server, a unique name for the list, and
an optional description of the list. For example, the following code publishes the list created in the preceding section:

Sub ShareList()
 Dim ws As Worksheet, lst As ListObject
 Dim str As String, dest(2) As Variant
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 dest(0) = "http://www.excelworkshop.com"
 dest(1) = "Test List"
 dest(2) = "A description goes here..."
 str = lst.Publish(dest, True)
 MsgBox "Your list has been shared. You can view it at: " & str
End Sub

The Publish method returns a string containing the address of the published list. The preceding code displays that
address in a message box, but you may want to navigate to that address or include a link to it somewhere on the sheet.
To add a hyperlink to the list on the SharePoint server, add a hyperlink to a range as shown here:

' Add link instead of showing message box.
Dim lnk As Hyperlink
Set lnk = ws.Hyperlinks.Add([F1], str)

After adding the hyperlink, you can display the web page for the list by using the Follow method as shown here:

' Display the shared list in the browser.
lnk.Follow

To navigate to the list without adding a hyperlink, use the Workbook object's FollowHyperlink method:

' Or use the FollowHyperlink method.
ThisWorkbook.FollowHyperlink str

The ListObject's SharePointURL property returns the address of the list, so it is easy to get the address of the shared list
after it has been created, as shown here:

Sub AddLink()
 Dim ws As Worksheet, str As String, lnk As Hyperlink
 Set ws = ActiveSheet
 str = ws.ListObjects("Test List").SharePointURL
 Set lnk = ws.Hyperlinks.Add([F1], str, , _
 "Click to display list site.", "View")
End Sub

14.1.6. Insert a Shared List

Once a list is published on a SharePoint site, you can insert that list into other worksheets using the ListObject's Add
method and the SourceType argument xlSrcExternal:

Sub InsertSharedList()
 Dim ws As Worksheet, src(1) As Variant
 Set ws = ThisWorkbook.Worksheets.Add(, ActiveSheet)
 ws.Name = "Insert List"
 src(0) = "http://www.excelworkshop.com/_vti_bin"
 src(1) = "Test List"
 ws.ListObjects.Add xlSrcExternal, src, True, xlYes, ws.Range("A1")
End Sub

When SourceType is xlSrcExternal, the Source argument is a two-element array containing this information:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When SourceType is xlSrcExternal, the Source argument is a two-element array containing this information:

Element Data

0 List address. This is the SharePoint address plus the folder name /_vti_bin.

1 The name or GUID of the list. A GUID is a 32-digit numeric string that identifies the list on the server.

To find the GUID of a list, view the list on the SharePoint server and choose Modify Columns and Settings on the list's
web page. SharePoint displays the GUID for the list in the browser's Address text box as shown in Figure 14-6.

Inserting a list manually from a SharePoint site into an existing workbook deletes all of the
Visual Basic code contained in the workbook. Inserting a list from code does not delete a
workbook's code, however.

14.1.7. Refresh and Update

Use the ListObject's Refresh method to discard changes to the list on the worksheet and refresh it with data from the
SharePoint server as shown here:

lst.Refresh

Use the UpdateChanges method to send data from the worksheet list, to the SharePoint server and retrieve new and
changed data from the SharePoint server as shown here:

lst.UpdateChanges xlListConflictDialog

As mentioned earlier, if two authors modify the same item in a list, a conflict will occur when the second author updates
her list. The iConflictType argument determines what happens when a conflict occurs. Possible settings are:

xlListConflictDialog (the default)

Conflict displays dialog.

Figure 14-6. Find a list's GUID from the SharePoint server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlListConflictRetryAllConflicts

Worksheet data wins conflict.

xlListConflictDiscardAllConflicts

Server data wins conflict.

xlListConflictError

Conflict causes error.

14.1.8. Unlink, Unlist, and Delete

Use these ListObject methods to unlink, unlist, or delete a list:

Method Use to

Unlink Remove the link between the worksheet list and the SharePoint list.

Unlist Convert the worksheet list to a range, preserving the list's data.

Delete Delete the worksheet list and all its data.

Once you have unlinked a list, you can't relink it. To re-establish the link, you must delete the list and insert it back
onto the worksheet from the SharePoint list.

The following sections describe Excel's list objects in greater detail providing the syntax, return values, and details on
the properties and methods each object provides.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2. ListObject and ListObjects Members
The ListObjects collection and ListObject object have the following members . Key members (shown in bold) are covered in
the following reference section:

Active Add1

Application2 Count1

Creator2 DataBodyRange

Delete DisplayRightToLeft

HeaderRowRange InsertRowRange

Item1 ListColumns

ListRows Name

Parent2 Publish

QueryTable Range

Refresh Resize

SharePointURL ShowAutoFilter

ShowTotals SourceType

TotalsRowRange Unlink

Unlist UpdateChanges

XmlMap
1 Collection only

2 Object and collection

listobjects.Add([SourceType], [Source], [LinkSource],
[XlListObjectHasHeaders], [Destination])

Creates a new list and adds it to a worksheet. The Add method returns a reference to the LinkObject that was created.

Argument Settings

SourceType xlSrcRange creates the list from a range of cells. xlSrcExternal inserts a list from a SharePoint server.
xlSrcXml is an invalid setting and causes an error when used with the Add method.

Source If SourceType is xlSrcRange, this argument is a range of cells to convert to a list. If SourceType is
xlSrcExternal, this argument is an array identifying the source of the list.

LinkSource True links the list to the SharePoint list if Source is xlSrcExternal; False omits the link. Must be
omitted if Source is xlSrcRange.

XlListObjectHasHeaders
xlYes converts the first row of the list to text headers. xlNo Adds a new row for headers and shifts
the range of cells in the list down one row. xlYesNoGuess causes Excel to evaluate whether the first
row contains text headers and adds a header row if it does not seem to exist.

Destination If Source is xlSrcExternal, Destination must be a single cell that indicates the upper-left corner of the list
to create.

The data you include in the Source array argument depends on whether you are creating a list from a range of cells or
inserting a list from a SharePoint server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2.1.

14.2.1.1. Create a list from a range

When creating a list from a range, use the Source argument to identify the range of cells to convert to a list. If Source
contains only one cell, Excel creates a list out of the range of contiguous cells that contain data. For example, the
following code creates a list out of all ranges of contiguous cells containing data that surround the cell C4:

Sub ListFromAdjoiningCells()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Create a list from cells adjoining C4.
 ws.ListObjects.Add xlSrcRange, ws.Range("C4"), , xlYes
End Sub

The preceding code creates the list and uses the top row of the range as the column headings for the list.

14.2.1.2. Insert a shared list

When inserting an existing list onto a worksheet from a SharePoint server, use the Source array argument to specify the
location of the list and the name or GUID of the list on the server. Although it is easier to know the name of a list, that
name can be changed by editing the list's General Settings in SharePoint. It is more reliable to use the GUID, since that
unique identifier doesn't change over the life of the list.

To find the GUID of a list, view the list on the SharePoint server and choose Modify Columns and Settings on the list's
web page. SharePoint displays the GUID for the list in the browser's Address text box after the List= query string.

The following code demonstrates using a GUID to insert a shared list on a new worksheet:

Sub InsertListFromGUID()
 Dim ws As Worksheet, src(1) As Variant
 Set ws = ThisWorkbook.Worksheets.Add(, ActiveSheet)
 ws.Name = "Insert List GUID"
 src(0) = "http://www.excelworkshop.com/_vti_bin"
 src(1) = "{4B929DF0-F6C1-4230-A0E6-6AA18D668B15}"
 ws.ListObjects.Add xlSrcExternal, src, True, xlYes, ws.Range("A1")
End Sub

listobject.DataBodyRange

Returns the range of cells in the list that contain data. The returned range omits column headers and total rows. You
can use DataBodyRange to format or select all of the items in a list, as shown here:

Sub FormatList()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects(1)
 lst.DataBodyRange.Style.Font.Bold = True
 lst.DataBodyRange.Activate
End Sub

You can also use DataBodyRange to position other items relative to the list using the Range object's End and Offset methods
as shown in the SharePointURL example.

listobject.Delete()

Deletes the ListObject and all of the data it contains. Delete does not shift surrounding cells up or to the right.

listobject.Publish(Target, LinkSource)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shares a worksheet list on a SharePoint server. Returns a string containing the address of the list on the Web.

Argument Settings

Target The full address of the SharePoint server to share the list on. Includes the http: protocol identifier and the
name of any subwebs.

LinkSource True links the contents of the worksheet list to the SharePoint list for synchronization. False copies the
list to the SharePoint server, but does not link the contents.

The following code shares a list on a worksheet and displays the location of the list once it is shared:

Sub ShareList()
 Dim ws As Worksheet, lst As ListObject
 Dim str As String, dest(2) As Variant
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 dest(0) = "http://www.excelworkshop.com"
 dest(1) = "Test List"
 dest(2) = "A description goes here..."
 str = lst.Publish(dest, True)
 ' Display the shared list in the browser.
 ThisWorkbook.FollowHyperlink str
End Sub

The name of the list (Test List in preceding code) must be unique within the SharePoint site. If a list with that name
already exists, an error occurs and the list is not shared.

listobject.SharePointURL

Returns the full address of the default view of a shared list on the SharePoint server. Causes an error if the list has not
been shared. The following code adds a hyperlink to display the web page for a shared list:

Sub AddLink2()
 Dim ws As Worksheet, rng As Range
 Dim lst As ListObject, str As String
 Set ws = ActiveSheet
 Set lst = ws.ListObjects(1)
 Set rng = lst.DataBodyRange.End(xlToRight).Offset(-1, 1)
 ws.Hyperlinks.Add rng, str, , _
 "Click to display list site.", "View list..."
End Sub

The preceding code uses the Range object's End and Offset methods to locate the new hyperlink at the top and to the right
of the list on the worksheet.

listobject.ShowTotals [= setting]

Sets or returns a value indicating whether a totals row is displayed on the list. True displays the totals; False hides the
totals.

listobject.Unlink()

Removes the link between the data in the list on a worksheet and the data in the list on a SharePoint server. This link
allows the worksheet list to synchronize with the SharePoint list. The following code removes the link from a list:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allows the worksheet list to synchronize with the SharePoint list. The following code removes the link from a list:

Sub UnlinkList()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects(1)
 lst.Unlink
End Sub

No error occurs if the list was not previously shared.

Once the link is removed, the worksheet list can't be relinked to the SharePoint list. To re-establish a link, you must
delete the list on the worksheet, then insert the shared list from the SharePoint server onto the worksheet.

listobject.Unlist()

Converts a list to a normal range of cells. If the list displays a totals row, that row becomes part of the range. The
following code hides the totals row and then converts a list to a range:

Sub ConverToRange()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 ' Get the first list on the worksheet.
 Set lst = ws.ListObjects(1)
 ' Convert it to a range.
 lst.Unlist
End Sub

listobject.UpdateChanges([iConflictType])

Synchronizes the shared list on a worksheet with the list on the SharePoint server. The setting of iConflictType determines
how list items with changes on both the worksheet and SharePoint server are handled.

Setting Description

xlListConflictDialog Displays the Resolve Conflicts and Errors dialog box to resolve the conflict (this is the
default).

xlListConflictRetryAllConflicts Replaces conflicting data on the SharePoint server with data from the worksheet.

xlListConflictDiscardAllConflicts Replaces conflicting data on the worksheet with updates from the SharePoint server.

xlListConflictError Updates the items that do not conflict and generates an error, "Cannot update the
list to Windows SharePoint Services," leaving the conflicting items unchanged.

If the worksheet list is not shared, UpdateChanges causes an error.

The following code synchronizes a list and overwrites conflicting items with the worksheet version of the item (local
version wins):

Sub SyncLocalWins()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.UpdateChanges xlListConflictRetryAllConflicts
End Sub

The following code synchronizes a list and overwrites conflicting items with the SharePoint version of the item (server
version wins):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

version wins):

Sub SyncServerWins()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.UpdateChanges xlListConflictDiscardAllConflicts
End Sub

listobject.XMLMap

If the contents of the list were originally imported from XML, then XMLMap returns a reference to an XMLMap object that
can be used to import or export XML data into or out of the list. See Chapter 15 for more information on the XMLMap
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.3. ListRow and ListRows Members
The ListRows collection and ListRow object have the following members. Key members (shown in bold) are covered in the
following reference section:

Add1 Application2

Count1 Creator2

Delete Index

InvalidData Item1

Parent2 Range

1 Collection only

2 Object and collection

listrows.Add([Position])

Inserts a new, blank row into the list, shifting subsequent rows down. The Position argument indicates where to insert
the row. For example, the following code creates a new, blank row at the second row in the list:

Sub InsertRow()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListRows.Add (2)
End Sub

If Position is omitted, the new row is inserted at the end of the list.

Each row in a shared list has a unique ID assigned to it. When you create a new shared list, row IDs are created
sequentially from top to bottom. As you add and delete rows within a list, new row IDs are created and existing IDs are
deleted, so the sequential order of IDs is not preserved.

listrow.Delete

Removes a row from a list, deleting the data it contains and shifting rows up. The Add method acts on the ListRows
collection, whereas the Delete method acts on the ListRow object.

Use the ListObjects Item method to get the row to delete. For example, the following code deletes the second row of a list
(undoing the code shown for the previous Add method):

Sub DeleteRow()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListRows(2).Delete
End Sub

listrow.InvalidData

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns True if the row contains data that is not valid as per the list schema. Returns False if the row contains only
valid data. The following code highlights rows in lists that contain invalid data:

Sub HighlightInvalidRows()
 Dim ws As Worksheet, lst As ListObject, row As ListRow
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 For Each row In lst.ListRows
 If row.InvalidData Then
 row.Range.Font.Color = RGB(255, 0, 0)
 Else
 row.Range.Font.Color = RGB(0, 0, 0)
 End If
 Next
End Sub

Excel validates list entries as the user enters data, so it is unlikely that invalid data is the result of user edits. However,
entries made by code are not automatically validated.

listrow.Range

Returns a reference to the Range object for a row in the list. Use the Range property to get the values and address of
items in a list. For example, the following code creates a new row and sets the values of the second, third, and fourth
items in the row:

Sub SetValues()
 Dim ws As Worksheet, lst As ListObject, row As ListRow
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListRows.Add (2)
 lst.ListRows(2).Range.Cells(1, 2).Value = "a"
 lst.ListRows(2).Range.Cells(1, 3).Value = "b"
 lst.ListRows(2).Range.Cells(1, 4).Value = "c"
 lst.ListRows(2).Range.Cells(1, 5).Value = "d"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.4. ListColumn and ListColumns Members
The ListColumns collection and ListColumn object have the following members. Key members (shown in bold) are covered in
the following reference section:

Add1 Application2

Count1 Creator2

Delete Index

Item1 ListDataFormat

Name Parent2

Range SharePointFormula

TotalsCalculation XPath

1 Collection only

2 Object and collection

listcolumn.ListDataFormat

Returns a reference to the ListDataFormat object for the list column. Use the ListDataFormat object to get information about
the type of data that the column contains. For example, the following code highlights the required columns in a list:

Sub HighlightRequired()
 Dim ws As Worksheet, lst As ListObject, col As ListColumn
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 For Each col In lst.ListColumns
 If col.ListDataFormat.Required Then
 col.Range.Font.Color = RGB(0, 0, 255)
 End If
 Next
End Sub

listcolumn.SharePointFormula

For shared lists, returns a string representation of the formula that SharePoint uses to calculate a column. If the column
is not calculated by SharePoint, returns an empty string. The following code displays the formula for calculated columns
in a list:

Sub ShowForumulas()
 Dim ws As Worksheet, lst As ListObject, col As ListColumn
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 For Each col In lst.ListColumns
 If col.SharePointFormula <> "" Then
 MsgBox "Column: " & col.Name & _
 " Formula: " & col.SharePointFormula
 End If
 Next
End Sub

listcolumn.TotalsCalculation [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the type of calculation used to figure the total for this column. Possible settings are:

xlTotalsCalculationNone xlTotalsCalculationSum

xlTotalsCalculationAverage xlTotalsCalculationCount

xlTotalsCalculationCountNums xlTotalsCalculationMin

xlTotalsCalculationStdDev xlTotalsCalculationVar

xlTotalsCalculationMax

The following code changes the Total Price column to a sum of its values:

Sub ChangeTotal()
 Dim ws As Worksheet, lst As ListObject, col As ListColumn
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListColumns("Total Price").TotalsCalculation = xlTotalsCalculationSum
End Sub

listcolumn.XPath

If a list has been created from imported XML data, returns a reference to the column's XPath object. If the list was not
created from XML data, returns Nothing. For example, the following code displays the XPath of each column in the
Immediate window:

Set ws = ThisWorkbook.Worksheets("Sheet1")
Set lst = ws.ListObjects("XML List")
For Each col In lst.ListColumns
 Debug.Print col.XPath.Value
Next

For more information on the XPath object, see Chapter 15.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.5. ListDataFormat Members
The ListDataFormat object has the following members. Key members (shown in bold) are covered in the following
reference section:

AllowFillIn Application

Choices Creator

DecimalPlaces DefaultValue

lcid IsPercent

MaxCharacters MaxNumber

MinNumber Parent

ReadOnly Required

Type

The ListDataFormat object provides a set of read-only properties that return information about the data format of the list
column as set on the SharePoint server. To set these properties:

Open the list on the SharePoint site.

Choose Modify Setting and Columns.

Select a column to modify. SharePoint displays the Change Column web page as shown in Figure 14-7. When
you are done, click OK to make the changes.

Figure 14-7. SharePoint Optional Settings for Column which correspond to the
ListDataFormat properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code displays a report on the data format of each column in a list in the Immediate window:

Sub ShowListDataFormat()
 Dim lst As ListObject, col As ListColumn
 Set lst = Worksheets("Lists").ListObjects("Test List")
 For Each col In lst.ListColumns
 Debug.Print "Column: " & col.Name & vbCrLf & _
 " Can edit choice? " & col.ListDataFormat.AllowFillIn & vbCrLf & _
 " Choices: " & col.ListDataFormat.Choices & vbCrLf & _
 " Decimal places: " & col.ListDataFormat.DecimalPlaces & vbCrLf & _
 " Default: " & col.ListDataFormat.DefaultValue & vbCrLf & _
 " Percent? " & col.ListDataFormat.IsPercent & vbCrLf & _
 " Max char: " & col.ListDataFormat.MaxCharacters & vbCrLf & _
 " Max #: " & col.ListDataFormat.MaxNumber & vbCrLf & _
 " Min #: " & col.ListDataFormat.MinNumber & vbCrLf & _
 " Read only? " & col.ListDataFormat.ReadOnly & vbCrLf & _
 " Required? " & col.ListDataFormat.Required & vbCrLf & _
 " Type code: " & col.ListDataFormat.Type & vbCrLf
 Next
End Sub

listdataformat.AllowFillIn

If the values in the column reflect a set of choices and the user can supply an alternate value, returns True. Otherwise,
returns False.

listdataformat.Choices

If the values in the column reflect a set of choices, returns an array containing those choices. Otherwise, returns Nothing.

listdataformat.DecimalPlaces

If the column is numeric and the decimal place is assigned automatically, returns xlAutomatic (-4105). If the column has a
fixed decimal place, returns the place number of the decimal. Otherwise, returns 0.

listdataformat.DefaultValue

If the column has a default value, returns that value. Otherwise, returns Nothing.

listdataformat.IsPercent

Returns True if the value in the column reflects a percentage; returns False if not.

listdataformat.lcid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the locale ID of the column. In Excel locale determines the symbol used when displaying currency values.
Returns 0 if the column has a neutral localein which case the currency symbol is determined by the user's system
settings.

listdataformat.MaxCharacters

If the column has a maximum length, returns that length in characters. Otherwise, returns -1.

listdataformat.MaxNumber

If the column has a maximum value, returns that value. Otherwise, returns Nothing.

listdataformat.MinNumber

If the column has a minimum value, returns that value. Otherwise, returns Nothing.

listdataformat.ReadOnly

Returns True if the value in the column is a read-only; returns False if the value is not read-only.

listdataformat.Required

Returns True if the value in the column is a required field; returns False if the value is not required.

listdataformat.Type

Returns one of the following constant values indicating the type of data that the column reflects:

xlListDataTypeCheckbox xlListDataTypeChoice

xlListDataTypeChoiceMulti xlListDataTypeCounter

xlListDataTypeCurrency xlListDataTypeDateTime

xlListDataTypeHyperLink xlListDataTypeListLookup

xlListDataTypeMultiLineRichText xlListDataTypeMultiLineText

xlListDataTypeNone xlListDataTypeNumber

xlListDataTypeText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.6. Use the Lists Web Service
SharePoint Services includes the Lists Web Service for getting at shared lists and their data directly. The Lists Web
Service lets you perform tasks on the server that you cannot otherwise perform through Excel objects; you can use it
to:

Add an attachment to a row in a list

Retrieve an attachment from a row in a list

Delete an attachment

Delete a list from a SharePoint server

Look up a list GUID

Perform queries directly on the shared list

To use a web service from Visual Basic:

1. Install the web Services Toolkit from Microsoft at www.microsoft.com/downloads.

2. Close and restart Excel.

3. Open the Visual Basic Editor and select Web References from the Tools menu. Visual Basic displays the
Microsoft Office 2003 Web Services Toolkit dialog (Figure 14-8).

Figure 14-8. The Web Services Toolkit in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SharePoint Web Services reside in the _vti_bin folder of the SharePoint site. To use the Lists Web Service:

1. Display the Microsoft Office 2003 Web Services Toolkit as described earlier.

2. Select the Web Service URL option button and type the address of the address using this form:
http://sharepointURL/_vti_bin/lists.asmx.

3. Click Search. The toolkit should find the Lists Web Service and display it in the Search Results list.

4. Select the checkbox beside Lists in Search Results and click Add.

5. The toolkit generates a proxy class named clsws_Lists and adds it to the current project.

14.6.1. Authentication and Authorization

The SharePoint server must authenticate the Excel user before you can call any of the Lists Web Service methods. If
the user has not been authenticated, a "Maximum retry on connection exceeded" error occurs. In Visual Basic .NET or
C# .NET, you authenticate the user from code by creating a Credentials object for the user. For example, the following
.NET code passes the user's default credentials to a web service:

wsAdapter.Credentials = System.Net.CredentialCache.DefaultCredentials

Unfortunately, you can't do that directly in Excel. Instead, you must use one of the following techniques to connect to
the SharePoint server through Excel:

Update or refresh a worksheet list that is shared on the server.

Insert an existing SharePoint list on a worksheet. This can even be a dummy list placed on the server solely for
the purpose of establishing connections.

Navigate to the SharePoint server in code as described earlier in this chapter in "Share a List."

Any of these techniques displays a SharePoint authentication dialog box and establishes a user session for Excel.
Afterward, you can call Lists methods and they will be authorized using the current session.

14.6.2. Debugging Tip

One thing you will notice fairly quickly when using the Lists Web Service is that the error reporting is minimal. When a
method fails on the server side, you receive only a general error. To receive more detail, make the following
modification (shown in bold) to the clsws_Lists ListsErrorHander procedure:

Private Sub ListsErrorHandler(str_Function As String)
 If sc_Lists.FaultCode <> "" Then
 Err.Raise vbObjectError, str_Function, sc_Lists.FaultString & _
 vbCrLf & sc_Lists.Detail
 'Non SOAP Error
 Else
 Err.Raise Err.Number, str_Function, Err.Description
 End If
End Sub

Now errors will be reported with details from the server.

14.6.3. Add Attachments to a List

Excel does not directly support attachments to lists; however, you can use the Lists Web Service AddAttachment method
to add a file attachment to a row in a list, then use GetAttachmentCollection to retrieve attachments from within Excel.

For example, the following code attaches bitmaps of a pintle and a gudgeon to the Test List created earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the following code attaches bitmaps of a pintle and a gudgeon to the Test List created earlier:

Sub AddAttachments()
 Dim ws As Worksheet, src As String, dest As String
 Dim lws As New clsws_Lists
 Set ws = ActiveSheet
 ' Requires web reference to SharePoint Lists.asmx
 src = ThisWorkbook.Path & "\pintle.bmp"
 dest = lws.wsm_AddAttachment("Test List", "1", "pintle.bmp", FileToByte(src))
 src = ThisWorkbook.Path & "\gudgeon.bmp"
 dest = lws.wsm_AddAttachment("Test List", "2", "gudgeon.bmp", FileToByte(src))
End Sub

The AddAttachment method's last argument is an array of bytes containing the data to attach. To convert the image file to
an array of bytes, the preceding code uses the following helper function:

Function FileToByte(fname As String) As Byte()
 Dim fnum As Integer
 fnum = FreeFile
 On Error GoTo FileErr
 Open fname For Binary Access Read As fnum
 On Error GoTo 0
 Dim byt() As Byte
 ReDim byt(LOF(fnum) - 1)
 byt = InputB(LOF(fnum), 1)
 Close fnum
 FileToByte = byt
 Exit Function
FileErr:
 MsgBox "File error: " & Err.Description
End Function

14.6.4. Retrieve Attachments

Use the Lists Web Service GetAttachmentCollection method to retrieve an attachment from a list. The GetAttachmentCollection
method returns an XML node list that contains information about each attachment for the row. The following code
displays the gudgeon bitmap attached in the previous section:

Sub GetAttachment()
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Set xn = lws.wsm_GetAttachmentCollection("Test List", "2")
 ThisWorkbook.FollowHyperlink xn.Item(0).Text
End Sub

Notice that the returned XML node list is a collection since rows can have multiple attachments. Since the preceding
example attached only one file, this sample simply retrieves the first item from the node list. The Text property of this
item is the address of the attachment on the SharePoint server.

14.6.5. Delete Attachments

Finally, it is very simple to delete an attachment using the DeleteAttachment method:

Sub DeleteAttachment()
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 lws.wsm_DeleteAttachment "Test List", "2", _
 "http://www.excelworkshop.com/Lists/Test List/Attachments/2/gudgeon.bmp"
End Sub

Since DeleteAttachment requires the fully qualified address of the attachment, it is useful to save the address of each
attachment somewhere on the worksheet or to create a helper function to retrieve the address from the SharePoint
server as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server as shown here:

Function FindAttachment(ListName As String, ID As String) As String
 Dim lws As New clsws_Lists ' Requires Web reference to to SharePoint Lists.asmx
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Set xn = lws.wsm_GetAttachmentCollection(ListName, ID)
 FindAttachment = xn.Item(0).Text
End Function

14.6.6. Delete a SharePoint List

When you delete a shared list on an Excel worksheet, the SharePoint list remains on the server. To delete the
SharePoint list from Excel, use the DeleteList method as shown here:

Sub DeleteSharedList()
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 lws.wsm_DeleteList ("Test List")
End Sub

If you delete a SharePoint list but not the worksheet list that shares it, you will get an error when you attempt to
refresh or update the worksheet list. You can avoid this by unlinking the worksheet list after deleting the list from the
server.

14.6.7. Look Up a List GUID

The ListObjects Add method uses a GUID when inserting an existing SharePoint list into a worksheet. You can find this
GUID manually by looking on the SharePoint site, or you can use the GetListCollection method to look up the GUID by
name as shown here:

Function GetListGUID(listName As String) As String
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Dim root As IXMLDOMElement
 Dim ele As IXMLDOMElement
 Set xn = lws.wsm_GetListCollection
 Set root = xn.Item(0)
 For Each ele In root.childNodes
 If LCase(ele.getAttribute("Title")) = LCase(listName) Then
 GetListGUID = ele.getAttribute("Name")
 Exit Function
 End If
 Next
 GetListGUID = "" ' Return empty string if not found.
End Function

Looking at the preceding code, it may occur to you that you need to know a lot about the structure of the XML that the
Lists Web Service uses before you can accomplish much. It's easy to view an IXMLDOMElement during debugging by
printing it to the Immediate window as shown here:

Debug.Print root.xml

Unfortunately, what you get is a mass of text with no whitespace. To see the structure a little more clearly, you have to
use XML reader and writer objects to format the output. The following helper function does just that:

Function PrettyPrint(xml As String) As String
 Dim rdr As New SAXXMLReader ' Requires reference to Microsoft XML
 Dim wrt As New MXXMLWriter ' Requires reference to Microsoft XML
 Set rdr.contentHandler = wrt
 wrt.indent = True
 rdr.Parse (xml)
 PrettyPrint = wrt.output
End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now, to display the root element of the Lists collection, run the following line of code:

Debug.Print PrettyPrint(root.xml)

The output appears as shown in Figure 14-9.

Figure 14-9. Formatted XML is much easier to read than XML without whitespace

14.6.8. Perform Queries

In general, you don't need to perform queries through the Lists Web Service. Most of the operations you want to
perform on the list data are handled through the Excel interface or through the Excel list objects as described
previously.

However, advanced applicationsor especially ambitious programmersmay use the Lists Web Service to exchange XML
data directly with the SharePoint server. For instance, you may want to retrieve a limited number of rows from a very
large shared list. In this case, you can perform a query directly on the SharePoint list using the GetListItems method. For
example, the following code gets the first 100 rows from a shared list:

Sub QueryList()
 Dim lws As New clsws_Lists ' Requires web reference to SharePoint Lists.asmx
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Dim query As IXMLDOMNodeList
 Dim viewFields As IXMLDOMNodeList
 Dim rowLimit As String
 Dim queryOptions As IXMLDOMNodeList
 rowLimit = "100"
 Dim xdoc As New DOMDocument
 xdoc.LoadXml ("<Document><Query /><ViewFields />" & _
 "<QueryOptions /></Document>")
 Set query = xdoc.getElementsByTagName("Query")
 Set viewFields = xdoc.getElementsByTagName("Fields")
 Set queryOptions = xdoc.getElementsByTagName("QueryOptions")
 Set xn = lws.wsm_GetListItems("Test List", "", query, _
 viewFields, rowLimit, queryOptions)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The results are returned as XML. To see them, you can simply display the root node of the returned object as shown
here:

Debug.Print xn.Item(0).xml

The key to the preceding query is the XML supplied by the LoadXml method. You create conditional queries using the
Query element and determine the columns included in the results using the ViewFields element. Perhaps the simplest way
to create these queries is to write them as a text file in an XML editor (or Notepad), then load them from that file using
the Load method shown here:

xdoc.Load ("query.xml")

The query file takes this form:

<Document>
<Query>
 <OrderBy>
 <FieldRef Name="ID" Asending="FALSE"/>
 </OrderBy>
 <Where>
 <Eq>
 <FieldRef Name="Type" />
 <Value Type="Value">Wood</Value>
 </Eq>
 </Where>
</Query>
<ViewFields>
 <FieldRef Name="ID" />
 <FieldRef Name="Unit Price" />
 <FieldRef Name="Qty" />
</ViewFields>
<QueryOptions>
 <DateInUtc>FALSE</DateInUtc>
 <Folder />
 <Paging />
 <IncludeMandatoryColumns>FALSE</IncludeMandatoryColumns>
 <MeetingInstanceId />
 <ViewAttributes Scope="Recursive" />
 <RecurrenceOrderBy />
 <RowLimit />
 <ViewAttributes />
 <ViewXml />
</QueryOptions>
</Document>

The FieldRef elements sometimes use the internal SharePoint names to identify columnslists don't always use the titles
displayed in the columns as column names. You can get the internal column names by examining the list's XML. To see
the list's XML, use the GetList method as shown here:

Sub ShowListXML()
 Dim lws As New clsws_Lists
 Dim xn As IXMLDOMNodeList '
 Set xn = lws.wsm_GetList("Test List")
 Debug.Print PrettyPrint(xn(0).xml)
End Sub

More information about the Query, ViewFields, and QueryOptions elements is available in the Microsoft SharePoint SDK. See
the links at the end of this chapter for specific addresses.

The following sections describe the Lists Web Service methods in greater detail, providing syntax, return values, and
details for each method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.7. Lists Web Service Members
The Lists Web Service provides the following key members , covered in the following reference section:

AddAttachment AddList

DeleteAttachment DeleteList

GetAttachmentCollection GetList

GetListAndView GetListCollection

GetListItemChanges GetListItems

UpdateList UpdateListItems

wslists.AddAttachment (listName, listItemID, fileName,
attachment)

Adds a file attachment to a row in a SharePoint list. Returns the address of the attachment.

Argument Data type

Settings listName String

The name or GUID of the list. listItemID String

The ID of the row to attach the file to. fileName String

The name of the file to attach. This name is used to identify the attachment on the server. attachment Byte()

A byte array containing the file to attach. Uses base-64 encoding.

The ID of a row is not the same as the index of the row within the list. SharePoint assigns a unique ID to each row as it
is added. Since rows can be added and deleted throughout the life of the list, IDs may not be contiguous.

wslists.AddList (listName, description, templateID)

Creates a list on a SharePoint site. Returns an IXMLDOMNodeList object that contains a description of the list.

Argument Data type Settings

listName String The name of the list to create

description String A description of the list

templateID Integer A number identifying a list template to use (see following list)

SharePoint provides the following predefined templates:

Announcements 104 Contacts 105

Custom List 100 Custom List in Datasheet View 120

DataSources 110 Discussion Board 108

Document Library 101 Events 106

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form Library 115 Issues 1100

Links 103 Picture Library 109

Survey 102 Tasks 107

wslists.DeleteAttachment (listName, listItemID, url)

Deletes an attachment from a list row.

Argument Data type Settings

listName String The name or GUID of the list

listItemID String The ID of the row for which to delete the attachment

url String The address of the attachment on the SharePoint server

wslists.DeleteList (listName)

Deletes a list from the SharePoint server.

Argument Data type Settings

listName String The name or GUID of the list

wslists.GetAttachmentCollection (listName, listItemID)

Gets a list of the attachments for a list row. Returns an IXMLDOMNodeList containing the addresses of the attachments.

Argument Data type Settings

listName String The name or GUID of the list

listItemID String The ID of the row for which to retrieve the attachments

wslists.GetList (listName)

Gets a description of the SharePoint list. Returns an IXMLDOMNodeList containing the information SharePoint uses to
maintain the list.

Argument Data type Settings

listName String The name or GUID of the list

wslists.GetListAndView (listName, viewName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Gets a description of the SharePoint list including the view schema. Returns an IXMLDOMNodeList containing the
information SharePoint uses to display the list.

Argument Data type Settings

listName String The name or GUID of the list.

viewName String The GUID of the view. If omitted, GetListAndView uses the default view.

wslists.GetListCollection ()

Gets the names and GUIDs for all the lists on the site. Returns an IXMLDOMNodeList containing elements that describe
each list on the SharePoint site.

wslists.GetListItemChanges (listName, viewFields, since,
contains)

Gets changes made to the list since the specified date and time. Returns an IXMLDOMNodeList containing the results of the
query.

Argument Data type Settings

listName String The name or GUID of the list

viewFields IXMLDOMNodeList A list of XML ViewFields elements indicating the columns and order of columns to
return from the list

since String A Coordinated Universal Time (UTC) indicating the time after which you want to
retrieve changes

contains IXMLDOMNodeList An XML Contains element indicating a filter criterion to use when retrieving changes

wslists.GetListItems (listName, viewName, query, viewFields,
rowLimit, queryOptions)

Gets data from the rows in a list. Returns an IXMLDOMNodeList containing the results of the query.

Argument Data type Settings

listName String The name or GUID of the list.

viewName String The GUID of the view to use when retrieving rows. If omitted, uses the default view.

query IXMLDOMNodeList An XML Query element indicating a query to use when retrieving rows.

viewFields IXMLDOMNodeList A list of XML ViewFields elements indicating the columns and order of columns to
return from the list.

rowLimit String The maximum number of rows to return.

queryOptions IXMLDOMNodeList An XML QueryOptions element containing other elements used to set the properties of
the SPQuery object on the SharePoint server.

wslists.UpdateList (listName, listProperties, newFields,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wslists.UpdateList (listName, listProperties, newFields,
updateFields, deleteFields, listVersion)

Updates a list based on the specified field definitions and list properties. Returns an IXMLDOMNodeList describing the list
after changes are made and containing an element for every new, updated, or deleted row.

Argument Data type Settings

listName String The name or GUID of the list

listProperties IXMLDOMNodeList An XML List element that includes elements for the list properties to update

newFields IXMLDOMNodeList An XML Fields element containing a list of the new fields and their properties

updateFields IXMLDOMNodeList An XML Fields element containing a list of the changed fields and their changes

deleteFields IXMLDOMNodeList An XML Fields element containing a list of the deleted fields

listVersion IXMLDOMNodeList An XML Version element containing the version of the list

wslists.UpdateListItems (listName, updates)

Updates the specified items in a list on the current site.

Argument Data type Settings

listName String The name or GUID of the list

updates IXMLDOMNodeList An XML Batch element containing a description of the rows to update

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.8. Resources

To learn about Look here

In-depth coverage of
SharePoint Essential SharePoint (O'Reilly)

Free SharePoint trial site http://www.sharepointtrial.com

Office Web Services
Toolkit Search http://www.microsoft.com/downloads for "Office Web Services Toolkit"

Lists Web Service http://msdn.microsoft.com/library/en-us/spptsdk/html/soapcLists.asp

DOMDocument http://msdn.microsoft.com/library/en-us/xmlsdk/htm/xml_obj_overview_20ab.asp

IXMLDOMNodeList http://msdn.microsoft.com/library/en-us/xmlsdk30/htm/xmobjxmldomnodelist.asp

MXXMLWriter and
SAXXMLReader

http://msdn.microsoft.com/library/en-
us/xmlsdk/htm/sax_devgd_hdi_usemxxmlwriter_7cdj.asp

Query element http://msdn.microsoft.com/library/en-us/spptsdk/html/tscamlquery.asp

ViewFields element http://msdn.microsoft.com/library/en-us/spptsdk/html/tscamlviewfields.asp

QueryOptions element http://msdn.microsoft.com/library/en-us/spptsdk/html/tscSPQuery.asp

Batch element http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/spsdk11/caml_schema/spxmlelbatch.asp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15. Working with XML
As you may have realized from the previous chapter, lists are one of the ways Excel handles XML data. Shared lists are
stored as XML, SharePoint exchanges updates via XML Web Services, and lists can import and export XML.

The Excel features covered in this chapter apply to Office 2003 for Windows. Earlier
versions and Macintosh versions of Office do not support these features, although Office
2002 does support saving workbooks in XML format.

I didn't address XML directly in the preceding chapter because lists are just one of the ways Excel handles XML. In this
chapter, I show the different ways you can work with XML in Excel. Specifically, I show you how to:

Save a workbook as XML

Transform XML from a workbook into other forms of output

Transform a non-Excel XML file into an XML spreadsheet

Import XML to a list

Export XML from a list

Respond to XML import and export events

Program with the XML map objects

This chapter contains reference information for the following objects and their related collections: XmlDataBinding, XmlMap,
XmlNamespace, XmlSchema, and XPath.

Code used in this chapter and additional samples are available in ch15.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.1. Understand XML
Simply put, XML is a way to store data as plain text. This is useful because it allows all sorts of hardware and software
to exchange data and, more importantly, understand that data.

Excel 2003 supports XML at two levels:

The XML spreadsheet file format lets you save and open Excel workbooks stored as plain text in XML format.

Lists and XML maps let you import and export XML to a range of cells in a worksheet.

The concept behind XML has been around for a very long time. The core idea is that if you store content in plain text,
add descriptive tags to that content, then describe those tags somewhere, you enable that content to be shared across
applications, networks, and hardware devices in some very interesting ways.

XML is the standard for tagging content and navigating among those tags. XML has related standards for describing
tags and transforming documents. All of these standards are maintained by W3C and are published at www.W3C.org.
There are quite a few acronyms associated with XML, and the following tables will help you understand them. Table 15-
1 lists the XML language standards .

Table 15-1. XML language standards
Acronym Full name Use to

XML Extensible Markup Language Describe data as plain text documents.

XPath XML Path Language Define parts of an XML document and navigate between those
parts.

DTD Document Type Definition Define the tags used to identify content in an XML document.

XSD XML Schema Definition An XML-based version of DTD. XSD is the successor to DTD.

XSL
/XSLT

XML Style Sheet Language
(Transformation)

Transform XML documents into other documents, such as HTML
output.

Table 15-2 describes the various ways you can access XML data from code and transmit XML across networks.

Table 15-2. Supporting standards for XML
Acronym Full name Description

DOM Document Object Model API for manipulating XML documents

SAX Simple XML API Another API for manipulating XML documents

SOAP Simple Object Access
Protocol

Defines the structure of XML data transmitted over a network and how to
interpret that structure as it is received

WSDL Web Service Description
Language Describes services that can be invoked across a network through SOAP

The last two items in Table 15-2 concern web services , which are a way to execute programs over the Internet and to
receive responses from those programs.

I don't have space here to provide tutorials on how to use the items listed in the tables, but fortunately there are some
very good books and online information available about each. See "Resources" at the end of this chapter for pointers to
some excellent sources. Excel programmers have such a wide range of XML experience among Excel programmers that
I leave the process of selecting from among these sources to you. However, to get the most out of this chapter, you will
need to be familiar with at least XML, XPath, XSL, and XSD.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.2. Save Workbooks as XML
In Excel 2003, you can now save a workbook as an XML spreadsheet or as XML Data from the Save As dialog box
(Figure 15-1).

Figure 15-1. Saving a workbook as XML

Choosing the XML Spreadsheet file type saves the workbook in an XML file that uses the Microsoft Office schema.
Choosing the XML Data file type saves the workbook file in an XML file that uses a schema you provide through an XML
map. Since it's a good idea to start simply, I'll discuss the XML spreadsheet format here and the XML data format later
in this chapter in "Use XML Maps."

If you save a workbook as an XML spreadsheet, you can open the file in Notepad, edit it, and still reopen/edit it in Excel
laterprovided you haven't broken any of the rules in the file's schema. A simple, default workbook includes a lot of
items that aren't required by the Office schema and you can simply delete those items to see the simplified "core" of an
XML spreadsheet as shown here:

<?xml version="1.0"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:html="http://www.w3.org/TR/REC-html40"
 xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">
 <Worksheet ss:Name="Sheet1">
 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="2" x:FullColumns="1"
 x:FullRows="1">
 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="54.75"/>
 <Row>
 <Cell><Data ss:Type="Number">1</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="Number">1</Data></Cell>
 <Cell><Data ss:Type="Number">2</Data></Cell>
 <Cell><Data ss:Type="Number">3</Data></Cell>
 </Row>
 <Row>
 <Cell><Data ss:Type="Number">4</Data></Cell>
 <Cell><Data ss:Type="Number">5</Data></Cell>
 <Cell><Data ss:Type="Number">6</Data></Cell>
 </Row>
 </Table>
 </Worksheet>
 </Workbook>

The preceding XML has these notable features:

The mso-application processing instruction tells the Microsoft Office XML Editor (MsoXmlEd.Exe) to open the file
with Excel.

Office uses numerous namespace definitions to qualify the names used in its XML documents.

The path to data on a spreadsheet is Workbook/Worksheet/Table/Row/Cell/Data. The Cell node is used to
contain formulas, formatting, and other information as attributes.

The Column element is not a parent of the Row or Cell elements as you might expect. Instead, it is mainly used
to set the width of the columns on the worksheet.

You can experiment with the XML Spreadsheet by making changes in Notepad and seeing the results. For instance if
you change the mso-application processing instruction to:

<?mso-application progid="Word.Document"?>

Now, the spreadsheet will open in Word 2003 if you double-click on the file in Solution Explorer. Change the progid to
"InternetExplorer.Application" or delete the processing instruction and Windows will open the file as XML rather than as an
Excel spreadsheet in Internet Explorer.

The mso-application processing instruction is ignored if you don't have Office 2003 installed. So if you post an XML
spreadsheet on a network, clients that don't have Office 2003 will see that file as XML rather than as a spreadsheet.

15.2.1. Data Excel Omits from XML

When Excel saves a workbook as XML, it omits these types of data:

Charts, shapes, and OLE objects

Macros

Other types of data (numbers, text, formulas, comments, validation, formatting, sheet layout, window and pane
positioning, etc.) are preserved, however. It is best to think of XML spreadsheets as vehicles for data, rather than as
full-featured workbooks.

To preserve charts, shapes, OLE objects, or macros, save the workbook file first in Excel workbook format, then in XML
spreadsheet format as shown here:

ThisWorkbook.SaveAs , xlXMLSpreadsheet
ThisWorkbook.SaveAs , xlWorkbookNormal

By saving the file as a normal workbook last, you leave the current file type as .xls so if the user clicks Save, the full
version of the file is saved. Excel keeps the full workbook in memory even after you save it as an XML spreadsheet, so
you don't lose data between the two saves. You are, however, prompted several timesfirst to overwrite existing files
since you are using SaveAs, then to note that XML spreadsheets do not save contained objects. You can eliminate the
first prompt by deleting the existing file before each step of the save as shown next. You can eliminate the second
prompt only by omitting nonsaved items (such as macros) from the workbook:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prompt only by omitting nonsaved items (such as macros) from the workbook:

' Requires reference to Microsoft Scripting Runtime
Dim fso As New FileSystemObject
xlsName = ThisWorkbook.fullname
base = fso.GetBaseName(xlsName)
xmlName = ThisWorkbook.path & "\" & base & ".xml"
fso.DeleteFile (xmlName)
ThisWorkbook.SaveAs xmlName, xlXMLSpreadsheet
fso.DeleteFile (xlsName)
ThisWorkbook.SaveAs xlsName, xlWorkbookNormal

The preceding code saves two versions of the workbook: one full version with an .xls file type and one XML spreadsheet
version with an .xml file type.

15.2.2. Transform XML Spreadsheets

XML spreadsheets provide Excel data in a format that can be easily used by other applications or transformed into
presentation documents, such as HTML web pages. For either task you often need to modify the content of the XML
spreadsheet and the best way to do that is with XSLT.

You can use XSLT to perform a wide variety of transformations, such as:

Extract specific items from a spreadsheetsuch as retrieving only worksheets containing data

Transform the spreadsheet into HTML

Make global changes to the spreadsheet

Highlight significant items, such as high or low outlier numbers

To transform an XML spreadsheet, follow these general steps:

1. Create an XSLT file to perform the transformation using Notepad or some other editor.

2. Perform the transformation in code, from the command line, or by including a processing instruction.

3. Save the result.

Table 15-3 compares the three different ways to perform a transformation. The sections that follow describe each of the
techniques in more detail.

Table 15-3. Methods to transform XML spreadsheet
Transformation Use to Advantages Disadvantages

Code
Automatically generate
the result from within
Visual Basic

Can be performed with a single
click by the user or in response to
an event.

Requires Excel to be running.

Command line Perform batch
transformations

Transformed file is generally
smaller than source file.

Uses command-line interface; utility
must be downloaded.

Processing
instruction

Dynamically transform
the file when it is
viewed

Changes to the XSLT are reflected
automatically; underlying source is
preserved.

File is generally larger and displays
more slowly since it is transformed
on the client.

15.2.3. Create XSLT for an XML Spreadsheet

XSLT is a simple language containing looping, decision-making, evaluation, branching, and functional statements. It
follows the same conventions as XML, and its sole purpose is to interpret and transform valid XML documents into some
other text.

Excel qualifies the names of the XML nodes it creates with namespaces from the Microsoft Office schemas. An Excel
workbook defines the following namespaces:

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:html="http://www.w3.org/TR/REC-html40"
 xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">

Notice that the default namespace (xmlns, highlighted in bold) is "urn:schemas-microsoft-com:office:spreadsheet". This is the
same as the namespace for the ss prefix (xmlns:ss, also in bold). You use this ss namespace prefix when referring to
workbook nodes in your XSLT file.

Different nodes in the XML spreadsheet use different default namespaces. For instance, the DocumentProperties node uses
the following default namespace:

<DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">

Therefore, when referring to the DocumentProperties node or its children, define a prefix for the namespace urn:schemas-
microsoft-com:office:office in your XSLT and use that prefix to refer to those nodes. It is convenient to copy the namespace
definitions from the XML spreadsheet worksheet node to your XSLT stylesheet. For instance, the following XSLT
example uses the copied ss namespace to locate nodes in an XML spreadsheet:

<?xml version="1.0"?>
<!-- Strip.xslt transforms an XML spreadsheet to its bare essentials -->
<xsl:stylesheet version="1.0"
 xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet">
 <xsl:output method="xml" indent="yes" />
 <xsl:template match="ss:Workbook">
 <xsl:processing-instruction name="mso-application">progid="Excel.Sheet"
</xsl:processing-instruction>
 <xsl:element name="ss:Workbook">
 <xsl:copy-of select="ss:Styles" />
 <xsl:for-each select="ss:Worksheet">
 <xsl:if test="count(ss:Table/ss:Row/ss:Cell/ss:Data) > 0">
 <xsl:copy-of select="." />
 </xsl:if>

 </xsl:for-each>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

The preceding transformation copies worksheets that contain data and formatting styles used by cells in those
worksheets into a new XML spreadsheet file. Empty worksheets, document properties, and other items are simply
omitted. Excel still recognizes the resulting output as an XML spreadsheet since it conforms to the Excel schema and
contains the mso-application processing instruction.

To see how this transformation works:

1. Create a workbook in Excel and enter some data in its worksheets.

2. Save the workbook as an XML spreadsheet named TestStrip.xml.

3. Process the XML spreadsheet using the sample file XSLT. Ways to process the XML file are described in the
following sections.

4. In Windows Explorer, double-click on the output file. Excel will display the transformed XML as shown in Figure
15-2.

Figure 15-2. An XML spreadsheet with empty worksheets removed by a
transformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transformation

15.2.4. Transform in Code

As mentioned previously, there are several ways to transform XML. Transforming XML from Visual Basic code uses the
Microsoft XML object library to call the Microsoft XML Parser (msxml4.dll). The Microsoft XML object library also
provides a means to create new XML files; navigate between nodes; copy, delete, and add nodes; and more.

To perform a transformation in code , follow these steps:

1. In Visual Basic, add a reference to the Microsoft XML object library. The Microsoft XML object library provides
the DOMDocument object, which is used to load, transform, and save XML documents.

2. In code, create two instances of DOMDocument objects from the Microsoft XML object library.

3. Load the XML spreadsheet in the first DOMDocument object.

4. Load the XSLT file in the second DOMDocument object.

5. Use the transformNode method of the first DOMDocument object to perform the transformation.

For example, the following code loads the TestStrip.xml XML spreadsheet and Strip.xslt transformation, processes the
transformation, and saves the result:

Sub Strip()
 ' Requires reference to Microsoft XML
 Dim xdoc As New DOMDocument, xstyle As New DOMDocument
 Dim xml As String
 xdoc.Load (ThisWorkbook.path & "\TestStrip.xml")
 xstyle.Load (ThisWorkbook.path & "\Strip.xslt")
 xml = xdoc.transformNode(xstyle)
 SaveFile xml, "Out.xml"
End Sub

Sub SaveFile(content As String, fileName As String)
 ' Requires reference to Microsoft Scripting Runtime
 Dim fso As New FileSystemObject, strm As TextStream
 fileName = ThisWorkbook.path & "\" & fileName
 If fso.FileExists(fileName) Then fso.DeleteFile (fileName)
 Set strm = fso.CreateTextFile(fileName)
 strm.Write (content)
 strm.Close
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The preceding SaveFile helper procedure is necessary because the transformNode method returns a string containing the
XML created by the transformation. Once the XML is saved, you can open the file by double-clicking on it in Windows
Explorer or by using the following code:

Application.Workbooks.Open ("out.xml")

15.2.5. Transform from the Command Line

You can also perform transformations using the command-line transformation utility (msxsl.exe). msxsl.exe is available
from Microsoft for free in the MSDN download area. It is a small shell executable that simply calls the Microsoft XML
Parser to perform the transformation.

For example, the following command line transforms the TestStrip.xml file using the Strip.xslt transformation shown
previously and writes the output to Out.xml:

msxsl TestStrip.xml Strip.xslt -o Out.xml

The output is the same as that created by using the DOMDocument object's transformNode method shown in the preceding
section. The command-line utility allows you to automate transformations using batch files rather than Visual Basic
code.

15.2.6. Transform with Processing Instructions

Another way to perform a transformation is to include an xml-stylesheet processing instruction in the XML spreadsheet.
The mso-application instruction supersedes other instructions, so you must replace that processing instruction in order to
have a browser perform the translation. The following XML shows the changes you must make to the XML spreadsheet
file: deletions are shown in strikethrough, and additions are shown in bold:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="worksheet.xslt"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
...

Now when a user opens the XML file, the file is transformed and displayed in the browser as shown in Figure 15-3.

The transformation shown in Figure 15-3 converts cells in a worksheet to HTML table elements. It also displays
document properties of the workbook. The transformation is performed by the following XSLT fragment:

<xsl:template match="ss:Workbook">
 <html>
 <body>
 <h1>Display XML Spreadsheets as HTML Tables</h1>
 Author:
<xsl:value-of select="o:DocumentProperties/o:Author" />

 LastSaved:
<xsl:value-of select="o:DocumentProperties/o:LastSaved" />

 Number of worksheets:
 <xsl:value-of select="count(ss:Worksheet)" />
 <xsl:for-each select="ss:Worksheet">
 <h2><xsl:value-of select="@ss:Name" /></h2>
 <table border="1" frame="box">
 <xsl:for-each select="ss:Table/ss:Row">
 <tr>
 <xsl:for-each select="ss:Cell/ss:Data">
 <td><xsl:value-of select="." /></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:for-each>
 </body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </body>
 </html>

Figure 15-3. Transforming an XML spreadsheet in the browser

The advantage of using a processing instruction to perform the transformation is that you don't alter the underlying
content of the spreadsheet. You can switch the file back to an Excel XML spreadsheet simply by removing the xml-
stylesheet instruction and replacing the mso-application instruction.

The following XSLT fragment shows a simple transformation that replaces the mso-application instruction with an xml-
stylesheet instruction:

<xsl:template match="ss:Workbook">
 <xsl:processing-instruction name="xml-stylesheet">
type="text/xsl" href="Worksheet.xslt"</xsl:processing-instruction>
 <xsl:copy-of select="." />
</xsl:template>

To reverse the previous transformation, transforming the file back into an XML spreadsheet, simply change the
xsl:processing-instruction element as shown here:

<xsl:processing-instruction name="mso-application">
progid="Excel.Sheet"</xsl:processing-instruction>

When a user requests an XML file that includes an xml-stylesheet processing instruction, the file is downloaded and the
transformation is processed on the user's machine. That takes more time than if the XML file had already been
transformed; however, any changes to the XSLT are automatically reflected since the transformation is performed
dynamically.

15.2.7. Transform XML into an XML Spreadsheet

You can also use XSLT or other tools to transform XML files created outside of Excel into XML spreadsheets. In this way,
you can create native Excel documents from your own applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you can create native Excel documents from your own applications.

For instance, the following abbreviated XML represents a customer order created outside of Excel:

<?xml version="1.0"?>
<!-- SimpleOrder.xml -->
<Orders>
<Order>
 <ID>1002</ID>
 <BillTo>
 <Address>
 <Name>Joe Magnus</Name>
 <Street1>1234 Made Up Place</Street1>
 <City>Somewhere</City>
 <State>FL</State>
 <Zip>33955</Zip>
 </Address>
 </BillTo>
 <ShipTo>
 <Address>...</Address>
 </ShipTo>
 <Line>
 <Number>20</Number>
 <Description>Mahogany Tiller</Description>
 <Quantity>1</Quantity>
 <UnitPrice>95.00</UnitPrice>
 <Taxible>Yes</Taxible>
 <Total>95.00</Total>
 </Line>
 <Line>...</Line>
 <Total>
 <SubTotal>540.00</SubTotal>
 <Tax>3.24</Tax>
 <Due>543.24</Due>
 </Total>
</Order>
</Orders>

To convert this XML into an XML spreadsheet, create XSLT that creates the following nodes and processing instruction:

1. The mso-application processing instruction that identifies this file as an XML spreadsheet.

2. A root workbook node that defines the Microsoft Office namespaces.

3. A styles node defining the cell formatting to display in the worksheet. Styles include number formats, such as
currency, percentage, or general number.

4. A worksheet node for each order.

5. Column nodes to set the width of the columns on the worksheet.

6. Row, cell, and data nodes for the order items you want to include in the worksheet.

Some of the preceding steps involve extensive XSLT, so it is convenient to break the steps into separate templates that
are called or applied by a root template, as shown here:

<!-- OrderToExcel.xslt transforms an order XML file into an Excel XML spreadsheet -->
<xsl:template match="/Orders">
 <xsl:processing-instruction name="mso-application">progid="Excel.Sheet"
</xsl:processing-instruction>
 <xsl:element name="Workbook"
namespace="urn:schemas-microsoft-com:office:spreadsheet" >
 <xsl:call-template name="AddStyles" />
 <xsl:for-each select="Order">
 <!-- Create a worksheet for each order -->
 <xsl:element name="Worksheet">
 <!-- Name the worksheet -->
 <xsl:attribute name="ss:Name">
 <xsl:value-of select="BillTo/Address/Name" />
 <xsl:value-of select="ID" />
 </xsl:attribute>
 <xsl:element name="Table">
 <xsl:call-template name="AddColumns" />
 <!-- Add bill to headings -->
 <xsl:apply-templates select="BillTo" />
 <!-- Add send to headings -->
 <xsl:apply-templates select="ShipTo" />
 <!-- Add column headings -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Add column headings -->
 <xsl:call-template name="AddColumnHeads" />
 <xsl:for-each select="Line">
 <xsl:apply-templates select="." />
 </xsl:for-each>
 <xsl:call-template name="AddTotals" />
 </xsl:element>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
</xsl:template>

The preceding template uses xsl:call-template to call named templates when the content output does not depend on a
specific node. A good example of this is the AddStyles template, which creates the cell formats used in the worksheet:

 <xsl:template name="AddStyles">
 <Styles xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet">
 <Style ss:ID="ColHead">
 <Alignment ss:Horizontal="Center" ss:Vertical="Bottom"/>
 <Borders>
 <Border ss:Position="Bottom" ss:LineStyle="Continuous" ss:Weight="1"/>
 </Borders>

 </Style>
 <Style ss:ID="ItemHead">
 <Alignment ss:Horizontal="Right" ss:Vertical="Bottom"/>

 </Style>
 <Style ss:ID="Currency">
 <NumberFormat ss:Format="Currency"/>
 </Style>
 </Styles>
 </xsl:template>

Here I just insert the Excel style elements since they are static and it is fairly easy to cut/paste the style elements
created by Excel into this template. This is also true for the columns element created by the AddColumns template (not
shown).

The main work is performed by the following template, which is applied to each line in order to create the rows in the
worksheet:

<xsl:template match="Line">
 <xsl:element name="Row">
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Number" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">String</xsl:attribute>
 <xsl:value-of select="Description" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Quantity" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:attribute name="ss:StyleID">Currency</xsl:attribute>
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="UnitPrice" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:attribute name="ss:StyleID">Currency</xsl:attribute>
 <xsl:attribute name="ss:Formula">=RC[-2]*RC[-1]
 </xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsl:attribute>
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Total" />
 </xsl:element>
 </xsl:element>
 </xsl:element>
</xsl:template>

The preceding template transforms a line node from an order into a row node in a worksheet. Two important things to
note are shown in bold:

First, notice that you format cells using the StyleID attribute of the cell node. This formatting includes aspects
programmers sometimes consider data type, such as whether a number is currency, percentage, date, or time.
It's easy to confuse this with the type attribute of the data node.

Second, you include calculations using the Formula attribute of the cell node. The formula shown here uses
row/column notation, although you can use absolute or named ranges as well.

Other templates convert the BillTo and ShipTo nodes into rows and add column heads and totals. Rather than reproduce
those templates here, please refer to the OrderToExcel.xslt sample file. You can use that file as a starting point for
converting your own XML files into XML spreadsheets.

Once processed, the transformed orders can be opened in Excel, as shown in Figure 15-4.

Figure 15-4. XML order information transformed into an XML spreadsheet

One of the beauties of creating your own transformations is that repeating items, such as multiple order nodes, can be
mapped to items other than rows. In this sample case, each order becomes a separate worksheet, which then gets a
unique name (see the worksheet tabs in Figure 15-4).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3. Use XML Maps
If all of the XSLT in the preceding sections intimidated you, relax a bit. Excel also provides graphical tools for importing
XML into workbooks through XML maps . To see how this works, follow these steps:

1. Open the sample file SimpleOrder.xml in Excel using the regular File Open menu item. Excel displays the
Open XML dialog box (Figure 15-5).

Figure 15-5. Step 1: open the XML file

2. Select the "Use the XML source task pane" option and click OK. Excel creates a new, blank workbook and
informs you that the file did not contain a schema, so Excel will infer one from the XML. Click OK. Excel displays
the XML map it created in the task pane (Figure 15-6).

Figure 15-6. Step 2: create an XML map

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Import XML nodes into a worksheet by selecting the nodes in the XML map and then dragging them onto a
worksheet. Excel creates these new items as a list, so use multiselect to include multiple items in one list as
shown in Figure 15-7.

4. Click Refresh XML Data to import the data from the XML file into the list as shown in Figure 15-8.

This tutorial works well for the summary information imported here. The order ID, name, subtotal, tax, and due nodes
occur once per order. You can sort the list, filter it to see only a specific order ID, and so on. However, if you want to
include the detail lines of the order, the list becomes hard to read, as shown in Figure 15-9.

Figure 15-7. Step 3: drag nodes from the XML map to a list

Figure 15-8. Step 4: import data into the list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-9. Mapped XML with summary and detail combined

Ideally, you should display the line nodes in a separate list linked to each order to create a summary/detail view. To
add a detail view to the preceding example, follow these steps:

1. Drag the line node from the XML map to a cell in the same start row but one or more columns away from the
summary list. Excel creates a new list for all the items in the line node.

2. Click Refresh XML Data to import the line items onto the worksheet. Excel displays all of the line items in the
file.

3. Filter the summary list to display only one order. Excel automatically filters the summary list to display the line
items in that order, as shown in Figure 15-10.

Excel links the summary and detail lists only if they start on the same row. Lists that start on different rows are filtered
independently. The two lists must be separated by at least one column. If they are adjacent, Excel merges the XML into
one list.

15.3.1. Limitations of XML Maps

The preceding tutorial demonstrates a subtle limitation of XML mapsoptional nodes, such as Street2 in
SimpleOrder.xml, are sometimes not imported. This occurs because Excel generates the schema from the first instance
of each node it encounters.

Figure 15-10. Mapped XML with summary/detail lists

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-10. Mapped XML with summary/detail lists

To correct this, add an empty Street2 node to the first address node as shown next and open the XML as a new
workbook:

<Address>
 <Name>Joe Magnus</Name>
 <Street1>1234 Made Up Place</Street1>
 <Street2 />
 <City>Somewhere</City>
 <State>FL</State>
 <Zip>33955</Zip>
</Address>

You can't update an existing XML map; you can only create new ones and delete existing ones from within Excel. This
means that lists created from XML maps must be re-created any time the source XML schema changes.

Since XML maps are row-based, you can't conditionally omit optional nodes as you can with XSLT. For example, the
sample transformation OrderToExcel.xslt omits the optional Street2 node if it is empty, using the following xsl:if
element:

<xsl:if test="./Address/Street2 != ''">
 <xsl:element name="Row">
 <xsl:element name="Cell" />
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">String</xsl:attribute>
 <xsl:value-of select="Street2" />
 </xsl:element>
 </xsl:element>
 </xsl:element>
</xsl:if>

You can't do that type of conditional processing with XML maps.

Another limitation is that calculated elements, such as total, import from XML as data values rather than as formulas.
The sample OrderToExcel.xslt creates formulas to calculate line item totals as shown here:

<xsl:element name="Cell">
 <xsl:attribute name="ss:StyleID">Currency</xsl:attribute>
 <xsl:attribute name="ss:Formula">=RC[-2]*RC[-1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:attribute name="ss:Formula">=RC[-2]*RC[-1]
 </xsl:attribute>
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Total" />
 </xsl:element>
</xsl:element>

Such calculations must be created manually on the worksheet when using XML maps.

15.3.2. Use Schemas with XML Maps

When Excel imports an XML file that does not reference an XML schema, it infers a schema from the nodes in the XML
file. The preceding section explains one of the limitations of inferring a schemaoptional nodes are sometimes omitted
from the resulting XML map.

Another solution to this problem is to include a schema with your XML file. For example, the following XML fragment
references a schema for the SimpleOrder.xml file:

<Orders xmlns="http://www.mstrainingkits.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.mstrainingkits.com SimpleOrder.xsd">

When Excel imports an XML file that references a schema, it copies that schema into the workbook. If the XML is valid
according to that schema, you can drag nodes from the XML map onto the worksheet to create lists and import data as
shown previously.

If the XML is not valid for the schema, however, no data will appear in the lists you create. Excel does not automatically
validate XML against schemas or display errors if the XML is invalid. To validate XML within Excel:

1. From the Data menu, choose XML then choose XML Map Properties. Excel displays the XML Map Properties
dialog box (Figure 15-11).

2. Select "Validate data against schema for import and export" and click OK to close the dialog box.

Figure 15-11. Validating XML

Now, Excel will display an error if the XML doesn't conform to the schema. Excel checks the XML against the schema
whenever the XML data is imported, exported, or refreshed. You can get detailed information about validation errors by
clicking Details on the XML Import Error dialog box as shown in Figure 15-12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-12. Seeing detailed XML validation errors when refreshing a list

Unfortunately, Excel copies the referenced XML schema into the XML map the first time it loads an XML file rather than
referencing the schema as an external file. Subsequent changes to the schema do not affect the XML map in the
workbook. Again, you can only add or delete XML maps; you can't update them from Excel.

15.3.3. Export XML Data Through XML Maps

Once you have created lists containing XML data, you can export that data to a new XML file from Excel two ways:

By saving the workbook using the XML Data file type

By clicking the Export XML toolbar button or selecting Export from the Data menu's XML submenu

In either case, you can export data using only one XML map at a time. If a workbook contains more than one XML map,
you are prompted to choose the map to use, as shown in Figure 15-13.

Figure 15-13. Exporting XML uses only one XML Map at a time

When Excel exports a list as XML, it uses the schema stored in the workbook to generate XML that matches the XML
source file that the list was created from. However, Excel omits the following items:

Schema definitions

Processing instructions

XML nodes not included in the list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, if you create a list from SimpleOrder.xml containing only names and totals, only those elements are saved
when you export the list as XML (shown here):

<Orders>
 <Order>
 <BillTo>
 <Address>
 <Name>Joe Magnus</Name>
 </Address>
 </BillTo>
 <Total>
 <Due>572.4</Due>
 </Total>
 </Order>
 <Order>...</Order
</Orders>

In the preceding XML, the original address and order information is omitted because it wasn't included in the list. From
Excel's point of view, the data doesn't exist if it doesn't reside on a worksheet somewhere.

15.3.4. Approaches to Using XML Maps

The limitations that come with XML maps imply a set of approaches when using them with XML. You can't just assume
that you will be able to successfully import, edit, and export arbitrary XML data using Excel. XML maps are best suited
for XML structured a certain way.

For example, the preceding SimpleOrder.xml sample requires some changes if you want to be able to view and edit
orders via XML maps. Specifically:

Each order should be stored in a separate file. XML maps can't export lists of lists, so including multiple orders,
each with multiple line items, prevents you from exporting the orders.

Line items must be presented as a separate list. Simply importing an order as a single list results in
denormalized data that can't be exported from the list.

These changes and other recommendations are explained in the following sections.

15.3.4.1. Avoid lists of lists

Excel can import XML that contains lists of lists, but it can't export it. In XML schema terminology, a list is an element
with a maxOccurs attribute greater than one. Therefore, XML using the following schema can't be exported from an XML
map (significant attributes are in bold):

<xsd:element minOccurs="0" maxOccurs="unbounded" nillable="true" name="Order"
form="qualified">
 <xsd:complexType>
 <xsd:sequence minOccurs="0"> ... </xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="unbounded" nillable="true"
 name="Line" form="qualified">
 <xsd:complexType>
 <xsd:sequence minOccurs="0"> ...</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:complexType>
</xsd:element>

You can solve this problem by breaking the source XML into smaller pieces. In the case of SimpleOrder.xml, this means
creating a separate file for each order node. The XML map's root node then becomes Order, as shown in Figure 15-14.

Figure 15-14. Break XML into smaller files to avoid lists of lists

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-14. Break XML into smaller files to avoid lists of lists

You can organize the new, smaller files into a separate folder or by using a unique file extension, such as ".ord". For
example, the following code allows the user to select an order file to open in Excel:

Sub cmdOpenOrder()
 ' Get a filename to open. Use ".ord" extension for orders.
 Dim fname As String
 fname = Application.GetOpenFilename("Orders (*.ord),*.ord", 1, "Open an Order", _
 "Open", False)
 If fname <> "" Then
 ThisWorkbook.XmlMaps("Order_Map").Import (fname)
 End If
End Sub

Using the unique .ord file extension organizes orders as shown in Figure 15-15. Excel and XML don't care what file
extension you use when importing or exporting files.

Figure 15-15. Organizing XML files using a unique file extension

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-15. Organizing XML files using a unique file extension

15.3.4.2. Avoid denormalized data

If you drag the order node shown in Figure 15-14 onto a worksheet, you get a list containing denormalized data, as
shown in Figure 15-16.

Denormalized means that nonrepeating data elements appear multiple times on the worksheet. A user could change
one of the nonrepeating items, such as Name, on one row, making that item inconsistent with other rows that are
supposed to show the same data. There is no way for Excel to reconcile this inconsistency, so the list can't be exported.

To avoid this, create nonrepeating and repeating nodes in separate lists, as shown in Figure 15-17.

15.3.4.3. Create an XML schema

Allowing Excel to infer a schema for an XML map is fine if the nodes don't contain optional items or if the first
occurrence of each node contains all of its possible children. Otherwise, Excel may omit items from the schema it
creates and some nodes won't appear in the XML map.

You can solve this problem by creating an XML schema and referencing that schema in the XML file you import. Excel
copies the referenced XML schema into the XML map when the XML map is created.

Figure 15-16. A list with denormalized data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-17. Put repeating and nonrepeating data items in separate lists to avoid
denormalized data

Having an external XML schema is also useful for making changes to the XML map. As mentioned earlier, you can't
update an XML map inside of Excel; you can, however, modify the XML schema stored in the workbook by editing it
outside of Excel. To edit an XML map schema:

1. In Excel, save the workbook as an XML spreadsheet.

2. Close the workbook in Excel.

3. Open the XML spreadsheet in an XML editor. It is a good idea to use a full-featured XML editor here because the
schema generated by Excel does not include whitespace such as tabs and line feeds.

4. Edit the items in the map info/schema node as needed, or simply replace the entire schema node with the
contents of your external schema definition file.

5. Save the file.

6. Open the workbook in Excel and click Refresh XML Data to verify that the schema is still valid.

The XML spreadsheet nodes for the schema appear as follows. The nodes to edit or replace are highlighted in bold.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XML spreadsheet nodes for the schema appear as follows. The nodes to edit or replace are highlighted in bold.

<x2:MapInfo x2:HideInactiveListBorder="false"
x2:SelectionNamespaces="xmlns:ns1='http://www.mstrainingkits.com'">
<x2:Schema x2:ID="Schema1"
x2:Namespace="http://www.mstrainingkits.com">
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.mstrainingkits.com"
 xmlns:ns0="http://www.mstrainingkits.com">
 <xsd:element nillable="true" name="Order">
 ...
 </xsd:element>
 </xsd:schema>
 </x2:Schema>
</x2:MapInfo>

15.3.4.4. Include all nodes if exporting

When you export XML, Excel takes the data found in mapped items on worksheets, applies the XML map, and generates
XML nodes defined in the XML map's schema. If some of the XML map's data nodes are not mapped, that data is
omitted from the exported XML.

In some cases, this is what you want. But if you are trying to read and write an XML file without losing content, you
need to make sure that all elements from the XML map appear somewhere on the worksheet (even if they are hidden).

If a node contains a calculated value, you will need to perform the calculation in a nonmapped cell, then copy that value
to the mapped cell before exporting. The Save Order button in Figure 15-17 copies the calculated subtotal, tax, and
total values to cells created from the XML map before exporting the XML using the following code:

Sub cmdSaveOrder()
 ' Update mapped cells with calculated values.
 Range("XmlSubTotal") = Range("SubTotal")
 Range("XmlTax") = Range("Tax")
 Range("XmlTotal") = Range("Total")
 ' Create filename to save.
 Dim fname As String
 fname = ThisWorkbook.path & "\" & Range("OrderID") & ".ord"
 ' Save the order.
 ThisWorkbook.XmlMaps("Order_Map").Export fname, True
End Sub

15.3.4.5. Other things to avoid

Excel does not support a number of other XML schema constructs when importing XML and a number of schema
constructs when exporting XML. These constructs are listed in Tables 15-4 and 15-5, respectively.

Table 15-4. XML schema elements not supported when importing XML
Element Description

any,
anyAttribute

The any and anyAttribute elements allow you to include items that are not declared by the schema. Excel
requires imported schemas to be explicit.

Recursive
structures

Excel does not support recursive structures that are more than one level deep.

Abstract
elements

Abstract elements are meant to be declared in the schema, but never used as elements. Abstract
elements depend on other elements being substituted for the abstract element.

Substitution
groups

Substitution groups allow an element to be swapped wherever another element is referenced. An
element indicates that it's a member of another element's substitution group through the substitutionGroup
attribute.

Mixed
content

Mixed content is declared using mixed="true" on a complex type definition. Excel does not support the
simple content of the complex type, but does support the child tags and attributes defined in that
complex type.

Table 15-5. XML schema elements not supported when exporting XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 15-5. XML schema elements not supported when exporting XML
Item Description

Lists of lists Excel can export only repeating items that are one level deep. See the section "Avoid
lists of lists," earlier in this chapter.

Denormalized data See the section "Avoid denormalized data," earlier in this chapter.

Nonrepeating siblings If nonrepeating items are mapped to lists, they will result in denormalized data.

Repeating elements If the repetition is not defined by an ancestor, the data relationships can't be preserved.

Child elements from
different parents

If children from different XML maps are mapped to the same list, the relationship can't
be preserved.

choice Elements that are part of an XML schema choice construct can't be exported.

15.3.5. Respond to XML Events

The Workbook object provides events that occur before and after data is imported or exported through an XML map. You
can use these events to control how the import/export occurs, respond to errors, or cancel the operation.

For example, the following event procedures display information about import and export actions as they occur:

Private Sub Workbook_BeforeXmlImport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
 Debug.Print "BeforeImport", Map, Url, IsRefresh, Cancel
End Sub

Private Sub Workbook_BeforeXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, Cancel As Boolean)
 Debug.Print "BeforeExport", Map, Url, IsRefresh, Cancel
End Sub

Private Sub Workbook_AfterXmlImport(ByVal Map As XmlMap, _
 ByVal IsRefresh As Boolean, ByVal Result As XlXmlImportResult)
 Debug.Print "AfterImport", Map, Url, Result
End Sub

Private Sub Workbook_AfterXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal Result As XlXmlExportResult)
 Debug.Print "AfterExport", Map, Url, Result
End Sub

To cancel an import or export action, set the event's Cancel argument to True. The following code allows the user to
cancel refreshing or importing data from the Orders_Map:

Private Sub Workbook_BeforeXmlImport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
 If Map.name = "Orders_Map" And Not IsRefresh Then
 res = MsgBox("This action will replace all the data in this list." & _
 "Do you want to continue?", vbYesNo, "Import XML")
 If res = vbNo Then Cancel = True
 End If
End Sub

If the import or export action is caused by code, setting Cancel to True causes an "Operation cancelled by user" error to
occur. You should handle this exception if you allow Cancel to be set. For example, the following code handles the
potential error when importing data:

' If user cancels, handle error.
On Error Resume Next
' Import data.
xmap.Import ThisWorkbook.path & "\SimpleOrder.xml"
If Err = 1004 Then Debug.Print "User cancelled import."
On Error GoTo 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4. Program with XML Maps
The preceding sections explained how to use the new XML features found in Excel and provided code for saving,
transforming, importing, and exporting XML with Excel. Those sections provide a context for Excel's XML features and
explain programming tasks that surround those features. The rest of this chapter deals exclusively with the XML objects
Excel provides and offers specific examples of programming tasks you can perform with those object, properties, and
methods.

Excel's XML object model deals exclusively with XML maps. Opening and saving XML spreadsheets is done through the
Workbook object's Open and Save methods. Figure 15-18 illustrates the Excel XML objects hierarchically.

Figure 15-18. The XML object hierarchy

The XmlMap object allows you to perform the following tasks in code:

Add XML maps to a workbook

Delete XML maps from a workbook

Export XML data through an XML map

Import XML data through an XML map

Bind an XML map to an XML data source

Refresh mapped lists and ranges from an XML data source

View the XML schema used by an XML map

The following sections explain these tasks in greater detail.

15.4.1. Add or Delete XML Maps

Use the XmlMaps collection to add or delete XML maps in a workbook. The Add method takes the location of an XML
schema as its first argument, and when Excel adds an XML map to a workbook, it copies the contents of that schema
into the workbook. For example, the following line creates a new XML map using the SimpleOrder.xsd schema file:

ThisWorkbook.XmlMaps.Add (ThisWorkbook.path & "\SimpleOrder.xsd")

If you substitute an XML source file for the XML schema, the Add method will infer a schema from the XML source. As
noted earlier, inferring a schema can omit some nodes from the resulting XML map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

noted earlier, inferring a schema can omit some nodes from the resulting XML map.

When Excel creates a new XML map, it names the map using the name of the root node and appending _Map. A number
is added to the name if a map with that name already exists. For example, the preceding line of code creates a map
named Orders_Map the first time it runs, Orders_Map2 the second time, and so on.

Use the XmlMap object's Delete method to remove a map from a workbook. The following code deletes the map named
Orders_Map:

ThisWorkbook.XmlMaps("Orders_Map").Delete

If you use the Delete method on a map that is currently used to import data to a list, Excel simply deletes the map and
disables the refresh XML data task for that list. Excel does not warn you as it does when you delete a map through the
user interface.

15.4.2. Export and Import XML

Use the XmlMap object to import or export XML from code. For example, the following line imports an XML file into an
existing XML map in a workbook:

ThisWorkbook.XmlMaps("Order_Map").Import (ThisWorkbook.Path & "\1002.ord")

Similarly, the XmlMap object's Export method exports XML data from a workbook. The following code exports data through
an existing XML map:

ThisWorkbook.XmlMaps("Order_Map").Export ThisWorkbook.Path & "\1002.ord"

Use the ImportXml and ExportXml methods to import or export XML as a string variable rather than as a file. For example,
the following code displays the contents of a list mapped using the Order_Map as XML in the Debug window:

Dim xmap As XmlMap, xml As String, res As XlXmlExportResult
Set xmap = ThisWorkbook.XmlMaps("Order_Map")
res = xmap.ExportXml(xml)
Debug.Print xml

15.4.3. Refresh, Change, or Clear the Data Binding

Use the Databinding object's Refresh method to refresh a list that was linked to XML data through an XML map. The Refresh
method is equivalent to clicking the Refresh XML Data button on the List toolbar.

You can use the Databinding object's LoadSettings method to change the data source used by the XML map. When
combined, the LoadSettings and Refresh methods are equivalent to calling the XmlMap object's Import method. The advantage
of combining LoadSettings and Refresh is that changing the data source and refreshing the list are handled in separate
steps, as shown here:

Dim xmap As XmlMap, xml As String, res As XlXmlExportResult
Set xmap = ThisWorkbook.XmlMaps("Order_Map")
' Change the data source.
xmap.DataBinding.LoadSettings (ThisWorkbook.path & "\2002.ord")
' Refresh the list from the data source.
res = xmap.DataBinding.Refresh

15.4.4. View the Schema

You can get the schema used by an XML map through the Schemas collection. Each XML map has one schema and you
can't add or delete schemas through the Schemas collection.

Use the Schema object's Xml method to return the schema used by an XML map. The Xml method returns the schema
without whitespace, so you will want to use a formatting helper function such as PrettyPrint when displaying the schema,
as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as shown here:

Dim xmap As XmlMap, xsd As String
Set xmap = ThisWorkbook.XmlMaps("Order_Map")
xsd = xmap.Schemas(1).xml
Debug.Print PrettyPrint(xsd)

PrettyPrint is defined in Chapter 14 and is provided with the sample files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.5. XmlMap and XmlMaps Members
The XmlMaps collection and XmlMap object have the following members . Key members (shown in bold) are covered in the
following reference section:

Add1 AdjustColumnWidth

AppendOnImport Application2

Count1 Creator2

DataBinding Delete

Export ExportXml

Import ImportXml

IsExportable Name

Parent2 PreserveColumnFilter

PreserveNumberFormatting RootElementName

RootElementNamespace SaveDataSourceDefinition

Schemas ShowImportExportValidationErrors

1 Collection only

2 Object and collection

xmlmaps.Add(Schema, [RootElementName])

Creates a new XML map and adds it to a workbook. Returns the XML map created.

Argument Settings

Schema The name of an XML schema file, XML datafile, schema data, or XML data to base the XML map on.

RootElementName If the schema contains more than one root element, this is the name of the root element to use for
the XML map. Otherwise, this argument can be omitted.

Excel names XML maps by appending _Map to the name of the root element of the schema. If an XML map with that
name already exists, Excel adds a number to the new name.

The Schema argument is very flexible. It can contain a filename as a UNC or URL or it can contain the data for the
schema in string format. If the Schema argument is XML data, rather than an XML schema, Excel infers a schema from
that data. For example, the following code infers a schema from some XML data supplied as a string and creates a new
XML map named Numbers_Map:

xml = "<Numbers><Number><One /><Two /><Three /></Number>" & _
 "<Number /></Numbers>"
Set xmap = ThisWorkbook.XmlMaps.Add(xml)

xmlmap.AdjustColumnWidth [= setting]

Sets or returns a value indicating whether to adjust the column width of mapped cells to best fit the imported data
when the data is refreshed. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xmlmap.AppendOnImport [= setting]

Sets or returns a value indicating whether to append data to mapped lists rather than replacing the data in the list.
Default is False.

Set the AppendOnImport property to True when you want to append multiple XML data sources to a single XML map. For
example, the following code stores three rows of data in a map:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
xmap.AppendOnImport = True
xmap.ImportXml ("<Numbers><Number><One>1</One><Two>2</Two>" & _
 "<Three>3</Three></Number></Numbers>")
xmap.ImportXml ("<Numbers><Number><One>4</One><Two>5</Two>" & _
 "<Three>6</Three></Number></Numbers>")
xmap.ImportXml ("<Numbers><Number><One>7</One><Two>8</Two>" & _
 "<Three>9</Three></Number></Numbers>")

If you change AppendOnImport to False in the preceding code, only the last row (7, 8, 9) is stored in the map.

xmlmap.DataBinding

Returns an XmlDataBinding object that you can use to refresh the data in the XML map, change the XML data source, or
remove the link to an XML data source. See "XmlDataBinding Members," later in this chapter, for more information.

xmlmap.Delete

Deletes an XML map from a workbook. If a list or range uses the XML map, deleting the map removes the link to the
data source, but does not remove the data displayed in the list or range. The following code deletes the XML map
named Numbers_Map:

ThisWorkbook.XmlMaps("Numbers_Map").Delete

xmlmap.Export(Url, [Overwrite])

Exports mapped data in an XML map to an XML file. Returns an xlXmlExportResult constant indicating whether the export
was successful.

Argument Settings

Url The name of the file to create.

Overwrite True overwrites the file if Url already exists. False does not overwrite the file and triggers an error if the
file already exists. Default is False.

Use the IsExportable property to determine if the data can be exported before using the Export method. Excel exports only
nodes that have been mapped to a list or range. Unmapped nodes are not exported, although the file still conforms to
the XML map's schema.

The following code exports mapped nodes in the XML map named Numbers_Map to create the file Numbers.xml:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
If xmap.IsExportable Then
 fname = ThisWorkbook.path & "\Numbers.xml"
 res = xmap.Export(fname, True)
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

xmlmap.ExportXml(Data)

Exports mapped data to a string variable. Returns an xlXmlExportResult constant indicating whether the export was
successful.

Argument Settings

Data The variable in which to store the exported XML data

The ExportXml method is equivalent to the Export method except for the target of the data. The following code exports
mapped nodes in the XML map named Numbers_Map to a variable then display the contents of the variable in the Debug
window:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
If xmap.IsExportable Then
 res = xmap.ExportXML(xml)
 Debug.Print xml
End If

xmlmap.Import(Url, [Overwrite])

Imports data from a file into an XML map. Returns an xlXmlImportResult constant indicating whether the export was
successful.

Argument Settings

Url The name of the file to import.

Overwrite True replaces the data in the map with the data from the file. False appends the data from the file to the
data already in the map. Default is False.

The following code imports the data from Numbers.xml and appends the data to the data already in the XML map:

Dim xmap As XmlMap, fname As String, res As XlXmlExportResult
Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
fname = ThisWorkbook.path & "\Numbers.xml"
res = xmap.Import(fname, True)

xmlmap.ImportXml(Data, [Overwrite])

Imports data from a string variable into an XML map. Returns an xlXmlImportResult constant indicating whether the export
was successful.

Argument Settings

Data The variable containing the XML data to import.

Overwrite True replaces the data in the map with the data from the file. False appends the data from the file to the
data already in the map. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code imports three rows of data into the Numbers_Map:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
res = xmap.ImportXML("<Numbers><Number><One>1</One><Two>2</Two>" & _
 "<Three>3</Three></Number></Numbers>")
res = xmap.ImportXML("<Numbers><Number><One>4</One><Two>5</Two>" & _
 "<Three>6</Three></Number></Numbers>")
res = xmap.ImportXML("<Numbers><Number><One>7</One><Two>8</Two>" & _
 "<Three>9</Three></Number></Numbers>")

xmlmap.IsExportable

Returns True if the XML map can be exported, False if it cannot. Use the IsExportable property to test if the relationships
established in a mapped list or range allow the data contained there to be exported.

Some types of XML data can be imported but not exported, and some lists can create denormalized data that can't be
exported. See the earlier section "Approaches to Using XML Maps" for details on what types of data can be exported.

The following code tests if a map can be exported before attempting to export it to a file:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
If xmap.IsExportable Then
 res = xmap.Export("Numbers.xml")
End If

xmlmap.PreserveColumnFilter [= setting]

True preserves mapped list column filters when data is refreshed. False resets the filter to show all the data. Default is
True.

The following code displays the PreserveColumnFilter and other general property settings for an XML map in the Debug
window:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
Debug.Print "Preserve column filter? " & xmap.PreserveColumnFilter
Debug.Print "Preserve formatting? " & xmap.PreserveNumberFormatting
Debug.Print "Root node name: " & xmap.RootElementName
Debug.Print "Root namespace: " & xmap.RootElementNamespace
Debug.Print "Save data source definition? " & xmap.SaveDataSourceDefinition
Debug.Print "Show validation errors? " & xmap.ShowImportExportValidationErrors

xmlmap.PreserveNumberFormatting [= setting]

True preserves number formatting in mapped cells when data is refreshed. False resets the number formatting in
mapped cells. Default is True.

xmlmap.RootElementName

Returns the name of the root node in the XML map.

xmlmap.RootElementNamespace

Returns the namespace of the root node in the XML map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xmlmap.SaveDataSourceDefinition [= setting]

True saves the name of the XML data source in the workbook. False discards the name of the data source. Default is
True.

Use the SaveDataSourceDefinition property to prevent the data in an XML map from being refreshed. For example, the
following code imports data from the file Numbers.xml but disables the Refresh XML Data button in the user interface:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
fname = ThisWorkbook.path & "\Numbers.xml"
res = xmap.Import(fname, True)
xmap.SaveDataSourceDefinition = False

xmlmap.Schemas

Returns the XmlSchemas collection for the XML map. You can use the XmlSchemas collection to get information about the
schema used in the XML map, but you can't change the schema in an XML map. See "XmlSchema and XmlSchemas
Members," later in the chapter, for more information.

xmlmap.ShowImportExportValidationErrors [= setting]

True if Excel displays schema validation errors when an XML map is refreshed or when it imports or exports data. False
if Excel does not display validation errors. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.6. XmlDataBinding Members
Use the XmlDataBinding object to refresh or change the data source of an XML map. Use the XmlMap object's DataBinding
method to get a reference to this object. The XmlDataBinding object has the following members. Key members (shown in
bold) are covered in the following reference section:

Application
ClearSettings
Creator
LoadSettings
Parent
Refresh
SourceUrl

xmldatabinding.ClearSettings

Removes the data binding for an XML map, disabling the List toolbar's Refresh XML Data button. Calling the ClearSettings
method is equivalent to setting the XmlMap object's SaveDataSourceDefinition property to False.

The following code imports data into an XML map, then removes the map's binding to the source file (Numbers.xml):

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
fname = ThisWorkbook.path & "\Numbers.xml"
res = xmap.Import(fname, True)
xmap.DataBinding.ClearSettings

xmldatabinding.LoadSettings(Url)

Sets the data source for an XML map.

Argument Settings

Url The name of the file or web service to use as a data source. May be a UNC or URL.

The following code sets the data source for an XML map and refreshes the data in that map from the new data source:

Set xmap = ThisWorkbook.XmlMaps("Order_Map")
xmap.DataBinding.LoadSettings (ThisWorkbook.path & "\2002.ord")
res = xmap.DataBinding.Refresh

xmldatabinding.Refresh

Refreshes the data in an XML map from its data source. The Refresh method is equivalent to clicking the List toolbar's
Refresh XML Data button.

xmldatabinding.SourceUrl

Returns the filename or web service name of the data source for an XML map. The following code displays the data
source used for an XML map:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

source used for an XML map:

Set xmap = ThisWorkbook.XmlMaps("Order_Map")
Debug.Print xmap.DataBinding.SourceUrl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.7. XmlNamespace and XmlNamespaces Members
Use the Workbook object's XmlNamespaces method to get a reference to the XmlNamespaces collection. Use the XmlDataBinding
object's RootElementNamespace method to get a reference to the XmlNamespace object for a specific XML map. The
XmlNamespaces collection and XmlNamespace object have the following members. Key members (shown in bold) are covered
in the following reference section:

Application2

Count1

Creator2

InstallManifest1

Parent2

Prefix

Uri

Value1

1 Collection only

2 Object and collection

XmlNamespace objects are used with both Smart documents and XML maps. Their use with XML maps is informationalyou
can't add or modify namespaces through the XmlNamespaces collection or XmlNamespace object.

xmlnamespaces.InstallManifest(Path, [InstallForAllUsers])

Installs an XML expansion pack for use with Smart documents.

Argument Settings

Path The name of the file containing the XML expansion pack manifest.

InstallForAllUsers True registers the XML expansion pack for all users of the computer; False registers for only the
current user. Default is False.

The user must have sufficient permissions to install an XML expansion pack. The following code installs one of the
sample expansion packs from the Smart Document SDK for all users:

sdoc = "C:\Program Files\Microsoft Office 2003 Developer Resources" & _
 "\Microsoft Office 2003 Smart Document SDK\Samples\SimpleSample" & _
 "\SourceFiles\manifest.xml"
ThisWorkbook.XmlNamespaces.InstallManifest sdoc, True

xmlnamespace.Prefix

Returns the prefix used with a namespace. The following code displays the prefix and URI for the root namespace used
in an XML map:

Dim xmap As XmlMap
Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
Debug.Print xmap.RootElementNamespace.Prefix
Debug.Print xmap.RootElementNamespace.Uri

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Print xmap.RootElementNamespace.Uri

xmlnamespace.Uri

Returns the URI for a namespace.

xmlnamespaces.Value

Returns a string containing all the namespaces loaded in a workbook. The following code displays the namespaces from
a workbook in the Debug window:

Debug.Print ThisWorkbook.XmlNamespaces.Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.8. XmlSchema and XmlSchemas Members
Use the XmlMap object's Schemas method to return the XmlSchemas collection. The XmlSchemas collection and XmlSchema object
have the following members. Key members (shown in bold) are covered in the following reference section:

Application2

Count1

Creator2

Name

Namespace

Parent2

XML

1 Collection only

2 Object and collection

Most XML maps contain one schema, so the XmlSchemas collection usually contains only one item.

xmlschema.Namespace

Returns the target namespace used by the schema. The following code displays the target namespace for a schema in
the Debug window:

Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
Debug.Print xmap.Schemas(1).Namespace

xmlschema.XML

Returns the schema definition as a string. Omits whitespace characters such as tabs and line feeds. The following code
displays the schema definition for an XML map in the Debug window:

Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
xsd = xmap.Schemas(1).xml
Debug.Print PrettyPrint(xsd)

The PrettyPrint helper function formats the XML to add tabs and line feeds. PrettyPrint is defined in Chapter 14 and is
included with the sample code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.9. Get an XML Map from a List or Range
Use the XPath object to get or set the XML mapping used by a list column or a range. Figure 15-19 shows the
relationship between these objects.

Figure 15-19. Getting an XML map from a list column or range

You can use the XPath object to add or remove mappings to list columns or ranges as described in the following sections.

15.9.1. Map XML to a List Column

Use the XPath object's SetValue method to map data from an XML map to a list column or range. SetValue allows you to
dynamically create lists from an XML map. For example, the following code creates a new list, adds three columns to
that list, and maps each column to a different node in an XML map:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
' Create a list object.
Set lo = ws.ListObjects.Add(xlSrcRange, [A1])
' Add a column to the list.
Set lc = lo.ListColumns.Add
' Map the column to an element in an XML map.
lc.XPath.SetValue xmap, "/Numbers/Number/One", , True
' Repeat for two more columns.
Set lc = lo.ListColumns.Add
lc.XPath.SetValue xmap, "/Numbers/Number/Two", , True
Set lc = lo.ListColumns.Add
lc.XPath.SetValue xmap, "/Numbers/Number/Three", , True

15.9.2. Remove a Mapping

Use the XPath object's Clear method to remove a mapping from a list column or range. For example, the following code
removes the mappings from the list created in the preceding section:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set lo = ws.ListObjects(1)
For Each lc In lo.ListColumns
 lc.XPath.Clear
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.10. XPath Members
The XPath object has the following members . Key members (shown in bold) are covered in the following reference
section:

Application
Clear
Creator
Map
Parent
Repeating
SetValue
Value

xpath.Clear

Removes an XML mapping from a list column or range. Use this method to remove elements from an XML map. For
example, the following code removes the mappings for each of the columns in a list:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set lo = ws.ListObjects(1)
For Each lc In lo.ListColumns
 lc.XPath.Clear
Next

xpath.Map

Returns the XmlMap object for a mapped range or list column. You can use the returned XmlMap object to refresh data or
get information about the mapping. For example, the following code displays a list of each of the mapped cells on a
worksheet:

Set ws = ThisWorkbook.Sheets("Sheet1")
For Each rng In ws.UsedRange
 If rng.XPath <> "" Then
 str = rng.Address & "Map : " & rng.XPath.Map.Name
 str = str & " Node: " & rng.XPath
 Debug.Print str
 End If
Next

xpath.Repeating

Returns True if the mapped item is a list column. Returns False if the mapped item is a range containing a single cell.

xpath.SetValue(Map, XPath, [SelectionNamespace], [Repeating])

Maps a node from an XML map to a list column or range. Use SetValue when creating new lists or ranges from XML maps.

Argument Settings

Map The XmlMap object to use for the mapping.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XPath A string containing the XPath of the node to map to the list column or range.

SelectionNamespace A string containing the namespace prefix used in the preceding XPath. The namespace takes the
form "xmlns:prefix='namespace'".

Repeating True indicates the mapping repeats; False indicates the mapping is to a single cell in a range. Must
be True or omitted when mapping to a list column.

The SelectionNamespace argument is required only if the specified XPath uses a different namespace from that shown in the
XML map. For example, the Orders_Map sample includes the namespace prefix ns1. Since this namespace is defined in the
workbook, you can omit the SelectionNamespace argument, as shown here:

Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
 [A10].XPath.SetValue xmap, _
 "/ns1:Orders/ns1:Order/ns1:BillTo/ns1:Address/ns1:Street1"

If, however, the XPath uses a different prefix, you must define that new namespace prefix using SelectionNamespace, as
shown here:

[A10].XPath.SetValue xmap, _
 "/ord:Orders/ord:Order/ns1:BillTo/ord:Address/ord:Street1", _
 "xmlns:ord='http://www.mstrainingkits.com'"

Use the Repeating argument to map a repeating node to a single cell. For example, the preceding code creates a list
column at cell A10 since Street1 is a repeating node in the Orders_Map. To map that node to a single cell, specify a Repeating
argument of False:

[A10].XPath.SetValue xmap, _
 "/ns1:Orders/ns1:Order/ns1:BillTo/ns1:Address/ns1:Street1", , False

Now, Excel does not create a list column and instead maps the first data item in the source XML to the cell A10.

xpath.Value

Returns the XPath name of the node mapped to a list column or range. For example, the following code displays the
XPaths for each of the columns in a mapped list:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set lo = ws.ListObjects(1)
For Each lc In lo.ListColumns
 Debug.Print lc.XPath.Value
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.11. Resources

To learn about Look here

XML/XSD/XSLT tutorials http://www.w3schools.com/

Office 2003 XML schemas and documentation http://www.microsoft.com/office/xml/default.mspx

Free IE XML validation/XSL transformation
viewer

Search for "Validating XSLT" at
http://www.microsoft.com/downloads/

Free XML/XSL Editor http://xmlcooktop.com/

XML/XSL debugger (free trial) http://new.xmlspy.com/products_ide.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16. Charting
Excel is perhaps the preeminent business tool for charting data. It's hard to find a business presentation, technical
report, or even a school science project that doesn't chart data, usually through Excel.

In fact, charting is so important that I devote two chapters to it. This chapter covers the primary tasks: how to create
different types of charts in code and how to control the main parts of a chart. The following chapter covers the
secondary charting tasks.

This chapter includes task-oriented reference information for the following objects and their related collections: Axis,
Chart, ChartGroup, ChartObject, DataTable, Point, Series, and SeriesLines.

Code used in this chapter and additional samples are available in ch16.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.1. Navigate Chart Objects
Charting is the most complex part of the Excel object model. To simplify it a bit, I've divided the objects into two
chapters. This chapter discusses the core objects used to create charts from data; Chapter 17 covers the lower-level
objects used to control the appearance of the parts of a chart. Figure 16-1 illustrates this division of chart objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2. Create Charts Quickly
Use the Chart object's ChartWizard method to create charts quickly in code. ChartWizard is a shortcut through the complex
chart object model that lets you chart data in two steps:

1. Create a new Chart object in the workbook.

2. Call the ChartWizard method on that object.

Figure 16-1. Guide to the chart objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the following code adds a new chart sheet to a workbook, then charts data from the HomeSales named
range:

Sub ChartWizard1()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' 1) Create a chart sheet.
 Set chrt = Charts.Add(, ws)
 ' 2) Chart the data.
 chrt.ChartWizard ws.[HomeSales]
End Sub

If you run the preceding sample, you'll get a 3-D area chart that looks impressive but is almost entirely useless. The
chart would make much more sense as a simple line chart, and it would be nice to include a legend and axis labels. To
do that, fill out the ChartWizard arguments as shown here:

Sub ChartWizard2()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' Create a chart sheet.
 Set chrt = Charts.Add(, ws)
 ' Name the sheet.
 chrt.Name = "Median FL Prices"
 ' Specify chart type, axis labels, legend, and title.
 chrt.ChartWizard ws.[HomeSales], xlLine, , xlColumns, 1, 1, True, _
 "FL Median Home Prices", "Year", "Price"
End Sub

Figure 16-2 shows the result of ChartWizard2 and labels the parts of the chart with the corresponding ChartWizard
arguments.

Figure 16-2. Chart parts with corresponding ChartWizard arguments

You can use ChartWizard to change existing charts , too. For example, the following code changes the preceding chart's
type and title to demonstrate several types of charts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type and title to demonstrate several types of charts:

Sub ChangeChart()
 Dim chrt As Chart
 ' Get the chart sheet.
 Set chrt = Charts("Median FL Prices")
 ' Change the chart type and title.
 chrt.ChartWizard , xlBar, , xlColumns, 1, 1, True, _
 "Bar Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlBar, 8, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Bar 8)"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlArea, , xlColumns, 1, 1, True, _
 "Area Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , , , xlRows, 1, 1, True, _
 "Area Chart by Row"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlLine, 10, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Smooth)"
End Sub

ChangeChart rotates through different chart types pausing between each. This is a good way to learn about chart settings,
and it's fun, too.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.3. Embed Charts
Charts may exist as separate sheets, as shown in the preceding section, or they can be embedded on a worksheet
using the ChartObjects collection. To embed a chart quickly, use the Add method to create a new ChartObject, then use that
object's Chart property to control the underlying chart:

 Sub EmbedChart()
 Dim ws As Worksheet, co As ChartObject, chrt As Chart
 Set ws = ActiveSheet
 ' Create an embedded chart object.
 Set co = ws.ChartObjects.Add(40, 160, 400, 200)
 ' Name the ChartObject so it's easy to get later.
 co.Name = "FL Median Home Prices"
 ' Get the underlying Chart object.
 Set chrt = co.Chart
 ' Plot the chart using the ChartWizard method
.
 chrt.ChartWizard [HomeSales], xlLine, , xlColumns, 1, 1, True, _
 "FL Median Home Prices"
End Sub

The ChartObject is simply a container for the chart on the worksheet. You use it to set the size and position of the chart
on the worksheet, but for anything else you use the underlying Chart object. For example, the following code gets the
Chart object from the embedded chart and rotates through different chart types:

Sub ChangeEmbeddedChart()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' Get the chart.
 Set chrt = ws.ChartObjects("FL Median Home Prices").Chart
 ' Change the chart type and title.
 chrt.ChartWizard , xlBar, , xlColumns, 1, 1, True, _
 "Bar Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlBar, 8, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Bar 8)"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlArea, , xlColumns, 1, 1, True, _
 "Area Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , , , xlRows, 1, 1, True, _
 "Area Chart by Row"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlLine, 10, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Smooth)"
End Sub

ChangeEmbeddedChart does the same thing as ChangeChart, shown earlier; the main difference is how you get the reference
to the Chart object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.4. Create More Complex Charts
You don't have to use the ChartWizard method to plot a chart. If you like, you can use the individual chart members
instead. The following code illustrates creating a stock chart without ChartWizard:

Sub CreateChart()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' Create the chart
 Set chrt = ThisWorkbook.Charts.Add(, ws)
 ' Name the chart sheet.
 chrt.Name = "Stock Price History"
 ' Plot the data in a named range.
 chrt.SetSourceData ws.[HistoryData], xlColumns
 ' Set the chart type to Open, High, Low, Close.
 chrt.ChartType = xlStockOHLC
 ' Dates are in descending order, so reverse the axis.
 chrt.Axes(xlCategory).ReversePlotOrder = True
End Sub

The main reason to use this approach rather than the ChartWizard method is that the ChartType property supports the full
set of xlChartType constants. ChartWizard supports only a subset. The xlStockOHLC type is one of the types not available
through ChartWizard. Another reason to use this approach is that it doesn't add much complexity if you are already
changing other chart settings, such as reversing the plot order as shown earlier.

The disadvantage of this approach is that you have to know what properties and methods control each aspect of the
chart. The easiest way to solve this riddle is to turn on Macro Recording, create your chart, format it as you want it to
appear, then turn off Macro Recording and examine the generated code.

For example, this code was generated in response to reformatting the chart created by the CreateChart procedure. I
added comments to note the steps you can follow to generate the same code:

' Recorded code (annotated).
Sub Macro7()
 ' Choose Tools>Chart Options>Title and enter titles.
 With ActiveChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "MSFT"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Price"
 End With
 ' Select the Legend tab on Options and clear Show Legend.
 ActiveChart.HasLegend = False
 ' Right-click the plot area, select Format Plot Area,
 ' and set the Area Color to None.
 ActiveChart.PlotArea.Select
 Selection.Interior.ColorIndex = xlNone
 ' Right-click the y-xis, select Format Axis and set the scale.
 ActiveChart.Axes(xlValue).Select
 With ActiveChart.Axes(xlValue)
 .MinimumScale = 20
 .MaximumScale = 30
 .MinorUnitIsAuto = True
 .MajorUnitIsAuto = True
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With
End Sub

As you can see, Excel records items as they are selected and includes more property settings than I actually changed.
You can remove those things to clean the code up a bit:

' Based on recorded code.
Sub ChangeChart()
 Dim chrt As Chart
 Set chrt = Charts("Stock Price History")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set chrt = Charts("Stock Price History")
 With chrt
 ' Change: get title from a named range.
 .HasTitle = True
 .ChartTitle.Characters.Text = UCase([Symbol])
 ' Note how confusing the Axes collection is!
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Price"
 .HasLegend = False
 ' ActiveChart.PlotArea.Select returns a PlotArea object.
 .PlotArea.Interior.ColorIndex = xlNone
 ' Change the scale settings for the y-axis.
 .Axes(xlValue).MinimumScale = WorksheetFunction.Min([HistoryData])
 .Axes(xlValue).MaximumScale = WorksheetFunction.Max([HistoryData])
 End With
End Sub

Figure 16-3 shows the resulting chart with some of the major objects labeled.

Figure 16-3. Major objects on a chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.5. Choose Chart Type
The ChartType property controls what type of chart to plot, but not all chart types are compatible with the data you may
want to chart. For example, the xlStockOHLC chart plotted in the preceding section requires four series in a particular
order: Open, High, Low, and Close prices. To try out different chart types:

1. Select the data to chart, then choose Insert Chart to start the Chart Wizard.

2. Select a chart type and subtype then click the button below the subtype list to preview the result, as shown in
Figure 16-4.

3. If the selected data doesn't match what is required by the chart type, the preview displays a message
explaining the problem.

Figure 16-4. Trying out different chart types

Again, you can record your actions to find out the xlChartType constant for the chart type you want.

The DemoChartTypes procedure in the sample workbook cycles through all of the available ChartType settings, pausing after
each. You can use that procedure to choose from the many chart types and find the corresponding xlChartType constant.
That procedure is too long to reproduce in print, so here is an abridged version:

Sub DemoChartTypes()
 Dim chrt As Chart, secs As Double
 secs = 1 / 100000
 Set chrt = Charts("Demo Chart Types")
 chrt.Activate
 chrt.ChartType = xl3DAreaStacked
 chrt.ChartTitle.Caption = "ChartType: xl3DAreaStacked"
 chrt.Refresh
 Application.Wait Now + secs
 ' Repeat for each xlChartType constant (omitted here).
 chrt.ChartType = xlXYScatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 chrt.ChartType = xlXYScatter
 chrt. ChartTitle.Caption = "ChartType: xlXYScatter"
 chrt.Refresh
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.6. Create Combo Charts
Simple charts have one chart type: line, bar, column, or another chart type. Combo charts have two or more chart
types combined for a single chart. Several of the custom chart types are combo charts, as shown in Figure 16-5.

Figure 16-5. Some of the custom charts combine chart types

To create a combo chart in code, use the ApplyCustomType method as shown here:

Sub CreateComboChart1()
 Dim chrt As Chart
 ' Create a new chart sheet
 Set chrt = ThisWorkbook.Charts.Add
 ' Name the sheet.
 chrt.Name = "Combo Chart 1"
 ' Plot the data from a named range.
 chrt.SetSourceData [HomeSales], xlColumns
 ' Make the chart a combo chart
 chrt.ApplyCustomType xlBuiltIn, "Line - Column on 2 Axes"
End Sub

The custom chart types automatically choose which series to plot with which chart type. In the preceding code, the
series is divided equally between column and line chart types. To control that a little more carefully, use the Series
object's ChartType property to create the combo chart instead:

Sub CreateComboChart2()
 Dim chrt As Chart, sc As SeriesCollection
 ' Create a new chart sheet
 Set chrt = ThisWorkbook.Charts.Add
 ' Name the sheet.
 chrt.Name = "Combo Chart 2"
 ' Plot the data from a named range.
 chrt.SetSourceData [HomeSales], xlColumns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 chrt.SetSourceData [HomeSales], xlColumns
 ' Set chart type
 chrt.ChartType = xlColumnClustered
 ' Get the series collection
 Set sc = chrt.SeriesCollection
 ' Change the type of the last series
 sc(sc.Count).ChartType = xlLineMarkers
End Sub

Now, only the last series is a line chart. You can combine any number of 2-D chart types in this way, but you can't
combine 3-D chart types . Setting any series to a 3-D chart type changes the type for the entire chart. In other words,
only 2-D charts can be combo charts.

Excel groups series with the same chart type into ChartGroup objects. A chart has one ChartGroup for each different chart
type it displays. Simple charts have one ChartGroup; combo charts have two or more.

The ChartGroup object provides access to properties that are specific to the chart type. To get the ChartGroup object, use
the Chart object's ChartGroups property or one of the type-specific Chart properties listed here:

Area3DGroup AreaGroups

Bar3DGroup BarGroups

Column3DGroup ColumnGroups

DoughnutGroups Line3DGroup

LineGroups Pie3DGroup

PieGroups RadarGroups

SurfaceGroup XYGroups

XYGroups XYGroups

The group properties for 2-D chart types (AreaGroups, BarGroups, etc.) return collections with one item for each subtype of
chart. The group properties for 3-D charts (Area3DGroup, Bar3DGroup, etc.) return a single ChartGroup object: 3-D charts
have only one chart group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.7. Add Titles and Labels
The following Chart objects can have captions that serve as titles or labels:

AxisTitle

ChartTitle

DataLabel

DisplayUnitLabel

To add a caption to one of these objects in code, follow these general steps:

1. Make sure the object exists. For example, to ensure ChartTitle exists, set the HasTitle property to True.

2. Set the Caption property of the title.

3. Refresh the chart to display the changes. This step is not always required, but since charts are not always
immediately updated, adding a Refresh statement is good insurance.

Setting the Caption property and setting Characters.Text (shown earlier) are equivalent. Excel
records setting chart titles using Characters.Text, but you can change that to make it shorter.

The following code adds captions to the chart and primary axes:

Sub AddTitles()
 Dim chrt As Chart, ax As Axis
 Set chrt = Charts("Demo Chart Types")
 chrt.ChartType = xl3DBarStacked
 chrt.Activate
 ' Make sure ChartTitle exists
 chrt.HasTitle = True
 ' Set caption
 chrt.ChartTitle.Caption = "Total Four-Year Appreciation"
 ' Make sure axis exists
 chrt.HasAxis(xlValue, xlPrimary) = True
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ' Make sure AxisTitle exists
 ax.HasTitle = True
 ' Set caption
 ax.AxisTitle.Caption = "Primary Value Axis"
 ax.AxisTitle.Orientation = xlHorizontal
 chrt.HasAxis(xlValue, xlPrimary) = True
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ax.HasTitle = True
 ax.AxisTitle.Caption = "Primary Category Axis"
 ax.AxisTitle.Orientation = xlUpward
 ' Update chart to ensure changes are displayed.
 chrt.Refresh
End Sub

Adding data label captions is more complex, since they are part of the SeriesCollection hierarchy. The following code turns
on data labels for each series and highlights labels that exceed 25 percent by making those captions bold:

Sub HightlightDataLabels()
 Dim chrt As Chart, se As Series, dl As DataLabel
 Set chrt = Charts("Demo Chart Types")
 ' Make sure data labels exist
 For Each se In chrt.SeriesCollection
 se.HasDataLabels = True
 For Each dl In se.DataLabels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each dl In se.DataLabels
 If CInt(VBA.Replace(dl.Caption, "%", "")) > 25 Then
 dl.Font.Bold = True
 Else
 dl.Font.Bold = False
 End If
 Next
 Next
 ' Update chart to ensure changes are displayed.
 chrt.Refresh
End Sub

Figure 16-6 shows the result of running the AddTitles and HighlightDataLabels procedures.

Figure 16-6. Adding chart, axis, and data label captions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.8. Plot a Series
The data plotted on a chart belongs to the chart's SeriesCollection . Each column or row of data is represented by a Series
object and each item in the series is represented by a Point object.

You can add series to existing charts by calling the Add, Extend, or NewSeries methods of the SeriesCollection. For example,
the first of the following procedures creates a new line chart, and the second plots a new series using the column chart
type:

Sub CreateChart()
 Dim chrt As Chart
 Set chrt = Charts.Add(, ActiveSheet)
 chrt.Name = "Plot a Series"
 chrt.SetSourceData [HomeSales], xlColumns
 chrt.ChartType = xlLine
End Sub

Sub AddNewSeries()
 Dim chrt As Chart, sc As SeriesCollection, _
 sr As Series
 ' Get the chart
.
 Set chrt = Charts("Plot a Series")
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Add a new series.
 sc.Add [FLGrowth], xlColumns, True, False, False
 ' Get the last series
 Set sr = sc(sc.Count)
 ' Change the chart type for the series.
 sr.ChartType = xlColumnClustered
End Sub

The PlotBy arguments (xlRows or xlColumns) should match when adding series to a chart, unless of course the new data is
arranged differently from the existing data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.9. Respond to Chart Events
You can write code within a chart's class to respond to events that occur on the chart. Charts provide these events:

' Chart sheet class

Private Sub Chart_Activate()
End Sub

Private Sub Chart_BeforeDoubleClick(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)
End Sub

Private Sub Chart_BeforeRightClick(Cancel As Boolean)
End Sub

Private Sub Chart_Calculate()
End Sub

Private Sub Chart_Deactivate()
End Sub

Private Sub Chart_DragOver()
End Sub

Private Sub Chart_DragPlot()
End Sub

Private Sub Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, _
 ByVal x As Long, ByVal y As Long)
End Sub

Private Sub Chart_MouseMove(ByVal Button As Long, _
 ByVal Shift As Long, ByVal x As Long, ByVal y As Long)

End Sub

Private Sub Chart_MouseUp(ByVal Button As Long, _
 ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
End Sub

Private Sub Chart_Resize()
End Sub

Private Sub Chart_Select(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long)
End Sub

Private Sub Chart_SeriesChange(ByVal SeriesIndex As Long, _
 ByVal PointIndex As Long)
End Sub

The BeforeDoubleClick and Select events return information about the chart item that was clicked. Those arguments are
described in Table 16-1 with the GetChartElement topic later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.10. Chart and Charts Members
Use the Charts collection to add chart sheets to a workbook. Use the Workbook object's Charts property to get a reference to
this collection. Use the Chart object to plot numeric data graphically. The Charts collection and Chart object have many of
the same members as the Worksheets collection and Worksheet object. Key members that are unique to charts (shown in
bold)are covered in the following reference section:

Add1 Application2 ApplyCustomType

ApplyDataLabels Area3DGroup AreaGroups

AutoFormat AutoScaling Axes

Bar3DGroup BarGroups BarShape

ChartArea ChartGroups ChartObjects

ChartTitle ChartType ChartWizard

CheckSpelling CodeName Column3DGroup

ColumnGroups Copy2 CopyPicture

Corners Count1 CreatePublisher

Creator2 DataTable Delete2

DepthPercent Deselect DisplayBlanksAs

DoughnutGroups Elevation Evaluate

Export Floor GapDepth

GetChartElement HasAxis HasDataTable

HasLegend HasPivotFields HasTitle

HeightPercent HPageBreaks1 Hyperlinks

Index Item1 Legend

Line3DGroup LineGroups Location

MailEnvelope Move2 Name

Next OLEObjects PageSetup

Parent2 Paste Perspective

Pie3DGroup PieGroups PivotLayout

PlotArea PlotBy PlotVisibleOnly

Previous PrintOut2 PrintPreview2

Protect ProtectContents ProtectData

ProtectDrawingObjects ProtectFormatting ProtectGoalSeek

ProtectionMode ProtectSelection RadarGroups

Refresh RightAngleAxes Rotation

SaveAs Scripts Select2

SeriesCollection SetBackgroundPicture SetSourceData

Shapes ShowWindow SizeWithWindow

SurfaceGroup Tab Type

Unprotect Visible2 VPageBreaks1

Walls WallsAndGridlines2D XYGroups

1 Collection only

2 Object and collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.Add([Before], [After], [Count])

Creates one or more chart sheets and returns a reference to the first Chart object created.

Argument Settings

Before The sheet in the workbook before which the new chart sheet is placed.

After The sheet in the workbook after which the new chart sheet is placed.

Count The number of chart sheets to add. Default is 1.

You can't specify both the Before and After arguments; you must choose one. The following code creates three new chart
sheets at the beginning of a workbook and names the first sheet New Chart:

Sub AddCharts()
 Dim chrt As Chart
 Set chrt = Charts.Add(Sheets(1), , 3)
 chrt.Name = "New Chart"
End Sub

The other two charts receive default names (Chartn).

chart.ApplyCustomType(ChartType, [TypeName])

Applies an autoformat to a chart.

Argument Settings

ChartType xlBuiltIn selects from a set of built-in autoformats; xlUserDefined selects from a set of user-defined
autoformats.

TypeName The name of the autoformat to apply.

If you omit TypeName, ApplyCustomType is equivalent to setting the ChartType property and the
ChartType argument then accepts xlChartType constants.

To see the available autoformats, select a chart, choose Chart Chart Type, and click the Custom Types tab. The
ChartType and TypeName arguments correspond to items on the Chart Type dialog box as shown in Figure 16-7.

Figure 16-7. Applying an autoformat to a chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code applies the B&W Column autoformat to a chart:

Sub ApplyAutoFormat()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.ApplyCustomType xlBuiltIn, "B&W Column"
End Sub

chart.ApplyDataLabels([Type], [LegendKey], [AutoText],
[HasLeaderLines], [ShowSeriesName], [ShowCategoryName],
[ShowValues], [ShowPercentage], [ShowBubbleSize],
[Separator])

Applies data labels to all of the series on the chart.

Argument Settings

Type

An xlDataLabelsType constant specifying the type of labels to display. Can be one of the following:

xlDataLabelsShowBubbleSizes
xlDataLabelsShowLabelAndPercent
xlDataLabelsShowPercent
xlDataLabelsShowLabel
xlDataLabelsShowNone
xlDataLabelsShowValue (default)

Not all Type settings are valid for all types of charts. xlDataLabelsShowPercent and
xlDataLabelsShowLabelAndPercent apply to only pie and doughnut chart types.

Set Type to xlDataLabelsShowNone to remove all data labels from a chart.

LegendKey True displays the legend key next to the point; False omits the key. Default is False.

AutoText
True automatically generates an appropriate data label based on the type of chart and whether axis
titles are included; False uses the Show argument settings to determine the label content. Default is
True

HasLeaderLines True displays leader lines for each series; False omits leader lines. Default is False.

ShowSeriesName True adds the series name to each label; False omits it.

ShowCategoryName True adds the category axis value to each label; False omits it.

ShowValues True adds the value of each point to the data label; False omits it.

ShowPercentage For pie and doughnut charts, True adds the percentage of the total that the value represents to the
data label.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowBubbleSize
Bubble charts plot three values per series: the first two values determine the x and y position of the
item; the third value determines the size of the bubble. Setting ShowBubbleSize to True displays that
third value in the data label.

Separator The character used to separate series name, category name, value, and percentage within the data
label. Default is comma.

ApplyDataLabels is also available for the Series and Point objects. For example, the following code animates a chart by
displaying data labels one point at a time with the series name, then all at once (without the series name):

Sub AnimateDataLabels()
 Dim chrt As Chart, sr As Series, pt As Point
 Set chrt = Charts("New Chart")
 ' Use a custom chart type.
 chrt.ApplyCustomType xlBuiltIn, "Smooth Lines"
 For Each sr In chrt.SeriesCollection
 For Each pt In sr.Points
 ' Clear all data labels.
 chrt.ApplyDataLabels xlDataLabelsShowNone
 ' Apply labels to each point in turn.
 pt.ApplyDataLabels xlDataLabelsShowLabel, , False _
 , , True, False, True
 ' Wait one second.
 Application.Wait Now + 0.00001
 Next
 Next
 ' Show all data labels.
 chrt.ApplyDataLabels xlDataLabelsShowLabel, , False _
 , , False, False, True
End Sub

chart.Area3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D area chart type.

chart.AreaGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D area chart types.

chart.AutoFormat(Gallery, [Format])

This method is now hidden; it is replaced by the ChartType property. It is equivalent to calling the ChartWizard method on
an existing chart and omitting the Source argument.

chart.AutoScaling [= setting]

True scales a 3-D chart so that it is closer to the size of an equivalent 2-D chart. Valid only if the RightAngleAxis property
is True. Default is True.

chart.Axes([Type], [AxisGroup])

Returns one or all of the axes on a chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Type For 2-D charts, xlCategory returns the x-axis; xlValue returns the y-axis. For 3-D charts, xlSeries returns the
z-axis.

AxisGroup For 2-D charts, xlPrimary returns primary axis; xlSecondary returns the secondary axis. Default is xlPrimary.
Cannot be xlSecondary for 3-D charts.

The following code applies labels to identify the x-, y-, and z-axes of a 3-D chart:

Sub LabelAxes()
 Dim chrt As Chart, ax As Axis
 Set chrt = Charts("Demo Chart Types")
 ' Activate the chart sheet.
 chrt.Activate
 ' Change chart type to 3-D.
 chrt.ApplyCustomType xl3DLine
 ' Get the category axis.
 Set ax = chrt.Axes(xlCategory)
 ' Add a title.
 ax.HasTitle = True
 ' Set the title.
 ax.AxisTitle.Caption = "Category"
 ' Repeat for value axis.
 Set ax = chrt.Axes(xlValue)
 ax.HasTitle = True
 ax.AxisTitle.Caption = "Value"
 ' Repeat for series axis.
 Set ax = chrt.Axes(xlSeries, xlPrimary)
 ax.HasTitle = True
 ax.AxisTitle.Caption = "Series"
End Sub

chart.Bar3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D bar chart type.

chart.BarGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D bar chart types.

chart.BarShape [= xlBarShape]

Sets or returns the shape used for bars or columns in a 3-D chart. Can be one of these settings:

xlBox

xlConeToPoint

xlPyramidToMax

xlConeToMax

xlCylinder

xlPyramidToPoint

chart.ChartArea

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the ChartArea object for the chart. Use the ChartArea object to control the appearance of the region outside of the
plot area. The following code highlights the chart area:

Sub ChangeChartArea()
 Dim chrt As Chart, ca As ChartArea
 Set chrt = Charts("New Chart")
 Set ca = chrt.ChartArea
 ca.Interior.Pattern = XlPattern.xlPatternGray8
End Sub

chart.ChartGroups([Index])

Returns one or all of the ChartGroup objects in a chart. Each ChartGroup represents one or more series of a particular chart
type. Most charts have one chart group; however, combo charts have two or more chart groups. You can't combine 2-D
and 3-D chart types, so all of the chart groups are either 2-D or 3-D.

chart.ChartObjects([Index])

Returns the ChartObjects embedded on a chart sheet. You can embed charts on a chart sheet to plot other data or show
other views on the same sheet. The primary chart on a chart sheet is not embedded and is not part of the ChartObject
collection.

chart.ChartTitle

Returns the ChartTitle object representing the title displayed on the chart. Make sure the HasTitle property is True before
using this object. For example, the following code adds a title to a chart:

Sub AddTitle()
 Dim chrt As Chart, ct As ChartTitle
 Set chrt = Charts("New Chart")
 chrt.HasTitle = True
 Set ct = chrt.ChartTitle
 ct.Caption = "New Title"
End Sub

chart.ChartType [= xlChartType]

Sets or returns an xlChartType constant that determines the kind of chart plotted. Can be one of these settings:

xl3DArea xl3DAreaStacked

xl3DAreaStacked100 xl3DBarClustered

xl3DBarStacked xl3DBarStacked100

xl3DColumn xl3DColumnClustered

xl3DColumnStacked xl3DColumnStacked100

xl3DLine xl3DPie

xl3DPieExploded xl3DSurface

xlArea xlAreaStacked

xlAreaStacked100 xlBarClustered

xlBarOfPie xlBarStacked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlBarStacked100 xlBubble

xlBubble3DEffect xlColumnClustered

xlColumnStacked xlColumnStacked100

xlConeBarClustered xlConeBarStacked

xlConeBarStacked100 xlConeCol

xlConeColClustered xlConeColStacked

xlConeColStacked100 xlCylinderBarClustered

xlCylinderBarStacked xlCylinderBarStacked100

xlCylinderCol xlCylinderColClustered

xlCylinderColStacked xlCylinderColStacked100

xlDefaultAutoFormat xlDoughnut

xlDoughnutExploded xlLine

xlLineMarkers xlLineMarkersStacked

xlLineMarkersStacked100 xlLineStacked

xlLineStacked100 xlPie

xlPieExploded xlPieOfPie

xlPyramidBarClustered xlPyramidBarStacked

xlPyramidBarStacked100 xlPyramidCol

xlPyramidColClustered xlPyramidColStacked

xlPyramidColStacked100 xlRadar

xlRadarFilled xlRadarMarkers

xlStockHLC xlStockOHLC

xlStockVHLC xlStockVOHLC

xlSurface xlSurfaceTopView

xlSurfaceTopViewWireframe xlSurfaceWireframe

xlXYScatter xlXYScatterLines

xlXYScatterLinesNoMarkers xlXYScatterSmooth

xlXYScatterSmoothNoMarkers

Set ChartType to xlDefaultAutoFormat to restore a chart to Excel's default settings.

See the DemoChartTypes procedure in the sample workbook for an animated preview of the available chart types.

chart.ChartWizard([Source], [Gallery], [Format], [PlotBy],
[CategoryLabels], [SeriesLabels], [HasLegend], [Title],
[CategoryTitle], [ValueTitle], [ExtraTitle])

Quickly creates and formats a chart by setting the most commonly used properties and applying a best guess for
omitted settings.

Argument Settings

Source The Range object containing the data to chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Gallery
A constant indicating the type of chart to create. Can be one of these settings: xl3DArea, xl3DBar,
xl3DColumn, xl3DLine, xl3DPie, xl3DSurface, xlArea, xlBar, xlColumn, xlCombination, xlDefaultAutoFormat, xlDoughnut, xlLine,
xlPie, xlPie, xlRadar, or xlXYScatter.

Format A number from 1 to 10 indicating the index of the chart subtype to create from the Chart Type dialog
box.

PlotBy xlRows plots each row as a series; xlColumns plots each column as a series.

CategoryLabels The number of rows or columns in the source range that contain category labels.

SeriesLabels The number of rows or columns in the source range that contain series labels.

HasLegend True creates a legend on the chart; False omits the legend.

Title The caption to include as the title on the chart. Omitting this argument when creating a chart omits the
chart title.

CategoryTitle The caption to include for the category axis (x-axis) on the chart. Omitting this argument when creating
a chart omits the axis title.

ValueTitle The caption to include for the value axis (y-axis) on the chart. Omitting this argument when creating a
chart omits the axis title.

ExtraTitle The caption to include for the series axis (z-axis) on a 3-D chart. Omitting this argument when creating
a chart omits the axis title.

ChartWizard can be used either to plot a new chart or to change an existing chart. When changing a chart, omitted
arguments default to the existing chart's settings. When creating a new chart, omitted arguments default to best-guess
settings based on the type of data being charted and the type of chart selected.

Settings for the Gallery argument are not actually xlChartType constants as the Excel Help says. Some of the possible
settings are found in xlChartType, but ChartWizard actually supports a subset of those constants plus a few not found in
xlChartType: xl3DBar, xlBar, xlColumn, and xlCombination. Each of those general chart types allows a Format argument setting
that corresponds to the index of the subtype shown in the Chart Type dialog box (Figure 16-8).

Figure 16-8. How Gallery and Format correspond to chart types

chart.CodeName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Visual Basic class name of the chart sheet.

chart.Column3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D column chart type.

chart.ColumnGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D column chart types.

chart.CopyPicture([Appearance], [Format], [Size])

Copies the image of a chart into the clipboard.

Argument Settings

Appearance The resolution of the image. Can be one of these settings: xlPrinter, xlScreen. Default is xlScreen.

Format The image format. Can be one of these settings: xlBitmap, xlPicture. Default is xlPicture.

Size xlScreen sizes the picture to match the size displayed on screen; xlPrinter sizes the picture to match the
printed size.

The following code copies a bitmap of a chart onto the clipboard so that it can be later pasted by the user:

Sub DemoCopyPicture()
 Dim chrt As Chart
 Set chrt = Charts("Demo Chart Types")
 ' Copy a chart image into the clipboard.
 chrt.CopyPicture xlScreen, xlBitmap
End Sub

chart.Corners

Returns the Corners object of a 3-D chart.

chart.CreatePublisher([Edition], [Appearance], [Size],
[ContainsPICT], [ContainsBIFF], [ContainsRTF],
[ContainsVALU])

Macintosh only. Creates a publisher for a chart .

Argument Settings

Edition The file name of the edition.

Appearance The resolution. Can be one of these settings: xlPrinter, xlScreen. Default is xlPrinter.

Size xlScreen sizes the image to match the size displayed on screen; xlPrinter sizes the image to match the
printed size.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Size printed size.

ContainsPICT True includes PICT format data. Default is True.

ContainsBIFF True includes BIFF format data. Default is True.

ContainsRTF True includes RTF format data. Default is True.

ContainsVALU True includes VALU format data. Default is True.

chart.DataTable

Returns the DataTable object for the chart. Make sure the HasDataTable property is True before using this object. For
example, the following code adds a data table to a chart and makes the table's font italic:

Sub GetDataTable()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.HasDataTable = True
 chrt.DataTable.Font.Italic = True
End Sub

chart.DepthPercent [= setting]

Sets or returns the depth (z-axis) of a 3-D chart as a percentage of its width. Must be between 20 and 2000. Default is
100.

chart.Deselect()

Cancels the selection of a chart.

chart.DisplayBlanksAs [= xlDisplayBlanksAs]

Sets or returns how omitted values are plotted. Can be one of these settings:

xlNotPlotted

xlInterpolated

xlZero

chart.DoughnutGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using doughnut chart types.

chart.Elevation [= setting]

Sets or returns the angle at which you view a 3-D chart in degrees. Must be between -90 and 90 for most 3-D chart
types and between 0 and 44 for 3-D bar charts.

chart.Floor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.Floor

Returns the Floor object for a 3-D chart.

chart.GapDepth [= setting]

Sets or returns the distance between series on a 3-D chart as a percentage of the marker width. Must be between 0
and 500. Default is 50.

chart.GetChartElement(x, y, ElementID, Arg1, Arg2)

Gets information about the chart object at specific screen coordinates.

Argument Settings

x The x-coordinate of the object.

y The y-coordinate of the object.

ElementID An xlChartItem constant identifying the type of object at (x, y). See Table 16-1.

Arg1 Information about the object. See Table 16-1.

Arg2 Information about the object. See Table 16-1.

The x and y arguments are input arguments; ElementID, Arg1, and Arg2 are output arguments. The meaning of the output
arguments varies based on the type of object (x, y); Table 16-1 describes those returned values.

Table 16-1. Meaning of GetChartElement output arguments
If ElementID is... then Arg1 is... and Arg2 is...

xlAxis, xlAxisTitle, xlDisplayUnitLabel, xlMajorGridlines,
or xlMinorGridlines xlAxisGroup xlAxisType

xlPivotChartDropZone xlPivotFieldOrientation Not set

xlPivotChartFieldButton xlPivotFieldOrientation The index of the column in the
PivotFields collection of the item

xlDownBars, xlDropLines, xlHiLoLines, xlRadarAxisLabels,
xlUpBars

The index of the group within
the ChartGroups collection Not set

xlChartArea, xlChartTitle, xlCorners, xlDataTable, xlFloor,
xlLegend, xlNothing, xlPlotArea, or xlWalls Not set Not set

xlDataLabel or xlSeries The index of the series in the
SeriesCollection of the chart

The index of the point in the Points
collection of the series

xlErrorBars, xlLegendEntry, xlLegendKey, xlXErrorBars,
or xlYErrorBars

The index of the series in the
SeriesCollection of the chart Not set

xlShape The index of the shape in the
Shapes collection of the chart Not set

xlTrendline The index of the series in the
SeriesCollection of the chart

The index of the trendline in the
trendlines collection of the series

The following code displays information about a chart element in the Immediate window when you click on objects in
the chart:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the chart:

' Add this code to the Chart sheet class

' Display element info when chart is clicked.
Private Sub Chart_MouseDown(ByVal Button As Long, _
 ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
 Dim chrt As Chart, id As Long, arg1 As Long, arg2 As Long
 Set chrt = Charts("New Chart")
 arg1 = 0: arg2 = 0
 chrt.GetChartElement x, y, id, arg1, arg2
 Debug.Print id, arg1, arg2
End Sub

chart.HasAxis(xlAxisGroup, xlAxisType) [= setting]

True adds an axis to the chart; False removes the axis.

Argument Settings

xlAxisGroup The axis to add or remove. Can be one of these settings: xlCategory, xlValue, or xlSeriesAxis (3-D only).

xlAxisType For 2-D charts can be xlPrimary or xlSecondary. For 3-D charts, can only be xlPrimary.

Charts can have up to four axes, so HasAxis is a 2-D array of True/False values that determines which axes exist on the
chart. Be sure to check HasAxis before working with an axis object.

chart.HasDataTable [= setting]

True adds a data table on the chart; False removes the data table.

chart.HasLegend [= setting]

True adds a legend to the chart; False removes the legend.

chart.HasPivotFields [= setting]

For pivot charts, True displays pivot controls and False hides the controls. Default is True for pivot charts, False for
other types of charts.

chart.HasTitle [= setting]

True adds a title to the chart; False removes the title.

chart.HeightPercent [= setting]

Sets or returns the height (y-axis) of a 3-D chart as a percentage of its width. Must be between 5 and 500. Default is
100.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.Legend

Returns the Legend object from the chart. Make sure the HasLegend property is True before using this object.

chart.Line3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D line chart type.

chart.LineGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D line chart types.

chart.Location(Where, [Name])

Moves the chart to a new worksheet or chart sheet.

Argument Settings

Where An xlChartLocation constant that specifies the type of location to move to. Can be one of these settings:
xlLocationAsNewSheet, xlLocationAsObject, or xlLocationAutomatic.

Name The name of the target worksheet or chart sheet.

The Location method removes the chart from its current location and inserts it in the new location. For example, the first
procedure in the following code block removes the chart sheet New Chart and inserts the chart as an embedded object on
the Start worksheet; the second procedure moves the embedded chart back to a chart sheet:

Sub MoveChartToStart()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.Location xlLocationAsObject, "Start"
End Sub

Sub MoveChartBack()
 Dim chrt As Chart
 Set chrt = Worksheets("Start").ChartObjects(1).Chart
 chrt.Location xlLocationAsNewSheet
 ActiveSheet.Name = "New Chart"
End Sub

chart.Perspective [= setting]

Sets or returns the perspective for a 3-D chart. Must be between 0 and 100.

chart.Pie3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D pie chart type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.PieGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D pie chart types.

chart.PivotLayout

For pivot charts, returns the PivotLayout object from a chart.

chart.PlotArea

Returns the PlotArea object of a chart. The PlotArea represents the background on which the chart is plotted. The ChartArea
is the larger background surrounding the PlotArea.

chart.PlotBy [= xlRowCol]

Sets or returns an xlRowCol constant that determines whether series are plotted by row or by column. Can be one of
these settings:

xlColumns

xlRows

chart.PlotVisibleOnly [= setting]

True plots only rows or columns that are visible in the source range; False plots both visible and hidden data.

Returns a collection of ChartGroup objects representing series that are plotted using 2-D radar chart types.

chart.Refresh()

Refreshes the chart. Charts automatically refresh when their data changes, but Refresh ensures that updates occur
immediately.

chart.RightAngleAxes [= setting]

For 3-D line, bar, and column charts, True places the axes at right angles, ignoring the Perspective settings.

chart.Rotation [= setting]

For 3-D charts, sets or returns the angle by which the chart is rotated. Must be between 0 and 44 for 3-D bar charts
and 0 and 360 for other 3-D types. The following code makes a chart spin around:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and 0 and 360 for other 3-D types. The following code makes a chart spin around:

Sub RotateChart()
 Dim chrt As Chart, deg As Integer
 Set chrt = Charts("New Chart")
 chrt.ChartType = xl3DArea
 For deg = 15 To 360
 chrt.Rotation = deg
 Next
 chrt.Rotation = 15
End Sub

chart.Select([Replace])

Selects one or all chart sheets in a workbook.

Argument Settings

Replace True replaces the current selection with the selected chart or charts; False adds the selection to the
current selection. Default is True.

chart.SeriesCollection([Index])

Returns one or all of the series plotted on the chart. In a line chart, each line is a series and each series represents a
row or column of data (depending on the PlotBy property setting).

chart.SetBackgroundPicture(Filename)

Displays a picture in the chart sheet background.

Argument Settings

Filename The file name of the picture to use. The picture is tiled to fill the entire sheet background. Set Filename to
"" to clear the background picture.

chart.SetSourceData(Source, [PlotBy])

Sets the range to plot in the chart.

Argument Settings

Source The Range object to plot.

PlotBy xlRows plots each row as a series; xlColumns plots each column as a series.

Use SetSourceData to plot new data. This is easier than adding items to the SeriesCollection.

chart.ShowWindow [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For embedded charts, copies an image of the chart to its own window in Excel. ShowWindow seems to work only if the
embedded chart is activated as shown by this code:

Sub ChartWindow()
 Worksheets("Wizard").Activate
 ActiveSheet.ChartObjects(1).Activate
 ActiveChart.ShowWindow = True
End Sub

chart.SizeWithWindow [= setting]

For chart sheets, True scales the chart to match the size of the Excel window; False does not scale. Default is True.

chart.SurfaceGroup

Returns the ChartGroup object representing the series that are plotted using a surface chart type.

chart.Walls

For 3-D charts, returns a Walls object representing the vertical visual boundary of the plot area (as opposed to the Floor,
which is the other visual boundary).

chart.WallsAndGridlines2D [= setting]

For 3-D charts, True draws gridlines in 2-D format. Default is False. Any difference in the gridline appearance is minor,
as illustrated by the following code:

Sub ThreeDGridlines()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.ChartType = xlSurface
 chrt.WallsAndGridlines2D = True
 chrt.Axes(xlCategory, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlValue, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlSeries, xlPrimary).HasMajorGridlines = True
End Sub

chart.XYGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using xy scatter chart types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.11. ChartObject and ChartObjects Members
Use the ChartObjects collection to embed new charts on a worksheet or get existing embedded charts. Use the Worksheet or
Chart object's ChartObjects property to get a reference to this collection. Use the individual ChartObject to get a reference to
the underlying Chart object for the embedded chart. ChartObjects and ChartObject have the following members . Key
members (shown in bold) are covered in the following reference section:

Activate Add1

Application2 Border2

BottomRightCell BringToFront2

Chart Copy2

CopyPicture2 Count1

Creator2 Cut2

Delete2 Duplicate2

Enabled2 Group1

Height2 Index

Interior2 Item1

Left2 Locked2

Name Parent2

Placement2 PrintObject2

ProtectChartObject RoundedCorners2

Select2 SendToBack2

Shadow2 ShapeRange2

Top2 TopLeftCell

Visible2 Width2

ZOrder
1 Collection only

2 Object and collection

chartobjects.Add(Left, Top, Width, Height)

Creates a blank, embedded chart on the worksheet or chart sheet.

Argument Settings

Left The distance between the left edge of the sheet and the right edge of the chart in points

Top The distance between the top of the sheet and the top of the chart in points

Width The width of the chart in points

Height The height of the chart in points

Add does not plot the chart, so use the ChartWizard or SetSourceData methods after you create the chart. The following code
shows how to quickly create an embedded chart from a selected range of cells:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shows how to quickly create an embedded chart from a selected range of cells:

Sub AddEmbeddedChart()
 Dim co As ChartObject
 ' Create the chart object
 Set co = ActiveSheet.ChartObjects.Add(100, 200, 400, 200)
 ' Plot the chart from the selected range.
 co.Chart.ChartWizard Selection, xl3DColumn, , xlRows
End Sub

chartobject.BottomRightCell

Returns the Range object for the cell that is under the lower-right corner of the embedded chart.

chartobject.Chart

Returns the Chart object for the embedded chart. You use this object to plot the chart and control the chart's
appearance.

chartobjects.RoundedCorners [= setting]

True displays the embedded chart with rounded, rather than square, corners. Default is False.

chartobject.TopLeftCell

Returns the Range object for the cell that is under the top left corner of the embedded chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.12. ChartGroup and ChartGroups Members
Use the ChartGroups collection to get individual charts from a combo chart. Use the Chart object's ChartGroups property to
get a reference to this collection. Use the ChartGroup object to control chart type-specific aspects of a chart. The
ChartGroups collection and ChartGroup object have the following members . Key members (shown in bold) are covered in
the following reference section:

Application2 AxisGroup

BubbleScale Count1

Creator2 DoughnutHoleSize

DownBars DropLines

FirstSliceAngle GapWidth

Has3DShading HasDropLines

HasHiLoLines HasRadarAxisLabels

HasSeriesLines HasUpDownBars

HiLoLines Index

Item1 Overlap

Parent2 RadarAxisLabels

SecondPlotSize SeriesCollection

SeriesLines ShowNegativeBubbles

SizeRepresents SplitType

SplitValue SubType

Type UpBars

VaryByCategories
1 Collection only

2 Object and collection

chartgroup.BubbleScale [= setting]

For bubble charts, sets or returns the percentage by which to scale the bubbles up or down. Must be between 1 and
300.

chartgroup.DoughnutHoleSize [= setting]

For doughnut charts, sets or returns the size of the hole as a percentage of the chart size. Must be between 10 and 90.
Default is 50.

chartgroup.DownBars

For 2-D line charts with HasUpDownBars set to True, returns the UpBars object for the chart. Causes an error for other chart
types.

chartgroup.DropLines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chartgroup.DropLines

For line and area charts with HasDropLines set to True, returns the DropLines object for the chart. Causes an error for other
chart types.

chartgroup.FirstSliceAngle [= setting]

For pie and doughnut chart types, sets or returns the rotation of the first slice in degrees clockwise from vertical.
Default is 0.

chartgroup.GapWidth [= setting]

For bar and column chart types, sets or returns the gap between bars/columns as a percentage of the bar/column
width. Must be between 0 and 500. Default is 100.

chartgroup.Has3DShading [= setting]

For 3D surface charts, True adds shading to the underside of the surface and False does not. Default is False. Causes an
error for other chart types.

chartgroup.HasDropLines [= setting]

For line and area charts, True adds lines from the series point to the category axis and False omits those lines. Default
is False.

chartgroup.HasHiLoLines [= setting]

For 2-D line charts, True adds lines between the high and low points for each category and False omits those lines.
Default is False.

chartgroup.HasRadarAxisLabels [= setting]

For radar charts, True displays labels for the radar axes and False omits the labels. By default, radar charts have one
radar axis for each category, and the category names appear as labels outside of each axis.

chartgroup.HasSeriesLines [= setting]

For bar and column charts, True adds lines between the each category connecting the bars/columns and False omits the
lines. Default is False.

chartgroup.HasUpDownBars [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For 2-D line charts, True displays bars between the high and low points for each category and False does not. Default is
False.

chartgroup.HiLoLines

For 2-D line charts with HasHiLoLines set to True, returns the HiLoLines object for the chart. Causes an error for other chart
types.

chartgroup.Overlap [= setting]

For bar or column charts, sets the amount of overlap for bars/columns as a percentage of their width. Must be between
-100 and 100. Default is 0.

chartgroup.RadarAxisLabels

For radar charts with HasRadarAxisLabels set to True (the default), returns the TickLabels collection for the radar axis.

chartgroup.SecondPlotSize [= setting]

For pie of pie charts and pie of bar charts, sets or returns the size of the secondary chart as a percentage of the size of
the primary chart. Must be between 5 and 200. Default is 75.

chartgroup.SeriesLines

For bar and column charts with HasSeriesLines set to True, returns the SeriesLines object for the chart. Causes an error for
other chart types.

chartgroup.ShowNegativeBubbles [= setting]

For bubble charts, True plots bubbles that have negative values and False omits them. Default is False.

chartgroup.SizeRepresents [= xlSizeRepresents]

For bubble charts, sets or returns what the size of the bubble represents. Can be one of these settings:

xlSizeIsArea (default)

xlSizeIsWidth

chartgroup.SplitType [= xlSplitType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For pie of pie charts and bar of pie charts, sets or returns how the split between the chart types is displayed. Can be
one of these settings:

xlSplitByCustomSplit

xlSplitByPercentValue

xlSplitByPosition (default)

xlSplitByValue

chartgroup.SplitValue [= setting]

For pie of pie charts and bar of pie charts with SplitType set to xlSplitByValue or xlSplitByPercentValue, sets or returns the
threshold that a category must reach before it is split out of the main pie.

chartgroup.UpBars

For 2-D line charts with HasUpDownBars set to True, returns the UpBars object for the chart. Causes an error for other chart
types.

chartgroup.VaryByCategories [= setting]

For charts containing only one series, True varies the color or pattern of each point in the series; False uses the same
color or pattern for each point. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.13. SeriesLines Members
Use the SeriesLines object to control the appearance of the lines connecting series on 2-D stacked bar and column charts.
Use the ChartGroup object's SeriesLines property to get a reference to this object. The SeriesLines object has the following
members:

Application

Border

Creator

Delete

Name

Parent

Select

Set the HasSeriesLines property to True before using the SeriesLines object. You change the appearance of series lines
through the Border property, as shown here:

Sub ChangeSeriesLines()
 Dim chrt As Chart, cg As ChartGroup, sl As SeriesLines
 ' Get the chart
 Set chrt = ActiveChart
 chrt.ChartType = xlColumnStacked
 ' Get the chart group.
 Set cg = ActiveChart.ChartGroups(1)
 ' Turn on series lines
 cg.HasSeriesLines = True
 Set sl = cg.SeriesLines
 ' Use dashed line.
 sl.Border.LineStyle = 2
 ' Make the lines bold.
 sl.Border.Weight = 4
End Sub

Use the Series object to change the lines plotted on a chart. Series lines apply to the lines
connecting series on only 2-D column and bar charts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.14. Axes and Axis Members
Use the Axes collection to get the axes from a chart. Use the Chart object's Axes property to get a reference to this
collection. Use the Axis object to control the scale, caption, plot order, and appearance of an axis. The Axes collection and
Axis object have the following members. Key members (shown in bold) are covered in the following reference section:

Application2 AxisBetweenCategories

AxisGroup AxisTitle

BaseUnit BaseUnitIsAuto

Border CategoryNames

CategoryType Count1

Creator2 Crosses

CrossesAt Delete

DisplayUnit DisplayUnitCustom

DisplayUnitLabel HasDisplayUnitLabel

HasMajorGridlines HasMinorGridlines

HasTitle Height

Item1 Left

MajorGridlines MajorTickMark

MajorUnit MajorUnitIsAuto

MajorUnitScale MaximumScale

MaximumScaleIsAuto MinimumScale

MinimumScaleIsAuto MinorGridlines

MinorTickMark MinorUnit

MinorUnitIsAuto MinorUnitScale

Parent2 ReversePlotOrder

ScaleType Select

TickLabelPosition TickLabels

TickLabelSpacing TickMarkSpacing

Top Type

Width
1 Collection only

2 Object and collection

axis.AxisBetweenCategories [= setting]

For category axes, True moves the start point of the category axis away from the value axis so that plotted series move
in from the edges of the chart. Default is False. For other axes, causes an error. To see the effect of this property, try
the following code on a line chart:

Sub MoveCategoryAxis()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ax.AxisBetweenCategories = True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

axis.AxisGroup

Returns xlPrimary if the object is the primary axis, xlSecondary if it is the secondary axis.

axis.AxisTitle

Returns the AxistTitle object for the axis. Check the HasTitle property before using this object, and use the AxisTitle Caption
property to change the title as shown by the following code:

Sub ChangeAxisTitle()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 If ax.HasTitle Then _
 ax.AxisTitle.Caption = "New Caption"
End Sub

axis.BaseUnit [= setting]

For category axes with CategoryType set to xlTimeScale, sets the unit of time used by the axis. Can be one of the following
xlTimeUnit constants:

xlMonths

xlDays

xlYears

This property is ignored if CategoryType is not xlTimeScale; and it causes an error if the axis is not a category axis.

axis.BaseUnitIsAuto [= setting]

For category axes, True selects a BaseUnit automatically. Default is True. Set BaseUnitIsAuto to True to restore the default
BaseUnit after changing that property.

axis.CategoryNames [= setting]

Sets or returns the array of data used by the category axis. For example, the following code changes the names on the
category axis:

Sub SetCategoryNames()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ax.CategoryNames = Array("this", "that", "the", "other")
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting an individual element of this array may crash Excel:

ax.CategoryNames(1) = "foo" ' Crash!

axis.CategoryType [= xlCategoryType]

For category axes, sets or returns the type of scale used. Can be one of these settings:

xlAutomaticScale (default)

xlCategoryScale

xlTimeScale

axis.Crosses [= xlAxisCrosses]

For 2-D charts, sets or returns where the value and category axes meet. Can be one of these settings:

xlAxisCrossesAutomatic (default)

xlAxisCrossesCustom

xlMaximum

xlMinimum

axis.CrossesAt [= setting]

For 2-D charts with Crosses set to xlAxisCrossesCustom, sets or returns the point on the axis where the other axis starts. For
example, the following code moves the category axis up to 100,000 on the value axis:

Sub MoveCategoryAxisUp()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ax.Crosses = xlAxisCrossesCustom
 ax.CrossesAt = 100000
End Sub

axis.DisplayUnit [= xlDisplayUnit]

For value axes, sets or returns the numeric scale used by the axis. Default is xlNone. Can be one of these settings:

xlCustom xlHundreds

xlHundredMillions xlHundredThousands

xlMillions xlMillionMillions

xlNone (default) xlTenMillions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlTenThousands xlThousands

xlThousandMillions

Setting this property adds a DisplayUnitLabel to the axis. For example, the following code sets the scale of the value axis
and changes the display unit caption:

Sub SetAxisScale()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ax.DisplayUnit = xlThousands
 ax.DisplayUnitLabel.Caption = "(in $K)"
End Sub

axis.DisplayUnitCustom [= setting]

For value axes with DisplayUnit set to xlCustom, sets or returns the unit for the scale. Can be any value between 0 and
1E+308.

axis.DisplayUnitLabel

For value axes that have a DisplayUnit setting and HasDisplayUnitLabel set to True, returns the DisplayUnitLabel object. Causes
an error in other situations.

axis.HasDisplayUnitLabel [= setting]

For value axes, True causes any DisplayUnit setting (such as Thousands) to appear next to the axis. Causes an error for
other axis types.

axis.HasMajorGridlines [= setting]

True displays gridlines; False hides them. The following code displays major gridlines on a 3-D chart:

Sub SetGridlinesOn()
 Dim chrt As Chart
 Set chrt = ActiveChart
 chrt.ChartType = xl3DArea
 chrt.Axes(xlCategory, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlValue, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlSeries, xlPrimary).HasMajorGridlines = True
End Sub

axis.HasMinorGridlines [= setting]

True displays minor gridlines; False hides them.

axis.HasTitle [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True displays an AxisTitle for the axis; False removes AxisTitle. Make sure to check HasTitle before using the AxisTitle object.
Set the AxisTitle object's Caption property to change the text it displays.

axes.[Item](Type, [AxisGroup])

Returns an axis from the Axes collection.

Argument Settings

Type The xlAxisType of the axis to return. Can be xlAxisValue, xlAxisCategory, or xlAxisSeries (3-D charts only).

AxisGroup The xlAxisGroup of the axis to return. Can be xlAxisPrimary or xlAxisSecondary (2-D charts only).

The Axes collection is unique in using a 2-D array to contain its component objects.

axis.MajorGridlines

Returns the Gridlines object of the axis. For example, the following code selects the category axis major gridlines if they
exist:

Sub SelectGridlines()
 Dim chrt As Chart, gl As Gridlines
 Set chrt = ActiveChart
 chrt.ChartType = xl3DArea
 If chrt.Axes(xlCategory, xlPrimary).HasMajorGridlines Then
 Set gl = chrt.Axes(xlCategory, xlPrimary).MajorGridlines
 gl.Select
 End If
End Sub

axis.MajorTickMark [= xlTickMark]

Sets or returns the type of tick mark used on the axis. Can be one of these settings:

xlTickMarkCross

xlTickMarkInside

xlTickMarkNonex

lTickMarkOutside (default)

axis.MajorUnit [= setting]

For the value axis, sets or returns the interval between tick marks. Use the TickMarkSpacing property to set this interval on
the category axis.

axis.MajorUnitIsAuto [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True causes Excel to calculate MajorUnit automatically; False relies on the setting in the MajorUnit property. Setting the
MajorUnit property automatically sets this property to False. Default is True.

axis.MajorUnitScale [= xlTimeUnit]

For the category axis when CategoryType is xlTimeScale, sets or returns the interval between tick marks. Can be one of
these settings:

xlMonths

xlDays

xlYears

axis.MaximumScale [= setting]

For value axes, sets or returns the maximum value for the axis. Setting this property automatically sets
MaximumScaleIsAuto to False. The following code sets the maximum and minimum axis values on a chart to match the
maximum and minimum values in the source data range [PriceHistory]:

Sub ScaleValueAxis()
 Dim chrt As Chart, ax As Axis
 Set chrt = Charts("Stock Price History")
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ax.MaximumScale = WorksheetFunction.Max(Range("PriceHistory"))
 ax.MinimumScale = WorksheetFunction.Min(Range("PriceHistory"))
End Sub

axis.MaximumScaleIsAuto [= setting]

For value axes, True causes Excel to calculate the maximum value for the axis based on the source data; False uses the
MaximumScale setting instead. Default is True.

axis.MinimumScale [= setting]

For value axes, sets or returns the minimum value for the axis. Setting this property automatically sets MinimumScaleIsAuto
to False.

axis.MinimumScaleIsAuto [= setting]

For value axes, True causes Excel to calculate the minimum value for the axis based on the source data and False uses
the MinimumScale setting instead. Default is True.

axis.MinorGridlines

For primary axes, returns the Gridlines object representing the minor gridlines of the axis. Be sure to check the
HasMinorGridlines property before using this object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

axis.MinorTickMark [= xlTickMark]

Sets or returns how minor tick marks are displayed. Can be one of these settings:

xlTickMarkCross

xlTickMarkInside

xlTickMarkNone

xlTickMarkOutside

axis.MinorUnit [= setting]

For the value axis, sets or returns the interval between minor tick marks. Use the TickMarkSpacing property to set this
interval on the category axis.

axis.MinorUnitIsAuto [= setting]

True causes Excel to calculate MinorUnit automatically; False relies on the setting in the MinorUnit property. Setting the
MajorUnit property automatically sets this property to False. Default is True.

axis.MinorUnitScale [= xlTimeUnit]

For the category axis when CategoryType is xlTimeScale, sets or returns the interval between minor tick marks. Can be one
of these settings:

xlMonths

xlDays

xlYears

axis.ReversePlotOrder [= setting]

True plots data from last to first, reversing the category axis. Default is True.

axis.ScaleType [= xlScaleType]

For value axes, sets or returns the type of scale. Can be one of these settings:

xlScaleLinear

xlScaleLogarithmic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

axis.TickLabelPosition [= xlTickLabelPosition]

Sets or returns where tick labels are placed. Can be one of these settings:

xlTickLabelPositionLow

xlTickLabelPositionHigh

xlTickLabelPositionNextToAxis

xlTickLabelPositionNone

axis.TickLabels

Returns the TickLabels object for the axis.

axis.TickLabelSpacing [= setting]

For category and series axes, sets or returns the number of categories or series between tick mark labels. Default is 1.

axis.TickMarkSpacing [= setting]

For category and series axes, sets or returns the number of categories or series between tick marks. Default is 1. Use
the MajorUnit property to set tick mark spacing for value axes.

axis.Type

Returns the xlAxisType constant that identifies the type of the axis. Can be one of these settings:

xlCategory

xlSeriesAxis

xlValue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.15. DataTable Members
Use the DataTable object to control the appearance of a data table on a chart sheet. Use the Chart object's DataTable
property to get a reference to this object. The DataTable object has the following members:

Application AutoScaleFont

Border Creator

Delete Font

HasBorderHorizontal HasBorderOutline

HasBorderVertical Parent

Select ShowLegendKey

Most of the DataTable members are True/False properties that enable or disable specific data table items. These
properties correspond to the settings on the Format Data Table dialog box (Figure 16-9).

Before you use the DataTable object, make sure to set the chart's HasDataTable property to Truethat creates the table if it
did not already exist. The following code adds a data table to the active chart and sets some of the table's properties:

Sub AddDataTable()
 Dim chrt As Chart, dt As DataTable
 ' Get the chart.
 Set chrt = ActiveChart
 ' Add a data table if it doesn't have one.
 chrt.HasDataTable = True
 ' Get the data table.
 Set dt = chrt.DataTable
 ' Set the data table properties.
 ' These properties are all True by default:
 dt.ShowLegendKey = False
 dt.HasBorderHorizontal = False
 dt.HasBorderOutline = True
 dt.HasBorderVertical = True
End Sub

Figure 16-9. Data table properties correspond to these settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data tables may appear on chart sheets or on embedded charts, but some chart types, such as xy scatter charts, do
not support them; in those cases, trying to set HasDataTable does nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.16. Series and SeriesCollection Members
Use the SeriesCollection to get all of the series plotted on the chart. Use the Chart object's SeriesCollection property to get a
reference to this collection. Use the Series object to change an individual series or get the data points that the series
plots. The SeriesCollection and Series object have the following members . Key members (shown in bold) are covered in the
following reference section:

Add1 Application2

ApplyCustomType ApplyDataLabels

ApplyPictToEnd ApplyPictToFront

ApplyPictToSides AxisGroup

BarShape Border

BubbleSizes ChartType

ClearFormats Copy

Count1 Creator2

DataLabels Delete

ErrorBar ErrorBars

Explosion Extend 1

Fill Formula

FormulaLocal FormulaR1C1

FormulaR1C1Local Has3DEffect

HasDataLabels HasErrorBars

HasLeaderLines Interior

InvertIfNegative Item 1

LeaderLines MarkerBackgroundColor

MarkerBackgroundColorIndex MarkerForegroundColor

MarkerForegroundColorIndex MarkerSize

MarkerStyle Name

NewSeries 1 Parent 2

Paste 2 PictureType

PictureUnit PlotOrder

Points Select

Shadow Smooth

Trendlines Type

Values XValues

1 Collection only

2 Object and collection

seriescollection.Add(Source, [Rowcol], [SeriesLabels],
[CategoryLabels], [Replace])

Adds a new series and plots it on a chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Source The Range object to plot as the new series.

Rowcol An xlRowCol constant that determines how the series is plotted. Can be xlColumns or xlRows.

SeriesLabels True interprets the first row or column of Source as a series label; False treats the first row or column as
data. Defaults to a best guess based on the source data.

CategoryLabels True interprets the first row or column of Source as a category label; False treats the first row or column
as data. Defaults to a best guess based on the source data.

Replace If CategoryLabels is True, setting Replace to True replaces matching categories with the new labels; False
does not replace the categories.

Use the Chart object's SetSourceData method to replace all of the series on a chart with new data.

series.ApplyCustomType(ChartType)

Applies a chart type to a series. Use this method to create combo charts containing more than one chart type.

Argument Settings

ChartType An xlChartType constant. See the reference topic for the Chart object's ChartType property for a list of possible
settings.

The following code creates a chart and adds series using the SeriesCollection Add method; then it changes the chart type of
the last series to create a combo chart containing both line and column chart types:

Sub AddSeries()
 Dim chrt As Chart, sc As SeriesCollection, _
 sr As Series
 ' Create a line chart.
 Set chrt = Charts.Add
 chrt.ChartType = xlLine
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Add adds some series (plots data).
 sc.Add Range("GrowthRate"), , True, True
 ' Get the last series.
 Set sr = sc(sc.Count)
 ' Change its chart type.
 sr.ApplyCustomType xlColumnClustered
End Sub

series.ApplyDataLabels([Type], [LegendKey], [AutoText],
[HasLeaderLines], [ShowSeriesName], [ShowCategoryName],
[ShowValues], [ShowPercentage], [ShowBubbleSize],
[Separator])

Applies data labels to a single series on the chart. The arguments for this method are identical to those for the Chart
object's ApplyDataLabels method. See that reference topic for complete information and an example.

series.ApplyPictToEnd [= setting]

For 3-D column and bar charts, True displays the fill picture on the end of the column or bar and False displays the fill
color. Default is True if the series has a fill picture. Setting the ApplyPict properties causes an error for other chart types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

color. Default is True if the series has a fill picture. Setting the ApplyPict properties causes an error for other chart types.

The following code demonstrates each of the ApplyPict properties:

Sub ApplyPict()
 Dim chrt As Chart, sc As SeriesCollection, _
 sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 chrt.ChartType = xl3DColumn
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Get the first series.
 Set sr = sc(1)
 ' Display a picture on the series column.
 sr.Fill.UserPicture ThisWorkbook.Path & "\small_wombat.GIF"
 sr.Fill.Visible = True
 ' Show all sides
 Application.Wait Now + 0.00001
 ' Remove picture from end.
 sr.ApplyPictToEnd = False
 Application.Wait Now + 0.00001
 ' Remove picture from all sides.
 sr.ApplyPictToSides = False
 Application.Wait Now + 0.00001
 ' Apply picture to front side.
 sr.ApplyPictToFront = True
End Sub

series.ApplyPictToFront [= setting]

For 3-D column and bar charts, True displays the fill picture on the front of the column or bar.

series.ApplyPictToSides [= setting]

For 3-D column and bar charts, True displays the fill picture on the sides of the column or bar.

series.AxisGroup [= xlAxisGroup]

Sets or returns the axis group that the series belongs to. For 2-D charts, can be xlPrimary or xlSecondary. For 3-D charts,
AxisGroup can only be xlPrimary.

series.ChartType [= xlChartType]

Sets or returns the chart type of the series. Changing the chart type of a series makes the chart a combo chart and
creates a ChartGroup for the new chart type.

series.ClearFormats()

Restores the series ChartFillFormat object back to its default. For example, the following code removes the pictures applied
in the ApplyPict procedure earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the ApplyPict procedure earlier:

Sub RemovePict()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Remove the formatting
 sr.ClearFormats
End Sub

series.DataLabels([Index])

Gets one or all of the DataLabel objects for the series. Be sure to set HasDataLabels to True before using this property.

series.ErrorBar(Direction, Include, Type, [Amount],
[MinusValues])

For 2-D chart types, adds error bars to the series. Causes an error for 3-D chart types.

Argument Settings

Direction An xlErrorBarDirection constant that specifies the axis direction for the bar. Possible settings are xlX or xlY.

Include An xlErrorBarInclude constant that specifies the type of bar. Possible settings are xlErrorBarIncludeBoth,
xlErrorBarIncludeNone, xlErrorBarIncludeMinusValues, or xlErrorBarIncludePlusValues.

Type An xlErrorBarType constant that specifies the calculation used to size the bar. Possible settings are
xlErrorBarTypeCustom, xlErrorBarTypePercent, xlErrorBarTypeStError, xlErrorBarTypeFixedValue, or xlErrorBarTypeStDev.

Amount If Type is xlErrorBarTypeCustom, the positive value of the bar.

MinusValues If Type is xlErrorBarTypeCustom, the negative value of the bar.

The following code adds error bars to the first series of the active chart:

Sub AddErrorBars()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Use 2-D chart type.
 chrt.ChartType = xlLineMarkers
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Add error bars.
 sr.ErrorBar xlY, xlErrorBarIncludeBoth, xlErrorBarTypeStError
End Sub

series.ErrorBars

Returns the ErrorBars collection for a series. Use the returned object to remove error bars from a series, as shown by the
following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code:

Sub RemoveErrorBars()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Remove the error bars added by AddErrorBars.
 sr.ErrorBars.Delete
End Sub

series.Explosion [= setting]

For pie and doughnut chart types, sets or returns the amount to move the series out from the center (exploded view)
as a percentage of the diameter of the chart. The following code explodes one piece out of a pie chart:

Sub ExplodeSlice()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Use a pie chart type.
 sr.ChartType = xlPie
 ' Keep pie together
 sr.Explosion = 0
 ' Explode last piece.
 sr.Points(sr.Points.Count).Explosion = 50
End Sub

seriescollection.Extend(Source, [Rowcol], [CategoryLabels])

Adds data values to existing series.

Argument Settings

Source The Range object containing the data to add to the series.

Rowcol An xlRowCol constant that determines how the data is plotted. Can be xlColumns or xlRows.

CategoryLabels True interprets the first row or column of Source as a category label; False treats the first row or column
as data. Defaults to a best guess based on the source data.

series.Fill

Returns the ChartFillFormat object for the series. Use this object to change the color, pattern, or picture displayed on the
series.

series.Formula [= setting]

Gets or sets the formula for a series. This formula uses the Series worksheet function. The Formula properties are the only
way to get the source range from the chart. For example, the following code gets the source range from the active
chart and then selects that range:

Sub TestGetSourceRange()
 Dim chrt As Chart, rng As Range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim chrt As Chart, rng As Range
 ' Get a chart.
 Set chrt = ActiveChart
 Set rng = GetSourceRange(chrt)
 rng.Worksheet.Activate
 rng.Select
End Sub

Function GetSourceRange(chrt As Chart) As Range
 Dim sc As SeriesCollection, sr As Series, _
 result As Range, temp As String, i As Integer, _
 ar() As String, j As Integer
 Set sc = chrt.SeriesCollection
 ' For each of the series.
 For i = 1 To sc.Count
 ' Get the formula.
 temp = sc(i).Formula
 ' Get the address part of the formula.
 temp = Replace(temp, "=SERIES(", "")
 ' Break into an array.
 ar = Split(temp, ",")
 ' Omit the last element, which is the index of the series.
 For j = 0 To UBound(ar) - 1
 ' If the data point is not omitted.
 If ar(j) <> "" Then
 ' Convert the address to a range.
 If result Is Nothing Then
 Set result = Range(ar(j))
 Else
 ' Append the range using Union.
 Set result = Union(result, Range(ar(j)))
 End If
 End If
 Next
 Next
 ' Return the result.
 Set GetSourceRange = result

End Function series.FormulaLocal [= setting]

Same as the Formula property, only uses the user's language settings rather than English to create the formula.

series.FormulaR1C1 [= setting]

Same as the Formula property, only uses R1C1 format for the cell references.

series.FormulaR1C1Local [= setting]

Same as the Formula property, only uses the user's language and R1C1 format for the cell references.

series.Has3DEffect [= setting]

For bubble charts, True renders the series with a 3-D look.

series.HasDataLabels [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True adds data labels to the series if they do not already exist; False removes them. Set this property to True before
using the DataLabels collection.

series.HasErrorBars [= setting]

True adds data error bars to the series if they do not already exist; False removes them. Set this property to True
before using the ErrorBars object.

series.HasLeaderLines [= setting]

For xy scatter charts, True adds leader lines to the series if they do not already exist; False removes them. Set this
property to True before using the LeaderLines object.

series.InvertIfNegative [= setting]

True inverts the pattern for the series for negative values; False uses the same pattern as for positive values. Default is
False.

series.LeaderLines

For xy scatter charts, returns a LeaderLines object for the series. Be sure to set HasLeaderlines to True before using this
object.

series.MarkerBackgroundColor [= setting]

For line, xy scatter, and radar charts, sets or returns the background of the point markers as an RGB value.

series.MarkerBackgroundColorIndex [= setting]

For line, xy scatter, and radar charts, sets or returns the background of the point markers as the index of the color in
the Excel color palette. May also be xlColorIndexAutomatic (default) or xlColorIndexNone.

series.MarkerForegroundColor [= setting]

For line, xy scatter, and radar charts, sets or returns the foreground of the point markers as an RGB value.

series.MarkerForegroundColorIndex [= setting]

For line, xy scatter, and radar charts, sets or returns the foreground of the point markers as the index of the color in
the Excel color palette. May also be xlColorIndexAutomatic (default) or xlColorIndexNone.

series.MarkerSize [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For line, xy scatter, and radar charts, sets or returns the marker size in points.

series.MarkerStyle [= xlMarkerStyle]

For line, xy scatter, and radar charts, sets or returns the type of marker displayed. Can be one of these settings:

xlMarkerStyleAutomatic (default) xlMarkerStyleCircle

xlMarkerStyleDash xlMarkerStyleDiamond

xlMarkerStyleDot xlMarkerStyleNone

xlMarkerStylePicture xlMarkerStylePlus

xlMarkerStyleSquare xlMarkerStyleStar

xlMarkerStyleTriangle xlMarkerStyleX

seriescollection.NewSeries()

Creates a new, empty series on the chart. For example, the following code creates a new line chart and adds a new
series plotted from an array of values:

Sub ChartFromArray()
 Dim chrt As Chart, sr As Series
 ' Create a new chart.
 Set chrt = ThisWorkbook.Charts.Add
 chrt.ChartType = xlLine
 ' Create a new series.
 Set sr = chrt.SeriesCollection.NewSeries
 ' Add some values to the series.
 sr.Values = Array(1, 2, 3, 4)
End Sub

seriescollection.Paste([Rowcol], [SeriesLabels],
[CategoryLabels], [Replace], [NewSeries])

Pastes a range from the Clipboard into a chart and plots it as a series.

Argument Settings

Rowcol An xlRowCol constant that determines how the series is plotted. Can be xlColumns or xlRows.

SeriesLabels True interprets the first row or column of Source as a series label; False treats the first row or column as
data. Defaults to a best guess based on the source data.

CategoryLabels True interprets the first row or column of Source as a category label; False treats the first row or column
as data. Defaults to a best guess based on the source data.

Replace If CategoryLabels is True, setting Replace to True replaces matching categories with the new labels; False
does not replace the categories.

NewSeries True creates a new series from the data; False appends the data to existing series. Default is True.

series.PictureType [= xlChartPictureType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For column and bar charts, sets or returns how the fill picture is displayed. Can be one of these settings:

xlStack

xlStackScale

xlStretch (default)

series.PictureUnit [= setting]

For column and bar charts with PictureType set to xlStackScale, sets or returns the unit value of each fill picture. Default is 1.

series.PlotOrder [= setting]

Sets or returns the index of the series in the SeriesCollection . Changing PlotOrder reorders the series on the chart. You can
change PlotOrder only for series with the same chart type.

series.Points([Index])

Returns one or all of the Point objects contained in a series.

series.Smooth [= setting]

For line and xy scatter charts, True smooths curves and False does not. Default is False.

series.Trendlines([Index])

Returns one or all of the trendline objects for a series. Use the TRendlines collection to add trendlines to a series as shown
by the following code:

Sub AddTrendline()
 Dim chrt As Chart, sr As Series, tl As Trendline
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Add a trendline
 Set tl = sr.Trendlines.Add
 tl.Type = xlMovingAvg
End Sub

series.Values [= setting]

Sets or returns the array of values plotted by the series. For example, this helper function builds an array containing all
the values from a chart:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the values from a chart:

' Useful function for getting a chart's source data
' in the form of an array.
Function GetChartData(chrt As Chart) As Variant
 Dim sc As SeriesCollection, i As Integer
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Size an array to fit all the series.
 ReDim result(1 To sc.Count) As Variant
 ' For each of the series.
 For i = 1 To sc.Count
 ' Add the array of points to the result.
 result(i) = sc(i).Values
 Next
 ' Return the result array.
 GetChartData = result
End Function

You can use GetChartData to get values from a chart for use with Excel's WorksheetFunction methods as shown here:

Sub TestGetChartData()
 Dim chrt As Chart, sc As SeriesCollection
 Set chrt = Charts("Stock Price History")
 Debug.Print WorksheetFunction.Min(GetChartData(chrt)), _
 WorksheetFunction.Max(GetChartData(chrt))
End Sub

series.XValues [= setting]

For xy scatter charts, sets or returns the x values of the series as an array. This property also accepts a Range object
when being set. The following code changes the type of a series to xlXYScatter, then sets the x values for the series:

Sub SetXYValues()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Set the chart type to xy scatter.
 sr.ChartType = xlXYScatter
 ' Set x values
 sr.XValues = Array(1, 5, 3, 2)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.17. Point and Points Members
Use the Points collection to get individual data points from a series. Use the Series object's Points property to get a
reference to this collection. Use the Point object to change the appearance of a point within a series. The Points collection
and Point object have the following members. The key member (shown in bold) is covered in the following reference
section:

Application2 ApplyDataLabels

ApplyPictToEnd ApplyPictToFront

ApplyPictToSides Border

ClearFormats Copy

Count1 Creator2

DataLabel Delete

Explosion Fill

HasDataLabel Interior

InvertIfNegative Item1

MarkerBackgroundColor MarkerBackgroundColorIndex

MarkerForegroundColor MarkerForegroundColorIndex

MarkerSize MarkerStyle

Parent2 Paste

PictureType PictureUnit

SecondaryPlot Select

Shadow
1 Collection only

2 Object and collection

Most of the Point members are also available on the Series object. When those members are applied on the Point object,
they affect a single point rather than the entire series. See the Series reference topics for complete information and
examples of how to use those members.

Only the SecondaryPlot property is unique to the Point object, so it is covered here.

point.SecondaryPlot [= setting]

For pie of pie charts and pie of bar charts, True displays the point part in the secondary chart; False displays the point
in the primary chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17. Formatting Charts
You use Excel's chart format objects to change the fonts, backgrounds, images, and 3-D effects used on a chart. This
chapter covers those tasks to take you far beyond the basic chart types and default formatting .

This chapter includes task-oriented reference information for the following objects and their related collections: AxisTitle,
ChartArea, ChartColorFormat, ChartFillFormat, ChartTitle, Corners, DataLabel, DisplayUnitLabel, DownBars, DropLines, ErrorBars, Floor, Gridlines,
HiLoLines, LeaderLines, Legend, LegendEntry, LegendKey, PlotArea, TickLabels, trendline, trendlines, UpBars, and Walls.

Code used in this chapter and additional samples are available in ch17.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.1. Format Titles and Labels
Chapter 16 covered how to add titles and labels to charts, axes, and series using the AxisTitle, ChartTitle, DataLabel, and
DisplayUnitLabel objects. This chapter provides a reference for those objects and shows you how to use their members to
control the font, color, and orientation of those titles and labels.

All four of those objects provide similar members, but the DataLabel object is a little different since you can format the
labels for the entire series through the DataLabels collection or format the label for a single point in the series through the
DataLabel object.

Formatting these objects in code involves several steps:

1. Navigate to the parent object (Chart, Axis, or Series) in code.

2. Use the HasTitle, HasDisplayUnitLabel, or HasDataLabel property to make sure the object exists. You can either set this
property to True to create the object or use it as part of an If statement to conditionally format the object if it
exists.

3. Use the Font, Fill, Orientation, or other property to format the title or label.

The following code illustrates these steps to set the font size and style for each of the titles and labels that can appear
on a chart:

Sub FormatTitlesAndLabels()
 Dim chrt As Chart, f As Font, ax As Axis, sr As Series
 Set chrt = ActiveChart
 ''''''''''''''''''''''''''''''''''
 ' Format ChartTitle
 ' Make sure chart has title
 chrt.HasTitle = True
 ' Get the font for the chart title.
 Set f = chrt.ChartTitle.Font
 ' Set the size/style
 f.Size = 14
 f.Bold = True
 ''''''''''''''''''''''''''''''''''
 ' Format AxisTitle
 ' Get each axis
 For Each ax In chrt.Axes
 ' Make sure axis has title.
 ax.HasTitle = True
 ' Get the font.
 Set f = ax.AxisTitle.Font
 ' Set the size/style.
 f.Size = 10
 f.Bold = True
 f.Italic = True
 ''''''''''''''''''''''''''''''''''
 ' Format DisplayUnitLabel
 If ax.Type = xlValue Then
 If ax.HasDisplayUnitLabel Then
 ' Get the font
 Set f = ax.DisplayUnitLabel.Font
 ' Set the size/style.
 f.Size = 10
 f.Bold = True
 f.Italic = True
 End If
 End If
 Next
 ''''''''''''''''''''''''''''''''''
 ' Format DataLabels
 For Each sr In chrt.SeriesCollection
 ' Make sure series has data labels.
 If sr.HasDataLabels Then
 ' Get the font.
 Set f = sr.DataLabels.Font
 ' Set the size/style.
 f.Size = 8
 f.Bold = True
 f.Italic = False
 End If
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Only the value axis can have a unit label, so you must check the axis type and
HasDisplayUnitLabel before using that object, as shown in the preceding code.

Setting Font properties for the object changes the font for the entire caption. To change part of the caption, use the
Characters collection as shown here:

Sub ChangePartOfCaption()
 Dim chrt As Chart, t1 As String, t2 As String, cr As Characters
 Set chrt = ActiveChart
 ' Make sure chart has title
 chrt.HasTitle = True
 t1 = "Home Prices"
 t2 = vbLf & "Going Up!"
 ' Set the caption.
 chrt.ChartTitle.Caption = t1 & t2
 ' Get the chartacters for the second line
 Set cr = chrt.ChartTitle.Characters(Len(t1) + 1, Len(t2))
 ' Format them.
 cr.Font.Italic = True ' Italic on.
 cr.Font.Color = &HFF ' Red text.
End Sub

To restore the default formatting, save the caption in a variable, set HasTitle to False then back to True, and restore the
original caption as shown here:

Sub ResetChartTitleFormatting()
 Dim chrt As Chart, ct As String
 Set chrt = ActiveChart
 ' Save the caption
 ct = chrt.ChartTitle.Caption
 ' Turn the title off/on.
 chrt.HasTitle = False
 chrt.HasTitle = True
 ' Restore text
 chrt.ChartTitle.Caption = ct
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.2. Change Backgrounds and Fonts
Excel provides a large set of built-in gradients and textures that provide visual interest to the chart. You can browse the
gradients and fills from the Fill Effects dialog box (Figures 17-1 and 17-2). To see this dialog, right-click the chart area,
select Format Chart Area, and click Fill Effects.

Use the ChartArea object to apply these gradients or textures to the background for the entire chart. Use the PlotArea
object to change the background of the area where the series are plotted. Both objects provide a Fill property that
returns a ChartFillFormat object you can use to apply gradients, textures, or pictures to the chart background. For
example, the following code applies a gradient to the chart background:

Figure 17-1. Built-in gradients

Sub ApplyGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Set colors for gradient.
 cf.BackColor.SchemeColor = 17
 cf.ForeColor.SchemeColor = 1
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientDiagonalUp, 2
End Sub

And this code applies a texture to the plot area:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

And this code applies a texture to the plot area:

Sub ApplyTexture()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the plot area fill.
 Set cf = chrt.PlotArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a built-in texture.
 cf.PresetTextured msoTextureWhiteMarble
End Sub

Figure 17-2. Built-in textures

The ChartArea object also provides a Font object that you can use to set the default font for the entire chart, as shown
here:

Sub SetChartFont()
 Dim chrt As Chart, f As Font
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set f = chrt.ChartArea.Font
 ' Change the font.
 f.Name = "Comic Sans MS"
 f.Bold = True
 f.Background = xlBackgroundTransparent
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting the font background to transparent is a good idea when using gradients and textures since the default setting
creates a block of the color behind the text.

The ChartArea object also provides methods to clear the chart contents, chart formats, or both. For example, the
following code removes the gradients, textures, and font settings applied earlier:

Sub ResetChartFormats()
 Dim chrt As Chart, ct As XlChartType
 ' Get the chart.
 Set chrt = ActiveChart
 ' Save the chart type
 ct = chrt.ChartType
 ' Clear all formatting
 chrt.ChartArea.ClearFormats
 ' Restore the chart type.
 chrt.ChartType = ct
End Sub

The preceding code restores the chart type after removing the formatting because ClearFormats resets the chart type as
well as other formatting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.3. Add Trendlines
You can add trendlines to most types of 2-D charts. 3-D, pie, doughnut, and radar chart types don't permit trendlines.
Trendlines apply to a single series, so you add them using the Series object's TRendlines property. For example, the
following code adds a trendline to the first series in a chart:

Sub AddTrendline()
 Dim chrt As Chart, tl As Trendline, tls As Trendlines
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get a series.
 Set tls = chrt.SeriesCollection(1).Trendlines
 Set tl = tls.Add(xlLogarithmic, , , 10, , , True, True, "Trend1") End Sub

I use variables with explicit types in the preceding code to enable Auto Complete for the
trendlines collection and TRendline object. The expression chrt.SeriesCollection(1).Trendlines doesn't
provide member lists or other Auto Complete features.

If a chart has a legend, Excel automatically adds a legend entry for each trendline using the trendline's Name property as
the caption. Excel automatically generates that name if you don't provide it as part of the Add method.

You can use the Forward and Backward properties to project a trendline beyond the series in either direction. Excel
automatically scales the axis to accommodate the new range. Projecting a trendline in this way is a sort of forecasting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.4. Add Series Lines and Bars
Series can have a variety of lines and bars attached to them. You can browse these lines and bars from the Format
Data Series dialog box (Figures 17-3 and 17-4). To see this dialog, right-click a series and select Format Data Series.

Figure 17-3. Drop lines, high-low lines, and up/down bars

You add drop lines, high-low lines, and up/down bars through the ChartGroup object. For example, the following code
adds high-low lines to a line chart:

Sub AddHiLoLines()
 Dim chrt As Chart, cg As ChartGroup
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the chart group
 Set cg = chrt.LineGroups(1)
 ' Add high-low lines
 cg.HasHiLoLines = True
End Sub

Only 2-D line chart types support high-low lines and up/down bars. Only 2-D line, bar, and
column charts support error bars.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-4. Error bars

You add error bars through the Series object. This code adds error bars to a line chart:

Sub AddErrorBars()
 Dim chrt As Chart, sr As Series
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLineMarkers
 ' Get the chart group
 Set sr = chrt.SeriesCollection(1)
 ' Add error bars.
 sr.ErrorBar xlY, xlErrorBarIncludeBoth, xlErrorBarTypeStError
 ' Format the error bars.
 sr.ErrorBars.EndStyle = xlCap
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.5. ChartTitle, AxisTitle, and DisplayUnitLabel Members
Use the ChartTitle, AxisTitle, and DisplayUnitLabel objects to add and format captions for charts, axes, and unit labels. These
objects have the following members. Key members (shown in bold) are covered in the following reference section:

Application AutoScaleFont

Border Caption

Characters Creator

Delete Fill

Font HorizontalAlignment

Interior Left

Name Orientation

Parent ReadingOrder

Select Shadow

Text Top

VerticalAlignment

The ChartTitle appears at the top of a chart by default, the AxisTitle appears centered next to each axis, and the
DisplayUnitLabel appears next to the value axis indicating the units of the value axis (thousands, millions, etc.). Be sure to
check the HasTitle or HasDisplayUnitLabel properties before working with these objects.

The following code adds a chart title, axis title, and display unit label to a chart:

Sub AddTitles()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveChart
 ' Add a title.
 chrt.HasTitle = True
 ' Set the chart title caption.
 chrt.ChartTitle.Caption = "FL Home Sales"
 ' Add titles to each axis
 For Each ax In chrt.Axes
 ' Add a title.
 ax.HasTitle = True
 ' Set the axis title
 ax.AxisTitle.Caption = "Axis title"
 ' Add a display unit label caption.
 If ax.Type = xlValue Then
 ax.DisplayUnit = xlThousands
 ax.HasDisplayUnitLabel = True
 ax.DisplayUnitLabel.Caption = "In Thousands"
 End If
 Next
End Sub

title.Caption [= setting]

Sets or returns the text displayed in the title.

title.Characters

Returns the Characters object used to format the caption. For example, the following code adds a title to a chart and
changes the font of the title:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

changes the font of the title:

Sub AddChartTitle()
 Dim chrt As Chart, ct As ChartTitle
 Set chrt = ActiveChart
 ' Add a title.
 chrt.HasTitle = True
 ' Get the title
 Set ct = chrt.ChartTitle
 ' Set the text to display.
 ct.Caption = "FL Home Sales"
 ' Format the text.
 ct.Characters.Font.Size = 14
 ct.Characters.Font.Bold = True
End Sub

title.Fill

Returns the ChartFillFormat object for the title. Use this object to change the color or pattern behind the text.

title.Font

Returns the Font object representing the formatting of the title.

title.HorizontalAlignment [= setting]

This property has no visible effect on chart, axis, or display unit label captions.

title.Orientation [= setting]

Sets or returns the angle of rotation for the title in degrees. Must be between -90 and 90. Default is 0.

title.ReadingOrder [= setting]

Sets or returns the reading order of the title. Can be xlContext, xlLTR, or xlRTL. Setting this property may or may not have
an effect, depending on the language support that is installed. For instance, it has no effect in U.S. English (1033).

title.VerticalAlignment [= setting]

This property has no visible effect on chart, axis, or display unit label captions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.6. DataLabel and DataLabels Members
Use the DataLabels collection to add data labels to series. Use the Series object's DataLabels property to get a reference to
this collection. Use the DataLabel object to format individual data labels. The DataLabels collection and DataLabel object have
the following members. Key members (shown in bold) are covered in the following reference section:

Application2 AutoScaleFont2

AutoText

2
Border2

Caption Characters

Count1 Creator2

Delete()2 Fill2

Font2 HorizontalAlignment2

Interior2 Item1

Left Name2

NumberFormat

2

NumberFormatLinked

2

NumberFormatLocal

2
Orientation2

Parent2
Position

2

ReadingOrder2 Select2

Separator

2
Shadow2

ShowBubbleSize

2

ShowCategoryName

2

ShowLegendKey

2

ShowPercentage

2

ShowSeriesName

2

ShowValue

2

Text Top

Type2 VerticalAlignment2

1 Collection only

2 Object and collection

datalabel AutoText [= setting]

True automatically generates the caption of the data label based on its context; False uses the Caption setting instead.
Default is True.

Setting the Caption property automatically sets this property to False. For example, the following code turns off Auto
Text by setting the data labels for a series:

Sub SetDataLabels()
 Dim chrt As Chart, sr As Series, dl As DataLabel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim chrt As Chart, sr As Series, dl As DataLabel
 Set chrt = ActiveChart
 chrt.ChartType = xlColumnClustered
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Create data labels.
 sr.HasDataLabels = True
 ' Set data label captions.
 For Each dl In sr.DataLabels
 dl.Caption = sr.Name & ": " & dl.Caption
 Next
End Sub

To restore Auto Text, set the AutoText property to True:

Sub RestoreAutoDataLabels()
 Dim chrt As Chart, sr As Series
 Set chrt = ActiveChart
 chrt.ChartType = xlColumnClustered
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Restore Auto Text.
 sr.DataLabels.AutoText = True
End Sub

datalabels.NumberFormat [= setting]

Sets or returns the format string used to display the data label caption. You can see the available format string settings
from the Format Data Labels dialog box (Figure 17-5).

Figure 17-5. Right-click the label and choose Format Data Labels to see this dialog
box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code sets the scale of the value axis to thousands and then formats the data labels appropriately:

Sub SetDataLabelNumberFormat()
 Dim chrt As Chart, sr As Series, ds As DataLabels, _
 ax As Axis
 Set chrt = ActiveChart
 ' Get the value axis.
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ' Scale numbers by 1000.
 ax.DisplayUnit = xlThousands
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Get the DataLabels collection.
 Set ds = sr.DataLabels
 ' Set the number format (ex. $150K).
 ds.NumberFormat = "$#,###K"
End Sub

datalabel.NumberFormatLinked [= setting]

True uses the number format from the source range; False uses the NumberFormat or NumberFormatLocal setting. Default is
True. Setting either the NumberFormat or NumberFormatLocal property automatically sets NumberFormatLinked to False. Set this
property to True to restore the default number format as shown here:

Sub RestoreDataLabelNumberFormat()
 Dim chrt As Chart, sr As Series, ds As DataLabels
 Set chrt = ActiveChart
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Get the DataLabels collection.
 Set ds = sr.DataLabels
 ' Restore format setting from source range.
 ds.NumberFormatLinked = True
End Sub

datalabel.NumberFormatLocal [= setting]

Sets or returns the format string used to display the data label caption. This property is the same as NumberFormat only it
uses the localized version of the format strings.

datalabel.Position [= xlDataLabelPosition]

Sets or returns a constant indicating the placement of the data labels. The default setting depends on the chart type.
Can be one of these settings:

 xlLabelPositionAbove xlLabelPositionBelow
 xlLabelPositionBestFit xlLabelPositionCenter
 xlLabelPositionCustom xlLabelPositionInsideBase
 xlLabelPositionInsideEnd xlLabelPositionLeft
 xlLabelPositionMixed xlLabelPositionOutsideEnd
 xlLabelPositionRight

datalabel.Separator [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the character used between the data label and the category name, legend key, or series name if one or
more of those are included in the data label. Default is a comma.

The following code demonstrates using the Separator property along with the other data label display items:

Sub FullDataLabels()
 Dim chrt As Chart, sr As Series, ds As DataLabels
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Get the DataLabels collection.
 Set ds = sr.DataLabels
 ' Display all of the available info.
 ds.ShowCategoryName = True
 ds.ShowLegendKey = True
 ds.ShowSeriesName = True
 ' Use semicolon between items.
 ds.Separator = ";"
End Sub

datalabel.ShowBubbleSize [= setting]

For bubble charts, True includes the bubble size in the data label and False does not. Default is False.

datalabel.ShowCategoryName [= setting]

True includes the category name in the data label; False does not. Default is False.

datalabel.ShowLegendKey [= setting]

True includes the legend key in the data label; False does not. Default is False.

datalabel.ShowPercentage [= setting]

For pie and doughnut charts, True adds the percentage of the total that the value represents to the data label. Default
is False.

datalabel.ShowSeriesName [= setting]

True includes the series name in the data label; False does not. Default is False.

datalabel.ShowValue [= setting]

True adds the value of each point to the data label; False omits it. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.7. LeaderLines Members
Use the LeaderLines object to control the appearance of the lines connecting data labels to the data points in a series.
LeaderLines are available only for pie chart types. Use the Series object's LeaderLines property to get a reference to this
object. LeaderLines has the following members:

 Application
 Border
 Creator
 Delete
 Name
 Parent
 Select

You can select, delete, or change the appearance of LeaderLines in code. The following code adds data labels and leader
lines to a pie chart and makes the leader lines bold:

Sub LeaderLineMembers()
 Dim chrt As Chart, b As Border
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlPie
 ' Add data labels with leader lines.
 chrt.ApplyDataLabels , , , True
 Set b = chrt.SeriesCollection(1).LeaderLines.Border
 b.Weight = xlThick
End Sub

Leader lines appear only if you drag the data labels away from the pie chart. You may
have to manually drag the data labels away from the pie chart in order for the preceding
code to work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.8. ChartArea Members
Use the ChartArea object to format the background of the chart, clear the chart, and set the font for the entire chart. Use
the Chart object's ChartArea property to get a reference to this object. The ChartArea object has the following members . Key
members (shown in bold) are covered in the following reference section:

Application AutoScaleFont

Border Clear

ClearContents ClearFormats

Copy Creator

Fill Font

Height Interior

Left Name

Parent Select

Shadow Top

Width

chartarea.AutoScaleFont [= setting]

For embedded charts, True automatically scales fonts in the chart area up or down when the embedded chart is resized;
False does not scale. Default is True. This property has no effect on chart sheets.

chartarea.Clear()

Clears the contents and formatting of the chart area. Clear has the same effect as using ClearContents and ClearFormats in
turn. The following code demonstrates the different Clear methods:

Sub DemoClearChartArea()
 Dim chrt As Chart, ca As ChartArea
 ' Copy the chart.
 ActiveChart.Copy , ActiveChart
 ' Get the copy.
 Set chrt = ActiveChart
 Set ca = chrt.ChartArea
 ca.ClearFormats
 ' Wait a sec.
 Application.Wait Now + 0.00001
 ca.ClearContents
 ' Same as.
 'ca.Clear
End Sub

chartarea.ClearContents()

Clears the contents of the chart area.

chartarea.ClearFormats()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clears the formatting from the chart area.

chartarea.Fill

Returns the ChartFillFormat object for the chart area. Use this object to change the color or pattern of the chart area. For
example, the following code displays a gradient background on the active chart:

Sub ChartAreaFill()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientDiagonalUp, 2
End Sub

chartarea.Font

Returns the Font object representing the formatting of all the text on the chart. For example, the following code makes
all of the caption, label, and legend text on the active chart bold:

Sub ChartAreaFont()
 Dim chrt As Chart, f As Font
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area font.
 Set f = chrt.ChartArea.Font
 f.Bold = True
End Sub

chartarea.Interior

Returns the Interior object representing the background of the chart area. For example, the following code changes the
color index of the active chart's background:

Sub ChartAreaInterior()
 Dim chrt As Chart, it As Interior
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area font.
 Set it = chrt.ChartArea.Interior
 it.ColorIndex = 3
End Sub

chartarea.Shadow [= setting]

True adds a shadow border to the chart area; False does not. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.9. ChartFillFormat Members
Use the ChartFillFormat object to apply colors, gradients, and patterns to objects on a chart. Use the Fill property to get a
reference to this object. The ChartFillFormat object has the following members . Key members (shown in bold) are
covered in the following reference section:

Application BackColor

Creator ForeColor

GradientColorType GradientDegree

GradientStyle GradientVariant

OneColorGradient Parent

Pattern Patterned

PresetGradient PresetGradientType

PresetTexture PresetTextured

Solid() TextureName

TextureType TwoColorGradient

Type UserPicture

UserTextured Visible

These chart objects all have Fill properties, which return a ChartFillFormat object:

AxisTitle ChartArea

ChartTitle DataLabel

DataLabels DisplayUnitLabel

DownBars Floor

Legend LegendKey

PlotArea Point

Series Shape

ShapeRange UpBars

Walls

chartfillformat.BackColor

Returns a ChartColorFormat object you can use to set the background color.

chartfillformat.ForeColor

Returns a ChartColorFormat object you can use to set the foreground color.

chartfillformat.GradientColorType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns an msoGradientColorType constant indicating the type of the gradiant color. Can be one of these settings:

 msoGradientColorMixed
 msoGradientOneColor
 msoGradientPresetColors
 msoGradientTwoColors

chartfillformat.GradientDegree

For one-color gradients, returns the degree of the gradient as a number from 0 (dark) to 1 (light).

chartfillformat.GradientStyle

Returns an msoGradientStyle constant indicating the type of the gradient. Can be one of these settings:

 msoGradientDiagonalDown
 msoGradientDiagonalUp
 msoGradientFromCenter
 msoGradientFromCorner
 msoGradientFromTitle
 msoGradientHorizontal
 msoGradientMixed
 msoGradientVertical

chartfillformat.GradientVariant

Returns the index of the gradient variant selected from the Gradient tab in the Fill Effects dialog box.

chartfillformat.OneColorGradient(Style, Variant, Degree)

Applies a one-color gradient.

Argument Settings

Style An msoGradientStyle constant indicating the type of the gradient. See the GradientStyle property for a list of
settings.

Variant The index of the gradient variant to use. The variants are listed on the Gradient tab in the Fill Effects
dialog box.

Degree The degree of the gradient as a number from 0 (dark) to 1 (light).

The following code applies a one-color gradient to the chart area:

Sub OneColorGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a gradient fill.
 cf.OneColorGradient msoGradientDiagonalUp, 2, 0.9
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

chartfillformat.Pattern

Returns the msoPatternType constant indicating the pattern used in the fill. Can be one of these settings:

msoPattern5Percent msoPattern10Percent
msoPattern20Percent msoPattern25Percent
msoPattern30Percent msoPattern40Percent
msoPattern50Percent msoPattern60Percent
msoPattern70Percent msoPattern75Percent
msoPattern80Percent msoPattern90Percent
msoPatternDarkDownwardDiagonal msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal msoPatternDarkVertical
msoPatternDashedDownwardDiagonal msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal msoPatternDashedVertical
msoPatternDiagonalBrick msoPatternDivot
msoPatternDottedDiamond msoPatternDottedGrid
msoPatternHorizontalBrick msoPatternLargeCheckerBoard
msoPatternLargeConfetti msoPatternLargeGrid
msoPatternLightDownwardDiagonal msoPatternLightHorizontal
msoPatternLightUpwardDiagonal msoPatternLightVertical
msoPatternMixed msoPatternNarrowHorizontal
msoPatternNarrowVertical msoPatternOutlinedDiamond
msoPatternPlaid msoPatternShingle
msoPatternSmallCheckerBoard msoPatternSmallConfetti
msoPatternSmallGrid msoPatternSolidDiamond
msoPatternSphere msoPatternTrellis
msoPatternWave msoPatternWeave
msoPatternWideDownwardDiagonal msoPatternWideUpwardDiagonal
msoPatternZigZag

chartfillformat.Patterned(Pattern)

Applies a pattern, replacing any gradients or textures. Can be any of the settings listed for the Pattern property.

chartfillformat.PresetGradient(Style, Variant,
PresetGradientType)

Applies a built-in gradient.

Argument Settings

Style An msoGradientStyle constant indicating the type of the gradient. See the GradientStyle property for a list
of settings.

Variant The index of the gradient variant to use. The variants are listed on the Gradient tab in the Fill Effects
dialog box.

PresetGradientType An msoPresetGradientType constant indicating the built-in gradient to use. See the PresetGradientType
property for a list of settings.

The following code applies a built-in gradient to the chart area:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code applies a built-in gradient to the chart area:

Sub BuiltInGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a built-in gradient.
 cf.PresetGradient msoGradientDiagonalUp, 1, msoGradientBrass
End Sub

chartfillformat.PresetGradientType

Returns an msoPresetGradientType constant indicating the built-in gradient used in the fill. Can be one of these settings:

msoGradientBrass msoGradientCalmWater
msoGradientChrome msoGradientChromeII
msoGradientDaybreak msoGradientDesert
msoGradientEarlySunset msoGradientFire
msoGradientFog msoGradientGold
msoGradientGoldII msoGradientHorizon
msoGradientLateSunset msoGradientMahogany
msoGradientMoss msoGradientNightfall
msoGradientOcean msoGradientParchment
msoGradientPeacock msoGradientRainbow
msoGradientRainbowII msoGradientSapphire
msoGradientSilver msoGradientWheat
msoPresetGradientMixed

chartfillformat.PresetTexture

Returns an msoPresetTexture constant indicating the background's built-in texture used in the fill. Can be one of these
settings:

msoPresetTextureMixed msoTextureBlueTissuePaper
msoTextureBouquet msoTextureBrownMarble
msoTextureCanvas msoTextureCork
msoTextureDenim msoTextureFishFossil
msoTextureGranite msoTextureGreenMarble
msoTextureMediumWood msoTextureNewsprint
msoTextureOak msoTexturePaperBag
msoTexturePapyrus msoTextureParchment
msoTexturePinkTissuePaper msoTexturePurpleMesh
msoTextureRecycledPaper msoTextureSand
msoTextureStationery msoTextureWalnut
msoTextureWaterDroplets msoTextureWhiteMarble
msoTextureWovenMat

chartfillformat.PresetTextured(PresetTexture)

Applies a built-in texture.

Argument Settings

PresetTexture An msoPresetTexture constant indicating the built-in texture to use. See the PresetTexture property for a list of
settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code applies the white marble texture to a chart area:

Sub ApplyTexture()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a built-in texture.
 cf.PresetTextured msoTextureWhiteMarble
End Sub

chartfillformat.Solid()

Applies a solid color, removing any patterns, textures, or gradients. The following code resets the chart area to solid
white:

Sub ResetFill()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a solid color.
 cf.Solid
 ' Set the color to white
 cf.ForeColor.SchemeColor = 2
End Sub

chartfillformat.TextureName

For fills with custom textures, returns the name of the texture file. For other types of fills, causes an error.

chartfillformat.TextureType

Returns an msoTextureType constant indicating how the fill's texture was set. Can be one of these settings:

msoTexturePreset

msoTextureTypeMixed

msoTextureUserDefined

chartfillformat.TwoColorGradient(Style, Variant)

Applies a two-color gradient.

Argument Settings

Style An msoGradientStyle constant indicating the type of the gradient. See the GradientStyle property for a list of
settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variant The index of the gradient variant to use. The variants are listed on the Gradient tab in the Fill Effects
dialog box.

The following code applies a two-color gradient to the chart area:

Sub TwoColorGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Set colors for gradient.
 cf.BackColor.SchemeColor = 17
 cf.ForeColor.SchemeColor = 1
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientDiagonalUp, 2
End Sub

chartfillformat.UserPicture(PictureFile)

Applies a picture to a fill. Pictures are stretched to fit the fill area.

Argument Settings

PictureFile The filename of the picture to apply

Help specifies additional arguments for this method, but they can't be used with the
ChartFillFormat object.

The following code applies a picture to the chart area:

Sub UserPictureFill()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a picture.
 cf.UserPicture ThisWorkbook.Path & "\logo.bmp"
End Sub

chartfillformat.UserTextured(TextureFile)

Applies a picture file as a texture to the fill. Pictures are tiled to fit the fill area.

Argument Settings

TextureFile The filename of the picture to apply

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code tiles a picture to fill the chart area:

Sub UserPictureTexture()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a picture.
 cf.UserTextured ThisWorkbook.Path & "\logo.bmp"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.10. ChartColorFormat Members
Use the ChartColorFormat object to change the background or foreground colors using a color index or RGB value. Use the
ChartFillFormat object's BackColor or ForeColor property to get a reference to this object. The ChartColorFormat object has the
following members:

 Application
 Creator
 Parent
 RGB
 SchemeColor
Type

The following code changes the background and foreground colors used in a gradient background for the chart area of
the active chart:

Sub ChartColorFormat()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientFromCorner, 2
 ' Set backgroud/foreground colors.
 cf.BackColor.SchemeColor = 17
 cf.ForeColor.SchemeColor = 1
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.11. DropLines and HiLoLines Members
Use the DropLines and HiLoLines objects to control the appearance of those items on a chart. Use the ChartGroup object's
DropLines, and HiLoLines properties to get a reference to these objects. These objects have the following members:

Application
Border
Creator
Delete
Name
Parent
Select

The DropLines and HiLoLines objects provide a small set of programmable features. You can select, delete, or change the
appearance these lines. Be sure to check the ChartGroup object's Hasxxx property before using any of these objects.

The following code uses the Border property to set the weight, color, and style of the drop lines on a line chart:

Sub FormatDropLines()
 Dim chrt As Chart, cg As ChartGroup, bd As Border
 ' Get the chart.
 Set chrt = ActiveChart
 ' Set the chart type
 chrt.ChartType = xlLineStacked
 ' Get the chart group.
 Set cg = chrt.LineGroups(1)
 ' Turn on drop lines
 cg.HasDropLines = True
 ' Get the drop line's border
 Set bd = cg.DropLines.Border
 ' Format the lines
 bd.Weight = 4
 bd.Color = &HFF0000
 bd.LineStyle = xlLineStyle.xlDot
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.12. DownBars and UpBars Members
Use the DownBars and UpBars objects to control the appearance of up and down bars on a chart. Use the ChartGroup object's
DownBars and UpBars properties to get a reference to these objects. The DownBars and UpBars objects have the following
members:

Application Border

Creator Delete

Fill Interior

Name Parent

Select

The DownBars and UpBars objects are similar to the DropLines and HiLoLines objects. As with those objects, you can select,
delete, or change the appearance of up and down bars. However, up and down bars have an interior region that you
can control using two additional members: Fill and Interior. Be sure to check the ChartGroup object's HasUpDownBars property
before using these objects. The following code adds up and down bars to a chart and changes their appearance:

Sub DownBarsMembers()
 Dim chrt As Chart, cg As ChartGroup
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the chart group.
 Set cg = chrt.LineGroups(1)
 ' Add down bars.
 cg.HasUpDownBars = True
 ' Format the up and down bars.
 On Error Resume Next
 cg.UpBars.Interior.ColorIndex = 1
 cg.DownBars.Interior.ColorIndex = 3
 On Error GoTo 0
End Sub

You should include the On Error Resume Next statement when working with up and down bars since the contents of the
chart determine whether or not up bars, down bars, or both types of bars exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.13. ErrorBars Members
Use the ErrorBars object to control the appearance of error bars on a chart. Use the Series object's ErrorBar method to
create error bars, and use the Series object's ErrorBars property to get a reference to this object. The ErrorBars object has
the following members. Key members (shown in bold) are covered in the following reference section:

Application
Border
ClearFormats
Creator
Delete
EndStyle
Name
Parent
Select

The ErrorBars object is similar to the DropLines, HiLoLines, DownBars, and UpBars objects. As with those objects, you can select,
delete, or change the appearance of error bars. However, error bars have two additional members: EndStyle and
ClearFormats. The following code adds error bars to a chart and changes their appearance:

Sub ErrorBarsMembers()
 Dim chrt As Chart, sr As Series, eb As ErrorBars
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get a series.
 Set sr = chrt.SeriesCollection(1)
 ' Add error bars.
 sr.ErrorBar xlY, xlErrorBarIncludeBoth, xlErrorBarTypeStError
 ' Format the error bars.
 sr.ErrorBars.EndStyle = xlCap
 sr.ErrorBars.Border.ColorIndex = 3
 ' Remove color
 'sr.ErrorBars.ClearFormats
End Sub

errorbars.ClearFormats()

Removes formatting set through the Border object.

errorbars.EndStyle [=xlEndStyleCap]

Sets or returns the error bar style. Can be xlCap or xlNoCap.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.14. Legend Members
Use the Legend object to format or move a legend or to get the individual entries from the legend. Use the Chart object's
Legend property to get a reference to this collection. The Legend object has the following members. Key members (shown
in bold) are covered in the following reference section:

Application AutoScaleFont

Border Clear

Creator Delete

Fill Font

Height Interior

Left LegendEntries

Name Parent

Position Select

Shadow Top

Width

Be sure to set the Chart object's HasLegend property to True before using this object. The following code moves a chart's
legend to the left side and sets its background color:

Sub LegendMembers()
 Dim chrt As Chart, lg As Legend
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make sure chart has a legend.
 chrt.HasLegend = True
 ' Get the legend.
 Set lg = chrt.Legend
 ' Set the position.
 lg.Position = xlLegendPositionLeft
 ' Change the background color.
 lg.Interior.Color = &HFFFF00
End Sub

legend.LegendEntries([Index])

Returns one or all of the entries in the legend.

legend.Position [= xlLegendPosition]

Sets or returns the position of the legend on the chart. Can be one of these settings:

 xlLegendPositionCorner
 xlLegendPositionRight
 xlLegendPositionTop
 xlLegendPositionBottom
 xlLegendPositionLeft

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.15. LegendEntry and LegendEntries Members
Use the LegendEntries collection to get individual entries from a legend. Use the Legend object's LegendEntries property to get
a reference to this collection. The LegendEntries collection and LegendEntry object have the following members. The key
member (shown in bold) is covered in the following reference section:

Application2 AutoScaleFont

Count1 Creator2

Delete Font

Height Index

Item1 Left

LegendKey Parent2

Select Top

Width
1 Collection only

2 Object and collection

Use the LegendEntry object to format, delete, or get the legend key for entries in a chart legend. For example, the
following code makes the color of the legend entry text match the color of the legend key:

Sub LegendEntryMembers()
 Dim chrt As Chart, lg As Legend, le As LegendEntry
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make sure chart has a legend.
 chrt.HasLegend = True
 ' Get the legend.
 Set lg = chrt.Legend
 For Each le In lg.LegendEntries
 ' Set text color to match series color.
 le.Font.Color = le.LegendKey.Border.Color
 Next
End Sub

legendentry.LegendKey

Returns the LegendKey object for the entry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.16. LegendKey Members
Use the LegendKey object to control the appearance of the series or trendline that corresponds to the legend entry. Use
the LegendEntry object's LegendKey property to get a reference to this collection. The LegendKey object has the following
members. Key members (shown in bold) are covered in the following reference section:

Application Border

ClearFormats Creator

Delete Fill

Height Interior

InvertIfNegative Left

MarkerBackgroundColor MarkerBackgroundColorIndex

MarkerForegroundColor MarkerForegroundColorIndex

MarkerSize MarkerStyle

Parent PictureType

PictureUnit Select

Shadow Smooth

Top Width

Setting the key properties of the legend key is equivalent to setting them for their corresponding series. LegendKey
simply provides an alternate way to get at those settings. See the Series object in Chapter 16 for descriptions of the
preceding key members.

The following code shows using the LegendKey to change series markers and also shows the alternate code using the
Series object (commented out):

Sub LegendKeyMembers()
 Dim chrt As Chart, le As LegendEntry, _
 lk As LegendKey, sr As Series
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLineMarkers
 ' Make sure chart has a legend.
 chrt.HasLegend = True
 For Each le In chrt.Legend.LegendEntries
 ' Get the legend key
 Set lk = le.LegendKey
 lk.MarkerStyle = xlMarkerStyleCircle
 lk.MarkerSize = 4
 Next
 ' Equivalent code using the series collection.
 'For Each sr In chrt.SeriesCollection
 ' sr.MarkerStyle = xlMarkerStyleCircle
 ' sr.MarkerSize = 4
 'Next
End Sub

LegendKey objects exist only for series that appear in the legend. If a series is omitted from the legend, the preceding
commented code is not equivalent.

Use the ClearFormats method to restore the default formats:

Sub ResetLegendKeyFormat()
 Dim chrt As Chart, le As LegendEntry, _
 lk As LegendKey, sr As Series
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLineMarkers
 ' Make sure chart has a legend.
 chrt.HasLegend = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 chrt.HasLegend = True
 For Each le In chrt.Legend.LegendEntries
 ' Get the legend key
 Set lk = le.LegendKey
 lk.ClearFormats
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.17. Gridlines Members
Use the Gridlines objects to control the appearance of gridlines on a chart. Use the Axis object's MajorGridlines and
MinorGridlines properties to get a reference to this object. The Gridlines object has the following members:

Application
Border
Creator
Delete
Name
Parent
Select

Use the Axis object's HasMajorGridlines or HasMinorGridlines to make sure these objects exist before using them. For example,
the following code changes the appearance of the major gridlines for the value axis:

Sub FormatGridLines()
 Dim chrt As Chart, ax As Axis, gl As Gridlines
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the value axis.
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ' Make sure the gridlines exist.
 ax.HasMajorGridlines = True
 ' Get the gridlines
 Set gl = ax.MajorGridlines
 ' Make them blue.
 gl.Border.Color = &HFF0000
 ' Change the line style.
 gl.Border.LineStyle = XlLineStyle.xlDot
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.18. TickLabels Members
Use the TickLabels object to format the tick labels on an axis. Use the Axis object's TickLabels property to get a reference to
this object. The TickLabels object has the following members. Key members (shown in bold) are covered in the following
reference section:

Alignment Application

AutoScaleFont Creator

Delete Depth

Font Name

NumberFormat NumberFormatLinked

NumberFormatLocal Offset

Orientation Parent

ReadingOrder Select

ticklabels.Alignment [= setting]

This property has no apparent effect when used on tick labels. Tick labels are centered by default.

ticklabels.Depth

For tick labels on the category axis, returns the nesting level of the tick labels (usually 1).

ticklabels.Font

Returns a Font object you can use to format tick label text. For example, the following code makes the category axis tick
labels italic:

Sub FormatTickLabels()
 Dim chrt As Chart, ax As Axis, tl As TickLabels
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the category axis.
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ' Get the tick labels.
 Set tl = ax.TickLabels
 ' Format them.
 tl.Font.Italic = True
End Sub

ticklabels.NumberFormat [= setting]

Sets or returns the format string used to display the tick label caption. See the DataLabels collection for more information
about this property.

ticklabels.NumberFormatLinked [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True uses the number format from the source range; False uses the NumberFormat or NumberFormatLocal setting. Default is
True.

ticklabels.NumberFormatLocal [= setting]

Sets or returns the format string used to display the tick label caption. This property is the same as NumberFormat only it
uses the localized version of the format strings.

ticklabels.Offset [= setting]

For 2-D chart types, sets or returns the distance between the tick labels and the axis as a percentage of the default
spacing. The default is 100. Must be between 0 and 1000.

ticklabels.Orientation [= xlTickLabelOrientation]

Sets or returns the orientation of the tick lable. Can be one of these settings:

 xlTickLabelOrientationAutomatic (default)
 xlTickLabelOrientationHorizontal
 xlTickLabelOrientationVertical
 xlTickLabelOrientationDownward
 xlTickLabelOrientationUpward

ticklabels.ReadingOrder [= setting]

Sets or returns the reading order of the title. Can be xlContext, xlLTR, or xlRTL. Setting this property may or may not have
an effect, depending on the language support that is installed. For instance, it has no effect in U.S. English (1033).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.19. Trendline and Trendlines Members
Use the TRendlines collection to add trendlines to a series and to get trendlines from a series. Use the Chart object's
trendlines property to get a reference to this collection. Use the trendline object to control individual trendlines on the chart.
The TRendlines collection and trendline object have the following members. Key members (shown in bold) are covered in
the following reference section:

Add

1
Application2

Backward Border

ClearFormats Count1

Creator2 DataLabel

Delete DisplayEquation

DisplayRSquared Forward

Index Intercept

InterceptIsAuto Item1

Name NameIsAuto

Order Parent2

Period Select

Type
1 Collection only

2 Object and collection

Trendline property settings correspond to the settings on the Add Trendline dialog box (Figure 17-6). To see the dialog,
right-click a series and select Add Trendline.

Figure 17-6. Use this dialog to browse trendline settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trendlines.Add([Type], [Order], [Period], [Forward], [Backward],
[Intercept], [DisplayEquation], [DisplayRSquared], [Name])

Adds a trendline to a series.

Argument Settings

Type An xlTrendlineType constant indicating how the trendline is calculated. Can be one of these settings:
xlExponential, xlLinear (default), xlLogarithmic, xlMovingAvg, xlPolynomial, or xlPower.

Order For polynomial trendlines, the trendline order from 2 to 6.

Period For moving average trendlines, the number of data points to include in the average.

Forward The number of periods or units to project the trendline forward beyond the plotted series. Default is 0.

Backward The number of periods or units to project the trendline backward beyond the plotted series. Default is
0.

Intercept Where the trendline crosses the x-axis. If this argument is omitted, the intercept is automatically set
by the regression.

DisplayEquation True displays the trendline formula as a data label; False does not. Default is False.

DisplayRSquared True displays the trendline R-squared value as a data label; False does not. Default is False.

Name The text to display in the chart legend for the trendline. Default is a brief, generated description of the
trendline.

The following code adds a polynomial trendline to the first series in a chart and forecasts the trend three units ahead of
the last data point:

Sub AddPolyTrendline()
 Dim chrt As Chart, tl As Trendline, tls As Trendlines
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get a series.
 Set tls = chrt.SeriesCollection(1).Trendlines
 Set tl = tls.Add(xlPolynomial, 6, , 3, , , True, , "Trend2")
End Sub

trendline.Backward [= setting]

Sets or returns the number of periods to project the trendline backward. The default is 0.

trendline.ClearFormats()

Clears the formatting from the trendline.

trendline.DataLabel

Returns the DataLabel object for the trendline. Causes an error if DisplayEquation and DisplayRSquared are not True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trendline.DisplayEquation [= setting]

True adds a data label to the trendline and adds the trendline's formula to the data label caption; False omits the
formula. Default is False.

trendline.DisplayRSquared [= setting]

True adds a data label to the trendline and adds the trendline's R-squared value to the data label caption; False omits
the value. Default is False.

trendline.Forward [= setting]

Sets or returns the number of periods to project the trendline forward. Default is 0.

trendline.Intercept [= setting]

Sets or returns the point at which the trendline crosses the value axis. Setting this property automatically sets
InterceptIsAuto to False.

trendline.InterceptIsAuto [= setting]

True calculates the point where the trendline crosses the value axis using regression; False uses the Intercept property
setting. Default is True.

trendline.Name [= setting]

Sets or returns the name that appears in the chart legend for the trendline. You can't use this name to retrieve the
trendline from the trendlines collectionName is used only in the legend. Setting this property automatically sets NameIsAuto
to False.

trendline.NameIsAuto [= setting]

True generates a legend entry for the trendline using the type of trendline and the series name. False uses the Name
property setting.

trendline.Order [= setting]

For polynomial trendlines, sets or returns the trendline order from 2 to 6.

trendline.Period [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For moving average trendlines, sets or returns the number of data points to include in the average.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.20. PlotArea Members
Use the PlotArea object to control the appearance of the region behind series on a chart. Use the Chart object's PlotArea
property to get a reference to this collection. The PlotArea object has the following members . Key members (shown in
bold) are covered in the following reference section:

Application Border

ClearFormats Creator

Fill Height

InsideHeight InsideLeft

InsideTop InsideWidth

Interior Left

Name Parent

Select Top

Width

Plot area property settings correspond to the settings on the Format Plot Area dialog box (Figure 17-7). To see the
dialog, right-click the plot area and select Format Plot Area.

Figure 17-7. Use this dialog to control the appearance of the region behind series

plotarea.ClearFormats()

Removes formatting from the plot area object. For example, the following code removes the built-in fill applied in
ApplyPlotAreaFill:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ApplyPlotAreaFill:

Sub ResetPlotArea()
 Dim chrt As Chart
 ' Get the chart.
 Set chrt = ActiveChart
 ' Restore default formatting.
 chrt.PlotArea.ClearFormats
End Sub

plotarea.Fill

Returns the ChartFillFormat object used to control the background of the plot area. The following code applies a built-in fill
to the plot area:

Sub ApplyPlotAreaFill()
 Dim chrt As Chart, pa As PlotArea
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the plot area.
 Set pa = chrt.PlotArea
 ' Set a fill texture.
 pa.Fill.Visible = True
 pa.Fill.PresetTextured msoTextureCanvas
End Sub

plotarea.InsideHeight

Returns the height of the area on which the series is plotted. The total plot area is larger than the inside dimensions
used to plot series, as demonstrated by the following code:

Sub CompareDimensions()
 Dim chrt As Chart, pa As PlotArea
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the plot area.
 Set pa = chrt.PlotArea
 ' Show difference between inside and standard dimensions.
 Debug.Print pa.InsideLeft, pa.InsideTop, pa.InsideHeight, pa.InsideWidth
 Debug.Print pa.Left, pa.Top, pa.Height, pa.Width
End Sub

plotarea.InsideLeft

Returns the left coordinate of the plot area on which the series is plotted.

plotarea.InsideTop

Returns the top coordinate of the plot area on which the series is plotted.

plotarea.InsideWidth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the width of the plot area on which the series is plotted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.21. Floor Members
Use the Floor object to format the space beneath series in 3-D charts. Use the Chart object's Floor property to get a
reference to this object. The Floor object has the following members:

Application Border

ClearFormats Creator

Fill Interior

Name Parent

Paste PictureType

Select

Only 3-D charts have a Floor object. The following code applies a background picture to the floor of a 3-D chart:

Sub FloorMembers()
 Dim chrt As Chart, fr As Floor
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a 3-D chart
 chrt.ChartType = xl3DArea
 ' Get the Floor object

 Set fr = chrt.Floor
 ' Stretch the logo to fit.
 fr.Fill.Visible = True
 fr.Fill.UserPicture ThisWorkbook.Path & "\logo.bmp"
 ' Alternate: Tile the logo
 'fr.Fill.UserTextured ThisWorkbook.Path & "\logo.bmp"
End Sub

See the ChartFillFormat object for more information about setting fills.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.22. Walls Members
Use the Walls object to format the space behind and to the left of the plot area in 3-D charts. Use the Chart object's Walls
property to get a reference to this object. The Walls object has the following members:

Application Border

ClearFormats Creator

Fill Interior

Name Parent

Paste PictureType

PictureUnit Select

Only 3-D charts have a Walls object. The following code applies a background picture to the walls of a chart:

Sub FloorMembers()
 Dim chrt As Chart, fr As Floor
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a 3-D chart
 chrt.ChartType = xl3DArea
 ' Get the Floor object
 Set fr = chrt.Floor
 ' Stretch the logo to fit.
 fr.Fill.Visible = True
 fr.Fill.UserPicture ThisWorkbook.Path & "\logo.bmp"
 ' Alternate: Tile the logo
 'fr.Fill.UserTextured ThisWorkbook.Path & "\logo.bmp"
End Sub

See the ChartFillFormat object for more information about setting fills.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.23. Corners Members
Use the Chart object's Corners property to get a reference to this object. The Corners object has the following members:

Application
Creator
Name
Parent
Select

Only 3-D charts have a Corners object, and about the only thing you can do with Corners is to select them so the user can
click and drag them to rotate the chart, as shown here:

Sub SelectCorners ()
 Dim chrt As Chart
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a 3-D chart
 chrt.ChartType = xl3DArea
 ' Select the corners.
 chrt.Corners.Select
 ' Now you can drag the corners to rotate the chart...
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18. Drawing Graphics
I'm pretty sure no one considers Excel his first choice for creating computer graphics, but Excel includes a surprisingly
full set of drawing tools. And since those drawing tools are fully programmable, you can render graphics from
worksheet data in pretty interesting ways. I'll show you one application of that here by diagramming hierarchical data
using Excel shapes and, hopefully, open the doors to your imagination.

This chapter includes task-oriented reference information for the following objects and their related collections:
Adjustments, CalloutFormat, ColorFormat, ConnectorFormat, ControlFormat, FillFormat, FreeFormBuilder, GroupShapes, LineFormat, LinkFormat,
PictureFormat, ShadowFormat, Shape, ShapeNode, ShapeRange, TextEffectFormat, TextFrame, and ThreeDFormat.

Code used in this chapter and additional samples are available in ch18.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.1. Draw in Excel
To use Excel's drawing tools:

1. Choose View Toolbars Drawing. Excel displays the Drawing toolbar (Figure 18-1).

2. Select the toolbar button for the object you want to draw, then click and drag on the worksheet or chart to draw
the item.

Figure 18-1 shows a line, oval, rectangle, callout, and an image drawn on a worksheet. All shapes can be moved or
resized by selecting and dragging their sizing handles. Shapes also provide a handle at the top that lets you rotate
them. Autoshapes include an adjustment handle that is used to change some special aspect of the shape, as shown in
Figure 18-2.

Figure 18-1. Excel's drawing tools

Figure 18-2. Sizing, rotation, and adjustment handles on a selected autoshape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What the adjustment handle does depends on the autoshape. For the Callout autoshape in Figure 18-2, the adjustment
handle moves the apparent source of the callout. For Connector autoshapes, it sets the source and destination objects
to connect. For most other autoshapes, the adjustment handle changes the aspect ratio between parts of the shape.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.2. Create Diagrams
Excel provides a separate set of tools for creating organization charts and diagrams. To draw an org chart of a diagram
in Excel:

1. On the Drawing toolbar, click Insert Diagram or Organizational Chart. Excel displays the Diagram Gallery as
shown in Figure 18-3.

Figure 18-3. Adding a diagram to a worksheet

2. Choose a diagram type and click OK. Excel creates a default diagram on the active worksheet and displays the
Diagram toolbar (Figure 18-4).

Figure 18-4. Use the Diagram toolbar to add items and control formatting

3. Use the Diagram toolbar to add items to and control the appearance of the diagram.

4. Click on labels in the diagram to add text as shown in Figure 18-5.

Figure 18-5. Editing text in a diagram

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.3. Program with Drawing Objects
Any object that can be drawn is considered a Shape object in Excel. You get individual Shape objects from the Worksheet or
Chart object's Shapes collection. The Shape object is unusual because it encapsulates the members from more specific
object types. Because of that, any given Shape object may or may not support any given Shape member. For example,
the following code flips simple shapes on a worksheet, doesn't affect embedded objects, and causes an error if the
worksheet contains a diagram:

Sub FlipObjects()
 Dim s As Shape
 For Each s In ActiveSheet.Shapes
 ' Doesn't affect embedded objects. Error on diagrams!
 s.Flip msoFlipHorizontal
 Next
End Sub

There are three general categories of Shape objects. You can determine the category of a Shape object by comparing its
Type property to those listed in Table 18-1.

Table 18-1. Use the Type property to determine which Shape members are
available

Category Shape Type Programming notes

Simple
shapes

msoAutoShape, msoFreeForm, msoLine, msoLinkedOLEObject,
msoLinkedPicture, msoPicture, msoTextBox, msoTextEffect Most Shape members are supported.

Embedded
objects

msoChart, msoComment, msoEmbeddedOLEObject, msoFormControl,
msoOLEControlObject

Convert these objects to a specific type
for access to their members.

Diagram
shapes msoDiagram Accessing most Shape members causes an

error.

18.3.1. Draw Simple Shapes

Use the Shapes collection Add methods to draw shapes from code. Table 18-2 lists the various Add methods and describes
the type of shape they create.

Table 18-2. Shapes collection Add methods
Method Draws this type of figure Resulting shape Type

AddCallout Autoshape callout msoCallout

AddConnector Autoshape connector line msoAutoShape

AddCurve Bézier curve msoFreeForm

AddDiagram Diagram or org chart msoDiagram

AddFormControl Forms 1.0 control msoFormControl

AddLabel Text box without a border msoTextBox

AddLine Line msoLine

AddOLEObject Embedded OLE object or Forms 2.0 control (equivalent to the OLEObjects
collection's Add method) msoEmbeddedOLEObject

AddPicture Image from a file msoPicture

AddPolyline Line with multiple vertices msoFreeForm

AddShape Any autoshape msoAutoShape

AddTextBox Text box with rectangular border msoTextBox

AddTextEffect Embedded WordArt msoTextEffect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some Add methods create variations of the same type of shape, while others create seldom used or obsolete shapes.
The most useful Add methods are:

 AddConnector
 AddPicture
 AddShape

The AddShape method is the most general, and you can use it to create any of the autoshapes. For example, the
following code draws a rectangle on the active sheet:

Sub DrawRect()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeRectangle, 10, 20, 100, 20)
 ' Color it blue
 s.Fill.Visible = True
 s.Fill.ForeColor.SchemeColor = 4
End Sub

The AddShape method has a long list of possible autoshape types, as shown in Figure 18-6.

Figure 18-6. Selecting the type of shape to create with AddShape

18.3.2. Add Text

You can add text to any of the autoshapes using the Shape object's TextFrame property. The TextFrame object provides a
Characters property you can use to set the text displayed on the object, as well as formatting properties, as demonstrated
by the following code:

Sub DrawText()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeRectangle, 10, 20, 100, 20)
 ' Add text.
 s.TextFrame.Characters.text = "Some text to display"
 ' Center the text
 s.TextFrame.HorizontalAlignment = xlHAlignCenter
 s.TextFrame.VerticalAlignment = xlVAlignCenter
 ' Set the font
 s.TextFrame.Characters.Font.Name = "Comic Sans MS"
 s.TextFrame.Characters.Font.Bold = True
 ' Resize to fit text
 s.TextFrame.AutoSize = True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You could substitute the AddTextBox method for AddShape in the preceding code; however,
AddShape is more flexible since you can create any shapenot just rectangles.

18.3.3. Connect Shapes

To draw lines between two shapes:

1. Use the AddConnector method to create a connector shape.

2. Use the connector shape's ConnectorFormat property to establish the connection.

Connectors attach to connection sites on a Shape object and maintain the connection even if you drag the objects to
another location. The following code creates the two connected rectangles shown in Figure 18-7:

Sub ConnectShapes()
 Dim ws As Worksheet, s1 As Shape, s2 As Shape, conn As Shape
 Set ws = ActiveSheet
 ' Draw rectangle
 DrawRect
 ' Get a reference to new rectangle (last object in Shapes collection)
 Set s1 = ws.Shapes(ws.Shapes.Count)
 ' Repeat for second rectangle.
 DrawRect
 Set s2 = ws.Shapes(ws.Shapes.Count)
 ' Move the second rectangle.
 s2.IncrementLeft 100
 s2.IncrementTop 50
 ' Create a connector (position and size don't matter).
 Set conn = ws.Shapes.AddConnector(msoConnectorCurve, 1, 1, 1, 1)
 ' Connect to each rectangle.
 conn.ConnectorFormat.BeginConnect s1, 3
 conn.ConnectorFormat.EndConnect s2, 2
End Sub

ConnectShapes reuses the DrawRect example shown previously.

The second argument for BeginConnect and EndConnect determines where the connector attaches to the shape. For most
shapes, connection sites are numbered counter-clockwise on the shape starting at the top, as shown in Figure 18-8.

Figure 18-7. Connected shapes stay connected

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-8. Connection site numbering

To establish the shortest path between two objects, call RerouteConnections. That method adjusts the connection to use the
two nearest connection sites.

18.3.4. Insert Pictures

Use the AddPicture method to insert a picture as a shape. Pictures are treated like any other shape, so Shape methods like
Flip work fine. In addition, picture shapes have a PictureFormat property that you can use to adjust brightness,
transparency, and other attributes of the picture. The following code inserts a logo on the active worksheet, flips it, and
makes its background transparent:

Sub InsertPicture()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Insert the image.
 Set s = ws.Shapes.AddPicture(ThisWorkbook.Path & "\logo.bmp", _
 False, True, 120, 170, 100, 100)
 ' Flip the image.
 s.Flip msoFlipHorizontal
 ' The picture background is white.
 s.PictureFormat.TransparencyColor = &HFFFFFF
 ' Turn on transparency.
 s.PictureFormat.TransparentBackground = True
End Sub

18.3.5. Insert Other Objects

OLE objects, such as Word documents, WordArt, and form controls can be inserted using the OLEObjects collection or the
Shapes collection. The OLEObjects.Add method is equivalent to the Shapes.AddOLEObject methodin fact, they take the same
arguments. I cover the OLEObjects collection in Chapter 10, so I won't repeat that information here. However, the Shapes
collection's AddTextEffect method is worth mentioning because it provides a shortcut to adding an embedded WordArt
object .

The following code inserts a WordArt object on the active worksheet, sets the text properties, then displays a picture on
top of the WordArt as shown in Figure 18-9:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

top of the WordArt as shown in Figure 18-9:

Sub InsertWordArt()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Insert the WordArt.
 Set s = ws.Shapes.AddTextEffect(msoTextEffect1, "Wombat!", "Arial", 36, _
 True, False, 100, 200)
 ' Change the color of the WordArt
 s.Fill.ForeColor.RGB = &HFF
 ' Display picture using previous example.
 InsertPicture
End Sub

Figure 18-9. WordArt combined with a transparent image

18.3.6. Group Shapes

Sometimes you'll want to perform the same operation on more than one shape. The easiest way to do that is to group
the shapes using the ShapeRange object, then perform the operation on that object. The following code demonstrates how
to group objects as a ShareRange:

Sub GroupObjects()
 Dim ws As Worksheet, s As Shape, sr As ShapeRange
 Set ws = ActiveSheet
 ' Create a ShapeRange containing the last two shapes drawn.
 Set sr = ws.Shapes.Range(Array(ws.Shapes.Count - 1, ws.Shapes.Count))
 ' Flip the objects
 sr.Flip msoFlipHorizontal
 ' Group the objects in the Excel UI.
 sr.Group
End Sub

The ShapeRange object's Group method groups the objects so they can be moved, resized, or deleted as a unit by the user.
If you run GroupObjects after InsertWordArt, both the wombat and the text are flipped, as shown in Figure 18-10.

Figure 18-10. Grouping objects with ShapeRange

The ShareRange object has almost all of the same members as the Shape object, and as with Shape, some of those
members aren't valid for certain types of shapes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

members aren't valid for certain types of shapes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.4. Program Diagrams
Excel diagrams might seem very useful from a programming perspective; however, they have a serious limitation: you
can't get or set the text of diagram nodes from code. See http://support.microsoft.com/default.aspx?scid=kb;en-
us;317293 for complete details.

This appears to be a bug in the 2002 and 2003 versions of Excel, so you can assume it will continue into the future.
Interestingly, you can use macro recording to record your actions building a diagram in the Excel user interface;
however, if you run the macro, you will see the error in Figure 18-11.

Figure 18-11. Programming diagrams is not well supported in Excel

Many of the code samples for the Diagram and DiagramNode objects in Help fail if you run
them in Excel.

Microsoft suggests using the Diagram object in the Word or PowerPoint application as a workaround to this problem, and
those applications do seem to work. However, I think it's more reliable to use Excel's autoshapes and connectors if you
want to diagram data from a worksheet.

The following code draws a hierarchical diagram from items on the active worksheet. Items in the first column are top-
level parents and items in subsequent columns are all related as shown in Figure 18-12:

' Module-level variable used to set Top property
' of subsequent shapes.
Dim m_lastShape As Shape

Sub DrawDiagram()
 Dim ws1 As Worksheet, ws2 As Worksheet, cel As Range, _
 s As Shape, p() As Shape, top As Single
 ' Get the source worksheet.
 Set ws1 = ActiveSheet
 ' Create a new worksheet for the diagram.
 Set ws2 = Worksheets.Add
 ' Array to keep track parents (for connections).
 ReDim p(1 To ws1.UsedRange.Columns.Count)
 ' For each cell with data.
 For Each cel In ws1.UsedRange
 If cel.Value <> "" Then
 ' Items in the first column are top-level parents.
 If cel.Column = 1 Then
 ' If there's more than one top-level parent, set top.
 If m_lastShape Is Nothing Then top = 5 _
 Else top = m_lastShape.top
 Set s = DrawParent(5, top, , , ws2)
 ' Track this object as parent (index = column number)
 Set p(cel.Column) = s
 ' Items in other columns are children.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Items in other columns are children.
 Else
 Set s = DrawChild(p(cel.Column - 1), ws2)
 ' Keep track of relationships.
 Set p(cel.Column) = s
 End If
 ' Set the text in the Shape object to match cell contents.
 s.TextFrame.Characters.text = cel.Value
 End If
 Next
End Sub

' Draw a top-level Shape.
Function DrawParent(Optional left As Single = 0, Optional top As Single = 0, _
 Optional width As Single = 100, Optional height As Single = 20, _
 Optional ws As Worksheet) As Shape
 Dim res As Shape
 ' Use active sheet if not specified
 If ws Is Nothing Then Set ws = ActiveSheet
 Set res = ws.Shapes.AddShape(msoShapeRoundedRectangle, _
 left, top, width, height)
 ' Add temporary text (required for alignment properties).
 res.TextFrame.Characters.text = "Parent"
 ' Set formatting.
 res.TextFrame.HorizontalAlignment = xlHAlignCenter
 res.TextFrame.VerticalAlignment = xlVAlignCenter
 Set m_lastShape = res
 ' Return the shape.
 Set DrawParent = res
End Function

Function DrawChild(parent As Shape, Optional ws As Worksheet) As Shape
 Dim res As Shape, conn As Shape, indent As Single
 ' Use active sheet if not specified
 If ws Is Nothing Then Set ws = ActiveSheet
 ' If this is the first child, then parent is source of height.
 If m_lastShape Is Nothing Then Set m_lastShape = parent
 indent = 5
 Set res = ws.Shapes.AddShape(msoShapeRoundedRectangle, _
 parent.left + (parent.width \ 2) + indent, _
 m_lastShape.top + m_lastShape.height + indent, _
 parent.width, parent.height)
 ' Add temporary text (required for alignment properties).
 res.TextFrame.Characters.text = "Child"
 ' Get formatting from parent
 parent.PickUp: res.Apply
 ' Connect the parent and child.
 Set conn = ws.Shapes.AddConnector(msoConnectorElbow, 1, 1, 1, 1)
 conn.ConnectorFormat.BeginConnect parent, 3
 conn.ConnectorFormat.EndConnect res, 2
 ' Save this child for future positioning.
 Set m_lastShape = res
 ' Return the child shape
 Set DrawChild = res
End Function

The data must be formatted as shown in Figure 18-12. Feel free to modify this code to use other shapes or layouts. It's
harder to create tree-style diagrams than the vertical layout shown herethat might be an interesting way to test your
knowledge!

Never struggle with tools that don't work. For that reason, I've omitted Diagram, DiagramNode,
and related members from the reference sections in this chapter. When programming
Excel, it is best to simply avoid those objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.5. Shape, ShapeRange, and Shapes Members
Use the Shapes collection to draw graphics on a worksheet or chart. Use the Worksheet or Chart object's Shapes property to
get a reference to this collection. Use the Shape object to change the appearance of one shape; use ShapeRange to change
groups of shapes. Shapes, Shape and ShapeRange have the following members. Key members (shown in bold) are covered
in the following reference section:

Figure 18-12. Diagramming the Shape object hierarchy

AddCallout

1

AddConnector

1

AddCurve

1

AddDiagram2 AddFormControl1
AddLabel

1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddLine

1
AddOLEObject1

AddPicture

1

AddPolyline

1

AddShape

1

AddTextbox

1

AddTextEffect

1
Adjustments

Align

3

AlternativeText Application2 Apply

AutoShapeType BlackWhiteMode BottomRightCell

BuildFreeform

1
Callout Child

ConnectionSiteCount Connector ConnectorFormat

ControlFormat Copy CopyPicture

Count1 Creator2 Cut

Delete Diagram DiagramNode

Distribute

3
Duplicate Fill

Flip FormControlType
Group

3

GroupItems HasDiagram HasDiagramNode

Height HorizontalFlip Hyperlink

ID IncrementLeft IncrementRotation

IncrementTop Item1 Left

Line LinkFormat LockAspectRatio

Locked Name Nodes

OLEFormat OnAction Parent2

ParentGroup PickUp PictureFormat

Placement
Range

1

Regroup

3

RerouteConnections Rotation ScaleHeight

ScaleWidth Script Select

SelectAll

1
SetShapesDefaultProperties Shadow

TextEffect TextFrame ThreeD

Top TopLeftCell Type

Ungroup VerticalFlip Vertices

Visible Width ZOrder

ZOrderPosition
1 Collection only

2 Object and collection

3 ShapeRange only

shapes.AddCallout(Type, Left, Top, Width, Height)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Draws a simple callout and returns the callout's Shape object.

Argument Settings

Type An msoCalloutType constant indicating the type of callout to draw. Can be msoCalloutOne, msoCalloutTwo,
msoCalloutMixed, msoCalloutThree, or msoCalloutFour.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

shapes.AddConnector(Type, BeginX, BeginY, EndX, EndY)

Draws a connector line and returns the connector's Shape object.

Argument Settings

Type An msoConnectorType constant. Can be msoConnectorElbow, msoConnectorTypeMixed, msoConnectorCurve, or
msoConnectorStraight.

BeginX The horizontal coordinate of the start of the connector line.

BeginY The vertical coordinate of the start of the connector line.

EndX The horizontal coordinate of the end of the connector line.

EndY The vertical coordinate of the end of the connector line.

You can set the begin and end coordinates to an arbitrary value, then use the BeginConnect and EndConnect methods to
connect two objects. Using the RerouteConnections method creates the shortest path between the objects. The following
code demonstrates using those methods to connect two shapes as shown in Figure 18-13:

Sub QuickConnect()
 Dim s1 As Shape, s2 As Shape, conn As Shape
 ' Create a shape
 Set s1 = ActiveSheet.Shapes.AddShape(msoShapeCube, 100, 10, 50, 60)
 ' Create another shape
 Set s2 = ActiveSheet.Shapes.AddShape(msoShapeCan, 50, 100, 50, 60)
 ' Create connector with arbitrary coordinates
 Set conn = ActiveSheet.Shapes.AddConnector(msoConnectorCurve, 1, 1, 1, 1)
 ' Connect shapes
 conn.ConnectorFormat.BeginConnect s1, 1
 conn.ConnectorFormat.EndConnect s2, 1
 ' Connect via shortest path (changes connection sites)
 conn.RerouteConnections
End Sub

Figure 18-13. Creating a connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shapes.AddCurve(SafeArrayOfPoints)

Draws a Bézier curve from an array of coordinate pairs and returns the curve's Shape object.

Argument Settings

SafeArrayOfPoints The 2-D array of points containing the vertices and control points of the curve

The following code draws an S-shaped curve that starts at (80,100) and ends at (110,30):

Sub DrawCurve()
 Dim s As Shape, pts() As Single
 ' Array of points.
 ReDim pts(3, 1)
 pts(0, 0) = 80
 pts(0, 1) = 100
 pts(1, 0) = 200
 pts(1, 1) = 150
 pts(2, 0) = 15
 pts(2, 1) = 20
 pts(3, 0) = 110
 pts(3, 1) = 30
 ' Draw a curve
 Set s = ActiveSheet.Shapes.AddCurve(pts)
End Sub

shapes.AddLabel(Orientation, Left, Top, Width, Height)

Draws a text box without a border and returns the label's Shape object.

Argument Settings

Orientation
An msoTextOrientation constant. Can be msoTextOrientationDownward, msoTextOrientationHorizontal,
msoTextOrientationHorizontalRotatedFarEast, msoTextOrientationMixed, msoTextOrientationUpward, msoTextOrientationVertical,
or msoTextOrientationVerticalFarEast.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

Use the TextFrame property to get or set the text in the label and to set the formatting of the text. The following code
draws a label on the active sheet:

Sub DrawLabel()
 Dim s As Shape
 ' Create label (height/width will be set automatically).
 Set s = ActiveSheet.Shapes.AddLabel(msoTextOrientationHorizontal, _
 100, 100, 1, 1)
 s.TextFrame.Characters.text = "This is some label text"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The Width and Height arguments in the preceding code are required but arbitrary because the TextFrame object's AutoSize
property is True by default. The label is automatically resized to fit the text.

shapes.AddLine(BeginX, BeginY, EndX, EndY)

Draws a straight line and returns the line's Shape object.

Argument Settings

BeginX The horizontal coordinate for the origin of the line

BeginY The vertical coordinate for the origin of the line

EndX The horizontal coordinate for the end of the line

EndY The vertical coordinate for the end of the line

Use the Line property to set the style and formatting used for the line. The following code draws a dashed line with an
arrowhead:

Sub DrawLine()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Create label (height/width will be set by AutoSize).
 Set s = ws.Shapes.AddLine(100, 100, 200, 200)
 s.Line.DashStyle = msoLineDash
 s.Line.EndArrowheadStyle = msoArrowheadStealth
End Sub

shapes.AddPicture(Filename, LinkToFile, SaveWithDocument,
Left, Top, Width, Height)

Adds a picture to a worksheet or chart and the picture's Shape object.

Argument Settings

Filename The picture file to load.

LinkToFile True links the shape to the picture file; False copies the image into the file.

SaveWithDocument True saves the image in the workbook; False saves only link information in the document. If LinkToFile
is False, SaveWithDocument must be True.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

Excel scales the image to fit the Width and Height arguments. To restore the image's actual height and width, use the
ScaleHeight and ScaleWidth methods as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScaleHeight and ScaleWidth methods as shown here:

Sub DrawPicture()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Insert the image.
 Set s = ws.Shapes.AddPicture(ThisWorkbook.Path & "\logo.bmp", _
 False, True, 100, 100, 1, 1)
 ' Use picture's height and width.
 s.ScaleHeight 1, msoCTrue
 s.ScaleWidth 1, msoCTrue
End Sub

Use the PictureFormat property to control a picture's brightness, contrast, and transparency.

shapes.AddPolyline(SafeArrayOfPoints)

Draws a segmented line from an array of coordinate pairs and returns the line's Shape object.

Argument Settings

SafeArrayOfPoints The 2-D array of points containing the vertices of the line

Use the Line property to set the style and formatting used for the line. The following code draws a Z-shaped line that
starts at (80,100) and ends at (110,30):

Sub DrawZ()
 Dim s As Shape, pts() As Single
 ' Array of points.
 ReDim pts(3, 1)
 pts(0, 0) = 80
 pts(0, 1) = 100
 pts(1, 0) = 200
 pts(1, 1) = 150
 pts(2, 0) = 15
 pts(2, 1) = 20
 pts(3, 0) = 110
 pts(3, 1) = 30
 ' Draw a curve
 Set s = ActiveSheet.Shapes.AddPolyline(pts)
End Sub

shapes.AddShape(Type, Left, Top, Width, Height)

Draws an autoshape and returns the autoshape's Shape object.

Argument Settings

Type An msoAutoShapeType constant. Can be any of the settings listed following this table.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

The msoAutoShapeType constant can be one of:

msoShape4pointStar msoShape5pointStar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

msoShape4pointStar msoShape5pointStar
msoShape8pointStar msoShape16pointStar
msoShape24pointStar msoShape32pointStar
msoShapeActionButtonBackorPrevious msoShapeActionButtonBeginning
msoShapeActionButtonCustom msoShapeActionButtonDocument
msoShapeActionButtonEnd msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp msoShapeActionButtonHome
msoShapeActionButtonInformation msoShapeActionButtonMovie
msoShapeActionButtonReturn msoShapeActionButtonSound
msoShapeArc msoShapeBalloon
msoShapeBentArrow msoShapeBentUpArrow
msoShapeBevel msoShapeBlockArc
msoShapeCan msoShapeChevron
msoShapeCircularArrow msoShapeCloudCallout
msoShapeCross msoShapeCube
msoShapeCurvedDownArrow msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow msoShapeCurvedRightArrow
msoShapeCurvedUpArrow msoShapeCurvedUpRibbon
msoShapeDiamond msoShapeDonut
msoShapeDoubleBrace msoShapeDoubleBracket
msoShapeDoubleWave msoShapeDownArrow
msoShapeDownArrowCallout msoShapeDownRibbon
msoShapeExplosion1 msoShapeExplosion2
msoShapeFlowchartAlternateProcess msoShapeFlowchartCard
msoShapeFlowchartCollate msoShapeFlowchartConnector
msoShapeFlowchartData msoShapeFlowchartDecision
msoShapeFlowchartDelay msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay msoShapeFlowchartDocument
msoShapeFlowchartExtract msoShapeFlowchartInternalStorage
msoShapeFlowchartMagneticDisk msoShapeFlowchartManualInput
msoShapeFlowchartManualOperation msoShapeFlowchartMerge
msoShapeFlowchartMultidocument msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction msoShapeFlowchartTerminator
msoShapeFoldedCorner msoShapeHeart
msoShapeHexagon msoShapeHorizontalScroll
msoShapeIsoscelesTriangle msoShapeLeftArrow
msoShapeLeftArrowCallout msoShapeLeftBrace
msoShapeLeftBracket msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout msoShapeLeftRightUpArrow
msoShapeLeftUpArrow msoShapeLightningBolt
msoShapeLineCallout1 msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar msoShapeLineCallout1NoBorder
msoShapeLineCallout2 msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar msoShapeLineCallout2NoBorder
msoShapeLineCallout3 msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar msoShapeLineCallout3NoBorder
msoShapeLineCallout4 msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar msoShapeLineCallout4NoBorder
msoShapeMixed msoShapeMoon
msoShapeNoSymbol msoShapeNotchedRightArrow
msoShapeNotPrimitive msoShapeOctagon
msoShapeOval msoShapeOvalCallout
msoShapeParallelogram msoShapePentagon
msoShapePlaque msoShapeQuadArrow
msoShapeQuadArrowCallout msoShapeRectangle
msoShapeRectangularCallout msoShapeRegularPentagon
msoShapeRightArrow msoShapeRightArrowCallout
msoShapeRightBrace msoShapeRightBracket
msoShapeRightTriangle msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout msoShapeSmileyFace
msoShapeStripedRightArrow msoShapeSun
msoShapeTrapezoid msoShapeUpArrow
msoShapeUpArrowCallout msoShapeUpDownArrow
msoShapeUpDownArrowCallout msoShapeUpRibbon
msoShapeUTurnArrow msoShapeVerticalScroll
msoShapeWave

Use the TextFrame property to add text to an autoshape. Use the AutoShapeType property to convert one autoshape into
another.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shapes.AddTextbox(Orientation, Left, Top, Width, Height)

Draws a text box surrounded by a rectangular border and returns the text box's Shape object.

Argument Settings

Orientation
An msoTextOrientation constant. Can be msoTextOrientationDownward, msoTextOrientationHorizontal,
msoTextOrientationHorizontalRotatedFarEast, msoTextOrientationMixed, msoTextOrientationUpward, msoTextOrientationVertical,
or msoTextOrientationVerticalFarEast.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

Use the TextFrame property to get or set the text in the shape and to set the formatting of the text. Unlike labels, text
boxes do not automatically resize to fit their text. You must set the AutoSize property as shown here:

Sub DrawTextbox()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Create label (height/width will be set by AutoSize).
 Set s = ws.Shapes.AddTextbox(msoTextOrientationHorizontal, 100, 100, 1, 1)
 s.TextFrame.Characters.text = "This is some label text"
 ' Resize text box to fit text.
 s.TextFrame.AutoSize = True
End Sub

shapes.AddTextEffect(PresetTextEffect, Text, FontName,
FontSize, FontBold, FontItalic, Left, Top)

Adds a WordArt embedded object and returns the Shape object for the embedded object.

Argument Settings

PresetTextEffect An MsoPresetTextEffect constant. Can be msoTextEffect1 to msoTextEffect30.

Text The text to embed.

FontName The name of the font to use.

FontSize The size of the font in points.

FontBold True uses bold; False uses the normal weight font.

FontItalic True uses italic font; False uses roman.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Use the TextEffect property, not TextFrame, to change the text or appearance of the embedded WordArt object. The
following code embeds a WordArt object, then changes its text:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code embeds a WordArt object, then changes its text:

Sub EmbedWordArt()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Create label (height/width will be set by AutoSize).
 Set s = ws.Shapes.AddTextEffect(msoTextEffect19, "Wombat!", "Arial", 36, _
 True, False, 100, 100)
 ' Change text.
 s.TextEffect.text = "New Text"
End Sub

shape.Adjustments

For an autoshape, connector, or WordArt shape, returns the Adjustments collection; for other types of shapes, causes an
error. Use Adjustments to move the adjustment handles on a shape (the equivalent of clicking and dragging on the
adjustment handle). Figure 18-2 illustrates adjustment handles.

shaperange.Align(AlignCmd, RelativeTo)

Aligns the shapes in a ShapeRange.

Argument Settings

AlignCmd An msoAlignCmd constant. Can be msoAlignCenters, msoAlignMiddles, msoAlignTops, msoAlignBottoms, msoAlignLefts, or
msoAlignRights.

RelativeTo True aligns shapes relative to the Excel window; False aligns shapes relative to the first shape in the
ShapeRange.

The following code uses previous examples to draw three shapes, adds them to a ShapeRange, then aligns the shapes
relative to the first shape drawn:

Sub LeftAlign()
 Dim ws As Worksheet, sr As ShapeRange
 Set ws = ActiveSheet
 ' Draw three objects (call previous examples)
 DrawRect
 DrawLine
 EmbedWordArt
 ' Create a shape range
 Set sr = ws.Shapes.Range(Array(1, 2, 3))
 ' Left-align three shapes
 sr.align msoAlignLefts, False
End Sub

shape.AlternativeText [= setting]

Sets or returns the alternate text used for the shape if the worksheet or chart is saved in HTML format.

shape.Apply()

Applies formatting that was previously picked up from another shape. The PickUp and Apply methods are used together to
copy formatting from one shape to another. For example, the following code copies the formatting from the first shape
on a worksheet to all of the others on the same worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on a worksheet to all of the others on the same worksheet:

Sub FormatSameAsFirst()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 For Each s In ws.Shapes
 ' Get formatting from first shape.
 ws.Shapes(1).PickUp
 ' Apply it to each shape.
 s.Apply
 Next
End Sub

Calling Apply clears the formatting being copied, so you must call PickUp before each Apply.

shape.AutoShapeType [= msoAutoShapeType]

Converts one autoshape to another autoshape. Causes an error for connector, line, picture, OLE object, and WordArt
shape types. See the list under "shapes.AddShape(Type, Left, Top, Width, Height)," earlier in this chapter, for a list of
possible settings.

shape.BlackWhiteMode [= msoBlackWhiteMode]

Sets or returns how the shape appears when viewed in black and white. Can be:

 msoBlackWhiteAutomatic msoBlackWhiteBlack
 msoBlackWhiteBlackTextAndLine msoBlackWhiteDontShow
 msoBlackWhiteGrayOutline msoBlackWhiteGrayScale
 msoBlackWhiteHighContrast msoBlackWhiteInverseGrayScale
 msoBlackWhiteLightGrayScale msoBlackWhiteMixed
 msoBlackWhiteWhite

shapes.BuildFreeform(EditingType, X1, Y1)

Begins drawing freeform line art and returns a FreeformBuilder object used to add elements to the freeform.

Argument Settings

EditingType An msoEditingType constant. Can be msoEditingAuto or msoEditingCorner.

X1 The horizontal position of the first element of the shape in points.

Y1 The vertical position of the first element of the shape in points.

Use the ConvertToShape method for drawing the freeform and render it as a shape as shown here:

Sub DrawFreeform()
 Dim ws As Worksheet, s As Shape, fb As FreeformBuilder
 Set ws = ActiveSheet
 ' Create freeform
 Set fb = ws.Shapes.BuildFreeform(msoEditingAuto, 380, 230)
 ' Add segments.
 fb.AddNodes msoSegmentCurve, msoEditingCorner, _
 380, 230, 400, 250, 450, 300
 fb.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 fb.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 fb.AddNodes msoSegmentLine, msoEditingAuto, 380, 230
 ' Render drawing.
 fb.ConvertToShape
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

shape.Callout

For callout shapes, returns a CalloutFormat object used to format the callout. For other shape types, causes an error.

shape.ConnectionSiteCount

Returns the number of connection sites available on the shape.

shape.Connector

Returns True if the shape is a connector, False if it is not.

shape.ConnectorFormat

For connector shapes, returns a ConnectorFormat object. For other shape types, causes an error. The following code
changes all of the connections on a worksheet to use the curved connector style:

Sub ChangeConnectors()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 For Each s In ws.Shapes
 ' If the shape is a connector, change its style.
 If s.Connector Then _
 s.ConnectorFormat.Type = msoConnectorCurve
 Next
End Sub

shape.ControlFormat

For Forms 1.0 shapes, returns the ControlFormat object used to access the properties and methods of the control. For
other shape types, causes an error.

shaperange.Distribute(DistributeCmd, RelativeTo)

Distributes the shapes in a ShapeRange vertically or horizontally.

Argument Settings

DistributeCmd Can be msoDistributeHorizontallyor msoDistributeVertically.

RelativeTo Must be False in Excel.

The following code distributes the shapes on a worksheet vertically; this is the equivalent of selecting Draw Align
or Distribute Distribute Horizontally on the Drawing toolbar:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or Distribute Distribute Horizontally on the Drawing toolbar:

Sub DistributeVertically()
 Dim ws As Worksheet, sr As ShapeRange
 Set ws = ActiveSheet
 ' Create a shape range for all shapes on sheet.
 ws.Shapes.SelectAll
 Set sr = Selection.ShapeRange
 ' Distribute shapes
 sr.Distribute msoDistributeVertically, False
End Sub

shape.Duplicate()

Copies a shape and returns a reference to the new Shape object. The following code makes a copy of the first shape on a
worksheet, then moves the copy to the left:

Sub CopyShape()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 Set s = ws.Shapes(1)
 ' Make copy.
 Set s = s.Duplicate
 ' Move copy.
 s.IncrementLeft 100
End Sub

shape.Fill

Returns a FillFormat object for the shape.

shape.Flip(FlipCmd)

Flips the shape vertically or horizontally.

Argument Settings

FlipCmd Can be msoFlipHorizontal or msoFlipVertical

Most shapes can be flipped, but OLE objects and form controls cannot.

shape.FormControlType

For Form 1.0 controls, returns an xlFormControl constant indicating the control type. For other shapes, causes an error.

shaperange.Group()

Groups the shapes in the ShapeRange so that they can be selected, moved, or deleted as a single shape by the user. The
following code demonstrates grouping and ungrouping the shapes on a worksheet:

Sub GroupUngroup()
 Dim ws As Worksheet, sr As ShapeRange, s As Shape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim ws As Worksheet, sr As ShapeRange, s As Shape
 Set ws = ActiveSheet
 Select Case ws.Shapes.Count
 Case Is > 1
 ' Create a shape range for all shapes on sheet.
 ws.Shapes.SelectAll
 Set sr = Selection.ShapeRange
 ' Group all the items
 Set s = sr.Group
 ' Show count of items in group.
 Debug.Print s.GroupItems.Count & " shapes grouped."
 Case 1
 ws.Shapes(1).Ungroup
 Debug.Print "Ungrouped shapes"
 Case 0
 Debug.Print "No shapes to group."
 End Select
End Sub

shape.GroupItems

Returns the collection of shapes in a group.

shape.HorizontalFlip

Returns True if the shape has been flipped horizontally, False otherwise.

shape.Hyperlink

Returns a Hyperlink object for the shape. See Chapter 10 for more information on the Hyperlink object.

shape.ID

Returns a numeric identifier for the shape.

shape.IncrementLeft(Increment)

Moves a shape horizontally.

Argument Settings

Increment The number of points to move the shape

shape.IncrementRotation(Increment)

Rotates a shape.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Increment The number of degrees to rotate the shape

The following code draws and rotates a star:

Sub Rotate()
 Dim ws As Worksheet, s As Shape, i As Integer
 Set ws = ActiveSheet
 ' Draw a star.
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 120, 80, 40, 40)
 ' Rotate it.
 For i = 0 To 6
 Application.Wait Now + 0.00001
 s.IncrementRotation 10
 Next
End Sub

shape.IncrementTop(Increment)

Moves a shape vertically.

Argument Settings

Increment The number of points to move the shape

shape.Line

For line shapes, returns a LineFormat object that controls the appearance of the line. For shape objects with borders,
returns a LineFormat object that controls the appearance of the border. For other shape types, causes an error.

shape.LinkFormat

For OLE object shapes, returns a LinkFormat object used to update the link. For other shape types, causes an error.

shape.LockAspectRatio [= setting]

This property has no effect in Excel.

shape.Locked [= setting]

If the worksheet is protected, True prevents changes to the shape and False enables changes to the shape.

shape.ParentGroup

For shapes that are grouped, returns the group to which the shape belongs. Causes an error if the shape is not part of a
group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shape.PickUp()

Copies the formatting from a shape. See the Apply method earlier for a full description and example of copying
formatting between shapes.

shape.PictureFormat

For picture and OLE object shapes, returns a PictureFormat object used to control the appearance of the shape. For other
shape types, causes an error.

shape.Placement [= xlPlacement]

Sets or returns how the shape is related to the cells underneath it. Can be one of these settings:

xlFreeFloating (default)

xlMove

xlMoveAndSize

shapes.Range(Index)

Returns a ShapeRange object containing a subset of shapes from the Shapes collection.

Argument Settings

Index An array containing the names or indexes of the shapes to include in the ShapeRange

Use ShapeRange objects to perform tasks on a group of shapes. Building a ShapeRange from an array of items is complex. It
is easier to simply select the items you want in the ShapeRange, then use the Selection.ShapeRange method as shown here:

Sub BuildShapeRange()
 Dim ws As Worksheet, s As Shape, sr As ShapeRange, sList As String, arr
 Set ws = ActiveSheet
 ' Clear selection
 [a1].Select
 ' Find each autoshape on the worksheet and build a list.
 For Each s In ws.Shapes
 If s.Type = msoAutoShape Then s.Select False
 Next
 Set sr = Selection.ShapeRange
 ' Move the ShapeRange.
 sr.IncrementLeft 10
End Sub

shaperange.Regroup()

For shapes within a ShapeRange that belonged to a group but were ungrouped, Regroup restores those items to their
previous group and returns the grouped objects as a single Shape object.

shape.RerouteConnections()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For connector shapes, changes the connection sites so that the connection follows the shortest path. Causes an error
for other shape types.

shape.Rotation [= setting]

Returns the rotation of a shape in degrees.

shapes.SelectAll()

Selects all of the shapes on the worksheet or chart.

shape.SetShapesDefaultProperties()

Makes the shape's formatting the default formatting for all subsequent shapes. Use the PickUp and Apply methods to copy
formatting from one shape to another. The following code draws a star, sets its fill, and then makes that formatting the
default:

Sub Defaults()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw star
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 50, 50, 40, 40)
 ' Set its fill.
 s.Fill.PresetGradient msoGradientDiagonalUp, 1, msoGradientChrome
 ' Make this the default style.
 s.SetShapesDefaultProperties
 ' Draw another star.
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 90, 90, 40, 40)
End Sub

shape.Shadow

Returns a ShadowFormat object used to display and set the appearance of a shape's shadow. The following code draws a
star with a shadow:

Sub DrawShadow()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw star
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 50, 50, 40, 40)
 ' Add a shadow.
 s.Shadow.Type = msoShadow1
End Sub

shape.TextEffect

For embedded WordArt shapes, returns a TextEffectFormat object used to set the text and change the appearance of the
shape. Causes an error for other shape types. Use this property, not TextFrame, to change the text displayed in a
WordArt shape.

shape.TextFrame

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For autoshapes, returns the TextFrame object used to set and format text appearing on the shape. Causes an error for
most other shape types. The following code draws an oval and adds some text to it:

Sub DrawOval()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a shape
 Set s = ws.Shapes.AddShape(msoShapeOval, 60, 30, 1, 1)
 ' Add text.
 s.TextFrame.Characters.text = "Vigorous writing is concise."
 ' Resize shape to fit text.
 s.TextFrame.AutoSize = True
End Sub

shape.ThreeD

For autoshapes, returns a THReeDFormat object used to add a 3-D effect to the shape. The following code draws a wave
as a wire-frame 3-D figure:

Sub DrawThreeD()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a shape
 Set s = ws.Shapes.AddShape(msoShapeDoubleWave, 50, 50, 40, 40)
 ' Add 3-D effect.
 s.ThreeD.PresetMaterial = msoMaterialWireFrame
End Sub

shape.Type

Returns an msoShapeType constant identifying the kind of shape. Can be one of these settings:

 msoAutoShape msoCallout
 msoChart msoComment
 msoDiagram msoEmbeddedOLEObject
 msoFormControl msoFreeform
 msoGroup msoLine
 msoLinkedOLEObject msoLinkedPicture
 msoOLEControlObject msoPicture
 msoScriptAnchor msoShapeTypeMixed
 msoTable msoTextBox
 msoTextEffect

shape.Ungroup()

Separates a previously grouped object into its individual shapes.

shape.VerticalFlip

Returns True if the shape has been flipped vertically, False otherwise.

shape.Vertices

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a freeform shape, returns a 2-D array containing the coordinate pairs of the shape's vertices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.6. Adjustments Members
Use the Adjustments object to change the adjustment handle values on an autoshape. Use the Shape object's Adjustments
property to get a reference to this object. The Adjustments object has the following members:

Application
Count
Creator
Item
Parent

Adjustment handles change one or more aspects of an autoshape. Usually, they control the relative proportions of parts
of the shape, such as the length of an arrowhead or the width of the arrow body.

The Adjustments object is a collection of numeric values that correspond to the shapes adjustment handle settings. A
shape with a single adjustment handle may have multiple Adjustments items, each of which corresponds to dragging the
adjustment handle in a different direction.

For example, the following code draws two arrow autoshapes, then changes the adjustment handles on the second
shape:

Sub UseAdjustments()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw an arrow.
 Set s = ws.Shapes.AddShape(msoShapeRightArrow, 20, 120, 100, 20)
 ' Copy the arrow
 Set s = s.Duplicate
 ' Show settings.
 Debug.Print s.Adjustments(1), s.Adjustments(2)
 ' Make adjustments
 s.Adjustments(1) = s.Adjustments(1) + 0.1 ' Shorten arrow head.
 s.Adjustments(2) = s.Adjustments(2) + 0.1 ' Narrow body.
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.7. CalloutFormat Members
Use the CalloutFormat object to change the appearance of callout shapes. Use the Shape object's Callout property to get a
reference to this object. The CalloutFormat object has the following members. Key members (shown in bold) are covered
in the following reference section:

Accent Angle

Application AutoAttach

AutoLength AutomaticLength

Border Creator

CustomDrop CustomLength

Drop DropType

Gap Length

Parent PresetDrop

Type

callout.Accent [= setting]

True adds a partial border on the side of the callout's connector; False omits the partial border. Default is False.

callout.Angle [= msoCalloutAngleType]

Sets or returns the angle of the callout's connector line. Can be one of these settings:

 msoCalloutAngle30
 msoCalloutAngle45
 msoCalloutAngle60
 msoCalloutAngle90
 msoCalloutAngleAutomatic (default)
 msoCalloutAngleMixed

callout.AutoAttach [= setting]

Setting this property has no apparent effect in Excel.

callout.AutoLength

Returns True if the callout's length is automatic, False otherwise.

callout.AutomaticLength()

Sets the length of callout connector lines automatically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

callout.Border [= setting]

True displays a border around the callout text; False omits the border.

callout.CustomDrop(Drop)

Sets the vertical distance between the callout and where connector line is attached to the callout in points.

callout.CustomLength(Length)

Sets the length of the first segment of the callout's connector line. Only callout types msoCalloutThree and msoCalloutFour
have multiple segments. Use the AutomaticLength method to restore automatic settings.

callout.Drop

Returns the vertical distance between the top of the callout and the connector line.

callout.DropType

Returns an msoCalloutDropType constant indication where the connector attaches to the callout. Can be one of these
settings:

 msoCalloutDropCenter (default)
 msoCalloutDropMixed
 msoCalloutDropBottom
 msoCalloutDropCustom
 msoCalloutDropTop

callout.Gap [= setting]

Sets or returns the horizontal distance between the callout and the connector line in points.

callout.Length

If CustomLength is set, returns that setting. Otherwise, causes an error.

callout.PresetDrop(DropType)

Sets or returns where the connector line attaches to the callout.

Argument Settings

DropType An msoCalloutDropType constant. Can be msoCalloutDropBottom, msoCalloutDropCenter, msoCalloutDropMixed, or
msoCalloutDropTop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DropType msoCalloutDropTop.

callout.Type [= msoCalloutType]

Sets or returns the kind of callout drawn. Can be msoCalloutOne to msoCalloutFour.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.8. ColorFormat Members
Use the ColorFormat object to change the color of a shape's fill. Use the FillFormat object's BackColor and ForeColor properties
to get a reference to this object. The ChartColorFormat object covered in Chapter 17 is nearly identical to this object, so
only the FillFormat member with differences (TintAndShade) is covered here:

Application
Creator
Parent
RGB
SchemeColor
TintAndShade
Type

colorformat.TintAndShade [= setting]

Sets or returns a value that lightens or darkens a fill. Must be between -1 and 1. Default is 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.9. ConnectorFormat Members
Use the ConnectorFormat object to attach a connector to other shapes. Use the Shape object's ConnectorFormat property to get
a reference to this object. The ConnectorFormat object has the following members . Key members (shown in bold) are
covered in the following reference section:

Application BeginConnect

BeginConnected BeginConnectedShape

BeginConnectionSite BeginDisconnect

Creator EndConnect

EndConnected EndConnectedShape

EndConnectionSite EndDisconnect

Parent Type

connectorformat.BeginConnect(ConnectedShape,
ConnectionSite)

Sets the first shape to connect.

Argument Settings

ConnectedShape The first Shape object to connect

ConnectionSite The index of the connection site on the object

When creating a connection, it is easiest to use arbitrary values for ConnectionSite as well as the size and location of the
connector and to call RerouteConnection to establish the shortest path, as shown here:

Sub CreateConnection()
 Dim ws As Worksheet, s(1) As Shape, conn As Shape
 Set ws = ActiveSheet
 ' Draw two shapes.
 Set s(0) = ws.Shapes.AddShape(msoShapeCube, 20, 20, 40, 40)
 Set s(1) = ws.Shapes.AddShape(msoShapeCan, 60, 80, 30, 40)
 ' Draw connector.
 Set conn = ws.Shapes.AddConnector(msoConnectorCurve, 1, 1, 1, 1)
 ' Establish connection.
 conn.ConnectorFormat.BeginConnect s(0), 1
 conn.ConnectorFormat.EndConnect s(1), 1
 ' Connect via the shortest path.
 conn.RerouteConnections
End Sub

connectorformat.BeginConnected

True if the first connection has been established, False otherwise.

connectorformat.BeginConnectedShape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the first connected Shape object.

connectorformat.BeginConnectionSite

Returns the index of the connection site on the first connected shape.

connectorformat.BeginDisconnect()

Detaches the connector from the first connected shape.

connectorformat.EndConnect(ConnectedShape,
ConnectionSite)

Sets the second shape to connect.

Argument Settings

ConnectedShape The second Shape object to connect

ConnectionSite The index of the connection site on the object

connectorformat.EndConnected

True if the second connection has been established, False otherwise.

connectorformat.EndConnectedShape

Returns the second connected Shape object.

connectorformat.EndConnectionSite

Returns the index of the connection site on the second connected shape.

connectorformat.EndDisconnect()

Detaches the connector from the second connected shape.

connectorformat.Type [= msoConnectorType]

Sets or returns the kind of connector drawn. Can be one of these settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the kind of connector drawn. Can be one of these settings:

 msoConnectorCurve
 msoConnectorElbow
 msoConnectorStraight

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.10. ControlFormat Members
Use the ControlFormat object to get and set the properties on Forms 1.0 controls. Use the Shape object's ControlFormat
property to get a reference to this object. The ControlFormat object has the following members:

AddItem Application

Creator DropDownLines

Enabled LargeChange

LinkedCell List

ListCount ListFillRange

ListIndex LockedText

Max Min

MultiSelect Parent

PrintObject RemoveAllItems

RemoveItem SmallChange

Value

Forms 1.0 controls are mostly obsolete. The Forms 2.0 controls provide events, properties, and methods that are not
available with the Forms 1.0 controls. See Chapter 20 for information on using Forms 2.0 controls on worksheets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.11. FillFormat Members
Use the FillFormat object to apply colors, gradients, and patterns to shapes. Use the Shape object's Fill property to get a
reference to this object. The ChartFillFormat covered in Chapter 17 is nearly identical to this object, so only the FillFormat
members with differences (shown in bold) are covered here:

Application BackColor

Background Creator

ForeColor GradientColorType

GradientDegree GradientStyle

GradientVariant OneColorGradient

Parent Pattern

Patterned PresetGradient

PresetGradientType PresetTexture

PresetTextured Solid

TextureName TextureType

Transparency TwoColorGradient

Type UserPicture

UserTextured Visible

fillformat.BackColor

Returns a ColorFormat object you can use to set the background color. The following code draws a green tuna can on the
active worksheet:

Sub FillFormatMembers()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw can.
 Set s = ws.Shapes.AddShape(msoShapeCan, 20, 20, 40, 40)
 ' Set green fill.
 s.Fill.ForeColor.RGB = RGB(0, 255, 0)
 s.Fill.Solid
 ' Add label.
 s.TextFrame.Characters.text = "Tuna"
 s.TextFrame.AutoSize = True
End Sub

fillformat.ForeColor

Returns a ColorFormat object you can use to set the foreground color.

fillformat.Transparency [= setting]

Sets or returns the degree of transparency of solid-color fills. Can be between 0 (opaque) and 1.0 (clear).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.12. FreeFormBuilder
Use the FreeFormBuilder object to draw complex freeform line art. Use the Shapes collection's BuildFreeform method to create
a new instance of this object. The FreeFormBuilder object has the following members . Key members (shown in bold) are
covered in the following reference section:

AddNodes
Application
ConvertToShape
Creator
Parent

freeformbuilder.AddNodes(SegmentType, EditingType, X1, Y1,
[X2], [Y2], [X3], [Y3])

Adds a segment to the freeform shape.

Argument Settings

SegmentType The type of segment to add. Can be msoSegmentLine or msoSegmentCurve.

EditingType The editing property of the vertex. Can be msoEditingAuto or msoEditingCorner.

X1, X2, etc. The horizontal coordinates of the vertices.

Y1, Y2, etc. The vertical coordinates of the vertices.

The following code creates a freeform, adds segments, and then renders the freeform as a shape on the active
worksheet:

Sub DrawAndFillFreeForm()
 Dim ws As Worksheet, fb As FreeformBuilder, s As Shape
 Set ws = ActiveSheet
 ' Create the freeform builder.
 Set fb = ws.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
 ' Add segments.
 fb.AddNodes msoSegmentCurve, msoEditingCorner, _
 380, 230, 400, 250, 450, 300
 fb.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 fb.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 fb.AddNodes msoSegmentLine, msoEditingAuto, 360, 200
 ' Render the shape.
 Set s = fb.ConvertToShape
 ' Fill the shape.
 s.Fill.ForeColor.RGB = &HFF
 s.Fill.Solid
End Sub

freeformbuilder.ConvertToShape()

Renders the freeform on the worksheet and returns the created Shape object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.13. GroupShapes Members
Use the GroupShapes collection to get individual shapes that have been grouped together as a single shape. Use the Shape
object's GroupItems property to get a reference to this collection. The GroupShapes collection has the following members:

Application
Count
Creator
Item
Parent
Range

Use the ShapeRange object's Group method to group multiple shapes so that they can be selected, moved, or deleted as a
single shape by the user. The grouped Shape object then has a GroupItems property that you can use to get at the
component shapes. The following code draws three stars and groups them:

Sub DrawGroup()
 Dim ws As Worksheet, sr As ShapeRange, s As Shape
 Set ws = ActiveSheet
 ' Draw three stars.
 ws.Shapes.AddShape(msoShape5pointStar, 30, 30, 40, 40).Duplicate.Duplicate
 ' Create a shape range for all shapes on sheet.
 ws.Shapes.SelectAll
 Set sr = Selection.ShapeRange
 ' Group all the items
 Set s = sr.Group
 ' Show count of items in group.
 Debug.Print s.GroupItems.Count & " shapes grouped."
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.14. LineFormat Members
Use the LineFormat object to change the appearance of line shapes. Use the Shape object's Line property to get a reference
to this collection. The LineFormat object has the following members:

Application BackColor

BeginArrowheadLength BeginArrowheadStyle

BeginArrowheadWidth Creator

DashStyle EndArrowheadLength

EndArrowheadStyle EndArrowheadWidth

ForeColor Parent

Pattern Style

TRansparency Visible

Weight

Use the LineFormat object to add an arrowhead to a line, set the line weight, and set the style as shown by the following
code:

Sub LineFormatMembers()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a line.
 Set s = ws.Shapes.AddLine(60, 60, 200, 200)
 ' Add an arrowhead.
 s.Line.BeginArrowheadStyle = msoArrowheadOpen
 s.Line.BeginArrowheadLength = msoArrowheadLengthMedium
 s.Line.BeginArrowheadWidth = msoArrowheadWidthMedium
 s.Line.EndArrowheadStyle = msoArrowheadOval
 ' Change line weight (in points)
 s.Line.Weight = 4
 ' Change line style.
 s.Line.DashStyle = msoLineDash
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.15. LinkFormat Members
Use the LinkFormat object to update linked OLE objects. Use the Shape object's LinkFormat property to get a reference to this
object. The LinkFormat object has the following members:

Application
AutoUpdate
Creator
Locked
Parent
Update

Make sure the Shape object is a linked object before using the LinkFormat object by testing its Type property as shown
here:

If s.Type = msoLinkedOLEObject Then
 s.LinkFormat.Update
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.16. PictureFormat Members
Use the PictureFormat object to change the appearance of picture shapes. Use the Shape object's PictureFormat property to
get a reference to this object. The PictureFormat object has the following members . Key members (shown in bold) are
covered in the following reference section:

Application Brightness

ColorType Contrast

Creator CropBottom

CropLeft CropRight

CropTop IncrementBrightness

IncrementContrast Parent

TransparencyColor TransparentBackground

pictureformat.Brightness [= setting]

Sets or returns the brightness of the picture. Must be between 0 and 1. Default is 0.5.

pictureformat.ColorType [= msoPictureColorType]

Sets or returns one of the special color or brightness formats to apply to the picture. Can be one of these settings:

 msoPictureAutomatic (default)
 msoPictureBlackAndWhite
 msoPictureGrayscale
 msoPictureWatermark

pictureformat.Contrast [= setting]

Sets or returns the contrast of the picture. Must be between 0 and 1. Default is 0.5.

pictureformat.CropBottom [= setting]

Sets or returns the amount cropped off the bottom of the picture, measured in points.

pictureformat.CropLeft [= setting]

Sets or returns the amount cropped off the left side of the picture, measured in points.

pictureformat.CropRight [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the amount cropped off the right side of the picture, measured in points.

pictureformat.CropTop [= setting]

Sets or returns the amount cropped off the top of the picture, measured in points.

pictureformat.IncrementBrightness(Increment)

Increases or decreases the brightness of the picture. Must be between -1 and 1.

pictureformat.IncrementContrast(Increment)

Increases or decreases the contrast of the picture. Must be between -1 and 1.

pictureformat.TransparencyColor [= setting]

Sets or returns the RGB value of the color made transparent when transParentBackground is set to True.

pictureformat.TransparentBackground [= setting]

True makes transparent portions of the picture that match transparencyColor; False makes those portions opaque. Default
is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.17. ShadowFormat
Use the ShadowFormat object to add shadows to Shape objects. Use the Shape object's Shadow property to get a reference to
this object. The ShadowFormat object has the following members:

Application Creator

ForeColor IncrementOffsetX

IncrementOffsetY Obscured

OffsetX OffsetY

Parent transparency

Type Visible

The ShadowFormat members correspond to the settings on the shadow toolbars shown in Figure 18-14.

Figure 18-14. Adding shadows

To add a shadow to a shape, simply make the ShadowFormat object visible or set its Type property as shown here:

Sub ShadowFormatMembers()
 Dim ws As Worksheet, s As Shape, fil As String
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeRectangle, 50, 50, 40, 60)
 ' Make it solid.
 s.Fill.Solid
 ' Set shadow type.
 s.Shadow.Type = msoShadow3
End Sub

If the shape is not solid, the shadow reflects the border of the object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.18. ShapeNode and ShapeNodes Members
Use the ShapeNodes collection to add or remove segments from a freeform shape. Use the Shape object's Nodes property to
get a reference to this collection. Use the Node object to get the coordinates of a specific segment. The ShapeNodes
collection and ShapeNode object have the following members:

Application2 Count2

Creator2 Delete1

EditingType Insert1

Item1 Parent2

Points SegmentType

SetEditingType1 SetPosition1

SetSegmentType1
1 Collection only

2 Object and collection

It's hard to imagine why anyone would need to modify a freeform shape from code within Excel, but if you want to do
that, ShapeNodes is the collection to use! You can modify the shape only after it is rendered from the FreeformBuilder object
by the ConvertToShape method. The following code draws a freeform shape using an earlier example, then replaces one of
the nodes in the shape:

Sub ShapeNodesMembers()
 Dim ws As Worksheet, s As Shape, sn As ShapeNodes
 Set ws = ActiveSheet
 ' Use previous example to draw freeform shape.
 DrawAndFillFreeForm
 ' Get the shape
 Set s = ws.Shapes(ws.Shapes.Count)
 ' Get the ShapeNodes
 Set sn = s.Nodes
 ' Delete a node
 sn.Delete (1)
 ' Add a node
 sn.Insert 1, msoSegmentCurve, msoEditingAuto, _
 20, 20, 50, 60, 30, 30
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.19. TextFrame
Use the TextFrame object to add text to a shape and to change the appearance of that text. Use the Shape object's
TextFrame property to get a reference to this object. The TextFrame object has the following members. Key members
(shown in bold) are covered in the following reference section:

Application AutoMargins

AutoSize Characters

Creator HorizontalAlignment

MarginBottom MarginLeft

MarginRight MarginTop

Orientation Parent

ReadingOrder VerticalAlignment

textframe.AutoMargins [= setting]

True sets margins automatically; False uses margin property settings. Default is True.

textframe.AutoSize [= setting]

True resizes the object to fit the text; False does not resize. Default is False. The following code draws an oval, adds
some text, then resizes the shape to fit the text:

Sub DrawOval()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeOval, 150, 50, 1, 1)
 ' Add some text
 s.TextFrame.Characters.text = "Vigorous writing is concise."
 ' Resize the object to fit text
 s.TextFrame.AutoSize = True
End Sub

textframe.Characters([Start], [Length])

Returns a Characters object representing the text in the text frame.

Argument Settings

Start The index of the first character to return

Length The number of characters to return

The most commonly used properties of the Characters object are Text and Font. I've showed you how to use the Text
property many times so far; the following code changes the font for the last word in the DrawOval example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property many times so far; the following code changes the font for the last word in the DrawOval example:

Sub FormatCharacters()
 Dim ws As Worksheet, s As Shape, fil As String
 Set ws = ActiveSheet
 ' Draw oval using previous example.
 DrawOval
 ' Get the shape object.
 Set s = ws.Shapes(ws.Shapes.Count)
 ' Make last word bold.
 s.TextFrame.Characters(21, 7).Font.Bold = True
End Sub

textframe.HorizontalAlignment [= xlHAlign]

Sets or returns the horizontal alignment of the text. Can be one of these settings:

 xlHAlignCenter
 xlHAlignCenterAcrossSelection
 xlHAlignDistributed
 xlHAlignFill
 xlHAlignGeneral
 xlHAlignJustify
 xlHAlignLeft (default)
 xlHAlignRight

textframe.MarginBottom [= setting]

Sets or returns the bottom margin of the text frame in points.

textframe.MarginLeft [= setting]

Sets or returns the left margin of the text frame in points.

textframe.MarginRight [= setting]

Sets or returns the right margin of the text frame in points.

textframe.MarginTop [= setting]

Sets or returns the top margin of the text frame in points.

textframe.Orientation [= msoTextOrientation]

Sets or returns how the text is rotated. Can be one of these settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns how the text is rotated. Can be one of these settings:

 msoTextOrientationDownward
 msoTextOrientationHorizontal (default)
 msoTextOrientationHorizontalRotatedFarEast
 msoTextOrientationMixed
 msoTextOrientationUpward
 msoTextOrientationVertical
 msoTextOrientationVerticalFarEast

textframe.VerticalAlignment [= xlVAlign]

Sets or returns the vertical alignment of the text. Can be one of these settings:

 xlVAlignCenter
 xlVAlignJustify
 xlVAlignBottom
 xlVAlignDistributed
 xlVAlignTop (default)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.20. TextEffectFormat
Use the TextEffectFormat object to set the text in an embedded WordArt shape. Use the Shape object's TextEffect property to
get a reference to this object. The TextEffectFormat object has the following members. Key members (shown in bold) are
covered in the following reference section:

Alignment Application

Creator FontBold

FontItalic FontName

FontSize KernedPairs

NormalizedHeight Parent

PresetShape PresetTextEffect

RotatedChars Text

ToggleVerticalText Tracking

shape.Alignment [= msoTextEffectAlignment]

Sets or returns the alignment of the text in the WordArt shape. Can be one of these settings:

 msoTextEffectAlignmentCentered (default)
 msoTextEffectAlignmentLeft
 msoTextEffectAlignmentLetterJustify
 msoTextEffectAlignmentMixed
 msoTextEffectAlignmentRight
 msoTextEffectAlignmentStretchJustify
 msoTextEffectAlignmentWordJustify

shape.FontBold [= setting]

True applies bold formatting; False removes bold.

shape.FontItalic [= setting]

True applies italic formatting; False removes italics.

shape.FontName [= setting]

Sets or returns the font used in the WordArt shape. If the specified font is not found on the user's system, the property
is simply ignored.

shape.FontSize [= setting]

Returns the size of the font in points. Setting this property has no effect in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shape.KernedPairs [= setting]

True decreases spacing between character pairs slightly; False does not decrease spacing. Default is True.

shape.NormalizedHeight [= setting]

True makes upper- and lowercase letters the same height; False uses different heights. Default is False.

shape.PresetShape [= msoPresetTextEffectShape]

Sets or returns a shape effect to apply to the text. Can be one of these settings:

 msoTextEffectShapeArchDownCurve msoTextEffectShapeArchDownPour
 msoTextEffectShapeArchUpCurve msoTextEffectShapeArchUpPour
 msoTextEffectShapeButtonCurve msoTextEffectShapeButtonPour
 msoTextEffectShapeCanDown msoTextEffectShapeCanUp
 msoTextEffectShapeCascadeDown msoTextEffectShapeCascadeUp
 msoTextEffectShapeChevronDown msoTextEffectShapeChevronUp
 msoTextEffectShapeCircleCurve msoTextEffectShapeCirclePour
 msoTextEffectShapeCurveDown msoTextEffectShapeCurveUp
 msoTextEffectShapeDeflate msoTextEffectShapeDeflateBottom
 msoTextEffectShapeDeflateInflate msoTextEffectShapeDeflateInflateDeflate
 msoTextEffectShapeDeflateTop msoTextEffectShapeDoubleWave1
 msoTextEffectShapeDoubleWave2 msoTextEffectShapeFadeDown
 msoTextEffectShapeFadeLeft msoTextEffectShapeFadeRight
 msoTextEffectShapeFadeUp msoTextEffectShapeInflate
 msoTextEffectShapeInflateBottom msoTextEffectShapeInflateTop
 msoTextEffectShapeMixed msoTextEffectShapePlainText
 msoTextEffectShapeRingInside msoTextEffectShapeRingOutside
 msoTextEffectShapeSlantDown msoTextEffectShapeSlantUp
 msoTextEffectShapeStop msoTextEffectShapeTriangleDown
 msoTextEffectShapeTriangleUp msoTextEffectShapeWave1
 msoTextEffectShapeWave2

shape.PresetTextEffect [= msoPresetTextEffect]

Sets or returns the text effect to use from the WordArt Gallery (Figure 18-15). Can be a setting from msoTextEffect1 to
msoTextEffect30.

Figure 18-15. View available text effects from the WordArt Gallery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shape.RotatedChars [= setting]

True rotates characters in the text 90 degrees; False removes the rotation.

shape.Text [= setting]

Sets or returns the text displayed in the WordArt shape.

shape.ToggleVerticalText()

Switches between horizontal and vertical text.

shape.Tracking [= setting]

Sets or returns the ratio of space allotted to each character relative to the width of the actual character. Must be
between 0 and 5. Default is 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.21. ThreeDFormat
Use the THReeDFormat object to add a 3-D effect to shapes. Use the Shape object's ThreeD property to get a reference to
this object. The ThreeDFormat object has the following members:

Application Creator

Depth ExtrusionColor

ExTRusionColorType IncrementRotationX

IncrementRotationY Parent

Perspective PresetExtrusionDirection

PresetLightingDirection PresetLightingSoftness

PresetMaterial PresetThreeDFormat

ResetRotation RotationX

RotationY SetExtrusionDirection

SetThreeDFormat Visible

The THReeDFormat members correspond to the settings on the 3-D Settings toolbar shown in Figure 18-16.

Figure 18-16. Adding a 3-D effect to shapes

Use the SetThreeDFormat method to apply a 3-D effect to a shape. The following code draws the wave shape shown in
Figure 18-16 and applies a 3-D effect to it:

Sub ThreeDFormatMembers()
 Dim ws As Worksheet, s As Shape, fil As String
 Set ws = ActiveSheet
 ' Insert embedded WordArt.
 Set s = ws.Shapes.AddShape(msoShapeWave, 20, 140, 40, 30)
 s.Fill.Solid
 ' Apply 3-D effect.
 s.ThreeD.SetThreeDFormat msoThreeD1
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19. Adding Menus and Toolbars
Writing great code doesn't do you much good if users can't easily run it. In this chapter, I show you how to create
menus and toolbars that run your code with a single click. These features are actually part of the Office object model,
so the skills you learn here apply to Word, PowerPoint, and all of the other Office products.

This chapter includes task-oriented reference information for the following objects and their related collections:
CommandBar, CommandBarButton, CommandBarComboBox, CommandBarControl, and CommandBarPopup.

Code used in this chapter and additional samples are available in ch19.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.1. About Excel Menus
Excel has two top-level menu bars, and which menu bar is displayed depends on what has focus in Excel. The
worksheet menu bar (Figure 19-1) is displayed when Excel first starts up, when a worksheet has focus, and when all
workbooks are closed.

Figure 19-1. Worksheet menu bar

The chart menu bar (Figure 19-2) appears when a chart sheet or an embedded chart object has focus.

Figure 19-2. Chart menu bar

There are also context menus for just about every item in the Excel interface. Context menus pop up when you right-
click an item in Excel. For example, Figure 19-3 shows the context menu displayed when you right-click a range of cells.

Context menus are also sometimes called shortcut menus.

Figure 19-3. The cell context menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can change any of these types of menus to:

Add or delete existing commands

Create new items that run code

Build custom menus of items with multiple levels

The following sections detail how to create and modify each of these types of menus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2. Build a Top-Level Menu
Top-level menus appear on either the worksheet menu bar or the chart menu bar (Figure 19-1 or Figure 19-2). To add
a top-level menu to the worksheet menu bar, select a worksheet before creating the menu. To add a top-level menu to
the chart menu bar, select a chart before creating the menu. To add the menu to both menu bars, create the menu
twiceonce for each menu bar.

To create a new top-level menu on a menu bar in Excel:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. In the Categories list, choose New Menu. Click New Menu in the Commands list and drag it onto the Excel menu
bar as shown in Figure 19-4. Excel adds a new top-level menu to the menu bar.

Figure 19-4. Steps 1 and 2: add the top-level menu

3. Right-click on the new menu item and rename it as shown in Figure 19-5.

4. In the Categories list, choose Macros, then click Custom Menu Item from the Commands list and drag it onto
the new menu item as shown in Figure 19-6.

5. Right-click the new menu item, rename it, and assign it to run a macro as shown in Figure 19-7.

6. Click Close on the Customize dialog box when you are done adding items and setting menu properties.

Right-clicking displays the menu properties shown in Figure 19-5 and Figure 19-7 only
while the Customize dialog is open.

Figure 19-5. Step 3: rename the menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-5. Step 3: rename the menu

Figure 19-6. Step 4: add items to the menu

Figure 19-7. Step 5: rename menu item and assign a macro

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-7. Step 5: rename menu item and assign a macro

19.2.1. Change Existing Menus

You can also add built-in commands or create new custom commands on existing Excel menus. To add built-in
command to an existing menu:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. In the Categories list, choose the category of the existing command you want to add. Each category contains a
long list of commands, so you may need to check a couple different categories before you find the command
you want.

3. Drag the existing command from the Commands list onto the top-level menu you want to add it to. Excel
displays the menu once you drag over it and you can drag the command down to the position where you want it
to appear on the menu as shown in Figure 19-8.

4. Click Close on the Customize dialog box when you are done adding items and setting menu properties.

To add a new custom command to an existing menu, repeat the preceding procedure, but select Macros from the
Categories list and Custom Menu Item from the Commands list in Step 2. You can then rename and assign a macro to
the new menu item as shown in Figure 19-7.

Figure 19-8. Dragging an existing command onto a menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.2. Assign Accelerator and Shortcut Keys

It is standard practice to provide keyboard alternatives to using point-and-click menus. There are two ways to do so:

Accelerator keys

Appear underlined in the menu name. They allow you to activate the menu item by pressing Alt-key. For
example Alt-F-S saves an Excel workbook.

Shortcut keys

Appear next to the menu item. They provide direct access to a task listed on a menu. For example, Ctrl-S saves
an Excel workbookthe same as Alt-F-S.

To assign an accelerator key to a menu item, use an ampersand (&) in the menu name before the accelerator key. For
example, &Run defines R as the accelerator key for the menu.

To assign a short-cut key to a menu item:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. Right-click on the new menu item and rename to add the short-cut sequence after the menu item's name. For
example, Run &All Ctrl-Shift-R.

3. Close the Customize dialog box.

4. Choose Tools Macro Macros to display the Macro dialog box.

5. Select the macro that is assigned to the menu item and click Options.

6. Press the letter to assign as the short-cut. Pressing Shift adds that key to the combination as shown in Figure
19-9.

7. Type a description and press OK twice to close the dialogs.

Figure 19-9. Assigning a shortcut key sequence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Menus often group similar items using separator bars. To start a new group of items by adding a separator bar:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. Right-click on the menu item before which to add the separator bar and select Begin a Group.

3. Close the Customize dialog box. Excel adds a separator bar before the item as shown in Figure 19-10.

Figure 19-10. Menu items with accelerator and shortcut keys and a separator bar

19.2.3. Save and Distribute Menus

When you close Excel, any menu changes you made are automatically saved in an .xlb file. The filename and location
varies based on the version of Excel. Versions 2000, XP, and 2003 are Excel9.xlb, Excel10.xlb, and Excel11.xlb,
respectively. On Windows XP, the files are stored in the %UserProfile%\Application Data\Microsoft\Excel\ folder.

As a result, custom menus are user-specific. If you want to distribute a custom menu to others, you must either replace
their .xlb file with your own or you must dynamically create the menu in code. Creating the menu in code is the best
option in most cases because that approach:

Doesn't overwrite the users' own menu changes, the way that replacing their .xlb file does

Allows you to associate the menus with the file containing the code so that the menus appear only if that
workbook, template, or add-in is loaded

The following section describes how to create a top-level menu in code so that you can distribute it as part of a
workbook, template, or add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.3. Create a Menu in Code
Access to menus in Excel is provided through the Office object model.

To create a new top-level menu in code:

1. Get a reference to the menu bar on which you want to create the new top-level menu.

2. Add a pop-up menu control to the menu bar and set its Caption and Tag properties.

3. Add button menu controls to the pop-up menu and set the Caption, OnAction, ShortcutText, and other properties.

For example, the following code creates a top-level menu on the worksheet menu bar that is very similar to the menu
shown in Figure 19-10:

Sub BuildMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup, cbtn As CommandBarButton
 ' Get the menu bar (CommandBar).
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Add top-level menu item (CommandBarPopup).
 Set cpop = cb.Controls.Add(msoControlPopup, , , , True)
 cpop.Caption = "&Run2"
 ' The Tag property makes it easy to delete this menu later.
 cpop.Tag = "Run2"
 ' Add items to the menu (CommandBarButton).
 Set cbtn = cpop.Controls.Add(msoControlButton, , , , True)
 ' Set menu item properties.
 cbtn.Caption = "Sample &1"
 cbtn.OnAction = "Sample1"
 ' Add a second item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , , True)
 cbtn.Caption = "Sample &2"
 cbtn.OnAction = "Sample2"
 ' Add a third item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , , True)
 cbtn.Caption = "Run &All"
 cbtn.ShortcutText = "Ctrl+Shift+A"
 cbtn.OnAction = "TestMenus"
 ' Add a separator bar before this item.
 cbtn.BeginGroup = True
End Sub

The last argument for each of the preceding Add methods specifies that the new item is temporaryin other words, it
won't be saved in the user's .xlb file. When the user closes Excel, temporary menus are deleted. You can ensure that
this menu appears when the workbook, template, or add-in is loaded by calling BuildMenu from the Workbook_Open event,
as shown here:

' ThisWorksbook class.
Private Sub Workbook_Open()
 ' Create temporary menus when this workbook opens.
 BuildMenu
End Sub

19.3.1. Remove the Menu on Close

Interestingly, temporary menus still persist if the user closes the workbook but not Excel. Therefore, you may want to
remove the menu explicitly when the file closes. Why use temporary menus if you are going to delete them anyway?
Using a temporary menu ensures that the menu is removed if Excel crashes while the file is open.

The following code removes the top-level menu created by the BuildMenu sample when the workbook closes:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 ' Enable error handling in case menu was deleted earlier somehow.
 On Error Resume Next
 ' Make sure temporary menu is deleted.
 RemoveMenu
 On Error GoTo 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error GoTo 0
End Sub

Sub RemoveMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup
 ' Get the menu bar (CommandBar).
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Get the top-level menu created by BuildMenu.
 Set cpop = cb.FindControl(msoControlPopup, , "Run2")
 ' Delete it.
 cpop.Delete
End Sub

The FindControl method uses the Tag property of the top-level menu to locate the control so it can be deleted. That is a
better technique than locating the menu through its index, which might change if the user or other code adds a new
menu.

19.3.2. Change an Existing Menu

You can also add or remove commands on existing menus in code. For example, you might want to add Contact Us and
About commands to the Help menu for a workbook add-in. To do so:

1. Get a reference to the menu toolbar.

2. Use the FindControl method to get a reference to the existing Contact and About items.

3. Modify those menu items.

4. Add new Contact Us and About items.

The following code demonstrates the preceding steps by changing the caption of the Contact Us menu item to Contact
Microsoft, then adds new Contact and About items to the Help menu:

Sub ChangeHelpMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup, cbtn As CommandBarButton
 Dim index As Integer
 ' Get the menu bar (CommandBar).
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Get the Help menu (control's ID is 30010)
 Set cpop = cb.FindControl(msoControlPopup, 30010)
 ' Get the Contact Us item (control's ID is 7903)
 Set cbtn = cb.FindControl(msoControlButton, 7903, , , True)
 ' Change the caption.
 cbtn.Caption = "&Contact Microsoft"
 index = cbtn.index
 ' Add a new Contact item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , index, True)
 cbtn.Caption = "Contact &Author"
 cbtn.OnAction = "ContactAuthor"
 ' Get the About item
 Set cbtn = cb.FindControl(msoControlButton, 927, , , True)
 index = cbtn.index
 cbtn.BeginGroup = False
 ' Add a new About item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , index, True)
 cbtn.Caption = "About &" & ThisWorkbook.Name
 cbtn.OnAction = "ShowAbout"
 cbtn.BeginGroup = True
End Sub

' Procedures for the preceding OnAction properties.
Sub ContactAuthor()
 ThisWorkbook.FollowHyperlink "mailto:someone@yourcompany.com" & _
 "&Subject=Chapter 19 Samples"
End Sub

Sub ShowAbout()
 MsgBox "Version 1.0. Copyright 2005 Wombat Technology.", _
 vbOKOnly, "Chapter 19 Samples"
End Sub

The FindControl method in the preceding code uses the ID of the existing controls to find the Help CommandBarPopup control
and Contact and About CommandBarButton controls. Those control IDs aren't listed anywhere that I know of, but you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and Contact and About CommandBarButton controls. Those control IDs aren't listed anywhere that I know of, but you can
find them by running the following code:

' Displays the structure of the worksheet and chart menu bars
' with captions and control IDs.
Sub ShowMenuStructure()
 Dim cb As CommandBar, cpop As CommandBarPopup, cbtn As CommandBarButton
 For Each cb In Application.CommandBars
 If cb.Type = msoBarTypeMenuBar Then
 Debug.Print cb.Name
 For Each cpop In cb.Controls
 Debug.Print , cpop.Caption, cpop.id
 On Error Resume Next
 For Each cbtn In cpop.Controls
 Debug.Print , , cbtn.Caption, cbtn.id
 Next
 On Error GoTo 0
 Next
 End If
 Next
End Sub

The preceding code lists all of the menu items along with their control IDs in the Immediate window.

19.3.3. Reset an Existing Menu

If you change an existing menu, you may want to remove your changes without deleting the entire menu. To do that,
use the Reset method as shown here:

Sub RestoreHelpMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup
 Dim index As Integer
 ' Get the menu bar.
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Get the Help menu.
 Set cpop = cb.FindControl(msoControlPopup, 30010)
 ' Remove changes.
 cpop.Reset
End Sub

The preceding code restores the default menu settings for the Help menu, removing the changes made by the
ChangeHelpMenu procedure earlier.

You can also call Reset on the CommandBar object to restore the defaults for all menus:

Sub RestoreMenuBar()
 Dim cb As CommandBar
 ' Get the menu bar
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Remove changes.
 cb.Reset
End Sub

Reset removes the user's changes as well as changes made in code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.4. Build Context Menus
You can't change Excel's context menus through the user interface. Instead, you must use code to add or remove items
on a context menu. For example, the following code adds a Send Range item to the context menu displayed when you
right-click a selected range of cells:

Sub AddCellMenuItem()
 Dim cb As CommandBar, cbtn As CommandBarButton
 Dim index As Integer
 ' Get the context menu by name.
 Set cb = Application.CommandBars("Cell")
 ' Add the new menu item.
 Set cbtn = cb.Controls.Add(msoControlButton, , , , True)
 ' Set the caption and action.
 cbtn.Caption = "&Send Range"
 cbtn.OnAction = "SendRange"
End Sub

' Procedure used by OnAction property.
Sub SendRange()
 ' Copy the range.
 Selection.Copy
 ' Display a mail message.
 ThisWorkbook.FollowHyperlink "mailto:someone@yourcompany.com" & _
 "&Subject=Selection from " & ActiveSheet.Name
 ' Wait two seconds for message to display.
 Application.Wait Now + TimeSerial(0, 0, 2)
 ' Paste range into message body.
 SendKeys "^v"
End Sub

To see how this works, run AddCellMenuItem to add the new menu item, select a range of cells, right-click, and choose
Send Range. Excel creates a new mail message and pastes the range into the message body as shown in Figure 19-11.

Figure 19-11. New item on the cell context menu sends a range of cells

The context menus are CommandBar objects, just like the top-level menu bars, but they have a Type property set to
msoBarTypePopup. You get a reference to a context menu from the Application object's CommandBars collection using one of
the menu names , which are listed here:

ActiveX Control Auto Sum AutoCalculate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoFill Built-in Menus Button

Canvas Popup Cell Chart

Column Connector Curve

Curve Node Curve Segment Desktop

Diagram Dialog Document

Excel Control Find Format Floor and Walls

Format Axis Format Data Series Format Legend Entry

Formula Bar Inactive Chart Layout

List Range Layout Popup List Range Popup Nondefault Drag and Drop

Object/Plot OLE Object Organization Chart Popup

Paste Special Dropdown Phonetic Information Pictures Context Menu

Pivot Chart Popup PivotChart Menu PivotTable Context Menu

Plot Area Ply Query

Query Layout Replace Format Rotate Mode

Row Script Anchor Popup Select

Series Shapes Title Bar (Charting)

Trendline WordArt Context Menu Workbook tabs

XLM Cell XML Range Popup

19.4.1. Change Context Menu Items

Just as with other menus, you can modify items on context menus by getting a reference to the item using the
FindControl method. The following code modifies the Paste item on the Cell menu to paste the contents as text, which
removes any formatting from the source:

Sub ChangeCellMenuItem()
 Dim cb As CommandBar, cbtn As CommandBarButton
 Dim index As Integer
 ' Get the cell context menu.
 Set cb = Application.CommandBars("Cell")
 ' Get the Paste menu item (ID is 22).
 Set cbtn = cb.FindControl(msoControlButton, 22)
 ' Replace the action.
 cbtn.OnAction = "PasteAsText"
End Sub

' Procedure used by OnAction property.
Sub PasteAsText()
 ActiveSheet.PasteSpecial "Text"
End Sub

As I mentioned earlier, finding the control ID for menu items can be tricky. The following code displays a list of the
context menu names, the items they contain, and the control IDs for each of the items:

Sub ListContextMenus()
 Dim cb As CommandBar, cbtn As CommandBarButton
 Debug.Print "Context menus", ""
 For Each cb In Application.CommandBars
 If cb.Type = msoBarTypePopup Then
 Debug.Print cb.Name
 On Error Resume Next
 For Each cbtn In cb.Controls
 Debug.Print , cbtn.Caption, cbtn.id
 Next
 On Error GoTo 0
 ' Uncomment the following line to stop at a
 ' specific context menu:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' specific context menu:
 'If cb.Name = "Cell" Then Stop
 End If
 Next
End Sub

19.4.2. Restore Context Menus

To restore the default context menu after making changes, use the Reset method as you would for top-level menu bars.
The following code resets the cell context menu back to its default settings:

Sub RetoreCellMenu()
 Dim cb As CommandBar
 Dim index As Integer
 ' Get the cell context menu.
 Set cb = Application.CommandBars("Cell")
 ' Remove changes.
 cb.Reset
End Sub

19.4.3. Create New Context Menus

You can create custom context menus from scratch using the CommandBars collection's Add method. Once it is created,
you control the display of the context menu using the ShowPopup method. The following code demonstrates how to create
and display a new context menu similar to the menu in Figure 19-10:

' Module-level variable.
Dim m_cb As CommandBar

Sub CreateNewContextMenu()
 ' Delete the menu bar if it already exists.
 On Error Resume Next
 Application.CommandBars("New").Delete
 On Error GoTo 0
 ' Create a new context menu bar.
 Set m_cb = Application.CommandBars.Add("New", msoBarPopup, False, True)
 ' Add some items to the menu bar.
 With m_cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &1"
 .OnAction = "Sample1"
 End With
 With m_cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &2"
 .OnAction = "Sample2"
 End With
 With m_cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Run &All"
 .OnAction = "TestMenus"
 .BeginGroup = True
 End With
 ' Display the menu.
 m_cb.ShowPopup 100, 100
End Sub

The CommandBar variable is defined at the module level so you can use it more easily from
other parts of your project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.5. Build a Toolbar
To create a toolbar in Excel:

1. Choose Tools Customize Toolbars. Excel displays the Toolbars tab of the Customize dialog box.

2. Click New. Excel display the New Toolbar dialog.

3. Type a name for the toolbar and click OK. Excel creates a new, empty toolbar.

4. Click the Commands tab, select a category, and drag items from the Commands list to the toolbar as shown in
Figure 19-12.

Figure 19-12. Drag commands to add them to a toolbar

5. Right-click any button on the new toolbar to rename the button, assign a macro, or change the button image,
as shown in Figure 19-13.

19.5.1. Create Menus Using Toolbars

Toolbars and menu bars aren't very different. In fact, you can make a toolbar that looks just like a menu bar by
following these steps:

1. Choose Tools Customize Toolbars. Excel displays the Toolbars tab of the Customize dialog box.

2. Click New. Excel display the New Toolbar dialog.

3. Name the toolbar Menu1 and click OK. Excel creates a new, empty toolbar.

Figure 19-13. Right-click a button to change its properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-13. Right-click a button to change its properties

4. Click the Commands tab, select New Menu from the Category list, and drag New Menu from the Commands list
onto the toolbar.

5. Select Macros from the Categories list and drag Custom Menu Item from the Commands list onto the menu you
just added to the toolbar.

6. Repeat Step 5 two more times, then right-click each of the new menu items and set their name properties as
shown in Figure 19-14.

Figure 19-14. Using a toolbar to create a menu

7. Click OK to close the Customize dialog box.

You can add existing menus to the toolbar by selecting Built-in Menus in the Categories list
and then dragging the menu from the Commands list onto the toolbar.

If you drag the toolbar to the top of the Excel window, it will "dock" either above or below the menu bar. The new
toolbar looks just like a menu bar, but it can't coexist on the same line as the worksheet or chart menu barsthat's a
significant disadvantage in some situations, but if you can live with it, using a toolbar in this way makes it much easier
to distribute the menu.

19.5.2. Save and Distribute Toolbars

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One key advantage of toolbars is that they can be attached to a workbook, template, or add-in without writing code.
That makes them much easier to distribute than custom menus. To attach a toolbar:

1. Open the file to attach the toolbar to in Excel.

2. Choose Tools Customize Toolbars. Excel displays the Toolbars tab of the Customize dialog box.

3. Click Attach. Excel displays the Attach Toolbars dialog.

4. Select the custom toolbars to attach and click Copy.

5. Click OK twice to close the dialogs.

When a user opens a file that contains an attached toolbar, that toolbar is loaded and will be saved in the user's .xlb file
when she closes Excel. That makes the toolbar available to all workbooks on the user's machine.

If you want the toolbar to appear only when the containing workbook or template is loaded, delete the toolbar in the
file's Workbook_BeforeClose event procedure. If the toolbar is attached to an add-in, use the Workbook_AddinUninstall event
procedure instead. The following code handles either of those situations:

' ThisWorkbook class.

' For workbooks and templates.
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 If Not Me.IsAddin Then Application.CommandBars("Menu1").Delete
End Sub

' For add-ins.
Private Sub Workbook_AddinUninstall()
 If Me.IsAddin Then Application.CommandBars("Menu1").Delete
End Sub

I delete the toolbar rather than making it invisible so the user can't try to display the toolbar after the file is uninstalled.
Deleting the toolbar removes it from the toolbars list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.6. Create Toolbars in Code
Because custom toolbars are easier to distribute than custom menus, there is less reason to create them in code;
however, you can if you like. Toolbars are CommandBar objects, just like menus, but they have a Type property set to
msoBarTypeNormal. You get a reference to a toolbar from the Application object's CommandBars collection using the toolbar's
name. The toolbars are:

3-D Settings Align or Distribute Annotation Pens

AutoShapes Basic Shapes Block Arrows

Borders Callouts Chart

Chart Type Circular Reference Clipboard

Compare Side by Side Connectors Control Toolbox

Diagram Draw Border Drawing

Drawing and Writing Pens Drawing Canvas Envelope

Exit Design Mode External Data Fill Color

Flowchart Font Color Formatting

Forms Formula Auditing Full Screen

Ink Annotations Ink Drawing and Writing Insert Shape

Line Color Lines List

Nudge Online Meeting Order

Organization Chart Pattern Picture

PivotTable PivotTable Field List Protection

Refresh Reviewing Rotate or Flip

Shadow Settings Standard Stars & Banners

Stop Recording Task Pane Text To Speech

Visual Basic Watch Window Web

WordArt

Use the CommandBar object's Show method to display a toolbar. For example, the following code displays each of the
toolbars in turn, pausing between each. This is useful for finding the name of a particular toolbar:

Sub ShowToolbars()
 Dim cb As CommandBar, show As Boolean
 For Each cb In Application.CommandBars
 If cb.Type = msoBarTypeNormal Then
 Debug.Print cb.Name
 ' Get visible state.
 show = cb.Visible
 ' Show the toolbar.
 If cb.Enabled Then
 cb.Visible = True
 VBA.DoEvents
 ' Wait.
 Application.Wait Now + 0.00001
 ' Restore the original state.
 cb.Visible = show
 End If
 End If
 Next
End Sub

Be sure to check the Enabled property before setting Visible to True; otherwise, you'll get an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure to check the Enabled property before setting Visible to True; otherwise, you'll get an
error.

19.6.1. Add Edit Controls to Toolbars

The best reason I can think of to create a toolbar in code is if you want to use edit controls, such as a drop-down list or
combo box, within the toolbar. There's no way to drag one of those types of controls onto a toolbar manually; you can
create them only through code.

To create an edit control on a toolbar:

1. Get a reference to the toolbar.

2. Use the Controls collection's Add method to create the control on the toolbar.

3. Set the control's properties and populate any lists it contains.

The Add method creates different types of controls on a toolbar based on the Type argument as described in Table 19-1.

Table 19-1. MsoControlType constants for creating command bar controls
Type argument Creates Object type of control is

msoControlButton Toolbar button or menu item CommandBarButton

msoControlComboBox A combo list box (select an item or enter text) CommandBarComboBox

msoControlDropdown A drop-down list box (select an item) CommandBarComboBox

msoControlEdit An edit box (enter text) CommandBarComboBox

msoControlPopup A menu of other items CommandBarPopup

The middle three control types in Table 19-1 are edit controls. You can get or set the values of those controls from
code. For example, Figure 19-15 shows a toolbar that lists all the macros in the current workbook in a drop-down list.
You can select an item from the list and click Run to run the macro. The toolbar also includes some built-in commands
that I often use.

Figure 19-15. A toolbar with an edit control

The following code creates the toolbar in Figure 19-15. The code is a little complicated because it must populate the
values in the drop-down list:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values in the drop-down list:

' Creates a CodeToolbar for running macros.
Sub BuildCodeToolbar()
 Dim cb As CommandBar, obj As Object, str, list
 ' Delete the command bar if it exists.
 DeleteCodeToolbar
 ' Create a new toolbar.
 Set cb = Application.CommandBars.Add("CodeToolbar", , , True)
 cb.Left = Application.Width \ 2
 cb.Top = Application.Height \ 6
 ' Set command bar properties.
 cb.Visible = True
 cb.Position = msoBarFloating
 ' Add a drop-down list to the toolbar.
 With cb.Controls.Add(msoControlDropdown)
 .Caption = "&Macro"
 .Width = 200
 .Tag = "cboMacros"
 ' Use helper procedure to add macro names to the combo box.
 list = GetMacroList
 For Each str In list
 .AddItem str
 Next
 End With
 ' Add a button to run the selected macro.
 With cb.Controls.Add(msoControlButton)
 .Tag = "cmdRun"
 .Caption = "&Run"
 .Style = msoButtonIcon
 .FaceId = 186
 ' Set the procedure to run when button is clicked.
 .OnAction = "cmdRun_Click"
 End With
 ' Add a button to run the selected macro.
 With cb.Controls.Add(msoControlButton)
 .Tag = "cmdRefresh"
 .Caption = "&Refresh"
 .Style = msoButtonIcon
 .FaceId = 459
 ' Rebuild this toolbar (refreshes list).
 .OnAction = "BuildCodeToolbar"
 End With
 ' Add some built-in commands.
 cb.Controls.Add msoControlButton, 184 ' Record macro
 cb.Controls.Add msoControlButton, 282 ' Button control
 cb.Controls.Add msoControlButton, 485 ' Toggle grid
 cb.Controls.Add msoControlButton, 1695 ' VB Editor
End Sub

' Procedure used by OnAction property.
Sub cmdRun_Click()
 Dim cb As CommandBar, cbc As CommandBarComboBox, _
 macro As String
 ' Get the command bar.
 Set cb = Application.CommandBars("CodeToolbar")
 ' Get the combo box.
 Set cbc = cb.FindControl(msoControlDropdown, , _
 "cboMacros", , True)
 ' Get the selected item in the combo box.
 macro = cbc.list(cbc.ListIndex)
 ' If an item is selected, then run the macro.
 On Error Resume Next
 If macro <> "" Then _
 Application.Run ActiveWorkbook.Name & "!" & macro
 If Err Then
 MsgBox "Error: " & Err.Number & ", " & Err.Description, , macro
 End If
 On Error GoTo 0
End Sub

The following helper function builds an array of macro names from using the VBE object model. Again, this code is a bit
complicated, but it works and you can find it in the sample workbook for this chapter.

' Builds a list of the macros in the current workbook
' And returns it as an array.
Function GetMacroList() As String()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function GetMacroList() As String()
 Dim obj As Object, str As String, list As String, _
 i As Long, j As Long, eol As Long
 For Each obj In ActiveWorkbook.VBProject.VBComponents
 If obj.Type = 1 Then
 ' Copy all of the code into a string.
 str = str & obj.codemodule.Lines(1, obj.codemodule.countoflines)
 End If
 Next
 i = 1
 ' Get the names of each Sub procedure.
 Do
 i = InStr(i, str, vbCrLf & "Sub ") + 6
 eol = InStr(i, str, vbCrLf)
 j = InStr(i, str, "()")
 If i = 6 Then Exit Do
 If eol > j Then _
 list = list & Mid(str, i, j - i) & ","
 Loop
 ' Return the list as an array.
 GetMacroList = Split(list, ",")
End Function

19.6.2. Delete Toolbars

Before you create a custom toolbar, you should delete it. No, I'm not crazy: calling the CommandBars Add method fails if a
toolbar with the same name already exists. The easiest way to make sure that name has not already been used is to
delete it and ignore any errors as shown here:

Sub DeleteCodeToolbar()
 ' Delete the toolbar if it already exists.
 On Error Resume Next
 Application.CommandBars("CodeToolbar").Delete
 On Error GoTo 0
End Sub

This technique assumes you've used a fairly unique name for your toolbar. A common name like Toolbar1 might result
in deleting one of the user's custom toolbars.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.7. CommandBar and CommandBars Members
Use the CommandBars collection to add new menus and toolbars to Excel or to get existing menus or toolbars. Use the
Application object's CommandBars property to get a reference to this collection. Use the CommandBar object to add controls to
the menu or toolbar or to get existing controls to modify. The CommandBars collection and CommandBar object have the
following members . Key members (shown in bold) are covered in the following reference section:

ActionControl

1
ActiveMenuBar

AdaptiveMenus

2

Add

1

Application2 BuiltIn

Context Controls

Count1 Creator2

Delete
DisableAskAQuestionDropdown

1

DisableCustomize DisplayFonts

DisplayKeysInTooltips
DisplayTooltips

1

Enabled
FindControl

2

FindControls

1
Height

Id Index

Item1
LargeButtons

1

Left
MenuAnimationStyle

1

Name NameLocal

Parent2 Position

Protection
ReleaseFocus

1

Reset RowIndex

ShowPopup Top

Type Visible

Width
1 Collection only

2 Object and collection

commandbars.ActionControl

Returns the CommandBarControl object that ran the current procedure. If the current procedure was not run by a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the CommandBarControl object that ran the current procedure. If the current procedure was not run by a
CommandBarControl, returns Nothing. The following code displays a message in the Immediate window when Sample2 is
called from a menu item or toolbar button:

Sub Sample2()
 Dim cbc As CommandBarButton
 MsgBox "Sample2"
 Set cbc = Application.CommandBars.ActionControl
 If Not cbc Is Nothing Then _
 Debug.Print "Sample2 called by: " & cbc.Tag
End Sub

commandbars.ActiveMenuBar

Returns the worksheet menu bar object or the chart menu bar object, depending on which menu bar is currently
displayed.

commandbars.AdaptiveMenus [= setting]

True causes Excel to display shortened top-level menus initially and then expand them after a brief period. False
displays full menus.

commandbars.Add([Name], [Position], [MenuBar], [Temporary])

Creates a new menu or toolbar as a CommandBar object.

Argument Settings

Name The name of the menu or toolbar to create.

Position
An MsoBarPosition constant indicating the docking location of the command bar. Can be one of these
settings: msoBarLeft, msoBarTop, msoBarRight, msoBarBottom, msoBarFloating, msoBarPopup, or msoBarMenuBar
(Macintosh only). Default is msoBarTop.

MenuBar True replaces the active menu bar with the menu bar created by Add. Default is False.

Temporary True prevents the command bar from being saved when Excel closes. False saves the command bar in
the user's .xlb file when Excel closes. Default is False.

When creating context menus, use the Position msoBarPopup. When creating floating toolbars, use the Position msoBarFloating.
For example, the following code creates a context menu; then displays it at the coordinates (100, 200):

Sub CreateNewContextMenu()
 Dim cb As CommandBar
 ' Create a new context menu bar.
 Set cb = Application.CommandBars.Add("ContextMenu1", _
 msoBarPopup, , True)
 ' Add some items to the menu bar.
 With cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &1"
 .OnAction = "Sample1"
 End With
 With cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &2"
 .OnAction = "Sample2"
 End With
 With cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Run &All"
 .OnAction = "TestMenus"
 .BeginGroup = True
 End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End With
 ' Display this context menu.
 cb.ShowPopup 100, 200
End Sub

The MenuBar argument lets you replace the top-level worksheet or chart menu bars with your own custom menu bar. For
examples, the following code replaces the top-level menu bar with a blank menu bar:

Sub ReplaceTopLevelMenuBar()
 Dim cb As CommandBar
 Set cb = Application.CommandBars.Add("BlankBar", , True, True)
 cb.Visible = True
End Sub

To restore the original menu bar, simply delete the menu bar you just created:

Sub RestoreTopLevelMenuBar()
 Application.CommandBars("BlankBar").Delete
End Sub

commandbar.BuiltIn

Returns True if the command bar is built in to Excel, False if it is a custom command bar.

commandbar.Controls

Returns the CommandBarControls collection used to add controls to the command bar and to get controls from the
command bar. For example, the following code displays worksheet menu bar controls three levels deep:

' List Worksheet menus three levels deep.
Sub ListWorksheetMenus()
 Dim menu As CommandBarControl, item As CommandBarControl, _
 subitem As CommandBarControl
 Debug.Print "Worksheet Menu Bar"
 For Each menu In Application.CommandBars("Worksheet Menu Bar").Controls
 Debug.Print , menu.Caption
 For Each item In menu.Controls
 Debug.Print , , item.Caption, item.id, item.Tag
 If item.Type = msoControlPopup Then
 For Each subitem In item.Controls
 Debug.Print , , , subitem.Caption, _
 subitem.id, subitem.Tag
 Next
 End If
 Next
 Next
End Sub

commandbar.Delete()

Deletes a command bar. You can't delete built-in command bars. Before creating a new command bar, it is a good idea
to use Delete to make sure a command bar doesn't already exist, as shown here:

Sub DeleteContextMenu()
 ' Ignore error if command bar doesn't already exist.
 On Error Resume Next
 Application.CommandBars("ContextMenu1").Delete
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

commandbars.DisableAskAQuestionDropdown [= setting]

True displays a question box (Figure 19-16) on the top-level menu bar; False hides the box. Default is True.

Figure 19-16. Excel question box

The following code turns the question box on and off:

' Switches question box on/off.
Sub QuestionBox()
 Application.CommandBars.DisableAskAQuestionDropdown = Not _
 Application.CommandBars.DisableAskAQuestionDropdown
End Sub

commandbars.DisableCustomize [= setting]

True prevents users from changing menus and toolbars; False allows changes. Default is False. This property does not
prevent changes made through code. The following code turns customization on and off:

' Switches customization on/off.
Sub CustomizationOnOff()
 Application.CommandBars.DisableCustomize = Not _
 Application.CommandBars.DisableCustomize
End Sub

commandbars.DisplayFonts [= setting]

True displays font names in the Font box in their actual fonts; False uses the default font. Default is True.

commandbar.DisplayKeysInTooltips [= setting]

True displays shortcut keys in the tool tips for command bar controls; False hides shortcut keys. Default is False.

commandbars.DisplayTooltips [= setting]

True displays pop-up tool tips when the mouse pointer pauses over a command bar control; False does not display tool
tips. Default is True.

commandbar.Enabled [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True includes the toolbar in the toolbars list; False removes the toolbar from the list. Default is True. To see a list of
toolbars, right-click on a command bar.

Removing the toolbar from the toolbar list hides the toolbar and prevents the user from displaying it. The following code
demonstrates the Enabled property by turning the Visual Basic toolbar off and on:

' Turn Visual Basic toolbar on/off.
Sub VBToolbarOnOff()
 ' First, display the toolbar.
 CommandBars("Visual Basic").Visible = True
 ' Switch Enabled on/off.
 CommandBars("Visual Basic").Enabled = Not _
 CommandBars("Visual Basic").Enabled
End Sub

commandbar.FindControl([Type], [Id], [Tag], [Visible],
[Recursive])

Returns a CommandBarControl object from the command bar's Controls collection using the Id or Tag properties of the control.
Returns Nothing if the control is not found.

Argument Settings

Type An msoControlType constant indicating the type of control to return.

Id The internal ID for the control. Use this argument to find built-in controls.

Tag The Tag property associated with the control when it was created. Use this argument to find custom
controls.

Visible True includes only visible controls in the search; False includes all controls. Default is False.

Recursive True includes controls on submenus and subtoolbars in the search; False searches only for top-level
controls on the command bar. Default is False.

Built-in controls have unique Id properties but do not have a Tag property setting, while custom controls don't have
unique Id properties but may have unique Tag properties. See the Controls member topic for an example that lists the Id
and Tag properties of controls on a command bar.

The Type argument allows you to specify the type of the control you want to find. Controls on a command bar can be
referenced as the base CommandBarControl type or as a derived CommandBarButton, CommandBarComboBox, or CommandBarPopup
type. Using those derived types rather than the base type lets you more easily use the full set of members provided by
that type.

For example, the CopyFace method is available only on the derived CommandBarButton type; therefore, although both of the
following procedures work, the second is preferable since it supports Auto Complete, is more precise, and less error-
prone:

Sub UseBaseControlType()
 Dim cb As CommandBar, cbc As CommandBarControl
 ' Get the command bar.
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Use base type
 Set cbc = cb.FindControl(, 682, , , True)
 cbc.CopyFace ' Note: no auto complete.
 ActiveSheet.Paste
End Sub

Sub UseDerivedControlType()
 Dim cb As CommandBar, cbb As CommandBarButton
 ' Get the command bar.
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Use the derived type.
 Set cbb = cb.FindControl(msoControlButton, 682, , , True)
 cbb.CopyFace ' Auto complete works now.
 ActiveSheet.Paste
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

See Table 19-1 earlier in this chapter for a list of the command bar msoControlType constants and the derived control
types they return.

Finally, the Recursive argument is important when working with menu bars since they are often several levels deep.
Setting Recursive to True searches down that hierarchy to find a control. Recursive is False by default, so I usually set it to
True any time I use FindControl.

commandbars.FindControls([Type], [Id], [Tag], [Visible])

Returns a collection of command bar controls. The arguments are the same as for the FindControl method, except there is
no Recursive argument (that argument is assumed to be True). The following code lists the captions and IDs of all of the
pop-up menu controls:

Sub FindControlsDemo()
 Dim cbcs As CommandBarControls, cpop As CommandBarPopup
 ' Get the collection of pop-up menus
.
 Set cbcs = CommandBars.FindControls(msoControlPopup)
 ' Show the caption and ID of each control.
 For Each cpop In cbcs
 Debug.Print cpop.Caption, cpop.id
 Next
End Sub

commandbar.Id

Returns a numeric identifier for the command bar. The following code lists the names and IDs of all the command bars:

Sub ListCommandBars()
 Dim cb As CommandBar
 For Each cb In CommandBars
 Debug.Print cb.Name, cb.id
 Next
End Sub

commandbars.LargeButtons [= setting]

True displays command bar buttons larger than normal; False displays normal-size buttons. Default is False.

commandbars.MenuAnimationStyle [= msoMenuAnimation]

Sets or returns how menus are animated. Can be one of these settings:

msoMenuAnimationNone (default)

msoMenuAnimationRandom

msoMenuAnimationSlide

msoMenuAnimationUnfold

commandbar.Name [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the name of the command bar. This property is read-only for built-in command bars.

commandbar.NameLocal [= setting]

Sets or returns the name of the command bar in the user's selected language. This property is read-only for built-in
command bars.

commandbar.Position [= msoBarPosition]

Sets or returns the location where a command bar is docked. Can be one of these settings:

msoBarBottom

msoBarFloating

msoBarLeft

msoBarMenuBar

msoBarPopup

msoBarRight

msoBarTop (default)

commandbar.Protection [= msoBarProtection]

Sets or returns the type of customizations allowed for a command bar. Can be one of these settings:

msoBarNoChangeDock

msoBarNoChangeVisible

msoBarNoCustomize

msoBarNoHorizontalDock

msoBarNoMove

msoBarNoProtection (default)

msoBarNoResize

msoBarNoVerticalDock

CommandBars.ReleaseFocus()

Releases the focus from any of the command bar controls.

commandbar.Reset()

Restores a built-in command bar to its default settings, removing any customizations that have been made.

commandbar.RowIndex [= msoBarRow]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the order of the command bar in its current docking area. Can be any integer greater than zero,
msoBarRowFirst, or msoBarRowLast.

commandbar.ShowPopup([x], [y])

Displays a context menu bar at the specified coordinates. Causes an error if the command bar does not have a Type
property of msoBarTypePopup.

Argument Settings

x The horizontal position of the menu in pixels

y The vertical position of the menu in pixels

The following code pops up a context menu created earlier:

Sub ShowMenu()
 CommandBars("ContextMenu1").ShowPopup 100, 200
End Sub

commandbar.Type

Returns an msoBarType constant identifying the type of the command bar. Can be one of these settings:

msoBarTypeMenuBar (menu bar)

msoBarTypeNormal (toolbar)

msoBarTypePopup (context menu)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.8. CommandBarControl and CommandBarControls Members
Use the CommandBarControls collection to add new controls to a command bar. Use the CommandBar object's Controls property
to get a reference to this collection. Use the CommandBarControl object to set the appearance, caption, and action of a
command bar control. The CommandBarControls collection and CommandBarControl object have the following members. Key
members (shown in bold) are covered in the following reference section:

Add

1
Application2

BeginGroup BuiltIn

Caption Copy

Count1 Creator2

Delete DescriptionText

Enabled Execute

Height HelpContextId

HelpFile Id

Index IsPriorityDropped

Item1 Left

Move OLEUsage

OnAction Parameter

Parent2 Priority

Reset SetFocus

Tag TooltipText

Top Type

Visible Width

1 Collection only

2 Object and collection

commandbarcontrols.Add([Type], [Id], [Parameter], [Before],
[Temporary])

Adds a control to a command bar and returns a reference to the new object.

Argument Settings

Type An msoControlType constant for the type of control to create. Can be one of these settings: msoControlButton,
msoControlComboBox, msoControlDropdown, msoControlEdit, or msoControlPopup.

Id The Id property of an existing command to add to the command bar. Use this argument to add built-in
commands rather than custom commands.

Parameter A value to pass to the command via the Parameter property.

Before The position of the control on the command bar. Default is to insert after the last control on the
command bar.

Temporary True prevents the control from being saved when Excel closes. False saves the control in the user's .xlb
file when Excel closes. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code adds a custom smiley button to the worksheet menu bar; fortunately it's only temporary:

Sub AddCommandBarControl()
 Dim cb As CommandBar, cbc As CommandBarControl
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 Set cbc = cb.Controls.Add(msoControlButton, , , , True)
 cbc.Caption = "Smiley"
 cbc.FaceId = 1131
 cbc.OnAction = "DontWorry"
End Sub

Sub DontWorry()
 MsgBox "Don't worry, be happy."
End Sub

commandbarcontrol.BeginGroup [= setting]

True adds a separator bar before the control on menu bars; False removes the separator bar if it exists. Default is
False.

commandbarcontrol.BuiltIn

Returns True if the control is a built-in command and its OnAction property has not been set; returns False if the control
is a custom control.

commandbarcontrol.Caption [= setting]

Sets or returns the caption that appears for the control. Use the ampersand (&) to specify an accelerator key in the
caption. For command bar buttons, the caption appears as the tool tip for the control.

commandbarcontrol.Copy([Bar], [Before])

Copies a control from a source command bar to a destination command bar.

Argument Settings

Bar The destination command bar object. Default is the source command bar.

Before The position in the destination command bar for the copied control. Default is to copy the control to the
end of the command bar.

commandbarcontrol.Delete([Temporary])

Deletes a control from a command bar.

Argument Settings

Temporary True prevents the change from being saved when Excel closes; False saves the change to the command
bar in the user's .xlb file when Excel closes. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commandbarcontrol.DescriptionText [= setting]

Sets or returns a description of the control. This description is not displayed to the user.

commandbarcontrol.Enabled [= setting]

True enables a control, allowing it to be selected; False disables a control.

Setting a built-in control's Enabled property to True does not enable the control if Excel's
state does not allow the control to be enabled.

commandbarcontrol.Execute()

Executes the control's command. For example, the following code displays the About Excel dialog box:

Sub ShowAbout()
 Dim cbc As CommandBarControl
 ' &About Microsoft Office Excel command is ID 927.
 Set cbc = CommandBars.FindControl(msoControlButton, 927)
 cbc.Execute
End Sub

commandbarcontrol.HelpContextId [= setting]

Sets or returns the context ID of the control in the help file for the workbook, template, or add-in.

commandbarcontrol.HelpFile [= setting]

Sets or returns the help file for the workbook, template, or add-in.

commandbarcontrol.Id

For built-in controls, returns the numeric identifier for the control. For custom controls, returns 1.

commandbarcontrol.IsPriorityDropped

If CommandBars.AdaptiveMenus is True, this property returns False if the control is not visible because it was not recently
used or there is not enough space to display it and returns True if the control is visible.

commandbarcontrol.Move([Bar], [Before])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Moves a control from a source command bar to a destination command bar.

Argument Settings

Bar The destination command bar object. Default is the source command bar.

Before The position in the destination command bar for the control.

Move without arguments moves the control to the last position on the source command bar.

commandbarcontrol.OLEUsage [= msoControlOLEUsage]

Sets or returns how the control is merged with controls from another Office application when Excel is embedded within
another application. Can be one of these settings:

msoControlOLEUsageBoth

msoControlOLEUsageClient

msoControlOLEUsageNeither

msoControlOLEUsageServer (default)

In OLE terminology, the server is the object provider (in this case Excel) and the client is the application that consumes
the embedded object.

commandbarcontrol.OnAction [= setting]

Sets or returns the Visual Basic procedure to run when the control executes. Setting this property of a built-in control
overrides the built-in behavior and replaces it with the Visual Basic code.

commandbarcontrol.Parameter [= setting]

Sets or returns a string variable that may be used from the control's code.

commandbarcontrol.Priority [= setting]

Sets or returns a priority number that helps determine whether or not the control is dropped from the toolbar if there is
not enough room to display it within its docked position. Must be between 0 and 7; a setting of 1 prevents the control
from being dropped. Default is 3.

commandbarcontrol.Reset()

For built-in commands, Reset restores the default behavior and appearance of the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commandbarcontrol.SetFocus()

Switches the keyboard focus to the control. Causes an error if the command is not enabled or is not visible.

commandbarcontrol.Tag [= setting]

For custom controls, sets or returns a string used to locate the control through the FindControl method.

commandbarcontrol.TooltipText [= setting]

Sets or returns the tool tip displayed for the control. The default tool tip is the control's Caption property.

commandbarcontrol.Type

Returns the type of the control as an msoControlType constant. Can be one of these settings:

msoControlButton

msoControlComboBox

msoControlDropdown

msoControlEdit

msoControlPopup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.9. CommandBarButton Members
Use the CommandBarButton object to work with menu items and toolbar buttons. Use the CommandBar object's Controls
collection or FindControl method to get a reference to this object. The CommandBarButton object is derived from the
CommandBarControl object and has the following members . Members that are unique from CommandBarControl (shown in
bold) are covered in the following reference section:

Application BeginGroup BuiltIn

BuiltInFace Caption Copy

CopyFace Creator Delete

DescriptionText Enabled Execute

FaceId Height HelpContextId

HelpFile HyperlinkType Id

Index IsPriorityDropped Left

Mask Move OLEUsage

OnAction Parameter Parent

PasteFace Picture Priority

Reset SetFocus ShortcutText

State Style Tag

TooltipText Top Type

Visible Width

commandbarbutton.CopyFace()

Copies the button bitmap onto the clipboard.

commandbarbutton.FaceId [= setting]

Sets or returns the numeric ID of the button's bitmap from a list of built-in button faces. The following code builds a list
of the built-in button faces on a new worksheet:

Sub ListButtonFaces()
 Dim cbb As CommandBarButton
 ' Create a new worksheet.
 Worksheets.Add
 ' For each command bar button.
 For Each cbb In CommandBars.FindControls(msoControlButton)
 ' List FaceID.
 ActiveCell = cbb.FaceId
 ActiveCell.Next(, 1).Select
 ' Copy and paste face onto worksheet.
 cbb.CopyFace
 ActiveSheet.Paste
 ' Move to the next row.
 ActiveCell.Next(2, -1).Select
 Next
End Sub

commandbarbutton.HyperlinkType [=
msoCommandBarButtonHyperlinkType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns a value that determines whether the button represents a normal button, a hyperlink, or a picture file to
insert. Can be one of these settings:

msoCommandBarButtonHyperlinkNone (default)

msoCommandBarButtonHyperlinkInsertPicture

msoCommandBarButtonHyperlinkOpen

When msoCommandBarButtonHyperlinkType is set to msoCommandBarButtonHyperlinkInsertPicture or msoCommandBarButtonHyperlinkOpen,
the TooltipText property contains the URL of the hyperlink. For example, the following code adds a button to the
worksheet menu bar that opens a Google search page:

Sub AddHyperlink()
 Dim cb As CommandBar, cbb As CommandBarButton
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 Set cbb = cb.Controls.Add(msoControlButton, 7343, , , True)
 cbb.HyperlinkType = msoCommandBarButtonHyperlinkOpen
 cbb.TooltipText = "http:\\www.google.com\"
End Sub

Similarly, this code adds a button that inserts an image on the active sheet:

Sub AddInsertPictureButton()
 Dim cb As CommandBar, cbb As CommandBarButton
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 Set cbb = cb.Controls.Add(msoControlButton, 2619, , , True)
 cbb.HyperlinkType = msoCommandBarButtonHyperlinkInsertPicture
 cbb.TooltipText = ThisWorkbook.Path & "\logo.jpg"
End Sub

commandbarbutton.Mask

Returns an IPictureDisp object representing the mask image for the command bar button. The mask image determines
what parts of the button image are transparent.

commandbarbutton.PasteFace()

Pastes a picture from the clipboard onto the command bar button.

commandbarbutton.Picture

Returns an IPictureDisp object representing the image for the command bar button.

commandbarbutton.ShortcutText [= setting]

Sets or returns the shortcut key text displayed next to the item when it appears on a menu.

commandbarbutton.State [= msoButtonState]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the interactive state of the control. This property is read-only for built-in commands. Can be one of
these settings:

msoButtonDown

msoButtonMixed

msoButtonUp

For menu items, msoButton down places a check mark beside the item's caption; msoButtonUp removes the check mark.
The following code toggles the selection of a menu item:

Sub ShowCodeHelper()
 Dim cbc As CommandBarButton
 ' Get the menu item
 Set cbc = CommandBars("Worksheet Menu Bar").FindControl(_
 , , "mnuCodeHelper", , True)
 ' Toggle the state (adds or removes a check mark
 ' beside the menu item).
 cbc.State = Not cbc.State
End Sub

commandbarbutton.Style [= msoButtonStyle]

Sets or returns the display style of the command bar button. Can be one of these settings:

msoButtonAutomatic (default)

msoButtonCaption

msoButtonIcon

msoButtonIconAndCaption

msoButtonIconAndCaptionBelow

msoButtonIconAndWrapCaption

msoButtonIconAndWrapCaptionBelow

msoButtonWrapCaption

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.10. CommandBarComboBox Members
Use the CommandBarComboBox object to work with edit box, drop-down list, and combo box controls on toolbars. Use the
CommandBar object's Controls collection or FindControl method to get a reference to this object. The CommandBarComboBox
object is derived from the CommandBarControl object and has the following members. Members that are unique from
CommandBarControl are shown in bold:

AddItem Application BeginGroup

BuiltIn Caption Change

Clear Control Copy

Creator Delete DescriptionText

DropDownLines DropDownWidth Enabled

Execute Height HelpContextId

HelpFile Id Index

IsPriorityDropped Left List

ListCount ListHeaderCount ListIndex

Move OLEUsage OnAction

Parameter Parent Priority

RemoveItem Reset SetFocus

Style Tag Text

TooltipText Top Type

Visible Width

commandbarcombobox.AddItem(Text, [Index])

Adds an item to the control's list.

Argument Settings

Text The item to add to the list.

Index The position of the item in the list. The default is to insert the new item at the end of the list.

The following code creates a new drop-down list on the worksheet menu bar and adds three items to the list:

Sub AddDropDown()
 Dim cb As CommandBar, cbo As CommandBarComboBox
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Create the combo box.
 Set cbo = cb.Controls.Add(msoControlDropdown, , , , True)
 ' Add a Tag so this control can be found from other code.
 cbo.Tag = "cboSelectText"
 ' Add items.
 cbo.AddItem "This"
 cbo.AddItem "That"
 cbo.AddItem "the"
 cbo.AddItem "other"
 ' Set the procedure to run.
 cbo.OnAction = "ShowSelection"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commandbarcombobox.Clear()

Removes all the items from the list. The following code removes the items added in the preceding AddDropDown
procedure:

Sub RemoveAll()
 Dim cbo As CommandBarComboBox, i As Integer
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlDropdown, , "cboSelectText", , True)
 ' Remove the items.
 cbo.Clear
End Sub

commandbarcombobox.DropDownLines [= setting]

Sets or returns the number of lines to display when the user clicks the drop-down arrow on the control. The default is 0,
which causes Excel to calculate the number of lines to display.

commandbarcombobox.DropDownWidth [= setting]

Sets or returns the width of the drop-down list in pixels.

commandbarcombobox.List(Index)

Returns one or all of the items in the list. You can get the selected item by using the Text property or by using this
method in combination with the ListIndex property as shown here:

Sub ShowSelection()
 Dim cbo As CommandBarComboBox

, str As String
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlDropdown, , "cboSelectText", , True)
 ' Get the selection.
 str = cbo.list(cbo.ListIndex)
 ' Display selection.
 MsgBox "You selected: " & str
End Sub

commandbarcombobox.ListCount

Returns the number of items in the list.

commandbarcombobox.ListHeaderCount [= setting]

Sets or returns the position of a separator bar in the drop-down list. For example, the following code adds a separator
bar after the third item in the list created earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bar after the third item in the list created earlier:

Sub AddDropDownListSeparatorBar()
 Dim cbo As CommandBarComboBox
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlDropdown, , "cboSelectText", , True)
 cbo.ListHeaderCount = 3
End Sub

commandbarcombobox.ListIndex [= setting]

Sets or returns the index of the currently selected item.

commandbarcombobox.RemoveItem(Index)

Removes a single item from the list.

commandbarcombobox.Style [= msoComboStyle]

Sets or returns how the control's caption is displayed. Can be one of these settings:

msoComboLabel (display caption)

msoComboNormal (default; don't display caption)

commandbarcombobox.Text [= setting]

Sets or returns the text in the edit portion of the control. The following code creates a combo box on the worksheet
menu bar; if the user enters a value in the edit box, ShowText displays that value:

Sub AddTextBox()
 Dim cb As CommandBar, cbo As CommandBarComboBox
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Create the combo box.
 Set cbo = cb.Controls.Add(msoControlEdit, , , , True)
 ' Add a Tag so this control can be found from other code.
 cbo.Tag = "cboEditText"
 ' Display a label with the text box.
 cbo.Caption = "Enter some text"
 cbo.Style = msoComboLabel
 ' Set the procedure to run.
 cbo.OnAction = "ShowText"
End Sub

Sub ShowText()
 Dim cbo As CommandBarComboBox
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlEdit, , "cboEditText", , True)
 ' Display selection.
 MsgBox "You entered: " & cbo.Text
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.11. CommandBarPopup Members
Use the CommandBarPopup object to work with menu controls. Use the CommandBar object's Controls collection or FindControl
method to get a reference to this object. The CommandBarPopup object is derived from the CommandBarControl object and has
the following members. Members that are unique from CommandBarControl (shown in bold) are covered in the following
reference section:

Application BeginGroup

BuiltIn Caption

CommandBar Control

Controls Copy

Creator Delete

DescriptionText Enabled

Execute Height

HelpContextId HelpFile

Id Index

IsPriorityDropped Left

Move OLEMenuGroup

OLEUsage OnAction

Parameter Parent

Priority Reset

SetFocus Tag

TooltipText Top

Type Visible

Width

commandbarpopup.Controls

Returns the CommandBarControls collection for the pop-up menu. Use this collection to add or remove items from the
menu. For example, the following code creates a menu on the worksheet menu bar and adds three menu items to it:

Sub AddPopupMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Create the combo box.
 Set cpop = cb.Controls.Add(msoControlPopup, , , , True)
 ' Add a Tag so this control can be found from other code.
 cpop.Tag = "cpopCustomMenu"
 cpop.Caption = "&Custom Menu"
 ' Add items.
 With cpop.Controls.Add(msoControlButton, , , , True)
 .Caption = "Item &1"
 .OnAction = "Item1_Click"
 .Tag = "cbbItem1"
 End With
 With cpop.Controls.Add(msoControlButton, , , , True)
 .Caption = "Item &2"
 .OnAction = "Item2_Click"
 .Tag = "cbbItem2"
 End With
 ' Built-in command.
 With cpop.Controls.Add(msoControlButton, 1695, , , True)
 ' Add separator bar.
 .BeginGroup = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .BeginGroup = True
 End With
End Sub

Sub Item1_Click()
 ' Add code to respond to menu item Click Here...
End Sub

Sub Item2_Click()
 ' Add code to respond to menu item Click Here...
End Sub

commandbarpopup.OLEMenuGroup [= msoOLEMenuGroup]

Sets or returns the menu group that this menu is merged with when an Excel document is embedded in another Office
application document. Can be one of these settings:

msoOLEMenuGroupContainer

msoOLEMenuGroupEdit

msoOLEMenuGroupFile

msoOLEMenuGroupHelp

msoOLEMenuGroupNone

msoOLEMenuGroupObject

msoOLEMenuGroupWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20. Building Dialog Boxes
Chapter 7 showed you how to display the built-in Excel dialog boxes and how to use InputBox and the File dialogs to get
information from the user. In this chapter, I show you how to create more complex data-entry forms, validate entries,
and use the Visual Basic Forms Designer to create custom dialog boxes.

This chapter includes task-oriented reference information for Forms 2.0 user forms and controls: UserForm, CheckBox,
ComboBox, CommandButton, Control, Font, Frame, Image, Label, ListBox, MultiPage, OptionButton, Page, RefEdit, ScrollBar, SpinButton,
TabStrip, TextBox, ToggleButton. Those objects aren't part of the Excel object model and so aren't part of the Excel VBA Help.
Instead, the help topics for those objects are found in C:\Program Files\Common Files\Microsoft
Shared\VBA\VBA6\1033\FM20.CHM.

Code used in this chapter and additional samples are available in ch20.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.1. Types of Dialogs
There are many different ways to display dialog boxes using Visual Basic in Excel, so it is helpful to organize those
techniques by starting with the type of dialog box you want to display. The three main sorts of dialog boxes are
informational displays, data-entry forms, and other tasks. Table 20-1 organizes the ways to display dialogs based on
those types.

Table 20-1. Types of dialogs and how to display them
Type of dialog Example Use one of these See

Informational
display Success message MsgBox function Chapter 3

 Help Help or FollowHyperLink method Chapter 6

Data-entry Enter values in a list ShowDataForm method This chapter

 Advanced data entry User form This chapter

Task-specific Get a value or range InputBox method Chapters 3,
7

 Get a file or folder name FileDialog, GetOpenFilename, or GetSaveAsFilename
method Chapter 7

 Show a built-in Excel dialog box Dialogs method Chapter 7

 Set task options or custom
properties User form This chapter

 Wizard User form This chapter

As you can see from Table 20-1, Excel handles the well-structured tasks for you, but as your needs become open-
ended, you need to start creating your own user forms. The lesson from Table 20-1 is to not start with the Forms
Designerlook around first to see if Excel already does the work for you!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2. Create Data-Entry Forms
Entering data in a worksheet is straightforward, but there's nothing preventing users from entering values in the wrong
cells, entering invalid data, or leaving required fields blank. To address those problems, Excel provides data forms,
validation tools, and lists. You can use those tools together to create a fairly sophisticated data-entry process.

To see how data forms work:

1. Create a new worksheet.

2. Enter three column headingsItem, Quantity, and Priceon the first row.

3. Select those cells.

4. Choose Data Form. Excel displays a data form with fields for each of the column headings.

5. Enter data in each field, pressing Return after each. Excel adds a record to the list after you press Enter on the
last field, as shown in Figure 20-1.

The data form doesn't check whether the data is valid; it merely displays a form with blank fields for each column in the
list. To add validation rules :

1. Select the first cell (A2) and choose Data Validation. Excel displays the Data Validation dialog box.

2. Enter the values shown in Figure 20-2. Click OK when done.

3. Repeat Steps 1 and 2 for the Quantity and Price columns using the settings in Table 20-2.

Figure 20-1. Using a data form to enter values

Figure 20-2. Entering validation rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20-2. Entering validation rules

Table 20-2. Sample validation settings
List column Validation property Setting

Quantity Allow Whole number

 Data Greater than

 Minimum 0

 Ignore blank (Cleared)

Price Allow Decimal

 Data Greater than

 Minimum 0

 Ignore blank (Cleared)

The validation settings in Table 20-2 designate the columns as required fields and specify the data type for each
column, but those validation rules apply only to the first row of the list. To apply the validation rules to all of the rows,
choose one of these options:

Select the entire row and repeat the preceding procedure to apply the data validation rules to each column.

Convert the data-entry range to an Excel list.

The lists feature was introduced in Excel 2003.

Converting the range to a list extends the validation rules to each new row as it is added to the list. To see how that
works:

1. Select the range A1:C2 and choose Data List Create List. Excel displays the Create List dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Select the range A1:C2 and choose Data List Create List. Excel displays the Create List dialog.

2. Select My List Has Headers, and click OK. Excel indicates that the range is a list by adding a blue border and a
new item row to the range, as shown in Figure 20-3.

Figure 20-3. Converting the range to an Excel list

Now if you select any cell in the range and choose Data Form, incorrect entries cause validation errors, as shown
in Figure 20-4.

Blank fields are not flagged from the data form, but blank fields are flagged with a validation error that appears as a
note on the blank cell. You can add more descriptive error messages and prompts for the cells from the Input Message
and Error Alert tabs on the Data Validation dialog box. I won't show those here, since they are pretty self-explanatory.

Figure 20-4. Invalid values are flagged during data entry

20.2.1. Advanced Validation

Validation can do more check the type and range of an entry. You can also look up a value from a range of possible
entries. To see that in action, follow these steps:

1. Create a new worksheet and add the following values to a range of cells: Hat, Shoes, Jacket, Shirts, and Socks.

2. Select the range and name the range ItemSettings.

3. Return to the data-entry worksheet and select cell A2.

4. Choose Data Validation and make the changes shown in Figure 20-5.

5. Click OK to apply the changes.

Now, entries in the Item column must match one of the values in the ItemSettings named range. Not only that, but
Excel displays the possible settings in a drop-down list when you edit the worksheet, as shown in Figure 20-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2.2. Data Forms from Code

To display a data form from code, take these steps:

1. Get a reference to the worksheet containing the data-entry range.

2. Call the ShowDataForm method on that worksheet object.

The following code displays the data form for the DataForm worksheet:

 Sub ShowDataForm()
 Dim ws As Worksheet
 Set ws = Worksheets("DataForm")
 ws.ShowDataForm
 End Sub

Figure 20-5. Using a list of values for validation

Figure 20-6. Values from the validation list appear in a dropdown

The data-entry range should be contiguous. Blank rows or columns within that range cause problems entering new
records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.3. Design Your Own Forms
If the built-in forms don't meet your needs or if your task is more complex than the preceding data-entry sample, you
can use the Visual Basic Forms Designer to create your own custom forms in Excel.

To create a custom dialog box using the Forms Designer:

1. Start the Visual Basic Editor and choose Insert User Form. Visual Basic displays a new form and the
Control Toolbox.

2. Drag controls from the Toolbox onto the form as shown in Figure 20-7.

3. Set the properties in the Properties window (Figure 20-8) as you position the controls on the form. Table 20-3
lists the controls and property settings used for the Stock History sample.

Figure 20-7. Drag controls from the Toolbox onto the user form

Figure 20-8. Set the controls' properties as you place them on the form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 20-3. Controls and property settings for the Stock History form
Control Property Set to

User form Name frmStockHistory

 Caption Stock History

Label Caption Symbol

Label Caption #Days

Label Caption Preview

TextBox Name txtSymbol

 Caption ^IXIC

 ControlTipText Stock symbol or index

TextBox Name txtDays

 Caption 100

 ControlTipText Value from 1 to 300

SpinButton Name spnDays

 Delay 20

 Max 300

 Min 1

 Value 100

Image Name imgChart

 Height 150

 Width 180

CommandButton Name cmdGetHistory

 Accelerator G

 Caption Get History

CommandButton Name cmdViewChart

 Accelerator V

 Caption View Chart

Figure 20-9 shows the Stock History once all the controls have been drawn and their properties set.

20.3.1. Respond to Form Events

Controls respond to user events such as mouse clicks. To add code for these events, simply double-click on the control
in the Visual Basic Editor. Visual Basic adds a procedure for the event, as shown in Figure 20-10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the Visual Basic Editor. Visual Basic adds a procedure for the event, as shown in Figure 20-10.

Be sure to name controls before you add event procedures. Event procedures are associated with controls by name-
-spnDays_Change runs when the spnDays control changes. If you rename the control later, that association is broken and
you must rename the event procedure to match.

Figure 20-9. The Stock History form

Figure 20-10. Adding event procedures to a form

The following code shows a simple event procedure that links values of the spnDays and txtdays controls:

 Private Sub spnDays_Change()
 txtDays.Value = spnDays.Value
 End Sub

 Private Sub txtDays_Change()
 ' Ignore error if txtDays isn't between spnDays Min and Max.
 On Error Resume Next
 spnDays.Value = txtDays.Value
 End Sub

Why set the values both places? Doing that ensures that the text box value doesn't change unexpectedly if you type a
value in the text box then click up or down on the spin button. The two procedures don't cause an infinite loop since the
Change event occurs only when a value actually changes; it doesn't occur if the new setting is equal to the existing
setting.

Finally, the On Error statement is necessary to avoid problems if the user types 1000 or some other high value in the text
box. The spin button's Max and Min properties determine the valid range, and I use the ControlTipText to inform the user of
that range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that range.

20.3.2. Show a Form

To test the form from the Visual Basic Editor:

1. Make sure the form or form code has focus and press F5 or click Run. Visual Basic switches to the Excel window
and displays the form in Run mode.

2. Click the Close box on the form or click Reset in Visual Basic to return to Design mode.

To display the form from the Excel interface, you must create a procedure in a module that creates an instance of the
form, then call the form's Show method. Forms are a type of class, so they can't just be run from the Macro dialog box.
The following code shows a procedure that displays the Stock History dialog:

 ' StockHistoryModule
 Sub StockHistoryDialog()
 Dim f As New frmStockHistory
 f.Show False
 End Sub

Use the Show method to display a form in code. Use the Unload statement to close a form in
code.

In the preceding code, I called Show with the Modal argument set to False. That shows the form nonmodally, which
means you can still select cells and do tasks in Excel while the form is displayed. Modal forms block user access to Excel
while they are displayed.

It is usually easier to program with modal forms , since the user can't change the state of Excel while the form is
running. However, modal forms are best suited for linear tasks. For nonlinear tasks, use nonmodal forms.

Once you've created a procedure in a module to show your form, you can display the form by assigning that macro to a
menu item, toolbar button, or some other user action in Excel. See Chapter 19 for details on creating menus and
toolbars.

20.3.3. Separate Work Code from UI Code

Whenever you work with forms, your code winds up in two places:

The form's class contains the event procedures that initialize the form and respond to user actions.

The form's work module displays the form and contains the procedures that perform tasks in Excel.

Can't you just put all the code in the form class? Not really: first, you can't show the form from there, and second, it's
harder to debug procedures in a class since you must first instantiate the class before it can run. That's kind of a
chicken-and-the-egg problem, and the best solution is to separate the two types of code in two different places.

For example, the following form class responds to the events on the Stock History form:

 ' frmStockHistory class
 Option Explicit

 Private Sub spnDays_Change()
 txtDays.Value = spnDays.Value
 End Sub

 Private Sub txtDays_Change()
 ' Ignore error if txtDays isn't between spnDays Min and Max.
 On Error Resume Next
 spnDays.Value = txtDays.Value
 End Sub

 Private Sub cmdGetHistory_Click()
 Dim fname As String
 ' Show the source worksheet.
 Worksheets("VBForm").Activate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Worksheets("VBForm").Activate
 ' Make sure the user entered a symbol.
 If txtSymbol.Text <> "" Then
 ResetWorksheet
 CreateQuery txtSymbol.Text, spnDays.Value
 HideUnneededCells
 fname = CreateChart(imgChart.height, imgChart.width)
 ' Update the image control.
 Set imgChart.Picture = LoadPicture(fname)
 End If
 End Sub

 ' Create a copy of the worksheet and a full-sized chart.
 Private Sub cmdViewChart_Click()
 AddChartSheet (txtSymbol.Text)
 ' Close this dialog.
 Unload Me
 End Sub

As you can see, the event procedures call work module procedures for all tasks that relate to the worksheet or charts.
The form code merely organizes those steps and updates itself. That technique is called isolating the interface from the
business logic .

The work module is more complex because it deals with the specific Excel objects. Much of this code is based on
samples from earlier chapters, so I won't explain all of it here. However, I will point out that breaking the tasks into
steps makes the procedures easier to debug and reuse:

 ' StockHistoryModule - work module.
 Option Explicit

 ' Run dialog.
 Sub StockHistoryDialog()
 Dim f As New frmStockHistory
 f.Show False
 End Sub

 ' Clear worksheet and remove existing query table.
 Sub ResetWorksheet()
 Dim qt As QueryTable
 Worksheets("VBForm").Activate
 ActiveSheet.Rows.Hidden = False
 ActiveSheet.Columns.Hidden = False
 ActiveSheet.UsedRange.Delete
 ActiveSheet.ChartObjects.Delete
 ' Remove query tables
 For Each qt In ActiveSheet.QueryTables
 qt.Delete
 Next
 End Sub

 ' Get stock history from Yahoo as a query table.
 Public Sub CreateQuery(symbol As String, days As Integer)
 Dim ws As Worksheet, qt As QueryTable, conn As String
 Set ws = Worksheets("VBForm")
 ws.Activate
 ' Build query string.
 conn = "URL;http://chart.yahoo.com/d?" & _
 YahooDates(VBA.Date - days, VBA.Date) & symbol
 ' Get query
 Set qt = ws.QueryTables.Add(conn, [A1])
 qt.WebFormatting = xlNone
 qt.WebSelectionType = xlSpecifiedTables
 qt.WebTables = "3"
 ' Make sure background queries are off.
 qt.BackgroundQuery = False
 ' Get data.
 qt.Refresh
 End Sub

 ' Converts start and end dates to Yahoo query string for
 ' stock history.
 Function YahooDates(dtstart As Date, dtend As Date) As String
 ' Query sample string from Yahoo has this form:
 ' a=10&b=4&c=2003&d=1&e=5&f=2004&g=d&s=sndk
 Dim str As String

 str = "a=" & Month(dtstart) - 1 & "&b=" & Day(dtstart) & _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 str = "a=" & Month(dtstart) - 1 & "&b=" & Day(dtstart) & _
 "&c=" & Year(dtstart) & "&d=" & Month(dtend) - 1 & _
 "&e=" & Day(dtend) & "&f=" & Year(dtend) & "&g=d&s="
 YahooDates = str
 End Function

 ' Cleans up query table prior to plotting chart.
 Sub HideUnneededCells()
 Dim endRow As Long
 [b:b].EntireColumn.Hidden = True
 [g:l].EntireColumn.Hidden = True
 Range(Rows(1), Rows(5)).Hidden = True
 endRow = ActiveSheet.UsedRange.Rows.Count
 Range(Rows(endRow - 2), Rows(endRow)).Clear
 End Sub

 ' Plot history as a High/Low/Close chart.
 Function CreateChart(height As Integer, width As Integer) As String
 Dim rng As Range, ws As Worksheet, chrt As Chart
 Set ws = Worksheets("VBForm")
 ws.Activate
 ' Create the chart
 Set chrt = ws.ChartObjects.Add(500, 0, width, height).Chart
 ' Get the range to chart
 ' Plot the data in a named range.
 chrt.SetSourceData ws.UsedRange, xlColumns
 ' Set the chart type to Open, High, Low, Close.
 chrt.ChartType = xlStockOHLC
 chrt.ChartArea.Font.Size = 6
 chrt.Legend.Delete
 ' Dates are in descending order, so reverse the axis.
 chrt.Axes(xlCategory).ReversePlotOrder = True
 CreateChart = SaveChart(chrt)
 End Function

 ' Saves a chart as a JPEG file.
 Function SaveChart(chrt As Chart) As String
 Dim fname As String
 fname = ThisWorkbook.Path & "\temp.jpg"
 chrt.Export fname, "JPEG", False
 SaveChart = fname
 End Function

 ' Create a chart sheet for chart.
 Sub AddChartSheet(name As String)
 Dim ws As Worksheet, chrt As Chart
 Set ws = Worksheets("VBForm")
 ws.Activate
 ws.Copy , ws
 Set ws = ActiveSheet
 ws.name = GetSheetName(name & "_Data")
 ' Create the chart
 Set chrt = Charts.Add(, ws)
 ' Get the range to chart

 chrt.SetSourceData ws.UsedRange, xlColumns
 ' Set the chart type to Open, High, Low, Close.
 chrt.ChartType = xlStockOHLC
 ' Dates are in descending order, so reverse the axis.
 chrt.Axes(xlCategory).ReversePlotOrder = True
 chrt.name = GetSheetName(name & "_Chart")
 End Sub

 ' Generates a unique sheet name.
 Function GetSheetName(name As String) As String
 Dim i As Integer
 On Error Resume Next
 Do Until Err
 i = i + 1
 Debug.Print "Exists: " & Sheets(name & i).name
 Loop
 On Error GoTo 0
 GetSheetName = name & i
 End Function

To see the completed Stock History form in action:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see the completed Stock History form in action:

1. Run StockHistoryDialog. Visual Basic displays the form.

2. Type the name of a stock symbol and click Get History. Excel queries Yahoo for the price history, plots the data,
then displays the chart in the image control as shown in Figure 20-11.

3. Click View Chart to create a full-size chart with its own source worksheet and close the dialog.

Figure 20-11. Hmmm...the Dow's been kind of flat

Why the 300-day limit?

The web query to Yahoo! returns a maximum of 200 trading days of price history. That
translates to about 300 calendar days, so I imposed that limit on the sample to keep it
simple. Well...somewhat simple.

20.3.4. Enable and Disable Controls

It is common practice to enable or disable controls based on what other options are selected. Controls are enabled by
default. Use the control's Enabled property to disable or reenable the control after disabling.

For example, to make the View Chart button available only after the user has clicked Get History, set the View Chart
button's Enabled property to False in the Properties window, and add this code to the cmdGetHistory_Click procedure:

 Private Sub cmdGetHistory_Click()
 Dim fname As String
 ' Show the source worksheet.
 Worksheets("VBForm").Activate
 ' Make sure the user entered a symbol.
 If txtSymbol.Text <> "" Then
 ResetWorksheet
 CreateQuery txtSymbol.Text, spnDays.Value
 HideUnneededCells
 fname = CreateChart(imgChart.height, imgChart.width)
 ' Update the image control.
 Set imgChart.Picture = LoadPicture(fname)
 End If
 ' Add this to enable View Chart button.
 cmdViewChart.Enabled = True
 End Sub

While disabled, the control appears grayed and cannot receive user actions. You can do something similar by setting the
control's Visible property, but that is less common. Hiding and showing controls is usually reserved for complex or
multistep tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multistep tasks.

20.3.5. Create Tabbed Dialogs

Tabbed dialog boxes are common in Excel. They break complex dialogs into multiple pages that replace each other as
the user clicks on the different tabs. The Options dialog is a good example of a tabbed dialog.

The Toolbox includes two tabbed controls: TabStrip and MultiPage. The main difference between the two controls is that the
MultiPage control provides paged containers for other controls. When a user clicks one of the tabs, that page
automatically replaces the current page. With the TabStrip control, you have to create your own containers (usually a
Frame control) and set the Visible property of that container to show or hide pages. In short, use the MultiPage to quickly
create a tabbed dialog; use the TabStrip when you want to control the contents of pages programmatically.

To see how tabbed dialogs work, follow these steps based on the earlier Stock History sample:

1. In the Visual Basic Editor, choose Insert UserForm to create a new form.

2. Click and drag a MultiPage control onto the form.

3. Open the original Stock History form, select all the controls (Ctrl-A) and copy them (Ctrl-C). Select the MultiPage
control and paste (Ctrl-V) the controls onto it.

4. Copy and paste the code from the frmStockHistory class to the frmStockHistory2 class.

5. Click the Page1 tab on the MultiPage control and set its Caption to History.

6. Click the Page2 tab on the MultiPage control and set its Caption to Options. Then add the controls shown in Figure
20-12 with the settings listed in Table 20-4.

Figure 20-12. Tabbed dialog in Design mode

Table 20-4. Tabbed control property settings
Control Property Set to

User form Name frmStockHistory2

 Caption Stock History, Version 2

CheckBox Name chkDates

 Accelerator D

 Caption Show dates

CheckBox Name chkValues

 Accelerator V

 Caption Show values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Label Accelerator S

 Caption Minimum scale

TextBox Name txtScale

 Caption 0

Label Accelerator B

 Caption Background

ComboBox Name drpBackground

If you save and run the dialog box at this point, you'll see that the controls on the History tab work exactly as they did
on the original form, but that the controls on the Options tab are nonfunctional. We haven't implemented their code
yet!

To implement the Options tab, add the following code to the frmStockHistory2 class:

 ' Add to frmStockHistory2.
 Private Sub UserForm_Initialize()
 ' Add items to drop-down list.
 drpBackground.AddItem "Gray"
 drpBackground.AddItem "White"
 drpBackground.AddItem "Gradient"
 drpBackground.AddItem "Pattern"
 ' Get settings from the chart.
 GetChartOptions chkDates.Value, chkValues.Value, CInt(txtScale.Value), ""
 End Sub

 Private Sub MultiPage1_Change()
 Dim fname As String
 fname = SetChartOptions(chkDates.Value, chkValues.Value, _
 txtScale.Value, drpBackground.Text)
 ' Update the image control.
 Set imgChart.Picture = LoadPicture(fname)
 End Sub

The preceding code uses two procedures from the StockHistoryModule to connect the controls on the Options tab to the
properties of the chart. GetChartOptions uses the current chart properties to set the initial values of the controls, and
SetChartOptions changes the chart properties using the control settings. These types of procedures are sometimes called
accessor functions because they provide an interface between the user interface and the work procedures.

The following code shows the additions to the StockHistoryModule. There are two very important points I want you to
notice: First, I didn't change any code in the module; I just added new code and reused everything else. Second, I
added a new procedure to run the new dialog so that you can easily run either version. These two things are much
easier to do because I separated the user interface code from the work code at the beginning:

 '''
 ' Added for version 2.
 ' Run dialog.
 Sub StockHistoryDialog2()
 Dim f As New frmStockHistory2
 f.Show False
 End Sub

 ' Gets the chart settings to show on the Options tab.
 Sub GetChartOptions(xAxis As Boolean, yAxis As Boolean, _
 minScale As Long, background As String)
 Dim chrt As Chart, ax As Axis
 ' Get the chart

 Set chrt = Worksheets("VBForm").ChartObjects(1).Chart
 ' Does the chart have x- and y-axes?
 xAxis = chrt.HasAxis(xlCategory, xlPrimary)
 yAxis = chrt.HasAxis(xlValue, xlPrimary)
 ' Get the Minimum scale from the y-axis.
 If yAxis Then _
 minScale = chrt.Axes(xlValue, xlPrimary).MinimumScale
 End Sub

 ' Updates the chart with changes from the Options tab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Updates the chart with changes from the Options tab.
 Function SetChartOptions(xAxis As Boolean, yAxis As Boolean, _
 minScale As Long, background As String) As String
 Dim chrt As Chart, ax As Axis
 ' Get the chart.
 Set chrt = Worksheets("VBForm").ChartObjects(1).Chart
 ' Set the Minimum scale property
 chrt.HasAxis(xlValue, xlPrimary) = True
 chrt.Axes(xlValue, xlPrimary).MinimumScale = minScale
 ' Turn the axes on/off.
 chrt.HasAxis(xlCategory, xlPrimary) = xAxis
 chrt.HasAxis(xlValue, xlPrimary) = yAxis
 ' Set the background.
 Select Case background
 Case "White"
 chrt.ChartArea.Fill.Solid
 chrt.ChartArea.Fill.ForeColor.SchemeColor = 2
 chrt.PlotArea.Fill.Solid
 chrt.PlotArea.Fill.ForeColor.SchemeColor = 2
 Case "Gray"
 chrt.ChartArea.Fill.Solid
 chrt.ChartArea.Fill.ForeColor.SchemeColor = 15
 chrt.PlotArea.Fill.Solid
 chrt.PlotArea.Fill.ForeColor.SchemeColor = 15
 Case "Gradient"
 chrt.ChartArea.Fill.TwoColorGradient msoGradientDiagonalUp, 1
 chrt.PlotArea.Fill.TwoColorGradient msoGradientDiagonalUp, 1
 Case "Pattern"
 chrt.ChartArea.Fill.PresetTextured (msoTextureBlueTissuePaper)
 chrt.PlotArea.Fill.PresetTextured (msoTextureBlueTissuePaper)
 Case Else
 ' No change if not recognized.
 End Select
 ' Update the chart and return the exported filename.
 SetChartOptions = SaveChart(chrt)
 End Function

To see the tabbed dialog box in action, run StockHistoryDialog2, select the Options tab, change settings, and click the
History tab to see their effect (Figure 20-13).

I'm not really done yet. The preceding code doesn't preserve the options if you click View Chart. See the sample
workbook for the completed dialog and code.

Figure 20-13. The tabbed Stock History dialog in action

20.3.6. Provide Keyboard Access to Controls

As on menus, controls on dialog boxes can have accelerator keys that allow you to move from control to control by
typing rather than using the mouse. On dialogs however, accelerator keys are closely associated with tab order.

Tab order is the order in which controls receive focus as the user presses the Tab or Enter key. That order is
determined by two control properties:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

determined by two control properties:

TabIndex determines the location of the control in the tab order.

TabStop determines whether or not the control is included in the tab order.

Accelerator keys are set by specifying a letter from a control's Caption in its Accelerator property. If a control doesn't have
a Caption property, create a label with an accelerator key and set that label's TabIndex to be just before the target
control's TabIndex, as shown in Figure 20-14.

Figure 20-14. Using a label to provide an accelerator key for a text box

20.3.7. Choose the Right Control

The Toolbox includes 15 standard controls that you can draw on forms. Table 20-5 lists those controls and describes
their use.

Table 20-5. Built-in form controls (Forms 2.0)

Control Toolbox
icon Use to

Label Display text the user can't change.

TextBox Display text the user can edit. Text boxes can display scrollable text.

ComboBox Allow selections from a drop-down list of choices. Combo boxes can include a text box
where the user can type a choice not in the list.

ListBox Allow selections from a scrollable list of choices.

CheckBox Get or display yes/no choices.

OptionButton Get or display a set of either/or choices.

ToggleButton Get or display on/off options.

Frame Group option buttons or other related controls.

CommandButton Execute a command.

TabStrip Show or hide frames used to organize complex dialog boxes.

MultiPage Show or hide pages used to organize complex dialog boxes.

ScrollBar Scroll controls or text up and down.

SpinButton Scroll a value up or down.

Image Display a picture.

RefEdit Get a cell range from a worksheet.

In addition to these built-in controls, you can also add custom controls to the Toolbox. To add custom controls:

1. Right-click the Toolbox and select Additional Controls. Visual Basic displays a list of controls that are installed on
your computer.

2. Select the controls you want to add to the Toolbox and click OK. The custom controls now appear on the
Toolbox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Toolbox.

Figure 20-15 illustrates adding a ProgressBar control to the Toolbox.

Figure 20-15. Adding custom controls to the Toolbox

The list of available custom controls is determined by what programming tools you have installed on your system. I
have quite a few, so my list of custom controls is very long. Some controls, such as the progress bar, are part of the
common control library (MSCOMCTL.OCX) which is distributed with Microsoft Office and other applications. However,
other custom controls may require that you license and install their executable .OCX or .DLL file on your user's
machines. Be sure you understand the licensing and distribution requirements of any custom control you plan on using.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.4. Use Controls on Worksheets
How is the Excel team like my mom? They never throw anything away. That was handy when I needed copies of my
high school humor column, but it meant Mom's house was a bit cluttered. In Excel's case, it means you've got two
toolbars full of similar-looking controls that you can use on a worksheet (Figure 20-16).

Figure 20-16. You can use Forms 1.0 or Forms 2.0 controls on a worksheet

The Forms 1.0 controls are included mostly for backward-compatibility with earlier versions of Excel. They lack events
and the full set of properties you get with Forms 2.0 controls. However, there are two items on the Forms toolbar that
are very handy, so I will tell you how to add them to the Control Toolbox here:

1. In Excel, choose View Toolbars Forms and View Toolbars Control Toolbox to display the
two toolbars shown in Figure 20-16.

2. Choose Tools Customize to display the Customize dialog box and enable changes to the toolbars.

3. Hold down the Ctrl key and click and drag the Toggle Grid from the Forms toolbar to the Control Toolbox. Excel
copies the button onto the Control Toolbox.

4. Repeat for the Button control, copying it from the Forms toolbar to the Control Toolbox.

5. Close the Forms toolbar and never think of it again.

The Toggle Grid button turns a worksheet's gridlines on and off. That helps create a cleaner appearance when you are
using controls on a worksheet.

The Button control runs a macro. That is often more convenient to use on a worksheet than a CommandButton because
command buttons respond to Click events in the worksheet's classwhich is overkill if you just want to run a single
procedure.

20.4.1. Add a Simple Button

To see how the Button control is still useful, follow these steps to extend the Stock History sample:

1. Create a new, blank worksheet.

2. Click the Toggle Grid button to turn the worksheet gridlines off.

3. Click the Button control that you added to the Control Toolbox in the previous section and click and drag on the
worksheet to draw the button control. Excel displays the Assign Macro dialog box (Figure 20-17).

4. Select StockHistoryDialog2 and click OK.

5. Type Get History in the button caption and then click the worksheet to deselect the button.

6. Click the Get History button to run the sample.

Figure 20-17. Use the Button control to run a macro

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Button control offers fewer properties than the CommandButton, and they are accessed differently as well. To change
the macro assigned to the button, edit its caption, or change any other setting, right-click the button and choose the
property to change from the context menu.

20.4.2. Use Controls from the Worksheet Class

A key advantage of the Forms 2.0 controls is that they can interact with the worksheet class. That's an abstract
advantage best illustrated by a short example:

1. Create a new worksheet.

2. Click the SpinButton control on the Control Toolbox and draw the control at the edge of cell B2 on the worksheet,
as shown in Figure 20-18.

Figure 20-18. Using a SpinButton to set the value of a cell

3. Click View Code on the Control Toolbox. Excel displays the sheet's class in the Visual Basic Editor.

4. Enter the following code in the spin button's Change event procedure (shown in bold):

 Private Sub SpinButton1_Change()
 SpinButton1.BottomRightCell.Offset(-1, -1).Value = SpinButton1.Value
 End Sub

5. Return to the worksheet and click Exit Design Mode on the Control Toolbox.

The cool thing about this sample is that if you move the SpinButton to another location, the effect of clicking up or down
moves to the adjacent cell. That's possible because the control is a member of the sheet's class.

One thing you'll notice about this sample is that the SpinButton stops spinning at 0. That's because the control's Min

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One thing you'll notice about this sample is that the SpinButton stops spinning at 0. That's because the control's Min
property is 0 by default. To change that:

1. Click Design Mode on the Control Toolbox.

2. Select the SpinButton control on the worksheet.

3. Click Properties on the Control Toolbox. Excel displays the Properties dialog box (Figure 20-19).

4. Change the Min property to -100 and click Exit Design Mode.

Figure 20-19. Setting control properties on a worksheet

20.4.3. Controls on a Worksheet Versus Controls on a Form

Using controls on a worksheet is a little different from using them on a form. For one thing, you don't need to create an
instance of the worksheet since it already exists. Your code starts running as soon as you exit Design mode and click on
the control.

Also, fewer controls are available in the worksheet Control Toolbox. If you want to use a control not found on the
Control Toolbox, click the More Controls button, then choose the control from the list shown in Figure 20-20.

Another difference is that controls on a worksheet controls don't support all of their properties. Specifically, ControlSource,
ControlTipText, TabIndex, and TabStop aren't available for controls on a worksheet.

Finally, you can't copy controls from a form in the Visual Basic Editor onto a worksheet. If you want to re-create a form
as a worksheet, you must redraw the controls manually. In fact, Figure 20-21 shows the Stock History sample
implemented as a worksheet rather than a form.

Since I used the same control names as the original sample, I could copy the code from the form class with only two
changes:

Deleted Me.Unload from cmdViewChart_Click

Added Me.Activate to cmdGetHistory_Click

See the sample workbook for the full code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20-20. Using controls not found on the Control Toolbox

Figure 20-21. The Stock History sample as a worksheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.5. UserForm and Frame Members
Use the UserForm and Frame objects as containers for controls. Use the UserForm object to create a dialog box. Use the
Frame object to group a set of controls on a dialog box. The UserForm and Frame objects have the following members, all of
them key members, covered in the following reference section:

ActiveControl BackColor

BorderColor BorderStyle

CanRedo CanUndo

Caption Controls

Copy Cut

Cycle DrawBuffer1

Enabled Font

ForeColor InsideHeight

InsideWidth KeepScrollBarsVisible

MouseIcon MousePointer

Paste Picture

PictureAlignment PictureSizeMode

PictureTiling PrintForm

RedoAction Repaint

Scroll ScrollBars

ScrollHeight ScrollLeft

ScrollTop ScrollWidth

SetDefaultTabOrder SpecialEffect

UndoAction VerticalScrollBarSide

Zoom Zoom

1 UserForm only

form.ActiveControl

Returns a reference to the control that has focus.

form.BackColor [= rgb]

Sets or returns the color of the background as an RGB color.

form.BorderColor [= rgb]

Sets or returns the color of the border as an RGB color.

form.BorderStyle [= fmBorderStyle]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the style of the border. Can be either fmBorderStyleNone or fmBorderStyelSingle. Use the SpecialEffect property to
create other border effects.

form.CanPaste

Returns True if the clipboard contains data that can be pasted to this object, False otherwise.

form.CanRedo

Returns True if the most recent action on the form can be redone; returns False if the action can't be redone. Actions
such as typing in a text box may be redone.

form.CanUndo

Returns True if the most recent action on the form can be undone; returns False if the action can't be undone. Actions
such as typing in a text box may be undone.

form.Caption [= setting]

Sets or returns the caption appearing on the object. On forms, the caption appears at the title of the dialog box; on
frames, it appears at the top of the frame.

form.Controls

Returns the collection of controls on the form or frame.

form.Copy()

Copies the active control onto the Clipboard.

form.Cut()

If the active control was created at runtime, deletes the active control and places it on the Clipboard. If the active
control was created at design time, cause an error.

form.Cycle [= fmCycle]

Sets or returns how pressing the Tab key cycles through controls when a form contains other containers such as frames
or pages. Can be fmCycleAllForms (default) or fmCycleCurrentForm.

form.DrawBuffer [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the number of pixels drawn at one time when the form is rendered. Default is 32,000. This property can
be set only at design time.

form.Enabled [= setting]

True enables the object to receive focus and respond to user actions; False prohibits focus. Default is True.

form.Font [= setting]

Sets or returns the Font object used by new controls added at runtime. To change the font of existing controls in code,
use the Font property of the control. For example, the following code sets a large font size for both existing controls and
runtime controls:

 Private Sub UserForm_Initialize()
 Dim c As Control
 ' Set size of font for runtime controls.
 Me.Font.Size = 24
 ' Set size of font for design time controls
 For Each c In Me.Controls
 c.Font.Size = 24
 Next
 End Sub

form.ForeColor [= rgb]

Sets or returns the color of the foreground as an RGB color.

form.InsideHeight

Returns the height of the usable area of the form or frame in points.

form.InsideWidth

Returns the width of the usable area of the form or frame in points.

form.KeepScrollBarsVisible [= fmScrollBars]

Sets or returns how scrollbars are displayed when they are no longer needed. Can be one of these settings:

fmScrollBarsNone

fmScrollBarsHorizontal

fmScrollBarsVertical

fmScrollBarsBoth (default)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

form.MouseIcon [= setting]

Sets or returns a custom picture used as the mouse pointer. The following code displays a magnifying glass as the
mouse pointer:

 Private Sub UserForm_Initialize()
 ' Change mouse pointer.
 Me.MousePointer = fmMousePointerCustom
 Me.MouseIcon = LoadPicture(ThisWorkbook.Path & "\magnify.ico")
 End Sub

form.MousePointer [= fmMousePointer]

Sets or returns the mouse pointer that is displayed. Can be one of these settings:

fmMousePointerAppStarting fmMousePointerArrow

fmMousePointerCross fmMousePointerCustom

fmMousePointerDefault (default) fmMousePointerHelp

fmMousePointerHourglass fmMousePointerIBeam

fmMousePointerNoDrop fmMousePointerSizeAll

fmMousePointerSizeNESW fmMousePointerSizeNS

fmMousePointerSizeNWSE fmMousePointerSizeWE

fmMousePointerUpArrow

form.Paste()

Pastes a control from the Clipboard to the form or frame.

form.Picture [= setting]

Sets or returns the picture loaded as the background. The picture can be set at design time in the Properties window or
at runtime using the LoadPicture function. For example, the following code displays a logo as the background of a form,
centers the picture, and sizes it to fit the form while preserving the aspect ratio:

 Private Sub UserForm_Initialize()
 Me.Picture = LoadPicture(ThisWorkbook.Path & "\logo.bmp")
 Me.PictureAlignment = fmPictureAlignmentCenter
 Me.PictureSizeMode = fmPictureSizeModeZoom
 End Sub

form.PictureAlignment [= fmPictureAlignment]

Sets or returns how the background picture is placed. Can be one of these settings:

fmPictureAlignmentTopLeft

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fmPictureAlignmentTopRight

fmPictureAlignmentCenter (default)

fmPictureAlignmentBottomLeft

fmPictureAlignmentBottomRight

form.PictureSizeMode [= fmPictureSizeMode]

Sets or returns how the background picture is sized. Can be one of these settings:

fmPictureSizeModeClip (default)
fmPictureSizeModeStretch (may change the aspect ratio of the picture)
fmPictureSizeModeZoom (preserves aspect ratio)

form.PictureTiling [= setting]

If the picture does not exactly fit the dimensions of the background and the PictureSizeMode is not fmPictureSizeModeStretch,
TRue repeats the picture to fill the background and False displays the picture one time.

form.PrintForm

Prints the form on the default printer.

form.RedoAction()

Reverses the effect of the most recent Undo action. Actions such as typing in a text box may be undone or redone.
Check CanRedo to tell if there is an action available to be redone.

form.Repaint()

Redraws the form or frame on screen.

form.Scroll([ActionX] [, ActionY])

Scrolls the form or frame one line or page at a time.

Argument Settings

ActionX An fmScrollAction constant indicating how much to scroll horizontally

ActionY An fmScrollAction constant indicating how much to scroll horizontally

ActionX and ActionY can be one of these settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fmScrollActionNoChange (default)

fmScrollActionLineUp

fmScrollActionLineDown

fmScrollActionPageUp

fmScrollActionPageDown

fmScrollActionBegin

fmScrollActionEnd

The following code implements navigation buttons on a frame named fNav at the top of a form. The command buttons
scroll the form, and the UserForm_Scroll event moves the frame to keep it visible as the form scrolls:

 ' Requires a frame (fNav) containing four command buttons.
 Private Sub cmdHome_Click()
 Me.Scroll fmScrollActionBegin, fmScrollActionBegin
 End Sub

 Private Sub cmdEnd_Click()
 Me.Scroll fmScrollActionEnd, fmScrollActionEnd
 End Sub

 Private Sub cmdPageLeft_Click()
 Me.Scroll fmScrollActionPageDown, fmScrollActionNoChange
 End Sub

 Private Sub cmdPageDown_Click()
 Me.Scroll fmScrollActionNoChange, fmScrollActionPageDown
 End Sub

 Private Sub UserForm_Scroll(ByVal ActionX As MSForms.fmScrollAction, _
 ByVal ActionY As MSForms.fmScrollAction, _
 ByVal RequestDx As Single, ByVal RequestDy As Single, _
 ByVal ActualDx As MSForms.ReturnSingle, _
 ByVal ActualDy As MSForms.ReturnSingle)
 ' Move frame to keep buttons visible as form is scrolled.
 fNav.Left = fNav.Left + ActualDx
 fNav.Top = fNav.Top + ActualDy
 End Sub

form.ScrollBars [= fmScrollBars]

Sets or returns how scrollbars are displayed. Can be one of these settings:

fmScrollBarsNone (default)
fmScrollBarsHorizontal
fmScrollBarsVertical
fmScrollBarsBoth

Depending on the setting of KeepScrollBarsVisible, scrollbars may or may not be visible on a form. The ScrollHeight and
ScrollWidth properties determine whether the form is scrollable.

The following code shows how these properties interact by adding 100 lines of text to a label, then resizing the label so
that it extends off the form. The UpdateScrollSize procedure calculates the required dimensions for the form and sets
ScrollHeight and ScrollWidth so users can view the entire form area:

 Private Sub UserForm_Initialize()
 ' Scrollbar settings
 Me.ScrollBars = fmScrollBarsBoth
 Me.KeepScrollBarsVisible = fmScrollBarsNone
 ' Initialize data
 FillLabel
 ' Update scrollbars.
 UpdateScrollSize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UpdateScrollSize
 End Sub

 ' Adds 100 lines of text to a label, then
 ' resizes it to demo scrolling a form.
 Private Sub FillLabel()
 Dim i As Integer
 Label1.Caption = ""
 For i = 1 To 100
 Label1.Caption = Label1.Caption & _
 "Line: " & i & String(90, "*") & vbCrLf
 Next
 Label1.AutoSize = True
 End Sub

 ' Find the dimensions required to display all of the controls
 ' on the form and reset ScrollHeight and ScrollWidth to match.
 Private Sub UpdateScrollSize()
 Dim c As Control, maxHeight As Double, maxWidth As Double
 For Each c In Me.Controls
 maxHeight = c.Top + c.height
 maxWidth = c.Left + c.width
 If maxHeight > Me.ScrollHeight Then _
 Me.ScrollHeight = maxHeight
 If maxWidth > Me.ScrollWidth Then _
 Me.ScrollWidth = maxWidth
 Next
 End Sub

UpdateScrollSize is written in a general way so you can reuse it.

form.ScrollHeight [= setting]

Sets or returns the height of the scrollable area in points.

form.ScrollLeft [= setting]

Sets or returns the position of the horizontal scrollbar in points. The following code scrolls left one page at a time:

 Private Sub cmdPageLeft_Click()
 Me.ScrollLeft = Me.Left + Me.InsideWidth
 ' Reposition this control to keep it visible.
 cmdPageLeft.Left = cmdPageLeft.Left + Me.InsideWidth
 End Sub

form.ScrollTop [= setting]

Sets or returns the position of the vertical scrollbar in points. The following code scrolls down one page at a time:

 Private Sub cmdPageDown_Click()
 ' Scoll form
 Me.ScrollTop = Me.ScrollTop + Me.InsideHeight
 ' Reposition this control to keep it visible.
 cmdPageDown.Top = cmdPageDown.Top + Me.InsideHeight
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

It's usually easier to use the Scroll method than ScrollLeft and ScrollTop. See that topic for an
example.

form.ScrollWidth [= setting]

Sets or returns the width of the scrollable area in points.

form.SetDefaultTabOrder()

Sets the tab order of controls automatically using a top-to-bottom, left-to-right order.

form.SpecialEffect [= fmButtonEffect]

Sets or returns a special border appearance. Can be one of these settings:

fmSpecialEffectFlat (default for forms)

fmSpecialEffectRaised

fmSpecialEffectSunken (default for frames)

fmSpecialEffectEtched

fmSpecialEffectBump

form.UndoAction()

Undoes the last user action. Actions such as typing in a text box may be undone or redone. Check CanUndo to tell if there
is an action available to be undone.

form.VerticalScrollBarSide [= fmVerticalScrollbarSide]

Sets or returns the side on which to display the vertical scrollbar. Can be set to fmVerticalScrollbarSideRight or
fmVerticalScrollBarSideLeft.

form.Zoom [= setting]

Sets or returns the percentage to scale the contents of the form or frame by. Must be between 10 and 400. Zoom
doesn't change the size of the form or frame. The following code zooms in or out on a background picture depending on
which mouse button is pressed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which mouse button is pressed:

 Private Sub UserForm_Initialize()
 ' Load a background picture.
 Me.Picture = LoadPicture(ThisWorkbook.Path & "\turtle.jpg")
 ' Change mouse pointer.
 Me.MousePointer = fmMousePointerCustom
 Me.MouseIcon = LoadPicture(ThisWorkbook.Path & "\magnify.ico")
 End Sub

 Private Sub UserForm_MouseDown(ByVal Button As Integer, ByVal Shift_
 As Integer, ByVal X As Single, ByVal Y As Single)
 On Error Resume Next
 ' If left button, zoom in.
 If Button = 1 Then
 Me.Zoom = Me.Zoom * 1.1
 ' If right button, zoom out.
 ElseIf Button = 2 Then
 Me.Zoom = Me.Zoom * 0.9
 End If
 On Error GoTo 0
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.6. Control and Controls Members
Use the Controls collection to add new controls dynamically at runtime and to perform general operations on all of the
controls on a form. Use the UserForm object's Controls property to get a reference to this collection. Use the Control object
to set the name, position, and other general properties of a control. Specific control types may have other properties
that are available; the Control object contains the general members available for most controls. The Controls collection and
Control object have the following members. Key members (shown in bold) are covered in the following reference
section:

Add1 Cancel

Clear1 ControlSource

ControlTipText Count1

Default Height

HelpContextID Item1

LayoutEffect Left

Move2 Name

Object OldHeight

OldLeft OldTop

OldWidth Parent

Remove1 RowSource

SetFocus TabIndex

TabStop Tag

Top Visible

Width ZOrder

1 Collection only

2 Object and collection

controls.Add(ProgID [, Name] [, Visible])

Adds a control to the form or frame and returns a reference to that control.

Argument Settings

ProgID A string identifying the class name and version of the control to add. See Table 20-6 for a list of the
values for common controls.

Name The name to assign the control.

Visible True displays the control; False hides it. Default is True.

Table 20-6. ProgIDs for Forms 2.0 controls
Control Class name and version (ProgID)

CheckBox Forms.CheckBox.1

ComboBox Forms.ComboBox.1

CommandButton Forms.CommandButton.1

Frame Forms.Frame.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1

MultiPage Forms.MultiPage.1

OptionButton Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1

TabStrip Forms.TabStrip.1

TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Even though the version number in the ProgID is 1, these names refer to the Forms 2.0
controls.

The following code creates label and text box controls for each of the columns in a list created in the data form example
created earlier:

 Private Sub UserForm_Initialize()
 Dim ws As Worksheet, lc As ListColumn, _
 c As Control, tp As Single, lft As Single, wd As Single, _
 ht As Single
 Set ws = Worksheets("DataForm")
 ' Control's initial height and width values.
 wd = 60
 ht = 18
 ' Add a label and a text box for each list column.
 For Each lc In ws.ListObjects(1).ListColumns
 ' Add a label.
 Set c = Frame1.Controls.Add("Forms.Label.1", lc.name)
 ' Set label's properties.
 c.Caption = lc.name
 c.Top = tp
 c.Left = lft
 c.width = wd
 c.height = ht
 ' Increment the position for next control.
 lft = lft + c.width
 ' Add a text box.
 Set c = Frame1.Controls.Add("Forms.TextBox.1", lc.name)
 ' Set text box's properties.
 c.Top = tp
 c.Left = lft
 c.width = wd
 c.height = ht
 ' Set the position for the next control.
 tp = tp + c.height
 lft = 0
 Next
 End Sub

control.Cancel [= setting]

For command button controls, True indicates that the control's Click event procedure is called when the user presses the
Esc key. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

controls.Clear()

Deletes all of the controls created at runtime. This method fails if the container has design-time controls, so you should
put your runtime controls in a frame if you want to clear controls from a form with a mix of runtime and design-time
controls. The following code clears controls from the frame used in the Add method example:

 Private Sub cmdClear_Click()
 Frame1.Controls.Clear
 End Sub

control.ControlSource [= setting]

Sets or returns the address of a range to use as the source of the value for the control. For example, the following code
links the value in a text box to cell A1 on the DataForm worksheet:

 Private Sub UserForm_Initialize()
 TextBox1.ControlSource = "DataForm!a1"
 End Sub

control.ControlTipText [= setting]

Sets or returns the tool tip text to display for the control.

control.Default [= setting]

For command button controls, True indicates that the control's Click event procedure is called when the user presses the
Enter key. Default is False.

control.LayoutEffect

In the form's Layout event, fmLayoutEffectInitiate indicates that the control was moved; fmLayoutEffectNone indicates that the
control was not moved. This property is not available in other code.

controls.Move ([Left][, Top][, Width][, Height][, Layout])

Moves one or all of the controls on a form or frame. For individual control objects, Move can also resize the control.

Argument Settings

Left The new horizontal position of the control in points.

Top The new vertical position of the control in points.

Width The new control width in points (Control object only).

Height The new control height in points.

Layout True triggers the Layout event for the control's container; False does not trigger the Layout event. Default
is False. (Control object only.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.Object

Returns a reference to the base class instance of the object. Use this property when a control implements a member
that has the same name as one of the Control object members. In that case, the Control object's member shadows the
control's member and you must add Object to the expression to use the control's member.

control.OldHeight

In the form object's Layout event, returns the height of the control before it was resized.

control.OldLeft

In the form object's Layout event, returns the horizontal position of the control before it was moved.

control.OldTop

In the form object's Layout event, returns the vertical position of the control before it was moved.

control.OldWidth

In the form object's Layout event, returns the width of the control before it was resized.

control.Remove(Index)

Removes a control created at runtime from the Controls collection. Index may be the name of the control or a number
indicating the index of the control in the collection.

control.RowSource [= setting]

For ComboBox and ListBox controls, sets or returns the address of the range that provides values for the control. The
following code adds items from A1:A5 on the Lookup worksheet as items in a listbox:

 Private Sub UserForm_Initialize()
 ListBox1.RowSource = "Lookup!A1:A5"
 End Sub

control.SetFocus()

Moves focus to the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.TabIndex [= setting]

Sets or returns the position of the control in the tab order. Must be a positive whole number. The following code makes
TextBox1 the first control in the tab order and gives that control focus when the form is first displayed:

 Private Sub UserForm_Initialize()
 TextBox1.TabIndex = 0
 End Sub

control.TabStop [= setting]

True includes the control in the tab order; False removes it. Default is True.

control.Tag [= setting]

Set or returns additional information about the control.

control.ZOrder([zPosition])

Places the control in front of or behind any other controls layered on top of this control.

Argument Settings

zPosition fmTop displays the control on top of others; fmBottom displays the control beneath other controls. Default is
fmTop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.7. Font Members
Use the Font object to change the appearance of text on a form, frame, or control. Use the Font property of the form or
control to get a reference to this object. The Font object has the following members :

Bold
Italic
Size
StrikeThrough
Underline
Weight

The following code makes the text on a form's controls bold:

Private Sub UserForm_Initialize()
 Dim c As Control
 For Each c In Me.Controls
 c.Font.Bold = True
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.8. CheckBox, OptionButton, ToggleButton Members
Use the CheckBox, OptionButton, and ToggleButton controls to get and display settings that are on, off, or Null. In addition to
the members listed for the general Control object, these controls have the following members. Key members (shown in
bold) are covered in the following reference section:

Accelerator Alignment

AutoSize BackColor

BackStyle Caption

Enabled Font

ForeColor GroupName

Locked MouseIcon

MousePointer Picture

PicturePosition SpecialEffect

TextAlign TripleState

Value WordWrap

control.AutoSize [= setting]

True automatically resizes the control to display its contents; False uses a fixed size determined by the Height and Width
properties. Default is False.

control.BackStyle [= fmBackStyle]

Sets or returns whether the control's background is transparent or opaque. Can be fmBackStyleTransparent or
fmBackStyleOpaque (default).

control.GroupName [= setting]

For option buttons, sets or returns a name used to identify an exclusive set of options. When an option button belongs
to a group, only one of the OptionButton controls in that group can be True at any given time.

control.Locked [= setting]

True prevents the user from setting the control's value; False allows changes. Default is False. Locking a control is
different from setting its Enabled property to False in that the control is not grayed and can still receive focus.

control.TripleState [= setting]

For CheckBox and ToggleButton controls, True allows the user to select a third state (Null); False allows only True/False
settings. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.9. ComboBox Members
Use the ComboBox control to get and display settings from a list of choices. Combo boxes combine a listbox control with a
text box control. In addition to the members listed for the general Control object, these controls have the following
members. Key members (shown in bold) are covered in the following reference section:

AddItem AutoSize AutoTab

AutoWordSelect BackColor BackStyle

BorderColor BorderStyle BoundColumn

CanPaste Clear Column

ColumnCount ColumnHeads ColumnWidths

Copy CurTargetX CurX

Cut DragBehavior DropButtonStyle

DropDown Enabled EnterFieldBehavior

Font ForeColor HideSelection

IMEMode LineCount List

ListCount ListIndex ListRows

ListStyle ListWidth Locked

MatchEntry MatchFound MatchRequired

MaxLength MouseIcon MousePointer

Paste RemoveItem SelectionMargin

SelLength SelStart SelText

ShowDropButtonWhen SpecialEffect Style

Text TextAlign TextColumn

TextLength TopIndex Value

control.AddItem(Item[, Index])

Adds an item to the list.

Argument Settings

Item The item to add.

Index The position of the item in the list. Default is to add the item to the end of the list.

The following code adds three items to a drop-down list and selects the first item:

Private Sub UserForm_Initialize()
 ComboBox1.AddItem "this"
 ComboBox1.AddItem "that"
 ComboBox1.AddItem "other"
 ComboBox1.Style = fmStyleDropDownList
 ComboBox1.ListIndex = 1
End Sub

control.AutoTab [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True causes focus to switch to the next control in the tab order when a user enters MaxLength characters in the text box
portion of the control; False does not tab to the next control. Default is False.

control.AutoWordSelect [= setting]

True extends selected text one word at a time in the text box portion of the control; False extends the selection one
character at a time. Default is True.

control.BoundColumn [= setting]

Sets or returns the index of the column that determines the Value property of the control. The following code loads three
columns of data from the DataForm worksheet into a combo box and displays the value of the third column when the
user selects an item from the list:

Private Sub UserForm_Initialize()
 Dim rng As Range
 ComboBox1.ColumnCount = 3
 Set rng = Worksheets("DataForm").UsedRange
 ComboBox1.RowSource = rng.Address
 ComboBox1.BoundColumn = 3
End Sub

Private Sub ComboBox1_Change()
 If ComboBox1.Value <> "" Then _
 MsgBox "Selected value is: " & ComboBox1.Value
End Sub

control.Clear()

Removes all of the items from the list.

control.Column([Column][, Row])

Sets or returns the value of a list column or an item within a column of the list.

Argument Settings

Column The index of the column in the list

Row The index of the item within the column

Use Column to get a value from items in a row of a multicolumn combo box. The BoundColumn topic shows how to create a
combo box with three columns. You can get the value from any of those columns using the Column method as shown
here:

Private Sub ComboBox1_Change()
 If ComboBox1.Value <> "" Then _
 MsgBox "Second column is: " & ComboBox1.Column(1, ComboBox1.ListIndex)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Column and Row indexes start at 0, so 1 is the second column.

control.ColumnCount [= setting]

Sets or returns the number of columns to display in the list. Must be between -1 and 9. The setting -1 displays all
columns.

control.ColumnHeads [= setting]

True converts the first row in the list to column headings; False does not create column headings. Default is False.
Column headings are separated from the list items by a separator bar and can't be selected. The ColumnHeads property
can't create column headings from items in a range set through the RowSource property.

control.ColumnWidths [= setting]

Sets or returns the width of list columns in points. Use a semicolon to specify different widths for each column, as
shown here:

Private Sub UserForm_Initialize()
 Dim rng As Range
 ComboBox1.ColumnCount = 3
 Set rng = Worksheets("DataForm").UsedRange
 ComboBox1.RowSource = rng.Address
 ComboBox1.ColumnWidths = "30;20;40"
End Sub

control.CurTargetX

Returns the preferred horizontal position of the insertion point in a list in ten-thousandths of a meter. The control must
have focus before you can access this property.

control.CurX [= setting]

Sets or returns the horizontal position of the insertion point in a list in ten-thousandths of a meter. The control must
have focus before you can access this property.

control.DragBehavior [= fmDragBehavior]

Sets or returns whether selected text can be dragged from the control. Can be either fmDragBehaviorDisabled (default) or
fmDragBehaviorEnabled.

control.DropButtonStyle [= fmDropButtonStyle]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the appearance of the drop-down button on the control. Can be one of these settings:

fmDropButtonStylePlain
fmDropButtonStyleArrow (default)
fmDropButtonStyleEllipsis
fmDropButtonStyleReduce

control.DropDown()

Displays the list portion of the control.

control.EnterFieldBehavior [= fmEnterFieldBehavior]

Sets or returns how the contents of the control are selected when the user selects the control or tabs to it. Can be set
to either fmEnterFieldBehaviorSelectAll (default) or fmEnterFieldBehaviorRecallSelection.

control.HideSelection [= setting]

True removes highlighting from selected text when the control loses focus; False preserves highlighting when the
control loses focus. Default is True.

control.IMEMode [= fmIMEMode]

For forms created for the Far East, sets or returns the Input Method Editor (IME) for the control. Can be one of these
settings:

fmIMEModeNoControl (default) fmIMEModeOn

fmIMEModeOff fmIMEModeDisable

fmIMEModeHiragana fmIMEModeKatakana

fmIMEModeKatakanaHalf fmIMEModeAlphaFull

fmIMEModeAlpha fmIMEModeHangulFull

fmIMEModeHangul

control.LineCount

Returns the number of lines in the edit portion of the control. This is always 1 for combo boxes.

control.List([Row, Column]) [= setting]

Sets or returns the value of one item within the list or all items in the list.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Row The row of an item in the list

Column The column of an item in the list

Omit Row and Column to get or set the array containing all items in the list. For example, the following code loads an
array of strings into the control:

Private Sub UserForm_Initialize()
 ComboBox1.List = Split("This, that, other", ",")
 ' Select the first item.
 ComboBox1.ListIndex = 0
End Sub

control.ListCount

Returns the number of items in the list.

control.ListIndex [= setting]

Sets or returns the index of the currently selected item in the list. The List topic example selects the first item in the list.

control.ListRows [= setting]

Sets or returns the number of rows to display when in the drop-down list portion of the control.

control.ListStyle [= fmListStyle]

Sets or returns how list items are displayed. Can be fmListStylePlain (default) or fmListStyleOption (displays items with option
buttons).

control.ListWidth [= setting]

Sets or returns the width of the list portion of the control in points.

control.MatchEntry [= fmMatchEntry]

Sets or returns how to search for matching list items as the user types in the edit portion of the control. Can be set to
fmMatchEntryFirstLetter, fmMatchEntryComplete (default), or fmMatchEntryNone.

control.MatchFound

If MatchEntry is set to fmMatchEntryNone, returns True if the text typed in the edit portion of the control matched a list item,
False if it did not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.MatchRequired [= setting]

True validates text entered in the text portion of the control against the list; False does not validate entries. Default is
False.

control.MaxLength [= setting]

Sets or returns the maximum number of characters that can be entered in the control. The default is 0, which indicates
no maximum.

control.RemoveItem(Index)

Removes an item from the list. This method causes an error if the control is bound to a range through the RowSource
property.

control.SelectionMargin [= setting]

True allows the user to select an item by clicking the margin to the left of the item in the list; False doesn't select items
when the margin is clicked. Default is True.

control.SelLength [= setting]

Sets or returns the number of characters selected in the edit portion of the control.

control.SelStart [= setting]

Sets or returns the starting position of the selected text in the edit portion of the control.

control.SelText [= setting]

Sets or returns the text that is selected in the edit portion of the control.

control.ShowDropButtonWhen [= fmShowDropButtonWhen]

Sets or returns how the drop-down button is displayed. Can be fmShowDropButtonWhenNever, fmShowDropButtonWhenFocus, or
fmShowDropButtonWhenAlways (default).

control.Style [= fmStyle]

Sets or returns whether the control includes a text box. Can be fmStyleDropDownCombo (default) or fmStyleDropDownList (omits
the text box).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the text box).

control.Text [= setting]

Sets or returns the text in the edit portion of the control.

control.TextAlign [= fmTextAlign]

Sets or returns how text is aligned in the control. Can be fmTextAlignLeft (default), fmTextAlignCenter, or fmTextAlignRight.

control.TextColumn [= setting]

Sets or returns the index of the column displayed in the edit portion of the control when the user select an item from a
multicolumn list. The setting -1 (the default) displays the first visible column; 1 displays the first column, 2 the second,
and so on.

control.TextLength

Returns the number of characters in the edit portion of the control.

control.TopIndex [= setting]

Sets or returns the index of the item displayed at the top of the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.10. CommandButton Members
Use the CommandButton control to execute or cancel actions. In addition to the members listed for the general Control
object, the CommandButton control has the following members. Key members (shown in bold) are covered in the following
reference section:

Accelerator AutoSize

BackColor BackStyle

Caption Enabled

Font ForeColor

Locked MouseIcon

MousePointer Picture

PicturePosition TakeFocusOnClick

WordWrap

control.Picture [= setting]

Sets or returns the picture loaded as the face of the command button. The picture can be set at design time in the
Properties window or at runtime using the LoadPicture function. The following code displays a button with a picture on it:

Private Sub UserForm_Initialize()
 CommandButton1.Picture = LoadPicture(ThisWorkbook.Path & "\logo.jpg")
 CommandButton1.PicturePosition = fmPicturePositionCenter
 CommandButton1.Caption = "Wombat"
 CommandButton1.Font.Bold = True
End Sub

control.PicturePosition [= fmPicturePosition]

Sets or returns the location of the picture relative to the caption. Can be one of these settings:

fmPicturePositionLeftTop fmPicturePositionLeftCenter

fmPicturePositionLeftBottom fmPicturePositionRightTop

fmPicturePositionRightCenter fmPicturePositionRightBottom

fmPicturePositionAboveLeft fmPicturePositionAboveCenter (default)

fmPicturePositionAboveRight fmPicturePositionBelowLeft

fmPicturePositionBelowCenter fmPicturePositionBelowRight

fmPicturePositionCenter

control.TakeFocusOnClick [= setting]

True causes the control to receive focus when clicked; False does not change the current focus. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.11. Image Members
Use the Image control to display pictures. In addition to the members listed for the general Control object, the Image
control has the following members. Key members (shown in bold) are covered in the following reference section:

AutoSize BackColor

BackStyle BorderColor

BorderStyle Enabled

MouseIcon MousePointer

Picture PictureAlignment

PictureSizeMode PictureTiling

SpecialEffect

control.Picture [= setting]

Sets or returns the picture loaded in the control. The picture can be set at design time in the Properties window or at
runtime using the LoadPicture function. The following code displays a picture using the image control:

Private Sub UserForm_Initialize()
 Image1.Picture = LoadPicture(ThisWorkbook.Path & "\turtle.jpg")
 Image1.PictureSizeMode = fmPictureSizeModeZoom
End Sub

control.PictureAlignment [= fmPictureAlignment]

Sets or returns how the picture is placed. Can be one of these settings:

fmPictureAlignmentTopLeft
fmPictureAlignmentTopRight
fmPictureAlignmentCenter (default)
fmPictureAlignmentBottomLeft
fmPictureAlignmentBottomRight

control.PictureSizeMode [= fmPictureSizeMode]

Sets or returns how the picture is sized. Can be one of these settings:

fmPictureSizeModeClip (default)
fmPictureSizeModeStretch (may change the aspect ratio of the picture)
fmPictureSizeModeZoom (preserves aspect ratio)

control.PictureTiling [= setting]

If the picture does not exactly fit the dimensions of the control and the PictureSizeMode is not fmPictureSizeModeStretch, true
repeats the picture to fill the background; False displays the picture one time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

repeats the picture to fill the background; False displays the picture one time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.12. Label Members
Use the Label control to display text that the user can't change. In addition to the members listed for the general Control
object, the Label control has the following members:

Accelerator AutoSize

BackColor BackStyle

BorderColor BorderStyle

Caption Enabled

Font ForeColor

MouseIcon MousePointer

Picture PicturePosition

SpecialEffect TextAlign

WordWrap

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.13. ListBox Members
Use the ListBox control to display scrollable lists of items. In addition to the members listed for the general Control object,
the ListBox control has the following members. Key members (shown in bold) are covered in the following reference
section:

AddItem BackColor BorderColor

BorderStyle BoundColumn Clear()

Column ColumnCount ColumnHeads

ColumnWidths Enabled Font

ForeColor IMEMode IntegralHeight

List ListCount ListIndex

ListStyle Locked MatchEntry

MouseIcon MousePointer MultiSelect

RemoveItem Selected SpecialEffect

Text TextAlign TextColumn

TopIndex Value

The listbox control is similar to the combo box control, except the list is always displayed and it does not include an edit
region. The ListBox members are nearly identical to the ComboBox members, so see "ComboBox Members," earlier in the
chapter, for those topics. The two members that are unique to the ListBox control are covered here.

control.IntegralHeight [= setting]

True resizes the height of the control to display full lines of text; False allows partial lines to be displayed. Default is
True.

control.MultiSelect [= fmMultiSelect]

Sets or returns a value indicating whether multiple items in the list can be selected at the same time. Can be
fmMultiSelectSingle (default), fmMultiSelectMulti, or fmMultiSelectExtended. The following code loads a range of values into a three-
column list that allows multiple selections; the list includes checkboxes to show the selected items:

Private Sub UserForm_Initialize()
 ListBox1.ColumnCount = 3
 ListBox1.ColumnWidths = "30;20;40"
 ListBox1.RowSource = [DataForm!A2:D4].Address
 ListBox1.MultiSelect = fmMultiSelectExtended
 ListBox1.ListStyle = fmListStyleOption
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.14. MultiPage Members
Use the MultiPage control to organize complex dialogs into multiple pages of controls. In addition to the members listed
for the general Control object, the MultiPage control has the following members. Key members (shown in bold) are
covered in the following reference section:

BackColor Enabled

Font ForeColor

MultiRow Pages

SelectedItem Style

TabFixedHeight TabFixedWidth

TabOrientation Value

control.MultiRow [= setting]

True displays tabs in multiple rows; False displays a single row of tabs. Default is False.

control.Pages

Returns a collection of Page controls contained in the MultiPage control. Use the Pages collection to add or delete pages.
The following code searches the workbook's folder for bitmap files and then creates a new page to display each file:

Private Sub UserForm_Initialize()
 ' Requires reference to the Microsoft Scripting Runtime.
 Dim fo As New filesystemobject, fld As Folder, _
 f As File, pg As Page
 ' Get the workbook folder.
 Set fld = fo.GetFolder(ThisWorkbook.Path)
 ' Delete all the pages from the multipage control.
 MultiPage1.Pages.Clear
 ' For each file in the folder.
 For Each f In fld.Files
 ' If the file is a bitmap.
 If fo.GetExtensionName(f) = "bmp" Then
 ' Create a page for it.
 Set pg = MultiPage1.Pages.Add(, f.name)
 ' Load the picture in the page.
 pg.Picture = LoadPicture(f)
 pg.PictureSizeMode = fmPictureSizeModeZoom
 End If
 Next
End Sub

control.SelectedItem

Returns the currently selected Page control.

control.Style [= fmTabStyle]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the type of tabs displayed. Can be fmTabStyleTabs (default), fmTabStyleButtons, or fmTabStyleNone.

control.TabFixedHeight [= setting]

Sets or returns the height of the tabs in points. Default is 0, which sets the height automatically.

control.TabFixedWidth [= setting]

Sets or returns the width of the tabs in points. Default is 0, which sets the width automatically.

control.TabOrientation [= fmTabOrientation]

Sets or returns the placement of the tabs on the control. Can be one of these settings:

fmTabOrientationTop (default)
fmTabOrientationBottom
fmTabOrientationLeft
fmTabOrientationRight

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.15. Page Members
Use the Page control to organize other controls within a MultiPage control. In addition to the members listed for the
general Control object, the MultiPage control has the following members. Key members (shown in bold) are covered in the
following reference section:

Accelerator ActiveControl CanPaste

CanRedo CanUndo Caption

Controls ControlTipText Copy

Cut Cycle Enabled

Index InsideHeight InsideWidth

KeepScrollBarsVisible Name Parent

Paste Picture PictureAlignment

PictureSizeMode PictureTiling RedoAction

Repaint Scroll ScrollBars

ScrollHeight ScrollLeft ScrollTop

ScrollWidth SetDefaultTabOrder Tag

TransitionEffect TransitionPeriod UndoAction

VerticalScrollBarSide Visible Zoom

The Page control is similar to UserForm and Frame, except pages always appear as part of a MultiPage control. The Page
members are nearly identical to the UserForm and Frame members, so see "UserForm and Frame Members," earlier in the
chapter, for those topics. Two members unique to the Page control are covered here.

control.TransitionEffect [= fmTransitionEffect]

Sets or returns a visual transition between pages. Can be one of these settings:

fmTransitionEffectNone (default) fmTransitionEffectCoverUp

fmTransitionEffectCoverRightUp fmTransitionEffectCoverRight

fmTransitionEffectCoverRightDown fmTransitionEffectCoverDown

fmTransitionEffectCoverLeftDown fmTransitionEffectCoverLeft

fmTransitionEffectCoverLeftUp fmTransitionEffectPushUp

fmTransitionEffectPushRight fmTransitionEffectPushDown

fmTransitionEffectPushLeft

control.TransitionPeriod [= setting]

This property has no effect in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.16. ScrollBar and SpinButton Members
Use the ScrollBar and SpinButton controls to scroll through items or values. In addition to the members listed for the
general Control object, the ScrollBar and SpinButton controls have the following members. Key members (shown in bold) are
covered in the following reference section:

BackColor Delay

Enabled ForeColor

LargeChange1 Max

Min MouseIcon

MousePointer Orientation

ProportionalThumb1 SmallChange

Value
1 ScrollBar only

control.LargeChange [= setting]

Sets or returns the increment to scroll when the user clicks the scrollbar above or below the scroll box. Must be
between the Min and Max property settings.

control.Max [= setting]

Sets or returns the maximum value of the control. The default is 32,767 for scrollbars and 100 for spin buttons.

control.Min [= setting]

Sets or returns the minimum value of the control. The default is 0.

control.Orientation [= fmOrientation]

Sets or returns how the control is oriented. Can be fmOrientationAuto (default), fmOrientationVertical, or fmOrientationHorizontal.

control.ProportionalThumb [= setting]

True sizes the scrollbox proportional to the scrolling region; False uses a fixed size. Default is True.

control.SmallChange [= setting]

Sets or returns the increment to scroll when the user clicks the scroll arrow. Must be between the Min and Max property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the increment to scroll when the user clicks the scroll arrow. Must be between the Min and Max property
settings. Default is 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.17. TabStrip Members
Use the TabStrip control to organize groups of settings for a similar set of controls. In addition to the members listed for
the general Control object, the TabStrip control has the following members. Key members (shown in bold) are covered in
the following reference section:

BackColor ClientHeight

ClientLeft ClientTop

ClientWidth Enabled

Font ForeColor

MouseIcon MousePointer

MultiRow SelectedItem

Style TabFixedHeight

TabFixedWidth TabOrientation

Tabs Value

The TabStrip control doesn't automatically show or hide pages of controls the way that the MultiPage control does. Instead,
use it to display groups of similar settings. The following code demonstrates that technique by using a tab strip control
to display the attributes and contents of the XML files in the current workbook's folder:

' Create a tab for each .xml file.
Private Sub UserForm_Initialize()
 ' Requires reference to the Microsoft Scripting Runtime.
 Dim fo As New filesystemobject, fld As Folder, _
 f As File
 ' Get the workbook folder.
 Set fld = fo.GetFolder(ThisWorkbook.Path)
 ' Delete all the tabs from the TabStrip control.
 TabStrip1.Tabs.Clear
 ' For each file in the folder.
 For Each f In fld.Files
 ' If the file is XML.
 If fo.GetExtensionName(f) = "xml" Then
 ' Create a tab for it.
 TabStrip1.Tabs.Add , f.name
 End If
 Next
 ' TextBox properties
 txtFile.MultiLine = True
 txtFile.ScrollBars = fmScrollBarsBoth
 txtFile.TabKeyBehavior = True
End Sub

' Display the attributes for the file on the selected tab.
Private Sub TabStrip1_Change()
 Dim fo As New filesystemobject, _
 f As File, fname As String
 fname = TabStrip1.SelectedItem.Caption
 ' Get the file.
 Set f = fo.GetFile(ThisWorkbook.Path & "\" & fname)
 ' Display file attibutes in four label controls.
 lblCreated = "Created: " & f.DateCreated
 lblModified = "Modified: " & f.DateLastModified
 lblAccessed = "Accessed: " & f.DateLastAccessed
 lblSize = "File size: " & f.Size \ 1024 & "K"
 On Error Resume Next
 ' Read the file into the text box.
 txtFile.Text = f.OpenAsTextStream.ReadAll
 If Err Then txtFile.Text = "File too big."
 ' Close the file.
 f.OpenAsTextStream.Close
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

In the preceding code, the four label and text box controls always appear. Only their settings change as the user selects
from among the tabs.

control.ClientHeight

Returns the height of the client area of the tab strip. The client area is the region of the control where other controls
may be placed.

control.ClientLeft

Returns the horizontal coordinate of the client area.

control.ClientTop

Returns the vertical coordinate of the client area.

control.ClientWidth

Returns the width of the client area of the tab strip. The client area is the region of the control where other controls
may be placed.

control.Tabs

Returns the collection of Tab objects on the tab strip. Use the Tabs collection to add or remove tabs at runtime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.18. TextBox and RefEdit Members
Use the TextBox control to get text entries from a user. Use the RefEdit control to get a selected range from the user. In
addition to the members listed for the general Control object, the TextBox and RefEdit controls have the following members.
Key members (shown in bold) are covered in the following reference section:

AutoSize AutoTab AutoWordSelect

BackColor BackStyle BorderColor

BorderStyle CanPaste Copy

CurLine CurTargetX CurX

Cut() DragBehavior Enabled

EnterFieldBehavior EnterKeyBehavior Font

ForeColor HideSelection IMEMode

IntegralHeight LineCount Locked

MaxLength MouseIcon MousePointer

MultiLine PasswordChar Paste

ScrollBars SelectionMargin SelLength

SelStart SelText SpecialEffect

TabKeyBehavior Text TextAlign

TextLength Value WordWrap

The TextBox and RefEdit members are a subset of the ComboBox members, so see that object for those topics. See the
previous section, "TabStrip Members," for an example of loading files into a text box and using the MultiLine and ScrollBar
properties. Several TextBox and RefEdit members that are not found in the ComboBox control are covered here.

control.CurLine [= setting]

When the control has focus, sets or returns the index of the line that currently has the cursor.

control.EnterKeyBehavior [= fmEnterFieldBehavior]

Sets or returns how the contents of the control are selected when the control receives focus due to a user action. Can
be set to fmEnterFieldBehaviorSelectAll (default) or fmEnterFieldBehaviorRecallSelection.

control.IntegralHeight [= setting]

True resizes the height of the control to display full lines of text; False allows partial lines to be displayed. Default is
True.

control.LineCount

Returns the number of lines of text in the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.MultiLine [= setting]

True allows multiple lines of text; False allows only a single line. Default is True.

control.PasswordChar [= setting]

Sets or returns a character to display in place of the actual text, usually *. Use PasswordChar when you want to hide what
the user typed.

control.ScrollBars [= fmScrollBars]

Sets or returns how scrollbars appear on the control. Can be one of these settings:

fmScrollBarsNone (default)
fmScrollBarsHorizontal
fmScrollBarsVertical
fmScrollBarsBoth

control.TabKeyBehavior [= setting]

If MultiLine is True, setting TabKeyBehavior to True inserts a tab character when the user presses the Tab key and False
moves focus to the next control when the user presses Tab. Default is False.

control.WordWrap [= setting]

If MultiLine is True, setting WordWrap to True wraps long lines of text to the next line of the control and False does not
wrap long lines. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21. Sending and Receiving Workbooks
In Chapter 5, you learned how to send a simple email from Excel. In this chapter, you'll learn how to email workbooks,
worksheets, and charts as well as how to route workbooks to multiple reviewers for comments or approval.

This chapter includes task-oriented reference information for the following objects: MsoEnvelope, MailItem, and RoutingSlip.

Code used in this chapter and additional samples are available in ch21.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.1. Send Mail
Table 21-1 lists the different ways to send mail within Excel.

Table 21-1. Sending mail from Excel
To Use Notes

Compose a text email
message

The FollowHyperLink method
with the mailto: protocol Doesn't support attachments.

Compose an email with an
attached workbook

The Dialogs method to display
the email dialog box User must fill in addresses and subject on the message.

Send a workbook The SendMail method Doesn't display message before send; shows security
warning.

Send a worksheet or chart The MailEnvelope property Unlike SendMail, this allows access to CC and BCC lines;
avoids security warning. (Requires Outlook.)

Collect review comments The SendForReview method Allows you to link to a shared workbook for collecting
comments.

Route for approval The RoutingSlip object and
Route method Routes to addresses in sequence.

I've used FollowHyperlink technique a few times already in this book. In case you missed it, here's short sample:

 Sub SendTextMail()
 ThisWorkbook.FollowHyperlink "mailto:someone@microsoft.com" & _
 "?Subject=Test message.&Body=The message goes here..."
 End Sub

The mailto: protocol starts the user's default email client and creates a new message. It's up to the user to send the
message, so there are no real security hurdles to this approach. You can't attach files using mailto: however. To create a
quick email with the current workbook attached, use the Dialogs method as shown here:

 Sub SendAsAttachment()
 Application.Dialogs(xlDialogSendMail).Show
 End Sub

That approach creates a new, blank message with the file attached. The user must fill in the address and add the
subject and body of the message before sending the message. The SendMail method also sends the workbook as an
attachment, but it doesn't display the message before it is sent. That poses a risk because you don't want anyone
sending mail from your system without your knowledge. To address that, Outlook displays a notice any time you use
SendMail. For example, the following code displays the warning shown in Figure 21-1:

 Sub SendWorkbook()
 ' Trap error in case user cancels send.
 On Error Resume Next
 ' Send this workbook (don't run this from VBE!
 ' It may cause a lockup.)
 ThisWorkbook.SendMail "someone@microsoft.com", "Please review"
 On Error GoTo 0
 End Sub

Figure 21-1. Outlook warns users when Excel sends automated mail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21-1. Outlook warns users when Excel sends automated mail

You'll notice the comments warn you not to run SendMail directly from the Visual Basic
Editor (as when debugging). That can lock up Excel, and the only way to recover is to use
the Task Manager to close the Outlook dialog box that appears with an Excel icon on the
Windows task bar.

Sending mail this way isn't a great practice in my opinion. It's much better to be up front with users, show them the
message, and let them choose whether to send. To do that, use the MailEnvelope property. The following code composes a
message containing the active worksheet in Excel as shown in Figure 21-2:

 Sub SendActiveSheet()
 Dim ws As Object, env As MsoEnvelope
 ' Get the active sheet.
 Set ws = ActiveSheet
 ' Show email header from Workbook object.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Set the email header fields.
 env.Introduction = "Sales in first quarter:"
 With env.Item
 .to = "someone@yourcompany.com"
 .cc = "yourboss@yourcompany.com"
 .subject = ws.Name
 ' Uncomment this to send automatically.
 '.send
 End With
 End Sub

With this approach, the user can choose to send the message or not, so there's no need to display a security warning.
However, if you uncomment the Send method in the preceding code, the message is sent automatically, so the warning
in Figure 21-1 will appear.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.2. Work with Mail Items
In the preceding SendActiveSheet example, the Item property returns a MailItem object. That object is part of the Microsoft
Outlook object library not Excel's. The MailItem object is very useful in Excel, since it allows you to attach files and
control all aspects of the message.

To use the MailItem object:

1. In the Visual Basic Editor, choose Tools References. Visual Basic displays the References dialog box.

2. Select the Microsoft Outlook 11.0 Object Library and click OK.

3. Declare a variable using the MailItem type.

4. Get a reference to the MailItem object.

Figure 21-2. Composing an email in Excel

The following code creates a mail item and attaches the current workbook:

 Sub SendAsMailItem()
 ' Requires reference to Microsoft Outlook
 Dim ws As Worksheet, env As MsoEnvelope, mi As MailItem
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Save the workbook before mailing as attachment.
 ws.Parent.Save
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Set the email header fields.
 env.Introduction = "Please revew attached file."
 ' Get the MailItem object.
 Set mi = env.Item
 ' Clear the MailItem properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Clear the MailItem properties.
 ClearMessage mi
 ' Set MailItem properties.
 mi.Importance = olImportanceHigh
 mi.To = "someone@microsoft.com"
 mi.CC = "someoneelse@yourcompany.com" mi.Subject = "Subject text."
 ' Attach this workbook.
 mi.Attachments.Add ThisWorkbook.FullName
 ' Uncomment this to send automatically.
 'mi.send
 End Sub

 Sub ClearMessage(mi As MailItem)
 Dim at As Attachment
 mi.Importance = olImportanceNormal
 mi.To = ""
 mi.CC = ""
 mi.BCC = ""
 mi.Subject = ""
 For Each at In mi.Attachments
 at.Delete
 Next
 End Sub

The preceding ClearMessage procedure resets the MailItem properties before creating a new message. That's one of the
quirks of the MailItem object: its property settings are preserved and there is no reset method to clear them. Actually,
only some of the properties are preserved; most of them are cleared when you save the workbook. However, that's
confusing, so it's safer to clear the properties explicitly as shown by ClearMessage.

The other quirk of the MailItem object is that you can get at it only through a worksheet or chart. That means that the
body of the mail message contains whatever was on that worksheet or chart. Often that's what you want, but if you'd
rather create your own message body, close the message, then call the Display method as shown here:

 Sub SendWorkbookAsMailItem()
 ' Requires reference to Microsoft Outlook
 Dim ws As Worksheet, env As MsoEnvelope, mi As MailItem
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Save the workbook before mailing as attachment.
 ws.Parent.Save
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Set the email header fields.
 env.Introduction = "Please revew attached file."
 ' Get the MailItem object.
 Set mi = env.Item
 ' Clear the MailItem properties.
 ClearMessage mi
 ' Set MailItem properties.
 mi.Importance = olImportanceHigh
 mi.To = "someone@microsoft.com"
 mi.CC = "someoneelse@yourcompany.com" mi.Subject = ActiveWorkbook.Name
 mi.Body = "Please review the attached workbook."
 ' Attach this workbook.
 mi.Attachments.Add ThisWorkbook.FullName
 ' Close message composition header (gets rid of worksheet).
 mi.Close olDiscard
 ' Open in mail message window.
 mi.Display
 End Sub

The preceding Close/Display TRick disposes of the content from the worksheet or chart and allows you to use the Body
property to set the message body as shown by Figure 21-3.

Figure 21-3. Sending a workbook as an attachment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21-3. Sending a workbook as an attachment

The MailItem object requires that you use Outlook as your email application. If you don't use
Outlook, read the following section for an alternate approach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.3. Collect Review Comments
Another way to send the entire workbook as an attachment is to use SendForReview. That method composes an email
message with the workbook as an attachment, plus it allows you to display the message and thus avoid the security
warning. The following code sends the active workbook as a message identical to that shown in Figure 21-3:

 Sub SendForReview()
 ThisWorkbook.SendForReview "someone@microsoft.com", _
 "Please review the attached workbook", True, False
 End Sub

Since SendForReview is intended for collecting review comments, the method displays a dialog asking if the file should be
saved as a shared workbook before composing the message. There's no easy way around that. In fact, since saving
workbooks as shared files is difficult from code, you've got to take these steps if you want to send a workbook out for
review without any extra prompts:

1. Create a temporary copy of the workbook.

2. Open that copy and save it as a shared review copy.

3. Get a reference to the shared review copy and send that workbook for review.

4. Close the shared workbook and delete the temporary file.

The following code illustrates those steps:

 Sub SendForReview()
 Dim wb1 As Workbook, wb2 As Workbook, _
 fname As String, temp As String
 ' Get the active workbook.
 Set wb1 = ActiveWorkbook
 ' Create a unique temporary filename
 temp = wb1.Path & "\temp_" & CLng(Date) & ".xls"
 ' Save as a temporary file.
 ThisWorkbook.SaveCopyAs temp
 ' Open the review copy.
 Set wb2 = Workbooks.Open(temp)
 ' Create the name of the file to send.
 fname = wb1.Path & "\" & "Review Copy of " & _
 wb1.Name
 ' Save as a shared workbook.
 wb2.SaveAs fname, , , , , , xlShared, xlUserResolution
 ' Send the workbook for review.
 ThisWorkbook.SendForReview "someone@microsoft.com", _
 "Please review the attached workbook", True, False
 ' Close the review copy (returns to ActiveWorkbook).
 wb2.Close False
 ' Delete the temporary file.
 Kill temp
 End Sub

That's complicated, but it has the advantage of creating a shared review copy separate from your work file. Reviewers
can return changes, which you can merge into the review copy without replacing the original file, which helps protect
against unwanted changes.

Shared workbooks come with some restrictions. For instance, you can't edit code in a shared workbook. Also, shared
workbooks can't contain XML maps. Using a SharePoint workspace is a better solution for collaborating on a workbook.
See Chapter 8 for information on sharing workspaces through SharePoint.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.4. Route Workbooks
Routing a workbook is similar to sending it for review, except the workbook can be sent to the email addresses serially
instead of all at once. To route a workbook from code:

1. Get a reference to the workbook's RoutingSlip object

2. Set the RoutingSlip properties.

3. Call the workbook's Route method.

The following code illustrates those steps:

 ' Don't run this from VBE!
 Sub RouteWorkbook()
 Dim wb As Workbook, rs As RoutingSlip
 ' Trap error in case user cancels send.
 On Error Resume Next
 Set wb = ActiveWorkbook
 ' Get the routing slip.
 Set rs = wb.RoutingSlip
 ' Clear it.
 rs.Reset
 ' Set the routing properties.
 rs.Delivery = xlOneAfterAnother
 rs.Recipients = Array("someone@microsoft.com", _
 "someone@microsoft.com")
 rs.Subject = wb.Name
 rs.Message = "Please review and route on."
 rs.TrackStatus = True
 rs.ReturnWhenDone = True
 ' Send the message.
 wb.Route
 On Error GoTo 0
 End Sub

Like the SendMail example, running the preceding code from the Visual Basic Editor can lock up Excel. You should run it
only from the Macro dialog box or from an event while Excel is active. Also like SendMail, routing will display the security
prompt (Figure 21-1).

Routing has the following differences from other ways of sending workbooks:

The workbook is attached to the message as a read-only file. If the user wants to make changes, he must first
save the file as read/write. The new file retains its routing slip, however, and can be sent on to the next
recipient.

The recipient list is sent as an array of email addresses. Outlook verifies those addresses against the user's
address book and may prompt for corrections.

When a recipient closes a workbook that has a routing slip, Excel asks if the workbook should be forwarded on
to the next recipient, as shown in Figure 21-4.

Routing can also be used to send workbooks to all recipients simultaneously. To do that, set the Delivery property to
xlAllAtOnce. Sending all at once still sends the workbook as a read-only copy, but the user is prompted to route the
workbook only if ReturnWhenDone is set to True.

Figure 21-4. Excel routes a workbook on when recipients close the file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.5. Read Mail
To read mail from Excel, use the ActivateMicrosoftApp method to start Outlook:

 Sub ReadOutlookMail()
 Application.ActivateMicrosoftApp xlMicrosoftMail
 End Sub

For HTML-based mail systems, use the FollowHyperLink method to open the mail system's account page:

 Sub ReadGMail()
 ' Go to GMail.
 ThisWorkbook.FollowHyperlink "http://mail.google.com/"
 End Sub

For other mail clients, use the Shell method to start the client application:

 Sub ReadEudoraMail()
 Shell "C:\Program Files\Qualcomm\Eudora\Eudora.exe"
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.6. MsoEnvelope Members
Use the MsoEnvelope object to send a worksheet or chart as an email. Use the Worksheet or Chart object's MailEnvelope
property to get a reference to this object. The MsoEnvelope object has the following members. Key members (shown in
bold) are covered in the following reference section:

 CommandBars
 Introduction
 Item
 Parent

mailenvelope.Introduction [= setting]

Sets or returns the text included at the top of the message body.

mailenvelope.Item

Returns a MailItem object used to set the recipients, priority, and other properties of the email.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.7. MailItem Members
Use the MailItem object to set the attributes of the email sent using the MsoEnvelope object. Use the MsoEnvelope object's Item
property to get a reference to this object. The MailItem object has the following members . MailItem is part of the Outlook
object library and many of the members don't apply within Excel. Key members that are of use from within Excel
(shown in bold) are covered in the following reference section:

To declare a variable as a MailItem object, you must first add a reference to the Microsoft
Outlook type library.

Actions AlternateRecipientAllowed

Application Attachments

AutoForwarded AutoResolvedWinner

BCC BillingInformation

Body BodyFormat

Categories CC

Class ClearConversationIndex

Close Companies

Conflicts ConversationIndex

ConversationTopic Copy

CreationTime DeferredDeliveryTime

Delete DeleteAfterSubmit

Display DownloadState

EnableSharedAttachments EntryID

ExpiryTime FlagDueBy

FlagIcon FlagRequest

FlagStatus FormDescription

Forward GetInspector

HasCoverSheet HTMLBody

Importance InternetCodepage

IsConflict IsIPFax

ItemProperties LastModificationTime

Links MarkForDownload

MessageClass Mileage

Move NoAging

OriginatorDeliveryReportRequested OutlookInternalVersion

OutlookVersion Parent

Permission PermissionService

PrintOut ReadReceiptRequested

ReceivedByEntryID ReceivedByName

ReceivedOnBehalfOfEntryID ReceivedOnBehalfOfName

ReceivedTime RecipientReassignmentProhibited

Recipients ReminderOverrideDefault

ReminderPlaySound ReminderSet

ReminderSoundFile ReminderTime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RemoteStatus Reply

ReplyAll ReplyRecipientNames

ReplyRecipients Save

SaveAs Saved

SaveSentMessageFolder Send

SenderEmailAddress SenderEmailType

SenderName Sensitivity

Sent SentOn

SentOnBehalfOfName Session

ShowCategoriesDialog Size

Subject Submitted

To UnRead

UserProperties VotingOptions

VotingResponse

mailitem.Attachments

Returns an Outlook Attachments collection that you can use to add or remove files to send as attachments. The following
code clears all of the attachments from a MailItem:

 Sub RemoveAttachments(mi As MailItem)
 ' Requires reference to Microsoft Outlook.
 Dim at As Attachment
 For Each at In mi.Attachments
 at.Delete
 Next
 End Sub

mailitem.BCC [= setting]

Sets or returns the addresses on the BCC field of the email. Separate multiple addresses with semicolons.

mailitem.Body [= setting]

Sets or returns the text of the email message. This property is ignored for email sent using the Excel mail composition
header (Figure 21-2).

mailitem.CC [= setting]

Sets or returns the addresses on the CC field of the email. Separate multiple addresses with semicolons.

mailitem.Close(SaveMode)

Closes the mail item.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Closes the mail item.

Argument Settings

SaveMode Determines whether the email is saved in the Drafts folder. Can be olDiscard, olPromptForSave, or olSave.

mailitem.DeferredDeliveryTime [= setting]

Sets or returns the date and time to send the message from the Outlook outbox.

mailitem.DeleteAfterSubmit [= setting]

True deletes the message from the Outlook Sent Items folder after it is sent.

mailitem.Display()

Displays the email in a message window rather than using the Excel mail composition header. Combining Close and
Display allows you to compose custom messages using the Body or HTMLBody properties, as shown here:

 Sub SendHTMLEmail()
 ' Requires reference to Microsoft Outlook
 Dim ws As Worksheet, env As MsoEnvelope, mi As MailItem
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Get the MailItem object
.
 Set mi = env.Item
 ' Clear the MailItem properties.
 ClearMessage mi
 ' Set MailItem properties.
 mi.To = "someone@microsoft.com"
 mi.Subject = "Sending HTML emails from Excel"
 mi.HTMLBody = "This text using <i>HTML</i> formatting."
 ' Close message composition header.
 mi.Close olDiscard
 ' Open in mail message window (gets rid of worksheet).
 mi.Display
 End Sub

mailitem.ExpiryTime [= setting]

Sets or returns date value when the email expires and will be automatically deleted. The following code sends a
message that expires in two days:

 Sub SendMessageWithExpiration()
 Dim ws As Worksheet, mi As MailItem

 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MailItem object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Get the MailItem object
.
 Set mi = ws.MailEnvelope.Item
 ' Set MailItem properties.
 mi.To = "someone@microsoft.com"
 mi.Subject = "Message will self-destruct " & Now + 2
 ' Expires in two days
 mi.ExpiryTime = Now + DateSerial(0, 0, 2)
 End Sub

mailitem.HTMLBody [= setting]

Sets or returns the body of the message formatted using HTML tags. This property is ignored for email sent using the
Excel mail composition header.

mailitem.Importance [= setting]

Sets or return the priority of the email. Can be olImportanceHigh, olImportanceLow, or olImportanceNormal (default).

mailitem.PrintOut()

Sends the email to the default printer.

mailitem.ReadReceiptRequested [= setting]

True flags the message to request that an email be sent back to the sender when the original email is read; False does
not request a return receipt. Default is False.

mailitem.Recipients

Returns an Outlook Recipients collection that you can use to add or remove addresses from the email's To field. Using the
Add method of the Recipients collection displays a security warning. Setting the To property directly does not display a
warning.

mailitem.Save()

Saves the email in the Outlook Drafts folder.

mailitem.SaveAs(Path, Type)

Saves the email in the location specified by Path as the filetype specified in Type.

Argument Settings

Path The filename and path for the saved email.

Type The format to use for the file. Can be one of the these olSaveAsType constants: olHTML, olMSG, olRTF,
olTemplate, olDoc, olTXT, olVCal, olVCard, olICal, or olMSGUnicode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mailitem.SaveSentMessageFolder [= setting]

Returns the Outlook MAPIFolder object representing the Outlook Sent Items folder.

mailitem.Send()

Sends the email. Using the Send method displays a security warning.

mailitem.SenderEmailAddress

Returns the address of the user sending the email.

mailitem.SenderName

Returns the name of the user sending the email.

mailitem.Sensitivity [= olSensitivity]

Sets or returns the sensitivity of the email. Can be one of these settings:

 olConfidential
 olNormal
 olPersonal
 olPrivate

mailitem.Subject [= setting]

Sets or returns the text displayed in the Subject field of the email.

mailitem.To [= setting]

Sets or returns the addresses included in the To field of the email. Separate multiple addresses with semicolons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.8. RoutingSlip Members
Use the RoutingSlip object to control the distribution of a workbook through email. Use the Workbook object's RoutingSlip
property to get a reference to this object, and use the Workbook object's Route method to send the workbook. The
RoutingSlip object has the following members . Key members (shown in bold) are covered in the following reference
section:

Application Creator

Delivery Message

Parent Recipients

Reset ReturnWhenDone

Status Subject

TrackStatus

routingslip.Delivery [= xlRoutingSlipDelivery]

Sets or returns the routing sequence for the workbook. Can be xlOneAfterAnother or xlAllAtOnce.

routingslip.Message [= setting]

Sets or returns the text to include in the body of the email.

routingslip.Recipients [= setting]

Sets or returns an array containing the addresses of the recipients to include in the To field of the email. The order of
the items in the array determines the order of delivery.

Setting this property displays an Outlook security warning. Don't run code to set this
property from within the Visual Basic Editor (as when debugging) since it may cause Excel
to lock up.

You can use the Split function to convert a string containing multiple addresses into an array, as shown here:

 ' Don't run this from VBE! Use Tools>Macros>Macro>Run instead.
 Sub RouteActiveWorkbook()
 Dim wb As Workbook, rs As RoutingSlip
 ' Trap error in case user cancels send.
 On Error Resume Next
 Set wb = ActiveWorkbook
 ' Get the routing slip.
 Set rs = wb.RoutingSlip
 ' Clear it.
 rs.Reset
 ' Set routing list. Use Split to convert address list to array.
 rs.Recipients = Strings.Split("someone@microsoft.com;" & _
 "someone@yourcompany.com;someoneelse@yourcompany.com", ";")
 rs.Subject = wb.Name
 rs.Message = "Please review and route on."
 ' Send the message.
 wb.Route

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wb.Route
 On Error GoTo 0
 End Sub

routingslip.Reset()

Clears the routing slip.

routingslip.ReturnWhenDone [= setting]

True routes a copy of the workbook back to the original sender when the last recipient closes the workbook. That
recipient is prompted whether to send the email.

routingslip.Status

Returns the status of the workbook in the routing cycle. Can be one of these settings:

 xlNotYetRouted
 xlRoutingInProgress
 xlRoutingComplete

routingslip.Subject [= setting]

Sets or returns the text in the Subject field of the email.

routingslip.TrackStatus [= setting]

True tracks the status of the workbook as it is routed between recipients. This property can be set only if Status is
xlNotYetRouted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Extending Excel
These chapters teach you the advanced programming techniques used to create Excel add-ins, use
external libraries, access data from the Web, use the next generation of programming tools, and secure
your applications. These tasks extend Excel by building new components such as add-ins and by
incorporating a wide range of existing components, from Windows DLLs to .NET assemblies. Since many
of these topics are conceptual, these chapters feature more how-to and less reference than Part II.

Chapter 22, Building Add-ins

Chapter 23, Integrating DLLs and COM

Chapter 24, Getting Data from the Web

Chapter 25, Programming Excel with .NET

Chapter 26, Exploring Security in Depth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22. Building Add-ins
Creating an add-in in Excel is deceptively easyjust save the workbook as an add-in file (XLA). That's deceptive, because
that's really not all there is to it. You need to combine many of the skills already covered in this book to create effective
add-ins for others. This chapter brings those skills together and walks you through the best programming practices for
creating add-ins.

This chapter includes task-oriented reference information for the AddIn object.

Code used in this chapter and additional samples are available in ch22.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.1. Types of Add-ins

From a user's perspective, an add-in is a file that you load by selecting Tools Add-ins from within Excel. Add-ins
extend Excel in some way and usually display a toolbar or add menu items as a way to get at their features.

Table 22-1 lists the add-ins that ship with Excel. There also are many free sample add-ins available by searching
http://office.microsoft.com/ for "Excel add-ins."

Table 22-1. Add-ins installed with Excel
Add-in Provides Adds menu item

Analysis ToolPak Advanced functions for financial and scientific data analysis Tools Data Analysis

Analysis ToolPak VBA Support for using the Analysis Toolpak functions from Visual
Basic None

Conditional Sum
Wizard Formulas to sum data in lists Tools Conditional

Sum

Euro Currency Tools Conversion and formatting for the Euro currency Tools Euro
Conversion

Internet Assistant VBA Support for saving worksheets as HTML from Visual Basic None

Lookup Wizard Wizard to help create formulas to find value in a range Tools Lookup

Solver What-if analysis of data Tools Solver

From a developer's perspective, add-ins are Excel applications without a worksheet interface. Instead, add-ins act on
objects in the currently loaded workbook. There are two main types of add-ins:

Code-only add-ins provide user-defined functions that can be used from Excel formulas or within Visual Basic.

Visual add-ins provide wizards or toolbars to help users performs specific actions.

Some add-ins combine these two types. For example, the Analysis ToolPak VBA provides both the Data Analysis Wizard
in Excel and provides access to those analysis functions from Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2. Code-Only Add-ins
Of the two add-in types, code-only add-ins are the simplest because they have no visual interface. To create a code-
only add-in, follow these steps:

1. Create a new workbook, open the Visual Basic Editor, and write your user-defined functions.

2. Set project properties .

3. Optionally, delete unneeded worksheets.

4. Save file as a workbook.

5. Save file as an add-in.

6. Create help page or file for the add-in.

7. Close and test the add-in.

For example, I collected general-purpose procedures from earlier chapters in this book and organized them into several
modules in a new workbook, as shown in Figure 22-1.

To set project properties, right-click the Project window and select Properties. I set the sample project properties as
shown in Figure 22-2 and listed in Table 22-2.

Table 22-2. Sample add-in project property settings
Tab Field Setting

General Project Name Ch22

 Project Description Numeric, text, and file functions

 Help File Name http://www.excelworkshop.com/SampleHelp/Ch22.aspx

Protection Lock Project for Viewing Selected

 Password Excel2003

 Confirm Password Excel2003

Figure 22-1. Write add-in code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22-2. Set add-in properties

Using a web page as the help file name makes it easier to maintain and distribute the Help for the add-in. You can even
add links on the help page to update the add-in itself. Locking the project for viewing is very common for add-ins since
you usually don't want others to alter your code. A simple password is usually sufficient protection.

You can delete the unneeded worksheets from the workbook if you like, but you must leave at least one worksheet. The
sample add-in doesn't use the remaining sheet or workbook classes, but there is no way to hide or completely remove
them.

22.2.1. Save Add-ins

Why save an add-in as both a workbook (.xls) and an add-in (.xla) file? By default, Excel saves .xla files to the
%UserProfile%\Application Data\Microsoft\AddIns folder. That folder is hidden in Windows XP and it's generally easier
to just work from the .xls source file and "compile" the file to the Addins folder by saving it as an .xla file.

After you save the file as an Excel add-in, close the file so you don't inadvertently make changes to that .xla file. In my
opinion, you should make changes only through the .xls source file, because you can always save that file in a different
format, but it is difficult to convert an .xla file back to a workbook, template, or other format. Excel doesn't enforce that
approach, so you're free to not follow my advice. However, you may regret it if you later decide to covert your add-in to
an Excel template (.xlt).

Help files for add-ins can be created a number of ways. For this sample, I created a web
page from the SharePoint document library. See Chapter 6 for more information on
creating help files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2.2. Create a Test Workbook

To test the add-in:

1. Close the .xla file you just saved.

2. Create a new workbook.

3. Select Tools Add-Ins. Excel displays the Add-Ins dialog box. Your new add-in should appear in the list of
Add-Ins, Available as shown in Figure 22-3.

4. Select the add-in you just created and click OK.

5. Choose Insert Function and select User Defined from the category list. The functions from your add-in
should appear as shown in Figure 22-4.

6. Use Insert Function to create formulas that use the add-in on the test worksheet. Click Help on This Function to
see the help page.

Figure 22-3. Load the add-in

Figure 22-4. Use Insert Function to test the add-in and view Help

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2.3. Use the Add-in from Code

The procedures in this add-in can also be used from Visual Basic code in the test workbook. To use the add-in from
code:

1. From the Visual Basic Editor, choose Tools References. Visual Basic displays the References dialog.

2. Select the add-in from the Available References list and click OK.

The add-in won't appear in the Available References list if it was not loaded from
the Add-Ins dialog, as shown in Figure 22-3.

3. Write code to test the add-in. Press F2 to view the add-in in the Object Browser as shown in Figure 22-5.

Figure 22-5. Using the add-in from code

22.2.4. Change the Add-in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can't rebuild the add-in while it is loaded in Excel, and you can't unload the add-in if it is referenced from within
Visual Basic. If you are creating the add-in from an .xls source file (as I recommend) you must take these steps before
making changes:

1. Close any test workbook that contains code referencing the add-in. That removes the lock that prevents the
add-in from unloading.

2. Deselect the add-in from the Add-Ins dialog box (Figure 22-3) to unload the file.

3. Open the .xls source file and make your changes.

4. Save the .xls file as an .xla file and then close it.

5. Reselect the add-in in the Add-Ins dialog box.

You don't need to remove the references made in Visual Basic. Just closing those workbooks removes the lock. When
you reopen those workbooks, the reference will be updated.

22.2.5. Programming Tips

When creating add-ins, the following tips will help you avoid common pitfalls:

Avoid referencing external libraries. Any reference that you include in your add-in must be present on the user's
machine, and that makes deploying the add-in more difficult.

Use modules to organize procedures. Module names group the add-in procedures in the Object Browser, as
shown in Figure 22-5.

Use module names that don't conflict with names from the VBA or Excel type libraries. Type libraries have
priority, and if you use a module name like Math in your add-in, that module won't support the Auto Complete
feature.

Lock the project for viewing before saving it as an add-in. Otherwise, the Visual Basic Editor will display the
add-in in code windows when the user goes to edit a macro. That is confusing for most users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.3. Visual Add-ins
Visual add-ins interact with the active sheet, selected range, or active workbook through menu items, dialog boxes, and
toolbars that you create from within the add-in. By convention, visual add-ins add a menu item to the Tool menu in
Excel (see Table 22-1).

Add-ins provide the following events that let you add and remove menu items and toolbars when the add-in is installed
or uninstalled:

 ' ThisWorkbook class
 Private Sub Workbook_AddinInstall()
 ' Add menu items and toolbars here.
 End Sub

 Private Sub Workbook_AddinUninstall()
 ' Remove menu items and toolbars.
 End Sub

The Workbook_Open and Workbook_BeforeClose events aren't as useful from add-ins as the preceding events because they
occur too oftenwhenever Excel opens or closes. The Workbook_AddinInstall and Workbook_AddinUninstall events occur only when
the user selects or deselects the add-in from the Add-Ins dialog (Figure 22-3).

22.3.1. Add a Menu Item

To add a menu item for an add-in, follow these general steps:

1. Get a reference to the Tools pop-up menu on the worksheet's menu bar.

2. Find the location in that menu where you want to add the item. Usually, I add menu items just before the last
separator bar (the next-to-last group).

3. Create a new command bar button control and add it to the menu.

4. Set the control's Tag, OnAction, and Caption properties.

5. Optionally repeat the task for the Chart menu bar.

The following code adds a menu item that displays the CodeToolbar created in Chapter 19; I've also included the code to
remove the menu item since I'll use that next:

 ' Menu code module.
 Sub AddMenuItem(Optional cb As String = "Worksheet Menu Bar")
 Dim cpop As CommandBarPopup, cbc As CommandBarControl, _
 loc As Integer
 ' Get the Tools menu.
 Set cpop = Application.CommandBars(cb).FindControl(, 30007)
 ' Find the last separator bar.
 For Each cbc In cpop.Controls
 If cbc.BeginGroup Then loc = cbc.index
 Next
 ' Insert the menu item before the last separator bar.
 Set cbc = cpop.Controls.Add(msoControlButton, , , loc, False)
 cbc.Caption = "&CodeToolbar"
 cbc.Tag = "mnuCodeToolbar"
 cbc.OnAction = "mnuCodeToolbar_Click"
 End Sub

 ' Procedure for menu item's OnAction property.
 Sub mnuCodeToolbar_Click()
 Dim cbc As CommandBarButton
 ' Get the menu item
 Set cbc = Application.CommandBars("Worksheet Menu Bar").FindControl(_
 , , "mnuCodeToolbar", , True)
 ' Exit if menu item not found.
 If cbc Is Nothing Then Exit Sub
 ' Toggle the state (adds or removes a check mark
 ' beside the menu item).
 cbc.State = Not cbc.State
 ' Display or hide the toolbar depending on state.
 If cbc.State Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If cbc.State Then
 BuildCodeToolbar
 Else
 DeleteCodeToolbar
 End If
 End Sub

 Sub RemoveMenuItem(Optional cb As String = "Worksheet Menu Bar")
 Dim cbc As CommandBarControl
 ' Find the menu item.
 Set cbc = Application.CommandBars(cb).FindControl(_
 , , "mnuCodeHelper", , True)
 ' If it's found, delete it.
 If Not (cbc Is Nothing) Then _
 cbc.Delete
 End Sub

The mnuCodeToolbar_Click procedure toggles a check mark on the menu item and displays the CodeToolbar when selected as
shown in Figure 22-6.

Figure 22-6. Adding a menu item for an add-in

To create the menu item when the add-in is installed, call the AddMenuItem procedure from the Workbook_AddinInstall event
in the ThisWorkbook class. While you're there, add some code to remove the menu item when the add-in is uninstalled.
The following code shows both procedures:

 ' ThisWorkbook class
 Private Sub Workbook_AddinInstall()
 ' Add menu items and toolbars here.
 AddMenuItem "Worksheet Menu Bar"
 AddMenuItem "Chart Menu Bar"
 End Sub

 Private Sub Workbook_AddinUninstall()
 ' Remove menu items and toolbars.
 RemoveMenuItem "Worksheet Menu Bar"
 RemoveMenuItem "Chart Menu Bar"
 End Sub

The preceding code adds the menu item to both of the built-in Excel menu bars so it is available for both worksheets
and charts.

22.3.2. Add a Toolbar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As I discussed in Chapter 19, toolbars can be attached to a file. If you attach a toolbar to an add-in, it will become
available whenever the add-in is loaded. The only time you need to create a toolbar in code is when it contains
dynamically created controls like those demonstrated by the CodeToolbar sample.

I created that sample for you in Chapter 19 using the BuildCodeToolbar procedure; and I showed how to delete the toolbar
in Chapter 19 using the DeleteCodeToolbar procedure. See the sample workbook, or turn back to Chapter 19 to see those
examples. I use both those procedures in the following section, which demonstrates how to dynamically update the
toolbar when the user activates a new workbook.

22.3.3. Respond to Application Events

One of the key tricks to add-in programming is learning how to respond to application-level events. I showed you how
to do that way back in Chapter 4, but in case that slipped by you, I'll spell out the steps again:

1. In the ThisWorkbook class, declare an Application object variable using the WithEvents keyword.

2. In the Workbook_Open event, initialize the object variable.

3. Write code for the application events using the object variable.

The following code illustrates those steps using the CodeToolbar example:

 ' ThisWorkbook class
 ' Declare an application object WithEvents.
 Dim WithEvents m_app As Excel.Application

 ' Add-in level event.
 Private Sub Workbook_Open()
 ' Initialize the Application object variable so you
 ' can detect events.
 Set m_app = Application
 End Sub

 ' Application-level events.
 Private Sub m_app_WorkbookActivate(ByVal Wb As Workbook)
 ' When the active workbook changes, update toolbar.
 BuildCodeToolbar
 End Sub

 Private Sub m_app_WorkbookBeforeClose(ByVal Wb As Workbook, Cancel As Boolean)
 ' Remove the toolbar if the workbook closes.
 DeleteCodeToolbar
 End Sub

Don't confuse the add-in-level events (Workbook_Open) with the application-level events
(m_app_WorkbookActivate and m_app_WorkbookBeforeClose).

You can respond to events on the currently active workbook using a similar technique with the passed-in Wb argument
in m_app_WorkbookActivate procedure as shown by the following changes in bold:

 ' ThisWorkbook class
 Dim WithEvents m_app As Excel.Application
 Dim WithEvents m_wb As Workbook

 Private Sub m_app_WorkbookBeforeClose(ByVal Wb As Workbook, Cancel As Boolean)
 ' Remove the toolbar if the workbook closes.
 DeleteCodeToolbar
 ' Initialize the workbook object variable
 Set m_wb = Wb
 End Sub

 ' Workbook-level event.
 Private Sub m_wb_SheetActivate(ByVal Sh As Object)
 Debug.Print Sh.Name & " is active."
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

And you can navigate down the object model to respond to events on the active worksheet, chart, and so on using the
same technique.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.4. Set Add-in Properties
The document properties of the source workbook determine the title and description displayed in the Add-Ins dialog. To
set the properties of an add-in:

1. Open the source workbook for the add-in.

2. Choose File Properties. Excel displays the document Properties dialog box (Figure 22-7).

3. Set the properties and click OK.

4. Save the source workbook, then save the file again as an .xla file.

The Title property appears in the Add-Ins dialog in the list of available add-ins. The Comments property appears as the
description at the bottom of the dialog when the add-in is selected. The other document properties are not displayed,
but are available through the AddIn object.

Figure 22-7. Setting add-in document properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.5. Sign the Add-in
Strictly speaking, add-ins don't have to be signed. By definition, add-ins contain code and the user must take
affirmative action to install and load an add-in, so Excel doesn't display security warnings when a user loads an
unsigned add-in in Excel.

However, you may want to sign an add-in anyway. There are three reasons for this:

An unsigned file displays a security warning while you develop the add-in (which is annoying).

Signing the add-in validates that the add-in is from you and hasn't been changed by someone else.

Add-ins can potentially be loaded by an external reference from another workbook, which does display a
security warning if the add-in is unsigned.

See Chapter 6 for instructions on getting a digital signature and signing code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.6. Distribute the Add-in
The easiest way to distribute an add-in is to copy it to the user's AddIns folder . That is the default location to which
Excel saves add-ins, and any add-ins placed there are automatically displayed in the Add-Ins dialog box (Figure 22-3).

The following VBScript file installs an add-in in the user's AddIns folder and loads the add-in in Excel:

 ' InstallAddin.vbs
 ' Get the objects used by this script.
 Dim oXL, oAddin, fso, wsh, srcPath, destPath, addin
 addin = "\ch22.xla"
 Set oXL = CreateObject("Excel.Application")
 Set fso = CreateObject("Scripting.FileSystemObject")
 Set wsh = WScript.CreateObject("WScript.Shell")
 ' Make Excel visible in case something goes wrong.
 oXL.Visible = True
 ' Create a temporary workbook (required to access add-ins)
 oXL.Workbooks.Add
 ' Get the current folder.
 srcpath = fso.GetFolder(".")
 destPath = wsh.Environment("PROCESS")("HOMEDRIVE") & _
 wsh.Environment("PROCESS")("HOMEPATH") & _
 "\Application Data\Microsoft\Addins"
 ' Copy the file to the template folder.
 fso.CopyFile srcpath & addin, destpath & addin
 ' Add the add-in to Excel.
 Set oAddin = oXL.AddIns.Add(destpath & addin, true)
 ' Mark the add-in as installed so Excel loads it.
 oAddin.Installed = True
 ' Close Excel.
 oXL.Quit
 Set oXL = Nothing

To use the preceding VBScript installer with your own add-ins:

1. Change the addin variable to match your add-in filename.

2. Place the add-in and setup file in the same folder. That can be a public folder on your network, a folder on a CD,
or some other media.

3. Instruct the user to run InstallAddin.

If you want to install the add-in at a custom location or provide an uninstall facility, you might consider using Visual
Studio .NET to create a setup and deployment project:

1. Create a setup and deployment project.

2. Set the project's Manufacturer and ProductName properties.

3. Add the add-in to the Application Folder in the File System window.

4. Add the file to the HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Excel\Add-in Manager registry key.

5. Build the project.

Setup and deployment projects create Windows installation programs that walk the user through the setup and also
provide an uninstall facility. See the Ch22AddinInstall sample project (Ch22AddinInstall.sln) for an example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.7. Work with Add-ins in Code
The previous VBScript sample in "Distribute the Add-in" demonstrates using Excel's AddIn object to load an add-in as
part of the installation process. That's the primary use of the AddIns collection and AddIn object: loading, unloading, and
enumerating add-ins.

For example, the following code lists the name and state of all the add-ins that are currently installed:

 Sub ListAddins()
 Dim ad As AddIn
 Debug.Print "Title", "File name", "Loaded?"
 For Each ad In Application.Addins
 Debug.Print ad.Title, ad.FullName, ad.Installed
 Next
 End Sub

The Installed property determines whether installed add-ins are loaded in Excelnot whether they are installed on the
user's system as the name suggests. To load an add-in from code, set its Installed property to True. To unload it, set
Installed to False. Use the Add method to install an add-in on the user's system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.8. AddIn and AddIns Members
Use the AddIns collection to copy add-ins onto the user's system. Use the Application object's AddIns property to get a
reference to this collection. Use the AddIn object to load or unload the add-in in Excel. The AddIns collection and AddIn
object have the following members . Key members (shown in bold) are covered in the following reference section:

Add

1
Application2

Author CLSID

Comments Count1

Creator2 FullName

Installed Item1

Keywords Name

Parent2 Path

progID Subject

Title
1 Collection only

2 Object and collection

addins.Add(Filename, [CopyFile])

Installs an add-in and make it available from the Add-Ins dialog. Returns an add-in object.

Argument Settings

Filename The path and filename of the add-in to install.

CopyFile True copies the file from removable media to the hard disk; False does not copy the file. Ignored if the
file is already located on a fixed media.

Set the Installed property to True to load the add-in in Excel.

addin.Author

Returns the value from the Author property of the add-in's source workbook.

addin.Comments

Returns the value from the Comments property of the add-in's source workbook.

addin.FullName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the full path and filename of the add-in.

addin.Installed [= setting]

True loads the add-in in Excel; False unloads the add-in.

addin.Keywords

Returns the value from the Keywords property of the add-in's source workbook.

addin.Path

Returns the path of the add-in file.

addin.Subject

Returns the value from the Subject property of the add-in's source workbook.

addin.Title

Returns the value from the Title property of the add-in's source workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23. Integrating DLLs and COM
VBA and Excel provide an extensive set of objects, properties, and methods that you can use to perform almost any
imaginable task. However, in some areas those members don't do exactly what you need or don't do the task as simply
as you might like. In those cases, you can extend your set of programming tools by bringing in functions from dynamic
link libraries (DLLs) and objects from other Common Object Model (COM) applications.

DLLs and COM are Windows-only features. They aren't present on the Macintosh.

DLLs grant you access to the low-level functions used by Windows itself. Just about any task that Windows performs
can be accomplished in your Visual Basic code by accessing a system DLL.

COM is for higher-level tasks. Excel implements COM as the technology used to expose its objects, properties, and
methods to Visual Basic. All of the other Office applications and many non-Microsoft applications implement COM, too.
You can use any of those applications from Excel Visual Basic.

Code used in this chapter and additional samples are available in ch23.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

23.1. Use DLLs
Dynamic link libraries (DLLs) are used everywhere in Windows. Many of the Visual Basic and Excel members merely
encapsulate Windows DLL callsfor example, the Shell function is equivalent to the Windows WinExec function in
kernel32.dll that is at the core of Windows.

There's little point in using WinExec instead of Shell; however, many other DLL functions aren't available from Visual Basic
or Excel. In general, those functions give you access to low-level tasks that aren't the usual focus of Visual Basic or
Excel.

To use a function from a DLL:

1. Find the function you want to use.

2. Declare the function at the module level.

3. Call the function within your code.

23.1.1. Find the Right Function

Windows is enormous, and finding the function for a specific task within its forest of DLLs can be daunting. The best
guide through the Win32 API is Programming Windows by Charles Petzold (Microsoft Press). The second-best (and free)
guide is the online Microsoft Developer's Network found at http://msdn.microsoft.com.

You should look to DLLs only when you have a specific task in mind and you've already exhausted possible solutions
through the built-in members provided by Visual Basic and Excel. Often, programmers resort to DLL functions when the
built-in features of Excel aren't specific enough. For example, the Wait method in Excel has a one-second resolution. If
you want to pause for a fraction of a second, you need to resort to the Sleep DLL function.

One of the best tools for finding Win32 API functions is the API Viewer utility (APILOAD.EXE) that shipped with the
Visual Basic Standard and Professional Editions , Versions 4.0 through 6.0. To use the API Viewer:

1. Run APILOAD.EXE.

2. Choose File Load Text File and select WIN32API.TXT.

3. Choose Declares from the drop-down list and browse through the list of functions or type a few letters to find
functions by name as shown in Figure 23-1.

What if you don't have Visual Basic Professional or Standard Edition? The WIN32API.TXT
file is freely distributable and you can find it with this book's samples. You can browse that
file using Notepad or any other text editor.

23.1.2. Declare and Use DLL Functions

Use the API Viewer (Figure 23-1) or open WIN32API.TXT in Notepad to get the declarations of DLL functions you want
to use in Visual Basic. The declaration tells Visual Basic how to find the function and what arguments the function
expects. For example, the declaration for the Sleep function looks like this:

' Module level.
Public Declare Sub Sleep Lib "kernel32" _
 (ByVal dwMilliseconds As Long)

Figure 23-1. Use the API Viewer to hunt for DLL functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23-1. Use the API Viewer to hunt for DLL functions

That means the Sleep function is found in kernel32.dll, takes a single long-integer argument, and doesn't return a value.
Once you declare the function, you can use it in code just like any other procedure:

Sub Pause()
 ' Pause 1/2 second.
 Sleep 500
End Sub

In Visual Basic terminology, Sleep is a Sub, not a function. However, most DLLs are written in C, which doesn't use that
word. In C, all procedures are functions; functions that don't return values are called void functions .

However, most DLL functions do return a value, and that value usually indicates whether the function succeeded. If a
function returns 0, the function failed. Any other value indicates success. For example, the following code plays
boing.wav; if the sound can't play, the code displays a message in the Immediate window:

Public Declare Function sndPlaySound Lib "winmm.dll" Alias _
 "sndPlaySoundA" (ByVal lpszSoundName As String, ByVal uFlags As Long) _
 As Long

Sub Bounce()
 Dim res As Long
 res = sndPlaySound("boing", 0)
 If res = 0 Then _
 Debug.Print "Couldn't bounce."
End Sub

23.1.3. Use Flags and Constants

The uFlags argument in sndPlaySound is an example of another common C convention: you can often specify options using
a long integer comprised of bit flags . I discussed those back in Chapter 3, but they haven't been much use up till now.
Bit flags are numeric constants that can be combined into a single number. The following code demonstrates using bit
flags to play a sound over and over again:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

flags to play a sound over and over again:

Public Declare Function sndPlaySound Lib "winmm.dll" Alias _
 "sndPlaySoundA" (ByVal lpszSoundName As String, ByVal uFlags As Long) _
 As Long
Public Const SND_ASYNC = &H1 ' play asynchronously
Public Const SND_LOOP = &H8 ' loop the sound until next sndPlaySound
Public Const SND_SYNC = &H0 ' play synchronously (default)

Sub BeginBouncing()
 sndPlaySound "boing", SND_ASYNC Or SND_LOOP
End Sub

Sub StopBouncing()
 sndPlaySound "boing", SND_SYNC
End Sub

I included StopBouncing because listening to boing.wav over and over again gets really annoying. You can find constants
for each function by searching for the function by name at http://msdn.microsoft.com, then you can find the
corresponding values for those constants using the API Viewer or by searching WIN32API.TXT.

23.1.4. Work with Strings

The quickest way to end your DLL programming experience is to pass a DLL an uninitialized string. For example, the
following code will result in the error shown in Figure 23-2:

Public Declare Function GetTempFileName Lib "kernel32" Alias _
 "GetTempFileNameA" (ByVal lpszPath As String, _
 ByVal lpPrefixString As String, ByVal wUnique As Long, _
 ByVal lpTempFileName As String) As Long

Sub Crash()
 Dim fil As String, res As Long
 res = GetTempFileName(ThisWorkbook.Path, "xl", 0, fil)
 Debug.Print fil
End Sub

Figure 23-2. You'll crash if you don't initialize your strings

Don't send Microsoft this error reportit was your fault! To avoid this problem, fill a string with spaces before you pass it
to a DLL. You need to make the string long enough to fit the passed-in data; 128 characters is usually sufficient:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to a DLL. You need to make the string long enough to fit the passed-in data; 128 characters is usually sufficient:

Function CreateTempFile() As String
 Dim fil As String, res As Long
 ' Initialize the string!
 fil = Space(128)
 ' Pass the string to the DLL function.
 res = GetTempFileName(ThisWorkbook.Path, "xl", 0, fil)
 ' Return the string.
 CreateTempFile = fil
End Function

Figure 23-2 underscores the risks of working with DLLsyou are leaving the relatively safe
world provided by Excel and are performing without a safety net. Mistakes can crash Excel
and potentially shut down Windows. Save your work frequently when working with DLLs.

C strings end with a null character (ASCII 0). That's different than Visual Basic, which prepends each string with its
length. In some cases, like the preceding example, the null character is ignored. However, in other cases, you need to
trim off the excess characters when the DLL function returns. In those cases, the DLL function returns the length of the
string argument; the GetWindowsDirectory function is a good example:

Public Declare Function GetWindowsDirectory Lib "kernel32" _
 Alias "GetWindowsDirectoryA" (ByVal lpBuffer As String, _
 ByVal nSize As Long) As Long

Function GetWinDir() As String
 Dim wdir As String, res As Integer
 ' Initialize the string.
 wdir = Space(128)
 ' Call the DLL function (returns length of result).
 res = GetWindowsDirectory(wdir, 128)
 ' Trim off excess before returning the result.
 WinDir = Left(wdir, res)
End Function

You can actually see the null character in the string if you set a breakpoint at End Function, run the preceding code, and
then position the mouse pointer over the wdir variable as shown in Figure 23-3.

Figure 23-3. In some strings, you need to trim off nulls

The CreateTempFile and GetWinDir examples demonstrate how to create wrappers for DLL functions. Wrappers convert the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CreateTempFile and GetWinDir examples demonstrate how to create wrappers for DLL functions. Wrappers convert the
DLL functions into Visual Basic functions that are much less confusing to use elsewhere in code. It is good programming
practice to put all of your DLL declarations in a single module and include wrappers for each of those functions.

23.1.5. Handle Exceptions

Most DLL functions return a value indicating whether they succeeded. A return value of 0 indicates that the function did
not complete its task. That type of exception is different from the error in Figure 23-2, which halts everything.

Just as with Visual Basic functions, you should anticipate and handle exceptions from DLL functions in your code,
particularly when working with nonmemory resources like hard disks, printers, and other devices. To handle an
exception from a DLL:

1. Call the DLL function.

2. Check the value returned by the function.

3. If the returned value is zero, handle the exception and optionally check Err.LastDllError to identify what went
wrong.

The following changes to CreateTempFile demonstrate detecting and handling exceptions from a DLL function. If the caller
tries to create a temporary file at an invalid path, GetTempFileName returns 0 and the code displays a message in the
Immediate window. Optionally, you could uncomment the Error statement to raise a trappable Visual exception:

Function CreateTempFile(Optional path As String = "") As String
 Dim fil As String, res As Long
 ' Initialize the string!
 fil = Space(128)
 If path = "" Then path = ThisWorkbook.path
 ' Pass the string to the DLL function.
 res = GetTempFileName(path, "xl", 0, fil)
 ' If error, return empty string.
 If res = 0 Then
 Debug.Print "Error creating temp file: " & Err.LastDllError
 ' Optionally, raise can't Create temporary file error.
 ' Error 322
 End If
 ' Trim the excess off the string and return it.
 CreateTempFile = Left(fil, res)
End Function

The Err object's LastDllError property returns the error number from the DLL function. Those numbers are listed as
ERROR_xxx constants in WIN32API.TXT, but it is almost impossible to know which error codes to expect from a DLL. The
easiest way to solve this problem is to pass in values you know to be invalid and see what error code is returned. You
can then search WIN32API.TXT to get the descriptive constant.

For example, typing the following line of code in the Immediate window displays error code 276:

?CreateTempFile("z:\")

A quick search of WIN32API.TXT for 267 yields this constant:

' The directory name is invalid.
Const ERROR_DIRECTORY = 267&

I could use this constant to create a more descriptive message, but in reality there's not much I can do other than
report the error and end the operation as gracefully as possible.

One of the side effects of returning 0 when an error occurs is that Left(fil, res) returns an empty string whenever there's
an error. That's a good technique because it makes it easy to check if the function succeeded elsewhere in code, as
shown here:

Sub TestCreateFile()
 Dim tmp As String
 ' Get a temporary file.
 tmp = CreateTempFile
 If tmp <> "" Then
 ' Open the file and write some data
 QuickWrite "This is some data", tmp, True
 ' Display the file in Notepad.
 Shell "notepad.exe " & tmp
 Else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Else
 Debug.Print "CreateTempFile failed."
 End If
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

23.2. Use COM Applications
When Microsoft first developed COM, the company envisioned Office applications as building blocks that programmers
could use to assemble customer-specific solutions. That vision has partly come trueit's not uncommon for a Word
document to include data from Excel or for a PowerPoint presentation to use Word and Excel datahowever, that reality
is not nearly as grand as Microsoft's early marketing demos.

Meanwhile, Excel's feature set has grown to include its own spellchecker, drawing tools, mail, and Internet capabilities.
In many ways, there is less reason to program across applications than there once was.

But here's the kicker: most of those new features were made possible because Microsoft implemented them as COM
objects. That's the reason Excel's drawing tools look suspiciously like Visio objects. In fact, Microsoft's vision came true;
it's just that Microsoft became the solution provider in the Office realm.

Is COM Modular?

While I was at Microsoft working on OLE 2.0 (later called COM), I complained to Brian Johnson about all
the DLLs you had to install and register to get automation to work. "It's not modular," I whined. Brian
looked at me and replied "It is modular; you just need all the modules!"

23.2.1. Program Other Office Applications

You can program any of the Office applications from Excel by following these steps:

1. In the Visual Basic Editor, choose Tools References and select the Office application from the list of
Available References (Figure 23-4) and click OK to close the dialog.

2. Declare an object variable using one of the Office application's objects.

3. Create an instance of that object.

4. Use the properties and methods of the object.

5. Close the object and set the object variable to Nothing when you are done.

Figure 23-4 shows establishing a reference to the Word object library. COM applications expose their object through
type libraries (.tlb) or object libraries (.olb). Those two kinds of libraries are often used interchangeably and the words
mean basically the same thing.

Figure 23-4. Referencing Word from Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've created a reference to the application, you can view the objects the application provides in the Object
Browser (Figure 23-5).

The following code demonstrates the programming steps for working with the Word application:

' Worksheet class
' Step 2: Declare object.
Dim WithEvents m_wd As Word.Application

Sub StartWord()
 ' Step 3: Create a new instance of the application.
 Set m_wd = New Word.Application
 ' Step 4: Use properties and methods (makes Word visible).
 m_wd.Visible = True
End Sub

Sub CloseWord()
 ' Step 5: Close Word.
 If Not (m_wd Is Nothing) Then m_wd.Quit
 ' Set the variable to Nothing.
 Set m_wd = Nothing
End Sub

Figure 23-5. Browsing the objects from an application

There are a couple key things to point out in the preceding code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are a couple key things to point out in the preceding code:

I wrote this code as part of a worksheet class so I could intercept events from Word by declaring the object
variable WithEvents. You can't use WithEvents from a module.

Not all objects are creatable. Within Word, you can create new instances of the Application and Document objects.
To get other objects, you have to navigate down through the object model from one of those creatable objects.

23.2.2. Integrate Word

One of the challenges of integrating COM applications is that the organization and behavior of objects are inconsistent
across applications. For example, the Excel and Word Application objects behave differently when their object variables
are set to Nothing: Excel quits if the application is not visible and there are no open workbooks, but Word continues
running.

For that reason, it is always a good idea to make objects visible when working across applications. That way, the user
can easily close the application if she needs to. It is also a good idea to call Quit and set the object variable to Nothing.

Declare Application object variables at the class or module level so they are available to all of the procedures in the class
or module. Using local variables for Application objects is impractical because it is difficult to get a reference to a specific
instance of an application once it is running.

The following code demonstrates how to use the class-level Application object created earlier to copy a selected range
from Excel into a new Word document:

Sub PasteRangeToWord()
 Dim doc As Word.Document
 ' If a range of cells is selected.
 If TypeName(Selection) = "Range" Then
 ' Start word if it's not already running.
 If m_wd Is Nothing Then StartWord
 ' Copy the selected cells.
 Selection.Copy
 ' Create a new document
 Set doc = m_wd.Documents.Add
 ' Paste the range into the Word document.
 m_wd.Selection.Paste
 End If
End Sub

Since the Application object was declared WithEvents, you can respond to Word events from within your Excel code:

Dim WithEvents m_doc As Word.Document

' Runs when a new Word document is created.
Private Sub m_wd_NewDocument(ByVal doc As Word.Document)
 Debug.Print "Created Word document."
 ' Get the Document object to detect events.
 Set m_doc = doc
End Sub

' Runs when the Word document closes.
Private Sub m_doc_Close()
 Debug.Print "Closed document."
End Sub

The preceding code uses the m_wd_NewDocument event to initialize the m_doc object variable so your Excel code can
respond to events that occur on the new document.

23.2.3. Automate PowerPoint

You can use the same steps to automate PowerPoint that you used to automate Word from Excel. PowerPoint has two
creatable objects: Application and Presentation, but only the Application object exposes events.

The following code demonstrates how to create a new slide in a presentation using a selected range of cells from Excel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code demonstrates how to create a new slide in a presentation using a selected range of cells from Excel:

' Worksheet class.
Dim WithEvents m_ppt As PowerPoint.Application
Dim m_pres As PowerPoint.Presentation

Sub StartPPT()
 Set m_ppt = New PowerPoint.Application
 m_ppt.Visible = True
End Sub

Sub PasteRangeToPPT()
 Dim sld As PowerPoint.Slide, sh As PowerPoint.Shape
 ' If a range of cells is selected.
 If TypeName(Selection) = "Range" Then
 ' Start PowerPoint if it's not already running.
 If m_ppt Is Nothing Then StartPPT
 ' Copy the selected cells.
 Selection.Copy
 ' Create a new document
 If m_pres Is Nothing Then _
 Set m_pres = m_ppt.Presentations.Add
 ' Paste the range into the PowerPoint document.
 Set sld = m_pres.Slides.Add(1, ppLayoutClipartAndText)
 ' Add a title.
 Set sh = sld.Shapes(1)
 sh.TextFrame.TextRange.Text = ActiveSheet.Name
 ' Paste the range.
 Set sh = sld.Shapes(3)
 sh.TextFrame.TextRange.Paste
 ' Replace second shape with a logo.
 Set sh = sld.Shapes(2)
 sld.Shapes.AddPicture ThisWorkbook.path & "\logo.bmp", _
 False, True, sh.Left, sh.Top
 sh.Delete
 End If
End Sub

Sub ClosePPT()
 ' Step 5: Close PowerPoint.
 If Not (m_ppt Is Nothing) Then m_ppt.Quit
 ' Set the variable to Nothing.
 Set m_ppt = Nothing
End Sub

Private Sub m_ppt_NewPresentation(ByVal Pres As PowerPoint.Presentation)
 Debug.Print "Created presentation."
End Sub

The preceding code is similar to the Word example; however, PowerPoint uses Presentation, Slide, and Shape objects rather
than Word's Document, Paragraph, and Range objects.

23.2.4. Handle Exceptions

When using COM applications, exceptions are handled as trappable errors. To start detecting exceptions, use the On Error
Resume Next statement. To stop detecting exceptions, use the On Error Goto 0 statement.

There are other ways to detect exceptions in Visual Basic, but the preceding technique is the most useful one when
working with COM applications because the error codes generated are not very specific. You really have to know what
operation was just performed in order to anticipate the exceptions that can occurthe error code tells you almost
nothing.

For example, the following additions (in bold) to previous code show how to anticipate exceptions working with Word
from Excel:

Sub PasteRangeToWord()
 Dim doc As Word.Document
 ' If a range of cells is selected.
 If TypeName(Selection) = "Range" Then
 ' Start word if it's not already running.
 If m_wd Is Nothing Then StartWord
 ' Copy the selected cells.
 Selection.Copy
 ' Detect exceptions here.
 On Error Resume Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error Resume Next
 ' Create a new document
 Set doc = m_wd.Documents.Add
 ' Paste the range into the Word document.
 m_wd.Selection.Paste
 If Err Then
 ' Display message
 MsgBox "Could not paste. " & _
 "Make sure Word can run and try again.", vbExclamation And vbOKOnly
 CloseWord
 End If
 On Error GoTo 0
 End If
End Sub

Sub CloseWord()
 ' Step 5: Close Word.
 On Error Resume Next
 If Not (m_wd Is Nothing) Then m_wd.Quit
 ' Set the variable to Nothing.
 Set m_wd = Nothing
 Set m_doc = Nothing
 On Error GoTo 0
End Sub

In PasteRangeToWord are any number of different exceptions that might occur accessing the Word Document object at
runtime. Since Word is visible, the user might close the document or quit Word itself. In those cases, you can't recover;
you just notify the user and clean up so the procedure might work the next time. The situation is more straightforward
in CloseWord. Quit fails only if that instance of Word has already closed, so it's safe to ignore the exception and reset the
module-level variables.

If you like, you can add a line to display the error codes in the Immediate window to help during debugging:

Debug.Print Err.Number, Err.Description

Not all COM applications are religious about raising exceptions. PowerPoint just waits if it can't overwrite a file. After a
few seconds, it asks the user to try again. That's problematic for programmers because the application looks "hung"
during the wait and the user is likely to start clicking on stuff and pressing keys at random. If the user cancels saving,
PowerPoint does return an informative error message; however, the error code is a hexadecimal number, as shown by
the following Immediate Windows statements:

?Err.Number, Err.Description
-2147467259 Method 'SaveAs' of object '_Presentation' failed
?hex(-2147467259)
80004005

It's not unCOMmon to get unusual-looking error numbers. Use the Hex function to convert
them to hexadecimal.

23.2.5. Get Help on Objects

If you're familiar with the Excel object model, you're likely to be confused by the object models of the other Office
applications. I don't think that's an indictment of their design or a vindication of Excel's. It's just that the concept of a
document and how to get at items with that document is different in each application.

There are several ways to address this problem:

Use the Object Browser to search for common method names, like Select, Paste, Save, and Open. Often that task-
oriented search will lead you to the object that you need to use to perform the task.

Open the application's VBA help file directly rather than using context-sensitive Help. In Excel 2003, context-
sensitive Help doesn't permit searching the file, which is a serious handicap. Microsoft copies the Office VBA
help files to C:\Program Files\Microsoft Office\OFFICE11\1033\ by default. You can also get help from the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

help files to C:\Program Files\Microsoft Office\OFFICE11\1033\ by default. You can also get help from the
Object Browser.

Look for samples. Use Google to search for answers within newsgroups at http://groups.google.com/ or check
out Office online at http://office.microsof.com/.

For COM applications from other vendors, check the company's web site. Often help on programming objects is not part
of the user documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24. Getting Data from the Web
Today it is hard to remember a time when the Web didn't matter, but it wasn't that long ago that it didn't even exist.
Because Excel was created long before the Web existed, it has adapted as the Web evolved. There are now three main
approaches to retrieving data from the Web:

Web queries

Retrieve data directly from a web page and import that data into a query table on an Excel spreadsheet.
Although this was one of the first web access features added to Excel (introduced in 1997), it is still very useful.

Web services

Execute applications remotely over the Web to return results in XML format. The number of services available
over the Web is growing quickly as this standard is becoming broadly adopted. Web services provide a
standardized way of exchanging parameters and retrieving results over the Websomething that is missing from
web queries .

Database access over the Web

Is now available through most database software. Since the Internet is like any other computer network, this
technique is much the same as database access over a local network and is not covered in this chapter.

This chapter describes how to use web queries and web services to retrieve data from the Web and import it into Excel.
The samples in this chapter demonstrate a variety of programming tasks with these two approaches, including passing
parameters, formatting results, getting data asynchronously, and displaying results through XML maps.

Code used in this chapter and additional samples are available in ch24.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1. Perform Web Queries
Web queries are a quick way to import data from a web page into a worksheet using a QueryTable object. To perform a
web query:

1. From the Data menu, choose Import External Data, then choose New Web Query. Excel displays the Edit Web
Query dialog shown in Figure 24-1.

Figure 24-1. Use web queries to import data directly from a web page

2. Type the address of the web page you want to import data from in the Address bar and click Go to navigate to
that page. It is usually easiest to find the page you want in your browser, then cut and paste that address into
the Edit Web Query dialog box.

3. Excel places small yellow boxes next to the items you can import from the page. Click on the item or items you
want to import and Excel changes the yellow box to a green check mark.

4. Click the Options button to set how Excel formats imported items. Formatting options are shown in Figure 24-2.

5. Close the Options dialog box and click Import. Excel displays the Import Data dialog box shown in Figure 24-3.

Figure 24-2. Set formatting options for the query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24-3. Choose the destination for the imported data

6. Click Properties to determine how the query is performed, such as how the data is refreshed. Figure 24-4 shows
the query property settings.

7. Close the Properties dialog and click OK to import the data.

Figure 24-5 shows a real-time stock quote and quote history imported from the Yahoo! web site. Yahoo! is a good
source for this type of web query because it is a free service and doesn't require you to register or sign in.

If you record the preceding web query, you'll get code that looks something like this:

 With ActiveSheet.QueryTables.Add(Connection:= _
 "URL;http://finance.yahoo.com/q/ecn?s=SNDK", Destination:=Range("A2"))
 .Name = "Real-Time Quote"
 .FieldNames = True
 .RowNumbers = False
 .FillAdjacentFormulas = False
 .PreserveFormatting = True
 .RefreshOnFileOpen = False
 .BackgroundQuery = True
 .RefreshStyle = xlOverwriteCells
 .SavePassword = False
 .SaveData = True
 .AdjustColumnWidth = True
 .RefreshPeriod = 0
 .WebSelectionType = xlSpecifiedTables
 .WebFormatting = xlWebFormattingNone
 .WebTables = "22"
 .WebPreFormattedTextToColumns = True
 .WebConsecutiveDelimitersAsOne = True
 .WebSingleBlockTextImport = False
 .WebDisableDateRecognition = False
 .WebDisableRedirections = False
 .Refresh BackgroundQuery:=False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .Refresh BackgroundQuery:=False
 End With

With ActiveSheet.QueryTables.Add(Connection:= _
 "URL;http://finance.yahoo.com/q/hp?a=01&b=5&c=2003&d=01&e=5&f=2004&g=d&s=sndk" _
 , Destination:=Range("A9"))
 .Name = "Price History"
 .FieldNames = True
 .RowNumbers = False
 .FillAdjacentFormulas = False
 .PreserveFormatting = True
 .RefreshOnFileOpen = False
 .BackgroundQuery = True
 .RefreshStyle = xlOverwriteCells
 .SavePassword = False
 .SaveData = True
 .AdjustColumnWidth = True
 .RefreshPeriod = 0
 .WebSelectionType = xlSpecifiedTables
 .WebFormatting = xlWebFormattingNone
 .WebTables = "30"
 .WebPreFormattedTextToColumns = True
 .WebConsecutiveDelimitersAsOne = True
 .WebSingleBlockTextImport = False
 .WebDisableDateRecognition = False
 .WebDisableRedirections = False
 .Refresh BackgroundQuery:=False
 End With

Figure 24-4. Use the Properties page to name the query, set how data is refreshed,
and set how cells are inserted

Figure 24-5. Using a web query to get stock price data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some key properties and methods shown in bold in the preceding sample bear mention here:

The Add method creates the query and adds it to the worksheet.

The RefreshStyle property tells Excel to overwrite existing data rather than to insert new cells each time the query
is refreshed.

The WebTables property identifies which item from the page to import. Excel assigns an index to each item on the
page, and you can import one or more items or the entire page if WebSelectionType is set to xlEntirePage.

The Refresh method imports the data onto the worksheet. Without this method, the query results are not
displayed.

The query itself consists of the Connection, WebTables, and formatting properties. If you save the web query to a query file
(.iqy), the data looks like this:

 WEB
 1
 http://finance.yahoo.com/q/hp?a=01&b=5&c=2003&d=01&e=5&f=2004&g=d&s=sndk

 Selection=30
 Formatting=None
 PreFormattedTextToColumns=True
 ConsecutiveDelimitersAsOne=True
 SingleBlockTextImport=False
 DisableDateRecognition=False
 DisableRedirections=False

When Excel updates a web query, a small, green globe is displayed in the status bar at the bottom of the screen, as
shown in Figure 24-6. This symbol indicates that the query is being refreshed from the Internet.

Figure 24-6. Excel is refreshing the query from the Internet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1.1. Modify a Web Query

You can modify a web query by right-clicking on the query and selecting Edit Query. In many cases, however, you'll
want a more automated approach. For example, you may want to let the user change the stock symbol in the previous
sample. To do that, use code to:

1. Change the Connection property of the query.

2. Refresh the query.

For example, the following code allows the user to enter a stock symbol in a named range on the worksheet to get
current and historical price data for that stock:

 Dim ws As Worksheet, qt As QueryTable
 Set ws = ThisWorkbook.Sheets("Web Query")
 Set qt = ws.QueryTables("Real-Time Quote")
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=" & _
 ws.Range("Symbol").Value
 qt.Refresh
 Set qt = ws.QueryTables("Price History")
 qt.Connection =
 "URL;http://finance.yahoo.com/q/hp?a=01&b=5&c=2003&d=01&e=5&f=2004&g=d&s="&_
 _ws.[Symbol].Value
 qt.Refresh

If you run the preceding code, you may notice that the query is not updated right away. By default, web queries are
done in the background asynchronously. This avoids tying up Excel while the web site responds to the query, but it can
cause an error if you refresh the query again before the first request has had a chance to respond. You can avoid this
by not performing the query in the background. For example, the following code turns off asynchronous queries, waiting
for a response before executing the next line:

 qt.BackgroundQuery = False
 qt.Refresh

or, more simply:

 qt.Refresh False

This causes Excel to wait while the query completes. During this time, the user can't edit cells or perform other tasks. If
this is too much of a burden, use the QueryTable object's Refreshing property to avoid asynchronous collisions:

 Set qt = ws.QueryTables("Real-Time Quote")
 If Not qt.Refreshing Then
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=" & _
 ws.[Symbol].Value
 qt.Refresh
 Else
 MsgBox "Similar query is pending, please wait a second and try again."
 End If

The preceding code checks whether the web query is already executing before calling Refresh. If a previous query is still
executing, the user is told to try again later. Notice that this code checks the status of a query performed by a single
query table. Other, different query tables may have pending results without causing a collisionyou need to check the
Refreshing property of only the target query table before attempting to change or refresh a query.

24.1.2. Perform Periodic Updates

If the data in a web query changes frequently, you may want to have Excel automatically update the information
periodically. Since web queries already run asynchronously in the background, getting them to update periodically is a
simple matter of setting a property:

 Set qt = ws.QueryTables("Real-Time Quote")
 qt.RefreshPeriod = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 qt.RefreshPeriod = 1

Now, the query will update every minute. To turn off the background query, set the RefreshPeriod to 0 as shown here:

 qt.RefreshPeriod = 0

Interestingly, the BackgroundQuery property can be False and you can still perform periodic queries. In that case, the Excel
user interface pauses periodically whenever the query is being refreshed.

24.1.3. Trap QueryTable Events

Performing web queries in the background can seem a little strangeparticularly if they are set to refresh periodically.
Most Excel actions are synchronous, and it might surprise a user to see Excel pause for a second, update some cells,
and then continue on as if nothing happened. This can become a big problem if the source of the web query changes
and causes the web query to failthe user will see an error message periodically and may not know what to do or how to
fix it (Figure 24-7).

Figure 24-7. Failed web queries may display errors asynchronously

To handle errors from asynchronous web queries, you must hook in to the QueryTable events. You have to declare a
QueryTable object variable using the WithEvents keyword in order to trap its events. WithEvents can be used in only a class
module or an Excel object module (such as the code module for a worksheet or workbook).

For example, to handle asynchronous events for a QueryTable in the wsWebQuery worksheet module, follow these steps:

1. Display the code window for the worksheet by double-clicking on wsWebQuery in the Visual Studio Project
Explorer.

2. Add the following declaration to the worksheet's code module at the class level (outside of a procedure
definition):

 Dim WithEvents qt As QueryTable

3. Select the qt object in the object list at the top of the code window, and then select AfterRefresh from the event
list to create an empty event procedure.

4. Add the following code to disable/enable the command buttons and to get feedback from the user if an error
occurs:

 Private Sub qt_BeforeRefresh(Cancel As Boolean)
 ' Disable command button.
 cmdQuote.Enabled = False
 End Sub

 Private Sub qt_AfterRefresh(ByVal Success As Boolean)
 ' If update failed, get feedback.
 If Not Success Then
 If MsgBox("An error occurred getting Web data. " & _
 "Cancel future updates?", vbYesNo, "Web Query") = vbYes Then _
 qt.RefreshPeriod = 0
 End If
 ' Reenable command button.
 cmdQuote.Enabled = True
 End Sub

5. Write code to initialize the QueryTable object and to begin updates. For example, the following procedure hooks
an existing QueryTable up to the event handlers defined earlier and sets the stock symbol the query uses:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an existing QueryTable up to the event handlers defined earlier and sets the stock symbol the query uses:

 Private Sub cmdQuote_Click()
 ' Get the QueryTable and hook it to the event handler object.
 Set qt = ActiveSheet.QueryTables("Real-Time Quote")
 ' Set the query.
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=" & [Symbol].Value
 ' Set the refresh period and make sure it's done asynchronously.
 qt.RefreshPeriod = 1
 qt.BackgroundQuery = True
 ' Refresh the data now.
 qt.Refresh
 End Sub

Now, the user can stop the automatic updates if the query fails.

One of the really strange things that can occur while you are working with asynchronous events in Excel is that the
event may run while you are editing it in Visual Basic. Often this will result in a runtime error because you haven't
completed the code you were in the process of writing. It is a good idea to stop periodic updates while working on
query table event code. You can do this by setting the query table's RefreshPeriod property to 0 in the Immediate window.

Anticipating potential asynchronous collisions can be a little tricky. One general way to deal with these is to lock out
other operations in the BeforeRefresh event and reenable operations in the AfterRefresh event by enabling and disabling the
command button as shown in Step 4. That prevents the user from changing a query while it is pending. Another way is
to check the Refreshing property (shown earlier). A final solution is not to use asynchronous queries at all.

For example, the following code gets the price history for a stock. Since price history data isn't very volatile, the code
performs the query synchronously and waits for the result:

 ' Displays one year of the current symbol's price history.
 Private Sub cmdHistory_Click()
 Dim ws As Worksheet, qt2 As QueryTable, conn As String
 Set ws = ThisWorkbook.ActiveSheet
 ' Build query string.
 conn = "URL;http://chart.yahoo.com/d?" & YahooDates(Date - 365, Date) & _
 ws.[Symbol].Value
 ' Get query
 Set qt2 = ws.QueryTables("Price History_1")
 ' Clear old history
 qt2.ResultRange.Clear
 ' Set connection property
 qt2.Connection = conn
 ' Make sure background queries are off.
 qt2.BackgroundQuery = False
 ' Refresh data
 qt2.Refresh
 End Sub

 ' Converts start and end dates to Yahoo! query string for
 ' stock history.
 Function YahooDates(dtstart As Date, dtend As Date) As String
 ' Query sample string from Yahoo! has this form:
 ' a=10&b=4&c=2003&d=1&e=5&f=2004&g=d&s=sndk
 Dim str As String
 str = "a=" & Month(dtstart) - 1 & "&b=" & Day(dtstart) & _
 "&c=" & Year(dtstart) & "&d=" & Month(dtend) - 1 & _
 "&e=" & Day(dtend) & "&f=" & Year(dtend) & "&g=d&s="
 Debug.Print str
 YahooDates = str
 End Function

When you run the preceding code, Excel changes the mouse pointer to the wait symbol and won't accept user actions
till the query returns. This provides a much simpler logical path for programming.

24.1.4. Manage Web Queries

Most of the preceding samples get an existing QueryTable, modify its properties, and then call Refresh. I could have used
the QueryTables collection's Add method to create these queries on the fly; however, you need to remember to delete
previously created QueryTables.

For example, the following code creates three new query tables on the active worksheet:

 Dim ws As Worksheet, qt As QueryTable, i As Integer
 Set ws = ActiveSheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set ws = ActiveSheet
 For i = 1 To 3
 Set qt = ws.QueryTables.Add("URL;http://finance.yahoo.com/q/ecn?s=yhoo", [A12])
 qt.Name = "Temp Query"
 qt.WebTables = "22"
 qt.WebSelectionType = xlSpecifiedTables
 qt.WebFormatting = xlWebFormattingNone
 qt.BackgroundQuery = False
 qt.RefreshStyle = xlOverwriteCells
 qt.Refresh
 Next

When this code runs, it creates three query tables on the worksheet named Temp_Query, Temp_Query_1, and
Temp_Query_2, respectively. There's no easy way to manage query tables through the Excel user interface; however, if
you press Ctrl-G, you'll see the names for the new query tables listed in the Go To dialog box (Figure 24-8).

Figure 24-8. Excel automatically numbers query tables that have the same base
name

It's possible to manually delete query tables by going to the named range and selecting Clear All, but that leaves the
name in the worksheet, and subsequent names will be indexed _4, _5, and so on. The easiest way to clean up mistaken
or trial query tables is to write some code to help you remove them. For example, the following procedure lists each
query table on a worksheet and lets you remove or keep it:

 Sub RemoveOldQueries()
 Dim ws As Worksheet, qt As QueryTable, nm As Name
 Set ws = ActiveSheet
 For Each qt In ws.QueryTables
 If MsgBox("OK to delete " & qt5.Name & "?", vbYesNo, _
 "Web Queries") = vbYes Then
 qt.Delete
 End If
 Next
 For Each nm In ws.Names
 If MsgBox("OK to delete " & nm.Name & "?", vbYesNo, _
 "Names") = vbYes Then
 nm.Delete
 End If
 Next
 End Sub

Getting rid of unneeded query tables on a worksheet can seem like an unimportant housekeeping chore, but it is very
important to avoid having redundant or unneeded queries running in the background. Background queries degrade
performance, spontaneously connect to the Internet, and can generate asynchronous errors as mentioned earlier. This
can really confuse users!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1.5. Limitations of Web Queries

Web queries are great for the ad hoc import of data onto a worksheet, but they rely on the position of elements on the
page. If the structure of the source web page changes, the query may break. This means that web queries aren't well-
suited for deployed solutions, since you are likely to get a great number of support calls if the source web page changes
or moves.

Also, you've got to compose complicated site-specific Connection properties (query strings) if you want to perform
customized queries. The YahooDates helper function shown earlier is a good example of the type of work you have to do
to get a web query to work correctly with variable data such as variable date ranges. Each web site has its own system
of sending and receiving data through query strings and it can be difficult to reverse-engineer those query strings
correctly.

These limitations are not present when using web servicesthat technique provides both a stable platform and a well-
defined programming interface. However, web services are not available for all data on the Internet so, in many, many
cases, web queries are still very useful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.2. QueryTable and QueryTables Web Query Members
Query tables are general-purpose objects that import data from a variety of sources including text files and databases.
Many of the QueryTable object members apply only to those data sources, and not to web queries. Therefore, the
members covered in this section (shown in bold) are specific to web queries:

Add

1
AdjustColumnWidth

AfterRefresh Application2

BackgroundQuery BeforeRefresh

CancelRefresh CommandText

CommandType Connection

Count1 Creator2

Delete Destination

EditWebPage EnableEditing

EnableRefresh FetchedRowOverflow

FieldNames FillAdjacentFormulas

HasAutoFormat ListObject

MaintainConnection Name

Parameters Parent2

PostText PreserveColumnInfo

PreserveFormatting QueryType

Recordset Refresh

Refreshing RefreshOnFileOpen

RefreshPeriod RefreshStyle

ResetTimer ResultRange

RobustConnect RowNumbers

SaveAsODC SaveData

SavePassword SourceConnectionFile

SourceDataFile Sql

TablesOnlyFromHTML TextFileColumnDataTypes

TextFileCommaDelimiter TextFileConsecutiveDelimiter

TextFileDecimalSeparator TextFileFixedColumnWidths

TextFileOtherDelimiter TextFileParseType

TextFilePlatform TextFilePromptOnRefresh

TextFileSemicolonDelimiter TextFileSpaceDelimiter

TextFileStartRow TextFileTabDelimiter

TextFileTextQualifier TextFileThousandsSeparator

TextFileTrailingMinusNumbers TextFileVisualLayout

WebConsecutiveDelimitersAsOne WebDisableDateRecognition

WebDisableRedirections WebFormatting

WebPreFormattedTextToColumns WebSelectionType

WebSingleBlockTextImport WebTables

1 Collection only

2 Object and collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

querytables.Add(Connection, Destination, [Sql])

Creates a new query table and adds it to the worksheet. Returns a QueryTable object.

Argument Description

Connection A string or object reference identifying the source of the data.

Destination A Range object identifying the upper-lefthand corner of the destination of the query table.

Sql If the Connection argument is an ODBC data source, this argument is a string containing the SQL query to
perform. Otherwise, including this argument either causes an error or is ignored.

The Connection argument has different forms, depending on the type of data source being queried as described in the
following table:

Data source Use to Sample connection argument

Web page Perform a web query "URL;http://finance.yahoo.com/q/ecn?s=yhoo"

The Add method's Connection argument uses the "URL;" prefix when performing a query on a web page. For example, the
following code creates a new query table containing a real-time stock quote from Yahoo!:

 Set ws = ThisWorkbook.Sheets("Other QueryTables")
 strConn = "URL;http://finance.yahoo.com/q/ecn?s=dell"
 Set qt = ws.QueryTables.Add(strConn, [QueryDestination])
 qt.Refresh

querytable.AdjustColumnWidth [= setting]

True adjusts the widths of columns to fit the data in the query table; False preserves the current column width. Default
is True.

querytable.BackgroundQuery [= setting]

True refreshes data in the query table asynchronously; False refreshes data synchronously. Default is True.

The BeforeRefresh and AfterRefresh events occur whether the query is refreshed synchronously or asynchronously. When
synchronous, both events occur before the Refresh method completes. When asynchronous, only the BeforeRefresh event
occurs before the Refresh method completes; then program flow continues.

BackgroundQuery has little discernible effect on text queries.

querytable.CancelRefresh

Cancels an asynchronous query. You can't refresh or delete a query while that query has refresh pending. When
working with asynchronous queries, you should check the query table's Refreshing property and (possibly) cancel the
pending refresh before deleting or refreshing that query again.

The following code cancels any pending refreshes before refreshing a query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code cancels any pending refreshes before refreshing a query:

 If qt.Refreshing Then qt.CancelRefresh
 qt.Refresh

querytable.Connection [= setting]

Sets or returns the data source for the query table. For web queries, this is the Connection argument used to create the
query. Getting or setting this property causes an error if the query table is created from a recordset (QueryType property
is xlADORecordset or xlDAORecordset).

The following code displays the Connection property for each query table on the active worksheet:

 Dim qt As QueryTable
 For Each qt In ActiveSheet.QueryTables
 Select Case qt.QueryType
 Case xlADORecordset, xlDAORecordset
 Debug.Print qt.Name, qt.Recordset.Source
 Case Else ' Includes Web queries.
 Debug.Print qt.Name, qt.Connection
 End Select
 Next

querytable.Delete

Deletes a query table. If the query table is refreshing asynchronously, Delete causes an error. Deleting a query table
does not remove data from cells on a worksheetit just removes the ability to refresh those cells from their data source.

The following code deletes all of the query tables on the active worksheet and clears all the data on the worksheet:

 Dim qt As QueryTable
 For Each qt In ActiveSheet.QueryTables
 If qt.Refreshing Then qt.CancelRefresh
 qt.Delete
 Next
 ActiveSheet.UsedRange.Clear

querytable.Destination

Returns a Range object containing the cell in the upper-lefthand corner of the query table.

The following code selects the first cell of a query table on the active worksheet and asks if the user wants to delete it:

 For Each qt In ActiveSheet.QueryTables
 qt.Destination.Select
 If MsgBox("Delete query table?", vbYesNo) = vbYes Then
 If qt.Refreshing Then qt.CancelRefresh
 qt.ResultRange.Clear
 qt.Delete
 End If
 Next

querytable.EditWebPage [= setting]

Sets or returns the address of the web page used by the Edit Web Query dialog box. EditWebPage is ignored for non-web
queries (QueryType is not xlWebQuery).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

queries (QueryType is not xlWebQuery).

For example, the following code performs a web query getting a quote for a specific stock, but displays the general
financial page if the user decides to edit the web query:

 Set ws = ActiveSheet
 strConn = "URL;http://finance.yahoo.com/q/ecn?s=dell"
 Set qt = ws.QueryTables.Add(strConn, [QueryDestination])
 qt.EditWebPage = "http://finance.yahoo.com/"
 qt.Refresh

querytable.EnableEditing [= setting]

True allows the user to change the query definition through the Data menu's Import External Data submenu; False
disables the Import External Data menu items. Default is True.

querytable.EnableRefresh [= setting]

True allows the user to refresh the query through the Data menu's Refresh Data item; False disables the Refresh Data
menu item. Default is True.

querytable.FetchedRowOverflow

Returns True if the number of records returned by the query exceeds the number of rows available on the worksheet.

querytable.FillAdjacentFormulas [= setting]

True causes calculated cells to the right of the query table to be repeated for each row when the query table is
refreshed; False does not repeat adjacent formulas. Default is False.

Set FillAdjacentFormulas to True in order to create row totals, or other calculations, for each row in the query table
automatically. To use this feature, create a query table, add a formula for the first row in the query table, set
FillAdjacentFormulas to True, then refresh the data.

querytable.PostText [= setting]

For web queries, sets or returns a string posted to the server when the query table is refreshed. Most web queries are
the result of HTTP GET actions; however, PostText allows you to pass data to a web address through HTTP POST.

querytable.PreserveFormatting [= setting]

True preserves the cell formatting of the query table when data is refreshed; False does not preserve formatting.
Default is False.

If PreserveFormatting is True and a refresh imports new rows of data, formatting common to the first five rows of the query
table is automatically applied to the new rows.

querytable.QueryType [= xlQueryType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a value identifying the type of data source used by the query table. Can be one of these settings:

 xlTextImport
 xlOLEDBQuery
 xlWebQuery
 xlADORecordset
 xlDAORecordSet
 xlODBCQuery

querytable.Refresh([BackgroundQuery])

Refreshes a query table from its data source. Returns True if the refresh was submitted successfully, False if the user
canceled the refresh.

Argument Description

BackgroundQuery True refreshes the data asynchronously; False refreshes the data synchronously. Default is True.

Most types of query table store connection and data source information that is used by Refresh. The exception is
recordset queriesyou must set a new recordset before calling Refresh for query tables based on recordsets. See the
Recordset property in Chapter 12 for an example.

When refreshing asynchronously, check the Refreshing property before calling Refresh. Otherwise, pending refreshes will
cause an error. The following code cancels any pending asynchronous refresh before refreshing a query table:

 If qt.Refreshing Then qt.CancelRefresh
 qt.Refresh

querytable.Refreshing

Returns True if an asynchronous refresh is pending for this query table; False if no refresh is pending.

querytable.RefreshOnFileOpen [= setting]

True refreshes the query table when the workbook is opened; False does not refresh on open. Default is False.

querytable.RefreshPeriod [= setting]

Sets or returns the number of minutes between automatic refreshes. The default is 0, for no automatic refreshing. You
can set automatic refreshing on synchronous or asynchronous queries. RefreshPeriod is ignored for query tables created
from recordsets.

The following code creates a query table from an ODBC data source and sets the query table to refresh once a minute:

 strConn = "ODBC;DRIVER=SQL Server;SERVER=.;UID=Jeff;APP=Microsoft Office " & _
 "XP;WSID=WOMBAT2;DATABASE=pubs;Trusted_Connection=Yes"
 strSQL = "SELECT titles.title, titles.price, titles.pubdate, titles.ytd_sales
 FROM pubs.dbo.titles titles"
 Set qt = ActiveWorksheet.QueryTables.Add(strConn, [QueryDestination], strSQL)
 qt.RefreshPeriod = 1
 qt.Refresh

querytable.RefreshStyle [= xlCellInsertionMode]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

querytable.RefreshStyle [= xlCellInsertionMode]

Determines how the query affects surrounding items on the worksheet when the query table is refreshed. Default is
xlInsertDeleteCells.

Setting Description

xlInsertDeleteCells Inserts or deletes new rows and columns created by the query, moving surrounding items up or
down and to the right or left as needed.

xlOverwriteCells No new rows or columns are added to the worksheet. Surrounding items are overwritten as needed.

xlInsertEntireRows Inserts a new row for each record returned by the query. Shifts existing items down as needed to
accommodate the number of records returned.

The following code modifies an existing query table to insert new rows on the worksheet as needed, shifting existing
items on the worksheet down:

 Set qt = ActiveSheet.QueryTables(1)
 ' Query table records shift rows down.
 qt.RefreshStyle = xlInsertEntireRows
 qt.Refresh

If a subsequent query reduces the number of records returned, the contents of the query table are replaced, but the
rows that were previously shifted down are not shifted back up again as they would be if RefreshStyle were set to
xlInsertDeleteCells.

querytable.ResetTimer

Resets the timer used for periodic queries, in effect delaying when a query occurs. Use the RefreshPeriod property to
automatically refresh a query periodically.

querytable.ResultRange

Returns the range containing the results of the query. For example, the following code clears the results from a query
table on the active worksheet:

 ActiveSheet.QueryTables(1).ResultRange.Clear

If a query table has been created but not yet refreshed, accessing ResultRange causes an error. There's no direct way to
test whether a query table has been refreshed. One solution to this problem is to write a helper function similar to the
following to check if a query table has a result before accessing ResultRange elsewhere in code:

 Public Function HasResult(qt As QueryTable) As Boolean
 Dim ret As Boolean
 On Error Resume Next
 Debug.Print qt.ResultRange.Address
 If Err Then ret = False Else ret = True
 On Error GoTo 0
 HasResult = ret
 End Function

Now, you can easily test if a query table has a result before clearing the result range or performing other tasks, as
shown here:

 Set qt = ActiveSheet.QueryTables(1)
 If HasResult(qt) Then qt.ResultRange.Clear

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If HasResult(qt) Then qt.ResultRange.Clear

querytable.TablesOnlyFromHTML [= setting]

This property is hidden and is provided for backward compatibility. It is replaced by the WebSelectionType and WebTables
properties.

querytable.WebConsecutiveDelimitersAsOne [= setting]

For web queries, True interprets multiple consecutive delimiters as a single delimiter when importing data from a
<PRE> (preformatted) section of a web page. Default is False.

querytable.WebDisableDateRecognition [= setting]

For web queries, True interprets strings that look like dates as text. Default is False.

querytable.WebDisableRedirections [= setting]

For web queries, True does not allow the query request to be redirected to another address; False allows redirection.
Default is True.

querytable.WebFormatting [= setting]

For web queries, determines how much formatting is imported along with the data. Possible settings are:

 xlWebFormattingNone (default)
 xlWebFormattingAll
 xlWebFormattingRTF

querytable.WebPreFormattedTextToColumns [= setting]

For web queries, True parses rows in <PRE> (preformatted) sections of a web page and places aligned items in
separate cells. False parses each row in <PRE> sections as a single data item and places the entire row in one cell.

For example, the following code imports a sample web page and parses rows in <PRE> sections as multiple cells:

 Set qt = ActiveSheet.QueryTables(1)
 qt.Connection = "URL;file://" & ThisWorkbook.Path & "\preblocks.html"
 qt.WebSelectionType = xlAllTables
 qt.WebPreFormattedTextToColumns = True
 qt.Refresh

The web page containing items parsed into cells looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The web page containing items parsed into cells looks like this:

 <html>
 <body>
 <pre>
 1 2 3 4
 5 6 7 8
 </pre>
 </body>
 </html>

querytable.WebSelectionType [= xlWebSelectionType]

For web queries, specifies how much of a web page to import. Can be one of these settings:

 xlAllTables (default)
 xlEntirePage
 xlSpecifiedTables

Combine WebSelectionType with the WebTables property to import one or more specific tables from a web page. For
example, the following code uses an existing query table to display a real-time quote, omitting unwanted items from
the source web page:

 Set qt = ActiveSheet.QueryTables(1)
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=msft"
 qt.Name = "Real-Time Quote"
 qt.WebSelectionType = xlSpecifiedTables
 qt.WebTables = "22"
 qt.WebFormatting = xlWebFormattingNone
 qt.BackgroundQuery = True
 qt.Refresh

Interestingly, you must set WebSelectionType to xlSpecifiedTables before setting the WebTables property or an error occurs at
runtime.

querytable.WebSingleBlockTextImport [= setting]

For web queries, True parses rows in <PRE> (preformatted) sections as a single block; False parses contiguous rows in
<PRE> sections as blocks. Default is True.

This property is useful if a single <PRE> section contains multiple blocks of preformatted data that use different column
alignment. For example, the following code imports a sample web page and parses contiguous rows within <PRE>
blocks individually:

 Set qt = ActiveSheet.QueryTables(1)
 qt.Connection = "URL;file://" & ThisWorkbook.Path & "\preblocks.html"
 qt.WebPreFormattedTextToColumns = True
 qt.WebSingleBlockTextImport = False
 qt.Refresh

The web page containing items parsed into cells looks like this:

 <html>
 <body>
 <pre>
 Col1 Col2 Col3 Col4
 1 2 3 4
 5 6 7 8

 c1 c2 c3 c4
 1 2 3 4
 5 6 7 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 6 7 8
 </pre>
 </body>
 </html>

The preceding code results in two blocks of data, each with four columns. If WebSingleBlockTextImport were set to True
instead, the second table would contain only one column of data.

querytable.WebTables [= setting]

For web queries, specifies the index of the items to include from the source web page. To include multiple items from a
web page, use a comma-delimited string.

For example, the following code includes the 3rd, 4th, and 10th items from a web page:

 qt.WebSelectionType = xlSpecifiedTables
 qt.WebTables = "3,4,10"

Note that you must set WebSelectionType to xlSpecifiedTables before you use the WebTables property.

The best way to find the index of an item on a web page is to record a macro performing the web query containing the
items you want to import, then cut and paste the recorded WebTables setting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.3. Use Web Services
From an Excel perspective, web services are primarily useful for retrieving variable data over the Internet, but you can
also use them to send data, to manipulate remote data, or to run other code on remote computers. Web services are
designed to work just like procedure calls from code, so it is possible to use a web service without even knowing that it
is running remote code.

That's possible, but it's not likely, since web service methods often rely heavily on their underlying foundation: XML.
That means Excel programmers must become familiar with the Microsoft XML type library before they can effectively
use web services. The good news is that, once you are comfortable working with XML, you can blast web service results
directly into spreadsheet lists using Excel XML maps (which is very cool).

Web services, like many Internet-related things, are part of evolving standards. These standards have broad support by
many companies, so web services are not likely to lose support in the future. However, since the standards are still
evolving, there are different approaches to implementing, locating, and accessing web services. Of specific interest to
Excel developers are the facts that:

There are several ways to locate web services on the Internet. One way is through a directory service such as
http://uddi.microsoft.com/, but a much more common way is just by browsing the business's own site or
through a cross-listing site such as http://www.xmethods.net/.

There are several ways to describe web services over the Internet. With Excel, you really need to worry about
only one: WSDL.

There are several ways to call web services. Some web services only support SOAP , while others such as
Amazon also support access directly through their URL.

The samples in this chapter focus on two widely used web services provided by Google and Amazon, respectively. These
services are nearly ideal for a chapter such as this because they are freely available, useful, well-documented, and
demonstrate both SOAP and URL access. Before you continue, however, you should download the following toolkits:

Toolkit Location

Microsoft Office Web Services Toolkit http://www.microsoft.com/downloads and search for "Web Services Toolkit."

Google Web Service http://www.google.com/apis/.

Amazon Web Service Click on Web Services link at http://www.amazon.com/.

Both the Google and Amazon Web Services require you to register to get a developer ID to pass with method calls. I
provide my developer ID with the code samples shown here, but you will want your own ID if you use these web
services in your own code.

24.3.1. Use the Web Services Toolkit

Excel doesn't come with the Web Services Toolkit installed. In order to use web services from Visual Basic for
Applications, you must first follow these steps:

1. Find the Microsoft Office Web Services Toolkit from Microsoft by searching for "Web Services Toolkit" at
www.microsoft.com/downloads.

2. Download the Web Services Toolkit installation program (setup.exe).

3. Run the downloaded installation program and follow the steps provided by the Setup Wizard.

4. Start Excel and open the Visual Basic Editor.

5. In Visual Basic, select Web References from the Tools menu. Visual Basic displays the Microsoft Office Web
Services Toolkit references dialog shown in Figure 24-9.

Figure 24-9. Use the Microsoft Office Web Services Toolkit to create a web
reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reference

When you create a web reference, the Web Services Toolkit automatically adds references to the Microsoft Office SOAP
type library and the Microsoft XML library. Then, the toolkit generates proxy classes for the web service. To see how
this works, follow these steps:

1. From the Visual Basic Tools menu, select Web References.

2. Select Web Service URL and type the following line in the text box below that option:

 http://api.google.com/GoogleSearch.wsdl

3. Click Search. The Web Services Toolkit displays the web services available from Google as shown in Figure 24-
10.

Figure 24-10. Creating a reference to the Google web service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Select GoogleSearchService and click Add. The Web Service Toolkit adds references to the SOAP and XML
libraries and creates proxy classes for each of the services, as shown in Figure 24-11.

Proxy classes are modules of code that stand in for the code that runs on the server providing the web service. You
have to have a local copy of this code so you can compile your application against something. These proxy classes
provide the properties and methods you call on the web servicethey package those calls, send them, and receive their
responses.

The code in these proxy classes is not simple. Fortunately, you don't have to understand much of it; just create an
instance of the main class (identified by the prefix clsws) and use its properties and methods. For example, the following
code uses the generated classes to search Google for work I've done on Excel:

 Dim i As Integer, wsGoogle As New clsws_GoogleSearchService
 Dim wsResult As struct_GoogleSearchResult, wsElement As struct_ResultElement
 Dim devKey As String, searchStr As String
 ' This key is from Google, used to identify developer.
 devKey = "ekN14fFQFHK7lXIW3Znm+VXrXI7Focrl"
 ' Items to search for.
 searchStr = "Jeff Webb Excel"
 ' Call the search web service.
 Set wsResult = wsGoogle.wsm_doGoogleSearch(devKey, _
 searchStr, 0, 10, False, "", False, "", "", "")
 ' For each of the results
 For i = 0 To wsResult.endIndex - 1
 ' Get the individual result.
 Set wsElement = wsResult.resultElements(i)
 ' Display the result.
 Debug.Print wsElement.title, wsElement.URL
 Next

Figure 24-11. The Web Services Toolkit creates Google Web Service proxy classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OK, that's not simple either. Most of the complication here comes from the web service itself. Google requires a license
key to use its service; I include my key in the devKey variable. Google allows 1000 search requests per day for this free
license key, so you'll want to get your own key from Google.

Next, the wsm_doGoogleSearch method submits the search to Google. That method takes a lot of arguments and returns a
structure, which is defined in another proxy class, so you need to use Set to perform the assignment. Similarly, you
need to use Set to get elements from the result.

24.3.2. Use Web Services Through XML

Web services from different companies define their interfaces differently. For example, the Google Web Service provides
methods that take simple string arguments, whereas the Amazon Web Service provides methods that take complex
XMLNodeList arguments.

It's difficult to construct and debug XMLNodeList arguments for the Amazon Web Service. It's much easier to invoke this
web service directly through its URL. For example, the following code performs a keyword search for books about
wombats on Amazon:

 Dim SearchUrl As String
 ' Create a new DOMDocument and set its options
 Dim xdoc As New DOMDocument
 xdoc.async = True
 xdoc.preserveWhiteSpace = True
 xdoc.validateOnParse = True
 xdoc.resolveExternals = False

 ' Create the search request
 SearchUrl = "http://xml.amazon.com/onca/xml2" & _
 "?t=" & "webservices-20" & _
 "&dev-t=" & "D1UCR04XBIF4A6" & _
 "&page=1" & _
 "&f=xml" & _
 "&mode=books" & _
 "&type=lite" & _
 "&KeywordSearch=wombat"

 ' Issue the request and wait for it to be honored
 Loaded = xdoc.Load(SearchUrl)
 ' Display the results
 Debug.Print xdoc.XML

Because the results are returned as XML, you can create an XML map from the result and import the results into a list
created from that XML map as shown here:

 Set wb = ThisWorkbook
 wb.XmlImportXml xdoc.XML, wb.XmlMaps("ProductInfo_Map"), True

Figure 24-12 displays the result of importing an Amazon search for wombats into a list on a worksheet.

The documentation for the Amazon Web Service is structured to show you how to call its methods using its URL rather
than using proxy classes and SOAP. This means that you don't have to use the Web Services Toolkit to create proxies
for the Amazon Web Service; just add a reference to the Microsoft XML type library.

This method of accessing a web service is sometimes called Representational State Transfer (REST) . That acronym is
useful as a search term when looking for this type of interface for a given web service. Type "REST Google API" in a
Google search to see an active debate on the relative features of REST and SOAP.

Figure 24-12. Displaying XML results from a web service through an XML map and
list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list

The Google Web Service doesn't support direct access through its URL, but you can avoid the proxies and call it directly
through SOAP. For example, the following code performs a search for wombats and imports the result through an XML
map directly into a list:

 Dim soap As New SoapClient30, xn As IXMLDOMNodeList, strXML As String
 soap.MSSoapInit "http://api.google.com/GoogleSearch.wsdl"
 Set xn = soap.doGoogleSearch("ekN14fFQFHK7lXIW3Znm+VXrXI7Focrl", _
 "wombats", 0, 10, False, "", False, "", "", "")
 ' Build a string containing the results from the search in XML.
 strXML = "<GoogleSearchResults>"
 For i = 1 To xn.Length - 1
 strXML = strXML & xn(i).XML
 Next
 strXML = strXML & "</GoogleSearchResults>"
 ' Import the results through an XML map into a list.
 Set wb = ThisWorkbook
 wb.XmlImportXml strXML, wb.XmlMaps("GoogleSearchResults_Map"), True

24.3.3. Call a Web Service Asynchronously

One advantage of calling a web service directly, rather than through proxies, is that it is very easy to handle the
response asynchronously. The DOMDocument object provides an ondataavailable event that occurs when the object is finished
loading XML from a source. This means that you can launch a web service request, release control to the user, and
display results when a request is complete. Being able to handle a response asynchronously is especially important
when the web service is returning a large amount of data.

To use the DOMDocument object to respond to a web service asynchronously, follow these steps:

1. Declare a DOMDocument object at the module of a class. The class can be a workbook, worksheet, or code class
module. For example, the following variable is declared in the wsAmazon worksheet class:

 Dim WithEvents xdoc As DOMDocument

2. Select the xdoc object from the object list at the top of the code window, and then select ondataavailable from the
event list to create an empty event procedure as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event list to create an empty event procedure as shown here:

 Private Sub xdoc_ondataavailable()

 End Sub

3. In other code, initialize the xdoc object, set its async property to True, and then call the web service using the
xdoc object's Load method. For example, the following event procedure searches Amazon.com for a keyword
when the user clicks the Get Titles button on the wsAmazon worksheet:

 Sub cmdTitles_Click()
 Dim SearchUrl As String
 ' Create a new DOMDocument and set its options
 Set xdoc = New DOMDocument
 xdoc.async = True

 ' Create the search request
 SearchUrl = "http://xml.amazon.com/onca/xml2" & _
 "?t=" & "webservices-20" & _
 "&dev-t=" & "D1UCR04XBIF4A6" & _
 "&page=1" & _
 "&f=xml" & _
 "&mode=books" & _
 "&type=lite" & _
 "&KeywordSearch=" & txtSearch.Text

 ' Issue the request and wait for it to be honored
 Loaded = xdoc.Load(SearchUrl)
 End Sub

4. Add code to the ondataavailable event procedure to respond to the web service data once it is returned. For
example, the following code imports the result through an XML map and displays it in a list:

 Private Sub xdoc_ondataavailable()
 Dim wb As Workbook
 ' Import the results through an XML map into a list.
 Set wb = ThisWorkbook
 wb.XmlImportXml xdoc.XML, wb.XmlMaps("ProductInfo_Map"), True
 End Sub

When the user clicks on the Get Titles button and the preceding code runs, Excel returns control to the user as soon as
the click is done. The list is updated once the web service responds.

The Microsoft SOAP type library does not support asynchronous calls, so you can't use web services that provide only a
SOAP interface asynchronously from Excel. The SOAP tools available with .NET do support asynchronous calls, however,
so if you are programming with Visual Basic .NET outside of Excel, you can make asynchronous SOAP calls.

24.3.4. Reformat XML Results for Excel

One thing you may notice when you return web service results directly to Excel through an XML map is that mixed
content is not automatically formatted. In other words, HTML formatting tags such as and <i> appear as ""
and "<i>" rather than as bold and italic, as shown in Figure 24-13.

Figure 24-13. Excel does not automatically interpret HTML formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's no simple way to prevent this problem, but you can fix it using the automatic text formatting features of Excel.
Excel automatically reformats HTML text pasted from the clipboard, so all you have to do is place the data in the
clipboard as HTML, then paste that data back into cells on the spreadsheet.

In Excel, you access the clipboard using the DataObject object, so the following code puts the data from each cell of a
worksheet into the clipboard as HTML, then pastes that data back, causing Excel to correctly interpret HTML formatting:

 Sub TestReformat()
 ' Call helper function to interpret HTML formatting codes.
 ReformatHTML ActiveSheet.UsedRange
 End Sub

 Sub ReformatHTML(rng As Range)
 Dim clip As New DataObject, cell As Range
 For Each cell In rng
 clip.SetText "<html>" & cell.Value & "<html>"
 clip.PutInClipboard
 cell.PasteSpecial
 Next
 End Sub

After you run TestReformat on a worksheet, Excel interprets the HTML formatting codes as if you cut/pasted them from a
web page, as shown in Figure 24-14.

Figure 24-14. HTML formatting after running ReformatHTML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.4. Resources

To learn about Look here

Microsoft Office Web Services Toolkit Search http://www.microsoft.com/downloads for "Web Services Toolkit."

MSXML 4.0 Documentation http://msdn.microsoft.com/library/en-us/xmlsdk/htm/sdk_intro_6g53.asp.

DOMDocument http://msdn.microsoft.com/library/en-
us/xmlsdk/htm/xml_obj_overview_20ab.asp.

IXMLDOMNodeList http://msdn.microsoft.com/library/en-
us/xmlsdk30/htm/xmobjxmldomnodelist.asp.

Google Web Service http://www.google.com/apis/.

Google Web Service description http://api.google.com/GoogleSearch.wsdl.

Amazon Web Service Click on Web Services link at http://www.amazon.com/.

Amazon Web Service description http://soap.amazon.com/schemas3/AmazonWebServices.wsdl.

Representational State Transfer
(REST) http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 25. Programming Excel with .NET
Visual Basic .NET is Microsoft's next generation of the Basic language. The name change marks another milestone in the
evolution of Basic: BASICA, QuickBasic, Visual Basic, and Visual Basic .NET each mark distinct changes in underlying
technology. This latest change marks the graduation from the Windows Common Object Model (COM) in Visual Basic to
the .NET Framework in Visual Basic .NET.

.NET is a Windows technology. It is not supported on the Macintosh.

The .NET Framework solves a lot of the shortcomings in COMit has a more complete security model; provides a well-
organized library of objects for working with HTTP, XML, SOAP, encryption, and other things; is fundamentally object-
oriented; protects against memory leaks and corruption; promotes self-describing codegosh, I'm starting to sound like
a commercial. In short, .NET is the future for programming Windows.

Now the bad news: Excel is (and probably always will be) a COM application. This means that you have to take special
steps if you want to use .NET components from Excel or if you want to program Excel from Visual Basic .NET.

But back to the good news: Microsoft provides many tools for making the transition between COM and .NET as easy as
possible. In this chapter, you will learn how to use those tools both to take advantage of .NET from Excel and vice
versa.

Code used in this chapter and additional samples are available in ch25.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.1. Approaches to Working with .NET
There are three main approaches to using .NET with Excel. You can use .NET to create:

Components that can be used from Excel macros

This approach works with all Excel versions and is much the same as creating COM components for use with
Excel using earlier versions of Visual Basic. The .NET tools automatically generate the type libraries needed to
use .NET objects from COM applications such as Excel.

Standalone applications that use Excel as a component

This approach works best with Excel XP and 2003, since those versions provide the files needed to use Excel
from .NET applications smoothly. In this scenario, the user starts a standalone application to create or modify
Excel wo rkbooks.

Workbook-based applications that run all of their code as .NET

This approach works for Excel 2003 and later. In this scenario, the user opens the workbook, which
automatically loads the .NET assembly containing the application code. The workbook contains a link to this
assembly, so the workbook file (.xls) can be distributed to many different users and locations, while the
assembly (.dll) resides in a single location (for example at a network address).

From the user's standpoint, the main differences between these approaches are how you start the application and what
versions of Excel are supported. From a developer's standpoint, the differences affect how you develop, debug, and
deploy the applications. Even the development tools you need vary somewhat between these approaches as described
in Table 25-1.

Table 25-1. Software requirements for developing between Excel and .NET
To create You need

.NET components for use in
Excel Visual Studio .NET Standard Edition or higher

Standalone .NET applications
that use Excel

Visual Studio .NET Standard Edition or higher, Microsoft Office 2002 or later, and
Primary Interop Assemblies (PIAs)

Excel .NET applications Visual Studio .NET Tools for Office (includes project templates) and Microsoft Office
2003 or later

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.2. Create .NET Components for Excel
If you are an experienced VBA programmer, this is a great way to start learning .NET because you can take advantage
of features built into the .NET Framework in small, incremental steps.

To create a .NET component for use in Excel:

1. From within Visual Studio .NET , create a new class library project using Visual Basic .NET or C#. Visual Studio
creates a folder and template files for the project, as shown in Figure 25-1.

Figure 25-1. A new, empty .NET class library project

2. From the Project menu, choose Add Class. Visual Studio displays the Add New Item dialog box shown in Figure
25-2.

3. Give the new class a descriptive name and click OK. Visual Studio registers the project to interoperate with COM
(the Register for COM Interop selection on the Project Options, Build dialog box) and creates a new, empty code
template for your class as shown in Figure 25-3.

4. Add code to the class library for the objects, properties, and methods you want to use from Excel.

5. Compile the project by selecting Build Solution from the Build menu. Visual Studio builds the class library as a
.NET assembly (.dll) and creates a type library file (.tlb) that allows Excel and other COM applications to use
that assembly. Both of these files are placed in a \bin folder within the project folder created in Step 1.

For example, the NetForExcel project (NetForExcel.sln) includes a simple class that provides a single method that
displays a message passed in as an argument:

' .NET code.
Public Class NetObject
 Public Sub Test(ByVal arg As String)
 MsgBox(arg)
 End Sub
End Class

Figure 25-2. Create a new COM class to contain components for use from Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-2. Create a new COM class to contain components for use from Excel

Figure 25-3. The COM class code template contains the basic elements you need
for a component

The following section shows you how to use this sample .NET component from within Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.3. Use .NET Components in Excel
Once you compile a .NET component with Register for COM Interop enabled, using that component from Excel is simply
a matter of following these steps:

1. From within the Excel VBA Editor, select References from the Tools menu. VBA displays the References dialog
box.

2. Click Browse and navigate to the \bin folder for the .NET component you wish to use. Select the type library
(.tlb) for the component, as shown in Figure 25-4, and click OK to add a reference to that component.

Figure 25-4. Use the .NET component's type library to create a reference to
the component in Excel VBA

3. Click OK to close the References dialog box.

4. Declare an object variable for the .NET class using the New keyword, then call the members of the class.

The components you create using Visual Basic .NET are named using their project name (.NET calls that the namespace
of the component), so you would use the following code to call the NetForExcel project's NetObject created in the
preceding section:

' Excel code
Sub TestNetObj()
 Dim x As New NetForExcel.NetObject
 x.Test "I worked!"
End Sub

Now, if you run the preceding code, Excel uses the type library to start the .NET assembly and invoke the Test method
with a string argument. The .NET component, in turn, displays a message box saying "I worked!"

Though that demonstration isn't very impressive, what you can do with .NET components becomes exciting once you've
learned more about the classes that come with the .NET Framework. For example, you can do some pretty useful things
with even the basic .NET String and Array classes, as shown here:

' .NET code
Public Class NetString

 + COM GUIDS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' A creatable COM class must have a Public Sub New()
 ' with no parameters; otherwise, the class will not be
 ' registered in the COM registry and cannot be created
 ' via CreateObject.
 Public Sub New()
 MyBase.New()
 End Sub

 Public Function Split(ByVal arg As String, _
 Optional ByVal sep As String = " ") As String()
 If Len(sep) <> 1 Then _
 Throw New Exception("Separator must be one character long")
 Return arg.Split(CType(sep, Char))
 End Function

 Public Function Join(ByVal arg() As String, _
 Optional ByVal sep As String = " ") As String
 If IsArray(arg) Then
 If arg.Rank <> 1 Then _
 Throw New Exception("Array must have one dimension")
 Else
 Throw New Exception("First argument must be an array")
 End If
 Return String.Join(sep, arg)
 End Function

 Public Function Sort(ByVal arg As String, _
 Optional ByVal ascending As Boolean = True) As String
 ' Declare an array.
 Dim ar() As String
 ' Break the string up and put it in the array.
 ar = arg.Split(" "c)
 ' Sort the array.
 'ar.Sort(ar)
 Reverse the order if requested.
 If Not ascending Then ar.Reverse(ar)
 ' Convert the array back to a string and return it.
 Return String.Join(" ", ar)
 End Function
End Class

To use the preceding .NET class in code, compile the project and establish a reference to that project in Excel's VBA
Editor, then write code similar to the following:

' Excel code
Sub TestNetString()
 Dim str As String, ar() As String, i As Integer
 Dim NetStr As New NetForExcel.NetString
 str = "Some random text that you'd want to sort."
 Debug.Print NetStr.Sort(str)
 ar = NetStr.Split(str)
 For i = 0 To UBound(ar)
 Debug.Print ar(i)
 Next
End Sub

The preceding code displays the sorted string in the Immediate window, then splits the string into an array and displays
it one word at a time. Since Visual Studio .NET generates a type library for the component and registers it with your
system, you automatically get Intellisense and Auto Complete features when you work with .NET objects in Excel VBA,
as shown in Figure 25-5.

Figure 25-5. .NET objects registered for COM automatically get Intellisense and
Auto Complete in VBA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.3.1. Respond to Errors and Events from .NET Objects

The .NET code in the preceding section included a couple of lines that may be unfamiliar to you:

If Len(sep) <> 1 Then _
 Throw New Exception("Separator must be one character long")

and:

If IsArray(arg) Then
 If arg.Rank <> 1 Then Throw New Exception("Array must have one dimension")
Else
 Throw New Exception("First argument must be an array")
End If

These lines demonstrate Visual Basic .NET's new exception-handling constructs: Throw raises an exception, the error is
created as a New Exception object, and it would be handled by a TRy...Catch structure (not shown) if the method were called
from .NET.

Since this code is called from Excel, however, you handle it using the VBA On Error statement. For example:

' Excel code.
Sub TestNetError()
 Dim ar(1, 1) As String
 Dim NetStr As New NetForExcel.NetString
 ar(0, 0) = "causes": ar(0, 1) = "an": ar(1, 0) = "error"
 On Error Resume Next
 ' Cause error.
 Debug.Print NetStr.Join(ar)
 ' Catch and report error
 If Err Then
 Debug.Print "Error:", Err.Description
 Err.Clear
 End If
 On Error GoTo 0
End Sub

If you run the preceding code, the Join method causes an exception that can be handled in Excel the same way as any
other error. In this case, a message "Error: Array must have one dimension" is displayed in the Immediate window.

Handling events from .NET components in Excel VBA is much the same as handling events from Excel objects: declare
the object variable WithEvents at the module level of an Excel class, initialize the object, and respond to the event in an
event-handler procedure. For example, the following code defines and raises an event in the .NET NetString class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event-handler procedure. For example, the following code defines and raises an event in the .NET NetString class:

' .NET code
Public Class NetString
 ' Declare event.
 Public Event Sorted As EventHandler
 Private m_value As String

 ' Other code omitted.

 Public Function Sort(ByVal arg As String, _
 Optional ByVal ascending As Boolean = True) As String
 ' Declare an array.
 Dim ar() As String, res As String
 ' Break the string up and put it in the array.
 ar = arg.Split(" "c)
 ' Sort the array.
 ar.Sort(ar)
 ' Reverse the order if requested.
 If Not ascending Then ar.Reverse(ar)
 ' Convert the array back to a string and set value property
 m_value = String.Join(" ", ar)
 ' Raise event.
 OnSorted()
 ' Return result
 Return m_value
 End Function

 ' By convention, events are raised from OnXxx procedures in .NET
 Friend Sub OnSorted()
 RaiseEvent Sorted(Me, System.EventArgs.Empty)
 End Sub

 ' Property that returns Sort result (added to illustrate event).
 Public ReadOnly Property Value() As String
 Get
 Return m_value
 End Get
 End Property
End Class

The preceding event occurs any time the Sort method completes a sort. This actually occurs very quickly, so this isn't
the greatest use for an event, but it's clearer to build on this previous example than to start a completely new one. To
handle this event in Excel, add the following code to the class for a worksheet:

' Excel code in a worksheet class.
Dim WithEvents NetStr As NetForExcel.NetString

Private Sub Worksheet_Change(ByVal Target As Range)
 If Target.Address = "A2" Then
 ' Create object if it hasn't been initialized.
 If TypeName(NetStr) = "Nothing" Then _
 Set NetStr = New NetForExcel.NetString
 ' Sort text in range A2.
 NetStr.Sort [a2].Text
 End If
End Sub

Private Sub NetStr_Sorted(ByVal sender As Variant, _
 ByVal e As mscorlib.EventArgs)
 ' When sort is complete, display result in range B2.
 [b2].Value = NetStr.Value
End Sub

Now, you can change the text in cell A2 and the Sorted event displays the result in cell B2 once the sort is complete. A
few points to note here:

VBA can respond only to events from within classesthat includes workbook and worksheet classes, as well as
custom classes (.NET calls these instance classes). You can't use events from modules (.NET calls these static
classes or code modules).

Once you declare a .NET object WithEvents, that component's events appear in the listbox at the top of the Excel
VBA Editor Code window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA Editor Code window.

You can't combine New and WithEvents, so you must initialize the object somewhere in a procedure (as shown in
the earlier Worksheet_Change procedure).

25.3.2. Debug .NET Components

If you've been following along with the preceding example by writing code in Excel and Visual Studio .NET, you've
probably noticed that you can't build the .NET project while Excel has a reference to that project's type library. You
need to close Excel or remove the reference each time you make a change in the .NET project. That's because Visual
Studio .NET can't overwrite the type library while another application is using it.

This makes debugging .NET components from Excel difficult. In fact, it's not a very good practice. It is a much better
practice to add a second, test project to your .NET component solution and make that project the startup project. To
add a test project to the NetForExcel sample, follow these steps:

1. From the File menu, choose Add Project, New Project. Visual Studio .NET display the Add New Project dialog
box.

2. Select the Console Application template from the Visual Basic project types, give the project a descriptive name,
and click OK. Visual Studio .NET creates a folder and template files for the new Windows console application.

3. Right-click on the new project title in the Solution Explorer and select Set as Startup Project from the pop-up
menu as shown in Figure 25-6. Visual Studio .NET makes the project name bold, indicating it is the startup
project.

4. Add code to the test project's Main procedure to test the .NET component.

For example, the following code tests the NetString class from the NetForExcel component created earlier:

' .NET test code
Module Module1
 Dim WithEvents NetStr As New NetForExcel.NetString

 Sub Main()
 Dim ar() As String = {"This", "That", "Other"}
 Dim ar2(1, 1) As String, str As String = "Some more text"
 ar2(0, 0) = "This" : ar2(0, 1) = "That" : ar2(1, 0) = "Other"
 Console.WriteLine(NetStr.Join(ar, ", "))
 Console.WriteLine(NetStr.Sort(str, False))
 ' Cause error.
 Try
 'NetStr.Join("Test, That, Other")
 'NetStr.Join(ar2)
 NetStr.Split(str, " r")
 Catch ex As Exception
 Console.WriteLine("Error: " & ex.Message)
 End Try
 ' Wait for Enter keypress to end.
 Console.Read()
 End Sub

 Private Sub NetStr_Sorted(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles NetStr.Sorted
 Console.WriteLine("Sort event complete. Result: " & NetStr.Value)
 End Sub
End Module

Figure 25-6. Make the test project the startup project for the solution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you run the NetForExcel solution from Visual Studio .NET by pressing F5, Windows starts the test project and displays
the results in a console window, as shown in Figure 25-7.

Figure 25-7. Using a console test project to debug a .NET component before using
it from Excel

Now, you can use Visual Studio .NET's debugging tools to step in to procedures, set breakpoints and watches, and
perform other typical debugging and testing tasks.

25.3.3. Distribute .NET Components

Visual Studio .NET uses setup and deployment projects to create the installation applications you use to distribute .NET
components or any other type of application. These tools are greatly improved over the Visual Basic 6.0 setup wizards,
and there are a number of paths you can take to create an installation program for your .NET components; the
following steps outline one of the possible paths:

1. From the File menu, choose Add Project, New Project. Visual Studio .NET displays the Add New Project dialog
box.

2. Select the Setup and Deployment project type, then select the Setup Wizard from the Templates list. Name the
setup project descriptively and click OK. Visual Studio .NET starts the Setup Wizard to walk you through
creating the project.

3. Follow the steps in the Setup Wizard to install a Windows application and select the Primary Output from
NetForExcel project group in Step 3 of the wizard, as shown in Figure 25-8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NetForExcel project group in Step 3 of the wizard, as shown in Figure 25-8.

4. When you click Finish in the Setup Wizard, Visual Studio .NET creates a folder for the setup project, determines
the dependencies for NetForExcel, and creates a setup project as shown in Figure 25-9.

Figure 25-8. Select the primary output for the project to install

Figure 25-9. Setup project for the NetForExcel component

5. From the Build menu, select Build Solution or "Build setup project to package NetForExcel.dll and
NetForExcel.tlb," and build an installation program to install and register those files on a client's machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NetForExcel.tlb," and build an installation program to install and register those files on a client's machine.

6. The setup project creates Setup.exe, Setup.msi, and Setup.ini files in its \Debug folder by default. Use those
files to test deployment before changing the setup project's configuration to release and rebuilding.

The installation program created using the preceding steps installs the component in the \Program Files folder on the
user's machine and registers the component's type library in the system registry. Excel workbooks that reference this
type library use the system registry to find the component by its GUID (which is part of the code generated
automatically when you create the COM class in .NET).

The installation program also creates an entry in users' application lists so they can uninstall the application using the
Windows Control Panel. In short, it does everything you need it to!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.4. Use Excel as a Component in .NET
Another way for Excel to interact with the .NET world is to program with Excel objects directly in Visual Basic .NET. In
this case, Excel becomes a component for use in a .NET applicationthe reverse of the case just shown.

Using Excel as a component in a .NET application is handy when you want to present application output using the Excel
interfaceas a spreadsheet or chart, for instance.

To create a .NET application that uses Excel as a component:

1. Create a new Windows application project in Visual Studio .NET.

2. From the Project menu, choose Add Reference. Visual Studio .NET displays the Add Reference dialog box. Click
the COM tab. Visual Studio .NET displays the contents of your system's global assembly cache, as shown in
Figure 25-10.

3. Select the Microsoft Excel 11.0 Object Library and click Select, then OK to add the reference to your project.
Visual Studio .NET automatically references the PIA for the Excel object library if it is installed on your system.

4. If the PIA is not installed, Visual Studio .NET creates a new interop assembly and adds it to your project (this is
not what you wantthe PIA is much more reliable). To make sure you are using the PIA, check the Name and Path
properties of the Excel reference. They should appear as shown in Figure 25-11.

5. In code, create an instance of the Excel Application object and use that object's member to perform tasks in
Excel.

Figure 25-10. Adding a reference to the Microsoft Excel object library

Figure 25-11. Check the reference properties to make sure you are using the Excel
PIA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PIA

For example, the following code starts Excel and creates a new workbook:

' .NET Windows form code
Dim WithEvents m_xl As Microsoft.Office.Interop.Excel.Application

Private Sub cmdStartExcel_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStartExcel.Click
 ' If not initialized, create a new instance of the object.
 If IsNothing(m_xl) Then _
 m_xl = New Microsoft.Office.Interop.Excel.Application
 ' Make Excel visible.
 m_xl.Visible = True
 ' Create a new workbook.
 m_xl.Workbooks.Add()
End Sub

The m_xl variable is declared WithEvents so Visual Basic .NET can respond to events that occur in the application. The
cmdStartExcel_Click initializes the Excel Application object if it was not already initialized and then calls the Workbook
collection's Add method to create a new workbook. It is important to note that if Visible is not set to True, all this
happens invisibly in the background, and while that is kind of interesting, it is not usually what you want.

Use the following code to close the Excel application when you are done:

Private Sub cmdQuitExcel_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdQuitExcel.Click
 ' Close the Excel application.
 m_xl.Quit()
 ' Set object reference to Nothing.
 m_xl = Nothing
 ' Force .NET to perform garbage collection.
 System.GC.Collect()
End Sub

The preceding code illustrates a couple of precautions you should take when working with Excel from .NET:

First, you should set the object variable to Nothing after you call Quit. Calling Quit doesn't set m_xl to Nothing and
that can keep the application alive, running in the background.

Second, force .NET to get rid of unused resources by calling System.GC.Collect. .NET manages memory using a
process called garbage collection, and you need to force it to take out the garbage after you've thrown away
Excel. Otherwise, .NET will leave Excel in memory until resources run low and automatic garbage collection
takes place (I think of this as waiting for my son to do the job, rather than doing it myself). You don't want to
call GC.Collect frequently, because it is an expensive operation, but it is great when you want to free very large
objects like Excel.

25.4.1. Work with Excel Objects in .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've got an instance of the Excel Application object, you can use it to get at any of the other objects in the Excel
object library. Visual Basic .NET provides an Imports declaration that you can use to create a shortcut for referring to
objects from a particular library. For example, the following class-level declaration:

Imports Microsoft.Office.Interop

shortens the Excel application declaration to:

Dim WithEvents m_xl As Excel.Application

which is easier to type and read. Notice that you don't use Set to get object references in Visual Basic .NET. For
example, the following code gets a reference to Workbook and Range objects to display powers of 2 on a worksheet:

' .NET code.
Dim wb As Excel.Workbook, rng As Excel.Range
' Create a new workbook.
wb = m_xl.Workbooks.Add()
' Add some data
For i As Integer = 1 To 10
 rng = wb.Worksheets(1).Cells(1, i)
 rng.Value = 2 ^ i
Next

Visual Basic .NET could get rid of Set because it also got rid of default members. In Excel VBA, you can assign a value to
a Range object because the Value property is the default member of the Range object. This is a clearer approach to a
languagedefault members were never a very good idea.

This change can take some getting used to, especially if you don't explicitly declare a type for a variable. For example,
the following .NET code gets a reference to a Range object, but then replaces that reference with an integer:

Dim obj
' Gets a reference to the A1 range object.
obj = wb.Worksheets(1).Cells(1, 1)
' Assigns a number to obj (does not set [A1].Value!)
obj = 42

Because of this, it is a good idea to declare variables with explicit datatypes when programming in Visual Basic .NET.
Using explicit types also enables the Intellisense and Auto Complete features when working with variablesso there are a
lot of good reasons to be explicit!

25.4.2. Respond to Excel Events in .NET

Responding to Excel events in .NET code is done much the same way as in Excel VBA, but with one difference: In .NET,
event procedures are associated with objects using the Handles clause. Excel uses the procedure name to associate an
event with an object. The .NET approach means that a single procedure can handle multiple events.

To respond to Excel events in .NET:

1. Declare a WithEvents variable for the Excel object, providing the events at the class level. For example, the
following code declares a worksheet with events:

Dim WithEvents m_ws As Excel.Workbook

2. Assign the variable an instance of the object for which to handle events. For example, the following code hooks
up the events for the first worksheet in a workbook (created in earlier examples):

m_ws = wb.Worksheets(1)

3. Select the m_ws object from the object list at the top of the Code window and then select an event from the
event list. Visual Studio creates a new, empty event procedure.

4. Write code to respond to the event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Write code to respond to the event.

For example, the following code sorts any string entered in cell A2 and displays the result in B2. It may look familiar,
since it uses the NetString class created earlier to perform the sort:

Private Sub m_wb_SheetChange(ByVal Sh As Object, _
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles m_wb.SheetChange
 If Target.Address = "A2" Then
 Dim NetStr As New NetForExcel.NetString
 m_wb.Worksheets(1).Range("B2").Value = NetStr.Sort(Target.Value)
 End If
End Sub

25.4.3. Respond to Excel Exceptions in .NET

In .NET, you handle exceptions using the Visual Basic .NET try...Catch...End Try construct. When .NET receives an exception
from a COM component, such as Excel, it checks the COM exception code (COM identifies exceptions as HRESULTs that
are 32-bit numbers) and tries to map that code to one of the .NET exception classes, such as DivideByZeroException.

If .NET can't map an HRESULT to a .NET exception class, it reports that exception as a COMException. A COMException
includes Source and Message properties that are filled in if they are available, plus it includes the HRESULT as an ErrorCode
property.

When working with Excel from .NET, you will find that most errors are reported as COMExceptions and that the Source and
Message properties are sometimes, but not always, helpful. For example, referring to a worksheet that doesn't exist
causes an COMException with Source equal to "Microsoft.Office.Interop.Excel" and a Message property "Invalid index". But setting a cell
to an invalid value is reported as a COMException with an empty Source property and a Message property set to "Exception from
HRESULT: 0x800A03EC".

The following code illustrates causing, catching, and reporting different types of Excel exceptions in .NET:

Private Sub cmdCauseErrors_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdCauseError.Click
 Try
 ' This worksheet (9) doesn't exist.
 m_xl.ActiveWorkbook.Sheets(9).Range("B2").value = 42
 Catch ex As System.Runtime.InteropServices.COMException
 Debug.WriteLine(ex.Source & " " & ex.Message & " " & Hex(ex.errorcode))
 End Try
 Try
 ' This is an invalid value for a cell.
 m_ws.Range("A3").Value = "=This won't work."
 Catch ex As System.Runtime.InteropServices.COMException
 Debug.WriteLine(ex.Source & " " & ex.Message & " " & Hex(ex.errorcode))
 End Try
 Try
 ' Set breakpoint here and edit a cell in Excel to see error.
 m_xl.ActiveWorkbook.Sheets(1).Range("B3").select()
 ' Can't change a cell while Excel is editing a range.
 m_xl.ActiveWorkbook.Sheets(1).Range("B2").value = 42
 Catch ex As System.Runtime.InteropServices.COMException
 Debug.WriteLine(ex.Source & " " & ex.Message & " " & Hex(ex.errorcode))
 End Try
End Sub

The preceding code catches the COMException that occurs for each deliberately caused error. If you run the code, the
following report will display in the Visual Studio .NET Output window:

Microsoft.Office.Interop.Excel Invalid index. 8002000B
 Exception from HRESULT: 0x800A03EC. 800A03EC
mscorlib Call was rejected by callee. 80010001

As you can see, the Source and Message properties are not always helpful (or even present). In many cases, it is better to
use the ErrorCode that contains the original COM HRESULT.

HRESULTs consist of several parts, but the last 16 bits are the most useful when programming with Excel from .NET;
those 16 bits contain the Excel error code for the error. The following helper function parses an HRESULT and returns
the Excel error code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Excel error code:

' Returns the last 16 bits of HRESULT (which is Err code).
Function GetErrCode(ByVal hresult As Integer) As Integer
 Return hresult And &HFFFF
End Function

That said, Excel assigns the error code 1004 (application error) to most of the exceptions it returns. All of this means
that it is pretty hard to find out what specific error occurred within Excelusually you just know that the operation failed.

Therefore, the best strategy for handling Excel exceptions in .NET is to:

Unitize Excel operationsthat is, try to group operations that use Excel into a single procedure that performs
some atomic operation, such as creating, populating, and saving a workbook.

Call these unitized operations from within a try...Catch structure.

Notify user of a general problem if operation failed.

Avoid user-interactive modes. Operations such as changing spreadsheet cell values can fail if the user is editing
a cell when the programmatic operation occurs. Use the Excel Application object's Interactive property to turn user-
interactive mode on and off.

The following code illustrates the preceding approaches in the context of making some changes to cells on a worksheet.
The Excel operations are unitized in a single procedure, and those operations all run within a TRy...Catch block. User
interaction is turned off at the start of the procedure, then reenabled at the end:

Private Sub cmdChangeCells_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdChangeCells.Click
 If Not SquareCells() Then _
 MsgBox("Excel operation failed.")
End Sub

Private Function SquareCells() As Boolean
 Try
 ' Try to turn off interactive mode.
 m_xl.Interactive = False
 ' For each cell in the active sheet's used range...
 For Each cel As Excel.Range In m_xl.ActiveSheet.UsedRange
 ' Square the value.
 cel.Value = cel.Value ^ 2
 Next
 Catch ex As System.Runtime.InteropServices.COMException
 ' Something happened in Excel.
 Debug.Fail(ex.Source & " " & Hex(ex.errorcode), ex.Message)
 Return False
 Catch ex As Exception
 ' Something happened in .NET (display error while debugging)
 Debug.Fail(ex.Source, ex.Message)
 Return False
 Finally
 Try
 ' Try to turn interactive mode back on.
 m_xl.Interactive = True
 Catch ex As Exception
 ' No need to do anything here.
 End Try
 End Try
 ' Success.
 Return True
End Function

There are a couple of important details to point out here. First, you must turn interactivity back on inside its own
TRy...Catch block. This protects against an unhandled exception if m_xl is not a valid object (perhaps because the user has
closed Excel). Second, if the worksheet contains cells with text, an error will occur, but it will be handled. This may or
may not be what you want to occurthat decision is up to you.

Be careful when using For...Each with the Excel UsedCells collection. Visual Basic .NET doesn't
always recognize UsedCells as a proper collectionin those cases you will encounter a Member
Not Found COM error. To avoid this problem, call UsedCells directly from the
Application.ActiveSheet or Application.Worksheets(index) objects rather than from variables
referencing those objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

referencing those objects.

25.4.4. Distribute .NET Applications That Use Excel

Use the Visual Studio .NET setup and deployment project to create an installation program for applications that use
Excel as a component. (See "Distribute .NET Components," earlier in this chapter, for a walk-through of using the Setup
Wizard.)

The .NET setup tools detect the .NET Framework and Excel PIAs as dependencies of any application that uses Excel as a
component and includes those files with the installation. However, the setup tools do not automatically check for the
installation of Microsoft Excel, or any other Microsoft Office product. You can add required products as a launch
condition in the setup project for your application.

PIAs are available for Excel 2002 and later. However, you can use Visual Studio .NET type library import tools to create
interop assemblies for earlier versions of Excel (they won't work as well as the PIAs, but they will work). All interop
assemblies are tied to a specific version of Excel, so you should check that the required version of Excel is installed on
the user's computer before installing your application and each time your application starts. You can use the following
code to detect which version of Excel is installed:

' Uses the following Imports statement for RegistryKey classes:
Imports Microsoft.Win32
Function GetExcelVer() As String
 ' Define the RegistryKey objects.
 Dim regRoot As RegistryKey, regExcel As RegistryKey, ver As String
 ' Get root registry entry.
 regRoot = Microsoft.Win32.Registry.ClassesRoot
 ' Get the Excel current version registry entry.
 regExcel = regRoot.OpenSubKey("Excel.Application\CurVer")
 ' If regExcel is Nothing, then Excel is not installed.
 If IsNothing(regExcel) Then
 ' Close Registry key.
 regExcel.Close()
 ' Return 0, no version is installed
 ver = "0"
 Else
 ver = regExcel.GetValue("")
 End If
 ' Close registry.
 regExcel.Close()
 ' Return the Excel version.
 Return ver
End Function

It is possible to have a .NET application work with multiple versions of Excel; however, you would have to install interop
assemblies for each version, restrict the features you use based on the version of Excel that is installed, and expend
considerable effort debugging and testing your application for each Excel version.

According to Microsoft, you can distribute the Office PIAs and the .NET runtime as part of
your application royalty free. Of course, you can't distribute Microsoft Excel or Microsoft
Office royalty free. For answers to more subtle questions, you should consult the Microsoft
licensing agreements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.5. Create Excel Applications in .NET
A third and final way for Excel and .NET to interact is through the Visual Studio .NET Tools for Office. This set of tools
includes Visual Studio .NET project templates for Excel and Word. These project templates allow you to link a specific
document to a .NET assembly that loads whenever the user opens that document. The .NET code in the assembly can
control Excel and respond to Excel events as described in the preceding sections.

To create an Excel application in Visual Studio .NET:

1. From the Project menu, choose New, Project. Visual Studio .NET displays the New Project dialog box.

2. Select the Microsoft Office System Projects, Visual Basic Projects project type and Excel Workbook template.
Give the project a descriptive name and click OK. Visual Studio .NET starts the Microsoft Office Project Wizard
to walk you through.

3. Click Finish to create the project folder and empty workbook and code template files.

4. Visual Studio .NET doesn't automatically add the workbook to the project, so it is a good idea to add it at this
point. From the Project menu, choose Add Existing Item and then select the .xls file found in the application
folder.

5. Once the workbook is added to the project, select the workbook in the Solution Explorer and set its Build Action
property to Content. This will ensure that the workbook is distributed with your application if you create an
installation program.

When Visual Studio .NET creates an Excel project, it adds references to the Microsoft Office and Excel PIAs, adds Imports
statements to provide shortcuts to the Office and Excel classes, and generates code to ThisApplication and ThisWorkbook
objects, as shown in Figure 25-12.

Figure 25-12. A newly created Excel project in Visual Studio .NET

Visual Studio .NET links the workbook to the project's assembly through two custom document properties:
_AssemblyLocation0 and _AssemblyName0. The _AssemblyLocation0 property corresponds to the Visual Studio .NET project's
Assembly Link Location property, as shown in Figure 25-13.

You might notice that an Excel project has both a \bin and a \projectname_bin folder. Excel projects write assembly
output first to the \bin folder, then copy that file to the secondary folder. This allows the project to compile even if the
Excel workbook has the assembly open in the secondary folder. Plus it allows the project to be automatically deployed
to a public location every time you build ita process Microsoft calls no-touch deployment .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to a public location every time you build ita process Microsoft calls no-touch deployment .

When you open an Excel workbook that has _AssemblyLocation0 and _AssemblyName0 custom properties, Excel automatically
starts the Office Toolkit Loader add-in (otkloadr.dll). The Office Toolkit Loader add-in then starts the .NET assembly
specified in the AssemblyLocation0 and _AssemblyName0 properties.

Figure 25-13. Setting Assembly Link Location changes the _AssemblyLocation0
custom document property in the Excel workbook

25.5.1. Set .NET Security Policies

In order for the Office Toolkit Loader to start the assembly, that assembly must have Full Trust permissions on the
user's machine. The Microsoft Office Project Wizard automatically sets this permission on your machine, but if you move
the project or deploy it, you will need to set the permission using the .NET Configuration Tool.

To set Full Trust permissions for the Excel project's assembly on your machine:

1. From the Control Panel, choose Administrative Tools and run the .NET Framework Wizard's utility for the most
recent version of the .NET Framework installed on your machine.

2. Select Trust an Assembly Wizard. The Trust an Assembly Wizard starts and displays Step 1. Click Next.

3. Enter the address of the assembly (.dll), as shown in Figure 25-14, and click Next.

4. Set the level of trust to Full Trust, as shown in Figure 25-15, and click Next and then Finish to update your .NET
security configuration.

Figure 25-14. Set the location and name of the Excel application assembly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-15. Set Full Trust for the Excel application assembly

You can view the .NET Framework security settings for .NET Office projects by starting the .NET Configuration
Administrative Tool and expanding the My Computer, Runtime Security Policy, User, Code Groups, All_Code,
Office_Projects treeview item, as shown in Figure 25-16.

Figure 25-16. Viewing the .NET security policies for Excel .NET applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.5.2. Respond to Events in .NET Applications

The default Visual Studio .NET Excel project contains object declarations for the Excel Application and Workbook objects
using the WithEvents keyword. That plus the initialization code in the _Startup procedure enable event handling for those
two objects:

Public Class OfficeCodeBehind

 Friend WithEvents ThisWorkbook As Excel.Workbook
 Friend WithEvents ThisApplication As Excel.Application

#Region "Generated initialization code"
 ' Default constructor.
 Public Sub New()
 End Sub

 ' Required procedure. Do not modify.
 Public Sub _Startup(ByVal application As Object, ByVal workbook As Object)
 ThisApplication = CType(application, Excel.Application)
 ThisWorkbook = CType(workbook, Excel.Workbook)
 End Sub
' Remaining class definition omitted here...

You can use events that occur for the Application and Workbook objects by selecting the object and event from the listboxes
at the top of the Visual Studio .NET Code window as you did in previous sections. If you want to add an Excel object to
the objects and events lists, declare an object variable WithEvents and initialize the object somewhere in code. For
example, the following additions (in bold) create an ActiveWorksheet object that responds to events:

Friend WithEvents ThisWorkbook As Excel.Workbook
Friend WithEvents ThisApplication As Excel.Application
Friend WithEvents ActiveWorksheet As Excel.Worksheet

' Called when the workbook is opened.
Private Sub ThisWorkbook_Open() Handles ThisWorkbook.Open
 ' Activate a worksheet.
 ThisApplication.Sheets("Sheet1").activate()
 ' Set the ActiveSheet object
 If ThisApplication.ActiveSheet.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(ThisApplication.ActiveSheet, Excel.Worksheet)
End Sub

Private Sub ThisWorkbook_SheetActivate(ByVal Sh As Object) _
 Handles ThisWorkbook.SheetActivate
 ' Change active worksheet
 If Sh.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(Sh, Excel.Worksheet)
End Sub

The preceding code creates an ActiveWorksheet object and hooks the active worksheet in Excel to that object's events.
Whenever the active worksheet changes, the SheetActivate event updates the ActiveWorksheet object, ensuring that it is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Whenever the active worksheet changes, the SheetActivate event updates the ActiveWorksheet object, ensuring that it is
always current. If you add the following event procedure, any value entered in cell A1 is automatically squared and
displayed in cell A2:

Private Sub ActiveWorksheet_Change(ByVal Target As Excel.Range) _
 Handles ActiveWorksheet.Change
 ' Square value entered in range A1 and displayed in A2.
 If Target.Address = "A1" Then
 ActiveWorksheet.Range("A2").Value = Target.Value ^ 2
 End If
End Sub

This approach works well for built-in Excel objects such as Worksheets and Charts, but when you add controls to a
worksheet, you must use the code template's FindControl method to get the control so you can hook up its events. The
FindControl method is overloaded--meaning it comes in two versions, as shown here:

' Returns the control with the specified name
' on ThisWorkbook's active worksheet.
Overloads Function FindControl(ByVal name As String) As Object
 Return FindControl(name, CType(ThisWorkbook.ActiveSheet, Excel.Worksheet))
End Function

' Returns the control with the specified name on the specified worksheet.
Overloads Function FindControl(ByVal name As String, _
 ByVal sheet As Excel.Worksheet) As Object
 Dim theObject As Excel.OLEObject
 Try
 theObject = CType(sheet.OLEObjects(name), Excel.OLEObject)
 Return theObject.Object
 Catch Ex As Exception
 ' Returns Nothing if the control is not found.
 End Try
 Return Nothing
End Function

Because FindControl is overloaded, you can call the method with one or two arguments. If you provide only the object
name, FindControl assumes that the control is on the active worksheet. Overloading is Visual Basic .NET's way of dealing
with optional arguments. The following code (in bold) hooks up events for the cmdReformat button found on Sheet1:

Friend WithEvents cmdReformat As MSForms.CommandButton

' Called when the workbook is opened.
Private Sub ThisWorkbook_Open() Handles ThisWorkbook.Open
 ' Activate the worksheet the control is found on.
 ThisApplication.Sheets("Sheet1").activate()
 ' Set the ActiveSheet object
 If ThisApplication.ActiveSheet.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(ThisApplication.ActiveSheet, Excel.Worksheet)
 ' Find the control on the sheet and hook up its events.
 cmdReformat = CType(FindControl("cmdReformat"), _
 MSForms.CommandButton)
End Sub

Notice that you need to convert the type of object returned by FindControl into a CommandButton type. That is because the
CommandButton class exposes a full set of events (Click, MouseDown, DragOver, etc.) while the OLEObject class provides only
GotFocus and LostFocus events. Once you've hooked up the control's events, you can write event procedures for that
control, as shown here:

Private Sub cmdReformat_Click() Handles cmdReformat.Click
 ReformatHTML(ActiveWorksheet)
End Sub

25.5.3. Debug Excel .NET Applications

Excel projects do not report errors that occur in Excel the way you might expect. Instead of halting execution when an
error occurs, Excel projects just continue on as if nothing happened. This can be very confusing since the code exits the
procedure where the error occurred and no warning is displayed. A good way to see this behavior is to try to activate a
worksheet that doesn't exist. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet that doesn't exist. For example:

Private Sub ThisWorkbook_Open() Handles ThisWorkbook.Open
 ThisApplication.Sheets("doesn't exist").activate() ' Error! Code exits here.
 ' Set the ActiveSheet object
 If ThisApplication.ActiveSheet.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(ThisApplication.ActiveSheet, Excel.Worksheet)
 ' Find the control on the sheet and hook up its events.
 cmdReformat = CType(FindControl("cmdReformat"), MSForms.CommandButton)
End Sub

In the preceding code, ActiveWorksheet and cmdReformat are never set because Excel can't find the worksheet to activate.
The project keeps running, though, and you're just left to wonder why none of your event procedures are working.

You can prevent this by telling Visual Studio .NET to break into the debugger when exceptions are thrown, as described
in the following steps:

1. From the Debug menu, choose Exceptions. Visual Studio .NET displays the Exceptions dialog box.

2. Select Common Language Runtime Exceptions and under "When the exception is thrown," select "Break into the
debugger," as shown in Figure 25-17. Then click OK.

Figure 25-17. Set "Break into the debugger" to detect exceptions in Excel projects

Once you tell Visual Studio .NET to break on all runtime exceptions, you'll start seeing exceptions that are handled as
well those that aren't. Two handled file-not-found exceptions occur every time an Excel project starts, as shown in
Figure 25-18.

Figure 25-18. This (handled) exception occurs twice every time an Excel project
starts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

starts

You can ignore these handled exceptionsclicking Continue a couple times each time you start is a little annoying, but at
least you can catch code that doesn't work!

Another way to detect exceptions, without breaking for all of them, is to add try...Catch blocks to your code. The FindControl
method actually does this, but it omits a useful technique for reporting exceptions while debugging. It's a good idea to
add a Debug.Fail statement to the code template's FindControl method, as shown here (in bold):

Overloads Function FindControl(ByVal name As String, _
 ByVal sheet As Excel.Worksheet) As Object
 Dim theObject As Excel.OLEObject
 Try
 theObject = CType(sheet.OLEObjects(name), Excel.OLEObject)
 Return theObject.Object
 Catch Ex As Exception
 ' Report the exception.
 Debug.Fail(Ex.Message, Ex.ToString)
 End Try
 Return Nothing
End Function

Now, FindControl displays an error message during debugging if a control is not found, rather than just continuing on.
Debug.Fail is especially useful since it doesn't affect your released applicationthe .NET Framework disables the Debug class
in code that is built for release.

Excel automatically loads the assembly associated with a workbook when you open that
workbook. If the assembly has errors, or if you just want to bypass loading the assembly,
hold the Shift key down while opening the workbook. That prevents Excel from running the
startup code and loading the assembly.

25.5.4. Display Forms

Excel projects can use Windows forms to gather information and display results. To create a Windows form in Visual
Studio .NET for use from Excel, follow these steps:

1. From the Project menu, choose Add Windows Form. Visual Studio .NET displays the Add New Item dialog box.

2. Enter a name for the form and click OK. Visual Studio .NET creates a new Windows form class and displays the
class in the Designer.

3. Use the Designer to add controls to the form; then switch to the Code window. Unlike previous versions of
Visual Basic, Visual Basic .NET describes the entire form in terms of code. The form and control properties are
all maintained in the "Windows Form Designer generated code" region of the form's class.

4. In order to enable the form to interact with Excel, add the following lines to the generated code (shown in
bold):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bold):

Imports Excel = Microsoft.Office.Interop.Excel

Public Class SimpleForm
 Inherits System.Windows.Forms.Form

 Dim xlCode As OfficeCodeBehind

#Region " Windows Form Designer generated code "

 Public Sub New(ByVal target As OfficeCodeBehind)
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call
 ' Get the OfficeCodeBehind class that created this form
 ' (used to return responses to Excel).
 xlCode = target
 End Sub
 ' Remainder of class omitted here...

5. Within the form's event procedures, use the xlCode object created in Step 4 to interact with Excel. For example,
the following code squares each of the values in the active worksheet when the user clicks the Square Values
button:

Private Sub cmdSquare_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSquare.Click
 ' If SquareCells succeeds, then close this form.
 If SquareCells() Then Me.Close()
End Sub

Private Function SquareCells() As Boolean
 Try
 ' For each cell in the active sheet's used range...
 For Each cel As Excel.Range In _
 xlCode.ThisWorkbook.ActiveSheet.UsedRange
 ' Square the value.
 cel.Value = cel.Value ^ 2
 Next
 Catch ex As System.Runtime.InteropServices.COMException
 ' Something happened in Excel.
 Debug.Fail(ex.Source & " " & Hex(ex.errorcode), ex.Message)
 Return False
 Catch ex As Exception
 ' Something happened in .NET (display error while debugging)
 Debug.Fail(ex.Source, ex.Message)
 Return False
 End Try
 ' Success.
 Return True
End Function

6. Write code in the OfficeCodeBehind class to create the form and display it. For example, the following code creates
a new form based on the SimpleForm class and displays it from Excel:

' In OfficeCodeBehind class.
Private Sub cmdSquare_Click() Handles cmdForm.Click
 ' Create a new form object.
 Dim frm As New SimpleForm(Me)
 frm.ShowDialog()
End Sub

The preceding procedure passes the OfficeCodeBehind class instance to the form's constructor in the code New
SimpleForm(Me). The form keeps that instance as the class-level xlCode variable defined in Step 4.

The .NET Framework provides two methods used to display forms: ShowDialog displays forms modally; the form stays on
top and must be closed before the user returns to Excel. Show displays forms nonmodally; the form may appear in front
of or behind the Excel window, depending on which window has focus.

When working with Excel, you'll usually want to display Windows forms modally (using ShowDialog). Exceptions to this
rule might include cases in which you want to display some output that you want to keep around, such as a floating
toolbar or a Help window. In these cases, you can use the Show method combined with the TopMost property to keep the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

toolbar or a Help window. In these cases, you can use the Show method combined with the TopMost property to keep the
nonmodal form displayed on top of Excel.

For example, the following code displays a new form based on the SimpleForm class nonmodally but keeps it on top of the
other windows:

Private Sub cmdSquare_Click() Handles cmdForm.Click
 ' Create a new form object.
 Dim frm As New SimpleForm(Me)
 ' Show the form nonmodally but keep it on top.
 frm.TopMost = True
 frm.Show()
End Sub

25.5.5. Distribute Excel .NET Applications

One of the big advantages of Excel .NET applications is that they can be easily distributed through a network. Just set
the project Assembly Link Location property to a network address and distribute the Excel workbook that uses the
assembly. Whenever anyone uses the workbook, the assembly will then be loaded from that network location.

Before you can distribute applications in this way, however, you need to make sure your users meet the following
requirements:

They must be using Excel 2003 or later. Prior versions of Excel are not supported for Excel .NET applications.

The Office PIAs must be installed on the user's machine.

The .NET Framework Version 1.1 runtime must be installed.

The user's .NET security policy must specify Full Trust for the network address from which the assembly is
distributed.

The first two requirements are best handled using the Office Resource Kit's Custom Installation Wizard or Custom
Maintenance Wizard. You can use those tools to create a chained installation that calls subsequent installation
programs, such as the setup for Excel .NET application prerequisites and security policy settings.

The .NET setup and deployment projects detect the Office PIAs and .NET Framework as dependencies of the Excel
application. According to the Visual Studio .NET Tools for Office documentation, you shouldn't distribute the PIAs
through your setup program (instead, use the Office setup to do this as mentioned earlier). Special steps for creating
an installation program for Excel .NET application prerequisites include:

1. Exclude the PIAs from the setup project. These are added as dependencies by default.

2. Optionally, exclude the Primary Output (projectname.dll) from the installation. Usually, you'll want to distribute
the assembly from a network address, rather than installing it on client machines where it is harder to update.

3. Create a batch file, script, or Windows installer to set the client's .NET security policy to enable the assembly to
load from its network address.

A simple way to set security policies on a client is to use a batch file that calls the .NET utility caspole.exe. The following
batch file assigns Full Trust to the network location \\wombat2\SharedDocs\bin:

REM Adds FullTrust for \\wombat2\Sharedocs\bin location.
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp off -m -ag
LocalIntranet_Zone -url \\wombat2\shareddocs\bin* FullTrust -n
"Excel Project Assemblies" -d "Share point for .NET code running in
Office 2003 applications."
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp on

You can also use caspole.exe to remove a security policy, as shown here:

REM Removes FullTrust for \\wombat2\Sharedocs\bin location.
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp off -remgroup
"Excel Project Assemblies"
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp on

Another way to distribute security policies is by using the .NET configuration utility to generate a Windows installer file
(.msi) for a group policy. To do this, follow these steps:

1. Configure your machine with the security policies you want to deploy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Configure your machine with the security policies you want to deploy.

2. Start the .NET configuration utility for the current version of the .NET Framework.

3. Select the Runtime Security Policy item in the treeview and click Create Deployment Package as shown in
Figure 25-19.

Figure 25-19. Creating a Windows installer for .NET security policies

4. Follow the steps in the wizard to create an .msi file containing the security policies to deploy (Figure 25-20).

5. Click Next, then Finish to create the Windows installer file (.msi).

Once you've created the .msi file, you can deploy that policy to your enterprise by using the Group Policy Editor snap-in
from the Microsoft Management Console (mmc.exe) or by installing the .msi file individually on client computers.

Figure 25-20. Choose the policy level to deploy and enter a filename to create

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.5.6. Migrate to .NET

If you are an experienced VBA programmer, you've got a good start on learning Visual Basic .NET; however, there are
significant language differences, so be prepared for a learning curve and don't expect to be able to cut and paste code
from an Excel VBA project into Visual Basic .NET and have the code run.

Existing Excel VBA code may provide a template for Visual Basic .NET code, but Visual Basic .NET is really a different
language from Excel VBA. There are large as well as subtle differences. If you are new to Visual Basic .NET, you will
save a great deal of time by buying and reading one of the many books on Visual Basic .NET. One of the best, in my
opinion, is Programming Microsoft Visual Basic 2005 by Francesco Balena (Microsoft Press).

The following sections list a few recommendations that may make your transition easier.

25.5.6.1. Be explicit

I've already mentioned that .NET doesn't support VBA's concept of a default property. If you are going to set the value
of an object, you must use the Value property (or its equivalent).

Being explicit also applies to object references. It is much easier to program in .NET if you are using a specific object
type, such as Worksheet, rather than the generic Object type. Using the specific object enables the Intellisense and Auto
Complete features of .NET and helps detect inadvertent errors, such as incorrect variable assignments.

In many cases, Excel methods return generic object types that should be converted to the expected, more specific type.
Use CType to perform this conversion, but be sure to check if the object can be converted before performing the
conversion. For example, the following code checks if the passed-in argument Sh is a Worksheet before performing the
conversion:

Private Sub ThisWorkbook_SheetActivate(ByVal Sh As Object) _
 Handles ThisWorkbook.SheetActivate
 If Sh.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(Sh, Excel.Worksheet)
End Sub

Trying to convert an object to an incompatible type causes a runtime error.

In .NET, everything is an object. Even simple types like strings and integers are their own classes derived from .NET's
base object type. At first, this might seem cumbersome, but the consistency and logic of this approach pay huge
dividends.

25.5.6.2. Pass arguments by value

By default in VBA, procedures pass arguments by reference. The default in .NET is to pass arguments by value. If you
cut and paste code from VBA, .NET will add ByVal to unqualified argument definitions, thus changing how the arguments
are passed.

25.5.6.3. Collections start at zero

The index of the first element of any .NET collection is zero. For Excel objects, the first element of any collection is 1.

25.5.6.4. Data access is through ADO.NET

.NET provides access to databases, XML data, and in-memory data tables through ADO.NET, which is significantly
different from prior data-access techniques. Backward-compatibility is provided for ADO data binding, but the best
advice here is to pick up a good book on the subject and start learning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.6. Resources
Additional information about the topics in this section is available from the following online sources:

Topic Source

Converting VBA code to .NET Search http://msdn.microsoft.com for "Converting code from VBA to
Visual Basic .NET."

Structure of COM HRESULTs Search http://msdn.microsoft.com for "Structure of COM error codes."

Configuring .NET assembly security Search http://msdn.microsoft.com for "How to: grant permissions to
folders and assemblies."

Visual Studio .NET Tools for Office

Visit http://msdn.microsoft.com/vstudio/office/ or
http://msdn.microsoft.com/vstudio/howtobuy/officetools/.

Creating Excel .NET applications

Search http://msdn.microsoft.com for
"Creating Office solutions."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 26. Exploring Security in Depth
In the physical world, security is the freedom from danger. There are myriad dangers in the physical world, but in the
world of Excel, dangers relate to protecting data (absent an army of spreadsheet-driven killer robots). Specifically,
Excel security is designed to protect you from:

Unauthorized or accidental changes

Malicious changes or destruction of data

Theft or unauthorized distribution of restricted information

Attack from viruses

This chapter explains approaches to protecting your data from these threats and explains how to implement those
approaches within Excel.

Code used in this chapter and additional samples are available in ch26.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.1. Security Layers
When it's cold you dress in layers , and security works the same way. The outer layer is a firewall, preventing attacks
from the Internet. Next, virus detection software scans permitted attachments and other files from bringing in malicious
code. Then, operating system security defines users and their permissions. Finally, Excel provides its own security
layer.

Data most at risk is that which is shared outside of these layers, such as a workbook posted on a public server. In that
case, Excel becomes the primary security layer. Of course not all data needs the same level (or type) of protection.
Therefore, Excel itself provides layers through these security approaches:

Password protection and encryption control read and write access to workbooks.

Worksheet protection password-protects items within a workbook and alternately can authorize changes based
on user lists.

User-based permissions allow authors to limit the rights of others to read, change, print, copy, or distribute a
document. Permissions can also set an expiration date for a document.

Digital signatures identify the author of a document, ensuring that a document is the authentic originalnot a
modified or spoof copy. Signatures can also be applied to macros and ActiveX controls to ensure their code is
from a trusted source.

Macro security levels determine what level of trust is required before Excel will run code included in worksheets,
templates, add-ins, or Smart documents.

ActiveX control security levels similarly limit which controls Excel will trust.

The Office Anti Virus API provides an interface for antivirus software to scan documents for malicious code
before they are opened.

The custom installation wizard permits administrators to configure which security options are enabled during
installation on users' machines.

These security approaches can be combined to provide a high level of assurance while still allowing files to be shared,
macros to be run, and (ultimately) work to be done. The rest of this chapter discusses each of these approaches, along
with Windows file security, then provides a list of common security tasks and describes how you complete those tasks
by combining Excel security features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.2. Understand Windows Security
Before we talk about Excel security, it is important to explain some general concepts related to the Windows operating
system. This may seem basic to some of you, but Windows security features are somewhat hidden and it's a good idea
to cover them somewhere.

Permissions are a set of capabilities that someone has or doesn't have. Permissions apply to files and locations, so
someone may be able to open a specific folder, see files, but not write to that folder or edit the files it contains.

Users are identities that Windows uses to control access. When you sign on with a username and password, Windows
authenticates that information and thereafter identifies you as machinename\username if your network uses
workgroups or domainname\username if your network uses domains. Your identity is then used any time you request
permission to use a resource, such as open a file or run an application. If your identity has permission to use that
resource, you are granted access and the requested file opens or the application runs.

Groups are the security groups to which a username belongs. Windows comes with some groups already configured:
Administrators, Users, Guests, Backup Operators, and Power Users. Groups provide an easy way to grant a set of
permissions to a set of users rather than having to grant permissions to many individual users.

Certificates and digital signatures are small identifiers that can be attached to a data file or executable that identify the
author of the file or executable. Certificates are issued by a third-party certificate authority (sometimes called a CA),
such as Verisign, which provides the service that authenticates certificates . The idea here is that if a user knows who
the author of a particular file is, he is more likely to trust that it will not harm his computer.

26.2.1. Set File Permissions in Windows XP

How you set permissions is not obvious from the default setup of Windows XP. First, you must disable the Use Simple
File Sharing folder option in Windows Explorer, as shown in Figure 26-1.

Figure 26-1. Disable simple file sharing in Windows XP to set permissions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To set permissions on a folder or file:

1. In Windows Explorer, select the file or folder to set permissions on and select Properties from the File menu.

2. Select the Security tab on the Properties dialog box (Figure 26-2). The top list displays user groups and
individual users with permissions for the item. The bottom list shows the permissions assigned to each group or
user.

3. Select a group or user, then assign or deny permissions by clicking on the boxes in the permissions list. Click
OK when done.

Figure 26-2. Setting permissions

If you're unfamiliar with how this works, it's a good idea to experiment with a file. For example, create an Excel
workbook named Book1.xls, then deny Full Control for your username. OK, then try to open Book1.xls in Excelyou'll get
an Access Denied error. Now change the file permissions to allow Read & Execute but deny Write access. You'll be able
to open the file in Excel, but you can't save it as Book1.xls.

These permissions don't have much meaning in the preceding example because you can always change them back to
allow writing or whatever. You own the file so you can do whatever you like. Permission settings are truly significant
when a file is shared with other users, such as when the file is placed in a public network address.

For example, if you want to allow others to read workbooks but not to make changes, a simple solution is to create a
shared folder that denies Write permission to everyone but you.

26.2.2. View Users and Groups in XP

When you set up user accounts from the Windows XP Control Panel, you have three types of accounts available:
Computer Adminstrator, Limited, and Guest accounts. These accounts correspond to the Administrator, User, and Guest
account groups within Windows. These aren't the only groups available, however. To view all the groups:

1. From the Control Panel, run Administrative Tools. Windows runs the Microsoft Management Console (MMC) .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. From the Control Panel, run Administrative Tools. Windows runs the Microsoft Management Console (MMC) .

2. Click Local Users and Groups in the left pane to expand that item.

3. Select the Groups folder to display a list of Groups

4. Double-click on a group to view a list of the users that belong to that group (Figure 26-3).

Figure 26-3. Viewing members of a group in MMC

Your list of groups may be different from the list shown in Figure 26-3 because applications often add groups and then
add users as members of those groups. If you click around and explore a bit, you'll see that you can't set the
permissions of groups or users through the MMC. That's because permissions are set on objects, not on identities.

For example, a folder in Windows may allow users that belong to the Administrators group to read and write files, but
allow Users group member to only read those files, and prohibit Guest members from even reading files. In this case,
the folder is the security object that defines the permissions for groups that have access.

Applications sometimes check whether a user belongs to a certain group before allowing her to perform a task. This is
referred to as role-based security .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.3. Password-Protect and Encrypt Workbooks
Passwords are a simple way to protect sensitive data in a workbook. You can use passwords to encrypt a workbook to
provide added security. Encryption prevents hackers from being able to read your workbook by disassembling the file in
some way.

To add a password to a workbook in Excel:

1. Choose Save As from the File menu. Excel displays the Save As dialog box.

2. On the Save As dialog box, click the Tools menu and select General Options. Excel displays the Save Options
dialog box shown in Figure 26-4.

Figure 26-4. Use Save Options to add passwords and encryption

3. Enter passwords in the "Password to open" and/or "Password to modify" text boxes and click OK. To create a
workbook that everyone can read but only password holders can edit, set "Password to modify" and leave
"Password to open" blank.

4. Excel prompts you to confirm the passwords entered in the previous step.

To add encryption to a workbook:

1. Click the Advanced button after Step 2 in the preceding list. Excel displays the Encryption Type dialog box
shown in Figure 26-5.

2. Select an encryption type from the listed encryption providers, choose an encryption key length, and click OK.

3. Proceed with setting the workbook password.

Figure 26-5. Choosing an encryption type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The encryption providers you have installed may vary depending on your location. Some encryption providers are not
available outside of the United States, so you will want to take that into consideration if you are distributing encrypted
files internationally. The longer the encryption key, the harder it is for a hacker to decrypt data. All software-based
encryption is potentially reversible without the key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.4. Program with Passwords and Encryption
You can set passwords and encryption options in code using the Workbook object's security members, such as the Password
property and SetEncryptionProperties method. From a security standpoint, it doesn't make sense to hardcode passwords into
Visual Basic macros. Instead, the Workbook object's security members are generally used in conjunction with User Forms
to set passwords and encryption chosen by the user through a customized interface.

For instance, you might create a document template (.xlt) for secure documents that can only be saved using a
password and encryption. Such a template might include a user form to get the password, as shown in Figure 26-6.

Figure 26-6. Password user form

The code for the user form confirms that the Password and Confirm Password text boxes match and allows the user to
cancel the operation, as shown here:

 ' Public fields
 Public Password As String, Encrypt As Boolean

 Private Sub cmdCancel_Click()
 Me.Hide
 Password = ""
 End Sub

 Private Sub cmdSave_Click()
 If txtPassword.Text <> txtConfirm.Text Then
 MsgBox "Password and confirm password must match.", , "Confirm Error"
 Else
 Password = txtPassword.Text
 Encrypt = chkEncrypt.Value
 Me.Hide
 End If
 End Sub

Then, the Secure template includes a workbook-level procedure to intercept the Save event. Whenever the user saves a
document based on this template, the following code displays the password user form and sets the workbook password
and encryption options (points of note are shown in bold):

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)
 Dim fname As String
 ' Exit if this is a template, not a workbook.
 If ThisWorkbook.FileFormat = xlTemplate Then Exit Sub ' (1)
 ' Cancel default operation.
 Cancel = True
 ' Get a password if one does not exist.
 If Not ThisWorkbook.HasPassword Then ' (2)
 frmPassword.Show
 ThisWorkbook.Password = frmPassword.Password ' (3)
 If frmPassword.Password = "" Then Exit Sub
 If frmPassword.Encrypt Then
 ThisWorkbook.SetPasswordEncryptionOptions _ ' (4)
 "Microsoft RSA SChannel Cryptographic Provider", _
 "RC4", 128, True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "RC4", 128, True
 End If
 End If
 ' Save the workbook by enabling the default action.
 Cancel = False ' (5)
 ' Make sure the user form unloads.
 Unload frmPassword
End Sub

The key points are:

1. Exit the procedure if saving a template. This allows you to save the template without a password.

2. Use the HasPassword property to determine if a password has already been set. You can't use the Password
property to test this, since it always returns asterisks whether or not a password is set (for security reasons).

3. You can set a password by assigning the workbook's Password property or by using the SaveAs method. Using
SaveAs in this case would call the Workbook_BeforeSave event procedure again, resulting in an unwanted recursion.

4. Use the SetEncryptionOptions method to choose the type of encryption and the length of the encryption key. This is
the only way to set encryption options, since the PasswordEncryption properties are all read-only.

5. Set Cancel to False to allow Excel to complete the save operation. As mentioned in Item 3, calling Save or SaveAs
would result in unwanted recursion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.5. Workbook Password and Encryption Members
The Workbook object has more than 200 members. The following Workbook members deal with security; other Workbook
members are described in Chapter 8:

HasPassword Password

PasswordEncryptionAlgorithm PasswordEncryptionFileProperties

PasswordEncryptionKeyLength PasswordEncryptionProvider

SetPasswordEncryptionOptions WritePassword

WriteReserved WriteReservedBy

workbook.HasPassword

Returns True if a password is required to open the workbook. HasPassword does not detect whether or not a workbook
has a write password. The following code removes a password if the workbook has one:

 Dim wb As Workbook, pass As String
 Set wb = ThisWorkbook
 If wb.HasPassword Then
 wb.Password = ""
 MsgBox "Password removed.", , "Password"
 Else
 MsgBox "No password found.", , "Password"
 End If

workbook.Password [= setting]

Sets a password used to open the workbook. Returns "********" whether or not a password was previously set. The
following code sets a password entered by the user in an InputBox:

 Dim wb As Workbook, pass As String
 Set wb = ThisWorkbook
 pass = InputBox("Enter a password.", "Password")
 If pass = "" Then Exit Sub
 If pass = InputBox("Enter password again to confirm.", "Password") Then
 wb.Password = pass
 MsgBox "Password set.", , "Password."
 Else
 MsgBox "Passwords don't match. No password set.", , "Password"
 End If

The InputBox displays characters as they are typed. It is a better idea to use a user form with text boxes that display a
password character to get passwords from users.

workbook.PasswordEncryptionAlgorithm

Returns a string indicating the type of encryption used for a workbook. The following code displays the encryption
properties for a workbook in the Immediate window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

properties for a workbook in the Immediate window:

 Set wb = ThisWorkbook
 Debug.Print "Encrytpion algrorythm: " & wb.PasswordEncryptionAlgorithm, _
 "Encrypt properties? " & wb.PasswordEncryptionFileProperties, _
 "Key length:" & wb.PasswordEncryptionKeyLength, _
 "Provider: " & wb.PasswordEncryptionProvider

If a workbook is not encrypted, the PasswordEncryptionAlgorithm is OfficeStandard.

workbook.PasswordEncryptionFileProperties

Returns True if workbook file properties are encrypted, False if they are not.

workbook.PasswordEncryptionKeyLength

Returns the length of the encryption key.

workbook.PasswordEncryptionProvider

Returns the full name of the workbook's encryption provider. If the workbook is not encrypted, returns "Office".

workbook.SetPasswordEncryptionOptions(PasswordEncryptionProvider,
PasswordEncryptionAlgorithm, PasswordEncryptionKeyLength,
PasswordEncryptionFileProperties)

Sets the workbook's encryption properties.

Argument Settings

PasswordEncryptionProvider A string containing the full name of the encryption provider, such as "OfficeStandard" for no
encryption or "Microsoft Base Cryptographic Provider v1.0".

PasswordEncryptionAlgorithm A string containing the type of encryption to use. Use "Office" for no encryption, "RC4" for
encryption.

PasswordEncryptionKeyLength The length of the encryption key. Must be a valid value for the encryption provider.

PasswordEncryptionFileProperties Set to True to encrypt the workbook's file properties, False to leave them unencrypted.

The following code sets strong encryption on a workbook:

 Set wb = ThisWorkbook
 wb.SetPasswordEncryptionOptions "Microsoft Strong Cryptographic Provider", _
 "RC4", 128, True

workbook.WritePassword [= setting]

Sets the workbook's Password to Modify setting in Excel. Always returns "********". The following code removes a
workbook's Password to Open setting (read/write) and creates a read-only password:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook's Password to Open setting (read/write) and creates a read-only password:

 Set wb = ThisWorkbook
 wb.Password = ""
 wb.WritePassword = "Excel2003"

workbook.WriteReserved

Returns True if the workbook has a WritePassword; otherwise, returns False. This property is similar to the HasPassword
property, only it checks for a write password. The following code checks if the workbook has a write password and
displays the name of the person who set the write password if it does:

 Set wb = ThisWorkbook
 If wb.WriteReserved Then _
 Debug.Print "Reserved by: " & wb.WriteReservedBy

workbook.WriteReservedBy

Returns the name of the author who set the write password. This is the same as the Last Author built-in document
property of the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.6. Excel Password Security
Encrypting a workbook makes it very difficult to extract passwords from a workbook by peeking inside the file in some
way. However, Excel does leave passwords open to guessing attacks. In short, you can write a macro to call the Open
method repeatedly with various passwords until you find one that works.

That's because Excel doesn't lock out attempts after a certain number of wrong passwords the way most networks do.
Therefore, Excel passwords are only as good as their complexity.

For example, a four-character all-lowercase workbook password takes about 40 minutes to guess using brute-force
techniques on a 2.0 GHz machine. By extrapolation, a mixed-case four-character password would take more than 10
hours, and a six-character password using any valid characters (letters, numbers, or symbols) would take 883 years.

That sounds pretty secure, but remember this is just using brute-force techniquesstarting at Chr(33) and working
through the valid character set. There are many ways to optimize guessing that would reduce these times. The
controlling factors are how many attempts are made before guessing correctly and how long it takes Excel to run the
Open method and return an error if the guess is wrong. For example, the Excel Key service on the Web promises
password recovery in four to seven days regardless of password length.

These same guessing techniques can be applied to password-protected items within a workbook, such as worksheets. It
is, in fact, much easier to guess the password for a protected worksheet since the Unprotect method returns an error five
times faster than the Open method.

So what should you do? Here are some recommendations:

Use strong passwords. Strong passwords are at least eight characters long and contain letters, numbers, and
symbols.

Encrypt password-protected files.

Keep passwords secret. This is obvious, but it is also where most security breaches occur.

Use third-party encryption tools for truly sensitive data. Buy a tool that is designed not to allow guessing
attacks.

Use Permissions to limit access to the file based on user identities rather than or in addition to passwords and
encryption. See "Set Workbook Permissions," later in this chapter, for more information.

Permissions or other identity-based approaches are really much better at securing data than are password-based
approaches.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.7. Protect Items in a Workbook
Protecting prevents changes to parts of a workbook. You can apply protection to worksheets, charts, ranges,
formatting, and window layout. Protection can use a password or it may omit the password if the protection is intended
to prevent accidental changes rather than malicious ones.

You can protect multiple items within a workbook and you can use different passwords for each of those items, though
that's generally a bad idea. The more passwords you use, the more likely you are to confuse themespecially within a
single workbook. It's a good idea to use the same password when protecting multiple items.

To prevent changes to a worksheet:

1. Add data to your worksheet and adjust the formatting so that it appears the way you want it to.

2. From the Tools menu, choose Protection, then Protect a Sheet. Excel displays the Protect Sheet dialog box
shown in Figure 26-7.

Figure 26-7. Use protection to prevent changes

3. Type a password and select the actions you want to permit on the worksheet from the list. Click OK. Excel
prompts you to confirm the password.

After a worksheet is protected, you can't change it without unprotecting it first. To unprotect the worksheet, select
Tools Protection Unprotect Sheet and enter the password.

Worksheet protection applies to all of the locked cells on a worksheet. To allow users to edit some cells on a worksheet
while protecting most of the others, take the following steps before protecting the worksheet:

1. Select the cells you want to allow the user to edit.

2. From the Format menu, choose Cells. Excel displays the Format Cells dialog box shown in Figure 26-8.

Figure 26-8. Unlock cells to allow changes on protected sheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-8. Unlock cells to allow changes on protected sheets

3. Select the Protection tab and clear the Locked check box. Click OK.

4. Protect the worksheet. Now, Excel allows changes in the unlocked cells.

You can also selectively protect ranges of cells by user. This lets some users but not others edit selected cells. To
protect ranges by user, take the following steps before protecting the worksheet:

1. Select the range of cells to protect.

2. From the Tools menu, choose Protection, then choose Allow Users to Edit Ranges. Excel displays the dialog box
shown in Figure 26-9.

Figure 26-9. Use edit ranges to protect cells by user

3. Click the New button. Excel displays the New Range dialog box with the range of the selected cells listed in the
Refers to Cells text box (Figure 26-10).

Figure 26-10. Setting the password for an edit range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-10. Setting the password for an edit range

4. Click on Permissions, then click Add on the Permissions dialog box. Excel displays the Select Users or Groups
dialog box (Figure 26-11).

Figure 26-11. Adding users to the edit range

5. Type the names of the users to allow to edit the range. Usernames take the form machinename\username for
workgroup-based networks or domainname\username for domain-based networks. You can also simply type the
username and click Check Names to look up a user's machine or domain name if you don't know it. To specify
multiple names, separate them with a semicolon. Click OK when done. Excel adds the names to the Permissions
dialog box, as shown in Figure 26-12.

6. If you want to require the user to enter a password before editing the range, select the username and click the
Deny check box. Click OK when done. Excel returns you to the New Range dialog box.

Figure 26-12. Viewing the users for an edit range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Enter a password for the range and click OK. Excel prompts you to confirm the password and then returns you
to the worksheet.

8. Protect the worksheet using the steps at the beginning of this section. Protecting the worksheet activates the
protection for the rangeExcel does not enforce protections until the worksheet is protected.

In general, you use the preceding procedure to allow some users to edit ranges without the worksheet-level password.
In this case, you would select the Allow check box in step 6, enter a password in Step 7, and probably specify the same
password to protect the worksheet in Step 8. Then, all other users would have to enter a password before making
changes to the range or to the rest of the worksheet.

If you don't enter a password for the range in Step 7, all users can edit the range. This is equivalent to unlocking the
range as described in the previous procedure.

You can allow edits for a group of users. In that case, specify the group name in Step 5. For instance,
WOMBAT1\Administrators allows members of the Administrators group on the machine Wombat1 to edit a range.

In all cases, you must protect the worksheet in order for the range-level protections to take effect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.8. Program with Protection
Since protecting workbooks, worksheets, and ranges is a multistep process, it is sometimes convenient to automate
protectionparticularly if you frequently use the same types of protections or if you want to make sure all protections use
the same password.

Excel provides methods for protecting Workbook, Chart, and Worksheet objects as well as subordinate objects for controlling
various aspects of protection on Worksheet objects. Figure 26-13 illustrates the relationships among the protection
objects.

Figure 26-13. Protection object model

The protection objects are organized in a somewhat unusual way: First, the Workbook and Chart objects don't provide a
Protection object since those objects allow only password protection. Second, the Worksheet object provides a Protection
object that allows you to specify a list of users who can edit ranges on the worksheet. Finally, you set which cells on a
worksheet are protected by setting the Range object's Locked property.

You can use the Worksheet object's Protect and Unprotect methods to work together with the Range object's Locked property to
conditionally protect cells on a worksheet. For instance, the following code protects all worksheet cells that contain
formulas:

 Set ws = ThisWorkbook.Sheets("Protection")
 ' Make sure worksheet is not already protected.
 ws.Unprotect
 ' Get each used cell in the worksheet.
 For Each rng In ws.UsedRange
 ' If it contains a formula, lock the cell.
 If InStr(rng.Formula, "=") Then
 rng.Locked = True
 ' Otherwise unlock the cell.
 Else
 rng.Locked = False
 End If
 Next
 ' Protect the worksheet.
 ws.Protect

After you run the preceding code, users can edit data on the worksheet but not cells that contain calculations. The
preceding Protect method doesn't specify a password, so no password is required to unprotect the cells. This isn't very
secure, but it would prevent users from making accidental changes to formulas. An alternative is to hardcode a
password into the macro or to prompt for a password as shown earlier in this chapter in "Program with Passwords and
Encryption." For example, the following code gets a password using the password user form shown earlier:

 frmPassword.Show
 ws.Protect frmPassword.Password
 Unload frmPassword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Unload frmPassword

Now, the user will be prompted for a password if he attempts to edit a formula.

Password protection works well when there is one author for a workbook, but it is not very secure for multiple authors
since the password must be shared with anyone who wants to make changes. The more people who know a password,
the less secure it becomes.

To solve this problem, Excel provides Protection and UserAccessList objects so that you can apply user-based permissions for
ranges on a worksheet. User-based permissions solve the multiple-author problem since users are authenticated by the
network when they sign on.

Protection with user-based permissions still requires a password to protect the worksheet, but cells are automatically
unlocked for certain users so those users aren't required to enter the password. For example, the following code
password-protects a worksheet but allows members of the Power Users group to edit the range A1:C4:

 Dim ws As Worksheet, aer As AllowEditRange
 Set ws = ThisWorkbook.Sheets("Protection")
 Set aer = ws.Protection.AllowEditRanges.Add("User Range", [A1:C4])
 aer.Users.Add "Power Users", True
 ws.Protect "Excel2003"

You have to get a reference to the AllowEditRange object in order to add users who are allowed to edit the range without a
password. You can't use Excel's Record Macro feature to see how to add allowed users for a rangeExcel only records the
process of adding the named edit range, not adding the users or setting their permissions.

The names of edit ranges on a worksheet must be unique. You can remove previously created edit ranges, unprotecting
the worksheet and using the Delete method as shown here:

 ws.Unprotect
 For Each aer In ws.Protection.AllowEditRanges
 aer.Delete
 Next

Similarly, you can remove users added to an edit range using the Users collection DeleteAll method or the User object's
Delete method as shown here:

 ws.Unprotect
 Set aer = ws.Protection.AllowEditRanges("User Range")
 aer.Users("Power Users").Delete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.9. Workbook Protection Members
The order of worksheets in a workbook can be protected from changes, as can the window and pane layout used to
display the workbook. You can also use workbook protection to set passwords for shared workbooks.

The Workbook object has more than 200 members. The following Workbook members deal with protection; other Workbook
members are described in Chapter 8:

 Protect
 ProtectSharing
 ProtectStructure
 ProtectWindows
 Unprotect
 UnprotectSharing

workbook.Protect([Password], [Structure], [Windows])

Protects a workbook, preventing changes to the order of sheets and/or the windows used to display the workbook.

Argument Settings

Password The password used to prevent changes.

Structure True protects the order of sheets in the workbook; False does not protect. Default is False.

Windows True protects the location and appearance of the Excel windows used to display the workbook; False
does not protect. Default is False.

The following code password-protects the structure and windows of a workbook:

 Set wb = ThisWorkbook
 wb.Protect "Excel2003", True, True

workbook.ProtectSharing([Filename], [Password],
[WriteResPassword], [ReadOnlyRecommended],
[CreateBackup], [SharingPassword])

Saves a file for sharing and optionally sets protection, read-only, and read/write passwords.

Argument Settings

Filename The name to save the file as. When saving a workbook for sharing, it is common to save the file
to a new (public) location.

Password The password used to open the workbook.

WriteResPassword The password used to open the workbook for read/write access.

ReadOnlyRecommended True displays a prompt recommending that the workbook be opened for read-only access when
the user opens the workbook in Excel; False does not prompt. Default is False.

CreateBackup True automatically creates a backup version of the file before saving the file and sharing it; False
does not create a backup. Default is False.

SharingPassword The password used to remove sharing from the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The many password arguments for the ProtectSharing method can be confusing. The following code saves a workbook to a
public location and sets three passwords for the file:

 Set wb = ThisWorkbook
 wb.ProtectSharing "\\wombat1\public\shared.xls", "pass1", "pass2", , , "pass3"

Once the preceding code runs, you use "pass1" to open the file, "pass2" to get read/write access to the file, and "pass3" to
remove file sharing from the file.

workbook.ProtectStructure

Returns True if the order of the sheets in the workbook is protected, False if not. The following code displays the
workbook's protection settings in the Immediate window:

 Set wb = ThisWorkbook
 Debug.Print "Structure protected? " & wb.ProtectStructure, _
 "Windows protected? " & wb.ProtectWindows

workbook.ProtectWindows

Returns True if the window display of the workbook is protected, False if not.

workbook.Unprotect([Password])

Removes protection from the workbook.

Argument Settings

Password The password used to protect the workbook. Password is required if the workbook was protected with a
password.

The following code unprotects a workbook:

 Set wb = ThisWorkbook
 wb.Unprotect "Excel2003"

workbook.UnprotectSharing([SharingPassword])

Removes file sharing from a protected/shared workbook.

Argument Settings

SharingPassword The password used to share the workbook. Corresponds to the SharingPassword argument in the
ProtectSharing method.

The following code removes sharing from a shared workbook stored in a public location:

 Set wb = Application.Workbooks.Open("\\wombat1\public\shared.xls", , , , "pass1", _
 "pass2")
 wb.UnprotectSharing pass3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wb.UnprotectSharing pass3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.10. Worksheet Protection Members
Protecting a worksheet can prevent changes to locked cells and other items on the worksheet. The Worksheet object has
135 members. The following Worksheet members deal with protection; other Worksheet members are described in Chapter
9:

 Protect
 ProtectContents
 ProtectDrawingObjects
 Protection
 ProtectionMode
 ProtectScenarios
 Unprotect

worksheet.Protect([Password], [DrawingObjects], [Contents],
[Scenarios], [UserInterfaceOnly], [AllowFormattingCells],
[AllowFormattingColumns], [AllowFormattingRows],
[AllowInsertingColumns], [AllowInsertingRows],
[AllowInsertingHyperlinks], [AllowDeletingColumns],
[AllowDeletingRows], [AllowSorting], [AllowFiltering],
[AllowUsingPivotTables])

Protects a worksheet and sets options determining which items on the worksheet are protected. The arguments to this
method correspond to the settings on the Protect Sheet dialog box shown in Figure 26-7.

Argument Settings

Password The password required to unprotect the worksheet.

DrawingObjects
True protects graphic objects such as command buttons and
shapes on the worksheets; False does not protect. Default
is True.

Contents True protects the locked cells on the worksheet; False does
not protect. Default is True.

Scenarios True protects scenarios on the worksheets; False does not
protect. Default is True.

UserInterfaceOnly

True protects the worksheet from changes made through
the Excel interface, but allows macros to make changes to
protected items; False applies the protection to both types
of changes. Default is False.

AllowFormattingCells, AllowFormattingColumns,
AllowFormattingRows, AllowInsertingColumns, AllowInsertingRows,
AllowInsertingHyperlinks, AllowDeletingColumns, AllowDeletingRows,
AllowSorting, AllowFiltering, AllowUsingPivotTables

If the contents are protected, then setting any of these
arguments to True enables that task, such as formatting
cells, sorting, etc. The default for each of these is False.

Use the Protect method arguments to selectively protect aspects of the workbook. For example, the following code
protects only the drawing objects (which includes control objects like command buttons and text boxes) on a
worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 ws.Protect "Excel2003", True, False, False

The preceding code protects the controls on a worksheet. Don't confuse that with the UserInterfaceOnly argument, which
permits macros to make changes to protected items. For example, the following code protects a worksheet, but allows
macros to change cell values, insert rows, and make other changes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

macros to change cell values, insert rows, and make other changes:

 ws.Protect "Excel2003", , True, , True
 ws.Range("A1").Value = 42

Since UserInterfaceOnly is True in the preceding code, the macro can change the value of cell A1; however, the user can't
change that cell.

worksheet.ProtectContents

Returns True if the worksheet's contents are protected; otherwise, returns False. The following code displays the types
of protection applied to a worksheet in the Immediate window:

 Set ws = ThisWorkbook.Sheets("Protection")
 Debug.Print "Protections on workbook:"
 Debug.Print "Contents?", "Controls?", "UI?", "Scenarios?"
 Debug.Print ws.ProtectContents, ws.ProtectDrawingObjects, _
 ws.ProtectionMode, ws.ProtectScenarios

worksheet.ProtectDrawingObjects

Returns True if the worksheet's drawing objects are protected; otherwise, returns False.

worksheet.Protection

Returns a Protection object containing the protection property settings. See the section "Protection Members," later in this
chapter, for a complete description.

worksheet.ProtectionMode

Returns True if the UserInterfaceOnly argument was set to True when the worksheet was protected; otherwise, returns
False.

worksheet.ProtectScenarios

Returns True if the worksheet's scenarios are protected; otherwise, returns False.

worksheet.Unprotect([Password])

Removes protection from a worksheet.

Argument Settings

Password The password used to protect the worksheet

The following code removes the protection from a worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code removes the protection from a worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 ws.Unprotect "Excel2003"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.11. Chart Protection Members
Protecting a chart can prevent changes its appearance and data. The Chart object has 148 members. The following Chart
members deal with protection; other Chart members are detailed by task in other sections and chapters. Members with
differences from the Worksheet protection members (shown in bold) are covered in the following reference section:

Protect ProtectContents

ProtectData ProtectDrawingObjects

ProtectFormatting ProtectGoalSeek

ProtectionMode ProtectSelection

Unprotect

chart.Protect([Password], [DrawingObjects], [Contents],
[Scenarios], [UserInterfaceOnly])

The Protect method provides fewer arguments for the Chart object than for the Worksheet object.

Argument Settings

Password The password required to unprotect the chart.

DrawingObjects True protects Shape objects drawn on the chart; False does not protect. Default is True.

Contents True protects the chart. Default is True.

Scenarios This argument is ignored for charts.

UserInterfaceOnly True protects the chart from changes made through the Excel interface, but allows macros to make
changes to protected items; False applies the protection to both types of changes. Default is False.

The following code protects a chart with a password:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.Protect "Excel2003"

chart.ProtectData [= setting]

Sets or returns whether or not the user can change series formulas on the chart. Default is False. This setting operates
independent of the other protection settings. The following code prevents changes to the way series are calculated on a
chart:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.ProtectData = True

chart.ProtectGoalSeek [= setting]

Sets or returns whether or not the user can change underlying charted values by clicking and dragging series data
points on the chart. This setting operates independent of the other protection settings. The following code prevents the
user from changing data by modifying the chart:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user from changing data by modifying the chart:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.ProtectGoalSeek = True

chart.ProtectSelection [= setting]

Sets or returns whether or not the user can select items on the chart. This setting operates independent of the other
protection settings. The following code prevents the user from selecting items on the chart and thus prevents changes:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.ProtectSelection = True

chart.UnProtect([Password])

Removes protection from a chart. Does not affect the ProtectData, ProtectGoalSeek, or ProtectSelection settings of a chart.
Those properties must be reset individually. The following code removes all protections from a chart:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.Unprotect "Excel2003"
 chrt.ProtectData = False
 chrt.ProtectGoalSeek = False
 chrt.ProtectSelection = False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.12. Protection Members
Use the Worksheet objects Protection method to get a reference to the Protection object. The Protection object has the following
members:

AllowDeletingColumns AllowDeletingRows

AllowEditRanges AllowFiltering

AllowFormattingCells AllowFormattingColumns

AllowFormattingRows AllowInsertingColumns

AllowInsertingHyperlinks AllowInsertingRows

AllowSorting AllowUsingPivotTables

The Protection object provides a set of read-only properties that describe the types of protection in effect on a worksheet.
These settings correspond to the settings in the Protect Sheet dialog box and to the arguments used in the Worksheet
object's Protect method. For example, the following code displays a report on the Protection property settings in the
Immediate window:

 Set ws = ThisWorkbook.Sheets("Protection")
 Set prot = ws.Protection
 Debug.Print "Can delete:", "Columns?", "Rows?"
 Debug.Print , prot.AllowDeletingColumns, prot.AllowDeletingRows
 Debug.Print "Can:", "Filter?", "Sort?", "Use Pivot Tables?"
 Debug.Print , prot.AllowFiltering, prot.AllowSorting, prot.AllowUsingPivotTables
 Debug.Print "Can format:", "Cells?", "Columns?", "Rows?"
 Debug.Print , prot.AllowFormattingCells, prot.AllowFormattingColumns, _
 prot.AllowFormattingRows
 Debug.Print "Can insert:", "Columns?", "Rows?", "Hyperlinks?"
 Debug.Print , prot.AllowInsertingColumns, prot.AllowInsertingRows, _
 prot.AllowInsertingHyperlinks

You also use the Protection object to get a reference to the AllowEditRanges object, which lets you set user-level permissions
on a worksheet.

protection.AllowDeletingColumns

True if the user can delete columns on the worksheet; otherwise, returns False.

protection.AllowDeletingRows

True if the user can delete rows on the worksheet; otherwise, returns False.

protection.AllowEditRanges

Returns an AllowEditRanges collection that lets you enable user-based permissions on a worksheet. See the next section,
"AllowEditRange and AllowEditRanges Members," for more information.

protection.AllowFiltering

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True if the user can filter columns on the worksheet; otherwise, returns False.

protection.AllowFormattingCells

True if the user can format individual cells on the worksheet; otherwise, returns False.

protection.AllowFormattingColumns

True if the user can format columns on the worksheet; otherwise, returns False.

protection.AllowFormattingRows

True if the user can format rows on the worksheet; otherwise, returns False.

protection.AllowInsertingColumns

True if the user can insert columns on the worksheet; otherwise, returns False.

protection.AllowInsertingHyperlinks

True if the user can insert hyperlinks on the worksheet; otherwise, returns False.

protection.AllowInsertingRows

True if the user can insert rows on the worksheet; otherwise, returns False.

protection.AllowSorting

True if the user can sort rows on the worksheet; otherwise, returns False.

protection.AllowUsingPivotTables

True if the user can use pivot tables on the worksheet; otherwise, returns False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.13. AllowEditRange and AllowEditRanges Members
Use the Protection object's AllowEditRanges property to get a reference to the AllowEditRanges collection. The AllowEditRanges
collection and AllowEditRange object provide the following members. Key members (shown in bold) are covered in the
following reference section:

Add

1
ChangePassword

Count1 Delete

Range Title

Unprotect Users

1 Collection only

Use the AllowEditRanges collection to create ranges that allow edits by specific users. Excel prevents changes to ranges of
cells that are protected and locked. The AllowEditRanges settings automatically unlock ranges of cells for the users included
in the user-access list.

You must remove protection from a worksheet before you can add user-level permissions. For example, the following
code unprotects a worksheet, creates a range that allows user-level permissions, and then restores protection:

 Dim ws As Worksheet, ual As UserAccessList, aer As AllowEditRange, _
 usr As UserAccess
 Set ws = ThisWorkbook.Sheets("Protection")
 ws.Unprotect "Excel2003"
 Set aer = ws.Protection.AllowEditRanges.Add("Edit Range", ws.[a1:c4])
 Set usr = aer.Users.Add("Power Users", True)
 ws.Protect "Excel2003"

alloweditranges.Add(Title, Range, [Password])

Creates and names a range that allows user-level permissions. Returns an AllowEditRange object.

Argument Settings

Title The name for the range. This name must be unique among the edit ranges in the worksheet.

Range The Range object to allow edits on.

Password The password the users not in the user-access list must enter before they can edit the range. Users that
are in the range's user-access list are not prompted for the password.

alloweditrange.ChangePassword(Password)

Changes an existing password or sets a new password for an edit range.

Argument Settings

Password The new password that users must enter before they can edit the range

alloweditrange.Delete()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alloweditrange.Delete()

Removes an edit range from a worksheet. For example, the following code deletes all the edit ranges in a worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 For Each aer In ws.Protection.AllowEditRanges
 aer.Delete
 Next

alloweditrange.Range

Returns the Range object that an edit range represents. For example, the following code displays the title and address
for each edit range in a worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 For Each aer In ws.Protection.AllowEditRanges
 Debug.Print aer.Title, aer.Range.Address
 Next

alloweditrange.Title

Returns the name given to an edit range.

alloweditrange.Unprotect([Password])

Unlocks the range of cells specified by the edit range. After an edit range is unlocked, users can edit the range whether
or not they are included in the range's user-access list and whether or not the worksheet is protected.

Argument Settings

Password The password used when creating the edit range.

alloweditrange.Users

Returns a reference to the UserAccessList collection for the edit range. Use this object to add users and groups of allowed
users to the edit range. See "UserAccess and UserAccessList Members," next, for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.14. UserAccess and UserAccessList Members
Use the AllowEditRange object's Users property to get a reference to the UserAccessList collection. The UserAccessList collection
and UserAccess object provide the following members. Key members (shown in bold) are covered in the following
reference section:

Add

1
AllowEdit

Count1 Delete

DeleteAll

1
Name

1 Collection only

Use the UserAccessList collection to add users to the user-access list of an edit range on a protected worksheet. You can
add individual users or groups to the user-access list, but the names must be valid user or group names for your
system. For example, the following code adds the built-in Users group to the access list for an edit range:

 Dim ws As Worksheet, ual As UserAccessList, aer As AllowEditRange, _
 usr As UserAccess
 Set ws = ThisWorkbook.Sheets("Protection")
 Set aer = ws.Protection.AllowEditRanges("Edit Range")
 Set ual = aer.Users
 Set usr = ual.Add("Users", True)

The UserAccessList collection does not support the For Each construct in Visual Basic. Instead, you must use a For statement
with a counter to get each item in the collection as shown here:

 For i = 1 To ual.Count
 Set usr = ual(i)
 Debug.Print usr.Name
 Next

useraccesslist.Add(Name, AllowEdit)

Adds a user to the user-access list on an edit range.

Argument Settings

Name The name of the user or group to add.

AllowEdit True allows this user or group to edit the range without supplying a password; False prohibits edits.

useraccess.AllowEdit [= setting]

Sets or returns whether a user is required to enter the password specified in the Add method's AllowEdit argument before
she can make changes.

useraccess.Delete()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Removes a user from the edit range's user-access list.

useraccesslist.DeleteAll()

Removes all the users from the edit range's user-access list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.15. Set Workbook Permissions
The problems with passwords are:

They are susceptible to guessing attacks.

There is no secure way to share them among a group.

They tend to proliferate and become hard to remember. You can use the same password for all items, but that
reduces security.

The solution to this problem is identity-based security. The preceding section showed how you could allow specific users
to edit protected worksheets without the worksheet password. The larger solution is to define workbook permissions
based on the user's identity.

Identity-based security solves the password problem because users maintain their own passwordusually it's the one
they use to sign on to the networkand then their identity travels with them wherever they go on a network. You don't
have to set workbook passwords, share those with your workmates, and hope you don't lose or forget them.

Excel provides identity-based security through Microsoft Information Rights Management (IRM). This new feature comes
at a cost, however. In order to use IRM, you must have a Windows 2003 server running Microsoft Windows Rights
Management (RM) Services on your network. If you don't have that or if you want to share a workbook outside of your
network, you can use Microsoft Passport identities instead of network identities.

IRM and the workbook permissions are available only with the Windows editions of Office
2003 or later.

There are some huge advantages to IRM over other types of document protection:

Identities are not susceptible to guessing attacks.

You can control a wide variety of permissions, such as the ability to print, forward, edit, copy, save, and so on.

Documents can have an expiration date.

Changes to permissions are immediate and don't require the document to be redistributed.

Users can request additional permissions from the author as needed.

Users who don't have network accounts inside your organization can use Microsoft Passport accounts for
authentication.

The disadvantages are significant, too:

Using Passports for IRM is a trial service according to Microsoft and so might be discontinued. Microsoft pledges
to give 90 days' notice before discontinuing support for this.

The RM service for Windows 2003 requires a significant per-client license fee.

All users need an identitythere's no mechanism for an anonymous user with limited rights.

The following procedures use the Microsoft Passport identitieshopefully that trial service will still be functioning when
you read this! To set IRM permissions on a workbook for the first time:

1. From the File menu, select Permission, then select Do Not Distribute. Excel starts the Windows Rights
Management Wizard, which walks you through creating Rights Management credentials and downloading them
to your computer. When you are done, Excel displays the Permission dialog box shown in Figure 26-14.

Figure 26-14. Restricting access through permissions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-14. Restricting access through permissions

2. Select Restrict Permission to This Workbook to set permissions. Excel activates the dialog box so that you can
enter data.

3. Enter a list of the users allowed to read and/or change the workbook. Users are identified by email address.
Separate multiple addresses with semicolons.

4. To set an expiration date and restrict printing and other capabilities, click More Options. Excel displays the
expanded Permissions dialog box shown in Figure 26-15.

5. Set the additional permissions by selecting the user and then changing the permission settings in the
Permission dialog box. Click OK when done.

As the author of the workbook, you always have permission to open, edit, and distribute your document. The workbook
will not expire for you since the author always has full control.

When someone other than the author opens a workbook with permissions enabled, several things may happen:

If the user is included in the workbook's users list and has Office 2003 or later installed, the workbook opens in
Excel and he may perform the actions specified by his permissions.

If he is not included in the workbook's users list and has Office 2003 or later installed, he sees a description of
where to send email to get permission to use the workbook (Figure 26-16).

Figure 26-15. Advanced permission options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-16. Users without permissions are told how to request access to an
IRM-protected document

If he does not have Office 2003 or later installed, he sees a description of how to get the IRM add-ins for
Internet Explorer so he can view the workbook (Figure 26-17).

Figure 26-17. Users without Office 2003 are told how to get the IRM add-ins for
Internet Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.16. Program with Permissions
Microsoft provides the permissions objects through the Office object library since permissions can be applied to Excel,
Word, and PowerPoint documents. Figure 26-18 illustrates the hierarchy of the permission objects.

Figure 26-18. Office permission object model

You must have Rights Management credentials installed before you can set permissions on a document. Otherwise,
most permission methods will cause runtime errors. See the preceding section for instructions on how to install
credentials.

Once credentials are installed, you can restrict access to workbooks by setting the Permission collection's Enabled property
to True, as shown here:

 Dim irm As Office.Permission
 Set irm = ThisWorkbook.Permission
 irm.Enabled = True

The preceding code sets the workbook as Do Not Distribute. You are given full control, but no other users have
permissions. Use the Add method to add permissions for other users. You must add each user individually, even if all
have the same permissions, as shown here:

 Set irm = ThisWorkbook.Permission
 irm.Add "ExcelDemo@hotmail.com", MsoPermission.msoPermissionView
 irm.Add "someone@microsoft.com", MsoPermission.msoPermissionView

Use Or to combine permissions for a user. For example, the following code allows ExcelDemo@hotmail.com to read,
print, and copy a workbook:

 irm.Add "someone@microsoft.com", MsoPermission.msoPermissionView Or & _
 MsoPermission.msoPermissionPrint Or MsoPermission.msoPermissionExtract

When you combine permissions, they may not display in the Excel Permission options dialog box. Instead, the user may
appear as having Custom permissions in the Access Level list shown in the advanced Permission dialog (Figure 26-15).

You can set a date at which the user's permissions to the document expire using an argument in the Add method or by
setting the Expiration property, as shown here:

 Set irm = ThisWorkbook.Permission
 Set usr = irm("ExcelDemo@hotmail.com")
 usr.ExpirationDate = Date + 1

The preceding code sets the expiration date for the user one day from the current date. Expiration dates are always
calendar datesyou can't set permissions to expire at a certain time.

You may also notice from the preceding code that there is no Users collection. Instead, you use the Permission collection to
get UserPermission objects. For example, the following code displays the permissions for each user in the Immediate
window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window:

 Dim irm As Office.Permission, usr As Office.UserPermission
 Set irm = ThisWorkbook.Permission
 For Each usr In irm
 Debug.Print usr.UserId, usr.Permission, usr.ExpirationDate
 Next

The simplest way to remove permissions from a workbook is to set the Permission collection's Enabled property to False:

 ThisWorkbook.Permission.Enabled = False

Disabling the Permission collection removes all users and their permissions. Use the UserPermission object's Remove method
to selectively remove users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.17. Permission and UserPermission Members
The Permission collection and UserPermission object are unusual in that they aren't directly related by name as are most
collections and objects in Office products. (For example, the Addins collection contains Addin objects.) The Permission
collection and UserPermission object have the following members. Key members (shown in bold) are covered in the
following reference section:

Add

1
Application1

ApplyPolicy

1
Count1

Creator2
DocumentAuthor

1

Enabled

1

EnableTrustedBrowser

1

ExpirationDate Parent2

Permission
PermissionFromPolicy

1

PolicyDescription

1

PolicyName

1

Remove
RemoveAll

1

RequestPermissionURL

1

StoreLicenses

1

UserId
1 Collection only

2 Object and collection

permission.Add(UserId, [Permission], [ExpirationDate])

Adds permission for a user to access a workbook. Returns a UserPermission object.

Argument Description

UserId The identity of the user for which to grant permissions

Permission One or more of the msoPermission constants

ExpirationDate The date after which the user no longer has permissions

The Permission argument can be one or more of the following constants. Join multiple permissions with the Or operator:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Permission argument can be one or more of the following constants. Join multiple permissions with the Or operator:

 msoPermissionChange
 msoPermissionEdit
 msoPermissionExtract
 msoPermissionFullControl
 msoPermissionObjModel
 msoPermissionPrint
 msoPermissionRead
 msoPermissionSave
 msoPermissionView

For example, the following code grants a Passport account permission to view and copy a workbook:

 Set irm = ThisWorkbook.Permission
 Set usr = irm.Add("ExcelDemo@hotmail.com", MsoPermission.msoPermissionView _
 Or MsoPermission.msoPermissionExtract)

permission.ApplyPolicy(FileName)

Applies a set of externally defined usernames and permissions to a workbook.

permission.DocumentAuthor [= setting]

Sets or returns the identity of the author who set the workbook's permissions. If you are setting this property, the new
identity must have Full Control permission to become the document author. The following code displays the author's
identity and email address:

 Set irm = ThisWorkbook.Permission
 Debug.Print irm.DocumentAuthor, irm.RequestPermissionURL

permission.Enabled [= setting]

Sets or returns whether permissions are currently enforced. Setting Enabled to False sets the workbook's user count to
zero, but does not remove those users from the permissions list. For example, the following code temporarily disables
permissions:

 Set irm = ThisWorkbook.Permission
 irm.Enabled = False

and this code re-enables permissions as they were set before the preceding code ran:

 irm.Enabled = True

permission.EnableTrustedBrowser [= setting]

Sets or returns whether to allow access by users who don't have Office 2003 or later installed. Setting this property to
True is the equivalent of selecting "Allow users with earlier versions of Office to read with browsers supporting
Information Rights Management" on the Permission dialog box.

userpermission.ExpirationDate [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the date after which a user's permission expires. For example, the following code displays the identities
and expiration dates of users who have permissions on this workbook:

 Set irm = ThisWorkbook.Permission
 Debug.Print "User", , "Permission", "Permission Expires"
 For Each usr In irm
 Debug.Print usr.UserId, usr.Permission, usr.ExpirationDate
 Next

userpermission.Permission [= setting]

Sets or returns the permissions granted to a user. The Permission property can be one or more of the msoPermission
constants. Join multiple permissions with the Or operator. For example, the following code grants a Passport account
permission to change and print a workbook:

 Set irm = ThisWorkbook.Permission
 Set usr = irm("ExcelDemo@Hotmail.com")
 usr.Permission = MsoPermission.msoPermissionChange Or _
 MsoPermission.msoPermissionPrint

permission.PermissionFromPolicy

Returns True if the permission was created from a policy file. Returns False if the permission was created from the user
interface or from code.

permission.PolicyDescription

Returns the description from the policy description file used to create the permission.

permission.PolicyName

Returns the name from the policy description file used to create the permission.

userpermission.Remove()

Revokes a user's permission to use a workbook. For example, the following code removes the ExcelDemo user:

 Set irm = ThisWorkbook.Permission
 Set usr = irm("ExcelDemo@Hotmail.com")
 usr.Remove

permission.RemoveAll()

Revokes all users' permissions. Only the document's author remains in the list of permitted users. For example, the
following code removes the users from the workbook's Permission object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code removes the users from the workbook's Permission object:

 Set irm = ThisWorkbook.Permission
 irm.RemoveAll

permission.RequestPermissionURL [= setting]

Sets or returns a string used to contact the author, so that nonauthorized users can request permission to read or edit
the workbook. By default, this string takes the form mailto:authoraddress, but you can change it to include subject lines
or to display a web page. For example, the following code displays a web page when a user requests permission:

 Set irm = ThisWorkbook.Permission
 irm.RequestPermissionURL = "http://www.mstrainingkits.com/Excel/Permission.aspx"

permission.StoreLicenses [= setting]

When using Passport authentication, True caches the user's credentials after she is authenticated to allow the workbook
to be viewed if a network connection is not available. False authenticates the user each time the workbook is opened.
This property cannot be set to True if not using Passport authentication.

userpermission.UserId

Returns the identity of the user who has these permissions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.18. Add Digital Signatures
A digital signature identifies the author of the content or the macros contained in a workbook, template, or add-in. You
add a digital signature as the last step before you distribute a file. When others open a signed file, they can see who the
author is and therefore decide whether the information in the file is authentic and whether any macros it contains are
safe to run.

The signature is overwritten any time a file is saved. Therefore, no one can open a signed file, make changes, save,
then send the file on still bearing your signature. Workbooks and macros are signed separately even though they are
contained in a single file. If you want to distribute a signed workbook containing macros, you must sign the macros
first, then sign the workbook.

See Chapter 6 for instructions on how to get a digital certificate and how to use it to sign files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.19. Set Macro Security
Excel controls whether workbook macros are allowed to run through security settings. Users may choose to prohibit all
macros, allow only signed macros from known sources, allow macros of the user's choosing, or allow all macros. These
settings correspond to the Very High, High, Medium, and Low security settings on the Security dialog box (Figure 26-
19). To set macro security, from the Tools menu, choose Macro, then choose Security.

Figure 26-19. Choosing macro security settings

These settings are driven by trustthe user must choose whether to trust a publisher or a workbook. There is no way for
the user to prohibit certain operations, such as reading or writing to the registry or erasing datafiles. Users discover if
their trust is misplaced only after the damage is done.

For this reason, it is a good idea to encourage users to be suspicious of macros arriving in workbooks. It is a better idea
to deploy macros as digitally signed templates or add-ins and to distribute those files from a secure network location.

The following scenario demonstrates how to distribute macros in a secure fashion:

1. Set up a public network share, for example, \\Wombat1\Public\Templates.

2. Set Windows security on the Templates folder to allow read-only access to all network users and read/write
access to the Administrator (in this case, you).

3. Digitally sign templates and add-ins using a CA-issued digital certificate.

4. Copy the templates and add-ins to the public Templates folder.

5. Add the public Templates location to the alternate startup path for each Excel user.

6. For each user, open one of the signed templates in Excel and select "Always trust macros from this publisher"
on the Security Warning.

7. Select the High or Very High macro security option for each Excel user.

To set the alternate startup path in Excel, set the "At startup, open all files in" text box in the Options dialog box as
shown in Figure 26-20.

To set the alternate startup path in code, use the following line:

 Application.AltStartupPath = "\\wombat1\public\templates"

Figure 26-20. Setting the alternate startup path to a secure network location

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-20. Setting the alternate startup path to a secure network location

Now, when users start Excel, templates and add-ins from \\Wombat1\Public\Templates will be available automatically.
If a file changes, the user will get the latest version. And since the files are digitally signed by a trusted publisher, users
won't see the macro security warning every time they open a file.

Smart tags are provided through a type of add-in, so macro security settings apply to
them as well as the other types of files that can contain code (workbooks, templates, etc.).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.20. Set ActiveX Control Security
Excel workbooks may contain ActiveX controls that execute code or respond to macros. ActiveX controls may be
digitally signed and are marked by the publisher as to whether they are safe to initialize and safe to script. In this case,
safe means that the control will not harm the user's system.

Whether Excel will download or run any new ActiveX control is determined security by settings in Internet Explorer. To
see these settings in Internet Explorer:

1. From the Tools menu, select Internet Options and click on the Security tab.

2. Select the location that is the source of the ActiveX control and click Custom Level. Figure 26-21 shows the
ActiveX security settings for the local intranet location.

Figure 26-21. Changing ActiveX security settings

As a rule, you should never install unsigned ActiveX controls from any location. ActiveX controls are software, and you
should always be careful when choosing which publishers to trust.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.21. Distribute Security Settings
Changing macro security settings on individual computers is fine for personal use, but it doesn't work very well when
trying to manage security for an organization. To solve that problem, Microsoft provides the following tools:

Microsoft Office Resource Kit

Provides the Custom Installation Wizard (CIW) , Custom Maintenance Wizard , and Profile Template Wizard that
automate the installation and configuration of Microsoft Office across your organization

Certificate Manager (CertMgr.exe)

Lets you export, distribute, and install certificates for trusted publishers on users' machines

26.21.1. Change Security Settings

The Microsoft Office Resource Kit is not included with the Microsoft Office product, but is available for free download
from Microsoft (see "Resources" at the end of this chapter). Table 26-1 lists the four primary tools that come with the
Office Resource Kit.

Table 26-1. Office Resource Kit tools
Tool Use to

Custom
Installation
Wizard

Create customized installations for your organization. You can remove Office components, add your
own components, set default installation paths, and determine Start menu and Desktop items created
by Setup.

Custom
Maintenance
Wizard

Deploy changes to Office installations including new components and updates. This is similar to the
Installation Wizard, but is designed for modifying existing installations rather than creating new ones.

Removal
Wizard Removes previous versions of Office applications.

Profile
Template
Wizard

Deploy Office user settings, such as macro security settings.

The basic steps for using the Custom Installation and Custom Maintenance Wizards are the same:

1. Set up an administrative installation point on your network. This is the location from which Setup will run and
includes the Windows installer files (.msi) for Office.

2. Run the wizard to create a Windows installer transform (.mst) containing the modifications you wish to make to
the Office installation. You can also add components (such as ActiveX controls or Smart tags) to the installation
by including their .msi files to create chained installations.

3. Execute the installation from the client machines using remote administration, instructions to the user, or
installation scripts. See Setup.htm on the Office installation CD for information on Setup command-line options
and unattended installation.

The Custom Installation and Maintenance Wizards are important to security because they can remove components that
might pose security risks for some users. For example, you may choose not to install Visual Basic for Applications and
.NET Programmability Support (the Office .NET Primary Interop Assemblies or PIAs) to impede macros from running at
allthat may be an appropriate setting for public workstations such as those available in libraries.

Use the Profile Template Wizard to create a file containing the Excel security settings you want to apply to client
computers. For example, you may want to make sure all clients use the Very High macro security setting and disable
trust access to VBA projects. To use the Policy Template Wizard, follow these steps:

1. Set up a computer with the user settings you want to export to all other clients.

2. Run the Profile Template Wizard on that computer and export the settings to copy to other clients. Figure 26-22
shows the Profile Template Wizard ready to export Excel security user settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-22. Exporting user security settings

Run the Profile Template Wizard on client machines using the template exported in Step 2. The wizard can be run from
the command line; run proflwz.exe /? to see the command-line options.

26.21.2. Distribute Certificates

If you set macro security settings to Very High, Excel will not prompt the user to install certificates from new publishers.
The only way the user can run those macros is to lower the security, reload the document, and select "Always trust
macros from this publisher." If you are using the Very High security setting, you probably don't want users lowering it,
installing certificates, then (maybe) raising it again.

To avoid this problem, you can distribute the certificates from trusted publishers beforehand using the Certificate
Manager (CertMgr.exe). The Certificate Manager is available for download from Microsoft (see "Resources" at the end of
this chapter) and comes with other certificate-related tools such as SignCode.exe.

To use the Certificate Manager to distribute certificates from trusted publishers:

1. Set up a computer with the certificates you want to distribute.

2. Run the Certificate Manager (Figure 26-23) and export the desired certificates without their private keys. The
Certificate Manager provides a wizard to walk you through the export process.

3. Use the resulting certificate files (.cer or .p7b) with the command-line interface of the Certificate Manager to
install those certificates on client machines.

Figure 26-23. Use the Certificate Manager to export and import certificates from
trusted publishers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trusted publishers

Alternately, you can manage certificates using the Microsoft Management Console Certificates snap-in (CertMgr.msc).
Figure 26-24 shows the snap-in administering certificates on a remote computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.22. Using the Anti-Virus API
Microsoft provides an API for antivirus software developers so that they can write code to scan documents as they are
opened in Excel. Since the scan is focused on the current file being opened, it can be more thorough than general scans
of the user's disk. Antivirus software that uses this API may display settings on the Macro Security Options dialog in
Excel. See "Resources" at the end of this chapter for links to information on the Anti-Virus API.

Figure 26-24. Use the certificates snap-in to administer certificates through the
network

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.23. Common Tasks
The following sections list quick answers to the most common security questions.

26.23.1. Get Rid of the Macro Security Warning

If you write macros for personal use and get tired of seeing the macro security warning every time you open personal
workbooks, you can sign your macros with a personal digital certificate. To do so:

1. Choose Digital Certificate for VBA Projects from the Windows Office Tools menu to run SelfCert.exe.

2. Use SelfCert.exe to create a personal digital certificate.

3. From the Visual Basic Tools menu, choose Digital Signature.

4. Click Choose to add your digital certificate to the workbook's macros.

5. Repeat Step 4 each time you create a new workbook or template containing macros.

26.23.2. Prevent Someone from Running Any Macros

You can omit Visual Basic for Applications during installation or remove that component after installation by using Office
Setup to perform maintenance. That will prevent users from creating their own macros as well as prevent them from
running macros in existing workbooks.

Other applications, such as Windows Scripting Host (WScript.exe) will still be able to run macros that use the Excel
object library, however. You can't remove this libraryExcel needs it to run and will reinstall it if it is not found. You can
remove or disable WScript.exe and CScript.exe, but other applications can still access the Excel object library to
perform tasks in Excel.

26.23.3. Make a File Truly Secure

Security is a sliding scale, and I'd hesitate to say anything is ever completely secure. You can make Excel workbooks
fairly secure by adding password protection and encryption. Be sure to use a strong password (eight-plus characters,
upper- and lowercase, include numbers and symbols).

You can also protect access to files through Windows by using the NT Encrypting File System and using the Windows file
security settings to prevent access by users other than yourself.

Finally, you can set permissions on a workbook using IRM to prevent any user other than yourself from reading or
writing to the workbook in Excel. This last technique also provides a way to share workbooks in a secure way with
restricted permissions.

26.23.4. Add a Trusted Publisher for a Group of Users

There are two ways to do this, depending upon your network setup and your distribution needs: you can create a
command-line script that uses CertMgr.exe to install exported certificate files (.cer) on each user's machine, or you can
use the Microsoft Management Console Certificates snap-in (CertMgr.msc) to install certificates on users' machines over
a networkprovided you have administrative privileges to their machines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.24. Resources

To learn about Look here

Information Rights
Management http://www.microsoft.com/windowsserver2003/technologies/rightsmgmt/default.mspx

Anti-Virus API http://msdn.microsoft.com/workshop/security/antivirus/overview/overview.asp

Excel Key http://www.lostpassword.com/excel.htm

Microsoft Office 2000
Resource Kit http://www.microsoft.com/office/ork/2000/default.htm

Microsoft Office 2003
Resource Kit http://www.microsoft.com/office/ork/2003/tools/default.htm

Certificate management and
code-signing tools http://office.microsoft.com/downloads/2000/pvkimprt.aspx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part IV: Appendixes
These appendixes feature reference tables that are too long and obtrusive to include in the regular
chapters. These tables are important when working with specific aspects of Excel, such as displaying
Excel's built-in dialogs or writing code that must work with earlier versions of Excel.

Appendix A, Reference Tables

Appendix B, Version Compatibility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Reference Tables

Section A.1. Dialogs Collection Constants

Section A.2. Common Programmatic IDs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.1. Dialogs Collection Constants
Use the Dialogscollection to display Excel's built-in dialog boxes. Each dialog box in Excel has a corresponding
Dialogsconstant as listed in Table A-1. To display the dialog box, use the Show method:

Application.Dialogs(xlDialogActiveCellFont).Show

The Show method takes a variable number of optional arguments, which are also listed in Table A-1. Those arguments
set the initial property of the dialog box. For example, the following code displays the Font dialog box with Helvetica,
Italic, 14 point selected:

Application.Dialogs(xlDialogActiveCellFont).Show "Helvetica", "Italic", "14"

The Show method returns True if the user clicks OK or False if the user cancels the operation. (Some dialog boxes don't
have any options.)

Table A-1 lists some dialog box constants more than once. In those cases, the dialog box takes different arguments
depending on what object currently has focus in Excel. For example, xlDialogPageSetup has three versions: the first is for
printing worksheets, the second is for printing charts, and the third is for printing Excel 5.0 dialog sheets (which are
obsolete).

Table A-1. Dialogs collection constants (continued)
Constant Show arguments

xlDialogActivate window_text, pane_num

xlDialogActiveCellFont font, font_style, size, strikethrough, superscript, subscript, outline, shadow, underline, color, normal,
background, start_char, char_count

xlDialogAddChartAutoformat name_text, desc_text

xlDialogAddinManager operation_num, addinname_text, copy_logical

xlDialogAlignment horiz_align, wrap, vert_align, orientation, add_indent

xlDialogApplyNames name_array, ignore, use_rowcol, omit_col, omit_row, order_num, append_last

xlDialogApplyStyle style_text

xlDialogAppMove x_num, y_num

xlDialogAppSize x_num, y_num

xlDialogArrangeAll arrange_num, active_doc, sync_horiz, sync_vert

xlDialogAssignToObject macro_ref

xlDialogAssignToTool bar_id, position, macro_ref

xlDialogAttachText attach_to_num, series_num, point_num

xlDialogAttachToolbars
xlDialogAutoCorrect correct_initial_caps, capitalize_days

xlDialogAxes x_primary, y_primary, x_secondary, y_secondary

xlDialogAxes x_primary, y_primary, z_primary

xlDialogBorder outline, left, right, top, bottom, shade, outline_color, left_color, right_color, top_color, bottom_color

xlDialogCalculation type_num, iter, max_num, max_change, update, precision, date_1904, calc_save, save_values,
alt_exp, alt_form

xlDialogCellProtection locked, hidden

xlDialogChangeLink old_text, new_text, type_of_link

xlDialogChartAddData ref, rowcol, titles, categories, replace, series

xlDialogChartLocation

xlDialogChartOptionsDataLabels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogChartOptionsDataTable

xlDialogChartSourceData
xlDialogChartTrend type, ord_per, forecast, backcast, intercept, equation, r_squared, name

xlDialogChartType

xlDialogChartWizard long, ref, gallery_num, type_num, plot_by, categories, ser_titles, legend, title, x_title, y_title, z_title,
number_cats, number_titles

xlDialogCheckboxProperties value, link, accel_text, accel2_text, 3d_shading

xlDialogClear type_num

xlDialogColorPalette file_text

xlDialogColumnWidth width_num, reference, standard, type_num, standard_num

xlDialogCombination type_num

xlDialogConditionalFormatting
xlDialogConsolidate source_refs, function_num, top_row, left_col, create_links

xlDialogCopyChart size_num

xlDialogCopyPicture appearance_num, size_num, type_num

xlDialogCreateNames top, left, bottom, right

xlDialogCreatePublisher file_text, appearance, size, formats

xlDialogCustomizeToolbar category

xlDialogCustomViews

xlDialogDataDelete
xlDialogDataLabel show_option, auto_text, show_key

xlDialogDataSeries rowcol, type_num, date_num, step_value, stop_value, trend

xlDialogDataValidation
xlDialogDefineName name_text, refers_to, macro_type, shortcut_text, hidden, category, local

xlDialogDefineStyle style_text, number, font, alignment, border, pattern, protection

xlDialogDefineStyle style_text, attribute_num, additional_def_args, ...

xlDialogDeleteFormat format_text

xlDialogDeleteName name_text

xlDialogDemote row_col

xlDialogDisplay formulas, gridlines, headings, zeros, color_num, reserved, outline, page_breaks, object_num

xlDialogDisplay cell, formula, value, format, protection, names, precedents, dependents, note

xlDialogEditboxProperties validation_num, multiline_logical, vscroll_logical, password_logical

xlDialogEditColor color_num, red_value, green_value, blue_value

xlDialogEditDelete shift_num

xlDialogEditionOptions edition_type, edition_name, reference, option, appearance, size, formats

xlDialogEditSeries series_num, name_ref, x_ref, y_ref, z_ref, plot_order

xlDialogErrorbarX include, type, amount, minus

xlDialogErrorbarY include, type, amount, minus

xlDialogExternalDataProperties
xlDialogExtract unique

xlDialogFileDelete file_text

xlDialogFileSharing
xlDialogFillGroup type_num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogFillWorkgroup type_num

xlDialogFilter
xlDialogFilterAdvanced operation, list_ref, criteria_ref, copy_ref, unique

xlDialogFindFile
xlDialogFont name_text, size_num

xlDialogFontProperties font, font_style, size, strikethrough, superscript, subscript, outline, shadow, underline, color, normal,
background, start_char, char_count

xlDialogFormatAuto format_num, number, font, alignment, border, pattern, width

xlDialogFormatChart layer_num, view, overlap, angle, gap_width, gap_depth, chart_depth, doughnut_size, axis_num, drop,
hilo, up_down, series_line, labels, vary

xlDialogFormatCharttype apply_to, group_num, dimension, type_num

xlDialogFormatFont color, backgd, apply, name_text, size_num, bold, italic, underline, strike, outline, shadow, object_id,
start_num, char_num

xlDialogFormatFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow

xlDialogFormatFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow, object_id_text, start_num,
char_num

xlDialogFormatLegend position_num

xlDialogFormatMain type_num, view, overlap, gap_width, vary, drop, hilo, angle, gap_depth, chart_depth, up_down,
series_line, labels, doughnut_size

xlDialogFormatMove x_offset, y_offset, reference

xlDialogFormatMove x_pos, y_pos

xlDialogFormatMove explosion_num

xlDialogFormatNumber format_text

xlDialogFormatOverlay type_num, view, overlap, gap_width, vary, drop, hilo, angle, series_dist, series_num, up_down,
series_line, labels, doughnut_size

xlDialogFormatSize width, height

xlDialogFormatSize x_off, y_off, reference

xlDialogFormatText x_align, y_align, orient_num, auto_text, auto_size, show_key, show_value, add_indent

xlDialogFormulaFind text, in_num, at_num, by_num, dir_num, match_case, match_byte

xlDialogFormulaGoto reference, corner

xlDialogFormulaReplace find_text, replace_text, look_at, look_by, active_cell, match_case, match_byte

xlDialogFunctionWizard
xlDialogGallery3dArea type_num

xlDialogGallery3dBar type_num

xlDialogGallery3dColumn type_num

xlDialogGallery3dLine type_num

xlDialogGallery3dPie type_num

xlDialogGallery3dSurface type_num

xlDialogGalleryArea type_num, delete_overlay

xlDialogGalleryBar type_num, delete_overlay

xlDialogGalleryColumn type_num, delete_overlay

xlDialogGalleryCustom name_text

xlDialogGalleryDoughnut type_num, delete_overlay

xlDialogGalleryLine type_num, delete_overlay

xlDialogGalleryPie type_num, delete_overlay

xlDialogGalleryRadar type_num, delete_overlay

xlDialogGalleryScatter type_num, delete_overlay

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogGalleryScatter type_num, delete_overlay

xlDialogGoalSeek target_cell, target_value, variable_cell

xlDialogGridlines x_major, x_minor, y_major, y_minor, z_major, z_minor, 2D_effect

xlDialogImportTextFile
xlDialogInsert shift_num

xlDialogInsertHyperlink

xlDialogInsertNameLabel
xlDialogInsertObject object_class, file_name, link_logical, display_icon_logical, icon_file, icon_number, icon_label

xlDialogInsertPicture file_name, filter_number

xlDialogInsertTitle chart, y_primary, x_primary, y_secondary, x_secondary

xlDialogLabelProperties accel_text, accel2_text, 3d_shading

xlDialogListboxProperties range, link, drop_size, multi_select, 3d_shading

xlDialogMacroOptions macro_name, description, menu_on, menu_text, shortcut_on, shortcut_key, function_category,
status_bar_text, help_id, help_file

xlDialogMailEditMailer to_recipients, cc_recipients, bcc_recipients, subject, enclosures, which_address

xlDialogMailLogon name_text, password_text, download_logical

xlDialogMailNextLetter
xlDialogMainChart type_num, stack, 100, vary, overlap, drop, hilo, overlap%, cluster, angle

xlDialogMainChartType type_num

xlDialogMenuEditor
xlDialogMove x_pos, y_pos, window_text

xlDialogNew type_num, xy_series, add_logical

xlDialogNewWebQuery
xlDialogNote add_text, cell_ref, start_char, num_chars

xlDialogObjectProperties placement_type, print_object

xlDialogObjectProtection locked, lock_text

xlDialogOpen file_text, update_links, read_only, format, prot_pwd, write_res_pwd, ignore_rorec, file_origin,
custom_delimit, add_logical, editable, file_access, notify_logical, converter

xlDialogOpenLinks document_text1, document_text2, ..., read_only, type_of_link

xlDialogOpenMail subject, comments

xlDialogOpenText file_name, file_origin, start_row, file_type, text_qualifier, consecutive_delim, tab, semicolon, comma,
space, other, other_char, field_info

xlDialogOptionsCalculation type_num, iter, max_num, max_change, update, precision, date_1904, calc_save, save_values

xlDialogOptionsChart display_blanks, plot_visible, size_with_window

xlDialogOptionsEdit incell_edit, drag_drop, alert, entermove, fixed, decimals, copy_objects, update_links, move_direction,
autocomplete, animations

xlDialogOptionsGeneral R1C1_mode, dde_on, sum_info, tips, recent_files, old_menus, user_info, font_name, font_size,
default_location, alternate_location, sheet_num, enable_under

xlDialogOptionsListsAdd string_array

xlDialogOptionsListsAdd import_ref, by_row

xlDialogOptionsME def_rtl_sheet, crsr_mvmt, show_ctrl_char, gui_lang

xlDialogOptionsTransition menu_key, menu_key_action, nav_keys, trans_eval, trans_entry

xlDialogOptionsView formula, status, notes, show_info, object_num, page_breaks, formulas, gridlines, color_num, headers,
outline, zeros, hor_scroll, vert_scroll, sheet_tabs

xlDialogOutline auto_styles, row_dir, col_dir, create_apply

xlDialogOverlay type_num, stack, 100, vary, overlap, drop, hilo, overlap%, cluster, angle, series_num, auto

xlDialogOverlayChartType type_num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogPageSetup head, foot, left, right, top, bot, hdng, grid, h_cntr, v_cntr, orient, paper_size, scale, pg_num,
pg_order, bw_cells, quality, head_margin, foot_margin, notes, draft

xlDialogPageSetup head, foot, left, right, top, bot, size, h_cntr, v_cntr, orient, paper_size, scale, pg_num, bw_chart,
quality, head_margin, foot_margin, draft

xlDialogPageSetup head, foot, left, right, top, bot, orient, paper_size, scale, quality, head_margin, foot_margin, pg_num

xlDialogParse parse_text, destination_ref

xlDialogPasteNames
xlDialogPasteSpecial paste_num, operation_num, skip_blanks, transpose

xlDialogPasteSpecial rowcol, titles, categories, replace, series

xlDialogPasteSpecial paste_num

xlDialogPasteSpecial format_text, pastelink_logical, display_icon_logical, icon_file, icon_number, icon_label

xlDialogPatterns apattern, afore, aback, newui

xlDialogPatterns lauto, lstyle, lcolor, lwt, hwidth, hlength, htype

xlDialogPatterns bauto, bstyle, bcolor, bwt, shadow, aauto, apattern, afore, aback, rounded, newui

xlDialogPatterns bauto, bstyle, bcolor, bwt, shadow, aauto, apattern, afore, aback, invert, apply, newfill

xlDialogPatterns lauto, lstyle, lcolor, lwt, tmajor, tminor, tlabel

xlDialogPatterns lauto, lstyle, lcolor, lwt, apply, smooth

xlDialogPatterns lauto, lstyle, lcolor, lwt, mauto, mstyle, mfore, mback, apply, smooth

xlDialogPatterns type, picture_units, apply

xlDialogPhonetic

xlDialogPivotCalculatedField

xlDialogPivotCalculatedItem

xlDialogPivotClientServerSet
xlDialogPivotFieldGroup start, end, by, periods

xlDialogPivotFieldProperties name, pivot_field_name, new_name, orientation, function, formats

xlDialogPivotFieldUngroup
xlDialogPivotShowPages name, page_field

xlDialogPivotSolveOrder

xlDialogPivotTableOptions

xlDialogPivotTableWizard type, source, destination, name, row_grand, col_grand, save_data, apply_auto_format, auto_page,
reserved

xlDialogPlacement placement_type

xlDialogPrint range_num, from, to, copies, draft, preview, print_what, color, feed, quality, y_resolution, selection,
printer_text, print_to_file, collate

xlDialogPrinterSetup printer_text

xlDialogPrintPreview
xlDialogPromote rowcol

xlDialogProperties title, subject, author, keywords, comments

xlDialogProtectDocument contents, windows, password, objects, scenarios

xlDialogProtectSharing

xlDialogPublishAsWebPage
xlDialogPushbuttonProperties default_logical, cancel_logical, dismiss_logical, help_logical, accel_text, accel_text2

xlDialogReplaceFont font_num, name_text, size_num, bold, italic, underline, strike, color, outline, shadow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogRoutingSlip recipients, subject, message, route_num, return_logical, status_logical

xlDialogRowHeight height_num, reference, standard_height, type_num

xlDialogRun reference, step

xlDialogSaveAs document_text, type_num, prot_pwd, backup, write_res_pwd, read_only_rec

xlDialogSaveCopyAs document_text

xlDialogSaveNewObject
xlDialogSaveWorkbook document_text, type_num, prot_pwd, backup, write_res_pwd, read_only_rec

xlDialogSaveWorkspace name_text

xlDialogScale cross, cat_labels, cat_marks, between, max, reverse

xlDialogScale min_num, max_num, major, minor, cross, logarithmic, reverse, max

xlDialogScale cat_labels, cat_marks, reverse, between

xlDialogScale series_labels, series_marks, reverse

xlDialogScale min_num, max_num, major, minor, cross, logarithmic, reverse, min

xlDialogScenarioAdd scen_name, value_array, changing_ref, scen_comment, locked, hidden

xlDialogScenarioCells changing_ref

xlDialogScenarioEdit scen_name, new_scenname, value_array, changing_ref, scen_comment, locked, hidden

xlDialogScenarioMerge source_file

xlDialogScenarioSummary result_ref, report_type

xlDialogScrollbarProperties value, min, max, inc, page, link, 3d_shading

xlDialogSelectSpecial type_num, value_type, levels

xlDialogSendMail recipients, subject, return_receipt

xlDialogSeriesAxes axis_num

xlDialogSeriesOptions
xlDialogSeriesOrder chart_num, old_series_num, new_series_num

xlDialogSeriesShape
xlDialogSeriesX x_ref

xlDialogSeriesY name_ref, y_ref

xlDialogSetBackgroundPicture
xlDialogSetPrintTitles titles_for_cols_ref, titles_for_rows_ref

xlDialogSetUpdateStatus link_text, status, type_of_link

xlDialogShowDetail rowcol, rowcol_num, expand, show_field

xlDialogShowToolbar bar_id, visible, dock, x_pos, y_pos, width, protect, tool_tips, large_buttons, color_buttons

xlDialogSize width, height, window_text

xlDialogSort orientation, key1, order1, key2, order2, key3, order3, header, custom, case

xlDialogSort orientation, key1, order1, type, custom

xlDialogSortSpecial sort_by, method, key1, order1, key2, order2, key3, order3, header, order, case

xlDialogSplit col_split, row_split

xlDialogStandardFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow

xlDialogStandardWidth standard_num

xlDialogStyle bold, italic

xlDialogSubscribeTo file_text, format_num

xlDialogSubtotalCreate at_change_in, function_num, total, replace, pagebreaks, summary_below

xlDialogSummaryInfo title, subject, author, keywords, comments

xlDialogTable row_ref, column_ref

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogTabOrder

xlDialogTextToColumns destination_ref, data_type, text_delim, consecutive_delim, tab, semicolon, comma, space, other,
other_char, field_info

xlDialogUnhide window_text

xlDialogUpdateLink link_text, type_of_link

xlDialogVbaInsertFile filename_text

xlDialogVbaMakeAddIn

xlDialogVbaProcedureDefinition
xlDialogView3d elevation, perspective, rotation, axes, height%, autoscale

xlDialogWebOptionsEncoding

xlDialogWebOptionsFiles

xlDialogWebOptionsFonts

xlDialogWebOptionsGeneral

xlDialogWebOptionsPictures
xlDialogWindowMove x_pos, y_pos, window_text

xlDialogWindowSize width, height, window_text

xlDialogWorkbookAdd name_array, dest_book, position_num

xlDialogWorkbookCopy name_array, dest_book, position_num

xlDialogWorkbookInsert type_num

xlDialogWorkbookMove name_array, dest_book, position_num

xlDialogWorkbookName oldname_text, newname_text

xlDialogWorkbookNew
xlDialogWorkbookOptions sheet_name, bound_logical, new_name

xlDialogWorkbookProtect structure, windows, password

xlDialogWorkbookTabSplit ratio_num

xlDialogWorkbookUnhide sheet_text

xlDialogWorkgroup name_array

xlDialogWorkspace fixed, decimals, r1c1, scroll, status, formula, menu_key, remote, entermove, underlines, tools, notes,
nav_keys, menu_key_action, drag_drop, show_info

xlDialogZoom magnification

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2. Common Programmatic IDs
Programmatic IDs (progIDs) are used by several methods to create new instances of objects. For example, the
following code creates a new checkbox on the active worksheet:

Sub AddCheckBox()
 Dim ole As OLEObject
 ' Add new check box.
 Set ole = ActiveSheet.OLEObjects.Add("Forms.CheckBox.1", _
 , , , , , , 60, 60, 100, 20)
 ' Select the check box.
 ole.Object.Value = True
 ' Set its caption
 ole.Object.Caption = "New Check Box"
End Sub

Table A-2 lists common applications and the objects that they provide, along with the progIDs used to create those
objects in code.

Table A-2. Common programmatic IDs (continued)
Application Object ProgID

ActiveX Controls CheckBox Forms.CheckBox.1

 ComboBox Forms.ComboBox.1

 CommandButton Forms.CommandButton.1

 Frame Forms.Frame.1

 Image Forms.Image.1

 Label Forms.Label.1

 ListBox Forms.ListBox.1

 MultiPage Forms.MultiPage.1

 OptionButton Forms.OptionButton.1

 ScrollBar Forms.ScrollBar.1

 SpinButton Forms.SpinButton.1

 TabStrip Forms.TabStrip.1

 TextBox Forms.TextBox.1

 ToggleButton Forms.ToggleButton.1

 Calendar MSCal.Calendar

Microsoft Access Application Access.Application

 CurrentData Access.CodeData

 Access.CurrentData

 CurrentProject Access.CodeProject

 Access.CurrentProject

 DefaultWebOptions Access.DefaultWebOptions

Microsoft Excel Application Excel.Application

 Workbook Excel.AddIn

 Workbook Excel.Chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Workbook Excel.Sheet

Microsoft Graph Application MSGraph.Application

 Chart MSGraph.Chart

Microsoft Office Web Components ChartSpace OWC.Chart

 DataSourceControl OWC.DataSourceControl

 ExpandControl OWC.ExpandControl

 PivotTable OWC.PivotTable

 RecordNavigationControl OWC.RecordNavigationControl

 Spreadsheet OWC.Spreadsheet

Microsoft Outlook Application Outlook.Application

Microsoft PowerPoint Application PowerPoint.Application

Microsoft Word Application Word.Application

 Document Word.Document

 Template Word.Template

 Global Word.Global

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Version Compatibility
See Chapter 6 for instructions on how to check the Excel version at runtime and recommendations on how to handle
version differences. Table B-1 lists the Excel objects by year introduced. The sections that follow the table summarize
the changes for each version. In this table, X=available, H=hidden or obsolete, and M=Macintosh only.

Table B-1. Excel objects listed by product version

 Excel year (version)
Object 1995 (7) 1997 (8) 2000 (9) 2002 (10) 2003 (11)

AddIn X X X X X

Adjustments X X X X

AllowEditRange X X

Application X X X X X

Arc X H H H H

Areas X X X X X

AutoCorrect X X X X X

AutoFilter X X X X X

AutoRecover X X

Axis X X X X X

AxisTitle X X X X X

Border X X X X X

Button X H H H H

CalculatedFields X X X X

CalculatedItems X X X X

CalculatedMember X X

CalloutFormat X X X X

CellFormat X X

Characters X X X X X

Chart X X X X X

ChartArea X X X X X

ChartColorFormat X X X X

ChartFillFormat X X X X

ChartGroup X X X X X

ChartObject X X X X X

ChartTitle X X X X X

CheckBox X H H H H

ColorFormat X X X X

Comment X X X X

ConnectorFormat X X X X X

ControlFormat X X X X

Corners X X X X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CubeField X X X

CustomProperty X X

CustomView X X X X

DataLabel X X X X X

DataTable X X X X

DefaultWebOptions X X X

Diagram X X

DiagramNode X X

DiagramNodeChildren X X

Dialog X X X X X

DialogFrame X H H H H

DialogSheet X H H H H

DisplayUnitLabel X X X

DownBars X X X X X

Drawing X H H H H

DrawingObjects X H H H H

DropDown X H H H H

DropLines X X X X X

EditBox X H H H H

Error X X

ErrorBars X X X X X

ErrorCheckingOptions X X

FillFormat X X X X

Filter X X X

Floor X X X

Font X X X

FormatCondition X X X X

FreeformBuilder X X X X

Global X X X X X

Graphic X X

Gridlines X X X X X

GroupBox X H H H H

GroupObject X H H H H

GroupShapes X X X X

HiLoLines X X X X X

HPageBreak X X X X

Hyperlink X X X X

Interior X X X X X

Label X X X X X

LeaderLines X X X X

Legend X X X X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LegendEntry X X X X X

LegendKey X X X X X

Line X H H H H

LineFormat X X X X

LinkFormat X X X X X

ListBox X H H H H

ListColumn X

ListDataFormat X

ListObject X

ListRow X

Mailer M M M M M

Menu X H H H H

MenuBar X H H H H

MenuItem X H H H H

Menus X H H H H

Module X H H H H

Name X X X X X

ODBCError X X X X

OLEDBError X X X

OLEFormat X X X X

OLEObject X X X X X

OptionButton X H H H H

Outline X X X X X

Oval X H H H H

PageSetup X X X X X

Pane X X X X X

Parameter X X X X

Phonetic X X X

Picture X H H H H

PictureFormat X X X X

PivotCache X X X X

PivotCell X X

PivotField X X X X

PivotFormula X X X X

PivotItem X X X X X

PivotItemList X X

PivotLayout X X X

PivotTable X X X X X

PlotArea X X X X X

Point X X X X X

Protection X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PublishObject X X X

QueryTable X X X X

Range X X X X X

RecentFile X X X X

Rectangle X H H H H

RoutingSlip X X X X X

RTD X X

Scenario X X X X X

Scenarios X X X X X

ScrollBar X H H H H

Series X X X X X

SeriesLines X X X X X

ShadowFormat X X X X

Shape X X X X

ShapeNode X X X X

ShapeRange X X X X

Sheets X X X X X

SmartTag X X

SmartTagAction X X

SmartTagOptions X X

SmartTagRecognizer X X

SoundNote X

Speech X X

SpellingOptions X X

Spinner X H H H H

Style X X X X X

Tab X X

TextBox X H H H H

TextEffectFormat X X X X

TextFrame X X X X

ThreeDFormat X X X X

TickLabels X X X X X

Toolbar X H H H H

ToolbarButton X H H H H

Trendline X X X X X

UpBars X X X X X

UsedObjects X X

UserAccess X X

Validation X X X X

VPageBreak X X X X

Walls X X X X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Walls X X X X X

Watch X X

WebOptions X X X

Window X X X X X

Workbook X X X X X

Worksheet X X X X X

WorksheetFunction X X X X X

XmlDataBinding X

XmlMap X

XmlNamespace X

XmlSchema X

XPath X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1. Summary of Version Changes
In 1997, Excel Version 8.0 introduced object-oriented programming features including events and classes. User forms
replaced dialog sheets, and pivot table objects were expanded. Forms 2.0 controls and the following objects were
introduced:

Adjustments CalculatedFields CalculatedItems

CalloutFormat ChartColorFormat ChartFillFormat

ColorFormat Comment ControlFormat

CustomView DataTable FillFormat

FormatCondition FreeformBuilder GroupShapes

HPageBreak Hyperlink LeaderLines

LineFormat ODBCError OLEFormat

Parameter PictureFormat PivotCache

PivotField PivotFormula QueryTable

RecentFile ShadowFormat Shape

ShapeNode ShapeRange TextEffectFormat

TextFrame ThreeDFormat Validation

VPageBreak

In 2000, Excel Version 9.0 introduced Visual Basic Version 6.0 and made minor additions to the object model. Mainly,
Version 9.0 added OLAP to pivot tables and enabled publishing to the Web. The following objects were introduced:

CubeField DefaultWebOptions

DisplayUnitLabel Filter

Floor Font

OLEDBError Phonetic

PivotLayout PublishObject

WebOptions

In 2002, Excel Version 10.0 added smart tags, worksheet errors and watches, speech, and edit ranges. The following
objects were introduced:

AllowEditRange AutoRecover

CalculatedMember CellFormat

CustomProperty Diagram

DiagramNodeChildren Error

ErrorCheckingOptions Graphic

PivotCell PivotItemList

Protection RTD

SmartTag SmartTagAction

SmartTagOptions SmartTagRecognizer

Speech SpellingOptions

Tab UsedObjects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UserAccess Watch

In 2003, Excel Version 11.0 introduced lists, XML, SharePoint, and Integrated Rights Management (IRM) features.
Version 11.0 included these new objects:

ListColumn ListDataFormat

ListObject ListRow

XmlDataBinding XmlMap

XmlNamespace XmlSchema

XPath XPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2. Macintosh Compatibility
The Macintosh versions of Excel generally support a subset of the Excel 2002 features. Notably, Excel 2004 for the
Macintosh does not support the XML features introduced in Excel 2003 for Windows.

Excel for the Macintosh uses Visual Basic Version 5.0, and the Macintosh platform does not support ActiveX, COM, or
any Excel features that require those technologies. Specifically, the Forms 2.0 controls are not available. Use the Forms
1.0 controls from the Forms toolbar when working on the Macintosh or creating workbooks that will be shared with
Macintosh users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Author
Jeff Webb is one of the original Visual Basic team members. He was intensely involved with Excel VBA and conceived
the first Office Developer's Kit. Jeff also wrote the first book on Excel VBA, Using Excel Visual Basic for Applications
(Que), which has remained in print for an amazing 12 years.

Steve Saunders is also one of the original Visual Basic team members, as well as the lead designer of the original
Microsoft Access online documentation system. He has been an active Access developer for over 10 years and has been
a technical editor and reviewer for numerous books on Access, Word, and Excel programming. He is a frequent
programmer writer consultant for Microsoft, lending his expertise to a variety of Office products and technologies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon
The animal on the cover of Programming Excel with VBA and .NET is a shoveler duck (Anas clypeata). Native to North
America and much of the northern terrain of Europe and Asia, shovelers are easily distinguished from other breeds of
duck by their oblong, spoon-shaped bills. Shoveler ducks are also characterized by their sexual dimorphism; the male of
the species has more ostentatious coloring, with a lustrous green head, neck, and speculum, whereas the shoveler
female is tinted in a more subdued palette of browns, grays, and blacks. Both genders have light-blue forewing
feathers, visible only when the birds are in flight.

Shoveler ducks subsist in the open wetlands on a diet that consists largely of particles of plant and animal matter,
including seeds, leaves, stems, mollusks, and insects. They feed by drawing water into their large spatulate bills, which
are covered by approximately 110 teethlike projections called lamellae that filter out food for consumption.

Breeding season for shovelers typically runs from April to June. The female builds her nest on dry land, twirling her
body on the ground to dig out a cup-shaped hole, which she lines with grass and feathers. She lays anywhere from 8 to
12 olive-colored eggs, which incubate for up to 25 days. During this time, the shoveler female is extremely protective of
her offspring; if forced off her nest, she will frequently defecate on her eggs, a maneuver believed to discourage
predation.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC Garamond. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

#If...Then...#End If compiler directive
+ (addition) operator
= (assignment) operator 2nd
* (asterisk), pattern-matching character
\ (division) operator
/ (division) operator
. (dot notation)
 between object and member name
 OLAP field names
= (equal to) operator
^ (exponent) operator
>= (greater than or equal to) operator
> (greater than) operator
() (grouping) operator
& (join) operator
<= (less than or equal to) operator
< (less than) operator
* (multiplication) operator
- (negation) operator
< > (not equal to) operator
? (pattern-matching character)
(pattern-matching character)
. (period), use by variables of user-defined type
? (question mark), shortcut for Print
[] (square brackets), in OLAP field names
- (subtraction) operator
_ (underline) character, continued lines of code
2-D chart types
3-D chart types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

aborting recalculation
absolute references
 conversions
 using when recording
AbsolutePostion property (Recordset)
accelerator keys
 assigning to menu item
 controls on dialog boxes
Accent property (CalloutFormat)
AcceptAllChanges method (Workbook) 2nd
AcceptLabelsInFormulas (Workbook)
accessor functions 2nd
ActionControl property (CommandBars)
actions, recorded
Activate event, Worksheet and Chart
Activate method 2nd 3rd
 Range collection
 Window object
 Workbook object
 Worksheet object
ActivateMicrosoftApp (Application)
ActivateMicrosoftApp method
ActivateNext method (Window)
ActivatePrevious method (Window)
activation, overreliance on
active object
 Activate methods
 Me keyword and
 properties returning
ActiveChart method (Workbook)
ActiveCommand property (Recordset)
ActiveConnection method
 Command object
 Record object
 Recordset object
ActiveControl property (UserForm)
ActiveMenuBar property (CommandBars)
ActivePrinter (Application)
ActiveSheet method (Workbook)
ActiveSheet property
ActiveSheet, avoiding for bug-free code
ActiveX
 libraries on your computer, listed
 objects for use by Visual Basic
ActiveX automation
ActiveX controls
 adding interactivity to web page
 requirements for
 security, setting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 security, setting
ActualSize property (Field)
ad hoc testing
AdaptiveMenus property (CommandBars)
Add method
 AddIns collection
 AllowEditRanges collection
 CalculatedFields collection
 CalculatedItems collection
 CalculatedMembers collection
 Chart object
 ChartObjects collection
 Charts collection
 charing pivot table
 collections 2nd 3rd 4th
 CommandBarControls collection
 CommandBars collection 2nd
 Controls collection
 CustomViews collection 2nd
 Hyperlinks collection 2nd
 ListObjects collection 2nd
 ListRows collection
 OLEObjects
 OLEObjects collection
 PageBreaks
 Parameters collection
 Permission collection
 PivotCaches collection 2nd
 PivotTables collection
 PublishObjects collection 2nd
 QueryTables collection 2nd
 RecentFiles collection
 SeriesCollection 2nd
 Trendlines collection
 UserAccessList collection
 Workbooks collection 2nd 3rd
 Worksheets
 Worksheets collection 2nd
 XmlMaps collection 2nd
Add methods (Shapes)
add-in (.xla) file, Visual Basic code in
add-ins 2nd
 advantages/disadvantages of applications
 building
 code-only, creating
 changing the add-in
 programming tips
 properties
 saving add-ins
 testing
 using from code
 COM
 distributing
 for Excel
 installing
 library path
 loading, predefined folders for
 path to user Addins folder
 removing
 setting properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting properties
 signing
 types of
 visual
 adding menu item
 adding toolbar
 responding to application events
 workbooks as
 working with in code
AddAttachment method (Lists Web Service) 2nd
AddCallout method (Shapes)
AddChartAutoFormat (Application)
AddComment method (Range) 2nd 3rd
AddConnector method
AddConnector method (Shapes)
AddCurve method (Shapes)
AddCustomList (Application)
AddDataField method (PivotTable) 2nd
AddFields method (PivotTable) 2nd
AddIn object
 loading, unloading, and listing add-ins
 members
AddIndent property (Range)
AddIns collection
 loading, unloading, and listing add-ins
 members
AddIns folder
AddItem method
 ComboBox object
 CommandBarComboBox object
AddLabel method (Shapes)
AddLine method (Shapes)
AddList method (Lists Web Service)
AddMemberPropertyField (CubeField)
AddNew method (Recordset) 2nd
AddNodes method (FreeFormBuilder)
AddOLEObject method (Shapes)
AddPageItem (PivotField)
AddPicture method
AddPicture method (Shapes)
AddPolyline method (Shapes)
AddReplacement method (AutoCorrect)
Address method
 Hyperlink object
 Range object
Address property
addresses
 in code, inability of Excel to update
 targetAddress for hyperlink
AddSet method (CubeFields)
AddShape method (Shapes) 2nd
AddTextbox method (Shapes)
AddTextEffect method (Shapes) 2nd
AddToFavorites method
 Hyperlink object
 Workbook object
AdjustColumnWidth (QueryTable) 2nd
AdjustColumnWidth (XmlMap)
Adjustments object
Adjustments property (Shape)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adjustments property (Shape)
ADO (ActiveX Data Objects)
 creating a recordset
 objects and members
 Command object
 Connection object
 Field and Fields
 Parameter and Parameters
 Record object
 Recordset object
 tasks for
 working with
ADO.NET, data access through
ADOConnection (PivotCache)
AdvancedFilter method (Range)
AfterRefresh event 2nd
AlertBeforeOverwriting (Application)
Align method (ShapeRange)
Alignment property
 TextEffectFormat object
 TickLabels object
AllowDeletingColumns (Protection)
AllowDeletingRows (Protection)
AllowEdit property
 Range object
 UserAccess object
AllowEditRange object
AllowEditRanges (Protection)
AllowEditRanges collection
AllowFillIn property (ListDataFormat)
AllowFiltering (Protection)
AllowFormattingCells (Protection)
AllowFormattingColumns (Protection)
AllowFormattingRows (Protection)
AllowInsertingColumns (Protection)
AllowInsertingHyperlinks (Protection)
AllowPNG property (WebOptions)
AllowSorting (Protection)
AllowUsingPivotTables (Protection)
AlternativeText property (Shape)
AltStartupPath (Application) 2nd
AlwaysSaveInDefaultEncoding (DefaultWebOptions)
Amazon Web Service 2nd
 calling its methods using its URL
 online information about
 XMLNodeList arguments
And operator
Angle property (CalloutFormat)
animations
 for insertions and deletions
 menus
ANSI character codes
API Viewer utility (APILOAD.EXE)
 getting declarations of DLL functions
AppActivate function
appearance, common object members for
AppendChunk method
 Field object
 Parameter object
AppendOnImport (XmlMap)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppendOnImport (XmlMap)
Application object 2nd
 CommandBars property
 EnableEvents property
 events
 Excel and Word
 Help method
 members (key), reference summary
 members, listed
 OperatingSystem method
 PowerPoint
 RecentFiles property
 SheetActivate event
 tasks
 controlling Excel options
 displaying dialogs
 getting references
 limiting user actions
 most common
 opening/closing windows
 quitting Excel
 setting startup paths
 viewing system settings
 Workbooks method
Application property
applications
 development process
 deployment
 design
 determining requirements
 documentation
 implementing and testing code
 integrating features and testing
 platform tests
 purpose of process
 types of
 relative advantages of each
Apply method (Shape)
ApplyCustomType method
 Chart object 2nd
 Series object
ApplyDataLabels method
 Chart object
 Series and Point objects
 Series object
ApplyPictToEnd property (Series)
ApplyPictToFront property (Series)
ApplyPictToSides property (Series)
ApplyPolicy (Permission)
Apptix, hosting provider for SharePoint Services
ArbitraryXMLSupportAvailable (Application)
Area3DGroup property (Chart)
AreaGroups property (Chart)
Areas method (Range)
arguments
 declared as a ParamArray
 distinguishing between input and results
 events
 for procedures
 listing by Visual Basic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 listing by Visual Basic
 named
 optional, for procedures
 parameters versus
 passed by reference
 passed by value
 passing by value in .NET
 returning procedure results
Arrange method (Windows)
Array class (.NET)
arrays
 bounds
 data type
 dynamic
 For...Next loops
 sorting
 Visual Basic keywords for
Asc function 2nd
AsktoUpdateLinks (Application)
assignment
 data type conversion during
Assistant (Application)
Attachments property (MailItem)
Author property
 AddIn object
 Comment object
 inability to set in comments from code
 Workbook object
Auto Complete
 .NET objects registered for COM
 enabled by references and explicit types
 for variables
 for words
Auto Recover, enabling in workbooks
AutoAttach property (CalloutFormat)
AutoCorrect method (Application)
AutoCorrect object
 members, listed
AutoFill method (Range)
AutoFilter method (Range) 2nd
AutoFilter object, members
AutoFilter property (Worksheet)
AutoFit method (Range)
AutoFormat method (Chart)
AutoFormatAsYouTypeReplaceHyperlinks
AutoLength property (CalloutFormat)
AutoLoad property (OLEObject)
automacros, running for workbook
AutoMargins property (TextFrame)
automatic syntax checking (Visual Basic)
automatic variables
 turning off in Visual Basic
automatic watches (Visual Basic)
AutomaticLength method (Callout)
AutomaticStyles property (Outline)
automation, OLE
AutomationSecurity (Application)
AutoOutline, creating
AutoPercentEntry (Application)
AutoRecover method (Application)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoRecover method (Application)
AutoRecover object, members
AutoRepublish property
AutoRepublish property (PublishObject)
AutoScaleFont property (ChartArea)
AutoScaling property (Chart)
AutoShapeType property
AutoShapeType property (Shape)
AutoShow method (PivotField)
AutoShowCount (PivotField)
AutoShowRange (PivotField)
AutoShowType (PivotField)
AutoSize property (TextFrame)
AutoSort method (PivotField)
AutoSortField (PivotField)
AutoSortOrder (PivotField)
AutoTab property (ComboBox)
AutoText property (DataLabel)
AutoUpdate property (OLEObject)
AutoUpdateFrequency (Workbook) 2nd
AutoUpdateSaveChanges (Workbook)
AutoWordSelect (ComboBox)
Axes collection
 returning an axis from
Axes method (Chart)
Axes property (Chart)
Axis object, members
AxisBetweenCategories property (Axis)
AxisGroup method (Axis)
AxisGroup property (Series)
AxisTitle method (Axis)
AxisTitle object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

BackColor property
 ChartFillFormat object
 FillFormat object
 UserForm object
background, formatting for charts
BackgroundQuery property
 PivotCache object
 QueryTable object 2nd 3rd
BackStyle property
backup copy of workbooks
Backward property (Trendline)
Bar3DGroup property (Chart)
BarGroups property (Chart)
BarShape property (Chart)
BaseField property (PivotField)
BaseItem property (PivotField)
BaseUnit property (Axis)
BaseUnitIsAuto property (Axis)
Batch element, online information
BCC property (MailItem)
Before events
BeforeDoubleClick event
BeforePrint event (Worksheet)
BeforeRefresh event 2nd
BeginConnect method (ConnectorFormat) 2nd
BeginConnected property (ConnectorFormat)
BeginConnectedShape (ConnectorFormat)
BeginConnectionSite (ConnectorFormat)
BeginDisconnect method (ConnectorFormat)
BeginGroup property (CommandBarControl)
BeginTrans method (Connection)
Bézier curve, drawing
binary access files 2nd
binding
bit flags 2nd
bit mask
bits, comparing
bitwise operations
BlackAndWhite property (PageSetup)
BlackWhiteMode property (Shape)
blocks of code, indenting
Body property (MailItem)
BOF property (Recordset) 2nd
Boolean expressions
Boolean tests, functions for
Border property (CalloutFormat)
BorderAround method (Range)
BorderColor property (UserForm)
Borders property (Range)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Borders property (Range)
BorderStyle property (UserForm)
BottomMargin (PageSetup)
BottomRightCell method
 ChartObject object
 OLEObject object
BoundColumn property (ComboBox)
bounds, array 2nd
BreakLink method (Workbook)
breakpoints
 setting for event procedures
 setting or removing in code
BreakSideBySide method (Windows)
Brightness property (PictureFormat)
BringToFront (OLEObject)
browsers
 running from Excel
 support of ActiveX controls
 TargetBrowser, WebOptions
BubbleScale property (ChartGroup)
bug-free code, writing
 good practices
Build (Application)
BuildFreeform method (Shapes)
BuiltIn property
 CommandBar object
 CommandBarControl object
BuiltinDocumentProperties (Workbook)
business logic, isolating from interface
Button control
 using on a worksheet
ByRef keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C language (DLLs)
CAcert (nonprofit certificate authority)
 URL
CacheIndex property (PivotTable)
Calculate method
 Application object
 Range collection
 Worksheet object
CalculateBeforeSave (Application)
CalculatedFields collection
 formulas from
 members
CalculatedFields method (PivotTable)
CalculatedItems (PivotField)
CalculatedItems collection
CalculatedMember object 2nd
CalculatedMembers (PivotTable)
CalculatedMembers collection
CalculateFull method (Application)
CalculateFullRebuild method (Application)
Calculation property
 Application object
 PivotField object
CalculationInterruptKey (Application)
CalculationState (Application)
CalculationVersion
 Application object
 Workbook object
Caller (Application)
Callout property (Shape)
CalloutFormat object, members
Cancel argument (Before events)
cancel key, enabling
Cancel method
 Connection object
 Record object
 Recordset object
Cancel property (Control)
CancelRefresh (QueryTable) 2nd
CancelUpdate method
 Fields collection
 Recordset object
CanCheckIn property (Workbook) 2nd
CanCheckOut property
 Workbook object
 Workbooks collection
CanPaste property (UserForm)
CanRedo property (UserForm)
CanUndo property (UserForm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CanUndo property (UserForm)
Caption property 2nd 3rd 4th 5th
 CommandBarControl object
 objects having
 PivotField object
 UserForm object
captions serving as titles or labels in charts
carriage-return and line-feed characters (Windows)
Cascading Style Sheets (CSS)
case-insensitive string comparisons
case-sensitive string comparisons
CategoryNames property (Axis)
CategoryType property (Axis)
CC property (MailItem)
CellDragAndDrop (Application)
CellFormat object
 used during search and replace
cells
 addresses
 comments in
 formatting and changing text
 linking to controls
 manipulating with Range objects
 working with on a worksheet
Cells method
 Application object
 Range collection
 Worksheet object 2nd
Cells property
 returning a range
CenterFooter (PageSetup)
CenterFooterPicture (PageSetup)
CenterHeader (PageSetup)
CenterHeaderPicture (PageSetup)
CenterHorizontally (PageSetup)
CenterVertically (PageSetup)
CentimetersToPoints (Application)
certificate authorities (CAs) 2nd
 nonprofit authority, CAcert
 timestamp service provided by
Certificate Manager (CertMgr.exe)
certificates
 distributing
ChangeFileAccess method (Workbook)
ChangeHistoryDuration (Workbook)
ChangeLink method (Workbook)
ChangePassword method (AllowEditRange)
ChangeScenario method (Scenarios)
ChangingCells method (Scenario)
character codes (ANSI)
Characters collection
 changing parts of a caption
 changing text in cells
 Text property
Characters method (Range)
Characters method (TextFrame)
Characters property (TextFrame)
characters, pattern-matching
chart menu bar
 adding top-level menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 adding top-level menu
Chart method (ChartObject)
Chart object
 Activate event
 Activate method
 Axes property
 ChartArea property
 ChartGroups property 2nd
 ChartObject object versus
 ChartObjects property
 ChartWizard method 2nd
 events
 Hyperlinks method
 MailEnvelope property
 members
 PageSettings property
 PageSetup property
 PrintOut and PrintPreview methods
 protection members
 SeriesCollection property
Chart property
ChartArea object
 Font object
 members
 methods to clear chart contents and formats
ChartArea property (Chart)
ChartColorFormat object
ChartFillFormat object
 members
ChartGroup object
 members
 series lines and bars, adding to chart
 SeriesLines property
ChartGroups collection
ChartGroups property (Chart) 2nd 3rd
charting
 adding titles and lables
 choosing chart type
 creating charts quickly
charting (continued)
 creating combo charts
 creating more complex charts
 embedding charts
 objects used for
 plotting a series
 repeating tasks for all worksheets in recorded code
 responding to chart events
ChartObject object
 Activate method
 members
ChartObjects collection 2nd
 members
ChartObjects property
 Chart object
 Chart or Worksheet objects
charts
 based on pivot cache, refreshing
 Chart objects
 creating from pivot tables
 formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 formatting
 changing backgrounds and fonts
 series lines and bars
 titles and labels
 trendlines
 formatting, objects used for
 preserving in workbooks saved as XML
 print settings
 removing custom chart type
 setting default type
 showing items as tool tips
Charts collection 2nd 3rd
 Add method
 charting pivot table
 Application object
 members
 PrintOut and PrintPreview methods
Charts property (Workbook) 2nd
ChartSize method (PageSetup)
ChartTitle object
ChartTitle property (Chart)
ChartType property 2nd
 Chart object
 Series object 2nd
ChartWizard method (Chart) 2nd
 changing existing charts
 reasons for not using
ChDir function 2nd
ChDrive function 2nd
CheckAbort (Application)
CheckBox object
CheckIfOfficeIsHTMLEditor (DefaultWebOptions)
CheckIn method (Workbook)
checking in files in shared workspace
checking out files in shared workspace
CheckOut method
 Workbook object
 Workbooks collection
CheckSpelling method
 Application object
 Range collection
 Worksheet object
ChildField method (PivotField)
ChildItems method (PivotField)
Choices property (ListDataFormat)
Chr function 2nd
circular references
 resolving
classes 2nd
 .NET 2nd
 creating
 multiple objects from single class
 creating objects from
 declaring WithEvents Workbook variable
 dynamic nature of
 events 2nd 3rd
 forms 2nd
 in Visual Basic programs
 modules versus
 properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 properties
 single-instance, for Excel sheets and workbooks
Clear method
 ChartArea object
 ComboBox object
 CommandBarComboBox object
 Controls collection
 Range object
 XPath object
ClearContents method
 ChartArea object
 Range object
ClearFormats method
 ChartArea object
 ErrorBars object
 PlotArea object
 Range object
 Series object
 Trendline object
ClearSettings (XmlDataBinding)
ClientHeight property (TabStrip)
ClientLeft property (TabStrip)
ClientTop property (TabStrip)
ClientWidth property (TabStrip)
Clipboard window, displaying
clipboard, reformatting XML data as HTML
ClipboardFormats (Application)
Close function
Close method
 MailItem object
 Window object
 Workbook object 2nd 3rd
 Workbooks collection
code
 Visual Basic, storage in Excel
 writing bug-free code
 good practices
code modules (.NET)
code-only add-ins
 creating
 changing the add-in
 programming tips
 properties
 saving add-ins
 testing
 using from code
CodeName (Workbook)
CodeName property (Chart)
collections 2nd
 .NET, index starting at zero
 adding or deleting objects
 common members
 creating
 custom, versus Excel built-in
 data type of objects in
 destroying by setting to Nothing
 getting objects from
 common collection members
 indexes
 methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 methods
 setting focus on member
 using (Messages example)
ColorFormat object
 background and foreground color
 members
Colors method (Workbook)
ColorType property (PictureFormat)
Column element
column headings, displaying
Column method
 ComboBox object
 Range object
Column3DGroup property (Chart)
ColumnCount property (ComboBox)
ColumnFields method (PivotTable)
ColumnGrand property (PivotTable)
ColumnGroups method (Chart)
ColumnHeads property (ComboBox)
ColumnRange method (PivotTable)
Columns collection
 Delete method
 Insert method
Columns method
 Application object
 Range collection
 Worksheet object 2nd
Columns property, returning Range object
ColumnWidth method (Range)
ColumnWidths property (ComboBox)
COM (Component Object Model)
COM (Component Object Model) 2nd
 .NET versus
 automating PowerPoint
 getting help on objects
 handling exceptions
 integrating Word
 programming Office applications from Excel
COMAddIns method (Application)
combo charts, creating
ComboBox object
COMExceptions
Command object (ADO)
 members
command-line transformation utility (msxsl.exe)
CommandBar object
 context menus
 members
 Reset method
 Show method
CommandBarButton object
 members
CommandBarComboBox object
CommandBarControl object 2nd
CommandBarControls collection
CommandBarPopup object 2nd
CommandBars collection
 Add method
 members
 menu names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 menu names
 toolbars
CommandBars method
 Application object
 Workbook object
CommandButton object
commands
 adding Contact Us and About to Help menu
 built-in, adding to existing menu
 custom, adding to existing menu
CommandText property
 Command object
 PivotCache object 2nd
 QueryTable object
CommandTimeout (Connection)
CommandType property
 Command object
 PivotCache object
 QueryTable object
CommandUnderlines method (Application)
Comment object
Comment property (Scenario)
comments
 adding
 entered using digital ink
 icon displayed for
 importance of
 reading aloud
Comments collection
 members
Comments method
 Workbook object
 Worksheet object
Comments property, AddIn object
CommitTrans method (Connection)
CompactDatabase method (DbEngine)
CompareSideBySideWith (Windows)
comparison operators
compatibility, versions of Excel
compile-time errors
 fixing
compiled help files 2nd
compiler directives, Visual Basic
compiling code
compressing files
conditional statements 2nd
 using with loops
conflict history for workbook
ConflictResolution (Workbook)
conflicts, resolving
 changes in linked files
 lists 2nd
Connected property
Connection object (ADO)
 members
Connection property
 Database object
 PivotCache object 2nd
 QueryTable object 2nd
 web queries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 web queries
 changing
connection string for external database
ConnectionSiteCount (Shape)
ConnectionString (Connection)
ConnectionTimeout (Connection)
Connector property (Shape)
ConnectorFormat object
ConnectorFormat property
ConnectorFormat property (Shape)
#Const compiler directive
Const statement
constants
 finding for DLL functions
 object member
ConstrainNumeric (Application)
Container method
 Document object
 Workbook object
context menus
 building
 changing context menus
 creating new menus
 restoring context menus
Contrast property (PictureFormat)
Control object, members
ControlCharacters (Application)
ControlFormat object
ControlFormat property (Shape)
controlling Excel, objects for
controls
 ActiveX
 adding to forms
 CheckBox, OptionButton, and ToggleButton
 choosing for forms
 ComboBox
 CommandButton
 creating and using in Excel, objects for
 edit controls, adding to toolbars
 embedded 2nd
 enabling and disabling on forms
 event procedure to respond to user actions
 Image
 keyboard access to
 Label
 ListBox
 MultiPage
 Page
 ScrollBar and SpinButton
 tabbed, property settings
 TabStrip
 TextBox and RefEdit
 using on worksheets
Controls collection
 Add method
 members
Controls property
 CommandBar object
 CommandBarPopup object
 UserForm object 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UserForm object 2nd
Controls Toolbox, controls created with
ControlSource property (Control)
ControlTipText (Control)
conversions between data types
ConvertAddress helper function
ConvertFormula (Application)
Copy method
 CommandBarControl object
 OLEObject object
 Range collection
 Sheets collection
 UserForm object
 Worksheet object
CopyFace method (CommandBarButton)
CopyFromRecordset (Range)
copying code snippets and coding styles
CopyObjectsWithCells (Application)
CopyPicture method
 Chart object
 OLEObject object
Corners object
Corners property (Chart)
Count method, collections
Count property (collections) 2nd
CreateBackup (Workbook)
CreateNew method (SharedWorkspace)
CreateNewDocument (Hyperlink)
CreateObject function
CreateParameter method (Command)
CreatePivotTable method (PivotCache) 2nd 3rd
CreatePivotTableWizard (Worksheet)
CreatePublisher method (Chart)
CreateSummary method (Scenarios)
Creator property
Criteria1 method (Filter)
Criteria2 method (Filter)
CropBottom property (PictureFormat)
CropLeft property (PictureFormat)
CropRight property (PictureFormat)
CropTop property (PictureFormat)
Crosses property (Axis)
CrossesAt property (Axis)
CSS (Cascading Style Sheets)
CubeField method (PivotField)
CubeField object
 members
CubeFields collection members
CubeFields method (PivotTable)
CubeFieldType property (CubeField)
CurDir function 2nd
CurLine property (TextBox, RefEdit)
currency, @ (type-declaration character)
CurrentPage property (PivotField)
CurrentPageName property (PivotField)
CurrrentPageList property (PivotField)
Cursor (Application)
cursor position, displaying
CursorMovement (Application)
CurTargetX property (ComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CurTargetX property (ComboBox)
CurX property (ComboBox)
Custom Installation Wizard (CIW)
Custom Maintenance Wizard
CustomDocumentProperties method (Workbook)
CustomDrop property (CalloutFormat)
CustomLength property (CalloutFormat)
CustomListCount (Application)
CustomView object, members
CustomViews collection
 Add method
 members
CustomViews method (Workbook)
Cut method
 Range object
 UserForm object
CutCopyMode (Application)
Cycle property (UserForm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

DAO (Data Access Objects)
 creating a recordset
 objects and members
 Database and Databases
 DbEngine object
 Document and Documents
 QueryDef and QueryDefs
 Recordset and Recordsets
 tasks for
 working with
data cubes (OLAP) 2nd
data lists
data types
 arrays
 constants
 conversions
 Visual Basic functions for
 Excel lists
 keywords for working with
 objects in a collection
 reference types
 size of
 testing, functions for
 user-defined
 value types
 Visual Basic variables
data-entry dialog boxes
data-entry forms
 adding validation rules
 designing your own
 adding a button
 choosing controls
 controls and property settings
 creating tabbed dialogs
 enabling/disabling controls
 keyboard access to controls
 responding to form events
 separating work and UI code
 showing a form
 using controls on worksheets
 displaying from code
 how they work
 validation settings
 validation, advanced
Database object (DAO)
database objects
database queries 2nd
 creating in code
 ODBC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ODBC
 optimization with OLAP 2nd
 pivot caches based on
database query (.iqy)
database query file (.dqy)
Databases collection (DAO)
DatabaseSort property (PivotField)
DataBinding method (XmlMap)
DataBodyRange (ListObject)
DataBodyRange (PivotTable)
DataEntryMode (Application)
DataFields method (PivotTable)
DataLabel object
DataLabel property (Trendline)
DataLabelRange (PivotTable)
DataLabels collection
DataLabels method (Series)
DataObject object
DataPivotField (PivotTable)
DataRange method (PivotField)
DataTable method (Chart)
DataTable object
DataType
 PivotField object
Date function
date/time formats, not supported by lists
dates and times
 minutes between saving of automatic recovery files
 setting procedure to run at specific time
 Visual Basic functions for
DateSerial function
DateValue function
Day function
DbEngine object (DAO)
DDE link, updates
Debug.Print statement, displaying code results
debugging Excel .NET applications
decimal separators
 operator system settings
 text file imported into query table
DecimalPlaces property (ListDataFormat)
decimals, fixed decimal places for data entries
DecimalSeparator (Application)
declarations
 constants
 DLL functions
 object variable
 procedures
 Visual Basic declaration statements
 Visual Basic variables
Default property (Control)
DefaultFilePath method (Application)
DefaultFilePath property (Application)
 changing to specific folder
DefaultSheetDirection (Application)
DefaultValue property (ListDataFormat)
DefaultWebOptions (Application)
DefaultWebOptions object, members
DeferredDeliveryTime (MailItem)
DefinedSize property (Field)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DefinedSize property (Field)
defining a user-defined type
Delete method 2nd
 AllowEditRange object
 CommandBar object
 CommandBarControl object
 Comment object
 deleting objects from collections
 HPageBreak and VPageBreak
 Hyperlink object and Hyperlinks collection
 ListObject object 2nd
 ListRow object
 Parameter object
 PivotField object
 QueryTable object 2nd
 Range collection
 RecentFile object
 Recordset object
 Rows and Columns collections
 UserAcces object
 XmlMap object 2nd
DeleteAfterSubmit (MailItem)
DeleteAll method (UserAccessList)
DeleteAttachment method (Lists Web Service) 2nd
DeleteChartAutoFormat (Application)
DeleteCustomList (Application)
DeleteList method (Lists Web Service) 2nd
DeleteNumberFormat method (Workbook)
DeleteReplacement method (AutoCorrect)
deletions, animating
delimited text datafiles
Delivery property (RoutingSlip)
denormalized data, avoiding with XML maps
dependencies
 Dependents method (Range)
 DirectDependents method (Range)
 rebuilding in all workbooks
 showing for a range
deploying applications
 expiration, digital signatures
 installing templates and add-ins
 installing workbooks
 protecting code from changes
 signing files
Depth property (TickLabels)
DepthPercent property (Chart)
DescriptionText property (CommandBarControl)
Deselect method (Chart)
design
 requirements versus
Destination property (QueryTable) 2nd
destroying objects 2nd 3rd
 explicitly
 memory leaks caused by unused objects
development process
 deployment
 expiration, digital signatures
 installing templates and add-ins
 installing workbooks
 protecting code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protecting code
 signing files
 design
 determining requirements
 documentation
 general steps
 implementing and testing code
 integrating features and testing
 platform tests
 purpose of
 resources
diagram nodes, inability to get/set text from code
Diagram object (Word or PowerPoint application)
diagrams
 creating
 programming
 shapes for
dialog boxes 2nd
 creating data-entry forms
 displaying forms from code
 validation rules, adding
 validation settings
 validation, advanced
 designing your own forms
 adding a button
 choosing controls
 controls and property settings
 creating tabbed dialogs
 enabling and disabling controls
 keyboard access to controls
 responding to form events
 separating work and UI code
 showing a form
 FileDialog (Application)
 objects used for 2nd
 standard, displaying or hiding
 task-specific
 types of
 using controls on worksheets
Dialogs collection 2nd
 constants
 displaying any Excel dialog box
Dialogs method (Application) 2nd
digital signatures 2nd 3rd 4th
 creating personal signature
 Excel security and
 expiration
 resources for more information
 signing add-ins
 signing Visual Basic project in a workbook
 Visual Basic project in workbook
dimensions of arrays
Dir function 2nd 3rd
DirectDependents method (Range)
Direction property (Speech)
DirectPrecedents method (Range)
DisableAskAQuestionDropdown (CommandBars)
DisableCustomize (CommandBars)
Display method (MailItem)
DisplayAlerts (Application) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DisplayAlerts (Application) 2nd
DisplayBlanksAs property (Chart)
DisplayClipboardWindow (Application)
DisplayCommentIndicator (Application)
DisplayDocumentActionTaskPane (Application)
DisplayDrawingObjects (Workbook)
DisplayEmptyColumn (PivotTable)
DisplayEmptyRow (PivotTable)
DisplayEquation property (Trendline)
DisplayErrorString (PivotTable)
DisplayExcel4Menus (Application)
DisplayFonts property (CommandBars)
DisplayFormulaBar (Application)
DisplayFormulas property (Window)
DisplayFullScreen (Application)
DisplayFullScreen property (Application)
DisplayFunctionToolTips (Application)
DisplayGridlines property (Window)
DisplayHeadings property (Window)
DisplayHorizontalScrollBar property (Window)
DisplayImmediateItems (PivotTable)
DisplayInkComments (Workbook)
DisplayInsertOptions (Application)
DisplayKeysInTooltips (CommandBar)
DisplayNoteIndicator (Application)
DisplayNullString (PivotTable)
DisplayOutline property (Window)
DisplayPageBreaks (Worksheet)
DisplayPasteOptions (Application)
DisplayRecentFiles (Application)
DisplayRightToLeft property (Window)
DisplayRSquared property (Trendline)
DisplayScrollBars (Application)
DisplayStatusBar (Application)
DisplayTooltips property (CommandBars)
DisplayUnit property (Axis)
DisplayUnitCustom property (Axis)
DisplayUnitLabel object
DisplayUnitLabel property (Axis)
DisplayVerticalScrollBar (Window)
DisplayWorkbookTabs (Window)
DisplayXMLSourcePane (Application)
DisplayZeros property (Window)
Distribute method (ShapeRange)
DivID method (PublishObject)
DLLs (dynamic link libraries)
 declaring and using functions
 finding the right function
 flags and constants
 handling exceptions
 using
 working with strings
Do...Loop statement
 conditions, placing in
Document Action task pane
Document object (DAO)
DocumentAuthor (Permission)
documenting applications
DocumentLibraryVersion method (Workbook)
DocumentProperties node

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentProperties node
Documents collection (DAO)
DOM (Document Object Model)
DOMDocument object
 ondataavailable event
 online information
 responding to a web service asynchronously
 TransformNode method
DOMDocument, online information
DOS filenames, using when saving web pages
Double data type
 use in performance measurement
DoubleClick method (Application)
DoughnutGroups property (Chart)
DoughnutHoleSize (ChartGroup)
DownBars method (ChartGroup)
DownBars object
DownloadComponents property (WebOptions)
.dqy (database query) files
Draft property (PageSetup)
drag and drop
DragBehavior property (ComboBox)
DragOff method (PageBreak)
DragToColumn (PivotField)
DragToData (PivotField)
DragToHide (PivotField)
DragToPage (PivotField)
DragToRow (PivotField)
DrawBuffer property (UserForm)
drawing objects, display in workbooks
DrilledDown property (PivotField)
Drop property (CalloutFormat)
DropButtonStyle (ComboBox)
DropDown method (ComboBox)
DropDownLines (CommandBarComboBox)
DropDownWidth (CommandBarComboBox)
DropLines object
DropLines property (ChartGroup)
DropType property (CalloutFormat)
DTD (Document Type Definition)
Duplicate method (OLEObject)
Duplicate method (Shape)
dynamic arrays
 preserving when calling ReDim

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

early binding
edit controls, adding to toolbars
Edit menu
 Repeat item
 Undo item
EditDirectlyInCell (Application)
edits, limiting to sheets and ranges of cells
EditWebPage (QueryTable)
Elevation property (Chart)
ElseIf statements, multiple, within an If block
email
 priority
 reading
 running from Excel
 sending from within Excel 2nd
 sending workbook as attachment
 using MsoEnvelope
 working with mail items
EmailSubject method (Hyperlink)
embedded objects 2nd 3rd
 creating dynamically
 PrintObject property
 Word document on active worksheet
embedding
 charts 2nd
 controls
 objects created by other applications
EnableAnimations (Application)
EnableAutoComplete (Application)
EnableAutoRecover (Workbook)
EnableCalculation (Worksheet)
EnableCancelKey (Application)
Enabled property
 AutoRecover object
 CommandBar object
 CommandBarControl object
 controls
 Permission collection
 UserForm object
EnableDataValueEditing (PivotTable)
EnableDrilldown (PivotTable)
EnableEditing property (QueryTable) 2nd
EnableEvents property (Application)
EnableFieldDialog (PivotTable)
EnableFieldList (PivotTable)
EnableItemSelection (PivotField)
EnableMultiplePageItems (CubeField)
EnableOutlining property (Worksheet)
EnablePivotTable property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EnablePivotTable property
EnableRefresh property
 PivotCache object
 QueryTable object 2nd
EnableResize property (Window)
EnableSelection property (Worksheet)
EnableSound property (Application)
EnableTrustedBrowser (Permission)
EnableWizard (PivotTable)
encapsulation
Encoding property (WebOptions)
encryption
 adding to a workbook
 password-proteced files
 setting options in code
 Workbook members for
End If statement, missing, error caused by
End method (Range)
End statement
EndConnect method (ConnectorFormat) 2nd
EndConnected property (ConnectorFormat)
EndConnectedShape property (ConnectorFormat)
EndConnectionSite property (ConnectorFormat)
EndDisconnect method (ConnectorFormat)
EndReview method (Workbook)
EndStyle property (ErrorBars)
EnterFieldBehavior (ComboBox)
EnterKeyBehavior (TextBox, RefEdit)
EntireColumn method (Range)
EntireRow method (Range)
Enum keyword
enumerations
 defining
 object member
enumerator (collections)
EnvelopeVisible (Workbook)
EOF function
EOF property (Recordset) 2nd
Eqv operator
error bars, adding to chart
Error object
ErrorBar method (Series)
ErrorBars method (Series)
ErrorBars object
ErrorChecking object, members
ErrorCheckingOptions (Application)
errors
 compile-time, fixing
 displaying for pivot table cells
 ODBCErrors collection
 OLEDBErrors collection
 runtime errors, fixing
 syntax errors, fixing
 types of
ErrorString (PivotTable)
Evaluate method (Application)
Event procedures 2nd
events 2nd 3rd
 application-level, responding to
 available from Excel objects, listed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 available from Excel objects, listed
 "bubbling up" through object hierarchy
 chart
 creating for control to respond to user actions
 creating in a class
 enabling
 Excel, responding to in .NET
 form, responding to
 handling from .NET components in Excel VBA
 intercepting from Word
 QueryTable, trapping for web queries
 raising
 responding to in Excel
 turning off event processing
 responding to in Excel .NET applications
 using for objects other than Workbook and Worksheet
 using from another class
 viewing for a class
 Word, responding to from Excel
 Workbook object
 XML, responding to
examples for this book, xvi
 organization of
Excel
 automation from Visual Basic
 object-oriented features not available in
 programming, reasons for
 running browser and email from
 starting and stopping code
Excel 2003
 text of diagram nodes, inability to get/set from code
 XML support
Excel 2003 Help file
Excel 2003 Professional Edition, xvi
 Application.DisplayXMLSourcePane
Excel Version 4.0 menus, displaying
exception handling
 .NET
 Excel exceptions in .NET
exceptions 2nd
 handling from COM applications
 handling from DLL functions
 turning off exception handling
ExclusiveAccess method
ExclusiveAccess method (Workbook)
executable statements
Execute method
 Command object
 CommandBarControl object
 Database object
 QueryDef object
Exit Do statement
ExpirationDate (UserPermission)
ExpiryTime property (MailItem)
Explosion property (Series)
Export method (XmlMap) 2nd
exporting classes or modules to text files
exporting XML with XML maps
 avoiding lists of lists
 including all nodes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 including all nodes
 responding to events
 schema elements not supported
ExportXml method (XmlMap) 2nd
exposing objects
expressions
 Boolean
 combining using operators
 evaluating and returning result
 in Visual Basic programs
 return values
Extend method (SeriesCollection) 2nd
ExtendList (Application)
Extent property (PageBreak)
external data references, removing from workbook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

FaceId property (CommandBarButton)
Favorites folder
 adding hyperlink to
 adding link to workbook
fax, sending over Internet
FeatureInstall (Application)
FetchedRowOverflow (QueryTable) 2nd
field names (OLAP)
Field object (ADO)
 members
FieldNames property (QueryTable)
Fields collection (ADO), members
fields, simple properties as
FilConverters (Application)
file handles
File Open dialog box
FileAttr function 2nd
FileCopy function 2nd
FileDateTime function
FileDialog method (Application) 2nd
 opening web file in browser
FileFind (Application)
FileFormat method (Workbook)
FileLen function
filenames, formats for web pages
files
 automatic recovery
 compressing
 making truly secure
 managing with Visual Basic functions
 reading and writing in Visual Basic
 binary access
 random access 2nd
 sequential access 2nd
 recently opened, listing
 recently used
Files collection, removing workbooks from shared workspace
FileSearch (Application)
FileSystemObject
 URL for further information
FileSystemObject class
Fill Effects dialog box
Fill method (Series)
Fill property 2nd
 ChartArea and PlotArea objects
 ChartArea object
 PlotArea object
 Shape object
FillAcrossSheets method (Sheets)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FillAcrossSheets method (Sheets)
FillAdjacentFormulas (QueryTable) 2nd
FillDown method (Range)
FillFormat object
FillLeft method (Range)
FillRight method (Range)
FillUp method (Range)
Filter method (Recordset)
Filter object, members
filters
 applying
 AutoFilter object, members
 autofilters on worksheet
 creating in code
 creating in Excel
 removing
 storing criteria in views
 turning off all on a worksheet
Filters collection
 members
Filters method (AutoFilter)
financial functions (Visual Basic)
Find method (Range) 2nd
 first cell in specified range
FindControl method (CommandBar) 2nd 3rd
FindControls method (CommandBars)
FindFile method (Application) 2nd
FindFormat method (Application)
FindNext method (Range) 2nd
FindPrevious method (Range) 2nd
FirstPageNumber method (PageSetup)
FirstSliceAngle (ChartGroup)
FitToPagesTall property (PageSetup)
FitToPagesWide property (PageSetup)
Fix function
fixed-length string
fixed-width text datafiles
FixedDecimal (Application)
FixedDecimalPlaces (Application)
flags, bit flags in DLL functions
Flip method (Shape)
Floor method (Chart)
Floor object
FolderSuffix property (WebOptions)
Follow method (Hyperlink)
FollowHyperlink method (Workbook) 2nd 3rd 4th 5th
Font object 2nd
 members
Font property 2nd 3rd 4th
 ChartArea object
 Range object
 TickLabels object
 UserForm object
FontBold property (TextEffectFormat)
FontItalic property (TextEffectFormat)
FontName property (TextEffectFormat)
fonts
 formatting for charts
 standard, for Windows
Fonts method (DefaultWebOptions)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fonts method (DefaultWebOptions)
FontSize property (TextEffectFormat)
FooterMargin method (PageSetup)
footers, adding graphic to
For Each statement 2nd
For...Next statement
 changing increment
ForeColor property
 ChartFillFormat object
 FillFormat object
 UserForm object
Format function 2nd
 built-in formats
 date/time conversions
 formatting codes
Format method (PivotTable)
Format Plot Area dialog box
formatting, repeating for all worksheets in recorded code
FormControlType property (Shape)
forms
 controls on forms versus controls on worksheets
 controls, using on worksheets
 creating, objects used for
 data entry
 designing your own
 displaying from code
 validation rules
 validation settings
 validation, advanced
 displaying in Excel .NET applications
 embedded form controls
 events
 objects for
 printing
 UserForm
Forms 2.0 controls
 interaction with worksheet class
 progIDs
 using on a worksheet
Forms Designer, creating custom dialog box
Forms toolbar
 controls created with
Formula bar 2nd
Formula property
 PivotField object
 Range object
 Series object
FormulaLocal property (Series)
FormulaR1C1 method (Range)
FormulaR1C1 property (Series)
FormulaR1C1Local property (Series)
formulas
 displaying
 getting with Application.InputBox
 including range labels
 listing for pivot table
 pivot table
 recalculating all
 recalculating in open workbooks
Forward property (Trendline)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Forward property (Trendline)
ForwardMailer method (Workbook)
Frame object
FreeFile function
FreeformBuilder object
 ConvertToShape method
 members
FreezePanes property (Window)
Friend scope, procedures
full-screen mode
FullName property
 AddIn object
 Workbook object
FullNameURLEncoded (Workbook)
Function procedures
 return values
Function property (PivotField)
functions
 accessor
 conversion
 dates and times, Visual Basic
 declared in module as Private
 DLL
 choosing
 converted to Visual Basic
 declaring and using
 exception handling
 flags and constants
 working with strings
 file-access functions, Visual Basic
 managing files, Visual Basic functions
 math, derived from intrinsic Visual Basic functions
 obsolete or obscure, Visual Basic
 registered with Excel, listing
 result-checking functions, Visual Basic
 string functions, Visual Basic
 tool tips
 Visual Basic math functions
 Windows API
 WorksheetFunction object 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Gap property (CalloutFormat)
GapDepth property (Chart)
GapWidth property (ChartGroup)
garbage collection (.NET)
 getting rid of unused resources in .NET
GenerateGetPivotData command (Application)
Get function
Get, Let, and Set procedures
GetAttachmentCollection method (Lists Web Service) 2nd
GetAttr function
GetChartElement method (Chart)
GetChildren method (Record)
GetChunk method (Field)
GetCustomListContents method (Application)
GetCustomListNum method (Application)
GetData method (PivotTable)
GetList method (Lists Web Service)
GetListAndView method (Lists Web Service)
GetListCollection method (Lists Web Service) 2nd
GetListItemChanges method (Lists Web Service)
GetListItems method (Lists Web Service)
GetObject function
GetOpenFilename (Application)
GetPhonetic method (Application)
GetPivotData (PivotTable)
GetSaveAsFilename method (Application)
global members 2nd
 object names, shortening
Global object
 members
global scope
 constants
 object variables
 variables
global variables
globally unique identifier (GUID), Excel programmatic ID
Google Web Service 2nd
 calling directly through SOAP
 online information about
Goto method (Application) 2nd
GradientColorType (ChartFillFormat)
GradientDegree property (ChartFillFormat)
gradients and textures, chart background 2nd
GradientStyle property (ChartFIllFormat)
GradientVariant property (ChartFillFormat)
GrandTotalName (PivotTable)
Graphic object
graphics
 creating diagrams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating diagrams
 creating on worksheets, objects used for
 drawing in Excel
 drawing simple shapes
 programming diagrams
 programming with drawing objects
 adding pictures
 connecting shapes
 drawing simple shapes
 grouping shapes
 text, adding to shapes
 text, adding to shapes
GridlineColor method (Window)
GridlineColorIndex method (Window)
gridlines
 displaying for cells
 turning on/off in worksheets
Gridlines object
Group method
 OLEObject object
 ShapeRange object 2nd
group properties for charts
GroupItems property (Shape)
GroupLevel (PivotField)
GroupName property
groups
 adding trusted publisher for
 viewing in Windows XP
 Windows security
GroupShapes collection
GUID
 finding for a list 2nd
 looking up for lists on SharePoint

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handle to application instance
handle to top-level Excel window
handwriting recognition
hardware issues for applications
Has3DEffect property (Series)
Has3DShading property (ChartGroup)
HasAutoFormat (PivotTable)
HasAxis method (Chart)
HasDataLabel property
HasDataLabels property (Series)
HasDataTable property (Chart)
HasDisplayUnitLabel property 2nd
HasDisplayUnitLabel property (Axis)
HasDropLines property (ChartGroup)
HasErrorBars property (Series)
HasHiLoLines property (ChartGroup)
HasLeaderLines property (Series)
HasLegend property (Chart)
HasMailer property (Workbook)
HasMajorGridlines property (Axis)
HasMemberProperties (CubeField)
HasMinorGridlines property (Axis)
HasPassword (Workbook) 2nd
HasPivotFields property (Chart)
HasRadarAxisLabels property (ChartGroup)
HasRoutingSlip (Workbook)
HasSeriesLines property (ChartGroup)
HasTitle property 2nd 3rd
HasTitle property (Axis)
HasTitle property (Chart)
HasUpDownBars property (ChartGroup)
HeaderMargin method (PageSetup)
headers and footers, adding graphic to
headings (column), displaying
Height property
 Application object
height, default row height in points
HeightPercent property (Chart)
Help
 adding Contact Us and About commands
 Excel objects
 Visual Basic Help for Excel
 WorksheetFunction members
help
 compiled help files 2nd
 HTML documentation for application
 linking items to HTML help pages
 links to Help from menu items
 macros and user-defined functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 macros and user-defined functions
 objects in COM applications
 on user-defined functions
Help method (Application) 2nd
HelpContextId (CommandBarControl)
HelpFile property (CommandBarControl)
Hidden property
 Range collection
 Scenario object
HiddenFields (PivotTable)
HiddenItems method (PivotField)
HiddenItemsList (PivotField)
HiddenLevels property (CubeField)
HideSelection property (ComboBox)
hierarchy, object, creating using collections
HighlightChangesOnScreen (Workbook)
HighlightChangesOptions (Workbook)
HiLoLines method (ChartGroup)
HiLoLines object
Hinstance method (Application)
history of workbook changes
 keeping
 purging
horizontal scrollbar, displaying
HorizontalAlignment method (Range)
HorizontalAlignment property (TextFrame)
HorizontalAlignment property (Title)
HorizontalFlip property (Shape)
Hour function
HPageBreak object
 Delete method
 members
HPageBreaks collection
 members
HRESULT, mapping to .NET exception class
HTML document, workbook based on
HTML Help Workshop (Microsoft)
HTMLBody property (MailItem)
HTMLProject method (Workbook)
HtmlType property (PublishObject)
Hwnd method (Application)
Hyperlink object
 Delete method
 members
Hyperlink property (Shape)
hyperlinks
 adding to list on SharePoint server
 allowing insertion in worksheet
 automatically reformatting protocols as
 creating in code
 creating in Excel
 Excel menu items to Help
 in workbooks
 linking to location on worksheet
Hyperlinks collection
 Add method 2nd
 Delete method
 members
Hyperlinks method
 Chart object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chart object
 Range collection
 Worksheet object 2nd
HyperlinkType (CommandBarButton)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Id property
 CommandBar object
 CommandBarControl object
ID property (Shape)
If statements
Image object
IMEMode property (ComboBox)
Immediate window
 displaying code results with Debug.Print
 evaluating expressions
 running procedures and quick calculations
Imp operator
implementing and testing code
Import method (XmlMap) 2nd
Importance property (MailItem)
importing code stored as text into workbook
importing XML with XML maps
 approaches
 schema elements not supported
 limitations of XML maps
 responding to events
 using schemas
ImportXml method (XmlMap) 2nd
in scope (references)
InactiveListBorderVisible (Workbook)
InchesToPoints method (Application)
IncrementBrightness property (PictureFormat)
IncrementContrast property (PictureFormat)
IncrementLeft method (Shape)
IncrementRotation method (Shape)
IncrementTop method (Shape)
indenting blocks of code
index argument
indexes
 array
 collection
 pivot cache
infinite recursion
informational display dialog boxes
inline exception handling
InnerDetail (PivotTable)
Input # function
InputBox function (Visual Basic)
InputBox method (Application) 2nd 3rd
Insert method
 Columns and Rows collections
 Range collection
inserting cells, options for
insertions, animating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insertions, animating
InsideHeight property
 PlotArea object
 UserForm object
InsideLeft property (PlotArea)
InsideTop property (PlotArea)
InsideWidth property
 PlotArea object
 UserForm object
installation programs, creating
Installed property
 AddIn object
 setting to False before deleting add-ins
InstallManifest method (XmlNamespaces)
instance classes (.NET)
Instancing property 2nd
instantiation of classes
Instr function 2nd 3rd
Int function
IntegralHeight property
 ListBox control
 TextBox and RefEdit controls
integrating features and testing their interaction
integration tests
Intellisense
interaction with users, Visual Basic
Interactive property (Application) 2nd
interactive web page
Intercept property (Trendline)
InterceptIsAuto property (Trendline)
interface, isolating from business logic
Interior property
 ChartArea object
 Range object
International method (Application)
Internet Explorer, XML validation/XSL transformation viewer
Intersect method (Application)
intrinsic functions
Introduction property (MsoEnvelope)
InvalidData property (ListRow)
InvertIfNegative property (Series)
Is operator
IsAddin (Workbook)
IsArray function
IsCalculated (PivotField)
IsConnected property (PivotCache)
IsDate function
IsEmpty function 2nd
IsError function
IsExportable property (XmlMap) 2nd
IsInPlace (Workbook)
IsMemberProperty (PivotField)
IsMissing function 2nd
IsNull function
IsNumeric function
IsObject function
isolating the interface from the business logic
IsPercent (ListDataFormat)
IsPriorityDropped (CommandBarControl)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Item method
 collections
 ListObjects
 Range object
Item property (collections)
Item property (MsoEnvelope)
Items method (collections)
Iteration (Application)
IXMLDOMNodeList, online information 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Japanese phonetic text
Join function
Justify method (Range)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

KeepChangeHistory method (Workbook)
KeepScrollBarsVisible property (UserForm)
KernedPairs property (TextEffectFormat)
key assignments
keyboard
 accelerator and shortcut keys
 access to dialog box controls
 shortcuts, starting/stopping code in Excel
keys, sending to an application
keywords
 advanced Visual Basic keywords
 Visual Basic arrays
 Visual Basic declarations
 Visual Basic, working with types
Keywords property
 AddIn object
 Workbook object
Kill function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Label object
LabelRange method (PivotField)
labels
 adding to charts
 adding with shapes
 data labels, applying to chart
 DataLabels and DataLabel objects
 formatting in charts
 identifying x-, y-, and z-axes of a 3-D chart
LanguageSettings (Application)
LargeButtons property
 Application object
 CommandBars object
LargeChange property (ScrollBar)
LargeScroll method (Window)
late binding
LayoutBlankLine (PivotField)
LayoutEffect property (Control)
LayoutForm property (PivotField)
LayoutPageBreak (PivotField)
LayoutSubtotalLocation (PivotField)
LCase function
lcid property (ListDataFormat)
LeaderLines method (Series)
LeaderLines object
Left function
Left function (Application)
Left property
LeftFooter method (PageSetup)
LeftFooterPicture method (PageSetup)
LeftHeader method (PageSetup)
LeftHeaderPicture method (PageSetup)
LeftMargin property (PageSetup)
Legend method (Chart)
Legend object
LegendEntries collection
LegendEntries property (Legend)
LegendEntry object
LegendKey object
LegendKey property (LegendEntry)
legends, chart
 key, showing
 trendlines and
Len function
length of file in bytes
length of strings
Length property, CalloutFormat object
Let, Get, and Set procedures
LibraryPath method (Application)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LibraryPath method (Application)
LibraryPath property (Application)
lifetime
 procedures
 variables
Like operator 2nd 3rd
line in text datafile
Line Input #
Line property (Shape)
Line3DGroup property (Chart)
linear path of recorded code
LineCount property
 ComboBox control
 TextBox and RefEdit controls
linefeeds
LineFormat object
LineGroups property (Chart)
LinkCell property, linking cells to controls
linked objects 2nd
 creating dynamically
LinkedCell property
 OLEObject object
LinkFormat object
LinkFormat property (Shape)
LinkInfo method (Workbook)
linking
 comments
 embedded controls to values entered in cells
 hyperlinks
 objects created by other applications
 to a location on a worksheet
 to range in another workbook
 workbook to a workspace
links
 breaking in workbooks
 changing source in workbook
 external, saving values with workbook
 opening source document from
 to Help from Excel menu items
 updating
 updating in workbook
 updating values before saving web page
LinkSources method (Workbook)
List method (ComboBox)
List property (CommandBarComboBox)
ListBox object
ListChangesOnNewSheet (Workbook)
ListColumn object
ListColumns collection
ListCount property
 ComboBox object
 CommandBarComboBox
ListDataFormat method (ListColumn)
ListDataFormat object
 report on data format of each column
 setting read-only properties
ListFillRange method (OLEObject)
ListFormulas method (PivotTable)
ListHeaderCount (CommandBarComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListIndex property
 ComboBox
 CommandBarComboBox
ListNames method
ListObject object
 members
 Refresh method
 SharePointURL property
 Unlink method
 Unlist method
 UpdateChanges method
ListObjects collection
 Add method 2nd
 Item method
 members
ListRow object
ListRows collection
ListRows property (ComboBox)
lists 2nd
 advantages over AutoFilter
 borders around
 converting a range to
 creating from a range
 creating in code
 creating new automatic list
 custom list items, returning
 extending formatting and formulas to new data
 getting XML map from
 index of custom list
 linked to XML data through XML map, refreshing
 main limitation of using
 objects for
 objects for data entry, filtering, sorting, and sharing data
 of lists, avoiding in XML maps
 refreshing and updating
 removing custom list
 resolving conflicts
 shared
 authorization and authentication for
 inserting into other worksheets 2nd
 sharing
 supported data types
 unlinking, unlisting, or deleting
 viewing custom lists
Lists Web Service
 adding attachments to a list
 authentication and authorization
 deleting attachments
 deleting SharePoint list
 error messages, getting more detail in
 getting attachments
 members
 online resources
 performing queries
ListStyle property (ComboBox)
ListWidth property (ComboBox)
LoadPictures (DefaultWebOptions)
LoadSettings method (XmlDataBinding) 2nd
Loc function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

local scope
 constants
 object variables
 variables
LocalConnection property (PivotCache)
locale ID for list column
locale settings
locales, number formatting for 2nd 3rd
Location method
 Chart object
 PageBreak objects
LocationOfComponents (WebOptions)
Lock...Unlock functions
LockAspectRation property (Shape)
Locked property
 Range object
 Scenario object
 Shape object
LOF function
logic errors
long filenames, using when saving web pages
looping
loops 2nd
 exiting
 in Visual Basic programs
 infinite recursion
 using conditional statements with
lower bound of an array
LSet function
LTrim function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Macintosh
 FileFind object
 mailers for workbooks
 path separator
 publisher for a chart
 sending workbook as email message
 versions of Excel
 with PowerTalk mail
 workbook, attaching as reply
MacroOptions method (Application)
macros
 assigning to run when key is pressed
 help files displayed for
 information on calls
 preserving in workbooks saved as XML
 preventing a user from running any
 recording
 running
 security and
 security levels
 security settings
 security warning, getting rid of
 security, setting
 shared workbooks
mail
 opening next unread message
 sending from Excel 2nd
 sending from within Excel
MailEnvelope property
MailEnvelope property (Chart or Worksheet)
Mailer method (Workbook)
mailers for workbooks (Macintosh)
MailItem object
 members
MailLogoff method (Application)
MailLogon method (Application)
MailSession method (Application)
MailSystem method (Application)
mailto: protocol
MaintainConnection (PivotCache)
MaintainConnection property (QueryTable)
MajorGridlines method (Axis)
MajorTickMark property (Axis)
MajorUnit property (Axis)
MajorUnitIsAuto property (Axis)
MajorUnitScale property (Axis)
MakeConnection method (PivotCache)
manual page breaks 2nd
manual testing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

manual testing
ManualUpdate (PivotTable)
Map method (XPath)
MAPI mail sessions
 creating new
 ending
MapPaperSize (Application)
MarginBottom property (TextFrame)
MarginLeft property (TextFrame)
MarginRight property (TextFrame)
MarginTop property (TextFrame)
MarkerBackgroundColor (Series)
MarkerBackgroundColorIndex (Series)
MarkerForegroundColor (Series)
MarkerForegroundColorIndex (Series)
MarkerSize property (Series)
MarkerStyle property (Series)
Mask property (CommandBarButton)
MatchEntry property (ComboBox)
MatchFound property (ComboBox)
matching patterns of characters
[list], matching single character in list
[!list], matching single character not in list
MatchRequired property (ComboBox)
math
 functions derived from intrinsic Visual Basic functions
 Visual Basic functions
Max property (ScrollBar, SpinButton)
MaxChange (Application)
MaxCharacters property (ListDataFormat)
Maximum method (RecentFiles)
MaximumScale property (Axis)
MaximumScaleIsAuto property (Axis)
MaxIterations (Application)
MaxLength property (ComboBox)
MaxNumber property (ListDataFormat)
MaxRecords property (QueryDef)
MDX method (PivotTable)
Me keyword (Visual Basic), active object and
members, object
 Application
 common
 Activate method
 adding/deleting objects through collections
 Application
 Creator
 listed by category
 names and values
 PrintOut and PrintPreview methods
 size and position, changing
 common to most collections
 events
 global
 Global object
 grouping of related members
 WorksheetFunction object
memory leaks
MemoryUsed method (PivotCache)
menu items (Excel), links to Help
MenuAnimationStyle (CommandBars)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MenuAnimationStyle (CommandBars)
menus
 adding item for add-in
 adding, objects used for
 changes to
 context menus, building
 changing context menus
 creating new menus
 restoring context menus
 creating using toolbars
 Excel 4.0, displaying
 right-clicking to display properties
 top-level
 assigning accelerator and shortcut keys
 changing existing menus
 creating on Excel menu bar
 saving and distributing
 top-level, creating in code
 changing existing menus
 removing on close
 resetting existing menus
 types in Excel
Merge method, Range object
MergeArea method (Range)
MergeCells property (Range)
MergeLabels (PivotTable)
MergeWorkbook method (Workbook)
Message property (RoutingSlip)
methods
 adding
 collections
 COM applications, searching for
 controlling charts
 inclusion of arguments in recorded code
 object member
 web query
MHTML (Multipurpose Internet Mail Extension) format
Microsoft Access, automation from Visual Basic
Microsoft Developer's Network
Microsoft Exchange server, posting workbook to
Microsoft Forms object library
 events
 PrintForm method
Microsoft Graph, automation from Visual Basic
Microsoft HTML Help Workshop
Microsoft Internet Explorer, automation from Visual Basic
Microsoft Management Console (MMC)
Microsoft Office
 online information
 ProgIDs of common objects
 programming applications form Excel
 VBA help files
 Web Services Toolkit
 online information
 using
Microsoft Office applications, activating
Microsoft Office Resource Kit 2nd
Microsoft Office XML Editor (MsoXmlEd.Exe)
Microsoft Outlook
 activating to read mail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 activating to read mail
 automatically deleting mail after sending
 automation from Visual Basic
 object library
 required for use of MailItem
 warning about automated mail from Excel
Microsoft PowerPoint, automation from Visual Basic
Microsoft XML object library
Microsoft XML Parser (msxml4.dll)
Mid function 2nd
Min property (ScrollBar, SpinButton)
MinimumScale property (Axis)
MinimumScaleIsAuto property (Axis)
MinNumber property (ListDataFormat)
MinorGridlines method (Axis)
MinorTickMark property (Axis)
MinorUnit property (Axis)
MinorUnitIsAuto property (Axis)
MinorUnitScale property (Axis)
Minute function
MissingItemsLimit (PivotCache)
misspelling errors, avoiding with careful typing
misspellings in Visual Basic
 variable names
mistakes, fixing
MkDir function 2nd
MMC (Microsoft Management Console)
Mod operator
modal forms
Module objects, Me keyword, inability to use in
module-level scope
 constants
 object variables
 variables 2nd
modules
 classes versus
 creating
 in Visual Basic programs
 objects in
 properties
 static nature of
Month function
MouseIcon property (UserForm)
MousePointer property (UserForm)
Move method
 CommandBarControl object
 Controls collection
 Sheets collection
 Worksheet object
MoveAfterReturn (Application)
MoveAfterReturnDirection (Application)
MoveFirst method (Recordset)
MoveLast method (Recordset)
MoveNext method (Recordset)
MovePrevious method (Recordset)
MsgBox function (Visual Basic)
MsgBox, displaying code results
mso-application processing instruction 2nd
 replacing with xml-stylesheet processing instruction
MsoEnvelope object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsoEnvelope object
MsoXmlEd.Exe
MSXML 4.0 Documentation
Multidimensional Expression (MDX) query
MultiLine property (TextBox and RefEdit)
MultiPage object
Multipurpose Internet Mail Extension HTML (MHTML) format
MultiRow property (MultiPage)
MultiSelect property (ListBox)
MultiUserEditing property (Workbook) 2nd
MXXMLWriter, online information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Name function 2nd
Name property 2nd 3rd
 Command
 CommandBar object
 Document object
 objects having Name and Caption properties
 Parameter object
 RecentFile object
 Trendline object
named arguments for procedures
named ranges 2nd
NameIsAuto property (Trendline)
NameLocal property (CommandBar)
names
 variables and procedures
 Visual Basic rules for
 characters forbidden in
 words forbidden in
Names method
 Application object
 Workbook object
Namespace property (XmlSchema)
namespaces, XML
 qualified by Microsoft Office schemas
 root node in XML map
 XmlNamespace and XmlNamespaces objects
.NET
 approaches to using with Excel
 creating components for Excel
 creating Excel applications in
 debugging Excel .NET applications
 displaying forms
 distributing Excel .NET applications
 migrating to .NET
 responding to events
 setting .NET security policies
 debugging components
 distributing .NET components
 online resources for information
 responding to errors and events from .NET objects
 software requirements for developing with Excel
 using components in Excel
 using Excel as a component in
 adding reference to Excel object library
 check reference to ensure use of Excel PIA
 distributing applications
 precautions for working with Excel
 responding to Excel events
 responding to Excel exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 responding to Excel exceptions
 working with Excel objects
.NET Framework
.NET Framework, garbage collection
NetworkTemplatesPath property (Application) 2nd
New keyword
 creating object variable
New Workbook task pane
NewSeries method (SeriesCollection) 2nd
newsgroups, xvi
 help on objects
 programmers in Excel community
NewWindow method (Workbook)
NewWorkbook (Application)
Next method
 Comment object
 Range object
Next statement
NextLetter method (Application)
no-touch deployment
Node object
nodes in XML spreadsheet
 namespaces
nonmodally showing a form
NormalizedHeight property (TextEffectFormat)
Not operator
Notepad, editing XML spreadsheet
notes
 icon indicating
 NoteText method (Range)
Nothing
 Find method returning
 setting object variable to
Nothing type, testing if variable is
Now function
NullString property (PivotTable) 2nd
number format, removing from workbook
NumberFormat method (Range)
NumberFormat property
 DataLabels collection
 PivotField object
 TickLabels object
NumberFormatLinked property
 DataLabel object
 TickLabels object
NumberFormatLocal property
 DataLabel object
 Range object
 TickLabels object
numbers
 converting to strings representing bit values
 size limit in Visual Basic
Numbers enumeration
NumericScale property
 Field object
 Parameter object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Object Browser 2nd 3rd
object hierarchy, events "bubbling up" through
object model
Object property
 Control object
 OLEObject object 2nd 3rd
Object type
 length of
objects 2nd
 .NET
 .NET, responding to errors and events from
 active object, Me keyword and
 categorization by task
 charting and formatting charts
 charts
 COM applications, getting help on
 copying with cells
 creating from classes
 creating from Excel
 creating your own
 adding methods
 classes
 collections
 destroying objects
 enumerations
 exposing objects
 modules
 modules versus classes
 properties
 raising events
 data lists and XML
 database
 destroying 2nd
 dialog boxes and forms
 embedded
 events
 listing of objects and events
 responding to
 Excel, listed by product version
 Excel, working with in .NET
 from other applications, using in Excel
 getting Excel objects
 global shortcut members
 getting from collections
 Global
 linked
 lists and importing/exporting XML
 members
 common

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 common
 events
 global
 grouping of related
objects (continued)
 object-oriented features unavailable in Excel
 properties
 top-level Excel objects
 UsedObjects collection 2nd
 With statement
 workbook
 workbook files, working with
 Worksheet and Range
 WorksheetFunction
 worksheets and ranges of cells, working with
ODBC database queries
ODBCErrors collection (Application)
ODBCTimeout (Application)
Office Anti Virus API
Office Assistant character
Office Toolkit Loader add-in (otkloadr.dll)
Office Web Services Toolkit
Offset method (Range)
Offset property (TickLabels)
OLAP (online analytical processing)
 cell background color, pivot tables
 creating data cubes 2nd
 field names
 displaying empty columns and rows in pivot tables
 MDX query for pivot table
 totals annotation, pivot tables
OLAP property (PivotCache)
OldHeight property (Control)
OldLeft property (Control)
OldTop property (Control)
OldWidth property (Control)
OLE (Object Linking and Embedding)
 inserting objects into graphics
 making OLE objects troublefree
 OLE automation
 omitting embedded objects in worksheet printout
 preserving OLE objects in workbooks saved as XML
 updating linked objects in shapes
OLEDBErrors collection
OLEFormat object, members
OLEMenuGroup (CommandBarPopup)
OLEObject object
 Activate method
 members
OLEObjects collection
 Add method 2nd
 members
 using in code
OLEObjects method (Worksheet)
OLEType method (OLEObject)
OLEUsage proprty (CommandBarControl)
On Error Goto 0 statement
On Error Resume Next statement 2nd
On Error statement 2nd 3rd
On property (Filter)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On property (Filter)
OnAction method (OLEObject)
OnAction property (CommandBarControl)
one-dimensional arrays
OneColorGradient method (ChartFillFormat)
OnKey method (Application)
OnRepeat method (Application)
OnTime method (Application)
OnUndo method (Application)
OnWindow method (Application)
Open dialog box
Open function
Open method
 Connection object
 opening workbook from shared workspace
 RecentFile object
 Record object
 Workbooks collection 2nd 3rd
OpenDatabase method (DbEngine)
OpenDatabase method (Workbooks)
OpenLinks (Workbook)
OpenRecordset method
 Database object
 QueryDef object
OpenText method (Workbooks) 2nd 3rd
OpenXML method (Workbooks)
operating systems
 OperatingSystem method (Application)
 testing application for
 text file imported into query table
 thousands and decimal separators
Operator property (Filter)
operators
 Boolean operators, Visual Basic
 mathematical, in Visual Basic
 order of precedence
 overloading
 string operators, Visual Basic
 Visual Basic comparison operators
OptimizeCache (PivotCache)
Option Compare function 2nd
Option Explicit (Visual Basic)
 using to write bug-free code
Optional keyword
OptionButton object
options, controlling for Excel
Or operator
Order property (PageSetup)
Order property, Trendline object
OrganizationName method (Application)
OrganizeInFolder (WebOptions)
Orientation property 2nd
 PageSetup object
 PivotField object
 ScrollBar and SpinButton
 TextFrame object
OriginalValue property (Field)
Outline object
 members
Outline property (Worksheet) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outline property (Worksheet) 2nd 3rd
outlines
 display in windows
 working with
overflow
overflow errors, data type conversions
overflows, FetchedRowOverflow, QueryTable
Overlap property (ChartGroup)
overloading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

page breaks
 automatic, controlling
 HpageBreak and HPageBreaks, members
 manual
 VPageBreak and VPageBreaks, members
Page object
PageBreak method, Range
PageFieldOrder (PivotTable)
PageFields method (PivotTable)
PageFieldWrapCount (PivotTable)
PageRange method (PivotTable)
PageRangeCells (PivotTable)
Pages property (MultiPage)
PageSettings object
 controlling automatic page breaks
 properties controlling print settings
 restoring print settings defaults
PageSetup method (Worksheet)
PageSetup object
 members
 using with Graphic object
Pane object
 Activate method
 members
Panes collection
 members
 Window object
panes, locking to prevent scrolling
PaperSize property (PageSetup)
ParamArray arguments
Parameter object
 members
 working with
Parameter object (ADO)
 members
Parameter property (CommandBarControl)
Parameters collection
 members
Parameters collection (ADO), members
Parameters property (QueryTable)
parameters, arguments versus
Parent property
ParentField method (PivotField)
ParentGroup property (Shape)
Password property
Password property (Workbook)
PasswordChar (TextBox, RefEdit)
PasswordEncryption properties
PasswordEncryptionAlgorithm (Workbook)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PasswordEncryptionAlgorithm (Workbook)
PasswordEncryptionFileProperties (Workbook)
PasswordEncryptionKeyLength (Workbook)
PasswordEncryptionProvider (Workbook)
passwords
 Excel password security
 for workbooks
 protecting workbooks
 setting in code
 workbook
 Workbook members for
Paste method
 SeriesCollection
 UserForm object
 Worksheet object
PasteFace method (CommandBarButton)
PasteSpecial method
 Range collection
 Worksheet object
pasting cells, options for
Path property
 AddIn object
 Application object 2nd
 AutoRecover object
 RecentFile object
 Workbook object
paths
 available for Excel objects
 default, for files
 to user Addins folder
 to user Templates folder
 XLSTART directory
PathSeparator method (Application)
Pattern property (ChartFillFormat)
Patterned method (ChartFillFormat)
patterns of characters, matching
pausing Excel
percentages
Period property (Trendline)
Permission collection
Permission property (UserPermission)
PermissionFromPolicy (Permission)
permissions
 file permissions in Windows XP
 limiting file access with
 programming
 setting for workbook
 Windows security
personal information, removing from workbook
PersonalViewListSettings (Workbook)
PersonalViewPrintSettings (Workbook)
Perspective property (Chart)
PIAs for Excel
PickUp method (Shape) 2nd
Picture property
 CommandBarButton object
 CommandButton object
 Image object
PictureAlignment property (Image)
PictureAlignment property (UserForm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PictureAlignment property (UserForm)
PictureFormat object
 members
PictureFormat property (Shape) 2nd 3rd
PicturePosition property (CommandButton)
pictures, inserting as shapes
PictureSizeMode property
 Image object
 UserForm object
PictureTiling property (Image)
PictureTiling property (UserForm)
PictureType property (Series)
PictureUnit property (Series)
Pie3DGroup property (Chart)
PieGroups method (Chart)
pivot cache
 creating pivot table from
pivot tables
 allowing on worksheet
 changing layout
 changing totals
 charting data
 charts
 connecting to external data source
 creating
 general steps
 in Excel
 creating OLAP cubes
 field lists, display in workbook
 formatting
 GenerateGetPivotData command
 organizing, sorting, and filtering data
 programming
 connecting to external data
 creating in code
 OLAP data cubes
 refreshing
PivotCache method (PivotTable)
PivotCache object
 CommandText property
 Connection property
 CreatePivotTable method
 creating and using for pivot table
 members
PivotCache property (PivotTable)
PivotCaches collection
 Add method 2nd
 members
 Workbook object
PivotCaches method (Workbook)
PivotCell object
PivotField object
 members
PivotFields collection
 members
PivotFields method (PivotTable)
PivotFormula object
PivotFormulas collection
PivotFormulas method (PivotTable)
PivotItem object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PivotItem object
PivotItemList collection
PivotItems collection
PivotItems method (PivotField)
PivotLayout method (Chart)
PivotLayout object
PivotSelect method (PivotTable)
PivotSelection (PivotTable)
PivotSelectionStandard (PivotTable)
PivotTable object
 AddFields method
 CubeFields property
 members
 PivotCache property
 PivotFormulas property
PivotTable Options dialog
PivotTables collection
 Add method
 members
PivotTableSelection (Application)
PivotTableWizard (Workbook)
PivotTableWizard method 2nd 3rd
Placement property
 OLEObject object
 Shape object
platform tests 2nd
PlotArea method (Chart)
PlotArea object
 members
PlotBy property (Chart)
PlotOrder property (Series)
PlotVisibleOnly property (Chart)
Point object
points
 converting centimeters to
 converting inches to
 Range object for specified coordinates
Points collection
Points property (Series) 2nd
PointsToScreenPixelsX method (Window)
PointsToScreenPixelsY method (Window)
PolicyDescription (Permission)
PolicyName (Permission)
pop-up menus
Position property
 CommandBar object
 DataLabel object
 Legend object
 PivotField object
position, properties controlling
Post method (Workbook)
PostText property (QueryTable)
PowerPoint
 automating from Excel
 Diagram object
 exception handling
precedence, Visual Basic mathematical operators
Precedents method (Range)
Precision property (Parameter)
PrecisionAsDisplayed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrecisionAsDisplayed
Prefix property (XmlNamespace)
Presentation object (PowerPoint)
PresentGradient method (ChartFillFormat)
PresentGradientType property (ChartFillFormat)
PresentTexture property (ChartFillFormat)
PresentTextured method (ChartFillFormat)
PreserveColumnFilter (XmlMap)
PreserveFormatting (PivotTable)
PreserveFormatting (QueryTable) 2nd
PreserveNumberFormatting (XmlMap)
PresetDrop method (CalloutFormat)
PresetShape property (TextEffectFormat)
PresetTextEffect property (TextEffectFormat)
PrettyPrint function 2nd 3rd
previewing
Previous method
 Comment object
 Range object
PreviousSelections method (Application)
Print # function
PrintArea property (PageSetup)
PrintComments method (PageSetup)
PrintErrors method (PageSetup)
PrintForm method
PrintForm method (UserForm)
PrintGridlines property (PageSetup)
PrintHeadings property (PageSetup)
printing
 BeforePrint event, Workbook
 common object members for
 filtering ranges
 getting/setting printer settings
 page breaks, controlling
 paper size
 turning off for embedded objects in worksheet
 views, information stored in
PrintNotes property (PageSetup)
PrintObject property
PrintOut method
 MailItem
 objects with
 Range collection
 Workbook object
PrintPreview method
 objects with
 Range collection
 viewing effects of changes
 Workbook object
PrintQuality method (PageSetup)
PrintSettings property (CustomView)
PrintTitleColumns (PageSetup)
PrintTitleRows (PageSetup)
PrintTitles (PivotTable)
Priority (CommandBarControl)
priority of email
Private scope, procedures
procedures
 arguments
 arguments and results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 arguments and results
 breaking tasks into
 called from modules
 displaying cursor position
 End statement
 events
 in Visual Basic programs
 named arguments
 naming
 optional arguments
 properties
 return values
 scope
 types of
 unit testing
 using in formulas
ProductCode method (Application)
Profile Template Wizard
progIDs (programmatic identifiers)
 common Office objects
 common, reference listing
 embedded objects
 Forms 2.0 controls
 returning for OLEObject
programmers in Excel community, communicating with
programming Excel, reasons for
programs, Visual Basic
Project window (Visual Basic Editor)
projects
 Visual Basic, scope levels within
PromptForSummaryInfo (Application)
PromptString property (Parameter)
properties 2nd
 active object
 Caption
 collections, custom versus built-in
 complex
 controlling charts
 defined in classes
 getting collections with
 Left, Top, Height, and Width
 object
 object member
 objects having Name and Caption properties
 publishing possible settings in enumerations
 read-only 2nd
 setting for add-ins
 setting for code-only add-ins
 setting for forms
 settings for tabbed controls
 Value
 Visible
 web query
 write-once
 write-only
Property procedures 2nd 3rd
 accessor functions
PropertyOrder (PivotField)
PropertyParentField (PivotField)
ProportionalThumb property (ScrollBar)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ProportionalThumb property (ScrollBar)
Protect method
 Chart object
 Workbook object
 Worksheet object 2nd
ProtectContents property (Worksheet) 2nd
ProtectData property (Chart)
ProtectDrawingObjects (Worksheet) 2nd
ProtectGoalSeek (Chart)
Protection object
Protection property
 CommandBar object
 Worksheet object
Protection property (Worksheet)
ProtectionMode (Worksheet) 2nd
ProtectScenarios (Worksheet) 2nd
ProtectSelection (Chart)
ProtectSharing method (Workbook)
ProtectStructure property (Workbook)
ProtectWindows property (Workbook)
proxy classes
Public scope, procedures
Publish method
 ListObject object 2nd
 PublishObjects
publisher for a chart
publishing to the Web
 ActiveX controls
 from code
 from Excel
 options
 republishing
PublishObject object
PublishObjects collection
 Add method 2nd
 members
PublishObjects method (Workbook)
PurgeChangeHistoryNow (Workbook)
Put function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queries, performing through Lists Web Service
Query element, online information
query file (.iqy), web query saved to
Query Wizard
 creating connection to database
QueryDef object (DAO)
QueryDefs collection (DAO)
QueryOptions element, online information
QueryTable object
 asynchronous events, handling for web queries
 events
 members
 members for web queries
 Parameters collection
 Refreshing property
 web queries
 working with
QueryTables collection
 members
 members for web queries
QueryTables method (Worksheet)
QueryType (QueryTable) 2nd
QueryType property (PivotCache)
quick watches (Visual Basic)
QuickRead procedure (example), unit testing
QuickWrite procedure (example), unit testing
Quit method (Application) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

R1C1 reference style, selecting
R1C1 style, formula for cell or range
RadarAxisLabels (ChartGroup)
RaiseEvent method
random access files 2nd
random numbers (Rnd function)
Range collection
 members (key), reference summary
 members, listed
Range method
 Application object
 Hyperlink object
 ListRow object
 Shape object
 Worksheet object 2nd
Range object
 Activate method
 AddComment method 2nd
 AdvancedFilter method
 AutoFilter method 2nd
 cells, working with
 joining two or more into single
 PrintOut and PrintPreview methods
 returning for cell calling current user-defined function
 returning in code, different methods
Range object (continued)
 setting value
 VisibleRange (Window)
Range property
 AllowEditRange object
 returning a Range object
RangeFromPoint method (Window)
ranges
 converting addresses to add hyperlinks
 converting to lists
 creating list from a range
 filtering
 getting with Application.InputBox
 getting XML map from
 intersection of
 of cells in a worksheet, working with
 performing general tasks on
 query results
 security protections for
 UsedRange property
 using named range instead of address
 working with
 changing appearance of text in cells
 finding and replacing text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 finding and replacing text
 objects for
 using named ranges
RangeSelection method (Window)
read-only properties 2nd
read-only, opening file as
ReadingOrder property
 TickLabels object
ReadOnly property
 ListDataFormat object
 Workbook object
ReadOnlyRecommended (Workbook)
ReadReceiptRequested (MailItem)
Ready property (Application)
real-time data (RTD) object
real-time data (RTD) servers
rebuilding dependencies in all workbooks
RecentFile object
RecentFiles collection
RecentFiles property (Application) 2nd
RecheckSmartTags (Workbook)
Recipients property
 MailItem object
 Message object
 RoutingSlip object
Record object (ADO)
 members
record, represented by a line in text datafile
RecordCount method (PivotCache)
recorded code
 changing
 limitations of
recording code
RecordMacro method (Application)
RecordRelative property (Application)
Recordset object 2nd
 ADO, members
 DAO, members
Recordset property
 PivotCache object
 QueryTable object
Recordsets collection (DAO)
RecordType property (Record)
recovery (automatic), of files
recursion, infinite
RedoAction method (UserForm)
RefEdit object
reference counting
reference types
 arrays
references
 circular
 resolving
 conversions
 getting with Application object
 members that return references
 object
 persisting at another level of scope
 remote, updates in workbook
ReferenceStyle method (Application)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReferenceStyle method (Application)
Refresh method
 Chart object
 ListObject object
 PivotCache object
 QueryTable object 2nd
 web queries
 XmlDataBinding object 2nd
RefreshAll method, Workbook object
RefreshDate (PivotTable)
Refreshing property (QueryTable) 2nd 3rd
RefreshName (PivotTable)
RefreshOnChange (Parameter)
RefreshOnFileOpen
 PivotCache object
 QueryTable object 2nd
RefreshPeriod property
 PivotCache object
 QueryTable
 QueryTable object 2nd
RefreshStyle property
RefreshStyle property (QueryTable) 2nd
RefreshTable method (PivotTable)
RegisteredFunctions method (Application)
RegisterXLL method (Application)
regression tests
Regroup method (ShapeRange)
RejectAllChanges method (Workbook) 2nd 3rd
relative references
 conversions
 using when recording
ReleaseFocus method (CommandBars)
ReloadAs method (Workbook)
RelyOnCSS (WebOptions)
RelyOnVML (WebOptions)
Remove method
 collections
 Control object
 UserPermission object
RemoveAll method (Permission)
RemoveDocument method
RemoveItem method
 ComboBox object
 CommandBarComboBox object
RemovePersonalInformation (Workbook)
RemoveUser method (Workbook)
Repaint method (UserForm)
Repeat item, Edit menu
Repeat method (Application)
Repeating property (XPath)
Replace function
Replace method
 Range collection
ReplaceFormat method (Application)
ReplacementList method (AutoCorrect)
Reply method (Workbook)
ReplyAll method (Workbook)
ReplyWithChanges method (Workbook)
Representational State Transfer (REST)
 online information about

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 online information about
RequestPermissionURL (Permission)
Require Variable Declaration (Visual Basic)
Required property (ListDataFormat)
requirements for an application
 design versus
 hardware issues
 questions answered by
RerouteConnections method (Shape) 2nd
reserved words
Reset function
Reset method
 CommandBar object
 CommandBarControl object
 restoring context menus
 RoutingSlip object
ResetColors method (Workbook)
ResetPositionsSideBySide method (Window)
ResetTimer method
 PivotCache object
 QueryTable object 2nd
Resize method (Range)
resizing windows
resolving conflicts
 changes in linked files
 lists 2nd
ResultRange property (QueryTable) 2nd
results
 checking in Visual Basic
 viewing
return values
 procedures
ReturnWhenDone property (RoutingSlip)
ReversePlotOrder property (Axis)
review of a workbook, ending
RevisionNumber (Workbook)
Right function
right-to-left display of Excel
right-to-left languages
RightAngleAxes property (Chart)
RightFooter method (PageSetup)
RightFooterPicture (PageSetup)
RightHeader property (PageSetup)
RightHeaderPicture method (PageSetup)
RightMargin property (PageSetup)
RmDir function 2nd
Rnd function
RobustConnect (PivotCache)
role-based security
RollbackTrans method (Connection)
RootElementName (XmlMap)
RootElementNamespace
 XmlDataBinding object
 XmlMap
RotatedChars property (TextEffectFormat)
rotating shapes
Rotation property (Chart)
Rotation property (Shape)
RoundedCorners property (ChartObject)
Route method (Workbook) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Route method (Workbook) 2nd 3rd
Routed property (Workbook)
routing slip for workbook
routing workbooks
RoutingSlip method (Workbook)
RoutingSlip object
 members
Row method (Range)
RowColSettings (CustomView)
RowDifference method (Range)
RowFields method (PivotTable)
RowGrand property (PivotTable)
RowHeight method (Range)
RowIndex property (CommandBar)
RowNumbers property (QueryTable)
RowRange method (PivotTable)
Rows collection
 Delete method
 Insert method
Rows method
 Application object
 Range collection
 Worksheet object 2nd
Rows property
RowSource property (Control)
RSet function
RTD (real-time data) servers
RTD method (Application)
RTrim function 2nd
Run method (Application)
RunAutoMacros (Workbook)
runtime errors
 fixing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

samples for this book, xvi
 organization of
Save File As dialog box
Save method
 MailItem object
 Workbook object 2nd
SaveAs method
 MailItem object
 security and
 Workbook object 2nd 3rd
SaveAsODC method (PivotCache)
SaveAsXMLData method (Workbook)
SaveCopyAs method (Workbook)
Saved property
Saved property (Workbook)
SaveData property (PivotTable)
SaveDataSourceDefinition (XmlMap)
SaveHiddenData (DefaultWebOptions)
SaveLinkValues (Workbook)
SaveNewWebPagesAsWebArchives (DefaultWebOptions)
SavePassword property
 PivotCache object
 QueryTable object
SaveSentMessageFolder (MailItem)
SaveWorkspace method (Application) 2nd
SAX (Simple API for XML)
SAXXMLReader, online information
ScaleType property (Axis)
scaling charts
Scenario object
Scenarios collection
 members
Scenarios method (Worksheet) 2nd
Schema object, Xml method
Schemas collection
Schemas method (XmlMap) 2nd
schemas, XML
 adding XML maps
 creating
 elements not supported when importing/exporting XML
 Office 2003
 viewing for XML map
 XmlSchema and XmlSchemas
scope
 constants
 global variables
 local variables
 module-level variables
 object references, in and out of scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 object references, in and out of scope
 object variables
 procedures
 restricting for variables
 variables
screens, full-screen mode
ScreenSize (WebOptions)
ScreenTip method (Hyperlink)
ScreenUpdating property (Application) 2nd
Scroll method (UserForm)
ScrollArea method (Worksheet)
ScrollBar object
scrollbars
 display in forms
 displaying in workbooks
 horizontal, displaying in window
 vertical scrollbar, displaying
ScrollBars property
 TextBox and RefEdit controls
 UserForm object
ScrollColumn method (Window)
ScrollHeight property (UserForm)
scrolling
 LargeScroll (Window)
 panes
 SmallScroll (Window)
 synchronizing for windows in side-by-side comparison
ScrollIntoView method (Window)
ScrollLeft property (UserForm)
ScrollRow method (Window)
ScrollTop property (UserForm)
ScrollWidth property (UserForm)
ScrollWorkbookTabs method (Window)
search and replace
 CellFormat object used during
 text in a range
Second function
SecondaryPlot property (Point)
SecondPlotSize property (ChartGroup)
security
 ActiveX controls
 setting
 AllowEditRange and AllowEditRanges
 Anti-Virus API
 Chart protection members
 common tasks
 connecting to external data source
 digital signatures
 digitally signing code files
 distributing settings
 certificates
 Excel password security
 expiration, digital signatures
 layers
 macro settings
 macros and
 macros, setting
 objects used for
 online sources for information and products
 password-protecting and encrypting workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 password-protecting and encrypting workbooks
 passwords in code
 Permission and UserPermission objects
 programming permissions
 programming protection
 programming with passwords and encryption
 protecting code from changes
 protecting items in workbook
 Protection object
 setting policies in .NET
 setting workbook permissions
 threats Excel protects against
 UserAccess and UserAccessList
 Windows security
 file permissions in XP
 viewing users and groups in XP
 Workbook protection members
 Worksheet protection members
Seek function
Select Case statements
 testing error code number
Select event, charts
Select method
 Chart object
 find-and-replace opertions in a range
 Range collection
Select statements
SelectAll method (Shapes)
SelectedItem property (MultiPage)
SelectedSheets method (Window)
Selection
 avoiding for bug-free code
Selection object, ShapeRange method
Selection property (Application)
SelectionMargin property (ComboBox)
SelectionMode (PivotTable)
self-describing files
SelfCert.exe
SelLength property (ComboBox)
SelStart property (ComboBox)
SelText property (ComboBox)
semantic errors
Send method (MailItem)
SenderEmailAddress (MailItem)
SenderName property (MailItem)
SendFaxOverInternet (Workbook)
SendForReview method (Workbook) 2nd
SendKeys function 2nd
 predefined codes
SendKeys method (Application)
SendMail method
 Workbook object
SendMailer method (Workbook)
Sensitivity property (MailItem)
separator bars (menus)
Separator property (DataLabel)
sequential access files 2nd
Series object
 ChartType property
 DataLabels property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DataLabels property
 error bars, adding to chart
 LeaderLines property
 members
 Points property
 Trendlines property
SeriesCollection
 members
SeriesCollection property (Chart) 2nd
SeriesLines method (ChartGroup)
SeriesLines object
SeriesLines property (ChartGroup)
server, configuring to provide digital certificates
ServerBased property (PivotField)
Set, Let, and Get procedures
SetAttr function
SetBackgroundPicture (Worksheet)
SetBackgroundPicture method (Chart)
SetDefaultChart method (Application)
SetDefaultTabOrder (UserForm)
SetEncryptionOptions method
SetFocus method
 Control object
SetLinkOnData (Workbook)
SetParam (Parameter)
SetPasswordEncryptionOptions (Workbook)
Sets
SetShapesDefaultProperties (Shape)
SetSourceData method (Chart)
SetThreeDFormat method (ThreeDFormat)
SetValue method (XPath) 2nd
Shadow property
 ChartArea object
 OLEObject object
 Shape object
ShadowFormat object
shadowing
 constants
 variables
Shape object
 categories of, determining with Type property
 getting OLEObject from
 GroupItems property
 members
 Shadow property
 TextEffect property
 TextFrame property 2nd
 ThreeD property
Shape property
 Comment object
 Hyperlink object
ShapeNode object
ShapeNodes collection
ShapeRange object
 Group method 2nd
 members
 tasks on groups of shapes
shapes
 categories of Shape objects
 connecting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 connecting
 drawing simple
 grouping
 inserting pictures as
 preserving in workbooks saved as XML
 simple
Shapes collection
 Add methods
 AddOLEObject method
 AddTextEffect method
 members
Shapes property (Worksheet)
SharedWorkspace (Workbook) 2nd
SharePoint server
 authentication and authorization
 data format of list column
SharePoint Services
 authentication and authorization
 hosting providers
 Lists Web Service
 requirement for sharing lists
SharePoint, online sources for information
SharePointFormula (ListColumn)
SharePointURL property (ListObject) 2nd
Sheet method (PublishObject)
SheetActivate event
Sheets collection
 members
 PrintOut and PrintPreview methods
Sheets method
 Application object
 objects returned by
 Workbook object
SheetsInNewWorkbook (Application)
Shell function 2nd 3rd
Shell method
shortcut keys
 assigning to menu item
 display in tool tips for command bar controls
shortcuts (global members)
ShortcutText property (CommandBarButton)
Show method
 CommandBar object
 CustomView object
 displaying a form
 Range object
 Scenario object
 switching between views
ShowAllData method (Worksheet)
ShowAllItems property (PivotField)
ShowBubbleSize property (DataLabel)
ShowCategoryName property (DataLabel)
ShowCellBackgroundFromOLAP (PivotTable)
ShowChartTipNames (Application)
ShowChartTipValues (Application)
ShowConflictHistory (Workbook)
ShowDataForm method
ShowDependents method (Range)
ShowDetail method (Range)
ShowDropButtonWhen (ComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowDropButtonWhen (ComboBox)
ShowErrors method (Range)
ShowImportExportValidationErrors (XmlMap)
ShowInFieldList property (CubeField)
ShowLegendKey property (DataLabel)
ShowLevels method (Outline)
ShowNegativeBubbles (ChartGroup)
ShowPageMultipleItemLabel (PivotTable)
ShowPages method (PivotTable)
ShowPercentage property (DataLabel)
ShowPivotTableFieldList (Workbook)
ShowPopup method (CommandBar) 2nd
ShowPrecedents method (Range)
ShowSeriesName property (DataLabel)
ShowStartupDialog (Application)
ShowToolTips (Application)
ShowTotals property (ListObject)
ShowValue property (DataLabel)
ShowWindow property (Chart)
ShowWindowsInTaskbar (Application)
ShrinkToFit property (Range)
simple shapes
single-instance classes
size
 of a variable
 of numbers in Visual Basic
 properties controlling
Size property (Parameter)
SizeRepresents property (ChartGroup)
SizeWithWindow property (Chart)
Sleep function 2nd
SmallChange property (ScrollBar)
SmallScroll method (Window)
Smart Document SDK, online information
Smart Tags, rechecking
SmartDocument method (Workbook)
SmartTagOptions method (Workbook)
SmartTagRecognizers method (Application)
Smooth property (Series)
SOAP 2nd
software, task-specific
Solid method (ChartFillFormat)
solution
SortArray function
sorting
 array, using StrComp function
 Sort method (Range)
sounds, enabling
Source argument
Source method (PublishObject)
Source property (Record)
SourceConnectionFile (PivotCache)
SourceData method (PivotTable)
SourceDataFile (PivotCache)
SourceName property
 OLEObject object
 PivotField object
SourceRange property (Parameter)
SourceType property
 PivotCache object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PivotCache object
 PublishObject
SourceURI (XmlDataBinding)
Space function 2nd
Spc function
Speak method (Speech) 2nd
SpeakCellOnEnter (Speech)
SpecialCells method (Range)
SpecialEffect property (UserForm)
Speech method (Application)
Speech object 2nd
 members
spelling errors in Visual Basic
spelling, checking 2nd 3rd
SpellingOptions method (Application)
SpellingOptions object, members
SpinButton control, using to get value of a cell
SpinButton object
Split function 2nd
Split property (Window)
 closing panes
SplitColumn method (Window)
SplitHorizontal method (Window)
SplitRow method (Window)
SplitType property (ChartGroup)
SplitValue property (ChartGroup)
SplitVertical method (Window)
Sql property (PivotCache)
SQL property (QueryDef)
SQL Server database, creating pivot table from
ss namespace prefix
stack
StandardFont method (Application)
StandardFontSize (Application)
StandardFormula property (PivotField)
StandardHeight method (Worksheet)
StandardWidth method (Worksheet)
starting and stopping code in Excel
startup
 AltStartupPath (Application)
 setting startup paths
StartupPath (Application)
StartupPath property (Application)
State property
 CommandBarButton object
 Record object
statements
 conditional
 in Visual Basic programs
 failure to terminate
 listing of completing items and arguments in Visual Basic
 loops
static classes or code modules (.NET)
Static procedures
Static variables
 destroying
status bar, displaying
Status property (RoutingSlip)
StatusBar (Application)
Step keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step keyword
StoreLicenses (Permission)
StrComp function 2nd
StrConv function 2nd
String class (.NET)
String function 2nd
String type, length of
strings
 changing
 comparing
 converting
 repeating characters
 Visual Basic string functions
 Visual Basic string operators
 Visual Basic String variables
 working with, using DLL functions
structures
Style property
 ComboBox object
 CommandBarButton object
 CommandBarComboBox object
 MultiPage object
 Range object
Styles property (Workbook)
stylesheets, XML transformation
Sub procedures
 results
SubAddress method (Hyperlink)
Subject property
 AddIn object
 MailItem Object
 RoutingSlip object
 Workbook object
SubtotalHiddenPageItems (PivotTable)
SubtotalName property (PivotField)
Subtotals property (PivotField)
SummaryColumn method (Outline)
SummaryRow method (Outline)
SurfaceGroup method (Chart)
Switch statements
SyncScrollingSideBySide property (Windows)
syntax errors
 fixing
system settings, viewing
System.GC.Collect, calling in .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Tab function
tab order (dialog boxes)
tabbed dialogs, creating
 showing the dialog
 tabbed control property settings
TabFixedHeight property (MultiPage)
TabFixedWidth property (MultiPage)
TabIndex property (Control)
TabKeyBehavior (TextBox and RefEdit)
Table method (Range)
TableRange1 method (PivotTable)
TableRange2 method (PivotTable)
tables
TablesOnlyFromHTML (QueryTable)
TableStyle property (PivotTable)
TabOrientation property (MultiPage)
TabRatio method (Window)
tabs (sheet), displaying at bottom of workbook
Tabs property (TabStrip)
TabStop property (Control)
TabStrip object
Tag property
 CommandBarControl object
 Control object
TakeFocusOnClick (CommandButton)
TargetBrowser (WebOptions)
task-specific dialog boxes
task-specific piece of software
tasks (Visual Basic)
 Boolean tests
 breaking into procedures
 checking results
 comparing bits
 controlling the compiler
 getting dates and times
 interacting with users
 managing files
 math
 obsolete or obscure functions
 overview
 reading and writing files
 random access
 sequential access
 running other applications
 working with text
 changing strings
 comparing strings
 converting strings
 strings of repeated characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strings of repeated characters
template (.xlt) file, Visual Basic code in
TemplateRemoveExtData (Workbook)
templates 2nd
 advantages/disadvantages of applications
 installing
 loading, predefined folders for
 removing
TemplatesPath method (Application)
TemplatesPath property (Application)
TestMathFunctions unit test (example) 2nd 3rd
tests for applications, types of
 platform tests
text
 adding to shapes
 diagram nodes, inability to get or set from code
 finding and replacing in a range
 formatting and changing in cells
 shape in HTML format worksheet or chart
 WordArt object
 working with in Visual Basic
 changing strings
 comparing strings
 converting strings
 strings of repeated characters
text box, drawing
text files
 opening and interpreting as workbook
 opening as Excel workbooks
 opening in Excel and reading data from
Text Import Wizard
Text method (Comment)
Text property
 ComboBox object
 CommandBarComboBox object
 Range collection
 TextEffectFormat object
TextAlign property (ComboBox)
TextBox object
TextColumn property (ComboBox)
TextEffect property (Shape) 2nd
TextEffectFormat object
TextFileColumnDataTypes (QueryTable)
TextFileCommaDelimiter (QueryTable)
TextFileConsecutiveDelimiter (QueryTable)
TextFileDecimalSeparator (QueryTable)
TextFileFixedColumnWidths (QueryTable)
TextFileOtherDelimiter (QueryTable)
TextFileParseType (QueryTable)
TextFilePlatform (QueryTable)
TextFilePromptOnRefresh (QueryTable)
TextFileSemicolonDelimiter (QueryTable)
TextFileSpaceDelimiter (QueryTable)
TextFileTabDelimiter (QueryTable)
TextFileTextQualifier (QueryTable)
TextFileThousandsSeparator (QueryTable)
TextFileTrailingMinusNumbers (QueryTable)
TextFrame object
TextFrame property (Shape) 2nd 3rd 4th 5th
TextLength property (ComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextLength property (ComboBox)
TextToColumns method (Range)
TextToDisplay (Hyperlink)
TextureName property (ChartFillFormat)
textures, chart background 2nd
TextureType property (ChartFillFormat)
ThisCell (Application)
ThisWorkbook (Application)
thousands separators
 operator system settings
 text file imported into query table
ThousandsSeparator (Application)
ThreeD property (Shape)
ThreeDFormat object
tick marks (on axes)
TickLabelPosition property (Axis)
TickLabels method (Axis)
TickLabels object
TickLabelSpacing property (Axis)
TickMarkSpacing property (Axis)
Time function
Time method (AutoRecover)
Timer function
TimeSerial function
timestamps
 adding to digital signatures
 comparing signature expiration to
TimeValue function
TintAndShade property (ColorFormat)
Title method
 PublishObject object
 Workbook object
Title property
 Add-In object
 AllowEditRange object
titles
 adding to charts
 formatting in charts
To property (MailItem)
Toggle Grid button
ToggleButton object
ToggleFormsDesign method (Workbook)
ToggleVerticalText method (TextEffectFormat)
tool tips
 controls
 dislaying when mouse is over toolbar button
 display for functions
 displaying pop-up for command-bar controls
 setting or returning for hyperlink
 showing items on chart as
toolbars
 adding for add-in
 adding, objects used for
 creating in code
 adding edit controls
 deleting toolbars
 creating in Excel
 creating menus with
 Forms
 large buttons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 large buttons
 saving and distributing
TooltipText property (CommandBarControl)
Top property
 Application object
top-level menus
 assigning accelerator and shortcut keys
 changing existing menus
 adding built-in commands
 adding custom commands
 creating in code
 changing existing menus
 removing on close
 resetting existing menus
 creating on Excel menu bar
 saving and distributing
top-level objects
TopIndex property (ComboBox)
TopLeftCell method (ChartObject)
TopMargin property (PageSetup)
TotalLevels method (PivotField)
TotalsAnnotation (PivotTable)
TotalsCalculation (ListColumn)
Tracking property (TextEffectFormat)
TrackStatus property (RoutingSlip)
transactions
 beginning
 committing
 rolling back
transformations, XML 2nd
 creating XSLT for XML spreadsheet
 empty worksheets removed from XML spreadsheet
 external XML files into XML spreadsheets
 from the command line
 in code
 viewer for Internet Explorer
 with processing instructions
TransformNode method (DOMDocument)
TransitionEffect property (Page)
TransitionPeriod property (Page)
Transparency property (FillFormat)
TransparencyColor property (PictureFormat)
TransparentBackground (PictureFormat)
TreeviewControl property (CubeField)
Trendline object
Trendlines collection
Trendlines property (Series) 2nd
trigonometric functions (Visual Basic)
Trim function 2nd
TripleState property (CheckBox, ToggleButton)
trusted code, creating
truth, testing for
Try...Catch...End Try construct (.NET)
two-dimensional arrays
TwoColorGradient method (ChartFillFormat)
Type method
 Hyperlink object
 PageBreak objects
 Parameter object
 Worksheet object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Worksheet object
Type property
 Axis object
 CalloutFormat object
 CommandBar object
 CommandBarControl object
 ConnectorFormat object
 context-menu CommandBar objects
 ListDataFormat object
 Shape object 2nd
 toolbar CommandBar objects
Type statement
type-declaration character
@ type-declaration character
type-safe programming
TypeName function 2nd
TypeOf function 2nd
, types of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UCase function
UnderlyingValue (Field)
Undo item, Edit menu
Undo method (Application)
UndoAction method (UserForm)
Ungroup method (Shape)
Union method (Application)
unit testing
 conventions when writing tests
 procedures
unit tests
Unlink method (ListObject) 2nd
Unlist method (ListObject) 2nd
UnMerge method (Range)
Unprotect method
 AllowEditRange object
 Chart object
 Workbook object
 Worksheet object
Unprotect method (Worksheet)
UnprotectSharing method (Workbook)
Until statement, using in Do...Loop
UpBars method (ChartGroup)
UpBars object
Update method
 OLEObject object
 PivotTable object
UpdateChanges method (ListObject) 2nd
UpdateFromFile (Workbook)
UpdateLink method (Workbook)
UpdateLinks method (Workbook)
UpdateLinksOnSave (DefaultWebOptions)
UpdateList method (Lists Web Service)
UpdateListItems method (Lists Web Service)
UpdateRemoteReferences (Workbook)
updating web queries periodically
upper bound of an array
Uri property (XmlNamespace)
URL for help file
UsableWidth method (Application)
UsedObjects collection
 displaying all objects loaded in Excel
 members
UsedObjects method (Application)
UsedRange method (Worksheet) 2nd
UsedRange property 2nd
 returning Range object
UseLocalConnection (PivotCache)
UseLongFileNames (WebOptions)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UseLongFileNames (WebOptions)
UsePicture method (ChartFillFormat)
user actions, locking out
user interaction, Visual Basic
user-defined functions (UDFs)
 help files displayed for
 help on
 marking for recalculation
user-defined types
UserAccess object
UserAccessList collection
UserControl property (Application)
UserForm object
 Controls property
UserId property (UserPermission)
UserLibraryPath method (Application)
UserName method (Application)
UserPermission object
users
 access control in Windows
 organization name for
 viewing in Windows XP
Users property (AllowEditRange)
UserStatus property (Workbook) 2nd
UserTextured method (ChartFillFormat)
UseSheets method
UseStandardHeight (Range)
UseStandardWidth (Range)
UseSystemSeparators (Application)
UseWorksheets method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

VacatedStyle (PivotTable)
Val function 2nd
validation
 advanced, for data form
 rules, adding to data forms
 sample settings for data form
Value method
 Parameter object
 Range object
Value property
 Field object
 objects having
 Parameter object
 PivotTable object
 XmlNamespaces object
 XPath object
value types
Values method (Scenario)
Values property (Series)
variable-length strings
variables
 arrays
 conversions
 declarations
 data types
 declaring all to avoid bugs
 declaring, benefits of
 in Visual Basic programs
 misspelled names
 multiple, referring to single-instance class
 names
 naming
 objects
 recorded code and
 replacing literal references with
 scope and lifetime
 size of
 user-defined types
Variant type
 arrays
 length of
Variants, ParamArray arguments
VarType function
VaryByCategories (ChartGroup)
VBA code, converting to .NET
VBA help files
VBASigned (Workbook)
vbBinaryCompare function
VBE (Visual Basic Editor)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBE (Visual Basic Editor)
VBE method (Application)
VbMsgBoxResult enumeration
VbMsgBoxStyle settings
VBProject method (Workbook)
VBScript
 installer for add-ins
 installing add-in
 installing template
 removing add-in
 web site for further information
Vector Markup Language (VML)
Verb method (OLEObject)
Verio, hosting provider for SharePoint Services
Verisign
 timestamp service 2nd
Version method
 Application object
 PivotTable object
Version property (Connection)
versions, Excel, xvi 2nd
 Excel objects listed by version
 Macintosh compatibility
 summary of version changes
vertical scrollbar, displaying
VerticalAlignment method (Range)
VerticalAlignment property (TextFrame)
VerticalAlignment property (title)
VerticalFlip property (Shape)
VerticalScrollBarSide (UserForm)
Vertices property (Shape)
View method (Window)
ViewCalculatedMembers (PivotTable)
ViewFields element, online information
viewing results from Excel code
views
 custom views of a workbook
 CustomView and CustomViews members
 personal view, workbooks
 saving and displaying
viruses
 Anti-Virus API
 Office Anti Virus API
Visible property
 Application object
 setting for class
VisibleFields method (PivotTable)
VisibleItems method (PivotField)
VisibleRange method (Window)
visual add-ins 2nd
 adding menu item for
 adding toolbar
 responding to application events
Visual Basic
 classes and modules
 code, storage in Excel
 conditional statements
 constants and enumerations
 DLL functions converted to
 errors, fixing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 errors, fixing
 exceptions
 expressions
 fixing compile-time errors
 fixing runtime errors
 fixing syntax errors
 help file, specifying in project properties
 loops
 names, rules for
 parts of a program
 procedures
 arguments and results
 events
 named arguments
 optional arguments
 properties
 scope for procedures
 Standard and Professional Editions
 tasks
 Boolean tests
 checking results
 comparing bits
 controlling the compiler
 getting dates and times
 interacting with users
 managing files
 math
 obsolete or obscure functions
 overview
 reading and writing files
 running other applications
 working with text
 transforming XML from
 variables
 arrays
 conversions
 declaring
 objects
 scope and lifetime
 user-defined types
 watches
Visual Basic Editor
 add-in, selecting from Available Refrences
 creating object from a class
 testing a form
Visual Basic Editor (VBE) 2nd
Visual Basic for Applications (VBA), printing and publishing objects from
Visual Basic Help for Excel
VisualTotals (PivotTable)
VML (Vector Markup Language)
void functions
Volatile method (Application)
VPageBreak object
 Delete method
 members
VPageBreaks collection
 members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Wait method (Application)
Walls method (Chart)
Walls object
WallsAndGridlines2D (Chart)
watch points (Visual Basic)
watches (Visual Basic)
Watches method (Application)
web address for help file
web address, workbook opened from
web pages, workbooks saved as
web queries
 limitations of
 performing
 cleaning up unneeded query tables
 destination for imported data
 formatting options
 modifying a query
 periodic updates
 trapping QueryTable events
 QueryTable and QueryTables members
Web Service Description Language (WSDL)
web services 2nd
 calling asynchronously
 locating on the Internet
 reformatting XML results for Excel
 using through XML
 Web Services Toolkit
Web Services Toolkit 2nd 3rd
 online information
 using
WebConsecutiveDelimitersAsOne (QueryTable)
WebDisableDateRecognition (QueryTable)
WebDisableRedirections (QueryTable)
WebFormatting property (QueryTable)
WebOptions method (Workbook)
WebOptions object, members
WebPreFormattedTextToColumns (QueryTable)
WebSelectionType (QueryTable)
WebSelectionType property
WebSingleBlockTextImport (QueryTable)
WebTables property
WebTables property (QueryTable)
Weekday function
While statement, using in Do...Loop
While...Wend statement
whitespace, removing from strings
width
 default column width
 setting for columns in range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting for columns in range
 usable area of Excel
Width # function
Width method (Application)
Width property
Win32 API
WIN32API.TXT file
Window object
 Activate methods 2nd
 Close method
 closing and maximizing child windows
 members 2nd
 PrintOut and PrintPreview methods
windows
 panes
 setting procedure to run upon activation
Windows API
 functions
 using handles with
Windows collection
 Arrange method
 CompareSideBySideWith method
 members
 SyncScrollingSideBySide property
Windows Common Object Model (COM)
Windows method
 Application object
 Workbook object
Windows NT and earlier, install locations for applications
Windows Server 2003
Windows task bar
Windows Task Manager
WindowsForPens (Application)
WindowState method (Application)
WindowState method (Window)
WindowState property (Application)
WinExec function
WinZip self-extractor
 URL for downloads
WinZip tool
 URL for downloads
With keyword
WithEvents (Workbook variable)
WithEvents keyword
 declaring .NET object with 2nd
Word
 automation from Visual Basic
 Diagram object
 exceptions, anticipating from Excel
 integrating with Excel
 object library, referencing from Excel
 programming from Excel
 running from Excel
Word 2003, opening XML spreadsheet
Word document
 embedded on the active worksheet
 getting object from embedded document
WordArt embedded shapes 2nd 3rd
 text
WordWrap property (TextBox, RefEdit)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WordWrap property (TextBox, RefEdit)
workbook (.xls) file
 Visual Basic code in
Workbook object
 Activate method
 BeforePrint event
 CanCheckOut property
 Charts property
 CustomViews property
 events 2nd
 declaring in any class
 SheetSelectionChange
 FollowHyperlink method
 getting PublishObjects collection from
 members (key), reference summary
 members, listed
 object and event lists
 password and encryption members
 PivotCache collection
 PrintOut and PrintPreview methods
 protection members
 returning for file containing current procedure
 RoutingSlip property
 Save method
 SaveAs method
 SharedWorkspace property
 SheetActivate event
 XmlNamespaces method
workbooks
 accessing and responding to events
 advantages/disadvantages of applications
 applications, writing
 bringing data into
 closing
 creating hardcopy and online output from
 creating test workbook for add-in
 installing
 loading, predefined folders for
 objects
 opening text files as
 opening XML files
 opening, saving, and controlling files
 adding workbook with templates
 opening as read-only or with passwords
 opening text files
 recalculating before saving
 saving before quitting
 security
 encryption
 password protection and encryption
 protecting items
 sending and receiving
workbooks (continued)
 sending as email attachment
 mail items
 routing
 SendForReview method
 setting permissions
 shared, programming with
 changing sharing options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 changing sharing options
 determining if shared
 removing sharing
 resolving conflicts
 restricting user access
 sharing
 creating shared workbook
 creating shared workspace
 shared workspaces
Workbooks collection
 Add method 2nd
 Application object
 getting from Application object, Workbooks property
 members, listed
 Open method
 OpenDatabase method
 OpenText method
 OpenXML method
Workbooks method (Application)
worksheet menu bar
 adding top-level menu
Worksheet method (Range)
Worksheet object 2nd
 Activate event
 Activate method
 AutoFilter member
 AutoFilter property
 Cells, Range, UsedRange, Columns, or Rows method
 ChartObjects property
 Comments collection
 CreatePivotTableWizard method
 events
 Hyperlinks method
 MailEnvelope property
 members (key), reference summary
 members, listed
 object and event lists
 OLEObjects method
 Outline property 2nd
 PageSettings property
 PageSetup property
 PrintOut and PrintPreview methods
 protection members
 QuertyTables property
 Scenarios method
 SelectionChange event
 ShowAllData method
WorksheetFunction method (Application)
WorksheetFunction object
 members
worksheets
 adding comments, hyperlinks and OLE objects to
 changes on, listing
 controls on worksheets versus controls on forms
 creating graphics, objects used for
 embedding a control
 events
 number automatically included in new workbooks
 print settings
 repeating formatting and charting in recorded code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 repeating formatting and charting in recorded code
 security
 security protections
 sending as email using MsoEnvelope
 using controls on
 working with, objects for 2nd
Worksheets collection 2nd 3rd
 Add method
 Application object
 members, listed
 PrintOut and PrintPreview methods
 UseWorksheets method
Worksheets method
 objects returned by
 Workbook object 2nd
workspace files (.xlw)
 saving current settings
 shared workspaces versus
workspaces
 shared 2nd
 creating
 linking workbook to
 opening workbooks from
 removing sharing from workbooks
WrapText property (Range)
Write # function
write-once properties 2nd
write-only properties
 creating
WritePassword (Workbook)
WriteReserved (Workbook)
WriteReservedBy (Workbook)
WScript.Shell
 URL for
WSDL (Web Service Description Language)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XLL, loading and registering
XLSTART directory, path to
XML
 custom schemas, support of
 exporting workbook to XML datafile
 importing/exporting, objects for
 language standards
 lists stored as
 loading file into workbook
 objects
 for importing/exporting
 online resources
 opening files in Excel
 overview
 reformatting for Excel
 responding to XML events
 saving workbooks as
 data omitted by Excel
 spreadsheet format
 transforming from command line
 transforming in code
 transforming with processing instructions
 transforming XML files into spreadsheets
 transforming XML spreadsheets
 XSLT, creating for XML spreadsheets
 Source task pane, displaying
 support by Excel 2003
 supporting standards for
 using web services through
XML maps
 approaches to using
 avoiding denormalized data
 creating XML schema
 including all nodes in exports
 XML schema elements not supported
 exporting data
 items omitted by Excel
 getting from list or range
 limitations of
 programming with
 adding or deleting XML maps
 exporting/importing XML
 refresh, change, or clear data binding
 viewing the schema
 using schemas
XML method (XmlSchema)
xml-stylesheet processing instruction
XmlDataBinding object
 LoadSettings method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LoadSettings method
 Refresh method
 RootElementNamespace method
XmlImport method (Workbook)
XmlImportXml method (Workbook)
XmlMap object
 Delete method
 Export method
 Import method
 IsExportable property
 members
 Schemas method
 tasks performed in code
XMLMap property (ListObject)
XmlMaps collection
 Add method
 members
XMLMaps method (Workbook)
XMLNamespace object
XmlNamespaces collection
XmlNamespaces method (Workbook) 2nd
XMLNodeList arguments
XmlSchema object, members
XmlSchemas collection, members
XOR operator
XPath
XPath method (ListColumn)
XPath object
 members
XSD (XML Schema Definition)
 online tutorial
XSL
 online resources
xsl:processing-instruction element
XSLT
 creating for XML spreadsheet
 online tutorial
XSLT (continued)
 replacing mso-application instruction with xml-stylesheet instruction
 transformations performed by
XValues property (Series)
XYGroups method (Chart)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Year function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero values, displaying in cells
Zoom property
 PageSetup object
 UserForm object
 Window object
ZOrder property
 Control object
 OLEObject object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

aborting recalculation
absolute references
 conversions
 using when recording
AbsolutePostion property (Recordset)
accelerator keys
 assigning to menu item
 controls on dialog boxes
Accent property (CalloutFormat)
AcceptAllChanges method (Workbook) 2nd
AcceptLabelsInFormulas (Workbook)
accessor functions 2nd
ActionControl property (CommandBars)
actions, recorded
Activate event, Worksheet and Chart
Activate method 2nd 3rd
 Range collection
 Window object
 Workbook object
 Worksheet object
ActivateMicrosoftApp (Application)
ActivateMicrosoftApp method
ActivateNext method (Window)
ActivatePrevious method (Window)
activation, overreliance on
active object
 Activate methods
 Me keyword and
 properties returning
ActiveChart method (Workbook)
ActiveCommand property (Recordset)
ActiveConnection method
 Command object
 Record object
 Recordset object
ActiveControl property (UserForm)
ActiveMenuBar property (CommandBars)
ActivePrinter (Application)
ActiveSheet method (Workbook)
ActiveSheet property
ActiveSheet, avoiding for bug-free code
ActiveX
 libraries on your computer, listed
 objects for use by Visual Basic
ActiveX automation
ActiveX controls
 adding interactivity to web page
 requirements for
 security, setting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 security, setting
ActualSize property (Field)
ad hoc testing
AdaptiveMenus property (CommandBars)
Add method
 AddIns collection
 AllowEditRanges collection
 CalculatedFields collection
 CalculatedItems collection
 CalculatedMembers collection
 Chart object
 ChartObjects collection
 Charts collection
 charing pivot table
 collections 2nd 3rd 4th
 CommandBarControls collection
 CommandBars collection 2nd
 Controls collection
 CustomViews collection 2nd
 Hyperlinks collection 2nd
 ListObjects collection 2nd
 ListRows collection
 OLEObjects
 OLEObjects collection
 PageBreaks
 Parameters collection
 Permission collection
 PivotCaches collection 2nd
 PivotTables collection
 PublishObjects collection 2nd
 QueryTables collection 2nd
 RecentFiles collection
 SeriesCollection 2nd
 Trendlines collection
 UserAccessList collection
 Workbooks collection 2nd 3rd
 Worksheets
 Worksheets collection 2nd
 XmlMaps collection 2nd
Add methods (Shapes)
add-in (.xla) file, Visual Basic code in
add-ins 2nd
 advantages/disadvantages of applications
 building
 code-only, creating
 changing the add-in
 programming tips
 properties
 saving add-ins
 testing
 using from code
 COM
 distributing
 for Excel
 installing
 library path
 loading, predefined folders for
 path to user Addins folder
 removing
 setting properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting properties
 signing
 types of
 visual
 adding menu item
 adding toolbar
 responding to application events
 workbooks as
 working with in code
AddAttachment method (Lists Web Service) 2nd
AddCallout method (Shapes)
AddChartAutoFormat (Application)
AddComment method (Range) 2nd 3rd
AddConnector method
AddConnector method (Shapes)
AddCurve method (Shapes)
AddCustomList (Application)
AddDataField method (PivotTable) 2nd
AddFields method (PivotTable) 2nd
AddIn object
 loading, unloading, and listing add-ins
 members
AddIndent property (Range)
AddIns collection
 loading, unloading, and listing add-ins
 members
AddIns folder
AddItem method
 ComboBox object
 CommandBarComboBox object
AddLabel method (Shapes)
AddLine method (Shapes)
AddList method (Lists Web Service)
AddMemberPropertyField (CubeField)
AddNew method (Recordset) 2nd
AddNodes method (FreeFormBuilder)
AddOLEObject method (Shapes)
AddPageItem (PivotField)
AddPicture method
AddPicture method (Shapes)
AddPolyline method (Shapes)
AddReplacement method (AutoCorrect)
Address method
 Hyperlink object
 Range object
Address property
addresses
 in code, inability of Excel to update
 targetAddress for hyperlink
AddSet method (CubeFields)
AddShape method (Shapes) 2nd
AddTextbox method (Shapes)
AddTextEffect method (Shapes) 2nd
AddToFavorites method
 Hyperlink object
 Workbook object
AdjustColumnWidth (QueryTable) 2nd
AdjustColumnWidth (XmlMap)
Adjustments object
Adjustments property (Shape)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adjustments property (Shape)
ADO (ActiveX Data Objects)
 creating a recordset
 objects and members
 Command object
 Connection object
 Field and Fields
 Parameter and Parameters
 Record object
 Recordset object
 tasks for
 working with
ADO.NET, data access through
ADOConnection (PivotCache)
AdvancedFilter method (Range)
AfterRefresh event 2nd
AlertBeforeOverwriting (Application)
Align method (ShapeRange)
Alignment property
 TextEffectFormat object
 TickLabels object
AllowDeletingColumns (Protection)
AllowDeletingRows (Protection)
AllowEdit property
 Range object
 UserAccess object
AllowEditRange object
AllowEditRanges (Protection)
AllowEditRanges collection
AllowFillIn property (ListDataFormat)
AllowFiltering (Protection)
AllowFormattingCells (Protection)
AllowFormattingColumns (Protection)
AllowFormattingRows (Protection)
AllowInsertingColumns (Protection)
AllowInsertingHyperlinks (Protection)
AllowPNG property (WebOptions)
AllowSorting (Protection)
AllowUsingPivotTables (Protection)
AlternativeText property (Shape)
AltStartupPath (Application) 2nd
AlwaysSaveInDefaultEncoding (DefaultWebOptions)
Amazon Web Service 2nd
 calling its methods using its URL
 online information about
 XMLNodeList arguments
And operator
Angle property (CalloutFormat)
animations
 for insertions and deletions
 menus
ANSI character codes
API Viewer utility (APILOAD.EXE)
 getting declarations of DLL functions
AppActivate function
appearance, common object members for
AppendChunk method
 Field object
 Parameter object
AppendOnImport (XmlMap)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppendOnImport (XmlMap)
Application object 2nd
 CommandBars property
 EnableEvents property
 events
 Excel and Word
 Help method
 members (key), reference summary
 members, listed
 OperatingSystem method
 PowerPoint
 RecentFiles property
 SheetActivate event
 tasks
 controlling Excel options
 displaying dialogs
 getting references
 limiting user actions
 most common
 opening/closing windows
 quitting Excel
 setting startup paths
 viewing system settings
 Workbooks method
Application property
applications
 development process
 deployment
 design
 determining requirements
 documentation
 implementing and testing code
 integrating features and testing
 platform tests
 purpose of process
 types of
 relative advantages of each
Apply method (Shape)
ApplyCustomType method
 Chart object 2nd
 Series object
ApplyDataLabels method
 Chart object
 Series and Point objects
 Series object
ApplyPictToEnd property (Series)
ApplyPictToFront property (Series)
ApplyPictToSides property (Series)
ApplyPolicy (Permission)
Apptix, hosting provider for SharePoint Services
ArbitraryXMLSupportAvailable (Application)
Area3DGroup property (Chart)
AreaGroups property (Chart)
Areas method (Range)
arguments
 declared as a ParamArray
 distinguishing between input and results
 events
 for procedures
 listing by Visual Basic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 listing by Visual Basic
 named
 optional, for procedures
 parameters versus
 passed by reference
 passed by value
 passing by value in .NET
 returning procedure results
Arrange method (Windows)
Array class (.NET)
arrays
 bounds
 data type
 dynamic
 For...Next loops
 sorting
 Visual Basic keywords for
Asc function 2nd
AsktoUpdateLinks (Application)
assignment
 data type conversion during
Assistant (Application)
Attachments property (MailItem)
Author property
 AddIn object
 Comment object
 inability to set in comments from code
 Workbook object
Auto Complete
 .NET objects registered for COM
 enabled by references and explicit types
 for variables
 for words
Auto Recover, enabling in workbooks
AutoAttach property (CalloutFormat)
AutoCorrect method (Application)
AutoCorrect object
 members, listed
AutoFill method (Range)
AutoFilter method (Range) 2nd
AutoFilter object, members
AutoFilter property (Worksheet)
AutoFit method (Range)
AutoFormat method (Chart)
AutoFormatAsYouTypeReplaceHyperlinks
AutoLength property (CalloutFormat)
AutoLoad property (OLEObject)
automacros, running for workbook
AutoMargins property (TextFrame)
automatic syntax checking (Visual Basic)
automatic variables
 turning off in Visual Basic
automatic watches (Visual Basic)
AutomaticLength method (Callout)
AutomaticStyles property (Outline)
automation, OLE
AutomationSecurity (Application)
AutoOutline, creating
AutoPercentEntry (Application)
AutoRecover method (Application)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoRecover method (Application)
AutoRecover object, members
AutoRepublish property
AutoRepublish property (PublishObject)
AutoScaleFont property (ChartArea)
AutoScaling property (Chart)
AutoShapeType property
AutoShapeType property (Shape)
AutoShow method (PivotField)
AutoShowCount (PivotField)
AutoShowRange (PivotField)
AutoShowType (PivotField)
AutoSize property (TextFrame)
AutoSort method (PivotField)
AutoSortField (PivotField)
AutoSortOrder (PivotField)
AutoTab property (ComboBox)
AutoText property (DataLabel)
AutoUpdate property (OLEObject)
AutoUpdateFrequency (Workbook) 2nd
AutoUpdateSaveChanges (Workbook)
AutoWordSelect (ComboBox)
Axes collection
 returning an axis from
Axes method (Chart)
Axes property (Chart)
Axis object, members
AxisBetweenCategories property (Axis)
AxisGroup method (Axis)
AxisGroup property (Series)
AxisTitle method (Axis)
AxisTitle object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

BackColor property
 ChartFillFormat object
 FillFormat object
 UserForm object
background, formatting for charts
BackgroundQuery property
 PivotCache object
 QueryTable object 2nd 3rd
BackStyle property
backup copy of workbooks
Backward property (Trendline)
Bar3DGroup property (Chart)
BarGroups property (Chart)
BarShape property (Chart)
BaseField property (PivotField)
BaseItem property (PivotField)
BaseUnit property (Axis)
BaseUnitIsAuto property (Axis)
Batch element, online information
BCC property (MailItem)
Before events
BeforeDoubleClick event
BeforePrint event (Worksheet)
BeforeRefresh event 2nd
BeginConnect method (ConnectorFormat) 2nd
BeginConnected property (ConnectorFormat)
BeginConnectedShape (ConnectorFormat)
BeginConnectionSite (ConnectorFormat)
BeginDisconnect method (ConnectorFormat)
BeginGroup property (CommandBarControl)
BeginTrans method (Connection)
Bézier curve, drawing
binary access files 2nd
binding
bit flags 2nd
bit mask
bits, comparing
bitwise operations
BlackAndWhite property (PageSetup)
BlackWhiteMode property (Shape)
blocks of code, indenting
Body property (MailItem)
BOF property (Recordset) 2nd
Boolean expressions
Boolean tests, functions for
Border property (CalloutFormat)
BorderAround method (Range)
BorderColor property (UserForm)
Borders property (Range)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Borders property (Range)
BorderStyle property (UserForm)
BottomMargin (PageSetup)
BottomRightCell method
 ChartObject object
 OLEObject object
BoundColumn property (ComboBox)
bounds, array 2nd
BreakLink method (Workbook)
breakpoints
 setting for event procedures
 setting or removing in code
BreakSideBySide method (Windows)
Brightness property (PictureFormat)
BringToFront (OLEObject)
browsers
 running from Excel
 support of ActiveX controls
 TargetBrowser, WebOptions
BubbleScale property (ChartGroup)
bug-free code, writing
 good practices
Build (Application)
BuildFreeform method (Shapes)
BuiltIn property
 CommandBar object
 CommandBarControl object
BuiltinDocumentProperties (Workbook)
business logic, isolating from interface
Button control
 using on a worksheet
ByRef keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C language (DLLs)
CAcert (nonprofit certificate authority)
 URL
CacheIndex property (PivotTable)
Calculate method
 Application object
 Range collection
 Worksheet object
CalculateBeforeSave (Application)
CalculatedFields collection
 formulas from
 members
CalculatedFields method (PivotTable)
CalculatedItems (PivotField)
CalculatedItems collection
CalculatedMember object 2nd
CalculatedMembers (PivotTable)
CalculatedMembers collection
CalculateFull method (Application)
CalculateFullRebuild method (Application)
Calculation property
 Application object
 PivotField object
CalculationInterruptKey (Application)
CalculationState (Application)
CalculationVersion
 Application object
 Workbook object
Caller (Application)
Callout property (Shape)
CalloutFormat object, members
Cancel argument (Before events)
cancel key, enabling
Cancel method
 Connection object
 Record object
 Recordset object
Cancel property (Control)
CancelRefresh (QueryTable) 2nd
CancelUpdate method
 Fields collection
 Recordset object
CanCheckIn property (Workbook) 2nd
CanCheckOut property
 Workbook object
 Workbooks collection
CanPaste property (UserForm)
CanRedo property (UserForm)
CanUndo property (UserForm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CanUndo property (UserForm)
Caption property 2nd 3rd 4th 5th
 CommandBarControl object
 objects having
 PivotField object
 UserForm object
captions serving as titles or labels in charts
carriage-return and line-feed characters (Windows)
Cascading Style Sheets (CSS)
case-insensitive string comparisons
case-sensitive string comparisons
CategoryNames property (Axis)
CategoryType property (Axis)
CC property (MailItem)
CellDragAndDrop (Application)
CellFormat object
 used during search and replace
cells
 addresses
 comments in
 formatting and changing text
 linking to controls
 manipulating with Range objects
 working with on a worksheet
Cells method
 Application object
 Range collection
 Worksheet object 2nd
Cells property
 returning a range
CenterFooter (PageSetup)
CenterFooterPicture (PageSetup)
CenterHeader (PageSetup)
CenterHeaderPicture (PageSetup)
CenterHorizontally (PageSetup)
CenterVertically (PageSetup)
CentimetersToPoints (Application)
certificate authorities (CAs) 2nd
 nonprofit authority, CAcert
 timestamp service provided by
Certificate Manager (CertMgr.exe)
certificates
 distributing
ChangeFileAccess method (Workbook)
ChangeHistoryDuration (Workbook)
ChangeLink method (Workbook)
ChangePassword method (AllowEditRange)
ChangeScenario method (Scenarios)
ChangingCells method (Scenario)
character codes (ANSI)
Characters collection
 changing parts of a caption
 changing text in cells
 Text property
Characters method (Range)
Characters method (TextFrame)
Characters property (TextFrame)
characters, pattern-matching
chart menu bar
 adding top-level menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 adding top-level menu
Chart method (ChartObject)
Chart object
 Activate event
 Activate method
 Axes property
 ChartArea property
 ChartGroups property 2nd
 ChartObject object versus
 ChartObjects property
 ChartWizard method 2nd
 events
 Hyperlinks method
 MailEnvelope property
 members
 PageSettings property
 PageSetup property
 PrintOut and PrintPreview methods
 protection members
 SeriesCollection property
Chart property
ChartArea object
 Font object
 members
 methods to clear chart contents and formats
ChartArea property (Chart)
ChartColorFormat object
ChartFillFormat object
 members
ChartGroup object
 members
 series lines and bars, adding to chart
 SeriesLines property
ChartGroups collection
ChartGroups property (Chart) 2nd 3rd
charting
 adding titles and lables
 choosing chart type
 creating charts quickly
charting (continued)
 creating combo charts
 creating more complex charts
 embedding charts
 objects used for
 plotting a series
 repeating tasks for all worksheets in recorded code
 responding to chart events
ChartObject object
 Activate method
 members
ChartObjects collection 2nd
 members
ChartObjects property
 Chart object
 Chart or Worksheet objects
charts
 based on pivot cache, refreshing
 Chart objects
 creating from pivot tables
 formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 formatting
 changing backgrounds and fonts
 series lines and bars
 titles and labels
 trendlines
 formatting, objects used for
 preserving in workbooks saved as XML
 print settings
 removing custom chart type
 setting default type
 showing items as tool tips
Charts collection 2nd 3rd
 Add method
 charting pivot table
 Application object
 members
 PrintOut and PrintPreview methods
Charts property (Workbook) 2nd
ChartSize method (PageSetup)
ChartTitle object
ChartTitle property (Chart)
ChartType property 2nd
 Chart object
 Series object 2nd
ChartWizard method (Chart) 2nd
 changing existing charts
 reasons for not using
ChDir function 2nd
ChDrive function 2nd
CheckAbort (Application)
CheckBox object
CheckIfOfficeIsHTMLEditor (DefaultWebOptions)
CheckIn method (Workbook)
checking in files in shared workspace
checking out files in shared workspace
CheckOut method
 Workbook object
 Workbooks collection
CheckSpelling method
 Application object
 Range collection
 Worksheet object
ChildField method (PivotField)
ChildItems method (PivotField)
Choices property (ListDataFormat)
Chr function 2nd
circular references
 resolving
classes 2nd
 .NET 2nd
 creating
 multiple objects from single class
 creating objects from
 declaring WithEvents Workbook variable
 dynamic nature of
 events 2nd 3rd
 forms 2nd
 in Visual Basic programs
 modules versus
 properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 properties
 single-instance, for Excel sheets and workbooks
Clear method
 ChartArea object
 ComboBox object
 CommandBarComboBox object
 Controls collection
 Range object
 XPath object
ClearContents method
 ChartArea object
 Range object
ClearFormats method
 ChartArea object
 ErrorBars object
 PlotArea object
 Range object
 Series object
 Trendline object
ClearSettings (XmlDataBinding)
ClientHeight property (TabStrip)
ClientLeft property (TabStrip)
ClientTop property (TabStrip)
ClientWidth property (TabStrip)
Clipboard window, displaying
clipboard, reformatting XML data as HTML
ClipboardFormats (Application)
Close function
Close method
 MailItem object
 Window object
 Workbook object 2nd 3rd
 Workbooks collection
code
 Visual Basic, storage in Excel
 writing bug-free code
 good practices
code modules (.NET)
code-only add-ins
 creating
 changing the add-in
 programming tips
 properties
 saving add-ins
 testing
 using from code
CodeName (Workbook)
CodeName property (Chart)
collections 2nd
 .NET, index starting at zero
 adding or deleting objects
 common members
 creating
 custom, versus Excel built-in
 data type of objects in
 destroying by setting to Nothing
 getting objects from
 common collection members
 indexes
 methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 methods
 setting focus on member
 using (Messages example)
ColorFormat object
 background and foreground color
 members
Colors method (Workbook)
ColorType property (PictureFormat)
Column element
column headings, displaying
Column method
 ComboBox object
 Range object
Column3DGroup property (Chart)
ColumnCount property (ComboBox)
ColumnFields method (PivotTable)
ColumnGrand property (PivotTable)
ColumnGroups method (Chart)
ColumnHeads property (ComboBox)
ColumnRange method (PivotTable)
Columns collection
 Delete method
 Insert method
Columns method
 Application object
 Range collection
 Worksheet object 2nd
Columns property, returning Range object
ColumnWidth method (Range)
ColumnWidths property (ComboBox)
COM (Component Object Model)
COM (Component Object Model) 2nd
 .NET versus
 automating PowerPoint
 getting help on objects
 handling exceptions
 integrating Word
 programming Office applications from Excel
COMAddIns method (Application)
combo charts, creating
ComboBox object
COMExceptions
Command object (ADO)
 members
command-line transformation utility (msxsl.exe)
CommandBar object
 context menus
 members
 Reset method
 Show method
CommandBarButton object
 members
CommandBarComboBox object
CommandBarControl object 2nd
CommandBarControls collection
CommandBarPopup object 2nd
CommandBars collection
 Add method
 members
 menu names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 menu names
 toolbars
CommandBars method
 Application object
 Workbook object
CommandButton object
commands
 adding Contact Us and About to Help menu
 built-in, adding to existing menu
 custom, adding to existing menu
CommandText property
 Command object
 PivotCache object 2nd
 QueryTable object
CommandTimeout (Connection)
CommandType property
 Command object
 PivotCache object
 QueryTable object
CommandUnderlines method (Application)
Comment object
Comment property (Scenario)
comments
 adding
 entered using digital ink
 icon displayed for
 importance of
 reading aloud
Comments collection
 members
Comments method
 Workbook object
 Worksheet object
Comments property, AddIn object
CommitTrans method (Connection)
CompactDatabase method (DbEngine)
CompareSideBySideWith (Windows)
comparison operators
compatibility, versions of Excel
compile-time errors
 fixing
compiled help files 2nd
compiler directives, Visual Basic
compiling code
compressing files
conditional statements 2nd
 using with loops
conflict history for workbook
ConflictResolution (Workbook)
conflicts, resolving
 changes in linked files
 lists 2nd
Connected property
Connection object (ADO)
 members
Connection property
 Database object
 PivotCache object 2nd
 QueryTable object 2nd
 web queries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 web queries
 changing
connection string for external database
ConnectionSiteCount (Shape)
ConnectionString (Connection)
ConnectionTimeout (Connection)
Connector property (Shape)
ConnectorFormat object
ConnectorFormat property
ConnectorFormat property (Shape)
#Const compiler directive
Const statement
constants
 finding for DLL functions
 object member
ConstrainNumeric (Application)
Container method
 Document object
 Workbook object
context menus
 building
 changing context menus
 creating new menus
 restoring context menus
Contrast property (PictureFormat)
Control object, members
ControlCharacters (Application)
ControlFormat object
ControlFormat property (Shape)
controlling Excel, objects for
controls
 ActiveX
 adding to forms
 CheckBox, OptionButton, and ToggleButton
 choosing for forms
 ComboBox
 CommandButton
 creating and using in Excel, objects for
 edit controls, adding to toolbars
 embedded 2nd
 enabling and disabling on forms
 event procedure to respond to user actions
 Image
 keyboard access to
 Label
 ListBox
 MultiPage
 Page
 ScrollBar and SpinButton
 tabbed, property settings
 TabStrip
 TextBox and RefEdit
 using on worksheets
Controls collection
 Add method
 members
Controls property
 CommandBar object
 CommandBarPopup object
 UserForm object 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UserForm object 2nd
Controls Toolbox, controls created with
ControlSource property (Control)
ControlTipText (Control)
conversions between data types
ConvertAddress helper function
ConvertFormula (Application)
Copy method
 CommandBarControl object
 OLEObject object
 Range collection
 Sheets collection
 UserForm object
 Worksheet object
CopyFace method (CommandBarButton)
CopyFromRecordset (Range)
copying code snippets and coding styles
CopyObjectsWithCells (Application)
CopyPicture method
 Chart object
 OLEObject object
Corners object
Corners property (Chart)
Count method, collections
Count property (collections) 2nd
CreateBackup (Workbook)
CreateNew method (SharedWorkspace)
CreateNewDocument (Hyperlink)
CreateObject function
CreateParameter method (Command)
CreatePivotTable method (PivotCache) 2nd 3rd
CreatePivotTableWizard (Worksheet)
CreatePublisher method (Chart)
CreateSummary method (Scenarios)
Creator property
Criteria1 method (Filter)
Criteria2 method (Filter)
CropBottom property (PictureFormat)
CropLeft property (PictureFormat)
CropRight property (PictureFormat)
CropTop property (PictureFormat)
Crosses property (Axis)
CrossesAt property (Axis)
CSS (Cascading Style Sheets)
CubeField method (PivotField)
CubeField object
 members
CubeFields collection members
CubeFields method (PivotTable)
CubeFieldType property (CubeField)
CurDir function 2nd
CurLine property (TextBox, RefEdit)
currency, @ (type-declaration character)
CurrentPage property (PivotField)
CurrentPageName property (PivotField)
CurrrentPageList property (PivotField)
Cursor (Application)
cursor position, displaying
CursorMovement (Application)
CurTargetX property (ComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CurTargetX property (ComboBox)
CurX property (ComboBox)
Custom Installation Wizard (CIW)
Custom Maintenance Wizard
CustomDocumentProperties method (Workbook)
CustomDrop property (CalloutFormat)
CustomLength property (CalloutFormat)
CustomListCount (Application)
CustomView object, members
CustomViews collection
 Add method
 members
CustomViews method (Workbook)
Cut method
 Range object
 UserForm object
CutCopyMode (Application)
Cycle property (UserForm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

DAO (Data Access Objects)
 creating a recordset
 objects and members
 Database and Databases
 DbEngine object
 Document and Documents
 QueryDef and QueryDefs
 Recordset and Recordsets
 tasks for
 working with
data cubes (OLAP) 2nd
data lists
data types
 arrays
 constants
 conversions
 Visual Basic functions for
 Excel lists
 keywords for working with
 objects in a collection
 reference types
 size of
 testing, functions for
 user-defined
 value types
 Visual Basic variables
data-entry dialog boxes
data-entry forms
 adding validation rules
 designing your own
 adding a button
 choosing controls
 controls and property settings
 creating tabbed dialogs
 enabling/disabling controls
 keyboard access to controls
 responding to form events
 separating work and UI code
 showing a form
 using controls on worksheets
 displaying from code
 how they work
 validation settings
 validation, advanced
Database object (DAO)
database objects
database queries 2nd
 creating in code
 ODBC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ODBC
 optimization with OLAP 2nd
 pivot caches based on
database query (.iqy)
database query file (.dqy)
Databases collection (DAO)
DatabaseSort property (PivotField)
DataBinding method (XmlMap)
DataBodyRange (ListObject)
DataBodyRange (PivotTable)
DataEntryMode (Application)
DataFields method (PivotTable)
DataLabel object
DataLabel property (Trendline)
DataLabelRange (PivotTable)
DataLabels collection
DataLabels method (Series)
DataObject object
DataPivotField (PivotTable)
DataRange method (PivotField)
DataTable method (Chart)
DataTable object
DataType
 PivotField object
Date function
date/time formats, not supported by lists
dates and times
 minutes between saving of automatic recovery files
 setting procedure to run at specific time
 Visual Basic functions for
DateSerial function
DateValue function
Day function
DbEngine object (DAO)
DDE link, updates
Debug.Print statement, displaying code results
debugging Excel .NET applications
decimal separators
 operator system settings
 text file imported into query table
DecimalPlaces property (ListDataFormat)
decimals, fixed decimal places for data entries
DecimalSeparator (Application)
declarations
 constants
 DLL functions
 object variable
 procedures
 Visual Basic declaration statements
 Visual Basic variables
Default property (Control)
DefaultFilePath method (Application)
DefaultFilePath property (Application)
 changing to specific folder
DefaultSheetDirection (Application)
DefaultValue property (ListDataFormat)
DefaultWebOptions (Application)
DefaultWebOptions object, members
DeferredDeliveryTime (MailItem)
DefinedSize property (Field)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DefinedSize property (Field)
defining a user-defined type
Delete method 2nd
 AllowEditRange object
 CommandBar object
 CommandBarControl object
 Comment object
 deleting objects from collections
 HPageBreak and VPageBreak
 Hyperlink object and Hyperlinks collection
 ListObject object 2nd
 ListRow object
 Parameter object
 PivotField object
 QueryTable object 2nd
 Range collection
 RecentFile object
 Recordset object
 Rows and Columns collections
 UserAcces object
 XmlMap object 2nd
DeleteAfterSubmit (MailItem)
DeleteAll method (UserAccessList)
DeleteAttachment method (Lists Web Service) 2nd
DeleteChartAutoFormat (Application)
DeleteCustomList (Application)
DeleteList method (Lists Web Service) 2nd
DeleteNumberFormat method (Workbook)
DeleteReplacement method (AutoCorrect)
deletions, animating
delimited text datafiles
Delivery property (RoutingSlip)
denormalized data, avoiding with XML maps
dependencies
 Dependents method (Range)
 DirectDependents method (Range)
 rebuilding in all workbooks
 showing for a range
deploying applications
 expiration, digital signatures
 installing templates and add-ins
 installing workbooks
 protecting code from changes
 signing files
Depth property (TickLabels)
DepthPercent property (Chart)
DescriptionText property (CommandBarControl)
Deselect method (Chart)
design
 requirements versus
Destination property (QueryTable) 2nd
destroying objects 2nd 3rd
 explicitly
 memory leaks caused by unused objects
development process
 deployment
 expiration, digital signatures
 installing templates and add-ins
 installing workbooks
 protecting code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protecting code
 signing files
 design
 determining requirements
 documentation
 general steps
 implementing and testing code
 integrating features and testing
 platform tests
 purpose of
 resources
diagram nodes, inability to get/set text from code
Diagram object (Word or PowerPoint application)
diagrams
 creating
 programming
 shapes for
dialog boxes 2nd
 creating data-entry forms
 displaying forms from code
 validation rules, adding
 validation settings
 validation, advanced
 designing your own forms
 adding a button
 choosing controls
 controls and property settings
 creating tabbed dialogs
 enabling and disabling controls
 keyboard access to controls
 responding to form events
 separating work and UI code
 showing a form
 FileDialog (Application)
 objects used for 2nd
 standard, displaying or hiding
 task-specific
 types of
 using controls on worksheets
Dialogs collection 2nd
 constants
 displaying any Excel dialog box
Dialogs method (Application) 2nd
digital signatures 2nd 3rd 4th
 creating personal signature
 Excel security and
 expiration
 resources for more information
 signing add-ins
 signing Visual Basic project in a workbook
 Visual Basic project in workbook
dimensions of arrays
Dir function 2nd 3rd
DirectDependents method (Range)
Direction property (Speech)
DirectPrecedents method (Range)
DisableAskAQuestionDropdown (CommandBars)
DisableCustomize (CommandBars)
Display method (MailItem)
DisplayAlerts (Application) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DisplayAlerts (Application) 2nd
DisplayBlanksAs property (Chart)
DisplayClipboardWindow (Application)
DisplayCommentIndicator (Application)
DisplayDocumentActionTaskPane (Application)
DisplayDrawingObjects (Workbook)
DisplayEmptyColumn (PivotTable)
DisplayEmptyRow (PivotTable)
DisplayEquation property (Trendline)
DisplayErrorString (PivotTable)
DisplayExcel4Menus (Application)
DisplayFonts property (CommandBars)
DisplayFormulaBar (Application)
DisplayFormulas property (Window)
DisplayFullScreen (Application)
DisplayFullScreen property (Application)
DisplayFunctionToolTips (Application)
DisplayGridlines property (Window)
DisplayHeadings property (Window)
DisplayHorizontalScrollBar property (Window)
DisplayImmediateItems (PivotTable)
DisplayInkComments (Workbook)
DisplayInsertOptions (Application)
DisplayKeysInTooltips (CommandBar)
DisplayNoteIndicator (Application)
DisplayNullString (PivotTable)
DisplayOutline property (Window)
DisplayPageBreaks (Worksheet)
DisplayPasteOptions (Application)
DisplayRecentFiles (Application)
DisplayRightToLeft property (Window)
DisplayRSquared property (Trendline)
DisplayScrollBars (Application)
DisplayStatusBar (Application)
DisplayTooltips property (CommandBars)
DisplayUnit property (Axis)
DisplayUnitCustom property (Axis)
DisplayUnitLabel object
DisplayUnitLabel property (Axis)
DisplayVerticalScrollBar (Window)
DisplayWorkbookTabs (Window)
DisplayXMLSourcePane (Application)
DisplayZeros property (Window)
Distribute method (ShapeRange)
DivID method (PublishObject)
DLLs (dynamic link libraries)
 declaring and using functions
 finding the right function
 flags and constants
 handling exceptions
 using
 working with strings
Do...Loop statement
 conditions, placing in
Document Action task pane
Document object (DAO)
DocumentAuthor (Permission)
documenting applications
DocumentLibraryVersion method (Workbook)
DocumentProperties node

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentProperties node
Documents collection (DAO)
DOM (Document Object Model)
DOMDocument object
 ondataavailable event
 online information
 responding to a web service asynchronously
 TransformNode method
DOMDocument, online information
DOS filenames, using when saving web pages
Double data type
 use in performance measurement
DoubleClick method (Application)
DoughnutGroups property (Chart)
DoughnutHoleSize (ChartGroup)
DownBars method (ChartGroup)
DownBars object
DownloadComponents property (WebOptions)
.dqy (database query) files
Draft property (PageSetup)
drag and drop
DragBehavior property (ComboBox)
DragOff method (PageBreak)
DragToColumn (PivotField)
DragToData (PivotField)
DragToHide (PivotField)
DragToPage (PivotField)
DragToRow (PivotField)
DrawBuffer property (UserForm)
drawing objects, display in workbooks
DrilledDown property (PivotField)
Drop property (CalloutFormat)
DropButtonStyle (ComboBox)
DropDown method (ComboBox)
DropDownLines (CommandBarComboBox)
DropDownWidth (CommandBarComboBox)
DropLines object
DropLines property (ChartGroup)
DropType property (CalloutFormat)
DTD (Document Type Definition)
Duplicate method (OLEObject)
Duplicate method (Shape)
dynamic arrays
 preserving when calling ReDim

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

early binding
edit controls, adding to toolbars
Edit menu
 Repeat item
 Undo item
EditDirectlyInCell (Application)
edits, limiting to sheets and ranges of cells
EditWebPage (QueryTable)
Elevation property (Chart)
ElseIf statements, multiple, within an If block
email
 priority
 reading
 running from Excel
 sending from within Excel 2nd
 sending workbook as attachment
 using MsoEnvelope
 working with mail items
EmailSubject method (Hyperlink)
embedded objects 2nd 3rd
 creating dynamically
 PrintObject property
 Word document on active worksheet
embedding
 charts 2nd
 controls
 objects created by other applications
EnableAnimations (Application)
EnableAutoComplete (Application)
EnableAutoRecover (Workbook)
EnableCalculation (Worksheet)
EnableCancelKey (Application)
Enabled property
 AutoRecover object
 CommandBar object
 CommandBarControl object
 controls
 Permission collection
 UserForm object
EnableDataValueEditing (PivotTable)
EnableDrilldown (PivotTable)
EnableEditing property (QueryTable) 2nd
EnableEvents property (Application)
EnableFieldDialog (PivotTable)
EnableFieldList (PivotTable)
EnableItemSelection (PivotField)
EnableMultiplePageItems (CubeField)
EnableOutlining property (Worksheet)
EnablePivotTable property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EnablePivotTable property
EnableRefresh property
 PivotCache object
 QueryTable object 2nd
EnableResize property (Window)
EnableSelection property (Worksheet)
EnableSound property (Application)
EnableTrustedBrowser (Permission)
EnableWizard (PivotTable)
encapsulation
Encoding property (WebOptions)
encryption
 adding to a workbook
 password-proteced files
 setting options in code
 Workbook members for
End If statement, missing, error caused by
End method (Range)
End statement
EndConnect method (ConnectorFormat) 2nd
EndConnected property (ConnectorFormat)
EndConnectedShape property (ConnectorFormat)
EndConnectionSite property (ConnectorFormat)
EndDisconnect method (ConnectorFormat)
EndReview method (Workbook)
EndStyle property (ErrorBars)
EnterFieldBehavior (ComboBox)
EnterKeyBehavior (TextBox, RefEdit)
EntireColumn method (Range)
EntireRow method (Range)
Enum keyword
enumerations
 defining
 object member
enumerator (collections)
EnvelopeVisible (Workbook)
EOF function
EOF property (Recordset) 2nd
Eqv operator
error bars, adding to chart
Error object
ErrorBar method (Series)
ErrorBars method (Series)
ErrorBars object
ErrorChecking object, members
ErrorCheckingOptions (Application)
errors
 compile-time, fixing
 displaying for pivot table cells
 ODBCErrors collection
 OLEDBErrors collection
 runtime errors, fixing
 syntax errors, fixing
 types of
ErrorString (PivotTable)
Evaluate method (Application)
Event procedures 2nd
events 2nd 3rd
 application-level, responding to
 available from Excel objects, listed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 available from Excel objects, listed
 "bubbling up" through object hierarchy
 chart
 creating for control to respond to user actions
 creating in a class
 enabling
 Excel, responding to in .NET
 form, responding to
 handling from .NET components in Excel VBA
 intercepting from Word
 QueryTable, trapping for web queries
 raising
 responding to in Excel
 turning off event processing
 responding to in Excel .NET applications
 using for objects other than Workbook and Worksheet
 using from another class
 viewing for a class
 Word, responding to from Excel
 Workbook object
 XML, responding to
examples for this book, xvi
 organization of
Excel
 automation from Visual Basic
 object-oriented features not available in
 programming, reasons for
 running browser and email from
 starting and stopping code
Excel 2003
 text of diagram nodes, inability to get/set from code
 XML support
Excel 2003 Help file
Excel 2003 Professional Edition, xvi
 Application.DisplayXMLSourcePane
Excel Version 4.0 menus, displaying
exception handling
 .NET
 Excel exceptions in .NET
exceptions 2nd
 handling from COM applications
 handling from DLL functions
 turning off exception handling
ExclusiveAccess method
ExclusiveAccess method (Workbook)
executable statements
Execute method
 Command object
 CommandBarControl object
 Database object
 QueryDef object
Exit Do statement
ExpirationDate (UserPermission)
ExpiryTime property (MailItem)
Explosion property (Series)
Export method (XmlMap) 2nd
exporting classes or modules to text files
exporting XML with XML maps
 avoiding lists of lists
 including all nodes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 including all nodes
 responding to events
 schema elements not supported
ExportXml method (XmlMap) 2nd
exposing objects
expressions
 Boolean
 combining using operators
 evaluating and returning result
 in Visual Basic programs
 return values
Extend method (SeriesCollection) 2nd
ExtendList (Application)
Extent property (PageBreak)
external data references, removing from workbook

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

FaceId property (CommandBarButton)
Favorites folder
 adding hyperlink to
 adding link to workbook
fax, sending over Internet
FeatureInstall (Application)
FetchedRowOverflow (QueryTable) 2nd
field names (OLAP)
Field object (ADO)
 members
FieldNames property (QueryTable)
Fields collection (ADO), members
fields, simple properties as
FilConverters (Application)
file handles
File Open dialog box
FileAttr function 2nd
FileCopy function 2nd
FileDateTime function
FileDialog method (Application) 2nd
 opening web file in browser
FileFind (Application)
FileFormat method (Workbook)
FileLen function
filenames, formats for web pages
files
 automatic recovery
 compressing
 making truly secure
 managing with Visual Basic functions
 reading and writing in Visual Basic
 binary access
 random access 2nd
 sequential access 2nd
 recently opened, listing
 recently used
Files collection, removing workbooks from shared workspace
FileSearch (Application)
FileSystemObject
 URL for further information
FileSystemObject class
Fill Effects dialog box
Fill method (Series)
Fill property 2nd
 ChartArea and PlotArea objects
 ChartArea object
 PlotArea object
 Shape object
FillAcrossSheets method (Sheets)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FillAcrossSheets method (Sheets)
FillAdjacentFormulas (QueryTable) 2nd
FillDown method (Range)
FillFormat object
FillLeft method (Range)
FillRight method (Range)
FillUp method (Range)
Filter method (Recordset)
Filter object, members
filters
 applying
 AutoFilter object, members
 autofilters on worksheet
 creating in code
 creating in Excel
 removing
 storing criteria in views
 turning off all on a worksheet
Filters collection
 members
Filters method (AutoFilter)
financial functions (Visual Basic)
Find method (Range) 2nd
 first cell in specified range
FindControl method (CommandBar) 2nd 3rd
FindControls method (CommandBars)
FindFile method (Application) 2nd
FindFormat method (Application)
FindNext method (Range) 2nd
FindPrevious method (Range) 2nd
FirstPageNumber method (PageSetup)
FirstSliceAngle (ChartGroup)
FitToPagesTall property (PageSetup)
FitToPagesWide property (PageSetup)
Fix function
fixed-length string
fixed-width text datafiles
FixedDecimal (Application)
FixedDecimalPlaces (Application)
flags, bit flags in DLL functions
Flip method (Shape)
Floor method (Chart)
Floor object
FolderSuffix property (WebOptions)
Follow method (Hyperlink)
FollowHyperlink method (Workbook) 2nd 3rd 4th 5th
Font object 2nd
 members
Font property 2nd 3rd 4th
 ChartArea object
 Range object
 TickLabels object
 UserForm object
FontBold property (TextEffectFormat)
FontItalic property (TextEffectFormat)
FontName property (TextEffectFormat)
fonts
 formatting for charts
 standard, for Windows
Fonts method (DefaultWebOptions)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fonts method (DefaultWebOptions)
FontSize property (TextEffectFormat)
FooterMargin method (PageSetup)
footers, adding graphic to
For Each statement 2nd
For...Next statement
 changing increment
ForeColor property
 ChartFillFormat object
 FillFormat object
 UserForm object
Format function 2nd
 built-in formats
 date/time conversions
 formatting codes
Format method (PivotTable)
Format Plot Area dialog box
formatting, repeating for all worksheets in recorded code
FormControlType property (Shape)
forms
 controls on forms versus controls on worksheets
 controls, using on worksheets
 creating, objects used for
 data entry
 designing your own
 displaying from code
 validation rules
 validation settings
 validation, advanced
 displaying in Excel .NET applications
 embedded form controls
 events
 objects for
 printing
 UserForm
Forms 2.0 controls
 interaction with worksheet class
 progIDs
 using on a worksheet
Forms Designer, creating custom dialog box
Forms toolbar
 controls created with
Formula bar 2nd
Formula property
 PivotField object
 Range object
 Series object
FormulaLocal property (Series)
FormulaR1C1 method (Range)
FormulaR1C1 property (Series)
FormulaR1C1Local property (Series)
formulas
 displaying
 getting with Application.InputBox
 including range labels
 listing for pivot table
 pivot table
 recalculating all
 recalculating in open workbooks
Forward property (Trendline)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Forward property (Trendline)
ForwardMailer method (Workbook)
Frame object
FreeFile function
FreeformBuilder object
 ConvertToShape method
 members
FreezePanes property (Window)
Friend scope, procedures
full-screen mode
FullName property
 AddIn object
 Workbook object
FullNameURLEncoded (Workbook)
Function procedures
 return values
Function property (PivotField)
functions
 accessor
 conversion
 dates and times, Visual Basic
 declared in module as Private
 DLL
 choosing
 converted to Visual Basic
 declaring and using
 exception handling
 flags and constants
 working with strings
 file-access functions, Visual Basic
 managing files, Visual Basic functions
 math, derived from intrinsic Visual Basic functions
 obsolete or obscure, Visual Basic
 registered with Excel, listing
 result-checking functions, Visual Basic
 string functions, Visual Basic
 tool tips
 Visual Basic math functions
 Windows API
 WorksheetFunction object 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Gap property (CalloutFormat)
GapDepth property (Chart)
GapWidth property (ChartGroup)
garbage collection (.NET)
 getting rid of unused resources in .NET
GenerateGetPivotData command (Application)
Get function
Get, Let, and Set procedures
GetAttachmentCollection method (Lists Web Service) 2nd
GetAttr function
GetChartElement method (Chart)
GetChildren method (Record)
GetChunk method (Field)
GetCustomListContents method (Application)
GetCustomListNum method (Application)
GetData method (PivotTable)
GetList method (Lists Web Service)
GetListAndView method (Lists Web Service)
GetListCollection method (Lists Web Service) 2nd
GetListItemChanges method (Lists Web Service)
GetListItems method (Lists Web Service)
GetObject function
GetOpenFilename (Application)
GetPhonetic method (Application)
GetPivotData (PivotTable)
GetSaveAsFilename method (Application)
global members 2nd
 object names, shortening
Global object
 members
global scope
 constants
 object variables
 variables
global variables
globally unique identifier (GUID), Excel programmatic ID
Google Web Service 2nd
 calling directly through SOAP
 online information about
Goto method (Application) 2nd
GradientColorType (ChartFillFormat)
GradientDegree property (ChartFillFormat)
gradients and textures, chart background 2nd
GradientStyle property (ChartFIllFormat)
GradientVariant property (ChartFillFormat)
GrandTotalName (PivotTable)
Graphic object
graphics
 creating diagrams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 creating diagrams
 creating on worksheets, objects used for
 drawing in Excel
 drawing simple shapes
 programming diagrams
 programming with drawing objects
 adding pictures
 connecting shapes
 drawing simple shapes
 grouping shapes
 text, adding to shapes
 text, adding to shapes
GridlineColor method (Window)
GridlineColorIndex method (Window)
gridlines
 displaying for cells
 turning on/off in worksheets
Gridlines object
Group method
 OLEObject object
 ShapeRange object 2nd
group properties for charts
GroupItems property (Shape)
GroupLevel (PivotField)
GroupName property
groups
 adding trusted publisher for
 viewing in Windows XP
 Windows security
GroupShapes collection
GUID
 finding for a list 2nd
 looking up for lists on SharePoint

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handle to application instance
handle to top-level Excel window
handwriting recognition
hardware issues for applications
Has3DEffect property (Series)
Has3DShading property (ChartGroup)
HasAutoFormat (PivotTable)
HasAxis method (Chart)
HasDataLabel property
HasDataLabels property (Series)
HasDataTable property (Chart)
HasDisplayUnitLabel property 2nd
HasDisplayUnitLabel property (Axis)
HasDropLines property (ChartGroup)
HasErrorBars property (Series)
HasHiLoLines property (ChartGroup)
HasLeaderLines property (Series)
HasLegend property (Chart)
HasMailer property (Workbook)
HasMajorGridlines property (Axis)
HasMemberProperties (CubeField)
HasMinorGridlines property (Axis)
HasPassword (Workbook) 2nd
HasPivotFields property (Chart)
HasRadarAxisLabels property (ChartGroup)
HasRoutingSlip (Workbook)
HasSeriesLines property (ChartGroup)
HasTitle property 2nd 3rd
HasTitle property (Axis)
HasTitle property (Chart)
HasUpDownBars property (ChartGroup)
HeaderMargin method (PageSetup)
headers and footers, adding graphic to
headings (column), displaying
Height property
 Application object
height, default row height in points
HeightPercent property (Chart)
Help
 adding Contact Us and About commands
 Excel objects
 Visual Basic Help for Excel
 WorksheetFunction members
help
 compiled help files 2nd
 HTML documentation for application
 linking items to HTML help pages
 links to Help from menu items
 macros and user-defined functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 macros and user-defined functions
 objects in COM applications
 on user-defined functions
Help method (Application) 2nd
HelpContextId (CommandBarControl)
HelpFile property (CommandBarControl)
Hidden property
 Range collection
 Scenario object
HiddenFields (PivotTable)
HiddenItems method (PivotField)
HiddenItemsList (PivotField)
HiddenLevels property (CubeField)
HideSelection property (ComboBox)
hierarchy, object, creating using collections
HighlightChangesOnScreen (Workbook)
HighlightChangesOptions (Workbook)
HiLoLines method (ChartGroup)
HiLoLines object
Hinstance method (Application)
history of workbook changes
 keeping
 purging
horizontal scrollbar, displaying
HorizontalAlignment method (Range)
HorizontalAlignment property (TextFrame)
HorizontalAlignment property (Title)
HorizontalFlip property (Shape)
Hour function
HPageBreak object
 Delete method
 members
HPageBreaks collection
 members
HRESULT, mapping to .NET exception class
HTML document, workbook based on
HTML Help Workshop (Microsoft)
HTMLBody property (MailItem)
HTMLProject method (Workbook)
HtmlType property (PublishObject)
Hwnd method (Application)
Hyperlink object
 Delete method
 members
Hyperlink property (Shape)
hyperlinks
 adding to list on SharePoint server
 allowing insertion in worksheet
 automatically reformatting protocols as
 creating in code
 creating in Excel
 Excel menu items to Help
 in workbooks
 linking to location on worksheet
Hyperlinks collection
 Add method 2nd
 Delete method
 members
Hyperlinks method
 Chart object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chart object
 Range collection
 Worksheet object 2nd
HyperlinkType (CommandBarButton)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Id property
 CommandBar object
 CommandBarControl object
ID property (Shape)
If statements
Image object
IMEMode property (ComboBox)
Immediate window
 displaying code results with Debug.Print
 evaluating expressions
 running procedures and quick calculations
Imp operator
implementing and testing code
Import method (XmlMap) 2nd
Importance property (MailItem)
importing code stored as text into workbook
importing XML with XML maps
 approaches
 schema elements not supported
 limitations of XML maps
 responding to events
 using schemas
ImportXml method (XmlMap) 2nd
in scope (references)
InactiveListBorderVisible (Workbook)
InchesToPoints method (Application)
IncrementBrightness property (PictureFormat)
IncrementContrast property (PictureFormat)
IncrementLeft method (Shape)
IncrementRotation method (Shape)
IncrementTop method (Shape)
indenting blocks of code
index argument
indexes
 array
 collection
 pivot cache
infinite recursion
informational display dialog boxes
inline exception handling
InnerDetail (PivotTable)
Input # function
InputBox function (Visual Basic)
InputBox method (Application) 2nd 3rd
Insert method
 Columns and Rows collections
 Range collection
inserting cells, options for
insertions, animating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insertions, animating
InsideHeight property
 PlotArea object
 UserForm object
InsideLeft property (PlotArea)
InsideTop property (PlotArea)
InsideWidth property
 PlotArea object
 UserForm object
installation programs, creating
Installed property
 AddIn object
 setting to False before deleting add-ins
InstallManifest method (XmlNamespaces)
instance classes (.NET)
Instancing property 2nd
instantiation of classes
Instr function 2nd 3rd
Int function
IntegralHeight property
 ListBox control
 TextBox and RefEdit controls
integrating features and testing their interaction
integration tests
Intellisense
interaction with users, Visual Basic
Interactive property (Application) 2nd
interactive web page
Intercept property (Trendline)
InterceptIsAuto property (Trendline)
interface, isolating from business logic
Interior property
 ChartArea object
 Range object
International method (Application)
Internet Explorer, XML validation/XSL transformation viewer
Intersect method (Application)
intrinsic functions
Introduction property (MsoEnvelope)
InvalidData property (ListRow)
InvertIfNegative property (Series)
Is operator
IsAddin (Workbook)
IsArray function
IsCalculated (PivotField)
IsConnected property (PivotCache)
IsDate function
IsEmpty function 2nd
IsError function
IsExportable property (XmlMap) 2nd
IsInPlace (Workbook)
IsMemberProperty (PivotField)
IsMissing function 2nd
IsNull function
IsNumeric function
IsObject function
isolating the interface from the business logic
IsPercent (ListDataFormat)
IsPriorityDropped (CommandBarControl)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Item method
 collections
 ListObjects
 Range object
Item property (collections)
Item property (MsoEnvelope)
Items method (collections)
Iteration (Application)
IXMLDOMNodeList, online information 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Japanese phonetic text
Join function
Justify method (Range)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

KeepChangeHistory method (Workbook)
KeepScrollBarsVisible property (UserForm)
KernedPairs property (TextEffectFormat)
key assignments
keyboard
 accelerator and shortcut keys
 access to dialog box controls
 shortcuts, starting/stopping code in Excel
keys, sending to an application
keywords
 advanced Visual Basic keywords
 Visual Basic arrays
 Visual Basic declarations
 Visual Basic, working with types
Keywords property
 AddIn object
 Workbook object
Kill function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Label object
LabelRange method (PivotField)
labels
 adding to charts
 adding with shapes
 data labels, applying to chart
 DataLabels and DataLabel objects
 formatting in charts
 identifying x-, y-, and z-axes of a 3-D chart
LanguageSettings (Application)
LargeButtons property
 Application object
 CommandBars object
LargeChange property (ScrollBar)
LargeScroll method (Window)
late binding
LayoutBlankLine (PivotField)
LayoutEffect property (Control)
LayoutForm property (PivotField)
LayoutPageBreak (PivotField)
LayoutSubtotalLocation (PivotField)
LCase function
lcid property (ListDataFormat)
LeaderLines method (Series)
LeaderLines object
Left function
Left function (Application)
Left property
LeftFooter method (PageSetup)
LeftFooterPicture method (PageSetup)
LeftHeader method (PageSetup)
LeftHeaderPicture method (PageSetup)
LeftMargin property (PageSetup)
Legend method (Chart)
Legend object
LegendEntries collection
LegendEntries property (Legend)
LegendEntry object
LegendKey object
LegendKey property (LegendEntry)
legends, chart
 key, showing
 trendlines and
Len function
length of file in bytes
length of strings
Length property, CalloutFormat object
Let, Get, and Set procedures
LibraryPath method (Application)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LibraryPath method (Application)
LibraryPath property (Application)
lifetime
 procedures
 variables
Like operator 2nd 3rd
line in text datafile
Line Input #
Line property (Shape)
Line3DGroup property (Chart)
linear path of recorded code
LineCount property
 ComboBox control
 TextBox and RefEdit controls
linefeeds
LineFormat object
LineGroups property (Chart)
LinkCell property, linking cells to controls
linked objects 2nd
 creating dynamically
LinkedCell property
 OLEObject object
LinkFormat object
LinkFormat property (Shape)
LinkInfo method (Workbook)
linking
 comments
 embedded controls to values entered in cells
 hyperlinks
 objects created by other applications
 to a location on a worksheet
 to range in another workbook
 workbook to a workspace
links
 breaking in workbooks
 changing source in workbook
 external, saving values with workbook
 opening source document from
 to Help from Excel menu items
 updating
 updating in workbook
 updating values before saving web page
LinkSources method (Workbook)
List method (ComboBox)
List property (CommandBarComboBox)
ListBox object
ListChangesOnNewSheet (Workbook)
ListColumn object
ListColumns collection
ListCount property
 ComboBox object
 CommandBarComboBox
ListDataFormat method (ListColumn)
ListDataFormat object
 report on data format of each column
 setting read-only properties
ListFillRange method (OLEObject)
ListFormulas method (PivotTable)
ListHeaderCount (CommandBarComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ListIndex property
 ComboBox
 CommandBarComboBox
ListNames method
ListObject object
 members
 Refresh method
 SharePointURL property
 Unlink method
 Unlist method
 UpdateChanges method
ListObjects collection
 Add method 2nd
 Item method
 members
ListRow object
ListRows collection
ListRows property (ComboBox)
lists 2nd
 advantages over AutoFilter
 borders around
 converting a range to
 creating from a range
 creating in code
 creating new automatic list
 custom list items, returning
 extending formatting and formulas to new data
 getting XML map from
 index of custom list
 linked to XML data through XML map, refreshing
 main limitation of using
 objects for
 objects for data entry, filtering, sorting, and sharing data
 of lists, avoiding in XML maps
 refreshing and updating
 removing custom list
 resolving conflicts
 shared
 authorization and authentication for
 inserting into other worksheets 2nd
 sharing
 supported data types
 unlinking, unlisting, or deleting
 viewing custom lists
Lists Web Service
 adding attachments to a list
 authentication and authorization
 deleting attachments
 deleting SharePoint list
 error messages, getting more detail in
 getting attachments
 members
 online resources
 performing queries
ListStyle property (ComboBox)
ListWidth property (ComboBox)
LoadPictures (DefaultWebOptions)
LoadSettings method (XmlDataBinding) 2nd
Loc function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

local scope
 constants
 object variables
 variables
LocalConnection property (PivotCache)
locale ID for list column
locale settings
locales, number formatting for 2nd 3rd
Location method
 Chart object
 PageBreak objects
LocationOfComponents (WebOptions)
Lock...Unlock functions
LockAspectRation property (Shape)
Locked property
 Range object
 Scenario object
 Shape object
LOF function
logic errors
long filenames, using when saving web pages
looping
loops 2nd
 exiting
 in Visual Basic programs
 infinite recursion
 using conditional statements with
lower bound of an array
LSet function
LTrim function 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Macintosh
 FileFind object
 mailers for workbooks
 path separator
 publisher for a chart
 sending workbook as email message
 versions of Excel
 with PowerTalk mail
 workbook, attaching as reply
MacroOptions method (Application)
macros
 assigning to run when key is pressed
 help files displayed for
 information on calls
 preserving in workbooks saved as XML
 preventing a user from running any
 recording
 running
 security and
 security levels
 security settings
 security warning, getting rid of
 security, setting
 shared workbooks
mail
 opening next unread message
 sending from Excel 2nd
 sending from within Excel
MailEnvelope property
MailEnvelope property (Chart or Worksheet)
Mailer method (Workbook)
mailers for workbooks (Macintosh)
MailItem object
 members
MailLogoff method (Application)
MailLogon method (Application)
MailSession method (Application)
MailSystem method (Application)
mailto: protocol
MaintainConnection (PivotCache)
MaintainConnection property (QueryTable)
MajorGridlines method (Axis)
MajorTickMark property (Axis)
MajorUnit property (Axis)
MajorUnitIsAuto property (Axis)
MajorUnitScale property (Axis)
MakeConnection method (PivotCache)
manual page breaks 2nd
manual testing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

manual testing
ManualUpdate (PivotTable)
Map method (XPath)
MAPI mail sessions
 creating new
 ending
MapPaperSize (Application)
MarginBottom property (TextFrame)
MarginLeft property (TextFrame)
MarginRight property (TextFrame)
MarginTop property (TextFrame)
MarkerBackgroundColor (Series)
MarkerBackgroundColorIndex (Series)
MarkerForegroundColor (Series)
MarkerForegroundColorIndex (Series)
MarkerSize property (Series)
MarkerStyle property (Series)
Mask property (CommandBarButton)
MatchEntry property (ComboBox)
MatchFound property (ComboBox)
matching patterns of characters
[list], matching single character in list
[!list], matching single character not in list
MatchRequired property (ComboBox)
math
 functions derived from intrinsic Visual Basic functions
 Visual Basic functions
Max property (ScrollBar, SpinButton)
MaxChange (Application)
MaxCharacters property (ListDataFormat)
Maximum method (RecentFiles)
MaximumScale property (Axis)
MaximumScaleIsAuto property (Axis)
MaxIterations (Application)
MaxLength property (ComboBox)
MaxNumber property (ListDataFormat)
MaxRecords property (QueryDef)
MDX method (PivotTable)
Me keyword (Visual Basic), active object and
members, object
 Application
 common
 Activate method
 adding/deleting objects through collections
 Application
 Creator
 listed by category
 names and values
 PrintOut and PrintPreview methods
 size and position, changing
 common to most collections
 events
 global
 Global object
 grouping of related members
 WorksheetFunction object
memory leaks
MemoryUsed method (PivotCache)
menu items (Excel), links to Help
MenuAnimationStyle (CommandBars)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MenuAnimationStyle (CommandBars)
menus
 adding item for add-in
 adding, objects used for
 changes to
 context menus, building
 changing context menus
 creating new menus
 restoring context menus
 creating using toolbars
 Excel 4.0, displaying
 right-clicking to display properties
 top-level
 assigning accelerator and shortcut keys
 changing existing menus
 creating on Excel menu bar
 saving and distributing
 top-level, creating in code
 changing existing menus
 removing on close
 resetting existing menus
 types in Excel
Merge method, Range object
MergeArea method (Range)
MergeCells property (Range)
MergeLabels (PivotTable)
MergeWorkbook method (Workbook)
Message property (RoutingSlip)
methods
 adding
 collections
 COM applications, searching for
 controlling charts
 inclusion of arguments in recorded code
 object member
 web query
MHTML (Multipurpose Internet Mail Extension) format
Microsoft Access, automation from Visual Basic
Microsoft Developer's Network
Microsoft Exchange server, posting workbook to
Microsoft Forms object library
 events
 PrintForm method
Microsoft Graph, automation from Visual Basic
Microsoft HTML Help Workshop
Microsoft Internet Explorer, automation from Visual Basic
Microsoft Management Console (MMC)
Microsoft Office
 online information
 ProgIDs of common objects
 programming applications form Excel
 VBA help files
 Web Services Toolkit
 online information
 using
Microsoft Office applications, activating
Microsoft Office Resource Kit 2nd
Microsoft Office XML Editor (MsoXmlEd.Exe)
Microsoft Outlook
 activating to read mail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 activating to read mail
 automatically deleting mail after sending
 automation from Visual Basic
 object library
 required for use of MailItem
 warning about automated mail from Excel
Microsoft PowerPoint, automation from Visual Basic
Microsoft XML object library
Microsoft XML Parser (msxml4.dll)
Mid function 2nd
Min property (ScrollBar, SpinButton)
MinimumScale property (Axis)
MinimumScaleIsAuto property (Axis)
MinNumber property (ListDataFormat)
MinorGridlines method (Axis)
MinorTickMark property (Axis)
MinorUnit property (Axis)
MinorUnitIsAuto property (Axis)
MinorUnitScale property (Axis)
Minute function
MissingItemsLimit (PivotCache)
misspelling errors, avoiding with careful typing
misspellings in Visual Basic
 variable names
mistakes, fixing
MkDir function 2nd
MMC (Microsoft Management Console)
Mod operator
modal forms
Module objects, Me keyword, inability to use in
module-level scope
 constants
 object variables
 variables 2nd
modules
 classes versus
 creating
 in Visual Basic programs
 objects in
 properties
 static nature of
Month function
MouseIcon property (UserForm)
MousePointer property (UserForm)
Move method
 CommandBarControl object
 Controls collection
 Sheets collection
 Worksheet object
MoveAfterReturn (Application)
MoveAfterReturnDirection (Application)
MoveFirst method (Recordset)
MoveLast method (Recordset)
MoveNext method (Recordset)
MovePrevious method (Recordset)
MsgBox function (Visual Basic)
MsgBox, displaying code results
mso-application processing instruction 2nd
 replacing with xml-stylesheet processing instruction
MsoEnvelope object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MsoEnvelope object
MsoXmlEd.Exe
MSXML 4.0 Documentation
Multidimensional Expression (MDX) query
MultiLine property (TextBox and RefEdit)
MultiPage object
Multipurpose Internet Mail Extension HTML (MHTML) format
MultiRow property (MultiPage)
MultiSelect property (ListBox)
MultiUserEditing property (Workbook) 2nd
MXXMLWriter, online information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Excel with VBA and .NET
By Steve Saunders, Jeff Webb
...
Publisher: O'Reilly
Pub Date: April 2006
Print ISBN-10: 0-596-00766-3
Print ISBN-13: 978-0-59-600766-9
Pages: 1114

Table of Contents | Index

Why program Excel? For solving complex calculations and presenting results, Excel is amazingly complete with every
imaginable feature already in place. But programming Excel isn't about adding new features as much as it's about
combining existing features to solve particular problems. With a few modifications, you can transform Excel into a
task-specific piece of software that will quickly and precisely serve your needs. In other words, Excel is an ideal
platform for probably millions of small spreadsheet-based software solutions.

The best part is, you can program Excel with no additional tools. A variant of the Visual Basic programming language,
VB for Applications (VBA) is built into Excel to facilitate its use as a platform. With VBA, you can create macros and
templates, manipulate user interface features such as menus and toolbars, and work with custom user forms or
dialog boxes. VBA is relatively easy to use, but if you've never programmed before, Programming Excel with VBA and
.NET is a great way to learn a lot very quickly. If you're an experienced Excel user or a Visual Basic programmer,
you'll pick up a lot of valuable new tricks. Developers looking forward to .NET development will also find discussion of
how the Excel object model works with .NET tools, including Visual Studio Tools for Office (VSTO).

This book teaches you how to use Excel VBA by explaining concepts clearly and concisely in plain English, and
provides plenty of downloadable samples so you can learn by doing. You'll be exposed to a wide range of tasks most
commonly performed with Excel, arranged into chapters according to subject, with those subjects corresponding to
one or more Excel objects. With both the samples and important reference information for each object included right
in the chapters, instead of tucked away in separate sections, Programming Excel with VBA and .NET covers the entire
Excel object library. For those just starting out, it also lays down the basic rules common to all programming
languages.

With this single-source reference and how-to guide, you'll learn to use the complete range of Excel programming
tasks to solve problems, no matter what you're experience level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Name function 2nd
Name property 2nd 3rd
 Command
 CommandBar object
 Document object
 objects having Name and Caption properties
 Parameter object
 RecentFile object
 Trendline object
named arguments for procedures
named ranges 2nd
NameIsAuto property (Trendline)
NameLocal property (CommandBar)
names
 variables and procedures
 Visual Basic rules for
 characters forbidden in
 words forbidden in
Names method
 Application object
 Workbook object
Namespace property (XmlSchema)
namespaces, XML
 qualified by Microsoft Office schemas
 root node in XML map
 XmlNamespace and XmlNamespaces objects
.NET
 approaches to using with Excel
 creating components for Excel
 creating Excel applications in
 debugging Excel .NET applications
 displaying forms
 distributing Excel .NET applications
 migrating to .NET
 responding to events
 setting .NET security policies
 debugging components
 distributing .NET components
 online resources for information
 responding to errors and events from .NET objects
 software requirements for developing with Excel
 using components in Excel
 using Excel as a component in
 adding reference to Excel object library
 check reference to ensure use of Excel PIA
 distributing applications
 precautions for working with Excel
 responding to Excel events
 responding to Excel exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 responding to Excel exceptions
 working with Excel objects
.NET Framework
.NET Framework, garbage collection
NetworkTemplatesPath property (Application) 2nd
New keyword
 creating object variable
New Workbook task pane
NewSeries method (SeriesCollection) 2nd
newsgroups, xvi
 help on objects
 programmers in Excel community
NewWindow method (Workbook)
NewWorkbook (Application)
Next method
 Comment object
 Range object
Next statement
NextLetter method (Application)
no-touch deployment
Node object
nodes in XML spreadsheet
 namespaces
nonmodally showing a form
NormalizedHeight property (TextEffectFormat)
Not operator
Notepad, editing XML spreadsheet
notes
 icon indicating
 NoteText method (Range)
Nothing
 Find method returning
 setting object variable to
Nothing type, testing if variable is
Now function
NullString property (PivotTable) 2nd
number format, removing from workbook
NumberFormat method (Range)
NumberFormat property
 DataLabels collection
 PivotField object
 TickLabels object
NumberFormatLinked property
 DataLabel object
 TickLabels object
NumberFormatLocal property
 DataLabel object
 Range object
 TickLabels object
numbers
 converting to strings representing bit values
 size limit in Visual Basic
Numbers enumeration
NumericScale property
 Field object
 Parameter object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Object Browser 2nd 3rd
object hierarchy, events "bubbling up" through
object model
Object property
 Control object
 OLEObject object 2nd 3rd
Object type
 length of
objects 2nd
 .NET
 .NET, responding to errors and events from
 active object, Me keyword and
 categorization by task
 charting and formatting charts
 charts
 COM applications, getting help on
 copying with cells
 creating from classes
 creating from Excel
 creating your own
 adding methods
 classes
 collections
 destroying objects
 enumerations
 exposing objects
 modules
 modules versus classes
 properties
 raising events
 data lists and XML
 database
 destroying 2nd
 dialog boxes and forms
 embedded
 events
 listing of objects and events
 responding to
 Excel, listed by product version
 Excel, working with in .NET
 from other applications, using in Excel
 getting Excel objects
 global shortcut members
 getting from collections
 Global
 linked
 lists and importing/exporting XML
 members
 common

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 common
 events
 global
 grouping of related
objects (continued)
 object-oriented features unavailable in Excel
 properties
 top-level Excel objects
 UsedObjects collection 2nd
 With statement
 workbook
 workbook files, working with
 Worksheet and Range
 WorksheetFunction
 worksheets and ranges of cells, working with
ODBC database queries
ODBCErrors collection (Application)
ODBCTimeout (Application)
Office Anti Virus API
Office Assistant character
Office Toolkit Loader add-in (otkloadr.dll)
Office Web Services Toolkit
Offset method (Range)
Offset property (TickLabels)
OLAP (online analytical processing)
 cell background color, pivot tables
 creating data cubes 2nd
 field names
 displaying empty columns and rows in pivot tables
 MDX query for pivot table
 totals annotation, pivot tables
OLAP property (PivotCache)
OldHeight property (Control)
OldLeft property (Control)
OldTop property (Control)
OldWidth property (Control)
OLE (Object Linking and Embedding)
 inserting objects into graphics
 making OLE objects troublefree
 OLE automation
 omitting embedded objects in worksheet printout
 preserving OLE objects in workbooks saved as XML
 updating linked objects in shapes
OLEDBErrors collection
OLEFormat object, members
OLEMenuGroup (CommandBarPopup)
OLEObject object
 Activate method
 members
OLEObjects collection
 Add method 2nd
 members
 using in code
OLEObjects method (Worksheet)
OLEType method (OLEObject)
OLEUsage proprty (CommandBarControl)
On Error Goto 0 statement
On Error Resume Next statement 2nd
On Error statement 2nd 3rd
On property (Filter)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On property (Filter)
OnAction method (OLEObject)
OnAction property (CommandBarControl)
one-dimensional arrays
OneColorGradient method (ChartFillFormat)
OnKey method (Application)
OnRepeat method (Application)
OnTime method (Application)
OnUndo method (Application)
OnWindow method (Application)
Open dialog box
Open function
Open method
 Connection object
 opening workbook from shared workspace
 RecentFile object
 Record object
 Workbooks collection 2nd 3rd
OpenDatabase method (DbEngine)
OpenDatabase method (Workbooks)
OpenLinks (Workbook)
OpenRecordset method
 Database object
 QueryDef object
OpenText method (Workbooks) 2nd 3rd
OpenXML method (Workbooks)
operating systems
 OperatingSystem method (Application)
 testing application for
 text file imported into query table
 thousands and decimal separators
Operator property (Filter)
operators
 Boolean operators, Visual Basic
 mathematical, in Visual Basic
 order of precedence
 overloading
 string operators, Visual Basic
 Visual Basic comparison operators
OptimizeCache (PivotCache)
Option Compare function 2nd
Option Explicit (Visual Basic)
 using to write bug-free code
Optional keyword
OptionButton object
options, controlling for Excel
Or operator
Order property (PageSetup)
Order property, Trendline object
OrganizationName method (Application)
OrganizeInFolder (WebOptions)
Orientation property 2nd
 PageSetup object
 PivotField object
 ScrollBar and SpinButton
 TextFrame object
OriginalValue property (Field)
Outline object
 members
Outline property (Worksheet) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Outline property (Worksheet) 2nd 3rd
outlines
 display in windows
 working with
overflow
overflow errors, data type conversions
overflows, FetchedRowOverflow, QueryTable
Overlap property (ChartGroup)
overloading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

page breaks
 automatic, controlling
 HpageBreak and HPageBreaks, members
 manual
 VPageBreak and VPageBreaks, members
Page object
PageBreak method, Range
PageFieldOrder (PivotTable)
PageFields method (PivotTable)
PageFieldWrapCount (PivotTable)
PageRange method (PivotTable)
PageRangeCells (PivotTable)
Pages property (MultiPage)
PageSettings object
 controlling automatic page breaks
 properties controlling print settings
 restoring print settings defaults
PageSetup method (Worksheet)
PageSetup object
 members
 using with Graphic object
Pane object
 Activate method
 members
Panes collection
 members
 Window object
panes, locking to prevent scrolling
PaperSize property (PageSetup)
ParamArray arguments
Parameter object
 members
 working with
Parameter object (ADO)
 members
Parameter property (CommandBarControl)
Parameters collection
 members
Parameters collection (ADO), members
Parameters property (QueryTable)
parameters, arguments versus
Parent property
ParentField method (PivotField)
ParentGroup property (Shape)
Password property
Password property (Workbook)
PasswordChar (TextBox, RefEdit)
PasswordEncryption properties
PasswordEncryptionAlgorithm (Workbook)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PasswordEncryptionAlgorithm (Workbook)
PasswordEncryptionFileProperties (Workbook)
PasswordEncryptionKeyLength (Workbook)
PasswordEncryptionProvider (Workbook)
passwords
 Excel password security
 for workbooks
 protecting workbooks
 setting in code
 workbook
 Workbook members for
Paste method
 SeriesCollection
 UserForm object
 Worksheet object
PasteFace method (CommandBarButton)
PasteSpecial method
 Range collection
 Worksheet object
pasting cells, options for
Path property
 AddIn object
 Application object 2nd
 AutoRecover object
 RecentFile object
 Workbook object
paths
 available for Excel objects
 default, for files
 to user Addins folder
 to user Templates folder
 XLSTART directory
PathSeparator method (Application)
Pattern property (ChartFillFormat)
Patterned method (ChartFillFormat)
patterns of characters, matching
pausing Excel
percentages
Period property (Trendline)
Permission collection
Permission property (UserPermission)
PermissionFromPolicy (Permission)
permissions
 file permissions in Windows XP
 limiting file access with
 programming
 setting for workbook
 Windows security
personal information, removing from workbook
PersonalViewListSettings (Workbook)
PersonalViewPrintSettings (Workbook)
Perspective property (Chart)
PIAs for Excel
PickUp method (Shape) 2nd
Picture property
 CommandBarButton object
 CommandButton object
 Image object
PictureAlignment property (Image)
PictureAlignment property (UserForm)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PictureAlignment property (UserForm)
PictureFormat object
 members
PictureFormat property (Shape) 2nd 3rd
PicturePosition property (CommandButton)
pictures, inserting as shapes
PictureSizeMode property
 Image object
 UserForm object
PictureTiling property (Image)
PictureTiling property (UserForm)
PictureType property (Series)
PictureUnit property (Series)
Pie3DGroup property (Chart)
PieGroups method (Chart)
pivot cache
 creating pivot table from
pivot tables
 allowing on worksheet
 changing layout
 changing totals
 charting data
 charts
 connecting to external data source
 creating
 general steps
 in Excel
 creating OLAP cubes
 field lists, display in workbook
 formatting
 GenerateGetPivotData command
 organizing, sorting, and filtering data
 programming
 connecting to external data
 creating in code
 OLAP data cubes
 refreshing
PivotCache method (PivotTable)
PivotCache object
 CommandText property
 Connection property
 CreatePivotTable method
 creating and using for pivot table
 members
PivotCache property (PivotTable)
PivotCaches collection
 Add method 2nd
 members
 Workbook object
PivotCaches method (Workbook)
PivotCell object
PivotField object
 members
PivotFields collection
 members
PivotFields method (PivotTable)
PivotFormula object
PivotFormulas collection
PivotFormulas method (PivotTable)
PivotItem object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PivotItem object
PivotItemList collection
PivotItems collection
PivotItems method (PivotField)
PivotLayout method (Chart)
PivotLayout object
PivotSelect method (PivotTable)
PivotSelection (PivotTable)
PivotSelectionStandard (PivotTable)
PivotTable object
 AddFields method
 CubeFields property
 members
 PivotCache property
 PivotFormulas property
PivotTable Options dialog
PivotTables collection
 Add method
 members
PivotTableSelection (Application)
PivotTableWizard (Workbook)
PivotTableWizard method 2nd 3rd
Placement property
 OLEObject object
 Shape object
platform tests 2nd
PlotArea method (Chart)
PlotArea object
 members
PlotBy property (Chart)
PlotOrder property (Series)
PlotVisibleOnly property (Chart)
Point object
points
 converting centimeters to
 converting inches to
 Range object for specified coordinates
Points collection
Points property (Series) 2nd
PointsToScreenPixelsX method (Window)
PointsToScreenPixelsY method (Window)
PolicyDescription (Permission)
PolicyName (Permission)
pop-up menus
Position property
 CommandBar object
 DataLabel object
 Legend object
 PivotField object
position, properties controlling
Post method (Workbook)
PostText property (QueryTable)
PowerPoint
 automating from Excel
 Diagram object
 exception handling
precedence, Visual Basic mathematical operators
Precedents method (Range)
Precision property (Parameter)
PrecisionAsDisplayed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrecisionAsDisplayed
Prefix property (XmlNamespace)
Presentation object (PowerPoint)
PresentGradient method (ChartFillFormat)
PresentGradientType property (ChartFillFormat)
PresentTexture property (ChartFillFormat)
PresentTextured method (ChartFillFormat)
PreserveColumnFilter (XmlMap)
PreserveFormatting (PivotTable)
PreserveFormatting (QueryTable) 2nd
PreserveNumberFormatting (XmlMap)
PresetDrop method (CalloutFormat)
PresetShape property (TextEffectFormat)
PresetTextEffect property (TextEffectFormat)
PrettyPrint function 2nd 3rd
previewing
Previous method
 Comment object
 Range object
PreviousSelections method (Application)
Print # function
PrintArea property (PageSetup)
PrintComments method (PageSetup)
PrintErrors method (PageSetup)
PrintForm method
PrintForm method (UserForm)
PrintGridlines property (PageSetup)
PrintHeadings property (PageSetup)
printing
 BeforePrint event, Workbook
 common object members for
 filtering ranges
 getting/setting printer settings
 page breaks, controlling
 paper size
 turning off for embedded objects in worksheet
 views, information stored in
PrintNotes property (PageSetup)
PrintObject property
PrintOut method
 MailItem
 objects with
 Range collection
 Workbook object
PrintPreview method
 objects with
 Range collection
 viewing effects of changes
 Workbook object
PrintQuality method (PageSetup)
PrintSettings property (CustomView)
PrintTitleColumns (PageSetup)
PrintTitleRows (PageSetup)
PrintTitles (PivotTable)
Priority (CommandBarControl)
priority of email
Private scope, procedures
procedures
 arguments
 arguments and results

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 arguments and results
 breaking tasks into
 called from modules
 displaying cursor position
 End statement
 events
 in Visual Basic programs
 named arguments
 naming
 optional arguments
 properties
 return values
 scope
 types of
 unit testing
 using in formulas
ProductCode method (Application)
Profile Template Wizard
progIDs (programmatic identifiers)
 common Office objects
 common, reference listing
 embedded objects
 Forms 2.0 controls
 returning for OLEObject
programmers in Excel community, communicating with
programming Excel, reasons for
programs, Visual Basic
Project window (Visual Basic Editor)
projects
 Visual Basic, scope levels within
PromptForSummaryInfo (Application)
PromptString property (Parameter)
properties 2nd
 active object
 Caption
 collections, custom versus built-in
 complex
 controlling charts
 defined in classes
 getting collections with
 Left, Top, Height, and Width
 object
 object member
 objects having Name and Caption properties
 publishing possible settings in enumerations
 read-only 2nd
 setting for add-ins
 setting for code-only add-ins
 setting for forms
 settings for tabbed controls
 Value
 Visible
 web query
 write-once
 write-only
Property procedures 2nd 3rd
 accessor functions
PropertyOrder (PivotField)
PropertyParentField (PivotField)
ProportionalThumb property (ScrollBar)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ProportionalThumb property (ScrollBar)
Protect method
 Chart object
 Workbook object
 Worksheet object 2nd
ProtectContents property (Worksheet) 2nd
ProtectData property (Chart)
ProtectDrawingObjects (Worksheet) 2nd
ProtectGoalSeek (Chart)
Protection object
Protection property
 CommandBar object
 Worksheet object
Protection property (Worksheet)
ProtectionMode (Worksheet) 2nd
ProtectScenarios (Worksheet) 2nd
ProtectSelection (Chart)
ProtectSharing method (Workbook)
ProtectStructure property (Workbook)
ProtectWindows property (Workbook)
proxy classes
Public scope, procedures
Publish method
 ListObject object 2nd
 PublishObjects
publisher for a chart
publishing to the Web
 ActiveX controls
 from code
 from Excel
 options
 republishing
PublishObject object
PublishObjects collection
 Add method 2nd
 members
PublishObjects method (Workbook)
PurgeChangeHistoryNow (Workbook)
Put function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.1. Dialogs Collection Constants
Use the Dialogscollection to display Excel's built-in dialog boxes. Each dialog box in Excel has a corresponding
Dialogsconstant as listed in Table A-1. To display the dialog box, use the Show method:

Application.Dialogs(xlDialogActiveCellFont).Show

The Show method takes a variable number of optional arguments, which are also listed in Table A-1. Those arguments
set the initial property of the dialog box. For example, the following code displays the Font dialog box with Helvetica,
Italic, 14 point selected:

Application.Dialogs(xlDialogActiveCellFont).Show "Helvetica", "Italic", "14"

The Show method returns True if the user clicks OK or False if the user cancels the operation. (Some dialog boxes don't
have any options.)

Table A-1 lists some dialog box constants more than once. In those cases, the dialog box takes different arguments
depending on what object currently has focus in Excel. For example, xlDialogPageSetup has three versions: the first is for
printing worksheets, the second is for printing charts, and the third is for printing Excel 5.0 dialog sheets (which are
obsolete).

Table A-1. Dialogs collection constants (continued)
Constant Show arguments

xlDialogActivate window_text, pane_num

xlDialogActiveCellFont font, font_style, size, strikethrough, superscript, subscript, outline, shadow, underline, color, normal,
background, start_char, char_count

xlDialogAddChartAutoformat name_text, desc_text

xlDialogAddinManager operation_num, addinname_text, copy_logical

xlDialogAlignment horiz_align, wrap, vert_align, orientation, add_indent

xlDialogApplyNames name_array, ignore, use_rowcol, omit_col, omit_row, order_num, append_last

xlDialogApplyStyle style_text

xlDialogAppMove x_num, y_num

xlDialogAppSize x_num, y_num

xlDialogArrangeAll arrange_num, active_doc, sync_horiz, sync_vert

xlDialogAssignToObject macro_ref

xlDialogAssignToTool bar_id, position, macro_ref

xlDialogAttachText attach_to_num, series_num, point_num

xlDialogAttachToolbars
xlDialogAutoCorrect correct_initial_caps, capitalize_days

xlDialogAxes x_primary, y_primary, x_secondary, y_secondary

xlDialogAxes x_primary, y_primary, z_primary

xlDialogBorder outline, left, right, top, bottom, shade, outline_color, left_color, right_color, top_color, bottom_color

xlDialogCalculation type_num, iter, max_num, max_change, update, precision, date_1904, calc_save, save_values,
alt_exp, alt_form

xlDialogCellProtection locked, hidden

xlDialogChangeLink old_text, new_text, type_of_link

xlDialogChartAddData ref, rowcol, titles, categories, replace, series

xlDialogChartLocation

xlDialogChartOptionsDataLabels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogChartOptionsDataTable

xlDialogChartSourceData
xlDialogChartTrend type, ord_per, forecast, backcast, intercept, equation, r_squared, name

xlDialogChartType

xlDialogChartWizard long, ref, gallery_num, type_num, plot_by, categories, ser_titles, legend, title, x_title, y_title, z_title,
number_cats, number_titles

xlDialogCheckboxProperties value, link, accel_text, accel2_text, 3d_shading

xlDialogClear type_num

xlDialogColorPalette file_text

xlDialogColumnWidth width_num, reference, standard, type_num, standard_num

xlDialogCombination type_num

xlDialogConditionalFormatting
xlDialogConsolidate source_refs, function_num, top_row, left_col, create_links

xlDialogCopyChart size_num

xlDialogCopyPicture appearance_num, size_num, type_num

xlDialogCreateNames top, left, bottom, right

xlDialogCreatePublisher file_text, appearance, size, formats

xlDialogCustomizeToolbar category

xlDialogCustomViews

xlDialogDataDelete
xlDialogDataLabel show_option, auto_text, show_key

xlDialogDataSeries rowcol, type_num, date_num, step_value, stop_value, trend

xlDialogDataValidation
xlDialogDefineName name_text, refers_to, macro_type, shortcut_text, hidden, category, local

xlDialogDefineStyle style_text, number, font, alignment, border, pattern, protection

xlDialogDefineStyle style_text, attribute_num, additional_def_args, ...

xlDialogDeleteFormat format_text

xlDialogDeleteName name_text

xlDialogDemote row_col

xlDialogDisplay formulas, gridlines, headings, zeros, color_num, reserved, outline, page_breaks, object_num

xlDialogDisplay cell, formula, value, format, protection, names, precedents, dependents, note

xlDialogEditboxProperties validation_num, multiline_logical, vscroll_logical, password_logical

xlDialogEditColor color_num, red_value, green_value, blue_value

xlDialogEditDelete shift_num

xlDialogEditionOptions edition_type, edition_name, reference, option, appearance, size, formats

xlDialogEditSeries series_num, name_ref, x_ref, y_ref, z_ref, plot_order

xlDialogErrorbarX include, type, amount, minus

xlDialogErrorbarY include, type, amount, minus

xlDialogExternalDataProperties
xlDialogExtract unique

xlDialogFileDelete file_text

xlDialogFileSharing
xlDialogFillGroup type_num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogFillWorkgroup type_num

xlDialogFilter
xlDialogFilterAdvanced operation, list_ref, criteria_ref, copy_ref, unique

xlDialogFindFile
xlDialogFont name_text, size_num

xlDialogFontProperties font, font_style, size, strikethrough, superscript, subscript, outline, shadow, underline, color, normal,
background, start_char, char_count

xlDialogFormatAuto format_num, number, font, alignment, border, pattern, width

xlDialogFormatChart layer_num, view, overlap, angle, gap_width, gap_depth, chart_depth, doughnut_size, axis_num, drop,
hilo, up_down, series_line, labels, vary

xlDialogFormatCharttype apply_to, group_num, dimension, type_num

xlDialogFormatFont color, backgd, apply, name_text, size_num, bold, italic, underline, strike, outline, shadow, object_id,
start_num, char_num

xlDialogFormatFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow

xlDialogFormatFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow, object_id_text, start_num,
char_num

xlDialogFormatLegend position_num

xlDialogFormatMain type_num, view, overlap, gap_width, vary, drop, hilo, angle, gap_depth, chart_depth, up_down,
series_line, labels, doughnut_size

xlDialogFormatMove x_offset, y_offset, reference

xlDialogFormatMove x_pos, y_pos

xlDialogFormatMove explosion_num

xlDialogFormatNumber format_text

xlDialogFormatOverlay type_num, view, overlap, gap_width, vary, drop, hilo, angle, series_dist, series_num, up_down,
series_line, labels, doughnut_size

xlDialogFormatSize width, height

xlDialogFormatSize x_off, y_off, reference

xlDialogFormatText x_align, y_align, orient_num, auto_text, auto_size, show_key, show_value, add_indent

xlDialogFormulaFind text, in_num, at_num, by_num, dir_num, match_case, match_byte

xlDialogFormulaGoto reference, corner

xlDialogFormulaReplace find_text, replace_text, look_at, look_by, active_cell, match_case, match_byte

xlDialogFunctionWizard
xlDialogGallery3dArea type_num

xlDialogGallery3dBar type_num

xlDialogGallery3dColumn type_num

xlDialogGallery3dLine type_num

xlDialogGallery3dPie type_num

xlDialogGallery3dSurface type_num

xlDialogGalleryArea type_num, delete_overlay

xlDialogGalleryBar type_num, delete_overlay

xlDialogGalleryColumn type_num, delete_overlay

xlDialogGalleryCustom name_text

xlDialogGalleryDoughnut type_num, delete_overlay

xlDialogGalleryLine type_num, delete_overlay

xlDialogGalleryPie type_num, delete_overlay

xlDialogGalleryRadar type_num, delete_overlay

xlDialogGalleryScatter type_num, delete_overlay

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogGalleryScatter type_num, delete_overlay

xlDialogGoalSeek target_cell, target_value, variable_cell

xlDialogGridlines x_major, x_minor, y_major, y_minor, z_major, z_minor, 2D_effect

xlDialogImportTextFile
xlDialogInsert shift_num

xlDialogInsertHyperlink

xlDialogInsertNameLabel
xlDialogInsertObject object_class, file_name, link_logical, display_icon_logical, icon_file, icon_number, icon_label

xlDialogInsertPicture file_name, filter_number

xlDialogInsertTitle chart, y_primary, x_primary, y_secondary, x_secondary

xlDialogLabelProperties accel_text, accel2_text, 3d_shading

xlDialogListboxProperties range, link, drop_size, multi_select, 3d_shading

xlDialogMacroOptions macro_name, description, menu_on, menu_text, shortcut_on, shortcut_key, function_category,
status_bar_text, help_id, help_file

xlDialogMailEditMailer to_recipients, cc_recipients, bcc_recipients, subject, enclosures, which_address

xlDialogMailLogon name_text, password_text, download_logical

xlDialogMailNextLetter
xlDialogMainChart type_num, stack, 100, vary, overlap, drop, hilo, overlap%, cluster, angle

xlDialogMainChartType type_num

xlDialogMenuEditor
xlDialogMove x_pos, y_pos, window_text

xlDialogNew type_num, xy_series, add_logical

xlDialogNewWebQuery
xlDialogNote add_text, cell_ref, start_char, num_chars

xlDialogObjectProperties placement_type, print_object

xlDialogObjectProtection locked, lock_text

xlDialogOpen file_text, update_links, read_only, format, prot_pwd, write_res_pwd, ignore_rorec, file_origin,
custom_delimit, add_logical, editable, file_access, notify_logical, converter

xlDialogOpenLinks document_text1, document_text2, ..., read_only, type_of_link

xlDialogOpenMail subject, comments

xlDialogOpenText file_name, file_origin, start_row, file_type, text_qualifier, consecutive_delim, tab, semicolon, comma,
space, other, other_char, field_info

xlDialogOptionsCalculation type_num, iter, max_num, max_change, update, precision, date_1904, calc_save, save_values

xlDialogOptionsChart display_blanks, plot_visible, size_with_window

xlDialogOptionsEdit incell_edit, drag_drop, alert, entermove, fixed, decimals, copy_objects, update_links, move_direction,
autocomplete, animations

xlDialogOptionsGeneral R1C1_mode, dde_on, sum_info, tips, recent_files, old_menus, user_info, font_name, font_size,
default_location, alternate_location, sheet_num, enable_under

xlDialogOptionsListsAdd string_array

xlDialogOptionsListsAdd import_ref, by_row

xlDialogOptionsME def_rtl_sheet, crsr_mvmt, show_ctrl_char, gui_lang

xlDialogOptionsTransition menu_key, menu_key_action, nav_keys, trans_eval, trans_entry

xlDialogOptionsView formula, status, notes, show_info, object_num, page_breaks, formulas, gridlines, color_num, headers,
outline, zeros, hor_scroll, vert_scroll, sheet_tabs

xlDialogOutline auto_styles, row_dir, col_dir, create_apply

xlDialogOverlay type_num, stack, 100, vary, overlap, drop, hilo, overlap%, cluster, angle, series_num, auto

xlDialogOverlayChartType type_num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogPageSetup head, foot, left, right, top, bot, hdng, grid, h_cntr, v_cntr, orient, paper_size, scale, pg_num,
pg_order, bw_cells, quality, head_margin, foot_margin, notes, draft

xlDialogPageSetup head, foot, left, right, top, bot, size, h_cntr, v_cntr, orient, paper_size, scale, pg_num, bw_chart,
quality, head_margin, foot_margin, draft

xlDialogPageSetup head, foot, left, right, top, bot, orient, paper_size, scale, quality, head_margin, foot_margin, pg_num

xlDialogParse parse_text, destination_ref

xlDialogPasteNames
xlDialogPasteSpecial paste_num, operation_num, skip_blanks, transpose

xlDialogPasteSpecial rowcol, titles, categories, replace, series

xlDialogPasteSpecial paste_num

xlDialogPasteSpecial format_text, pastelink_logical, display_icon_logical, icon_file, icon_number, icon_label

xlDialogPatterns apattern, afore, aback, newui

xlDialogPatterns lauto, lstyle, lcolor, lwt, hwidth, hlength, htype

xlDialogPatterns bauto, bstyle, bcolor, bwt, shadow, aauto, apattern, afore, aback, rounded, newui

xlDialogPatterns bauto, bstyle, bcolor, bwt, shadow, aauto, apattern, afore, aback, invert, apply, newfill

xlDialogPatterns lauto, lstyle, lcolor, lwt, tmajor, tminor, tlabel

xlDialogPatterns lauto, lstyle, lcolor, lwt, apply, smooth

xlDialogPatterns lauto, lstyle, lcolor, lwt, mauto, mstyle, mfore, mback, apply, smooth

xlDialogPatterns type, picture_units, apply

xlDialogPhonetic

xlDialogPivotCalculatedField

xlDialogPivotCalculatedItem

xlDialogPivotClientServerSet
xlDialogPivotFieldGroup start, end, by, periods

xlDialogPivotFieldProperties name, pivot_field_name, new_name, orientation, function, formats

xlDialogPivotFieldUngroup
xlDialogPivotShowPages name, page_field

xlDialogPivotSolveOrder

xlDialogPivotTableOptions

xlDialogPivotTableWizard type, source, destination, name, row_grand, col_grand, save_data, apply_auto_format, auto_page,
reserved

xlDialogPlacement placement_type

xlDialogPrint range_num, from, to, copies, draft, preview, print_what, color, feed, quality, y_resolution, selection,
printer_text, print_to_file, collate

xlDialogPrinterSetup printer_text

xlDialogPrintPreview
xlDialogPromote rowcol

xlDialogProperties title, subject, author, keywords, comments

xlDialogProtectDocument contents, windows, password, objects, scenarios

xlDialogProtectSharing

xlDialogPublishAsWebPage
xlDialogPushbuttonProperties default_logical, cancel_logical, dismiss_logical, help_logical, accel_text, accel_text2

xlDialogReplaceFont font_num, name_text, size_num, bold, italic, underline, strike, color, outline, shadow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogRoutingSlip recipients, subject, message, route_num, return_logical, status_logical

xlDialogRowHeight height_num, reference, standard_height, type_num

xlDialogRun reference, step

xlDialogSaveAs document_text, type_num, prot_pwd, backup, write_res_pwd, read_only_rec

xlDialogSaveCopyAs document_text

xlDialogSaveNewObject
xlDialogSaveWorkbook document_text, type_num, prot_pwd, backup, write_res_pwd, read_only_rec

xlDialogSaveWorkspace name_text

xlDialogScale cross, cat_labels, cat_marks, between, max, reverse

xlDialogScale min_num, max_num, major, minor, cross, logarithmic, reverse, max

xlDialogScale cat_labels, cat_marks, reverse, between

xlDialogScale series_labels, series_marks, reverse

xlDialogScale min_num, max_num, major, minor, cross, logarithmic, reverse, min

xlDialogScenarioAdd scen_name, value_array, changing_ref, scen_comment, locked, hidden

xlDialogScenarioCells changing_ref

xlDialogScenarioEdit scen_name, new_scenname, value_array, changing_ref, scen_comment, locked, hidden

xlDialogScenarioMerge source_file

xlDialogScenarioSummary result_ref, report_type

xlDialogScrollbarProperties value, min, max, inc, page, link, 3d_shading

xlDialogSelectSpecial type_num, value_type, levels

xlDialogSendMail recipients, subject, return_receipt

xlDialogSeriesAxes axis_num

xlDialogSeriesOptions
xlDialogSeriesOrder chart_num, old_series_num, new_series_num

xlDialogSeriesShape
xlDialogSeriesX x_ref

xlDialogSeriesY name_ref, y_ref

xlDialogSetBackgroundPicture
xlDialogSetPrintTitles titles_for_cols_ref, titles_for_rows_ref

xlDialogSetUpdateStatus link_text, status, type_of_link

xlDialogShowDetail rowcol, rowcol_num, expand, show_field

xlDialogShowToolbar bar_id, visible, dock, x_pos, y_pos, width, protect, tool_tips, large_buttons, color_buttons

xlDialogSize width, height, window_text

xlDialogSort orientation, key1, order1, key2, order2, key3, order3, header, custom, case

xlDialogSort orientation, key1, order1, type, custom

xlDialogSortSpecial sort_by, method, key1, order1, key2, order2, key3, order3, header, order, case

xlDialogSplit col_split, row_split

xlDialogStandardFont name_text, size_num, bold, italic, underline, strike, color, outline, shadow

xlDialogStandardWidth standard_num

xlDialogStyle bold, italic

xlDialogSubscribeTo file_text, format_num

xlDialogSubtotalCreate at_change_in, function_num, total, replace, pagebreaks, summary_below

xlDialogSummaryInfo title, subject, author, keywords, comments

xlDialogTable row_ref, column_ref

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlDialogTabOrder

xlDialogTextToColumns destination_ref, data_type, text_delim, consecutive_delim, tab, semicolon, comma, space, other,
other_char, field_info

xlDialogUnhide window_text

xlDialogUpdateLink link_text, type_of_link

xlDialogVbaInsertFile filename_text

xlDialogVbaMakeAddIn

xlDialogVbaProcedureDefinition
xlDialogView3d elevation, perspective, rotation, axes, height%, autoscale

xlDialogWebOptionsEncoding

xlDialogWebOptionsFiles

xlDialogWebOptionsFonts

xlDialogWebOptionsGeneral

xlDialogWebOptionsPictures
xlDialogWindowMove x_pos, y_pos, window_text

xlDialogWindowSize width, height, window_text

xlDialogWorkbookAdd name_array, dest_book, position_num

xlDialogWorkbookCopy name_array, dest_book, position_num

xlDialogWorkbookInsert type_num

xlDialogWorkbookMove name_array, dest_book, position_num

xlDialogWorkbookName oldname_text, newname_text

xlDialogWorkbookNew
xlDialogWorkbookOptions sheet_name, bound_logical, new_name

xlDialogWorkbookProtect structure, windows, password

xlDialogWorkbookTabSplit ratio_num

xlDialogWorkbookUnhide sheet_text

xlDialogWorkgroup name_array

xlDialogWorkspace fixed, decimals, r1c1, scroll, status, formula, menu_key, remote, entermove, underlines, tools, notes,
nav_keys, menu_key_action, drag_drop, show_info

xlDialogZoom magnification

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2. Common Programmatic IDs
Programmatic IDs (progIDs) are used by several methods to create new instances of objects. For example, the
following code creates a new checkbox on the active worksheet:

Sub AddCheckBox()
 Dim ole As OLEObject
 ' Add new check box.
 Set ole = ActiveSheet.OLEObjects.Add("Forms.CheckBox.1", _
 , , , , , , 60, 60, 100, 20)
 ' Select the check box.
 ole.Object.Value = True
 ' Set its caption
 ole.Object.Caption = "New Check Box"
End Sub

Table A-2 lists common applications and the objects that they provide, along with the progIDs used to create those
objects in code.

Table A-2. Common programmatic IDs (continued)
Application Object ProgID

ActiveX Controls CheckBox Forms.CheckBox.1

 ComboBox Forms.ComboBox.1

 CommandButton Forms.CommandButton.1

 Frame Forms.Frame.1

 Image Forms.Image.1

 Label Forms.Label.1

 ListBox Forms.ListBox.1

 MultiPage Forms.MultiPage.1

 OptionButton Forms.OptionButton.1

 ScrollBar Forms.ScrollBar.1

 SpinButton Forms.SpinButton.1

 TabStrip Forms.TabStrip.1

 TextBox Forms.TextBox.1

 ToggleButton Forms.ToggleButton.1

 Calendar MSCal.Calendar

Microsoft Access Application Access.Application

 CurrentData Access.CodeData

 Access.CurrentData

 CurrentProject Access.CodeProject

 Access.CurrentProject

 DefaultWebOptions Access.DefaultWebOptions

Microsoft Excel Application Excel.Application

 Workbook Excel.AddIn

 Workbook Excel.Chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Workbook Excel.Sheet

Microsoft Graph Application MSGraph.Application

 Chart MSGraph.Chart

Microsoft Office Web Components ChartSpace OWC.Chart

 DataSourceControl OWC.DataSourceControl

 ExpandControl OWC.ExpandControl

 PivotTable OWC.PivotTable

 RecordNavigationControl OWC.RecordNavigationControl

 Spreadsheet OWC.Spreadsheet

Microsoft Outlook Application Outlook.Application

Microsoft PowerPoint Application PowerPoint.Application

Microsoft Word Application Word.Application

 Document Word.Document

 Template Word.Template

 Global Word.Global

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Reference Tables

Section A.1. Dialogs Collection Constants

Section A.2. Common Programmatic IDs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1. Summary of Version Changes
In 1997, Excel Version 8.0 introduced object-oriented programming features including events and classes. User forms
replaced dialog sheets, and pivot table objects were expanded. Forms 2.0 controls and the following objects were
introduced:

Adjustments CalculatedFields CalculatedItems

CalloutFormat ChartColorFormat ChartFillFormat

ColorFormat Comment ControlFormat

CustomView DataTable FillFormat

FormatCondition FreeformBuilder GroupShapes

HPageBreak Hyperlink LeaderLines

LineFormat ODBCError OLEFormat

Parameter PictureFormat PivotCache

PivotField PivotFormula QueryTable

RecentFile ShadowFormat Shape

ShapeNode ShapeRange TextEffectFormat

TextFrame ThreeDFormat Validation

VPageBreak

In 2000, Excel Version 9.0 introduced Visual Basic Version 6.0 and made minor additions to the object model. Mainly,
Version 9.0 added OLAP to pivot tables and enabled publishing to the Web. The following objects were introduced:

CubeField DefaultWebOptions

DisplayUnitLabel Filter

Floor Font

OLEDBError Phonetic

PivotLayout PublishObject

WebOptions

In 2002, Excel Version 10.0 added smart tags, worksheet errors and watches, speech, and edit ranges. The following
objects were introduced:

AllowEditRange AutoRecover

CalculatedMember CellFormat

CustomProperty Diagram

DiagramNodeChildren Error

ErrorCheckingOptions Graphic

PivotCell PivotItemList

Protection RTD

SmartTag SmartTagAction

SmartTagOptions SmartTagRecognizer

Speech SpellingOptions

Tab UsedObjects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UserAccess Watch

In 2003, Excel Version 11.0 introduced lists, XML, SharePoint, and Integrated Rights Management (IRM) features.
Version 11.0 included these new objects:

ListColumn ListDataFormat

ListObject ListRow

XmlDataBinding XmlMap

XmlNamespace XmlSchema

XPath XPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2. Macintosh Compatibility
The Macintosh versions of Excel generally support a subset of the Excel 2002 features. Notably, Excel 2004 for the
Macintosh does not support the XML features introduced in Excel 2003 for Windows.

Excel for the Macintosh uses Visual Basic Version 5.0, and the Macintosh platform does not support ActiveX, COM, or
any Excel features that require those technologies. Specifically, the Forms 2.0 controls are not available. Use the Forms
1.0 controls from the Forms toolbar when working on the Macintosh or creating workbooks that will be shared with
Macintosh users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Version Compatibility
See Chapter 6 for instructions on how to check the Excel version at runtime and recommendations on how to handle
version differences. Table B-1 lists the Excel objects by year introduced. The sections that follow the table summarize
the changes for each version. In this table, X=available, H=hidden or obsolete, and M=Macintosh only.

Table B-1. Excel objects listed by product version

 Excel year (version)
Object 1995 (7) 1997 (8) 2000 (9) 2002 (10) 2003 (11)

AddIn X X X X X

Adjustments X X X X

AllowEditRange X X

Application X X X X X

Arc X H H H H

Areas X X X X X

AutoCorrect X X X X X

AutoFilter X X X X X

AutoRecover X X

Axis X X X X X

AxisTitle X X X X X

Border X X X X X

Button X H H H H

CalculatedFields X X X X

CalculatedItems X X X X

CalculatedMember X X

CalloutFormat X X X X

CellFormat X X

Characters X X X X X

Chart X X X X X

ChartArea X X X X X

ChartColorFormat X X X X

ChartFillFormat X X X X

ChartGroup X X X X X

ChartObject X X X X X

ChartTitle X X X X X

CheckBox X H H H H

ColorFormat X X X X

Comment X X X X

ConnectorFormat X X X X X

ControlFormat X X X X

Corners X X X X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CubeField X X X

CustomProperty X X

CustomView X X X X

DataLabel X X X X X

DataTable X X X X

DefaultWebOptions X X X

Diagram X X

DiagramNode X X

DiagramNodeChildren X X

Dialog X X X X X

DialogFrame X H H H H

DialogSheet X H H H H

DisplayUnitLabel X X X

DownBars X X X X X

Drawing X H H H H

DrawingObjects X H H H H

DropDown X H H H H

DropLines X X X X X

EditBox X H H H H

Error X X

ErrorBars X X X X X

ErrorCheckingOptions X X

FillFormat X X X X

Filter X X X

Floor X X X

Font X X X

FormatCondition X X X X

FreeformBuilder X X X X

Global X X X X X

Graphic X X

Gridlines X X X X X

GroupBox X H H H H

GroupObject X H H H H

GroupShapes X X X X

HiLoLines X X X X X

HPageBreak X X X X

Hyperlink X X X X

Interior X X X X X

Label X X X X X

LeaderLines X X X X

Legend X X X X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LegendEntry X X X X X

LegendKey X X X X X

Line X H H H H

LineFormat X X X X

LinkFormat X X X X X

ListBox X H H H H

ListColumn X

ListDataFormat X

ListObject X

ListRow X

Mailer M M M M M

Menu X H H H H

MenuBar X H H H H

MenuItem X H H H H

Menus X H H H H

Module X H H H H

Name X X X X X

ODBCError X X X X

OLEDBError X X X

OLEFormat X X X X

OLEObject X X X X X

OptionButton X H H H H

Outline X X X X X

Oval X H H H H

PageSetup X X X X X

Pane X X X X X

Parameter X X X X

Phonetic X X X

Picture X H H H H

PictureFormat X X X X

PivotCache X X X X

PivotCell X X

PivotField X X X X

PivotFormula X X X X

PivotItem X X X X X

PivotItemList X X

PivotLayout X X X

PivotTable X X X X X

PlotArea X X X X X

Point X X X X X

Protection X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PublishObject X X X

QueryTable X X X X

Range X X X X X

RecentFile X X X X

Rectangle X H H H H

RoutingSlip X X X X X

RTD X X

Scenario X X X X X

Scenarios X X X X X

ScrollBar X H H H H

Series X X X X X

SeriesLines X X X X X

ShadowFormat X X X X

Shape X X X X

ShapeNode X X X X

ShapeRange X X X X

Sheets X X X X X

SmartTag X X

SmartTagAction X X

SmartTagOptions X X

SmartTagRecognizer X X

SoundNote X

Speech X X

SpellingOptions X X

Spinner X H H H H

Style X X X X X

Tab X X

TextBox X H H H H

TextEffectFormat X X X X

TextFrame X X X X

ThreeDFormat X X X X

TickLabels X X X X X

Toolbar X H H H H

ToolbarButton X H H H H

Trendline X X X X X

UpBars X X X X X

UsedObjects X X

UserAccess X X

Validation X X X X

VPageBreak X X X X

Walls X X X X X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Walls X X X X X

Watch X X

WebOptions X X X

Window X X X X X

Workbook X X X X X

Worksheet X X X X X

WorksheetFunction X X X X X

XmlDataBinding X

XmlMap X

XmlNamespace X

XmlSchema X

XPath X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Author
Jeff Webb is one of the original Visual Basic team members. He was intensely involved with Excel VBA and conceived
the first Office Developer's Kit. Jeff also wrote the first book on Excel VBA, Using Excel Visual Basic for Applications
(Que), which has remained in print for an amazing 12 years.

Steve Saunders is also one of the original Visual Basic team members, as well as the lead designer of the original
Microsoft Access online documentation system. He has been an active Access developer for over 10 years and has been
a technical editor and reviewer for numerous books on Access, Word, and Excel programming. He is a frequent
programmer writer consultant for Microsoft, lending his expertise to a variety of Office products and technologies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1. Why Program?
Excel is a mature product with every imaginable featuredoesn't it do everything it needs to already? Excel is amazingly
complete, but programming Excel isn't really about adding new features as much as it is about combining existing
features to solve specific problems.

Excel is a platform for solving complex calculations and presenting results. Programming transforms that general
platform into a task-specific piece of software. The phrase task-specific piece of software is kind of a mouthful, and
most folks use the word solution instead. In my opinion, that's awfully vague but probably better than a new acronym.

The reason to program Excel is to make some task easier or more reliable. Programming languages make things easier
because they are great at performing repetitive operations and following a logical path without getting tired or bored.
They make things more reliable because they slavishly follow your directions and never, ever get creative.

Having such a devoted servant comes with a lot of responsibility, however. For instance, if you tell Excel to "lather,
rinse, repeat" like it says on the back of a shampoo bottle, it's liable to scrub the hair right off your head since you
never told it when to stop repeating. (Hint: if that ever happens to you, press Ctrl-Break and step out of the shower.)

You need to understand the basic rules common to all programming languages before you can write real programs in
Excel (see Chapter 2). That's kind of dry stuff, though, so right now I'm going to jump ahead to something more fun.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.10. Navigate Samples and Help
I've organized my samples by chapter, so the samples for this chapter are in ch01.xls, the next chapter is ch02.xls, and
so on. Within each sample, I include a Start Here sheet that provides general instructions on using the samples, a
Resources sheet that includes links to other sources of information, and in between I include sheets related to the
specific topics covered in the chapter (Figure 1-34).

Figure 1-34. Chapter samples are stored in a workbook; topics are covered on
individual sheets

In some cases, a chapter's samples may include other files or folders, but in all cases, links to those locations are found
in the main chapter sample.

In other words, I've tried to organize stuff as simply as possible.

Excel's Visual Basic Help is also organized fairly simply, however there are a couple gotchas:

Make sure that you have installed Visual Basic Help for Excel . Earlier versions of Excel did not install Help for
Visual Basic by default. If you press F1 in Visual Basic and Help is not displayed, you probably need to run the
Excel Setup program to update your installation so it includes Visual Basic Help.

If you are using Excel 2003 you may want to start Help by opening the Help file directly rather than through
pressing F1. Excel 2003 provides navigation tools in a Help task pane rather than in the Help window (Figure 1-
35 versus Figure 1-36), and it's harder to navigate that way!

Figure 1-35. Excel 2003 navigates Help from the task pane on the right

Figure 1-36. Earlier Excel versions, or opening the file directly, provides navigation
as part of the Help window, on the left

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as part of the Help window, on the left

To open the Excel 2003 Help file directly, either click on the link on the Resources sheet or double-click on the Help file
in Windows Explorer. The Excel 2003 Help file is stored at C:\Program Files\Microsoft
Office\OFFICE11\1033\VBAXL10.CHM by default. The Visual Basic language reference is stored at C:\Program
Files\Common Files\Microsoft Shared\Vba\Vba6\1033\VBLr6.chm by default.

The graphic in Figure 1-36 shows how the Excel objects are organized. If you click on one of the boxes, you'll get more
information about that object, as shown in Figure 1-37.

Figure 1-37. Help on the Worksheet object

Excel's Help often does a good job of explaining what a specific object is, but it often lacks good direction on why you
might use the object. Those are the blanks I'll try to fill in for you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.11. What You've Learned
So far, you've learned how to record a macro from Excel and then modify that code to repeat the task globally. In the
process, you learned how to use the Visual Basic Editor to step through code, fix errors, and get online Help.

You should have turned on Option Explicit for all your code and created a digital signature that you can use to avoid the
macro security warning when working on your code.

Come back to this chapter later if you need help finding and fixing errors or using the Visual Basic Editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2. Record and Read Code
The best way to learn about Excel objects, properties, and methods is by recording code . It's even better than online
Help. Recording will almost always tell you what you need to know if you know how to use it. When Excel records code,
it translates your actions into Visual Basic code. This lets you reverse-engineer recorded actions or simply cut and paste
recorded actions into other procedures.

For example, suppose that you have a workbook containing multiple sheets of sales data as shown in Figure 1-1. You
want to format the data on each of the sheets and add a chart comparing units sold and revenue. This is a great
opportunity to record some code.

Figure 1-1. An example for recording code

To record your code:

1. Choose Tools Macros Record New Macro. Excel displays the Record Macro dialog (Figure 1-2).

Figure 1-2. Step 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Select the range A1:C16 and choose Format AutoFormat. Excel displays the AutoFormat dialog (Figure 1-
3).

Figure 1-3. Step 2

3. Select the Simple format and click OK. Excel formats the range.

4. Press Shift-Up to deselect the Total row and then choose Insert Chart. Excel displays the Chart Wizard
(Figure 1-4).

Figure 1-4. Step 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Click Finish to insert a chart on the sheet as shown in Figure 1-5.

6. Finally, choose Tools Macro Stop Recording to turn off recording.

Now you could repeat this task by selecting one of the other worksheets and run the recorded code by pressing Alt-F8
and running Macro1, but the data would have to be in the same location on the active worksheet and the new chart
would appear on the 2002 worksheet, not the active one. Instead, press Alt-F8 and click Edit. Excel starts the Visual
Basic Editor (VBE) and displays your recorded code, as shown here:

 Sub Macro1() '<---------- Name of procedure.
 '
 ' Macro1 Macro <----------- Comments describing procedure.
 ' Macro recorded 5/26/2004 by Jeff
 '

 '
 Range("A1:C16").Select '<---- Following lines record what you did.
 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 Range("A1:C15").Select
 Charts.Add

 ActiveChart.ChartType = xlColumnClustered
 ActiveChart.SetSourceData Source:=Sheets("2002").Range("A1:C15"), PlotBy:= _
 xlColumns ' Long lines are continued using an underscore ---------^
 ActiveChart.Location Where:=xlLocationAsObject, Name:="2002"
 End Sub '<---------- End of procedure.

Figure 1-5. Step 5

I added some labels in the recorded code to identify its parts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I added some labels in the recorded code to identify its parts:

Each procedure in a workbook has a unique name. Excel assigns the names Macro1, Macro2, and so on to
recorded code.

Anything that appears after ' is a comment. Comments are descriptive text that don't run as code.

Lines of text that aren't comments are executable statements . Statements tell Visual Basic what to do in Excel.

Lines that are longer than about 80 characters are continued on the next line using the _ character. Excel does
that for readability. Actually, Visual Basic allows lines of code to be much longer if you don't mind horizontal
scrolling.

Procedures always include an End statement to tell Visual Basic where to stop.

So now that you've recorded code, what can you do with it? That's up next.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3. Change Recorded Code
Recorded code is a great way to learn, but it's not really a program. Real programs are much more flexible, and
recorded code always has the following limitations:

Follows a linear path

Excel can't infer logic from the user's actionseven if the user repeats an action, Excel only records the action
twice. It doesn't know how to record "repeat until end" or "do this task if..." Excel can "replace all" and perform
other global actions, but that's still linear logic.

Actions apply to the active item

Excel bases recorded actions on whatever worksheet, range, or chart is currently selected by the user. If you
want your code to work with other sheets or ranges, you need to either change the active selection or add
object references that tell the code which items to work with.

Uses cell addresses

For example, Range("A1:C16"). Although Excel keeps references on worksheets up-to-date, Excel can't update
addresses in code. That means if your data is moved on the worksheet, the code won't work correctly. To fix
this, use Excel range properties or named ranges instead of addresses in code.

Methods include all the default arguments

That means lines of code are sometimes longer and more complicated than they really need to be. You can
often simplify recording by removing unneeded default arguments.

Doesn't use variables

Most programs create names to identify things that can change as the code executes. These names are called
variables. Recorded code doesn't use variables because the logic is always linearvariables are required only if
the code repeats or makes decisions.

So if you want the code you just recorded to repeat the formatting and charting tasks for all worksheets in your
workbook, you'll need to make a few changes. I'll do that in a number of steps so it's clearer. First, add the logic to
repeat the formatting for each worksheet:

 Sub Macro1()
 '
 ' Macro1 Macro
 ' Macro recorded 5/26/2004 by Jeff
 '

 '
 For Each ws In Worksheets '<--- Added to repeat actions for each worksheet.
 Range("A1:C16").Select
 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 Range("A1:C15").Select
 Charts.Add
 ActiveChart.ChartType = xlColumnClustered
 ActiveChart.SetSourceData Source:=ws.Range("A1:C15"), PlotBy:= _
 xlColumns
 ActiveChart.Location Where:=xlLocationAsObject, Name:=ws.Name '"2002"
 ' Change Name to match the worksheet's name ----------^
 Next '<--- End of actions to repeat.
 End Sub

The preceding For Each statement tells Excel to repeat the following task for every worksheet in the workbook. The Next
statement ends the set of tasks to repeat. In programming, this kind of logic is called a loop because the flow of
execution runs around and around in a circle until told to stop. In this case, the loop stops after it reaches the last
worksheet in the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet in the workbook.

There's something subtle about the previous code: the For Each statement gets a reference for each worksheet as it
loops and stores it using the name ws. We need to use that name (called a variable) to get the location where Excel
should insert the chart. Thus, ws replaces Sheets("2002"), so each time Excel creates a chart, it inserts it on the right
worksheet. Remember to search for literal references like this and replace them with variables any time you are adding
logic to recorded code.

That was step 1, adding logic. If you run the code now, Excel will repeat the task for each worksheet in your workbook
and it will work correctly as long as each worksheet has its sales figures in the range A1:C16. If that's not the case, the
code won't format or chart the right range. To handle data in other locations, change Range("A1:C16") to use Excel's
UsedRange property as shown here:

 Sub Macro1b()
 '
 ' Macro1b Macro
 ' Change absolute ranges to relative ones.
 '

 '
 For Each ws In Worksheets
 'Range("A1:C16").Select
 Set rng = ws.UsedRange '<-- Get all the cells with data.
 'Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 ' :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 ' Use reference (below) rather than Selection (above).
 rng.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True
 'Range("A1:C15").Select
 ' Remove the last row (Total) from the range.
 Set rng = ws.Range(ws.Cells(rng.Row, rng.Column), _
 rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0))
 Charts.Add
 ActiveChart.ChartType = xlColumnClustered
 'ActiveChart.SetSourceData Source:=Sheets("2002").Range("A1:C15"), PlotBy:= _
 ' xlColumns
 ActiveChart.SetSourceData Source:=rng, PlotBy:=xlColumns
 ' Use the range reference here ----^
 ActiveChart.Location Where:=xlLocationAsObject, Name:=ws.Name
 Next
 End Sub

UsedRange was introduced in Excel 97, and it is one of those incredibly useful properties that
you'll be seeing over and over again.

The preceding changes use the UsedRange property to get all the cells on the worksheet that contain data. The hard part
comes with the second change that removes the Total row from the range to chart:

 Set rng = ws.Range(ws.Cells(rng.Row, rng.Column), _
 rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0))

Wow, that's complicated! To break it down a bit, ws.Cells (rng.Row, rng.Column) gets the first cell in the range, and
rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0) gets the last cell minus one row (omitting the Total row). The enclosing
ws.Range(...) method combines those start and end points into a rectangular block of cells. Don't worry if you don't
completely understand at this point; you'll find much more material on working with ranges of cells in later chapters.

Finally, I changed the chart's Source argument to use this new range. Now if you run the code, Excel will format and
chart sales data on each of the worksheets regardless of where the data is on each worksheet. The code is still a bit
rough, though, because it doesn't declare the variables it uses, it includes some arguments that aren't really needed,
and it is still named Macro1, which isn't descriptive at all. Here's a cleaned-up version with all the fixes:

 Sub FormatAndChart()
 ' AutoFormats and Charts all of the worksheets in a workbook.
 ' Designed to work with Sales Data tables.
 ' 5/28/04 by Jeff Webb
 '
 Dim rng As Range, ws As Worksheet
 ' Repeats actions for all Worksheets in the workbook.
 For Each ws In Worksheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each ws In Worksheets
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat Format:=xlRangeAutoFormatSimple
 ' Omit the Total row from the range.
 Set rng = ws.Range(ws.Cells(rng.Row, rng.Column), _
 rng.SpecialCells(xlCellTypeLastCell).Offset(-1, 0))
 ' Create a chart.
 Charts.Add
 ' Set chart properties.
 ActiveChart.ChartType = xlColumnClustered
 ActiveChart.SetSourceData Source:=rng, PlotBy:=xlColumns
' Insert the chart on the worksheet.
 ActiveChart.Location Where:=xlLocationAsObject, Name:=ws.Name
 Next
 End Sub

Declaring the variables enables handy Visual Basic features like Auto Complete (I discuss
that later).

You might notice that I also rewrote the comments in this final version. It's always a good idea to write out in words
what your code is doing. Even if the code is only for your personal use, it's surprising how easy it is to forget what you
did.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4. Fix Misteakes
Mistakes are a fact of life, and Visual Basic is fairly intolerant of them. If you followed along with the preceding lab, you
probably already encountered that fact. Sometimes it's pretty easy to tell what you've done wrong, and sometimes it's
almost impossibleeven for experienced programmers! What marks the difference between beginning and expert
programmers is how they go about solving those problems.

To help you understand fixing mistakes, you need to know that there are four different kinds of errors that are
generally identified by where or why they happen:

Syntax errors

Occur when you mistype a statement, such as omitting a closing parenthesis or omitting some part of the
statement that is required. Visual Basic detects these errors right away and highlights them in red as soon as
you move to the next line of code.

Semantic errors

Are also often the result of a typo, but they appear valid to Visual Basic as you type. Examples of this kind of
error include misspelling a method or property name or using a variable or procedure name that isn't defined
yet. Visual Basic checks for these errors the moment you run your code (for instance, when you press F5). At
that point, Visual Basic converts your code into a form that Excel understands (this is called compiling), and if
any of the names you used aren't found, compiling stops and Visual Basic highlights the error. Semantic errors
are sometimes called compile-time errors for that reason.

Logic errors

Can be the hardest to detect. These errors occur when your code simply doesn't do what you expected it to do.
Infinite loops (lather, rinse, repeat...) are an example, as are unexpected results such as formatting code that
doesn't format everything it should. Logic errors can sometimes halt your code while it is running, and for that
reason they are often called runtime errors .

Expected errors

Aren't your fault, but you need to deal with them all the same. These are another type of runtime error, and
they are usually the result of using resources outside of Excel, such as trying to get a file from disk or trying to
connect to a database somewhere. In those cases, you need to anticipate the possibility of a problem using a
technique called exception handling (which I cover in Chapter 2).

The real name for expected errors is exceptions . (Since you expect them, they aren't really errors, are they?)

For now, let's look at fixing the errors that are your fault.

1.4.1. Fix Syntax Errors

Visual Basic can detect many kinds of typos as you move from line to line in the code window. This is the most common
type of error you'll make as you learn programming. Fortunately, Visual Basic can generally tell what you did wrong, as
shown in Figure 1-6.

Figure 1-6. Visual Basic stops you when you make a syntax error

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click OK but don't fix the error, Visual Basic leaves the line colored red as a reminder that you should fix it. If you
look at the SyntaxErrors sample, you'll see that it looks like a Christmas tree with all the green comments and red
errors that I've deliberately included to illustrate the different ways errors in syntax can occur.

If you don't understand the error dialog box Visual Basic displays, you can either click Help to get more information
about the error or click OK, select the item you have a question about, and press F1 as shown in Figure 1-7.

Figure 1-7. Select If and press F1 to find out about it

Help often tells you what you need to know about a specific Visual Basic statement. Sometimes it's less helpful about
Excel methods, but it's always a good first place to look since it's only a key press away. Another good, easy way to
figure things out is by using Visual Basic's Auto Complete feature. By default, Visual Basic displays lists of items that
could complete statements as you type, as shown in Figure 1-8.

Figure 1-8. Visual Basic lists items that could complete a statement as you type it

To insert one of the items from the list, use the arrow keys or mouse to select the item and press the spacebar to insert
the item in your code. A similar thing happens when you add a statement that takes arguments, as shown in Figure 1-
9. (Arguments are additional pieces of information that a statement needs to accomplish its task.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-9. Visual Basic also lists the arguments that a statement takes

In this case, the arguments are shown in italics with the current one shown in bold. Arguments are always separated by
commas and once you type a comma, the next argument becomes bold. Square brackets mean that an argument can
be omitted.

Visual Basic's automatic syntax checking and Auto Complete features can help you learn the language, but some
programmers find the error dialogs and pop-up text annoying in some situations. Visual Basic lets you turn off these
features by choosing Tools Options and selecting the Editor tab as shown in Figure 1-10.

Figure 1-10. You can change Code Settings to turn off Visual Basic's syntax
checking and Auto Complete features

Don't do it! Syntax checking and Auto Complete are incredibly useful if you are learning the language.

1.4.2. Fix Compile-Time Errors

In some cases, statements look correct to Visual Basic as you are writing them, but they don't make sense when Visual
Basic tries to compile them into a program. This occurs because there are some things Visual Basic has to ignore as you
are writing the code but can't ignore when you try to run it.

A simple example is when your code calls a procedure that you haven't written yet. Visual Basic doesn't flag that
statement as a syntax error, because it assumes you'll get around to writing the procedure. If you forget to do that,
Visual Basic reminds you when you try to run the code (Figure 1-11).

Figure 1-11. Visual Basic couldn't find ChangeSheets, so it displays an error during
compilation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compilation

Visual Basic alerts you to compile-time errors one at a time, so if you fix the one shown in Figure 1-11 and then try to
run again, another error will pop up on the SyntaxError linethat's a case of a simple misspelling, it should be SyntaxErrors.

Visual Basic is strict about spelling and doesn't guess at what you meant to write. It would
be cool if it were that intuitive, but it would cause bigger problems if it guessed wrong!

Sometimes compile-time errors are similar to syntax errors, such as when you omit a required argument or don't
terminate a statement that spans multiple lines, such as a loop or a decision statement. In those cases, Visual Basic
flags the End Sub or End Function statement because it searched to the end of the procedure without finding the end of the
previous block (Figure 1-12).

The missing End If is pretty obvious in Figure 1-12 because the procedure is not very long, but it can be much harder to
locate where the End If should go in longer passages of code. For that reason, programmers usually indent blocks of
code that are logically related, for example:

 ' Activate the next worksheet or chart, depending on
 ' what type of sheet is currently active. Return to
 ' first sheet when the end is reached.
 Sub ChangeSheets()
 Select Case TypeName(ActiveSheet)
 Case "Worksheet"
 If ActiveSheet.Index < Worksheets.Count Then
 Worksheets(ActiveSheet.Index + 1).Activate
 Else
 Worksheets(1).Activate
 End If
 Case "Chart"
 If ActiveSheet.Index < Charts.Count Then
 Charts(ActiveSheet.Index + 1).Activate
 Else
 Charts(1).Activate
 End If
 Case Else
 Debug.Print TypeName(ActiveSheet), ActiveSheet.Name
 End Select
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-12. Visual Basic flags End Sub because it couldn't find End If before it

In this case, indents make it easier for you to match the begin and end statements for various blocks of code (seen
here with all the details removed):

 Sub
 Select Case
 Case
 If
 ' task
 Else
 ' task
 End If
 Case
 If
 ' task
Else
 ' task
 End If
 Case Else
 ' task
 End Select
 End Sub

Indenting is a standard practice that helps you avoid errors by making it easier to read and interpret logically related
pieces of your code. It is not required by Visual Basic, and adding or omitting indents does not affect how your code
runs.

1.4.3. Fix Runtime Errors

Boy, it seems like a lot of things can go wrong! However, most of these problems are pretty obvious and easy to fix.
That's not so true for errors that occur when your program is running. Unlike other types of errors, Visual Basic can't
detect these until the program actually tries to execute the statement. That makes it harder to tell where the error
occurred and why it happened. For example, Figure 1-13 shows a procedure with a runtime error.

Figure 1-13. Runtime error displayed after pressing F5; doesn't highlight the line
where the error occurred

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where the error occurred

You don't know which line the error occurred on, although you might guess it was the Worksheets("Resource").Activate
statement because I said so in my comments. If you want to confirm that's the error, press F8 instead of F5 to step
through the procedure (Figure 1-14).

In this case, you have to ask yourself why Excel couldn't find the Resource worksheet. Well, it's because the worksheet is
actually named Resources. I don't mean to beat you over the head with this, but spelling is important!

Figure 1-14. Press F8 to run the procedure one line at a time to locate runtime
errors

Runtime errors occur for a variety of reasons. For instance, there is a limit to how big a number can be in Visual Basic
and 100 ^ 100 ^ 100 exceeds that limit (Visual Basic calls that an overflow). Other errors are harder to find with F8, for
example the EasyRTErrors statement calls itself over and over again indefinitely. That's similar to an infinite loop, but since
it's calling itself, it's referred to as infinite recursion instead. If you try F8 on that line, you'll see that you can execute it
more than 5000 times without an error. In that case, you just need to remember that an Out of stack space error usually
means you've got an infinite recursion.

Another type of runtime error that's very common but difficult to find is misspelled variable names . For example, the
following code displays a dialog box, but never says "Howdy" no matter what the user clicks:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code displays a dialog box, but never says "Howdy" no matter what the user clicks:

 Sub SubtleRTErrors()
 ' I misspelled answer, you never hear Howdy:
 answer = MsgBox("Click OK to hear Howdy.")
 If aswer = vbOK Then Application.Speech.Speak "Howdy"
 End Sub

The Speech object was added to Excel in 2002. If you have an earlier version, use MsgBox
instead of Application.Speech.Speak for this sample.

There's nothing technically wrong with the code, other than the fact that it doesn't work! This problem occurs because
Visual Basic lets you create variables without ever declaring them. That makes life easier in the beginning (about 30
minutes) but adds a tremendous burden later on trying to locate and fix this type of subtle error. Fortunately, there's a
fix: turn off automatic variables by choosing Tools Options and selecting the Editor tab, then selecting Require
Variable Declaration as shown in Figure 1-15.

Figure 1-15. Require Variable Declaration will avoid subtle runtime errors

When you select Require Variable Declaration, Visual Basic adds an Option Explicit statement any time it creates a new
class or module. If you wrote code before changing that option, you need to add Option Explicit yourself. The Option Explicit
statement causes a compile-time error whenever it encounters an undefined variable, as shown in Figure 1-16.

Figure 1-16. Option Explicit helps identify misspelled variable names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-16. Option Explicit helps identify misspelled variable names

Using Option Explicit creates a little more work writing code, but it saves a lot of work fixing code later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5. Start and Stop
I've already touched on how to run code from Excel or Visual Basic a little bit, and Table 1-1 lists the handy keys and
key combinations that you can use to start and stop code in Excel.

Table 1-1. Useful keys to start and stop code
Press To

Alt-F8 Run or edit a Visual Basic procedure from an Excel workbook.

Esc or
Ctrl-Break Stop code that is running out of control.

F8 Run one line at a time in Visual Basic.

Shift-F8 Run one line as a single statement (without stepping in to another procedure) in Visual Basic.

Shift-Ctrl-
F8

Finish running the current procedure and return to the procedure that called the current one. In other
words, step out of the current procedure and go up one level.

Ctrl-F8 Run all the code from the beginning of a procedure to the current cursor position in Visual Basic.

F5 Run a procedure from beginning to end in Visual Basic.

F9 Set or remove a stopping point (called a breakpoint) in code.

Ctrl-Shift-
F9 Remove all breakpoints from all classes and modules.

Of these, F9 to add a breakpoint combined with F5 and F8 are perhaps the most useful combinations to help solve
runtime errors or just to help figure out how the code works. When you set a breakpoint in code, Visual Basic highlights
the whole line by making its background red (Figure 1-17).

Now if you run the code, it will stop if the active sheet is not a worksheet or a chart (for instance, it might be an old-
style dialog sheet). Breakpoints change the focus from Excel to Visual Basic, so they are a great way to step in to a
procedure that is triggered by Excel in some way (for example, through an event).

Basically, any time you have a question about what code is doing, set a breakpoint somewhere before the point that
you have a question about, then run the code. When Visual Basic hits the breakpoint, it will stop and you can press F8
to step through the code one line at a time.

Running to a breakpoint puts the code in context by filling in variables with live data from Excel. Looking at the values
Excel fills in is what I cover next.

Figure 1-17. You can also set/clear a breakpoint by clicking to the left of the line
of code (where the dot is)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.6. View Results
There are a number of ways to display results from code in Excel. One common way that is used a lot in Help is to
display a message box:

 Sub ShowMessage()
 Dim x As Integer
 x = Sheets.Count
 MsgBox "This workbook contains " & x & " sheets."
 End Sub

This code displays the number of sheets in the workbook using a simple dialog box as shown in Figure 1-18.

Figure 1-18. It's easy to display results using MsgBox

But that's not the same as getting data into a worksheet, which is more commonly what you want to do. To do that,
you set the value of a Range object. For example:

 Sub ChangeRange()
 Dim x As Double
 x = InputBox("Enter a number.")
 Range("J5") = x ^ (1 / 3)
 End Sub

That code gets a number from the user and displays the cube root of that number in cell J5. As mentioned previously,
it's not a good idea to use range addresses in code so the following version uses a named range instead of an address:

 Sub ChangeRange()
 Dim x As Double
 x = InputBox("Enter a number.")
 Range("targetRange") = x ^ (1 / 3)
 End Sub

To name a range in Excel, select the range (in this case cell J5) and type the name in the Name box as shown in Figure
1-19.

Figure 1-19. It's better to use named ranges in code

To see all of the named ranges in a workbook, choose Insert Name Define.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see all of the named ranges in a workbook, choose Insert Name Define.

You can even display results in a range using the formula bar if your procedure returns a value. The following code
shows changes to make to repackage the cube root calculation for use in a formula:

 Public Function CubeRoot(x As Double) As Double
 CubeRoot = x ^ (1 / 3)
 End Function

In order to use a procedure in a formula, the procedure must:

Not be Private (the Private keyword hides functions from the formula bar).

Return a value (that is, it must be a Function)

Be part of a module, not a class

If the procedure follows those rules, you can enter its name in the formula bar as shown in Figure 1-20.

Figure 1-20. You can use public functions in formulas

Visual Basic procedures that can be used in the formula bar are sometimes called user-
defined functions, or UDFs for short.

In other cases, you might want to view a result, but not show that result to users. A good example of this is when
you're developing your code or when you're making sure it works correctly. In that situation, you usually set a
breakpoint in your code, then view the values in variables using watches . There are three kinds of watches in Visual
Basic, and none of them go ticktock:

Automatic watches

Display the value of a simple variable or property when you move the cursor over the item after stopping at a
breakpoint.

Quick watches

Display the value of a variable or property when you select the item and press Shift-F9. Quick watches can
display returned values, such as TypeName(ActiveSheet), which automatic watches can't.

Watch points

Display the value of a variable or property in the Watch window. Watch points can also stop code if an item
reaches a certain value. In that way, they function as conditional breakpoints.

Figures 1-21 through 1-23 show the different types of watches in action.

Figure 1-21. Automatic watches display simple values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-21. Automatic watches display simple values

Figure 1-22. Select an item and press Shift-F9 to see a quick watch

Figure 1-23. Select an item and choose Debug Add Watch to display the value
of that item in the watch window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Watches are the best way to look at a value at one point in time, but when you need to track how a value changes,
they are kind of limited. In those situations, it's often best to display your results in the Immediate window using the
Debug.Print statement. An easy way to illustrate this is to go back to the runtime error sample we showed earlier that
causes an infinite recursion. I've made some changes (in bold) to show how to track how many levels deep the
recursion goes before failing:

 Sub EasyRTErrors()
 ' Previous code deleted for this example.
 Static i
 i = i + 1
 ' Show how many times recusion will run before error.
 Debug.Print i
 ' Infinite recursion, stack overflow:
 EasyRTErrors
 End Sub

Now, if you run this code, a stream of numbers will display in the Immediate window (Figure 1-24). If you don't see the
Immediate window in VBE, press Ctrl-G to redisplay it.

Figure 1-24. Use Debug.Print to display results in the Immediate window

You can also use the Immediate window to run procedures and perform quick calculations. In effect, it functions as a
single-line Visual Basic interpreter as shown in Figure 1-25.

Figure 1-25. Type statements in the Immediate window to see their result,
err...immediately

The ? character is a shortcut for Print in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ? character is a shortcut for Print in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.7. Where's My Code?
Excel stores Visual Basic code in the workbook (.xls), template (.xlt), or add-in (.xla) file when you save it. File formats
other than those omit the Visual Basic code the same way that special formatting is lost when you save a workbook as
a text (.txt) or comma-delimited file (.csv).

You can view the code in a currently open Excel file by pressing Alt-F11, by choosing Tools Macro Visual
Basic Editor or by clicking the Visual Basic Editor button on the Visual Basic toolbar (Figure 1-26).

Figure 1-26. The Visual Basic toolbar lets you edit, run, or stop code; create
controls; and set macro security

Within the editor, code is organized into modules and classes . Modules are static code files that typically contain
recorded code and public procedures that you want users to be able to call directly from Excel. Classes are associated
with an instance of an object in Excel, such as a workbook or worksheet. Classes usually contain code that responds to
Excel events, such as when a command button is clicked or when the user opens the workbook.

Excel creates a new module called Module1 when you first record code as shown earlier in this chapter. Excel provides a
class for each new sheet you add to a workbook. Similarly, Excel deletes that sheet's class when you delete the sheet
from the workbook, so be careful when deleting sheets while programming! You can see a workbook's classes and
modules in the editor's Project window (Figure 1-27).

You can also use the Project window to export classes or modules to text files and to import code stored as text into the
workbook. Unfortunately, there's no easy way to store code separately from the workbook (which would be nice when
more than one person is working on code).

Visual Basic displays information about each class or module in the Properties window below the Project window, as
shown in Figure 1-28. As you select a different item in the Project window, the item displayed in the Properties window
changes.

You can use the Properties window to rename modules or classes or to control various aspects of a class. For example,
to rename Module1 something descriptive, like RecordedCode, select Module1 in the Project window and type RecordedCode in
the (Name) property of the Properties window. You can also use the Properties window to hide sheets by setting the
class's Visible property.

Figure 1-27. Double-click on a class or module to open it in a code window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-28. Select ThisWorkbook in the Project window to see the workbook's
properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.8. Macros and Security
When you open a workbook that contains code, Excel displays a security warning suggesting you might want to disable
the code, as shown in Figure 1-29.

Microsoft included this warning because, once a user enables the macros in a workbook, that code has full access to the
user's system and can do some pretty nasty things (such as changing or deleting files) without the user knowing it.
Microsoft deals with this problem differently in different programming tools, and in Excel Visual Basic they put the
burden on the user for determining whether code should or should not be trusted.

Figure 1-29. Excel's macro security warning is pretty dire

Unfortunately, users are often the least-qualified people to make this judgment. Who knows where ch01.xls came from
or what it will do if I open it? The way to answer those questions is to add a digital signature. A digital signature
identifies the author of the content or the macros contained in a workbook, template, or add-in. By digitally signing a
workbook's code, you add a unique identifier that says the code came from you (or your organization) and thus the
user may have more confidence that the workbook won't insert the word Wazoo in all your correspondence.

I once received a work-for-hire contract from Microsoft legal that occasionally declared
Wazoo! I thought they were just checking to make sure I read the thing....

There's a lot more information on security and digital signatures in Chapter 26, but for now I'll tell you how to eliminate
the warning in Figure 1-29 for Excel Visual Basic code you create and use on your own computer. Doing that involves
two major steps:

1. Create a personal digital signature for signing your workbooks.

2. Sign your workbooks with that certificate.

These steps are detailed in the following procedures.

To create a personal digital signature:

1. From the Windows Programs menu, choose Microsoft Office Microsoft Office Tools Digital Certificate
for VBA Projects. Windows runs SelfCert.exe and displays the Create Digital Certificate dialog box (Figure 1-30).

2. Type the name you want displayed within the signature and click OK. SelfCert.exe creates a local certificate and
displays a success message.

Figure 1-30. Creating a personal digital signature

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-30. Creating a personal digital signature

SelfCert.exe is provided with Office 2000 and later. If it is not installed on your system,
run Office Setup and install Office Tools Digital Signature for VBA Projects.

This certificate is valid on only the machine on which you created it. Therefore, its use is really limited to signing macros
on your own machine to avoid the security prompt you get each time you open a workbook containing macros you've
written.

To sign a Visual Basic project in a workbook, follow these steps:

1. From within the workbook, open the Visual Basic Editor.

2. Choose Tools Digital Signature. Visual Basic displays the Digital Signature dialog box (Figure 1-31).

3. Click Choose. Visual Basic displays a dialog box containing all the digital signatures installed on your system
(Figure 1-32).

4. Select the certificate to use, and click OK. Then click OK again to close the Digital Signature dialog box.

Once the code is signed, you may see the security warning in Figure 1-33 when you open a workbook, template, or
add-in containing the code you just signed.

If you select the option to "Always trust macros from this publisher" and click Enable Macros, you won't see this
warning every time you open your own signed workbooks.

Figure 1-31. Signing a Visual Basic project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-32. Choosing a signature

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.9. Write Bug-Free Code
I encourage a guided, trial-and-error approach to learning how to program. This is mainly because I don't think anyone
can remember all the facts and information you need to know without having some way to apply that information in a
practical way. Also, I think most of us are impatient by nature and want to get started as soon as possible.

However, I don't want you to confuse this approach with disorganization or sloppiness. Either of those bad habits will
make your programming experience difficult and frustrating. The following list is a collection of good habits that will pay
off as you learn and develop your career:

Figure 1-33. Your digital signature now appears in the macro security warning

Declare all your variables

Adding Option Explicit to the top of each class or module helps make sure you don't accidentally misspell a variable
name and cause a subtle error that can be hard to locate.

Type carefully

Many names in Excel, such as worksheet names or named ranges, can't be checked through Option Explicit and
misspelling one of those in code can lead to similarly hard-to-locate errors.

Use short, descriptive names

There are different conventions for naming variables and procedures but the crux of all of them is to be short
and descriptive. Be careful not to be too descriptive though. I try to keep variable names down to a few
characters and I tend to use whole words when naming procedures.

Avoid ActiveSheet and Selection

I know Excel records code this way, but it is much better to get a worksheet or range by name if possible.
Relying on which worksheet or range is selected makes it harder to debug and reuse your code. The exception
to this guideline is when you really want to act on the ActiveSheet or Selection, such as when you are creating
general tools that work on any worksheet or range.

Try to think clearly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try to think clearly

For complicated tasks, it can help to write out what you want to do on a pad of paper, then try to do those
steps in Excel with macro recording on. Often it helps to break a task up into several different steps and make
those steps procedures that you can call from one central procedure.

Rely on friends

There are a lot of programmers in the Excel community and they communicate through a number of very active
newsgroups. Those are great places to look for answers and to find samples.

Copy others

I don't mean you should plagiarize copyright-protected work, but it's OK to copy most code snippets, and it's
good practice to follow the coding style of others if you find it elegant.

Share with others

This is the other side of relying on friends and copying others. Don't be afraid of feedback, either.

Take a break

The best programmers I know lead balanced lives. You'll be surprised how many problems seem to solve
themselves once you relax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Becoming an Excel Programmer
How do you become an excellent Excel programmer? The first step for most folks is to buy a book. I'm glad you bought
this one. Next, you've got to learn the programming tools that Excel provides. Visual Basic is ideally suited as a learning
tool because it lets you get started without a lot of pedagogical preparation. That's an alliterative way of saying that you
can learn the rules as you go.

So let's go!

Code used in this chapter and additional samples are available in ch01.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1. Add Comments
Comments are a way to annotate cells on a worksheet with descriptive text. To add a comment in Excel:

1. Right-click the cell.

2. Choose Insert Comment from the pop-up menu.

3. Type your comment in the Edit region.

Cells with comments have a comment indicator in their upper-right corner. When the cursor pauses over the cell, the
comment pops up as shown in Figure 10-1.

Each comment is anchored to a specific cell, so you create comments in code using the Range object's AddComment
method. Once a worksheet contains comments, you can get at them through the Worksheet object's Comments collection or
through the Next and Previous methods of the Comment object. This is a little different from the way most collections work:
there is no Add method for the Comments collection. The following code adds a comment to each cell on a worksheet that
contains a non-numeric value:

Figure 10-1. Use comments to annotate cells

Sub AddAuditComments()
 Dim cel As Range, cmt As Comment
 For Each cel In ActiveSheet.UsedRange
 If Not IsNumeric(cel.Value) Then
 cel.AddComment.Text "Audit:" & vbLf & "Should be a number?"
 End If
 Next
End Sub

You remove comments using the Delete method. For example, the following code removes the audit comments inserted
by the preceding code:

Sub RemoveAuditComments()
 Dim cmt As Comment
 For Each cmt In ActiveSheet.Comments
 If InStr(1, cmt.Text, "Audit:") Then cmt.Delete
 Next
End Sub

You can't set a comment's Author property from code. Comments inserted from code have a null Author property. The
preceding samples work around that by adding Audit: & vbLf to the comment text and then checking for that string before
deleting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.10. UsedObjects Members
Use the UsedObjects collection to get a mixed collection of all of the objects currently loaded in Excel. The UsedObjects
collection has the following members :

Application
Count
Creator
Item
Parent

The following code displays a list of all the objects loaded in Excel. The code uses error handling to skip over properties
not available for the different types of objects included in the UsedObjects collection:

Sub ShowObjects()
 Dim obj As Object, str As String
 On Error Resume Next
 Debug.Print "Type", "Name", "ProgID"
 For Each obj In Application.UsedObjects
 str = TypeName(obj)
 str = str & vbTab & obj.Name
 str = str & vbTab & obj.progID
 Debug.Print str
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2. Use Hyperlinks
Most of us think of hyperlinks as links that take you to a web page when you click them; Excel uses a broader
definition. Yes, Excel hyperlinks can take you to a web page, but they can also:

Create a new document or open an existing one for editing

Take you to a reference in an Excel workbook

Compose an email

To create a hyperlink in Excel:

1. Right-click a cell.

2. Choose Hyperlink from the pop-up menu.

3. Choose the type of link and set the link properties in the Edit Hyperlink dialog box (Figure 10-2).

Figure 10-2. Creating a hyperlink in Excel

To create a hyperlink in code, use the Hyperlinks collection's Add method. Like comments, hyperlinks are anchored to a
cell address that you specify in Add. For example, the following code adds a link at cell A3 to my web site:

 ActiveSheet.Hyperlinks.Add [a3], "http:\\excelworkshop.com\", _
 , "Go to Jeff's site.", "Excel Workshop"

To link to a location on a worksheet , set the Add method's Address argument to "" and the SubAddress argument to the
target location. SubAddress has this format:

sheetName!targetAddress

However, the targetAddress part can't include dollar signs, like normal Excel addresses. To use normal Excel addresses,
you must strip out the dollar signs using VBA.Replace. For instance, the following code adds hyperlinks that link to the first
and last cells of a worksheet; the ConvertAddress helper function reformats the target Range to the correct form for the Add
method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method:

' Adds links to beginning and end of worksheet.
Sub AddLinkToLocation()
 Dim ws As Worksheet, celEnd As Range
 Set ws = ActiveSheet
 ' Get the last cell in column A.
 Set celEnd = ws.Cells(ws.UsedRange.Rows.Count, 1)
 ' Add a link to the last cell.
 ws.Hyperlinks.Add [a5], "", ConvertAddress(celEnd), , _
 "Go to end"
 ' Add a link back to the first cell.
 ws.Hyperlinks.Add celEnd, "", ConvertAddress(ws.[a1]), , _
 "Go to start"
End Sub

' Converts a cell reference to a Hyperlink address.
Function ConvertAddress(cel As Range) As String
 Dim result As String
 ' Start with the worksheet name.
 result = cel.Worksheet.Name & "!"
 ' Add the address, but remove "$"
 result = result & VBA.Replace(cel.Address, "$", "")
 ' Return result
 ConvertAddress = result
End Function

To link to a range in another workbook, include the workbook's filename in the Address argument of the Add method:

ActiveSheet.Hyperlinks.Add [a7], "ch08.xls", , , "Go to Ch08.xls"

To remove hyperlinks, use the Delete method. Delete applies to both the Hyperlinks collection and the Hyperlink object. For
example, this code removes all of the hyperlinks on the active worksheet:

ActiveSheet.Hyperlinks.Delete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3. Link and Embed Objects
You can include objects created by other applications in an Excel worksheet by linking or embedding the object:

Linked objects

Display a bitmap image of the object that opens the object's file in its source application when the user edits the
object.

Embedded objects

Also display a bitmap image, but the data for the object is stored within the workbook. Editing the object opens
the object in place so Excel still appears to have focus and changes don't affect the original source file, only the
embedded copy.

This feature was originally called OLE, for Object Linking and Embedding, but Microsoft later renamed it ActiveX and
now sometimes calls it COM, for Component Object Model. All those names basically refer to the same thing when
dealing with Excel.

Any Windows application can provide these objects, but it is up to the developers of that source application to do it
correctlysometimes that is a tall order. Crashes, printing problems, and quirky displays are hallmarks of many linked or
embedded objects . However, Microsoft has invested a great deal of effort to make OLE work within the Microsoft Office
product suite, and linked and embedded objects usually work correctly within that family of products.

In general, it is a good idea to use linking and embedding only among Office or other well-
tested applications and to be very careful when using it with workbooks you plan on
distributing to others. That is because all users must have the source application to edit
linked or embedded objects. Different platforms, configurations, or even application
versions can cause significant hurdles to using a workbook that contains embedded objects
from other applications.

So should you just avoid OLE altogether? No, in fact that's not even likely given the level of integration with Excel. Form
controls , charts, and other objects are all embedded as OLE objects when they appear on a worksheet. Here are some
considerations for making OLE objects trouble-free:

You can assume that objects provided with Excel work correctly; that includes form controls.

Check whether other objects are installed before using them.

Test the object before you distribute your workbook. If the source application is not part of the Office suite,
make sure the linked or embedded object displays correctly, can be opened for editing, and prints correctly.

The following sections discuss the most common OLE object tasks.

10.3.1. Embed Controls

Embedded form controls let you get input from the user through standard controls like text boxes, command buttons,
listboxes, and so on. They are handy for collecting values that populate ranges of cells or to simply get and display
values in something other than a grid.

To embed a control on a worksheet:

1. Choose View Toolbars Control Toolbox to display the Controls Toolbox.

2. Click the control to add and then click and drag on the worksheet to draw the control as shown in Figure 10-3.

3. Excel embeds the control on the worksheet.

4. Click the Properties button to edit the control's appearance.

5. Click the Code button to add an event procedure for the control.

6. Click the Design button when finished to switch out of design mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Click the Design button when finished to switch out of design mode.

You can link embedded controls to values entered in cells . For example, to link the text box in Figure 10-3 to cell A3,
set its LinkCell property to A3. Now changes to the TextBox update cell A3 and vice versa (Figure 10-4).

Figure 10-3. Adding form controls to a worksheet

Figure 10-4. Linking cells to controls through the LinkedCell property

To create an event procedure for a control so it responds to user actions:

1. Click the Design button to enter design mode.

2. Select the control.

3. Click the View Code button. Excel opens the Visual Basic Editor and creates an event procedure in the
worksheet object's class.

You can also select events from the list in the Code window to add event procedures as shown in Figure 10-5.

Excel puts event procedures in the worksheet class because only classes can respond to events. This is one of the key
differences between controls created using the Controls Toolbox and those created using the older Forms toolbar
(Figure 10-6). Controls from the Forms toolbar don't have these events and instead run a single macro from a module
in response to their default action.

Controls from the Forms toolbar still work, but they provide fewer properties, can't link to cells, and are now hidden in
the Help and object model. I think that's a tip-off from Microsoft that they are included only for compatibility with earlier
versions and that you should now avoid them.

Figure 10-5. Adding event procedures for embedded controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-5. Adding event procedures for embedded controls

Figure 10-6. Control Toolbox versus Forms toolbars

10.3.2. Use OleObjects in Code

You can create new linked and embedded objects dynamically by using the OleObjects Add method. For embedded objects,
the Add method requires that you know the programmatic ID (progID) of the object you are creating. For linked objects,
you can simply provide the source file name. Table 10-1 lists the progIDs of the most common objects.

Table 10-1. ProgIDs of common Office objects
Application Object ProgID

Controls CheckBox Forms.CheckBox.1

 ComboBox Forms.ComboBox.1

 CommandButton Forms.CommandButton.1

 Frame Forms.Frame.1

 Image Forms.Image.1

 Label Forms.Label.1

 ListBox Forms.ListBox.1

 MultiPage Forms.MultiPage.1

 OptionButton Forms.OptionButton.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ScrollBar Forms.ScrollBar.1

 SpinButton Forms.SpinButton.1

 TabStrip Forms.TabStrip.1

 TextBox Forms.TextBox.1

 ToggleButton Forms.ToggleButton.1

 Calendar MSCal.Calendar

Microsoft Access Application Access.Application

 CodeData Access.CodeData

 CurrentData Access.CurrentData

 CodeProject Access.CodeProject

 CurrentProject Access.CurrentProject

 DefaultWebOptions Access.DefaultWebOptions

Microsoft Excel Add-in Excel.AddIn

 Application Excel.Application

 Chart Excel.Chart

 Worksheet Excel.Sheet

Microsoft Graph Application MSGraph.Application

 Chart MSGraph.Chart

Microsoft Office Web Components ChartSpace OWC.Chart

 DataSourceControl OWC.DataSourceControl

 ExpandControl OWC.ExpandControl

 PivotTable OWC.PivotTable

 RecordNavigationControl OWC.RecordNavigationControl

 Spreadsheet OWC.Spreadsheet

Microsoft Outlook Application Outlook.Application

Microsoft PowerPoint Application PowerPoint.Application

Microsoft Word Application Word.Application

 Document Word.Document

 Global Word.Global

 Template Word.Template

Not all of the objects listed in Table 10-1 can be embedded in a worksheet. For example, the Application objects are used
to access specific applications programmaticallynot to embed one application inside of another. You can use the progIDs
of those objects with CreateObject to create an instance of those objects for use within Excel.

Before using an external application in code, you should make sure the application is installed on the user's system. The
following helper function allows you to test a progID to make sure it is installed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following helper function allows you to test a progID to make sure it is installed:

' Checks the registry to see if a given progID is installed.
Function IsInstalled(progID As String) As Boolean
 Dim wsh As Object, result As Boolean, key As String
 result = False
 Set wsh = CreateObject("WScript.Shell")
 On Error Resume Next
 key = wsh.RegRead("HKEY_CLASSES_ROOT\" & progID & "\CLSID\")
 If Not Err And key <> "" Then _
 result = True
 IsInstalled = result
End Function

After you've checked for the application, you can create new objects in code. For example, the following code embeds a
Word document in an Excel worksheet:

Sub EmbedWordObject()
 Dim ws As Worksheet, ole As OleObject, progID As String
 progID = "Word.Document"
 ' Make sure Word is installed.
 If IsInstalled(progID) Then
 Set ws = ActiveSheet
 ' Create the object.
 Set ole = ws.OleObjects.Add(progID, , , , , , , 60, 60, 200, 400)
 ' Name the object so you can get it later.
 ole.Name = "WordDocument"
 ' Activate the object for editing.
 ole.Activate
 End If
End Sub

Set the object's Name property so you can get it from the OleObjects collection easily.

Use the Object property to get the underlying programmable object from an OleObject. For example, the following code
gets the Word Document object from the embedded document created by EmbedWordObject, then uses that object's
methods to insert some text:

' Assumes AddWordObject has run.
Sub EditWordObject()
 Dim ws As Worksheet, ole As OleObject
 Set ws = ActiveSheet
 ' Get the object by name and insert some text.
 ws.OleObjects("WordDocument").Object.Range.InsertAfter "Some text."
End Sub

That technique is useful when working with embedded controls. For example, the following code creates a new text box,
sets the value of its Text property, and links that control to a cell:

Sub CreateTextBox()
 Dim ws As Worksheet, ole As OleObject
 Set ws = ActiveSheet
 ' Create a new text box.
 Set ole = ws.OleObjects.Add("Forms.TextBox.1")
 ' Name the object.
 ole.Name = "TextBox"
 ' Set the text.
 ole.Object.text = "Some text"
 ' Link the control to a cell.
 ole.LinkedCell = "a3"
End Sub

Notice that you need to use the Object property to get to the control's underlying Text property, but not to get to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that you need to use the Object property to get to the control's underlying Text property, but not to get to
LinkedCell. That's because LinkedCell is provided by OleObject, not the text box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4. Speak
Speech is fun to demo, but it's not really a mainstream feature. Most often it is used to enable people with disabilities to
read spreadsheets, but you can use it to read any text. For example, the following code reads comments aloud
whenever a cell with a comment receives focus:

' ThisWorkbook object
Dim WithEvents g_app As Application

' Hook up the global Application object handler when this
' workbook opens.
Private Sub Workbook_Open()
 If Not (g_app Is Nothing) Then _
 Set g_app = Application
End Sub

' Read comments aloud when cell is selected.
Private Sub g_app_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As Range)
 ' If the cell has a comment.
 If Not (Target.Comment Is Nothing) Then
 On Error Resume Next
 ' Read the comment text aloud.
 Application.Speech.Speak Target.Comment.Text
 End If
End Sub

' Unhook handler
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Set g_app = Nothing
End Sub

It is important to turn on error handling in case speech is not installed on the user's system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.5. Comment and Comments Members
Use the Range object's AddComment method to create comments. Use the Comment object to get the author of a comment,
get or set comment text, and delete comments. The Comments collection and Comment object have the following members
. Key members (shown in bold) are covered in the following reference section:

Application2 Author

Count1 Creator2

Delete Item1

Next Parent2

Previous Shape

Text Visible

1 Collection only

2 Object and collection

comment.Author

Returns the name of the comment's author.

comment.Delete

Deletes a comment. The following code deletes all of the comments on the active sheet:

Sub DeleteComments()
 Dim cmt As Comment
 For Each cmt In ActiveSheet.Comments
 cmt.Delete
 Next
End Sub

comment.Shape

Returns the Shape object that represents the comment. The appearance of comments is built in to Excel and can't be
changed by setting Shape object properties.

comment.Text([Text], [Start], [Overwrite])

Gets or sets the text displayed in a comment.

Argument Settings

Text The text to display in the comment.

Start The character position at which to insert the text. If omitted, any existing comment is overwritten.

Overwrite True replaces the existing comment; False appends. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code creates four new comments on the active worksheet:

Sub CreateComments()
 Dim cel As Range
 For Each cel In [a1:b2]
 cel.AddComment "Comment for " & cel.Address
 Next
End Sub

The Text method also returns the text of the comment. For example, the following code lists all of the comments on the
active sheet:

Sub ShowComments()
 Dim cmt As Comment
 Debug.Print "Author", "Text"
 For Each cmt In ActiveSheet.Comments
 Debug.Print cmt.Author, cmt.Text
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.6. Hyperlink and Hyperlinks Members
Use the Hyperlinks collection to add hyperlinks. Use the Worksheet or Chart object's Hyperlinks method to get a reference to
this collection. Use the Hyperlink object to follow the hyperlink. The Hyperlinks collection and Hyperlink object have the
following members . Key members (shown in bold) are covered in the following reference section:

Add Address

AddToFavorites Application1

Count1 CreateNewDocument

Creator1 Delete2

EmailSubject Follow

Item1 Name

Parent1 Range

ScreenTip Shape

SubAddress TextToDisplay

Type
1 Collection only

2 Object and collection

hyperlinks.Add(Anchor, Address, [SubAddress], [ScreenTip],
[TextToDisplay])

Adds a hyperlink.

Argument Settings

Anchor A Range or Shape object to set as the location of the hyperlink.

Address The URL to navigate to when the hyperlink is clicked.

SubAddress A location on the page. SubAddress is appended to Address and preceded by #.

ScreenTip A tool tip to display when the mouse pointer pauses over the hyperlink.

TextToDisplay The text to show on screen in place of the hyperlink.

For example, the following code adds a hyperlink to range A1:

Sub AddHyperlink()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ws.Hyperlinks.Add [a1], "http:\\excelworkshop.com\", _
 , "Go to Jeff's site.", "Excel Workshop"
End Sub

hyperlink.Address [= setting]

Sets or returns the URL of the hyperlink.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the URL of the hyperlink.

hyperlink.AddToFavorites()

Adds the URL to the user's Favorites folder in Internet Explorer.

hyperlink.CreateNewDocument(Filename, EditNow, Overwrite)

Sets the hyperlink to create a new file when clicked.

Argument Settings

Filename The name of the file to create.

EditNow True opens the file for editing when the method runs; False waits until the user clicks the hyperlink to
edit the document.

Overwrite True replaces any existing file of the same name with a new, blank file when the method runs; False
causes an error if the file already exists.

Excel may lock up if EditNow is True and Filename is a workbook (.xls).

Excel opens the file in the user's default editor for the given file type. For example, the following code creates a new
text file and opens it for editing in Notepad:

Sub CreateLinkedFile()
 Dim ws As Worksheet, hyp As Hyperlink, path As String
 Set ws = ActiveSheet
 path = ThisWorkbook.path
 Set hyp = ws.Hyperlinks.Add([a3], path & "\ch10_Readme.txt", _
 , "Click to edit the text file.", "Application Notes")
 hyp.CreateNewDocument path & "\ch10_Readme.txt", True, True
End Sub

hyperlink.EmailSubject [= setting]

Gets or sets the subject line of a mailto: link. This property overrides the subject setting included in the URL. For
example, the following code creates an email link with a subject, but then changes the subject line:

Sub CreateMailLink()
 Dim ws As Worksheet, hyp As Hyperlink
 Set ws = ActiveSheet
 ' Create an email link.
 Set hyp = ws.Hyperlinks.Add([a3], _
 "mailto:someone@microsoft.com&subject=Help on Excel", _
 , "Click to send mail.", "Contact Microsoft")
 ' Change the subject...
 hyp.EmailSubject = "Different subject"
End Sub

hyperlink.Follow([NewWindow], [AddHistory], [ExtraInfo],
[Method], [HeaderInfo])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Navigates to the URL of the hyperlink. This is the same as clicking on the link.

Argument Settings

NewWindow This argument is ignored when used with a link that appears on a worksheet. Links always appear in a
new browser window.

AddHistory This argument is ignored.

ExtraInfo A string or array of bytes that includes information passed to the URL.

Method The way to send ExtraInfo to the URL. Possible settings are msoMethodGet or msoMethodPost.

HeaderInfo Header information to send with the HTTP request.

The following code navigates to each of the links on the page:

Sub TestLinks()
 Dim hyp As Hyperlink
 For Each hyp In ActiveSheet.Hyperlinks
 hyp.Follow
 Next
End Sub

hyperlink.Range

Returns the link's location on the worksheet as a Range object.

hyperlink.ScreenTip [= setting]

Sets or returns a pop-up tool tip to display when the mouse pointer pauses over the link.

hyperlink.Shape

If the link is anchored to a shape, returns the link's location as a Shape object.

hyperlink.SubAddress [= setting]

Sets or returns the location within the URL for the link. The URL is composed of the Address and SubAddress properties as
follows:

Address#SubAddress

hyperlink.TextToDisplay [= setting]

Sets or returns the text to show on the worksheet as the link.

hyperlink.Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not used; always returns 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.7. OleObject and OleObjects Members
Use the OleObjects collection to add linked or embedded objects . Use the Worksheet object's OleObjects method to get a
reference to this collection. Use the OleObject object to control the location and appearance of a linked or embedded
object. The OleObjects collection and OleObject object have the following members . Key members (shown in bold) are
covered in the following reference section:

Activate Add1 Application2

AutoLoad2 AutoUpdate Border2

BottomRightCell BringToFront2 Copy2

CopyPicture2 Count1 Creator2

Cut2 Delete2 Duplicate2

Enabled2 Group1 Height2

Index Interior2 Item1

Left2 LinkedCell ListFillRange

Locked2 Name Object

OLEType OnAction2 Parent2

Placement2 PrintObject2 progID

Select2 SendToBack2 Shadow2

ShapeRange2 SourceName2 Top2

TopLeftCell Update Verb

Visible2 Width2 ZOrder2

1 Collection only

2 Object and collection

oleobject.Add([ClassType], [Filename], [Link], [DisplayAsIcon],
[IconFileName], [IconIndex], [IconLabel], [Left], [Top], [Width],
[Height])

Creates a new OLE object on a sheet.

Argument Settings

ClassType The programmatic ID of the object to create. For example "Word.Document" or "MSGraph.Chart".

Filename The filename of the object to create. You must specify ClassType or Filename.

Link True links the object to Filename; False makes a copy of Filename to store in the workbook.

DisplayAsIcon True displays the object as an icon or a picture; False renders the object in the worksheet.

IconFileName If DisplayAsIcon is True, specifies a file containing the icon to display.

IconIndex If DisplayAsIcon is True, specifies the index of the icon within the icon file. Default is the first icon in the file.

IconLabel If DisplayAsIcon is True, specifies the text to display beneath the icon.

Left The distance between cell A1 and the left edge of the object in point.

Top The distance between cell A1 and the top edge of the object in point.

Width The width of the object in points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Height The height of the object in points.

The Width and Height arguments aren't absolute. Their actual result depends on the OLE
object being created.

The following code creates a new embedded Word document on the active worksheet:

Sub AddObject()
 Dim ws As Worksheet, ole
 Set ws = ActiveSheet
 ' Create the object.
 Set ole = ws.OleObjects.Add("Word.Document", , , , , , , 60, 60, 200, 400)
 ' Activate the object for editing.
 ole.Activate
End Sub

If you run the preceding code, the initial height of the object is set to fit the text you enter in the object.

oleobject.AutoLoad [= setting]

True reloads and rerenders the object when the workbook is opened; False does not rerender the object and instead
uses the image stored when the workbook is saved. Default is False. Setting AutoLoad to True can cause significant
delays when opening a workbook.

oleobject.AutoUpdate [= setting]

For objects with OleType of xlLink, true updates the object when the source changes; False does not automatically update
the object.

oleobject.BottomRightCell

Returns the Range object for the cell that is under the lower-right corner of the object.

oleobject.BringToFront()

Displays the object on top of all others.

oleobject.Copy()

Copies the object to the clipboard.

oleobject.CopyPicture([Appearance], [Format])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copies an image of the object to the clipboard.

Argument Settings

Appearance Specifies the resolution of the image. Can be one of these settings: xlPrinter, xlScreen. Default is xlScreen.

Format Specifies the image format. Can be one of these settings: xlBitmap, xlPicture. Default is xlPicture.

oleobject.Duplicate()

Creates a copy of the object and returns a reference to the copy. The following code creates a copy of an object and
moves it beneath the original:

Sub CopyObject()
 Dim ole1 As OleObject, ole2 As OleObject
 ' Get the object.
 Set ole1 = ActiveSheet.OleObjects(1)
 ' Create a copy.
 Set ole2 = ole1.Duplicate
 ' Move copy under first object.
 ole2.Top = ole1.Top + ole1.Height
End Sub

oleobjects.Group()

Groups the objects on a worksheet so they can be selected, moved, or deleted as a single item together.

oleobject.LinkedCell

For embedded controls linked to the value of a cell, returns the address of that cell.

oleobject.ListFillRange [= setting]

For an ActiveX list control linked to a range of cells, returns the address of that range.

oleObject.Object

Returns the underlying object. Use the Object property to get at the properties of embedded controls and to
programmatically control objects from other applications such as Word.

oleobject.OLEType

Returns xlOLELink if the object is linked to a source file, xlOLEEmbed if the object is embedded in the worksheet.

oleobject.OnAction [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the name of a macro to run when the object is clicked.

oleobject.Placement [= xlPlacement]

Sets or returns how the OLE object is moved or sized in relation to its underlying cells. Can be one of these settings:

xlMove (default)

xlMoveAndSize

xlFreefloating

Set to xlFreefloating to prevent the object from moving when the cells beneath it are moved.

oleobject.progID [= setting]

Returns the programmatic identifier (progID) for the object. progIDs identify the source application and type of the
object.

oleobject.Shadow [= setting]

True displays a shadow with the object; False does not. Default is False.

oleobject.ShapeRange

Returns a ShapeRange object for the OLE object. ShapeRange is used to control the appearance of graphic objects on a
worksheet. OLE objects don't support some of the changes you can make through ShapeRange. See Chapter 18 for more
information about the ShapeRange object.

oleobject.SourceName

For objects with OleType of xlLink, returns the name of the source document.

oleobject.Update()

For objects with OleType of xlLink, updates the link and rerenders the object.

oleobject.Verb([Verb])

Opens or performs the default verb on the object. The default verb is usually to edit the object.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Verb Can be one of these settings: xlOpen, xlPrimary. Default is xlPrimary.

oleobject.ZOrder

Returns the z-order of the object. Z-order determines which objects appear on top of others: a z-order of 1 indicates
the topmost object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.8. OLEFormat Members
Use the OLEFormat object to get an OleObject from a Shape object. The OLEFormat object has the following members :

Activate

Application

Creator

Object

Parent

progID

Verb

The following code demonstrates getting OLE objects from the Shapes collection rather than the OleObjects collection:

Sub GetOleObjectFromShapes()
 Dim shp As Shape, ole As OleObject
 ' Get the object.
 For Each shp In ActiveSheet.Shapes
 If shp.Type = msoEmbeddedOleObject Then
 ' Get the OleObject
 Set ole = shp.OLEFormat.Object
 ' Display some information.
 Debug.Print ole.progID
 End If
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.9. Speech Members
Use the Speech object to read words or ranges aloud. To get the Speech object, use the Application object's Speech property.
The Speech object has the following members. Key members (shown in bold) are covered in the following reference
section:

Direction

Speak

SpeakCellOnEnter

speech.Direction [= XlSpeakDirection]

Sets or returns the direction in which cells are read out loud. Possible settings are:

xlSpeakByColumns

xlSpeakByRows

speech.Speak(Text, [SpeakAsync], [SpeakXML], [Purge])

Reads text out loud.

Argument Settings

Text The text to read out loud.

SpeakAsync True executes the next statement without waiting for the reading to complete; False pauses code until
Text has been completely read. Default is False.

SpeakXML True interprets Text as XML or HTML, skipping tags; False reads all text. Default is False.

Purge True stops the current text being read and starts reading the new text immediately; False waits for
current text to complete before reading new text. Default is False.

The following code reads a short poem:

Sub ReadPoem()
 Dim spch As Speech, poem As String
 Set spch = Application.Speech
 poem = "Some men lead lives of quiet desperation. " & _
 "Our Joey lays in silent anticipation, " & _
 "of morsels dropped from Sophie's eating station."
 spch.Speak poem
End Sub

speech.SpeakCellOnEnter [= setting]

True reads the contents of a cell aloud when the user selects it; False does not read the cell aloud. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Linking and Embedding
Linking and embedding are ways to include information other than numbers and formulas on a worksheet. There are
quite a few different types of information you might want to include: text comments , links to web pages, controls, or
even whole documents from other applications.

In this chapter, I show how to include the most common types of information through the Excel user interface, and I
show how to create and control those items through code. I also cover how to make Excel read aloudI didn't know
where else to put that!

This chapter includes task-oriented reference information for the following objects and their collections: Comment,
Hyperlink, OLEObject, Speech, and UsedObjects.

Code used in this chapter and additional samples are available in ch10.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1. Print and Preview
Use the PrintOut or PrintPreview method to print or preview objects from code. These objects can print:

Charts, Chart

Range

Sheets, Worksheets, Worksheet

Window

Workbook

The syntax and arguments for PrintOut and PrintPreview are the same for all objects, so see the Workbook object reference
section in Chapter 8 for that information. These methods also apply to the current selection; for instance, the following
code previews and prints the selected range:

Sub PrintSelection()
 ' Print with preview
 Selection.PrintOut , , , True
End Sub

In my sample code, I set the Preview argument to True so you can see what will print
without wasting paper. Simply click Close on the preview window to cancel printing.

You can turn printing on or off for some objects embedded on a worksheet using the PrintObject property. The following
code prints a worksheet but omits any embedded controls or other OLE objects:

Sub PrintWithOutObjects()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Prevent printing of controls.
 ws.OLEObjects.PrintObject = False
 ' Print with preview.
 ws.PrintOut , , , True
 ' Restore printing for controls.
 ws.OLEObjects.PrintObject = True
End Sub

You can further control printing through the Workbook object's BeforePrint event. For instance, this code prevents the user
from printing any part of the workbook:

' ThisWorkbook module

' Cancel print jobs before they are processed.
Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Cancel = True
 ' Display a message
 MsgBox "Printing is disabled for this workbook."
End Sub

That's a neat trick, but it works only if macros are enabled for the workbook. If macros are disabled because of security
settings, the user can still print.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.10. HPageBreak, HPageBreaks, VPageBreak, VPageBreaks
Members
Use the HPageBreaks and VPageBreaks collections to add manual page breaks to a worksheet. Use the Worksheet object's
HPageBreaks and VPageBreaks properties to get a reference to those collections. Use the HPageBreak and VPageBreak objects to
remove manual page breaks. The HPageBreaks, HPageBreak, VPageBreak, and VPageBreaks objects have the following members .
Key members (shown in bold) are covered in the following reference section:

Add1 Application2

Count1 Creator2

Delete DragOff

Extent Item1

Location Parent2

Type
1 Collection only

2 Object and collection

pagebreaks.Add(Before)

Adds a manual page break to a worksheet.

Argument Settings

Before A Range object indicating the location of the page break. Breaks are inserted above or to the left of this
location.

pagebreak.DragOff(Direction, RegionIndex)

Used to record deleting a page break during macro recording. Use Delete instead in code.

pagebreak.Extent

Returns xlPageBreakFull if the break is full-screen, xlPageBreakPartial if the break is only within the print area.

pagebreak.Location

Returns the Range object indicating the location of the break. The following code displays the locations of manual page
breaks in the Immediate window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

breaks in the Immediate window:

Sub ShowBreakLocations()
 Dim ws As Worksheet, hpb As HPageBreak
 Set ws = ActiveSheet
 For Each hpb In ws.HPageBreaks
 Debug.Print hpb.Location.Address
 Next
End Sub

pagebreak.Type

Returns xlPageBreakManual (2).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.11. PageSetup Members
Use the PageSetup object to control the printer settings for a worksheet or chart. Use the Worksheet and Chart objects'
PageSetup property to get a reference to this object. The PageSetup object has the following members . Key members
(shown in bold) are covered in the following reference section:

Application BlackAndWhite BottomMargin

CenterFooter CenterFooterPicture CenterHeader

CenterHeaderPicture CenterHorizontally CenterVertically

ChartSize Creator Draft

FirstPageNumber FitToPagesTall FitToPagesWide

FooterMargin HeaderMargin LeftFooter

LeftFooterPicture LeftHeader LeftHeaderPicture

LeftMargin Order Orientation

PaperSize Parent PrintArea

PrintComments PrintErrors PrintGridlines

PrintHeadings PrintNotes PrintQuality

PrintTitleColumns PrintTitleRows RightFooter

RightFooterPicture RightHeader RightHeaderPicture

RightMargin TopMargin Zoom

pagesetup.BlackAndWhite [= setting]

True prints in black and white; False prints in color if it is available.

pagesetup.BottomMargin [= setting]

Sets or returns the bottom margin in points.

pagesetup.CenterFooter [= setting]

Sets or returns a string to print in the center footer region.

pagesetup.CenterFooterPicture

Returns the Graphic object to print in the center footer region.

pagesetup.CenterHeader [= setting]

Sets or returns a string to print in the center header region.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pagesetup.CenterHeaderPicture

Returns the Graphic object to print in the center header region.

pagesetup.CenterHorizontally [= setting]

True centers the worksheet or chart horizontally on the page when printing; False aligns the page to the top margin.

pagesetup.CenterVertically [= setting]

True centers the worksheet or chart vertically on the page when printing; False aligns the page to the lefthand margin.

pagesetup.ChartSize [= setting]

Sets or returns an xlObjectSize constant that determines how a chart is sized; causes an error for worksheet objects. Can
be one of the following settings:

xlFitToPage

Prints the chart as large as possible, while retaining the chart's height-to-width ratio.

xlFullPage

Prints the chart to fit the page, adjusting the height-to-width ratio (this is the default).

xlScreenSize

Prints the chart the same size as it appears on the screen.

pagesetup.Draft [= setting]

True omits graphics when printing; False includes graphics.

pagesetup.FirstPageNumber [= setting]

Sets or returns the starting number used for page numbering. Default is xlAutomatic.

pagesetup.FitToPagesTall [= setting]

For worksheets, specifies the number of worksheet pages to include vertically on a single print page. Ignored if the Zoom
property is True; causes an error for charts.

pagesetup.FitToPagesWide [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For worksheets, specifies the number of worksheet pages to include horizontally on a single print page. Ignored if the
Zoom property is True; causes an error for charts.

pagesetup.FooterMargin [= setting]

Sets or returns the distance from the bottom of the page to the footer in points.

pagesetup.HeaderMargin [= setting]

Sets or returns the distance from the top of the page to the header in points.

pagesetup.LeftFooter [= setting]

Sets or returns a string to print in the left footer region.

pagesetup.LeftFooterPicture

Returns the Graphic object to print in the left footer region.

pagesetup.LeftHeader [= setting]

Sets or returns a string to print in the left header region.

pagesetup.LeftHeaderPicture

Returns the Graphic object to print in the left header region.

pagesetup.LeftMargin [= setting]

Sets or returns the size of the left margin in points.

pagesetup.Order [= setting]

Sets or returns an XlOrder constant that determines how multiple pages are printed. Possible settings are:

xlDownThenOver (default)

xlOverThenDown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pagesetup.Orientation [= setting]

Sets or returns an XlPageOrientation constant that determines whether the page prints in portrait or landscape mode.
Possible settings are:

xlPortrait (default)

xlLandscape

pagesetup.PaperSize [= setting]

Sets or returns an XlPaperSize constant that determines the paper size used by the printer. Possible settings are:

xlPaper10x14 xlPaper11x1

xlPaperA3 (297 mm x 420 mm) xlPaperA4 (210 mm x 297 mm)

xlPaperA4Small (210 mm x 297 mm) xlPaperA5 (148 mm x 210 mm)

xlPaperB4 (250 mm x 354 mm) xlPaperB5 (148 mm x 210 mm)

xlPaperCsheet xlPaperDsheet

xlPaperEnvelope9 (3 7/8 in. x 8 7/8 in.) xlPaperEnvelope10 (4 1/8 in. x 9 1/2 in.)

xlPaperEnvelope11 (4 1/2 in. x 10 3/8 in.) xlPaperEnvelope12 (4 1/2 in. x 11 in.)

xlPaperEnvelope14 (5 in. x 11 1/2 in.) xlPaperEnvelopeB4 (250 mm x 353 mm)

xlPaperEnvelopeB5 (176 mm x 250 mm) xlPaperEnvelopeB6 (176 mm x 125 mm)

xlPaperEnvelopeC3 (324 mm x 458 mm) xlPaperEnvelopeC4 (229 mm x 324 mm)

xlPaperEnvelopeC5 (162 mm x 229 mm) xlPaperEnvelopeC6 (114 mm x 162 mm)

xlPaperEnvelopeC65 (114 mm x 229 mm) xlPaperEnvelopeDL (110 mm x 220 mm)

xlPaperEnvelopeItaly (110 mm x 230 mm) xlPaperEnvelopeMonarch (3 7/8 in. x 7 1/2 in.)

xlPaperEnvelopePersonal (3 5/8 in. x 6 1/2 in.) xlPaperEsheet

xlPaperExecutive (7 1/2 in. x 10 1/2 in.) xlPaperFanfoldLegalGerman (8 1/2 in. x 13 in.)

xlPaperFanfoldStdGerman (8 1/2 in. x 13 in.) xlPaperFanfoldUS U.S. (14 7/8 in. x 11 in.)

xlPaperFolio (8 1/2 in. x 13 in.) xlPaperLedger (17 in. x 11 in.)

xlPaperLegal (8 1/2 in. x 14 in.) xlPaperLetter (8 1/2 in. x 11 in.)

xlPaperLetterSmall (8 1/2 in. x 11 in.) xlPaperNote (8 1/2 in. x 11 in.)

xlPaperQuarto (215 mm x 275 mm) xlPaperStatement (5 1/2 in. x 8 1/2 in.)

xlPaperTabloid (11 in. x 17 in.) xlPaperUser (User-defined)

pagesetup.PrintArea [= setting]

Sets or returns the address of the range to be printed as a string using A1-style references. Causes an error for charts.

pagesetup.PrintComments [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns an XlPrintLocation constant that determines how comments are printed. Possible settings are:

xlPrintInPlace

xlPrintNoComments (default)

xlPrintSheetEnd

pagesetup.PrintErrors [= setting]

Sets or returns an XlPrintErrors constant that determines how error values are printed. Possible settings are:

xlPrintErrorsBlank

xlPrintErrorsDash

xlPrintErrorsDisplayed (default)

xlPrintErrorsNA

pagesetup.PrintGridlines [= setting]

True prints gridlines; False hides them. Default is False. Causes an error for charts.

pagesetup.PrintHeadings [= setting]

True prints row numbers and column letters with the worksheet; False does not print those headings. Default is False.
Causes an error for charts.

pagesetup.PrintNotes [= setting]

True prints cell notes at the end of the worksheet; False does not print notes. Default is False. Causes an error for
charts.

pagesetup.PrintQuality(index) [= setting]

Sets or returns the horizontal and vertical print resolution as a two-element array. Some printers do not support
multiple resolutions, and setting PrintQuality causes an error if the setting is not available or if the object is a chart. The
following code displays the printer resolution settings:

Sub ShowResolution()
 Dim ws As Worksheet, x As Integer, y As Integer
 Set ws = ActiveSheet
 x = ws.PageSetup.PrintQuality(1)
 y = ws.PageSetup.PrintQuality(2)
 MsgBox "Printer resolution is " & x & "x" & y
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pagesetup.PrintTitleColumns [= setting]

Sets or returns the address of a column to repeat at the top of each printed page as column headings. The address is
specified as a string.

pagesetup.PrintTitleRows [= setting]

Sets or returns the address of a row to repeat at the left of each printed page as row headings. The address is specified
as a string.

pagesetup.RightFooter [= setting]

Sets or returns a string to print in the right footer region.

pagesetup.RightFooterPicture

Returns the Graphic object to print in the right footer region.

pagesetup.RightHeader [= setting]

Sets or returns a string to print in the right header region.

pagesetup.RightHeaderPicture

Returns the Graphic object to print in the right header region.

pagesetup.RightMargin [= setting]

Sets or returns the size of the right margin in points.

pagesetup.TopMargin [= setting]

Sets or returns the size of the top margin in points.

pagesetup.Zoom [= setting]

Sets or returns a percentage between 10 and 400 percent to scale the worksheet by when printing. Default is 100.
Causes an error for charts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.12. Graphic Members
Use the Graphic object to add pictures to headers and footers through the PageSetup object. Use the PageSetup object's
CenterFooterPicture, CenterHeaderPicture, LeftFooterPicture, LeftHeaderPicture, RightFooterPicture, or RightHeaderPicture methods to get a
reference to this object. The Graphic object has the following members, most of which are shared by the PictureFormat
object. Unique, key members (shown in bold) are covered in the following reference section:

Application Brightness

ColorType Contrast

Creator CropBottom

CropLeft CropRight

CropTop Filename

Height LockAspectRatio

Parent Width

To add a graphic to a header or footer in code:

1. Use one of the PageSetup object's header or footer picture methods to get a reference to the Graphic object.

2. Set the Filename property of the Graphic object.

3. Set the PageSetup object's corresponding header or footer property to &G.

The following code demonstrates adding a bitmap to the center footer of the active worksheet and previews the result
before printing:

Sub AddFooterGraphic()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 Set ps = ws.PageSetup
 ps.CenterFooterPicture.Filename = _
 ThisWorkbook.Path & "\wombatright.bmp"
 ps.CenterFooter = "&G"
 ws.PrintOut , , , True
End Sub

To remove the graphic from the header or footer, remove the &G from the header or footer as shown here:

Sub RemoveFooterGraphic()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ws.PageSetup.CenterFooter = ""
End Sub

graphic.Filename [= setting]

Sets or returns the name of the graphic file to include in the header or footer.

graphic.LockAspectRatio [= setting]

True retains the aspect ratio when the height or width is set; False stretches or squashes the image to match the height
or width settings. The following code demonstrates the result of both settings; notice that the image filename must be
reset to restore the original proportions after resizing the image:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reset to restore the original proportions after resizing the image:

Sub GraphicAspectRatio()
 Dim gr As Graphic
 ' Add the footer image.
 ActiveSheet.PageSetup.CenterFooterPicture.Filename = _
 ThisWorkbook.Path & "\wombatright.bmp"
 ActiveSheet.PageSetup.CenterFooter = "&G"
 ' Get the graphic object.
 Set gr = ActiveSheet.PageSetup.CenterFooterPicture
 ' Squash the image (height stays the same)
 gr.LockAspectRatio = False
 gr.Height = 20
 ActiveSheet.PrintOut , , , True
 ' Restore the footer image.
 ActiveSheet.PageSetup.CenterFooterPicture.Filename = _
 ThisWorkbook.Path & "\wombatright.bmp"
 ' Scale image to this width
 gr.LockAspectRatio = True
 gr.Height = 20
 ActiveSheet.PrintOut , , , True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.13. PublishObject and PublishObjects Members
Use the PublishObjects collection to publish items from a workbook to the Web. Use the Workbook object's PublishObjects
property to get a reference to this collection. Use the PublishObject object to save the item as a web page and to control
the appearance of that web page. The PublishObjects collection and PublishObject object have the following members . Key
members (shown in bold) are covered in the following reference section:

Add1 Application2

AutoRepublish Count1

Creator2 Delete2

DivID Filename

HtmlType Item1

Parent2 Publish2

Sheet Source

SourceType Title

1 Collection only

2 Object and collection

publishobjects.Add(SourceType, Filename, [Sheet], [Source],
[HtmlType], [DivID], [Title])

Creates an object that can be published from the workbook as a web page.

Argument Settings

SourceType

An XlSourceType constant identifying the type of object to publish. Can be one of these settings:

xlSourceAutoFilter
xlSourceChart
xlSourcePivotTable
xlSourcePrintArea
xlSourceQuery
xlSourceRange
xlSourceSheet
xlSourceWorkbook

Filename The full URL of the web page to create.

Sheet If SourceType is xlSourceSheet or xlSourcePrintArea, this is the name of the worksheet to publish.

Source
If SourceType is xlSourceAutofilter or xlSourceRange, this argument is the address of the range, or the name of
the range to publish entered as a string. If SourceType is xlSourceChart, xlSourcePivotTable, or xlSourceQuery, this
argument is the name of the chart, pivot table, or query to publish.

HtmlType

An XlHTMLType constant identifying whether the published object is interactive. Can be one of these
settings:

 xlHtmlCalc (interactive range)
 xlHtmlChart (interactive chart)
 xlHtmlList (interactive list)
 xlHtmlStatic (noninteractive)

DivID The ID attribute of a <DIV> element in the target web page to replace. This argument allows you to
replace part of a web page with the published item.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Title A title to include in the <Title> element on the web page.

The arguments used by Add are complicated and their meanings vary based on the published source and target. It is
easiest to turn on macro recording, publish the item, turn off recording, then use the generated Add method as a
starting point for writing your code.

publishobject.AutoRepublish [= setting]

True automatically republishes the item when the workbook is saved; False does not automatically republish. Default is
False.

publishobject.DivID

Returns the ID attribute of the <DIV> element on the web page to be replaced when the item is published. This property
is set by the Add method.

publishobject.Filename [= setting]

The URL of the web page to publish.

publishobject.HtmlType [= setting]

Sets or returns an XlHTMLType constant identifying whether the published object is interactive. See the Add method
HtmlType argument for a list of settings.

publishobjects.Publish([Create])

Publishes the item by saving it as a web page.

Argument Settings

Create True replaces an existing file with a new file; False appends the item to the file if it already exists. In
either case, the file is created if it does not already exist.

publishobject.Sheet

Returns the name of the sheet being published. Use the Add method's Sheet argument to set this property.

publishobject.Source

Returns the address or name of the item being published. Use the Add method's Source argument to set this property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

publishobject.SourceType

Returns the type of item being published. Use the Add method's SourceType argument to set this property.

publishobject.Title [= setting]

Sets or returns the title included in the <Title> element of the published web page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.14. WebOptions and DefaultWebOptions Members
Use the WebOptions and DefaultWebOptions objects to set the default web publishing options at the application or workbook
levels. Use the Application object's DefaultWebOptions property or the Workbook object's WebOptions property to get a reference
to these objects. The WebOptions and DefaultWebOptions objects have the following members. Key members (shown in bold)
are covered in the following reference section:

AllowPNG AlwaysSaveInDefaultEncoding1

Application CheckIfOfficeIsHTMLEditor1

Creator DownloadComponents

Encoding FolderSuffix

Fonts1 LoadPictures1

LocationOfComponents OrganizeInFolder

Parent PixelsPerInch

RelyOnCSS RelyOnVML

SaveHiddenData1 SaveNewWebPagesAsWebArchives1

ScreenSize TargetBrowser

UpdateLinksOnSave UseLongFileNames

1 The DefaultWebOptions members are a superset of the WebOptions members. These members apply to DefaultWebOptions
only.

Excel saves graphics with only noninteractive web pages. Interactive web pages
automatically omit pictures, controls, and other Shape objects, and image-related web
options have no effect.

options.AllowPNG [= setting]

True allows web page graphics to be saved in Portable Network Graphics (PNG) format, which can improve the
resolution and performance of the graphic. Not all browsers support PNG, however, so the default is False.

defaultweboptions.AlwaysSaveInDefaultEncoding [= setting]

True uses the Encoding property when updating existing web pages, overriding the file settings. Default is False.

defaultweboptions.CheckIfOfficeIsHTMLEditor [= setting]

True causes Excel to check if Microsoft Office is the default HTML editor whenever Excel starts. Default is True.

options.DownloadComponents [= setting]

True automatically downloads the Office Web Components from the URL in LocationOfComponents if the user does not have

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True automatically downloads the Office Web Components from the URL in LocationOfComponents if the user does not have
those components installed before viewing the web page. The user must have Microsoft Office 2000 or later installed,
however. Default is False.

options.Encoding [= msoEncoding]

Sets or returns the msoEncoding constant for the code page or character set to use on the web page. The default is the
system code page.

options.FolderSuffix

Returns the folder suffix used if UseLongFileNames and OrganizeInFolder are set to True. By default, the name of the
supporting folder is the name of the web pageplus an underscore (_), a period (.), or a hyphen (-)--and the word files.

defaultweboptions.Fonts

Returns a WebPageFonts collection that represents the fonts Excel uses when saving a web page. Changing the font name
or size properties of the returned WebPageFont objects does not seem to have an effect on web pages published from
Excel:

Sub WebFonts()
 Dim fnt As WebPageFont
 Set fnt = _
 Application.DefaultWebOptions.Fonts _
 (msoCharacterSetEnglishWesternEuropeanOtherLatinScript)
 ' Show the current settings.
 Debug.Print fnt.FixedWidthFont
 Debug.Print fnt.FixedWidthFontSize
 Debug.Print fnt.ProportionalFont
 Debug.Print fnt.ProportionalFontSize
End Sub

defaultweboptions.LoadPictures [= setting]

True loads images when an Excel file is opened for a web address; False if the images are not loaded. Default is True.

options.LocationOfComponents [= setting]

Sets or returns the URL from which to download the Office Web Components (owc10.exe or owc11.exe) if they are not
installed on the user's machine. The default is the drive from which Office was originally installed (usually the CD drive).

You can copy the Office Web Components to a folder on your web server, then set this property to ensure the
components will be installed automatically if needed, as shown here:

Sub SetDownload()
 Dim wo As DefaultWebOptions
 Set wo = Application.DefaultWebOptions
 wo.LocationOfComponents = _
 "http://www.excelworkshop.com/Ch11Sample/owc11.exe"
 wo.DownloadComponents = True
End Sub

options.OrganizeInFolder [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True saves supporting files such as graphics in a subfolder created at the location of the web page; False saves
supporting files in the same folder as the web page. Default is True.

options.RelyOnCSS [= setting]

True creates a cascading stylesheet (CSS) file and saves it with the supporting files for formatting set through Excel
styles; False saves the formatting information in the web page. Default is True.

options.RelyOnVML [= setting]

True does not render Vector Markup Language (VML) graphics as image files when saving; not all browsers support
VML, so the default is False.

defaultweboptions.SaveHiddenData [= setting]

True saves values that lie outside of the published range but that are referenced within the published range with the
web page; False converts those references to static values. Default is True.

defaultweboptions.SaveNewWebPagesAsWebArchives [=
setting]

True allows web pages to be saved in Multipurpose Internet Mail Extension HTML (MHTML) format , which includes
graphics and embedded contents in a single file. Default is True.

options.ScreenSize [= msoScreenSize]

Sets or returns the msoScreenSize constant that determines the target screen size for the web page. Possible settings are:

msoScreenSize1152x882 msoScreenSize1280x1024

msoScreenSize1800x1440 msoScreenSize544x376

msoScreenSize720x512 msoScreenSize1024x768

msoScreenSize1152x900 msoScreenSize1600x1200

msoScreenSize1920x1200 msoScreenSize640x480

msoScreenSize800x600

options.TargetBrowser [= msoTargetBrowser]

Sets or returns the msoTargetBrowser constant that determines browser capabilities to target when generating the web
page. Possible settings are:

msoTargetBrowserIE4

msoTargetBrowserIE5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

msoTargetBrowserIE6

msoTargetBrowserV3

msoTargetBrowserV4

defaultweboptions.UpdateLinksOnSave [= setting]

True updates linked values before saving as a web page; False does not automatically update links. Default is True.

options.UseLongFileNames [= setting]

True allows long filenames when saving web pages; False uses the DOS filename format (8.3).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2. Control Paging
Use the HPageBreaks and VPageBreaks collections to add manual page breaks to a worksheet in code. For example, this code
adds horizontal page breaks to a worksheet every specified number of rows:

Sub AddHBreaks(rows As Integer)
 Dim ws As Worksheet, hpb As HPageBreak, i As Integer
 Set ws = ActiveSheet
 For i = rows To ws.UsedRange.rows.Count Step rows
 ws.HPageBreaks.Add ws.rows(i)
 Next
End Sub

Use the HPageBreak and VPageBreak objects' Delete method to remove individual page breaks or use the Worksheet object's
ResetAllPageBreaks method to remove all manual page breaks as shown here:

Sub RemoveBreaks()
 ActiveSheet.ResetAllPageBreaks
End Sub

The page break collections contain only manual page breaks. Even though there is a Type property that suggests you
might be able to get automatic page breaks, you can't. That means the Count properties of the collections return only
the number of manual page breaks. For example, this code displays the page count of a worksheet that contains only
manual page breaks:

Sub ShowPageCount()
 Dim ws As Worksheet, hb As Integer, vb As Integer
 Set ws = ActiveSheet
 hb = ws.HPageBreaks.Count + 1
 vb = ws.VPageBreaks.Count
 If vb = 0 Then vb = 1
 MsgBox "This worksheet has " & hb * vb & " pages."
End Sub

The only way to control automatic page breaks is to change the page margins using the PageSettings object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3. Change Printer Settings
Use the Worksheet or Chart objects' PageSettings property to get or set the printer settings before printing. The PageSettings
object provides a set of read/write properties that correspond to the Page Setup dialog box (Figure 11-1).

For example, this procedure displays common printer settings in some named ranges on a worksheet:

Sub GetProperties()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 Set ps = ws.PageSetup
 [BlackAndWhite] = ps.BlackAndWhite
 [Draft] = ps.Draft
 [BottomMargin] = ps.BottomMargin
 [TopMargin] = ps.TopMargin
 [RightMargin] = ps.RightMargin
 [LeftMargin] = ps.LeftMargin
 [Zoom] = ps.Zoom
End Sub

Figure 11-1. The PageSettings object provides properties that control these
settings

This procedure changes the print settings by applying the settings from the named ranges back to the PageSettings
object:

Sub SetProperties()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 Set ps = ws.PageSetup
 ps.BlackAndWhite = [BlackAndWhite]
 ps.Draft = [Draft]
 ps.BottomMargin = [BottomMargin]
 ps.TopMargin = [TopMargin]
 ps.RightMargin = [RightMargin]
 ps.LeftMargin = [LeftMargin]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ps.LeftMargin = [LeftMargin]
 ps.Zoom = [Zoom].Value
End Sub

You have to use the Value property of the named range when setting Zoom in the preceding code because the Zoom
property is a Variant type. Variants accept objects, so Visual Basic doesn't automatically call the default property of the
range; you have to call Value explicitly.

You can see the effects of the changes by running PrintPreview:

Sub PrintPreview()
 Dim ws As Worksheet, ps As PageSetup
 Set ws = ActiveSheet
 ws.PrintOut , , , True
End Sub

The print settings are stored with the worksheet or chart. When you create a new worksheet, that object uses the
default settings. Therefore, you can restore the defaults by creating a temporary worksheet, getting its PageSettings
object, and assigning the property values from that object, as shown here:

Sub RestoreDefaultPageSetup()
 Dim ps As PageSetup
 ' Get the default settings (creates a temporary worksheet).
 Set ps = DefaultPageSetup
 ' Restore the active sheet's settings.
 With ActiveSheet.PageSetup
 .BlackAndWhite = ps.BlackAndWhite
 .Draft = ps.Draft
 .BottomMargin = ps.BottomMargin
 .TopMargin = ps.TopMargin
 .RightMargin = ps.RightMargin
 .LeftMargin = ps.LeftMargin
 .Zoom = ps.Zoom
 End With
 ' Silently delete the temporary worksheet.
 Application.DisplayAlerts = False
 ps.Parent.Delete
 Application.DisplayAlerts = True
End Sub

Function DefaultPageSetup() As PageSetup
 Dim ws As Worksheet, result As PageSetup
 Set ws = ThisWorkbook.Worksheets.Add()
 Set result = ws.PageSetup
 Set DefaultPageSetup = result
End Function

You can't assign one PageSetting object to another. The worksheet and chart object's PageSettings property is read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4. Filter Ranges
Filters work by hiding rows that don't meet certain criteria. Filter criteria are selected from drop-down lists in a column's
heading. You can select built-in criteria, such as Top 10, or enter your own custom criteria. To create a filter in Excel:

1. Select the header row of the rows you want to filter.

2. Choose Data Filter AutoFilter. Excel adds a filter drop-down list to each of the selected columns.

Lists provide a more powerful and flexible tool for filtering ranges . Lists are available only
in Excel 2003, however.

To apply the filter, select the criteria from one of the drop-down lists as shown in Figure 11-2. Excel hides the rows
below that don't match the criteria. You can apply filters for more than one column to further narrow the range of
displayed rows.

Figure 11-2. Applying a filter to a stock price history table

To create a filter in code, use the Range object's AutoFilter method without arguments. To apply a filter, call AutoFilter again
with the column to filter and the criteria as arguments. The following ApplyFilter procedure creates a filter and applies a
filter to display 10 days with the most volume (column 6 in Figure 11-2):

Sub ApplyFilter()
 Dim header As Range
 Set header = [e21:k21]
 ' Create filter
 header.AutoFilter
 ' Apply filter to show top 10 volume days.
 header.AutoFilter 6, "10", XlAutoFilterOperator.xlTop10Items
End Sub

You've got to call AutoFilter twice: once to create the filter and once to apply a filter. If you
try to create and apply a filter in a single statement, you'll get an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To remove filtering, call AutoFilter again without arguments. Because AutoFilter toggles filtering on and off, you need to
check the worksheet's AutoFilter property to make sure the filter exists before removing it. The following code removes
filtering from the table in Figure 11-2:

' If worksheet is filtered, remove the filter.
Sub RemoveFilter()
 Dim header As Range, ws As Worksheet
 Set ws = ActiveSheet
 Set header = [e21:k21]
 If ws.AutoFilterMode Then _
 header.AutoFilter
End Sub

The Worksheet object also has an AutoFilter member, but it's a property that returns a reference to autofilters on the
worksheet, which in turn provides a collection of read-only Filter objects that represent each of the filtered columns. You
can't change or apply filters through the Filters collection; you can only read the settings and then only if the filter is on.
That's not too useful, but I illustrate it later in this chapter in "AutoFilter Members" in case you're curious.

The Range object's AdvancedFilter method lets you hide blocks of cells or copy those blocks to a new location. The
AdvancedFilter method is the code equivalent of choosing Data Filter Advanced Filter and it doesn't add
dropdowns to the column headings as does autofilter. For example, the following code displays the first five rows from
the table in Figure 11-2:

Sub AdvancedFilter()
 ' Show first five rows.
 [d21:k224].AdvancedFilter xlFilterInPlace, [d21:d26], False
End Sub

AdvancedFilter removes the autofilter if there is one. AdvancedFilter provides a quick way to hide duplicate rows (including
empty rows), as shown here:

Sub HideDuplicates()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Hide nonunique rows
 ws.UsedRange.AdvancedFilter xlFilterInPlace, ws.UsedRange, False, True
End Sub

Finally, the Worksheet object's ShowAllData method turns off all of the filters on a worksheet and redisplays any hidden
rows:

Sub ShowAll()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Turn off all filters.
 ws.ShowAllData
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5. Save and Display Views
Views store printer and hidden range settings for a workbook. For example, you might create two views for a complex
worksheet: one named Summary that hides detail rows and one named Detail that hides no rows. Users can then
switch between those views easily. Similarly, you can use views to store printer settings to make switching between
portrait and landscape modes more convenient.

To use views in Excel, start with the default settings you want to use and then follow these steps:

1. Choose Views Custom Views Add. Excel displays the Add View dialog.

2. Enter a name for the default view and click OK.

3. Select rows or columns to hide in the new view and choose Format Row/Column Hide.

4. Choose File Print Properties and set the printer properties to use in the view.

5. Repeat Step 1 and name the new view.

To switch between views in Excel:

1. Choose Views Custom Views. Excel displays the Custom Views dialog.

2. Select the view to display and click Show.

Since autofilters work by selectively hiding rows, views can be used to store filter criteria.
You can then quickly switch between criteria using the views.

To create a view in code, use the Add method of the CustomViews collection. For example, the following code creates
Summary and Detail views for a worksheet:

Sub CreateViews()
 Dim ws As Worksheet, wb As Workbook
 Set ws = ActiveSheet
 Set wb = ThisWorkbook
 ' Create Detail view
 ' Show all cells.
 ws.UsedRange.EntireRow.Hidden = False
 ' Hide an unneeded header from the web query.
 ws.Rows("10:20").EntireRow.Hidden = True
 ' Create the view.
 wb.CustomViews.Add "Detail", False, True
 ' Hide price history detail.
 [PriceHistory].EntireRow.Hidden = True
 ' Create summary view
 wb.CustomViews.Add "Summary", False, True
End Sub

Use the Show method to switch between views. For example, the following command button code switches between the
Summary and Detail views created in the preceding code:

Private Sub cmdSwitchView_Click()
 Static view As String
 ' Toggle setting.
 If view = "" Or view = "Summary" Then
 view = "Detail"
 Else
 view = "Summary"
 End If
 ' Activate the view.
 ThisWorkbook.CustomViews(view).Show
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.6. Publish to the Web
Publishing items to the Web is an alternative to printing and distributing workbooks or worksheets manually. Unlike
printed copies, published items may be interactive and can update automatically when you save changes to a
workbook. To use these features you must have Excel 2000 or later and have write access to a web site or a network
share. SharePoint document libraries support Excel publishing features, so I'll use the document library
http://www.excelworkshop.com/Ch11Sample/ as the publishing location throughout this chapter.

To publish an item from Excel :

1. Select the item to publish and choose File Save, then select "Web Page (*.htm; *.html)" from the "Save
as Type" listbox. Excel displays the publish options on the Save As dialog box (Figure 11-3).

2. Choose a public location such as a network share, FTP address, or URL to save the web page to and click
Publish. Excel displays the Publish as Web Page dialog box (Figure 11-4).

3. Choose additional publishing options and click Publish to save the item as a web page.

If you select Add Interactivity With in Figure 11-4, Excel adds the following ActiveX control to the web page:

<object id="ch11_publish_Spreadsheet"
 classid="CLSID:0002E559-0000-0000-C000-000000000046">
 <param name=DisplayTitleBar value=false>
 <param name=Autofit value=true>
 <param name=DataType value=XMLData>
 <param name=XMLData value="...">
 <p style='margin-top:100;font-family:Arial;font-size:8.0pt'>To use this Web
 page interactively, you must have Microsoft!!R!! Internet Explorer 5.01 Service
 Pack 2 (SP2) or later and the Microsoft Office 2003 Web Components.</p>
 <p style='margin-top:100;font-family:Arial;font-size:8.0pt'>See the Microsoft
 Office Web site for more information.</p>
</object>

This ActiveX control runs only if you:

Have the Office Web Components installed. Search http://www.microsoft.com/downloads for "Office Web
Components" to download.

Are browsing with Internet Explorer (IE) 5.01 SP2 or later.

Figure 11-3. Use Save As to publish a workbook or a selected item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-4. Set additional options before publishing

Are viewing the page from an intranet or trusted Internet site or have set your IE security settings to a low
level (not a good idea).

Non-Microsoft browsers don't support ActiveX controls . In fact, ActiveX controls pose a
significant security risk, so it is important to run them only if they are from trusted
vendors or from trusted locations.

If you meet those conditions, you can enter values in cells on the interactive web page and see results as shown in
Figure 11-5.

Figure 11-5. A published, interactive range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To publish objects from code , use the PublishObjects collection's Add method to create a PublishObject, then call the Publish
method to publish the object. You get the PublishObjects collection from the Workbook object; the following code
demonstrates publishing a workbook to a web site:

Sub PublishWorkbook()
 Dim wb As Workbook, po As PublishObject
 Set wb = ActiveWorkbook
 ' Create a publish object .
 Set po = wb.PublishObjects.Add(XlSourceType.xlSourceWorkbook, _
 "http://www.excelworkshop.com/Ch11Sample/Ch11_WB1.htm", _
 , , XlHtmlType.xlHtmlCalc)
 ' Publish the worksheet.
 po.Publish True
End Sub

The PublishObject is saved with the workbook; you can retrieve the object from its collection to republish it or to change
its properties as shown here:

Sub RepublishAll()
 Dim po As PublishObject
 For Each po In ActiveWorkbook.PublishObjects
 ' Show properties in the Immediate window.
 Debug.Print po.Source, po.Filename, po.Title
 ' Republish.
 po.Publish True
 Next
End Sub

Alternately, you can set the AutoRepublish property to republish the web pages every time the workbook is saved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.7. AutoFilter Members
Use the AutoFilter object to get the Filter object for a column. Use the Range object's AutoFilter method to create a new
filtered range. Use the Worksheet object's AutoFilter property to get a reference to the autofilters on a worksheet. The
AutoFilter object has the following members. The key member (shown in bold) is covered in the following reference
section:

Application
Creator
Filters
Parent

autofilter.Filters(index)

The Filters collection returns a Filter object with read-only properties that list the state and criteria for each filtered column
on the worksheet. You can't change or apply filters through the Filters collection; you can only read the settings and then
only if the filter is on as shown here:

Sub ShowFilters()
 Dim ws As Worksheet, flt As Filter, i As Integer
 Set ws = ActiveSheet
 ' If there are filters
 If ws.AutoFilterMode Then
 ' Get each Filter object
 For i = 1 To ws.AutoFilter.Filters.Count
 Set flt = ws.AutoFilter.Filters(i)
 ' And if the filter is on, show its criterion.
 If flt.On Then
 Debug.Print "Column " & i & ": " & flt.Criteria1
 End If
 Next
 End If
End Sub

Use the Range object's AutoFilter method to set Filter properties and apply filters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.8. Filter and Filters Members
Use the Filters collection to get the state and settings of autofilters on a worksheet. Use the AutoFilter object's Filters
property to get a reference to this collection. The Filters collection, and Filter object have the following members . Key
members (shown in bold) are covered in the following reference section:

Application2

Count1

Creator2

Criteria1

Criteria2

Item1

On

Operator

Parent2

1 Collection only

2 Object and collection

filter.Criteria1

Returns the first criterion for a filter as a string.

filter.Criteria2

Returns the second criterion for a filter as a string.

filter.On

Returns True if the filter is applied to the range, False if not. The other Filter properties return values only if On is True;
otherwise they return Nothing.

filter.Operator

Returns an xlAutoFilterOperator constant indicating the filter's operator. Possible settings are:

xlAnd

xlBottom10Percent

xlTop10Items

xlBottom10Items

xlOr

xlTop10Percent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.9. CustomView and CustomViews Members
Use the CustomViews collection to save print settings and hidden cells as a special view of a workbook. Use the Workbook
object's CustomViews property to get a reference to this collection. Use the CustomView object's Show method to display the
view. The CustomViews collection and CustomView object have the following members . Key members (shown in bold) are
covered in the following reference section:

Add1 Application2

Count1 Creator2

Delete Item1

Name Parent2

PrintSettings RowColSettings

Show
1 Collection only

2 Object and collection

customviews.Add(ViewName, [PrintSettings], [RowColSettings])

Creates a new view for the workbook.

Argument Settings

ViewName The name of the view to create.

PrintSettings True saves printer settings with the view; False omits them. Default is True.

RowColSettings True saves hidden cell settings with the view; False omits them. Default is True.

For example, the following code creates a new view that prints all worksheets in landscape orientation. The code also
restores the original view:

Sub CreateLandscapeView()
 Dim ws As Worksheet, vw As CustomView, wb As Workbook
 Set ws = ActiveSheet
 Set wb = ThisWorkbook
 ' Save current settings.
 wb.CustomViews.Add ("Default")
 ' Set worksheets to print landscape.
 For Each ws In wb.Worksheets
 ws.PageSetup.Orientation = xlLandscape
 Next
 ' Save print settings as a view.
 wb.CustomViews.Add "Landscape", True, False
 ' Restore the previous settings.
 wb.CustomViews("Default").Show
End Sub

customview.PrintSettings

Returns True if printer settings are stored with the view, False otherwise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

customview.RowColSettings

Returns True if filters and hidden ranges are included with the view, False otherwise.

customview.Show

Makes a view active. This may or may not change the display. For example, the following code switches to the
Landscape view created earlier, prints the workbook, then restores the default view. Because the Landscape view
includes only print settings, the appearance of the worksheets does not change.

Sub PrintLandscape()
 Dim wb As Workbook
 Set wb = ThisWorkbook
 ' Set landscape view.
 wb.CustomViews("Landscape").Show
 wb.PrintOut , , , True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Printing and Publishing
Excel provides objects and methods for printing and previewing workbooks, worksheets, ranges, and other objects. It
also allows you to publish those objects to the Web as an interactive alternative to printing and distributing hardcopies.
This chapter explains how you print and publish objects from Visual Basic for Applications (VBA) as well as how to
control the various aspects of printing such as printer settings, page breaks, and views. Some general features such as
autofilters and default web options are most closely related to printing and publish, so they are covered here as well.

This chapter includes task-oriented reference information for the following objects and their related collections: AutoFilter,
Filter, CustomView, HPageBreak, VPageBreak, PageSetup, Graphic, PublishObject, DefaultWebOptions, and WebOptions.

Code used in this chapter and additional samples are available in ch11.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1. Working with QueryTable Objects
The QueryTable object gives you programmatic access to the database queries that are native to Excel. These database
queries let you retrieve data from a variety of data sources and insert the data into your worksheets. In the Excel
interface, you create a database query by clicking Import External Data, New Database Query on the Data menu.

In code, you create a database query by adding a QueryTable object to the QueryTables collection. When you do this, you
supply a connection string to your data source as well as a destination on your worksheet where you want the results of
the query to be inserted. For example, the following code inserts information for a specific product from the Products
table of the Northwind Traders sample database into the current worksheet, starting with the first cell of the worksheet:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh

You can also use the ADO or DAO programming interfaces to create a recordset, and use the resulting Recordset object
as your data source. To use either of these programming interfaces in Excel, you need to add a reference to the
appropriate object library. On the Tools menu in the VBA programming environment, select References, then select the
appropriate object library from the list. For example, the following code creates a query table using the Employees table
in the Northwind Traders sample database and inserts the recordset name and data in the active worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 "OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

The ADO and DAO programming interfaces are discussed later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.10. DAO.QueryDef and DAO.QueryDefs Members

Append1 CacheSize

Cancel Close

Connect Count1

CreateProperty DateCreated

Delete1 Execute

LastUpdated MaxRecords

Name ODBCTimeout

OpenRecordset Prepare

RecordsAffected Refresh1

ReturnsRecords SQL

StillExecuting Type

Updatable
1 Collection only

querydef.Execute([Options])

Executes the specified action query.

Argument Description

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

querydef.MaxRecords[= setting]

For and ODBC data source, returns the maximum number of records to return from the query.

querydef.OpenRecordset([Type], [Options]), [LockEdits])

Opens the record.

Argument Description

Type The type of recordset to open: dbOpenTable, dbOpenDynamic, dbOpenDynaset, dbOpenSnapshot, or
dbOpenForwardOnly.

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

LockEdits The locking used by the recordset: dbReadOnly, dbPessimistic, dbOptimistic, dbOptimisticValue, or dbOptimisticBatch.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code example displays the contents of the recordset produced by the Invoices query in the Northwind
Traders sample database on the active sheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim qry As DAO.QueryDef
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set qry = db.QueryDefs("Invoices")
Set rs = qry.OpenRecordset

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A1"))

qt.Refresh

querydef.SQL[= setting]

Sets or returns the query's SQL string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.11. DAO.Recordset and DAO.Recordsets Members

AbsolutePosition AddNew BatchCollisionCount

BatchCollisions BatchSize BOF

Bookmark Bookmarkable CacheSize

CacheStart Cancel CancelUpdate

Clone Close Connection

CopyQueryDef Count1 DateCreated

Delete Edit EditMode

EOF FillCache Filter

FindFirst FindLast FindNext

FindPrevious GetRows Index

LastModified LastUpdated LockEdits

Move MoveFirst MoveLast

MoveNext MovePrevious Name

NextRecordset NoMatch OpenRecordset

PercentPosition RecordCount RecordStatus

Refresh1 Requery Restartable

Seek Sort StillExecuting

Transactions Type Updatable

Update UpdateOptions ValidationRule

ValidationText
1 Collection only

recordset.AddNew

Adds a new record to the recordset. The following code adds a new record to the Employees table in the Northwind
Traders sample database using cell values on the current worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

rs.AddNew
rs!LastName = ActiveSheet.Range("B4")
rs!FirstName = ActiveSheet.Range("C4")
rs.Update

recordset.BOF[= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True if the current record position is before the first record in the recordset.

recordset.EOF[= setting]

True if the current record position is after the last record in the recordset. The following code uses the EOF property to
test for the end of the recordset, adding names from the Employees table in the Northwind Traders sample database to
the first column of the current worksheet:

recordset.MoveFirst Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!FirstName & " " & rs!LastName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

recordset.MoveFirst

Moves to the first record in the recordset.

recordset.MoveLast

Moves to the last record in the recordset.

recordset.MoveNext

Moves to the next record in the recordset. See the EOF code example for an example of using MoveNext.

recordset.MovePrevious

Moves to the previous record in the recordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2. QueryTable and QueryTables Members
Use the QueryTables collection to create new query tables and add them to a worksheet. Use the Worksheet object's
QuertyTables property to get a reference to this collection. Use the QueryTable object to refresh the data in the query table
and to control other aspects of the query. The QueryTables and QueryTable objects have the following members . Key
members (shown in bold) are covered in the following reference section:

Web query members are covered in Chapter 24.

Add1 AdjustColumnWidth

AfterRefresh Application2

BackgroundQuery BeforeRefresh

CancelRefresh CommandText

CommandType Connection

Count1 Creator2

Delete Destination

EditWebPage EnableEditing

EnableRefresh FetchedRowOverflow

FieldNames FillAdjacentFormulas

Item1 ListObject

MaintainConnection Name

Parameters Parent2

PostText PreserveColumnInfo

PreserveFormatting QueryType

Recordset Refresh

Refreshing RefreshOnFileOpen

RefreshPeriod RefreshStyle

ResetTimer ResultRange

RobustConnect RowNumbers

SaveAsODC SaveData

SavePassword SourceConnectionFile

SourceDataFile TextFileColumnDataTypes

TextFileCommaDelimiter TextFileConsecutiveDelimiter

TextFileDecimalSeparator TextFileFixedColumnWidths

TextFileOtherDelimiter TextFileParseType

TextFilePlatform TextFilePromptOnRefresh

TextFileSemicolonDelimiter TextFileSpaceDelimiter

TextFileStartRow TextFileTabDelimiter

TextFileTextQualifier TextFileThousandsSeparator

TextFileTrailingMinusNumbers TextFileVisualLayout

WebConsecutiveDelimitersAsOne WebDisableDateRecognition

WebDisableRedirections WebFormatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WebDisableRedirections WebFormatting

WebPreFormattedTextToColumns WebSelectionType

WebSingleBlockTextImport WebTables

1 Collection only

2 Object and collection

querytables.Add(Connection, Destination, [Sql])

Creates a new query table and adds it to the worksheet. Returns a QueryTable object.

Argument Description

Connection A string or object reference identifying the source of the data.

Destination A Range object identifying the upper-lefthand corner of the destination of the query table.

Sql If the Connection argument is an ODBC data source, this argument is a string containing the SQL query to
perform. Otherwise, including this argument either causes an error or is ignored.

querytable.AdjustColumnWidth [= setting]

Set this property to False to disable the automatic adjustment for the best fit for columns in the specified query table.

querytable.BackgroundQuery[= setting]

True refreshes data in the query table asynchronously. False refreshes data synchronously. Default is True.

The BeforeRefresh and AfterRefresh events occur whether or not the query is refreshed synchronously or asynchronously.
When synchronous, both events occur before the Refresh method completes. When asynchronous, only the BeforeRefresh
event occurs before the Refresh method completes, then program flow continues.

querytable.CancelRefresh

Cancels an asynchronous query. You can't refresh or delete a query while that query has refresh pending. When
working with asynchronous queries, you should check the query table's Refreshing property and (possibly) cancel the
pending refresh before deleting or refreshing that query again.

The following code cancels any pending refreshes before refreshing a query:

If qt.Refreshing Then qt.CancelRefresh
qt.Refresh

querytable.CommandText[= setting]

Sets or returns the command string for the specified query table. The following code returns the results of a query with
the specified command string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the specified command string:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"
Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))

qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh

querytable.CommandType[= setting]

Sets or returns the type of command string used by the specified query table. The type can be xlCmdSQL, a SQL string
(default); xlCmdCub, a cube name for an online analytical processing (OLAP) data source; xlCmdDefault, command text that
the OLE DB provider understands; or xlCmdTable, a table name for accessing OLE DB data sources.

querytable.Connection[= setting]

Sets or returns the connection string for the specified query table. The following code creates a query table, returns its
results, and displays the connection string in cell A6:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=10)"
qt.Refresh
ActiveSheet.Range("A6") = qt.Connection

querytable.Delete

Deletes a query table. If the query table is refreshing asynchronously, Delete causes an error. Deleting a query table
does not remove data from cells on a worksheetit just removes the ability to refresh those cells from their data source.

The following code deletes all of the query tables on the active worksheet and clears their data:

Dim qt As QueryTable
For Each qt In ActiveSheet.QueryTables
 If qt.Refreshing Then qt.CancelRefresh
 qt.Delete
Next
ActiveSheet.UsedRange.Clear

querytable.Destination

Returns a Range object containing the cell in the upper-lefthand corner of the query table.

The following code selects the first cell of a query table on the active worksheet and asks if the user wants to delete it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code selects the first cell of a query table on the active worksheet and asks if the user wants to delete it:

For Each qt In ActiveSheet.QueryTables
 qt.Destination.Select
 If MsgBox("Delete query table?", vbYesNo) = vbYes Then
 If qt.Refreshing Then qt.CancelRefresh
 qt.ResultRange.Clear
 qt.Delete
 End If
Next

querytable.EnableEditing[= setting]

True allows the user to change the query definition through the Data menu's Import External Data submenu. False
disables the Import External Data menu items. Default is True.

querytable.EnableRefresh[= setting]

True allows the user to refresh the query through the Data menu's Refresh Data item. False disables the Refresh Data
menu item. Default is True.

querytable.FetchedRowOverflow[= setting]

True if the number of rows returned by the last refresh of the specified query table is greater than the available number
of rows.

querytable.FieldNames[= setting]

True if field names from the data source are displayed as column headings for the returned data. The following code
specifies that field names will not be displayed in the query table:

ActiveSheet.QueryTables(1).FieldNames = False

querytable.FillAdjacentFormulas[= setting]

True causes calculated cells to the right of the query table to be repeated for each row when the query table is
refreshed. False does not repeat adjacent formulas. Default is False.

Set FillAdjacentFormulas to True in order to create row totals, or other calculations, for each row in the query table
automatically. To use this feature, create a query table, add a formula for the first row in the query table, set
FillAdjacentFormulas to True, then refresh the data. For more information, see Chapter 24.

querytable.MaintainConnection[= setting]

This property returns True if the connection to the specified query table's data source is maintained after a refresh
operation. You can set this property for queries to OLEDB sources only.

querytable.Parameters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a Parameters collection object that represents the parameters of the specified query table. Working with Parameter
objects is covered later in this chapter.

querytable.PreserveColumnInfo[= setting]

True preserves the column sorting, filtering, and layout information when the specified query table is refreshed. False
does not preserve formatting. Default is False.

querytable.PreserveFormatting[= setting]

True preserves the cell formatting of the query table when data is refreshed. False does not preserve formatting.
Default is False.

If PreserveFormatting is True and a refresh imports new rows of data, formatting common to the first five rows of the query
table is automatically applied to the new rows.

querytable.QueryType[= setting]

Returns a value identifying the type of data source used by the query table. Possible values are:

xlTextImport

xlOLEDBQuery

xlWebQuery

xlADORecordset

xlDAORecordSet

xlODBCQuery

querytable.Recordset[= setting]

Sets or returns a Recordset object that serves as the data source for the specified query table. The following code creates
a query table using the Employees table in the Northwind Traders sample database as the recordset and inserts the
name of the recordset as well as the recordset data in the active worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 "OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

querytable.Refresh([BackgroundQuery])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refreshes a query table from its data source. Returns True if the refresh was submitted successfully, False if the user
canceled the refresh.

Argument Description

BackgroundQuery True refreshes the data asynchronously; False refreshes the data synchronously. Default is True.

Most types of query table store connection and data source information that is used by Refresh. The exception is
recordset queriesyou must set a new recordset before calling Refresh for query tables based on recordsets. See the
Recordset property for an example.

When refreshing asynchronously, check the Refreshing property before calling Refresh. Otherwise, pending refreshes will
cause an error. The following code cancels any pending asynchronous refresh before refreshing a query table:

If qt.Refreshing Then qt.CancelRefresh
qt.Refresh

querytable.Refreshing

Returns True if an asynchronous refresh is pending for this query table, False if no refresh is pending.

querytable.RefreshOnFileOpen[= setting]

True refreshes the query table when the workbook is opened; False does not refresh on open. Default is False.

querytable.RefreshPeriod[= setting]

Sets or returns the number of minutes between automatic refreshes. The default is 0, for no automatic refreshing. You
can set automatic refreshing on synchronous or asynchronous queries. RefreshPeriod is ignored for query tables created
from recordsets.

The following code creates a query table from an ODBC data source and sets the query table to refresh once a minute:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable

strConn="ODBC;DRIVER=SQL Server;SERVER=.;UID=Jeff;APP=Microsoft Office "& _
"XP;WSID=WOMBAT2;DATABASE=pubs;Trusted_Connection=Yes"
strSQL = "SELECT titles.title, titles.price, titles.pubdate, titles.ytd_sales
FROM pubs.dbo.titles titles"
Set qt = ActiveSheet.QueryTables.Add(strConn, [QueryDestination], strSQL)
qt.RefreshPeriod = 1
qt.Refresh

querytable.RefreshStyle[= setting]

Determines how the query affects surrounding items on the worksheet when the query table is refreshed.

Setting Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlInsertDeleteCells Inserts or deletes new rows and columns created by the query, moving surrounding items up or
down and to the right or left as needed (default).

xlOverwriteCells No new rows or columns are added to the worksheet. Surrounding items are overwritten as
needed.

xlInsertEntireRows Inserts a new row for each record returned by the query. Shifts existing items down as needed to
accommodate the number of records returned.

The following code modifies an existing query table to insert new rows on the worksheet as needed, shifting existing
items on the worksheet down:

Set qt = ActiveSheet.QueryTables(1)
qt.RefreshStyle = xlInsertEntireRows
qt.Refresh

If a subsequent query reduces the number of records returned, the contents of the query table are replaced, but the
rows that were previously shifted down are not shifted back up again as they would be if RefreshStyle was set to
xlInsertDeleteCells.

querytable.ResetTimer

Resets the timer used for periodic queries, in effect delaying when a query occurs. Use the RefreshPeriod property to
automatically refresh a query periodically.

querytable.ResultRange

Returns the range containing the results of the query. For example, the following code clears the results from a query
table on the active worksheet:

ActiveSheet.QueryTables(1).ResultRange.Clear

If a query table has been created but not yet refreshed, accessing ResultRange causes an error. There's no direct way to
test whether a query table has been refreshed. One solution to this problem is to write a helper function similar to the
following to check if a query table has a result before accessing ResultRange elsewhere in code:

Public Function HasResult(qt As QueryTable) As Boolean
 Dim ret As Boolean
 On Error Resume Next
 Debug.Print qt.ResultRange.Address
 If Err Then ret = False Else ret = True
 On Error GoTo 0
 HasResult = ret
End Function

Now, you can easily test if a query table has a result before clearing the result range or performing other tasks as
shown here:

Set qt = ActiveSheet.QueryTables(1)
If HasResult(qt) Then qt.ResultRange.Clear

querytable.RowNumbers[= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set this property to True to display row numbers in the first column of the specified query table. The numbers do not
display until the query table is refreshed. They will be reset each time the query table is refreshed. The following code
adds row numbers to the first query table on the active worksheet:

With ActiveSheet.QueryTables(1)
 .RowNumbers = True
 .Refresh
End With

querytable.SavePassword[= setting]

Set this property to True to save password information in an ODBC connection string with the specified query table.

querytable.TextFileColumnDataTypes[= setting]

Sets or returns an array of constants specifying the data types applied to a text file being imported into the specified
query table.

querytable.TextFileCommaDelimiter[= setting]

True if you are using a comma delimiter when you are importing a text file into the specified query table.

querytable.TextFileConsecutiveDelimiter[= setting]

True if consecutive delimiters are treated as a single delimiter when you are importing a text file into the specified
query table.

querytable.TextFileDecimalSeparator[= setting]

Sets or returns the decimal separator used when you are importing a text file into the specified query table.

querytable.TextFileFixedColumnWidths[= setting]

Sets or returns an array of integers that correspond to the widths of the columns in the text file that you are importing
into the specified query table. The following code imports text from a sample file and places the characters in each row
of the active worksheet as follows:

The first five characters are placed in the first column.

The next four characters are placed in the second column.

The remaining characters are placed in the third column:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dim strCnn As String
Dim qt As QueryTable

strCnn = "TEXT;C:\My Documents\qtsample.txt"
Set qt = ActiveSheet.QueryTables.Add(Connection:=strCnn,& _
 Destination:=ActiveSheet.Range("A1"))
With qt
 .TextFileParseType = xlFixedWidth
 .TextFileFixedColumnWidths = Array(5, 4)
 .Refresh
End With

querytable.TextFileOtherDelimiter[= setting]

Sets or returns the character used as a delimiter when you are importing a text file into the specified query table.

querytable.TextFileParseType[= setting]

Set this property to xlFixedWidth if the column data in the text file you are importing into the specified query table has a
fixed width. Set this property to xlDelimited (default) if the column data in the text file is separated by a delimiter
character.

querytable.TextFilePlatform[= setting]

Set this property to xlMacintosh if the text file you are importing into the specified query table originated on the Macintosh
operating system. Set this property to xlMSDOS if the text file originated on the MS-DOS operating system. Set this
property to xlWindows if the text file originated on the Windows operating system.

querytable.TextFilePromptOnRefresh[= setting]

True if you want to be prompted for the name of the text being imported into the specified query table each time the
query table is refreshed.

querytable.TextFileSemicolonDelimiter[= setting]

True if you are using a semicolon delimiter when you are importing a text file into the specified query table.

querytable.TextFileSpaceDelimiter[= setting]

True if you are using a space character delimiter when you are importing a text file into the specified query table.

querytable.TextFileTabDelimiter[= setting]

True if you are using a tab character delimiter when you are importing a text file into the specified query table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

querytable.TextFileTextQualifier[= setting]

Set this property to xlTextQualifierSingleQuote if the text file you are importing into the specified query table uses single
quotes rather than double quotes to indicate what is enclosed between the quotes is text. Set this property to
xlTextQualifierNone if the file does not use quotes to indicate a text string. Set this property to xlTextQualifierDoubleQuote
(default) if the file uses double quotes as a text qualifier.

querytable.TextFileThousandsSeparator[= setting]

Sets or returns the thousands separator used when you are importing a text file into the specified query table.

querytable.TextFileTrailingMinusNumbers[= setting]

True if numbers imported into the specified query table that begin with the hyphen character (-) are treated as negative
numbers. False if they are treated as text.

querytable.TextFileVisualLayout[= setting]

Sets or returns the left-to-right layout of text for text imported into the specified query table. When the property is set
to 1, layout is left-to-right. When the property is set to 2, the layout is right-to-left.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3. Working with Parameter Objects
The Parameter object lets you supply parameter criteria to limit the data returned by a query. This is useful if you want to
create a query that returns a general set of data but you want to work with different subsets of that data or different
individual records. You can supply different parameters rather than creating a new query for each subset or record.

You create a parameter by adding a Parameter object to the Parameters collection of a QueryTable object. You can then supply
a specific parameter value or use a value in a cell on your worksheet. For example, the following code creates a query
table that uses the value in cell A1 as the parameter:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("C1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlRange, Range("A1")
qt.Refresh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4. Parameter Members
Use the Parameters collection to add parameters to the SQL query used by a query table. Use the QueryTable object's
Parameters property to get a reference to this collection. Use the Parameter object to set the contents of the parameter. The
Parameters collection and Parameter object have the following members . Key members (shown in bold) are covered in the
following reference section:

Add1 Application2

Count1 Creator2

DataType Delete

Item1 Name

Parent2 PromptString

RefreshOnChange SetParam

SourceRange Type

Value
1 Collection only

2 Object and collection

parameters.Add(Name, [iDataType])

Creates a new query parameter. Returns a Parameter object.

Argument Description

Name A string that identifies the parameter.

iDataType

If you want to specify a data type for the parameter, use one of the following constants:

xlParamTypeBigInt
xlParamTypeBinary
xlParamTypeBit
xlParamTypeChar
xlParamTypeDate
xlParamTypeDecimal
xlParamTypeDouble
xlParamTypeFloat
xlParamTypeInteger
xlParamTypeLongVarBinary
xlParamTypeWChar
xlParamTypeNumeric
xlParamTypeLongVarChar
xlParamTypeReal
xlParamTypeSmallInt
xlParamTypeTime
xlParamTypeTimeStamp
xlParamTypeTinyInt
xlParamTypeUnknown
xlParamTypeVarBinary
xlParamTypeVarChar

The following code creates a query table that uses a parameter to supply the product ID to the underlying query. The ?
character is a placeholder for the query value, which in this case is the value 10 for the ProductID:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

character is a placeholder for the query value, which in this case is the value 10 for the ProductID:

Dim strConn As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlConstant, 10
qt.Refresh

parameter.DataType[= setting]

Sets or returns the data type of the specified parameter. See the Add method for a list of possible values.

parameter.Delete

Deletes the specified parameter.

parameter.PromptString[= setting]

If the specified parameter uses a prompt string, this property returns the prompt string. The following code creates two
parameter query tables on the active worksheet and uses the same prompt string for both:

Dim strConn As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt1 = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("A1"))
qt1.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param1 = qt1.Parameters.Add("ProductsParam1")
param1.SetParam xlPrompt, "Please enter a Product ID."

Set qt2 = ActiveSheet.QueryTables.Add(Connection:=strConn, _
Destination:=ActiveSheet.Range("A5"))
qt2.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param2 = qt2.Parameters.Add("ProductsParam2")
param2.SetParam xlPrompt, param1.PromptString

qt1.Refresh
qt2.Refresh

parameter.RefreshOnChange[= setting]

If the specified parameter uses a single-cell range as a parameter value, this property refreshes the query table
whenever the cell value changes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

whenever the cell value changes.

parameter.SetParam[= setting]

Defines the specified parameter. The following code creates a query table that uses the value in cell A1 as the
parameter:

Dim strConn As String
Dim strSQL As String
Dim qt As QueryTable
Dim param As Parameter

strConn = "ODBC;DSN=MS Access Database;" & _
 "DBQ=C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb;"

Set qt = ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=ActiveSheet.Range("C1"))
qt.CommandText = "SELECT * FROM Products WHERE (Products.ProductID=?)"
Set param = qt.Parameters.Add("ProductsParam")
param.SetParam xlRange, Range("A1")
qt.Refresh

parameter.SourceRange[= setting]

If the specified parameter uses a single-cell range as its parameter, returns the corresponding Range object.

parameter.Type[= setting]

Sets or returns the type of the specified parameter, either xlConstant if the parameter is a constant, xlPrompt if it is a
prompt string, or xlRange if it is a single-cell range.

parameter.Value[= setting]

Sets or returns the value of the specified parameter, either a constant, a prompt string, or a single-cell Range object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.5. Working with ADO and DAO
If you want to be able to manage all the details of working with data in your worksheets, you can manipulate data
programmatically using one of the two programming interfaces: ActiveX Data Objects (ADO) and Data Access Objects
(DAO).

DAO came first. It was developed in conjunction with Microsoft Access and is the native programming interface for the
Jet database engine, the built-in data engine for Access. ADO came later, incorporating some of the database cursor
optimization that came with Microsoft's acquisition of FoxPro. It is more flexible, better suited for high-performance
applications, and designed to be more neutral in dealing with different data sources. But, truth be told, many
experienced and respected Access developers still do most of their work in DAO.

To use either of these programming interfaces in Excel, you need to add a reference to the appropriate object library.
On the Tools menu in the VBA programming environment, select References, then select the appropriate object library
from the list.

A full discussion of ADO and DAO is beyond the scope of this book, but we will touch on some of the key objects and
members of each interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6. ADO Objects and Members
The ADO object model includes the key objects listed in the following table. There are additional objects, but these
cover the fundamentals of working with ADO. For information about the additional objects, see the ADO Help.

Object Description

Command Defines a specific commandsuch as a SQL statement, table name, or stored procedurethat returns data
from a data source.

Connection Represents a connection to a data source.

Field Represents a field of data from a data source.

Parameter Represents a parameter associated with a specific command.

Record Represents a single record in a recordset.

Recordset Represents a set of records from a table or command.

Descriptions of the members of these objects follow. Key members (shown in bold) are covered in the following
reference sections.

12.6.1. ADO.Command Members

ActiveConnection Cancel

CommandStream CommandText

CommandTimeout CommandType

CreateParameer Dialect

Execute Name

Prepared Properties

State

command.ActiveConnection[= setting]

Sets or returns the connection used by the specified command. The following code returns a record by executing a SQL
command using the active connection:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath
cnn.Open
Set cmd.ActiveConnection = cnn
cmd.CommandText = "SELECT * FROM Employees Where EmployeeID = 9;"
Set rs = cmd.Execute

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Destination:=ActiveSheet.Range("A3"))
qt.Refresh

ActiveSheet.Range("A1") = qt.Recordset.Source
rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

command.CommandText[= setting]

Sets or returns the command text used by the specified command. See the ActiveConnection code example for an example
of using CommandText.

command.CommandType[= setting]

Sets or returns the type of the specified command: adCmdUnspecified, adCmdText, adCmdTable, adCmdStoredProc, adCmdUnknown,
adCmdFile, or adCmdTableDirect.

command.CreateParameter

Creates a new parameter for the specified command.

command.Execute

Executes the specified command. See the ActiveConnection code example for an example of using Execute.

command.Name[= setting]

Sets or returns the name of the specified command.

12.6.2. ADO.Connection Members

Attributes BeginTrans

Cancel Close

CommandTimeout CommitTrans

ConnectionString ConnectionTimeout

CursorLocation DefaultDatabase

Execute IsolationLevel

Mode Open

OpenSchema Provider

RollbackTrans State

Version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection.BeginTrans

Begins a transactiona series of operations performed as a whole (committed) or canceled (rolled back). The following
code wraps the code example used for the Command object's ActiveConnection method around a transaction so that it can be
committed or rolled back:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath
cnn.Open
Set cmd.ActiveConnection = cnn
cnn.BeginTrans

cmd.CommandText = "SELECT * FROM Employees Where EmployeeID = 9;"
Set rs = cmd.Execute

' Prompt user to commit all changes made
If MsgBox("Save all changes?", vbYesNo) = vbYes Then
 cnn.CommitTrans
 Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))
 qt.Refresh
 ActiveSheet.Range("A1") = qt.Recordset.Source
Else
 cnn.RollbackTrans
End If

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

connection.Cancel

Cancels the specified connection object's last Execute or Open operation.

connection.CommandTimeout[= setting]

Specifies the time to wait, in seconds, while executing a command on the specified connection before terminating it.

connection.CommitTrans

Saves any changes made during a transaction. See the BeginTrans code example for an example of using CommitTrans.

connection.ConnectionString[= setting]

Specifies the connection string used to connect to a data source. See the BeginTrans code example for an example of
using ConnectionString.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using ConnectionString.

connection.ConnectionTimeout[= setting]

Specifies the time to wait, in seconds, while establishing a connection before terminating it.

connection.Open

Opens the specified connection. See the BeginTrans code example for an example of using Open.

connection.RollbackTrans

Cancels any changes made during a transaction. See the BeginTrans code example for an example of using RollbackTrans.

connection.Version[= setting]

Returns the ADO version number.

12.6.3. ADO.Field and ADO.Fields Members

ActualSize Append1

AppendChunk Attributes

CancelUpdate1 Count1

DefinedSize Delete1

GetChunk Item1

Name NumericScale

OriginalValue Precision

Refresh1 Resync1

Status Type

UnderlyingValue Update1

Value
1 Collection only

field.ActualSize[= setting]

Returns the actual size of the data in a field. Use the DefinedSize property to return the size of data that the field is
capable of holding.

field.AppendChunk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appends data to a large text or binary field.

fields.CancelUpdate

Cancels any updates made to the specified Fields collection.

field.DefinedSize[= setting]

Returns the size of data that the field is capable of holding. Use the ActualSize property to return the actual size of the
data in a field.

field.GetChunk(Size)

Returns all or a specified portion of a large text or binary file.

Argument Description

Size The number of bytes or characters that you want to return

field.NumericScale[= setting]

Sets or returns the number of decimal places to use for numeric values.

field.OriginalValue[= setting]

Returns the value of a field before any changes were made. Use this property with the UnderlyingValue property in a
multiuser environment when you want to make sure that you are using the most current data.

field.UnderlyingValue[= setting]

Returns the current value of a field. Use this property with the OriginalValue property in a multiuser environment when
you want to make sure that you are using the most current data.

field.Value[= setting]

Sets or returns the value of data stored in the specified field.

12.6.4. ADO.Parameter and ADO.Parameters Members

Append1 AppendChunk

Attributes Count1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Delete1 Direction

Item1 Name

NumericScale Precision

Properties Refresh1

Size Type

Value
1 Collection only

Parameter.AppendChunk

Appends data to a large text or binary field.

Parameter.Name[= setting]

Sets or returns the name of the specified parameter.

Parameter.NumericScale[= setting]

Sets or returns the number of numeric decimal places in the specified parameter.

Parameter.Precision[= setting]

Sets or returns the maximum number of digits in a numeric parameter value.

parameter.Size[= setting]

Sets or returns the maximum size of the specified parameter, in bytes or characters.

parameter.Value[= setting]

Sets or returns the parameter's value.

12.6.5. ADO.Record Members

ActiveConnection Cancel

Close CopyRecord

DeleteRecord GetChildren

Mode MoveRecord

Open ParentURL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties RecordType

Source State

record.ActiveConnection[= setting]

Sets or returns the connection used by the specified record.

record.Cancel

Cancels a pending CopyRecord, DeleteRecord, MoveRecord, or Open operation.

record.GetChildren

Returns a Recordset object whose rows are children of the specified record in a parent-child relationship.

record.Open([Source], [ActiveConnection], [Mode]),
[CreateOptions], [Options], [UserName], [Password])

Opens the record.

Argument Description

Source If the record source has not already been specified, you can specify a Command, Record, or Recordset
object; table; or SQL statement as the source.

ActiveConnection If the connection has not already been specified, you can specify a Connection object or connect stiring.

Mode

If the mode has not already been specified, you can specify a ConnectModeEnum constant value that
specifies the access mode. The value can be adModeRead, adModeReadWrite, adModeRecursive,
adModeShareDenyNone, adModeShareDenyRead, adModeShareDenyWrite, adModeShareExclusive, adModeUnknown,
adModeWrite.

CreateOptions Lets you specify whether an existing file or directory should be opened or a new file or directory
should be created.

Options Lets you specify options for opening the record. The value can be adDelayFetchFields, adDelayFetchStream,
adOpenAsync, adOpenExecuteCommand, adOpenRecordUnspecified, or adOpenOutput.

UserName Lets you specify a username granting access to Source.

Password Lets you specify a password for the username.

record.RecordType

Returns the Record object type, either adSimpleRecord, adCollectionRecord, adRecordUnknown, or adStructDoc.

record.Source[= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the data source for the record.

record.State

Returns the state of the record, either adStateClosed, adStateOpen, adStateConnecting, adStateExecuting, or adStateFetching.

12.6.6. ADO.Recordset Members

AbsolutePage AbsolutePosition

ActiveCommand ActiveConnection

AddNew BOF

Bookmark CacheSize

Cancel CancelBatch

CancelUpdate Clone

Close CompareBookmarks

CursorLocation CursorType

DataMember DataSource

Delete EditMode

EOF Filter

Find GetRows

GetString Index

LockType MarshalOptions

MaxRecords Move

MoveFirst MoveLast

MoveNext MovePrevious

NextRecordset Open

PageCount PageSize

RecordCount Requery

Resync Save

Seek Sort

Source State

Status StayInSync

Supports Update

UpdateBatch

recordset.AbsolutePosition[= setting]

Sets or returns the ordinal position of the current record in the recordset.

recordset.ActiveCommand[= setting]

Returns the Command object used to create the recordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Command object used to create the recordset.

recordset.ActiveConnection [= setting]

Sets or returns the connection string or Connection object used by the recordset.

recordset.AddNew([FieldList], [Values])

Creates a new record.

Argument Description

FieldList A single field name or an array of names or ordinal numbers specifying the fields in the new record

Values A single field value or an array of values for the fields

The following code adds a new record to the Employees table in the Northwind Traders sample database using cell
values on the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim strConnect As String

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Employees", cnn, adOpenDynamic, adLockOptimistic, adCmdTable

rs.AddNew
rs!LastName = ActiveSheet.Range("B4")
rs!FirstName = ActiveSheet.Range("C4")
rs.Update

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

recordset.BOF[= setting]

True if the current record position is before the first record in the recordset.

recordset.Cancel

Cancels the last Open operation for the recordset.

recordset.CancelUpdate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cancels any pending changes for the current record.

recordset.Delete([AffectRecords])

Deletes the current record or a group of records.

Argument Description

AffectRecords A constant that specifies the records affected by the delete operation, either adAffectAll, adAffectAllChapters,
adAffectCurrent, or adAffectGroup.

recordset.EOF[= setting]

True if the current record position is after the last record in the recordset. The following code uses the EOF property to
test for the end of the recordset, adding names from the Employees table in the Northwind Traders sample database to
the first column of the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim intIdx As Integer

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Employees", cnn, adOpenStatic, adLockReadOnly, adCmdTable

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!FirstName & " " & rs!LastName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

recordset.Filter[= setting]

Sets or returns a filter for the recordset. You can use filters to work with different sets of data in a table without having
to open separate recordsets. The following code adds product names for all beverages from the Products table in the
Northwind Traders sample database to the first column of the current worksheet:

Dim cnn As ADODB.Connection
Dim cmd As ADODB.Command
Dim rs As ADODB.Recordset
Dim strDbPath As String
Dim intIdx As Integer

Set cnn = New ADODB.Connection
Set cmd = New ADODB.Command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set cmd = New ADODB.Command
Set rs = New ADODB.Recordset
strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"
cnn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPath

cnn.Open
rs.Open "Products", cnn, adOpenStatic, adLockReadOnly, adCmdTable
rs.Filter = "CategoryID = 1"

rs.MoveFirst
intIdx = 1
Do Until rs.EOF
 strName = rs!ProductName
 ActiveSheet.Cells(intIdx, 1) = strName
 rs.MoveNext
 intIdx = intIdx + 1
Loop

rs.Close
cnn.Close
Set rs = Nothing
Set cnn = Nothing

recordset.MoveFirst

Moves to the first record in the recordset.

recordset.MoveLast

Moves to the last record in the recordset.

recordset.MoveNext

Moves to the next record in the recordset. See the EOF and Filter code examples for examples of using MoveNext.

recordset.MovePrevious

Moves to the previous record in the recordset.

recordset.Open([Source], [ActiveConnection], [CursorType] ,
[LockType] , [Options])

Opens the recordset for database operations.

Argument Description

Source The source of the recordset. The source can be a Command object, an SQL statement, a table name, a
stored procedure call, a URL, or the name of a file or Stream object.

ActiveConnection A Connection object or connection string.

CursorType The type of database cursor to use for the recordset. The cursor can be adOpenDynamic, adOpenForwardOnly
(default), adOpenKeyset, adOpenStatic, or adOpenUnspecified.

LockType The type of locking to use for the recordset. The cursor can be adLockBatchOptimistic, adLockOptimistic,
adLockPessimistic, adLockReadOnly, or adLockUnspecified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adLockPessimistic, adLockReadOnly, or adLockUnspecified.

Options A constant specifying how a command source should be interpreted or executed.

recordset.RecordCount[= setting]

Returns the number of records in the recordset.

recordset.Requery

Updates the recordset by running the query on which it is based.

recordset.Source[= setting]

Returns a string or Command object indicating the source of the recordset.

recordset.Update([Fields], [Value])

Saves changes made to the current record.

Argument Description

Fields The name of the field being updated or an array of names or ordinal positions if you are updating
multiple fields

Value The updated value of the field or an array of values if you are updating multiple fields

See the AddNew code example for an example of using Update.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.7. DAO Objects and Members
The DAO object model includes the key objects listed in the following table. There are additional objects, but these
cover the fundamentals of working with DAO. For information about the additional objects, see the DAO Help.

Object Description

Database/Databases The Database object represents an open database. The Databases collection contains all open
databases.

DbEngine Represents the Jet database engine. It is the top-level object in the DAO object model.

Document/Documents The Document object represents information about an instance of a Microsoft Access object, such as
a form or report. The Documents collection contains all the Document objects of the same type.

QueryDef/QueryDefs The QueryDef object represents a Microsoft Access query. The QueryDefs collection contains all the
queries in a database.

Recordset/Recordsets The Recordset object represents a set of records from a table or query. The Recordsets collection
contains all open recordsets in a database.

Descriptions of the members of these objects follow. Key members (shown in bold) are covered in the following
reference sections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.8. DAO.Database and DAO.Databases Members

Close CollatingOrder

Connect Connection

Containers Count1

CreateProperty CreateQueryDef

CreateRelation CreateTableDef

DesignMasterID Execute

MakeReplica Name

NewPassword OpenRecordset

PopulatePartial Properties

QueryTimeout RecordsAffected

Refresh1 Relations

ReplicaID Synchronize

Transactions Updatable

Version
1 Collection only

database.Connection

Returns the Connection object for the database.

database.Execute(Source, [Options])

Executes an action query or SQL statement.

Argument Description

Source An SQL statement or the name of a query.

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

database.OpenRecordset(Source, [Type], [Options]),
[LockEdits])

Opens the record.

Argument Description

Source The source of the recordset: a table name, query name, or SQL statement.

Type The type of recordset to open: dbOpenTable, dbOpenDynamic, dbOpenDynaset, dbOpenSnapshot, or
dbOpenForwardOnly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type dbOpenForwardOnly.

Options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

LockEdits The locking used by the recordset: dbReadOnly, dbPessimistic, dbOptimistic, dbOptimisticValue, or dbOptimisticBatch.

The following code example opens the Employees table in the Northwind Traders sample database as a recordset and
displays its contents on the active sheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim qt As QueryTable

strDbPath = "C:\Program Files\Microsoft Office\" & _
 OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
Set rs = db.OpenRecordset("Employees")

Set qt = ActiveSheet.QueryTables.Add(Connection:=rs, _
 Destination:=ActiveSheet.Range("A3"))

ActiveSheet.Range("A1") = qt.Recordset.Name & " table:"

qt.Refresh

12.8.1. DAO.DbEngine Members

BeginTrans CommitTrans

CompactDatabase CreateDatabase

CreateWorkspace DefaultPassword

DefaultType DefaultUser

Errors Idle

IniPath LoginTimeout

OpenConnection OpenDatabase

Properties RegisterDatabase

Rollback SetOption

SystemDB Version

Workspaces

dbengine.CompactDatabase(olddb, newdb, [locale]), [options] ,
[password])

Copies and compacts a database. The database must be closed.

Argument Description

olddb The name and path of the existing database file.

newdb The name and path of the compacted database file.

locale An optional collating order used in creating the compacted database file. See DAO Help for more
information about collating order settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

password An optional password string.

dbengine.OpenDatabase(dbname, [options], [read-only],
[connect])

Copies and compacts a database. The database must be closed.

Argument Description

dbname The name and path of the existing database file.

options A combination of constants that specify characteristics of the recordset. See DAO Help for more
information about these options.

read-only Use True if you want to open the database for read-only access.

connect A connection string.

See the Database.OpenRecordset method for an example of using OpenDatabase. Note that you use the OpenDatabase method
without explicitly specifying the DbEngine object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.9. DAO.Document and DAO.Documents Members

AllPermissions Container

Count1 CreateProperty

DateCreated LastUpdated

Name Owner

Permissions Properties

Refresh1 UserName

1 Collection only

Document.Container

Returns the name of the container to which the document belongs.

Document.Name

Returns the name of the specified table, query, form, or report. The following code example displays the names of all
the reports in the Northwind Traders sample database in the first column of the active worksheet:

Dim strDbPath As String
Dim db As DAO.Database
Dim docRpt As DAO.Document
Dim intIdx As Integer

strDbPath = "C:\Program Files\Microsoft Office\OFFICE11\SAMPLES\Northwind.mdb"

Set db = OpenDatabase(strDbPath)
intIdx = 0
With db.Containers!Reports
 For Each docRpt In .Documents
 ActiveSheet.Cells(intIdx + 1, 1) = .Documents(intIdx).Name
 intIdx = intIdx + 1
 Next docRpt

End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Loading and Manipulating Data
A lot of data is managed in and never leaves an Excel worksheet. But much of the data that Excel users work with
comes from external databases such as SQL Server, Oracle, or Microsoft Access. You can work with data in various
ways in Excel, usually by importing an entire table of data from a database or by using a query to import data that
meets specific criteria. From a developer's perspective, you also have great programmatic control over the data you
expose to users.

The Excel object model lets you create and manipulate queries from a variety of sources using the QueryTable object. If
you want more programmatic control over your data, you have a choice of two programming interfaces. The ActiveX
Data Objects (ADO) interface gives you access to data from a variety of data sources. The Data Access Objects (DAO)
interface, which is native to Access databases, provides an easy-to-use interface for working with Access data.

In this chapter, I show how to:

Work with QueryTable objects

Work with Parameter objects

Work with the ADO and DAO database programming interfaces

This chapter contains reference information for the following objects and their related collections: QueryTable, Parameter,
ADO.Command, ADO.Connection, ADO.Field, ADO.Parameter, ADO.Record, ADO.RecordSet, DAO.Database, DAO.DbEngine, DAO.Document,
DAO.QueryDef, and DAO.Recordset.

Code used in this chapter and additional samples are available in ch12.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1. Quick Guide to Pivot Tables
Not everyone is familiar with pivot tables, and they can seem confusing at first. The easiest way to explain them is a
quick tutorial to demonstrate how they are useful. Use these general steps to create a pivot table:

1. Create the table using the PivotTable Wizard.

2. Format the table to make it readable.

3. Change field properties such as how totals are calculated.

4. Chart the results (optional).

The following sections walk you through these steps using data that accompanies this chapter's sample workbook.

13.1.1. Create a Pivot Table

Pivot tables are commonly used to plot multiple data values over time. For example, the worksheet in Figure 13-1
contains the sales ranks of books collected from Amazon.com.

Figure 13-1. In source data, rows have mixed content

I'd like to compare each book's sales rank over time, but there's no way to chart that using the worksheet in Figure 13-
1 because the rows contain multiple product names. Ideally, each row should reflect a date, each column should be a
product name, and each cell should be the sales rank. You can make those changes by creating a pivot table from the
source worksheet.

To create a pivot table in Excel :

1. Select the columns to include in the pivot table (A$:D$ in Figure 13-1) and choose Data Pivot Table and
Pivot Chart Report. Excel starts the PivotTable Wizard (Figure 13-2).

2. Click Finish to create the pivot table on a new worksheet or click Next to walk through the pivot table options
using the wizard. Excel creates a new pivot table.

3. Drag ProductName from the PivotTable Field List to the column area, drag Date to the row area, and drag
SalesRank to the data items area as shown in Figure 13-3.

4. The default formula for data fields is Count, which is always 1 in this case, so right-click on the data field in the
upper-left corner of the pivot table, select Field Settings and change the formula to Sum, as shown in Figure
13-4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13-4.

5. Pivot tables do not automatically update, so if the source worksheet changes, click Refresh Data on the Pivot
Table toolbar to update the table, as shown in Figure 13-5.

Figure 13-2. Step 1: use this wizard to create the pivot table

Figure 13-3. Step 3: drag columns onto the pivot table

Figure 13-4. Step 4: change the data field formula from Count to Sum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-4. Step 4: change the data field formula from Count to Sum

Figure 13-5. Step 5: refresh table to get changes from data source

13.1.2. Apply Formatting

Pivot tables usually look pretty awful when you first create them. In the preceding example, the ProductName columns
are very wide at first (see Figure 13-3). I adjusted them manually to get a nice screenshot for Figure 13-5, but if you
click Refresh Data the columns revert to wide.

There are two ways to change pivot table formatting :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are two ways to change pivot table formatting :

Set table formatting manually.

Apply an autoformat to the table.

To set the formatting manually:

1. Select the pivot table and choose Pivot Table Table Options from the pivot table toolbar. Excel displays
Figure 13-6.

2. Clear the AutoFormat Table option and click OK to close the dialog.

3. Set column widths and cell formatting in the usual way. Those changes are now preserved when you refresh the
table.

Figure 13-6. Deselect AutoFormat Table to preserve manual formatting

The Preserve Formatting option in Figure 13-6 preserves cell formatting, such as fonts and
colors. That option is on by default, so you don't have to change it.

Even with reasonable column widths, the pivot table in Figure 13-5 isn't as readable as it could be. To autoformat the
table:

1. Select the pivot table and click the Format Report button on the PivotTable toolbar. Excel displays the
AutoFormat dialog box.

2. Choose a format and click OK to apply it to the table. Figure 13-7 shows the result.

Figure 13-7. Apply an autoformat to create a nice-looking report

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-7. Apply an autoformat to create a nice-looking report

13.1.3. Change Totals

The totals shown in Figure 13-7 are the sums of the sales rank for each book. It makes more sense to display the
average sales rank. To change the total:

1. Right-click on the total field and choose Field Settings. Excel displays the PivotTable Field dialog for the total
(similar to Figure 13-4).

2. Select Average and click OK. Excel changes the total formula from Sum to Average.

It doesn't matter which ProductName total you select in Step 1. Changing the formula for one total changes all of the
equivalent total fields in the table.

13.1.4. Chart the Data

The final step is to display the data graphically using a chart. To chart the data from a pivot table:

1. Select the pivot table and click the Chart Wizard button on the PivotTable toolbar. Excel creates a default pivot
chart.

2. Select the chart area and change the chart type to a line chart.

3. Drag the ProductName field to the chart legend. Figure 13-8 shows the result of these changes.

Figure 13-8. A pivot chart created with the PivotChart Wizard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That last step illustrates how pivot charts are different from ordinary Excel charts: you can reposition the fields to get
different views of the data. Changing the field layout on the chart also changes the layout on the original pivot table. If
you want to preserve the pivot table layout, create a new pivot chart based on the original source data.

To create an independent pivot chart:

1. Select the columns to chart on the source worksheet (Figure 13-1).

2. Choose Data Pivot Table and Pivot Chart Report; select "PivotChart report" on the wizard (Figure 13-2)
and click Next to follow the wizard steps or just click Finish to create the chart quickly. Excel creates a new
pivot table and pivot chart based on the original source data.

3. Drag fields from the Field List onto the chart, select the chart type, and format the chart as you would normally.

Each pivot chart must have an underlying pivot table. If you click Next in Step 2, Excel asks if you want to base your
new pivot table on the existing pivot table, as shown in Figure 13-9. If you choose Yes, Excel uses the same pivot cache
for both the original pivot table and the new one that will be used by the chart.

Figure 13-9. Excel asks if you want to share the pivot cache

The pivot cache is a hidden data store used to refresh each pivot table. There are several advantages to sharing the
pivot cache among pivot tables:

Refreshing a pivot table refreshes the pivot cache, so other tables that share that pivot cache are also
automatically refreshed.

The layout of each pivot table or pivot chart can be unique, even though they share the same source. That lets
you move the fields on a pivot chart without changing the layout of your pivot report.

The amount of memory required by the workbook and the size of the workbook on disk are reduced.

Don't use a shared pivot cache if you want to refresh pivot tables independently. Also, you can't use a shared pivot
cache if the pivot tables don't use the same source. Pivot tables based on worksheets must use exactly the same range
in order to share a pivot cache.

13.1.5. Change the Layout

The process of dragging fields from the Field List onto the pivot table as shown in Figure 13-3 is called setting the pivot
table layout. You can change that layout by dragging fields to different locations on the pivot table. Figure 13-10 shows
the areas to which you can drag fields.

Excel doesn't call these parts of the pivot table areas. It just refers to fields in those
locations as page fields, column fields, row fields, or data fields.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-10. Setting pivot table layout

Each of the fields in the PivotTable Field List corresponds to a column in the data source. It's difficult to discuss the
effect of dragging fields to the different areas of a pivot table; it is easier to just show you as I did earlier. However, I
left out one area: use the page area to create individual views for each item in a field.

For example, if you drag ProductName in Figure 13-7 to the page area, you get a report for a single book, as shown in
Figure 13-11.

If you drag ProductName from the legend of the pivot chart in Figure 13-8 to the page area, Excel charts each book
separately. Use page fields to summarize large amounts of datathey are kind of overkill for this example, however.

13.1.6. Connect to an External Data Source

Pivot tables based on worksheet data are handy, but it is probably more common to use pivot tables with external data
sources such as databases. To get pivot data from a database:

1. Create a new worksheet and choose Data Pivot Table and Pivot Chart Report. Excel starts the PivotTable
Wizard (Figure 13-2).

2. Select External Data Source, click Next, and then click Get Data. Excel displays the Choose Data Source dialog
(Figure 13-12).

Figure 13-11. Use page fields to view individual items

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-12. Use the Query Wizard to connect to an external data source

3. Follow the Query Wizard steps to connect to the data source. The information required and steps displayed vary
based on the type of database. After you connect, the Query Wizard allows you to compose a query to retrieve
data from the database as shown in Figure 13-13.

4. Click Next and follow the Query Wizard steps to complete the query. When done, Excel displays Figure 13-14.

5. Choose Return Data to Microsoft Office Excel and click Finish. Excel returns you to the PivotTable Wizard.

6. Click Finish to create the pivot table.

The completed pivot table appears like any other pivot table. You can drag fields from the PivotTable Field List onto the
pivot areas, add formatting, and chart the data as you like. Figure 13-15 shows a completed pivot table created from
the Northwind sample SQL Server database.

Figure 13-13. Compose the query using the Query Wizard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-14. Complete the query and return the data to Excel

Unlike the pivot table in Figure 13-7, the pivot table in Figure 13-15 doesn't have an underlying worksheet. Instead, the
data is retrieved using a database query file (.dqy). Excel stores .dqy files in the C:\Documents and
Settings\user\Application Data\Microsoft\Queries folder. You can open those files in Notepad to view or modify the
query directly. Figure 13-16 shows the query for the preceding pivot table with a description of its parts.

You can compose a query using the Query Wizard, then open it in Notepad to get the
ODBC connection string or SQL query to use in code.

Figure 13-15. A pivot table based on Northwind product inventory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-16. You can edit the query directly in Notepad

13.1.7. Create OLAP Cubes

Online analytical processing (OLAP) is a data analysis layer that optimizes database queries. OLAP providers take a
snapshot of a relational database and restructure it into a data cube, which provides faster query results for
multidimensional analysis than a traditional SQL query to the original data source.

Most database vendors, including Microsoft, Oracle, IBM, and SAP, offer OLAP providers. Microsoft's OLAP provider is
called SQL Server Analysis Services, which is installed as an optional component with Microsoft SQL Server.

You can connect to one of those OLAP providers using the steps described earlier in "Connect to External Data" or you
can create an offline OLAP data cube file (.cub) from any database by choosing "Create an OLAP Cube from this query"
in Step 5 of that section (see Figure 13-14).

If you choose to create an OLAP cube, Excel starts the OLAP Cube Wizard (Figure 13-17).

Figure 13-17. Use this wizard to create OLAP cubes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an offline OLAP cube file is usually the best approach, since changes to the pivot
table in Excel often requery the OLAP data source. Using an offline cube file yields the best
performance.

There is quite a lot to learn about OLAP, and not enough space here to cover that topic. A web search on "OLAP" will
turn up some useful introductions, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.10. PivotItem and PivotItems Members
Use the PivotItems collection to get the items in a pivot field. Use the PivotField object's PivotItems property to get a
reference to this collection. Use the PivotItem object to get information about an item. The PivotItems collection and
PivotItem object have the following members:

Add1 Application2

Caption ChildItems

Count1 Creator2

DataRange Delete

DrilledDown Formula

IsCalculated Item1

LabelRange Name

Parent2 ParentItem

ParentShowDetail Position

RecordCount ShowDetail

SourceName SourceNameStandard

StandardFormula Value

Visible
1 Collection only

2 Object and collection

PivotItem objects represent the individual values stored in each pivot field. The following code displays a pivot table's
data hierarchically in the Immediate window:

Sub ListAllItems()
 Dim pt As PivotTable, pf As PivotField, _
 pi1 As PivotItem, pi2 As PivotItem
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Show table name.
 Debug.Print pt.name
 For Each pf In pt.PivotFields
 ' Show each field name.
 Debug.Print , pf.name
 For Each pi1 In pf.PivotItems
 ' Show each item value.
 Debug.Print , , pi1.name
 For Each pi2 In pi1.ChildItems
 ' Show subitems (not available for OLAP).
 Debug.Print , , , pi2.name
 Next
 Next
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.11. PivotItemList Members
Use the PivotItemList collection to find the row and column of a PivotCell. Use the PivotCell object's RowItems and ColumnItems
properties to get a reference to this collection. The PivotItemList collection has the following members:

Application
Count
Creator
Item
Parent

The following code displays the row and column of a selected cell in a pivot table's data area:

Sub GetRowAndColumn()
 Dim pc As PivotCell, pi As PivotItem
 On Error Resume Next
 ' Get the pivot cell
 Set pc = Selection.PivotCell
 ' Show the row this item belongs to.
 For Each pi In pc.RowItems
 Debug.Print "Row: " & pi.Value
 Next
 ' Show the column this item belongs to.
 For Each pi In pc.ColumnItems
 Debug.Print "Column: " & pi.Value
 Next
 If Err Then Debug.Print "Selection is not in the data area."
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.12. PivotLayout Members
Use the PivotLayout object to access the pivot table of a pivot chart. Use the Chart object's PivotLayout property to get a
reference to this object. The PivotLayout object has the following members:

AddFields Application

ColumnFields Creator

CubeFields DataFields

HiddenFields InnerDetail

PageFields Parent

PivotCache PivotFields

PivotTable RowFields

VisibleFields

If the active worksheet contains a pivot table and you call Charts.Add, Excel automatically creates a pivot chart for the
pivot table. You can then use the chart's PivotLayout property to navigate back to the underlying pivot table to set the
pivot chart layout or change other elements. For example, the following code creates a new pivot chart then changes
the layout of the pivot chart:

Sub ChangeChartLayout()
 Dim chrt As Chart, pt As PivotTable, pf As PivotField
 ' Activate a pivot table.
 Sheets("BookSales").Activate
 ' Create a pivot chart
 Set chrt = Charts.Add
 ' Set chart properties.
 chrt.ChartType = xlLine
 chrt.Axes(xlCategory).TickLabelPosition = xlNone
 ' Get the pivot table.
 Set pt = chrt.PivotLayout.PivotTable
 ' Change layout
 pt.PivotFields("ProductName").Orientation = xlPageField
 ' Clear data fields (ignore errors).
 On Error Resume Next
 pt.DataPivotField.Orientation = xlHidden
 pt.PivotFields("RelativeRank").Orientation = xlDataField
 pt.PivotFields("SalesRank").Orientation = xlHidden
 On Error GoTo 0
 ' Select a page field
 pt.PageFields("ProductName").CurrentPage = "Essential SharePoint"
 ' Rename the chart sheet.
 RenameChart chrt, pt.name & "Chart"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.13. CubeField and CubeFields Members
Use the CubeFields collection to get pivot fields from an OLAP pivot table. Use the PivotTable object's CubeFields property to
get a reference to this collection. Use the CubeField object to set the layout and change other properties of fields on an
OLAP pivot table. The CubeFields collection and CubeField object provide a subset of the PivotField members ; unique
members (shown in bold) are covered in the following reference section:

CubeFields and CubeField apply only to OLAP pivot tables.

AddMemberPropertyField AddSet2

Application2 Caption

Count1 Creator2

CubeFieldType Delete

DragToColumn DragToData

DragToHide DragToPage

DragToRow EnableMultiplePageItems

HasMemberProperties HiddenLevels

Item1 LayoutForm

LayoutSubtotalLocation Name

Orientation Parent2

PivotFields Position

ShowInFieldList TreeviewControl

Value
1 Collection only

2 Object and collection

cubefield.AddMemberPropertyField(Property, [PropertyOrder])

Adds a member property field from the fields list to the cube field.

Argument Settings

Property The name of the member property to add.

PropertyOrder The index of the property within the property list. The default is to append the property to the end of the
list.

cubefields.AddSet(Name, Caption)

Creates a new CubeField and returns the created object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a new CubeField and returns the created object.

Argument Settings

Name A name of an existing calculated member

Caption The caption to display for the field in the pivot table

cubefield.CubeFieldType

Returns an xlCubeFieldType constant identifying the type of the cube field. Can be xlHierarchy, xlMeasure, or xlSet.

cubefield.EnableMultiplePageItems [= setting]

For page fields, True enables multiple selection and False disables multiple selection. The property reflects the setting
on the page field drop-down box (Figure 13-19).

cubefield.HasMemberProperties

Returns True if the cube field contains member properties, False if not.

cubefield.HiddenLevels [= setting]

For cube fields with CubeFieldType of xlHierarchy, sets or returns the number of levels that are hidden. Default is 0, for no
hidden levels.

cubefield.ShowInFieldList [= setting]

True displays the cube field in the PivotTable Fields List; False hides the field. Default is True.

cubefield.TreeviewControl

This property is used for macro recording. It is not intended for other uses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.14. CalculatedMember and CalculatedMembers Members
Use the CalculatedMembers collection to add new calculated members to an OLAP pivot table. Use the PivotTable object's
CalculatedMembers property to get a reference to this collection. Use the CalculatedMember object to get the member's formula
and to delete calculated members. The CalculatedMembers collection and CalculatedMember object have the following
members. The key member (shown in bold) is covered in the following reference section:

CalculatedMembers and CalculatedMember apply only to OLAP pivot tables.

Add1 Application2

Count1 Creator2

Delete Formula

IsValid Item1

Name Parent2

SolveOrder SourceName

Type
1 Collection only

2 Object and collection

calculatedmembers.Add(Name, Formula, [SolveOrder], [Type])

Adds a new calculated member to the OLAP pivot table and returns the created CalculatedMember object.

Argument Settings

Name The name of the pivot item to create.

Formula The MDX expression to evaluate.

SolveOrder A number indicating the solve order of this calculation when refreshing the pivot table. Default is 0.

Type An xlCalculatedMemberType constant. Can be xlCalculatedMember or xlCalculatedSet.

See the MDX sample application that ships with Microsoft SQL Analysis Services for help creating MDX expressions. That
sample also includes Help on the MDX language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2. Program Pivot Tables
You can navigate to pivot table objects from the Workbook, Chart, Worksheet, or Range objects as shown in Figure 13-18.

Figure 13-18. Navigating the pivot table objects

Although pivot tables expose a full set of objects, the most common set of programming tasks deal with this narrow set
of problems:

Create a pivot table.

Refresh a pivot table automatically when the source data changes.

Build a pivot table from an external data source.

The following sections explain how to program those tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2.1. Create Pivot Tables

There are several ways to create a pivot table in code:

Use the PivotTableWizard method to quickly create a pivot table from a Worksheet or PivotTable object.

Use the Workbook object's PivotCache collection to create a new pivot table one step at a time. This is sometimes
clearer than using the PivotTableWizard method.

Use an existing PivotCache object's CreatePivotTable method to create a pivot table that shares the cache of an
existing pivot table.

If you are programming for multiple Excel versions, be sure to test any code using the
PivotCache object on the earliest version of Excel you plan to support. A large number of that
object's members were added in 2002.

To quickly create a new pivot table in code:

1. Call the Worksheet object's CreatePivotTableWizard method.

2. Set the layout of the fields on the pivot table.

For example, the following code creates a pivot table from data on the current worksheet:

Sub QuickPivotTable()
 Dim pt As PivotTable
 ' Exit if active sheet is not a worksheet
 If TypeName(ActiveSheet) <> "Worksheet" Then Exit Sub
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ActiveSheet.PivotTableWizard(xlDatabase, ActiveSheet.UsedRange, _
 Worksheets.Add.[a3], "QuickPivot")
 ' Select the table so user can set layout.
 pt.TableRange1.Select
End Sub

Selecting the pivot table range in the last line of code displays the PivotTable Field List from which the user can drag
items onto the new pivot table.

Pivot tables are created from an underlying PivotCache object, so it is often clearer to create that object first, then use the
PivotCache object to create the pivot table. To use that approach, follow these general steps:

1. Create a new PivotCache using the PivotCache collection's Add method.

2. Create a new worksheet on which to place the pivot table.

3. Use the PivotCache object's CreatePivotTable method to create the pivot table.

4. Use the PivotTable object's AddFields method to set the pivot table layout.

5. Use the AddDataField method to add the data field and set its formula.

6. Optionally use the Charts collection's Add method to chart the pivot table.

The following code creates a new pivot table and pivot chart from the currently active worksheet:

Sub CreatePivotTable()
 Dim pc As PivotCache, pt As PivotTable, ws As Worksheet
 ' Get the active sheet.
 Set ws = ActiveSheet
 ' 1) Create a new pivot cache.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlDatabase, ws.UsedRange)
 ' 2) Create a new worksheet for the pivot table.
 Set ws = ActiveWorkbook.Worksheets.Add()
 ' 3) Create a pivot table on the worksheet.
 Set pt = pc.CreatePivotTable(ws.[a3], "BookSales")
 ' 4) Set the layout: add the column and row fields.
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
 ' 5) Add the data field and set its formula.
 pt.AddDataField pt.PivotFields(1), , xlSum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pt.AddDataField pt.PivotFields(1), , xlSum
 ' 6) Create a line chart.
 Charts.Add().ChartType = xlLine
End Sub

The preceding code sets the pivot table layout using the positions of the fields from the source data range. If the
selected worksheet contains fewer than four columns of data, an error occurs. You can use the field positions or the
field names to set the layout; however, you must know the contents of each source column. In other words, your data
source must have a fixed format. This is often the case when using an SQL query as the data source since the SELECT
statement can define the field names and field order. If you don't know the contents of the columns beforehand, you
should omit the layout step and let the user perform that task.

Create a pivot table from an existing pivot cache to generate a new view of an existing pivot table. This approach
shares the pivot cache between both pivot tables, which keeps the two tables in sync. See "Chart the Data," earlier in
this chapter, for an explanation of shared pivot caches.

To create a new pivot table from an existing pivot cache, follow the same steps as the preceding procedure but replace
Step 1 with this step:

1. Use the existing PivotTable object's PivotCache property to get the existing PivotCache object.

The following code creates a pivot table that shares the PivotCache of the pivot table on the active worksheet:

Sub CreateSharedCachePivotTable()
 Dim pc As PivotCache
 ' Exit if pivot table doesn't exist.
 If ActiveSheet.PivotTables.Count < 1 Then Exit Sub
 ' Get pivot cache.
 Set pc = ActiveSheet.PivotTables(1).PivotCache
 ' Create new pivot table.
 pc.CreatePivotTable Worksheets.Add().[a3], "SharedCachePivot"
 ' Select the pivot table.
 ActiveSheet.PivotTables(1).TableRange1.Select
End Sub

I didn't set the layout in the preceding code, since the main point of creating the new table is to use a different layout
than the prior table.

13.2.2. Refresh Pivot Tables and Charts

You can get pivot tables to refresh automatically when the workbook opens by selecting Refresh on Open in the
PivotTable Options dialog (Figure 13-6). That option is off by default because refreshing a pivot table may take a long
time, depending on the size of the pivot table data.

If the pivot table is based on an external data source, you can also select periodic updates on the PivotTable Options
dialog. That option isn't available for pivot tables based on worksheet data and, as mentioned earlier, pivot tables don't
automatically refresh when the source data changes.

To implement automatic refresh for pivot tables based on worksheets, add the following code to the workbook's class
module:

' ThisWorkbook class
Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)
 Dim pc As PivotCache
 ' Get each of the pivot caches.
 For Each pc In ThisWorkbook.PivotCaches
 ' If cache is based on a worksheet.
 If pc.SourceType = xlDatabase Then
 ' Update the cache based on the deactivated worksheet.
 If InStr(1, pc.SourceData, Sh.Name) Then _
 pc.Refresh
 End If
 Next
End Sub

The preceding code checks whether the deactivated worksheet is the source of PivotCache objects. If it is, the code
refreshes that pivot cache, which updates any pivot tables or charts based on the cache. This approach is more efficient
than using the PivotTable object because more than one pivot table may share the same cache.

You could make the code even more efficient by checking if any source data had changed before refreshing, but the
benefit is incremental and the change adds complexity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

benefit is incremental and the change adds complexity.

13.2.3. Connect to External Data

To connect a pivot table to an external data source in code, set the PivotCache object's Connection and CommandText
properties. The PivotTableWizard method sets those properties automatically from a passed-in array argument. The
following code creates a new pivot table from a SQL Server database using PivotTableWizard:

Sub QuickDBPivotTable()
 Dim ws As Worksheet, pt As PivotTable
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ws.PivotTableWizard(xlExternal, _
 Array("SELECT Date, SalesRank, ProductName FROM Amazon"), _
 Worksheets.Add.[a1], "QuickDBPivot", , , , , , , , , , , , _
 "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Sales;Trusted_Connection=True")
 ' Set layout
 pt.AddFields "Date", "ProductName"
 pt.AddDataField pt.PivotFields("SalesRank"), , xlAverage
End Sub

If you have trouble composing the connection string, create a connection to the database using the Query Wizard; then
use the connection string that the wizard generates in the .dqy file as described earlier in this chapter in "Connect to an
External Data Source." Prefix that connection string with ODBC; as shown in the preceding code.

The TRusted_Connection=True element in the connection string tells Excel to use Windows integrated security when
connecting to the data source. That approach uses the user's network identity when connecting to the data source
rather than a database user ID and password. Integrated security requires a domain-based network, but it is a much
more secure approach than hardcoding usernames and passwords in to connection strings.

13.2.4. OLAP Data Cubes

Two pivot table objects apply only to OLAP: CubeField and CalculatedMember. In addition, many of the other pivot table
members are not available for OLAP pivot tables. Those items are noted in the following reference sections.

Finally, OLAP field names include square brackets and use dot notation to indicate hierarchyfor example, [Customers].
[Country].

The following code demonstrates how to create an OLAP pivot table from an external OLAP provider, in this case
Microsoft SQL Server Analysis Services:

Sub CreateOLAPPivotTable()
 Dim pc As PivotCache, pt As PivotTable, pf As PivotField, _
 ws As Worksheet
 ' Create a new pivot cache for database query.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Create a connection string and SQL query.
 pc.Connection = "OLEDB;Provider=MSOLAP.2;Data Source=users;" & _
 "Initial Catalog=FoodMart 2000;Client Cache Size=25;Auto Synch Period=10000"
 pc.CommandType = xlCmdCube
 pc.CommandText = Array("Sales")
 pc.MaintainConnection = False
 ' Create a new worksheet for the pivot table.
 Set ws = ActiveWorkbook.Worksheets.Add()
 ' Create a pivot table.
 Set pt = ws.PivotTables.Add(pc, ws.[a3], "FoodMart Sales", False)
 ' Set the layout: add the column and row fields.
 pt.CubeFields("[Customers]").Orientation = xlRowField
 pt.CubeFields("[Product]").Orientation = xlColumnField
 ' Add the data field.
 pt.CubeFields("[Measures].[Unit Sales]").Orientation = xlDataField
 pt.CubeFields("[Measures].[Sales Average]").Orientation = xlDataField
 ' Update the pivot table
 pc.Refresh
 ' Rename the sheet to match the table
 On Error Resume Next
 Worksheets(pt.name).Delete
 On Error GoTo 0
 ws.name = pt.name
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3. PivotTable and PivotTables Members
Use the PivotTables collection to get existing pivot tables. Use the Worksheet object's PivotTables property to get a reference
to this collection. Use the PivotTable object to set the pivot table layout and options. The PivotTables collection and PivotTable
object have the following members . Key members (shown in bold) are covered in the following reference section:

Add2 AddDataField AddFields

Application2 CacheIndex CalculatedFields

CalculatedMembers ColumnFields ColumnGrand

ColumnRange Count1 CreateCubeFile

Creator2 CubeFields DataBodyRange

DataFields DataLabelRange DataPivotField

DisplayEmptyColumn DisplayEmptyRow DisplayErrorString

DisplayImmediateItems DisplayNullString EnableDataValueEditing

EnableDrilldown EnableFieldDialog EnableFieldList

EnableWizard ErrorString Format

GetData GetPivotData GrandTotalName

HasAutoFormat HiddenFields InnerDetail

Item1 ListFormulas ManualUpdate

MDX MergeLabels Name

NullString PageFieldOrder PageFields

PageFieldStyle PageFieldWrapCount PageRange

PageRangeCells Parent2 PivotCache

PivotFields PivotFormulas PivotSelect

PivotSelection PivotSelectionStandard PivotTableWizard

PreserveFormatting PrintTitles RefreshDate

RefreshName RefreshTable RepeatItemsOnEachPrintedPage

RowFields RowGrand RowRange

SaveData SelectionMode ShowCellBackgroundFromOLAP

ShowPageMultipleItemLabel ShowPages SmallGrid

SourceData SubtotalHiddenPageItems TableRange1

TableRange2 TableStyle Tag

TotalsAnnotation Update VacatedStyle

Value Version ViewCalculatedMembers

VisibleFields VisualTotals
1 Collection only

2 Object and collection

pivottables.Add(PivotCache, TableDestination, [TableName],
[ReadData], [DefaultVersion])

Creates a new pivot table from an existing pivot cache and returns the created PivotTable object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

PivotCache The PivotCache object to use as the data source for the pivot table.

TableDestination The Range object indicating the location of the upper-left corner for the pivot table.

TableName A name to assign to the pivot table. Default is PivotTablen.

ReadData For database queries, True reads all of the fields from the data source; False delays retrieving the data
until the pivot cache is refreshed. Default is True.

DefaultVersion The Excel version assigned to pivot table. Can be xlPivotTableVersion10, xlPivotTableVersion2000, or
xlPivotTableVersionCurrent.

This method is equivalent to the PivotCache object's CreatePivotTable method. The following code creates a pivot cache from
a database query and then uses that pivot cache to create a pivot table:

Sub CreateSalesThisWeekPT()
 Dim pc As PivotCache, pt As PivotTable, pf As PivotField, _
 ws As Worksheet
 ' Create a new pivot cache for database query.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Create a connection string and SQL query.
 pc.Connection = "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=jeff;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Sales;Trusted_Connection=True"
 pc.CommandType = xlCmdSql
 pc.CommandText = "SELECT SalesRank, ProductName, Date FROM Amazon " & _
 "WHERE Date > GetDate() - 7"
 pc.MaintainConnection = False
 ' Create a new worksheet for the pivot table.
 Set ws = ActiveWorkbook.Worksheets.Add()
 ' Create a pivot table.
 Set pt = ws.PivotTables.Add(pc, ws.[a3], "SalesThisWeek", False)
 ' Set the layout: add the column and row fields.
 pt.AddFields "Date", "ProductName"
 ' Add the data field and set its formula.
 Set pf = pt.AddDataField(pt.PivotFields("SalesRank"), , xlAverage)
 ' Update the pivot table
 pc.Refresh
End Sub

pivottable.AddDataField(Field, [Caption], [Function])

Adds a field to the data area of a pivot table.

Argument Settings

Field The PivotField to add to the data area.

Caption A name to display for the field.

Function
An xlConsolidationFunction constant indicating the type of calculation to perform on the data field items. Can
be one of these settings: xlAverage, xlCountNums, xlMin, xlStDev, xlSum, xlVar, xlCount, xlMax, xlProduct, xlStDevP, or
xlVarP.

See the preceding topic for an example of how to add a data field.

pivottable.AddFields([RowFields], [ColumnFields], [PageFields],
[AddToTable])

Adds fields to the row, column, or page areas of a pivot table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adds fields to the row, column, or page areas of a pivot table.

Argument Settings

RowFields The PivotField objects to add to the row area.

ColumnFields The PivotField objects to add to the column area.

PageFields The PivotField objects to add to the page area.

AddToTable True appends the fields to any existing fields in the table; False replaces any existing fields in the table
with the new ones.

To add multiple fields to an area, use an array of PivotField objects for the RowFields, ColumnFields, or PageFields arguments.

pivottable.CacheIndex [= setting]

Sets or returns the index of the pivot cache used by the pivot table. Changing the CacheIndex assigns a different pivot
cache to the pivot table, changing the fields and data included in the table.

pivottable.CalculatedFields()

Returns a collection of PivotField objects that are calculated from other fields.

pivottable.CalculatedMembers

For OLAP pivot tables, returns a collection of CalculatedMember objects containing all the calculated members and
calculated measures in the OLAP data cube.

pivottable.ColumnFields

Returns a collection of PivotField objects that are in the column area of the pivot table.

pivottable.ColumnGrand [= setting]

True displays grand totals for column fields; False omits grand totals. Default is true. The following code turns column
grand totals on and off:

Sub ToggleColumnTotals()
 ' Ignore error if sheet doesn't have a pivot table.
 On Error Resume Next
 ' Turn totals on/off.
 ActiveSheet.PivotTables(1).ColumnGrand = _
 Not ActiveSheet.PivotTables(1).ColumnGrand
 On Error GoTo 0
End Sub

pivottable.ColumnRange

Returns the Range object for the column area of the pivot table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Range object for the column area of the pivot table.

pivottable.CreateCubeFile(File, [Measures], [Levels], [Members],
[Properties])

For OLAP pivot tables, saves the table as a view of the OLAP data cube.

Argument Settings

File The name of the file to create.

Measures An array of names of the OLAP measures to include in the file.

Levels An array of names of the OLAP level names to include in the file.

Members An array of the names of top-level members in the dimension to include in the file.

Properties True includes member property settings in the file; False omits properties. Default is True.

The following code saves an OLAP pivot table as a local cube file:

Sub SaveOLAPCube()
 Dim pt As PivotTable
 ' Run CreateOLAPPivotTable to create this pivot table.
 Set pt = Worksheets("FoodMart Sales").PivotTables(1)
 ' Save table as a local cube file.
 pt.CreateCubeFile ThisWorkbook.Path & "\" & pt.Name & ".cub"
End Sub

pivottable.CubeFields

For OLAP pivot tables, returns a collection of CubeField objects from the pivot table.

pivottable.DataBodyRange

Returns the Range object for the data area of the pivot table.

pivottable.DataFields

Returns a collection of PivotField objects that are in the data area of the pivot table.

pivottable.DataLabelRange

Returns the Range object for the cells containing the labels for the data fields on the pivot table.

pivottable.DataPivotField

Returns the PivotField object that represents all the fields in the pivot table's data area. This property is similar to the
DataFields property, only DataFields returns a collection and DataPivotField combines multiple fields into a single PivotField
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object.

pivottable.DisplayEmptyColumn [= setting]

For OLAP pivot tables, True displays fields containing no data and False hides fields with no data. For other types of
pivot tables, causes an error.

pivottable.DisplayEmptyRow [= setting]

For OLAP pivot tables, True displays records containing no data and False hides records with no data. For other types of
pivot tables, causes an error.

pivottable.DisplayErrorString [= setting]

True displays a custom error when pivot table cells contain errors; False displays the standard error. Default is False.

Set this property to True and ErrorString to "" to turn off error messages, such as #DIV/0!, in the data area of a pivot table.
The following code switches error messages on and off for a pivot table on the active worksheet:

Sub ToggleDataFieldErrors()
 Dim pt As PivotTable
 ' Run CreateOLAPPivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Turn error messages on/off.
 pt.DisplayErrorString = Not pt.DisplayErrorString
 pt.ErrorString = ""
End Sub

pivottable.DisplayImmediateItems [= setting]

True displays row and column fields even when the data area of a pivot table is empty; False hides row and column
fields when the data area is empty. Default is True.

pivottable.DisplayNullString [= setting]

True displays the value of the NullString property for data field values of ""; False displays 0 for null strings. Default is
True.

The NullString property is empty by default, so the default behavior is to display nothing for null strings.

pivottable.EnableDataValueEditing [= setting]

True allows users to change values in the data area of a pivot table; False prohibits changes and displays an alert if the
user attempts to change a value. Default is False.

pivottable.EnableDrilldown [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True allows users to get additional detail about a data field item from the data source by clicking the Show Detail
button; False disables getting additional detail. Default is True. For OLAP pivot tables, this property can't be set to
False.

pivottable.EnableFieldDialog [= setting]

True displays the PivotTable Field dialog box (see Figure 13-4) when the user double-clicks a field label; False does not
display the dialog. Default is true.

pivottable.EnableFieldList [= setting]

True displays the PivotTable Field List (see Figure 13-10) when the pivot table is selected; False hides the PivotTable
Field List.

pivottable.EnableWizard [= setting]

True allows users to create pivot tables using the PivotTable Wizard (see Figure 13-2); False disables the wizard.
Default is True.

pivottable.ErrorString [= setting]

Sets or returns a custom error string to display when calculation errors occur in data field items. This string replaces the
built-in Excel error message if DisplayErrorString is set to True.

pivottable.Format(Format)

Applies an autoformat to the pivot table.

Argument Settings

Format An xlPivotFormatType constant indicating the autoformat to apply. Can be one of these settings: xlPTNone,
xlPTClassic, xlReport1 to xlReport10, xlTable1 to xlTable10.

The following code applies an autoformat to a pivot table on the active worksheet:

Sub ApplyAutoFormat()
 Dim pt As PivotTable
 ' Run CreateOLAPPivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Apply format
 pt.Format xlReport1
End Sub

pivottable.GetData(Name)

Retrieves a value from the pivot table's data area.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Name The column and row names that describe the data item to return

The following code returns the average sales rank from the pivot table created earlier (see Figure 13-7 for an
illustration of the pivot table):

Sub GetPivotTableData1()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Display data in Immediate window.
 Debug.Print pt.GetData(" 'Essential SharePoint' 'Average of SalesRank'")
End Sub

pivottable.GetPivotData([DataField], [Field1], [Item1], [Fieldn],
[Itemn])

Returns the Range object containing the items described by the method arguments.

Argument Settings

DataField The name of the data field within which to get the range

Field1 The name of the page, row, or column field within which to get the range

Item1 The value to look up within the page, column, or row specified by Field1

Fieldn, Itemn Additional field and value pairs that define the data value range to retrieve

If you omit all arguments, GetPivotData returns the Range object for the cell containing the grand total for the pivot table.
If GetPivotData can't find the item using the criteria in the arguments, an error occurs.

The following code gets a value from the pivot table created earlier (see Figure 13-7 for an illustration of the pivot
table):

Sub GetPivotTableData2()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Display data in Immediate window.
 Debug.Print pt.GetPivotData("SalesRank", "ProductName", _
 "Essential SharePoint", _
 "Date", #11/3/2005 9:02:56 AM#).Value
End Sub

pivottable.GrandTotalName [= setting]

Sets or returns the label displayed for the pivot table's grand total. Default is "Grand Total".

pivottable.HasAutoFormat [= setting]

True automatically adjusts column widths when the pivot table is refreshed; False preserves column widths when the
table is refreshed. Setting this property to False also removes any autoformat that was applied to the table.

pivottable.HiddenFields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pivottable.HiddenFields

Returns a collection of PivotField objects that are in the PivotTable Field List but do not appear on the pivot table.

pivottable.InnerDetail [= setting]

Sets or returns the name of the field to show when the user selects a pivot data item and then clicks Show Detail.
Cannot be set for OLAP pivot tables.

pivottable.ListFormulas()

Creates a new worksheet containing a summary of the formulas used for calculated fields and calculated items on a
pivot table.

pivottable.ManualUpdate [= setting]

True causes RefreshTable to clear data from the pivot table, rather than refreshing it; False allows RefreshTable to work
normally. Default is False. This property is reset to False automatically after the calling procedure ends.

pivottable.MDX

For OLAP pivot tables, returns the Multidimensional Expression (MDX) query used to populate the data cube used by the
pivot table. MDX is a SQL-like query language.

pivottable.MergeLabels [= setting]

True merges the pivot table's outer row item, column items, subtotal, and grand total labels with their rows or columns;
False uses unmerged cells for the labels. Default is False. Use the following code to see the effect of merged versus
unmerged labels:

Sub ToggleMergedLabels()
 Dim pt As PivotTable
 ' Active worksheet must contain a pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Switch merged labels on/off.
 pt.MergeLabels = Not pt.MergeLabels
End Sub

pivottable.NullString [= setting]

Sets or returns the value to display for data field values of "" (null value). Default is "".

pivottable.PageFieldOrder [= xlOrder]

Sets or returns the order in which page fields are added to the page area of the pivot table . Can be xlDownThenOver
(default) or xlOverThenDown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(default) or xlOverThenDown.

pivottable.PageFields

Returns a collection of PivotField objects that are in the page area of the pivot table.

pivottable.PageFieldWrapCount [= setting]

Sets or returns the number of page fields per column in the page area of the pivot table.

pivottable.PageRange

Returns the Range object for the page area of the pivot table.

pivottable.PageRangeCells

Returns the Range object for the page area of the pivot table.

pivottable.PivotCache()

Returns the PivotCache object used by the pivot table.

pivottable.PivotFields

Returns a collection of PivotField objects containing all the pivot fields in the pivot table.

pivottable.PivotFormulas

Returns a collection of PivotFormula objects containing all of the formulas used in the pivot table.

pivottable.PivotSelect(Name, [Mode], [UseStandardName])

Selects part of a pivot table.

Argument Settings

Name The name of the field or item to select.

Mode An xlPTSelectionMode constant indicating the item within Name to select. Can be xlBlanks, xlButton,
xlDataAndLabel (default), xlDataOnly, xlFirstRow, xlLabelOnly, or xlOrigin.

UseStandardName True uses U.S. English formats for numbers, currency, dates, and times within the Name argument;
False uses localized formats.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code selects the rows for Essential SharePoint from the pivot table created earlier (see Figure 13-7 for an
illustration of the pivot table):

Sub SelectPivotItem()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Select one item.
 pt.PivotSelect "ProductName[Essential SharePoint]"
 ' This line is equivalent to preceding line:
 'pt.PivotSelection = "ProductName[Essential SharePoint]"
End Sub

pivottable.PivotSelection [= setting]

Sets or returns the selected item in the pivot table. Setting this property is equivalent to calling PivotSelect without
optional arguments.

pivottable.PivotSelectionStandard [= setting]

Same as PivotSelection, only uses U.S. English formats for numbers, currency, dates, and times.

pivottable.PivotTableWizard([SourceType], [SourceData],
[TableDestination], [TableName], [RowGrand], [ColumnGrand],
[SaveData], [HasAutoFormat], [AutoPage], [Reserved],
[BackgroundQuery], [OptimizeCache], [PageFieldOrder],
[PageFieldWrapCount], [ReadData], [Connection])

Quickly creates a pivot table and returns a reference to the created PivotTable object.

Argument Settings

SourceType An xlPivotTableSourceType constant indicating the source of the data to use in the pivot table. Can be
xlConsolidation, xlDatabase, xlExternal, or xlPivotTable.

SourceData
If SourceType is xlConsolidation, xlDatabase, or xlPivotTable, a Range object containing the source for the pivot
table. If SourceType is xlExternal, an array containing the SQL query string used to retrieve the data for
the pivot table.

TableDestination The Range object indicating the location of the upper-left corner for the new pivot table.

TableName A name to assign to the pivot table. Default is PivotTablen.

RowGrand True displays grand totals for rows; False omits row totals. Default is True.

ColumnGrand True displays grand totals for columns; False omits column totals. Default is True.

SaveData If SourceType is xlExternal, TRue reads all of the fields from the data source and False delays retrieving
the data until the pivot cache is refreshed. Default is True.

HasAutoFormat True automatically adjusts column widths when the pivot table is refreshed; False preserves column
widths when the table is refreshed. Default is True.

AutoPage If SourceType is xlConsolidation, true automatically creates a page field for the consolidation.

Reserved Do not use this argument.

BackgroundQuery If SourceType is xlExternal, TRue queries the data source asynchronously when refreshing the pivot
table; False performs synchronous queries. Default is False.

OptimizeCache True optimizes the pivot cache; False does not optimize. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True optimizes the pivot cache; False does not optimize. Default is False.

PageFieldOrder The order in which page fields are added to the page area of the pivot table. Can be xlDownThenOver
(default) or xlOverThenDown.

PageFieldWrapCount The number of page fields per column in the page area of the pivot table.

ReadData If SourceType is xlExternal, true reads all of the fields from the data source; False delays retrieving the
data until the pivot cache is refreshed. Default is True.

Connection If SourceType is xlExternal, the ODBC connection string used to connect to the external data source.

Use SourceType xlDatabase if the pivot table's data source is a worksheet. The following code creates a quick pivot table
from the active worksheet:

Sub QuickPivotTable()
 Dim ws As Worksheet, pt As PivotTable
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ws.PivotTableWizard(xlDatabase, ws.UsedRange, _
 Worksheets.Add.[a1], "Quick Pivot")
 ' Set layout
 pt.AddDataField pt.PivotFields(1), , xlAverage
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
End Sub

Use SourceType xlExternal if the pivot table's data source is a database. The following code creates a quick pivot table using
a query to a Microsoft SQL Server database:

Sub QuickDBPivotTable()
 Dim ws As Worksheet, pt As PivotTable
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Use pivot table wizard to create table on new worksheet.
 Set pt = ws.PivotTableWizard(xlExternal, Array("SELECT * FROM Amazon"), _
 Worksheets.Add.[a1], "QuickDBPivot", , , , , , , , , , , , _
 "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Sales;Trusted_Connection=True")
 ' Set layout
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
 pt.AddDataField pt.PivotFields(1), , xlAverage
End Sub

PivotTableWizard doesn't display the PivotTable Wizard dialog. To do so, use this line of code:

Application.Dialogs(xlDialogPivotTableWizard).Show

pivottable.PreserveFormatting [= setting]

True preserves cell formatting when the pivot table is refreshed; False removes cell formatting when the pivot table is
refreshed. Default is True.

pivottable.PrintTitles [= setting]

True uses print titles from the pivot table; False uses print titles from the worksheet. Default is False. The following
code demonstrates the effect of PrintTitles by using print preview:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code demonstrates the effect of PrintTitles by using print preview:

Sub PivotPrintPreview()
 Dim pt As PivotTable
 ' Run CreatePivotTable to create this pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Change property settings.
 pt.PrintTitles = True
 pt.RepeatItemsOnEachPrintedPage = True
 ' Print preview
 pt.Parent.PrintOut , , , True
End Sub

pivottable.RefreshDate

Returns the date and time when the pivot table was last refreshed.

pivottable.RefreshName

Returns the name of the user who last refreshed the pivot table.

pivottable.RefreshTable()

Refreshes the pivot table's PivotCache object and updates the table.

pivottable.RepeatItemsOnEachPrintedPage [= setting]

True repeats item labels on each printed page; False does not repeat labels. Default is True.

pivottable.RowFields

Returns a collection of PivotField objects that are in the row area of the pivot table.

pivottable.RowGrand [= setting]

True displays grand totals for row fields; False omits grand totals. Default is True.

pivottable.RowRange

Returns the Range object for the row area of the pivot table.

pivottable.SaveData [= setting]

True saves the pivot cache data with the workbook; False omits the data when saving. For OLAP pivot tables, this
property can't be set to True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property can't be set to True.

pivottable.SelectionMode [= xlPTSelectionMode]

Sets or returns the pivot table's structured selection mode. Can be one of these settings:

xlBlanks xlButton

xlDataAndLabel (default) xlDataOnly

xlFirstRow xlLabelOnly

xlOrigin

pivottable.ShowCellBackgroundFromOLAP [= setting]

For OLAP pivot tables, True sets cell BackColor properties to match the formatting specified by the OLAP MDX query and
False omits formatting. Default is False.

pivottable.ShowPageMultipleItemLabel [= setting]

True displays "(Multiple Items)" when more than one item is selected within a page field; False displays the first item
selected. Default is True.

pivottable.ShowPages([PageField])

Creates a new pivot table for each item in the page field. Each pivot table appears on a new worksheet.

Argument Settings

PageField The name of the page field to split into separate pivot tables

This method is not available for OLAP pivot tables.

pivottable.SourceData

Returns the data source for the pivot table. The information returned depends on the SourceType set when the pivot table
was created, as described in the following table.

SourceType SourceData returns

xlDatabase The address of the source range.

xlExternal An array containing the database connection string and SQL query string divided into 255-character
elements.

xlConsolidation A two-dimensional array. Each row consists of a reference and its associated page field items.

xlPivotTable One of the preceding kinds of information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can find a pivot table's SourceType by checking the SourceType property of the underlying PivotCache object.

pivottable.SubtotalHiddenPageItems [= setting]

True includes hidden page fields in totals; False omits them. Default is False.

pivottable.TableRange1

Returns a Range object containing the pivot table minus the page area.

pivottable.TableRange2

Returns a Range object containing the pivot table including the page area.

pivottable.TableStyle [= setting]

Sets or returns the style name to apply to the pivot table. Choose Format Style to see a list of available styles in
Excel.

pivottable.TotalsAnnotation [= setting]

For OLAP pivot tables, True displays an asterisk on totals, indicating that hidden items are included in the total; False
omits the asterisk. Default is True.

pivottable.Update()

Refreshes the pivot table's PivotCache object and updates the table.

pivottable.VacatedStyle [= setting]

Sets or returns the style name to apply to pivot table cells in that are cleared when the pivot table is refreshed. Choose
Format Style to see a list of available styles in Excel.

pivottable.Value [= setting]

Sets or returns the name of the pivot table.

pivottable.Version

Returns the Excel version used to create the pivot table. Can be xlPivotTableVersion10, xlPivotTableVersion2000, or
xlPivotTableVersionCurrent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlPivotTableVersionCurrent.

pivottable.ViewCalculatedMembers [= setting]

For OLAP pivot tables, True displays calculated members and False hides calculated members. Default is True.

pivottable.VisibleFields

Returns the collection of PivotField objects that are included in the page, column, row, or data areas of the pivot table.

pivottable.VisualTotals [= setting]

For OLAP pivot tables, True recalculates totals when items are hidden on the pivot table and False does not recalculate
totals when items are hidden. Default is False, which includes hidden items in the totals.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4. PivotCache and PivotCaches Members
Use the PivotCache collection to create new pivot caches. Use the Workbook object's PivotCaches property to get a reference
to this collection. Use the PivotCache object to create new pivot tables from the cache, to set the data source, and to
refresh the cache. The PivotCaches collection and PivotCache object have the following members. Key members (shown in
bold) are covered in the following reference section:

Add1 ADOConnection

Application2 BackgroundQuery

CommandText CommandType

Connection Count1

CreatePivotTable Creator2

EnableRefresh Index

IsConnected Item1

LocalConnection MaintainConnection

MakeConnection MemoryUsed

MissingItemsLimit OLAP

OptimizeCache Parent2

QueryType RecordCount

Recordset Refresh

RefreshDate RefreshName

RefreshOnFileOpen RefreshPeriod

ResetTimer RobustConnect

SaveAsODC SavePassword

SourceConnectionFile SourceData

SourceDataFile SourceType

Sql UseLocalConnection

1 Collection only

2 Object and collection

pivotcaches.Add(SourceType, [SourceData])

Creates a new pivot cache and returns a PivotCache object.

Argument Settings

SourceType An xlPivotTableSourceType constant indicating the source of the data to use in the pivot table. Can be
xlConsolidation, xlDatabase, xlExternal, or xlPivotTable.

SourceData If SourceType is xlConsolidation, xlDatabase, or xlPivotTable, a Range object containing the source for the pivot
table. If SourceType is xlExternal, use the Connection and CommandText property to set the data source.

To create a pivot cache from a worksheet, use SourceType xlDatabase as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a pivot cache from a worksheet, use SourceType xlDatabase as shown here:

Sub CreateWSPivotTable()
 Dim pc As PivotCache, pt As PivotTable, rng As Range
 ' Create a new pivot cache (assumes active sheet is a worksheet).
 Set pc = ActiveWorkbook.PivotCaches.Add(xlDatabase, ActiveSheet.UsedRange)
 ' Create a pivot table.
 Set pt = pc.CreatePivotTable(Worksheets.Add().[a3])
 ' Set the layout: add the column and row fields.
 pt.AddFields pt.PivotFields(4).Name, pt.PivotFields(3).Name
 ' Add the data field and set its formula.
 pt.AddDataField pt.PivotFields(1), , xlSum
End Sub

To create a pivot cache from a database query, use SourceType xlExternal and then set the Connection and CommandText
properties. The following code creates a pivot cache and pivot table from an SQL query to the Northwind SQL Server
database:

Sub CreateNwindPivotCache()
 Dim pc As PivotCache, pt As PivotTable, rng As Range
 ' Create a new pivot cache.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Set database connection.
 pc.Connection = "ODBC;DRIVER=SQL Server;SERVER=USERS;" & _
 "UID=;APP=Microsoft Office 2003;WSID=WOMBAT4;" & _
 "DATABASE=Northwind;Trusted_Connection=True"
 ' Create SQL query.
 pc.CommandText = "SELECT CategoryID, ProductName, UnitsInStock, " & _
 "UnitPrice FROM Products"
 ' Create a pivot table.
 Set pt = pc.CreatePivotTable(Worksheets.Add().[a3])
 ' Set the layout: add the column and row fields.
 pt.AddFields "ProductName", , "CategoryID"
 ' Add the data field and set its formula.
 pt.AddDataField pt.PivotFields("UnitsInStock"), , xlSum
End Sub

pivotcache.ADOConnection

For pivot caches based on ADO database connections, returns the ADO Connection object used by the pivot cache.

pivotcache.BackgroundQuery [= setting]

For pivot caches based on database queries, True refreshes the cache asynchronously and False refreshes
synchronously. This property is always False for other types of pivot caches, including OLAP caches.

pivotcache.CommandText [= setting]

For pivot caches based on database queries, sets or returns the command used to generate the cache. The form of this
command depends on the CommandType property.

pivotcache.CommandType [= xlCmdType]

For pivot caches based on database queries, sets or returns the type of command used in CommandText as described in
the following table.

Setting CommandText is

xlCmdCube The name of the OLAP cube

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The name of the OLAP cube

xlCmdDefault A query string defined by the OLE DB provider

xlCmdSql A SQL SELECT command

xlCmdTable A table name from the data source

You can set CommandType only if QueryType is xlOLEDBQuery.

pivotcache.Connection [= setting]

For pivot caches based on database queries, sets or returns the connection string used to connect to the data source.

pivotcache.CreatePivotTable(TableDestination, [TableName],
[ReadData], [DefaultVersion])

Creates a pivot table from the pivot cache and returns the created PivotTable object.

Argument Settings

TableDestination The Range object indicating the location of the upper-left corner for the new pivot table.

TableName A name to assign to the pivot table. Default is PivotTablen.

ReadData If SourceType is xlExternal, true reads all of the fields from the data source and False delays retrieving the
data until the pivot cache is refreshed. Default is True.

DefaultVersion The Excel version assigned to pivot table. Can be xlPivotTableVersion10, xlPivotTableVersion2000, or
xlPivotTableVersionCurrent.

The following code creates a new pivot table from an existing pivot cache:

Sub CreatePivotTableFromExistingCache()
 Dim pc As PivotCache, pt As PivotTable
 ' Get an existing pivot cache.
 Set pc = ActiveWorkbook.PivotCaches(1)
 ' Create a new pivot table (shares cache).
 Set pt = pc.CreatePivotTable(Worksheets.Add().[a3], "NewPivotTable")
 ' Select the pivot table.
 pt.TableRange2.Select
End Sub

pivotcache.EnableRefresh [= setting]

True allows the user to refresh the pivot cache; False disables refreshes.

pivotcache.IsConnected

For pivot caches based on OLE DB database queries, returns True if the cache currently holds an open database
connection and False if the database connection is closed.

pivotcache.LocalConnection [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For OLAP pivot caches, True uses a local cube file and False uses a remote OLAP provider. Default is False. The
following code saves an OLAP pivot table as a local cube file, then uses that data source offline:

Sub UseOLAPOffline()
 Dim pc As PivotCache, pt As PivotTable, fname As String
 ' Run earlier example to create pivot table.
 CreateOLAPPivotTable
 ' Get pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Get the pivot cache.
 Set pc = pt.PivotCache
 ' Save local cube file.
 fname = ActiveWorkbook.Path & "\" & pt.Name & ".cub"
 pt.CreateCubeFile fname
 ' Take cache offline.
 pc.LocalConnection = "OLEDB;Provider=MSOLAP;Data Source=" & fname
 pc.UseLocalConnection = True
End Sub

pivotcache.MaintainConnection [= setting]

For pivot caches based on OLE DB database queries, True keeps the database connection open between refreshes and
False closes the connection after refreshing.

pivotcache.MakeConnection()

For pivot caches based on OLE DB database queries, opens database connection before refreshing.

pivotcache.MemoryUsed

Returns the amount of memory used by the pivot cache in bytes. The following code displays the total memory used by
pivot caches in the Immediate window:

Sub CountCache()
 Dim pc As PivotCache, mem As Long
 For Each pc In ActiveWorkbook.PivotCaches
 mem = mem + pc.MemoryUsed
 Next
 Debug.Print "#PivotCaches", "Mem Used"
 Debug.Print ActiveWorkbook.PivotCaches.Count, mem \ 1024 & "K"
End Sub

pivotcache.MissingItemsLimit [= setting]

Sets or returns the maximum number of items per field that are retained even when they have no data in the cache.
Must be between -1 (default) and 32,500. This property can't be set for OLAP pivot caches.

pivotcache.OLAP

Returns True if the pivot cache is from an OLAP data source, otherwise returns False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pivotcache.OptimizeCache [= setting]

For pivot caches based on database queries to non-OLE DB data sources, True optimizes the pivot cache when the
initial query occurs and False does not optimize the query. Default is False. Optimizing degrades initial cache creation
but improves subsequent refreshes.

pivotcache.QueryType

For pivot caches based on database queries, returns the type of query used to create the pivot cache. Can be one of
these xlQueryType constants:

xlOLEDBQuery
xlADORecordset
xlODBCQuery

pivotcache.RecordCount

Returns the number of records in the pivot cache.

pivotcache.Recordset [= setting]

Sets or returns the ADO RecordSet object used to create the pivot cache. The following code demonstrates how to use an
ADO recordset created from a SQL Server database query to create a pivot cache and pivot table:

' Requires reference to Microsoft ActiveX Data Object library
Sub CreateADOPivotCache3()
 Dim pc As PivotCache, pt As PivotTable
 Dim cnn As New ADODB.Connection, cmd As New ADODB.Command, _
 rs As New ADODB.Recordset
 ' Create ADO recordset.
 cnn.ConnectionString = "Provider=sqloledb;data source=USERS;" & _
 "initial catalog=Northwind;Integrated Security=SSPI;" & _
 "persist security info=True;packet size=4096;Trusted_Connection=True"
 cmd.CommandText = "SELECT CategoryName, ProductName, UnitsInStock, " & _
 "UnitPrice FROM Products, Categories"
 cnn.Open
 Set cmd.ActiveConnection = cnn
 Set rs = cmd.Execute
 ' Create a new pivot cache.
 Set pc = ActiveWorkbook.PivotCaches.Add(xlExternal)
 ' Use the ADO recordset as the data source.
 Set pc.Recordset = rs
 ' Create a pivot table based on the new pivot cache.
 Set pt = pc.CreatePivotTable(Worksheets.Add().[A3])
 ' Set the layout: add the column and row fields.
 pt.AddFields "ProductName", , "CategoryName"
 ' Add the data field and set its formula.
 pt.AddDataField pt.PivotFields("UnitsInStock"), , xlSum
 ' Close the recordset and database connection.
 rs.Close
 cnn.Close
End Sub

pivotcache.Refresh()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Refreshes the pivot cache data from the data source.

pivotcache.RefreshOnFileOpen [= setting]

True automatically refreshes the pivot cache when the workbook is opened; False does not refresh on open. Default is
False.

pivotcache.RefreshPeriod [= setting]

For pivot caches based on database queries other than OLAP data sources, sets or returns the number of minutes
between automatic refreshes of the pivot cache. Default is 0, which turns automatic refreshes off.

pivotcache.ResetTimer()

Resets the timer used for the RefreshPeriod property.

pivotcache.RobustConnect [= xlRobustConnect]

For pivot caches based on database queries, sets or returns how the pivot cache reconnects to its data source when the
cache is refreshed. Can be one of the settings described in the following table:

Setting Use this property to connect to data source

xlAlways SourceConnectionFile or SourceDataFile

xlAsRequired Connection

xlNever Does not reconnect

pivotcache.SaveAsODC(ODCFileName, [Description],
[Keywords])

For pivot caches based on ODBC database queries, saves the connection and query information as a Microsoft Office
Data Connection (.odc) file.

Argument Settings

ODCFileName The name of the file to create

Description A description included in the connection file

Keywords Keywords included in the connection file

Excel saves .odc files to C:\Documents and Settings\user\My Documents\My Data Sourcesby default.

pivotcache.SavePassword [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For pivot caches based on ODBC database queries, True saves password information in the .odc file when SaveAsODC is
called and False omits the password. Default is False.

pivotcache.SourceConnectionFile [= setting]

For pivot caches based on ODBC database queries, the Microsoft Office Data Connection (.odc) file used to establish the
database connection.

pivotcache.SourceDataFile

For pivot caches based on file-based databases, such as Access, returns the filename of the data source.

pivotcache.SourceType

Returns an xlPivotTableSourceType constant indicating the source of the cache data. Can be one of these settings:

xlConsolidation
xlDatabase
xlExternal
xlPivotTable
xlScenario

pivotcache.Sql [= setting]

For pivot caches based on database queries, returns the SQL query used to create the cache.

pivotcache.UseLocalConnection [= setting]

True uses the LocalConnection property to connect to the data source; False uses the Connection property to connect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5. PivotField and PivotFields Members
Use the PivotFields collection to get fields from a pivot table. Use the PivotTable object's PivotFields, PageFields, ColumnFields,
RowFields, DataFields, or HiddenFields properties to get a reference to this collection. Use the PivotField object to set the layout
of a pivot table, to filter and sort items, and to get the items in a field. The PivotFields collection and PivotField object have
the following members . Key members (shown in bold) are covered in the following reference section:

AddPageItem Application2 AutoShow

AutoShowCount AutoShowField AutoShowRange

AutoShowType AutoSort AutoSortField

AutoSortOrder BaseField BaseItem

CalculatedItems Calculation Caption

ChildField ChildItems Count1

Creator2 CubeField CurrentPage

CurrentPageList CurrentPageName DatabaseSort

DataRange DataType Delete

DragToColumn DragToData DragToHide

DragToPage DragToRow DrilledDown

EnableItemSelection Formula Function

GroupLevel HiddenItems HiddenItemsList

IsCalculated IsMemberProperty Item1

LabelRange LayoutBlankLine LayoutForm

LayoutPageBreak LayoutSubtotalLocation MemoryUsed

Name NumberFormat Orientation

Parent2 ParentField ParentItems

PivotItems Position PropertyOrder

PropertyParentField ServerBased ShowAllItems

SourceName StandardFormula SubtotalName

Subtotals TotalLevels Value

VisibleItems
1 Collection only

2 Object and collection

pivotfield.AddPageItem(Item, [ClearList])

For OLAP pivot tables, selects an item in a page field.

Argument Settings

Item The name of the pivot item to select.

ClearList True deselects all items from the page field before selecting the new one; False retains the current list of
items.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To be able to select individual items in an OLAP page field, you must first select Select Multiple Items as shown in
Figure 13-19. Use the CubeField object's EnableMultiplePageItems property to select or deselect this option in code.

Figure 13-19. Enabling multiselect in OLAP page fields

The following code selects a single item from the FoodMart Sales OLAP pivot table created in an earlier example:

Sub ViewSingleStore()
 Dim pt As PivotTable, cf As CubeField
 ' Uncomment this line to create OLAP pivot table.
 'CreateOLAPPivotTable
 ' Get OLAP pivot table.
 Set pt = Worksheets("FoodMart Sales").PivotTables(1)
 ' Get cube field
 Set cf = pt.CubeFields(pt.PageFields(1).Name)
 ' Enable multiselect.
 cf.EnableMultiplePageItems = True
 ' Select one store.
 pt.PageFields(1).AddPageItem "[Store].[All Stores].[USA].[CA].[Alameda]", True
End Sub

pivotfield.AutoShow(Type, Range, Count, Field)

Applies a filter to a pivot field.

Argument Settings

Type The setting xlAutomatic applies the filter; xlManual removes the filter.

Range The setting xlTop shows the top Count of records; xlBottom shows the bottom Count of records.

Count The number of records to show.

Field The data field to use as the criterion of the filter.

These settings are equivalent to the Top 10 AutoShow options on the PivotTable Field Advanced Options dialog box,
shown in Figure 13-20.

Figure 13-20. Setting advanced field options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-20. Setting advanced field options

The following code shows the bottom ProductName item based on the data field (sales rank, lower is better):

Sub ShowBestSeller()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment next line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("ProductName")
 ' Set autoshow.
 pf.AutoShow xlAutomatic, xlBottom, 1, pt.DataFields(1).name
End Sub

pivotfield.AutoShowCount

Sets or returns the Count argument setting from the AutoShow method. Since all the AutoShow arguments are required, you
must use the Autoxxx properties to remove filtering from a pivot field, as shown here:

Sub ResetAutoShowAutoSort()
 Dim pt As PivotTable, pf As PivotField
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot fields
 For Each pf In pt.PivotFields
 pf.AutoShow xlManual, pf.AutoShowRange, _
 pf.AutoShowCount, pf.AutoShowField
 pf.AutoSort xlManual, pf.AutoSortField
 Next
End Sub

pivotfield.AutoShowField

Returns the Field argument setting from the AutoShow method.

pivotfield.AutoShowRange

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Range argument setting from the AutoShow method.

pivotfield.AutoShowType

Returns the Type argument setting from the AutoShow method.

pivotfield.AutoSort(Order, Field)

Sort items in a pivot field

Argument Settings

Order Can be xlAscending, xlDescending, or xlManual (unsorted)

Field The data field to sort

These settings are equivalent to the AutoSort Options on the PivotTable Field Advanced Options dialog box shown in
Figure 13-20.

The following code sorts items in the ProductName field by sales rank:

Sub SortBySalesRank()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("ProductName")
 ' Sort items
 pf.AutoSort xlAscending, pt.DataFields(1).name
End Sub

pivotfield.AutoSortField

Returns the Field argument setting from the AutoSort method.

pivotfield.AutoSortOrder

Returns the Order argument setting from the AutoSort method.

pivotfield.BaseField [= setting]

Sets or returns the base field name used for a custom calculation. Not available for OLAP pivot fields.

pivotfield.BaseItem [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the base item value used for a custom calculation. Not available for OLAP pivot fields.

pivotfield.CalculatedItems()

Returns a collection of PivotItem objects containing the items in the pivot field that are calculated.

pivotfield.Calculation [= xlPivotFieldCalculation]

Sets or returns the calculation used for items in this field. Can be one of these settings:

xlDifferenceFrom xlIndex

xlNoAdditionalCalculation xlPercentDifferenceFrom

xlPercentOf xlPercentOfColumn

xlPercentOfRow xlPercentOfTotal

xlRunningTotal

OLAP pivot fields are always xlNoAdditionalCalculation.

pivotfield.Caption [= setting]

Sets or returns the caption displayed for the field.

pivotfield.ChildField

For grouped fields, returns a collection of child PivotItems for the field. Not available for OLAP pivot fields.

pivotfield.ChildItems

For grouped fields, returns a collection of child PivotItems for the field. Not available for OLAP pivot fields.

pivotfield.CubeField

For OLAP pivot fields, returns the CubeField object for the pivot field.

pivotfield.CurrentPage [= setting]

For page fields, sets or returns the currently selected item. The following code displays ProductName as a page field,
then selects one book from the list:

Sub ViewBook()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment this line to create pivot table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("ProductName")
 ' Make it a page field.
 pf.Orientation = xlPageField
 ' Select my book.
 pf.CurrentPage = "Essential SharePoint"
End Sub

pivotfield.CurrentPageList [= setting]

For OLAP page fields with EnableMultiplePageItems set to True, sets or returns an array of names of selected items in the
page field.

pivotfield.CurrentPageName [= setting]

For OLAP page fields with EnableMultiplePageItems set to False, sets or returns the name of the selected item in the page
field. For example, the following code selects a single store in the FoodMart Sales pivot table:

Sub ViewSingleStore2()
 Dim pt As PivotTable, pf As PivotField
 ' Uncomment this line to create pivot table.
 'CreateOLAPPivotTable
 ' Get pivot table.
 Set pt = Worksheets("Foodmart Sales").PivotTables(1)
 ' Get pivot field.
 Set pf = pt.PivotFields("[Store]")
 ' Disable multiselect.
 pf.CubeField.EnableMultiplePageItems = False
 ' Select single store.
 pf.CurrentPageName = "[Store].[All Stores].[USA].[CA].[Alameda]"
End Sub

pivotfield.DatabaseSort [= setting]

For OLAP row or column fields, returns True if field items are ordered as they were retrieved from the database; False if
the items have been reordered. Setting this property to False allows items to be reordered by dragging. Setting this
property to True also restores the order from the database.

pivotfield.DataRange

Returns a Range object of the cells that contain the pivot field.

pivotfield.DataType

Returns an xlPivotFieldDataType constant indicating the type of data in the field. Can be xlDate, xlNumber, or xlText.

pivotfield.Delete()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For calculated fields, deletes the field. This method is not available for other types of fields.

pivotfield.DragToColumn [= setting]

True if the field can be placed in the column area, False otherwise.

pivotfield.DragToData [= setting]

True if the field can be placed in the data area, False otherwise.

pivotfield.DragToHide [= setting]

True if the field can be removed from the pivot table, False otherwise.

pivotfield.DragToPage [= setting]

True if the field can be placed in the page area, False otherwise.

pivotfield.DragToRow [= setting]

True if the field can be placed in the row area, False otherwise.

pivotfield.DrilledDown [= setting]

For OLAP pivot fields, True views the detail for the field and False hides the detail.

pivotfield.EnableItemSelection [= setting]

True enables the field drop-down selection box, False disables the dropdown. Default is True. Figure 13-19 shows the
drop-down selection box for a page field.

pivotfield.Formula [= setting]

For calculated fields, set or returns the localized formula used to generate the field values. Use StandardFormula to get the
nonlocalized formula. Check the IsCalculated property before using this property. For example:

If pf.IsCalculated Then Debug.Print pf.Formula

pivotfield.Function [= xlConsolidationFunction]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For data fields, sets or returns the function used to calculate the value displayed in the data area. Can be one of these
settings:

xlAverage xlCount

xlCountNums xlMax

xlMin xlProduct

xlStDev xlStDevP

xlSum xlUnknown

xlVar xlVarP

pivotfield.GroupLevel

Returns the placement of a field within a group of fields. For ungrouped fields, returns 1. Not available for OLAP fields.

pivotfield.HiddenItems

Returns a collection of PivotItems that are not currently displayed for the pivot field. Not available for OLAP fields.

pivotfield.HiddenItemsList [= setting]

For OLAP fields, sets or returns an array of strings containing the items not currently displayed for the pivot field.

pivotfield.IsCalculated

Returns True if the pivot field is calculated and has a formula, False otherwise.

pivotfield.IsMemberProperty

For OLAP fields, returns True if the pivot field contains member properties and False otherwise.

pivotfield.LabelRange

Returns the Range object for the cells containing the pivot field's label.

pivotfield.LayoutBlankLine [= setting]

For row fields, True inserts a blank line after the field when the field detail is collapsed and False does not insert a blank
line. Default is False.

pivotfield.LayoutForm [= xlLayoutFormType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns whether gridlines appear within the pivot table. Can be xlTabular (default, with gridlines) or xlOutline (no
gridlines).

pivotfield.LayoutPageBreak [= setting]

For row fields, True inserts a page break after each row and False breaks pages normally. Default is False. The page
breaks appear only if the pivot field isn't the innermost (lowest-level) row field.

pivotfield.LayoutSubtotalLocation [= XlSubtototalLocationType]

Sets or returns the location for field totals. Can be xlAtTop or xlAtBottom (default).

pivotfield.NumberFormat [= setting]

For data fields, sets or returns the Excel number format string used to format values displayed in the data area.

pivotfield.Orientation [= xlPivotFieldOrientation]

Sets or returns the layout of the pivot field on the pivot table. Can be one of these settings, which correspond to the
pivot table layout areas:

xlColumnField
xlDataField
xlHidden
xlPageField
xlRowField

pivotfield.ParentField

For grouped fields, returns the pivot field's parent.

pivotfield.PivotItems([Index])

Returns the collection of PivotItems for the field. The following code displays the pivot fields and items from a pivot table
in the Immediate window:

Sub ShowPivotTableValues()
 Dim pt As PivotTable, pf As PivotField, pi As PivotItem
 ' Exit if pivot table doesn't exist.
 If ActiveSheet.PivotTables.Count < 1 Then Exit Sub
 ' Get pivot table.
 Set pt = ActiveSheet.PivotTables(1)
 ' Get pivot fields
 For Each pf In pt.PivotFields
 ' Display pivot fields and items in outline form.
 Debug.Print pf.name
 For Each pi In pf.PivotItems
 Debug.Print , pi.Value
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 Next
End Sub

pivotfield.Position [= setting]

Sets or returns the position of the field within its page, column, row, or data area on the pivot table.

pivotfield.PropertyOrder [= setting]

For OLAP member property fields, sets or returns the order of the field within the field's parent. Check the
IsMemberProperty before using this property.

pivotfield.PropertyParentField

For OLAP member property fields, returns the field's parent. Check the IsMemberProperty before using this property.

pivotfield.ServerBased [= setting]

For pivot tables based on non-OLAP database queries, True retrieves values only for the current page field when the
pivot table is refreshed, and False retrieves all values.

pivotfield.ShowAllItems [= setting]

True displays all items in the field, even if they don't contain data; False hides empty items. Default is False. This
property is not available for OLAP pivot fields.

pivotfield.SourceName

Returns the name of the pivot field as it appears in the original data souce.

pivotfield.StandardFormula [= setting]

Sets or returns the U.S. English version of the Formula property.

pivotfield.SubtotalName [= setting]

Sets or returns the label displays for the field total.

pivotfield.Subtotals [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns an array of values that determine which totals are displayed for a field. Set items in the array to True to
add that item to the list of totals. The following table lists the array indexes and their meaning:

Index Meaning

1 Automatic

2 Sum

3 Count

4 Average

5 Max

6 Min

7 Product

8 Count Nums

9 StdDev

10 StdDevp

11 Var

12 Varp

For OLAP fields, only the first item in the array can be set.

pivotfield.TotalLevels

For grouped fields, returns the number of levels in the group. For ungrouped fields, returns 1.

pivotfield.VisibleItems

Returns a collection of PivotItem objects that are visible for the pivot field. Returns True for OLAP pivot fields.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6. CalculatedFields Members
Use the CalcualtedFields collection to add new calculated fields to the pivot fields list. Use the PivotTable object's
CalculatedFields property to get a reference to this collection. The CalculatedFields collection has the following members . The
key member (shown in bold) is covered in the following reference section:

Add
Application
Count
Creator
Item
Parent

calculatedfields.Add(Name, Formula, [UseStandardFormula])

Adds a calculated pivot field to the pivot table's fields list and returns the PivotField object.

Argument Settings

Name The name of the pivot field to create.

Formula The Excel formula for the calculation.

UseStandardFormula True evaluates field names using U.S. English settings; False evaluates names using the user's
locale settings. Default is False.

The Formula argument omits the equals sign (=) and can't include cell references. The lack of cell references means you
have to calculate relative values in code if you want to use them in a calculated field. The following code finds the
minimum value of SalesRank and then uses that value to create a RelativeRank calculated field:

Sub NewCalcField()
 Dim pt As PivotTable, pfProduct As PivotField, _
 pfCalc As PivotField, min As Single
 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Show detail for Product name field.
 Set pfProduct = pt.PivotFields("ProductName")
 pfProduct.Orientation = xlRowField
 pfProduct.LabelRange.ShowDetail = True
 ' Find the minimum sales rank.
 min = WorksheetFunction.min(pt.DataFields(1).DataRange)
 'Debug.Print "Min rank: " & min
 ' Delete field if it exists, ignore error if it doesn't.
 On Error Resume Next
 pt.PivotFields("RelativeRank").Delete
 On Error GoTo 0
 ' Create calculated pivot field.
 Set pfCalc = pt.CalculatedFields.Add("RelativeRank", _
 "Round(SalesRank / " & min & ", 1)", True)
 ' Add to data area.
 pfCalc.Orientation = xlDataField
 ' Hide detail.
 pfProduct.LabelRange.ShowDetail = False
End Sub

The Delete method in the preceding code removes the calculated field if it already exists. That allows you to rerun
NewCalcField to update the calculation as needed. Also, you must show detail before calculating min because only visible
items are included; later, you can hide the detail as shown in the code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.7. CalculatedItems Members
Use the CalculatedItems collection to add calculated items to a pivot field. Use the PivotField object's CalculatedItems property
to get a reference to this collection. The CalculatedItems collection has the following members. The key member (shown in
bold) is covered in the following reference section:

Add
Application
Count
Creator
Item
Parent

pivotitem.Add(Name, Formula, [UseStandardFormula])

Adds a calculated pivot item to the pivot field list and returns the created PivotItem object.

Argument Settings

Name The name of the pivot item to create.

Formula The Excel formula for the calculation.

UseStandardFormula True evaluates field names using U.S. English settings; False evaluates names using the user's
locale settings. Default is False.

You can't add calculated items if a pivot table contains a custom subtotal such as Average or StdDev. The following
code creates a new calculated item and then displays the pivot table calculations on a new worksheet as shown in
Figure 13-21:

Figure 13-21. Viewing calculated fields and items from a pivot table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sub NewCalcItem()
 Dim pt As PivotTable, pf As PivotField, pi As PivotItem, min As Integer
 ' Uncomment this line to create pivot table.
 'CreatePivotTable
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Get pivot field
 Set pf = pt.PivotFields("SalesRank")
 ' Delete field if it exists, ignore error if it doesn't.
 On Error Resume Next
 pf.PivotItems("MinRank").Delete
 On Error GoTo 0
 ' Turn off custom subtotals.
 pt.RowFields(1).Subtotals = Array(True, False, False, False, _
 False, False, False, False, False, False, False, False)
 ' Find the minimum sales rank.
 min = WorksheetFunction.min(pt.DataFields(1).DataRange)
 ' Create calculated pivot item.
 Set pi = pf.CalculatedItems.Add("MinRank", min, True)
 ' Show formulas on a worksheet.
 pt.ListFormulas
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.8. PivotCell Members
Use the PivotCell object to get pivot table information from a Range object. Use the Range object's PivotCell property to get a
reference to this object. The PivotCell object has the following members:

Application ColumnItems

Creator CustomSubtotalFunction

DataField Parent

PivotCellType PivotField

PivotItem PivotTable

Range RowItems

Use PivotCell when working with user selections to find information about the selected cells. The following code displays
pivot table information about the currently selected range:

Sub GetPivotCell()
 Dim pc As PivotCell
 On Error Resume Next
 ' Get the pivot cell
 Set pc = Selection.PivotCell
 Debug.Print pc.PivotCellType, _
 pc.PivotField.name, pc.PivotTable.name
 If Err Then Debug.Print "Selection is not in a pivot range."
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.9. PivotFormula and PivotFormulas Members
Use the PivotFormulas collection to get the formulas of calculated pivot items. Use the PivotTable object's PivotFormulas
property to get a reference to this collection. Use the PivotFormula object to get information about the calculated item.
The PivotFormulas collection and PivotFormula object have the following members:

Add1 Application2

Count1 Creator2

Delete Formula

Index Item1

Parent2 StandardFormula

Value
1 Collection only

2 Object and collection

The following code displays the formulas of calculated items in a pivot table:

Sub GetPivotFormula()
 Dim pt As PivotTable, pfa As PivotFormula
 ' Uncomment next line to add a calculated pivot item.
 'NewCalcItem
 ' Get pivot table.
 Set pt = Worksheets("BookSales").PivotTables(1)
 ' Show formulas for calculated items.
 For Each pfa In pt.PivotFormulas
 Debug.Print pfa.Value
 Next
End Sub

The PivotFormulas collection doesn't include formulas from calculated pivot fields. Use the CalculatedFields collection to get
those formulas.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Analyzing Data with Pivot Tables
When you create a spreadsheet, you have to be careful how you organize the columns and rows because that affects
how you can sort, filter, or chart the data later. When you import data from an external source, such as a database,
web query, SharePoint list, or CSV file, you usually don't have a choice how the spreadsheet is organizedthe data just
comes in the way it was in the source.

Pivot tables let you reorganize data by dragging and dropping the columns from a data source to different locations on
a target worksheet. You can then sort, filter, or chart the results as you like. That makes pivot tables Excel's key data
analysis tool.

This chapter includes task-oriented reference information for the following objects and their related collections:
CalculatedField, CalculatedMember, CubeField, PivotCache, PivotCell, PivotField, PivotFormula, PivotItem, PivotItemList, PivotLayout, and
PivotTable.

Code used in this chapter and additional samples are available in ch13.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1. Use Lists
Lists reflect a range of cells within a workbook, rather than the entire workbook file itself. By sharing only the germane
range of cells, you avoid publishing the underlying data and macros, which protects the original. The shared list can
then be included in different workbooks used by others.

The main limitation of lists is that they can be shared only through Windows Server 2003 running SharePoint Services.
That's because the sharing and maintenance of lists is provided through the ASP.NET Active Server Pages and Web
Services that SharePoint provides. Other types of network shares are simply not supported. Another less important
hitch is that you can't include a shared list in a shared workbook. If you want to add a list to a shared workbook, you
first need to convert the workbook to single-user.

If you don't have a Windows 2003 server at your site, you can try out SharePoint Services through a hosting provider,
such as Apptix or Verio. Check out http://www.sharepointtrial.com for a free trial.

When a list is published, SharePoint Services creates an Active Server Page that teammates can use to view or modify
the list's data, as shown in Figure 14-2.

SharePoint Services stores lists as XML files. Each list has two different sorts of XML: XML that describes the list and
provides its user interface and XML that contains the list data. You can edit or link to a list through its ASPX page, or
you can use the SharePoint Lists Web Service to access the list directly through code.

14.1.1. Supported Data Types

Excel lists can contain only data that can be easily represented as XML. Objects such as charts, diagrams, and OLE
objects cannot be included in lists. Excel formulas are evaluated and converted to a numeric value when a list is
synchronized.

For numeric data, leading and trailing zeros are omitted and positive values are displayed without a plus sign (+)
regardless of whether or not it was entered. Excel provides up to 15 significant digits of precision.

Figure 14-2. SharePoint Services provides an ASPX page to view and manage a list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the following Excel date/time formats are not directly supported and are converted to text once a list is
synchronized:

hh:mm:ssZ
Hh:mm:ss.f-f
yyyy-mm-ddThh:mm:ssZ
yyyy-mm-ddThh:mm:ss+/-hh:mm
yyyy-mm-ddThh:mm:ss.f-f
yyyy-mm-ddZ
yyyy-mm-dd+/-hh:mm
yyyy+/-hh:mm
yyyy-mm+/-hh:mm

14.1.2. Resolve Conflicts

Since lists can't include formulas or objects, they are best suited to sharing two classes of information from Excel:

Results of calculated or summarized information

Detail information for summary or calculation on clients

In the first case, an author may collect information, generate some results, then share those results for review by
others. Alternately, a list may consist of raw data with one or more authors contributing items. Those authors and
additional users may read the list and summarize or filter the list in many different workbooks.

In a many-to-many relationship, more than one author may change a particular cell. When this occurs, the second
author to synchronize her list sees the Resolve Conflicts and Errors dialog, shown in Figure 14-3.

Figure 14-3. When two authors change the same cell, the second author to
synchronize must decide what to do

14.1.3. Authorization and Authentication in Shared Lists

In order to share a list through SharePoint Services, an author must have privileges on the SharePoint server.
SharePoint provides an easy-to-use interface for adding users and maintaining their passwords, shown in Figure 14-4.

When a user shares a list from Excel, SharePoint authenticates the user with the Connect dialog box, shown in Figure
14-5.

Once the user is authenticated, Excel maintains a session for the user for a period of time determined by the SharePoint
settings so that the user doesn't have to sign in again every time he accesses a shared list. When the user closes Excel,
his SharePoint session is ended and he will be reauthenticated if he starts Excel and accesses a shared list again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

his SharePoint session is ended and he will be reauthenticated if he starts Excel and accesses a shared list again.

These same rules apply whether the user is accessing a shared list through the Excel user interface or through Visual
Basic code.

Figure 14-4. Use the SharePoint Add Users page to add new user accounts and set
user privileges

Figure 14-5. SharePoint authenticates users before connecting to a shared list

14.1.4. Create a List in Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the Add method of the ListObjects collection to create a list in code. The ListObjects collection is exposed as a property
of the Worksheet object. The following code creates a new list for all the contiguous data starting with the active cell:

ActiveWorksheet.ListObjects.Add

Use the Add method's arguments to create a list out of a specific range of cells. For example, the following code creates
a list out of the range A2:D5:

Sub CreateList1()
 Dim ws As Worksheet, rng As Range
 Set ws = ActiveSheet
 Set rng = ws.Range("A2:D5")
 ws.ListObjects.Add xlSrcRange, rng
End Sub

When Excel creates the preceding list, it automatically adds column headings to the list either by converting the first
row into column headings or by adding a new row and shifting the subsequent data rows down. It's hard to know
exactly what will happen because Excel evaluates how the first row is intended. You can avoid this assumption by
supplying the HasHeaders argument, as shown here:

ws.ListObjects.Add xlSrcRange, rng, , xlNo

Now, the preceding code adds headers to row 2 and shifts the range down one row.

Lists always include column headers. To avoid shifting the range down one row each time you create a list, include a
blank row at the top of the source range and specify xlYes for HasHeaders as shown here:

Sub CreateList2()
 Dim ws As Worksheet, rng As Range
 Set ws = ActiveSheet
 Set rng = ws.Range("A1:D5")
 ' Use first row as headers.
 ws.ListObjects.Add xlSrcRange, rng, , xlYes
End Sub

Since column headers and new rows added to a list cause the subsequent rows to shift down, it is a good idea to avoid
placing data or other items in the rows below a list. If you do place items there, you receive a warning any time the list
expands.

When creating lists in code, it is also a good idea to name the list so that subsequent references to the list can use its
name rather than its index on the worksheet. To name a list, set the Name property of the ListObject:

Sub CreateList3()
 Dim ws As Worksheet, rng As Range, lst As ListObject
 Set ws = ActiveSheet
 Set rng = ws.Range("A1:D5")
 ' Use first row as headers.
 Set lst = ws.ListObjects.Add(xlSrcRange, rng, , xlYes)
 ' Name list
 lst.Name = "Test List"
End Sub

Now, you can get a reference to the named list using the Worksheet object's ListObjects property:

Sub ToggleTotals()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 ' Get named list.
 Set lst = ws.ListObjects("Test List")
 ' Turn totals on/off.
 lst.ShowTotals = Not lst.ShowTotals
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1.5. Share a List

Once a list exists on a worksheet, you can share that list using the Publish method. The first argument of the Publish
method is a three-element string array containing the address of the SharePoint server, a unique name for the list, and
an optional description of the list. For example, the following code publishes the list created in the preceding section:

Sub ShareList()
 Dim ws As Worksheet, lst As ListObject
 Dim str As String, dest(2) As Variant
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 dest(0) = "http://www.excelworkshop.com"
 dest(1) = "Test List"
 dest(2) = "A description goes here..."
 str = lst.Publish(dest, True)
 MsgBox "Your list has been shared. You can view it at: " & str
End Sub

The Publish method returns a string containing the address of the published list. The preceding code displays that
address in a message box, but you may want to navigate to that address or include a link to it somewhere on the sheet.
To add a hyperlink to the list on the SharePoint server, add a hyperlink to a range as shown here:

' Add link instead of showing message box.
Dim lnk As Hyperlink
Set lnk = ws.Hyperlinks.Add([F1], str)

After adding the hyperlink, you can display the web page for the list by using the Follow method as shown here:

' Display the shared list in the browser.
lnk.Follow

To navigate to the list without adding a hyperlink, use the Workbook object's FollowHyperlink method:

' Or use the FollowHyperlink method.
ThisWorkbook.FollowHyperlink str

The ListObject's SharePointURL property returns the address of the list, so it is easy to get the address of the shared list
after it has been created, as shown here:

Sub AddLink()
 Dim ws As Worksheet, str As String, lnk As Hyperlink
 Set ws = ActiveSheet
 str = ws.ListObjects("Test List").SharePointURL
 Set lnk = ws.Hyperlinks.Add([F1], str, , _
 "Click to display list site.", "View")
End Sub

14.1.6. Insert a Shared List

Once a list is published on a SharePoint site, you can insert that list into other worksheets using the ListObject's Add
method and the SourceType argument xlSrcExternal:

Sub InsertSharedList()
 Dim ws As Worksheet, src(1) As Variant
 Set ws = ThisWorkbook.Worksheets.Add(, ActiveSheet)
 ws.Name = "Insert List"
 src(0) = "http://www.excelworkshop.com/_vti_bin"
 src(1) = "Test List"
 ws.ListObjects.Add xlSrcExternal, src, True, xlYes, ws.Range("A1")
End Sub

When SourceType is xlSrcExternal, the Source argument is a two-element array containing this information:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When SourceType is xlSrcExternal, the Source argument is a two-element array containing this information:

Element Data

0 List address. This is the SharePoint address plus the folder name /_vti_bin.

1 The name or GUID of the list. A GUID is a 32-digit numeric string that identifies the list on the server.

To find the GUID of a list, view the list on the SharePoint server and choose Modify Columns and Settings on the list's
web page. SharePoint displays the GUID for the list in the browser's Address text box as shown in Figure 14-6.

Inserting a list manually from a SharePoint site into an existing workbook deletes all of the
Visual Basic code contained in the workbook. Inserting a list from code does not delete a
workbook's code, however.

14.1.7. Refresh and Update

Use the ListObject's Refresh method to discard changes to the list on the worksheet and refresh it with data from the
SharePoint server as shown here:

lst.Refresh

Use the UpdateChanges method to send data from the worksheet list, to the SharePoint server and retrieve new and
changed data from the SharePoint server as shown here:

lst.UpdateChanges xlListConflictDialog

As mentioned earlier, if two authors modify the same item in a list, a conflict will occur when the second author updates
her list. The iConflictType argument determines what happens when a conflict occurs. Possible settings are:

xlListConflictDialog (the default)

Conflict displays dialog.

Figure 14-6. Find a list's GUID from the SharePoint server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlListConflictRetryAllConflicts

Worksheet data wins conflict.

xlListConflictDiscardAllConflicts

Server data wins conflict.

xlListConflictError

Conflict causes error.

14.1.8. Unlink, Unlist, and Delete

Use these ListObject methods to unlink, unlist, or delete a list:

Method Use to

Unlink Remove the link between the worksheet list and the SharePoint list.

Unlist Convert the worksheet list to a range, preserving the list's data.

Delete Delete the worksheet list and all its data.

Once you have unlinked a list, you can't relink it. To re-establish the link, you must delete the list and insert it back
onto the worksheet from the SharePoint list.

The following sections describe Excel's list objects in greater detail providing the syntax, return values, and details on
the properties and methods each object provides.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2. ListObject and ListObjects Members
The ListObjects collection and ListObject object have the following members . Key members (shown in bold) are covered in
the following reference section:

Active Add1

Application2 Count1

Creator2 DataBodyRange

Delete DisplayRightToLeft

HeaderRowRange InsertRowRange

Item1 ListColumns

ListRows Name

Parent2 Publish

QueryTable Range

Refresh Resize

SharePointURL ShowAutoFilter

ShowTotals SourceType

TotalsRowRange Unlink

Unlist UpdateChanges

XmlMap
1 Collection only

2 Object and collection

listobjects.Add([SourceType], [Source], [LinkSource],
[XlListObjectHasHeaders], [Destination])

Creates a new list and adds it to a worksheet. The Add method returns a reference to the LinkObject that was created.

Argument Settings

SourceType xlSrcRange creates the list from a range of cells. xlSrcExternal inserts a list from a SharePoint server.
xlSrcXml is an invalid setting and causes an error when used with the Add method.

Source If SourceType is xlSrcRange, this argument is a range of cells to convert to a list. If SourceType is
xlSrcExternal, this argument is an array identifying the source of the list.

LinkSource True links the list to the SharePoint list if Source is xlSrcExternal; False omits the link. Must be
omitted if Source is xlSrcRange.

XlListObjectHasHeaders
xlYes converts the first row of the list to text headers. xlNo Adds a new row for headers and shifts
the range of cells in the list down one row. xlYesNoGuess causes Excel to evaluate whether the first
row contains text headers and adds a header row if it does not seem to exist.

Destination If Source is xlSrcExternal, Destination must be a single cell that indicates the upper-left corner of the list
to create.

The data you include in the Source array argument depends on whether you are creating a list from a range of cells or
inserting a list from a SharePoint server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2.1.

14.2.1.1. Create a list from a range

When creating a list from a range, use the Source argument to identify the range of cells to convert to a list. If Source
contains only one cell, Excel creates a list out of the range of contiguous cells that contain data. For example, the
following code creates a list out of all ranges of contiguous cells containing data that surround the cell C4:

Sub ListFromAdjoiningCells()
 Dim ws As Worksheet
 Set ws = ActiveSheet
 ' Create a list from cells adjoining C4.
 ws.ListObjects.Add xlSrcRange, ws.Range("C4"), , xlYes
End Sub

The preceding code creates the list and uses the top row of the range as the column headings for the list.

14.2.1.2. Insert a shared list

When inserting an existing list onto a worksheet from a SharePoint server, use the Source array argument to specify the
location of the list and the name or GUID of the list on the server. Although it is easier to know the name of a list, that
name can be changed by editing the list's General Settings in SharePoint. It is more reliable to use the GUID, since that
unique identifier doesn't change over the life of the list.

To find the GUID of a list, view the list on the SharePoint server and choose Modify Columns and Settings on the list's
web page. SharePoint displays the GUID for the list in the browser's Address text box after the List= query string.

The following code demonstrates using a GUID to insert a shared list on a new worksheet:

Sub InsertListFromGUID()
 Dim ws As Worksheet, src(1) As Variant
 Set ws = ThisWorkbook.Worksheets.Add(, ActiveSheet)
 ws.Name = "Insert List GUID"
 src(0) = "http://www.excelworkshop.com/_vti_bin"
 src(1) = "{4B929DF0-F6C1-4230-A0E6-6AA18D668B15}"
 ws.ListObjects.Add xlSrcExternal, src, True, xlYes, ws.Range("A1")
End Sub

listobject.DataBodyRange

Returns the range of cells in the list that contain data. The returned range omits column headers and total rows. You
can use DataBodyRange to format or select all of the items in a list, as shown here:

Sub FormatList()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects(1)
 lst.DataBodyRange.Style.Font.Bold = True
 lst.DataBodyRange.Activate
End Sub

You can also use DataBodyRange to position other items relative to the list using the Range object's End and Offset methods
as shown in the SharePointURL example.

listobject.Delete()

Deletes the ListObject and all of the data it contains. Delete does not shift surrounding cells up or to the right.

listobject.Publish(Target, LinkSource)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Shares a worksheet list on a SharePoint server. Returns a string containing the address of the list on the Web.

Argument Settings

Target The full address of the SharePoint server to share the list on. Includes the http: protocol identifier and the
name of any subwebs.

LinkSource True links the contents of the worksheet list to the SharePoint list for synchronization. False copies the
list to the SharePoint server, but does not link the contents.

The following code shares a list on a worksheet and displays the location of the list once it is shared:

Sub ShareList()
 Dim ws As Worksheet, lst As ListObject
 Dim str As String, dest(2) As Variant
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 dest(0) = "http://www.excelworkshop.com"
 dest(1) = "Test List"
 dest(2) = "A description goes here..."
 str = lst.Publish(dest, True)
 ' Display the shared list in the browser.
 ThisWorkbook.FollowHyperlink str
End Sub

The name of the list (Test List in preceding code) must be unique within the SharePoint site. If a list with that name
already exists, an error occurs and the list is not shared.

listobject.SharePointURL

Returns the full address of the default view of a shared list on the SharePoint server. Causes an error if the list has not
been shared. The following code adds a hyperlink to display the web page for a shared list:

Sub AddLink2()
 Dim ws As Worksheet, rng As Range
 Dim lst As ListObject, str As String
 Set ws = ActiveSheet
 Set lst = ws.ListObjects(1)
 Set rng = lst.DataBodyRange.End(xlToRight).Offset(-1, 1)
 ws.Hyperlinks.Add rng, str, , _
 "Click to display list site.", "View list..."
End Sub

The preceding code uses the Range object's End and Offset methods to locate the new hyperlink at the top and to the right
of the list on the worksheet.

listobject.ShowTotals [= setting]

Sets or returns a value indicating whether a totals row is displayed on the list. True displays the totals; False hides the
totals.

listobject.Unlink()

Removes the link between the data in the list on a worksheet and the data in the list on a SharePoint server. This link
allows the worksheet list to synchronize with the SharePoint list. The following code removes the link from a list:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allows the worksheet list to synchronize with the SharePoint list. The following code removes the link from a list:

Sub UnlinkList()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects(1)
 lst.Unlink
End Sub

No error occurs if the list was not previously shared.

Once the link is removed, the worksheet list can't be relinked to the SharePoint list. To re-establish a link, you must
delete the list on the worksheet, then insert the shared list from the SharePoint server onto the worksheet.

listobject.Unlist()

Converts a list to a normal range of cells. If the list displays a totals row, that row becomes part of the range. The
following code hides the totals row and then converts a list to a range:

Sub ConverToRange()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 ' Get the first list on the worksheet.
 Set lst = ws.ListObjects(1)
 ' Convert it to a range.
 lst.Unlist
End Sub

listobject.UpdateChanges([iConflictType])

Synchronizes the shared list on a worksheet with the list on the SharePoint server. The setting of iConflictType determines
how list items with changes on both the worksheet and SharePoint server are handled.

Setting Description

xlListConflictDialog Displays the Resolve Conflicts and Errors dialog box to resolve the conflict (this is the
default).

xlListConflictRetryAllConflicts Replaces conflicting data on the SharePoint server with data from the worksheet.

xlListConflictDiscardAllConflicts Replaces conflicting data on the worksheet with updates from the SharePoint server.

xlListConflictError Updates the items that do not conflict and generates an error, "Cannot update the
list to Windows SharePoint Services," leaving the conflicting items unchanged.

If the worksheet list is not shared, UpdateChanges causes an error.

The following code synchronizes a list and overwrites conflicting items with the worksheet version of the item (local
version wins):

Sub SyncLocalWins()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.UpdateChanges xlListConflictRetryAllConflicts
End Sub

The following code synchronizes a list and overwrites conflicting items with the SharePoint version of the item (server
version wins):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

version wins):

Sub SyncServerWins()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.UpdateChanges xlListConflictDiscardAllConflicts
End Sub

listobject.XMLMap

If the contents of the list were originally imported from XML, then XMLMap returns a reference to an XMLMap object that
can be used to import or export XML data into or out of the list. See Chapter 15 for more information on the XMLMap
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.3. ListRow and ListRows Members
The ListRows collection and ListRow object have the following members. Key members (shown in bold) are covered in the
following reference section:

Add1 Application2

Count1 Creator2

Delete Index

InvalidData Item1

Parent2 Range

1 Collection only

2 Object and collection

listrows.Add([Position])

Inserts a new, blank row into the list, shifting subsequent rows down. The Position argument indicates where to insert
the row. For example, the following code creates a new, blank row at the second row in the list:

Sub InsertRow()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListRows.Add (2)
End Sub

If Position is omitted, the new row is inserted at the end of the list.

Each row in a shared list has a unique ID assigned to it. When you create a new shared list, row IDs are created
sequentially from top to bottom. As you add and delete rows within a list, new row IDs are created and existing IDs are
deleted, so the sequential order of IDs is not preserved.

listrow.Delete

Removes a row from a list, deleting the data it contains and shifting rows up. The Add method acts on the ListRows
collection, whereas the Delete method acts on the ListRow object.

Use the ListObjects Item method to get the row to delete. For example, the following code deletes the second row of a list
(undoing the code shown for the previous Add method):

Sub DeleteRow()
 Dim ws As Worksheet, lst As ListObject
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListRows(2).Delete
End Sub

listrow.InvalidData

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns True if the row contains data that is not valid as per the list schema. Returns False if the row contains only
valid data. The following code highlights rows in lists that contain invalid data:

Sub HighlightInvalidRows()
 Dim ws As Worksheet, lst As ListObject, row As ListRow
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 For Each row In lst.ListRows
 If row.InvalidData Then
 row.Range.Font.Color = RGB(255, 0, 0)
 Else
 row.Range.Font.Color = RGB(0, 0, 0)
 End If
 Next
End Sub

Excel validates list entries as the user enters data, so it is unlikely that invalid data is the result of user edits. However,
entries made by code are not automatically validated.

listrow.Range

Returns a reference to the Range object for a row in the list. Use the Range property to get the values and address of
items in a list. For example, the following code creates a new row and sets the values of the second, third, and fourth
items in the row:

Sub SetValues()
 Dim ws As Worksheet, lst As ListObject, row As ListRow
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListRows.Add (2)
 lst.ListRows(2).Range.Cells(1, 2).Value = "a"
 lst.ListRows(2).Range.Cells(1, 3).Value = "b"
 lst.ListRows(2).Range.Cells(1, 4).Value = "c"
 lst.ListRows(2).Range.Cells(1, 5).Value = "d"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.4. ListColumn and ListColumns Members
The ListColumns collection and ListColumn object have the following members. Key members (shown in bold) are covered in
the following reference section:

Add1 Application2

Count1 Creator2

Delete Index

Item1 ListDataFormat

Name Parent2

Range SharePointFormula

TotalsCalculation XPath

1 Collection only

2 Object and collection

listcolumn.ListDataFormat

Returns a reference to the ListDataFormat object for the list column. Use the ListDataFormat object to get information about
the type of data that the column contains. For example, the following code highlights the required columns in a list:

Sub HighlightRequired()
 Dim ws As Worksheet, lst As ListObject, col As ListColumn
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 For Each col In lst.ListColumns
 If col.ListDataFormat.Required Then
 col.Range.Font.Color = RGB(0, 0, 255)
 End If
 Next
End Sub

listcolumn.SharePointFormula

For shared lists, returns a string representation of the formula that SharePoint uses to calculate a column. If the column
is not calculated by SharePoint, returns an empty string. The following code displays the formula for calculated columns
in a list:

Sub ShowForumulas()
 Dim ws As Worksheet, lst As ListObject, col As ListColumn
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 For Each col In lst.ListColumns
 If col.SharePointFormula <> "" Then
 MsgBox "Column: " & col.Name & _
 " Formula: " & col.SharePointFormula
 End If
 Next
End Sub

listcolumn.TotalsCalculation [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the type of calculation used to figure the total for this column. Possible settings are:

xlTotalsCalculationNone xlTotalsCalculationSum

xlTotalsCalculationAverage xlTotalsCalculationCount

xlTotalsCalculationCountNums xlTotalsCalculationMin

xlTotalsCalculationStdDev xlTotalsCalculationVar

xlTotalsCalculationMax

The following code changes the Total Price column to a sum of its values:

Sub ChangeTotal()
 Dim ws As Worksheet, lst As ListObject, col As ListColumn
 Set ws = ActiveSheet
 Set lst = ws.ListObjects("Test List")
 lst.ListColumns("Total Price").TotalsCalculation = xlTotalsCalculationSum
End Sub

listcolumn.XPath

If a list has been created from imported XML data, returns a reference to the column's XPath object. If the list was not
created from XML data, returns Nothing. For example, the following code displays the XPath of each column in the
Immediate window:

Set ws = ThisWorkbook.Worksheets("Sheet1")
Set lst = ws.ListObjects("XML List")
For Each col In lst.ListColumns
 Debug.Print col.XPath.Value
Next

For more information on the XPath object, see Chapter 15.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.5. ListDataFormat Members
The ListDataFormat object has the following members. Key members (shown in bold) are covered in the following
reference section:

AllowFillIn Application

Choices Creator

DecimalPlaces DefaultValue

lcid IsPercent

MaxCharacters MaxNumber

MinNumber Parent

ReadOnly Required

Type

The ListDataFormat object provides a set of read-only properties that return information about the data format of the list
column as set on the SharePoint server. To set these properties:

Open the list on the SharePoint site.

Choose Modify Setting and Columns.

Select a column to modify. SharePoint displays the Change Column web page as shown in Figure 14-7. When
you are done, click OK to make the changes.

Figure 14-7. SharePoint Optional Settings for Column which correspond to the
ListDataFormat properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code displays a report on the data format of each column in a list in the Immediate window:

Sub ShowListDataFormat()
 Dim lst As ListObject, col As ListColumn
 Set lst = Worksheets("Lists").ListObjects("Test List")
 For Each col In lst.ListColumns
 Debug.Print "Column: " & col.Name & vbCrLf & _
 " Can edit choice? " & col.ListDataFormat.AllowFillIn & vbCrLf & _
 " Choices: " & col.ListDataFormat.Choices & vbCrLf & _
 " Decimal places: " & col.ListDataFormat.DecimalPlaces & vbCrLf & _
 " Default: " & col.ListDataFormat.DefaultValue & vbCrLf & _
 " Percent? " & col.ListDataFormat.IsPercent & vbCrLf & _
 " Max char: " & col.ListDataFormat.MaxCharacters & vbCrLf & _
 " Max #: " & col.ListDataFormat.MaxNumber & vbCrLf & _
 " Min #: " & col.ListDataFormat.MinNumber & vbCrLf & _
 " Read only? " & col.ListDataFormat.ReadOnly & vbCrLf & _
 " Required? " & col.ListDataFormat.Required & vbCrLf & _
 " Type code: " & col.ListDataFormat.Type & vbCrLf
 Next
End Sub

listdataformat.AllowFillIn

If the values in the column reflect a set of choices and the user can supply an alternate value, returns True. Otherwise,
returns False.

listdataformat.Choices

If the values in the column reflect a set of choices, returns an array containing those choices. Otherwise, returns Nothing.

listdataformat.DecimalPlaces

If the column is numeric and the decimal place is assigned automatically, returns xlAutomatic (-4105). If the column has a
fixed decimal place, returns the place number of the decimal. Otherwise, returns 0.

listdataformat.DefaultValue

If the column has a default value, returns that value. Otherwise, returns Nothing.

listdataformat.IsPercent

Returns True if the value in the column reflects a percentage; returns False if not.

listdataformat.lcid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the locale ID of the column. In Excel locale determines the symbol used when displaying currency values.
Returns 0 if the column has a neutral localein which case the currency symbol is determined by the user's system
settings.

listdataformat.MaxCharacters

If the column has a maximum length, returns that length in characters. Otherwise, returns -1.

listdataformat.MaxNumber

If the column has a maximum value, returns that value. Otherwise, returns Nothing.

listdataformat.MinNumber

If the column has a minimum value, returns that value. Otherwise, returns Nothing.

listdataformat.ReadOnly

Returns True if the value in the column is a read-only; returns False if the value is not read-only.

listdataformat.Required

Returns True if the value in the column is a required field; returns False if the value is not required.

listdataformat.Type

Returns one of the following constant values indicating the type of data that the column reflects:

xlListDataTypeCheckbox xlListDataTypeChoice

xlListDataTypeChoiceMulti xlListDataTypeCounter

xlListDataTypeCurrency xlListDataTypeDateTime

xlListDataTypeHyperLink xlListDataTypeListLookup

xlListDataTypeMultiLineRichText xlListDataTypeMultiLineText

xlListDataTypeNone xlListDataTypeNumber

xlListDataTypeText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.6. Use the Lists Web Service
SharePoint Services includes the Lists Web Service for getting at shared lists and their data directly. The Lists Web
Service lets you perform tasks on the server that you cannot otherwise perform through Excel objects; you can use it
to:

Add an attachment to a row in a list

Retrieve an attachment from a row in a list

Delete an attachment

Delete a list from a SharePoint server

Look up a list GUID

Perform queries directly on the shared list

To use a web service from Visual Basic:

1. Install the web Services Toolkit from Microsoft at www.microsoft.com/downloads.

2. Close and restart Excel.

3. Open the Visual Basic Editor and select Web References from the Tools menu. Visual Basic displays the
Microsoft Office 2003 Web Services Toolkit dialog (Figure 14-8).

Figure 14-8. The Web Services Toolkit in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SharePoint Web Services reside in the _vti_bin folder of the SharePoint site. To use the Lists Web Service:

1. Display the Microsoft Office 2003 Web Services Toolkit as described earlier.

2. Select the Web Service URL option button and type the address of the address using this form:
http://sharepointURL/_vti_bin/lists.asmx.

3. Click Search. The toolkit should find the Lists Web Service and display it in the Search Results list.

4. Select the checkbox beside Lists in Search Results and click Add.

5. The toolkit generates a proxy class named clsws_Lists and adds it to the current project.

14.6.1. Authentication and Authorization

The SharePoint server must authenticate the Excel user before you can call any of the Lists Web Service methods. If
the user has not been authenticated, a "Maximum retry on connection exceeded" error occurs. In Visual Basic .NET or
C# .NET, you authenticate the user from code by creating a Credentials object for the user. For example, the following
.NET code passes the user's default credentials to a web service:

wsAdapter.Credentials = System.Net.CredentialCache.DefaultCredentials

Unfortunately, you can't do that directly in Excel. Instead, you must use one of the following techniques to connect to
the SharePoint server through Excel:

Update or refresh a worksheet list that is shared on the server.

Insert an existing SharePoint list on a worksheet. This can even be a dummy list placed on the server solely for
the purpose of establishing connections.

Navigate to the SharePoint server in code as described earlier in this chapter in "Share a List."

Any of these techniques displays a SharePoint authentication dialog box and establishes a user session for Excel.
Afterward, you can call Lists methods and they will be authorized using the current session.

14.6.2. Debugging Tip

One thing you will notice fairly quickly when using the Lists Web Service is that the error reporting is minimal. When a
method fails on the server side, you receive only a general error. To receive more detail, make the following
modification (shown in bold) to the clsws_Lists ListsErrorHander procedure:

Private Sub ListsErrorHandler(str_Function As String)
 If sc_Lists.FaultCode <> "" Then
 Err.Raise vbObjectError, str_Function, sc_Lists.FaultString & _
 vbCrLf & sc_Lists.Detail
 'Non SOAP Error
 Else
 Err.Raise Err.Number, str_Function, Err.Description
 End If
End Sub

Now errors will be reported with details from the server.

14.6.3. Add Attachments to a List

Excel does not directly support attachments to lists; however, you can use the Lists Web Service AddAttachment method
to add a file attachment to a row in a list, then use GetAttachmentCollection to retrieve attachments from within Excel.

For example, the following code attaches bitmaps of a pintle and a gudgeon to the Test List created earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the following code attaches bitmaps of a pintle and a gudgeon to the Test List created earlier:

Sub AddAttachments()
 Dim ws As Worksheet, src As String, dest As String
 Dim lws As New clsws_Lists
 Set ws = ActiveSheet
 ' Requires web reference to SharePoint Lists.asmx
 src = ThisWorkbook.Path & "\pintle.bmp"
 dest = lws.wsm_AddAttachment("Test List", "1", "pintle.bmp", FileToByte(src))
 src = ThisWorkbook.Path & "\gudgeon.bmp"
 dest = lws.wsm_AddAttachment("Test List", "2", "gudgeon.bmp", FileToByte(src))
End Sub

The AddAttachment method's last argument is an array of bytes containing the data to attach. To convert the image file to
an array of bytes, the preceding code uses the following helper function:

Function FileToByte(fname As String) As Byte()
 Dim fnum As Integer
 fnum = FreeFile
 On Error GoTo FileErr
 Open fname For Binary Access Read As fnum
 On Error GoTo 0
 Dim byt() As Byte
 ReDim byt(LOF(fnum) - 1)
 byt = InputB(LOF(fnum), 1)
 Close fnum
 FileToByte = byt
 Exit Function
FileErr:
 MsgBox "File error: " & Err.Description
End Function

14.6.4. Retrieve Attachments

Use the Lists Web Service GetAttachmentCollection method to retrieve an attachment from a list. The GetAttachmentCollection
method returns an XML node list that contains information about each attachment for the row. The following code
displays the gudgeon bitmap attached in the previous section:

Sub GetAttachment()
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Set xn = lws.wsm_GetAttachmentCollection("Test List", "2")
 ThisWorkbook.FollowHyperlink xn.Item(0).Text
End Sub

Notice that the returned XML node list is a collection since rows can have multiple attachments. Since the preceding
example attached only one file, this sample simply retrieves the first item from the node list. The Text property of this
item is the address of the attachment on the SharePoint server.

14.6.5. Delete Attachments

Finally, it is very simple to delete an attachment using the DeleteAttachment method:

Sub DeleteAttachment()
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 lws.wsm_DeleteAttachment "Test List", "2", _
 "http://www.excelworkshop.com/Lists/Test List/Attachments/2/gudgeon.bmp"
End Sub

Since DeleteAttachment requires the fully qualified address of the attachment, it is useful to save the address of each
attachment somewhere on the worksheet or to create a helper function to retrieve the address from the SharePoint
server as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

server as shown here:

Function FindAttachment(ListName As String, ID As String) As String
 Dim lws As New clsws_Lists ' Requires Web reference to to SharePoint Lists.asmx
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Set xn = lws.wsm_GetAttachmentCollection(ListName, ID)
 FindAttachment = xn.Item(0).Text
End Function

14.6.6. Delete a SharePoint List

When you delete a shared list on an Excel worksheet, the SharePoint list remains on the server. To delete the
SharePoint list from Excel, use the DeleteList method as shown here:

Sub DeleteSharedList()
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 lws.wsm_DeleteList ("Test List")
End Sub

If you delete a SharePoint list but not the worksheet list that shares it, you will get an error when you attempt to
refresh or update the worksheet list. You can avoid this by unlinking the worksheet list after deleting the list from the
server.

14.6.7. Look Up a List GUID

The ListObjects Add method uses a GUID when inserting an existing SharePoint list into a worksheet. You can find this
GUID manually by looking on the SharePoint site, or you can use the GetListCollection method to look up the GUID by
name as shown here:

Function GetListGUID(listName As String) As String
 ' Requires web reference to SharePoint Lists.asmx
 Dim lws As New clsws_Lists
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Dim root As IXMLDOMElement
 Dim ele As IXMLDOMElement
 Set xn = lws.wsm_GetListCollection
 Set root = xn.Item(0)
 For Each ele In root.childNodes
 If LCase(ele.getAttribute("Title")) = LCase(listName) Then
 GetListGUID = ele.getAttribute("Name")
 Exit Function
 End If
 Next
 GetListGUID = "" ' Return empty string if not found.
End Function

Looking at the preceding code, it may occur to you that you need to know a lot about the structure of the XML that the
Lists Web Service uses before you can accomplish much. It's easy to view an IXMLDOMElement during debugging by
printing it to the Immediate window as shown here:

Debug.Print root.xml

Unfortunately, what you get is a mass of text with no whitespace. To see the structure a little more clearly, you have to
use XML reader and writer objects to format the output. The following helper function does just that:

Function PrettyPrint(xml As String) As String
 Dim rdr As New SAXXMLReader ' Requires reference to Microsoft XML
 Dim wrt As New MXXMLWriter ' Requires reference to Microsoft XML
 Set rdr.contentHandler = wrt
 wrt.indent = True
 rdr.Parse (xml)
 PrettyPrint = wrt.output
End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now, to display the root element of the Lists collection, run the following line of code:

Debug.Print PrettyPrint(root.xml)

The output appears as shown in Figure 14-9.

Figure 14-9. Formatted XML is much easier to read than XML without whitespace

14.6.8. Perform Queries

In general, you don't need to perform queries through the Lists Web Service. Most of the operations you want to
perform on the list data are handled through the Excel interface or through the Excel list objects as described
previously.

However, advanced applicationsor especially ambitious programmersmay use the Lists Web Service to exchange XML
data directly with the SharePoint server. For instance, you may want to retrieve a limited number of rows from a very
large shared list. In this case, you can perform a query directly on the SharePoint list using the GetListItems method. For
example, the following code gets the first 100 rows from a shared list:

Sub QueryList()
 Dim lws As New clsws_Lists ' Requires web reference to SharePoint Lists.asmx
 Dim xn As IXMLDOMNodeList ' Requires reference to Microsoft XML
 Dim query As IXMLDOMNodeList
 Dim viewFields As IXMLDOMNodeList
 Dim rowLimit As String
 Dim queryOptions As IXMLDOMNodeList
 rowLimit = "100"
 Dim xdoc As New DOMDocument
 xdoc.LoadXml ("<Document><Query /><ViewFields />" & _
 "<QueryOptions /></Document>")
 Set query = xdoc.getElementsByTagName("Query")
 Set viewFields = xdoc.getElementsByTagName("Fields")
 Set queryOptions = xdoc.getElementsByTagName("QueryOptions")
 Set xn = lws.wsm_GetListItems("Test List", "", query, _
 viewFields, rowLimit, queryOptions)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The results are returned as XML. To see them, you can simply display the root node of the returned object as shown
here:

Debug.Print xn.Item(0).xml

The key to the preceding query is the XML supplied by the LoadXml method. You create conditional queries using the
Query element and determine the columns included in the results using the ViewFields element. Perhaps the simplest way
to create these queries is to write them as a text file in an XML editor (or Notepad), then load them from that file using
the Load method shown here:

xdoc.Load ("query.xml")

The query file takes this form:

<Document>
<Query>
 <OrderBy>
 <FieldRef Name="ID" Asending="FALSE"/>
 </OrderBy>
 <Where>
 <Eq>
 <FieldRef Name="Type" />
 <Value Type="Value">Wood</Value>
 </Eq>
 </Where>
</Query>
<ViewFields>
 <FieldRef Name="ID" />
 <FieldRef Name="Unit Price" />
 <FieldRef Name="Qty" />
</ViewFields>
<QueryOptions>
 <DateInUtc>FALSE</DateInUtc>
 <Folder />
 <Paging />
 <IncludeMandatoryColumns>FALSE</IncludeMandatoryColumns>
 <MeetingInstanceId />
 <ViewAttributes Scope="Recursive" />
 <RecurrenceOrderBy />
 <RowLimit />
 <ViewAttributes />
 <ViewXml />
</QueryOptions>
</Document>

The FieldRef elements sometimes use the internal SharePoint names to identify columnslists don't always use the titles
displayed in the columns as column names. You can get the internal column names by examining the list's XML. To see
the list's XML, use the GetList method as shown here:

Sub ShowListXML()
 Dim lws As New clsws_Lists
 Dim xn As IXMLDOMNodeList '
 Set xn = lws.wsm_GetList("Test List")
 Debug.Print PrettyPrint(xn(0).xml)
End Sub

More information about the Query, ViewFields, and QueryOptions elements is available in the Microsoft SharePoint SDK. See
the links at the end of this chapter for specific addresses.

The following sections describe the Lists Web Service methods in greater detail, providing syntax, return values, and
details for each method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.7. Lists Web Service Members
The Lists Web Service provides the following key members , covered in the following reference section:

AddAttachment AddList

DeleteAttachment DeleteList

GetAttachmentCollection GetList

GetListAndView GetListCollection

GetListItemChanges GetListItems

UpdateList UpdateListItems

wslists.AddAttachment (listName, listItemID, fileName,
attachment)

Adds a file attachment to a row in a SharePoint list. Returns the address of the attachment.

Argument Data type

Settings listName String

The name or GUID of the list. listItemID String

The ID of the row to attach the file to. fileName String

The name of the file to attach. This name is used to identify the attachment on the server. attachment Byte()

A byte array containing the file to attach. Uses base-64 encoding.

The ID of a row is not the same as the index of the row within the list. SharePoint assigns a unique ID to each row as it
is added. Since rows can be added and deleted throughout the life of the list, IDs may not be contiguous.

wslists.AddList (listName, description, templateID)

Creates a list on a SharePoint site. Returns an IXMLDOMNodeList object that contains a description of the list.

Argument Data type Settings

listName String The name of the list to create

description String A description of the list

templateID Integer A number identifying a list template to use (see following list)

SharePoint provides the following predefined templates:

Announcements 104 Contacts 105

Custom List 100 Custom List in Datasheet View 120

DataSources 110 Discussion Board 108

Document Library 101 Events 106

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form Library 115 Issues 1100

Links 103 Picture Library 109

Survey 102 Tasks 107

wslists.DeleteAttachment (listName, listItemID, url)

Deletes an attachment from a list row.

Argument Data type Settings

listName String The name or GUID of the list

listItemID String The ID of the row for which to delete the attachment

url String The address of the attachment on the SharePoint server

wslists.DeleteList (listName)

Deletes a list from the SharePoint server.

Argument Data type Settings

listName String The name or GUID of the list

wslists.GetAttachmentCollection (listName, listItemID)

Gets a list of the attachments for a list row. Returns an IXMLDOMNodeList containing the addresses of the attachments.

Argument Data type Settings

listName String The name or GUID of the list

listItemID String The ID of the row for which to retrieve the attachments

wslists.GetList (listName)

Gets a description of the SharePoint list. Returns an IXMLDOMNodeList containing the information SharePoint uses to
maintain the list.

Argument Data type Settings

listName String The name or GUID of the list

wslists.GetListAndView (listName, viewName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Gets a description of the SharePoint list including the view schema. Returns an IXMLDOMNodeList containing the
information SharePoint uses to display the list.

Argument Data type Settings

listName String The name or GUID of the list.

viewName String The GUID of the view. If omitted, GetListAndView uses the default view.

wslists.GetListCollection ()

Gets the names and GUIDs for all the lists on the site. Returns an IXMLDOMNodeList containing elements that describe
each list on the SharePoint site.

wslists.GetListItemChanges (listName, viewFields, since,
contains)

Gets changes made to the list since the specified date and time. Returns an IXMLDOMNodeList containing the results of the
query.

Argument Data type Settings

listName String The name or GUID of the list

viewFields IXMLDOMNodeList A list of XML ViewFields elements indicating the columns and order of columns to
return from the list

since String A Coordinated Universal Time (UTC) indicating the time after which you want to
retrieve changes

contains IXMLDOMNodeList An XML Contains element indicating a filter criterion to use when retrieving changes

wslists.GetListItems (listName, viewName, query, viewFields,
rowLimit, queryOptions)

Gets data from the rows in a list. Returns an IXMLDOMNodeList containing the results of the query.

Argument Data type Settings

listName String The name or GUID of the list.

viewName String The GUID of the view to use when retrieving rows. If omitted, uses the default view.

query IXMLDOMNodeList An XML Query element indicating a query to use when retrieving rows.

viewFields IXMLDOMNodeList A list of XML ViewFields elements indicating the columns and order of columns to
return from the list.

rowLimit String The maximum number of rows to return.

queryOptions IXMLDOMNodeList An XML QueryOptions element containing other elements used to set the properties of
the SPQuery object on the SharePoint server.

wslists.UpdateList (listName, listProperties, newFields,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wslists.UpdateList (listName, listProperties, newFields,
updateFields, deleteFields, listVersion)

Updates a list based on the specified field definitions and list properties. Returns an IXMLDOMNodeList describing the list
after changes are made and containing an element for every new, updated, or deleted row.

Argument Data type Settings

listName String The name or GUID of the list

listProperties IXMLDOMNodeList An XML List element that includes elements for the list properties to update

newFields IXMLDOMNodeList An XML Fields element containing a list of the new fields and their properties

updateFields IXMLDOMNodeList An XML Fields element containing a list of the changed fields and their changes

deleteFields IXMLDOMNodeList An XML Fields element containing a list of the deleted fields

listVersion IXMLDOMNodeList An XML Version element containing the version of the list

wslists.UpdateListItems (listName, updates)

Updates the specified items in a list on the current site.

Argument Data type Settings

listName String The name or GUID of the list

updates IXMLDOMNodeList An XML Batch element containing a description of the rows to update

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.8. Resources

To learn about Look here

In-depth coverage of
SharePoint Essential SharePoint (O'Reilly)

Free SharePoint trial site http://www.sharepointtrial.com

Office Web Services
Toolkit Search http://www.microsoft.com/downloads for "Office Web Services Toolkit"

Lists Web Service http://msdn.microsoft.com/library/en-us/spptsdk/html/soapcLists.asp

DOMDocument http://msdn.microsoft.com/library/en-us/xmlsdk/htm/xml_obj_overview_20ab.asp

IXMLDOMNodeList http://msdn.microsoft.com/library/en-us/xmlsdk30/htm/xmobjxmldomnodelist.asp

MXXMLWriter and
SAXXMLReader

http://msdn.microsoft.com/library/en-
us/xmlsdk/htm/sax_devgd_hdi_usemxxmlwriter_7cdj.asp

Query element http://msdn.microsoft.com/library/en-us/spptsdk/html/tscamlquery.asp

ViewFields element http://msdn.microsoft.com/library/en-us/spptsdk/html/tscamlviewfields.asp

QueryOptions element http://msdn.microsoft.com/library/en-us/spptsdk/html/tscSPQuery.asp

Batch element http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/spsdk11/caml_schema/spxmlelbatch.asp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. Sharing Data Using Lists
In Microsoft Excel 2003, lists are ranges of cells that can easily be sorted, filtered, or shared. Lists are a little different
from the AutoFilter feature available in earlier versions of Excel, in that lists are treated as a single entity, rather than
just a range of cells. This unity is illustrated by a blue border that Excel draws around the cells in a list, as shown in
Figure 14-1.

Figure 14-1. A list (left) and an AutoFilter range (right)

Lists have other nice-to-have advantages over AutoFilter ranges:

Lists automatically add column headers to the range.

Lists display a handy list toolbar when selected.

It is easy to total the items in a list by clicking the Toggle Total button.

XML data can be imported directly into a list.

Excel automatically checks the data type of list entries as they are made.

Lists can be shared and synchronized with teammates via Microsoft SharePoint Services.

That last item is the key advantage of listsreally, lists are just a way to share information that fits into columns and
rows.

This chapter contains reference information for the following objects and their related collections: ListObject, ListRow,
ListColumn, ListDataFormat, and the SharePoint Lists Web Service.

Code used in this chapter and additional samples are available in ch14.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.1. Understand XML
Simply put, XML is a way to store data as plain text. This is useful because it allows all sorts of hardware and software
to exchange data and, more importantly, understand that data.

Excel 2003 supports XML at two levels:

The XML spreadsheet file format lets you save and open Excel workbooks stored as plain text in XML format.

Lists and XML maps let you import and export XML to a range of cells in a worksheet.

The concept behind XML has been around for a very long time. The core idea is that if you store content in plain text,
add descriptive tags to that content, then describe those tags somewhere, you enable that content to be shared across
applications, networks, and hardware devices in some very interesting ways.

XML is the standard for tagging content and navigating among those tags. XML has related standards for describing
tags and transforming documents. All of these standards are maintained by W3C and are published at www.W3C.org.
There are quite a few acronyms associated with XML, and the following tables will help you understand them. Table 15-
1 lists the XML language standards .

Table 15-1. XML language standards
Acronym Full name Use to

XML Extensible Markup Language Describe data as plain text documents.

XPath XML Path Language Define parts of an XML document and navigate between those
parts.

DTD Document Type Definition Define the tags used to identify content in an XML document.

XSD XML Schema Definition An XML-based version of DTD. XSD is the successor to DTD.

XSL
/XSLT

XML Style Sheet Language
(Transformation)

Transform XML documents into other documents, such as HTML
output.

Table 15-2 describes the various ways you can access XML data from code and transmit XML across networks.

Table 15-2. Supporting standards for XML
Acronym Full name Description

DOM Document Object Model API for manipulating XML documents

SAX Simple XML API Another API for manipulating XML documents

SOAP Simple Object Access
Protocol

Defines the structure of XML data transmitted over a network and how to
interpret that structure as it is received

WSDL Web Service Description
Language Describes services that can be invoked across a network through SOAP

The last two items in Table 15-2 concern web services , which are a way to execute programs over the Internet and to
receive responses from those programs.

I don't have space here to provide tutorials on how to use the items listed in the tables, but fortunately there are some
very good books and online information available about each. See "Resources" at the end of this chapter for pointers to
some excellent sources. Excel programmers have such a wide range of XML experience among Excel programmers that
I leave the process of selecting from among these sources to you. However, to get the most out of this chapter, you will
need to be familiar with at least XML, XPath, XSL, and XSD.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.10. XPath Members
The XPath object has the following members . Key members (shown in bold) are covered in the following reference
section:

Application
Clear
Creator
Map
Parent
Repeating
SetValue
Value

xpath.Clear

Removes an XML mapping from a list column or range. Use this method to remove elements from an XML map. For
example, the following code removes the mappings for each of the columns in a list:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set lo = ws.ListObjects(1)
For Each lc In lo.ListColumns
 lc.XPath.Clear
Next

xpath.Map

Returns the XmlMap object for a mapped range or list column. You can use the returned XmlMap object to refresh data or
get information about the mapping. For example, the following code displays a list of each of the mapped cells on a
worksheet:

Set ws = ThisWorkbook.Sheets("Sheet1")
For Each rng In ws.UsedRange
 If rng.XPath <> "" Then
 str = rng.Address & "Map : " & rng.XPath.Map.Name
 str = str & " Node: " & rng.XPath
 Debug.Print str
 End If
Next

xpath.Repeating

Returns True if the mapped item is a list column. Returns False if the mapped item is a range containing a single cell.

xpath.SetValue(Map, XPath, [SelectionNamespace], [Repeating])

Maps a node from an XML map to a list column or range. Use SetValue when creating new lists or ranges from XML maps.

Argument Settings

Map The XmlMap object to use for the mapping.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XPath A string containing the XPath of the node to map to the list column or range.

SelectionNamespace A string containing the namespace prefix used in the preceding XPath. The namespace takes the
form "xmlns:prefix='namespace'".

Repeating True indicates the mapping repeats; False indicates the mapping is to a single cell in a range. Must
be True or omitted when mapping to a list column.

The SelectionNamespace argument is required only if the specified XPath uses a different namespace from that shown in the
XML map. For example, the Orders_Map sample includes the namespace prefix ns1. Since this namespace is defined in the
workbook, you can omit the SelectionNamespace argument, as shown here:

Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
 [A10].XPath.SetValue xmap, _
 "/ns1:Orders/ns1:Order/ns1:BillTo/ns1:Address/ns1:Street1"

If, however, the XPath uses a different prefix, you must define that new namespace prefix using SelectionNamespace, as
shown here:

[A10].XPath.SetValue xmap, _
 "/ord:Orders/ord:Order/ns1:BillTo/ord:Address/ord:Street1", _
 "xmlns:ord='http://www.mstrainingkits.com'"

Use the Repeating argument to map a repeating node to a single cell. For example, the preceding code creates a list
column at cell A10 since Street1 is a repeating node in the Orders_Map. To map that node to a single cell, specify a Repeating
argument of False:

[A10].XPath.SetValue xmap, _
 "/ns1:Orders/ns1:Order/ns1:BillTo/ns1:Address/ns1:Street1", , False

Now, Excel does not create a list column and instead maps the first data item in the source XML to the cell A10.

xpath.Value

Returns the XPath name of the node mapped to a list column or range. For example, the following code displays the
XPaths for each of the columns in a mapped list:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set lo = ws.ListObjects(1)
For Each lc In lo.ListColumns
 Debug.Print lc.XPath.Value
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.11. Resources

To learn about Look here

XML/XSD/XSLT tutorials http://www.w3schools.com/

Office 2003 XML schemas and documentation http://www.microsoft.com/office/xml/default.mspx

Free IE XML validation/XSL transformation
viewer

Search for "Validating XSLT" at
http://www.microsoft.com/downloads/

Free XML/XSL Editor http://xmlcooktop.com/

XML/XSL debugger (free trial) http://new.xmlspy.com/products_ide.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.2. Save Workbooks as XML
In Excel 2003, you can now save a workbook as an XML spreadsheet or as XML Data from the Save As dialog box
(Figure 15-1).

Figure 15-1. Saving a workbook as XML

Choosing the XML Spreadsheet file type saves the workbook in an XML file that uses the Microsoft Office schema.
Choosing the XML Data file type saves the workbook file in an XML file that uses a schema you provide through an XML
map. Since it's a good idea to start simply, I'll discuss the XML spreadsheet format here and the XML data format later
in this chapter in "Use XML Maps."

If you save a workbook as an XML spreadsheet, you can open the file in Notepad, edit it, and still reopen/edit it in Excel
laterprovided you haven't broken any of the rules in the file's schema. A simple, default workbook includes a lot of
items that aren't required by the Office schema and you can simply delete those items to see the simplified "core" of an
XML spreadsheet as shown here:

<?xml version="1.0"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:html="http://www.w3.org/TR/REC-html40"
 xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">
 <Worksheet ss:Name="Sheet1">
 <Table ss:ExpandedColumnCount="5" ss:ExpandedRowCount="2" x:FullColumns="1"
 x:FullRows="1">
 <Column ss:Index="5" ss:AutoFitWidth="0" ss:Width="54.75"/>
 <Row>
 <Cell><Data ss:Type="Number">1</Data></Cell>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <Cell><Data ss:Type="Number">1</Data></Cell>
 <Cell><Data ss:Type="Number">2</Data></Cell>
 <Cell><Data ss:Type="Number">3</Data></Cell>
 </Row>
 <Row>
 <Cell><Data ss:Type="Number">4</Data></Cell>
 <Cell><Data ss:Type="Number">5</Data></Cell>
 <Cell><Data ss:Type="Number">6</Data></Cell>
 </Row>
 </Table>
 </Worksheet>
 </Workbook>

The preceding XML has these notable features:

The mso-application processing instruction tells the Microsoft Office XML Editor (MsoXmlEd.Exe) to open the file
with Excel.

Office uses numerous namespace definitions to qualify the names used in its XML documents.

The path to data on a spreadsheet is Workbook/Worksheet/Table/Row/Cell/Data. The Cell node is used to
contain formulas, formatting, and other information as attributes.

The Column element is not a parent of the Row or Cell elements as you might expect. Instead, it is mainly used
to set the width of the columns on the worksheet.

You can experiment with the XML Spreadsheet by making changes in Notepad and seeing the results. For instance if
you change the mso-application processing instruction to:

<?mso-application progid="Word.Document"?>

Now, the spreadsheet will open in Word 2003 if you double-click on the file in Solution Explorer. Change the progid to
"InternetExplorer.Application" or delete the processing instruction and Windows will open the file as XML rather than as an
Excel spreadsheet in Internet Explorer.

The mso-application processing instruction is ignored if you don't have Office 2003 installed. So if you post an XML
spreadsheet on a network, clients that don't have Office 2003 will see that file as XML rather than as a spreadsheet.

15.2.1. Data Excel Omits from XML

When Excel saves a workbook as XML, it omits these types of data:

Charts, shapes, and OLE objects

Macros

Other types of data (numbers, text, formulas, comments, validation, formatting, sheet layout, window and pane
positioning, etc.) are preserved, however. It is best to think of XML spreadsheets as vehicles for data, rather than as
full-featured workbooks.

To preserve charts, shapes, OLE objects, or macros, save the workbook file first in Excel workbook format, then in XML
spreadsheet format as shown here:

ThisWorkbook.SaveAs , xlXMLSpreadsheet
ThisWorkbook.SaveAs , xlWorkbookNormal

By saving the file as a normal workbook last, you leave the current file type as .xls so if the user clicks Save, the full
version of the file is saved. Excel keeps the full workbook in memory even after you save it as an XML spreadsheet, so
you don't lose data between the two saves. You are, however, prompted several timesfirst to overwrite existing files
since you are using SaveAs, then to note that XML spreadsheets do not save contained objects. You can eliminate the
first prompt by deleting the existing file before each step of the save as shown next. You can eliminate the second
prompt only by omitting nonsaved items (such as macros) from the workbook:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prompt only by omitting nonsaved items (such as macros) from the workbook:

' Requires reference to Microsoft Scripting Runtime
Dim fso As New FileSystemObject
xlsName = ThisWorkbook.fullname
base = fso.GetBaseName(xlsName)
xmlName = ThisWorkbook.path & "\" & base & ".xml"
fso.DeleteFile (xmlName)
ThisWorkbook.SaveAs xmlName, xlXMLSpreadsheet
fso.DeleteFile (xlsName)
ThisWorkbook.SaveAs xlsName, xlWorkbookNormal

The preceding code saves two versions of the workbook: one full version with an .xls file type and one XML spreadsheet
version with an .xml file type.

15.2.2. Transform XML Spreadsheets

XML spreadsheets provide Excel data in a format that can be easily used by other applications or transformed into
presentation documents, such as HTML web pages. For either task you often need to modify the content of the XML
spreadsheet and the best way to do that is with XSLT.

You can use XSLT to perform a wide variety of transformations, such as:

Extract specific items from a spreadsheetsuch as retrieving only worksheets containing data

Transform the spreadsheet into HTML

Make global changes to the spreadsheet

Highlight significant items, such as high or low outlier numbers

To transform an XML spreadsheet, follow these general steps:

1. Create an XSLT file to perform the transformation using Notepad or some other editor.

2. Perform the transformation in code, from the command line, or by including a processing instruction.

3. Save the result.

Table 15-3 compares the three different ways to perform a transformation. The sections that follow describe each of the
techniques in more detail.

Table 15-3. Methods to transform XML spreadsheet
Transformation Use to Advantages Disadvantages

Code
Automatically generate
the result from within
Visual Basic

Can be performed with a single
click by the user or in response to
an event.

Requires Excel to be running.

Command line Perform batch
transformations

Transformed file is generally
smaller than source file.

Uses command-line interface; utility
must be downloaded.

Processing
instruction

Dynamically transform
the file when it is
viewed

Changes to the XSLT are reflected
automatically; underlying source is
preserved.

File is generally larger and displays
more slowly since it is transformed
on the client.

15.2.3. Create XSLT for an XML Spreadsheet

XSLT is a simple language containing looping, decision-making, evaluation, branching, and functional statements. It
follows the same conventions as XML, and its sole purpose is to interpret and transform valid XML documents into some
other text.

Excel qualifies the names of the XML nodes it creates with namespaces from the Microsoft Office schemas. An Excel
workbook defines the following namespaces:

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
 xmlns:x="urn:schemas-microsoft-com:office:excel"
 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:html="http://www.w3.org/TR/REC-html40"
 xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml">

Notice that the default namespace (xmlns, highlighted in bold) is "urn:schemas-microsoft-com:office:spreadsheet". This is the
same as the namespace for the ss prefix (xmlns:ss, also in bold). You use this ss namespace prefix when referring to
workbook nodes in your XSLT file.

Different nodes in the XML spreadsheet use different default namespaces. For instance, the DocumentProperties node uses
the following default namespace:

<DocumentProperties xmlns="urn:schemas-microsoft-com:office:office">

Therefore, when referring to the DocumentProperties node or its children, define a prefix for the namespace urn:schemas-
microsoft-com:office:office in your XSLT and use that prefix to refer to those nodes. It is convenient to copy the namespace
definitions from the XML spreadsheet worksheet node to your XSLT stylesheet. For instance, the following XSLT
example uses the copied ss namespace to locate nodes in an XML spreadsheet:

<?xml version="1.0"?>
<!-- Strip.xslt transforms an XML spreadsheet to its bare essentials -->
<xsl:stylesheet version="1.0"
 xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet">
 <xsl:output method="xml" indent="yes" />
 <xsl:template match="ss:Workbook">
 <xsl:processing-instruction name="mso-application">progid="Excel.Sheet"
</xsl:processing-instruction>
 <xsl:element name="ss:Workbook">
 <xsl:copy-of select="ss:Styles" />
 <xsl:for-each select="ss:Worksheet">
 <xsl:if test="count(ss:Table/ss:Row/ss:Cell/ss:Data) > 0">
 <xsl:copy-of select="." />
 </xsl:if>

 </xsl:for-each>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

The preceding transformation copies worksheets that contain data and formatting styles used by cells in those
worksheets into a new XML spreadsheet file. Empty worksheets, document properties, and other items are simply
omitted. Excel still recognizes the resulting output as an XML spreadsheet since it conforms to the Excel schema and
contains the mso-application processing instruction.

To see how this transformation works:

1. Create a workbook in Excel and enter some data in its worksheets.

2. Save the workbook as an XML spreadsheet named TestStrip.xml.

3. Process the XML spreadsheet using the sample file XSLT. Ways to process the XML file are described in the
following sections.

4. In Windows Explorer, double-click on the output file. Excel will display the transformed XML as shown in Figure
15-2.

Figure 15-2. An XML spreadsheet with empty worksheets removed by a
transformation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transformation

15.2.4. Transform in Code

As mentioned previously, there are several ways to transform XML. Transforming XML from Visual Basic code uses the
Microsoft XML object library to call the Microsoft XML Parser (msxml4.dll). The Microsoft XML object library also
provides a means to create new XML files; navigate between nodes; copy, delete, and add nodes; and more.

To perform a transformation in code , follow these steps:

1. In Visual Basic, add a reference to the Microsoft XML object library. The Microsoft XML object library provides
the DOMDocument object, which is used to load, transform, and save XML documents.

2. In code, create two instances of DOMDocument objects from the Microsoft XML object library.

3. Load the XML spreadsheet in the first DOMDocument object.

4. Load the XSLT file in the second DOMDocument object.

5. Use the transformNode method of the first DOMDocument object to perform the transformation.

For example, the following code loads the TestStrip.xml XML spreadsheet and Strip.xslt transformation, processes the
transformation, and saves the result:

Sub Strip()
 ' Requires reference to Microsoft XML
 Dim xdoc As New DOMDocument, xstyle As New DOMDocument
 Dim xml As String
 xdoc.Load (ThisWorkbook.path & "\TestStrip.xml")
 xstyle.Load (ThisWorkbook.path & "\Strip.xslt")
 xml = xdoc.transformNode(xstyle)
 SaveFile xml, "Out.xml"
End Sub

Sub SaveFile(content As String, fileName As String)
 ' Requires reference to Microsoft Scripting Runtime
 Dim fso As New FileSystemObject, strm As TextStream
 fileName = ThisWorkbook.path & "\" & fileName
 If fso.FileExists(fileName) Then fso.DeleteFile (fileName)
 Set strm = fso.CreateTextFile(fileName)
 strm.Write (content)
 strm.Close
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The preceding SaveFile helper procedure is necessary because the transformNode method returns a string containing the
XML created by the transformation. Once the XML is saved, you can open the file by double-clicking on it in Windows
Explorer or by using the following code:

Application.Workbooks.Open ("out.xml")

15.2.5. Transform from the Command Line

You can also perform transformations using the command-line transformation utility (msxsl.exe). msxsl.exe is available
from Microsoft for free in the MSDN download area. It is a small shell executable that simply calls the Microsoft XML
Parser to perform the transformation.

For example, the following command line transforms the TestStrip.xml file using the Strip.xslt transformation shown
previously and writes the output to Out.xml:

msxsl TestStrip.xml Strip.xslt -o Out.xml

The output is the same as that created by using the DOMDocument object's transformNode method shown in the preceding
section. The command-line utility allows you to automate transformations using batch files rather than Visual Basic
code.

15.2.6. Transform with Processing Instructions

Another way to perform a transformation is to include an xml-stylesheet processing instruction in the XML spreadsheet.
The mso-application instruction supersedes other instructions, so you must replace that processing instruction in order to
have a browser perform the translation. The following XML shows the changes you must make to the XML spreadsheet
file: deletions are shown in strikethrough, and additions are shown in bold:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="worksheet.xslt"?>
<?mso-application progid="Excel.Sheet"?>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadsheet"
 xmlns:o="urn:schemas-microsoft-com:office:office"
...

Now when a user opens the XML file, the file is transformed and displayed in the browser as shown in Figure 15-3.

The transformation shown in Figure 15-3 converts cells in a worksheet to HTML table elements. It also displays
document properties of the workbook. The transformation is performed by the following XSLT fragment:

<xsl:template match="ss:Workbook">
 <html>
 <body>
 <h1>Display XML Spreadsheets as HTML Tables</h1>
 Author:
<xsl:value-of select="o:DocumentProperties/o:Author" />

 LastSaved:
<xsl:value-of select="o:DocumentProperties/o:LastSaved" />

 Number of worksheets:
 <xsl:value-of select="count(ss:Worksheet)" />
 <xsl:for-each select="ss:Worksheet">
 <h2><xsl:value-of select="@ss:Name" /></h2>
 <table border="1" frame="box">
 <xsl:for-each select="ss:Table/ss:Row">
 <tr>
 <xsl:for-each select="ss:Cell/ss:Data">
 <td><xsl:value-of select="." /></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:for-each>
 </body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </body>
 </html>

Figure 15-3. Transforming an XML spreadsheet in the browser

The advantage of using a processing instruction to perform the transformation is that you don't alter the underlying
content of the spreadsheet. You can switch the file back to an Excel XML spreadsheet simply by removing the xml-
stylesheet instruction and replacing the mso-application instruction.

The following XSLT fragment shows a simple transformation that replaces the mso-application instruction with an xml-
stylesheet instruction:

<xsl:template match="ss:Workbook">
 <xsl:processing-instruction name="xml-stylesheet">
type="text/xsl" href="Worksheet.xslt"</xsl:processing-instruction>
 <xsl:copy-of select="." />
</xsl:template>

To reverse the previous transformation, transforming the file back into an XML spreadsheet, simply change the
xsl:processing-instruction element as shown here:

<xsl:processing-instruction name="mso-application">
progid="Excel.Sheet"</xsl:processing-instruction>

When a user requests an XML file that includes an xml-stylesheet processing instruction, the file is downloaded and the
transformation is processed on the user's machine. That takes more time than if the XML file had already been
transformed; however, any changes to the XSLT are automatically reflected since the transformation is performed
dynamically.

15.2.7. Transform XML into an XML Spreadsheet

You can also use XSLT or other tools to transform XML files created outside of Excel into XML spreadsheets. In this way,
you can create native Excel documents from your own applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you can create native Excel documents from your own applications.

For instance, the following abbreviated XML represents a customer order created outside of Excel:

<?xml version="1.0"?>
<!-- SimpleOrder.xml -->
<Orders>
<Order>
 <ID>1002</ID>
 <BillTo>
 <Address>
 <Name>Joe Magnus</Name>
 <Street1>1234 Made Up Place</Street1>
 <City>Somewhere</City>
 <State>FL</State>
 <Zip>33955</Zip>
 </Address>
 </BillTo>
 <ShipTo>
 <Address>...</Address>
 </ShipTo>
 <Line>
 <Number>20</Number>
 <Description>Mahogany Tiller</Description>
 <Quantity>1</Quantity>
 <UnitPrice>95.00</UnitPrice>
 <Taxible>Yes</Taxible>
 <Total>95.00</Total>
 </Line>
 <Line>...</Line>
 <Total>
 <SubTotal>540.00</SubTotal>
 <Tax>3.24</Tax>
 <Due>543.24</Due>
 </Total>
</Order>
</Orders>

To convert this XML into an XML spreadsheet, create XSLT that creates the following nodes and processing instruction:

1. The mso-application processing instruction that identifies this file as an XML spreadsheet.

2. A root workbook node that defines the Microsoft Office namespaces.

3. A styles node defining the cell formatting to display in the worksheet. Styles include number formats, such as
currency, percentage, or general number.

4. A worksheet node for each order.

5. Column nodes to set the width of the columns on the worksheet.

6. Row, cell, and data nodes for the order items you want to include in the worksheet.

Some of the preceding steps involve extensive XSLT, so it is convenient to break the steps into separate templates that
are called or applied by a root template, as shown here:

<!-- OrderToExcel.xslt transforms an order XML file into an Excel XML spreadsheet -->
<xsl:template match="/Orders">
 <xsl:processing-instruction name="mso-application">progid="Excel.Sheet"
</xsl:processing-instruction>
 <xsl:element name="Workbook"
namespace="urn:schemas-microsoft-com:office:spreadsheet" >
 <xsl:call-template name="AddStyles" />
 <xsl:for-each select="Order">
 <!-- Create a worksheet for each order -->
 <xsl:element name="Worksheet">
 <!-- Name the worksheet -->
 <xsl:attribute name="ss:Name">
 <xsl:value-of select="BillTo/Address/Name" />
 <xsl:value-of select="ID" />
 </xsl:attribute>
 <xsl:element name="Table">
 <xsl:call-template name="AddColumns" />
 <!-- Add bill to headings -->
 <xsl:apply-templates select="BillTo" />
 <!-- Add send to headings -->
 <xsl:apply-templates select="ShipTo" />
 <!-- Add column headings -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <!-- Add column headings -->
 <xsl:call-template name="AddColumnHeads" />
 <xsl:for-each select="Line">
 <xsl:apply-templates select="." />
 </xsl:for-each>
 <xsl:call-template name="AddTotals" />
 </xsl:element>
 </xsl:element>
 </xsl:for-each>
 </xsl:element>
</xsl:template>

The preceding template uses xsl:call-template to call named templates when the content output does not depend on a
specific node. A good example of this is the AddStyles template, which creates the cell formats used in the worksheet:

 <xsl:template name="AddStyles">
 <Styles xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet">
 <Style ss:ID="ColHead">
 <Alignment ss:Horizontal="Center" ss:Vertical="Bottom"/>
 <Borders>
 <Border ss:Position="Bottom" ss:LineStyle="Continuous" ss:Weight="1"/>
 </Borders>

 </Style>
 <Style ss:ID="ItemHead">
 <Alignment ss:Horizontal="Right" ss:Vertical="Bottom"/>

 </Style>
 <Style ss:ID="Currency">
 <NumberFormat ss:Format="Currency"/>
 </Style>
 </Styles>
 </xsl:template>

Here I just insert the Excel style elements since they are static and it is fairly easy to cut/paste the style elements
created by Excel into this template. This is also true for the columns element created by the AddColumns template (not
shown).

The main work is performed by the following template, which is applied to each line in order to create the rows in the
worksheet:

<xsl:template match="Line">
 <xsl:element name="Row">
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Number" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">String</xsl:attribute>
 <xsl:value-of select="Description" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Quantity" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:attribute name="ss:StyleID">Currency</xsl:attribute>
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="UnitPrice" />
 </xsl:element>
 </xsl:element>
 <xsl:element name="Cell">
 <xsl:attribute name="ss:StyleID">Currency</xsl:attribute>
 <xsl:attribute name="ss:Formula">=RC[-2]*RC[-1]
 </xsl:attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </xsl:attribute>
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Total" />
 </xsl:element>
 </xsl:element>
 </xsl:element>
</xsl:template>

The preceding template transforms a line node from an order into a row node in a worksheet. Two important things to
note are shown in bold:

First, notice that you format cells using the StyleID attribute of the cell node. This formatting includes aspects
programmers sometimes consider data type, such as whether a number is currency, percentage, date, or time.
It's easy to confuse this with the type attribute of the data node.

Second, you include calculations using the Formula attribute of the cell node. The formula shown here uses
row/column notation, although you can use absolute or named ranges as well.

Other templates convert the BillTo and ShipTo nodes into rows and add column heads and totals. Rather than reproduce
those templates here, please refer to the OrderToExcel.xslt sample file. You can use that file as a starting point for
converting your own XML files into XML spreadsheets.

Once processed, the transformed orders can be opened in Excel, as shown in Figure 15-4.

Figure 15-4. XML order information transformed into an XML spreadsheet

One of the beauties of creating your own transformations is that repeating items, such as multiple order nodes, can be
mapped to items other than rows. In this sample case, each order becomes a separate worksheet, which then gets a
unique name (see the worksheet tabs in Figure 15-4).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3. Use XML Maps
If all of the XSLT in the preceding sections intimidated you, relax a bit. Excel also provides graphical tools for importing
XML into workbooks through XML maps . To see how this works, follow these steps:

1. Open the sample file SimpleOrder.xml in Excel using the regular File Open menu item. Excel displays the
Open XML dialog box (Figure 15-5).

Figure 15-5. Step 1: open the XML file

2. Select the "Use the XML source task pane" option and click OK. Excel creates a new, blank workbook and
informs you that the file did not contain a schema, so Excel will infer one from the XML. Click OK. Excel displays
the XML map it created in the task pane (Figure 15-6).

Figure 15-6. Step 2: create an XML map

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Import XML nodes into a worksheet by selecting the nodes in the XML map and then dragging them onto a
worksheet. Excel creates these new items as a list, so use multiselect to include multiple items in one list as
shown in Figure 15-7.

4. Click Refresh XML Data to import the data from the XML file into the list as shown in Figure 15-8.

This tutorial works well for the summary information imported here. The order ID, name, subtotal, tax, and due nodes
occur once per order. You can sort the list, filter it to see only a specific order ID, and so on. However, if you want to
include the detail lines of the order, the list becomes hard to read, as shown in Figure 15-9.

Figure 15-7. Step 3: drag nodes from the XML map to a list

Figure 15-8. Step 4: import data into the list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-9. Mapped XML with summary and detail combined

Ideally, you should display the line nodes in a separate list linked to each order to create a summary/detail view. To
add a detail view to the preceding example, follow these steps:

1. Drag the line node from the XML map to a cell in the same start row but one or more columns away from the
summary list. Excel creates a new list for all the items in the line node.

2. Click Refresh XML Data to import the line items onto the worksheet. Excel displays all of the line items in the
file.

3. Filter the summary list to display only one order. Excel automatically filters the summary list to display the line
items in that order, as shown in Figure 15-10.

Excel links the summary and detail lists only if they start on the same row. Lists that start on different rows are filtered
independently. The two lists must be separated by at least one column. If they are adjacent, Excel merges the XML into
one list.

15.3.1. Limitations of XML Maps

The preceding tutorial demonstrates a subtle limitation of XML mapsoptional nodes, such as Street2 in
SimpleOrder.xml, are sometimes not imported. This occurs because Excel generates the schema from the first instance
of each node it encounters.

Figure 15-10. Mapped XML with summary/detail lists

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-10. Mapped XML with summary/detail lists

To correct this, add an empty Street2 node to the first address node as shown next and open the XML as a new
workbook:

<Address>
 <Name>Joe Magnus</Name>
 <Street1>1234 Made Up Place</Street1>
 <Street2 />
 <City>Somewhere</City>
 <State>FL</State>
 <Zip>33955</Zip>
</Address>

You can't update an existing XML map; you can only create new ones and delete existing ones from within Excel. This
means that lists created from XML maps must be re-created any time the source XML schema changes.

Since XML maps are row-based, you can't conditionally omit optional nodes as you can with XSLT. For example, the
sample transformation OrderToExcel.xslt omits the optional Street2 node if it is empty, using the following xsl:if
element:

<xsl:if test="./Address/Street2 != ''">
 <xsl:element name="Row">
 <xsl:element name="Cell" />
 <xsl:element name="Cell">
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">String</xsl:attribute>
 <xsl:value-of select="Street2" />
 </xsl:element>
 </xsl:element>
 </xsl:element>
</xsl:if>

You can't do that type of conditional processing with XML maps.

Another limitation is that calculated elements, such as total, import from XML as data values rather than as formulas.
The sample OrderToExcel.xslt creates formulas to calculate line item totals as shown here:

<xsl:element name="Cell">
 <xsl:attribute name="ss:StyleID">Currency</xsl:attribute>
 <xsl:attribute name="ss:Formula">=RC[-2]*RC[-1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:attribute name="ss:Formula">=RC[-2]*RC[-1]
 </xsl:attribute>
 <xsl:element name="Data">
 <xsl:attribute name="ss:Type">Number</xsl:attribute>
 <xsl:value-of select="Total" />
 </xsl:element>
</xsl:element>

Such calculations must be created manually on the worksheet when using XML maps.

15.3.2. Use Schemas with XML Maps

When Excel imports an XML file that does not reference an XML schema, it infers a schema from the nodes in the XML
file. The preceding section explains one of the limitations of inferring a schemaoptional nodes are sometimes omitted
from the resulting XML map.

Another solution to this problem is to include a schema with your XML file. For example, the following XML fragment
references a schema for the SimpleOrder.xml file:

<Orders xmlns="http://www.mstrainingkits.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.mstrainingkits.com SimpleOrder.xsd">

When Excel imports an XML file that references a schema, it copies that schema into the workbook. If the XML is valid
according to that schema, you can drag nodes from the XML map onto the worksheet to create lists and import data as
shown previously.

If the XML is not valid for the schema, however, no data will appear in the lists you create. Excel does not automatically
validate XML against schemas or display errors if the XML is invalid. To validate XML within Excel:

1. From the Data menu, choose XML then choose XML Map Properties. Excel displays the XML Map Properties
dialog box (Figure 15-11).

2. Select "Validate data against schema for import and export" and click OK to close the dialog box.

Figure 15-11. Validating XML

Now, Excel will display an error if the XML doesn't conform to the schema. Excel checks the XML against the schema
whenever the XML data is imported, exported, or refreshed. You can get detailed information about validation errors by
clicking Details on the XML Import Error dialog box as shown in Figure 15-12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-12. Seeing detailed XML validation errors when refreshing a list

Unfortunately, Excel copies the referenced XML schema into the XML map the first time it loads an XML file rather than
referencing the schema as an external file. Subsequent changes to the schema do not affect the XML map in the
workbook. Again, you can only add or delete XML maps; you can't update them from Excel.

15.3.3. Export XML Data Through XML Maps

Once you have created lists containing XML data, you can export that data to a new XML file from Excel two ways:

By saving the workbook using the XML Data file type

By clicking the Export XML toolbar button or selecting Export from the Data menu's XML submenu

In either case, you can export data using only one XML map at a time. If a workbook contains more than one XML map,
you are prompted to choose the map to use, as shown in Figure 15-13.

Figure 15-13. Exporting XML uses only one XML Map at a time

When Excel exports a list as XML, it uses the schema stored in the workbook to generate XML that matches the XML
source file that the list was created from. However, Excel omits the following items:

Schema definitions

Processing instructions

XML nodes not included in the list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, if you create a list from SimpleOrder.xml containing only names and totals, only those elements are saved
when you export the list as XML (shown here):

<Orders>
 <Order>
 <BillTo>
 <Address>
 <Name>Joe Magnus</Name>
 </Address>
 </BillTo>
 <Total>
 <Due>572.4</Due>
 </Total>
 </Order>
 <Order>...</Order
</Orders>

In the preceding XML, the original address and order information is omitted because it wasn't included in the list. From
Excel's point of view, the data doesn't exist if it doesn't reside on a worksheet somewhere.

15.3.4. Approaches to Using XML Maps

The limitations that come with XML maps imply a set of approaches when using them with XML. You can't just assume
that you will be able to successfully import, edit, and export arbitrary XML data using Excel. XML maps are best suited
for XML structured a certain way.

For example, the preceding SimpleOrder.xml sample requires some changes if you want to be able to view and edit
orders via XML maps. Specifically:

Each order should be stored in a separate file. XML maps can't export lists of lists, so including multiple orders,
each with multiple line items, prevents you from exporting the orders.

Line items must be presented as a separate list. Simply importing an order as a single list results in
denormalized data that can't be exported from the list.

These changes and other recommendations are explained in the following sections.

15.3.4.1. Avoid lists of lists

Excel can import XML that contains lists of lists, but it can't export it. In XML schema terminology, a list is an element
with a maxOccurs attribute greater than one. Therefore, XML using the following schema can't be exported from an XML
map (significant attributes are in bold):

<xsd:element minOccurs="0" maxOccurs="unbounded" nillable="true" name="Order"
form="qualified">
 <xsd:complexType>
 <xsd:sequence minOccurs="0"> ... </xsd:sequence>
 <xsd:element minOccurs="0" maxOccurs="unbounded" nillable="true"
 name="Line" form="qualified">
 <xsd:complexType>
 <xsd:sequence minOccurs="0"> ...</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:complexType>
</xsd:element>

You can solve this problem by breaking the source XML into smaller pieces. In the case of SimpleOrder.xml, this means
creating a separate file for each order node. The XML map's root node then becomes Order, as shown in Figure 15-14.

Figure 15-14. Break XML into smaller files to avoid lists of lists

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-14. Break XML into smaller files to avoid lists of lists

You can organize the new, smaller files into a separate folder or by using a unique file extension, such as ".ord". For
example, the following code allows the user to select an order file to open in Excel:

Sub cmdOpenOrder()
 ' Get a filename to open. Use ".ord" extension for orders.
 Dim fname As String
 fname = Application.GetOpenFilename("Orders (*.ord),*.ord", 1, "Open an Order", _
 "Open", False)
 If fname <> "" Then
 ThisWorkbook.XmlMaps("Order_Map").Import (fname)
 End If
End Sub

Using the unique .ord file extension organizes orders as shown in Figure 15-15. Excel and XML don't care what file
extension you use when importing or exporting files.

Figure 15-15. Organizing XML files using a unique file extension

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-15. Organizing XML files using a unique file extension

15.3.4.2. Avoid denormalized data

If you drag the order node shown in Figure 15-14 onto a worksheet, you get a list containing denormalized data, as
shown in Figure 15-16.

Denormalized means that nonrepeating data elements appear multiple times on the worksheet. A user could change
one of the nonrepeating items, such as Name, on one row, making that item inconsistent with other rows that are
supposed to show the same data. There is no way for Excel to reconcile this inconsistency, so the list can't be exported.

To avoid this, create nonrepeating and repeating nodes in separate lists, as shown in Figure 15-17.

15.3.4.3. Create an XML schema

Allowing Excel to infer a schema for an XML map is fine if the nodes don't contain optional items or if the first
occurrence of each node contains all of its possible children. Otherwise, Excel may omit items from the schema it
creates and some nodes won't appear in the XML map.

You can solve this problem by creating an XML schema and referencing that schema in the XML file you import. Excel
copies the referenced XML schema into the XML map when the XML map is created.

Figure 15-16. A list with denormalized data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-17. Put repeating and nonrepeating data items in separate lists to avoid
denormalized data

Having an external XML schema is also useful for making changes to the XML map. As mentioned earlier, you can't
update an XML map inside of Excel; you can, however, modify the XML schema stored in the workbook by editing it
outside of Excel. To edit an XML map schema:

1. In Excel, save the workbook as an XML spreadsheet.

2. Close the workbook in Excel.

3. Open the XML spreadsheet in an XML editor. It is a good idea to use a full-featured XML editor here because the
schema generated by Excel does not include whitespace such as tabs and line feeds.

4. Edit the items in the map info/schema node as needed, or simply replace the entire schema node with the
contents of your external schema definition file.

5. Save the file.

6. Open the workbook in Excel and click Refresh XML Data to verify that the schema is still valid.

The XML spreadsheet nodes for the schema appear as follows. The nodes to edit or replace are highlighted in bold.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The XML spreadsheet nodes for the schema appear as follows. The nodes to edit or replace are highlighted in bold.

<x2:MapInfo x2:HideInactiveListBorder="false"
x2:SelectionNamespaces="xmlns:ns1='http://www.mstrainingkits.com'">
<x2:Schema x2:ID="Schema1"
x2:Namespace="http://www.mstrainingkits.com">
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.mstrainingkits.com"
 xmlns:ns0="http://www.mstrainingkits.com">
 <xsd:element nillable="true" name="Order">
 ...
 </xsd:element>
 </xsd:schema>
 </x2:Schema>
</x2:MapInfo>

15.3.4.4. Include all nodes if exporting

When you export XML, Excel takes the data found in mapped items on worksheets, applies the XML map, and generates
XML nodes defined in the XML map's schema. If some of the XML map's data nodes are not mapped, that data is
omitted from the exported XML.

In some cases, this is what you want. But if you are trying to read and write an XML file without losing content, you
need to make sure that all elements from the XML map appear somewhere on the worksheet (even if they are hidden).

If a node contains a calculated value, you will need to perform the calculation in a nonmapped cell, then copy that value
to the mapped cell before exporting. The Save Order button in Figure 15-17 copies the calculated subtotal, tax, and
total values to cells created from the XML map before exporting the XML using the following code:

Sub cmdSaveOrder()
 ' Update mapped cells with calculated values.
 Range("XmlSubTotal") = Range("SubTotal")
 Range("XmlTax") = Range("Tax")
 Range("XmlTotal") = Range("Total")
 ' Create filename to save.
 Dim fname As String
 fname = ThisWorkbook.path & "\" & Range("OrderID") & ".ord"
 ' Save the order.
 ThisWorkbook.XmlMaps("Order_Map").Export fname, True
End Sub

15.3.4.5. Other things to avoid

Excel does not support a number of other XML schema constructs when importing XML and a number of schema
constructs when exporting XML. These constructs are listed in Tables 15-4 and 15-5, respectively.

Table 15-4. XML schema elements not supported when importing XML
Element Description

any,
anyAttribute

The any and anyAttribute elements allow you to include items that are not declared by the schema. Excel
requires imported schemas to be explicit.

Recursive
structures

Excel does not support recursive structures that are more than one level deep.

Abstract
elements

Abstract elements are meant to be declared in the schema, but never used as elements. Abstract
elements depend on other elements being substituted for the abstract element.

Substitution
groups

Substitution groups allow an element to be swapped wherever another element is referenced. An
element indicates that it's a member of another element's substitution group through the substitutionGroup
attribute.

Mixed
content

Mixed content is declared using mixed="true" on a complex type definition. Excel does not support the
simple content of the complex type, but does support the child tags and attributes defined in that
complex type.

Table 15-5. XML schema elements not supported when exporting XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 15-5. XML schema elements not supported when exporting XML
Item Description

Lists of lists Excel can export only repeating items that are one level deep. See the section "Avoid
lists of lists," earlier in this chapter.

Denormalized data See the section "Avoid denormalized data," earlier in this chapter.

Nonrepeating siblings If nonrepeating items are mapped to lists, they will result in denormalized data.

Repeating elements If the repetition is not defined by an ancestor, the data relationships can't be preserved.

Child elements from
different parents

If children from different XML maps are mapped to the same list, the relationship can't
be preserved.

choice Elements that are part of an XML schema choice construct can't be exported.

15.3.5. Respond to XML Events

The Workbook object provides events that occur before and after data is imported or exported through an XML map. You
can use these events to control how the import/export occurs, respond to errors, or cancel the operation.

For example, the following event procedures display information about import and export actions as they occur:

Private Sub Workbook_BeforeXmlImport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
 Debug.Print "BeforeImport", Map, Url, IsRefresh, Cancel
End Sub

Private Sub Workbook_BeforeXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, Cancel As Boolean)
 Debug.Print "BeforeExport", Map, Url, IsRefresh, Cancel
End Sub

Private Sub Workbook_AfterXmlImport(ByVal Map As XmlMap, _
 ByVal IsRefresh As Boolean, ByVal Result As XlXmlImportResult)
 Debug.Print "AfterImport", Map, Url, Result
End Sub

Private Sub Workbook_AfterXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal Result As XlXmlExportResult)
 Debug.Print "AfterExport", Map, Url, Result
End Sub

To cancel an import or export action, set the event's Cancel argument to True. The following code allows the user to
cancel refreshing or importing data from the Orders_Map:

Private Sub Workbook_BeforeXmlImport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
 If Map.name = "Orders_Map" And Not IsRefresh Then
 res = MsgBox("This action will replace all the data in this list." & _
 "Do you want to continue?", vbYesNo, "Import XML")
 If res = vbNo Then Cancel = True
 End If
End Sub

If the import or export action is caused by code, setting Cancel to True causes an "Operation cancelled by user" error to
occur. You should handle this exception if you allow Cancel to be set. For example, the following code handles the
potential error when importing data:

' If user cancels, handle error.
On Error Resume Next
' Import data.
xmap.Import ThisWorkbook.path & "\SimpleOrder.xml"
If Err = 1004 Then Debug.Print "User cancelled import."
On Error GoTo 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4. Program with XML Maps
The preceding sections explained how to use the new XML features found in Excel and provided code for saving,
transforming, importing, and exporting XML with Excel. Those sections provide a context for Excel's XML features and
explain programming tasks that surround those features. The rest of this chapter deals exclusively with the XML objects
Excel provides and offers specific examples of programming tasks you can perform with those object, properties, and
methods.

Excel's XML object model deals exclusively with XML maps. Opening and saving XML spreadsheets is done through the
Workbook object's Open and Save methods. Figure 15-18 illustrates the Excel XML objects hierarchically.

Figure 15-18. The XML object hierarchy

The XmlMap object allows you to perform the following tasks in code:

Add XML maps to a workbook

Delete XML maps from a workbook

Export XML data through an XML map

Import XML data through an XML map

Bind an XML map to an XML data source

Refresh mapped lists and ranges from an XML data source

View the XML schema used by an XML map

The following sections explain these tasks in greater detail.

15.4.1. Add or Delete XML Maps

Use the XmlMaps collection to add or delete XML maps in a workbook. The Add method takes the location of an XML
schema as its first argument, and when Excel adds an XML map to a workbook, it copies the contents of that schema
into the workbook. For example, the following line creates a new XML map using the SimpleOrder.xsd schema file:

ThisWorkbook.XmlMaps.Add (ThisWorkbook.path & "\SimpleOrder.xsd")

If you substitute an XML source file for the XML schema, the Add method will infer a schema from the XML source. As
noted earlier, inferring a schema can omit some nodes from the resulting XML map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

noted earlier, inferring a schema can omit some nodes from the resulting XML map.

When Excel creates a new XML map, it names the map using the name of the root node and appending _Map. A number
is added to the name if a map with that name already exists. For example, the preceding line of code creates a map
named Orders_Map the first time it runs, Orders_Map2 the second time, and so on.

Use the XmlMap object's Delete method to remove a map from a workbook. The following code deletes the map named
Orders_Map:

ThisWorkbook.XmlMaps("Orders_Map").Delete

If you use the Delete method on a map that is currently used to import data to a list, Excel simply deletes the map and
disables the refresh XML data task for that list. Excel does not warn you as it does when you delete a map through the
user interface.

15.4.2. Export and Import XML

Use the XmlMap object to import or export XML from code. For example, the following line imports an XML file into an
existing XML map in a workbook:

ThisWorkbook.XmlMaps("Order_Map").Import (ThisWorkbook.Path & "\1002.ord")

Similarly, the XmlMap object's Export method exports XML data from a workbook. The following code exports data through
an existing XML map:

ThisWorkbook.XmlMaps("Order_Map").Export ThisWorkbook.Path & "\1002.ord"

Use the ImportXml and ExportXml methods to import or export XML as a string variable rather than as a file. For example,
the following code displays the contents of a list mapped using the Order_Map as XML in the Debug window:

Dim xmap As XmlMap, xml As String, res As XlXmlExportResult
Set xmap = ThisWorkbook.XmlMaps("Order_Map")
res = xmap.ExportXml(xml)
Debug.Print xml

15.4.3. Refresh, Change, or Clear the Data Binding

Use the Databinding object's Refresh method to refresh a list that was linked to XML data through an XML map. The Refresh
method is equivalent to clicking the Refresh XML Data button on the List toolbar.

You can use the Databinding object's LoadSettings method to change the data source used by the XML map. When
combined, the LoadSettings and Refresh methods are equivalent to calling the XmlMap object's Import method. The advantage
of combining LoadSettings and Refresh is that changing the data source and refreshing the list are handled in separate
steps, as shown here:

Dim xmap As XmlMap, xml As String, res As XlXmlExportResult
Set xmap = ThisWorkbook.XmlMaps("Order_Map")
' Change the data source.
xmap.DataBinding.LoadSettings (ThisWorkbook.path & "\2002.ord")
' Refresh the list from the data source.
res = xmap.DataBinding.Refresh

15.4.4. View the Schema

You can get the schema used by an XML map through the Schemas collection. Each XML map has one schema and you
can't add or delete schemas through the Schemas collection.

Use the Schema object's Xml method to return the schema used by an XML map. The Xml method returns the schema
without whitespace, so you will want to use a formatting helper function such as PrettyPrint when displaying the schema,
as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as shown here:

Dim xmap As XmlMap, xsd As String
Set xmap = ThisWorkbook.XmlMaps("Order_Map")
xsd = xmap.Schemas(1).xml
Debug.Print PrettyPrint(xsd)

PrettyPrint is defined in Chapter 14 and is provided with the sample files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.5. XmlMap and XmlMaps Members
The XmlMaps collection and XmlMap object have the following members . Key members (shown in bold) are covered in the
following reference section:

Add1 AdjustColumnWidth

AppendOnImport Application2

Count1 Creator2

DataBinding Delete

Export ExportXml

Import ImportXml

IsExportable Name

Parent2 PreserveColumnFilter

PreserveNumberFormatting RootElementName

RootElementNamespace SaveDataSourceDefinition

Schemas ShowImportExportValidationErrors

1 Collection only

2 Object and collection

xmlmaps.Add(Schema, [RootElementName])

Creates a new XML map and adds it to a workbook. Returns the XML map created.

Argument Settings

Schema The name of an XML schema file, XML datafile, schema data, or XML data to base the XML map on.

RootElementName If the schema contains more than one root element, this is the name of the root element to use for
the XML map. Otherwise, this argument can be omitted.

Excel names XML maps by appending _Map to the name of the root element of the schema. If an XML map with that
name already exists, Excel adds a number to the new name.

The Schema argument is very flexible. It can contain a filename as a UNC or URL or it can contain the data for the
schema in string format. If the Schema argument is XML data, rather than an XML schema, Excel infers a schema from
that data. For example, the following code infers a schema from some XML data supplied as a string and creates a new
XML map named Numbers_Map:

xml = "<Numbers><Number><One /><Two /><Three /></Number>" & _
 "<Number /></Numbers>"
Set xmap = ThisWorkbook.XmlMaps.Add(xml)

xmlmap.AdjustColumnWidth [= setting]

Sets or returns a value indicating whether to adjust the column width of mapped cells to best fit the imported data
when the data is refreshed. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xmlmap.AppendOnImport [= setting]

Sets or returns a value indicating whether to append data to mapped lists rather than replacing the data in the list.
Default is False.

Set the AppendOnImport property to True when you want to append multiple XML data sources to a single XML map. For
example, the following code stores three rows of data in a map:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
xmap.AppendOnImport = True
xmap.ImportXml ("<Numbers><Number><One>1</One><Two>2</Two>" & _
 "<Three>3</Three></Number></Numbers>")
xmap.ImportXml ("<Numbers><Number><One>4</One><Two>5</Two>" & _
 "<Three>6</Three></Number></Numbers>")
xmap.ImportXml ("<Numbers><Number><One>7</One><Two>8</Two>" & _
 "<Three>9</Three></Number></Numbers>")

If you change AppendOnImport to False in the preceding code, only the last row (7, 8, 9) is stored in the map.

xmlmap.DataBinding

Returns an XmlDataBinding object that you can use to refresh the data in the XML map, change the XML data source, or
remove the link to an XML data source. See "XmlDataBinding Members," later in this chapter, for more information.

xmlmap.Delete

Deletes an XML map from a workbook. If a list or range uses the XML map, deleting the map removes the link to the
data source, but does not remove the data displayed in the list or range. The following code deletes the XML map
named Numbers_Map:

ThisWorkbook.XmlMaps("Numbers_Map").Delete

xmlmap.Export(Url, [Overwrite])

Exports mapped data in an XML map to an XML file. Returns an xlXmlExportResult constant indicating whether the export
was successful.

Argument Settings

Url The name of the file to create.

Overwrite True overwrites the file if Url already exists. False does not overwrite the file and triggers an error if the
file already exists. Default is False.

Use the IsExportable property to determine if the data can be exported before using the Export method. Excel exports only
nodes that have been mapped to a list or range. Unmapped nodes are not exported, although the file still conforms to
the XML map's schema.

The following code exports mapped nodes in the XML map named Numbers_Map to create the file Numbers.xml:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
If xmap.IsExportable Then
 fname = ThisWorkbook.path & "\Numbers.xml"
 res = xmap.Export(fname, True)
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

xmlmap.ExportXml(Data)

Exports mapped data to a string variable. Returns an xlXmlExportResult constant indicating whether the export was
successful.

Argument Settings

Data The variable in which to store the exported XML data

The ExportXml method is equivalent to the Export method except for the target of the data. The following code exports
mapped nodes in the XML map named Numbers_Map to a variable then display the contents of the variable in the Debug
window:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
If xmap.IsExportable Then
 res = xmap.ExportXML(xml)
 Debug.Print xml
End If

xmlmap.Import(Url, [Overwrite])

Imports data from a file into an XML map. Returns an xlXmlImportResult constant indicating whether the export was
successful.

Argument Settings

Url The name of the file to import.

Overwrite True replaces the data in the map with the data from the file. False appends the data from the file to the
data already in the map. Default is False.

The following code imports the data from Numbers.xml and appends the data to the data already in the XML map:

Dim xmap As XmlMap, fname As String, res As XlXmlExportResult
Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
fname = ThisWorkbook.path & "\Numbers.xml"
res = xmap.Import(fname, True)

xmlmap.ImportXml(Data, [Overwrite])

Imports data from a string variable into an XML map. Returns an xlXmlImportResult constant indicating whether the export
was successful.

Argument Settings

Data The variable containing the XML data to import.

Overwrite True replaces the data in the map with the data from the file. False appends the data from the file to the
data already in the map. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code imports three rows of data into the Numbers_Map:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
res = xmap.ImportXML("<Numbers><Number><One>1</One><Two>2</Two>" & _
 "<Three>3</Three></Number></Numbers>")
res = xmap.ImportXML("<Numbers><Number><One>4</One><Two>5</Two>" & _
 "<Three>6</Three></Number></Numbers>")
res = xmap.ImportXML("<Numbers><Number><One>7</One><Two>8</Two>" & _
 "<Three>9</Three></Number></Numbers>")

xmlmap.IsExportable

Returns True if the XML map can be exported, False if it cannot. Use the IsExportable property to test if the relationships
established in a mapped list or range allow the data contained there to be exported.

Some types of XML data can be imported but not exported, and some lists can create denormalized data that can't be
exported. See the earlier section "Approaches to Using XML Maps" for details on what types of data can be exported.

The following code tests if a map can be exported before attempting to export it to a file:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
If xmap.IsExportable Then
 res = xmap.Export("Numbers.xml")
End If

xmlmap.PreserveColumnFilter [= setting]

True preserves mapped list column filters when data is refreshed. False resets the filter to show all the data. Default is
True.

The following code displays the PreserveColumnFilter and other general property settings for an XML map in the Debug
window:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
Debug.Print "Preserve column filter? " & xmap.PreserveColumnFilter
Debug.Print "Preserve formatting? " & xmap.PreserveNumberFormatting
Debug.Print "Root node name: " & xmap.RootElementName
Debug.Print "Root namespace: " & xmap.RootElementNamespace
Debug.Print "Save data source definition? " & xmap.SaveDataSourceDefinition
Debug.Print "Show validation errors? " & xmap.ShowImportExportValidationErrors

xmlmap.PreserveNumberFormatting [= setting]

True preserves number formatting in mapped cells when data is refreshed. False resets the number formatting in
mapped cells. Default is True.

xmlmap.RootElementName

Returns the name of the root node in the XML map.

xmlmap.RootElementNamespace

Returns the namespace of the root node in the XML map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xmlmap.SaveDataSourceDefinition [= setting]

True saves the name of the XML data source in the workbook. False discards the name of the data source. Default is
True.

Use the SaveDataSourceDefinition property to prevent the data in an XML map from being refreshed. For example, the
following code imports data from the file Numbers.xml but disables the Refresh XML Data button in the user interface:

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
fname = ThisWorkbook.path & "\Numbers.xml"
res = xmap.Import(fname, True)
xmap.SaveDataSourceDefinition = False

xmlmap.Schemas

Returns the XmlSchemas collection for the XML map. You can use the XmlSchemas collection to get information about the
schema used in the XML map, but you can't change the schema in an XML map. See "XmlSchema and XmlSchemas
Members," later in the chapter, for more information.

xmlmap.ShowImportExportValidationErrors [= setting]

True if Excel displays schema validation errors when an XML map is refreshed or when it imports or exports data. False
if Excel does not display validation errors. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.6. XmlDataBinding Members
Use the XmlDataBinding object to refresh or change the data source of an XML map. Use the XmlMap object's DataBinding
method to get a reference to this object. The XmlDataBinding object has the following members. Key members (shown in
bold) are covered in the following reference section:

Application
ClearSettings
Creator
LoadSettings
Parent
Refresh
SourceUrl

xmldatabinding.ClearSettings

Removes the data binding for an XML map, disabling the List toolbar's Refresh XML Data button. Calling the ClearSettings
method is equivalent to setting the XmlMap object's SaveDataSourceDefinition property to False.

The following code imports data into an XML map, then removes the map's binding to the source file (Numbers.xml):

Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
fname = ThisWorkbook.path & "\Numbers.xml"
res = xmap.Import(fname, True)
xmap.DataBinding.ClearSettings

xmldatabinding.LoadSettings(Url)

Sets the data source for an XML map.

Argument Settings

Url The name of the file or web service to use as a data source. May be a UNC or URL.

The following code sets the data source for an XML map and refreshes the data in that map from the new data source:

Set xmap = ThisWorkbook.XmlMaps("Order_Map")
xmap.DataBinding.LoadSettings (ThisWorkbook.path & "\2002.ord")
res = xmap.DataBinding.Refresh

xmldatabinding.Refresh

Refreshes the data in an XML map from its data source. The Refresh method is equivalent to clicking the List toolbar's
Refresh XML Data button.

xmldatabinding.SourceUrl

Returns the filename or web service name of the data source for an XML map. The following code displays the data
source used for an XML map:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

source used for an XML map:

Set xmap = ThisWorkbook.XmlMaps("Order_Map")
Debug.Print xmap.DataBinding.SourceUrl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.7. XmlNamespace and XmlNamespaces Members
Use the Workbook object's XmlNamespaces method to get a reference to the XmlNamespaces collection. Use the XmlDataBinding
object's RootElementNamespace method to get a reference to the XmlNamespace object for a specific XML map. The
XmlNamespaces collection and XmlNamespace object have the following members. Key members (shown in bold) are covered
in the following reference section:

Application2

Count1

Creator2

InstallManifest1

Parent2

Prefix

Uri

Value1

1 Collection only

2 Object and collection

XmlNamespace objects are used with both Smart documents and XML maps. Their use with XML maps is informationalyou
can't add or modify namespaces through the XmlNamespaces collection or XmlNamespace object.

xmlnamespaces.InstallManifest(Path, [InstallForAllUsers])

Installs an XML expansion pack for use with Smart documents.

Argument Settings

Path The name of the file containing the XML expansion pack manifest.

InstallForAllUsers True registers the XML expansion pack for all users of the computer; False registers for only the
current user. Default is False.

The user must have sufficient permissions to install an XML expansion pack. The following code installs one of the
sample expansion packs from the Smart Document SDK for all users:

sdoc = "C:\Program Files\Microsoft Office 2003 Developer Resources" & _
 "\Microsoft Office 2003 Smart Document SDK\Samples\SimpleSample" & _
 "\SourceFiles\manifest.xml"
ThisWorkbook.XmlNamespaces.InstallManifest sdoc, True

xmlnamespace.Prefix

Returns the prefix used with a namespace. The following code displays the prefix and URI for the root namespace used
in an XML map:

Dim xmap As XmlMap
Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
Debug.Print xmap.RootElementNamespace.Prefix
Debug.Print xmap.RootElementNamespace.Uri

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.Print xmap.RootElementNamespace.Uri

xmlnamespace.Uri

Returns the URI for a namespace.

xmlnamespaces.Value

Returns a string containing all the namespaces loaded in a workbook. The following code displays the namespaces from
a workbook in the Debug window:

Debug.Print ThisWorkbook.XmlNamespaces.Value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.8. XmlSchema and XmlSchemas Members
Use the XmlMap object's Schemas method to return the XmlSchemas collection. The XmlSchemas collection and XmlSchema object
have the following members. Key members (shown in bold) are covered in the following reference section:

Application2

Count1

Creator2

Name

Namespace

Parent2

XML

1 Collection only

2 Object and collection

Most XML maps contain one schema, so the XmlSchemas collection usually contains only one item.

xmlschema.Namespace

Returns the target namespace used by the schema. The following code displays the target namespace for a schema in
the Debug window:

Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
Debug.Print xmap.Schemas(1).Namespace

xmlschema.XML

Returns the schema definition as a string. Omits whitespace characters such as tabs and line feeds. The following code
displays the schema definition for an XML map in the Debug window:

Set xmap = ThisWorkbook.XmlMaps("Orders_Map")
xsd = xmap.Schemas(1).xml
Debug.Print PrettyPrint(xsd)

The PrettyPrint helper function formats the XML to add tabs and line feeds. PrettyPrint is defined in Chapter 14 and is
included with the sample code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.9. Get an XML Map from a List or Range
Use the XPath object to get or set the XML mapping used by a list column or a range. Figure 15-19 shows the
relationship between these objects.

Figure 15-19. Getting an XML map from a list column or range

You can use the XPath object to add or remove mappings to list columns or ranges as described in the following sections.

15.9.1. Map XML to a List Column

Use the XPath object's SetValue method to map data from an XML map to a list column or range. SetValue allows you to
dynamically create lists from an XML map. For example, the following code creates a new list, adds three columns to
that list, and maps each column to a different node in an XML map:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set xmap = ThisWorkbook.XmlMaps("Numbers_Map")
' Create a list object.
Set lo = ws.ListObjects.Add(xlSrcRange, [A1])
' Add a column to the list.
Set lc = lo.ListColumns.Add
' Map the column to an element in an XML map.
lc.XPath.SetValue xmap, "/Numbers/Number/One", , True
' Repeat for two more columns.
Set lc = lo.ListColumns.Add
lc.XPath.SetValue xmap, "/Numbers/Number/Two", , True
Set lc = lo.ListColumns.Add
lc.XPath.SetValue xmap, "/Numbers/Number/Three", , True

15.9.2. Remove a Mapping

Use the XPath object's Clear method to remove a mapping from a list column or range. For example, the following code
removes the mappings from the list created in the preceding section:

Set ws = ThisWorkbook.Sheets("Sheet1")
Set lo = ws.ListObjects(1)
For Each lc In lo.ListColumns
 lc.XPath.Clear
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15. Working with XML
As you may have realized from the previous chapter, lists are one of the ways Excel handles XML data. Shared lists are
stored as XML, SharePoint exchanges updates via XML Web Services, and lists can import and export XML.

The Excel features covered in this chapter apply to Office 2003 for Windows. Earlier
versions and Macintosh versions of Office do not support these features, although Office
2002 does support saving workbooks in XML format.

I didn't address XML directly in the preceding chapter because lists are just one of the ways Excel handles XML. In this
chapter, I show the different ways you can work with XML in Excel. Specifically, I show you how to:

Save a workbook as XML

Transform XML from a workbook into other forms of output

Transform a non-Excel XML file into an XML spreadsheet

Import XML to a list

Export XML from a list

Respond to XML import and export events

Program with the XML map objects

This chapter contains reference information for the following objects and their related collections: XmlDataBinding, XmlMap,
XmlNamespace, XmlSchema, and XPath.

Code used in this chapter and additional samples are available in ch15.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.1. Navigate Chart Objects
Charting is the most complex part of the Excel object model. To simplify it a bit, I've divided the objects into two
chapters. This chapter discusses the core objects used to create charts from data; Chapter 17 covers the lower-level
objects used to control the appearance of the parts of a chart. Figure 16-1 illustrates this division of chart objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.10. Chart and Charts Members
Use the Charts collection to add chart sheets to a workbook. Use the Workbook object's Charts property to get a reference to
this collection. Use the Chart object to plot numeric data graphically. The Charts collection and Chart object have many of
the same members as the Worksheets collection and Worksheet object. Key members that are unique to charts (shown in
bold)are covered in the following reference section:

Add1 Application2 ApplyCustomType

ApplyDataLabels Area3DGroup AreaGroups

AutoFormat AutoScaling Axes

Bar3DGroup BarGroups BarShape

ChartArea ChartGroups ChartObjects

ChartTitle ChartType ChartWizard

CheckSpelling CodeName Column3DGroup

ColumnGroups Copy2 CopyPicture

Corners Count1 CreatePublisher

Creator2 DataTable Delete2

DepthPercent Deselect DisplayBlanksAs

DoughnutGroups Elevation Evaluate

Export Floor GapDepth

GetChartElement HasAxis HasDataTable

HasLegend HasPivotFields HasTitle

HeightPercent HPageBreaks1 Hyperlinks

Index Item1 Legend

Line3DGroup LineGroups Location

MailEnvelope Move2 Name

Next OLEObjects PageSetup

Parent2 Paste Perspective

Pie3DGroup PieGroups PivotLayout

PlotArea PlotBy PlotVisibleOnly

Previous PrintOut2 PrintPreview2

Protect ProtectContents ProtectData

ProtectDrawingObjects ProtectFormatting ProtectGoalSeek

ProtectionMode ProtectSelection RadarGroups

Refresh RightAngleAxes Rotation

SaveAs Scripts Select2

SeriesCollection SetBackgroundPicture SetSourceData

Shapes ShowWindow SizeWithWindow

SurfaceGroup Tab Type

Unprotect Visible2 VPageBreaks1

Walls WallsAndGridlines2D XYGroups

1 Collection only

2 Object and collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.Add([Before], [After], [Count])

Creates one or more chart sheets and returns a reference to the first Chart object created.

Argument Settings

Before The sheet in the workbook before which the new chart sheet is placed.

After The sheet in the workbook after which the new chart sheet is placed.

Count The number of chart sheets to add. Default is 1.

You can't specify both the Before and After arguments; you must choose one. The following code creates three new chart
sheets at the beginning of a workbook and names the first sheet New Chart:

Sub AddCharts()
 Dim chrt As Chart
 Set chrt = Charts.Add(Sheets(1), , 3)
 chrt.Name = "New Chart"
End Sub

The other two charts receive default names (Chartn).

chart.ApplyCustomType(ChartType, [TypeName])

Applies an autoformat to a chart.

Argument Settings

ChartType xlBuiltIn selects from a set of built-in autoformats; xlUserDefined selects from a set of user-defined
autoformats.

TypeName The name of the autoformat to apply.

If you omit TypeName, ApplyCustomType is equivalent to setting the ChartType property and the
ChartType argument then accepts xlChartType constants.

To see the available autoformats, select a chart, choose Chart Chart Type, and click the Custom Types tab. The
ChartType and TypeName arguments correspond to items on the Chart Type dialog box as shown in Figure 16-7.

Figure 16-7. Applying an autoformat to a chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code applies the B&W Column autoformat to a chart:

Sub ApplyAutoFormat()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.ApplyCustomType xlBuiltIn, "B&W Column"
End Sub

chart.ApplyDataLabels([Type], [LegendKey], [AutoText],
[HasLeaderLines], [ShowSeriesName], [ShowCategoryName],
[ShowValues], [ShowPercentage], [ShowBubbleSize],
[Separator])

Applies data labels to all of the series on the chart.

Argument Settings

Type

An xlDataLabelsType constant specifying the type of labels to display. Can be one of the following:

xlDataLabelsShowBubbleSizes
xlDataLabelsShowLabelAndPercent
xlDataLabelsShowPercent
xlDataLabelsShowLabel
xlDataLabelsShowNone
xlDataLabelsShowValue (default)

Not all Type settings are valid for all types of charts. xlDataLabelsShowPercent and
xlDataLabelsShowLabelAndPercent apply to only pie and doughnut chart types.

Set Type to xlDataLabelsShowNone to remove all data labels from a chart.

LegendKey True displays the legend key next to the point; False omits the key. Default is False.

AutoText
True automatically generates an appropriate data label based on the type of chart and whether axis
titles are included; False uses the Show argument settings to determine the label content. Default is
True

HasLeaderLines True displays leader lines for each series; False omits leader lines. Default is False.

ShowSeriesName True adds the series name to each label; False omits it.

ShowCategoryName True adds the category axis value to each label; False omits it.

ShowValues True adds the value of each point to the data label; False omits it.

ShowPercentage For pie and doughnut charts, True adds the percentage of the total that the value represents to the
data label.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowBubbleSize
Bubble charts plot three values per series: the first two values determine the x and y position of the
item; the third value determines the size of the bubble. Setting ShowBubbleSize to True displays that
third value in the data label.

Separator The character used to separate series name, category name, value, and percentage within the data
label. Default is comma.

ApplyDataLabels is also available for the Series and Point objects. For example, the following code animates a chart by
displaying data labels one point at a time with the series name, then all at once (without the series name):

Sub AnimateDataLabels()
 Dim chrt As Chart, sr As Series, pt As Point
 Set chrt = Charts("New Chart")
 ' Use a custom chart type.
 chrt.ApplyCustomType xlBuiltIn, "Smooth Lines"
 For Each sr In chrt.SeriesCollection
 For Each pt In sr.Points
 ' Clear all data labels.
 chrt.ApplyDataLabels xlDataLabelsShowNone
 ' Apply labels to each point in turn.
 pt.ApplyDataLabels xlDataLabelsShowLabel, , False _
 , , True, False, True
 ' Wait one second.
 Application.Wait Now + 0.00001
 Next
 Next
 ' Show all data labels.
 chrt.ApplyDataLabels xlDataLabelsShowLabel, , False _
 , , False, False, True
End Sub

chart.Area3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D area chart type.

chart.AreaGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D area chart types.

chart.AutoFormat(Gallery, [Format])

This method is now hidden; it is replaced by the ChartType property. It is equivalent to calling the ChartWizard method on
an existing chart and omitting the Source argument.

chart.AutoScaling [= setting]

True scales a 3-D chart so that it is closer to the size of an equivalent 2-D chart. Valid only if the RightAngleAxis property
is True. Default is True.

chart.Axes([Type], [AxisGroup])

Returns one or all of the axes on a chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Type For 2-D charts, xlCategory returns the x-axis; xlValue returns the y-axis. For 3-D charts, xlSeries returns the
z-axis.

AxisGroup For 2-D charts, xlPrimary returns primary axis; xlSecondary returns the secondary axis. Default is xlPrimary.
Cannot be xlSecondary for 3-D charts.

The following code applies labels to identify the x-, y-, and z-axes of a 3-D chart:

Sub LabelAxes()
 Dim chrt As Chart, ax As Axis
 Set chrt = Charts("Demo Chart Types")
 ' Activate the chart sheet.
 chrt.Activate
 ' Change chart type to 3-D.
 chrt.ApplyCustomType xl3DLine
 ' Get the category axis.
 Set ax = chrt.Axes(xlCategory)
 ' Add a title.
 ax.HasTitle = True
 ' Set the title.
 ax.AxisTitle.Caption = "Category"
 ' Repeat for value axis.
 Set ax = chrt.Axes(xlValue)
 ax.HasTitle = True
 ax.AxisTitle.Caption = "Value"
 ' Repeat for series axis.
 Set ax = chrt.Axes(xlSeries, xlPrimary)
 ax.HasTitle = True
 ax.AxisTitle.Caption = "Series"
End Sub

chart.Bar3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D bar chart type.

chart.BarGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D bar chart types.

chart.BarShape [= xlBarShape]

Sets or returns the shape used for bars or columns in a 3-D chart. Can be one of these settings:

xlBox

xlConeToPoint

xlPyramidToMax

xlConeToMax

xlCylinder

xlPyramidToPoint

chart.ChartArea

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the ChartArea object for the chart. Use the ChartArea object to control the appearance of the region outside of the
plot area. The following code highlights the chart area:

Sub ChangeChartArea()
 Dim chrt As Chart, ca As ChartArea
 Set chrt = Charts("New Chart")
 Set ca = chrt.ChartArea
 ca.Interior.Pattern = XlPattern.xlPatternGray8
End Sub

chart.ChartGroups([Index])

Returns one or all of the ChartGroup objects in a chart. Each ChartGroup represents one or more series of a particular chart
type. Most charts have one chart group; however, combo charts have two or more chart groups. You can't combine 2-D
and 3-D chart types, so all of the chart groups are either 2-D or 3-D.

chart.ChartObjects([Index])

Returns the ChartObjects embedded on a chart sheet. You can embed charts on a chart sheet to plot other data or show
other views on the same sheet. The primary chart on a chart sheet is not embedded and is not part of the ChartObject
collection.

chart.ChartTitle

Returns the ChartTitle object representing the title displayed on the chart. Make sure the HasTitle property is True before
using this object. For example, the following code adds a title to a chart:

Sub AddTitle()
 Dim chrt As Chart, ct As ChartTitle
 Set chrt = Charts("New Chart")
 chrt.HasTitle = True
 Set ct = chrt.ChartTitle
 ct.Caption = "New Title"
End Sub

chart.ChartType [= xlChartType]

Sets or returns an xlChartType constant that determines the kind of chart plotted. Can be one of these settings:

xl3DArea xl3DAreaStacked

xl3DAreaStacked100 xl3DBarClustered

xl3DBarStacked xl3DBarStacked100

xl3DColumn xl3DColumnClustered

xl3DColumnStacked xl3DColumnStacked100

xl3DLine xl3DPie

xl3DPieExploded xl3DSurface

xlArea xlAreaStacked

xlAreaStacked100 xlBarClustered

xlBarOfPie xlBarStacked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlBarStacked100 xlBubble

xlBubble3DEffect xlColumnClustered

xlColumnStacked xlColumnStacked100

xlConeBarClustered xlConeBarStacked

xlConeBarStacked100 xlConeCol

xlConeColClustered xlConeColStacked

xlConeColStacked100 xlCylinderBarClustered

xlCylinderBarStacked xlCylinderBarStacked100

xlCylinderCol xlCylinderColClustered

xlCylinderColStacked xlCylinderColStacked100

xlDefaultAutoFormat xlDoughnut

xlDoughnutExploded xlLine

xlLineMarkers xlLineMarkersStacked

xlLineMarkersStacked100 xlLineStacked

xlLineStacked100 xlPie

xlPieExploded xlPieOfPie

xlPyramidBarClustered xlPyramidBarStacked

xlPyramidBarStacked100 xlPyramidCol

xlPyramidColClustered xlPyramidColStacked

xlPyramidColStacked100 xlRadar

xlRadarFilled xlRadarMarkers

xlStockHLC xlStockOHLC

xlStockVHLC xlStockVOHLC

xlSurface xlSurfaceTopView

xlSurfaceTopViewWireframe xlSurfaceWireframe

xlXYScatter xlXYScatterLines

xlXYScatterLinesNoMarkers xlXYScatterSmooth

xlXYScatterSmoothNoMarkers

Set ChartType to xlDefaultAutoFormat to restore a chart to Excel's default settings.

See the DemoChartTypes procedure in the sample workbook for an animated preview of the available chart types.

chart.ChartWizard([Source], [Gallery], [Format], [PlotBy],
[CategoryLabels], [SeriesLabels], [HasLegend], [Title],
[CategoryTitle], [ValueTitle], [ExtraTitle])

Quickly creates and formats a chart by setting the most commonly used properties and applying a best guess for
omitted settings.

Argument Settings

Source The Range object containing the data to chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Gallery
A constant indicating the type of chart to create. Can be one of these settings: xl3DArea, xl3DBar,
xl3DColumn, xl3DLine, xl3DPie, xl3DSurface, xlArea, xlBar, xlColumn, xlCombination, xlDefaultAutoFormat, xlDoughnut, xlLine,
xlPie, xlPie, xlRadar, or xlXYScatter.

Format A number from 1 to 10 indicating the index of the chart subtype to create from the Chart Type dialog
box.

PlotBy xlRows plots each row as a series; xlColumns plots each column as a series.

CategoryLabels The number of rows or columns in the source range that contain category labels.

SeriesLabels The number of rows or columns in the source range that contain series labels.

HasLegend True creates a legend on the chart; False omits the legend.

Title The caption to include as the title on the chart. Omitting this argument when creating a chart omits the
chart title.

CategoryTitle The caption to include for the category axis (x-axis) on the chart. Omitting this argument when creating
a chart omits the axis title.

ValueTitle The caption to include for the value axis (y-axis) on the chart. Omitting this argument when creating a
chart omits the axis title.

ExtraTitle The caption to include for the series axis (z-axis) on a 3-D chart. Omitting this argument when creating
a chart omits the axis title.

ChartWizard can be used either to plot a new chart or to change an existing chart. When changing a chart, omitted
arguments default to the existing chart's settings. When creating a new chart, omitted arguments default to best-guess
settings based on the type of data being charted and the type of chart selected.

Settings for the Gallery argument are not actually xlChartType constants as the Excel Help says. Some of the possible
settings are found in xlChartType, but ChartWizard actually supports a subset of those constants plus a few not found in
xlChartType: xl3DBar, xlBar, xlColumn, and xlCombination. Each of those general chart types allows a Format argument setting
that corresponds to the index of the subtype shown in the Chart Type dialog box (Figure 16-8).

Figure 16-8. How Gallery and Format correspond to chart types

chart.CodeName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Visual Basic class name of the chart sheet.

chart.Column3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D column chart type.

chart.ColumnGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D column chart types.

chart.CopyPicture([Appearance], [Format], [Size])

Copies the image of a chart into the clipboard.

Argument Settings

Appearance The resolution of the image. Can be one of these settings: xlPrinter, xlScreen. Default is xlScreen.

Format The image format. Can be one of these settings: xlBitmap, xlPicture. Default is xlPicture.

Size xlScreen sizes the picture to match the size displayed on screen; xlPrinter sizes the picture to match the
printed size.

The following code copies a bitmap of a chart onto the clipboard so that it can be later pasted by the user:

Sub DemoCopyPicture()
 Dim chrt As Chart
 Set chrt = Charts("Demo Chart Types")
 ' Copy a chart image into the clipboard.
 chrt.CopyPicture xlScreen, xlBitmap
End Sub

chart.Corners

Returns the Corners object of a 3-D chart.

chart.CreatePublisher([Edition], [Appearance], [Size],
[ContainsPICT], [ContainsBIFF], [ContainsRTF],
[ContainsVALU])

Macintosh only. Creates a publisher for a chart .

Argument Settings

Edition The file name of the edition.

Appearance The resolution. Can be one of these settings: xlPrinter, xlScreen. Default is xlPrinter.

Size xlScreen sizes the image to match the size displayed on screen; xlPrinter sizes the image to match the
printed size.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Size printed size.

ContainsPICT True includes PICT format data. Default is True.

ContainsBIFF True includes BIFF format data. Default is True.

ContainsRTF True includes RTF format data. Default is True.

ContainsVALU True includes VALU format data. Default is True.

chart.DataTable

Returns the DataTable object for the chart. Make sure the HasDataTable property is True before using this object. For
example, the following code adds a data table to a chart and makes the table's font italic:

Sub GetDataTable()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.HasDataTable = True
 chrt.DataTable.Font.Italic = True
End Sub

chart.DepthPercent [= setting]

Sets or returns the depth (z-axis) of a 3-D chart as a percentage of its width. Must be between 20 and 2000. Default is
100.

chart.Deselect()

Cancels the selection of a chart.

chart.DisplayBlanksAs [= xlDisplayBlanksAs]

Sets or returns how omitted values are plotted. Can be one of these settings:

xlNotPlotted

xlInterpolated

xlZero

chart.DoughnutGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using doughnut chart types.

chart.Elevation [= setting]

Sets or returns the angle at which you view a 3-D chart in degrees. Must be between -90 and 90 for most 3-D chart
types and between 0 and 44 for 3-D bar charts.

chart.Floor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.Floor

Returns the Floor object for a 3-D chart.

chart.GapDepth [= setting]

Sets or returns the distance between series on a 3-D chart as a percentage of the marker width. Must be between 0
and 500. Default is 50.

chart.GetChartElement(x, y, ElementID, Arg1, Arg2)

Gets information about the chart object at specific screen coordinates.

Argument Settings

x The x-coordinate of the object.

y The y-coordinate of the object.

ElementID An xlChartItem constant identifying the type of object at (x, y). See Table 16-1.

Arg1 Information about the object. See Table 16-1.

Arg2 Information about the object. See Table 16-1.

The x and y arguments are input arguments; ElementID, Arg1, and Arg2 are output arguments. The meaning of the output
arguments varies based on the type of object (x, y); Table 16-1 describes those returned values.

Table 16-1. Meaning of GetChartElement output arguments
If ElementID is... then Arg1 is... and Arg2 is...

xlAxis, xlAxisTitle, xlDisplayUnitLabel, xlMajorGridlines,
or xlMinorGridlines xlAxisGroup xlAxisType

xlPivotChartDropZone xlPivotFieldOrientation Not set

xlPivotChartFieldButton xlPivotFieldOrientation The index of the column in the
PivotFields collection of the item

xlDownBars, xlDropLines, xlHiLoLines, xlRadarAxisLabels,
xlUpBars

The index of the group within
the ChartGroups collection Not set

xlChartArea, xlChartTitle, xlCorners, xlDataTable, xlFloor,
xlLegend, xlNothing, xlPlotArea, or xlWalls Not set Not set

xlDataLabel or xlSeries The index of the series in the
SeriesCollection of the chart

The index of the point in the Points
collection of the series

xlErrorBars, xlLegendEntry, xlLegendKey, xlXErrorBars,
or xlYErrorBars

The index of the series in the
SeriesCollection of the chart Not set

xlShape The index of the shape in the
Shapes collection of the chart Not set

xlTrendline The index of the series in the
SeriesCollection of the chart

The index of the trendline in the
trendlines collection of the series

The following code displays information about a chart element in the Immediate window when you click on objects in
the chart:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the chart:

' Add this code to the Chart sheet class

' Display element info when chart is clicked.
Private Sub Chart_MouseDown(ByVal Button As Long, _
 ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
 Dim chrt As Chart, id As Long, arg1 As Long, arg2 As Long
 Set chrt = Charts("New Chart")
 arg1 = 0: arg2 = 0
 chrt.GetChartElement x, y, id, arg1, arg2
 Debug.Print id, arg1, arg2
End Sub

chart.HasAxis(xlAxisGroup, xlAxisType) [= setting]

True adds an axis to the chart; False removes the axis.

Argument Settings

xlAxisGroup The axis to add or remove. Can be one of these settings: xlCategory, xlValue, or xlSeriesAxis (3-D only).

xlAxisType For 2-D charts can be xlPrimary or xlSecondary. For 3-D charts, can only be xlPrimary.

Charts can have up to four axes, so HasAxis is a 2-D array of True/False values that determines which axes exist on the
chart. Be sure to check HasAxis before working with an axis object.

chart.HasDataTable [= setting]

True adds a data table on the chart; False removes the data table.

chart.HasLegend [= setting]

True adds a legend to the chart; False removes the legend.

chart.HasPivotFields [= setting]

For pivot charts, True displays pivot controls and False hides the controls. Default is True for pivot charts, False for
other types of charts.

chart.HasTitle [= setting]

True adds a title to the chart; False removes the title.

chart.HeightPercent [= setting]

Sets or returns the height (y-axis) of a 3-D chart as a percentage of its width. Must be between 5 and 500. Default is
100.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.Legend

Returns the Legend object from the chart. Make sure the HasLegend property is True before using this object.

chart.Line3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D line chart type.

chart.LineGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D line chart types.

chart.Location(Where, [Name])

Moves the chart to a new worksheet or chart sheet.

Argument Settings

Where An xlChartLocation constant that specifies the type of location to move to. Can be one of these settings:
xlLocationAsNewSheet, xlLocationAsObject, or xlLocationAutomatic.

Name The name of the target worksheet or chart sheet.

The Location method removes the chart from its current location and inserts it in the new location. For example, the first
procedure in the following code block removes the chart sheet New Chart and inserts the chart as an embedded object on
the Start worksheet; the second procedure moves the embedded chart back to a chart sheet:

Sub MoveChartToStart()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.Location xlLocationAsObject, "Start"
End Sub

Sub MoveChartBack()
 Dim chrt As Chart
 Set chrt = Worksheets("Start").ChartObjects(1).Chart
 chrt.Location xlLocationAsNewSheet
 ActiveSheet.Name = "New Chart"
End Sub

chart.Perspective [= setting]

Sets or returns the perspective for a 3-D chart. Must be between 0 and 100.

chart.Pie3DGroup

Returns the ChartGroup object representing the series that are plotted using a 3-D pie chart type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chart.PieGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using 2-D pie chart types.

chart.PivotLayout

For pivot charts, returns the PivotLayout object from a chart.

chart.PlotArea

Returns the PlotArea object of a chart. The PlotArea represents the background on which the chart is plotted. The ChartArea
is the larger background surrounding the PlotArea.

chart.PlotBy [= xlRowCol]

Sets or returns an xlRowCol constant that determines whether series are plotted by row or by column. Can be one of
these settings:

xlColumns

xlRows

chart.PlotVisibleOnly [= setting]

True plots only rows or columns that are visible in the source range; False plots both visible and hidden data.

Returns a collection of ChartGroup objects representing series that are plotted using 2-D radar chart types.

chart.Refresh()

Refreshes the chart. Charts automatically refresh when their data changes, but Refresh ensures that updates occur
immediately.

chart.RightAngleAxes [= setting]

For 3-D line, bar, and column charts, True places the axes at right angles, ignoring the Perspective settings.

chart.Rotation [= setting]

For 3-D charts, sets or returns the angle by which the chart is rotated. Must be between 0 and 44 for 3-D bar charts
and 0 and 360 for other 3-D types. The following code makes a chart spin around:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and 0 and 360 for other 3-D types. The following code makes a chart spin around:

Sub RotateChart()
 Dim chrt As Chart, deg As Integer
 Set chrt = Charts("New Chart")
 chrt.ChartType = xl3DArea
 For deg = 15 To 360
 chrt.Rotation = deg
 Next
 chrt.Rotation = 15
End Sub

chart.Select([Replace])

Selects one or all chart sheets in a workbook.

Argument Settings

Replace True replaces the current selection with the selected chart or charts; False adds the selection to the
current selection. Default is True.

chart.SeriesCollection([Index])

Returns one or all of the series plotted on the chart. In a line chart, each line is a series and each series represents a
row or column of data (depending on the PlotBy property setting).

chart.SetBackgroundPicture(Filename)

Displays a picture in the chart sheet background.

Argument Settings

Filename The file name of the picture to use. The picture is tiled to fill the entire sheet background. Set Filename to
"" to clear the background picture.

chart.SetSourceData(Source, [PlotBy])

Sets the range to plot in the chart.

Argument Settings

Source The Range object to plot.

PlotBy xlRows plots each row as a series; xlColumns plots each column as a series.

Use SetSourceData to plot new data. This is easier than adding items to the SeriesCollection.

chart.ShowWindow [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For embedded charts, copies an image of the chart to its own window in Excel. ShowWindow seems to work only if the
embedded chart is activated as shown by this code:

Sub ChartWindow()
 Worksheets("Wizard").Activate
 ActiveSheet.ChartObjects(1).Activate
 ActiveChart.ShowWindow = True
End Sub

chart.SizeWithWindow [= setting]

For chart sheets, True scales the chart to match the size of the Excel window; False does not scale. Default is True.

chart.SurfaceGroup

Returns the ChartGroup object representing the series that are plotted using a surface chart type.

chart.Walls

For 3-D charts, returns a Walls object representing the vertical visual boundary of the plot area (as opposed to the Floor,
which is the other visual boundary).

chart.WallsAndGridlines2D [= setting]

For 3-D charts, True draws gridlines in 2-D format. Default is False. Any difference in the gridline appearance is minor,
as illustrated by the following code:

Sub ThreeDGridlines()
 Dim chrt As Chart
 Set chrt = Charts("New Chart")
 chrt.ChartType = xlSurface
 chrt.WallsAndGridlines2D = True
 chrt.Axes(xlCategory, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlValue, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlSeries, xlPrimary).HasMajorGridlines = True
End Sub

chart.XYGroups([Index])

Returns a collection of ChartGroup objects representing series that are plotted using xy scatter chart types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.11. ChartObject and ChartObjects Members
Use the ChartObjects collection to embed new charts on a worksheet or get existing embedded charts. Use the Worksheet or
Chart object's ChartObjects property to get a reference to this collection. Use the individual ChartObject to get a reference to
the underlying Chart object for the embedded chart. ChartObjects and ChartObject have the following members . Key
members (shown in bold) are covered in the following reference section:

Activate Add1

Application2 Border2

BottomRightCell BringToFront2

Chart Copy2

CopyPicture2 Count1

Creator2 Cut2

Delete2 Duplicate2

Enabled2 Group1

Height2 Index

Interior2 Item1

Left2 Locked2

Name Parent2

Placement2 PrintObject2

ProtectChartObject RoundedCorners2

Select2 SendToBack2

Shadow2 ShapeRange2

Top2 TopLeftCell

Visible2 Width2

ZOrder
1 Collection only

2 Object and collection

chartobjects.Add(Left, Top, Width, Height)

Creates a blank, embedded chart on the worksheet or chart sheet.

Argument Settings

Left The distance between the left edge of the sheet and the right edge of the chart in points

Top The distance between the top of the sheet and the top of the chart in points

Width The width of the chart in points

Height The height of the chart in points

Add does not plot the chart, so use the ChartWizard or SetSourceData methods after you create the chart. The following code
shows how to quickly create an embedded chart from a selected range of cells:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shows how to quickly create an embedded chart from a selected range of cells:

Sub AddEmbeddedChart()
 Dim co As ChartObject
 ' Create the chart object
 Set co = ActiveSheet.ChartObjects.Add(100, 200, 400, 200)
 ' Plot the chart from the selected range.
 co.Chart.ChartWizard Selection, xl3DColumn, , xlRows
End Sub

chartobject.BottomRightCell

Returns the Range object for the cell that is under the lower-right corner of the embedded chart.

chartobject.Chart

Returns the Chart object for the embedded chart. You use this object to plot the chart and control the chart's
appearance.

chartobjects.RoundedCorners [= setting]

True displays the embedded chart with rounded, rather than square, corners. Default is False.

chartobject.TopLeftCell

Returns the Range object for the cell that is under the top left corner of the embedded chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.12. ChartGroup and ChartGroups Members
Use the ChartGroups collection to get individual charts from a combo chart. Use the Chart object's ChartGroups property to
get a reference to this collection. Use the ChartGroup object to control chart type-specific aspects of a chart. The
ChartGroups collection and ChartGroup object have the following members . Key members (shown in bold) are covered in
the following reference section:

Application2 AxisGroup

BubbleScale Count1

Creator2 DoughnutHoleSize

DownBars DropLines

FirstSliceAngle GapWidth

Has3DShading HasDropLines

HasHiLoLines HasRadarAxisLabels

HasSeriesLines HasUpDownBars

HiLoLines Index

Item1 Overlap

Parent2 RadarAxisLabels

SecondPlotSize SeriesCollection

SeriesLines ShowNegativeBubbles

SizeRepresents SplitType

SplitValue SubType

Type UpBars

VaryByCategories
1 Collection only

2 Object and collection

chartgroup.BubbleScale [= setting]

For bubble charts, sets or returns the percentage by which to scale the bubbles up or down. Must be between 1 and
300.

chartgroup.DoughnutHoleSize [= setting]

For doughnut charts, sets or returns the size of the hole as a percentage of the chart size. Must be between 10 and 90.
Default is 50.

chartgroup.DownBars

For 2-D line charts with HasUpDownBars set to True, returns the UpBars object for the chart. Causes an error for other chart
types.

chartgroup.DropLines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chartgroup.DropLines

For line and area charts with HasDropLines set to True, returns the DropLines object for the chart. Causes an error for other
chart types.

chartgroup.FirstSliceAngle [= setting]

For pie and doughnut chart types, sets or returns the rotation of the first slice in degrees clockwise from vertical.
Default is 0.

chartgroup.GapWidth [= setting]

For bar and column chart types, sets or returns the gap between bars/columns as a percentage of the bar/column
width. Must be between 0 and 500. Default is 100.

chartgroup.Has3DShading [= setting]

For 3D surface charts, True adds shading to the underside of the surface and False does not. Default is False. Causes an
error for other chart types.

chartgroup.HasDropLines [= setting]

For line and area charts, True adds lines from the series point to the category axis and False omits those lines. Default
is False.

chartgroup.HasHiLoLines [= setting]

For 2-D line charts, True adds lines between the high and low points for each category and False omits those lines.
Default is False.

chartgroup.HasRadarAxisLabels [= setting]

For radar charts, True displays labels for the radar axes and False omits the labels. By default, radar charts have one
radar axis for each category, and the category names appear as labels outside of each axis.

chartgroup.HasSeriesLines [= setting]

For bar and column charts, True adds lines between the each category connecting the bars/columns and False omits the
lines. Default is False.

chartgroup.HasUpDownBars [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For 2-D line charts, True displays bars between the high and low points for each category and False does not. Default is
False.

chartgroup.HiLoLines

For 2-D line charts with HasHiLoLines set to True, returns the HiLoLines object for the chart. Causes an error for other chart
types.

chartgroup.Overlap [= setting]

For bar or column charts, sets the amount of overlap for bars/columns as a percentage of their width. Must be between
-100 and 100. Default is 0.

chartgroup.RadarAxisLabels

For radar charts with HasRadarAxisLabels set to True (the default), returns the TickLabels collection for the radar axis.

chartgroup.SecondPlotSize [= setting]

For pie of pie charts and pie of bar charts, sets or returns the size of the secondary chart as a percentage of the size of
the primary chart. Must be between 5 and 200. Default is 75.

chartgroup.SeriesLines

For bar and column charts with HasSeriesLines set to True, returns the SeriesLines object for the chart. Causes an error for
other chart types.

chartgroup.ShowNegativeBubbles [= setting]

For bubble charts, True plots bubbles that have negative values and False omits them. Default is False.

chartgroup.SizeRepresents [= xlSizeRepresents]

For bubble charts, sets or returns what the size of the bubble represents. Can be one of these settings:

xlSizeIsArea (default)

xlSizeIsWidth

chartgroup.SplitType [= xlSplitType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For pie of pie charts and bar of pie charts, sets or returns how the split between the chart types is displayed. Can be
one of these settings:

xlSplitByCustomSplit

xlSplitByPercentValue

xlSplitByPosition (default)

xlSplitByValue

chartgroup.SplitValue [= setting]

For pie of pie charts and bar of pie charts with SplitType set to xlSplitByValue or xlSplitByPercentValue, sets or returns the
threshold that a category must reach before it is split out of the main pie.

chartgroup.UpBars

For 2-D line charts with HasUpDownBars set to True, returns the UpBars object for the chart. Causes an error for other chart
types.

chartgroup.VaryByCategories [= setting]

For charts containing only one series, True varies the color or pattern of each point in the series; False uses the same
color or pattern for each point. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.13. SeriesLines Members
Use the SeriesLines object to control the appearance of the lines connecting series on 2-D stacked bar and column charts.
Use the ChartGroup object's SeriesLines property to get a reference to this object. The SeriesLines object has the following
members:

Application

Border

Creator

Delete

Name

Parent

Select

Set the HasSeriesLines property to True before using the SeriesLines object. You change the appearance of series lines
through the Border property, as shown here:

Sub ChangeSeriesLines()
 Dim chrt As Chart, cg As ChartGroup, sl As SeriesLines
 ' Get the chart
 Set chrt = ActiveChart
 chrt.ChartType = xlColumnStacked
 ' Get the chart group.
 Set cg = ActiveChart.ChartGroups(1)
 ' Turn on series lines
 cg.HasSeriesLines = True
 Set sl = cg.SeriesLines
 ' Use dashed line.
 sl.Border.LineStyle = 2
 ' Make the lines bold.
 sl.Border.Weight = 4
End Sub

Use the Series object to change the lines plotted on a chart. Series lines apply to the lines
connecting series on only 2-D column and bar charts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.14. Axes and Axis Members
Use the Axes collection to get the axes from a chart. Use the Chart object's Axes property to get a reference to this
collection. Use the Axis object to control the scale, caption, plot order, and appearance of an axis. The Axes collection and
Axis object have the following members. Key members (shown in bold) are covered in the following reference section:

Application2 AxisBetweenCategories

AxisGroup AxisTitle

BaseUnit BaseUnitIsAuto

Border CategoryNames

CategoryType Count1

Creator2 Crosses

CrossesAt Delete

DisplayUnit DisplayUnitCustom

DisplayUnitLabel HasDisplayUnitLabel

HasMajorGridlines HasMinorGridlines

HasTitle Height

Item1 Left

MajorGridlines MajorTickMark

MajorUnit MajorUnitIsAuto

MajorUnitScale MaximumScale

MaximumScaleIsAuto MinimumScale

MinimumScaleIsAuto MinorGridlines

MinorTickMark MinorUnit

MinorUnitIsAuto MinorUnitScale

Parent2 ReversePlotOrder

ScaleType Select

TickLabelPosition TickLabels

TickLabelSpacing TickMarkSpacing

Top Type

Width
1 Collection only

2 Object and collection

axis.AxisBetweenCategories [= setting]

For category axes, True moves the start point of the category axis away from the value axis so that plotted series move
in from the edges of the chart. Default is False. For other axes, causes an error. To see the effect of this property, try
the following code on a line chart:

Sub MoveCategoryAxis()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ax.AxisBetweenCategories = True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

axis.AxisGroup

Returns xlPrimary if the object is the primary axis, xlSecondary if it is the secondary axis.

axis.AxisTitle

Returns the AxistTitle object for the axis. Check the HasTitle property before using this object, and use the AxisTitle Caption
property to change the title as shown by the following code:

Sub ChangeAxisTitle()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 If ax.HasTitle Then _
 ax.AxisTitle.Caption = "New Caption"
End Sub

axis.BaseUnit [= setting]

For category axes with CategoryType set to xlTimeScale, sets the unit of time used by the axis. Can be one of the following
xlTimeUnit constants:

xlMonths

xlDays

xlYears

This property is ignored if CategoryType is not xlTimeScale; and it causes an error if the axis is not a category axis.

axis.BaseUnitIsAuto [= setting]

For category axes, True selects a BaseUnit automatically. Default is True. Set BaseUnitIsAuto to True to restore the default
BaseUnit after changing that property.

axis.CategoryNames [= setting]

Sets or returns the array of data used by the category axis. For example, the following code changes the names on the
category axis:

Sub SetCategoryNames()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ax.CategoryNames = Array("this", "that", "the", "other")
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting an individual element of this array may crash Excel:

ax.CategoryNames(1) = "foo" ' Crash!

axis.CategoryType [= xlCategoryType]

For category axes, sets or returns the type of scale used. Can be one of these settings:

xlAutomaticScale (default)

xlCategoryScale

xlTimeScale

axis.Crosses [= xlAxisCrosses]

For 2-D charts, sets or returns where the value and category axes meet. Can be one of these settings:

xlAxisCrossesAutomatic (default)

xlAxisCrossesCustom

xlMaximum

xlMinimum

axis.CrossesAt [= setting]

For 2-D charts with Crosses set to xlAxisCrossesCustom, sets or returns the point on the axis where the other axis starts. For
example, the following code moves the category axis up to 100,000 on the value axis:

Sub MoveCategoryAxisUp()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ax.Crosses = xlAxisCrossesCustom
 ax.CrossesAt = 100000
End Sub

axis.DisplayUnit [= xlDisplayUnit]

For value axes, sets or returns the numeric scale used by the axis. Default is xlNone. Can be one of these settings:

xlCustom xlHundreds

xlHundredMillions xlHundredThousands

xlMillions xlMillionMillions

xlNone (default) xlTenMillions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlTenThousands xlThousands

xlThousandMillions

Setting this property adds a DisplayUnitLabel to the axis. For example, the following code sets the scale of the value axis
and changes the display unit caption:

Sub SetAxisScale()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveSheet
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ax.DisplayUnit = xlThousands
 ax.DisplayUnitLabel.Caption = "(in $K)"
End Sub

axis.DisplayUnitCustom [= setting]

For value axes with DisplayUnit set to xlCustom, sets or returns the unit for the scale. Can be any value between 0 and
1E+308.

axis.DisplayUnitLabel

For value axes that have a DisplayUnit setting and HasDisplayUnitLabel set to True, returns the DisplayUnitLabel object. Causes
an error in other situations.

axis.HasDisplayUnitLabel [= setting]

For value axes, True causes any DisplayUnit setting (such as Thousands) to appear next to the axis. Causes an error for
other axis types.

axis.HasMajorGridlines [= setting]

True displays gridlines; False hides them. The following code displays major gridlines on a 3-D chart:

Sub SetGridlinesOn()
 Dim chrt As Chart
 Set chrt = ActiveChart
 chrt.ChartType = xl3DArea
 chrt.Axes(xlCategory, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlValue, xlPrimary).HasMajorGridlines = True
 chrt.Axes(xlSeries, xlPrimary).HasMajorGridlines = True
End Sub

axis.HasMinorGridlines [= setting]

True displays minor gridlines; False hides them.

axis.HasTitle [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True displays an AxisTitle for the axis; False removes AxisTitle. Make sure to check HasTitle before using the AxisTitle object.
Set the AxisTitle object's Caption property to change the text it displays.

axes.[Item](Type, [AxisGroup])

Returns an axis from the Axes collection.

Argument Settings

Type The xlAxisType of the axis to return. Can be xlAxisValue, xlAxisCategory, or xlAxisSeries (3-D charts only).

AxisGroup The xlAxisGroup of the axis to return. Can be xlAxisPrimary or xlAxisSecondary (2-D charts only).

The Axes collection is unique in using a 2-D array to contain its component objects.

axis.MajorGridlines

Returns the Gridlines object of the axis. For example, the following code selects the category axis major gridlines if they
exist:

Sub SelectGridlines()
 Dim chrt As Chart, gl As Gridlines
 Set chrt = ActiveChart
 chrt.ChartType = xl3DArea
 If chrt.Axes(xlCategory, xlPrimary).HasMajorGridlines Then
 Set gl = chrt.Axes(xlCategory, xlPrimary).MajorGridlines
 gl.Select
 End If
End Sub

axis.MajorTickMark [= xlTickMark]

Sets or returns the type of tick mark used on the axis. Can be one of these settings:

xlTickMarkCross

xlTickMarkInside

xlTickMarkNonex

lTickMarkOutside (default)

axis.MajorUnit [= setting]

For the value axis, sets or returns the interval between tick marks. Use the TickMarkSpacing property to set this interval on
the category axis.

axis.MajorUnitIsAuto [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True causes Excel to calculate MajorUnit automatically; False relies on the setting in the MajorUnit property. Setting the
MajorUnit property automatically sets this property to False. Default is True.

axis.MajorUnitScale [= xlTimeUnit]

For the category axis when CategoryType is xlTimeScale, sets or returns the interval between tick marks. Can be one of
these settings:

xlMonths

xlDays

xlYears

axis.MaximumScale [= setting]

For value axes, sets or returns the maximum value for the axis. Setting this property automatically sets
MaximumScaleIsAuto to False. The following code sets the maximum and minimum axis values on a chart to match the
maximum and minimum values in the source data range [PriceHistory]:

Sub ScaleValueAxis()
 Dim chrt As Chart, ax As Axis
 Set chrt = Charts("Stock Price History")
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ax.MaximumScale = WorksheetFunction.Max(Range("PriceHistory"))
 ax.MinimumScale = WorksheetFunction.Min(Range("PriceHistory"))
End Sub

axis.MaximumScaleIsAuto [= setting]

For value axes, True causes Excel to calculate the maximum value for the axis based on the source data; False uses the
MaximumScale setting instead. Default is True.

axis.MinimumScale [= setting]

For value axes, sets or returns the minimum value for the axis. Setting this property automatically sets MinimumScaleIsAuto
to False.

axis.MinimumScaleIsAuto [= setting]

For value axes, True causes Excel to calculate the minimum value for the axis based on the source data and False uses
the MinimumScale setting instead. Default is True.

axis.MinorGridlines

For primary axes, returns the Gridlines object representing the minor gridlines of the axis. Be sure to check the
HasMinorGridlines property before using this object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

axis.MinorTickMark [= xlTickMark]

Sets or returns how minor tick marks are displayed. Can be one of these settings:

xlTickMarkCross

xlTickMarkInside

xlTickMarkNone

xlTickMarkOutside

axis.MinorUnit [= setting]

For the value axis, sets or returns the interval between minor tick marks. Use the TickMarkSpacing property to set this
interval on the category axis.

axis.MinorUnitIsAuto [= setting]

True causes Excel to calculate MinorUnit automatically; False relies on the setting in the MinorUnit property. Setting the
MajorUnit property automatically sets this property to False. Default is True.

axis.MinorUnitScale [= xlTimeUnit]

For the category axis when CategoryType is xlTimeScale, sets or returns the interval between minor tick marks. Can be one
of these settings:

xlMonths

xlDays

xlYears

axis.ReversePlotOrder [= setting]

True plots data from last to first, reversing the category axis. Default is True.

axis.ScaleType [= xlScaleType]

For value axes, sets or returns the type of scale. Can be one of these settings:

xlScaleLinear

xlScaleLogarithmic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

axis.TickLabelPosition [= xlTickLabelPosition]

Sets or returns where tick labels are placed. Can be one of these settings:

xlTickLabelPositionLow

xlTickLabelPositionHigh

xlTickLabelPositionNextToAxis

xlTickLabelPositionNone

axis.TickLabels

Returns the TickLabels object for the axis.

axis.TickLabelSpacing [= setting]

For category and series axes, sets or returns the number of categories or series between tick mark labels. Default is 1.

axis.TickMarkSpacing [= setting]

For category and series axes, sets or returns the number of categories or series between tick marks. Default is 1. Use
the MajorUnit property to set tick mark spacing for value axes.

axis.Type

Returns the xlAxisType constant that identifies the type of the axis. Can be one of these settings:

xlCategory

xlSeriesAxis

xlValue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.15. DataTable Members
Use the DataTable object to control the appearance of a data table on a chart sheet. Use the Chart object's DataTable
property to get a reference to this object. The DataTable object has the following members:

Application AutoScaleFont

Border Creator

Delete Font

HasBorderHorizontal HasBorderOutline

HasBorderVertical Parent

Select ShowLegendKey

Most of the DataTable members are True/False properties that enable or disable specific data table items. These
properties correspond to the settings on the Format Data Table dialog box (Figure 16-9).

Before you use the DataTable object, make sure to set the chart's HasDataTable property to Truethat creates the table if it
did not already exist. The following code adds a data table to the active chart and sets some of the table's properties:

Sub AddDataTable()
 Dim chrt As Chart, dt As DataTable
 ' Get the chart.
 Set chrt = ActiveChart
 ' Add a data table if it doesn't have one.
 chrt.HasDataTable = True
 ' Get the data table.
 Set dt = chrt.DataTable
 ' Set the data table properties.
 ' These properties are all True by default:
 dt.ShowLegendKey = False
 dt.HasBorderHorizontal = False
 dt.HasBorderOutline = True
 dt.HasBorderVertical = True
End Sub

Figure 16-9. Data table properties correspond to these settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data tables may appear on chart sheets or on embedded charts, but some chart types, such as xy scatter charts, do
not support them; in those cases, trying to set HasDataTable does nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.16. Series and SeriesCollection Members
Use the SeriesCollection to get all of the series plotted on the chart. Use the Chart object's SeriesCollection property to get a
reference to this collection. Use the Series object to change an individual series or get the data points that the series
plots. The SeriesCollection and Series object have the following members . Key members (shown in bold) are covered in the
following reference section:

Add1 Application2

ApplyCustomType ApplyDataLabels

ApplyPictToEnd ApplyPictToFront

ApplyPictToSides AxisGroup

BarShape Border

BubbleSizes ChartType

ClearFormats Copy

Count1 Creator2

DataLabels Delete

ErrorBar ErrorBars

Explosion Extend 1

Fill Formula

FormulaLocal FormulaR1C1

FormulaR1C1Local Has3DEffect

HasDataLabels HasErrorBars

HasLeaderLines Interior

InvertIfNegative Item 1

LeaderLines MarkerBackgroundColor

MarkerBackgroundColorIndex MarkerForegroundColor

MarkerForegroundColorIndex MarkerSize

MarkerStyle Name

NewSeries 1 Parent 2

Paste 2 PictureType

PictureUnit PlotOrder

Points Select

Shadow Smooth

Trendlines Type

Values XValues

1 Collection only

2 Object and collection

seriescollection.Add(Source, [Rowcol], [SeriesLabels],
[CategoryLabels], [Replace])

Adds a new series and plots it on a chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Source The Range object to plot as the new series.

Rowcol An xlRowCol constant that determines how the series is plotted. Can be xlColumns or xlRows.

SeriesLabels True interprets the first row or column of Source as a series label; False treats the first row or column as
data. Defaults to a best guess based on the source data.

CategoryLabels True interprets the first row or column of Source as a category label; False treats the first row or column
as data. Defaults to a best guess based on the source data.

Replace If CategoryLabels is True, setting Replace to True replaces matching categories with the new labels; False
does not replace the categories.

Use the Chart object's SetSourceData method to replace all of the series on a chart with new data.

series.ApplyCustomType(ChartType)

Applies a chart type to a series. Use this method to create combo charts containing more than one chart type.

Argument Settings

ChartType An xlChartType constant. See the reference topic for the Chart object's ChartType property for a list of possible
settings.

The following code creates a chart and adds series using the SeriesCollection Add method; then it changes the chart type of
the last series to create a combo chart containing both line and column chart types:

Sub AddSeries()
 Dim chrt As Chart, sc As SeriesCollection, _
 sr As Series
 ' Create a line chart.
 Set chrt = Charts.Add
 chrt.ChartType = xlLine
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Add adds some series (plots data).
 sc.Add Range("GrowthRate"), , True, True
 ' Get the last series.
 Set sr = sc(sc.Count)
 ' Change its chart type.
 sr.ApplyCustomType xlColumnClustered
End Sub

series.ApplyDataLabels([Type], [LegendKey], [AutoText],
[HasLeaderLines], [ShowSeriesName], [ShowCategoryName],
[ShowValues], [ShowPercentage], [ShowBubbleSize],
[Separator])

Applies data labels to a single series on the chart. The arguments for this method are identical to those for the Chart
object's ApplyDataLabels method. See that reference topic for complete information and an example.

series.ApplyPictToEnd [= setting]

For 3-D column and bar charts, True displays the fill picture on the end of the column or bar and False displays the fill
color. Default is True if the series has a fill picture. Setting the ApplyPict properties causes an error for other chart types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

color. Default is True if the series has a fill picture. Setting the ApplyPict properties causes an error for other chart types.

The following code demonstrates each of the ApplyPict properties:

Sub ApplyPict()
 Dim chrt As Chart, sc As SeriesCollection, _
 sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 chrt.ChartType = xl3DColumn
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Get the first series.
 Set sr = sc(1)
 ' Display a picture on the series column.
 sr.Fill.UserPicture ThisWorkbook.Path & "\small_wombat.GIF"
 sr.Fill.Visible = True
 ' Show all sides
 Application.Wait Now + 0.00001
 ' Remove picture from end.
 sr.ApplyPictToEnd = False
 Application.Wait Now + 0.00001
 ' Remove picture from all sides.
 sr.ApplyPictToSides = False
 Application.Wait Now + 0.00001
 ' Apply picture to front side.
 sr.ApplyPictToFront = True
End Sub

series.ApplyPictToFront [= setting]

For 3-D column and bar charts, True displays the fill picture on the front of the column or bar.

series.ApplyPictToSides [= setting]

For 3-D column and bar charts, True displays the fill picture on the sides of the column or bar.

series.AxisGroup [= xlAxisGroup]

Sets or returns the axis group that the series belongs to. For 2-D charts, can be xlPrimary or xlSecondary. For 3-D charts,
AxisGroup can only be xlPrimary.

series.ChartType [= xlChartType]

Sets or returns the chart type of the series. Changing the chart type of a series makes the chart a combo chart and
creates a ChartGroup for the new chart type.

series.ClearFormats()

Restores the series ChartFillFormat object back to its default. For example, the following code removes the pictures applied
in the ApplyPict procedure earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the ApplyPict procedure earlier:

Sub RemovePict()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Remove the formatting
 sr.ClearFormats
End Sub

series.DataLabels([Index])

Gets one or all of the DataLabel objects for the series. Be sure to set HasDataLabels to True before using this property.

series.ErrorBar(Direction, Include, Type, [Amount],
[MinusValues])

For 2-D chart types, adds error bars to the series. Causes an error for 3-D chart types.

Argument Settings

Direction An xlErrorBarDirection constant that specifies the axis direction for the bar. Possible settings are xlX or xlY.

Include An xlErrorBarInclude constant that specifies the type of bar. Possible settings are xlErrorBarIncludeBoth,
xlErrorBarIncludeNone, xlErrorBarIncludeMinusValues, or xlErrorBarIncludePlusValues.

Type An xlErrorBarType constant that specifies the calculation used to size the bar. Possible settings are
xlErrorBarTypeCustom, xlErrorBarTypePercent, xlErrorBarTypeStError, xlErrorBarTypeFixedValue, or xlErrorBarTypeStDev.

Amount If Type is xlErrorBarTypeCustom, the positive value of the bar.

MinusValues If Type is xlErrorBarTypeCustom, the negative value of the bar.

The following code adds error bars to the first series of the active chart:

Sub AddErrorBars()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Use 2-D chart type.
 chrt.ChartType = xlLineMarkers
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Add error bars.
 sr.ErrorBar xlY, xlErrorBarIncludeBoth, xlErrorBarTypeStError
End Sub

series.ErrorBars

Returns the ErrorBars collection for a series. Use the returned object to remove error bars from a series, as shown by the
following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code:

Sub RemoveErrorBars()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Remove the error bars added by AddErrorBars.
 sr.ErrorBars.Delete
End Sub

series.Explosion [= setting]

For pie and doughnut chart types, sets or returns the amount to move the series out from the center (exploded view)
as a percentage of the diameter of the chart. The following code explodes one piece out of a pie chart:

Sub ExplodeSlice()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Use a pie chart type.
 sr.ChartType = xlPie
 ' Keep pie together
 sr.Explosion = 0
 ' Explode last piece.
 sr.Points(sr.Points.Count).Explosion = 50
End Sub

seriescollection.Extend(Source, [Rowcol], [CategoryLabels])

Adds data values to existing series.

Argument Settings

Source The Range object containing the data to add to the series.

Rowcol An xlRowCol constant that determines how the data is plotted. Can be xlColumns or xlRows.

CategoryLabels True interprets the first row or column of Source as a category label; False treats the first row or column
as data. Defaults to a best guess based on the source data.

series.Fill

Returns the ChartFillFormat object for the series. Use this object to change the color, pattern, or picture displayed on the
series.

series.Formula [= setting]

Gets or sets the formula for a series. This formula uses the Series worksheet function. The Formula properties are the only
way to get the source range from the chart. For example, the following code gets the source range from the active
chart and then selects that range:

Sub TestGetSourceRange()
 Dim chrt As Chart, rng As Range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim chrt As Chart, rng As Range
 ' Get a chart.
 Set chrt = ActiveChart
 Set rng = GetSourceRange(chrt)
 rng.Worksheet.Activate
 rng.Select
End Sub

Function GetSourceRange(chrt As Chart) As Range
 Dim sc As SeriesCollection, sr As Series, _
 result As Range, temp As String, i As Integer, _
 ar() As String, j As Integer
 Set sc = chrt.SeriesCollection
 ' For each of the series.
 For i = 1 To sc.Count
 ' Get the formula.
 temp = sc(i).Formula
 ' Get the address part of the formula.
 temp = Replace(temp, "=SERIES(", "")
 ' Break into an array.
 ar = Split(temp, ",")
 ' Omit the last element, which is the index of the series.
 For j = 0 To UBound(ar) - 1
 ' If the data point is not omitted.
 If ar(j) <> "" Then
 ' Convert the address to a range.
 If result Is Nothing Then
 Set result = Range(ar(j))
 Else
 ' Append the range using Union.
 Set result = Union(result, Range(ar(j)))
 End If
 End If
 Next
 Next
 ' Return the result.
 Set GetSourceRange = result

End Function series.FormulaLocal [= setting]

Same as the Formula property, only uses the user's language settings rather than English to create the formula.

series.FormulaR1C1 [= setting]

Same as the Formula property, only uses R1C1 format for the cell references.

series.FormulaR1C1Local [= setting]

Same as the Formula property, only uses the user's language and R1C1 format for the cell references.

series.Has3DEffect [= setting]

For bubble charts, True renders the series with a 3-D look.

series.HasDataLabels [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True adds data labels to the series if they do not already exist; False removes them. Set this property to True before
using the DataLabels collection.

series.HasErrorBars [= setting]

True adds data error bars to the series if they do not already exist; False removes them. Set this property to True
before using the ErrorBars object.

series.HasLeaderLines [= setting]

For xy scatter charts, True adds leader lines to the series if they do not already exist; False removes them. Set this
property to True before using the LeaderLines object.

series.InvertIfNegative [= setting]

True inverts the pattern for the series for negative values; False uses the same pattern as for positive values. Default is
False.

series.LeaderLines

For xy scatter charts, returns a LeaderLines object for the series. Be sure to set HasLeaderlines to True before using this
object.

series.MarkerBackgroundColor [= setting]

For line, xy scatter, and radar charts, sets or returns the background of the point markers as an RGB value.

series.MarkerBackgroundColorIndex [= setting]

For line, xy scatter, and radar charts, sets or returns the background of the point markers as the index of the color in
the Excel color palette. May also be xlColorIndexAutomatic (default) or xlColorIndexNone.

series.MarkerForegroundColor [= setting]

For line, xy scatter, and radar charts, sets or returns the foreground of the point markers as an RGB value.

series.MarkerForegroundColorIndex [= setting]

For line, xy scatter, and radar charts, sets or returns the foreground of the point markers as the index of the color in
the Excel color palette. May also be xlColorIndexAutomatic (default) or xlColorIndexNone.

series.MarkerSize [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For line, xy scatter, and radar charts, sets or returns the marker size in points.

series.MarkerStyle [= xlMarkerStyle]

For line, xy scatter, and radar charts, sets or returns the type of marker displayed. Can be one of these settings:

xlMarkerStyleAutomatic (default) xlMarkerStyleCircle

xlMarkerStyleDash xlMarkerStyleDiamond

xlMarkerStyleDot xlMarkerStyleNone

xlMarkerStylePicture xlMarkerStylePlus

xlMarkerStyleSquare xlMarkerStyleStar

xlMarkerStyleTriangle xlMarkerStyleX

seriescollection.NewSeries()

Creates a new, empty series on the chart. For example, the following code creates a new line chart and adds a new
series plotted from an array of values:

Sub ChartFromArray()
 Dim chrt As Chart, sr As Series
 ' Create a new chart.
 Set chrt = ThisWorkbook.Charts.Add
 chrt.ChartType = xlLine
 ' Create a new series.
 Set sr = chrt.SeriesCollection.NewSeries
 ' Add some values to the series.
 sr.Values = Array(1, 2, 3, 4)
End Sub

seriescollection.Paste([Rowcol], [SeriesLabels],
[CategoryLabels], [Replace], [NewSeries])

Pastes a range from the Clipboard into a chart and plots it as a series.

Argument Settings

Rowcol An xlRowCol constant that determines how the series is plotted. Can be xlColumns or xlRows.

SeriesLabels True interprets the first row or column of Source as a series label; False treats the first row or column as
data. Defaults to a best guess based on the source data.

CategoryLabels True interprets the first row or column of Source as a category label; False treats the first row or column
as data. Defaults to a best guess based on the source data.

Replace If CategoryLabels is True, setting Replace to True replaces matching categories with the new labels; False
does not replace the categories.

NewSeries True creates a new series from the data; False appends the data to existing series. Default is True.

series.PictureType [= xlChartPictureType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For column and bar charts, sets or returns how the fill picture is displayed. Can be one of these settings:

xlStack

xlStackScale

xlStretch (default)

series.PictureUnit [= setting]

For column and bar charts with PictureType set to xlStackScale, sets or returns the unit value of each fill picture. Default is 1.

series.PlotOrder [= setting]

Sets or returns the index of the series in the SeriesCollection . Changing PlotOrder reorders the series on the chart. You can
change PlotOrder only for series with the same chart type.

series.Points([Index])

Returns one or all of the Point objects contained in a series.

series.Smooth [= setting]

For line and xy scatter charts, True smooths curves and False does not. Default is False.

series.Trendlines([Index])

Returns one or all of the trendline objects for a series. Use the TRendlines collection to add trendlines to a series as shown
by the following code:

Sub AddTrendline()
 Dim chrt As Chart, sr As Series, tl As Trendline
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Add a trendline
 Set tl = sr.Trendlines.Add
 tl.Type = xlMovingAvg
End Sub

series.Values [= setting]

Sets or returns the array of values plotted by the series. For example, this helper function builds an array containing all
the values from a chart:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the values from a chart:

' Useful function for getting a chart's source data
' in the form of an array.
Function GetChartData(chrt As Chart) As Variant
 Dim sc As SeriesCollection, i As Integer
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Size an array to fit all the series.
 ReDim result(1 To sc.Count) As Variant
 ' For each of the series.
 For i = 1 To sc.Count
 ' Add the array of points to the result.
 result(i) = sc(i).Values
 Next
 ' Return the result array.
 GetChartData = result
End Function

You can use GetChartData to get values from a chart for use with Excel's WorksheetFunction methods as shown here:

Sub TestGetChartData()
 Dim chrt As Chart, sc As SeriesCollection
 Set chrt = Charts("Stock Price History")
 Debug.Print WorksheetFunction.Min(GetChartData(chrt)), _
 WorksheetFunction.Max(GetChartData(chrt))
End Sub

series.XValues [= setting]

For xy scatter charts, sets or returns the x values of the series as an array. This property also accepts a Range object
when being set. The following code changes the type of a series to xlXYScatter, then sets the x values for the series:

Sub SetXYValues()
 Dim chrt As Chart, sr As Series
 ' Get a chart.
 Set chrt = ActiveChart
 ' Get first series
 Set sr = chrt.SeriesCollection(1)
 ' Set the chart type to xy scatter.
 sr.ChartType = xlXYScatter
 ' Set x values
 sr.XValues = Array(1, 5, 3, 2)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.17. Point and Points Members
Use the Points collection to get individual data points from a series. Use the Series object's Points property to get a
reference to this collection. Use the Point object to change the appearance of a point within a series. The Points collection
and Point object have the following members. The key member (shown in bold) is covered in the following reference
section:

Application2 ApplyDataLabels

ApplyPictToEnd ApplyPictToFront

ApplyPictToSides Border

ClearFormats Copy

Count1 Creator2

DataLabel Delete

Explosion Fill

HasDataLabel Interior

InvertIfNegative Item1

MarkerBackgroundColor MarkerBackgroundColorIndex

MarkerForegroundColor MarkerForegroundColorIndex

MarkerSize MarkerStyle

Parent2 Paste

PictureType PictureUnit

SecondaryPlot Select

Shadow
1 Collection only

2 Object and collection

Most of the Point members are also available on the Series object. When those members are applied on the Point object,
they affect a single point rather than the entire series. See the Series reference topics for complete information and
examples of how to use those members.

Only the SecondaryPlot property is unique to the Point object, so it is covered here.

point.SecondaryPlot [= setting]

For pie of pie charts and pie of bar charts, True displays the point part in the secondary chart; False displays the point
in the primary chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2. Create Charts Quickly
Use the Chart object's ChartWizard method to create charts quickly in code. ChartWizard is a shortcut through the complex
chart object model that lets you chart data in two steps:

1. Create a new Chart object in the workbook.

2. Call the ChartWizard method on that object.

Figure 16-1. Guide to the chart objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the following code adds a new chart sheet to a workbook, then charts data from the HomeSales named
range:

Sub ChartWizard1()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' 1) Create a chart sheet.
 Set chrt = Charts.Add(, ws)
 ' 2) Chart the data.
 chrt.ChartWizard ws.[HomeSales]
End Sub

If you run the preceding sample, you'll get a 3-D area chart that looks impressive but is almost entirely useless. The
chart would make much more sense as a simple line chart, and it would be nice to include a legend and axis labels. To
do that, fill out the ChartWizard arguments as shown here:

Sub ChartWizard2()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' Create a chart sheet.
 Set chrt = Charts.Add(, ws)
 ' Name the sheet.
 chrt.Name = "Median FL Prices"
 ' Specify chart type, axis labels, legend, and title.
 chrt.ChartWizard ws.[HomeSales], xlLine, , xlColumns, 1, 1, True, _
 "FL Median Home Prices", "Year", "Price"
End Sub

Figure 16-2 shows the result of ChartWizard2 and labels the parts of the chart with the corresponding ChartWizard
arguments.

Figure 16-2. Chart parts with corresponding ChartWizard arguments

You can use ChartWizard to change existing charts , too. For example, the following code changes the preceding chart's
type and title to demonstrate several types of charts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type and title to demonstrate several types of charts:

Sub ChangeChart()
 Dim chrt As Chart
 ' Get the chart sheet.
 Set chrt = Charts("Median FL Prices")
 ' Change the chart type and title.
 chrt.ChartWizard , xlBar, , xlColumns, 1, 1, True, _
 "Bar Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlBar, 8, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Bar 8)"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlArea, , xlColumns, 1, 1, True, _
 "Area Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , , , xlRows, 1, 1, True, _
 "Area Chart by Row"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlLine, 10, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Smooth)"
End Sub

ChangeChart rotates through different chart types pausing between each. This is a good way to learn about chart settings,
and it's fun, too.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.3. Embed Charts
Charts may exist as separate sheets, as shown in the preceding section, or they can be embedded on a worksheet
using the ChartObjects collection. To embed a chart quickly, use the Add method to create a new ChartObject, then use that
object's Chart property to control the underlying chart:

 Sub EmbedChart()
 Dim ws As Worksheet, co As ChartObject, chrt As Chart
 Set ws = ActiveSheet
 ' Create an embedded chart object.
 Set co = ws.ChartObjects.Add(40, 160, 400, 200)
 ' Name the ChartObject so it's easy to get later.
 co.Name = "FL Median Home Prices"
 ' Get the underlying Chart object.
 Set chrt = co.Chart
 ' Plot the chart using the ChartWizard method
.
 chrt.ChartWizard [HomeSales], xlLine, , xlColumns, 1, 1, True, _
 "FL Median Home Prices"
End Sub

The ChartObject is simply a container for the chart on the worksheet. You use it to set the size and position of the chart
on the worksheet, but for anything else you use the underlying Chart object. For example, the following code gets the
Chart object from the embedded chart and rotates through different chart types:

Sub ChangeEmbeddedChart()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' Get the chart.
 Set chrt = ws.ChartObjects("FL Median Home Prices").Chart
 ' Change the chart type and title.
 chrt.ChartWizard , xlBar, , xlColumns, 1, 1, True, _
 "Bar Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlBar, 8, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Bar 8)"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlArea, , xlColumns, 1, 1, True, _
 "Area Chart"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , , , xlRows, 1, 1, True, _
 "Area Chart by Row"
 Application.Wait Now + 0.00003
 chrt.ChartWizard , xlLine, 10, xlColumns, 1, 1, True, _
 "FL Median Home Prices (Smooth)"
End Sub

ChangeEmbeddedChart does the same thing as ChangeChart, shown earlier; the main difference is how you get the reference
to the Chart object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.4. Create More Complex Charts
You don't have to use the ChartWizard method to plot a chart. If you like, you can use the individual chart members
instead. The following code illustrates creating a stock chart without ChartWizard:

Sub CreateChart()
 Dim ws As Worksheet, chrt As Chart
 Set ws = ActiveSheet
 ' Create the chart
 Set chrt = ThisWorkbook.Charts.Add(, ws)
 ' Name the chart sheet.
 chrt.Name = "Stock Price History"
 ' Plot the data in a named range.
 chrt.SetSourceData ws.[HistoryData], xlColumns
 ' Set the chart type to Open, High, Low, Close.
 chrt.ChartType = xlStockOHLC
 ' Dates are in descending order, so reverse the axis.
 chrt.Axes(xlCategory).ReversePlotOrder = True
End Sub

The main reason to use this approach rather than the ChartWizard method is that the ChartType property supports the full
set of xlChartType constants. ChartWizard supports only a subset. The xlStockOHLC type is one of the types not available
through ChartWizard. Another reason to use this approach is that it doesn't add much complexity if you are already
changing other chart settings, such as reversing the plot order as shown earlier.

The disadvantage of this approach is that you have to know what properties and methods control each aspect of the
chart. The easiest way to solve this riddle is to turn on Macro Recording, create your chart, format it as you want it to
appear, then turn off Macro Recording and examine the generated code.

For example, this code was generated in response to reformatting the chart created by the CreateChart procedure. I
added comments to note the steps you can follow to generate the same code:

' Recorded code (annotated).
Sub Macro7()
 ' Choose Tools>Chart Options>Title and enter titles.
 With ActiveChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "MSFT"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Price"
 End With
 ' Select the Legend tab on Options and clear Show Legend.
 ActiveChart.HasLegend = False
 ' Right-click the plot area, select Format Plot Area,
 ' and set the Area Color to None.
 ActiveChart.PlotArea.Select
 Selection.Interior.ColorIndex = xlNone
 ' Right-click the y-xis, select Format Axis and set the scale.
 ActiveChart.Axes(xlValue).Select
 With ActiveChart.Axes(xlValue)
 .MinimumScale = 20
 .MaximumScale = 30
 .MinorUnitIsAuto = True
 .MajorUnitIsAuto = True
 .Crosses = xlAutomatic
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With
End Sub

As you can see, Excel records items as they are selected and includes more property settings than I actually changed.
You can remove those things to clean the code up a bit:

' Based on recorded code.
Sub ChangeChart()
 Dim chrt As Chart
 Set chrt = Charts("Stock Price History")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set chrt = Charts("Stock Price History")
 With chrt
 ' Change: get title from a named range.
 .HasTitle = True
 .ChartTitle.Characters.Text = UCase([Symbol])
 ' Note how confusing the Axes collection is!
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Price"
 .HasLegend = False
 ' ActiveChart.PlotArea.Select returns a PlotArea object.
 .PlotArea.Interior.ColorIndex = xlNone
 ' Change the scale settings for the y-axis.
 .Axes(xlValue).MinimumScale = WorksheetFunction.Min([HistoryData])
 .Axes(xlValue).MaximumScale = WorksheetFunction.Max([HistoryData])
 End With
End Sub

Figure 16-3 shows the resulting chart with some of the major objects labeled.

Figure 16-3. Major objects on a chart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.5. Choose Chart Type
The ChartType property controls what type of chart to plot, but not all chart types are compatible with the data you may
want to chart. For example, the xlStockOHLC chart plotted in the preceding section requires four series in a particular
order: Open, High, Low, and Close prices. To try out different chart types:

1. Select the data to chart, then choose Insert Chart to start the Chart Wizard.

2. Select a chart type and subtype then click the button below the subtype list to preview the result, as shown in
Figure 16-4.

3. If the selected data doesn't match what is required by the chart type, the preview displays a message
explaining the problem.

Figure 16-4. Trying out different chart types

Again, you can record your actions to find out the xlChartType constant for the chart type you want.

The DemoChartTypes procedure in the sample workbook cycles through all of the available ChartType settings, pausing after
each. You can use that procedure to choose from the many chart types and find the corresponding xlChartType constant.
That procedure is too long to reproduce in print, so here is an abridged version:

Sub DemoChartTypes()
 Dim chrt As Chart, secs As Double
 secs = 1 / 100000
 Set chrt = Charts("Demo Chart Types")
 chrt.Activate
 chrt.ChartType = xl3DAreaStacked
 chrt.ChartTitle.Caption = "ChartType: xl3DAreaStacked"
 chrt.Refresh
 Application.Wait Now + secs
 ' Repeat for each xlChartType constant (omitted here).
 chrt.ChartType = xlXYScatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 chrt.ChartType = xlXYScatter
 chrt. ChartTitle.Caption = "ChartType: xlXYScatter"
 chrt.Refresh
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.6. Create Combo Charts
Simple charts have one chart type: line, bar, column, or another chart type. Combo charts have two or more chart
types combined for a single chart. Several of the custom chart types are combo charts, as shown in Figure 16-5.

Figure 16-5. Some of the custom charts combine chart types

To create a combo chart in code, use the ApplyCustomType method as shown here:

Sub CreateComboChart1()
 Dim chrt As Chart
 ' Create a new chart sheet
 Set chrt = ThisWorkbook.Charts.Add
 ' Name the sheet.
 chrt.Name = "Combo Chart 1"
 ' Plot the data from a named range.
 chrt.SetSourceData [HomeSales], xlColumns
 ' Make the chart a combo chart
 chrt.ApplyCustomType xlBuiltIn, "Line - Column on 2 Axes"
End Sub

The custom chart types automatically choose which series to plot with which chart type. In the preceding code, the
series is divided equally between column and line chart types. To control that a little more carefully, use the Series
object's ChartType property to create the combo chart instead:

Sub CreateComboChart2()
 Dim chrt As Chart, sc As SeriesCollection
 ' Create a new chart sheet
 Set chrt = ThisWorkbook.Charts.Add
 ' Name the sheet.
 chrt.Name = "Combo Chart 2"
 ' Plot the data from a named range.
 chrt.SetSourceData [HomeSales], xlColumns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 chrt.SetSourceData [HomeSales], xlColumns
 ' Set chart type
 chrt.ChartType = xlColumnClustered
 ' Get the series collection
 Set sc = chrt.SeriesCollection
 ' Change the type of the last series
 sc(sc.Count).ChartType = xlLineMarkers
End Sub

Now, only the last series is a line chart. You can combine any number of 2-D chart types in this way, but you can't
combine 3-D chart types . Setting any series to a 3-D chart type changes the type for the entire chart. In other words,
only 2-D charts can be combo charts.

Excel groups series with the same chart type into ChartGroup objects. A chart has one ChartGroup for each different chart
type it displays. Simple charts have one ChartGroup; combo charts have two or more.

The ChartGroup object provides access to properties that are specific to the chart type. To get the ChartGroup object, use
the Chart object's ChartGroups property or one of the type-specific Chart properties listed here:

Area3DGroup AreaGroups

Bar3DGroup BarGroups

Column3DGroup ColumnGroups

DoughnutGroups Line3DGroup

LineGroups Pie3DGroup

PieGroups RadarGroups

SurfaceGroup XYGroups

XYGroups XYGroups

The group properties for 2-D chart types (AreaGroups, BarGroups, etc.) return collections with one item for each subtype of
chart. The group properties for 3-D charts (Area3DGroup, Bar3DGroup, etc.) return a single ChartGroup object: 3-D charts
have only one chart group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.7. Add Titles and Labels
The following Chart objects can have captions that serve as titles or labels:

AxisTitle

ChartTitle

DataLabel

DisplayUnitLabel

To add a caption to one of these objects in code, follow these general steps:

1. Make sure the object exists. For example, to ensure ChartTitle exists, set the HasTitle property to True.

2. Set the Caption property of the title.

3. Refresh the chart to display the changes. This step is not always required, but since charts are not always
immediately updated, adding a Refresh statement is good insurance.

Setting the Caption property and setting Characters.Text (shown earlier) are equivalent. Excel
records setting chart titles using Characters.Text, but you can change that to make it shorter.

The following code adds captions to the chart and primary axes:

Sub AddTitles()
 Dim chrt As Chart, ax As Axis
 Set chrt = Charts("Demo Chart Types")
 chrt.ChartType = xl3DBarStacked
 chrt.Activate
 ' Make sure ChartTitle exists
 chrt.HasTitle = True
 ' Set caption
 chrt.ChartTitle.Caption = "Total Four-Year Appreciation"
 ' Make sure axis exists
 chrt.HasAxis(xlValue, xlPrimary) = True
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ' Make sure AxisTitle exists
 ax.HasTitle = True
 ' Set caption
 ax.AxisTitle.Caption = "Primary Value Axis"
 ax.AxisTitle.Orientation = xlHorizontal
 chrt.HasAxis(xlValue, xlPrimary) = True
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ax.HasTitle = True
 ax.AxisTitle.Caption = "Primary Category Axis"
 ax.AxisTitle.Orientation = xlUpward
 ' Update chart to ensure changes are displayed.
 chrt.Refresh
End Sub

Adding data label captions is more complex, since they are part of the SeriesCollection hierarchy. The following code turns
on data labels for each series and highlights labels that exceed 25 percent by making those captions bold:

Sub HightlightDataLabels()
 Dim chrt As Chart, se As Series, dl As DataLabel
 Set chrt = Charts("Demo Chart Types")
 ' Make sure data labels exist
 For Each se In chrt.SeriesCollection
 se.HasDataLabels = True
 For Each dl In se.DataLabels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For Each dl In se.DataLabels
 If CInt(VBA.Replace(dl.Caption, "%", "")) > 25 Then
 dl.Font.Bold = True
 Else
 dl.Font.Bold = False
 End If
 Next
 Next
 ' Update chart to ensure changes are displayed.
 chrt.Refresh
End Sub

Figure 16-6 shows the result of running the AddTitles and HighlightDataLabels procedures.

Figure 16-6. Adding chart, axis, and data label captions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.8. Plot a Series
The data plotted on a chart belongs to the chart's SeriesCollection . Each column or row of data is represented by a Series
object and each item in the series is represented by a Point object.

You can add series to existing charts by calling the Add, Extend, or NewSeries methods of the SeriesCollection. For example,
the first of the following procedures creates a new line chart, and the second plots a new series using the column chart
type:

Sub CreateChart()
 Dim chrt As Chart
 Set chrt = Charts.Add(, ActiveSheet)
 chrt.Name = "Plot a Series"
 chrt.SetSourceData [HomeSales], xlColumns
 chrt.ChartType = xlLine
End Sub

Sub AddNewSeries()
 Dim chrt As Chart, sc As SeriesCollection, _
 sr As Series
 ' Get the chart
.
 Set chrt = Charts("Plot a Series")
 ' Get the series collection.
 Set sc = chrt.SeriesCollection
 ' Add a new series.
 sc.Add [FLGrowth], xlColumns, True, False, False
 ' Get the last series
 Set sr = sc(sc.Count)
 ' Change the chart type for the series.
 sr.ChartType = xlColumnClustered
End Sub

The PlotBy arguments (xlRows or xlColumns) should match when adding series to a chart, unless of course the new data is
arranged differently from the existing data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.9. Respond to Chart Events
You can write code within a chart's class to respond to events that occur on the chart. Charts provide these events:

' Chart sheet class

Private Sub Chart_Activate()
End Sub

Private Sub Chart_BeforeDoubleClick(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long, Cancel As Boolean)
End Sub

Private Sub Chart_BeforeRightClick(Cancel As Boolean)
End Sub

Private Sub Chart_Calculate()
End Sub

Private Sub Chart_Deactivate()
End Sub

Private Sub Chart_DragOver()
End Sub

Private Sub Chart_DragPlot()
End Sub

Private Sub Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, _
 ByVal x As Long, ByVal y As Long)
End Sub

Private Sub Chart_MouseMove(ByVal Button As Long, _
 ByVal Shift As Long, ByVal x As Long, ByVal y As Long)

End Sub

Private Sub Chart_MouseUp(ByVal Button As Long, _
 ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
End Sub

Private Sub Chart_Resize()
End Sub

Private Sub Chart_Select(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long)
End Sub

Private Sub Chart_SeriesChange(ByVal SeriesIndex As Long, _
 ByVal PointIndex As Long)
End Sub

The BeforeDoubleClick and Select events return information about the chart item that was clicked. Those arguments are
described in Table 16-1 with the GetChartElement topic later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16. Charting
Excel is perhaps the preeminent business tool for charting data. It's hard to find a business presentation, technical
report, or even a school science project that doesn't chart data, usually through Excel.

In fact, charting is so important that I devote two chapters to it. This chapter covers the primary tasks: how to create
different types of charts in code and how to control the main parts of a chart. The following chapter covers the
secondary charting tasks.

This chapter includes task-oriented reference information for the following objects and their related collections: Axis,
Chart, ChartGroup, ChartObject, DataTable, Point, Series, and SeriesLines.

Code used in this chapter and additional samples are available in ch16.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.1. Format Titles and Labels
Chapter 16 covered how to add titles and labels to charts, axes, and series using the AxisTitle, ChartTitle, DataLabel, and
DisplayUnitLabel objects. This chapter provides a reference for those objects and shows you how to use their members to
control the font, color, and orientation of those titles and labels.

All four of those objects provide similar members, but the DataLabel object is a little different since you can format the
labels for the entire series through the DataLabels collection or format the label for a single point in the series through the
DataLabel object.

Formatting these objects in code involves several steps:

1. Navigate to the parent object (Chart, Axis, or Series) in code.

2. Use the HasTitle, HasDisplayUnitLabel, or HasDataLabel property to make sure the object exists. You can either set this
property to True to create the object or use it as part of an If statement to conditionally format the object if it
exists.

3. Use the Font, Fill, Orientation, or other property to format the title or label.

The following code illustrates these steps to set the font size and style for each of the titles and labels that can appear
on a chart:

Sub FormatTitlesAndLabels()
 Dim chrt As Chart, f As Font, ax As Axis, sr As Series
 Set chrt = ActiveChart
 ''''''''''''''''''''''''''''''''''
 ' Format ChartTitle
 ' Make sure chart has title
 chrt.HasTitle = True
 ' Get the font for the chart title.
 Set f = chrt.ChartTitle.Font
 ' Set the size/style
 f.Size = 14
 f.Bold = True
 ''''''''''''''''''''''''''''''''''
 ' Format AxisTitle
 ' Get each axis
 For Each ax In chrt.Axes
 ' Make sure axis has title.
 ax.HasTitle = True
 ' Get the font.
 Set f = ax.AxisTitle.Font
 ' Set the size/style.
 f.Size = 10
 f.Bold = True
 f.Italic = True
 ''''''''''''''''''''''''''''''''''
 ' Format DisplayUnitLabel
 If ax.Type = xlValue Then
 If ax.HasDisplayUnitLabel Then
 ' Get the font
 Set f = ax.DisplayUnitLabel.Font
 ' Set the size/style.
 f.Size = 10
 f.Bold = True
 f.Italic = True
 End If
 End If
 Next
 ''''''''''''''''''''''''''''''''''
 ' Format DataLabels
 For Each sr In chrt.SeriesCollection
 ' Make sure series has data labels.
 If sr.HasDataLabels Then
 ' Get the font.
 Set f = sr.DataLabels.Font
 ' Set the size/style.
 f.Size = 8
 f.Bold = True
 f.Italic = False
 End If
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Only the value axis can have a unit label, so you must check the axis type and
HasDisplayUnitLabel before using that object, as shown in the preceding code.

Setting Font properties for the object changes the font for the entire caption. To change part of the caption, use the
Characters collection as shown here:

Sub ChangePartOfCaption()
 Dim chrt As Chart, t1 As String, t2 As String, cr As Characters
 Set chrt = ActiveChart
 ' Make sure chart has title
 chrt.HasTitle = True
 t1 = "Home Prices"
 t2 = vbLf & "Going Up!"
 ' Set the caption.
 chrt.ChartTitle.Caption = t1 & t2
 ' Get the chartacters for the second line
 Set cr = chrt.ChartTitle.Characters(Len(t1) + 1, Len(t2))
 ' Format them.
 cr.Font.Italic = True ' Italic on.
 cr.Font.Color = &HFF ' Red text.
End Sub

To restore the default formatting, save the caption in a variable, set HasTitle to False then back to True, and restore the
original caption as shown here:

Sub ResetChartTitleFormatting()
 Dim chrt As Chart, ct As String
 Set chrt = ActiveChart
 ' Save the caption
 ct = chrt.ChartTitle.Caption
 ' Turn the title off/on.
 chrt.HasTitle = False
 chrt.HasTitle = True
 ' Restore text
 chrt.ChartTitle.Caption = ct
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.10. ChartColorFormat Members
Use the ChartColorFormat object to change the background or foreground colors using a color index or RGB value. Use the
ChartFillFormat object's BackColor or ForeColor property to get a reference to this object. The ChartColorFormat object has the
following members:

 Application
 Creator
 Parent
 RGB
 SchemeColor
Type

The following code changes the background and foreground colors used in a gradient background for the chart area of
the active chart:

Sub ChartColorFormat()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientFromCorner, 2
 ' Set backgroud/foreground colors.
 cf.BackColor.SchemeColor = 17
 cf.ForeColor.SchemeColor = 1
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.11. DropLines and HiLoLines Members
Use the DropLines and HiLoLines objects to control the appearance of those items on a chart. Use the ChartGroup object's
DropLines, and HiLoLines properties to get a reference to these objects. These objects have the following members:

Application
Border
Creator
Delete
Name
Parent
Select

The DropLines and HiLoLines objects provide a small set of programmable features. You can select, delete, or change the
appearance these lines. Be sure to check the ChartGroup object's Hasxxx property before using any of these objects.

The following code uses the Border property to set the weight, color, and style of the drop lines on a line chart:

Sub FormatDropLines()
 Dim chrt As Chart, cg As ChartGroup, bd As Border
 ' Get the chart.
 Set chrt = ActiveChart
 ' Set the chart type
 chrt.ChartType = xlLineStacked
 ' Get the chart group.
 Set cg = chrt.LineGroups(1)
 ' Turn on drop lines
 cg.HasDropLines = True
 ' Get the drop line's border
 Set bd = cg.DropLines.Border
 ' Format the lines
 bd.Weight = 4
 bd.Color = &HFF0000
 bd.LineStyle = xlLineStyle.xlDot
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.12. DownBars and UpBars Members
Use the DownBars and UpBars objects to control the appearance of up and down bars on a chart. Use the ChartGroup object's
DownBars and UpBars properties to get a reference to these objects. The DownBars and UpBars objects have the following
members:

Application Border

Creator Delete

Fill Interior

Name Parent

Select

The DownBars and UpBars objects are similar to the DropLines and HiLoLines objects. As with those objects, you can select,
delete, or change the appearance of up and down bars. However, up and down bars have an interior region that you
can control using two additional members: Fill and Interior. Be sure to check the ChartGroup object's HasUpDownBars property
before using these objects. The following code adds up and down bars to a chart and changes their appearance:

Sub DownBarsMembers()
 Dim chrt As Chart, cg As ChartGroup
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the chart group.
 Set cg = chrt.LineGroups(1)
 ' Add down bars.
 cg.HasUpDownBars = True
 ' Format the up and down bars.
 On Error Resume Next
 cg.UpBars.Interior.ColorIndex = 1
 cg.DownBars.Interior.ColorIndex = 3
 On Error GoTo 0
End Sub

You should include the On Error Resume Next statement when working with up and down bars since the contents of the
chart determine whether or not up bars, down bars, or both types of bars exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.13. ErrorBars Members
Use the ErrorBars object to control the appearance of error bars on a chart. Use the Series object's ErrorBar method to
create error bars, and use the Series object's ErrorBars property to get a reference to this object. The ErrorBars object has
the following members. Key members (shown in bold) are covered in the following reference section:

Application
Border
ClearFormats
Creator
Delete
EndStyle
Name
Parent
Select

The ErrorBars object is similar to the DropLines, HiLoLines, DownBars, and UpBars objects. As with those objects, you can select,
delete, or change the appearance of error bars. However, error bars have two additional members: EndStyle and
ClearFormats. The following code adds error bars to a chart and changes their appearance:

Sub ErrorBarsMembers()
 Dim chrt As Chart, sr As Series, eb As ErrorBars
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get a series.
 Set sr = chrt.SeriesCollection(1)
 ' Add error bars.
 sr.ErrorBar xlY, xlErrorBarIncludeBoth, xlErrorBarTypeStError
 ' Format the error bars.
 sr.ErrorBars.EndStyle = xlCap
 sr.ErrorBars.Border.ColorIndex = 3
 ' Remove color
 'sr.ErrorBars.ClearFormats
End Sub

errorbars.ClearFormats()

Removes formatting set through the Border object.

errorbars.EndStyle [=xlEndStyleCap]

Sets or returns the error bar style. Can be xlCap or xlNoCap.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.14. Legend Members
Use the Legend object to format or move a legend or to get the individual entries from the legend. Use the Chart object's
Legend property to get a reference to this collection. The Legend object has the following members. Key members (shown
in bold) are covered in the following reference section:

Application AutoScaleFont

Border Clear

Creator Delete

Fill Font

Height Interior

Left LegendEntries

Name Parent

Position Select

Shadow Top

Width

Be sure to set the Chart object's HasLegend property to True before using this object. The following code moves a chart's
legend to the left side and sets its background color:

Sub LegendMembers()
 Dim chrt As Chart, lg As Legend
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make sure chart has a legend.
 chrt.HasLegend = True
 ' Get the legend.
 Set lg = chrt.Legend
 ' Set the position.
 lg.Position = xlLegendPositionLeft
 ' Change the background color.
 lg.Interior.Color = &HFFFF00
End Sub

legend.LegendEntries([Index])

Returns one or all of the entries in the legend.

legend.Position [= xlLegendPosition]

Sets or returns the position of the legend on the chart. Can be one of these settings:

 xlLegendPositionCorner
 xlLegendPositionRight
 xlLegendPositionTop
 xlLegendPositionBottom
 xlLegendPositionLeft

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.15. LegendEntry and LegendEntries Members
Use the LegendEntries collection to get individual entries from a legend. Use the Legend object's LegendEntries property to get
a reference to this collection. The LegendEntries collection and LegendEntry object have the following members. The key
member (shown in bold) is covered in the following reference section:

Application2 AutoScaleFont

Count1 Creator2

Delete Font

Height Index

Item1 Left

LegendKey Parent2

Select Top

Width
1 Collection only

2 Object and collection

Use the LegendEntry object to format, delete, or get the legend key for entries in a chart legend. For example, the
following code makes the color of the legend entry text match the color of the legend key:

Sub LegendEntryMembers()
 Dim chrt As Chart, lg As Legend, le As LegendEntry
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make sure chart has a legend.
 chrt.HasLegend = True
 ' Get the legend.
 Set lg = chrt.Legend
 For Each le In lg.LegendEntries
 ' Set text color to match series color.
 le.Font.Color = le.LegendKey.Border.Color
 Next
End Sub

legendentry.LegendKey

Returns the LegendKey object for the entry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.16. LegendKey Members
Use the LegendKey object to control the appearance of the series or trendline that corresponds to the legend entry. Use
the LegendEntry object's LegendKey property to get a reference to this collection. The LegendKey object has the following
members. Key members (shown in bold) are covered in the following reference section:

Application Border

ClearFormats Creator

Delete Fill

Height Interior

InvertIfNegative Left

MarkerBackgroundColor MarkerBackgroundColorIndex

MarkerForegroundColor MarkerForegroundColorIndex

MarkerSize MarkerStyle

Parent PictureType

PictureUnit Select

Shadow Smooth

Top Width

Setting the key properties of the legend key is equivalent to setting them for their corresponding series. LegendKey
simply provides an alternate way to get at those settings. See the Series object in Chapter 16 for descriptions of the
preceding key members.

The following code shows using the LegendKey to change series markers and also shows the alternate code using the
Series object (commented out):

Sub LegendKeyMembers()
 Dim chrt As Chart, le As LegendEntry, _
 lk As LegendKey, sr As Series
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLineMarkers
 ' Make sure chart has a legend.
 chrt.HasLegend = True
 For Each le In chrt.Legend.LegendEntries
 ' Get the legend key
 Set lk = le.LegendKey
 lk.MarkerStyle = xlMarkerStyleCircle
 lk.MarkerSize = 4
 Next
 ' Equivalent code using the series collection.
 'For Each sr In chrt.SeriesCollection
 ' sr.MarkerStyle = xlMarkerStyleCircle
 ' sr.MarkerSize = 4
 'Next
End Sub

LegendKey objects exist only for series that appear in the legend. If a series is omitted from the legend, the preceding
commented code is not equivalent.

Use the ClearFormats method to restore the default formats:

Sub ResetLegendKeyFormat()
 Dim chrt As Chart, le As LegendEntry, _
 lk As LegendKey, sr As Series
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLineMarkers
 ' Make sure chart has a legend.
 chrt.HasLegend = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 chrt.HasLegend = True
 For Each le In chrt.Legend.LegendEntries
 ' Get the legend key
 Set lk = le.LegendKey
 lk.ClearFormats
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.17. Gridlines Members
Use the Gridlines objects to control the appearance of gridlines on a chart. Use the Axis object's MajorGridlines and
MinorGridlines properties to get a reference to this object. The Gridlines object has the following members:

Application
Border
Creator
Delete
Name
Parent
Select

Use the Axis object's HasMajorGridlines or HasMinorGridlines to make sure these objects exist before using them. For example,
the following code changes the appearance of the major gridlines for the value axis:

Sub FormatGridLines()
 Dim chrt As Chart, ax As Axis, gl As Gridlines
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the value axis.
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ' Make sure the gridlines exist.
 ax.HasMajorGridlines = True
 ' Get the gridlines
 Set gl = ax.MajorGridlines
 ' Make them blue.
 gl.Border.Color = &HFF0000
 ' Change the line style.
 gl.Border.LineStyle = XlLineStyle.xlDot
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.18. TickLabels Members
Use the TickLabels object to format the tick labels on an axis. Use the Axis object's TickLabels property to get a reference to
this object. The TickLabels object has the following members. Key members (shown in bold) are covered in the following
reference section:

Alignment Application

AutoScaleFont Creator

Delete Depth

Font Name

NumberFormat NumberFormatLinked

NumberFormatLocal Offset

Orientation Parent

ReadingOrder Select

ticklabels.Alignment [= setting]

This property has no apparent effect when used on tick labels. Tick labels are centered by default.

ticklabels.Depth

For tick labels on the category axis, returns the nesting level of the tick labels (usually 1).

ticklabels.Font

Returns a Font object you can use to format tick label text. For example, the following code makes the category axis tick
labels italic:

Sub FormatTickLabels()
 Dim chrt As Chart, ax As Axis, tl As TickLabels
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the category axis.
 Set ax = chrt.Axes(xlCategory, xlPrimary)
 ' Get the tick labels.
 Set tl = ax.TickLabels
 ' Format them.
 tl.Font.Italic = True
End Sub

ticklabels.NumberFormat [= setting]

Sets or returns the format string used to display the tick label caption. See the DataLabels collection for more information
about this property.

ticklabels.NumberFormatLinked [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True uses the number format from the source range; False uses the NumberFormat or NumberFormatLocal setting. Default is
True.

ticklabels.NumberFormatLocal [= setting]

Sets or returns the format string used to display the tick label caption. This property is the same as NumberFormat only it
uses the localized version of the format strings.

ticklabels.Offset [= setting]

For 2-D chart types, sets or returns the distance between the tick labels and the axis as a percentage of the default
spacing. The default is 100. Must be between 0 and 1000.

ticklabels.Orientation [= xlTickLabelOrientation]

Sets or returns the orientation of the tick lable. Can be one of these settings:

 xlTickLabelOrientationAutomatic (default)
 xlTickLabelOrientationHorizontal
 xlTickLabelOrientationVertical
 xlTickLabelOrientationDownward
 xlTickLabelOrientationUpward

ticklabels.ReadingOrder [= setting]

Sets or returns the reading order of the title. Can be xlContext, xlLTR, or xlRTL. Setting this property may or may not have
an effect, depending on the language support that is installed. For instance, it has no effect in U.S. English (1033).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.19. Trendline and Trendlines Members
Use the TRendlines collection to add trendlines to a series and to get trendlines from a series. Use the Chart object's
trendlines property to get a reference to this collection. Use the trendline object to control individual trendlines on the chart.
The TRendlines collection and trendline object have the following members. Key members (shown in bold) are covered in
the following reference section:

Add

1
Application2

Backward Border

ClearFormats Count1

Creator2 DataLabel

Delete DisplayEquation

DisplayRSquared Forward

Index Intercept

InterceptIsAuto Item1

Name NameIsAuto

Order Parent2

Period Select

Type
1 Collection only

2 Object and collection

Trendline property settings correspond to the settings on the Add Trendline dialog box (Figure 17-6). To see the dialog,
right-click a series and select Add Trendline.

Figure 17-6. Use this dialog to browse trendline settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trendlines.Add([Type], [Order], [Period], [Forward], [Backward],
[Intercept], [DisplayEquation], [DisplayRSquared], [Name])

Adds a trendline to a series.

Argument Settings

Type An xlTrendlineType constant indicating how the trendline is calculated. Can be one of these settings:
xlExponential, xlLinear (default), xlLogarithmic, xlMovingAvg, xlPolynomial, or xlPower.

Order For polynomial trendlines, the trendline order from 2 to 6.

Period For moving average trendlines, the number of data points to include in the average.

Forward The number of periods or units to project the trendline forward beyond the plotted series. Default is 0.

Backward The number of periods or units to project the trendline backward beyond the plotted series. Default is
0.

Intercept Where the trendline crosses the x-axis. If this argument is omitted, the intercept is automatically set
by the regression.

DisplayEquation True displays the trendline formula as a data label; False does not. Default is False.

DisplayRSquared True displays the trendline R-squared value as a data label; False does not. Default is False.

Name The text to display in the chart legend for the trendline. Default is a brief, generated description of the
trendline.

The following code adds a polynomial trendline to the first series in a chart and forecasts the trend three units ahead of
the last data point:

Sub AddPolyTrendline()
 Dim chrt As Chart, tl As Trendline, tls As Trendlines
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get a series.
 Set tls = chrt.SeriesCollection(1).Trendlines
 Set tl = tls.Add(xlPolynomial, 6, , 3, , , True, , "Trend2")
End Sub

trendline.Backward [= setting]

Sets or returns the number of periods to project the trendline backward. The default is 0.

trendline.ClearFormats()

Clears the formatting from the trendline.

trendline.DataLabel

Returns the DataLabel object for the trendline. Causes an error if DisplayEquation and DisplayRSquared are not True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trendline.DisplayEquation [= setting]

True adds a data label to the trendline and adds the trendline's formula to the data label caption; False omits the
formula. Default is False.

trendline.DisplayRSquared [= setting]

True adds a data label to the trendline and adds the trendline's R-squared value to the data label caption; False omits
the value. Default is False.

trendline.Forward [= setting]

Sets or returns the number of periods to project the trendline forward. Default is 0.

trendline.Intercept [= setting]

Sets or returns the point at which the trendline crosses the value axis. Setting this property automatically sets
InterceptIsAuto to False.

trendline.InterceptIsAuto [= setting]

True calculates the point where the trendline crosses the value axis using regression; False uses the Intercept property
setting. Default is True.

trendline.Name [= setting]

Sets or returns the name that appears in the chart legend for the trendline. You can't use this name to retrieve the
trendline from the trendlines collectionName is used only in the legend. Setting this property automatically sets NameIsAuto
to False.

trendline.NameIsAuto [= setting]

True generates a legend entry for the trendline using the type of trendline and the series name. False uses the Name
property setting.

trendline.Order [= setting]

For polynomial trendlines, sets or returns the trendline order from 2 to 6.

trendline.Period [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For moving average trendlines, sets or returns the number of data points to include in the average.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.2. Change Backgrounds and Fonts
Excel provides a large set of built-in gradients and textures that provide visual interest to the chart. You can browse the
gradients and fills from the Fill Effects dialog box (Figures 17-1 and 17-2). To see this dialog, right-click the chart area,
select Format Chart Area, and click Fill Effects.

Use the ChartArea object to apply these gradients or textures to the background for the entire chart. Use the PlotArea
object to change the background of the area where the series are plotted. Both objects provide a Fill property that
returns a ChartFillFormat object you can use to apply gradients, textures, or pictures to the chart background. For
example, the following code applies a gradient to the chart background:

Figure 17-1. Built-in gradients

Sub ApplyGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Set colors for gradient.
 cf.BackColor.SchemeColor = 17
 cf.ForeColor.SchemeColor = 1
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientDiagonalUp, 2
End Sub

And this code applies a texture to the plot area:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

And this code applies a texture to the plot area:

Sub ApplyTexture()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the plot area fill.
 Set cf = chrt.PlotArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a built-in texture.
 cf.PresetTextured msoTextureWhiteMarble
End Sub

Figure 17-2. Built-in textures

The ChartArea object also provides a Font object that you can use to set the default font for the entire chart, as shown
here:

Sub SetChartFont()
 Dim chrt As Chart, f As Font
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set f = chrt.ChartArea.Font
 ' Change the font.
 f.Name = "Comic Sans MS"
 f.Bold = True
 f.Background = xlBackgroundTransparent
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting the font background to transparent is a good idea when using gradients and textures since the default setting
creates a block of the color behind the text.

The ChartArea object also provides methods to clear the chart contents, chart formats, or both. For example, the
following code removes the gradients, textures, and font settings applied earlier:

Sub ResetChartFormats()
 Dim chrt As Chart, ct As XlChartType
 ' Get the chart.
 Set chrt = ActiveChart
 ' Save the chart type
 ct = chrt.ChartType
 ' Clear all formatting
 chrt.ChartArea.ClearFormats
 ' Restore the chart type.
 chrt.ChartType = ct
End Sub

The preceding code restores the chart type after removing the formatting because ClearFormats resets the chart type as
well as other formatting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.20. PlotArea Members
Use the PlotArea object to control the appearance of the region behind series on a chart. Use the Chart object's PlotArea
property to get a reference to this collection. The PlotArea object has the following members . Key members (shown in
bold) are covered in the following reference section:

Application Border

ClearFormats Creator

Fill Height

InsideHeight InsideLeft

InsideTop InsideWidth

Interior Left

Name Parent

Select Top

Width

Plot area property settings correspond to the settings on the Format Plot Area dialog box (Figure 17-7). To see the
dialog, right-click the plot area and select Format Plot Area.

Figure 17-7. Use this dialog to control the appearance of the region behind series

plotarea.ClearFormats()

Removes formatting from the plot area object. For example, the following code removes the built-in fill applied in
ApplyPlotAreaFill:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ApplyPlotAreaFill:

Sub ResetPlotArea()
 Dim chrt As Chart
 ' Get the chart.
 Set chrt = ActiveChart
 ' Restore default formatting.
 chrt.PlotArea.ClearFormats
End Sub

plotarea.Fill

Returns the ChartFillFormat object used to control the background of the plot area. The following code applies a built-in fill
to the plot area:

Sub ApplyPlotAreaFill()
 Dim chrt As Chart, pa As PlotArea
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the plot area.
 Set pa = chrt.PlotArea
 ' Set a fill texture.
 pa.Fill.Visible = True
 pa.Fill.PresetTextured msoTextureCanvas
End Sub

plotarea.InsideHeight

Returns the height of the area on which the series is plotted. The total plot area is larger than the inside dimensions
used to plot series, as demonstrated by the following code:

Sub CompareDimensions()
 Dim chrt As Chart, pa As PlotArea
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the plot area.
 Set pa = chrt.PlotArea
 ' Show difference between inside and standard dimensions.
 Debug.Print pa.InsideLeft, pa.InsideTop, pa.InsideHeight, pa.InsideWidth
 Debug.Print pa.Left, pa.Top, pa.Height, pa.Width
End Sub

plotarea.InsideLeft

Returns the left coordinate of the plot area on which the series is plotted.

plotarea.InsideTop

Returns the top coordinate of the plot area on which the series is plotted.

plotarea.InsideWidth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the width of the plot area on which the series is plotted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.21. Floor Members
Use the Floor object to format the space beneath series in 3-D charts. Use the Chart object's Floor property to get a
reference to this object. The Floor object has the following members:

Application Border

ClearFormats Creator

Fill Interior

Name Parent

Paste PictureType

Select

Only 3-D charts have a Floor object. The following code applies a background picture to the floor of a 3-D chart:

Sub FloorMembers()
 Dim chrt As Chart, fr As Floor
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a 3-D chart
 chrt.ChartType = xl3DArea
 ' Get the Floor object

 Set fr = chrt.Floor
 ' Stretch the logo to fit.
 fr.Fill.Visible = True
 fr.Fill.UserPicture ThisWorkbook.Path & "\logo.bmp"
 ' Alternate: Tile the logo
 'fr.Fill.UserTextured ThisWorkbook.Path & "\logo.bmp"
End Sub

See the ChartFillFormat object for more information about setting fills.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.22. Walls Members
Use the Walls object to format the space behind and to the left of the plot area in 3-D charts. Use the Chart object's Walls
property to get a reference to this object. The Walls object has the following members:

Application Border

ClearFormats Creator

Fill Interior

Name Parent

Paste PictureType

PictureUnit Select

Only 3-D charts have a Walls object. The following code applies a background picture to the walls of a chart:

Sub FloorMembers()
 Dim chrt As Chart, fr As Floor
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a 3-D chart
 chrt.ChartType = xl3DArea
 ' Get the Floor object
 Set fr = chrt.Floor
 ' Stretch the logo to fit.
 fr.Fill.Visible = True
 fr.Fill.UserPicture ThisWorkbook.Path & "\logo.bmp"
 ' Alternate: Tile the logo
 'fr.Fill.UserTextured ThisWorkbook.Path & "\logo.bmp"
End Sub

See the ChartFillFormat object for more information about setting fills.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.23. Corners Members
Use the Chart object's Corners property to get a reference to this object. The Corners object has the following members:

Application
Creator
Name
Parent
Select

Only 3-D charts have a Corners object, and about the only thing you can do with Corners is to select them so the user can
click and drag them to rotate the chart, as shown here:

Sub SelectCorners ()
 Dim chrt As Chart
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a 3-D chart
 chrt.ChartType = xl3DArea
 ' Select the corners.
 chrt.Corners.Select
 ' Now you can drag the corners to rotate the chart...
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.3. Add Trendlines
You can add trendlines to most types of 2-D charts. 3-D, pie, doughnut, and radar chart types don't permit trendlines.
Trendlines apply to a single series, so you add them using the Series object's TRendlines property. For example, the
following code adds a trendline to the first series in a chart:

Sub AddTrendline()
 Dim chrt As Chart, tl As Trendline, tls As Trendlines
 ' Get the chart.
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get a series.
 Set tls = chrt.SeriesCollection(1).Trendlines
 Set tl = tls.Add(xlLogarithmic, , , 10, , , True, True, "Trend1") End Sub

I use variables with explicit types in the preceding code to enable Auto Complete for the
trendlines collection and TRendline object. The expression chrt.SeriesCollection(1).Trendlines doesn't
provide member lists or other Auto Complete features.

If a chart has a legend, Excel automatically adds a legend entry for each trendline using the trendline's Name property as
the caption. Excel automatically generates that name if you don't provide it as part of the Add method.

You can use the Forward and Backward properties to project a trendline beyond the series in either direction. Excel
automatically scales the axis to accommodate the new range. Projecting a trendline in this way is a sort of forecasting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.4. Add Series Lines and Bars
Series can have a variety of lines and bars attached to them. You can browse these lines and bars from the Format
Data Series dialog box (Figures 17-3 and 17-4). To see this dialog, right-click a series and select Format Data Series.

Figure 17-3. Drop lines, high-low lines, and up/down bars

You add drop lines, high-low lines, and up/down bars through the ChartGroup object. For example, the following code
adds high-low lines to a line chart:

Sub AddHiLoLines()
 Dim chrt As Chart, cg As ChartGroup
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLine
 ' Get the chart group
 Set cg = chrt.LineGroups(1)
 ' Add high-low lines
 cg.HasHiLoLines = True
End Sub

Only 2-D line chart types support high-low lines and up/down bars. Only 2-D line, bar, and
column charts support error bars.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-4. Error bars

You add error bars through the Series object. This code adds error bars to a line chart:

Sub AddErrorBars()
 Dim chrt As Chart, sr As Series
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlLineMarkers
 ' Get the chart group
 Set sr = chrt.SeriesCollection(1)
 ' Add error bars.
 sr.ErrorBar xlY, xlErrorBarIncludeBoth, xlErrorBarTypeStError
 ' Format the error bars.
 sr.ErrorBars.EndStyle = xlCap
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.5. ChartTitle, AxisTitle, and DisplayUnitLabel Members
Use the ChartTitle, AxisTitle, and DisplayUnitLabel objects to add and format captions for charts, axes, and unit labels. These
objects have the following members. Key members (shown in bold) are covered in the following reference section:

Application AutoScaleFont

Border Caption

Characters Creator

Delete Fill

Font HorizontalAlignment

Interior Left

Name Orientation

Parent ReadingOrder

Select Shadow

Text Top

VerticalAlignment

The ChartTitle appears at the top of a chart by default, the AxisTitle appears centered next to each axis, and the
DisplayUnitLabel appears next to the value axis indicating the units of the value axis (thousands, millions, etc.). Be sure to
check the HasTitle or HasDisplayUnitLabel properties before working with these objects.

The following code adds a chart title, axis title, and display unit label to a chart:

Sub AddTitles()
 Dim chrt As Chart, ax As Axis
 Set chrt = ActiveChart
 ' Add a title.
 chrt.HasTitle = True
 ' Set the chart title caption.
 chrt.ChartTitle.Caption = "FL Home Sales"
 ' Add titles to each axis
 For Each ax In chrt.Axes
 ' Add a title.
 ax.HasTitle = True
 ' Set the axis title
 ax.AxisTitle.Caption = "Axis title"
 ' Add a display unit label caption.
 If ax.Type = xlValue Then
 ax.DisplayUnit = xlThousands
 ax.HasDisplayUnitLabel = True
 ax.DisplayUnitLabel.Caption = "In Thousands"
 End If
 Next
End Sub

title.Caption [= setting]

Sets or returns the text displayed in the title.

title.Characters

Returns the Characters object used to format the caption. For example, the following code adds a title to a chart and
changes the font of the title:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

changes the font of the title:

Sub AddChartTitle()
 Dim chrt As Chart, ct As ChartTitle
 Set chrt = ActiveChart
 ' Add a title.
 chrt.HasTitle = True
 ' Get the title
 Set ct = chrt.ChartTitle
 ' Set the text to display.
 ct.Caption = "FL Home Sales"
 ' Format the text.
 ct.Characters.Font.Size = 14
 ct.Characters.Font.Bold = True
End Sub

title.Fill

Returns the ChartFillFormat object for the title. Use this object to change the color or pattern behind the text.

title.Font

Returns the Font object representing the formatting of the title.

title.HorizontalAlignment [= setting]

This property has no visible effect on chart, axis, or display unit label captions.

title.Orientation [= setting]

Sets or returns the angle of rotation for the title in degrees. Must be between -90 and 90. Default is 0.

title.ReadingOrder [= setting]

Sets or returns the reading order of the title. Can be xlContext, xlLTR, or xlRTL. Setting this property may or may not have
an effect, depending on the language support that is installed. For instance, it has no effect in U.S. English (1033).

title.VerticalAlignment [= setting]

This property has no visible effect on chart, axis, or display unit label captions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.6. DataLabel and DataLabels Members
Use the DataLabels collection to add data labels to series. Use the Series object's DataLabels property to get a reference to
this collection. Use the DataLabel object to format individual data labels. The DataLabels collection and DataLabel object have
the following members. Key members (shown in bold) are covered in the following reference section:

Application2 AutoScaleFont2

AutoText

2
Border2

Caption Characters

Count1 Creator2

Delete()2 Fill2

Font2 HorizontalAlignment2

Interior2 Item1

Left Name2

NumberFormat

2

NumberFormatLinked

2

NumberFormatLocal

2
Orientation2

Parent2
Position

2

ReadingOrder2 Select2

Separator

2
Shadow2

ShowBubbleSize

2

ShowCategoryName

2

ShowLegendKey

2

ShowPercentage

2

ShowSeriesName

2

ShowValue

2

Text Top

Type2 VerticalAlignment2

1 Collection only

2 Object and collection

datalabel AutoText [= setting]

True automatically generates the caption of the data label based on its context; False uses the Caption setting instead.
Default is True.

Setting the Caption property automatically sets this property to False. For example, the following code turns off Auto
Text by setting the data labels for a series:

Sub SetDataLabels()
 Dim chrt As Chart, sr As Series, dl As DataLabel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim chrt As Chart, sr As Series, dl As DataLabel
 Set chrt = ActiveChart
 chrt.ChartType = xlColumnClustered
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Create data labels.
 sr.HasDataLabels = True
 ' Set data label captions.
 For Each dl In sr.DataLabels
 dl.Caption = sr.Name & ": " & dl.Caption
 Next
End Sub

To restore Auto Text, set the AutoText property to True:

Sub RestoreAutoDataLabels()
 Dim chrt As Chart, sr As Series
 Set chrt = ActiveChart
 chrt.ChartType = xlColumnClustered
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Restore Auto Text.
 sr.DataLabels.AutoText = True
End Sub

datalabels.NumberFormat [= setting]

Sets or returns the format string used to display the data label caption. You can see the available format string settings
from the Format Data Labels dialog box (Figure 17-5).

Figure 17-5. Right-click the label and choose Format Data Labels to see this dialog
box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code sets the scale of the value axis to thousands and then formats the data labels appropriately:

Sub SetDataLabelNumberFormat()
 Dim chrt As Chart, sr As Series, ds As DataLabels, _
 ax As Axis
 Set chrt = ActiveChart
 ' Get the value axis.
 Set ax = chrt.Axes(xlValue, xlPrimary)
 ' Scale numbers by 1000.
 ax.DisplayUnit = xlThousands
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Get the DataLabels collection.
 Set ds = sr.DataLabels
 ' Set the number format (ex. $150K).
 ds.NumberFormat = "$#,###K"
End Sub

datalabel.NumberFormatLinked [= setting]

True uses the number format from the source range; False uses the NumberFormat or NumberFormatLocal setting. Default is
True. Setting either the NumberFormat or NumberFormatLocal property automatically sets NumberFormatLinked to False. Set this
property to True to restore the default number format as shown here:

Sub RestoreDataLabelNumberFormat()
 Dim chrt As Chart, sr As Series, ds As DataLabels
 Set chrt = ActiveChart
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Get the DataLabels collection.
 Set ds = sr.DataLabels
 ' Restore format setting from source range.
 ds.NumberFormatLinked = True
End Sub

datalabel.NumberFormatLocal [= setting]

Sets or returns the format string used to display the data label caption. This property is the same as NumberFormat only it
uses the localized version of the format strings.

datalabel.Position [= xlDataLabelPosition]

Sets or returns a constant indicating the placement of the data labels. The default setting depends on the chart type.
Can be one of these settings:

 xlLabelPositionAbove xlLabelPositionBelow
 xlLabelPositionBestFit xlLabelPositionCenter
 xlLabelPositionCustom xlLabelPositionInsideBase
 xlLabelPositionInsideEnd xlLabelPositionLeft
 xlLabelPositionMixed xlLabelPositionOutsideEnd
 xlLabelPositionRight

datalabel.Separator [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the character used between the data label and the category name, legend key, or series name if one or
more of those are included in the data label. Default is a comma.

The following code demonstrates using the Separator property along with the other data label display items:

Sub FullDataLabels()
 Dim chrt As Chart, sr As Series, ds As DataLabels
 Set chrt = ActiveChart
 chrt.ChartType = xlLine
 ' Get the first series.
 Set sr = chrt.SeriesCollection(1)
 ' Make sure data labels exist.
 sr.HasDataLabels = True
 ' Get the DataLabels collection.
 Set ds = sr.DataLabels
 ' Display all of the available info.
 ds.ShowCategoryName = True
 ds.ShowLegendKey = True
 ds.ShowSeriesName = True
 ' Use semicolon between items.
 ds.Separator = ";"
End Sub

datalabel.ShowBubbleSize [= setting]

For bubble charts, True includes the bubble size in the data label and False does not. Default is False.

datalabel.ShowCategoryName [= setting]

True includes the category name in the data label; False does not. Default is False.

datalabel.ShowLegendKey [= setting]

True includes the legend key in the data label; False does not. Default is False.

datalabel.ShowPercentage [= setting]

For pie and doughnut charts, True adds the percentage of the total that the value represents to the data label. Default
is False.

datalabel.ShowSeriesName [= setting]

True includes the series name in the data label; False does not. Default is False.

datalabel.ShowValue [= setting]

True adds the value of each point to the data label; False omits it. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.7. LeaderLines Members
Use the LeaderLines object to control the appearance of the lines connecting data labels to the data points in a series.
LeaderLines are available only for pie chart types. Use the Series object's LeaderLines property to get a reference to this
object. LeaderLines has the following members:

 Application
 Border
 Creator
 Delete
 Name
 Parent
 Select

You can select, delete, or change the appearance of LeaderLines in code. The following code adds data labels and leader
lines to a pie chart and makes the leader lines bold:

Sub LeaderLineMembers()
 Dim chrt As Chart, b As Border
 ' Get the chart.
 Set chrt = ActiveChart
 ' Make it a line chart
 chrt.ChartType = xlPie
 ' Add data labels with leader lines.
 chrt.ApplyDataLabels , , , True
 Set b = chrt.SeriesCollection(1).LeaderLines.Border
 b.Weight = xlThick
End Sub

Leader lines appear only if you drag the data labels away from the pie chart. You may
have to manually drag the data labels away from the pie chart in order for the preceding
code to work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.8. ChartArea Members
Use the ChartArea object to format the background of the chart, clear the chart, and set the font for the entire chart. Use
the Chart object's ChartArea property to get a reference to this object. The ChartArea object has the following members . Key
members (shown in bold) are covered in the following reference section:

Application AutoScaleFont

Border Clear

ClearContents ClearFormats

Copy Creator

Fill Font

Height Interior

Left Name

Parent Select

Shadow Top

Width

chartarea.AutoScaleFont [= setting]

For embedded charts, True automatically scales fonts in the chart area up or down when the embedded chart is resized;
False does not scale. Default is True. This property has no effect on chart sheets.

chartarea.Clear()

Clears the contents and formatting of the chart area. Clear has the same effect as using ClearContents and ClearFormats in
turn. The following code demonstrates the different Clear methods:

Sub DemoClearChartArea()
 Dim chrt As Chart, ca As ChartArea
 ' Copy the chart.
 ActiveChart.Copy , ActiveChart
 ' Get the copy.
 Set chrt = ActiveChart
 Set ca = chrt.ChartArea
 ca.ClearFormats
 ' Wait a sec.
 Application.Wait Now + 0.00001
 ca.ClearContents
 ' Same as.
 'ca.Clear
End Sub

chartarea.ClearContents()

Clears the contents of the chart area.

chartarea.ClearFormats()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clears the formatting from the chart area.

chartarea.Fill

Returns the ChartFillFormat object for the chart area. Use this object to change the color or pattern of the chart area. For
example, the following code displays a gradient background on the active chart:

Sub ChartAreaFill()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientDiagonalUp, 2
End Sub

chartarea.Font

Returns the Font object representing the formatting of all the text on the chart. For example, the following code makes
all of the caption, label, and legend text on the active chart bold:

Sub ChartAreaFont()
 Dim chrt As Chart, f As Font
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area font.
 Set f = chrt.ChartArea.Font
 f.Bold = True
End Sub

chartarea.Interior

Returns the Interior object representing the background of the chart area. For example, the following code changes the
color index of the active chart's background:

Sub ChartAreaInterior()
 Dim chrt As Chart, it As Interior
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area font.
 Set it = chrt.ChartArea.Interior
 it.ColorIndex = 3
End Sub

chartarea.Shadow [= setting]

True adds a shadow border to the chart area; False does not. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.9. ChartFillFormat Members
Use the ChartFillFormat object to apply colors, gradients, and patterns to objects on a chart. Use the Fill property to get a
reference to this object. The ChartFillFormat object has the following members . Key members (shown in bold) are
covered in the following reference section:

Application BackColor

Creator ForeColor

GradientColorType GradientDegree

GradientStyle GradientVariant

OneColorGradient Parent

Pattern Patterned

PresetGradient PresetGradientType

PresetTexture PresetTextured

Solid() TextureName

TextureType TwoColorGradient

Type UserPicture

UserTextured Visible

These chart objects all have Fill properties, which return a ChartFillFormat object:

AxisTitle ChartArea

ChartTitle DataLabel

DataLabels DisplayUnitLabel

DownBars Floor

Legend LegendKey

PlotArea Point

Series Shape

ShapeRange UpBars

Walls

chartfillformat.BackColor

Returns a ChartColorFormat object you can use to set the background color.

chartfillformat.ForeColor

Returns a ChartColorFormat object you can use to set the foreground color.

chartfillformat.GradientColorType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns an msoGradientColorType constant indicating the type of the gradiant color. Can be one of these settings:

 msoGradientColorMixed
 msoGradientOneColor
 msoGradientPresetColors
 msoGradientTwoColors

chartfillformat.GradientDegree

For one-color gradients, returns the degree of the gradient as a number from 0 (dark) to 1 (light).

chartfillformat.GradientStyle

Returns an msoGradientStyle constant indicating the type of the gradient. Can be one of these settings:

 msoGradientDiagonalDown
 msoGradientDiagonalUp
 msoGradientFromCenter
 msoGradientFromCorner
 msoGradientFromTitle
 msoGradientHorizontal
 msoGradientMixed
 msoGradientVertical

chartfillformat.GradientVariant

Returns the index of the gradient variant selected from the Gradient tab in the Fill Effects dialog box.

chartfillformat.OneColorGradient(Style, Variant, Degree)

Applies a one-color gradient.

Argument Settings

Style An msoGradientStyle constant indicating the type of the gradient. See the GradientStyle property for a list of
settings.

Variant The index of the gradient variant to use. The variants are listed on the Gradient tab in the Fill Effects
dialog box.

Degree The degree of the gradient as a number from 0 (dark) to 1 (light).

The following code applies a one-color gradient to the chart area:

Sub OneColorGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a gradient fill.
 cf.OneColorGradient msoGradientDiagonalUp, 2, 0.9
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

chartfillformat.Pattern

Returns the msoPatternType constant indicating the pattern used in the fill. Can be one of these settings:

msoPattern5Percent msoPattern10Percent
msoPattern20Percent msoPattern25Percent
msoPattern30Percent msoPattern40Percent
msoPattern50Percent msoPattern60Percent
msoPattern70Percent msoPattern75Percent
msoPattern80Percent msoPattern90Percent
msoPatternDarkDownwardDiagonal msoPatternDarkHorizontal
msoPatternDarkUpwardDiagonal msoPatternDarkVertical
msoPatternDashedDownwardDiagonal msoPatternDashedHorizontal
msoPatternDashedUpwardDiagonal msoPatternDashedVertical
msoPatternDiagonalBrick msoPatternDivot
msoPatternDottedDiamond msoPatternDottedGrid
msoPatternHorizontalBrick msoPatternLargeCheckerBoard
msoPatternLargeConfetti msoPatternLargeGrid
msoPatternLightDownwardDiagonal msoPatternLightHorizontal
msoPatternLightUpwardDiagonal msoPatternLightVertical
msoPatternMixed msoPatternNarrowHorizontal
msoPatternNarrowVertical msoPatternOutlinedDiamond
msoPatternPlaid msoPatternShingle
msoPatternSmallCheckerBoard msoPatternSmallConfetti
msoPatternSmallGrid msoPatternSolidDiamond
msoPatternSphere msoPatternTrellis
msoPatternWave msoPatternWeave
msoPatternWideDownwardDiagonal msoPatternWideUpwardDiagonal
msoPatternZigZag

chartfillformat.Patterned(Pattern)

Applies a pattern, replacing any gradients or textures. Can be any of the settings listed for the Pattern property.

chartfillformat.PresetGradient(Style, Variant,
PresetGradientType)

Applies a built-in gradient.

Argument Settings

Style An msoGradientStyle constant indicating the type of the gradient. See the GradientStyle property for a list
of settings.

Variant The index of the gradient variant to use. The variants are listed on the Gradient tab in the Fill Effects
dialog box.

PresetGradientType An msoPresetGradientType constant indicating the built-in gradient to use. See the PresetGradientType
property for a list of settings.

The following code applies a built-in gradient to the chart area:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code applies a built-in gradient to the chart area:

Sub BuiltInGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a built-in gradient.
 cf.PresetGradient msoGradientDiagonalUp, 1, msoGradientBrass
End Sub

chartfillformat.PresetGradientType

Returns an msoPresetGradientType constant indicating the built-in gradient used in the fill. Can be one of these settings:

msoGradientBrass msoGradientCalmWater
msoGradientChrome msoGradientChromeII
msoGradientDaybreak msoGradientDesert
msoGradientEarlySunset msoGradientFire
msoGradientFog msoGradientGold
msoGradientGoldII msoGradientHorizon
msoGradientLateSunset msoGradientMahogany
msoGradientMoss msoGradientNightfall
msoGradientOcean msoGradientParchment
msoGradientPeacock msoGradientRainbow
msoGradientRainbowII msoGradientSapphire
msoGradientSilver msoGradientWheat
msoPresetGradientMixed

chartfillformat.PresetTexture

Returns an msoPresetTexture constant indicating the background's built-in texture used in the fill. Can be one of these
settings:

msoPresetTextureMixed msoTextureBlueTissuePaper
msoTextureBouquet msoTextureBrownMarble
msoTextureCanvas msoTextureCork
msoTextureDenim msoTextureFishFossil
msoTextureGranite msoTextureGreenMarble
msoTextureMediumWood msoTextureNewsprint
msoTextureOak msoTexturePaperBag
msoTexturePapyrus msoTextureParchment
msoTexturePinkTissuePaper msoTexturePurpleMesh
msoTextureRecycledPaper msoTextureSand
msoTextureStationery msoTextureWalnut
msoTextureWaterDroplets msoTextureWhiteMarble
msoTextureWovenMat

chartfillformat.PresetTextured(PresetTexture)

Applies a built-in texture.

Argument Settings

PresetTexture An msoPresetTexture constant indicating the built-in texture to use. See the PresetTexture property for a list of
settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code applies the white marble texture to a chart area:

Sub ApplyTexture()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a built-in texture.
 cf.PresetTextured msoTextureWhiteMarble
End Sub

chartfillformat.Solid()

Applies a solid color, removing any patterns, textures, or gradients. The following code resets the chart area to solid
white:

Sub ResetFill()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a solid color.
 cf.Solid
 ' Set the color to white
 cf.ForeColor.SchemeColor = 2
End Sub

chartfillformat.TextureName

For fills with custom textures, returns the name of the texture file. For other types of fills, causes an error.

chartfillformat.TextureType

Returns an msoTextureType constant indicating how the fill's texture was set. Can be one of these settings:

msoTexturePreset

msoTextureTypeMixed

msoTextureUserDefined

chartfillformat.TwoColorGradient(Style, Variant)

Applies a two-color gradient.

Argument Settings

Style An msoGradientStyle constant indicating the type of the gradient. See the GradientStyle property for a list of
settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variant The index of the gradient variant to use. The variants are listed on the Gradient tab in the Fill Effects
dialog box.

The following code applies a two-color gradient to the chart area:

Sub TwoColorGradient()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Set colors for gradient.
 cf.BackColor.SchemeColor = 17
 cf.ForeColor.SchemeColor = 1
 ' Display a gradient fill.
 cf.TwoColorGradient msoGradientDiagonalUp, 2
End Sub

chartfillformat.UserPicture(PictureFile)

Applies a picture to a fill. Pictures are stretched to fit the fill area.

Argument Settings

PictureFile The filename of the picture to apply

Help specifies additional arguments for this method, but they can't be used with the
ChartFillFormat object.

The following code applies a picture to the chart area:

Sub UserPictureFill()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a picture.
 cf.UserPicture ThisWorkbook.Path & "\logo.bmp"
End Sub

chartfillformat.UserTextured(TextureFile)

Applies a picture file as a texture to the fill. Pictures are tiled to fit the fill area.

Argument Settings

TextureFile The filename of the picture to apply

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code tiles a picture to fill the chart area:

Sub UserPictureTexture()
 Dim chrt As Chart, cf As ChartFillFormat
 ' Get the chart.
 Set chrt = ActiveChart
 ' Get the chart area fill.
 Set cf = chrt.ChartArea.Fill
 ' Make the fill visible.
 cf.Visible = True
 ' Display a picture.
 cf.UserTextured ThisWorkbook.Path & "\logo.bmp"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17. Formatting Charts
You use Excel's chart format objects to change the fonts, backgrounds, images, and 3-D effects used on a chart. This
chapter covers those tasks to take you far beyond the basic chart types and default formatting .

This chapter includes task-oriented reference information for the following objects and their related collections: AxisTitle,
ChartArea, ChartColorFormat, ChartFillFormat, ChartTitle, Corners, DataLabel, DisplayUnitLabel, DownBars, DropLines, ErrorBars, Floor, Gridlines,
HiLoLines, LeaderLines, Legend, LegendEntry, LegendKey, PlotArea, TickLabels, trendline, trendlines, UpBars, and Walls.

Code used in this chapter and additional samples are available in ch17.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.1. Draw in Excel
To use Excel's drawing tools:

1. Choose View Toolbars Drawing. Excel displays the Drawing toolbar (Figure 18-1).

2. Select the toolbar button for the object you want to draw, then click and drag on the worksheet or chart to draw
the item.

Figure 18-1 shows a line, oval, rectangle, callout, and an image drawn on a worksheet. All shapes can be moved or
resized by selecting and dragging their sizing handles. Shapes also provide a handle at the top that lets you rotate
them. Autoshapes include an adjustment handle that is used to change some special aspect of the shape, as shown in
Figure 18-2.

Figure 18-1. Excel's drawing tools

Figure 18-2. Sizing, rotation, and adjustment handles on a selected autoshape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What the adjustment handle does depends on the autoshape. For the Callout autoshape in Figure 18-2, the adjustment
handle moves the apparent source of the callout. For Connector autoshapes, it sets the source and destination objects
to connect. For most other autoshapes, the adjustment handle changes the aspect ratio between parts of the shape.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.10. ControlFormat Members
Use the ControlFormat object to get and set the properties on Forms 1.0 controls. Use the Shape object's ControlFormat
property to get a reference to this object. The ControlFormat object has the following members:

AddItem Application

Creator DropDownLines

Enabled LargeChange

LinkedCell List

ListCount ListFillRange

ListIndex LockedText

Max Min

MultiSelect Parent

PrintObject RemoveAllItems

RemoveItem SmallChange

Value

Forms 1.0 controls are mostly obsolete. The Forms 2.0 controls provide events, properties, and methods that are not
available with the Forms 1.0 controls. See Chapter 20 for information on using Forms 2.0 controls on worksheets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.11. FillFormat Members
Use the FillFormat object to apply colors, gradients, and patterns to shapes. Use the Shape object's Fill property to get a
reference to this object. The ChartFillFormat covered in Chapter 17 is nearly identical to this object, so only the FillFormat
members with differences (shown in bold) are covered here:

Application BackColor

Background Creator

ForeColor GradientColorType

GradientDegree GradientStyle

GradientVariant OneColorGradient

Parent Pattern

Patterned PresetGradient

PresetGradientType PresetTexture

PresetTextured Solid

TextureName TextureType

Transparency TwoColorGradient

Type UserPicture

UserTextured Visible

fillformat.BackColor

Returns a ColorFormat object you can use to set the background color. The following code draws a green tuna can on the
active worksheet:

Sub FillFormatMembers()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw can.
 Set s = ws.Shapes.AddShape(msoShapeCan, 20, 20, 40, 40)
 ' Set green fill.
 s.Fill.ForeColor.RGB = RGB(0, 255, 0)
 s.Fill.Solid
 ' Add label.
 s.TextFrame.Characters.text = "Tuna"
 s.TextFrame.AutoSize = True
End Sub

fillformat.ForeColor

Returns a ColorFormat object you can use to set the foreground color.

fillformat.Transparency [= setting]

Sets or returns the degree of transparency of solid-color fills. Can be between 0 (opaque) and 1.0 (clear).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.12. FreeFormBuilder
Use the FreeFormBuilder object to draw complex freeform line art. Use the Shapes collection's BuildFreeform method to create
a new instance of this object. The FreeFormBuilder object has the following members . Key members (shown in bold) are
covered in the following reference section:

AddNodes
Application
ConvertToShape
Creator
Parent

freeformbuilder.AddNodes(SegmentType, EditingType, X1, Y1,
[X2], [Y2], [X3], [Y3])

Adds a segment to the freeform shape.

Argument Settings

SegmentType The type of segment to add. Can be msoSegmentLine or msoSegmentCurve.

EditingType The editing property of the vertex. Can be msoEditingAuto or msoEditingCorner.

X1, X2, etc. The horizontal coordinates of the vertices.

Y1, Y2, etc. The vertical coordinates of the vertices.

The following code creates a freeform, adds segments, and then renders the freeform as a shape on the active
worksheet:

Sub DrawAndFillFreeForm()
 Dim ws As Worksheet, fb As FreeformBuilder, s As Shape
 Set ws = ActiveSheet
 ' Create the freeform builder.
 Set fb = ws.Shapes.BuildFreeform(msoEditingCorner, 360, 200)
 ' Add segments.
 fb.AddNodes msoSegmentCurve, msoEditingCorner, _
 380, 230, 400, 250, 450, 300
 fb.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 fb.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 fb.AddNodes msoSegmentLine, msoEditingAuto, 360, 200
 ' Render the shape.
 Set s = fb.ConvertToShape
 ' Fill the shape.
 s.Fill.ForeColor.RGB = &HFF
 s.Fill.Solid
End Sub

freeformbuilder.ConvertToShape()

Renders the freeform on the worksheet and returns the created Shape object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.13. GroupShapes Members
Use the GroupShapes collection to get individual shapes that have been grouped together as a single shape. Use the Shape
object's GroupItems property to get a reference to this collection. The GroupShapes collection has the following members:

Application
Count
Creator
Item
Parent
Range

Use the ShapeRange object's Group method to group multiple shapes so that they can be selected, moved, or deleted as a
single shape by the user. The grouped Shape object then has a GroupItems property that you can use to get at the
component shapes. The following code draws three stars and groups them:

Sub DrawGroup()
 Dim ws As Worksheet, sr As ShapeRange, s As Shape
 Set ws = ActiveSheet
 ' Draw three stars.
 ws.Shapes.AddShape(msoShape5pointStar, 30, 30, 40, 40).Duplicate.Duplicate
 ' Create a shape range for all shapes on sheet.
 ws.Shapes.SelectAll
 Set sr = Selection.ShapeRange
 ' Group all the items
 Set s = sr.Group
 ' Show count of items in group.
 Debug.Print s.GroupItems.Count & " shapes grouped."
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.14. LineFormat Members
Use the LineFormat object to change the appearance of line shapes. Use the Shape object's Line property to get a reference
to this collection. The LineFormat object has the following members:

Application BackColor

BeginArrowheadLength BeginArrowheadStyle

BeginArrowheadWidth Creator

DashStyle EndArrowheadLength

EndArrowheadStyle EndArrowheadWidth

ForeColor Parent

Pattern Style

TRansparency Visible

Weight

Use the LineFormat object to add an arrowhead to a line, set the line weight, and set the style as shown by the following
code:

Sub LineFormatMembers()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a line.
 Set s = ws.Shapes.AddLine(60, 60, 200, 200)
 ' Add an arrowhead.
 s.Line.BeginArrowheadStyle = msoArrowheadOpen
 s.Line.BeginArrowheadLength = msoArrowheadLengthMedium
 s.Line.BeginArrowheadWidth = msoArrowheadWidthMedium
 s.Line.EndArrowheadStyle = msoArrowheadOval
 ' Change line weight (in points)
 s.Line.Weight = 4
 ' Change line style.
 s.Line.DashStyle = msoLineDash
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.15. LinkFormat Members
Use the LinkFormat object to update linked OLE objects. Use the Shape object's LinkFormat property to get a reference to this
object. The LinkFormat object has the following members:

Application
AutoUpdate
Creator
Locked
Parent
Update

Make sure the Shape object is a linked object before using the LinkFormat object by testing its Type property as shown
here:

If s.Type = msoLinkedOLEObject Then
 s.LinkFormat.Update
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.16. PictureFormat Members
Use the PictureFormat object to change the appearance of picture shapes. Use the Shape object's PictureFormat property to
get a reference to this object. The PictureFormat object has the following members . Key members (shown in bold) are
covered in the following reference section:

Application Brightness

ColorType Contrast

Creator CropBottom

CropLeft CropRight

CropTop IncrementBrightness

IncrementContrast Parent

TransparencyColor TransparentBackground

pictureformat.Brightness [= setting]

Sets or returns the brightness of the picture. Must be between 0 and 1. Default is 0.5.

pictureformat.ColorType [= msoPictureColorType]

Sets or returns one of the special color or brightness formats to apply to the picture. Can be one of these settings:

 msoPictureAutomatic (default)
 msoPictureBlackAndWhite
 msoPictureGrayscale
 msoPictureWatermark

pictureformat.Contrast [= setting]

Sets or returns the contrast of the picture. Must be between 0 and 1. Default is 0.5.

pictureformat.CropBottom [= setting]

Sets or returns the amount cropped off the bottom of the picture, measured in points.

pictureformat.CropLeft [= setting]

Sets or returns the amount cropped off the left side of the picture, measured in points.

pictureformat.CropRight [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the amount cropped off the right side of the picture, measured in points.

pictureformat.CropTop [= setting]

Sets or returns the amount cropped off the top of the picture, measured in points.

pictureformat.IncrementBrightness(Increment)

Increases or decreases the brightness of the picture. Must be between -1 and 1.

pictureformat.IncrementContrast(Increment)

Increases or decreases the contrast of the picture. Must be between -1 and 1.

pictureformat.TransparencyColor [= setting]

Sets or returns the RGB value of the color made transparent when transParentBackground is set to True.

pictureformat.TransparentBackground [= setting]

True makes transparent portions of the picture that match transparencyColor; False makes those portions opaque. Default
is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.17. ShadowFormat
Use the ShadowFormat object to add shadows to Shape objects. Use the Shape object's Shadow property to get a reference to
this object. The ShadowFormat object has the following members:

Application Creator

ForeColor IncrementOffsetX

IncrementOffsetY Obscured

OffsetX OffsetY

Parent transparency

Type Visible

The ShadowFormat members correspond to the settings on the shadow toolbars shown in Figure 18-14.

Figure 18-14. Adding shadows

To add a shadow to a shape, simply make the ShadowFormat object visible or set its Type property as shown here:

Sub ShadowFormatMembers()
 Dim ws As Worksheet, s As Shape, fil As String
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeRectangle, 50, 50, 40, 60)
 ' Make it solid.
 s.Fill.Solid
 ' Set shadow type.
 s.Shadow.Type = msoShadow3
End Sub

If the shape is not solid, the shadow reflects the border of the object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.18. ShapeNode and ShapeNodes Members
Use the ShapeNodes collection to add or remove segments from a freeform shape. Use the Shape object's Nodes property to
get a reference to this collection. Use the Node object to get the coordinates of a specific segment. The ShapeNodes
collection and ShapeNode object have the following members:

Application2 Count2

Creator2 Delete1

EditingType Insert1

Item1 Parent2

Points SegmentType

SetEditingType1 SetPosition1

SetSegmentType1
1 Collection only

2 Object and collection

It's hard to imagine why anyone would need to modify a freeform shape from code within Excel, but if you want to do
that, ShapeNodes is the collection to use! You can modify the shape only after it is rendered from the FreeformBuilder object
by the ConvertToShape method. The following code draws a freeform shape using an earlier example, then replaces one of
the nodes in the shape:

Sub ShapeNodesMembers()
 Dim ws As Worksheet, s As Shape, sn As ShapeNodes
 Set ws = ActiveSheet
 ' Use previous example to draw freeform shape.
 DrawAndFillFreeForm
 ' Get the shape
 Set s = ws.Shapes(ws.Shapes.Count)
 ' Get the ShapeNodes
 Set sn = s.Nodes
 ' Delete a node
 sn.Delete (1)
 ' Add a node
 sn.Insert 1, msoSegmentCurve, msoEditingAuto, _
 20, 20, 50, 60, 30, 30
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.19. TextFrame
Use the TextFrame object to add text to a shape and to change the appearance of that text. Use the Shape object's
TextFrame property to get a reference to this object. The TextFrame object has the following members. Key members
(shown in bold) are covered in the following reference section:

Application AutoMargins

AutoSize Characters

Creator HorizontalAlignment

MarginBottom MarginLeft

MarginRight MarginTop

Orientation Parent

ReadingOrder VerticalAlignment

textframe.AutoMargins [= setting]

True sets margins automatically; False uses margin property settings. Default is True.

textframe.AutoSize [= setting]

True resizes the object to fit the text; False does not resize. Default is False. The following code draws an oval, adds
some text, then resizes the shape to fit the text:

Sub DrawOval()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeOval, 150, 50, 1, 1)
 ' Add some text
 s.TextFrame.Characters.text = "Vigorous writing is concise."
 ' Resize the object to fit text
 s.TextFrame.AutoSize = True
End Sub

textframe.Characters([Start], [Length])

Returns a Characters object representing the text in the text frame.

Argument Settings

Start The index of the first character to return

Length The number of characters to return

The most commonly used properties of the Characters object are Text and Font. I've showed you how to use the Text
property many times so far; the following code changes the font for the last word in the DrawOval example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property many times so far; the following code changes the font for the last word in the DrawOval example:

Sub FormatCharacters()
 Dim ws As Worksheet, s As Shape, fil As String
 Set ws = ActiveSheet
 ' Draw oval using previous example.
 DrawOval
 ' Get the shape object.
 Set s = ws.Shapes(ws.Shapes.Count)
 ' Make last word bold.
 s.TextFrame.Characters(21, 7).Font.Bold = True
End Sub

textframe.HorizontalAlignment [= xlHAlign]

Sets or returns the horizontal alignment of the text. Can be one of these settings:

 xlHAlignCenter
 xlHAlignCenterAcrossSelection
 xlHAlignDistributed
 xlHAlignFill
 xlHAlignGeneral
 xlHAlignJustify
 xlHAlignLeft (default)
 xlHAlignRight

textframe.MarginBottom [= setting]

Sets or returns the bottom margin of the text frame in points.

textframe.MarginLeft [= setting]

Sets or returns the left margin of the text frame in points.

textframe.MarginRight [= setting]

Sets or returns the right margin of the text frame in points.

textframe.MarginTop [= setting]

Sets or returns the top margin of the text frame in points.

textframe.Orientation [= msoTextOrientation]

Sets or returns how the text is rotated. Can be one of these settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns how the text is rotated. Can be one of these settings:

 msoTextOrientationDownward
 msoTextOrientationHorizontal (default)
 msoTextOrientationHorizontalRotatedFarEast
 msoTextOrientationMixed
 msoTextOrientationUpward
 msoTextOrientationVertical
 msoTextOrientationVerticalFarEast

textframe.VerticalAlignment [= xlVAlign]

Sets or returns the vertical alignment of the text. Can be one of these settings:

 xlVAlignCenter
 xlVAlignJustify
 xlVAlignBottom
 xlVAlignDistributed
 xlVAlignTop (default)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.2. Create Diagrams
Excel provides a separate set of tools for creating organization charts and diagrams. To draw an org chart of a diagram
in Excel:

1. On the Drawing toolbar, click Insert Diagram or Organizational Chart. Excel displays the Diagram Gallery as
shown in Figure 18-3.

Figure 18-3. Adding a diagram to a worksheet

2. Choose a diagram type and click OK. Excel creates a default diagram on the active worksheet and displays the
Diagram toolbar (Figure 18-4).

Figure 18-4. Use the Diagram toolbar to add items and control formatting

3. Use the Diagram toolbar to add items to and control the appearance of the diagram.

4. Click on labels in the diagram to add text as shown in Figure 18-5.

Figure 18-5. Editing text in a diagram

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.20. TextEffectFormat
Use the TextEffectFormat object to set the text in an embedded WordArt shape. Use the Shape object's TextEffect property to
get a reference to this object. The TextEffectFormat object has the following members. Key members (shown in bold) are
covered in the following reference section:

Alignment Application

Creator FontBold

FontItalic FontName

FontSize KernedPairs

NormalizedHeight Parent

PresetShape PresetTextEffect

RotatedChars Text

ToggleVerticalText Tracking

shape.Alignment [= msoTextEffectAlignment]

Sets or returns the alignment of the text in the WordArt shape. Can be one of these settings:

 msoTextEffectAlignmentCentered (default)
 msoTextEffectAlignmentLeft
 msoTextEffectAlignmentLetterJustify
 msoTextEffectAlignmentMixed
 msoTextEffectAlignmentRight
 msoTextEffectAlignmentStretchJustify
 msoTextEffectAlignmentWordJustify

shape.FontBold [= setting]

True applies bold formatting; False removes bold.

shape.FontItalic [= setting]

True applies italic formatting; False removes italics.

shape.FontName [= setting]

Sets or returns the font used in the WordArt shape. If the specified font is not found on the user's system, the property
is simply ignored.

shape.FontSize [= setting]

Returns the size of the font in points. Setting this property has no effect in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shape.KernedPairs [= setting]

True decreases spacing between character pairs slightly; False does not decrease spacing. Default is True.

shape.NormalizedHeight [= setting]

True makes upper- and lowercase letters the same height; False uses different heights. Default is False.

shape.PresetShape [= msoPresetTextEffectShape]

Sets or returns a shape effect to apply to the text. Can be one of these settings:

 msoTextEffectShapeArchDownCurve msoTextEffectShapeArchDownPour
 msoTextEffectShapeArchUpCurve msoTextEffectShapeArchUpPour
 msoTextEffectShapeButtonCurve msoTextEffectShapeButtonPour
 msoTextEffectShapeCanDown msoTextEffectShapeCanUp
 msoTextEffectShapeCascadeDown msoTextEffectShapeCascadeUp
 msoTextEffectShapeChevronDown msoTextEffectShapeChevronUp
 msoTextEffectShapeCircleCurve msoTextEffectShapeCirclePour
 msoTextEffectShapeCurveDown msoTextEffectShapeCurveUp
 msoTextEffectShapeDeflate msoTextEffectShapeDeflateBottom
 msoTextEffectShapeDeflateInflate msoTextEffectShapeDeflateInflateDeflate
 msoTextEffectShapeDeflateTop msoTextEffectShapeDoubleWave1
 msoTextEffectShapeDoubleWave2 msoTextEffectShapeFadeDown
 msoTextEffectShapeFadeLeft msoTextEffectShapeFadeRight
 msoTextEffectShapeFadeUp msoTextEffectShapeInflate
 msoTextEffectShapeInflateBottom msoTextEffectShapeInflateTop
 msoTextEffectShapeMixed msoTextEffectShapePlainText
 msoTextEffectShapeRingInside msoTextEffectShapeRingOutside
 msoTextEffectShapeSlantDown msoTextEffectShapeSlantUp
 msoTextEffectShapeStop msoTextEffectShapeTriangleDown
 msoTextEffectShapeTriangleUp msoTextEffectShapeWave1
 msoTextEffectShapeWave2

shape.PresetTextEffect [= msoPresetTextEffect]

Sets or returns the text effect to use from the WordArt Gallery (Figure 18-15). Can be a setting from msoTextEffect1 to
msoTextEffect30.

Figure 18-15. View available text effects from the WordArt Gallery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shape.RotatedChars [= setting]

True rotates characters in the text 90 degrees; False removes the rotation.

shape.Text [= setting]

Sets or returns the text displayed in the WordArt shape.

shape.ToggleVerticalText()

Switches between horizontal and vertical text.

shape.Tracking [= setting]

Sets or returns the ratio of space allotted to each character relative to the width of the actual character. Must be
between 0 and 5. Default is 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.21. ThreeDFormat
Use the THReeDFormat object to add a 3-D effect to shapes. Use the Shape object's ThreeD property to get a reference to
this object. The ThreeDFormat object has the following members:

Application Creator

Depth ExtrusionColor

ExTRusionColorType IncrementRotationX

IncrementRotationY Parent

Perspective PresetExtrusionDirection

PresetLightingDirection PresetLightingSoftness

PresetMaterial PresetThreeDFormat

ResetRotation RotationX

RotationY SetExtrusionDirection

SetThreeDFormat Visible

The THReeDFormat members correspond to the settings on the 3-D Settings toolbar shown in Figure 18-16.

Figure 18-16. Adding a 3-D effect to shapes

Use the SetThreeDFormat method to apply a 3-D effect to a shape. The following code draws the wave shape shown in
Figure 18-16 and applies a 3-D effect to it:

Sub ThreeDFormatMembers()
 Dim ws As Worksheet, s As Shape, fil As String
 Set ws = ActiveSheet
 ' Insert embedded WordArt.
 Set s = ws.Shapes.AddShape(msoShapeWave, 20, 140, 40, 30)
 s.Fill.Solid
 ' Apply 3-D effect.
 s.ThreeD.SetThreeDFormat msoThreeD1
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.3. Program with Drawing Objects
Any object that can be drawn is considered a Shape object in Excel. You get individual Shape objects from the Worksheet or
Chart object's Shapes collection. The Shape object is unusual because it encapsulates the members from more specific
object types. Because of that, any given Shape object may or may not support any given Shape member. For example,
the following code flips simple shapes on a worksheet, doesn't affect embedded objects, and causes an error if the
worksheet contains a diagram:

Sub FlipObjects()
 Dim s As Shape
 For Each s In ActiveSheet.Shapes
 ' Doesn't affect embedded objects. Error on diagrams!
 s.Flip msoFlipHorizontal
 Next
End Sub

There are three general categories of Shape objects. You can determine the category of a Shape object by comparing its
Type property to those listed in Table 18-1.

Table 18-1. Use the Type property to determine which Shape members are
available

Category Shape Type Programming notes

Simple
shapes

msoAutoShape, msoFreeForm, msoLine, msoLinkedOLEObject,
msoLinkedPicture, msoPicture, msoTextBox, msoTextEffect Most Shape members are supported.

Embedded
objects

msoChart, msoComment, msoEmbeddedOLEObject, msoFormControl,
msoOLEControlObject

Convert these objects to a specific type
for access to their members.

Diagram
shapes msoDiagram Accessing most Shape members causes an

error.

18.3.1. Draw Simple Shapes

Use the Shapes collection Add methods to draw shapes from code. Table 18-2 lists the various Add methods and describes
the type of shape they create.

Table 18-2. Shapes collection Add methods
Method Draws this type of figure Resulting shape Type

AddCallout Autoshape callout msoCallout

AddConnector Autoshape connector line msoAutoShape

AddCurve Bézier curve msoFreeForm

AddDiagram Diagram or org chart msoDiagram

AddFormControl Forms 1.0 control msoFormControl

AddLabel Text box without a border msoTextBox

AddLine Line msoLine

AddOLEObject Embedded OLE object or Forms 2.0 control (equivalent to the OLEObjects
collection's Add method) msoEmbeddedOLEObject

AddPicture Image from a file msoPicture

AddPolyline Line with multiple vertices msoFreeForm

AddShape Any autoshape msoAutoShape

AddTextBox Text box with rectangular border msoTextBox

AddTextEffect Embedded WordArt msoTextEffect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some Add methods create variations of the same type of shape, while others create seldom used or obsolete shapes.
The most useful Add methods are:

 AddConnector
 AddPicture
 AddShape

The AddShape method is the most general, and you can use it to create any of the autoshapes. For example, the
following code draws a rectangle on the active sheet:

Sub DrawRect()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeRectangle, 10, 20, 100, 20)
 ' Color it blue
 s.Fill.Visible = True
 s.Fill.ForeColor.SchemeColor = 4
End Sub

The AddShape method has a long list of possible autoshape types, as shown in Figure 18-6.

Figure 18-6. Selecting the type of shape to create with AddShape

18.3.2. Add Text

You can add text to any of the autoshapes using the Shape object's TextFrame property. The TextFrame object provides a
Characters property you can use to set the text displayed on the object, as well as formatting properties, as demonstrated
by the following code:

Sub DrawText()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a rectangle.
 Set s = ws.Shapes.AddShape(msoShapeRectangle, 10, 20, 100, 20)
 ' Add text.
 s.TextFrame.Characters.text = "Some text to display"
 ' Center the text
 s.TextFrame.HorizontalAlignment = xlHAlignCenter
 s.TextFrame.VerticalAlignment = xlVAlignCenter
 ' Set the font
 s.TextFrame.Characters.Font.Name = "Comic Sans MS"
 s.TextFrame.Characters.Font.Bold = True
 ' Resize to fit text
 s.TextFrame.AutoSize = True
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You could substitute the AddTextBox method for AddShape in the preceding code; however,
AddShape is more flexible since you can create any shapenot just rectangles.

18.3.3. Connect Shapes

To draw lines between two shapes:

1. Use the AddConnector method to create a connector shape.

2. Use the connector shape's ConnectorFormat property to establish the connection.

Connectors attach to connection sites on a Shape object and maintain the connection even if you drag the objects to
another location. The following code creates the two connected rectangles shown in Figure 18-7:

Sub ConnectShapes()
 Dim ws As Worksheet, s1 As Shape, s2 As Shape, conn As Shape
 Set ws = ActiveSheet
 ' Draw rectangle
 DrawRect
 ' Get a reference to new rectangle (last object in Shapes collection)
 Set s1 = ws.Shapes(ws.Shapes.Count)
 ' Repeat for second rectangle.
 DrawRect
 Set s2 = ws.Shapes(ws.Shapes.Count)
 ' Move the second rectangle.
 s2.IncrementLeft 100
 s2.IncrementTop 50
 ' Create a connector (position and size don't matter).
 Set conn = ws.Shapes.AddConnector(msoConnectorCurve, 1, 1, 1, 1)
 ' Connect to each rectangle.
 conn.ConnectorFormat.BeginConnect s1, 3
 conn.ConnectorFormat.EndConnect s2, 2
End Sub

ConnectShapes reuses the DrawRect example shown previously.

The second argument for BeginConnect and EndConnect determines where the connector attaches to the shape. For most
shapes, connection sites are numbered counter-clockwise on the shape starting at the top, as shown in Figure 18-8.

Figure 18-7. Connected shapes stay connected

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-8. Connection site numbering

To establish the shortest path between two objects, call RerouteConnections. That method adjusts the connection to use the
two nearest connection sites.

18.3.4. Insert Pictures

Use the AddPicture method to insert a picture as a shape. Pictures are treated like any other shape, so Shape methods like
Flip work fine. In addition, picture shapes have a PictureFormat property that you can use to adjust brightness,
transparency, and other attributes of the picture. The following code inserts a logo on the active worksheet, flips it, and
makes its background transparent:

Sub InsertPicture()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Insert the image.
 Set s = ws.Shapes.AddPicture(ThisWorkbook.Path & "\logo.bmp", _
 False, True, 120, 170, 100, 100)
 ' Flip the image.
 s.Flip msoFlipHorizontal
 ' The picture background is white.
 s.PictureFormat.TransparencyColor = &HFFFFFF
 ' Turn on transparency.
 s.PictureFormat.TransparentBackground = True
End Sub

18.3.5. Insert Other Objects

OLE objects, such as Word documents, WordArt, and form controls can be inserted using the OLEObjects collection or the
Shapes collection. The OLEObjects.Add method is equivalent to the Shapes.AddOLEObject methodin fact, they take the same
arguments. I cover the OLEObjects collection in Chapter 10, so I won't repeat that information here. However, the Shapes
collection's AddTextEffect method is worth mentioning because it provides a shortcut to adding an embedded WordArt
object .

The following code inserts a WordArt object on the active worksheet, sets the text properties, then displays a picture on
top of the WordArt as shown in Figure 18-9:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

top of the WordArt as shown in Figure 18-9:

Sub InsertWordArt()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Insert the WordArt.
 Set s = ws.Shapes.AddTextEffect(msoTextEffect1, "Wombat!", "Arial", 36, _
 True, False, 100, 200)
 ' Change the color of the WordArt
 s.Fill.ForeColor.RGB = &HFF
 ' Display picture using previous example.
 InsertPicture
End Sub

Figure 18-9. WordArt combined with a transparent image

18.3.6. Group Shapes

Sometimes you'll want to perform the same operation on more than one shape. The easiest way to do that is to group
the shapes using the ShapeRange object, then perform the operation on that object. The following code demonstrates how
to group objects as a ShareRange:

Sub GroupObjects()
 Dim ws As Worksheet, s As Shape, sr As ShapeRange
 Set ws = ActiveSheet
 ' Create a ShapeRange containing the last two shapes drawn.
 Set sr = ws.Shapes.Range(Array(ws.Shapes.Count - 1, ws.Shapes.Count))
 ' Flip the objects
 sr.Flip msoFlipHorizontal
 ' Group the objects in the Excel UI.
 sr.Group
End Sub

The ShapeRange object's Group method groups the objects so they can be moved, resized, or deleted as a unit by the user.
If you run GroupObjects after InsertWordArt, both the wombat and the text are flipped, as shown in Figure 18-10.

Figure 18-10. Grouping objects with ShapeRange

The ShareRange object has almost all of the same members as the Shape object, and as with Shape, some of those
members aren't valid for certain types of shapes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

members aren't valid for certain types of shapes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.4. Program Diagrams
Excel diagrams might seem very useful from a programming perspective; however, they have a serious limitation: you
can't get or set the text of diagram nodes from code. See http://support.microsoft.com/default.aspx?scid=kb;en-
us;317293 for complete details.

This appears to be a bug in the 2002 and 2003 versions of Excel, so you can assume it will continue into the future.
Interestingly, you can use macro recording to record your actions building a diagram in the Excel user interface;
however, if you run the macro, you will see the error in Figure 18-11.

Figure 18-11. Programming diagrams is not well supported in Excel

Many of the code samples for the Diagram and DiagramNode objects in Help fail if you run
them in Excel.

Microsoft suggests using the Diagram object in the Word or PowerPoint application as a workaround to this problem, and
those applications do seem to work. However, I think it's more reliable to use Excel's autoshapes and connectors if you
want to diagram data from a worksheet.

The following code draws a hierarchical diagram from items on the active worksheet. Items in the first column are top-
level parents and items in subsequent columns are all related as shown in Figure 18-12:

' Module-level variable used to set Top property
' of subsequent shapes.
Dim m_lastShape As Shape

Sub DrawDiagram()
 Dim ws1 As Worksheet, ws2 As Worksheet, cel As Range, _
 s As Shape, p() As Shape, top As Single
 ' Get the source worksheet.
 Set ws1 = ActiveSheet
 ' Create a new worksheet for the diagram.
 Set ws2 = Worksheets.Add
 ' Array to keep track parents (for connections).
 ReDim p(1 To ws1.UsedRange.Columns.Count)
 ' For each cell with data.
 For Each cel In ws1.UsedRange
 If cel.Value <> "" Then
 ' Items in the first column are top-level parents.
 If cel.Column = 1 Then
 ' If there's more than one top-level parent, set top.
 If m_lastShape Is Nothing Then top = 5 _
 Else top = m_lastShape.top
 Set s = DrawParent(5, top, , , ws2)
 ' Track this object as parent (index = column number)
 Set p(cel.Column) = s
 ' Items in other columns are children.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Items in other columns are children.
 Else
 Set s = DrawChild(p(cel.Column - 1), ws2)
 ' Keep track of relationships.
 Set p(cel.Column) = s
 End If
 ' Set the text in the Shape object to match cell contents.
 s.TextFrame.Characters.text = cel.Value
 End If
 Next
End Sub

' Draw a top-level Shape.
Function DrawParent(Optional left As Single = 0, Optional top As Single = 0, _
 Optional width As Single = 100, Optional height As Single = 20, _
 Optional ws As Worksheet) As Shape
 Dim res As Shape
 ' Use active sheet if not specified
 If ws Is Nothing Then Set ws = ActiveSheet
 Set res = ws.Shapes.AddShape(msoShapeRoundedRectangle, _
 left, top, width, height)
 ' Add temporary text (required for alignment properties).
 res.TextFrame.Characters.text = "Parent"
 ' Set formatting.
 res.TextFrame.HorizontalAlignment = xlHAlignCenter
 res.TextFrame.VerticalAlignment = xlVAlignCenter
 Set m_lastShape = res
 ' Return the shape.
 Set DrawParent = res
End Function

Function DrawChild(parent As Shape, Optional ws As Worksheet) As Shape
 Dim res As Shape, conn As Shape, indent As Single
 ' Use active sheet if not specified
 If ws Is Nothing Then Set ws = ActiveSheet
 ' If this is the first child, then parent is source of height.
 If m_lastShape Is Nothing Then Set m_lastShape = parent
 indent = 5
 Set res = ws.Shapes.AddShape(msoShapeRoundedRectangle, _
 parent.left + (parent.width \ 2) + indent, _
 m_lastShape.top + m_lastShape.height + indent, _
 parent.width, parent.height)
 ' Add temporary text (required for alignment properties).
 res.TextFrame.Characters.text = "Child"
 ' Get formatting from parent
 parent.PickUp: res.Apply
 ' Connect the parent and child.
 Set conn = ws.Shapes.AddConnector(msoConnectorElbow, 1, 1, 1, 1)
 conn.ConnectorFormat.BeginConnect parent, 3
 conn.ConnectorFormat.EndConnect res, 2
 ' Save this child for future positioning.
 Set m_lastShape = res
 ' Return the child shape
 Set DrawChild = res
End Function

The data must be formatted as shown in Figure 18-12. Feel free to modify this code to use other shapes or layouts. It's
harder to create tree-style diagrams than the vertical layout shown herethat might be an interesting way to test your
knowledge!

Never struggle with tools that don't work. For that reason, I've omitted Diagram, DiagramNode,
and related members from the reference sections in this chapter. When programming
Excel, it is best to simply avoid those objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.5. Shape, ShapeRange, and Shapes Members
Use the Shapes collection to draw graphics on a worksheet or chart. Use the Worksheet or Chart object's Shapes property to
get a reference to this collection. Use the Shape object to change the appearance of one shape; use ShapeRange to change
groups of shapes. Shapes, Shape and ShapeRange have the following members. Key members (shown in bold) are covered
in the following reference section:

Figure 18-12. Diagramming the Shape object hierarchy

AddCallout

1

AddConnector

1

AddCurve

1

AddDiagram2 AddFormControl1
AddLabel

1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddLine

1
AddOLEObject1

AddPicture

1

AddPolyline

1

AddShape

1

AddTextbox

1

AddTextEffect

1
Adjustments

Align

3

AlternativeText Application2 Apply

AutoShapeType BlackWhiteMode BottomRightCell

BuildFreeform

1
Callout Child

ConnectionSiteCount Connector ConnectorFormat

ControlFormat Copy CopyPicture

Count1 Creator2 Cut

Delete Diagram DiagramNode

Distribute

3
Duplicate Fill

Flip FormControlType
Group

3

GroupItems HasDiagram HasDiagramNode

Height HorizontalFlip Hyperlink

ID IncrementLeft IncrementRotation

IncrementTop Item1 Left

Line LinkFormat LockAspectRatio

Locked Name Nodes

OLEFormat OnAction Parent2

ParentGroup PickUp PictureFormat

Placement
Range

1

Regroup

3

RerouteConnections Rotation ScaleHeight

ScaleWidth Script Select

SelectAll

1
SetShapesDefaultProperties Shadow

TextEffect TextFrame ThreeD

Top TopLeftCell Type

Ungroup VerticalFlip Vertices

Visible Width ZOrder

ZOrderPosition
1 Collection only

2 Object and collection

3 ShapeRange only

shapes.AddCallout(Type, Left, Top, Width, Height)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Draws a simple callout and returns the callout's Shape object.

Argument Settings

Type An msoCalloutType constant indicating the type of callout to draw. Can be msoCalloutOne, msoCalloutTwo,
msoCalloutMixed, msoCalloutThree, or msoCalloutFour.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

shapes.AddConnector(Type, BeginX, BeginY, EndX, EndY)

Draws a connector line and returns the connector's Shape object.

Argument Settings

Type An msoConnectorType constant. Can be msoConnectorElbow, msoConnectorTypeMixed, msoConnectorCurve, or
msoConnectorStraight.

BeginX The horizontal coordinate of the start of the connector line.

BeginY The vertical coordinate of the start of the connector line.

EndX The horizontal coordinate of the end of the connector line.

EndY The vertical coordinate of the end of the connector line.

You can set the begin and end coordinates to an arbitrary value, then use the BeginConnect and EndConnect methods to
connect two objects. Using the RerouteConnections method creates the shortest path between the objects. The following
code demonstrates using those methods to connect two shapes as shown in Figure 18-13:

Sub QuickConnect()
 Dim s1 As Shape, s2 As Shape, conn As Shape
 ' Create a shape
 Set s1 = ActiveSheet.Shapes.AddShape(msoShapeCube, 100, 10, 50, 60)
 ' Create another shape
 Set s2 = ActiveSheet.Shapes.AddShape(msoShapeCan, 50, 100, 50, 60)
 ' Create connector with arbitrary coordinates
 Set conn = ActiveSheet.Shapes.AddConnector(msoConnectorCurve, 1, 1, 1, 1)
 ' Connect shapes
 conn.ConnectorFormat.BeginConnect s1, 1
 conn.ConnectorFormat.EndConnect s2, 1
 ' Connect via shortest path (changes connection sites)
 conn.RerouteConnections
End Sub

Figure 18-13. Creating a connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shapes.AddCurve(SafeArrayOfPoints)

Draws a Bézier curve from an array of coordinate pairs and returns the curve's Shape object.

Argument Settings

SafeArrayOfPoints The 2-D array of points containing the vertices and control points of the curve

The following code draws an S-shaped curve that starts at (80,100) and ends at (110,30):

Sub DrawCurve()
 Dim s As Shape, pts() As Single
 ' Array of points.
 ReDim pts(3, 1)
 pts(0, 0) = 80
 pts(0, 1) = 100
 pts(1, 0) = 200
 pts(1, 1) = 150
 pts(2, 0) = 15
 pts(2, 1) = 20
 pts(3, 0) = 110
 pts(3, 1) = 30
 ' Draw a curve
 Set s = ActiveSheet.Shapes.AddCurve(pts)
End Sub

shapes.AddLabel(Orientation, Left, Top, Width, Height)

Draws a text box without a border and returns the label's Shape object.

Argument Settings

Orientation
An msoTextOrientation constant. Can be msoTextOrientationDownward, msoTextOrientationHorizontal,
msoTextOrientationHorizontalRotatedFarEast, msoTextOrientationMixed, msoTextOrientationUpward, msoTextOrientationVertical,
or msoTextOrientationVerticalFarEast.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

Use the TextFrame property to get or set the text in the label and to set the formatting of the text. The following code
draws a label on the active sheet:

Sub DrawLabel()
 Dim s As Shape
 ' Create label (height/width will be set automatically).
 Set s = ActiveSheet.Shapes.AddLabel(msoTextOrientationHorizontal, _
 100, 100, 1, 1)
 s.TextFrame.Characters.text = "This is some label text"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

The Width and Height arguments in the preceding code are required but arbitrary because the TextFrame object's AutoSize
property is True by default. The label is automatically resized to fit the text.

shapes.AddLine(BeginX, BeginY, EndX, EndY)

Draws a straight line and returns the line's Shape object.

Argument Settings

BeginX The horizontal coordinate for the origin of the line

BeginY The vertical coordinate for the origin of the line

EndX The horizontal coordinate for the end of the line

EndY The vertical coordinate for the end of the line

Use the Line property to set the style and formatting used for the line. The following code draws a dashed line with an
arrowhead:

Sub DrawLine()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Create label (height/width will be set by AutoSize).
 Set s = ws.Shapes.AddLine(100, 100, 200, 200)
 s.Line.DashStyle = msoLineDash
 s.Line.EndArrowheadStyle = msoArrowheadStealth
End Sub

shapes.AddPicture(Filename, LinkToFile, SaveWithDocument,
Left, Top, Width, Height)

Adds a picture to a worksheet or chart and the picture's Shape object.

Argument Settings

Filename The picture file to load.

LinkToFile True links the shape to the picture file; False copies the image into the file.

SaveWithDocument True saves the image in the workbook; False saves only link information in the document. If LinkToFile
is False, SaveWithDocument must be True.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

Excel scales the image to fit the Width and Height arguments. To restore the image's actual height and width, use the
ScaleHeight and ScaleWidth methods as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ScaleHeight and ScaleWidth methods as shown here:

Sub DrawPicture()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Insert the image.
 Set s = ws.Shapes.AddPicture(ThisWorkbook.Path & "\logo.bmp", _
 False, True, 100, 100, 1, 1)
 ' Use picture's height and width.
 s.ScaleHeight 1, msoCTrue
 s.ScaleWidth 1, msoCTrue
End Sub

Use the PictureFormat property to control a picture's brightness, contrast, and transparency.

shapes.AddPolyline(SafeArrayOfPoints)

Draws a segmented line from an array of coordinate pairs and returns the line's Shape object.

Argument Settings

SafeArrayOfPoints The 2-D array of points containing the vertices of the line

Use the Line property to set the style and formatting used for the line. The following code draws a Z-shaped line that
starts at (80,100) and ends at (110,30):

Sub DrawZ()
 Dim s As Shape, pts() As Single
 ' Array of points.
 ReDim pts(3, 1)
 pts(0, 0) = 80
 pts(0, 1) = 100
 pts(1, 0) = 200
 pts(1, 1) = 150
 pts(2, 0) = 15
 pts(2, 1) = 20
 pts(3, 0) = 110
 pts(3, 1) = 30
 ' Draw a curve
 Set s = ActiveSheet.Shapes.AddPolyline(pts)
End Sub

shapes.AddShape(Type, Left, Top, Width, Height)

Draws an autoshape and returns the autoshape's Shape object.

Argument Settings

Type An msoAutoShapeType constant. Can be any of the settings listed following this table.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

The msoAutoShapeType constant can be one of:

msoShape4pointStar msoShape5pointStar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

msoShape4pointStar msoShape5pointStar
msoShape8pointStar msoShape16pointStar
msoShape24pointStar msoShape32pointStar
msoShapeActionButtonBackorPrevious msoShapeActionButtonBeginning
msoShapeActionButtonCustom msoShapeActionButtonDocument
msoShapeActionButtonEnd msoShapeActionButtonForwardorNext
msoShapeActionButtonHelp msoShapeActionButtonHome
msoShapeActionButtonInformation msoShapeActionButtonMovie
msoShapeActionButtonReturn msoShapeActionButtonSound
msoShapeArc msoShapeBalloon
msoShapeBentArrow msoShapeBentUpArrow
msoShapeBevel msoShapeBlockArc
msoShapeCan msoShapeChevron
msoShapeCircularArrow msoShapeCloudCallout
msoShapeCross msoShapeCube
msoShapeCurvedDownArrow msoShapeCurvedDownRibbon
msoShapeCurvedLeftArrow msoShapeCurvedRightArrow
msoShapeCurvedUpArrow msoShapeCurvedUpRibbon
msoShapeDiamond msoShapeDonut
msoShapeDoubleBrace msoShapeDoubleBracket
msoShapeDoubleWave msoShapeDownArrow
msoShapeDownArrowCallout msoShapeDownRibbon
msoShapeExplosion1 msoShapeExplosion2
msoShapeFlowchartAlternateProcess msoShapeFlowchartCard
msoShapeFlowchartCollate msoShapeFlowchartConnector
msoShapeFlowchartData msoShapeFlowchartDecision
msoShapeFlowchartDelay msoShapeFlowchartDirectAccessStorage
msoShapeFlowchartDisplay msoShapeFlowchartDocument
msoShapeFlowchartExtract msoShapeFlowchartInternalStorage
msoShapeFlowchartMagneticDisk msoShapeFlowchartManualInput
msoShapeFlowchartManualOperation msoShapeFlowchartMerge
msoShapeFlowchartMultidocument msoShapeFlowchartOffpageConnector
msoShapeFlowchartOr msoShapeFlowchartPredefinedProcess
msoShapeFlowchartPreparation msoShapeFlowchartProcess
msoShapeFlowchartPunchedTape msoShapeFlowchartSequentialAccessStorage
msoShapeFlowchartSort msoShapeFlowchartStoredData
msoShapeFlowchartSummingJunction msoShapeFlowchartTerminator
msoShapeFoldedCorner msoShapeHeart
msoShapeHexagon msoShapeHorizontalScroll
msoShapeIsoscelesTriangle msoShapeLeftArrow
msoShapeLeftArrowCallout msoShapeLeftBrace
msoShapeLeftBracket msoShapeLeftRightArrow
msoShapeLeftRightArrowCallout msoShapeLeftRightUpArrow
msoShapeLeftUpArrow msoShapeLightningBolt
msoShapeLineCallout1 msoShapeLineCallout1AccentBar
msoShapeLineCallout1BorderandAccentBar msoShapeLineCallout1NoBorder
msoShapeLineCallout2 msoShapeLineCallout2AccentBar
msoShapeLineCallout2BorderandAccentBar msoShapeLineCallout2NoBorder
msoShapeLineCallout3 msoShapeLineCallout3AccentBar
msoShapeLineCallout3BorderandAccentBar msoShapeLineCallout3NoBorder
msoShapeLineCallout4 msoShapeLineCallout4AccentBar
msoShapeLineCallout4BorderandAccentBar msoShapeLineCallout4NoBorder
msoShapeMixed msoShapeMoon
msoShapeNoSymbol msoShapeNotchedRightArrow
msoShapeNotPrimitive msoShapeOctagon
msoShapeOval msoShapeOvalCallout
msoShapeParallelogram msoShapePentagon
msoShapePlaque msoShapeQuadArrow
msoShapeQuadArrowCallout msoShapeRectangle
msoShapeRectangularCallout msoShapeRegularPentagon
msoShapeRightArrow msoShapeRightArrowCallout
msoShapeRightBrace msoShapeRightBracket
msoShapeRightTriangle msoShapeRoundedRectangle
msoShapeRoundedRectangularCallout msoShapeSmileyFace
msoShapeStripedRightArrow msoShapeSun
msoShapeTrapezoid msoShapeUpArrow
msoShapeUpArrowCallout msoShapeUpDownArrow
msoShapeUpDownArrowCallout msoShapeUpRibbon
msoShapeUTurnArrow msoShapeVerticalScroll
msoShapeWave

Use the TextFrame property to add text to an autoshape. Use the AutoShapeType property to convert one autoshape into
another.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shapes.AddTextbox(Orientation, Left, Top, Width, Height)

Draws a text box surrounded by a rectangular border and returns the text box's Shape object.

Argument Settings

Orientation
An msoTextOrientation constant. Can be msoTextOrientationDownward, msoTextOrientationHorizontal,
msoTextOrientationHorizontalRotatedFarEast, msoTextOrientationMixed, msoTextOrientationUpward, msoTextOrientationVertical,
or msoTextOrientationVerticalFarEast.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Width The width of the shape in points.

Height The height of the shape in points.

Use the TextFrame property to get or set the text in the shape and to set the formatting of the text. Unlike labels, text
boxes do not automatically resize to fit their text. You must set the AutoSize property as shown here:

Sub DrawTextbox()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Create label (height/width will be set by AutoSize).
 Set s = ws.Shapes.AddTextbox(msoTextOrientationHorizontal, 100, 100, 1, 1)
 s.TextFrame.Characters.text = "This is some label text"
 ' Resize text box to fit text.
 s.TextFrame.AutoSize = True
End Sub

shapes.AddTextEffect(PresetTextEffect, Text, FontName,
FontSize, FontBold, FontItalic, Left, Top)

Adds a WordArt embedded object and returns the Shape object for the embedded object.

Argument Settings

PresetTextEffect An MsoPresetTextEffect constant. Can be msoTextEffect1 to msoTextEffect30.

Text The text to embed.

FontName The name of the font to use.

FontSize The size of the font in points.

FontBold True uses bold; False uses the normal weight font.

FontItalic True uses italic font; False uses roman.

Left The horizontal position of the shape in points.

Top The vertical position of the shape in points.

Use the TextEffect property, not TextFrame, to change the text or appearance of the embedded WordArt object. The
following code embeds a WordArt object, then changes its text:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code embeds a WordArt object, then changes its text:

Sub EmbedWordArt()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Create label (height/width will be set by AutoSize).
 Set s = ws.Shapes.AddTextEffect(msoTextEffect19, "Wombat!", "Arial", 36, _
 True, False, 100, 100)
 ' Change text.
 s.TextEffect.text = "New Text"
End Sub

shape.Adjustments

For an autoshape, connector, or WordArt shape, returns the Adjustments collection; for other types of shapes, causes an
error. Use Adjustments to move the adjustment handles on a shape (the equivalent of clicking and dragging on the
adjustment handle). Figure 18-2 illustrates adjustment handles.

shaperange.Align(AlignCmd, RelativeTo)

Aligns the shapes in a ShapeRange.

Argument Settings

AlignCmd An msoAlignCmd constant. Can be msoAlignCenters, msoAlignMiddles, msoAlignTops, msoAlignBottoms, msoAlignLefts, or
msoAlignRights.

RelativeTo True aligns shapes relative to the Excel window; False aligns shapes relative to the first shape in the
ShapeRange.

The following code uses previous examples to draw three shapes, adds them to a ShapeRange, then aligns the shapes
relative to the first shape drawn:

Sub LeftAlign()
 Dim ws As Worksheet, sr As ShapeRange
 Set ws = ActiveSheet
 ' Draw three objects (call previous examples)
 DrawRect
 DrawLine
 EmbedWordArt
 ' Create a shape range
 Set sr = ws.Shapes.Range(Array(1, 2, 3))
 ' Left-align three shapes
 sr.align msoAlignLefts, False
End Sub

shape.AlternativeText [= setting]

Sets or returns the alternate text used for the shape if the worksheet or chart is saved in HTML format.

shape.Apply()

Applies formatting that was previously picked up from another shape. The PickUp and Apply methods are used together to
copy formatting from one shape to another. For example, the following code copies the formatting from the first shape
on a worksheet to all of the others on the same worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on a worksheet to all of the others on the same worksheet:

Sub FormatSameAsFirst()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 For Each s In ws.Shapes
 ' Get formatting from first shape.
 ws.Shapes(1).PickUp
 ' Apply it to each shape.
 s.Apply
 Next
End Sub

Calling Apply clears the formatting being copied, so you must call PickUp before each Apply.

shape.AutoShapeType [= msoAutoShapeType]

Converts one autoshape to another autoshape. Causes an error for connector, line, picture, OLE object, and WordArt
shape types. See the list under "shapes.AddShape(Type, Left, Top, Width, Height)," earlier in this chapter, for a list of
possible settings.

shape.BlackWhiteMode [= msoBlackWhiteMode]

Sets or returns how the shape appears when viewed in black and white. Can be:

 msoBlackWhiteAutomatic msoBlackWhiteBlack
 msoBlackWhiteBlackTextAndLine msoBlackWhiteDontShow
 msoBlackWhiteGrayOutline msoBlackWhiteGrayScale
 msoBlackWhiteHighContrast msoBlackWhiteInverseGrayScale
 msoBlackWhiteLightGrayScale msoBlackWhiteMixed
 msoBlackWhiteWhite

shapes.BuildFreeform(EditingType, X1, Y1)

Begins drawing freeform line art and returns a FreeformBuilder object used to add elements to the freeform.

Argument Settings

EditingType An msoEditingType constant. Can be msoEditingAuto or msoEditingCorner.

X1 The horizontal position of the first element of the shape in points.

Y1 The vertical position of the first element of the shape in points.

Use the ConvertToShape method for drawing the freeform and render it as a shape as shown here:

Sub DrawFreeform()
 Dim ws As Worksheet, s As Shape, fb As FreeformBuilder
 Set ws = ActiveSheet
 ' Create freeform
 Set fb = ws.Shapes.BuildFreeform(msoEditingAuto, 380, 230)
 ' Add segments.
 fb.AddNodes msoSegmentCurve, msoEditingCorner, _
 380, 230, 400, 250, 450, 300
 fb.AddNodes msoSegmentCurve, msoEditingAuto, 480, 200
 fb.AddNodes msoSegmentLine, msoEditingAuto, 480, 400
 fb.AddNodes msoSegmentLine, msoEditingAuto, 380, 230
 ' Render drawing.
 fb.ConvertToShape
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

shape.Callout

For callout shapes, returns a CalloutFormat object used to format the callout. For other shape types, causes an error.

shape.ConnectionSiteCount

Returns the number of connection sites available on the shape.

shape.Connector

Returns True if the shape is a connector, False if it is not.

shape.ConnectorFormat

For connector shapes, returns a ConnectorFormat object. For other shape types, causes an error. The following code
changes all of the connections on a worksheet to use the curved connector style:

Sub ChangeConnectors()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 For Each s In ws.Shapes
 ' If the shape is a connector, change its style.
 If s.Connector Then _
 s.ConnectorFormat.Type = msoConnectorCurve
 Next
End Sub

shape.ControlFormat

For Forms 1.0 shapes, returns the ControlFormat object used to access the properties and methods of the control. For
other shape types, causes an error.

shaperange.Distribute(DistributeCmd, RelativeTo)

Distributes the shapes in a ShapeRange vertically or horizontally.

Argument Settings

DistributeCmd Can be msoDistributeHorizontallyor msoDistributeVertically.

RelativeTo Must be False in Excel.

The following code distributes the shapes on a worksheet vertically; this is the equivalent of selecting Draw Align
or Distribute Distribute Horizontally on the Drawing toolbar:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or Distribute Distribute Horizontally on the Drawing toolbar:

Sub DistributeVertically()
 Dim ws As Worksheet, sr As ShapeRange
 Set ws = ActiveSheet
 ' Create a shape range for all shapes on sheet.
 ws.Shapes.SelectAll
 Set sr = Selection.ShapeRange
 ' Distribute shapes
 sr.Distribute msoDistributeVertically, False
End Sub

shape.Duplicate()

Copies a shape and returns a reference to the new Shape object. The following code makes a copy of the first shape on a
worksheet, then moves the copy to the left:

Sub CopyShape()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 Set s = ws.Shapes(1)
 ' Make copy.
 Set s = s.Duplicate
 ' Move copy.
 s.IncrementLeft 100
End Sub

shape.Fill

Returns a FillFormat object for the shape.

shape.Flip(FlipCmd)

Flips the shape vertically or horizontally.

Argument Settings

FlipCmd Can be msoFlipHorizontal or msoFlipVertical

Most shapes can be flipped, but OLE objects and form controls cannot.

shape.FormControlType

For Form 1.0 controls, returns an xlFormControl constant indicating the control type. For other shapes, causes an error.

shaperange.Group()

Groups the shapes in the ShapeRange so that they can be selected, moved, or deleted as a single shape by the user. The
following code demonstrates grouping and ungrouping the shapes on a worksheet:

Sub GroupUngroup()
 Dim ws As Worksheet, sr As ShapeRange, s As Shape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim ws As Worksheet, sr As ShapeRange, s As Shape
 Set ws = ActiveSheet
 Select Case ws.Shapes.Count
 Case Is > 1
 ' Create a shape range for all shapes on sheet.
 ws.Shapes.SelectAll
 Set sr = Selection.ShapeRange
 ' Group all the items
 Set s = sr.Group
 ' Show count of items in group.
 Debug.Print s.GroupItems.Count & " shapes grouped."
 Case 1
 ws.Shapes(1).Ungroup
 Debug.Print "Ungrouped shapes"
 Case 0
 Debug.Print "No shapes to group."
 End Select
End Sub

shape.GroupItems

Returns the collection of shapes in a group.

shape.HorizontalFlip

Returns True if the shape has been flipped horizontally, False otherwise.

shape.Hyperlink

Returns a Hyperlink object for the shape. See Chapter 10 for more information on the Hyperlink object.

shape.ID

Returns a numeric identifier for the shape.

shape.IncrementLeft(Increment)

Moves a shape horizontally.

Argument Settings

Increment The number of points to move the shape

shape.IncrementRotation(Increment)

Rotates a shape.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Increment The number of degrees to rotate the shape

The following code draws and rotates a star:

Sub Rotate()
 Dim ws As Worksheet, s As Shape, i As Integer
 Set ws = ActiveSheet
 ' Draw a star.
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 120, 80, 40, 40)
 ' Rotate it.
 For i = 0 To 6
 Application.Wait Now + 0.00001
 s.IncrementRotation 10
 Next
End Sub

shape.IncrementTop(Increment)

Moves a shape vertically.

Argument Settings

Increment The number of points to move the shape

shape.Line

For line shapes, returns a LineFormat object that controls the appearance of the line. For shape objects with borders,
returns a LineFormat object that controls the appearance of the border. For other shape types, causes an error.

shape.LinkFormat

For OLE object shapes, returns a LinkFormat object used to update the link. For other shape types, causes an error.

shape.LockAspectRatio [= setting]

This property has no effect in Excel.

shape.Locked [= setting]

If the worksheet is protected, True prevents changes to the shape and False enables changes to the shape.

shape.ParentGroup

For shapes that are grouped, returns the group to which the shape belongs. Causes an error if the shape is not part of a
group.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shape.PickUp()

Copies the formatting from a shape. See the Apply method earlier for a full description and example of copying
formatting between shapes.

shape.PictureFormat

For picture and OLE object shapes, returns a PictureFormat object used to control the appearance of the shape. For other
shape types, causes an error.

shape.Placement [= xlPlacement]

Sets or returns how the shape is related to the cells underneath it. Can be one of these settings:

xlFreeFloating (default)

xlMove

xlMoveAndSize

shapes.Range(Index)

Returns a ShapeRange object containing a subset of shapes from the Shapes collection.

Argument Settings

Index An array containing the names or indexes of the shapes to include in the ShapeRange

Use ShapeRange objects to perform tasks on a group of shapes. Building a ShapeRange from an array of items is complex. It
is easier to simply select the items you want in the ShapeRange, then use the Selection.ShapeRange method as shown here:

Sub BuildShapeRange()
 Dim ws As Worksheet, s As Shape, sr As ShapeRange, sList As String, arr
 Set ws = ActiveSheet
 ' Clear selection
 [a1].Select
 ' Find each autoshape on the worksheet and build a list.
 For Each s In ws.Shapes
 If s.Type = msoAutoShape Then s.Select False
 Next
 Set sr = Selection.ShapeRange
 ' Move the ShapeRange.
 sr.IncrementLeft 10
End Sub

shaperange.Regroup()

For shapes within a ShapeRange that belonged to a group but were ungrouped, Regroup restores those items to their
previous group and returns the grouped objects as a single Shape object.

shape.RerouteConnections()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For connector shapes, changes the connection sites so that the connection follows the shortest path. Causes an error
for other shape types.

shape.Rotation [= setting]

Returns the rotation of a shape in degrees.

shapes.SelectAll()

Selects all of the shapes on the worksheet or chart.

shape.SetShapesDefaultProperties()

Makes the shape's formatting the default formatting for all subsequent shapes. Use the PickUp and Apply methods to copy
formatting from one shape to another. The following code draws a star, sets its fill, and then makes that formatting the
default:

Sub Defaults()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw star
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 50, 50, 40, 40)
 ' Set its fill.
 s.Fill.PresetGradient msoGradientDiagonalUp, 1, msoGradientChrome
 ' Make this the default style.
 s.SetShapesDefaultProperties
 ' Draw another star.
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 90, 90, 40, 40)
End Sub

shape.Shadow

Returns a ShadowFormat object used to display and set the appearance of a shape's shadow. The following code draws a
star with a shadow:

Sub DrawShadow()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw star
 Set s = ws.Shapes.AddShape(msoShape5pointStar, 50, 50, 40, 40)
 ' Add a shadow.
 s.Shadow.Type = msoShadow1
End Sub

shape.TextEffect

For embedded WordArt shapes, returns a TextEffectFormat object used to set the text and change the appearance of the
shape. Causes an error for other shape types. Use this property, not TextFrame, to change the text displayed in a
WordArt shape.

shape.TextFrame

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For autoshapes, returns the TextFrame object used to set and format text appearing on the shape. Causes an error for
most other shape types. The following code draws an oval and adds some text to it:

Sub DrawOval()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a shape
 Set s = ws.Shapes.AddShape(msoShapeOval, 60, 30, 1, 1)
 ' Add text.
 s.TextFrame.Characters.text = "Vigorous writing is concise."
 ' Resize shape to fit text.
 s.TextFrame.AutoSize = True
End Sub

shape.ThreeD

For autoshapes, returns a THReeDFormat object used to add a 3-D effect to the shape. The following code draws a wave
as a wire-frame 3-D figure:

Sub DrawThreeD()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw a shape
 Set s = ws.Shapes.AddShape(msoShapeDoubleWave, 50, 50, 40, 40)
 ' Add 3-D effect.
 s.ThreeD.PresetMaterial = msoMaterialWireFrame
End Sub

shape.Type

Returns an msoShapeType constant identifying the kind of shape. Can be one of these settings:

 msoAutoShape msoCallout
 msoChart msoComment
 msoDiagram msoEmbeddedOLEObject
 msoFormControl msoFreeform
 msoGroup msoLine
 msoLinkedOLEObject msoLinkedPicture
 msoOLEControlObject msoPicture
 msoScriptAnchor msoShapeTypeMixed
 msoTable msoTextBox
 msoTextEffect

shape.Ungroup()

Separates a previously grouped object into its individual shapes.

shape.VerticalFlip

Returns True if the shape has been flipped vertically, False otherwise.

shape.Vertices

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a freeform shape, returns a 2-D array containing the coordinate pairs of the shape's vertices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.6. Adjustments Members
Use the Adjustments object to change the adjustment handle values on an autoshape. Use the Shape object's Adjustments
property to get a reference to this object. The Adjustments object has the following members:

Application
Count
Creator
Item
Parent

Adjustment handles change one or more aspects of an autoshape. Usually, they control the relative proportions of parts
of the shape, such as the length of an arrowhead or the width of the arrow body.

The Adjustments object is a collection of numeric values that correspond to the shapes adjustment handle settings. A
shape with a single adjustment handle may have multiple Adjustments items, each of which corresponds to dragging the
adjustment handle in a different direction.

For example, the following code draws two arrow autoshapes, then changes the adjustment handles on the second
shape:

Sub UseAdjustments()
 Dim ws As Worksheet, s As Shape
 Set ws = ActiveSheet
 ' Draw an arrow.
 Set s = ws.Shapes.AddShape(msoShapeRightArrow, 20, 120, 100, 20)
 ' Copy the arrow
 Set s = s.Duplicate
 ' Show settings.
 Debug.Print s.Adjustments(1), s.Adjustments(2)
 ' Make adjustments
 s.Adjustments(1) = s.Adjustments(1) + 0.1 ' Shorten arrow head.
 s.Adjustments(2) = s.Adjustments(2) + 0.1 ' Narrow body.
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.7. CalloutFormat Members
Use the CalloutFormat object to change the appearance of callout shapes. Use the Shape object's Callout property to get a
reference to this object. The CalloutFormat object has the following members. Key members (shown in bold) are covered
in the following reference section:

Accent Angle

Application AutoAttach

AutoLength AutomaticLength

Border Creator

CustomDrop CustomLength

Drop DropType

Gap Length

Parent PresetDrop

Type

callout.Accent [= setting]

True adds a partial border on the side of the callout's connector; False omits the partial border. Default is False.

callout.Angle [= msoCalloutAngleType]

Sets or returns the angle of the callout's connector line. Can be one of these settings:

 msoCalloutAngle30
 msoCalloutAngle45
 msoCalloutAngle60
 msoCalloutAngle90
 msoCalloutAngleAutomatic (default)
 msoCalloutAngleMixed

callout.AutoAttach [= setting]

Setting this property has no apparent effect in Excel.

callout.AutoLength

Returns True if the callout's length is automatic, False otherwise.

callout.AutomaticLength()

Sets the length of callout connector lines automatically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

callout.Border [= setting]

True displays a border around the callout text; False omits the border.

callout.CustomDrop(Drop)

Sets the vertical distance between the callout and where connector line is attached to the callout in points.

callout.CustomLength(Length)

Sets the length of the first segment of the callout's connector line. Only callout types msoCalloutThree and msoCalloutFour
have multiple segments. Use the AutomaticLength method to restore automatic settings.

callout.Drop

Returns the vertical distance between the top of the callout and the connector line.

callout.DropType

Returns an msoCalloutDropType constant indication where the connector attaches to the callout. Can be one of these
settings:

 msoCalloutDropCenter (default)
 msoCalloutDropMixed
 msoCalloutDropBottom
 msoCalloutDropCustom
 msoCalloutDropTop

callout.Gap [= setting]

Sets or returns the horizontal distance between the callout and the connector line in points.

callout.Length

If CustomLength is set, returns that setting. Otherwise, causes an error.

callout.PresetDrop(DropType)

Sets or returns where the connector line attaches to the callout.

Argument Settings

DropType An msoCalloutDropType constant. Can be msoCalloutDropBottom, msoCalloutDropCenter, msoCalloutDropMixed, or
msoCalloutDropTop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DropType msoCalloutDropTop.

callout.Type [= msoCalloutType]

Sets or returns the kind of callout drawn. Can be msoCalloutOne to msoCalloutFour.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.8. ColorFormat Members
Use the ColorFormat object to change the color of a shape's fill. Use the FillFormat object's BackColor and ForeColor properties
to get a reference to this object. The ChartColorFormat object covered in Chapter 17 is nearly identical to this object, so
only the FillFormat member with differences (TintAndShade) is covered here:

Application
Creator
Parent
RGB
SchemeColor
TintAndShade
Type

colorformat.TintAndShade [= setting]

Sets or returns a value that lightens or darkens a fill. Must be between -1 and 1. Default is 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.9. ConnectorFormat Members
Use the ConnectorFormat object to attach a connector to other shapes. Use the Shape object's ConnectorFormat property to get
a reference to this object. The ConnectorFormat object has the following members . Key members (shown in bold) are
covered in the following reference section:

Application BeginConnect

BeginConnected BeginConnectedShape

BeginConnectionSite BeginDisconnect

Creator EndConnect

EndConnected EndConnectedShape

EndConnectionSite EndDisconnect

Parent Type

connectorformat.BeginConnect(ConnectedShape,
ConnectionSite)

Sets the first shape to connect.

Argument Settings

ConnectedShape The first Shape object to connect

ConnectionSite The index of the connection site on the object

When creating a connection, it is easiest to use arbitrary values for ConnectionSite as well as the size and location of the
connector and to call RerouteConnection to establish the shortest path, as shown here:

Sub CreateConnection()
 Dim ws As Worksheet, s(1) As Shape, conn As Shape
 Set ws = ActiveSheet
 ' Draw two shapes.
 Set s(0) = ws.Shapes.AddShape(msoShapeCube, 20, 20, 40, 40)
 Set s(1) = ws.Shapes.AddShape(msoShapeCan, 60, 80, 30, 40)
 ' Draw connector.
 Set conn = ws.Shapes.AddConnector(msoConnectorCurve, 1, 1, 1, 1)
 ' Establish connection.
 conn.ConnectorFormat.BeginConnect s(0), 1
 conn.ConnectorFormat.EndConnect s(1), 1
 ' Connect via the shortest path.
 conn.RerouteConnections
End Sub

connectorformat.BeginConnected

True if the first connection has been established, False otherwise.

connectorformat.BeginConnectedShape

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the first connected Shape object.

connectorformat.BeginConnectionSite

Returns the index of the connection site on the first connected shape.

connectorformat.BeginDisconnect()

Detaches the connector from the first connected shape.

connectorformat.EndConnect(ConnectedShape,
ConnectionSite)

Sets the second shape to connect.

Argument Settings

ConnectedShape The second Shape object to connect

ConnectionSite The index of the connection site on the object

connectorformat.EndConnected

True if the second connection has been established, False otherwise.

connectorformat.EndConnectedShape

Returns the second connected Shape object.

connectorformat.EndConnectionSite

Returns the index of the connection site on the second connected shape.

connectorformat.EndDisconnect()

Detaches the connector from the second connected shape.

connectorformat.Type [= msoConnectorType]

Sets or returns the kind of connector drawn. Can be one of these settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the kind of connector drawn. Can be one of these settings:

 msoConnectorCurve
 msoConnectorElbow
 msoConnectorStraight

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18. Drawing Graphics
I'm pretty sure no one considers Excel his first choice for creating computer graphics, but Excel includes a surprisingly
full set of drawing tools. And since those drawing tools are fully programmable, you can render graphics from
worksheet data in pretty interesting ways. I'll show you one application of that here by diagramming hierarchical data
using Excel shapes and, hopefully, open the doors to your imagination.

This chapter includes task-oriented reference information for the following objects and their related collections:
Adjustments, CalloutFormat, ColorFormat, ConnectorFormat, ControlFormat, FillFormat, FreeFormBuilder, GroupShapes, LineFormat, LinkFormat,
PictureFormat, ShadowFormat, Shape, ShapeNode, ShapeRange, TextEffectFormat, TextFrame, and ThreeDFormat.

Code used in this chapter and additional samples are available in ch18.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.1. About Excel Menus
Excel has two top-level menu bars, and which menu bar is displayed depends on what has focus in Excel. The
worksheet menu bar (Figure 19-1) is displayed when Excel first starts up, when a worksheet has focus, and when all
workbooks are closed.

Figure 19-1. Worksheet menu bar

The chart menu bar (Figure 19-2) appears when a chart sheet or an embedded chart object has focus.

Figure 19-2. Chart menu bar

There are also context menus for just about every item in the Excel interface. Context menus pop up when you right-
click an item in Excel. For example, Figure 19-3 shows the context menu displayed when you right-click a range of cells.

Context menus are also sometimes called shortcut menus.

Figure 19-3. The cell context menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can change any of these types of menus to:

Add or delete existing commands

Create new items that run code

Build custom menus of items with multiple levels

The following sections detail how to create and modify each of these types of menus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.10. CommandBarComboBox Members
Use the CommandBarComboBox object to work with edit box, drop-down list, and combo box controls on toolbars. Use the
CommandBar object's Controls collection or FindControl method to get a reference to this object. The CommandBarComboBox
object is derived from the CommandBarControl object and has the following members. Members that are unique from
CommandBarControl are shown in bold:

AddItem Application BeginGroup

BuiltIn Caption Change

Clear Control Copy

Creator Delete DescriptionText

DropDownLines DropDownWidth Enabled

Execute Height HelpContextId

HelpFile Id Index

IsPriorityDropped Left List

ListCount ListHeaderCount ListIndex

Move OLEUsage OnAction

Parameter Parent Priority

RemoveItem Reset SetFocus

Style Tag Text

TooltipText Top Type

Visible Width

commandbarcombobox.AddItem(Text, [Index])

Adds an item to the control's list.

Argument Settings

Text The item to add to the list.

Index The position of the item in the list. The default is to insert the new item at the end of the list.

The following code creates a new drop-down list on the worksheet menu bar and adds three items to the list:

Sub AddDropDown()
 Dim cb As CommandBar, cbo As CommandBarComboBox
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Create the combo box.
 Set cbo = cb.Controls.Add(msoControlDropdown, , , , True)
 ' Add a Tag so this control can be found from other code.
 cbo.Tag = "cboSelectText"
 ' Add items.
 cbo.AddItem "This"
 cbo.AddItem "That"
 cbo.AddItem "the"
 cbo.AddItem "other"
 ' Set the procedure to run.
 cbo.OnAction = "ShowSelection"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commandbarcombobox.Clear()

Removes all the items from the list. The following code removes the items added in the preceding AddDropDown
procedure:

Sub RemoveAll()
 Dim cbo As CommandBarComboBox, i As Integer
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlDropdown, , "cboSelectText", , True)
 ' Remove the items.
 cbo.Clear
End Sub

commandbarcombobox.DropDownLines [= setting]

Sets or returns the number of lines to display when the user clicks the drop-down arrow on the control. The default is 0,
which causes Excel to calculate the number of lines to display.

commandbarcombobox.DropDownWidth [= setting]

Sets or returns the width of the drop-down list in pixels.

commandbarcombobox.List(Index)

Returns one or all of the items in the list. You can get the selected item by using the Text property or by using this
method in combination with the ListIndex property as shown here:

Sub ShowSelection()
 Dim cbo As CommandBarComboBox

, str As String
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlDropdown, , "cboSelectText", , True)
 ' Get the selection.
 str = cbo.list(cbo.ListIndex)
 ' Display selection.
 MsgBox "You selected: " & str
End Sub

commandbarcombobox.ListCount

Returns the number of items in the list.

commandbarcombobox.ListHeaderCount [= setting]

Sets or returns the position of a separator bar in the drop-down list. For example, the following code adds a separator
bar after the third item in the list created earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bar after the third item in the list created earlier:

Sub AddDropDownListSeparatorBar()
 Dim cbo As CommandBarComboBox
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlDropdown, , "cboSelectText", , True)
 cbo.ListHeaderCount = 3
End Sub

commandbarcombobox.ListIndex [= setting]

Sets or returns the index of the currently selected item.

commandbarcombobox.RemoveItem(Index)

Removes a single item from the list.

commandbarcombobox.Style [= msoComboStyle]

Sets or returns how the control's caption is displayed. Can be one of these settings:

msoComboLabel (display caption)

msoComboNormal (default; don't display caption)

commandbarcombobox.Text [= setting]

Sets or returns the text in the edit portion of the control. The following code creates a combo box on the worksheet
menu bar; if the user enters a value in the edit box, ShowText displays that value:

Sub AddTextBox()
 Dim cb As CommandBar, cbo As CommandBarComboBox
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Create the combo box.
 Set cbo = cb.Controls.Add(msoControlEdit, , , , True)
 ' Add a Tag so this control can be found from other code.
 cbo.Tag = "cboEditText"
 ' Display a label with the text box.
 cbo.Caption = "Enter some text"
 cbo.Style = msoComboLabel
 ' Set the procedure to run.
 cbo.OnAction = "ShowText"
End Sub

Sub ShowText()
 Dim cbo As CommandBarComboBox
 ' Get the control
 Set cbo = CommandBars("Worksheet Menu Bar").FindControl _
 (msoControlEdit, , "cboEditText", , True)
 ' Display selection.
 MsgBox "You entered: " & cbo.Text
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.11. CommandBarPopup Members
Use the CommandBarPopup object to work with menu controls. Use the CommandBar object's Controls collection or FindControl
method to get a reference to this object. The CommandBarPopup object is derived from the CommandBarControl object and has
the following members. Members that are unique from CommandBarControl (shown in bold) are covered in the following
reference section:

Application BeginGroup

BuiltIn Caption

CommandBar Control

Controls Copy

Creator Delete

DescriptionText Enabled

Execute Height

HelpContextId HelpFile

Id Index

IsPriorityDropped Left

Move OLEMenuGroup

OLEUsage OnAction

Parameter Parent

Priority Reset

SetFocus Tag

TooltipText Top

Type Visible

Width

commandbarpopup.Controls

Returns the CommandBarControls collection for the pop-up menu. Use this collection to add or remove items from the
menu. For example, the following code creates a menu on the worksheet menu bar and adds three menu items to it:

Sub AddPopupMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Create the combo box.
 Set cpop = cb.Controls.Add(msoControlPopup, , , , True)
 ' Add a Tag so this control can be found from other code.
 cpop.Tag = "cpopCustomMenu"
 cpop.Caption = "&Custom Menu"
 ' Add items.
 With cpop.Controls.Add(msoControlButton, , , , True)
 .Caption = "Item &1"
 .OnAction = "Item1_Click"
 .Tag = "cbbItem1"
 End With
 With cpop.Controls.Add(msoControlButton, , , , True)
 .Caption = "Item &2"
 .OnAction = "Item2_Click"
 .Tag = "cbbItem2"
 End With
 ' Built-in command.
 With cpop.Controls.Add(msoControlButton, 1695, , , True)
 ' Add separator bar.
 .BeginGroup = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .BeginGroup = True
 End With
End Sub

Sub Item1_Click()
 ' Add code to respond to menu item Click Here...
End Sub

Sub Item2_Click()
 ' Add code to respond to menu item Click Here...
End Sub

commandbarpopup.OLEMenuGroup [= msoOLEMenuGroup]

Sets or returns the menu group that this menu is merged with when an Excel document is embedded in another Office
application document. Can be one of these settings:

msoOLEMenuGroupContainer

msoOLEMenuGroupEdit

msoOLEMenuGroupFile

msoOLEMenuGroupHelp

msoOLEMenuGroupNone

msoOLEMenuGroupObject

msoOLEMenuGroupWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2. Build a Top-Level Menu
Top-level menus appear on either the worksheet menu bar or the chart menu bar (Figure 19-1 or Figure 19-2). To add
a top-level menu to the worksheet menu bar, select a worksheet before creating the menu. To add a top-level menu to
the chart menu bar, select a chart before creating the menu. To add the menu to both menu bars, create the menu
twiceonce for each menu bar.

To create a new top-level menu on a menu bar in Excel:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. In the Categories list, choose New Menu. Click New Menu in the Commands list and drag it onto the Excel menu
bar as shown in Figure 19-4. Excel adds a new top-level menu to the menu bar.

Figure 19-4. Steps 1 and 2: add the top-level menu

3. Right-click on the new menu item and rename it as shown in Figure 19-5.

4. In the Categories list, choose Macros, then click Custom Menu Item from the Commands list and drag it onto
the new menu item as shown in Figure 19-6.

5. Right-click the new menu item, rename it, and assign it to run a macro as shown in Figure 19-7.

6. Click Close on the Customize dialog box when you are done adding items and setting menu properties.

Right-clicking displays the menu properties shown in Figure 19-5 and Figure 19-7 only
while the Customize dialog is open.

Figure 19-5. Step 3: rename the menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-5. Step 3: rename the menu

Figure 19-6. Step 4: add items to the menu

Figure 19-7. Step 5: rename menu item and assign a macro

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-7. Step 5: rename menu item and assign a macro

19.2.1. Change Existing Menus

You can also add built-in commands or create new custom commands on existing Excel menus. To add built-in
command to an existing menu:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. In the Categories list, choose the category of the existing command you want to add. Each category contains a
long list of commands, so you may need to check a couple different categories before you find the command
you want.

3. Drag the existing command from the Commands list onto the top-level menu you want to add it to. Excel
displays the menu once you drag over it and you can drag the command down to the position where you want it
to appear on the menu as shown in Figure 19-8.

4. Click Close on the Customize dialog box when you are done adding items and setting menu properties.

To add a new custom command to an existing menu, repeat the preceding procedure, but select Macros from the
Categories list and Custom Menu Item from the Commands list in Step 2. You can then rename and assign a macro to
the new menu item as shown in Figure 19-7.

Figure 19-8. Dragging an existing command onto a menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.2. Assign Accelerator and Shortcut Keys

It is standard practice to provide keyboard alternatives to using point-and-click menus. There are two ways to do so:

Accelerator keys

Appear underlined in the menu name. They allow you to activate the menu item by pressing Alt-key. For
example Alt-F-S saves an Excel workbook.

Shortcut keys

Appear next to the menu item. They provide direct access to a task listed on a menu. For example, Ctrl-S saves
an Excel workbookthe same as Alt-F-S.

To assign an accelerator key to a menu item, use an ampersand (&) in the menu name before the accelerator key. For
example, &Run defines R as the accelerator key for the menu.

To assign a short-cut key to a menu item:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. Right-click on the new menu item and rename to add the short-cut sequence after the menu item's name. For
example, Run &All Ctrl-Shift-R.

3. Close the Customize dialog box.

4. Choose Tools Macro Macros to display the Macro dialog box.

5. Select the macro that is assigned to the menu item and click Options.

6. Press the letter to assign as the short-cut. Pressing Shift adds that key to the combination as shown in Figure
19-9.

7. Type a description and press OK twice to close the dialogs.

Figure 19-9. Assigning a shortcut key sequence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Menus often group similar items using separator bars. To start a new group of items by adding a separator bar:

1. Choose Tools Customize Commands. Excel displays the Commands tab of the Customize dialog box.

2. Right-click on the menu item before which to add the separator bar and select Begin a Group.

3. Close the Customize dialog box. Excel adds a separator bar before the item as shown in Figure 19-10.

Figure 19-10. Menu items with accelerator and shortcut keys and a separator bar

19.2.3. Save and Distribute Menus

When you close Excel, any menu changes you made are automatically saved in an .xlb file. The filename and location
varies based on the version of Excel. Versions 2000, XP, and 2003 are Excel9.xlb, Excel10.xlb, and Excel11.xlb,
respectively. On Windows XP, the files are stored in the %UserProfile%\Application Data\Microsoft\Excel\ folder.

As a result, custom menus are user-specific. If you want to distribute a custom menu to others, you must either replace
their .xlb file with your own or you must dynamically create the menu in code. Creating the menu in code is the best
option in most cases because that approach:

Doesn't overwrite the users' own menu changes, the way that replacing their .xlb file does

Allows you to associate the menus with the file containing the code so that the menus appear only if that
workbook, template, or add-in is loaded

The following section describes how to create a top-level menu in code so that you can distribute it as part of a
workbook, template, or add-in.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.3. Create a Menu in Code
Access to menus in Excel is provided through the Office object model.

To create a new top-level menu in code:

1. Get a reference to the menu bar on which you want to create the new top-level menu.

2. Add a pop-up menu control to the menu bar and set its Caption and Tag properties.

3. Add button menu controls to the pop-up menu and set the Caption, OnAction, ShortcutText, and other properties.

For example, the following code creates a top-level menu on the worksheet menu bar that is very similar to the menu
shown in Figure 19-10:

Sub BuildMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup, cbtn As CommandBarButton
 ' Get the menu bar (CommandBar).
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Add top-level menu item (CommandBarPopup).
 Set cpop = cb.Controls.Add(msoControlPopup, , , , True)
 cpop.Caption = "&Run2"
 ' The Tag property makes it easy to delete this menu later.
 cpop.Tag = "Run2"
 ' Add items to the menu (CommandBarButton).
 Set cbtn = cpop.Controls.Add(msoControlButton, , , , True)
 ' Set menu item properties.
 cbtn.Caption = "Sample &1"
 cbtn.OnAction = "Sample1"
 ' Add a second item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , , True)
 cbtn.Caption = "Sample &2"
 cbtn.OnAction = "Sample2"
 ' Add a third item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , , True)
 cbtn.Caption = "Run &All"
 cbtn.ShortcutText = "Ctrl+Shift+A"
 cbtn.OnAction = "TestMenus"
 ' Add a separator bar before this item.
 cbtn.BeginGroup = True
End Sub

The last argument for each of the preceding Add methods specifies that the new item is temporaryin other words, it
won't be saved in the user's .xlb file. When the user closes Excel, temporary menus are deleted. You can ensure that
this menu appears when the workbook, template, or add-in is loaded by calling BuildMenu from the Workbook_Open event,
as shown here:

' ThisWorksbook class.
Private Sub Workbook_Open()
 ' Create temporary menus when this workbook opens.
 BuildMenu
End Sub

19.3.1. Remove the Menu on Close

Interestingly, temporary menus still persist if the user closes the workbook but not Excel. Therefore, you may want to
remove the menu explicitly when the file closes. Why use temporary menus if you are going to delete them anyway?
Using a temporary menu ensures that the menu is removed if Excel crashes while the file is open.

The following code removes the top-level menu created by the BuildMenu sample when the workbook closes:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 ' Enable error handling in case menu was deleted earlier somehow.
 On Error Resume Next
 ' Make sure temporary menu is deleted.
 RemoveMenu
 On Error GoTo 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error GoTo 0
End Sub

Sub RemoveMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup
 ' Get the menu bar (CommandBar).
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Get the top-level menu created by BuildMenu.
 Set cpop = cb.FindControl(msoControlPopup, , "Run2")
 ' Delete it.
 cpop.Delete
End Sub

The FindControl method uses the Tag property of the top-level menu to locate the control so it can be deleted. That is a
better technique than locating the menu through its index, which might change if the user or other code adds a new
menu.

19.3.2. Change an Existing Menu

You can also add or remove commands on existing menus in code. For example, you might want to add Contact Us and
About commands to the Help menu for a workbook add-in. To do so:

1. Get a reference to the menu toolbar.

2. Use the FindControl method to get a reference to the existing Contact and About items.

3. Modify those menu items.

4. Add new Contact Us and About items.

The following code demonstrates the preceding steps by changing the caption of the Contact Us menu item to Contact
Microsoft, then adds new Contact and About items to the Help menu:

Sub ChangeHelpMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup, cbtn As CommandBarButton
 Dim index As Integer
 ' Get the menu bar (CommandBar).
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Get the Help menu (control's ID is 30010)
 Set cpop = cb.FindControl(msoControlPopup, 30010)
 ' Get the Contact Us item (control's ID is 7903)
 Set cbtn = cb.FindControl(msoControlButton, 7903, , , True)
 ' Change the caption.
 cbtn.Caption = "&Contact Microsoft"
 index = cbtn.index
 ' Add a new Contact item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , index, True)
 cbtn.Caption = "Contact &Author"
 cbtn.OnAction = "ContactAuthor"
 ' Get the About item
 Set cbtn = cb.FindControl(msoControlButton, 927, , , True)
 index = cbtn.index
 cbtn.BeginGroup = False
 ' Add a new About item.
 Set cbtn = cpop.Controls.Add(msoControlButton, , , index, True)
 cbtn.Caption = "About &" & ThisWorkbook.Name
 cbtn.OnAction = "ShowAbout"
 cbtn.BeginGroup = True
End Sub

' Procedures for the preceding OnAction properties.
Sub ContactAuthor()
 ThisWorkbook.FollowHyperlink "mailto:someone@yourcompany.com" & _
 "&Subject=Chapter 19 Samples"
End Sub

Sub ShowAbout()
 MsgBox "Version 1.0. Copyright 2005 Wombat Technology.", _
 vbOKOnly, "Chapter 19 Samples"
End Sub

The FindControl method in the preceding code uses the ID of the existing controls to find the Help CommandBarPopup control
and Contact and About CommandBarButton controls. Those control IDs aren't listed anywhere that I know of, but you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and Contact and About CommandBarButton controls. Those control IDs aren't listed anywhere that I know of, but you can
find them by running the following code:

' Displays the structure of the worksheet and chart menu bars
' with captions and control IDs.
Sub ShowMenuStructure()
 Dim cb As CommandBar, cpop As CommandBarPopup, cbtn As CommandBarButton
 For Each cb In Application.CommandBars
 If cb.Type = msoBarTypeMenuBar Then
 Debug.Print cb.Name
 For Each cpop In cb.Controls
 Debug.Print , cpop.Caption, cpop.id
 On Error Resume Next
 For Each cbtn In cpop.Controls
 Debug.Print , , cbtn.Caption, cbtn.id
 Next
 On Error GoTo 0
 Next
 End If
 Next
End Sub

The preceding code lists all of the menu items along with their control IDs in the Immediate window.

19.3.3. Reset an Existing Menu

If you change an existing menu, you may want to remove your changes without deleting the entire menu. To do that,
use the Reset method as shown here:

Sub RestoreHelpMenu()
 Dim cb As CommandBar, cpop As CommandBarPopup
 Dim index As Integer
 ' Get the menu bar.
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Get the Help menu.
 Set cpop = cb.FindControl(msoControlPopup, 30010)
 ' Remove changes.
 cpop.Reset
End Sub

The preceding code restores the default menu settings for the Help menu, removing the changes made by the
ChangeHelpMenu procedure earlier.

You can also call Reset on the CommandBar object to restore the defaults for all menus:

Sub RestoreMenuBar()
 Dim cb As CommandBar
 ' Get the menu bar
 Set cb = Application.CommandBars("Worksheet Menu Bar")
 ' Remove changes.
 cb.Reset
End Sub

Reset removes the user's changes as well as changes made in code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.4. Build Context Menus
You can't change Excel's context menus through the user interface. Instead, you must use code to add or remove items
on a context menu. For example, the following code adds a Send Range item to the context menu displayed when you
right-click a selected range of cells:

Sub AddCellMenuItem()
 Dim cb As CommandBar, cbtn As CommandBarButton
 Dim index As Integer
 ' Get the context menu by name.
 Set cb = Application.CommandBars("Cell")
 ' Add the new menu item.
 Set cbtn = cb.Controls.Add(msoControlButton, , , , True)
 ' Set the caption and action.
 cbtn.Caption = "&Send Range"
 cbtn.OnAction = "SendRange"
End Sub

' Procedure used by OnAction property.
Sub SendRange()
 ' Copy the range.
 Selection.Copy
 ' Display a mail message.
 ThisWorkbook.FollowHyperlink "mailto:someone@yourcompany.com" & _
 "&Subject=Selection from " & ActiveSheet.Name
 ' Wait two seconds for message to display.
 Application.Wait Now + TimeSerial(0, 0, 2)
 ' Paste range into message body.
 SendKeys "^v"
End Sub

To see how this works, run AddCellMenuItem to add the new menu item, select a range of cells, right-click, and choose
Send Range. Excel creates a new mail message and pastes the range into the message body as shown in Figure 19-11.

Figure 19-11. New item on the cell context menu sends a range of cells

The context menus are CommandBar objects, just like the top-level menu bars, but they have a Type property set to
msoBarTypePopup. You get a reference to a context menu from the Application object's CommandBars collection using one of
the menu names , which are listed here:

ActiveX Control Auto Sum AutoCalculate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoFill Built-in Menus Button

Canvas Popup Cell Chart

Column Connector Curve

Curve Node Curve Segment Desktop

Diagram Dialog Document

Excel Control Find Format Floor and Walls

Format Axis Format Data Series Format Legend Entry

Formula Bar Inactive Chart Layout

List Range Layout Popup List Range Popup Nondefault Drag and Drop

Object/Plot OLE Object Organization Chart Popup

Paste Special Dropdown Phonetic Information Pictures Context Menu

Pivot Chart Popup PivotChart Menu PivotTable Context Menu

Plot Area Ply Query

Query Layout Replace Format Rotate Mode

Row Script Anchor Popup Select

Series Shapes Title Bar (Charting)

Trendline WordArt Context Menu Workbook tabs

XLM Cell XML Range Popup

19.4.1. Change Context Menu Items

Just as with other menus, you can modify items on context menus by getting a reference to the item using the
FindControl method. The following code modifies the Paste item on the Cell menu to paste the contents as text, which
removes any formatting from the source:

Sub ChangeCellMenuItem()
 Dim cb As CommandBar, cbtn As CommandBarButton
 Dim index As Integer
 ' Get the cell context menu.
 Set cb = Application.CommandBars("Cell")
 ' Get the Paste menu item (ID is 22).
 Set cbtn = cb.FindControl(msoControlButton, 22)
 ' Replace the action.
 cbtn.OnAction = "PasteAsText"
End Sub

' Procedure used by OnAction property.
Sub PasteAsText()
 ActiveSheet.PasteSpecial "Text"
End Sub

As I mentioned earlier, finding the control ID for menu items can be tricky. The following code displays a list of the
context menu names, the items they contain, and the control IDs for each of the items:

Sub ListContextMenus()
 Dim cb As CommandBar, cbtn As CommandBarButton
 Debug.Print "Context menus", ""
 For Each cb In Application.CommandBars
 If cb.Type = msoBarTypePopup Then
 Debug.Print cb.Name
 On Error Resume Next
 For Each cbtn In cb.Controls
 Debug.Print , cbtn.Caption, cbtn.id
 Next
 On Error GoTo 0
 ' Uncomment the following line to stop at a
 ' specific context menu:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' specific context menu:
 'If cb.Name = "Cell" Then Stop
 End If
 Next
End Sub

19.4.2. Restore Context Menus

To restore the default context menu after making changes, use the Reset method as you would for top-level menu bars.
The following code resets the cell context menu back to its default settings:

Sub RetoreCellMenu()
 Dim cb As CommandBar
 Dim index As Integer
 ' Get the cell context menu.
 Set cb = Application.CommandBars("Cell")
 ' Remove changes.
 cb.Reset
End Sub

19.4.3. Create New Context Menus

You can create custom context menus from scratch using the CommandBars collection's Add method. Once it is created,
you control the display of the context menu using the ShowPopup method. The following code demonstrates how to create
and display a new context menu similar to the menu in Figure 19-10:

' Module-level variable.
Dim m_cb As CommandBar

Sub CreateNewContextMenu()
 ' Delete the menu bar if it already exists.
 On Error Resume Next
 Application.CommandBars("New").Delete
 On Error GoTo 0
 ' Create a new context menu bar.
 Set m_cb = Application.CommandBars.Add("New", msoBarPopup, False, True)
 ' Add some items to the menu bar.
 With m_cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &1"
 .OnAction = "Sample1"
 End With
 With m_cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &2"
 .OnAction = "Sample2"
 End With
 With m_cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Run &All"
 .OnAction = "TestMenus"
 .BeginGroup = True
 End With
 ' Display the menu.
 m_cb.ShowPopup 100, 100
End Sub

The CommandBar variable is defined at the module level so you can use it more easily from
other parts of your project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.5. Build a Toolbar
To create a toolbar in Excel:

1. Choose Tools Customize Toolbars. Excel displays the Toolbars tab of the Customize dialog box.

2. Click New. Excel display the New Toolbar dialog.

3. Type a name for the toolbar and click OK. Excel creates a new, empty toolbar.

4. Click the Commands tab, select a category, and drag items from the Commands list to the toolbar as shown in
Figure 19-12.

Figure 19-12. Drag commands to add them to a toolbar

5. Right-click any button on the new toolbar to rename the button, assign a macro, or change the button image,
as shown in Figure 19-13.

19.5.1. Create Menus Using Toolbars

Toolbars and menu bars aren't very different. In fact, you can make a toolbar that looks just like a menu bar by
following these steps:

1. Choose Tools Customize Toolbars. Excel displays the Toolbars tab of the Customize dialog box.

2. Click New. Excel display the New Toolbar dialog.

3. Name the toolbar Menu1 and click OK. Excel creates a new, empty toolbar.

Figure 19-13. Right-click a button to change its properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-13. Right-click a button to change its properties

4. Click the Commands tab, select New Menu from the Category list, and drag New Menu from the Commands list
onto the toolbar.

5. Select Macros from the Categories list and drag Custom Menu Item from the Commands list onto the menu you
just added to the toolbar.

6. Repeat Step 5 two more times, then right-click each of the new menu items and set their name properties as
shown in Figure 19-14.

Figure 19-14. Using a toolbar to create a menu

7. Click OK to close the Customize dialog box.

You can add existing menus to the toolbar by selecting Built-in Menus in the Categories list
and then dragging the menu from the Commands list onto the toolbar.

If you drag the toolbar to the top of the Excel window, it will "dock" either above or below the menu bar. The new
toolbar looks just like a menu bar, but it can't coexist on the same line as the worksheet or chart menu barsthat's a
significant disadvantage in some situations, but if you can live with it, using a toolbar in this way makes it much easier
to distribute the menu.

19.5.2. Save and Distribute Toolbars

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One key advantage of toolbars is that they can be attached to a workbook, template, or add-in without writing code.
That makes them much easier to distribute than custom menus. To attach a toolbar:

1. Open the file to attach the toolbar to in Excel.

2. Choose Tools Customize Toolbars. Excel displays the Toolbars tab of the Customize dialog box.

3. Click Attach. Excel displays the Attach Toolbars dialog.

4. Select the custom toolbars to attach and click Copy.

5. Click OK twice to close the dialogs.

When a user opens a file that contains an attached toolbar, that toolbar is loaded and will be saved in the user's .xlb file
when she closes Excel. That makes the toolbar available to all workbooks on the user's machine.

If you want the toolbar to appear only when the containing workbook or template is loaded, delete the toolbar in the
file's Workbook_BeforeClose event procedure. If the toolbar is attached to an add-in, use the Workbook_AddinUninstall event
procedure instead. The following code handles either of those situations:

' ThisWorkbook class.

' For workbooks and templates.
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 If Not Me.IsAddin Then Application.CommandBars("Menu1").Delete
End Sub

' For add-ins.
Private Sub Workbook_AddinUninstall()
 If Me.IsAddin Then Application.CommandBars("Menu1").Delete
End Sub

I delete the toolbar rather than making it invisible so the user can't try to display the toolbar after the file is uninstalled.
Deleting the toolbar removes it from the toolbars list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.6. Create Toolbars in Code
Because custom toolbars are easier to distribute than custom menus, there is less reason to create them in code;
however, you can if you like. Toolbars are CommandBar objects, just like menus, but they have a Type property set to
msoBarTypeNormal. You get a reference to a toolbar from the Application object's CommandBars collection using the toolbar's
name. The toolbars are:

3-D Settings Align or Distribute Annotation Pens

AutoShapes Basic Shapes Block Arrows

Borders Callouts Chart

Chart Type Circular Reference Clipboard

Compare Side by Side Connectors Control Toolbox

Diagram Draw Border Drawing

Drawing and Writing Pens Drawing Canvas Envelope

Exit Design Mode External Data Fill Color

Flowchart Font Color Formatting

Forms Formula Auditing Full Screen

Ink Annotations Ink Drawing and Writing Insert Shape

Line Color Lines List

Nudge Online Meeting Order

Organization Chart Pattern Picture

PivotTable PivotTable Field List Protection

Refresh Reviewing Rotate or Flip

Shadow Settings Standard Stars & Banners

Stop Recording Task Pane Text To Speech

Visual Basic Watch Window Web

WordArt

Use the CommandBar object's Show method to display a toolbar. For example, the following code displays each of the
toolbars in turn, pausing between each. This is useful for finding the name of a particular toolbar:

Sub ShowToolbars()
 Dim cb As CommandBar, show As Boolean
 For Each cb In Application.CommandBars
 If cb.Type = msoBarTypeNormal Then
 Debug.Print cb.Name
 ' Get visible state.
 show = cb.Visible
 ' Show the toolbar.
 If cb.Enabled Then
 cb.Visible = True
 VBA.DoEvents
 ' Wait.
 Application.Wait Now + 0.00001
 ' Restore the original state.
 cb.Visible = show
 End If
 End If
 Next
End Sub

Be sure to check the Enabled property before setting Visible to True; otherwise, you'll get an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure to check the Enabled property before setting Visible to True; otherwise, you'll get an
error.

19.6.1. Add Edit Controls to Toolbars

The best reason I can think of to create a toolbar in code is if you want to use edit controls, such as a drop-down list or
combo box, within the toolbar. There's no way to drag one of those types of controls onto a toolbar manually; you can
create them only through code.

To create an edit control on a toolbar:

1. Get a reference to the toolbar.

2. Use the Controls collection's Add method to create the control on the toolbar.

3. Set the control's properties and populate any lists it contains.

The Add method creates different types of controls on a toolbar based on the Type argument as described in Table 19-1.

Table 19-1. MsoControlType constants for creating command bar controls
Type argument Creates Object type of control is

msoControlButton Toolbar button or menu item CommandBarButton

msoControlComboBox A combo list box (select an item or enter text) CommandBarComboBox

msoControlDropdown A drop-down list box (select an item) CommandBarComboBox

msoControlEdit An edit box (enter text) CommandBarComboBox

msoControlPopup A menu of other items CommandBarPopup

The middle three control types in Table 19-1 are edit controls. You can get or set the values of those controls from
code. For example, Figure 19-15 shows a toolbar that lists all the macros in the current workbook in a drop-down list.
You can select an item from the list and click Run to run the macro. The toolbar also includes some built-in commands
that I often use.

Figure 19-15. A toolbar with an edit control

The following code creates the toolbar in Figure 19-15. The code is a little complicated because it must populate the
values in the drop-down list:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values in the drop-down list:

' Creates a CodeToolbar for running macros.
Sub BuildCodeToolbar()
 Dim cb As CommandBar, obj As Object, str, list
 ' Delete the command bar if it exists.
 DeleteCodeToolbar
 ' Create a new toolbar.
 Set cb = Application.CommandBars.Add("CodeToolbar", , , True)
 cb.Left = Application.Width \ 2
 cb.Top = Application.Height \ 6
 ' Set command bar properties.
 cb.Visible = True
 cb.Position = msoBarFloating
 ' Add a drop-down list to the toolbar.
 With cb.Controls.Add(msoControlDropdown)
 .Caption = "&Macro"
 .Width = 200
 .Tag = "cboMacros"
 ' Use helper procedure to add macro names to the combo box.
 list = GetMacroList
 For Each str In list
 .AddItem str
 Next
 End With
 ' Add a button to run the selected macro.
 With cb.Controls.Add(msoControlButton)
 .Tag = "cmdRun"
 .Caption = "&Run"
 .Style = msoButtonIcon
 .FaceId = 186
 ' Set the procedure to run when button is clicked.
 .OnAction = "cmdRun_Click"
 End With
 ' Add a button to run the selected macro.
 With cb.Controls.Add(msoControlButton)
 .Tag = "cmdRefresh"
 .Caption = "&Refresh"
 .Style = msoButtonIcon
 .FaceId = 459
 ' Rebuild this toolbar (refreshes list).
 .OnAction = "BuildCodeToolbar"
 End With
 ' Add some built-in commands.
 cb.Controls.Add msoControlButton, 184 ' Record macro
 cb.Controls.Add msoControlButton, 282 ' Button control
 cb.Controls.Add msoControlButton, 485 ' Toggle grid
 cb.Controls.Add msoControlButton, 1695 ' VB Editor
End Sub

' Procedure used by OnAction property.
Sub cmdRun_Click()
 Dim cb As CommandBar, cbc As CommandBarComboBox, _
 macro As String
 ' Get the command bar.
 Set cb = Application.CommandBars("CodeToolbar")
 ' Get the combo box.
 Set cbc = cb.FindControl(msoControlDropdown, , _
 "cboMacros", , True)
 ' Get the selected item in the combo box.
 macro = cbc.list(cbc.ListIndex)
 ' If an item is selected, then run the macro.
 On Error Resume Next
 If macro <> "" Then _
 Application.Run ActiveWorkbook.Name & "!" & macro
 If Err Then
 MsgBox "Error: " & Err.Number & ", " & Err.Description, , macro
 End If
 On Error GoTo 0
End Sub

The following helper function builds an array of macro names from using the VBE object model. Again, this code is a bit
complicated, but it works and you can find it in the sample workbook for this chapter.

' Builds a list of the macros in the current workbook
' And returns it as an array.
Function GetMacroList() As String()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function GetMacroList() As String()
 Dim obj As Object, str As String, list As String, _
 i As Long, j As Long, eol As Long
 For Each obj In ActiveWorkbook.VBProject.VBComponents
 If obj.Type = 1 Then
 ' Copy all of the code into a string.
 str = str & obj.codemodule.Lines(1, obj.codemodule.countoflines)
 End If
 Next
 i = 1
 ' Get the names of each Sub procedure.
 Do
 i = InStr(i, str, vbCrLf & "Sub ") + 6
 eol = InStr(i, str, vbCrLf)
 j = InStr(i, str, "()")
 If i = 6 Then Exit Do
 If eol > j Then _
 list = list & Mid(str, i, j - i) & ","
 Loop
 ' Return the list as an array.
 GetMacroList = Split(list, ",")
End Function

19.6.2. Delete Toolbars

Before you create a custom toolbar, you should delete it. No, I'm not crazy: calling the CommandBars Add method fails if a
toolbar with the same name already exists. The easiest way to make sure that name has not already been used is to
delete it and ignore any errors as shown here:

Sub DeleteCodeToolbar()
 ' Delete the toolbar if it already exists.
 On Error Resume Next
 Application.CommandBars("CodeToolbar").Delete
 On Error GoTo 0
End Sub

This technique assumes you've used a fairly unique name for your toolbar. A common name like Toolbar1 might result
in deleting one of the user's custom toolbars.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.7. CommandBar and CommandBars Members
Use the CommandBars collection to add new menus and toolbars to Excel or to get existing menus or toolbars. Use the
Application object's CommandBars property to get a reference to this collection. Use the CommandBar object to add controls to
the menu or toolbar or to get existing controls to modify. The CommandBars collection and CommandBar object have the
following members . Key members (shown in bold) are covered in the following reference section:

ActionControl

1
ActiveMenuBar

AdaptiveMenus

2

Add

1

Application2 BuiltIn

Context Controls

Count1 Creator2

Delete
DisableAskAQuestionDropdown

1

DisableCustomize DisplayFonts

DisplayKeysInTooltips
DisplayTooltips

1

Enabled
FindControl

2

FindControls

1
Height

Id Index

Item1
LargeButtons

1

Left
MenuAnimationStyle

1

Name NameLocal

Parent2 Position

Protection
ReleaseFocus

1

Reset RowIndex

ShowPopup Top

Type Visible

Width
1 Collection only

2 Object and collection

commandbars.ActionControl

Returns the CommandBarControl object that ran the current procedure. If the current procedure was not run by a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the CommandBarControl object that ran the current procedure. If the current procedure was not run by a
CommandBarControl, returns Nothing. The following code displays a message in the Immediate window when Sample2 is
called from a menu item or toolbar button:

Sub Sample2()
 Dim cbc As CommandBarButton
 MsgBox "Sample2"
 Set cbc = Application.CommandBars.ActionControl
 If Not cbc Is Nothing Then _
 Debug.Print "Sample2 called by: " & cbc.Tag
End Sub

commandbars.ActiveMenuBar

Returns the worksheet menu bar object or the chart menu bar object, depending on which menu bar is currently
displayed.

commandbars.AdaptiveMenus [= setting]

True causes Excel to display shortened top-level menus initially and then expand them after a brief period. False
displays full menus.

commandbars.Add([Name], [Position], [MenuBar], [Temporary])

Creates a new menu or toolbar as a CommandBar object.

Argument Settings

Name The name of the menu or toolbar to create.

Position
An MsoBarPosition constant indicating the docking location of the command bar. Can be one of these
settings: msoBarLeft, msoBarTop, msoBarRight, msoBarBottom, msoBarFloating, msoBarPopup, or msoBarMenuBar
(Macintosh only). Default is msoBarTop.

MenuBar True replaces the active menu bar with the menu bar created by Add. Default is False.

Temporary True prevents the command bar from being saved when Excel closes. False saves the command bar in
the user's .xlb file when Excel closes. Default is False.

When creating context menus, use the Position msoBarPopup. When creating floating toolbars, use the Position msoBarFloating.
For example, the following code creates a context menu; then displays it at the coordinates (100, 200):

Sub CreateNewContextMenu()
 Dim cb As CommandBar
 ' Create a new context menu bar.
 Set cb = Application.CommandBars.Add("ContextMenu1", _
 msoBarPopup, , True)
 ' Add some items to the menu bar.
 With cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &1"
 .OnAction = "Sample1"
 End With
 With cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Sample &2"
 .OnAction = "Sample2"
 End With
 With cb.Controls.Add(msoControlButton, , , , True)
 .Caption = "Run &All"
 .OnAction = "TestMenus"
 .BeginGroup = True
 End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End With
 ' Display this context menu.
 cb.ShowPopup 100, 200
End Sub

The MenuBar argument lets you replace the top-level worksheet or chart menu bars with your own custom menu bar. For
examples, the following code replaces the top-level menu bar with a blank menu bar:

Sub ReplaceTopLevelMenuBar()
 Dim cb As CommandBar
 Set cb = Application.CommandBars.Add("BlankBar", , True, True)
 cb.Visible = True
End Sub

To restore the original menu bar, simply delete the menu bar you just created:

Sub RestoreTopLevelMenuBar()
 Application.CommandBars("BlankBar").Delete
End Sub

commandbar.BuiltIn

Returns True if the command bar is built in to Excel, False if it is a custom command bar.

commandbar.Controls

Returns the CommandBarControls collection used to add controls to the command bar and to get controls from the
command bar. For example, the following code displays worksheet menu bar controls three levels deep:

' List Worksheet menus three levels deep.
Sub ListWorksheetMenus()
 Dim menu As CommandBarControl, item As CommandBarControl, _
 subitem As CommandBarControl
 Debug.Print "Worksheet Menu Bar"
 For Each menu In Application.CommandBars("Worksheet Menu Bar").Controls
 Debug.Print , menu.Caption
 For Each item In menu.Controls
 Debug.Print , , item.Caption, item.id, item.Tag
 If item.Type = msoControlPopup Then
 For Each subitem In item.Controls
 Debug.Print , , , subitem.Caption, _
 subitem.id, subitem.Tag
 Next
 End If
 Next
 Next
End Sub

commandbar.Delete()

Deletes a command bar. You can't delete built-in command bars. Before creating a new command bar, it is a good idea
to use Delete to make sure a command bar doesn't already exist, as shown here:

Sub DeleteContextMenu()
 ' Ignore error if command bar doesn't already exist.
 On Error Resume Next
 Application.CommandBars("ContextMenu1").Delete
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

commandbars.DisableAskAQuestionDropdown [= setting]

True displays a question box (Figure 19-16) on the top-level menu bar; False hides the box. Default is True.

Figure 19-16. Excel question box

The following code turns the question box on and off:

' Switches question box on/off.
Sub QuestionBox()
 Application.CommandBars.DisableAskAQuestionDropdown = Not _
 Application.CommandBars.DisableAskAQuestionDropdown
End Sub

commandbars.DisableCustomize [= setting]

True prevents users from changing menus and toolbars; False allows changes. Default is False. This property does not
prevent changes made through code. The following code turns customization on and off:

' Switches customization on/off.
Sub CustomizationOnOff()
 Application.CommandBars.DisableCustomize = Not _
 Application.CommandBars.DisableCustomize
End Sub

commandbars.DisplayFonts [= setting]

True displays font names in the Font box in their actual fonts; False uses the default font. Default is True.

commandbar.DisplayKeysInTooltips [= setting]

True displays shortcut keys in the tool tips for command bar controls; False hides shortcut keys. Default is False.

commandbars.DisplayTooltips [= setting]

True displays pop-up tool tips when the mouse pointer pauses over a command bar control; False does not display tool
tips. Default is True.

commandbar.Enabled [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True includes the toolbar in the toolbars list; False removes the toolbar from the list. Default is True. To see a list of
toolbars, right-click on a command bar.

Removing the toolbar from the toolbar list hides the toolbar and prevents the user from displaying it. The following code
demonstrates the Enabled property by turning the Visual Basic toolbar off and on:

' Turn Visual Basic toolbar on/off.
Sub VBToolbarOnOff()
 ' First, display the toolbar.
 CommandBars("Visual Basic").Visible = True
 ' Switch Enabled on/off.
 CommandBars("Visual Basic").Enabled = Not _
 CommandBars("Visual Basic").Enabled
End Sub

commandbar.FindControl([Type], [Id], [Tag], [Visible],
[Recursive])

Returns a CommandBarControl object from the command bar's Controls collection using the Id or Tag properties of the control.
Returns Nothing if the control is not found.

Argument Settings

Type An msoControlType constant indicating the type of control to return.

Id The internal ID for the control. Use this argument to find built-in controls.

Tag The Tag property associated with the control when it was created. Use this argument to find custom
controls.

Visible True includes only visible controls in the search; False includes all controls. Default is False.

Recursive True includes controls on submenus and subtoolbars in the search; False searches only for top-level
controls on the command bar. Default is False.

Built-in controls have unique Id properties but do not have a Tag property setting, while custom controls don't have
unique Id properties but may have unique Tag properties. See the Controls member topic for an example that lists the Id
and Tag properties of controls on a command bar.

The Type argument allows you to specify the type of the control you want to find. Controls on a command bar can be
referenced as the base CommandBarControl type or as a derived CommandBarButton, CommandBarComboBox, or CommandBarPopup
type. Using those derived types rather than the base type lets you more easily use the full set of members provided by
that type.

For example, the CopyFace method is available only on the derived CommandBarButton type; therefore, although both of the
following procedures work, the second is preferable since it supports Auto Complete, is more precise, and less error-
prone:

Sub UseBaseControlType()
 Dim cb As CommandBar, cbc As CommandBarControl
 ' Get the command bar.
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Use base type
 Set cbc = cb.FindControl(, 682, , , True)
 cbc.CopyFace ' Note: no auto complete.
 ActiveSheet.Paste
End Sub

Sub UseDerivedControlType()
 Dim cb As CommandBar, cbb As CommandBarButton
 ' Get the command bar.
 Set cb = CommandBars("Worksheet Menu Bar")
 ' Use the derived type.
 Set cbb = cb.FindControl(msoControlButton, 682, , , True)
 cbb.CopyFace ' Auto complete works now.
 ActiveSheet.Paste
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

See Table 19-1 earlier in this chapter for a list of the command bar msoControlType constants and the derived control
types they return.

Finally, the Recursive argument is important when working with menu bars since they are often several levels deep.
Setting Recursive to True searches down that hierarchy to find a control. Recursive is False by default, so I usually set it to
True any time I use FindControl.

commandbars.FindControls([Type], [Id], [Tag], [Visible])

Returns a collection of command bar controls. The arguments are the same as for the FindControl method, except there is
no Recursive argument (that argument is assumed to be True). The following code lists the captions and IDs of all of the
pop-up menu controls:

Sub FindControlsDemo()
 Dim cbcs As CommandBarControls, cpop As CommandBarPopup
 ' Get the collection of pop-up menus
.
 Set cbcs = CommandBars.FindControls(msoControlPopup)
 ' Show the caption and ID of each control.
 For Each cpop In cbcs
 Debug.Print cpop.Caption, cpop.id
 Next
End Sub

commandbar.Id

Returns a numeric identifier for the command bar. The following code lists the names and IDs of all the command bars:

Sub ListCommandBars()
 Dim cb As CommandBar
 For Each cb In CommandBars
 Debug.Print cb.Name, cb.id
 Next
End Sub

commandbars.LargeButtons [= setting]

True displays command bar buttons larger than normal; False displays normal-size buttons. Default is False.

commandbars.MenuAnimationStyle [= msoMenuAnimation]

Sets or returns how menus are animated. Can be one of these settings:

msoMenuAnimationNone (default)

msoMenuAnimationRandom

msoMenuAnimationSlide

msoMenuAnimationUnfold

commandbar.Name [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the name of the command bar. This property is read-only for built-in command bars.

commandbar.NameLocal [= setting]

Sets or returns the name of the command bar in the user's selected language. This property is read-only for built-in
command bars.

commandbar.Position [= msoBarPosition]

Sets or returns the location where a command bar is docked. Can be one of these settings:

msoBarBottom

msoBarFloating

msoBarLeft

msoBarMenuBar

msoBarPopup

msoBarRight

msoBarTop (default)

commandbar.Protection [= msoBarProtection]

Sets or returns the type of customizations allowed for a command bar. Can be one of these settings:

msoBarNoChangeDock

msoBarNoChangeVisible

msoBarNoCustomize

msoBarNoHorizontalDock

msoBarNoMove

msoBarNoProtection (default)

msoBarNoResize

msoBarNoVerticalDock

CommandBars.ReleaseFocus()

Releases the focus from any of the command bar controls.

commandbar.Reset()

Restores a built-in command bar to its default settings, removing any customizations that have been made.

commandbar.RowIndex [= msoBarRow]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the order of the command bar in its current docking area. Can be any integer greater than zero,
msoBarRowFirst, or msoBarRowLast.

commandbar.ShowPopup([x], [y])

Displays a context menu bar at the specified coordinates. Causes an error if the command bar does not have a Type
property of msoBarTypePopup.

Argument Settings

x The horizontal position of the menu in pixels

y The vertical position of the menu in pixels

The following code pops up a context menu created earlier:

Sub ShowMenu()
 CommandBars("ContextMenu1").ShowPopup 100, 200
End Sub

commandbar.Type

Returns an msoBarType constant identifying the type of the command bar. Can be one of these settings:

msoBarTypeMenuBar (menu bar)

msoBarTypeNormal (toolbar)

msoBarTypePopup (context menu)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.8. CommandBarControl and CommandBarControls Members
Use the CommandBarControls collection to add new controls to a command bar. Use the CommandBar object's Controls property
to get a reference to this collection. Use the CommandBarControl object to set the appearance, caption, and action of a
command bar control. The CommandBarControls collection and CommandBarControl object have the following members. Key
members (shown in bold) are covered in the following reference section:

Add

1
Application2

BeginGroup BuiltIn

Caption Copy

Count1 Creator2

Delete DescriptionText

Enabled Execute

Height HelpContextId

HelpFile Id

Index IsPriorityDropped

Item1 Left

Move OLEUsage

OnAction Parameter

Parent2 Priority

Reset SetFocus

Tag TooltipText

Top Type

Visible Width

1 Collection only

2 Object and collection

commandbarcontrols.Add([Type], [Id], [Parameter], [Before],
[Temporary])

Adds a control to a command bar and returns a reference to the new object.

Argument Settings

Type An msoControlType constant for the type of control to create. Can be one of these settings: msoControlButton,
msoControlComboBox, msoControlDropdown, msoControlEdit, or msoControlPopup.

Id The Id property of an existing command to add to the command bar. Use this argument to add built-in
commands rather than custom commands.

Parameter A value to pass to the command via the Parameter property.

Before The position of the control on the command bar. Default is to insert after the last control on the
command bar.

Temporary True prevents the control from being saved when Excel closes. False saves the control in the user's .xlb
file when Excel closes. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code adds a custom smiley button to the worksheet menu bar; fortunately it's only temporary:

Sub AddCommandBarControl()
 Dim cb As CommandBar, cbc As CommandBarControl
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 Set cbc = cb.Controls.Add(msoControlButton, , , , True)
 cbc.Caption = "Smiley"
 cbc.FaceId = 1131
 cbc.OnAction = "DontWorry"
End Sub

Sub DontWorry()
 MsgBox "Don't worry, be happy."
End Sub

commandbarcontrol.BeginGroup [= setting]

True adds a separator bar before the control on menu bars; False removes the separator bar if it exists. Default is
False.

commandbarcontrol.BuiltIn

Returns True if the control is a built-in command and its OnAction property has not been set; returns False if the control
is a custom control.

commandbarcontrol.Caption [= setting]

Sets or returns the caption that appears for the control. Use the ampersand (&) to specify an accelerator key in the
caption. For command bar buttons, the caption appears as the tool tip for the control.

commandbarcontrol.Copy([Bar], [Before])

Copies a control from a source command bar to a destination command bar.

Argument Settings

Bar The destination command bar object. Default is the source command bar.

Before The position in the destination command bar for the copied control. Default is to copy the control to the
end of the command bar.

commandbarcontrol.Delete([Temporary])

Deletes a control from a command bar.

Argument Settings

Temporary True prevents the change from being saved when Excel closes; False saves the change to the command
bar in the user's .xlb file when Excel closes. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commandbarcontrol.DescriptionText [= setting]

Sets or returns a description of the control. This description is not displayed to the user.

commandbarcontrol.Enabled [= setting]

True enables a control, allowing it to be selected; False disables a control.

Setting a built-in control's Enabled property to True does not enable the control if Excel's
state does not allow the control to be enabled.

commandbarcontrol.Execute()

Executes the control's command. For example, the following code displays the About Excel dialog box:

Sub ShowAbout()
 Dim cbc As CommandBarControl
 ' &About Microsoft Office Excel command is ID 927.
 Set cbc = CommandBars.FindControl(msoControlButton, 927)
 cbc.Execute
End Sub

commandbarcontrol.HelpContextId [= setting]

Sets or returns the context ID of the control in the help file for the workbook, template, or add-in.

commandbarcontrol.HelpFile [= setting]

Sets or returns the help file for the workbook, template, or add-in.

commandbarcontrol.Id

For built-in controls, returns the numeric identifier for the control. For custom controls, returns 1.

commandbarcontrol.IsPriorityDropped

If CommandBars.AdaptiveMenus is True, this property returns False if the control is not visible because it was not recently
used or there is not enough space to display it and returns True if the control is visible.

commandbarcontrol.Move([Bar], [Before])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Moves a control from a source command bar to a destination command bar.

Argument Settings

Bar The destination command bar object. Default is the source command bar.

Before The position in the destination command bar for the control.

Move without arguments moves the control to the last position on the source command bar.

commandbarcontrol.OLEUsage [= msoControlOLEUsage]

Sets or returns how the control is merged with controls from another Office application when Excel is embedded within
another application. Can be one of these settings:

msoControlOLEUsageBoth

msoControlOLEUsageClient

msoControlOLEUsageNeither

msoControlOLEUsageServer (default)

In OLE terminology, the server is the object provider (in this case Excel) and the client is the application that consumes
the embedded object.

commandbarcontrol.OnAction [= setting]

Sets or returns the Visual Basic procedure to run when the control executes. Setting this property of a built-in control
overrides the built-in behavior and replaces it with the Visual Basic code.

commandbarcontrol.Parameter [= setting]

Sets or returns a string variable that may be used from the control's code.

commandbarcontrol.Priority [= setting]

Sets or returns a priority number that helps determine whether or not the control is dropped from the toolbar if there is
not enough room to display it within its docked position. Must be between 0 and 7; a setting of 1 prevents the control
from being dropped. Default is 3.

commandbarcontrol.Reset()

For built-in commands, Reset restores the default behavior and appearance of the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

commandbarcontrol.SetFocus()

Switches the keyboard focus to the control. Causes an error if the command is not enabled or is not visible.

commandbarcontrol.Tag [= setting]

For custom controls, sets or returns a string used to locate the control through the FindControl method.

commandbarcontrol.TooltipText [= setting]

Sets or returns the tool tip displayed for the control. The default tool tip is the control's Caption property.

commandbarcontrol.Type

Returns the type of the control as an msoControlType constant. Can be one of these settings:

msoControlButton

msoControlComboBox

msoControlDropdown

msoControlEdit

msoControlPopup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.9. CommandBarButton Members
Use the CommandBarButton object to work with menu items and toolbar buttons. Use the CommandBar object's Controls
collection or FindControl method to get a reference to this object. The CommandBarButton object is derived from the
CommandBarControl object and has the following members . Members that are unique from CommandBarControl (shown in
bold) are covered in the following reference section:

Application BeginGroup BuiltIn

BuiltInFace Caption Copy

CopyFace Creator Delete

DescriptionText Enabled Execute

FaceId Height HelpContextId

HelpFile HyperlinkType Id

Index IsPriorityDropped Left

Mask Move OLEUsage

OnAction Parameter Parent

PasteFace Picture Priority

Reset SetFocus ShortcutText

State Style Tag

TooltipText Top Type

Visible Width

commandbarbutton.CopyFace()

Copies the button bitmap onto the clipboard.

commandbarbutton.FaceId [= setting]

Sets or returns the numeric ID of the button's bitmap from a list of built-in button faces. The following code builds a list
of the built-in button faces on a new worksheet:

Sub ListButtonFaces()
 Dim cbb As CommandBarButton
 ' Create a new worksheet.
 Worksheets.Add
 ' For each command bar button.
 For Each cbb In CommandBars.FindControls(msoControlButton)
 ' List FaceID.
 ActiveCell = cbb.FaceId
 ActiveCell.Next(, 1).Select
 ' Copy and paste face onto worksheet.
 cbb.CopyFace
 ActiveSheet.Paste
 ' Move to the next row.
 ActiveCell.Next(2, -1).Select
 Next
End Sub

commandbarbutton.HyperlinkType [=
msoCommandBarButtonHyperlinkType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns a value that determines whether the button represents a normal button, a hyperlink, or a picture file to
insert. Can be one of these settings:

msoCommandBarButtonHyperlinkNone (default)

msoCommandBarButtonHyperlinkInsertPicture

msoCommandBarButtonHyperlinkOpen

When msoCommandBarButtonHyperlinkType is set to msoCommandBarButtonHyperlinkInsertPicture or msoCommandBarButtonHyperlinkOpen,
the TooltipText property contains the URL of the hyperlink. For example, the following code adds a button to the
worksheet menu bar that opens a Google search page:

Sub AddHyperlink()
 Dim cb As CommandBar, cbb As CommandBarButton
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 Set cbb = cb.Controls.Add(msoControlButton, 7343, , , True)
 cbb.HyperlinkType = msoCommandBarButtonHyperlinkOpen
 cbb.TooltipText = "http:\\www.google.com\"
End Sub

Similarly, this code adds a button that inserts an image on the active sheet:

Sub AddInsertPictureButton()
 Dim cb As CommandBar, cbb As CommandBarButton
 ' Get a command bar
 Set cb = CommandBars("Worksheet Menu Bar")
 Set cbb = cb.Controls.Add(msoControlButton, 2619, , , True)
 cbb.HyperlinkType = msoCommandBarButtonHyperlinkInsertPicture
 cbb.TooltipText = ThisWorkbook.Path & "\logo.jpg"
End Sub

commandbarbutton.Mask

Returns an IPictureDisp object representing the mask image for the command bar button. The mask image determines
what parts of the button image are transparent.

commandbarbutton.PasteFace()

Pastes a picture from the clipboard onto the command bar button.

commandbarbutton.Picture

Returns an IPictureDisp object representing the image for the command bar button.

commandbarbutton.ShortcutText [= setting]

Sets or returns the shortcut key text displayed next to the item when it appears on a menu.

commandbarbutton.State [= msoButtonState]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the interactive state of the control. This property is read-only for built-in commands. Can be one of
these settings:

msoButtonDown

msoButtonMixed

msoButtonUp

For menu items, msoButton down places a check mark beside the item's caption; msoButtonUp removes the check mark.
The following code toggles the selection of a menu item:

Sub ShowCodeHelper()
 Dim cbc As CommandBarButton
 ' Get the menu item
 Set cbc = CommandBars("Worksheet Menu Bar").FindControl(_
 , , "mnuCodeHelper", , True)
 ' Toggle the state (adds or removes a check mark
 ' beside the menu item).
 cbc.State = Not cbc.State
End Sub

commandbarbutton.Style [= msoButtonStyle]

Sets or returns the display style of the command bar button. Can be one of these settings:

msoButtonAutomatic (default)

msoButtonCaption

msoButtonIcon

msoButtonIconAndCaption

msoButtonIconAndCaptionBelow

msoButtonIconAndWrapCaption

msoButtonIconAndWrapCaptionBelow

msoButtonWrapCaption

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19. Adding Menus and Toolbars
Writing great code doesn't do you much good if users can't easily run it. In this chapter, I show you how to create
menus and toolbars that run your code with a single click. These features are actually part of the Office object model,
so the skills you learn here apply to Word, PowerPoint, and all of the other Office products.

This chapter includes task-oriented reference information for the following objects and their related collections:
CommandBar, CommandBarButton, CommandBarComboBox, CommandBarControl, and CommandBarPopup.

Code used in this chapter and additional samples are available in ch19.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1. Parts of a Program
A program is made up of the basic parts shown in Figure 2-1.

Project

Is the workbook where the program is stored. Each workbook has one Visual Basic project.

Classes and modules

Store the code associated with the workbook and the sheets the workbook contains. Classes and modules help
organize the procedures in your program.

Procedures

Perform the program's work. You can't do anything in Visual Basic without creating at least one procedure.

Figure 2-1. The main parts of a program

Variables

Store values used by your program.

Conditional statements

Make decisions within procedures.

Loops

Repeat actions. Together, conditional statements and loops form the logic that your procedure uses to
accomplish its task.

Expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Expressions

Evaluate a combination of items to return a single result. Expressions are the smallest unit of work in a program
and they usually involve operators such as +, -, *, or & (combine strings).

The following sections describe these parts in detail. If you are new to programming, I recommend that you follow
along with the samples carefully. I take a top-down approach and I've tried to be clear about how, when, and why you
use each part.

If you're an experienced programmer, the top-down organization of this chapter should work well for you as a
reference. If you think you know this already, I recommend that you read the sections "Classes and Modules," "Events,"
and "Exceptions" just to make sure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2. Classes and Modules
Excel stores recorded code in modules and stores code associated with workbooks and worksheets in classes . Here's
why:

Modules are static

That is, they exist without having to be created in memory at runtime. That means the code in modules is
always available to Excel; however, it limits what type of code they can contain. Specifically, modules can't
contain event procedures.

Classes are dynamic

They must be instantiated at runtime (that means an instance of an object must be created from the class at
runtime). Classes can contain event procedures because of this relationship with an object.

Workbook, chart, and worksheet classes are automatically instantiated by Excel because those classes are associated
with visible Excel objects: the current workbook and each of the sheets it contains. Because of that relationship, Visual
Basic shows those classes as Microsoft Excel Objects in the Project window (Figure 2-2).

Figure 2-2. Excel Visual Basic projects store code in three different folders

Because Excel instantiates classes automatically, how you create objects from classes is mostly hidden and therefore
often not completely understood. To see how creating an object from a class works, create a new workbook in Excel,
start the Visual Basic Editor, and follow these steps:

1. Choose Insert Class Module. Visual Basic creates a new class and adds it to the Class Modules folder of the
Project window.

2. Select the Properties window and rename the class PublicClass and set the Instancing property to 2 - PublicNotCreatable,
as shown in Figure 2-3.

Figure 2-3. Create a user class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-3. Create a user class

Click on the class's Code window and type the following code:

 ' From PublicClass class
 Dim m_name As String

 Public Sub SetName(name As String)
 m_name = name
 End Sub

 Public Sub ShowName()
 Debug.Print m_name
 End Sub

Now move the cursor to the ShowName procedure and press F5. Excel doesn't run the procedure; instead, it displays the
Macros dialog, and it's empty! (See Figure 2-4.)

Figure 2-4. Procedures in user classes don't show up here because they don't have
an instance

In order to run the ShowName procedure, you need to choose Insert Module and add the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In order to run the ShowName procedure, you need to choose Insert Module and add the following code:

 ' From Tests module.
 Sub TestUserClass()
 Dim obj As New PublicClass
 obj.SetName ("New object")
 obj.ShowName
 End Sub

TestUserClass creates an instance of PublicClass as a new object named obj, then calls the SetName and ShowName methods of
that object. In short, you can't do anything with a class until you create an object from it. Why is that useful? Because
each object has its own storage. For example, you can create three different objects from the same class if you like:

 ' From Tests module.
 Sub MultipleObjects()
 Dim obj1 As New PublicClass, obj2 As New PublicClass, obj3 As New PublicClass
 obj1.SetName ("First object")
 obj2.SetName ("Second object")
 obj3.SetName ("Third object")
 obj1.ShowName
 obj2.ShowName
 obj3.ShowName
 End Sub

The preceding code displays each object's name in the Immediate window:

 First object
 Second object
 Third object

You can't do that with code stored in a module because the m_name variable changes each time you call SetName. With
modules, you have only one instance, and you can't create that instance:

 ' From Tests module.
 Sub MultipleModules()
 ' Code in modules is static, there's no such thing as:
 'Dim mod As New PublicProcedures
 PublicProcedures.SetName ("First object")
 PublicProcedures.SetName ("Second object")
 PublicProcedures.SetName ("Third object")
 ' All display "Third object"
 PublicProcedures.ShowName
 PublicProcedures.ShowName
 PublicProcedures.ShowName
 End Sub

Most programmers omit the module name when calling procedures from a module, but you
can include it if you like, as shown by this example. The module name is required only if
there is a procedure with the same name in two or more modules.

The classes that Excel provides for sheets and workbooks are single-instance classes . That means they follow some
special rules that are different from user classes. You can create multiple variables that refer to a single-instance class,
but all those variables refer to the same object. For example, the following code creates object variables that refer to
the same worksheet:

 ' From Tests module
 Sub TestSheetClass()
 Dim obj1 As New Sheet1, obj2 As New Sheet1
 obj1.Name = "New name"
 Debug.Print obj2.Name
 End Sub

When you run the preceding code, Debug.Print displays New Name in the Immediate window! This limitation comes from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you run the preceding code, Debug.Print displays New Name in the Immediate window! This limitation comes from
Excelyou can't have two sheets with the same name in a single Excel workbook, and you can't have two workbooks with
the same name open at the same time in Excel.

Since Excel handles the creation of workbook and sheet classes, the New keyword in the preceding code is misleading:
you can't really create new instances of those classes. However, you can create new instances of generic versions of
those objects using Excel's Add method:

 ' Creates a new, blank worksheet
 Sub NewWorksheet()
 Dim ws As Worksheet
 Set ws = Worksheets.Add
 ws.Name = "New sheet"
 End Sub

One other quirk of workbook and sheet classes is that you can run their procedures from the Code window by pressing
F5. You don't need to first create an instance of those classesExcel's already done it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3. Procedures
Procedures are named blocks of code that perform a task. I've shown a lot of procedures already and I feel a little bad
about waiting this long to define that term. Procedures can have arguments , which let you pass values in to the
procedure from somewhere, and they may return values through their name. Figure 2-5 illustrates these parts using
the CubeRoot example from Chapter 1.

Visual Basic has four kinds of procedures:

Sub procedures

Perform a task but don't have return values.

Function procedures

Perform a task and return a value as their result.

Figure 2-5. Parts of a procedure

Property procedures

Get or set a value in an object or module.

Event procedures

A special kind of Sub procedure that respond to events that occur in Excel. Only classes can contain event
procedures.

The following sections explain these different types of procedures and how you use them.

2.3.1. Arguments and Results

I've heard some people say "Sub procedures don't return a value; Function procedures do." I may have said that myself
once or twice, but it's not exactly true. Actually Sub and Function procedures can both return values through their
arguments. Only Function procedures return a value as their result. In other words, only Function procedures can be used
on the righthand side of the equals sign (=).

For example, the CubeRoot procedure in Figure 2-5 can return a result and store that result in a variable as shown here:

 x = CubeRoot(42)

You couldn't do that if it were a Sub procedure. But what if it were? Here's what CubeRoot might look like if it were
rewritten as a Sub (changes are in bold):

 Public Sub CubeRoot2(x As Double, result As Double)
 result = x ^ (1 / 3)
 End Sub

This Sub just returns the result as an argument rather than through the function name. Using the CubeRoot2 procedure is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This Sub just returns the result as an argument rather than through the function name. Using the CubeRoot2 procedure is
a lot more awkward than using CubeRoot, however:

 ' Use the CubeRoot2 Sub
 Sub TestCubeRoot2()
 Dim res As Double
 CubeRoot2 42, res
 Debug.Print res
 End Sub

One problem is that it isn't always clear which argument you are passing in and which argument returns the resultI
named the second argument result to make that clearer. It's more common to use Subs to change arguments when you
want the input argument to change to the result, like this:

 ' Change the passed-in argument
 Public Sub GetCubeRoot(x As Double)
 x = x ^ (1 / 3)
 End Sub

Now the Sub changes the value of whatever argument you pass in:

 Sub TestGetCubeRoot()
 Dim x As Double
 x = 42
 GetCubeRoot x
 Debug.Print x
 End Sub

This works because Visual Basic passes arguments by reference. That means the argument x is not really 42; it's
actually an address in memory that contains the value 42. You can change this by declaring the argument as ByVal:

 ' Doesn't change the passed-in argument
 Public Sub GetCubeRoot2(ByVal x As Double)
 x = x ^ (1 / 3)
 End Sub

The preceding code doesn't change the argument since it is passed by value. To confirm that it doesn't change, try this:

 Sub TestGetCubeRoot2()
 Dim x As Double
 x = 42
 GetCubeRoot2 x
 Debug.Print x
 End Sub

The preceding code displays 42, not the result you probably want. The default is to pass arguments by reference, and
you can include the optional ByRef keyword if you want to be absolutely clear what you are doing:

 Public Sub CubeRoot2(ByVal x As Double, ByRef result As Double)
 result = x ^ (1 / 3)
 End Sub

Now, it is clearer which argument is for input (x) and which is for output (result).

2.3.2. Optional Arguments

Sometimes you can avoid having an argument. The Optional keyword tells Visual Basic than an argument can be omitted.
The following code shows changes to the ChangeSheets procedure from Chapter 1 to add an optional argument:

 Sub ChangeSheets2(Optional index As Integer = 1)
 Select Case TypeName(ActiveSheet)
 Case "Worksheet"
 If ActiveSheet.index < Worksheets.Count Then
 Worksheets(ActiveSheet.index + index).Activate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Worksheets(ActiveSheet.index + index).Activate
 Else
 Worksheets(1).Activate
 End If
 Case "Chart"
 If ActiveSheet.index < Charts.Count Then
 Charts(ActiveSheet.index + index).Activate
 Else
 Charts(1).Activate
 End If
 Case Else
 Debug.Print TypeName(ActiveSheet), ActiveSheet.Name
 End Select
 End Sub

Now, you can call the procedure with or without an index argument:

 Sub TestChangeSheets2()
 ' Activates the sheet three sheets away.
 ChangeSheets2 3
 ' Activates the next sheet (omits argument)
 ChangeSheets2
 End Sub

Visual Basic illustrates the optional argument and its default as you type, using the autocompletion feature as shown in
Figure 2-6.

Figure 2-6. Optional arguments are shown with their default values

In some cases, you might want to fill in the default value of an optional argument with a value that is available only
while the code is running instead of using a fixed setting. To do that, omit the default setting and test to see if the
argument is Nothing in code. For example, the following procedure automatically formats the active worksheet if the ws
argument is omitted:

 Public Sub Reformat(Optional ws As Worksheet)
 ' Check if argument was omitted.
 If TypeName(ws) = "Nothing" Then
 ' Check the type of the active sheet.
 If TypeName(ActiveSheet) = "Worksheet" Then
 ' Format the active worksheet.
 Set ws = ActiveSheet
 Else
 ' You can't reformat nonworksheets.
 MsgBox "Select a worksheet and try again."
 Exit Sub
 End If
 End If
 Dim rng As Range
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat xlRangeAutoFormatSimple
 End Sub

Most of the preceding code is devoted to checking whether the argument is missing and whether the active sheet is a
worksheet. That is usually the case in this situation; you need to be careful to make sure the selected item will work
with the rest of your code when filling in a default value this way.

In a few rare cases, you might want to write a procedure that takes any number of similar arguments. In that situation,
declare the argument as a ParamArray as shown here:

 Public Sub Reformat2(ParamArray sheets() As Variant)
 ' If argument is ommitted, call Reformat
 If IsMissing(sheets) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If IsMissing(sheets) Then
 Reformat
 Exit Sub
 End If
 ' Otherwise, go through each argument in the array.
 Dim var As Variant, ws As Worksheet
 For Each var In sheets
 If TypeName(var) = "Worksheet" Then
 ' Convert the type to Worksheet.
 Set ws = var
 ' Call Reformat.
 Reformat ws
 End If
 Next
 End Sub

The Reformat2 procedure can have any number of arguments, including none: the IsMissing function checks for that case.
ParamArray arguments can only be Variants, so you need to check each argument as shown in the For Each loop to make
sure it's the right type. Reformat2 simply reuses the Reformat procedure I created earlier to do the real work. Reusing
existing code is always a good idea.

The keyword ParamArray points up a terminology detail I'd rather ignore: the names used
between parentheses in a procedure definition are called arguments; the variables passed
in when the procedure is called are referred to as parameters. Confused? That's why I just
call them all arguments.

To see how ParamArray works, call Reformat2 as shown here:

 Sub TestReformat2()
 ' Format two worksheets
 Reformat2 Worksheets("2002"), Worksheets("2003")
 ' Format the active worksheet
 Reformat2
 End Sub

2.3.3. Named Arguments

Visual Basic lets you include the name of arguments when you call a procedure. This is most obvious in recorded code:

 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Number:=True, Font _
 :=True, Alignment:=True, Border:=True, Pattern:=True, Width:=True

The name before the := is the name of the argument and the item after it is the value of that argument. This is handy if
you want to use mostly default values; for instance, the following code reformats a selection without adding borders or
changing column widths:

 Selection.AutoFormat Format:=xlRangeAutoFormatSimple, Border:=False, Width:=False

You can do the same thing without names by relying on the positions of the arguments instead. The following line does
exactly the same thing as the preceding one:

 Selection.AutoFormat xlRangeAutoFormatSimple, , , , False, , False

I tend to omit named arguments because I feel they are often too verbose and because
the next generation of Visual Basic (Visual Basic .NET) doesn't use them. Feel free to
disagree with me on this one, though.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An approach that works better than named arguments in my opinion is using Visual Basic's Auto Complete feature. That
feature doesn't work with generic types of objects like Selection and ActiveSheet, so you must first get the specific type of
object as shown in Figure 2-7.

Figure 2-7. Auto Complete makes named arguments unnecessary in my opinion

2.3.4. Properties

Function procedures return a result and so can be used on the righthand side of an assignment:

 x = CubeRoot(42)

But what if you want to put a procedure name on the lefthand side? That's what properties do. Property procedures can
be assigned to or assigned fromthey can appear on either side of =. For example, the following code defines a Name
property for a module:

 ' Code in PublicProcedures module
 Dim m_name As String

 ' Assign the name.
 Public Property Let Name(arg As String)
 m_name = arg
 End Property

 ' Return the name
 Public Property Get Name() As String
 Name = m_name
 End Property

Code outside the module can set or return the value from m_name by calling the Name property:

 Sub TestProperties()
 PublicProcedures.Name = "Module name"
 Debug.Print PublicProcedures.Name
 End Sub

You could do something similar by just making m_name a public variable, but properties allow you special control that
you don't get with that technique. For example, the following code makes sure that Name is set only once:

 Public Property Let Name(arg As String)
 If arg <> "" And m_name = "" Then
 m_name = arg
 Else
 MsgBox "Name is already set to: " & m_name
 End If
 End Property

You can make a property read-only by not defining a Let procedure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can make a property read-only by not defining a Let procedure:

 Const m_date = #6/5/2004#

 ' Read-only property (no Let procedure)
 Public Property Get Created()
 Created = m_date
 End Property

Properties can represent objects if they use Set instead of Let. For example, the following read/write property keeps
track of a range of cells currently in use by the module:

 ' Object property (uses Set instead of Let)
 Public Property Set CurrentRange(arg As Range)
 Set m_range = arg
 End Property

 Public Property Get CurrentRange() As Range
 Set CurrentRange = m_range
 End Property

You can use an object property as part of a Set statement as shown here:

 Set PublicProcedures.CurrentRange = Selection
 Debug.Print PublicProcedures.CurrentRange.Address

All of the property samples I show here are part of a module. It is more common to find properties defined in classes .
In those cases, you must first create an instance of an object from the class before using the property. For example, if
you created the preceding properties in a class module named PublicClass, you'd use the following code to test them:

 Sub TestObjectProperties()
 Dim obj As New PublicClass
 ' Read-write property.
 obj.Name = "Module name"
 Debug.Print obj.Name
 ' Read-only property
 Debug.Print obj.Created
 ' Object property
 Set obj.CurrentRange = Selection
 Debug.Print obj.CurrentRange.Address
 End Sub

2.3.5. Events

The last kind of procedure is special type of Sub called an event procedure. Event procedures are where you write code
that responds to things that happen in Excel, such as the user opening a workbook, clicking on a button, or changing a
selection.

Events can exist only in classes, so it's easiest to see them by looking somewhere like the ThisWorkbook class shown in
Figure 2-8.

Figure 2-8. Predefined events in the Workbook class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To view the events that Excel defines for a class:

1. Open the class module in a Code window.

2. Select an object from the Code window's object list.

3. Select an event from the Code window's event list. Visual Basic inserts the event definition for the selected
event in the Code window.

The event definition is a Sub procedure that matches to the event's name and argument list. Some events, such as Open,
don't have any arguments; others, such as SheetSelectionChange, have several. Any code you add to an event definition is
run whenever that event occurs in Excel. You can see how this works by adding the following event procedure to the
ThisWorkbook class:

 Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As Range)
 MsgBox "Sheet: " & Sh.Name & " " & " Selected range: " & Target.Address
 End Sub

The preceding code displays the sheet name and range address any time you click on a new cell in the Excel workbook.
There's more on Excel's built-in events later in this book. Right now, I'd like to tell you how to create your own events.

There are two phases to creating your own events in a class:

1. Declare the event using the Event keyword.

2. Trigger the event using the RaiseEvent keyword.

Go back to the PublicClass example I've been using, and add the following lines shown in bold:

 ' Code in PublicClass class

 ' Class-level variables used by properties
 Dim m_name As String
 Const m_date = "6/5/2004"
 Dim m_range As range

 ' Event declaration
 Public Event RangeChange(rng As range)

 ' Assign the Name property
 Public Property Let Name(arg As String)
 If arg <> "" And m_name = "" Then
 m_name = arg
 Else
 MsgBox "Name is already set to: " & m_name
 End If
 End Property

 ' Return the Name property
 Public Property Get Name() As String
 Name = m_name
 End Property

 ' Read-only property (no Let procedure)
 Public Property Get Created()
 Created = CDate(m_date)
 End Property

 ' Object property (uses Set instead of Let)
 Public Property Set CurrentRange(arg As range)
 Set m_range = arg
 ' Trigger the event
 RaiseEvent RangeChange(m_range)
 End Property

 Public Property Get CurrentRange() As range
 Set CurrentRange = m_range
 End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Property

Now objects created from PublicClass will include a RangeChange event that occurs whenever the class's CurrentRange property
is set. To use this event from another class, such as ThisWorkbook, you must:

1. Declare an object using the WithEvents keyword. That adds the object to the Code window's events list.

2. Create an instance of the object.

3. Add an event definition for the event.

4. Do something to trigger the event.

To see the new event at work, open the ThisWorkbook class in a Code window and make the following changes:

 ' Code in ThisWorkbook class
 Dim WithEvents obj As PublicClass

 ' Respond to the RangeChange event.
 Private Sub obj_RangeChange(rng As range)
 ' Display the new current range.
 MsgBox "Current range: " & rng.Address
 End Sub

 Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As range)
 'MsgBox "Sheet: " & Sh.Name & " " & " Selected range: " & Target.Address
 ' Create object if it has not already been created.
 If TypeName(obj) = "Nothing" Then Set obj = New PublicClass
 ' Set the object's current range to trigger the event.
 Set obj.CurrentRange = Target
 End Sub

Now when you click on cells in the workbook, your code changes the CurrentRange property which triggers the RangeChange
event and displays a message box with the current setting. It might be useful to set a breakpoint in
Workbook_SheetSelectionChange and step through the code to see how the code executes.

If an event procedure takes arguments, you can't run it by pressing F5. Instead, you have
to set a breakpoint and then trigger the event in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4. Variables
Variables are names that your code uses to refer to pieces of information. I've already shown lots of variables in code
and used the word many timesyou can't say much about programming without doing that and fortunately variables
aren't a difficult concept to grasp, but there's a lot of details to know about them.

The following sections tell you all you need to know (possibly all there is to know) about variables in Visual Basic.

2.4.1. Names

Anything that you name in Visual Basic (variables, procedures, classes, etc.) has to follow certain rules. For example, if
you try to name module 1Off, you'll get an error (Figure 2-9).

Figure 2-9. Not all names are allowed in Visual Basic

To be valid in Visual Basic, a name must:

Start with a letter (A-Z)

Not include any of the restricted characters listed in Table 2-1

Not be one of the Visual Basic restricted words listed in Table 2-1

Be less than 256 characters long

Be unique within its scope (more on scope later)

Table 2-1. Characters you can't use in Visual Basic names
(space) ~ ´ `

" . ^ *

() - +

= < > ?

/ \ []

{ } | :

; : % !

& $ # @

The last seven characters in Table 2-1 (in bold) are allowed if used as the last character in a namein that case, they
identify the data type of the variable. That is a holdover from older versions of Basic and it's not a good idea to use that
practice in modern programs.

The words listed in Table 2-2 are restricted because Visual Basic couldn't determine the meaning of certain statements
if they were allowed as variable or procedure names. In some cases, the word is no longer commonly used in Visual
Basic programs (Rem, GoSub), but the restriction remains for compatibility with earlier versions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Basic programs (Rem, GoSub), but the restriction remains for compatibility with earlier versions.

Table 2-2. Words that can't be used as names in Visual Basic
AddressOf And Any As Boolean

ByRef Byte ByVal Call Case

CBool CByte CCur CDate CDbl

CInt CLng Close Const CSng

CStr Currency CVar CVErr Date

Debug Declare DefBool DefByte DefCur

DefDate DefDbl DefInt DefLng DefObj

DefSng DefStr DefVar Dim Do

Double Each Else Empty End

Enum Eqv Erase Event Exit

False For Friend Function Get

Global GoSub GoTo If Imp

Implements In Input Integer Is

LBound Len Let Like Lock

Long Loop LSet Me Mod

New Next Not Nothing Null

On Open Option Optional Or

ParamArray Preserve Print Private Public

Put RaiseEvent ReDim Rem Resume

Return RSet Seek Select Set

Single Spc Static Stop String

Sub Tab Then To True

Type UBound Unlock Variant Wend

While With WithEvents Write Xor

2.4.2. Declarations

Visual Basic has automatic variables by default. That means a new variable is created the first time you use it. This
makes life somewhat easier for beginning programmers, but it makes things harder when writing and maintaining
complex programs. For that reason, most experts recommend that you require variable declarations by adding Option
Explicit to the beginning of each class or module.

Option Explict turns off Visual Basic's automatic variables and thus requires that you declare each variable before you use
it. To declare a variable, use the Dim statement:

 Dim x As Integer

The preceding code declares that the name x is a variable that can contain an integer. The 12 different types of
variables in Visual Basic are listed in Table 2-3.

Table 2-3. Data types for variables in Visual Basic
Type Kind of data Size Values

Boolean True/false
choices 2 bytes True (0), False (-1)

Byte Binary data 1 byte 0-255

Currency Monetary
values 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date A date or
time 8 bytes 1 January 100 to 31 December 9999

Double Large decimal
numbers 8 bytes 1.79769313486231E308 to -4.94065645841247E-324 for negative values and

from 4.94065645841247E-324 to 1.79769313486232E308 for positive values

Integer Whole
numbers 2 bytes -32,768 to 32,767

Long Large whole
numbers 4 bytes -2,147,483,648 to 2,147,483,647

Object An instance
of a class 4 bytes Address of the object in memory

Single Decimal
values 4 bytes 3.402823E38 to -1.401298E-45 for negative values and from 1.401298E-45 to

3.402823E38 for positive values

String Text values 4 bytes 0 to approximately 2 billion (231) characters

String
(fixed)

Fixed-length
text values

1 byte
per
character

1 to 10,000 characters

Variant
Data that
might be any
type

4 bytes Same as numeric and String types

If you don't specify a type when declaring a variable, Visual Basic makes it a Variant by
default.

You can use any of the types listed in Table 2-3 as part of a Dim statement. For example, the following line declares
integer, single, and string variables:

 Dim i as Integer, s As Single, str As String

Most of the types in Table 2-3 are value types . Those types are stored as real values in an area of memory called the
stack . The stack is a place that Visual Basic can access very quickly, but it has a limited size and can accommodate
only variables that have fixed lengths. Some types, such as Object, String, and Variant don't have fixed lengths and so
Visual Basic handles those as reference types . Reference types store a 4-byte number on the stack that resolves to the
address where the data is actually stored.

String variables are kind of a special case because they can be value types or reference types depending on whether or
not they have a fixed length. Most strings have a variable lengththat is, they can grow or shrink as needed to fix the
data they are assigned. However, you can define the length of a string if you like:

 Dim fs As String * 12

The preceding line declares a fixed-length string 12 characters long. Visual Basic stores fs as a value type on the stack,
but it truncates any strings that are more than 12 characters:

 fs = "This is way too long for a 12-character string."

Becomes This is way. Fixed-length strings are mainly used in combination with advanced programming techniques such as
reading binary files.

Modern computers come with lots of memory, and you're not likely to run out while programming in Excel. So why
show size in Table 2-3? A few reasons:

The size of a variable helps you understand its limits. For example, Integers are 2 bytes (which is 16 bits) and so
have 65,536 (2^16) possible values. When you divide that between negative and positive numbers, you get a
range of -32,768 to 32,767. Numbers outside that range result in an overflow error if assigned to an Integer
variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable.

Size matters when converting from one data type to another. Larger types can cause overflow errors when
converted to smaller types.

You need to know the size of data types when creating user-defined types, reading binary data, or performing
bitwise operations.

2.4.3. Conversions

Visual Basic automatically converts between data types during assignment. If one variable doesn't exactly match the
type of another, Basic changes the value to fit. You can see this easily if you perform the following assignments:

 Sub Conversions()
 Dim d As Double, s As Single, i As Integer
 d = WorksheetFunction.Pi
 s = d
 i = d
 Debug.Print d, s, i
 End Sub

The preceding code displays the following output in the Immediate window:

 3.14159265358979 3.141593 3

You need to be aware of automatic conversion , because it can result in the unintended
loss of precision.

Here the conversion is done by rounding the number up or down to reflect the precision of the variable receiving the
assignment. Not all conversion can be done by rounding. For example, the following lines convert pi to a string:

 Dim str As String
 str = WorksheetFunction.Pi

Warning: not all conversions succeed. The following line causes a type mismatch error because d is a numeric variable
and the "Pi" can't be converted to a number:

 d = "Pi"

Conversions may also fail if the assignment exceeds the limit of the target variable. For example, the following lines
result in an overflow error since the positive limit for Integers is 32,627:

 Dim l As Long
 l = 32768
 i = l

You can explicitly perform any of these automatic conversions using the Visual Basic conversion functions listed in Table
2-4.

Table 2-4. Visual Basic type conversion functions
CBool CByte CCur CDate CDbl

CDec CInt CLng CSng CStr

CVar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It would be nice if you could turn off Visual Basic's automatic conversions and use the explicit conversion functions
shown in Table 2-4 only when needed. But you can't. In addition to the conversion functions, Visual Basic provides
other keywords that are useful when working with types; they are listed in Table 2-5.

Table 2-5. Visual Basic keywords for working with types
Keyword Use to

IsDate Return True if the variable is a date

IsEmpty Return True if the variable hasn't been initialized

IsNull Return True if a Variant variable does not contain valid data

IsNumeric Return True if the variable can be converted to a numeric value

IsObject Return True if the variable is a reference to an object

TypeName Return the name of the variable's type as a string

TypeOf Determine the type of an object variable within an If statement

2.4.4. Scope and Lifetime

Dim is not the only way to declare a variable. The full list of declaration keywords is shown in Table 2-6.

Table 2-6. Visual Basic declaration statements
Statement Use to declare Available

Dim A variable with the default scope Inside or outside a
procedure

Public A variable or procedure that is available from other modules or classes Outside a procedure only

Private A variable or procedure that is not available from other modules or
classes Outside a procedure only

Static A variable that retains its value between procedure calls Inside a procedure only

Which statement you use to declare a variable and where you declare it determines the scope and lifetime of that
variable. Scope is the range of places from which a name is visible. Dim, Public, and Private are statements that specify
scope. Lifetime is how long Visual Basic retains the value of a variable; Static specifies lifetime.

There are three levels of scope in a Visual Basic project:

Local variables are declared with Dim inside a procedure and are visible only from within that procedure.

Module-level variables are declared outside of a procedure with Dim or Private and are visible only from all
procedures within that module or class.

Global variables are declared outside of a procedure with Public and are visible from all procedures in all modules
and classes within the project.

Figure 2-10 illustrates the different levels of scope within a Visual Basic project.

It's a common practice to prefix global variables with g_ and module-level variable names
with m_ as shown in Figure 2-10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-10. If Option Explicit is specified, you get an error when a variable is not
visible

A variable defined at one level of scope can be shadowed by another defined at a lower level of scope. Shadowing hides
the higher-level variable from the local use. For example, Proc1 in Figure 2-10 could shadow m_Var by declaring it at the
procedure level as shown here in bold:

 Sub Proc1()
 ' Procedure-level
 Dim localVar
 ' Shadow module-level variable.
 Dim m_Var
 ' Set values.
 m_Var = "Private module-level"
 m_PublicVar = "Public module-level"
 m_PrivateVar = "Private module-level"
 localVar = "Procedure-level"
 End Sub

In this case, Proc1 creates a new, local version of m_Var and sets its value. Proc2 can't see that value but it can still see
the module-level version of m_Var, which doesn't contain a value. If you run Main, the output is this (note the blank space
where m_Var should be):

 Public module-level Private module-level

Shadowing is often a mistake, rather than an intentional technique. Using a scope prefix like g_ or m_ for global and
module-level variables helps to avoid this problem.

Declaring a local variable as Static tells Visual Basic to retain the variable's value between procedure calls. Ordinarily,
local variables are created when a procedure is called, then destroyed when the procedure ends. This means local
variables have a very short lifetime. Static tells Visual Basic to keep the variable alive as long as the program is
runningfor Excel Visual Basic projects, that lifetime begins when the user opens the workbook and ends when he closes
it.

As a practical matter, you can do much the same thing with global and module-level variables since they are also
created when Excel opens the workbook and destroyed when the workbook closes. The difference is scope ; Static
variables are local and so can't be changed outside of the procedure where they are declared. The following example
demonstrates using a Static variable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

demonstrates using a Static variable:

 Sub StaticVariable()
 ' Static variables
 are local.
 Static staticVar As Integer
 staticVar = staticVar + 1
 ' This variable is global.
 g_GlobalVar = g_GlobalVar + 1
 ' They both retain their value.
 Debug.Print staticVar, g_GlobalVar
 End Sub

Both staticVar and g_GlobalVar display the same value. If you run StaticVariable repeatedly, you'll see their values increment.
The difference is that other procedures can see (and change) the value of g_GlobalVar.

Why is this important? Because restricting the scope of variables is one of the keys to preventing accidental errors in
your code. The more global variables you have, the more likely you are to have adverse interactions between
procedures.

Keep variables as private as possible. Use arguments to pass values between procedures.
Use module-level or global variables for values that need to be shared by most or all
procedures.

2.4.5. Scope for Procedures

You may have guessed that procedures have levels of scope, too. In fact, Visual Basic uses the same keywords (plus
one) to define the scope of a procedure. The following procedure declarations show the scope and lifetime keywords in
use (in bold):

 Private Sub Proc1()
 ' Private procedures are local to the module or class.
 End Sub

 Public Sub Proc2()
 ' Public procedures are global to all open projects.
 End Sub

 Friend Sub Proc3()
 ' Friend procedures are public to the project that contains them.
 ' This is available only in classes.
 End Sub

 Private Static Sub Proc3()
 ' In Static procedures
, all local variables are Static.
 ' Static procedures may be Private, Public, or Friend.
 End Sub

The default scope for procedures is public, so omitting the scope keyword is the same as declaring the procedure as
Public. Most of the procedures you create will probably be public. Use Private or Friend when you want to restrict how
others use a procedure. For example, declaring a function in a module as Private prevents users from using it as a user-
defined function in an Excel formula.

2.4.6. Constants and Enumerations

Constants are names that have fixed values. Visual Basic and Excel each defines many constants that are used to
identify commonly used settings and values. For example, the constant vbCrLf is used to start new paragraphs within
strings:

 Debug.Print "This" & vbCrLf & "and that"

To declare your own constants, use the Const statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To declare your own constants, use the Const statement:

 ' Module level
 Const AUTHOR = "Jeff Webb"
 Const VERSION = 1.1
 Const CHANGED = #6/5/2004#

It's a common practice to capitalize constant names in code. It's also common to avoid
using local (procedure-level) constants since they may shadow global or module-level
constants.

Constant have global (Public), module-level (Private), or local scope and they can be shadowed. However, you can't assign
to a constant after it is declared. That is what distinguishes constants from variables! The following code demonstrates
using the preceding module-level constants in a procedure:

 Sub Constants()
 ' Constants can be shadowed.
 Const AUTHOR = "Joey"
 Debug.Print AUTHOR, VERSION, "Days since changed: " & Round(Now - CHANGED)
 End Sub

If you run the code, you'll see the following output in the Immediate window:

 Joey 1.1 Days since changed: 4

You don't specify a type when declaring constants, but Visual Basic assigns one based on the value you set. The # signs
in the preceding declarations identify the value as a date, so Visual Basic can use those values to evaluate how much
time has passed since the last change. You can use the other type-declaration characters if you want to use a special
data type for the constant, such as Currency (@):

 Public Const PRICE = 24.95@

Enumerations are a special type of constant that organizes a group of values by name. There are all sorts of
enumerations used in Visual Basic itself; a good example is the VbMsgBoxResult enumeration:

 Sub GetResponse()
 ' Declare variable as an enumerated value
 Dim res As VbMsgBoxResult
 ' Get the response.
 res = MsgBox("What's your response?", vbYesNoCancel)
 ' Test the response against possible values.
 Debug.Print "Response is:", Switch(res = vbYes, "Yes", _
 res = vbNo, "No", res = vbCancel, "Cancel")
 End Sub

In the preceding code, the variable res can contain any of the possible message box results. The Switch function
compares the variable to each of the possible responses to display an appropriate string in the Immediate window.

These enumerations are handy in part because they enable Auto Complete for the variable in the Visual Basic code
window. If you type res = or VbMsgBoxResult, you'll automatically see the possible settings for the variablethat really helps
you remember the Visual Basic constant names, which are sometimes very long.

You can create your own enumerations by using the Enum keyword. Enum is kind of like a block Const statement:

 Enum Numbers
 One = 1
 Two = 2
 Three = 3
 End Enum

You can use the Numbers enumeration in code, just as you would any Visual Basic enumeration:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can use the Numbers enumeration in code, just as you would any Visual Basic enumeration:

 Sub DemoEnum()
 ' Declare a variable as a user-defined enumerated value.
 Dim res As Numbers
 ' Set the value of the variable.
 res = One
 ' Display its value.
 Debug.Print res
 End Sub

2.4.7. Arrays

Arrays are variables that identify a set of values. That set has one or more dimensions, and each item within the set is
identified by an index within that dimension, as illustrated in Figures 2-11 and 2-12.

Figure 2-11. One-dimensional arrays are simply lists

Figure 2-12. Arrays with two dimensions are tables

Arrays can have more than two dimensions, but that starts to get hard to illustrate on paper. One- and two-dimensional
arrays are by far the most common. You use arrays whenever you have a set of data that you want to work with as a
unitlists and tables are typical examples of when to use an array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unitlists and tables are typical examples of when to use an array.

The items in an array must all have the same data type , but that's not very restrictive considering that you can have
arrays of Variants, which can assume any other type. For example, the following array contains the names of products
and their prices. To prove that the stored prices are numbers, I calculate the tax on each price before displaying the
table in the Immediate window:

 Sub ShowVariantArray()
 Const RATE = 0.06
 Dim PriceChart(4, 1) As Variant
 PriceChart(0, 0) = "Grudgeon"
 PriceChart(0, 1) = 24.95@
 PriceChart(1, 0) = "Pintle"
 PriceChart(1, 1) = 11.15@
 PriceChart(2, 0) = "Tiller"
 PriceChart(2, 1) = 93.75@
 PriceChart(3, 0) = "Rudder"
 PriceChart(3, 1) = 42.49@
 Dim i As Integer
 Debug.Print "Item", "Price", "Tax"
 For i = 0 To UBound(PriceChart) - 1
 Debug.Print PriceChart(i, 0), PriceChart(i, 1), _
 Round(PriceChart(i, 1) * RATE, 2)
 Next
 End Sub

The preceding arrays have a fixed number of items, set when the array was declared. That's realistic if you know that
the number of items won't change frequently, but it's much more handy to be able to change the number of items
dynamically at runtime. To create a dynamic array, declare the array with an empty number of dimensions, then use
ReDim to declare the bounds . For example, the following code declares an array named Values, resizes the array to fit the
number of cells selected in Excel, then copies the values from the selected range of cells into that array (key items in
bold):

 Sub DynamicArray()
 Dim Values() As Variant
 ' Get rows and columns of selected range
 Dim rows As Integer, cols As Integer
 rows = Selection.rows.count
 cols = Selection.Columns.count
 ReDim Values(1 To rows, 1 To cols)
 ' If multiple cells are selected, Selection returns an array.
 If IsArray(Selection) Then
 Values = Selection
 Dim i As Integer, j As Integer, str As String
 For i = 1 To rows
 str = ""
 For j = 1 To cols
 str = str & vbTab & Values(i, j)
 Next
 Debug.Print str
 Next
 End If
 End Sub

By default, arrays' bounds start at 0, but you can change that as shown by ReDim Values(1 To
rows, 1 To cols). I do that so the Values array matches the bounds used by the array returned
by Excel's Selection method. Arrays returned by Excel always start at 1.

Dynamic arrays are usually cleared any time you call ReDim. The exception to that rule occurs if you are using a one-
dimensional array (a list) and you qualify ReDim with Preserve to save the existing data in the array. Here's our Flavors
array again, but this time you can add items:

 Sub DynamicArrayPreserve()
 Dim Flavors() As String
 ' Set the inital size of the array.
 ReDim Flavors(4)
 ' Set some values.
 Flavors(0) = "Vanilla"
 Flavors(1) = "Chocolate"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Flavors(1) = "Chocolate"
 Flavors(2) = "Strawberry"
 Flavors(3) = "Peach"
 ' Add items to the list, enlarging it as needed.
 Dim str As String, count As Integer
 Do
 ' Get the count of items in list.
 count = UBound(Flavors)
 str = InputBox("Enter a flavor.")
 ' Exit if nothing entered.
 If str = "" Then Exit Do
 ' Make the array bigger.
 ReDim Preserve Flavors(count + 1)
 ' Set the value of the new item
 Flavors(count) = str
 Loop
 ' Display the items
 Dim i As Integer
 For i = 0 To UBound(Flavors) - 1
 Debug.Print Flavors(i)
 Next
 End Sub

Visual Basic can make arrays larger at runtime because all arrays are reference types. The value represented by the
array name in Visual Basic is the address of where the array starts. Table 2-7 lists the keywords that Visual Basic
provides for working with arrays.

Table 2-7. Visual Basic array keywords
Keyword Use to

Array Create an array from a list of values.

Erase Clear the values in an array.

IsArray Determine whether or not a variable is an array.

LBound Get the lower bound of an array dimension.

Option Base Change the default lower bound of arrays. (This is not generally a good practice and is mainly provided for
compatibility with earlier Basics.)

UBound Get the upper bound of an array dimension.

2.4.8. User-Defined Types

You can create your own composite types out of the existing Visual Basic types. These composite types are called user-
defined types in Visual Basic and they are used primarily for advanced tasks such as reading and writing binary files or
working with Windows API functions .

Use the Type statement to define a user-defined type:

 ' Code in Variables module
 Private Type POINTAPI
 x As Long
 y As Long
 End Type

 Private Declare Function GetCursorPos _
 Lib "user32" (lp As POINTAPI) As Long

The preceding module-level definition creates a type named POINTAPI that contains two Long types. This definition
matches the argument returned by the GetCursorPos Windows API function, and it enables you to get at the values
returned by that function in code. For example, the following procedure displays the location of the cursor:

 Sub ShowCursorPosition()
 Dim point As POINTAPI
 GetCursorPos point
 MsgBox point.x & " " & point.y
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The preceding code declares the point variable using the POINTAPI type defined earlier; then it calls the Windows
GetCursorPos function to fill in the value of point. It is common for Windows API functions to return values through user-
defined types in this way (Windows calls user-defined types structures). Variables with user-defined types use the
period to get items from within the type. Thus, point.x gets the value of the x-coordinate in the preceding example.

2.4.9. Objects

Object is the general term for an instance of a class. Visual Basic has an Object type that you can use to create variables
that reference any generic object; however, you usually want to create variables of a specific class of object. Objects
are a special kind of variable because you can control when they are created. Other types of variables in Visual Basic
are initialized whenever they are declared, but that's not true with objects .

The easiest way to create an object variable is to include the New keyword in the variable declaration. For example, the
following line creates a new object variable from the PublicClass class definition:

 Dim obj As New PublicClass

Once created, you can use that object's properties and methods to do whatever it is you want to do. New is an
executable statement; if you use it at the module level, the actual creation of the object is delayed till the first time the
object is referenced within a procedurea confusing situation that is best to avoid. If you declare an object variable at
the module level, omit New, then create the object within a procedure explicitly. For example, the following code creates
a global object variable and creates the object the first time UseObject runs:

 ' Global object variable
 Public g_obj As PublicClass

 Sub UseObject()
 ' Create global object variable
 If g_obj Is "Nothing" Then Set g_obj = New PublicClass
 ' Show that the object exists
 Debug.Print g_obj.CREATED
 End Sub

There are a few significant things to point out about the preceding code:

The module-level declaration uses a specific class type. That makes the class's methods and properties
available to Visual Basic's Auto Complete feature as you write code.

TypeName(g_obj) = "Nothing" is True if the object has not been created. In that case, the Set statement creates a
new instance of the object.

Visual Basic also provides an IsEmpty function to check if an object has been created, but that works only with
the generic Object typeit doesn't work with specific classes.

To destroy an object, set the object variable to Nothing:

 Set g_obj = Nothing

This is not necessary when the object is a local variable, since those are automatically destroyed when the procedure
ends. However, global, module-level, and Static variables exist as long as the workbook is open unless you explicitly
destroy them.

Excel provides many objects that you can use from Visual Basic, but they can be created only through other Excel
objects. For example, the following two statements are equivalent, and neither one creates a new worksheet!

 Dim ws1 As Worksheet
 Dim ws2 As New Worksheet

To create an object from Excel, you usually use the Add method of the object's collection class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create an object from Excel, you usually use the Add method of the object's collection class:

 Sub CreateExcelObject()
 ' Declare a Worksheet object variable
 Dim ws As Worksheet
 ' Create the Worksheet
 Set ws = Worksheets.Add
 End Sub

Since Excel controls the creation of its objects, it also controls their destruction. Setting ws to Nothing just destroys the
object reference; it doesn't remove the worksheet. To destroy an Excel object, you usually use the object's Delete
method as shown here:

 ws.Delete

Visual Basic includes the keyword With to create blocks of code that work with a specific object. The With statement
creates a shorthand for repeatedly referring to the same object, and you will frequently see it in recorded code. For
example, the following code creates a new worksheet and sets the object's properties using With:

 Sub UseWith()
 ' Create a new worksheet in a With statement

 With Worksheets
.Add
 .Name = "New Worksheet"
 .Range("A1") = "Some new data..."
 ActiveWindow.DisplayGridlines = False
 End With
 End Sub

The Worksheets.Add method returns a reference to the worksheet object that is then used by the subsequent properties.
Each property begins with a period inside of the With block. Statements that don't refer to the object, such as
ActiveWindow, simply omit the period.

There's nothing wrong with using With, but I prefer to use the variable name explicitly.
That's just my style.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5. Conditional Statements
One of the fundamental elements of programming is making decisions based on inputs. Visual Basic provides the If
statement for making either/or decisions and the Select statement for making multiple-choice decisions. These two
statements form the core of any logic your program uses to adjust to different conditions, and for that reason they are
called conditional statements .

The If statement has several different forms:

A very simple one-line form:

 If IsArray(Selection) Then MsgBox "Multiple cells selected."

A block form that can contain multiple lines and alternative actions:

 Dim str As String
 If IsArray(Selection) Then
 str = "Grand total: " & _
 WorksheetFunction.Sum(Selection)
 Else
 str = "Please select more than one cell"
 End If
 MsgBox str

A block form with multiple conditions and alternate actions:

 If IsArray(Selection) Then
 str = "Grand total: " & _
 WorksheetFunction.Sum(Selection)
 ElseIf TypeName(ActiveSheet) = "Worksheet" Then
 str = "Worksheet total: " & _
 WorksheetFunction.Sum(ActiveSheet.UsedRange)
 Else
 str = "Please select a worksheet"
 End If
 MsgBox str

You can have multiple ElseIf statements within an If block as shown by the following general form:

 If condition Then
 ' Do something
 [ElseIf condition Then
 ' Do something else]
 [ElseIf condition Then
 ' Can repeat ElseIf]
 [Else
 ' Do something else]
 End If

For more complex logic, you can include If statements within an enclosing If statement, or you can use the Select Case
statement. The following Select Case statement compares the current time against a list of literal times to determine
which message to display:

 Dim str As String
 Select Case Time
 Case Is > #10:00:00 PM#
 str = "Bed time!"
 Case Is > #7:00:00 PM#
 str = "Time to relax."
 Case Is > #6:00:00 PM#
 str = "Dinner time!"
 Case Is > #5:00:00 PM#
 str = "Drive time."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 str = "Drive time."
 Case Is > #1:00:00 PM#
 str = "Work time."
 Case Is > #12:00:00 PM#
 str = "Lunch time!"
 Case Is > #8:00:00 AM#
 str = "Work time."
 Case Is > #7:00:00 AM#
 str = "Breakfast time!"
 Case Else
 str = "Too early!"
 End Select
 MsgBox str

Select statements are evaluated from the top down. Select exits after the first match, so only one of the messages is set.

Visual Basic provides one more conditional statement, though it is not commonly used. The Switch statement is similar to
Select, but rather than executing statements, Switch returns a value based on different conditions. The following code is
equivalent to the preceding example, except it uses Switch rather than Select:

 Dim str As String
 str = Switch(Time > #10:00:00 PM#, "Bed time!", _
 Time > #7:00:00 PM#, "Time to relax.", _
 Time > #6:00:00 PM#, "Dinner time!", _
 Time > #5:00:00 PM#, "Drive time.", _
 Time > #1:00:00 PM#, "Work time.", _
 Time > #12:00:00 PM#, "Lunch time!", _
 Time > #8:00:00 AM#, "Work time.", _
 Time > #7:00:00 AM#, "Breakfast time!", _
 Time >= #12:00:00 AM#, "Too early!")
 MsgBox str

Perhaps the reason Switch isn't used more often is because it results in long statements that must be broken over
multiple lines to be readable in the Code window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6. Loops
The other fundamental part of programming logic is the ability to repeat a set of actions until some condition is met.
This type of logic is called looping . I talked a little about loops in Chapter 1; here I'll show you the different types of
loops Visual Basic provides. Table 2-8 lists the looping statements in Visual Basic.

Table 2-8. Visual Basic statements for repeating actions
Statement Use to

Do...Loop or While...Wend Repeat a set of actions until a condition is met

For...Next Repeat a set of actions a number of times using a counter

For Each Repeat as set of actions for each item in a collection

Do...Loop and While...Wend are similar, but Do...Loop is more flexible so most programmers simply ignore While...Wend. I'm
going to follow their leadif you're interested, you can read about While...Wend in Help.

The Do...Loop statement repeats a set of actions until a condition is met; you can include the condition at the beginning
or the end of the loop. For example, the following code speaks any words you type in an input box and exits if you don't
type anything:

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 Application.Speech.Speak str
 Loop While str <> ""
 End Sub

The preceding code executes the Speak method one time more than it really needs to after the user cancels the input.
This isn't a big problem, but you can avoid it by using an Exit Do statement instead of testing the condition at the end of
the loop (change shown in bold):

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 If str = "" Then Exit Do
 Application.Speech.Speak str
 Loop
 End Sub

It's not good style to use Exit Do within long, complicated loops. In those situations, it's important to be able to easily
locate the exit condition, and burying it within the body of the loop makes it harder to find. If the unneeded Speak
method still bothers you, just change the loop as shown here:

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 If str <> "" Then _
 Application.Speech.Speak str
 Loop While str <> ""
 End Sub

Now the loop executes no unneeded statements. There's one last step in this example: the Speech object was introduced
in Excel 2002. If you want the preceding code to work with previous versions of Excel, you need to add some
conditional logic as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conditional logic as shown here:

 Sub RepeatAfterMe()
 Dim str As String
 Do
 str = InputBox("Enter something to say.", "Repeat after me...")
 ' Speech was added in Excel 10
 If Application.VERSION >= 10 And str <> "" Then
 Application.Speech.Speak str
 ' This is boring, but it works with all versions!
 ElseIf str <> "" Then
 MsgBox str, , "Repeat after me."
 End If
 Loop While str <> ""
 End Sub

This example shows how loops and conditional statements are often used together.
Together they form the logical path that your program follows.

Placing the condition first in a Do...Loop prevents the loop from running unless the condition is true to start with. You can
choose between While and Until when testing a condition; they are inverses of each other so While str <> "" is the same as
Until str = "". The basic form of a Do...Loop is as follows:

 Do [While condition | Until condition]
 ' action
 [If condition Then Exit Do]
 Loop [While condition | Until condition]

For...Next statements perform an action a set number of times as determined by a variable used as a counter. In many
situations, you know how many times you want to repeat an action, but the most common is probably when working
with lists or tables of items from an array. In that case, you know the start point (the lower bound of the array) and the
end point (the upper bound of the array), as shown by this code from an earlier sample:

 ' Display the items in the Flavors array
 Dim i As Integer
 For i = 0 To UBound(Flavors) - 1
 Debug.Print Flavors(i)
 Next

By default, For...Next increments the counter (i) by one each time the loop executes. Thus, Flavors(i) gets each element of
the array from 0 to one less than the upper bound. That last bit might seem a little odd, but UBound returns the number
of elements in the array, not the maximum index of the array; in this case, the array starts at 0, so the maximum index
is one less than the upper bound. If the lower bound is 1 (as it is for arrays returned by Excel methods), then the
For...Next loop looks like this:

 Sub ForNextLoop()
 If Not IsArray(Selection.Value) Then Exit Sub
 Dim i As Integer, j As Integer, str As String
 For i = 1 To UBound(Selection.Value, 1)
 str = ""
 For j = 1 To UBound(Selection.Value, 2)
 str = str & vbTab & Selection(i, j)
 Next
 Debug.Print str
 Next
 End Sub

In the preceding code, Selection.Value returns an array if more than one cell is selected. Since Excel arrays start at 1, the
count of elements in the array is the same as the array's upper bound.

You can change the increment used by For...Next by using the Step keyword as shown by the following general version of
the For...Next statement:

 For counter = start To stop [Step increment]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 For counter = start To stop [Step increment]
 ' action
 [If condition Then Exit For]
 Next [counter]

Use a negative number for increment to count backward. For example, the following code performs a 10-second
countdown:

 Sub CountDown()
 Dim i As Integer
 For i = 10 To 1 Step -1
 Debug.Print i
 Application.Wait Now + #12:00:01 AM#
 Next
 Debug.Print "Blast off!"
 End Sub

In some cases, it is more convenient to perform an action on each item in a group, rather than relying on the number
of items in the group. For those situations, Visual Basic provides the For Each statement. The following code displays a
list of the workbook's worksheets in the Immediate window:

 Dim ws As Worksheet
 For Each ws In Worksheets
 Debug.Print ws.Name
 Next

For Each works only with collections , which are a special type of object that contains a group of other objects. All
collections have a special, hidden property called an enumerator that allows them to work with For Each. Collections also
usually have an Add method and a Count property and are usually named using the plural form of the name of the object
they contain. Thus the Worksheets collection contains Worksheet objects.

Excel doesn't always follow these rules for collections. That's why I say usually here.

For Each sets the object variable to the next object in the collection each time the loop executes and automatically ends
after it reaches the last object. There's no Step keyword to skip objects or count backward; the general form of the
statement looks like this:

 For Each object In collection
 ' action
 [If condition Then Exit For]
 Next [object]

The type of object must be the same as the type of objects in collection. Some collections, such as the collection returned
by the Excel Sheets method, can contain objects of more than one type. Therefore, the following code would cause a
type-mismatch error if a workbook contains a Chart sheet:

 Sub ForEachLoop()
 Dim ws As Worksheet
 For Each ws In Sheets ' Possible error!
 Debug.Print ws.Name
 Next
 End Sub

If you want to work with a mixed collection like Sheets, use a generic object as shown here:

 Sub ForEachLoop()
 Dim obj As Object
 For Each obj In Sheets
 Debug.Print obj.Name, TypeName(obj)
 Next
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

Now the code displays a list of all the sheets in the workbook, along with their type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7. Expressions
In programming languages, expressions are anything that produces a result. You use expressions to evaluate
something, such as a math calculation or a true/false condition. In Visual Basic, the Immediate window functions as an
expression evaluator, so it's a good place to try out different expressions, as shown in Figure 2-13.

Figure 2-13. Use the Immediate window to quickly evaluate expressions

Expressions can return values of any type, including arrays or references to objects. The Immediate window can't
display those types, however. Within a program, expressions are usually found to the right of the equals sign:

 res = CubeRoot(42)

But they can also be used as part of any statement that takes a value:

 If IsArray(Selection) Then MsgBox("You selected multiple cells.")

Simple expressions can be combined to form complex ones using operators . Visual Basic provides different sets of
operators depending on the type of the expression, as listed in Table 2-9.

Table 2-9. Visual Basic operators
Numeric
operators

Comparison operators (return Boolean
values)

Logical
operators

String
operators

Object
operators

^ = And & Is

- <> Eqv Like Set (assign)

* < Imp = (assign)

/ > Not

\ <= Or

Mod >= Xor

+

= (assign)

The Like and Is operators in Table 2-9 return Boolean values, but I group them with the String and Object types because

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Like and Is operators in Table 2-9 return Boolean values, but I group them with the String and Object types because
they operate on those types exclusively.

Expressions are often the result of a function call. There are many built-in functions for working with numbers, dates,
times, strings, and objects in Visual Basic. I discuss those in Chapter 3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8. Exceptions
Exceptions are runtime errors that you anticipate. Generally, exceptions occur as the result of using resources outside
of Excel, such as trying to get a file from disk or trying to connect to a database. It's very difficult to anticipate all the
things that could go wrong and unnecessarily complex to try to write code for situations that may occur only rarely.
That's what exception handling is for.

In Visual Basic, you turn on exception handling using the On Error statement. On Error tells Visual Basic to watch for
exceptions and provides instructions on what to do if one happens. For example, the following code starts Notepad from
Excel; if Notepad isn't installed or can't be found, Excel displays a warning message:

 Sub ShowNotepad()
 On Error Resume Next
 Shell "notepad.exe", vbNormalFocus
 If Err Then MsgBox "Notepad could not be found.", , "Warning"
 End Sub

This style of exception handling is called inline because On Error Resume Next tells Visual Basic to execute the rest of the
procedure one line at a time even if a problem occurs. With this technique you typically test the value of Err after each
line that you think might cause an exception.

Err returns an Error object if an error occurred. The Error object's default property is the error code number, and the
preceding code simply tests if that value is not zero (False). In some cases you may want to test the value within a
Select Case statement. On Error provides an alternate syntax that causes any error to jump to a generalized exception-
handling routine, as shown here:

 Sub GetFile()
 Dim str As String
 On Error GoTo errGetFile
 ' Open a file
 Open "a:\datafile.txt" For Input As #1
 Exit Sub
 ' Handle possible exceptions
 errGetFile:
 Select Case Err
 Case 53
 str = "File not found. Insert data disk in drive A."
 Case 55
 str = "File in use by another application. " & _
 "Close the file and retry."
 Case 71
 str = "Insert disk in drive A."
 Case Else
 str = Err.Description
 End Select
 MsgBox str, , "Error"
 End Sub

If an exception occurs in the preceding code, execution jumps to the errGetFile label and the Select statement sets the
message to display based on the error code. You must include an Exit statement before the label to prevent the
procedure from displaying a message if no exception occurs.

This style of exception handling allows you provide specific responses to different types of exceptions, but as a practical
matter it isn't as useful as inline exception handling since knowing the line where an exception occurred is usually more
informative than the error code.

It can be difficult to debug procedures when exception handling is turned on, since
exceptions don't immediately stop the code and display a message.

To turn off exception handling within a procedure, use this statement:

 On Error Goto 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error Goto 0

You should turn off exception handling after you've completed the statements you think might cause an exception.
Visual Basic automatically turns off exception handling after the procedure completes, so you need to worry about this
only if your procedure calls other procedures or if you have a very long procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.9. What You've Learned
In this chapter you learned how Visual Basic programs are constructed. You should be able to create procedures that
use arguments and variables and to call one procedure from another.

You should be comfortable using the sample code, creating conditional statements and loops, using arrays, and creating
expressions that use the Visual Basic operators.

Come back here later if you need help with optional arguments, properties, events, data types, or exceptions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Knowing the Basics
Visual Basic comes from a long line of Basics. In fact, BASIC was Microsoft's first product. Bill Gates and Paul Allen
developed a BASIC interpreter for use on the Altair personal computer in their Harvard dorm rooms many years ago.

Back at Microsoft, I got to play a small role in the evolution of computer languages. I was
the guy who changed BASIC to Basic. Death to acronyms!

The Visual Basic language is distinct from the objects, properties, and methods that Excel provides. If you know Visual
Basic, you can program Word or PowerPoint, or even Windows. I'll teach you the fundamental elements of the language
here.

Code used in this chapter and additional samples are available in ch02.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.1. Types of Dialogs
There are many different ways to display dialog boxes using Visual Basic in Excel, so it is helpful to organize those
techniques by starting with the type of dialog box you want to display. The three main sorts of dialog boxes are
informational displays, data-entry forms, and other tasks. Table 20-1 organizes the ways to display dialogs based on
those types.

Table 20-1. Types of dialogs and how to display them
Type of dialog Example Use one of these See

Informational
display Success message MsgBox function Chapter 3

 Help Help or FollowHyperLink method Chapter 6

Data-entry Enter values in a list ShowDataForm method This chapter

 Advanced data entry User form This chapter

Task-specific Get a value or range InputBox method Chapters 3,
7

 Get a file or folder name FileDialog, GetOpenFilename, or GetSaveAsFilename
method Chapter 7

 Show a built-in Excel dialog box Dialogs method Chapter 7

 Set task options or custom
properties User form This chapter

 Wizard User form This chapter

As you can see from Table 20-1, Excel handles the well-structured tasks for you, but as your needs become open-
ended, you need to start creating your own user forms. The lesson from Table 20-1 is to not start with the Forms
Designerlook around first to see if Excel already does the work for you!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.10. CommandButton Members
Use the CommandButton control to execute or cancel actions. In addition to the members listed for the general Control
object, the CommandButton control has the following members. Key members (shown in bold) are covered in the following
reference section:

Accelerator AutoSize

BackColor BackStyle

Caption Enabled

Font ForeColor

Locked MouseIcon

MousePointer Picture

PicturePosition TakeFocusOnClick

WordWrap

control.Picture [= setting]

Sets or returns the picture loaded as the face of the command button. The picture can be set at design time in the
Properties window or at runtime using the LoadPicture function. The following code displays a button with a picture on it:

Private Sub UserForm_Initialize()
 CommandButton1.Picture = LoadPicture(ThisWorkbook.Path & "\logo.jpg")
 CommandButton1.PicturePosition = fmPicturePositionCenter
 CommandButton1.Caption = "Wombat"
 CommandButton1.Font.Bold = True
End Sub

control.PicturePosition [= fmPicturePosition]

Sets or returns the location of the picture relative to the caption. Can be one of these settings:

fmPicturePositionLeftTop fmPicturePositionLeftCenter

fmPicturePositionLeftBottom fmPicturePositionRightTop

fmPicturePositionRightCenter fmPicturePositionRightBottom

fmPicturePositionAboveLeft fmPicturePositionAboveCenter (default)

fmPicturePositionAboveRight fmPicturePositionBelowLeft

fmPicturePositionBelowCenter fmPicturePositionBelowRight

fmPicturePositionCenter

control.TakeFocusOnClick [= setting]

True causes the control to receive focus when clicked; False does not change the current focus. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.11. Image Members
Use the Image control to display pictures. In addition to the members listed for the general Control object, the Image
control has the following members. Key members (shown in bold) are covered in the following reference section:

AutoSize BackColor

BackStyle BorderColor

BorderStyle Enabled

MouseIcon MousePointer

Picture PictureAlignment

PictureSizeMode PictureTiling

SpecialEffect

control.Picture [= setting]

Sets or returns the picture loaded in the control. The picture can be set at design time in the Properties window or at
runtime using the LoadPicture function. The following code displays a picture using the image control:

Private Sub UserForm_Initialize()
 Image1.Picture = LoadPicture(ThisWorkbook.Path & "\turtle.jpg")
 Image1.PictureSizeMode = fmPictureSizeModeZoom
End Sub

control.PictureAlignment [= fmPictureAlignment]

Sets or returns how the picture is placed. Can be one of these settings:

fmPictureAlignmentTopLeft
fmPictureAlignmentTopRight
fmPictureAlignmentCenter (default)
fmPictureAlignmentBottomLeft
fmPictureAlignmentBottomRight

control.PictureSizeMode [= fmPictureSizeMode]

Sets or returns how the picture is sized. Can be one of these settings:

fmPictureSizeModeClip (default)
fmPictureSizeModeStretch (may change the aspect ratio of the picture)
fmPictureSizeModeZoom (preserves aspect ratio)

control.PictureTiling [= setting]

If the picture does not exactly fit the dimensions of the control and the PictureSizeMode is not fmPictureSizeModeStretch, true
repeats the picture to fill the background; False displays the picture one time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

repeats the picture to fill the background; False displays the picture one time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.12. Label Members
Use the Label control to display text that the user can't change. In addition to the members listed for the general Control
object, the Label control has the following members:

Accelerator AutoSize

BackColor BackStyle

BorderColor BorderStyle

Caption Enabled

Font ForeColor

MouseIcon MousePointer

Picture PicturePosition

SpecialEffect TextAlign

WordWrap

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.13. ListBox Members
Use the ListBox control to display scrollable lists of items. In addition to the members listed for the general Control object,
the ListBox control has the following members. Key members (shown in bold) are covered in the following reference
section:

AddItem BackColor BorderColor

BorderStyle BoundColumn Clear()

Column ColumnCount ColumnHeads

ColumnWidths Enabled Font

ForeColor IMEMode IntegralHeight

List ListCount ListIndex

ListStyle Locked MatchEntry

MouseIcon MousePointer MultiSelect

RemoveItem Selected SpecialEffect

Text TextAlign TextColumn

TopIndex Value

The listbox control is similar to the combo box control, except the list is always displayed and it does not include an edit
region. The ListBox members are nearly identical to the ComboBox members, so see "ComboBox Members," earlier in the
chapter, for those topics. The two members that are unique to the ListBox control are covered here.

control.IntegralHeight [= setting]

True resizes the height of the control to display full lines of text; False allows partial lines to be displayed. Default is
True.

control.MultiSelect [= fmMultiSelect]

Sets or returns a value indicating whether multiple items in the list can be selected at the same time. Can be
fmMultiSelectSingle (default), fmMultiSelectMulti, or fmMultiSelectExtended. The following code loads a range of values into a three-
column list that allows multiple selections; the list includes checkboxes to show the selected items:

Private Sub UserForm_Initialize()
 ListBox1.ColumnCount = 3
 ListBox1.ColumnWidths = "30;20;40"
 ListBox1.RowSource = [DataForm!A2:D4].Address
 ListBox1.MultiSelect = fmMultiSelectExtended
 ListBox1.ListStyle = fmListStyleOption
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.14. MultiPage Members
Use the MultiPage control to organize complex dialogs into multiple pages of controls. In addition to the members listed
for the general Control object, the MultiPage control has the following members. Key members (shown in bold) are
covered in the following reference section:

BackColor Enabled

Font ForeColor

MultiRow Pages

SelectedItem Style

TabFixedHeight TabFixedWidth

TabOrientation Value

control.MultiRow [= setting]

True displays tabs in multiple rows; False displays a single row of tabs. Default is False.

control.Pages

Returns a collection of Page controls contained in the MultiPage control. Use the Pages collection to add or delete pages.
The following code searches the workbook's folder for bitmap files and then creates a new page to display each file:

Private Sub UserForm_Initialize()
 ' Requires reference to the Microsoft Scripting Runtime.
 Dim fo As New filesystemobject, fld As Folder, _
 f As File, pg As Page
 ' Get the workbook folder.
 Set fld = fo.GetFolder(ThisWorkbook.Path)
 ' Delete all the pages from the multipage control.
 MultiPage1.Pages.Clear
 ' For each file in the folder.
 For Each f In fld.Files
 ' If the file is a bitmap.
 If fo.GetExtensionName(f) = "bmp" Then
 ' Create a page for it.
 Set pg = MultiPage1.Pages.Add(, f.name)
 ' Load the picture in the page.
 pg.Picture = LoadPicture(f)
 pg.PictureSizeMode = fmPictureSizeModeZoom
 End If
 Next
End Sub

control.SelectedItem

Returns the currently selected Page control.

control.Style [= fmTabStyle]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the type of tabs displayed. Can be fmTabStyleTabs (default), fmTabStyleButtons, or fmTabStyleNone.

control.TabFixedHeight [= setting]

Sets or returns the height of the tabs in points. Default is 0, which sets the height automatically.

control.TabFixedWidth [= setting]

Sets or returns the width of the tabs in points. Default is 0, which sets the width automatically.

control.TabOrientation [= fmTabOrientation]

Sets or returns the placement of the tabs on the control. Can be one of these settings:

fmTabOrientationTop (default)
fmTabOrientationBottom
fmTabOrientationLeft
fmTabOrientationRight

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.15. Page Members
Use the Page control to organize other controls within a MultiPage control. In addition to the members listed for the
general Control object, the MultiPage control has the following members. Key members (shown in bold) are covered in the
following reference section:

Accelerator ActiveControl CanPaste

CanRedo CanUndo Caption

Controls ControlTipText Copy

Cut Cycle Enabled

Index InsideHeight InsideWidth

KeepScrollBarsVisible Name Parent

Paste Picture PictureAlignment

PictureSizeMode PictureTiling RedoAction

Repaint Scroll ScrollBars

ScrollHeight ScrollLeft ScrollTop

ScrollWidth SetDefaultTabOrder Tag

TransitionEffect TransitionPeriod UndoAction

VerticalScrollBarSide Visible Zoom

The Page control is similar to UserForm and Frame, except pages always appear as part of a MultiPage control. The Page
members are nearly identical to the UserForm and Frame members, so see "UserForm and Frame Members," earlier in the
chapter, for those topics. Two members unique to the Page control are covered here.

control.TransitionEffect [= fmTransitionEffect]

Sets or returns a visual transition between pages. Can be one of these settings:

fmTransitionEffectNone (default) fmTransitionEffectCoverUp

fmTransitionEffectCoverRightUp fmTransitionEffectCoverRight

fmTransitionEffectCoverRightDown fmTransitionEffectCoverDown

fmTransitionEffectCoverLeftDown fmTransitionEffectCoverLeft

fmTransitionEffectCoverLeftUp fmTransitionEffectPushUp

fmTransitionEffectPushRight fmTransitionEffectPushDown

fmTransitionEffectPushLeft

control.TransitionPeriod [= setting]

This property has no effect in Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.16. ScrollBar and SpinButton Members
Use the ScrollBar and SpinButton controls to scroll through items or values. In addition to the members listed for the
general Control object, the ScrollBar and SpinButton controls have the following members. Key members (shown in bold) are
covered in the following reference section:

BackColor Delay

Enabled ForeColor

LargeChange1 Max

Min MouseIcon

MousePointer Orientation

ProportionalThumb1 SmallChange

Value
1 ScrollBar only

control.LargeChange [= setting]

Sets or returns the increment to scroll when the user clicks the scrollbar above or below the scroll box. Must be
between the Min and Max property settings.

control.Max [= setting]

Sets or returns the maximum value of the control. The default is 32,767 for scrollbars and 100 for spin buttons.

control.Min [= setting]

Sets or returns the minimum value of the control. The default is 0.

control.Orientation [= fmOrientation]

Sets or returns how the control is oriented. Can be fmOrientationAuto (default), fmOrientationVertical, or fmOrientationHorizontal.

control.ProportionalThumb [= setting]

True sizes the scrollbox proportional to the scrolling region; False uses a fixed size. Default is True.

control.SmallChange [= setting]

Sets or returns the increment to scroll when the user clicks the scroll arrow. Must be between the Min and Max property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the increment to scroll when the user clicks the scroll arrow. Must be between the Min and Max property
settings. Default is 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.17. TabStrip Members
Use the TabStrip control to organize groups of settings for a similar set of controls. In addition to the members listed for
the general Control object, the TabStrip control has the following members. Key members (shown in bold) are covered in
the following reference section:

BackColor ClientHeight

ClientLeft ClientTop

ClientWidth Enabled

Font ForeColor

MouseIcon MousePointer

MultiRow SelectedItem

Style TabFixedHeight

TabFixedWidth TabOrientation

Tabs Value

The TabStrip control doesn't automatically show or hide pages of controls the way that the MultiPage control does. Instead,
use it to display groups of similar settings. The following code demonstrates that technique by using a tab strip control
to display the attributes and contents of the XML files in the current workbook's folder:

' Create a tab for each .xml file.
Private Sub UserForm_Initialize()
 ' Requires reference to the Microsoft Scripting Runtime.
 Dim fo As New filesystemobject, fld As Folder, _
 f As File
 ' Get the workbook folder.
 Set fld = fo.GetFolder(ThisWorkbook.Path)
 ' Delete all the tabs from the TabStrip control.
 TabStrip1.Tabs.Clear
 ' For each file in the folder.
 For Each f In fld.Files
 ' If the file is XML.
 If fo.GetExtensionName(f) = "xml" Then
 ' Create a tab for it.
 TabStrip1.Tabs.Add , f.name
 End If
 Next
 ' TextBox properties
 txtFile.MultiLine = True
 txtFile.ScrollBars = fmScrollBarsBoth
 txtFile.TabKeyBehavior = True
End Sub

' Display the attributes for the file on the selected tab.
Private Sub TabStrip1_Change()
 Dim fo As New filesystemobject, _
 f As File, fname As String
 fname = TabStrip1.SelectedItem.Caption
 ' Get the file.
 Set f = fo.GetFile(ThisWorkbook.Path & "\" & fname)
 ' Display file attibutes in four label controls.
 lblCreated = "Created: " & f.DateCreated
 lblModified = "Modified: " & f.DateLastModified
 lblAccessed = "Accessed: " & f.DateLastAccessed
 lblSize = "File size: " & f.Size \ 1024 & "K"
 On Error Resume Next
 ' Read the file into the text box.
 txtFile.Text = f.OpenAsTextStream.ReadAll
 If Err Then txtFile.Text = "File too big."
 ' Close the file.
 f.OpenAsTextStream.Close
 On Error GoTo 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

In the preceding code, the four label and text box controls always appear. Only their settings change as the user selects
from among the tabs.

control.ClientHeight

Returns the height of the client area of the tab strip. The client area is the region of the control where other controls
may be placed.

control.ClientLeft

Returns the horizontal coordinate of the client area.

control.ClientTop

Returns the vertical coordinate of the client area.

control.ClientWidth

Returns the width of the client area of the tab strip. The client area is the region of the control where other controls
may be placed.

control.Tabs

Returns the collection of Tab objects on the tab strip. Use the Tabs collection to add or remove tabs at runtime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.18. TextBox and RefEdit Members
Use the TextBox control to get text entries from a user. Use the RefEdit control to get a selected range from the user. In
addition to the members listed for the general Control object, the TextBox and RefEdit controls have the following members.
Key members (shown in bold) are covered in the following reference section:

AutoSize AutoTab AutoWordSelect

BackColor BackStyle BorderColor

BorderStyle CanPaste Copy

CurLine CurTargetX CurX

Cut() DragBehavior Enabled

EnterFieldBehavior EnterKeyBehavior Font

ForeColor HideSelection IMEMode

IntegralHeight LineCount Locked

MaxLength MouseIcon MousePointer

MultiLine PasswordChar Paste

ScrollBars SelectionMargin SelLength

SelStart SelText SpecialEffect

TabKeyBehavior Text TextAlign

TextLength Value WordWrap

The TextBox and RefEdit members are a subset of the ComboBox members, so see that object for those topics. See the
previous section, "TabStrip Members," for an example of loading files into a text box and using the MultiLine and ScrollBar
properties. Several TextBox and RefEdit members that are not found in the ComboBox control are covered here.

control.CurLine [= setting]

When the control has focus, sets or returns the index of the line that currently has the cursor.

control.EnterKeyBehavior [= fmEnterFieldBehavior]

Sets or returns how the contents of the control are selected when the control receives focus due to a user action. Can
be set to fmEnterFieldBehaviorSelectAll (default) or fmEnterFieldBehaviorRecallSelection.

control.IntegralHeight [= setting]

True resizes the height of the control to display full lines of text; False allows partial lines to be displayed. Default is
True.

control.LineCount

Returns the number of lines of text in the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.MultiLine [= setting]

True allows multiple lines of text; False allows only a single line. Default is True.

control.PasswordChar [= setting]

Sets or returns a character to display in place of the actual text, usually *. Use PasswordChar when you want to hide what
the user typed.

control.ScrollBars [= fmScrollBars]

Sets or returns how scrollbars appear on the control. Can be one of these settings:

fmScrollBarsNone (default)
fmScrollBarsHorizontal
fmScrollBarsVertical
fmScrollBarsBoth

control.TabKeyBehavior [= setting]

If MultiLine is True, setting TabKeyBehavior to True inserts a tab character when the user presses the Tab key and False
moves focus to the next control when the user presses Tab. Default is False.

control.WordWrap [= setting]

If MultiLine is True, setting WordWrap to True wraps long lines of text to the next line of the control and False does not
wrap long lines. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2. Create Data-Entry Forms
Entering data in a worksheet is straightforward, but there's nothing preventing users from entering values in the wrong
cells, entering invalid data, or leaving required fields blank. To address those problems, Excel provides data forms,
validation tools, and lists. You can use those tools together to create a fairly sophisticated data-entry process.

To see how data forms work:

1. Create a new worksheet.

2. Enter three column headingsItem, Quantity, and Priceon the first row.

3. Select those cells.

4. Choose Data Form. Excel displays a data form with fields for each of the column headings.

5. Enter data in each field, pressing Return after each. Excel adds a record to the list after you press Enter on the
last field, as shown in Figure 20-1.

The data form doesn't check whether the data is valid; it merely displays a form with blank fields for each column in the
list. To add validation rules :

1. Select the first cell (A2) and choose Data Validation. Excel displays the Data Validation dialog box.

2. Enter the values shown in Figure 20-2. Click OK when done.

3. Repeat Steps 1 and 2 for the Quantity and Price columns using the settings in Table 20-2.

Figure 20-1. Using a data form to enter values

Figure 20-2. Entering validation rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20-2. Entering validation rules

Table 20-2. Sample validation settings
List column Validation property Setting

Quantity Allow Whole number

 Data Greater than

 Minimum 0

 Ignore blank (Cleared)

Price Allow Decimal

 Data Greater than

 Minimum 0

 Ignore blank (Cleared)

The validation settings in Table 20-2 designate the columns as required fields and specify the data type for each
column, but those validation rules apply only to the first row of the list. To apply the validation rules to all of the rows,
choose one of these options:

Select the entire row and repeat the preceding procedure to apply the data validation rules to each column.

Convert the data-entry range to an Excel list.

The lists feature was introduced in Excel 2003.

Converting the range to a list extends the validation rules to each new row as it is added to the list. To see how that
works:

1. Select the range A1:C2 and choose Data List Create List. Excel displays the Create List dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Select the range A1:C2 and choose Data List Create List. Excel displays the Create List dialog.

2. Select My List Has Headers, and click OK. Excel indicates that the range is a list by adding a blue border and a
new item row to the range, as shown in Figure 20-3.

Figure 20-3. Converting the range to an Excel list

Now if you select any cell in the range and choose Data Form, incorrect entries cause validation errors, as shown
in Figure 20-4.

Blank fields are not flagged from the data form, but blank fields are flagged with a validation error that appears as a
note on the blank cell. You can add more descriptive error messages and prompts for the cells from the Input Message
and Error Alert tabs on the Data Validation dialog box. I won't show those here, since they are pretty self-explanatory.

Figure 20-4. Invalid values are flagged during data entry

20.2.1. Advanced Validation

Validation can do more check the type and range of an entry. You can also look up a value from a range of possible
entries. To see that in action, follow these steps:

1. Create a new worksheet and add the following values to a range of cells: Hat, Shoes, Jacket, Shirts, and Socks.

2. Select the range and name the range ItemSettings.

3. Return to the data-entry worksheet and select cell A2.

4. Choose Data Validation and make the changes shown in Figure 20-5.

5. Click OK to apply the changes.

Now, entries in the Item column must match one of the values in the ItemSettings named range. Not only that, but
Excel displays the possible settings in a drop-down list when you edit the worksheet, as shown in Figure 20-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2.2. Data Forms from Code

To display a data form from code, take these steps:

1. Get a reference to the worksheet containing the data-entry range.

2. Call the ShowDataForm method on that worksheet object.

The following code displays the data form for the DataForm worksheet:

 Sub ShowDataForm()
 Dim ws As Worksheet
 Set ws = Worksheets("DataForm")
 ws.ShowDataForm
 End Sub

Figure 20-5. Using a list of values for validation

Figure 20-6. Values from the validation list appear in a dropdown

The data-entry range should be contiguous. Blank rows or columns within that range cause problems entering new
records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.3. Design Your Own Forms
If the built-in forms don't meet your needs or if your task is more complex than the preceding data-entry sample, you
can use the Visual Basic Forms Designer to create your own custom forms in Excel.

To create a custom dialog box using the Forms Designer:

1. Start the Visual Basic Editor and choose Insert User Form. Visual Basic displays a new form and the
Control Toolbox.

2. Drag controls from the Toolbox onto the form as shown in Figure 20-7.

3. Set the properties in the Properties window (Figure 20-8) as you position the controls on the form. Table 20-3
lists the controls and property settings used for the Stock History sample.

Figure 20-7. Drag controls from the Toolbox onto the user form

Figure 20-8. Set the controls' properties as you place them on the form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 20-3. Controls and property settings for the Stock History form
Control Property Set to

User form Name frmStockHistory

 Caption Stock History

Label Caption Symbol

Label Caption #Days

Label Caption Preview

TextBox Name txtSymbol

 Caption ^IXIC

 ControlTipText Stock symbol or index

TextBox Name txtDays

 Caption 100

 ControlTipText Value from 1 to 300

SpinButton Name spnDays

 Delay 20

 Max 300

 Min 1

 Value 100

Image Name imgChart

 Height 150

 Width 180

CommandButton Name cmdGetHistory

 Accelerator G

 Caption Get History

CommandButton Name cmdViewChart

 Accelerator V

 Caption View Chart

Figure 20-9 shows the Stock History once all the controls have been drawn and their properties set.

20.3.1. Respond to Form Events

Controls respond to user events such as mouse clicks. To add code for these events, simply double-click on the control
in the Visual Basic Editor. Visual Basic adds a procedure for the event, as shown in Figure 20-10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the Visual Basic Editor. Visual Basic adds a procedure for the event, as shown in Figure 20-10.

Be sure to name controls before you add event procedures. Event procedures are associated with controls by name-
-spnDays_Change runs when the spnDays control changes. If you rename the control later, that association is broken and
you must rename the event procedure to match.

Figure 20-9. The Stock History form

Figure 20-10. Adding event procedures to a form

The following code shows a simple event procedure that links values of the spnDays and txtdays controls:

 Private Sub spnDays_Change()
 txtDays.Value = spnDays.Value
 End Sub

 Private Sub txtDays_Change()
 ' Ignore error if txtDays isn't between spnDays Min and Max.
 On Error Resume Next
 spnDays.Value = txtDays.Value
 End Sub

Why set the values both places? Doing that ensures that the text box value doesn't change unexpectedly if you type a
value in the text box then click up or down on the spin button. The two procedures don't cause an infinite loop since the
Change event occurs only when a value actually changes; it doesn't occur if the new setting is equal to the existing
setting.

Finally, the On Error statement is necessary to avoid problems if the user types 1000 or some other high value in the text
box. The spin button's Max and Min properties determine the valid range, and I use the ControlTipText to inform the user of
that range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that range.

20.3.2. Show a Form

To test the form from the Visual Basic Editor:

1. Make sure the form or form code has focus and press F5 or click Run. Visual Basic switches to the Excel window
and displays the form in Run mode.

2. Click the Close box on the form or click Reset in Visual Basic to return to Design mode.

To display the form from the Excel interface, you must create a procedure in a module that creates an instance of the
form, then call the form's Show method. Forms are a type of class, so they can't just be run from the Macro dialog box.
The following code shows a procedure that displays the Stock History dialog:

 ' StockHistoryModule
 Sub StockHistoryDialog()
 Dim f As New frmStockHistory
 f.Show False
 End Sub

Use the Show method to display a form in code. Use the Unload statement to close a form in
code.

In the preceding code, I called Show with the Modal argument set to False. That shows the form nonmodally, which
means you can still select cells and do tasks in Excel while the form is displayed. Modal forms block user access to Excel
while they are displayed.

It is usually easier to program with modal forms , since the user can't change the state of Excel while the form is
running. However, modal forms are best suited for linear tasks. For nonlinear tasks, use nonmodal forms.

Once you've created a procedure in a module to show your form, you can display the form by assigning that macro to a
menu item, toolbar button, or some other user action in Excel. See Chapter 19 for details on creating menus and
toolbars.

20.3.3. Separate Work Code from UI Code

Whenever you work with forms, your code winds up in two places:

The form's class contains the event procedures that initialize the form and respond to user actions.

The form's work module displays the form and contains the procedures that perform tasks in Excel.

Can't you just put all the code in the form class? Not really: first, you can't show the form from there, and second, it's
harder to debug procedures in a class since you must first instantiate the class before it can run. That's kind of a
chicken-and-the-egg problem, and the best solution is to separate the two types of code in two different places.

For example, the following form class responds to the events on the Stock History form:

 ' frmStockHistory class
 Option Explicit

 Private Sub spnDays_Change()
 txtDays.Value = spnDays.Value
 End Sub

 Private Sub txtDays_Change()
 ' Ignore error if txtDays isn't between spnDays Min and Max.
 On Error Resume Next
 spnDays.Value = txtDays.Value
 End Sub

 Private Sub cmdGetHistory_Click()
 Dim fname As String
 ' Show the source worksheet.
 Worksheets("VBForm").Activate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Worksheets("VBForm").Activate
 ' Make sure the user entered a symbol.
 If txtSymbol.Text <> "" Then
 ResetWorksheet
 CreateQuery txtSymbol.Text, spnDays.Value
 HideUnneededCells
 fname = CreateChart(imgChart.height, imgChart.width)
 ' Update the image control.
 Set imgChart.Picture = LoadPicture(fname)
 End If
 End Sub

 ' Create a copy of the worksheet and a full-sized chart.
 Private Sub cmdViewChart_Click()
 AddChartSheet (txtSymbol.Text)
 ' Close this dialog.
 Unload Me
 End Sub

As you can see, the event procedures call work module procedures for all tasks that relate to the worksheet or charts.
The form code merely organizes those steps and updates itself. That technique is called isolating the interface from the
business logic .

The work module is more complex because it deals with the specific Excel objects. Much of this code is based on
samples from earlier chapters, so I won't explain all of it here. However, I will point out that breaking the tasks into
steps makes the procedures easier to debug and reuse:

 ' StockHistoryModule - work module.
 Option Explicit

 ' Run dialog.
 Sub StockHistoryDialog()
 Dim f As New frmStockHistory
 f.Show False
 End Sub

 ' Clear worksheet and remove existing query table.
 Sub ResetWorksheet()
 Dim qt As QueryTable
 Worksheets("VBForm").Activate
 ActiveSheet.Rows.Hidden = False
 ActiveSheet.Columns.Hidden = False
 ActiveSheet.UsedRange.Delete
 ActiveSheet.ChartObjects.Delete
 ' Remove query tables
 For Each qt In ActiveSheet.QueryTables
 qt.Delete
 Next
 End Sub

 ' Get stock history from Yahoo as a query table.
 Public Sub CreateQuery(symbol As String, days As Integer)
 Dim ws As Worksheet, qt As QueryTable, conn As String
 Set ws = Worksheets("VBForm")
 ws.Activate
 ' Build query string.
 conn = "URL;http://chart.yahoo.com/d?" & _
 YahooDates(VBA.Date - days, VBA.Date) & symbol
 ' Get query
 Set qt = ws.QueryTables.Add(conn, [A1])
 qt.WebFormatting = xlNone
 qt.WebSelectionType = xlSpecifiedTables
 qt.WebTables = "3"
 ' Make sure background queries are off.
 qt.BackgroundQuery = False
 ' Get data.
 qt.Refresh
 End Sub

 ' Converts start and end dates to Yahoo query string for
 ' stock history.
 Function YahooDates(dtstart As Date, dtend As Date) As String
 ' Query sample string from Yahoo has this form:
 ' a=10&b=4&c=2003&d=1&e=5&f=2004&g=d&s=sndk
 Dim str As String

 str = "a=" & Month(dtstart) - 1 & "&b=" & Day(dtstart) & _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 str = "a=" & Month(dtstart) - 1 & "&b=" & Day(dtstart) & _
 "&c=" & Year(dtstart) & "&d=" & Month(dtend) - 1 & _
 "&e=" & Day(dtend) & "&f=" & Year(dtend) & "&g=d&s="
 YahooDates = str
 End Function

 ' Cleans up query table prior to plotting chart.
 Sub HideUnneededCells()
 Dim endRow As Long
 [b:b].EntireColumn.Hidden = True
 [g:l].EntireColumn.Hidden = True
 Range(Rows(1), Rows(5)).Hidden = True
 endRow = ActiveSheet.UsedRange.Rows.Count
 Range(Rows(endRow - 2), Rows(endRow)).Clear
 End Sub

 ' Plot history as a High/Low/Close chart.
 Function CreateChart(height As Integer, width As Integer) As String
 Dim rng As Range, ws As Worksheet, chrt As Chart
 Set ws = Worksheets("VBForm")
 ws.Activate
 ' Create the chart
 Set chrt = ws.ChartObjects.Add(500, 0, width, height).Chart
 ' Get the range to chart
 ' Plot the data in a named range.
 chrt.SetSourceData ws.UsedRange, xlColumns
 ' Set the chart type to Open, High, Low, Close.
 chrt.ChartType = xlStockOHLC
 chrt.ChartArea.Font.Size = 6
 chrt.Legend.Delete
 ' Dates are in descending order, so reverse the axis.
 chrt.Axes(xlCategory).ReversePlotOrder = True
 CreateChart = SaveChart(chrt)
 End Function

 ' Saves a chart as a JPEG file.
 Function SaveChart(chrt As Chart) As String
 Dim fname As String
 fname = ThisWorkbook.Path & "\temp.jpg"
 chrt.Export fname, "JPEG", False
 SaveChart = fname
 End Function

 ' Create a chart sheet for chart.
 Sub AddChartSheet(name As String)
 Dim ws As Worksheet, chrt As Chart
 Set ws = Worksheets("VBForm")
 ws.Activate
 ws.Copy , ws
 Set ws = ActiveSheet
 ws.name = GetSheetName(name & "_Data")
 ' Create the chart
 Set chrt = Charts.Add(, ws)
 ' Get the range to chart

 chrt.SetSourceData ws.UsedRange, xlColumns
 ' Set the chart type to Open, High, Low, Close.
 chrt.ChartType = xlStockOHLC
 ' Dates are in descending order, so reverse the axis.
 chrt.Axes(xlCategory).ReversePlotOrder = True
 chrt.name = GetSheetName(name & "_Chart")
 End Sub

 ' Generates a unique sheet name.
 Function GetSheetName(name As String) As String
 Dim i As Integer
 On Error Resume Next
 Do Until Err
 i = i + 1
 Debug.Print "Exists: " & Sheets(name & i).name
 Loop
 On Error GoTo 0
 GetSheetName = name & i
 End Function

To see the completed Stock History form in action:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see the completed Stock History form in action:

1. Run StockHistoryDialog. Visual Basic displays the form.

2. Type the name of a stock symbol and click Get History. Excel queries Yahoo for the price history, plots the data,
then displays the chart in the image control as shown in Figure 20-11.

3. Click View Chart to create a full-size chart with its own source worksheet and close the dialog.

Figure 20-11. Hmmm...the Dow's been kind of flat

Why the 300-day limit?

The web query to Yahoo! returns a maximum of 200 trading days of price history. That
translates to about 300 calendar days, so I imposed that limit on the sample to keep it
simple. Well...somewhat simple.

20.3.4. Enable and Disable Controls

It is common practice to enable or disable controls based on what other options are selected. Controls are enabled by
default. Use the control's Enabled property to disable or reenable the control after disabling.

For example, to make the View Chart button available only after the user has clicked Get History, set the View Chart
button's Enabled property to False in the Properties window, and add this code to the cmdGetHistory_Click procedure:

 Private Sub cmdGetHistory_Click()
 Dim fname As String
 ' Show the source worksheet.
 Worksheets("VBForm").Activate
 ' Make sure the user entered a symbol.
 If txtSymbol.Text <> "" Then
 ResetWorksheet
 CreateQuery txtSymbol.Text, spnDays.Value
 HideUnneededCells
 fname = CreateChart(imgChart.height, imgChart.width)
 ' Update the image control.
 Set imgChart.Picture = LoadPicture(fname)
 End If
 ' Add this to enable View Chart button.
 cmdViewChart.Enabled = True
 End Sub

While disabled, the control appears grayed and cannot receive user actions. You can do something similar by setting the
control's Visible property, but that is less common. Hiding and showing controls is usually reserved for complex or
multistep tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multistep tasks.

20.3.5. Create Tabbed Dialogs

Tabbed dialog boxes are common in Excel. They break complex dialogs into multiple pages that replace each other as
the user clicks on the different tabs. The Options dialog is a good example of a tabbed dialog.

The Toolbox includes two tabbed controls: TabStrip and MultiPage. The main difference between the two controls is that the
MultiPage control provides paged containers for other controls. When a user clicks one of the tabs, that page
automatically replaces the current page. With the TabStrip control, you have to create your own containers (usually a
Frame control) and set the Visible property of that container to show or hide pages. In short, use the MultiPage to quickly
create a tabbed dialog; use the TabStrip when you want to control the contents of pages programmatically.

To see how tabbed dialogs work, follow these steps based on the earlier Stock History sample:

1. In the Visual Basic Editor, choose Insert UserForm to create a new form.

2. Click and drag a MultiPage control onto the form.

3. Open the original Stock History form, select all the controls (Ctrl-A) and copy them (Ctrl-C). Select the MultiPage
control and paste (Ctrl-V) the controls onto it.

4. Copy and paste the code from the frmStockHistory class to the frmStockHistory2 class.

5. Click the Page1 tab on the MultiPage control and set its Caption to History.

6. Click the Page2 tab on the MultiPage control and set its Caption to Options. Then add the controls shown in Figure
20-12 with the settings listed in Table 20-4.

Figure 20-12. Tabbed dialog in Design mode

Table 20-4. Tabbed control property settings
Control Property Set to

User form Name frmStockHistory2

 Caption Stock History, Version 2

CheckBox Name chkDates

 Accelerator D

 Caption Show dates

CheckBox Name chkValues

 Accelerator V

 Caption Show values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Label Accelerator S

 Caption Minimum scale

TextBox Name txtScale

 Caption 0

Label Accelerator B

 Caption Background

ComboBox Name drpBackground

If you save and run the dialog box at this point, you'll see that the controls on the History tab work exactly as they did
on the original form, but that the controls on the Options tab are nonfunctional. We haven't implemented their code
yet!

To implement the Options tab, add the following code to the frmStockHistory2 class:

 ' Add to frmStockHistory2.
 Private Sub UserForm_Initialize()
 ' Add items to drop-down list.
 drpBackground.AddItem "Gray"
 drpBackground.AddItem "White"
 drpBackground.AddItem "Gradient"
 drpBackground.AddItem "Pattern"
 ' Get settings from the chart.
 GetChartOptions chkDates.Value, chkValues.Value, CInt(txtScale.Value), ""
 End Sub

 Private Sub MultiPage1_Change()
 Dim fname As String
 fname = SetChartOptions(chkDates.Value, chkValues.Value, _
 txtScale.Value, drpBackground.Text)
 ' Update the image control.
 Set imgChart.Picture = LoadPicture(fname)
 End Sub

The preceding code uses two procedures from the StockHistoryModule to connect the controls on the Options tab to the
properties of the chart. GetChartOptions uses the current chart properties to set the initial values of the controls, and
SetChartOptions changes the chart properties using the control settings. These types of procedures are sometimes called
accessor functions because they provide an interface between the user interface and the work procedures.

The following code shows the additions to the StockHistoryModule. There are two very important points I want you to
notice: First, I didn't change any code in the module; I just added new code and reused everything else. Second, I
added a new procedure to run the new dialog so that you can easily run either version. These two things are much
easier to do because I separated the user interface code from the work code at the beginning:

 '''
 ' Added for version 2.
 ' Run dialog.
 Sub StockHistoryDialog2()
 Dim f As New frmStockHistory2
 f.Show False
 End Sub

 ' Gets the chart settings to show on the Options tab.
 Sub GetChartOptions(xAxis As Boolean, yAxis As Boolean, _
 minScale As Long, background As String)
 Dim chrt As Chart, ax As Axis
 ' Get the chart

 Set chrt = Worksheets("VBForm").ChartObjects(1).Chart
 ' Does the chart have x- and y-axes?
 xAxis = chrt.HasAxis(xlCategory, xlPrimary)
 yAxis = chrt.HasAxis(xlValue, xlPrimary)
 ' Get the Minimum scale from the y-axis.
 If yAxis Then _
 minScale = chrt.Axes(xlValue, xlPrimary).MinimumScale
 End Sub

 ' Updates the chart with changes from the Options tab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Updates the chart with changes from the Options tab.
 Function SetChartOptions(xAxis As Boolean, yAxis As Boolean, _
 minScale As Long, background As String) As String
 Dim chrt As Chart, ax As Axis
 ' Get the chart.
 Set chrt = Worksheets("VBForm").ChartObjects(1).Chart
 ' Set the Minimum scale property
 chrt.HasAxis(xlValue, xlPrimary) = True
 chrt.Axes(xlValue, xlPrimary).MinimumScale = minScale
 ' Turn the axes on/off.
 chrt.HasAxis(xlCategory, xlPrimary) = xAxis
 chrt.HasAxis(xlValue, xlPrimary) = yAxis
 ' Set the background.
 Select Case background
 Case "White"
 chrt.ChartArea.Fill.Solid
 chrt.ChartArea.Fill.ForeColor.SchemeColor = 2
 chrt.PlotArea.Fill.Solid
 chrt.PlotArea.Fill.ForeColor.SchemeColor = 2
 Case "Gray"
 chrt.ChartArea.Fill.Solid
 chrt.ChartArea.Fill.ForeColor.SchemeColor = 15
 chrt.PlotArea.Fill.Solid
 chrt.PlotArea.Fill.ForeColor.SchemeColor = 15
 Case "Gradient"
 chrt.ChartArea.Fill.TwoColorGradient msoGradientDiagonalUp, 1
 chrt.PlotArea.Fill.TwoColorGradient msoGradientDiagonalUp, 1
 Case "Pattern"
 chrt.ChartArea.Fill.PresetTextured (msoTextureBlueTissuePaper)
 chrt.PlotArea.Fill.PresetTextured (msoTextureBlueTissuePaper)
 Case Else
 ' No change if not recognized.
 End Select
 ' Update the chart and return the exported filename.
 SetChartOptions = SaveChart(chrt)
 End Function

To see the tabbed dialog box in action, run StockHistoryDialog2, select the Options tab, change settings, and click the
History tab to see their effect (Figure 20-13).

I'm not really done yet. The preceding code doesn't preserve the options if you click View Chart. See the sample
workbook for the completed dialog and code.

Figure 20-13. The tabbed Stock History dialog in action

20.3.6. Provide Keyboard Access to Controls

As on menus, controls on dialog boxes can have accelerator keys that allow you to move from control to control by
typing rather than using the mouse. On dialogs however, accelerator keys are closely associated with tab order.

Tab order is the order in which controls receive focus as the user presses the Tab or Enter key. That order is
determined by two control properties:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

determined by two control properties:

TabIndex determines the location of the control in the tab order.

TabStop determines whether or not the control is included in the tab order.

Accelerator keys are set by specifying a letter from a control's Caption in its Accelerator property. If a control doesn't have
a Caption property, create a label with an accelerator key and set that label's TabIndex to be just before the target
control's TabIndex, as shown in Figure 20-14.

Figure 20-14. Using a label to provide an accelerator key for a text box

20.3.7. Choose the Right Control

The Toolbox includes 15 standard controls that you can draw on forms. Table 20-5 lists those controls and describes
their use.

Table 20-5. Built-in form controls (Forms 2.0)

Control Toolbox
icon Use to

Label Display text the user can't change.

TextBox Display text the user can edit. Text boxes can display scrollable text.

ComboBox Allow selections from a drop-down list of choices. Combo boxes can include a text box
where the user can type a choice not in the list.

ListBox Allow selections from a scrollable list of choices.

CheckBox Get or display yes/no choices.

OptionButton Get or display a set of either/or choices.

ToggleButton Get or display on/off options.

Frame Group option buttons or other related controls.

CommandButton Execute a command.

TabStrip Show or hide frames used to organize complex dialog boxes.

MultiPage Show or hide pages used to organize complex dialog boxes.

ScrollBar Scroll controls or text up and down.

SpinButton Scroll a value up or down.

Image Display a picture.

RefEdit Get a cell range from a worksheet.

In addition to these built-in controls, you can also add custom controls to the Toolbox. To add custom controls:

1. Right-click the Toolbox and select Additional Controls. Visual Basic displays a list of controls that are installed on
your computer.

2. Select the controls you want to add to the Toolbox and click OK. The custom controls now appear on the
Toolbox.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Toolbox.

Figure 20-15 illustrates adding a ProgressBar control to the Toolbox.

Figure 20-15. Adding custom controls to the Toolbox

The list of available custom controls is determined by what programming tools you have installed on your system. I
have quite a few, so my list of custom controls is very long. Some controls, such as the progress bar, are part of the
common control library (MSCOMCTL.OCX) which is distributed with Microsoft Office and other applications. However,
other custom controls may require that you license and install their executable .OCX or .DLL file on your user's
machines. Be sure you understand the licensing and distribution requirements of any custom control you plan on using.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.4. Use Controls on Worksheets
How is the Excel team like my mom? They never throw anything away. That was handy when I needed copies of my
high school humor column, but it meant Mom's house was a bit cluttered. In Excel's case, it means you've got two
toolbars full of similar-looking controls that you can use on a worksheet (Figure 20-16).

Figure 20-16. You can use Forms 1.0 or Forms 2.0 controls on a worksheet

The Forms 1.0 controls are included mostly for backward-compatibility with earlier versions of Excel. They lack events
and the full set of properties you get with Forms 2.0 controls. However, there are two items on the Forms toolbar that
are very handy, so I will tell you how to add them to the Control Toolbox here:

1. In Excel, choose View Toolbars Forms and View Toolbars Control Toolbox to display the
two toolbars shown in Figure 20-16.

2. Choose Tools Customize to display the Customize dialog box and enable changes to the toolbars.

3. Hold down the Ctrl key and click and drag the Toggle Grid from the Forms toolbar to the Control Toolbox. Excel
copies the button onto the Control Toolbox.

4. Repeat for the Button control, copying it from the Forms toolbar to the Control Toolbox.

5. Close the Forms toolbar and never think of it again.

The Toggle Grid button turns a worksheet's gridlines on and off. That helps create a cleaner appearance when you are
using controls on a worksheet.

The Button control runs a macro. That is often more convenient to use on a worksheet than a CommandButton because
command buttons respond to Click events in the worksheet's classwhich is overkill if you just want to run a single
procedure.

20.4.1. Add a Simple Button

To see how the Button control is still useful, follow these steps to extend the Stock History sample:

1. Create a new, blank worksheet.

2. Click the Toggle Grid button to turn the worksheet gridlines off.

3. Click the Button control that you added to the Control Toolbox in the previous section and click and drag on the
worksheet to draw the button control. Excel displays the Assign Macro dialog box (Figure 20-17).

4. Select StockHistoryDialog2 and click OK.

5. Type Get History in the button caption and then click the worksheet to deselect the button.

6. Click the Get History button to run the sample.

Figure 20-17. Use the Button control to run a macro

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Button control offers fewer properties than the CommandButton, and they are accessed differently as well. To change
the macro assigned to the button, edit its caption, or change any other setting, right-click the button and choose the
property to change from the context menu.

20.4.2. Use Controls from the Worksheet Class

A key advantage of the Forms 2.0 controls is that they can interact with the worksheet class. That's an abstract
advantage best illustrated by a short example:

1. Create a new worksheet.

2. Click the SpinButton control on the Control Toolbox and draw the control at the edge of cell B2 on the worksheet,
as shown in Figure 20-18.

Figure 20-18. Using a SpinButton to set the value of a cell

3. Click View Code on the Control Toolbox. Excel displays the sheet's class in the Visual Basic Editor.

4. Enter the following code in the spin button's Change event procedure (shown in bold):

 Private Sub SpinButton1_Change()
 SpinButton1.BottomRightCell.Offset(-1, -1).Value = SpinButton1.Value
 End Sub

5. Return to the worksheet and click Exit Design Mode on the Control Toolbox.

The cool thing about this sample is that if you move the SpinButton to another location, the effect of clicking up or down
moves to the adjacent cell. That's possible because the control is a member of the sheet's class.

One thing you'll notice about this sample is that the SpinButton stops spinning at 0. That's because the control's Min

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One thing you'll notice about this sample is that the SpinButton stops spinning at 0. That's because the control's Min
property is 0 by default. To change that:

1. Click Design Mode on the Control Toolbox.

2. Select the SpinButton control on the worksheet.

3. Click Properties on the Control Toolbox. Excel displays the Properties dialog box (Figure 20-19).

4. Change the Min property to -100 and click Exit Design Mode.

Figure 20-19. Setting control properties on a worksheet

20.4.3. Controls on a Worksheet Versus Controls on a Form

Using controls on a worksheet is a little different from using them on a form. For one thing, you don't need to create an
instance of the worksheet since it already exists. Your code starts running as soon as you exit Design mode and click on
the control.

Also, fewer controls are available in the worksheet Control Toolbox. If you want to use a control not found on the
Control Toolbox, click the More Controls button, then choose the control from the list shown in Figure 20-20.

Another difference is that controls on a worksheet controls don't support all of their properties. Specifically, ControlSource,
ControlTipText, TabIndex, and TabStop aren't available for controls on a worksheet.

Finally, you can't copy controls from a form in the Visual Basic Editor onto a worksheet. If you want to re-create a form
as a worksheet, you must redraw the controls manually. In fact, Figure 20-21 shows the Stock History sample
implemented as a worksheet rather than a form.

Since I used the same control names as the original sample, I could copy the code from the form class with only two
changes:

Deleted Me.Unload from cmdViewChart_Click

Added Me.Activate to cmdGetHistory_Click

See the sample workbook for the full code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20-20. Using controls not found on the Control Toolbox

Figure 20-21. The Stock History sample as a worksheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.5. UserForm and Frame Members
Use the UserForm and Frame objects as containers for controls. Use the UserForm object to create a dialog box. Use the
Frame object to group a set of controls on a dialog box. The UserForm and Frame objects have the following members, all of
them key members, covered in the following reference section:

ActiveControl BackColor

BorderColor BorderStyle

CanRedo CanUndo

Caption Controls

Copy Cut

Cycle DrawBuffer1

Enabled Font

ForeColor InsideHeight

InsideWidth KeepScrollBarsVisible

MouseIcon MousePointer

Paste Picture

PictureAlignment PictureSizeMode

PictureTiling PrintForm

RedoAction Repaint

Scroll ScrollBars

ScrollHeight ScrollLeft

ScrollTop ScrollWidth

SetDefaultTabOrder SpecialEffect

UndoAction VerticalScrollBarSide

Zoom Zoom

1 UserForm only

form.ActiveControl

Returns a reference to the control that has focus.

form.BackColor [= rgb]

Sets or returns the color of the background as an RGB color.

form.BorderColor [= rgb]

Sets or returns the color of the border as an RGB color.

form.BorderStyle [= fmBorderStyle]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the style of the border. Can be either fmBorderStyleNone or fmBorderStyelSingle. Use the SpecialEffect property to
create other border effects.

form.CanPaste

Returns True if the clipboard contains data that can be pasted to this object, False otherwise.

form.CanRedo

Returns True if the most recent action on the form can be redone; returns False if the action can't be redone. Actions
such as typing in a text box may be redone.

form.CanUndo

Returns True if the most recent action on the form can be undone; returns False if the action can't be undone. Actions
such as typing in a text box may be undone.

form.Caption [= setting]

Sets or returns the caption appearing on the object. On forms, the caption appears at the title of the dialog box; on
frames, it appears at the top of the frame.

form.Controls

Returns the collection of controls on the form or frame.

form.Copy()

Copies the active control onto the Clipboard.

form.Cut()

If the active control was created at runtime, deletes the active control and places it on the Clipboard. If the active
control was created at design time, cause an error.

form.Cycle [= fmCycle]

Sets or returns how pressing the Tab key cycles through controls when a form contains other containers such as frames
or pages. Can be fmCycleAllForms (default) or fmCycleCurrentForm.

form.DrawBuffer [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the number of pixels drawn at one time when the form is rendered. Default is 32,000. This property can
be set only at design time.

form.Enabled [= setting]

True enables the object to receive focus and respond to user actions; False prohibits focus. Default is True.

form.Font [= setting]

Sets or returns the Font object used by new controls added at runtime. To change the font of existing controls in code,
use the Font property of the control. For example, the following code sets a large font size for both existing controls and
runtime controls:

 Private Sub UserForm_Initialize()
 Dim c As Control
 ' Set size of font for runtime controls.
 Me.Font.Size = 24
 ' Set size of font for design time controls
 For Each c In Me.Controls
 c.Font.Size = 24
 Next
 End Sub

form.ForeColor [= rgb]

Sets or returns the color of the foreground as an RGB color.

form.InsideHeight

Returns the height of the usable area of the form or frame in points.

form.InsideWidth

Returns the width of the usable area of the form or frame in points.

form.KeepScrollBarsVisible [= fmScrollBars]

Sets or returns how scrollbars are displayed when they are no longer needed. Can be one of these settings:

fmScrollBarsNone

fmScrollBarsHorizontal

fmScrollBarsVertical

fmScrollBarsBoth (default)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

form.MouseIcon [= setting]

Sets or returns a custom picture used as the mouse pointer. The following code displays a magnifying glass as the
mouse pointer:

 Private Sub UserForm_Initialize()
 ' Change mouse pointer.
 Me.MousePointer = fmMousePointerCustom
 Me.MouseIcon = LoadPicture(ThisWorkbook.Path & "\magnify.ico")
 End Sub

form.MousePointer [= fmMousePointer]

Sets or returns the mouse pointer that is displayed. Can be one of these settings:

fmMousePointerAppStarting fmMousePointerArrow

fmMousePointerCross fmMousePointerCustom

fmMousePointerDefault (default) fmMousePointerHelp

fmMousePointerHourglass fmMousePointerIBeam

fmMousePointerNoDrop fmMousePointerSizeAll

fmMousePointerSizeNESW fmMousePointerSizeNS

fmMousePointerSizeNWSE fmMousePointerSizeWE

fmMousePointerUpArrow

form.Paste()

Pastes a control from the Clipboard to the form or frame.

form.Picture [= setting]

Sets or returns the picture loaded as the background. The picture can be set at design time in the Properties window or
at runtime using the LoadPicture function. For example, the following code displays a logo as the background of a form,
centers the picture, and sizes it to fit the form while preserving the aspect ratio:

 Private Sub UserForm_Initialize()
 Me.Picture = LoadPicture(ThisWorkbook.Path & "\logo.bmp")
 Me.PictureAlignment = fmPictureAlignmentCenter
 Me.PictureSizeMode = fmPictureSizeModeZoom
 End Sub

form.PictureAlignment [= fmPictureAlignment]

Sets or returns how the background picture is placed. Can be one of these settings:

fmPictureAlignmentTopLeft

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fmPictureAlignmentTopRight

fmPictureAlignmentCenter (default)

fmPictureAlignmentBottomLeft

fmPictureAlignmentBottomRight

form.PictureSizeMode [= fmPictureSizeMode]

Sets or returns how the background picture is sized. Can be one of these settings:

fmPictureSizeModeClip (default)
fmPictureSizeModeStretch (may change the aspect ratio of the picture)
fmPictureSizeModeZoom (preserves aspect ratio)

form.PictureTiling [= setting]

If the picture does not exactly fit the dimensions of the background and the PictureSizeMode is not fmPictureSizeModeStretch,
TRue repeats the picture to fill the background and False displays the picture one time.

form.PrintForm

Prints the form on the default printer.

form.RedoAction()

Reverses the effect of the most recent Undo action. Actions such as typing in a text box may be undone or redone.
Check CanRedo to tell if there is an action available to be redone.

form.Repaint()

Redraws the form or frame on screen.

form.Scroll([ActionX] [, ActionY])

Scrolls the form or frame one line or page at a time.

Argument Settings

ActionX An fmScrollAction constant indicating how much to scroll horizontally

ActionY An fmScrollAction constant indicating how much to scroll horizontally

ActionX and ActionY can be one of these settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fmScrollActionNoChange (default)

fmScrollActionLineUp

fmScrollActionLineDown

fmScrollActionPageUp

fmScrollActionPageDown

fmScrollActionBegin

fmScrollActionEnd

The following code implements navigation buttons on a frame named fNav at the top of a form. The command buttons
scroll the form, and the UserForm_Scroll event moves the frame to keep it visible as the form scrolls:

 ' Requires a frame (fNav) containing four command buttons.
 Private Sub cmdHome_Click()
 Me.Scroll fmScrollActionBegin, fmScrollActionBegin
 End Sub

 Private Sub cmdEnd_Click()
 Me.Scroll fmScrollActionEnd, fmScrollActionEnd
 End Sub

 Private Sub cmdPageLeft_Click()
 Me.Scroll fmScrollActionPageDown, fmScrollActionNoChange
 End Sub

 Private Sub cmdPageDown_Click()
 Me.Scroll fmScrollActionNoChange, fmScrollActionPageDown
 End Sub

 Private Sub UserForm_Scroll(ByVal ActionX As MSForms.fmScrollAction, _
 ByVal ActionY As MSForms.fmScrollAction, _
 ByVal RequestDx As Single, ByVal RequestDy As Single, _
 ByVal ActualDx As MSForms.ReturnSingle, _
 ByVal ActualDy As MSForms.ReturnSingle)
 ' Move frame to keep buttons visible as form is scrolled.
 fNav.Left = fNav.Left + ActualDx
 fNav.Top = fNav.Top + ActualDy
 End Sub

form.ScrollBars [= fmScrollBars]

Sets or returns how scrollbars are displayed. Can be one of these settings:

fmScrollBarsNone (default)
fmScrollBarsHorizontal
fmScrollBarsVertical
fmScrollBarsBoth

Depending on the setting of KeepScrollBarsVisible, scrollbars may or may not be visible on a form. The ScrollHeight and
ScrollWidth properties determine whether the form is scrollable.

The following code shows how these properties interact by adding 100 lines of text to a label, then resizing the label so
that it extends off the form. The UpdateScrollSize procedure calculates the required dimensions for the form and sets
ScrollHeight and ScrollWidth so users can view the entire form area:

 Private Sub UserForm_Initialize()
 ' Scrollbar settings
 Me.ScrollBars = fmScrollBarsBoth
 Me.KeepScrollBarsVisible = fmScrollBarsNone
 ' Initialize data
 FillLabel
 ' Update scrollbars.
 UpdateScrollSize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UpdateScrollSize
 End Sub

 ' Adds 100 lines of text to a label, then
 ' resizes it to demo scrolling a form.
 Private Sub FillLabel()
 Dim i As Integer
 Label1.Caption = ""
 For i = 1 To 100
 Label1.Caption = Label1.Caption & _
 "Line: " & i & String(90, "*") & vbCrLf
 Next
 Label1.AutoSize = True
 End Sub

 ' Find the dimensions required to display all of the controls
 ' on the form and reset ScrollHeight and ScrollWidth to match.
 Private Sub UpdateScrollSize()
 Dim c As Control, maxHeight As Double, maxWidth As Double
 For Each c In Me.Controls
 maxHeight = c.Top + c.height
 maxWidth = c.Left + c.width
 If maxHeight > Me.ScrollHeight Then _
 Me.ScrollHeight = maxHeight
 If maxWidth > Me.ScrollWidth Then _
 Me.ScrollWidth = maxWidth
 Next
 End Sub

UpdateScrollSize is written in a general way so you can reuse it.

form.ScrollHeight [= setting]

Sets or returns the height of the scrollable area in points.

form.ScrollLeft [= setting]

Sets or returns the position of the horizontal scrollbar in points. The following code scrolls left one page at a time:

 Private Sub cmdPageLeft_Click()
 Me.ScrollLeft = Me.Left + Me.InsideWidth
 ' Reposition this control to keep it visible.
 cmdPageLeft.Left = cmdPageLeft.Left + Me.InsideWidth
 End Sub

form.ScrollTop [= setting]

Sets or returns the position of the vertical scrollbar in points. The following code scrolls down one page at a time:

 Private Sub cmdPageDown_Click()
 ' Scoll form
 Me.ScrollTop = Me.ScrollTop + Me.InsideHeight
 ' Reposition this control to keep it visible.
 cmdPageDown.Top = cmdPageDown.Top + Me.InsideHeight
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

It's usually easier to use the Scroll method than ScrollLeft and ScrollTop. See that topic for an
example.

form.ScrollWidth [= setting]

Sets or returns the width of the scrollable area in points.

form.SetDefaultTabOrder()

Sets the tab order of controls automatically using a top-to-bottom, left-to-right order.

form.SpecialEffect [= fmButtonEffect]

Sets or returns a special border appearance. Can be one of these settings:

fmSpecialEffectFlat (default for forms)

fmSpecialEffectRaised

fmSpecialEffectSunken (default for frames)

fmSpecialEffectEtched

fmSpecialEffectBump

form.UndoAction()

Undoes the last user action. Actions such as typing in a text box may be undone or redone. Check CanUndo to tell if there
is an action available to be undone.

form.VerticalScrollBarSide [= fmVerticalScrollbarSide]

Sets or returns the side on which to display the vertical scrollbar. Can be set to fmVerticalScrollbarSideRight or
fmVerticalScrollBarSideLeft.

form.Zoom [= setting]

Sets or returns the percentage to scale the contents of the form or frame by. Must be between 10 and 400. Zoom
doesn't change the size of the form or frame. The following code zooms in or out on a background picture depending on
which mouse button is pressed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which mouse button is pressed:

 Private Sub UserForm_Initialize()
 ' Load a background picture.
 Me.Picture = LoadPicture(ThisWorkbook.Path & "\turtle.jpg")
 ' Change mouse pointer.
 Me.MousePointer = fmMousePointerCustom
 Me.MouseIcon = LoadPicture(ThisWorkbook.Path & "\magnify.ico")
 End Sub

 Private Sub UserForm_MouseDown(ByVal Button As Integer, ByVal Shift_
 As Integer, ByVal X As Single, ByVal Y As Single)
 On Error Resume Next
 ' If left button, zoom in.
 If Button = 1 Then
 Me.Zoom = Me.Zoom * 1.1
 ' If right button, zoom out.
 ElseIf Button = 2 Then
 Me.Zoom = Me.Zoom * 0.9
 End If
 On Error GoTo 0
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.6. Control and Controls Members
Use the Controls collection to add new controls dynamically at runtime and to perform general operations on all of the
controls on a form. Use the UserForm object's Controls property to get a reference to this collection. Use the Control object
to set the name, position, and other general properties of a control. Specific control types may have other properties
that are available; the Control object contains the general members available for most controls. The Controls collection and
Control object have the following members. Key members (shown in bold) are covered in the following reference
section:

Add1 Cancel

Clear1 ControlSource

ControlTipText Count1

Default Height

HelpContextID Item1

LayoutEffect Left

Move2 Name

Object OldHeight

OldLeft OldTop

OldWidth Parent

Remove1 RowSource

SetFocus TabIndex

TabStop Tag

Top Visible

Width ZOrder

1 Collection only

2 Object and collection

controls.Add(ProgID [, Name] [, Visible])

Adds a control to the form or frame and returns a reference to that control.

Argument Settings

ProgID A string identifying the class name and version of the control to add. See Table 20-6 for a list of the
values for common controls.

Name The name to assign the control.

Visible True displays the control; False hides it. Default is True.

Table 20-6. ProgIDs for Forms 2.0 controls
Control Class name and version (ProgID)

CheckBox Forms.CheckBox.1

ComboBox Forms.ComboBox.1

CommandButton Forms.CommandButton.1

Frame Forms.Frame.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image Forms.Image.1

Label Forms.Label.1

ListBox Forms.ListBox.1

MultiPage Forms.MultiPage.1

OptionButton Forms.OptionButton.1

ScrollBar Forms.ScrollBar.1

SpinButton Forms.SpinButton.1

TabStrip Forms.TabStrip.1

TextBox Forms.TextBox.1

ToggleButton Forms.ToggleButton.1

Even though the version number in the ProgID is 1, these names refer to the Forms 2.0
controls.

The following code creates label and text box controls for each of the columns in a list created in the data form example
created earlier:

 Private Sub UserForm_Initialize()
 Dim ws As Worksheet, lc As ListColumn, _
 c As Control, tp As Single, lft As Single, wd As Single, _
 ht As Single
 Set ws = Worksheets("DataForm")
 ' Control's initial height and width values.
 wd = 60
 ht = 18
 ' Add a label and a text box for each list column.
 For Each lc In ws.ListObjects(1).ListColumns
 ' Add a label.
 Set c = Frame1.Controls.Add("Forms.Label.1", lc.name)
 ' Set label's properties.
 c.Caption = lc.name
 c.Top = tp
 c.Left = lft
 c.width = wd
 c.height = ht
 ' Increment the position for next control.
 lft = lft + c.width
 ' Add a text box.
 Set c = Frame1.Controls.Add("Forms.TextBox.1", lc.name)
 ' Set text box's properties.
 c.Top = tp
 c.Left = lft
 c.width = wd
 c.height = ht
 ' Set the position for the next control.
 tp = tp + c.height
 lft = 0
 Next
 End Sub

control.Cancel [= setting]

For command button controls, True indicates that the control's Click event procedure is called when the user presses the
Esc key. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

controls.Clear()

Deletes all of the controls created at runtime. This method fails if the container has design-time controls, so you should
put your runtime controls in a frame if you want to clear controls from a form with a mix of runtime and design-time
controls. The following code clears controls from the frame used in the Add method example:

 Private Sub cmdClear_Click()
 Frame1.Controls.Clear
 End Sub

control.ControlSource [= setting]

Sets or returns the address of a range to use as the source of the value for the control. For example, the following code
links the value in a text box to cell A1 on the DataForm worksheet:

 Private Sub UserForm_Initialize()
 TextBox1.ControlSource = "DataForm!a1"
 End Sub

control.ControlTipText [= setting]

Sets or returns the tool tip text to display for the control.

control.Default [= setting]

For command button controls, True indicates that the control's Click event procedure is called when the user presses the
Enter key. Default is False.

control.LayoutEffect

In the form's Layout event, fmLayoutEffectInitiate indicates that the control was moved; fmLayoutEffectNone indicates that the
control was not moved. This property is not available in other code.

controls.Move ([Left][, Top][, Width][, Height][, Layout])

Moves one or all of the controls on a form or frame. For individual control objects, Move can also resize the control.

Argument Settings

Left The new horizontal position of the control in points.

Top The new vertical position of the control in points.

Width The new control width in points (Control object only).

Height The new control height in points.

Layout True triggers the Layout event for the control's container; False does not trigger the Layout event. Default
is False. (Control object only.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.Object

Returns a reference to the base class instance of the object. Use this property when a control implements a member
that has the same name as one of the Control object members. In that case, the Control object's member shadows the
control's member and you must add Object to the expression to use the control's member.

control.OldHeight

In the form object's Layout event, returns the height of the control before it was resized.

control.OldLeft

In the form object's Layout event, returns the horizontal position of the control before it was moved.

control.OldTop

In the form object's Layout event, returns the vertical position of the control before it was moved.

control.OldWidth

In the form object's Layout event, returns the width of the control before it was resized.

control.Remove(Index)

Removes a control created at runtime from the Controls collection. Index may be the name of the control or a number
indicating the index of the control in the collection.

control.RowSource [= setting]

For ComboBox and ListBox controls, sets or returns the address of the range that provides values for the control. The
following code adds items from A1:A5 on the Lookup worksheet as items in a listbox:

 Private Sub UserForm_Initialize()
 ListBox1.RowSource = "Lookup!A1:A5"
 End Sub

control.SetFocus()

Moves focus to the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.TabIndex [= setting]

Sets or returns the position of the control in the tab order. Must be a positive whole number. The following code makes
TextBox1 the first control in the tab order and gives that control focus when the form is first displayed:

 Private Sub UserForm_Initialize()
 TextBox1.TabIndex = 0
 End Sub

control.TabStop [= setting]

True includes the control in the tab order; False removes it. Default is True.

control.Tag [= setting]

Set or returns additional information about the control.

control.ZOrder([zPosition])

Places the control in front of or behind any other controls layered on top of this control.

Argument Settings

zPosition fmTop displays the control on top of others; fmBottom displays the control beneath other controls. Default is
fmTop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.7. Font Members
Use the Font object to change the appearance of text on a form, frame, or control. Use the Font property of the form or
control to get a reference to this object. The Font object has the following members :

Bold
Italic
Size
StrikeThrough
Underline
Weight

The following code makes the text on a form's controls bold:

Private Sub UserForm_Initialize()
 Dim c As Control
 For Each c In Me.Controls
 c.Font.Bold = True
 Next
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.8. CheckBox, OptionButton, ToggleButton Members
Use the CheckBox, OptionButton, and ToggleButton controls to get and display settings that are on, off, or Null. In addition to
the members listed for the general Control object, these controls have the following members. Key members (shown in
bold) are covered in the following reference section:

Accelerator Alignment

AutoSize BackColor

BackStyle Caption

Enabled Font

ForeColor GroupName

Locked MouseIcon

MousePointer Picture

PicturePosition SpecialEffect

TextAlign TripleState

Value WordWrap

control.AutoSize [= setting]

True automatically resizes the control to display its contents; False uses a fixed size determined by the Height and Width
properties. Default is False.

control.BackStyle [= fmBackStyle]

Sets or returns whether the control's background is transparent or opaque. Can be fmBackStyleTransparent or
fmBackStyleOpaque (default).

control.GroupName [= setting]

For option buttons, sets or returns a name used to identify an exclusive set of options. When an option button belongs
to a group, only one of the OptionButton controls in that group can be True at any given time.

control.Locked [= setting]

True prevents the user from setting the control's value; False allows changes. Default is False. Locking a control is
different from setting its Enabled property to False in that the control is not grayed and can still receive focus.

control.TripleState [= setting]

For CheckBox and ToggleButton controls, True allows the user to select a third state (Null); False allows only True/False
settings. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.9. ComboBox Members
Use the ComboBox control to get and display settings from a list of choices. Combo boxes combine a listbox control with a
text box control. In addition to the members listed for the general Control object, these controls have the following
members. Key members (shown in bold) are covered in the following reference section:

AddItem AutoSize AutoTab

AutoWordSelect BackColor BackStyle

BorderColor BorderStyle BoundColumn

CanPaste Clear Column

ColumnCount ColumnHeads ColumnWidths

Copy CurTargetX CurX

Cut DragBehavior DropButtonStyle

DropDown Enabled EnterFieldBehavior

Font ForeColor HideSelection

IMEMode LineCount List

ListCount ListIndex ListRows

ListStyle ListWidth Locked

MatchEntry MatchFound MatchRequired

MaxLength MouseIcon MousePointer

Paste RemoveItem SelectionMargin

SelLength SelStart SelText

ShowDropButtonWhen SpecialEffect Style

Text TextAlign TextColumn

TextLength TopIndex Value

control.AddItem(Item[, Index])

Adds an item to the list.

Argument Settings

Item The item to add.

Index The position of the item in the list. Default is to add the item to the end of the list.

The following code adds three items to a drop-down list and selects the first item:

Private Sub UserForm_Initialize()
 ComboBox1.AddItem "this"
 ComboBox1.AddItem "that"
 ComboBox1.AddItem "other"
 ComboBox1.Style = fmStyleDropDownList
 ComboBox1.ListIndex = 1
End Sub

control.AutoTab [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True causes focus to switch to the next control in the tab order when a user enters MaxLength characters in the text box
portion of the control; False does not tab to the next control. Default is False.

control.AutoWordSelect [= setting]

True extends selected text one word at a time in the text box portion of the control; False extends the selection one
character at a time. Default is True.

control.BoundColumn [= setting]

Sets or returns the index of the column that determines the Value property of the control. The following code loads three
columns of data from the DataForm worksheet into a combo box and displays the value of the third column when the
user selects an item from the list:

Private Sub UserForm_Initialize()
 Dim rng As Range
 ComboBox1.ColumnCount = 3
 Set rng = Worksheets("DataForm").UsedRange
 ComboBox1.RowSource = rng.Address
 ComboBox1.BoundColumn = 3
End Sub

Private Sub ComboBox1_Change()
 If ComboBox1.Value <> "" Then _
 MsgBox "Selected value is: " & ComboBox1.Value
End Sub

control.Clear()

Removes all of the items from the list.

control.Column([Column][, Row])

Sets or returns the value of a list column or an item within a column of the list.

Argument Settings

Column The index of the column in the list

Row The index of the item within the column

Use Column to get a value from items in a row of a multicolumn combo box. The BoundColumn topic shows how to create a
combo box with three columns. You can get the value from any of those columns using the Column method as shown
here:

Private Sub ComboBox1_Change()
 If ComboBox1.Value <> "" Then _
 MsgBox "Second column is: " & ComboBox1.Column(1, ComboBox1.ListIndex)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Column and Row indexes start at 0, so 1 is the second column.

control.ColumnCount [= setting]

Sets or returns the number of columns to display in the list. Must be between -1 and 9. The setting -1 displays all
columns.

control.ColumnHeads [= setting]

True converts the first row in the list to column headings; False does not create column headings. Default is False.
Column headings are separated from the list items by a separator bar and can't be selected. The ColumnHeads property
can't create column headings from items in a range set through the RowSource property.

control.ColumnWidths [= setting]

Sets or returns the width of list columns in points. Use a semicolon to specify different widths for each column, as
shown here:

Private Sub UserForm_Initialize()
 Dim rng As Range
 ComboBox1.ColumnCount = 3
 Set rng = Worksheets("DataForm").UsedRange
 ComboBox1.RowSource = rng.Address
 ComboBox1.ColumnWidths = "30;20;40"
End Sub

control.CurTargetX

Returns the preferred horizontal position of the insertion point in a list in ten-thousandths of a meter. The control must
have focus before you can access this property.

control.CurX [= setting]

Sets or returns the horizontal position of the insertion point in a list in ten-thousandths of a meter. The control must
have focus before you can access this property.

control.DragBehavior [= fmDragBehavior]

Sets or returns whether selected text can be dragged from the control. Can be either fmDragBehaviorDisabled (default) or
fmDragBehaviorEnabled.

control.DropButtonStyle [= fmDropButtonStyle]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the appearance of the drop-down button on the control. Can be one of these settings:

fmDropButtonStylePlain
fmDropButtonStyleArrow (default)
fmDropButtonStyleEllipsis
fmDropButtonStyleReduce

control.DropDown()

Displays the list portion of the control.

control.EnterFieldBehavior [= fmEnterFieldBehavior]

Sets or returns how the contents of the control are selected when the user selects the control or tabs to it. Can be set
to either fmEnterFieldBehaviorSelectAll (default) or fmEnterFieldBehaviorRecallSelection.

control.HideSelection [= setting]

True removes highlighting from selected text when the control loses focus; False preserves highlighting when the
control loses focus. Default is True.

control.IMEMode [= fmIMEMode]

For forms created for the Far East, sets or returns the Input Method Editor (IME) for the control. Can be one of these
settings:

fmIMEModeNoControl (default) fmIMEModeOn

fmIMEModeOff fmIMEModeDisable

fmIMEModeHiragana fmIMEModeKatakana

fmIMEModeKatakanaHalf fmIMEModeAlphaFull

fmIMEModeAlpha fmIMEModeHangulFull

fmIMEModeHangul

control.LineCount

Returns the number of lines in the edit portion of the control. This is always 1 for combo boxes.

control.List([Row, Column]) [= setting]

Sets or returns the value of one item within the list or all items in the list.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Row The row of an item in the list

Column The column of an item in the list

Omit Row and Column to get or set the array containing all items in the list. For example, the following code loads an
array of strings into the control:

Private Sub UserForm_Initialize()
 ComboBox1.List = Split("This, that, other", ",")
 ' Select the first item.
 ComboBox1.ListIndex = 0
End Sub

control.ListCount

Returns the number of items in the list.

control.ListIndex [= setting]

Sets or returns the index of the currently selected item in the list. The List topic example selects the first item in the list.

control.ListRows [= setting]

Sets or returns the number of rows to display when in the drop-down list portion of the control.

control.ListStyle [= fmListStyle]

Sets or returns how list items are displayed. Can be fmListStylePlain (default) or fmListStyleOption (displays items with option
buttons).

control.ListWidth [= setting]

Sets or returns the width of the list portion of the control in points.

control.MatchEntry [= fmMatchEntry]

Sets or returns how to search for matching list items as the user types in the edit portion of the control. Can be set to
fmMatchEntryFirstLetter, fmMatchEntryComplete (default), or fmMatchEntryNone.

control.MatchFound

If MatchEntry is set to fmMatchEntryNone, returns True if the text typed in the edit portion of the control matched a list item,
False if it did not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control.MatchRequired [= setting]

True validates text entered in the text portion of the control against the list; False does not validate entries. Default is
False.

control.MaxLength [= setting]

Sets or returns the maximum number of characters that can be entered in the control. The default is 0, which indicates
no maximum.

control.RemoveItem(Index)

Removes an item from the list. This method causes an error if the control is bound to a range through the RowSource
property.

control.SelectionMargin [= setting]

True allows the user to select an item by clicking the margin to the left of the item in the list; False doesn't select items
when the margin is clicked. Default is True.

control.SelLength [= setting]

Sets or returns the number of characters selected in the edit portion of the control.

control.SelStart [= setting]

Sets or returns the starting position of the selected text in the edit portion of the control.

control.SelText [= setting]

Sets or returns the text that is selected in the edit portion of the control.

control.ShowDropButtonWhen [= fmShowDropButtonWhen]

Sets or returns how the drop-down button is displayed. Can be fmShowDropButtonWhenNever, fmShowDropButtonWhenFocus, or
fmShowDropButtonWhenAlways (default).

control.Style [= fmStyle]

Sets or returns whether the control includes a text box. Can be fmStyleDropDownCombo (default) or fmStyleDropDownList (omits
the text box).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the text box).

control.Text [= setting]

Sets or returns the text in the edit portion of the control.

control.TextAlign [= fmTextAlign]

Sets or returns how text is aligned in the control. Can be fmTextAlignLeft (default), fmTextAlignCenter, or fmTextAlignRight.

control.TextColumn [= setting]

Sets or returns the index of the column displayed in the edit portion of the control when the user select an item from a
multicolumn list. The setting -1 (the default) displays the first visible column; 1 displays the first column, 2 the second,
and so on.

control.TextLength

Returns the number of characters in the edit portion of the control.

control.TopIndex [= setting]

Sets or returns the index of the item displayed at the top of the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20. Building Dialog Boxes
Chapter 7 showed you how to display the built-in Excel dialog boxes and how to use InputBox and the File dialogs to get
information from the user. In this chapter, I show you how to create more complex data-entry forms, validate entries,
and use the Visual Basic Forms Designer to create custom dialog boxes.

This chapter includes task-oriented reference information for Forms 2.0 user forms and controls: UserForm, CheckBox,
ComboBox, CommandButton, Control, Font, Frame, Image, Label, ListBox, MultiPage, OptionButton, Page, RefEdit, ScrollBar, SpinButton,
TabStrip, TextBox, ToggleButton. Those objects aren't part of the Excel object model and so aren't part of the Excel VBA Help.
Instead, the help topics for those objects are found in C:\Program Files\Common Files\Microsoft
Shared\VBA\VBA6\1033\FM20.CHM.

Code used in this chapter and additional samples are available in ch20.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.1. Send Mail
Table 21-1 lists the different ways to send mail within Excel.

Table 21-1. Sending mail from Excel
To Use Notes

Compose a text email
message

The FollowHyperLink method
with the mailto: protocol Doesn't support attachments.

Compose an email with an
attached workbook

The Dialogs method to display
the email dialog box User must fill in addresses and subject on the message.

Send a workbook The SendMail method Doesn't display message before send; shows security
warning.

Send a worksheet or chart The MailEnvelope property Unlike SendMail, this allows access to CC and BCC lines;
avoids security warning. (Requires Outlook.)

Collect review comments The SendForReview method Allows you to link to a shared workbook for collecting
comments.

Route for approval The RoutingSlip object and
Route method Routes to addresses in sequence.

I've used FollowHyperlink technique a few times already in this book. In case you missed it, here's short sample:

 Sub SendTextMail()
 ThisWorkbook.FollowHyperlink "mailto:someone@microsoft.com" & _
 "?Subject=Test message.&Body=The message goes here..."
 End Sub

The mailto: protocol starts the user's default email client and creates a new message. It's up to the user to send the
message, so there are no real security hurdles to this approach. You can't attach files using mailto: however. To create a
quick email with the current workbook attached, use the Dialogs method as shown here:

 Sub SendAsAttachment()
 Application.Dialogs(xlDialogSendMail).Show
 End Sub

That approach creates a new, blank message with the file attached. The user must fill in the address and add the
subject and body of the message before sending the message. The SendMail method also sends the workbook as an
attachment, but it doesn't display the message before it is sent. That poses a risk because you don't want anyone
sending mail from your system without your knowledge. To address that, Outlook displays a notice any time you use
SendMail. For example, the following code displays the warning shown in Figure 21-1:

 Sub SendWorkbook()
 ' Trap error in case user cancels send.
 On Error Resume Next
 ' Send this workbook (don't run this from VBE!
 ' It may cause a lockup.)
 ThisWorkbook.SendMail "someone@microsoft.com", "Please review"
 On Error GoTo 0
 End Sub

Figure 21-1. Outlook warns users when Excel sends automated mail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21-1. Outlook warns users when Excel sends automated mail

You'll notice the comments warn you not to run SendMail directly from the Visual Basic
Editor (as when debugging). That can lock up Excel, and the only way to recover is to use
the Task Manager to close the Outlook dialog box that appears with an Excel icon on the
Windows task bar.

Sending mail this way isn't a great practice in my opinion. It's much better to be up front with users, show them the
message, and let them choose whether to send. To do that, use the MailEnvelope property. The following code composes a
message containing the active worksheet in Excel as shown in Figure 21-2:

 Sub SendActiveSheet()
 Dim ws As Object, env As MsoEnvelope
 ' Get the active sheet.
 Set ws = ActiveSheet
 ' Show email header from Workbook object.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Set the email header fields.
 env.Introduction = "Sales in first quarter:"
 With env.Item
 .to = "someone@yourcompany.com"
 .cc = "yourboss@yourcompany.com"
 .subject = ws.Name
 ' Uncomment this to send automatically.
 '.send
 End With
 End Sub

With this approach, the user can choose to send the message or not, so there's no need to display a security warning.
However, if you uncomment the Send method in the preceding code, the message is sent automatically, so the warning
in Figure 21-1 will appear.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.2. Work with Mail Items
In the preceding SendActiveSheet example, the Item property returns a MailItem object. That object is part of the Microsoft
Outlook object library not Excel's. The MailItem object is very useful in Excel, since it allows you to attach files and
control all aspects of the message.

To use the MailItem object:

1. In the Visual Basic Editor, choose Tools References. Visual Basic displays the References dialog box.

2. Select the Microsoft Outlook 11.0 Object Library and click OK.

3. Declare a variable using the MailItem type.

4. Get a reference to the MailItem object.

Figure 21-2. Composing an email in Excel

The following code creates a mail item and attaches the current workbook:

 Sub SendAsMailItem()
 ' Requires reference to Microsoft Outlook
 Dim ws As Worksheet, env As MsoEnvelope, mi As MailItem
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Save the workbook before mailing as attachment.
 ws.Parent.Save
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Set the email header fields.
 env.Introduction = "Please revew attached file."
 ' Get the MailItem object.
 Set mi = env.Item
 ' Clear the MailItem properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Clear the MailItem properties.
 ClearMessage mi
 ' Set MailItem properties.
 mi.Importance = olImportanceHigh
 mi.To = "someone@microsoft.com"
 mi.CC = "someoneelse@yourcompany.com" mi.Subject = "Subject text."
 ' Attach this workbook.
 mi.Attachments.Add ThisWorkbook.FullName
 ' Uncomment this to send automatically.
 'mi.send
 End Sub

 Sub ClearMessage(mi As MailItem)
 Dim at As Attachment
 mi.Importance = olImportanceNormal
 mi.To = ""
 mi.CC = ""
 mi.BCC = ""
 mi.Subject = ""
 For Each at In mi.Attachments
 at.Delete
 Next
 End Sub

The preceding ClearMessage procedure resets the MailItem properties before creating a new message. That's one of the
quirks of the MailItem object: its property settings are preserved and there is no reset method to clear them. Actually,
only some of the properties are preserved; most of them are cleared when you save the workbook. However, that's
confusing, so it's safer to clear the properties explicitly as shown by ClearMessage.

The other quirk of the MailItem object is that you can get at it only through a worksheet or chart. That means that the
body of the mail message contains whatever was on that worksheet or chart. Often that's what you want, but if you'd
rather create your own message body, close the message, then call the Display method as shown here:

 Sub SendWorkbookAsMailItem()
 ' Requires reference to Microsoft Outlook
 Dim ws As Worksheet, env As MsoEnvelope, mi As MailItem
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Save the workbook before mailing as attachment.
 ws.Parent.Save
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Set the email header fields.
 env.Introduction = "Please revew attached file."
 ' Get the MailItem object.
 Set mi = env.Item
 ' Clear the MailItem properties.
 ClearMessage mi
 ' Set MailItem properties.
 mi.Importance = olImportanceHigh
 mi.To = "someone@microsoft.com"
 mi.CC = "someoneelse@yourcompany.com" mi.Subject = ActiveWorkbook.Name
 mi.Body = "Please review the attached workbook."
 ' Attach this workbook.
 mi.Attachments.Add ThisWorkbook.FullName
 ' Close message composition header (gets rid of worksheet).
 mi.Close olDiscard
 ' Open in mail message window.
 mi.Display
 End Sub

The preceding Close/Display TRick disposes of the content from the worksheet or chart and allows you to use the Body
property to set the message body as shown by Figure 21-3.

Figure 21-3. Sending a workbook as an attachment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21-3. Sending a workbook as an attachment

The MailItem object requires that you use Outlook as your email application. If you don't use
Outlook, read the following section for an alternate approach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.3. Collect Review Comments
Another way to send the entire workbook as an attachment is to use SendForReview. That method composes an email
message with the workbook as an attachment, plus it allows you to display the message and thus avoid the security
warning. The following code sends the active workbook as a message identical to that shown in Figure 21-3:

 Sub SendForReview()
 ThisWorkbook.SendForReview "someone@microsoft.com", _
 "Please review the attached workbook", True, False
 End Sub

Since SendForReview is intended for collecting review comments, the method displays a dialog asking if the file should be
saved as a shared workbook before composing the message. There's no easy way around that. In fact, since saving
workbooks as shared files is difficult from code, you've got to take these steps if you want to send a workbook out for
review without any extra prompts:

1. Create a temporary copy of the workbook.

2. Open that copy and save it as a shared review copy.

3. Get a reference to the shared review copy and send that workbook for review.

4. Close the shared workbook and delete the temporary file.

The following code illustrates those steps:

 Sub SendForReview()
 Dim wb1 As Workbook, wb2 As Workbook, _
 fname As String, temp As String
 ' Get the active workbook.
 Set wb1 = ActiveWorkbook
 ' Create a unique temporary filename
 temp = wb1.Path & "\temp_" & CLng(Date) & ".xls"
 ' Save as a temporary file.
 ThisWorkbook.SaveCopyAs temp
 ' Open the review copy.
 Set wb2 = Workbooks.Open(temp)
 ' Create the name of the file to send.
 fname = wb1.Path & "\" & "Review Copy of " & _
 wb1.Name
 ' Save as a shared workbook.
 wb2.SaveAs fname, , , , , , xlShared, xlUserResolution
 ' Send the workbook for review.
 ThisWorkbook.SendForReview "someone@microsoft.com", _
 "Please review the attached workbook", True, False
 ' Close the review copy (returns to ActiveWorkbook).
 wb2.Close False
 ' Delete the temporary file.
 Kill temp
 End Sub

That's complicated, but it has the advantage of creating a shared review copy separate from your work file. Reviewers
can return changes, which you can merge into the review copy without replacing the original file, which helps protect
against unwanted changes.

Shared workbooks come with some restrictions. For instance, you can't edit code in a shared workbook. Also, shared
workbooks can't contain XML maps. Using a SharePoint workspace is a better solution for collaborating on a workbook.
See Chapter 8 for information on sharing workspaces through SharePoint.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.4. Route Workbooks
Routing a workbook is similar to sending it for review, except the workbook can be sent to the email addresses serially
instead of all at once. To route a workbook from code:

1. Get a reference to the workbook's RoutingSlip object

2. Set the RoutingSlip properties.

3. Call the workbook's Route method.

The following code illustrates those steps:

 ' Don't run this from VBE!
 Sub RouteWorkbook()
 Dim wb As Workbook, rs As RoutingSlip
 ' Trap error in case user cancels send.
 On Error Resume Next
 Set wb = ActiveWorkbook
 ' Get the routing slip.
 Set rs = wb.RoutingSlip
 ' Clear it.
 rs.Reset
 ' Set the routing properties.
 rs.Delivery = xlOneAfterAnother
 rs.Recipients = Array("someone@microsoft.com", _
 "someone@microsoft.com")
 rs.Subject = wb.Name
 rs.Message = "Please review and route on."
 rs.TrackStatus = True
 rs.ReturnWhenDone = True
 ' Send the message.
 wb.Route
 On Error GoTo 0
 End Sub

Like the SendMail example, running the preceding code from the Visual Basic Editor can lock up Excel. You should run it
only from the Macro dialog box or from an event while Excel is active. Also like SendMail, routing will display the security
prompt (Figure 21-1).

Routing has the following differences from other ways of sending workbooks:

The workbook is attached to the message as a read-only file. If the user wants to make changes, he must first
save the file as read/write. The new file retains its routing slip, however, and can be sent on to the next
recipient.

The recipient list is sent as an array of email addresses. Outlook verifies those addresses against the user's
address book and may prompt for corrections.

When a recipient closes a workbook that has a routing slip, Excel asks if the workbook should be forwarded on
to the next recipient, as shown in Figure 21-4.

Routing can also be used to send workbooks to all recipients simultaneously. To do that, set the Delivery property to
xlAllAtOnce. Sending all at once still sends the workbook as a read-only copy, but the user is prompted to route the
workbook only if ReturnWhenDone is set to True.

Figure 21-4. Excel routes a workbook on when recipients close the file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.5. Read Mail
To read mail from Excel, use the ActivateMicrosoftApp method to start Outlook:

 Sub ReadOutlookMail()
 Application.ActivateMicrosoftApp xlMicrosoftMail
 End Sub

For HTML-based mail systems, use the FollowHyperLink method to open the mail system's account page:

 Sub ReadGMail()
 ' Go to GMail.
 ThisWorkbook.FollowHyperlink "http://mail.google.com/"
 End Sub

For other mail clients, use the Shell method to start the client application:

 Sub ReadEudoraMail()
 Shell "C:\Program Files\Qualcomm\Eudora\Eudora.exe"
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.6. MsoEnvelope Members
Use the MsoEnvelope object to send a worksheet or chart as an email. Use the Worksheet or Chart object's MailEnvelope
property to get a reference to this object. The MsoEnvelope object has the following members. Key members (shown in
bold) are covered in the following reference section:

 CommandBars
 Introduction
 Item
 Parent

mailenvelope.Introduction [= setting]

Sets or returns the text included at the top of the message body.

mailenvelope.Item

Returns a MailItem object used to set the recipients, priority, and other properties of the email.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.7. MailItem Members
Use the MailItem object to set the attributes of the email sent using the MsoEnvelope object. Use the MsoEnvelope object's Item
property to get a reference to this object. The MailItem object has the following members . MailItem is part of the Outlook
object library and many of the members don't apply within Excel. Key members that are of use from within Excel
(shown in bold) are covered in the following reference section:

To declare a variable as a MailItem object, you must first add a reference to the Microsoft
Outlook type library.

Actions AlternateRecipientAllowed

Application Attachments

AutoForwarded AutoResolvedWinner

BCC BillingInformation

Body BodyFormat

Categories CC

Class ClearConversationIndex

Close Companies

Conflicts ConversationIndex

ConversationTopic Copy

CreationTime DeferredDeliveryTime

Delete DeleteAfterSubmit

Display DownloadState

EnableSharedAttachments EntryID

ExpiryTime FlagDueBy

FlagIcon FlagRequest

FlagStatus FormDescription

Forward GetInspector

HasCoverSheet HTMLBody

Importance InternetCodepage

IsConflict IsIPFax

ItemProperties LastModificationTime

Links MarkForDownload

MessageClass Mileage

Move NoAging

OriginatorDeliveryReportRequested OutlookInternalVersion

OutlookVersion Parent

Permission PermissionService

PrintOut ReadReceiptRequested

ReceivedByEntryID ReceivedByName

ReceivedOnBehalfOfEntryID ReceivedOnBehalfOfName

ReceivedTime RecipientReassignmentProhibited

Recipients ReminderOverrideDefault

ReminderPlaySound ReminderSet

ReminderSoundFile ReminderTime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RemoteStatus Reply

ReplyAll ReplyRecipientNames

ReplyRecipients Save

SaveAs Saved

SaveSentMessageFolder Send

SenderEmailAddress SenderEmailType

SenderName Sensitivity

Sent SentOn

SentOnBehalfOfName Session

ShowCategoriesDialog Size

Subject Submitted

To UnRead

UserProperties VotingOptions

VotingResponse

mailitem.Attachments

Returns an Outlook Attachments collection that you can use to add or remove files to send as attachments. The following
code clears all of the attachments from a MailItem:

 Sub RemoveAttachments(mi As MailItem)
 ' Requires reference to Microsoft Outlook.
 Dim at As Attachment
 For Each at In mi.Attachments
 at.Delete
 Next
 End Sub

mailitem.BCC [= setting]

Sets or returns the addresses on the BCC field of the email. Separate multiple addresses with semicolons.

mailitem.Body [= setting]

Sets or returns the text of the email message. This property is ignored for email sent using the Excel mail composition
header (Figure 21-2).

mailitem.CC [= setting]

Sets or returns the addresses on the CC field of the email. Separate multiple addresses with semicolons.

mailitem.Close(SaveMode)

Closes the mail item.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Closes the mail item.

Argument Settings

SaveMode Determines whether the email is saved in the Drafts folder. Can be olDiscard, olPromptForSave, or olSave.

mailitem.DeferredDeliveryTime [= setting]

Sets or returns the date and time to send the message from the Outlook outbox.

mailitem.DeleteAfterSubmit [= setting]

True deletes the message from the Outlook Sent Items folder after it is sent.

mailitem.Display()

Displays the email in a message window rather than using the Excel mail composition header. Combining Close and
Display allows you to compose custom messages using the Body or HTMLBody properties, as shown here:

 Sub SendHTMLEmail()
 ' Requires reference to Microsoft Outlook
 Dim ws As Worksheet, env As MsoEnvelope, mi As MailItem
 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MsoEnvelope object
 Set env = ws.MailEnvelope
 ' Get the MailItem object
.
 Set mi = env.Item
 ' Clear the MailItem properties.
 ClearMessage mi
 ' Set MailItem properties.
 mi.To = "someone@microsoft.com"
 mi.Subject = "Sending HTML emails from Excel"
 mi.HTMLBody = "This text using <i>HTML</i> formatting."
 ' Close message composition header.
 mi.Close olDiscard
 ' Open in mail message window (gets rid of worksheet).
 mi.Display
 End Sub

mailitem.ExpiryTime [= setting]

Sets or returns date value when the email expires and will be automatically deleted. The following code sends a
message that expires in two days:

 Sub SendMessageWithExpiration()
 Dim ws As Worksheet, mi As MailItem

 ' Get the active worksheet.
 Set ws = ActiveSheet
 ' Show email header.
 ws.Parent.EnvelopeVisible = True
 ' Get the MailItem object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Get the MailItem object
.
 Set mi = ws.MailEnvelope.Item
 ' Set MailItem properties.
 mi.To = "someone@microsoft.com"
 mi.Subject = "Message will self-destruct " & Now + 2
 ' Expires in two days
 mi.ExpiryTime = Now + DateSerial(0, 0, 2)
 End Sub

mailitem.HTMLBody [= setting]

Sets or returns the body of the message formatted using HTML tags. This property is ignored for email sent using the
Excel mail composition header.

mailitem.Importance [= setting]

Sets or return the priority of the email. Can be olImportanceHigh, olImportanceLow, or olImportanceNormal (default).

mailitem.PrintOut()

Sends the email to the default printer.

mailitem.ReadReceiptRequested [= setting]

True flags the message to request that an email be sent back to the sender when the original email is read; False does
not request a return receipt. Default is False.

mailitem.Recipients

Returns an Outlook Recipients collection that you can use to add or remove addresses from the email's To field. Using the
Add method of the Recipients collection displays a security warning. Setting the To property directly does not display a
warning.

mailitem.Save()

Saves the email in the Outlook Drafts folder.

mailitem.SaveAs(Path, Type)

Saves the email in the location specified by Path as the filetype specified in Type.

Argument Settings

Path The filename and path for the saved email.

Type The format to use for the file. Can be one of the these olSaveAsType constants: olHTML, olMSG, olRTF,
olTemplate, olDoc, olTXT, olVCal, olVCard, olICal, or olMSGUnicode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mailitem.SaveSentMessageFolder [= setting]

Returns the Outlook MAPIFolder object representing the Outlook Sent Items folder.

mailitem.Send()

Sends the email. Using the Send method displays a security warning.

mailitem.SenderEmailAddress

Returns the address of the user sending the email.

mailitem.SenderName

Returns the name of the user sending the email.

mailitem.Sensitivity [= olSensitivity]

Sets or returns the sensitivity of the email. Can be one of these settings:

 olConfidential
 olNormal
 olPersonal
 olPrivate

mailitem.Subject [= setting]

Sets or returns the text displayed in the Subject field of the email.

mailitem.To [= setting]

Sets or returns the addresses included in the To field of the email. Separate multiple addresses with semicolons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.8. RoutingSlip Members
Use the RoutingSlip object to control the distribution of a workbook through email. Use the Workbook object's RoutingSlip
property to get a reference to this object, and use the Workbook object's Route method to send the workbook. The
RoutingSlip object has the following members . Key members (shown in bold) are covered in the following reference
section:

Application Creator

Delivery Message

Parent Recipients

Reset ReturnWhenDone

Status Subject

TrackStatus

routingslip.Delivery [= xlRoutingSlipDelivery]

Sets or returns the routing sequence for the workbook. Can be xlOneAfterAnother or xlAllAtOnce.

routingslip.Message [= setting]

Sets or returns the text to include in the body of the email.

routingslip.Recipients [= setting]

Sets or returns an array containing the addresses of the recipients to include in the To field of the email. The order of
the items in the array determines the order of delivery.

Setting this property displays an Outlook security warning. Don't run code to set this
property from within the Visual Basic Editor (as when debugging) since it may cause Excel
to lock up.

You can use the Split function to convert a string containing multiple addresses into an array, as shown here:

 ' Don't run this from VBE! Use Tools>Macros>Macro>Run instead.
 Sub RouteActiveWorkbook()
 Dim wb As Workbook, rs As RoutingSlip
 ' Trap error in case user cancels send.
 On Error Resume Next
 Set wb = ActiveWorkbook
 ' Get the routing slip.
 Set rs = wb.RoutingSlip
 ' Clear it.
 rs.Reset
 ' Set routing list. Use Split to convert address list to array.
 rs.Recipients = Strings.Split("someone@microsoft.com;" & _
 "someone@yourcompany.com;someoneelse@yourcompany.com", ";")
 rs.Subject = wb.Name
 rs.Message = "Please review and route on."
 ' Send the message.
 wb.Route

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wb.Route
 On Error GoTo 0
 End Sub

routingslip.Reset()

Clears the routing slip.

routingslip.ReturnWhenDone [= setting]

True routes a copy of the workbook back to the original sender when the last recipient closes the workbook. That
recipient is prompted whether to send the email.

routingslip.Status

Returns the status of the workbook in the routing cycle. Can be one of these settings:

 xlNotYetRouted
 xlRoutingInProgress
 xlRoutingComplete

routingslip.Subject [= setting]

Sets or returns the text in the Subject field of the email.

routingslip.TrackStatus [= setting]

True tracks the status of the workbook as it is routed between recipients. This property can be set only if Status is
xlNotYetRouted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21. Sending and Receiving Workbooks
In Chapter 5, you learned how to send a simple email from Excel. In this chapter, you'll learn how to email workbooks,
worksheets, and charts as well as how to route workbooks to multiple reviewers for comments or approval.

This chapter includes task-oriented reference information for the following objects: MsoEnvelope, MailItem, and RoutingSlip.

Code used in this chapter and additional samples are available in ch21.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.1. Types of Add-ins

From a user's perspective, an add-in is a file that you load by selecting Tools Add-ins from within Excel. Add-ins
extend Excel in some way and usually display a toolbar or add menu items as a way to get at their features.

Table 22-1 lists the add-ins that ship with Excel. There also are many free sample add-ins available by searching
http://office.microsoft.com/ for "Excel add-ins."

Table 22-1. Add-ins installed with Excel
Add-in Provides Adds menu item

Analysis ToolPak Advanced functions for financial and scientific data analysis Tools Data Analysis

Analysis ToolPak VBA Support for using the Analysis Toolpak functions from Visual
Basic None

Conditional Sum
Wizard Formulas to sum data in lists Tools Conditional

Sum

Euro Currency Tools Conversion and formatting for the Euro currency Tools Euro
Conversion

Internet Assistant VBA Support for saving worksheets as HTML from Visual Basic None

Lookup Wizard Wizard to help create formulas to find value in a range Tools Lookup

Solver What-if analysis of data Tools Solver

From a developer's perspective, add-ins are Excel applications without a worksheet interface. Instead, add-ins act on
objects in the currently loaded workbook. There are two main types of add-ins:

Code-only add-ins provide user-defined functions that can be used from Excel formulas or within Visual Basic.

Visual add-ins provide wizards or toolbars to help users performs specific actions.

Some add-ins combine these two types. For example, the Analysis ToolPak VBA provides both the Data Analysis Wizard
in Excel and provides access to those analysis functions from Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2. Code-Only Add-ins
Of the two add-in types, code-only add-ins are the simplest because they have no visual interface. To create a code-
only add-in, follow these steps:

1. Create a new workbook, open the Visual Basic Editor, and write your user-defined functions.

2. Set project properties .

3. Optionally, delete unneeded worksheets.

4. Save file as a workbook.

5. Save file as an add-in.

6. Create help page or file for the add-in.

7. Close and test the add-in.

For example, I collected general-purpose procedures from earlier chapters in this book and organized them into several
modules in a new workbook, as shown in Figure 22-1.

To set project properties, right-click the Project window and select Properties. I set the sample project properties as
shown in Figure 22-2 and listed in Table 22-2.

Table 22-2. Sample add-in project property settings
Tab Field Setting

General Project Name Ch22

 Project Description Numeric, text, and file functions

 Help File Name http://www.excelworkshop.com/SampleHelp/Ch22.aspx

Protection Lock Project for Viewing Selected

 Password Excel2003

 Confirm Password Excel2003

Figure 22-1. Write add-in code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22-2. Set add-in properties

Using a web page as the help file name makes it easier to maintain and distribute the Help for the add-in. You can even
add links on the help page to update the add-in itself. Locking the project for viewing is very common for add-ins since
you usually don't want others to alter your code. A simple password is usually sufficient protection.

You can delete the unneeded worksheets from the workbook if you like, but you must leave at least one worksheet. The
sample add-in doesn't use the remaining sheet or workbook classes, but there is no way to hide or completely remove
them.

22.2.1. Save Add-ins

Why save an add-in as both a workbook (.xls) and an add-in (.xla) file? By default, Excel saves .xla files to the
%UserProfile%\Application Data\Microsoft\AddIns folder. That folder is hidden in Windows XP and it's generally easier
to just work from the .xls source file and "compile" the file to the Addins folder by saving it as an .xla file.

After you save the file as an Excel add-in, close the file so you don't inadvertently make changes to that .xla file. In my
opinion, you should make changes only through the .xls source file, because you can always save that file in a different
format, but it is difficult to convert an .xla file back to a workbook, template, or other format. Excel doesn't enforce that
approach, so you're free to not follow my advice. However, you may regret it if you later decide to covert your add-in to
an Excel template (.xlt).

Help files for add-ins can be created a number of ways. For this sample, I created a web
page from the SharePoint document library. See Chapter 6 for more information on
creating help files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2.2. Create a Test Workbook

To test the add-in:

1. Close the .xla file you just saved.

2. Create a new workbook.

3. Select Tools Add-Ins. Excel displays the Add-Ins dialog box. Your new add-in should appear in the list of
Add-Ins, Available as shown in Figure 22-3.

4. Select the add-in you just created and click OK.

5. Choose Insert Function and select User Defined from the category list. The functions from your add-in
should appear as shown in Figure 22-4.

6. Use Insert Function to create formulas that use the add-in on the test worksheet. Click Help on This Function to
see the help page.

Figure 22-3. Load the add-in

Figure 22-4. Use Insert Function to test the add-in and view Help

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2.3. Use the Add-in from Code

The procedures in this add-in can also be used from Visual Basic code in the test workbook. To use the add-in from
code:

1. From the Visual Basic Editor, choose Tools References. Visual Basic displays the References dialog.

2. Select the add-in from the Available References list and click OK.

The add-in won't appear in the Available References list if it was not loaded from
the Add-Ins dialog, as shown in Figure 22-3.

3. Write code to test the add-in. Press F2 to view the add-in in the Object Browser as shown in Figure 22-5.

Figure 22-5. Using the add-in from code

22.2.4. Change the Add-in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can't rebuild the add-in while it is loaded in Excel, and you can't unload the add-in if it is referenced from within
Visual Basic. If you are creating the add-in from an .xls source file (as I recommend) you must take these steps before
making changes:

1. Close any test workbook that contains code referencing the add-in. That removes the lock that prevents the
add-in from unloading.

2. Deselect the add-in from the Add-Ins dialog box (Figure 22-3) to unload the file.

3. Open the .xls source file and make your changes.

4. Save the .xls file as an .xla file and then close it.

5. Reselect the add-in in the Add-Ins dialog box.

You don't need to remove the references made in Visual Basic. Just closing those workbooks removes the lock. When
you reopen those workbooks, the reference will be updated.

22.2.5. Programming Tips

When creating add-ins, the following tips will help you avoid common pitfalls:

Avoid referencing external libraries. Any reference that you include in your add-in must be present on the user's
machine, and that makes deploying the add-in more difficult.

Use modules to organize procedures. Module names group the add-in procedures in the Object Browser, as
shown in Figure 22-5.

Use module names that don't conflict with names from the VBA or Excel type libraries. Type libraries have
priority, and if you use a module name like Math in your add-in, that module won't support the Auto Complete
feature.

Lock the project for viewing before saving it as an add-in. Otherwise, the Visual Basic Editor will display the
add-in in code windows when the user goes to edit a macro. That is confusing for most users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.3. Visual Add-ins
Visual add-ins interact with the active sheet, selected range, or active workbook through menu items, dialog boxes, and
toolbars that you create from within the add-in. By convention, visual add-ins add a menu item to the Tool menu in
Excel (see Table 22-1).

Add-ins provide the following events that let you add and remove menu items and toolbars when the add-in is installed
or uninstalled:

 ' ThisWorkbook class
 Private Sub Workbook_AddinInstall()
 ' Add menu items and toolbars here.
 End Sub

 Private Sub Workbook_AddinUninstall()
 ' Remove menu items and toolbars.
 End Sub

The Workbook_Open and Workbook_BeforeClose events aren't as useful from add-ins as the preceding events because they
occur too oftenwhenever Excel opens or closes. The Workbook_AddinInstall and Workbook_AddinUninstall events occur only when
the user selects or deselects the add-in from the Add-Ins dialog (Figure 22-3).

22.3.1. Add a Menu Item

To add a menu item for an add-in, follow these general steps:

1. Get a reference to the Tools pop-up menu on the worksheet's menu bar.

2. Find the location in that menu where you want to add the item. Usually, I add menu items just before the last
separator bar (the next-to-last group).

3. Create a new command bar button control and add it to the menu.

4. Set the control's Tag, OnAction, and Caption properties.

5. Optionally repeat the task for the Chart menu bar.

The following code adds a menu item that displays the CodeToolbar created in Chapter 19; I've also included the code to
remove the menu item since I'll use that next:

 ' Menu code module.
 Sub AddMenuItem(Optional cb As String = "Worksheet Menu Bar")
 Dim cpop As CommandBarPopup, cbc As CommandBarControl, _
 loc As Integer
 ' Get the Tools menu.
 Set cpop = Application.CommandBars(cb).FindControl(, 30007)
 ' Find the last separator bar.
 For Each cbc In cpop.Controls
 If cbc.BeginGroup Then loc = cbc.index
 Next
 ' Insert the menu item before the last separator bar.
 Set cbc = cpop.Controls.Add(msoControlButton, , , loc, False)
 cbc.Caption = "&CodeToolbar"
 cbc.Tag = "mnuCodeToolbar"
 cbc.OnAction = "mnuCodeToolbar_Click"
 End Sub

 ' Procedure for menu item's OnAction property.
 Sub mnuCodeToolbar_Click()
 Dim cbc As CommandBarButton
 ' Get the menu item
 Set cbc = Application.CommandBars("Worksheet Menu Bar").FindControl(_
 , , "mnuCodeToolbar", , True)
 ' Exit if menu item not found.
 If cbc Is Nothing Then Exit Sub
 ' Toggle the state (adds or removes a check mark
 ' beside the menu item).
 cbc.State = Not cbc.State
 ' Display or hide the toolbar depending on state.
 If cbc.State Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If cbc.State Then
 BuildCodeToolbar
 Else
 DeleteCodeToolbar
 End If
 End Sub

 Sub RemoveMenuItem(Optional cb As String = "Worksheet Menu Bar")
 Dim cbc As CommandBarControl
 ' Find the menu item.
 Set cbc = Application.CommandBars(cb).FindControl(_
 , , "mnuCodeHelper", , True)
 ' If it's found, delete it.
 If Not (cbc Is Nothing) Then _
 cbc.Delete
 End Sub

The mnuCodeToolbar_Click procedure toggles a check mark on the menu item and displays the CodeToolbar when selected as
shown in Figure 22-6.

Figure 22-6. Adding a menu item for an add-in

To create the menu item when the add-in is installed, call the AddMenuItem procedure from the Workbook_AddinInstall event
in the ThisWorkbook class. While you're there, add some code to remove the menu item when the add-in is uninstalled.
The following code shows both procedures:

 ' ThisWorkbook class
 Private Sub Workbook_AddinInstall()
 ' Add menu items and toolbars here.
 AddMenuItem "Worksheet Menu Bar"
 AddMenuItem "Chart Menu Bar"
 End Sub

 Private Sub Workbook_AddinUninstall()
 ' Remove menu items and toolbars.
 RemoveMenuItem "Worksheet Menu Bar"
 RemoveMenuItem "Chart Menu Bar"
 End Sub

The preceding code adds the menu item to both of the built-in Excel menu bars so it is available for both worksheets
and charts.

22.3.2. Add a Toolbar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As I discussed in Chapter 19, toolbars can be attached to a file. If you attach a toolbar to an add-in, it will become
available whenever the add-in is loaded. The only time you need to create a toolbar in code is when it contains
dynamically created controls like those demonstrated by the CodeToolbar sample.

I created that sample for you in Chapter 19 using the BuildCodeToolbar procedure; and I showed how to delete the toolbar
in Chapter 19 using the DeleteCodeToolbar procedure. See the sample workbook, or turn back to Chapter 19 to see those
examples. I use both those procedures in the following section, which demonstrates how to dynamically update the
toolbar when the user activates a new workbook.

22.3.3. Respond to Application Events

One of the key tricks to add-in programming is learning how to respond to application-level events. I showed you how
to do that way back in Chapter 4, but in case that slipped by you, I'll spell out the steps again:

1. In the ThisWorkbook class, declare an Application object variable using the WithEvents keyword.

2. In the Workbook_Open event, initialize the object variable.

3. Write code for the application events using the object variable.

The following code illustrates those steps using the CodeToolbar example:

 ' ThisWorkbook class
 ' Declare an application object WithEvents.
 Dim WithEvents m_app As Excel.Application

 ' Add-in level event.
 Private Sub Workbook_Open()
 ' Initialize the Application object variable so you
 ' can detect events.
 Set m_app = Application
 End Sub

 ' Application-level events.
 Private Sub m_app_WorkbookActivate(ByVal Wb As Workbook)
 ' When the active workbook changes, update toolbar.
 BuildCodeToolbar
 End Sub

 Private Sub m_app_WorkbookBeforeClose(ByVal Wb As Workbook, Cancel As Boolean)
 ' Remove the toolbar if the workbook closes.
 DeleteCodeToolbar
 End Sub

Don't confuse the add-in-level events (Workbook_Open) with the application-level events
(m_app_WorkbookActivate and m_app_WorkbookBeforeClose).

You can respond to events on the currently active workbook using a similar technique with the passed-in Wb argument
in m_app_WorkbookActivate procedure as shown by the following changes in bold:

 ' ThisWorkbook class
 Dim WithEvents m_app As Excel.Application
 Dim WithEvents m_wb As Workbook

 Private Sub m_app_WorkbookBeforeClose(ByVal Wb As Workbook, Cancel As Boolean)
 ' Remove the toolbar if the workbook closes.
 DeleteCodeToolbar
 ' Initialize the workbook object variable
 Set m_wb = Wb
 End Sub

 ' Workbook-level event.
 Private Sub m_wb_SheetActivate(ByVal Sh As Object)
 Debug.Print Sh.Name & " is active."
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

And you can navigate down the object model to respond to events on the active worksheet, chart, and so on using the
same technique.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.4. Set Add-in Properties
The document properties of the source workbook determine the title and description displayed in the Add-Ins dialog. To
set the properties of an add-in:

1. Open the source workbook for the add-in.

2. Choose File Properties. Excel displays the document Properties dialog box (Figure 22-7).

3. Set the properties and click OK.

4. Save the source workbook, then save the file again as an .xla file.

The Title property appears in the Add-Ins dialog in the list of available add-ins. The Comments property appears as the
description at the bottom of the dialog when the add-in is selected. The other document properties are not displayed,
but are available through the AddIn object.

Figure 22-7. Setting add-in document properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.5. Sign the Add-in
Strictly speaking, add-ins don't have to be signed. By definition, add-ins contain code and the user must take
affirmative action to install and load an add-in, so Excel doesn't display security warnings when a user loads an
unsigned add-in in Excel.

However, you may want to sign an add-in anyway. There are three reasons for this:

An unsigned file displays a security warning while you develop the add-in (which is annoying).

Signing the add-in validates that the add-in is from you and hasn't been changed by someone else.

Add-ins can potentially be loaded by an external reference from another workbook, which does display a
security warning if the add-in is unsigned.

See Chapter 6 for instructions on getting a digital signature and signing code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.6. Distribute the Add-in
The easiest way to distribute an add-in is to copy it to the user's AddIns folder . That is the default location to which
Excel saves add-ins, and any add-ins placed there are automatically displayed in the Add-Ins dialog box (Figure 22-3).

The following VBScript file installs an add-in in the user's AddIns folder and loads the add-in in Excel:

 ' InstallAddin.vbs
 ' Get the objects used by this script.
 Dim oXL, oAddin, fso, wsh, srcPath, destPath, addin
 addin = "\ch22.xla"
 Set oXL = CreateObject("Excel.Application")
 Set fso = CreateObject("Scripting.FileSystemObject")
 Set wsh = WScript.CreateObject("WScript.Shell")
 ' Make Excel visible in case something goes wrong.
 oXL.Visible = True
 ' Create a temporary workbook (required to access add-ins)
 oXL.Workbooks.Add
 ' Get the current folder.
 srcpath = fso.GetFolder(".")
 destPath = wsh.Environment("PROCESS")("HOMEDRIVE") & _
 wsh.Environment("PROCESS")("HOMEPATH") & _
 "\Application Data\Microsoft\Addins"
 ' Copy the file to the template folder.
 fso.CopyFile srcpath & addin, destpath & addin
 ' Add the add-in to Excel.
 Set oAddin = oXL.AddIns.Add(destpath & addin, true)
 ' Mark the add-in as installed so Excel loads it.
 oAddin.Installed = True
 ' Close Excel.
 oXL.Quit
 Set oXL = Nothing

To use the preceding VBScript installer with your own add-ins:

1. Change the addin variable to match your add-in filename.

2. Place the add-in and setup file in the same folder. That can be a public folder on your network, a folder on a CD,
or some other media.

3. Instruct the user to run InstallAddin.

If you want to install the add-in at a custom location or provide an uninstall facility, you might consider using Visual
Studio .NET to create a setup and deployment project:

1. Create a setup and deployment project.

2. Set the project's Manufacturer and ProductName properties.

3. Add the add-in to the Application Folder in the File System window.

4. Add the file to the HKEY_CURRENT_USER\Software\Microsoft\Office\11.0\Excel\Add-in Manager registry key.

5. Build the project.

Setup and deployment projects create Windows installation programs that walk the user through the setup and also
provide an uninstall facility. See the Ch22AddinInstall sample project (Ch22AddinInstall.sln) for an example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.7. Work with Add-ins in Code
The previous VBScript sample in "Distribute the Add-in" demonstrates using Excel's AddIn object to load an add-in as
part of the installation process. That's the primary use of the AddIns collection and AddIn object: loading, unloading, and
enumerating add-ins.

For example, the following code lists the name and state of all the add-ins that are currently installed:

 Sub ListAddins()
 Dim ad As AddIn
 Debug.Print "Title", "File name", "Loaded?"
 For Each ad In Application.Addins
 Debug.Print ad.Title, ad.FullName, ad.Installed
 Next
 End Sub

The Installed property determines whether installed add-ins are loaded in Excelnot whether they are installed on the
user's system as the name suggests. To load an add-in from code, set its Installed property to True. To unload it, set
Installed to False. Use the Add method to install an add-in on the user's system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.8. AddIn and AddIns Members
Use the AddIns collection to copy add-ins onto the user's system. Use the Application object's AddIns property to get a
reference to this collection. Use the AddIn object to load or unload the add-in in Excel. The AddIns collection and AddIn
object have the following members . Key members (shown in bold) are covered in the following reference section:

Add

1
Application2

Author CLSID

Comments Count1

Creator2 FullName

Installed Item1

Keywords Name

Parent2 Path

progID Subject

Title
1 Collection only

2 Object and collection

addins.Add(Filename, [CopyFile])

Installs an add-in and make it available from the Add-Ins dialog. Returns an add-in object.

Argument Settings

Filename The path and filename of the add-in to install.

CopyFile True copies the file from removable media to the hard disk; False does not copy the file. Ignored if the
file is already located on a fixed media.

Set the Installed property to True to load the add-in in Excel.

addin.Author

Returns the value from the Author property of the add-in's source workbook.

addin.Comments

Returns the value from the Comments property of the add-in's source workbook.

addin.FullName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the full path and filename of the add-in.

addin.Installed [= setting]

True loads the add-in in Excel; False unloads the add-in.

addin.Keywords

Returns the value from the Keywords property of the add-in's source workbook.

addin.Path

Returns the path of the add-in file.

addin.Subject

Returns the value from the Subject property of the add-in's source workbook.

addin.Title

Returns the value from the Title property of the add-in's source workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22. Building Add-ins
Creating an add-in in Excel is deceptively easyjust save the workbook as an add-in file (XLA). That's deceptive, because
that's really not all there is to it. You need to combine many of the skills already covered in this book to create effective
add-ins for others. This chapter brings those skills together and walks you through the best programming practices for
creating add-ins.

This chapter includes task-oriented reference information for the AddIn object.

Code used in this chapter and additional samples are available in ch22.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

23.1. Use DLLs
Dynamic link libraries (DLLs) are used everywhere in Windows. Many of the Visual Basic and Excel members merely
encapsulate Windows DLL callsfor example, the Shell function is equivalent to the Windows WinExec function in
kernel32.dll that is at the core of Windows.

There's little point in using WinExec instead of Shell; however, many other DLL functions aren't available from Visual Basic
or Excel. In general, those functions give you access to low-level tasks that aren't the usual focus of Visual Basic or
Excel.

To use a function from a DLL:

1. Find the function you want to use.

2. Declare the function at the module level.

3. Call the function within your code.

23.1.1. Find the Right Function

Windows is enormous, and finding the function for a specific task within its forest of DLLs can be daunting. The best
guide through the Win32 API is Programming Windows by Charles Petzold (Microsoft Press). The second-best (and free)
guide is the online Microsoft Developer's Network found at http://msdn.microsoft.com.

You should look to DLLs only when you have a specific task in mind and you've already exhausted possible solutions
through the built-in members provided by Visual Basic and Excel. Often, programmers resort to DLL functions when the
built-in features of Excel aren't specific enough. For example, the Wait method in Excel has a one-second resolution. If
you want to pause for a fraction of a second, you need to resort to the Sleep DLL function.

One of the best tools for finding Win32 API functions is the API Viewer utility (APILOAD.EXE) that shipped with the
Visual Basic Standard and Professional Editions , Versions 4.0 through 6.0. To use the API Viewer:

1. Run APILOAD.EXE.

2. Choose File Load Text File and select WIN32API.TXT.

3. Choose Declares from the drop-down list and browse through the list of functions or type a few letters to find
functions by name as shown in Figure 23-1.

What if you don't have Visual Basic Professional or Standard Edition? The WIN32API.TXT
file is freely distributable and you can find it with this book's samples. You can browse that
file using Notepad or any other text editor.

23.1.2. Declare and Use DLL Functions

Use the API Viewer (Figure 23-1) or open WIN32API.TXT in Notepad to get the declarations of DLL functions you want
to use in Visual Basic. The declaration tells Visual Basic how to find the function and what arguments the function
expects. For example, the declaration for the Sleep function looks like this:

' Module level.
Public Declare Sub Sleep Lib "kernel32" _
 (ByVal dwMilliseconds As Long)

Figure 23-1. Use the API Viewer to hunt for DLL functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23-1. Use the API Viewer to hunt for DLL functions

That means the Sleep function is found in kernel32.dll, takes a single long-integer argument, and doesn't return a value.
Once you declare the function, you can use it in code just like any other procedure:

Sub Pause()
 ' Pause 1/2 second.
 Sleep 500
End Sub

In Visual Basic terminology, Sleep is a Sub, not a function. However, most DLLs are written in C, which doesn't use that
word. In C, all procedures are functions; functions that don't return values are called void functions .

However, most DLL functions do return a value, and that value usually indicates whether the function succeeded. If a
function returns 0, the function failed. Any other value indicates success. For example, the following code plays
boing.wav; if the sound can't play, the code displays a message in the Immediate window:

Public Declare Function sndPlaySound Lib "winmm.dll" Alias _
 "sndPlaySoundA" (ByVal lpszSoundName As String, ByVal uFlags As Long) _
 As Long

Sub Bounce()
 Dim res As Long
 res = sndPlaySound("boing", 0)
 If res = 0 Then _
 Debug.Print "Couldn't bounce."
End Sub

23.1.3. Use Flags and Constants

The uFlags argument in sndPlaySound is an example of another common C convention: you can often specify options using
a long integer comprised of bit flags . I discussed those back in Chapter 3, but they haven't been much use up till now.
Bit flags are numeric constants that can be combined into a single number. The following code demonstrates using bit
flags to play a sound over and over again:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

flags to play a sound over and over again:

Public Declare Function sndPlaySound Lib "winmm.dll" Alias _
 "sndPlaySoundA" (ByVal lpszSoundName As String, ByVal uFlags As Long) _
 As Long
Public Const SND_ASYNC = &H1 ' play asynchronously
Public Const SND_LOOP = &H8 ' loop the sound until next sndPlaySound
Public Const SND_SYNC = &H0 ' play synchronously (default)

Sub BeginBouncing()
 sndPlaySound "boing", SND_ASYNC Or SND_LOOP
End Sub

Sub StopBouncing()
 sndPlaySound "boing", SND_SYNC
End Sub

I included StopBouncing because listening to boing.wav over and over again gets really annoying. You can find constants
for each function by searching for the function by name at http://msdn.microsoft.com, then you can find the
corresponding values for those constants using the API Viewer or by searching WIN32API.TXT.

23.1.4. Work with Strings

The quickest way to end your DLL programming experience is to pass a DLL an uninitialized string. For example, the
following code will result in the error shown in Figure 23-2:

Public Declare Function GetTempFileName Lib "kernel32" Alias _
 "GetTempFileNameA" (ByVal lpszPath As String, _
 ByVal lpPrefixString As String, ByVal wUnique As Long, _
 ByVal lpTempFileName As String) As Long

Sub Crash()
 Dim fil As String, res As Long
 res = GetTempFileName(ThisWorkbook.Path, "xl", 0, fil)
 Debug.Print fil
End Sub

Figure 23-2. You'll crash if you don't initialize your strings

Don't send Microsoft this error reportit was your fault! To avoid this problem, fill a string with spaces before you pass it
to a DLL. You need to make the string long enough to fit the passed-in data; 128 characters is usually sufficient:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to a DLL. You need to make the string long enough to fit the passed-in data; 128 characters is usually sufficient:

Function CreateTempFile() As String
 Dim fil As String, res As Long
 ' Initialize the string!
 fil = Space(128)
 ' Pass the string to the DLL function.
 res = GetTempFileName(ThisWorkbook.Path, "xl", 0, fil)
 ' Return the string.
 CreateTempFile = fil
End Function

Figure 23-2 underscores the risks of working with DLLsyou are leaving the relatively safe
world provided by Excel and are performing without a safety net. Mistakes can crash Excel
and potentially shut down Windows. Save your work frequently when working with DLLs.

C strings end with a null character (ASCII 0). That's different than Visual Basic, which prepends each string with its
length. In some cases, like the preceding example, the null character is ignored. However, in other cases, you need to
trim off the excess characters when the DLL function returns. In those cases, the DLL function returns the length of the
string argument; the GetWindowsDirectory function is a good example:

Public Declare Function GetWindowsDirectory Lib "kernel32" _
 Alias "GetWindowsDirectoryA" (ByVal lpBuffer As String, _
 ByVal nSize As Long) As Long

Function GetWinDir() As String
 Dim wdir As String, res As Integer
 ' Initialize the string.
 wdir = Space(128)
 ' Call the DLL function (returns length of result).
 res = GetWindowsDirectory(wdir, 128)
 ' Trim off excess before returning the result.
 WinDir = Left(wdir, res)
End Function

You can actually see the null character in the string if you set a breakpoint at End Function, run the preceding code, and
then position the mouse pointer over the wdir variable as shown in Figure 23-3.

Figure 23-3. In some strings, you need to trim off nulls

The CreateTempFile and GetWinDir examples demonstrate how to create wrappers for DLL functions. Wrappers convert the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CreateTempFile and GetWinDir examples demonstrate how to create wrappers for DLL functions. Wrappers convert the
DLL functions into Visual Basic functions that are much less confusing to use elsewhere in code. It is good programming
practice to put all of your DLL declarations in a single module and include wrappers for each of those functions.

23.1.5. Handle Exceptions

Most DLL functions return a value indicating whether they succeeded. A return value of 0 indicates that the function did
not complete its task. That type of exception is different from the error in Figure 23-2, which halts everything.

Just as with Visual Basic functions, you should anticipate and handle exceptions from DLL functions in your code,
particularly when working with nonmemory resources like hard disks, printers, and other devices. To handle an
exception from a DLL:

1. Call the DLL function.

2. Check the value returned by the function.

3. If the returned value is zero, handle the exception and optionally check Err.LastDllError to identify what went
wrong.

The following changes to CreateTempFile demonstrate detecting and handling exceptions from a DLL function. If the caller
tries to create a temporary file at an invalid path, GetTempFileName returns 0 and the code displays a message in the
Immediate window. Optionally, you could uncomment the Error statement to raise a trappable Visual exception:

Function CreateTempFile(Optional path As String = "") As String
 Dim fil As String, res As Long
 ' Initialize the string!
 fil = Space(128)
 If path = "" Then path = ThisWorkbook.path
 ' Pass the string to the DLL function.
 res = GetTempFileName(path, "xl", 0, fil)
 ' If error, return empty string.
 If res = 0 Then
 Debug.Print "Error creating temp file: " & Err.LastDllError
 ' Optionally, raise can't Create temporary file error.
 ' Error 322
 End If
 ' Trim the excess off the string and return it.
 CreateTempFile = Left(fil, res)
End Function

The Err object's LastDllError property returns the error number from the DLL function. Those numbers are listed as
ERROR_xxx constants in WIN32API.TXT, but it is almost impossible to know which error codes to expect from a DLL. The
easiest way to solve this problem is to pass in values you know to be invalid and see what error code is returned. You
can then search WIN32API.TXT to get the descriptive constant.

For example, typing the following line of code in the Immediate window displays error code 276:

?CreateTempFile("z:\")

A quick search of WIN32API.TXT for 267 yields this constant:

' The directory name is invalid.
Const ERROR_DIRECTORY = 267&

I could use this constant to create a more descriptive message, but in reality there's not much I can do other than
report the error and end the operation as gracefully as possible.

One of the side effects of returning 0 when an error occurs is that Left(fil, res) returns an empty string whenever there's
an error. That's a good technique because it makes it easy to check if the function succeeded elsewhere in code, as
shown here:

Sub TestCreateFile()
 Dim tmp As String
 ' Get a temporary file.
 tmp = CreateTempFile
 If tmp <> "" Then
 ' Open the file and write some data
 QuickWrite "This is some data", tmp, True
 ' Display the file in Notepad.
 Shell "notepad.exe " & tmp
 Else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Else
 Debug.Print "CreateTempFile failed."
 End If
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

23.2. Use COM Applications
When Microsoft first developed COM, the company envisioned Office applications as building blocks that programmers
could use to assemble customer-specific solutions. That vision has partly come trueit's not uncommon for a Word
document to include data from Excel or for a PowerPoint presentation to use Word and Excel datahowever, that reality
is not nearly as grand as Microsoft's early marketing demos.

Meanwhile, Excel's feature set has grown to include its own spellchecker, drawing tools, mail, and Internet capabilities.
In many ways, there is less reason to program across applications than there once was.

But here's the kicker: most of those new features were made possible because Microsoft implemented them as COM
objects. That's the reason Excel's drawing tools look suspiciously like Visio objects. In fact, Microsoft's vision came true;
it's just that Microsoft became the solution provider in the Office realm.

Is COM Modular?

While I was at Microsoft working on OLE 2.0 (later called COM), I complained to Brian Johnson about all
the DLLs you had to install and register to get automation to work. "It's not modular," I whined. Brian
looked at me and replied "It is modular; you just need all the modules!"

23.2.1. Program Other Office Applications

You can program any of the Office applications from Excel by following these steps:

1. In the Visual Basic Editor, choose Tools References and select the Office application from the list of
Available References (Figure 23-4) and click OK to close the dialog.

2. Declare an object variable using one of the Office application's objects.

3. Create an instance of that object.

4. Use the properties and methods of the object.

5. Close the object and set the object variable to Nothing when you are done.

Figure 23-4 shows establishing a reference to the Word object library. COM applications expose their object through
type libraries (.tlb) or object libraries (.olb). Those two kinds of libraries are often used interchangeably and the words
mean basically the same thing.

Figure 23-4. Referencing Word from Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've created a reference to the application, you can view the objects the application provides in the Object
Browser (Figure 23-5).

The following code demonstrates the programming steps for working with the Word application:

' Worksheet class
' Step 2: Declare object.
Dim WithEvents m_wd As Word.Application

Sub StartWord()
 ' Step 3: Create a new instance of the application.
 Set m_wd = New Word.Application
 ' Step 4: Use properties and methods (makes Word visible).
 m_wd.Visible = True
End Sub

Sub CloseWord()
 ' Step 5: Close Word.
 If Not (m_wd Is Nothing) Then m_wd.Quit
 ' Set the variable to Nothing.
 Set m_wd = Nothing
End Sub

Figure 23-5. Browsing the objects from an application

There are a couple key things to point out in the preceding code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are a couple key things to point out in the preceding code:

I wrote this code as part of a worksheet class so I could intercept events from Word by declaring the object
variable WithEvents. You can't use WithEvents from a module.

Not all objects are creatable. Within Word, you can create new instances of the Application and Document objects.
To get other objects, you have to navigate down through the object model from one of those creatable objects.

23.2.2. Integrate Word

One of the challenges of integrating COM applications is that the organization and behavior of objects are inconsistent
across applications. For example, the Excel and Word Application objects behave differently when their object variables
are set to Nothing: Excel quits if the application is not visible and there are no open workbooks, but Word continues
running.

For that reason, it is always a good idea to make objects visible when working across applications. That way, the user
can easily close the application if she needs to. It is also a good idea to call Quit and set the object variable to Nothing.

Declare Application object variables at the class or module level so they are available to all of the procedures in the class
or module. Using local variables for Application objects is impractical because it is difficult to get a reference to a specific
instance of an application once it is running.

The following code demonstrates how to use the class-level Application object created earlier to copy a selected range
from Excel into a new Word document:

Sub PasteRangeToWord()
 Dim doc As Word.Document
 ' If a range of cells is selected.
 If TypeName(Selection) = "Range" Then
 ' Start word if it's not already running.
 If m_wd Is Nothing Then StartWord
 ' Copy the selected cells.
 Selection.Copy
 ' Create a new document
 Set doc = m_wd.Documents.Add
 ' Paste the range into the Word document.
 m_wd.Selection.Paste
 End If
End Sub

Since the Application object was declared WithEvents, you can respond to Word events from within your Excel code:

Dim WithEvents m_doc As Word.Document

' Runs when a new Word document is created.
Private Sub m_wd_NewDocument(ByVal doc As Word.Document)
 Debug.Print "Created Word document."
 ' Get the Document object to detect events.
 Set m_doc = doc
End Sub

' Runs when the Word document closes.
Private Sub m_doc_Close()
 Debug.Print "Closed document."
End Sub

The preceding code uses the m_wd_NewDocument event to initialize the m_doc object variable so your Excel code can
respond to events that occur on the new document.

23.2.3. Automate PowerPoint

You can use the same steps to automate PowerPoint that you used to automate Word from Excel. PowerPoint has two
creatable objects: Application and Presentation, but only the Application object exposes events.

The following code demonstrates how to create a new slide in a presentation using a selected range of cells from Excel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code demonstrates how to create a new slide in a presentation using a selected range of cells from Excel:

' Worksheet class.
Dim WithEvents m_ppt As PowerPoint.Application
Dim m_pres As PowerPoint.Presentation

Sub StartPPT()
 Set m_ppt = New PowerPoint.Application
 m_ppt.Visible = True
End Sub

Sub PasteRangeToPPT()
 Dim sld As PowerPoint.Slide, sh As PowerPoint.Shape
 ' If a range of cells is selected.
 If TypeName(Selection) = "Range" Then
 ' Start PowerPoint if it's not already running.
 If m_ppt Is Nothing Then StartPPT
 ' Copy the selected cells.
 Selection.Copy
 ' Create a new document
 If m_pres Is Nothing Then _
 Set m_pres = m_ppt.Presentations.Add
 ' Paste the range into the PowerPoint document.
 Set sld = m_pres.Slides.Add(1, ppLayoutClipartAndText)
 ' Add a title.
 Set sh = sld.Shapes(1)
 sh.TextFrame.TextRange.Text = ActiveSheet.Name
 ' Paste the range.
 Set sh = sld.Shapes(3)
 sh.TextFrame.TextRange.Paste
 ' Replace second shape with a logo.
 Set sh = sld.Shapes(2)
 sld.Shapes.AddPicture ThisWorkbook.path & "\logo.bmp", _
 False, True, sh.Left, sh.Top
 sh.Delete
 End If
End Sub

Sub ClosePPT()
 ' Step 5: Close PowerPoint.
 If Not (m_ppt Is Nothing) Then m_ppt.Quit
 ' Set the variable to Nothing.
 Set m_ppt = Nothing
End Sub

Private Sub m_ppt_NewPresentation(ByVal Pres As PowerPoint.Presentation)
 Debug.Print "Created presentation."
End Sub

The preceding code is similar to the Word example; however, PowerPoint uses Presentation, Slide, and Shape objects rather
than Word's Document, Paragraph, and Range objects.

23.2.4. Handle Exceptions

When using COM applications, exceptions are handled as trappable errors. To start detecting exceptions, use the On Error
Resume Next statement. To stop detecting exceptions, use the On Error Goto 0 statement.

There are other ways to detect exceptions in Visual Basic, but the preceding technique is the most useful one when
working with COM applications because the error codes generated are not very specific. You really have to know what
operation was just performed in order to anticipate the exceptions that can occurthe error code tells you almost
nothing.

For example, the following additions (in bold) to previous code show how to anticipate exceptions working with Word
from Excel:

Sub PasteRangeToWord()
 Dim doc As Word.Document
 ' If a range of cells is selected.
 If TypeName(Selection) = "Range" Then
 ' Start word if it's not already running.
 If m_wd Is Nothing Then StartWord
 ' Copy the selected cells.
 Selection.Copy
 ' Detect exceptions here.
 On Error Resume Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 On Error Resume Next
 ' Create a new document
 Set doc = m_wd.Documents.Add
 ' Paste the range into the Word document.
 m_wd.Selection.Paste
 If Err Then
 ' Display message
 MsgBox "Could not paste. " & _
 "Make sure Word can run and try again.", vbExclamation And vbOKOnly
 CloseWord
 End If
 On Error GoTo 0
 End If
End Sub

Sub CloseWord()
 ' Step 5: Close Word.
 On Error Resume Next
 If Not (m_wd Is Nothing) Then m_wd.Quit
 ' Set the variable to Nothing.
 Set m_wd = Nothing
 Set m_doc = Nothing
 On Error GoTo 0
End Sub

In PasteRangeToWord are any number of different exceptions that might occur accessing the Word Document object at
runtime. Since Word is visible, the user might close the document or quit Word itself. In those cases, you can't recover;
you just notify the user and clean up so the procedure might work the next time. The situation is more straightforward
in CloseWord. Quit fails only if that instance of Word has already closed, so it's safe to ignore the exception and reset the
module-level variables.

If you like, you can add a line to display the error codes in the Immediate window to help during debugging:

Debug.Print Err.Number, Err.Description

Not all COM applications are religious about raising exceptions. PowerPoint just waits if it can't overwrite a file. After a
few seconds, it asks the user to try again. That's problematic for programmers because the application looks "hung"
during the wait and the user is likely to start clicking on stuff and pressing keys at random. If the user cancels saving,
PowerPoint does return an informative error message; however, the error code is a hexadecimal number, as shown by
the following Immediate Windows statements:

?Err.Number, Err.Description
-2147467259 Method 'SaveAs' of object '_Presentation' failed
?hex(-2147467259)
80004005

It's not unCOMmon to get unusual-looking error numbers. Use the Hex function to convert
them to hexadecimal.

23.2.5. Get Help on Objects

If you're familiar with the Excel object model, you're likely to be confused by the object models of the other Office
applications. I don't think that's an indictment of their design or a vindication of Excel's. It's just that the concept of a
document and how to get at items with that document is different in each application.

There are several ways to address this problem:

Use the Object Browser to search for common method names, like Select, Paste, Save, and Open. Often that task-
oriented search will lead you to the object that you need to use to perform the task.

Open the application's VBA help file directly rather than using context-sensitive Help. In Excel 2003, context-
sensitive Help doesn't permit searching the file, which is a serious handicap. Microsoft copies the Office VBA
help files to C:\Program Files\Microsoft Office\OFFICE11\1033\ by default. You can also get help from the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

help files to C:\Program Files\Microsoft Office\OFFICE11\1033\ by default. You can also get help from the
Object Browser.

Look for samples. Use Google to search for answers within newsgroups at http://groups.google.com/ or check
out Office online at http://office.microsof.com/.

For COM applications from other vendors, check the company's web site. Often help on programming objects is not part
of the user documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23. Integrating DLLs and COM
VBA and Excel provide an extensive set of objects, properties, and methods that you can use to perform almost any
imaginable task. However, in some areas those members don't do exactly what you need or don't do the task as simply
as you might like. In those cases, you can extend your set of programming tools by bringing in functions from dynamic
link libraries (DLLs) and objects from other Common Object Model (COM) applications.

DLLs and COM are Windows-only features. They aren't present on the Macintosh.

DLLs grant you access to the low-level functions used by Windows itself. Just about any task that Windows performs
can be accomplished in your Visual Basic code by accessing a system DLL.

COM is for higher-level tasks. Excel implements COM as the technology used to expose its objects, properties, and
methods to Visual Basic. All of the other Office applications and many non-Microsoft applications implement COM, too.
You can use any of those applications from Excel Visual Basic.

Code used in this chapter and additional samples are available in ch23.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1. Perform Web Queries
Web queries are a quick way to import data from a web page into a worksheet using a QueryTable object. To perform a
web query:

1. From the Data menu, choose Import External Data, then choose New Web Query. Excel displays the Edit Web
Query dialog shown in Figure 24-1.

Figure 24-1. Use web queries to import data directly from a web page

2. Type the address of the web page you want to import data from in the Address bar and click Go to navigate to
that page. It is usually easiest to find the page you want in your browser, then cut and paste that address into
the Edit Web Query dialog box.

3. Excel places small yellow boxes next to the items you can import from the page. Click on the item or items you
want to import and Excel changes the yellow box to a green check mark.

4. Click the Options button to set how Excel formats imported items. Formatting options are shown in Figure 24-2.

5. Close the Options dialog box and click Import. Excel displays the Import Data dialog box shown in Figure 24-3.

Figure 24-2. Set formatting options for the query

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24-3. Choose the destination for the imported data

6. Click Properties to determine how the query is performed, such as how the data is refreshed. Figure 24-4 shows
the query property settings.

7. Close the Properties dialog and click OK to import the data.

Figure 24-5 shows a real-time stock quote and quote history imported from the Yahoo! web site. Yahoo! is a good
source for this type of web query because it is a free service and doesn't require you to register or sign in.

If you record the preceding web query, you'll get code that looks something like this:

 With ActiveSheet.QueryTables.Add(Connection:= _
 "URL;http://finance.yahoo.com/q/ecn?s=SNDK", Destination:=Range("A2"))
 .Name = "Real-Time Quote"
 .FieldNames = True
 .RowNumbers = False
 .FillAdjacentFormulas = False
 .PreserveFormatting = True
 .RefreshOnFileOpen = False
 .BackgroundQuery = True
 .RefreshStyle = xlOverwriteCells
 .SavePassword = False
 .SaveData = True
 .AdjustColumnWidth = True
 .RefreshPeriod = 0
 .WebSelectionType = xlSpecifiedTables
 .WebFormatting = xlWebFormattingNone
 .WebTables = "22"
 .WebPreFormattedTextToColumns = True
 .WebConsecutiveDelimitersAsOne = True
 .WebSingleBlockTextImport = False
 .WebDisableDateRecognition = False
 .WebDisableRedirections = False
 .Refresh BackgroundQuery:=False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 .Refresh BackgroundQuery:=False
 End With

With ActiveSheet.QueryTables.Add(Connection:= _
 "URL;http://finance.yahoo.com/q/hp?a=01&b=5&c=2003&d=01&e=5&f=2004&g=d&s=sndk" _
 , Destination:=Range("A9"))
 .Name = "Price History"
 .FieldNames = True
 .RowNumbers = False
 .FillAdjacentFormulas = False
 .PreserveFormatting = True
 .RefreshOnFileOpen = False
 .BackgroundQuery = True
 .RefreshStyle = xlOverwriteCells
 .SavePassword = False
 .SaveData = True
 .AdjustColumnWidth = True
 .RefreshPeriod = 0
 .WebSelectionType = xlSpecifiedTables
 .WebFormatting = xlWebFormattingNone
 .WebTables = "30"
 .WebPreFormattedTextToColumns = True
 .WebConsecutiveDelimitersAsOne = True
 .WebSingleBlockTextImport = False
 .WebDisableDateRecognition = False
 .WebDisableRedirections = False
 .Refresh BackgroundQuery:=False
 End With

Figure 24-4. Use the Properties page to name the query, set how data is refreshed,
and set how cells are inserted

Figure 24-5. Using a web query to get stock price data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some key properties and methods shown in bold in the preceding sample bear mention here:

The Add method creates the query and adds it to the worksheet.

The RefreshStyle property tells Excel to overwrite existing data rather than to insert new cells each time the query
is refreshed.

The WebTables property identifies which item from the page to import. Excel assigns an index to each item on the
page, and you can import one or more items or the entire page if WebSelectionType is set to xlEntirePage.

The Refresh method imports the data onto the worksheet. Without this method, the query results are not
displayed.

The query itself consists of the Connection, WebTables, and formatting properties. If you save the web query to a query file
(.iqy), the data looks like this:

 WEB
 1
 http://finance.yahoo.com/q/hp?a=01&b=5&c=2003&d=01&e=5&f=2004&g=d&s=sndk

 Selection=30
 Formatting=None
 PreFormattedTextToColumns=True
 ConsecutiveDelimitersAsOne=True
 SingleBlockTextImport=False
 DisableDateRecognition=False
 DisableRedirections=False

When Excel updates a web query, a small, green globe is displayed in the status bar at the bottom of the screen, as
shown in Figure 24-6. This symbol indicates that the query is being refreshed from the Internet.

Figure 24-6. Excel is refreshing the query from the Internet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1.1. Modify a Web Query

You can modify a web query by right-clicking on the query and selecting Edit Query. In many cases, however, you'll
want a more automated approach. For example, you may want to let the user change the stock symbol in the previous
sample. To do that, use code to:

1. Change the Connection property of the query.

2. Refresh the query.

For example, the following code allows the user to enter a stock symbol in a named range on the worksheet to get
current and historical price data for that stock:

 Dim ws As Worksheet, qt As QueryTable
 Set ws = ThisWorkbook.Sheets("Web Query")
 Set qt = ws.QueryTables("Real-Time Quote")
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=" & _
 ws.Range("Symbol").Value
 qt.Refresh
 Set qt = ws.QueryTables("Price History")
 qt.Connection =
 "URL;http://finance.yahoo.com/q/hp?a=01&b=5&c=2003&d=01&e=5&f=2004&g=d&s="&_
 _ws.[Symbol].Value
 qt.Refresh

If you run the preceding code, you may notice that the query is not updated right away. By default, web queries are
done in the background asynchronously. This avoids tying up Excel while the web site responds to the query, but it can
cause an error if you refresh the query again before the first request has had a chance to respond. You can avoid this
by not performing the query in the background. For example, the following code turns off asynchronous queries, waiting
for a response before executing the next line:

 qt.BackgroundQuery = False
 qt.Refresh

or, more simply:

 qt.Refresh False

This causes Excel to wait while the query completes. During this time, the user can't edit cells or perform other tasks. If
this is too much of a burden, use the QueryTable object's Refreshing property to avoid asynchronous collisions:

 Set qt = ws.QueryTables("Real-Time Quote")
 If Not qt.Refreshing Then
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=" & _
 ws.[Symbol].Value
 qt.Refresh
 Else
 MsgBox "Similar query is pending, please wait a second and try again."
 End If

The preceding code checks whether the web query is already executing before calling Refresh. If a previous query is still
executing, the user is told to try again later. Notice that this code checks the status of a query performed by a single
query table. Other, different query tables may have pending results without causing a collisionyou need to check the
Refreshing property of only the target query table before attempting to change or refresh a query.

24.1.2. Perform Periodic Updates

If the data in a web query changes frequently, you may want to have Excel automatically update the information
periodically. Since web queries already run asynchronously in the background, getting them to update periodically is a
simple matter of setting a property:

 Set qt = ws.QueryTables("Real-Time Quote")
 qt.RefreshPeriod = 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 qt.RefreshPeriod = 1

Now, the query will update every minute. To turn off the background query, set the RefreshPeriod to 0 as shown here:

 qt.RefreshPeriod = 0

Interestingly, the BackgroundQuery property can be False and you can still perform periodic queries. In that case, the Excel
user interface pauses periodically whenever the query is being refreshed.

24.1.3. Trap QueryTable Events

Performing web queries in the background can seem a little strangeparticularly if they are set to refresh periodically.
Most Excel actions are synchronous, and it might surprise a user to see Excel pause for a second, update some cells,
and then continue on as if nothing happened. This can become a big problem if the source of the web query changes
and causes the web query to failthe user will see an error message periodically and may not know what to do or how to
fix it (Figure 24-7).

Figure 24-7. Failed web queries may display errors asynchronously

To handle errors from asynchronous web queries, you must hook in to the QueryTable events. You have to declare a
QueryTable object variable using the WithEvents keyword in order to trap its events. WithEvents can be used in only a class
module or an Excel object module (such as the code module for a worksheet or workbook).

For example, to handle asynchronous events for a QueryTable in the wsWebQuery worksheet module, follow these steps:

1. Display the code window for the worksheet by double-clicking on wsWebQuery in the Visual Studio Project
Explorer.

2. Add the following declaration to the worksheet's code module at the class level (outside of a procedure
definition):

 Dim WithEvents qt As QueryTable

3. Select the qt object in the object list at the top of the code window, and then select AfterRefresh from the event
list to create an empty event procedure.

4. Add the following code to disable/enable the command buttons and to get feedback from the user if an error
occurs:

 Private Sub qt_BeforeRefresh(Cancel As Boolean)
 ' Disable command button.
 cmdQuote.Enabled = False
 End Sub

 Private Sub qt_AfterRefresh(ByVal Success As Boolean)
 ' If update failed, get feedback.
 If Not Success Then
 If MsgBox("An error occurred getting Web data. " & _
 "Cancel future updates?", vbYesNo, "Web Query") = vbYes Then _
 qt.RefreshPeriod = 0
 End If
 ' Reenable command button.
 cmdQuote.Enabled = True
 End Sub

5. Write code to initialize the QueryTable object and to begin updates. For example, the following procedure hooks
an existing QueryTable up to the event handlers defined earlier and sets the stock symbol the query uses:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an existing QueryTable up to the event handlers defined earlier and sets the stock symbol the query uses:

 Private Sub cmdQuote_Click()
 ' Get the QueryTable and hook it to the event handler object.
 Set qt = ActiveSheet.QueryTables("Real-Time Quote")
 ' Set the query.
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=" & [Symbol].Value
 ' Set the refresh period and make sure it's done asynchronously.
 qt.RefreshPeriod = 1
 qt.BackgroundQuery = True
 ' Refresh the data now.
 qt.Refresh
 End Sub

Now, the user can stop the automatic updates if the query fails.

One of the really strange things that can occur while you are working with asynchronous events in Excel is that the
event may run while you are editing it in Visual Basic. Often this will result in a runtime error because you haven't
completed the code you were in the process of writing. It is a good idea to stop periodic updates while working on
query table event code. You can do this by setting the query table's RefreshPeriod property to 0 in the Immediate window.

Anticipating potential asynchronous collisions can be a little tricky. One general way to deal with these is to lock out
other operations in the BeforeRefresh event and reenable operations in the AfterRefresh event by enabling and disabling the
command button as shown in Step 4. That prevents the user from changing a query while it is pending. Another way is
to check the Refreshing property (shown earlier). A final solution is not to use asynchronous queries at all.

For example, the following code gets the price history for a stock. Since price history data isn't very volatile, the code
performs the query synchronously and waits for the result:

 ' Displays one year of the current symbol's price history.
 Private Sub cmdHistory_Click()
 Dim ws As Worksheet, qt2 As QueryTable, conn As String
 Set ws = ThisWorkbook.ActiveSheet
 ' Build query string.
 conn = "URL;http://chart.yahoo.com/d?" & YahooDates(Date - 365, Date) & _
 ws.[Symbol].Value
 ' Get query
 Set qt2 = ws.QueryTables("Price History_1")
 ' Clear old history
 qt2.ResultRange.Clear
 ' Set connection property
 qt2.Connection = conn
 ' Make sure background queries are off.
 qt2.BackgroundQuery = False
 ' Refresh data
 qt2.Refresh
 End Sub

 ' Converts start and end dates to Yahoo! query string for
 ' stock history.
 Function YahooDates(dtstart As Date, dtend As Date) As String
 ' Query sample string from Yahoo! has this form:
 ' a=10&b=4&c=2003&d=1&e=5&f=2004&g=d&s=sndk
 Dim str As String
 str = "a=" & Month(dtstart) - 1 & "&b=" & Day(dtstart) & _
 "&c=" & Year(dtstart) & "&d=" & Month(dtend) - 1 & _
 "&e=" & Day(dtend) & "&f=" & Year(dtend) & "&g=d&s="
 Debug.Print str
 YahooDates = str
 End Function

When you run the preceding code, Excel changes the mouse pointer to the wait symbol and won't accept user actions
till the query returns. This provides a much simpler logical path for programming.

24.1.4. Manage Web Queries

Most of the preceding samples get an existing QueryTable, modify its properties, and then call Refresh. I could have used
the QueryTables collection's Add method to create these queries on the fly; however, you need to remember to delete
previously created QueryTables.

For example, the following code creates three new query tables on the active worksheet:

 Dim ws As Worksheet, qt As QueryTable, i As Integer
 Set ws = ActiveSheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set ws = ActiveSheet
 For i = 1 To 3
 Set qt = ws.QueryTables.Add("URL;http://finance.yahoo.com/q/ecn?s=yhoo", [A12])
 qt.Name = "Temp Query"
 qt.WebTables = "22"
 qt.WebSelectionType = xlSpecifiedTables
 qt.WebFormatting = xlWebFormattingNone
 qt.BackgroundQuery = False
 qt.RefreshStyle = xlOverwriteCells
 qt.Refresh
 Next

When this code runs, it creates three query tables on the worksheet named Temp_Query, Temp_Query_1, and
Temp_Query_2, respectively. There's no easy way to manage query tables through the Excel user interface; however, if
you press Ctrl-G, you'll see the names for the new query tables listed in the Go To dialog box (Figure 24-8).

Figure 24-8. Excel automatically numbers query tables that have the same base
name

It's possible to manually delete query tables by going to the named range and selecting Clear All, but that leaves the
name in the worksheet, and subsequent names will be indexed _4, _5, and so on. The easiest way to clean up mistaken
or trial query tables is to write some code to help you remove them. For example, the following procedure lists each
query table on a worksheet and lets you remove or keep it:

 Sub RemoveOldQueries()
 Dim ws As Worksheet, qt As QueryTable, nm As Name
 Set ws = ActiveSheet
 For Each qt In ws.QueryTables
 If MsgBox("OK to delete " & qt5.Name & "?", vbYesNo, _
 "Web Queries") = vbYes Then
 qt.Delete
 End If
 Next
 For Each nm In ws.Names
 If MsgBox("OK to delete " & nm.Name & "?", vbYesNo, _
 "Names") = vbYes Then
 nm.Delete
 End If
 Next
 End Sub

Getting rid of unneeded query tables on a worksheet can seem like an unimportant housekeeping chore, but it is very
important to avoid having redundant or unneeded queries running in the background. Background queries degrade
performance, spontaneously connect to the Internet, and can generate asynchronous errors as mentioned earlier. This
can really confuse users!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.1.5. Limitations of Web Queries

Web queries are great for the ad hoc import of data onto a worksheet, but they rely on the position of elements on the
page. If the structure of the source web page changes, the query may break. This means that web queries aren't well-
suited for deployed solutions, since you are likely to get a great number of support calls if the source web page changes
or moves.

Also, you've got to compose complicated site-specific Connection properties (query strings) if you want to perform
customized queries. The YahooDates helper function shown earlier is a good example of the type of work you have to do
to get a web query to work correctly with variable data such as variable date ranges. Each web site has its own system
of sending and receiving data through query strings and it can be difficult to reverse-engineer those query strings
correctly.

These limitations are not present when using web servicesthat technique provides both a stable platform and a well-
defined programming interface. However, web services are not available for all data on the Internet so, in many, many
cases, web queries are still very useful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.2. QueryTable and QueryTables Web Query Members
Query tables are general-purpose objects that import data from a variety of sources including text files and databases.
Many of the QueryTable object members apply only to those data sources, and not to web queries. Therefore, the
members covered in this section (shown in bold) are specific to web queries:

Add

1
AdjustColumnWidth

AfterRefresh Application2

BackgroundQuery BeforeRefresh

CancelRefresh CommandText

CommandType Connection

Count1 Creator2

Delete Destination

EditWebPage EnableEditing

EnableRefresh FetchedRowOverflow

FieldNames FillAdjacentFormulas

HasAutoFormat ListObject

MaintainConnection Name

Parameters Parent2

PostText PreserveColumnInfo

PreserveFormatting QueryType

Recordset Refresh

Refreshing RefreshOnFileOpen

RefreshPeriod RefreshStyle

ResetTimer ResultRange

RobustConnect RowNumbers

SaveAsODC SaveData

SavePassword SourceConnectionFile

SourceDataFile Sql

TablesOnlyFromHTML TextFileColumnDataTypes

TextFileCommaDelimiter TextFileConsecutiveDelimiter

TextFileDecimalSeparator TextFileFixedColumnWidths

TextFileOtherDelimiter TextFileParseType

TextFilePlatform TextFilePromptOnRefresh

TextFileSemicolonDelimiter TextFileSpaceDelimiter

TextFileStartRow TextFileTabDelimiter

TextFileTextQualifier TextFileThousandsSeparator

TextFileTrailingMinusNumbers TextFileVisualLayout

WebConsecutiveDelimitersAsOne WebDisableDateRecognition

WebDisableRedirections WebFormatting

WebPreFormattedTextToColumns WebSelectionType

WebSingleBlockTextImport WebTables

1 Collection only

2 Object and collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

querytables.Add(Connection, Destination, [Sql])

Creates a new query table and adds it to the worksheet. Returns a QueryTable object.

Argument Description

Connection A string or object reference identifying the source of the data.

Destination A Range object identifying the upper-lefthand corner of the destination of the query table.

Sql If the Connection argument is an ODBC data source, this argument is a string containing the SQL query to
perform. Otherwise, including this argument either causes an error or is ignored.

The Connection argument has different forms, depending on the type of data source being queried as described in the
following table:

Data source Use to Sample connection argument

Web page Perform a web query "URL;http://finance.yahoo.com/q/ecn?s=yhoo"

The Add method's Connection argument uses the "URL;" prefix when performing a query on a web page. For example, the
following code creates a new query table containing a real-time stock quote from Yahoo!:

 Set ws = ThisWorkbook.Sheets("Other QueryTables")
 strConn = "URL;http://finance.yahoo.com/q/ecn?s=dell"
 Set qt = ws.QueryTables.Add(strConn, [QueryDestination])
 qt.Refresh

querytable.AdjustColumnWidth [= setting]

True adjusts the widths of columns to fit the data in the query table; False preserves the current column width. Default
is True.

querytable.BackgroundQuery [= setting]

True refreshes data in the query table asynchronously; False refreshes data synchronously. Default is True.

The BeforeRefresh and AfterRefresh events occur whether the query is refreshed synchronously or asynchronously. When
synchronous, both events occur before the Refresh method completes. When asynchronous, only the BeforeRefresh event
occurs before the Refresh method completes; then program flow continues.

BackgroundQuery has little discernible effect on text queries.

querytable.CancelRefresh

Cancels an asynchronous query. You can't refresh or delete a query while that query has refresh pending. When
working with asynchronous queries, you should check the query table's Refreshing property and (possibly) cancel the
pending refresh before deleting or refreshing that query again.

The following code cancels any pending refreshes before refreshing a query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code cancels any pending refreshes before refreshing a query:

 If qt.Refreshing Then qt.CancelRefresh
 qt.Refresh

querytable.Connection [= setting]

Sets or returns the data source for the query table. For web queries, this is the Connection argument used to create the
query. Getting or setting this property causes an error if the query table is created from a recordset (QueryType property
is xlADORecordset or xlDAORecordset).

The following code displays the Connection property for each query table on the active worksheet:

 Dim qt As QueryTable
 For Each qt In ActiveSheet.QueryTables
 Select Case qt.QueryType
 Case xlADORecordset, xlDAORecordset
 Debug.Print qt.Name, qt.Recordset.Source
 Case Else ' Includes Web queries.
 Debug.Print qt.Name, qt.Connection
 End Select
 Next

querytable.Delete

Deletes a query table. If the query table is refreshing asynchronously, Delete causes an error. Deleting a query table
does not remove data from cells on a worksheetit just removes the ability to refresh those cells from their data source.

The following code deletes all of the query tables on the active worksheet and clears all the data on the worksheet:

 Dim qt As QueryTable
 For Each qt In ActiveSheet.QueryTables
 If qt.Refreshing Then qt.CancelRefresh
 qt.Delete
 Next
 ActiveSheet.UsedRange.Clear

querytable.Destination

Returns a Range object containing the cell in the upper-lefthand corner of the query table.

The following code selects the first cell of a query table on the active worksheet and asks if the user wants to delete it:

 For Each qt In ActiveSheet.QueryTables
 qt.Destination.Select
 If MsgBox("Delete query table?", vbYesNo) = vbYes Then
 If qt.Refreshing Then qt.CancelRefresh
 qt.ResultRange.Clear
 qt.Delete
 End If
 Next

querytable.EditWebPage [= setting]

Sets or returns the address of the web page used by the Edit Web Query dialog box. EditWebPage is ignored for non-web
queries (QueryType is not xlWebQuery).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

queries (QueryType is not xlWebQuery).

For example, the following code performs a web query getting a quote for a specific stock, but displays the general
financial page if the user decides to edit the web query:

 Set ws = ActiveSheet
 strConn = "URL;http://finance.yahoo.com/q/ecn?s=dell"
 Set qt = ws.QueryTables.Add(strConn, [QueryDestination])
 qt.EditWebPage = "http://finance.yahoo.com/"
 qt.Refresh

querytable.EnableEditing [= setting]

True allows the user to change the query definition through the Data menu's Import External Data submenu; False
disables the Import External Data menu items. Default is True.

querytable.EnableRefresh [= setting]

True allows the user to refresh the query through the Data menu's Refresh Data item; False disables the Refresh Data
menu item. Default is True.

querytable.FetchedRowOverflow

Returns True if the number of records returned by the query exceeds the number of rows available on the worksheet.

querytable.FillAdjacentFormulas [= setting]

True causes calculated cells to the right of the query table to be repeated for each row when the query table is
refreshed; False does not repeat adjacent formulas. Default is False.

Set FillAdjacentFormulas to True in order to create row totals, or other calculations, for each row in the query table
automatically. To use this feature, create a query table, add a formula for the first row in the query table, set
FillAdjacentFormulas to True, then refresh the data.

querytable.PostText [= setting]

For web queries, sets or returns a string posted to the server when the query table is refreshed. Most web queries are
the result of HTTP GET actions; however, PostText allows you to pass data to a web address through HTTP POST.

querytable.PreserveFormatting [= setting]

True preserves the cell formatting of the query table when data is refreshed; False does not preserve formatting.
Default is False.

If PreserveFormatting is True and a refresh imports new rows of data, formatting common to the first five rows of the query
table is automatically applied to the new rows.

querytable.QueryType [= xlQueryType]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a value identifying the type of data source used by the query table. Can be one of these settings:

 xlTextImport
 xlOLEDBQuery
 xlWebQuery
 xlADORecordset
 xlDAORecordSet
 xlODBCQuery

querytable.Refresh([BackgroundQuery])

Refreshes a query table from its data source. Returns True if the refresh was submitted successfully, False if the user
canceled the refresh.

Argument Description

BackgroundQuery True refreshes the data asynchronously; False refreshes the data synchronously. Default is True.

Most types of query table store connection and data source information that is used by Refresh. The exception is
recordset queriesyou must set a new recordset before calling Refresh for query tables based on recordsets. See the
Recordset property in Chapter 12 for an example.

When refreshing asynchronously, check the Refreshing property before calling Refresh. Otherwise, pending refreshes will
cause an error. The following code cancels any pending asynchronous refresh before refreshing a query table:

 If qt.Refreshing Then qt.CancelRefresh
 qt.Refresh

querytable.Refreshing

Returns True if an asynchronous refresh is pending for this query table; False if no refresh is pending.

querytable.RefreshOnFileOpen [= setting]

True refreshes the query table when the workbook is opened; False does not refresh on open. Default is False.

querytable.RefreshPeriod [= setting]

Sets or returns the number of minutes between automatic refreshes. The default is 0, for no automatic refreshing. You
can set automatic refreshing on synchronous or asynchronous queries. RefreshPeriod is ignored for query tables created
from recordsets.

The following code creates a query table from an ODBC data source and sets the query table to refresh once a minute:

 strConn = "ODBC;DRIVER=SQL Server;SERVER=.;UID=Jeff;APP=Microsoft Office " & _
 "XP;WSID=WOMBAT2;DATABASE=pubs;Trusted_Connection=Yes"
 strSQL = "SELECT titles.title, titles.price, titles.pubdate, titles.ytd_sales
 FROM pubs.dbo.titles titles"
 Set qt = ActiveWorksheet.QueryTables.Add(strConn, [QueryDestination], strSQL)
 qt.RefreshPeriod = 1
 qt.Refresh

querytable.RefreshStyle [= xlCellInsertionMode]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

querytable.RefreshStyle [= xlCellInsertionMode]

Determines how the query affects surrounding items on the worksheet when the query table is refreshed. Default is
xlInsertDeleteCells.

Setting Description

xlInsertDeleteCells Inserts or deletes new rows and columns created by the query, moving surrounding items up or
down and to the right or left as needed.

xlOverwriteCells No new rows or columns are added to the worksheet. Surrounding items are overwritten as needed.

xlInsertEntireRows Inserts a new row for each record returned by the query. Shifts existing items down as needed to
accommodate the number of records returned.

The following code modifies an existing query table to insert new rows on the worksheet as needed, shifting existing
items on the worksheet down:

 Set qt = ActiveSheet.QueryTables(1)
 ' Query table records shift rows down.
 qt.RefreshStyle = xlInsertEntireRows
 qt.Refresh

If a subsequent query reduces the number of records returned, the contents of the query table are replaced, but the
rows that were previously shifted down are not shifted back up again as they would be if RefreshStyle were set to
xlInsertDeleteCells.

querytable.ResetTimer

Resets the timer used for periodic queries, in effect delaying when a query occurs. Use the RefreshPeriod property to
automatically refresh a query periodically.

querytable.ResultRange

Returns the range containing the results of the query. For example, the following code clears the results from a query
table on the active worksheet:

 ActiveSheet.QueryTables(1).ResultRange.Clear

If a query table has been created but not yet refreshed, accessing ResultRange causes an error. There's no direct way to
test whether a query table has been refreshed. One solution to this problem is to write a helper function similar to the
following to check if a query table has a result before accessing ResultRange elsewhere in code:

 Public Function HasResult(qt As QueryTable) As Boolean
 Dim ret As Boolean
 On Error Resume Next
 Debug.Print qt.ResultRange.Address
 If Err Then ret = False Else ret = True
 On Error GoTo 0
 HasResult = ret
 End Function

Now, you can easily test if a query table has a result before clearing the result range or performing other tasks, as
shown here:

 Set qt = ActiveSheet.QueryTables(1)
 If HasResult(qt) Then qt.ResultRange.Clear

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If HasResult(qt) Then qt.ResultRange.Clear

querytable.TablesOnlyFromHTML [= setting]

This property is hidden and is provided for backward compatibility. It is replaced by the WebSelectionType and WebTables
properties.

querytable.WebConsecutiveDelimitersAsOne [= setting]

For web queries, True interprets multiple consecutive delimiters as a single delimiter when importing data from a
<PRE> (preformatted) section of a web page. Default is False.

querytable.WebDisableDateRecognition [= setting]

For web queries, True interprets strings that look like dates as text. Default is False.

querytable.WebDisableRedirections [= setting]

For web queries, True does not allow the query request to be redirected to another address; False allows redirection.
Default is True.

querytable.WebFormatting [= setting]

For web queries, determines how much formatting is imported along with the data. Possible settings are:

 xlWebFormattingNone (default)
 xlWebFormattingAll
 xlWebFormattingRTF

querytable.WebPreFormattedTextToColumns [= setting]

For web queries, True parses rows in <PRE> (preformatted) sections of a web page and places aligned items in
separate cells. False parses each row in <PRE> sections as a single data item and places the entire row in one cell.

For example, the following code imports a sample web page and parses rows in <PRE> sections as multiple cells:

 Set qt = ActiveSheet.QueryTables(1)
 qt.Connection = "URL;file://" & ThisWorkbook.Path & "\preblocks.html"
 qt.WebSelectionType = xlAllTables
 qt.WebPreFormattedTextToColumns = True
 qt.Refresh

The web page containing items parsed into cells looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The web page containing items parsed into cells looks like this:

 <html>
 <body>
 <pre>
 1 2 3 4
 5 6 7 8
 </pre>
 </body>
 </html>

querytable.WebSelectionType [= xlWebSelectionType]

For web queries, specifies how much of a web page to import. Can be one of these settings:

 xlAllTables (default)
 xlEntirePage
 xlSpecifiedTables

Combine WebSelectionType with the WebTables property to import one or more specific tables from a web page. For
example, the following code uses an existing query table to display a real-time quote, omitting unwanted items from
the source web page:

 Set qt = ActiveSheet.QueryTables(1)
 qt.Connection = "URL;http://finance.yahoo.com/q/ecn?s=msft"
 qt.Name = "Real-Time Quote"
 qt.WebSelectionType = xlSpecifiedTables
 qt.WebTables = "22"
 qt.WebFormatting = xlWebFormattingNone
 qt.BackgroundQuery = True
 qt.Refresh

Interestingly, you must set WebSelectionType to xlSpecifiedTables before setting the WebTables property or an error occurs at
runtime.

querytable.WebSingleBlockTextImport [= setting]

For web queries, True parses rows in <PRE> (preformatted) sections as a single block; False parses contiguous rows in
<PRE> sections as blocks. Default is True.

This property is useful if a single <PRE> section contains multiple blocks of preformatted data that use different column
alignment. For example, the following code imports a sample web page and parses contiguous rows within <PRE>
blocks individually:

 Set qt = ActiveSheet.QueryTables(1)
 qt.Connection = "URL;file://" & ThisWorkbook.Path & "\preblocks.html"
 qt.WebPreFormattedTextToColumns = True
 qt.WebSingleBlockTextImport = False
 qt.Refresh

The web page containing items parsed into cells looks like this:

 <html>
 <body>
 <pre>
 Col1 Col2 Col3 Col4
 1 2 3 4
 5 6 7 8

 c1 c2 c3 c4
 1 2 3 4
 5 6 7 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 6 7 8
 </pre>
 </body>
 </html>

The preceding code results in two blocks of data, each with four columns. If WebSingleBlockTextImport were set to True
instead, the second table would contain only one column of data.

querytable.WebTables [= setting]

For web queries, specifies the index of the items to include from the source web page. To include multiple items from a
web page, use a comma-delimited string.

For example, the following code includes the 3rd, 4th, and 10th items from a web page:

 qt.WebSelectionType = xlSpecifiedTables
 qt.WebTables = "3,4,10"

Note that you must set WebSelectionType to xlSpecifiedTables before you use the WebTables property.

The best way to find the index of an item on a web page is to record a macro performing the web query containing the
items you want to import, then cut and paste the recorded WebTables setting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.3. Use Web Services
From an Excel perspective, web services are primarily useful for retrieving variable data over the Internet, but you can
also use them to send data, to manipulate remote data, or to run other code on remote computers. Web services are
designed to work just like procedure calls from code, so it is possible to use a web service without even knowing that it
is running remote code.

That's possible, but it's not likely, since web service methods often rely heavily on their underlying foundation: XML.
That means Excel programmers must become familiar with the Microsoft XML type library before they can effectively
use web services. The good news is that, once you are comfortable working with XML, you can blast web service results
directly into spreadsheet lists using Excel XML maps (which is very cool).

Web services, like many Internet-related things, are part of evolving standards. These standards have broad support by
many companies, so web services are not likely to lose support in the future. However, since the standards are still
evolving, there are different approaches to implementing, locating, and accessing web services. Of specific interest to
Excel developers are the facts that:

There are several ways to locate web services on the Internet. One way is through a directory service such as
http://uddi.microsoft.com/, but a much more common way is just by browsing the business's own site or
through a cross-listing site such as http://www.xmethods.net/.

There are several ways to describe web services over the Internet. With Excel, you really need to worry about
only one: WSDL.

There are several ways to call web services. Some web services only support SOAP , while others such as
Amazon also support access directly through their URL.

The samples in this chapter focus on two widely used web services provided by Google and Amazon, respectively. These
services are nearly ideal for a chapter such as this because they are freely available, useful, well-documented, and
demonstrate both SOAP and URL access. Before you continue, however, you should download the following toolkits:

Toolkit Location

Microsoft Office Web Services Toolkit http://www.microsoft.com/downloads and search for "Web Services Toolkit."

Google Web Service http://www.google.com/apis/.

Amazon Web Service Click on Web Services link at http://www.amazon.com/.

Both the Google and Amazon Web Services require you to register to get a developer ID to pass with method calls. I
provide my developer ID with the code samples shown here, but you will want your own ID if you use these web
services in your own code.

24.3.1. Use the Web Services Toolkit

Excel doesn't come with the Web Services Toolkit installed. In order to use web services from Visual Basic for
Applications, you must first follow these steps:

1. Find the Microsoft Office Web Services Toolkit from Microsoft by searching for "Web Services Toolkit" at
www.microsoft.com/downloads.

2. Download the Web Services Toolkit installation program (setup.exe).

3. Run the downloaded installation program and follow the steps provided by the Setup Wizard.

4. Start Excel and open the Visual Basic Editor.

5. In Visual Basic, select Web References from the Tools menu. Visual Basic displays the Microsoft Office Web
Services Toolkit references dialog shown in Figure 24-9.

Figure 24-9. Use the Microsoft Office Web Services Toolkit to create a web
reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reference

When you create a web reference, the Web Services Toolkit automatically adds references to the Microsoft Office SOAP
type library and the Microsoft XML library. Then, the toolkit generates proxy classes for the web service. To see how
this works, follow these steps:

1. From the Visual Basic Tools menu, select Web References.

2. Select Web Service URL and type the following line in the text box below that option:

 http://api.google.com/GoogleSearch.wsdl

3. Click Search. The Web Services Toolkit displays the web services available from Google as shown in Figure 24-
10.

Figure 24-10. Creating a reference to the Google web service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Select GoogleSearchService and click Add. The Web Service Toolkit adds references to the SOAP and XML
libraries and creates proxy classes for each of the services, as shown in Figure 24-11.

Proxy classes are modules of code that stand in for the code that runs on the server providing the web service. You
have to have a local copy of this code so you can compile your application against something. These proxy classes
provide the properties and methods you call on the web servicethey package those calls, send them, and receive their
responses.

The code in these proxy classes is not simple. Fortunately, you don't have to understand much of it; just create an
instance of the main class (identified by the prefix clsws) and use its properties and methods. For example, the following
code uses the generated classes to search Google for work I've done on Excel:

 Dim i As Integer, wsGoogle As New clsws_GoogleSearchService
 Dim wsResult As struct_GoogleSearchResult, wsElement As struct_ResultElement
 Dim devKey As String, searchStr As String
 ' This key is from Google, used to identify developer.
 devKey = "ekN14fFQFHK7lXIW3Znm+VXrXI7Focrl"
 ' Items to search for.
 searchStr = "Jeff Webb Excel"
 ' Call the search web service.
 Set wsResult = wsGoogle.wsm_doGoogleSearch(devKey, _
 searchStr, 0, 10, False, "", False, "", "", "")
 ' For each of the results
 For i = 0 To wsResult.endIndex - 1
 ' Get the individual result.
 Set wsElement = wsResult.resultElements(i)
 ' Display the result.
 Debug.Print wsElement.title, wsElement.URL
 Next

Figure 24-11. The Web Services Toolkit creates Google Web Service proxy classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OK, that's not simple either. Most of the complication here comes from the web service itself. Google requires a license
key to use its service; I include my key in the devKey variable. Google allows 1000 search requests per day for this free
license key, so you'll want to get your own key from Google.

Next, the wsm_doGoogleSearch method submits the search to Google. That method takes a lot of arguments and returns a
structure, which is defined in another proxy class, so you need to use Set to perform the assignment. Similarly, you
need to use Set to get elements from the result.

24.3.2. Use Web Services Through XML

Web services from different companies define their interfaces differently. For example, the Google Web Service provides
methods that take simple string arguments, whereas the Amazon Web Service provides methods that take complex
XMLNodeList arguments.

It's difficult to construct and debug XMLNodeList arguments for the Amazon Web Service. It's much easier to invoke this
web service directly through its URL. For example, the following code performs a keyword search for books about
wombats on Amazon:

 Dim SearchUrl As String
 ' Create a new DOMDocument and set its options
 Dim xdoc As New DOMDocument
 xdoc.async = True
 xdoc.preserveWhiteSpace = True
 xdoc.validateOnParse = True
 xdoc.resolveExternals = False

 ' Create the search request
 SearchUrl = "http://xml.amazon.com/onca/xml2" & _
 "?t=" & "webservices-20" & _
 "&dev-t=" & "D1UCR04XBIF4A6" & _
 "&page=1" & _
 "&f=xml" & _
 "&mode=books" & _
 "&type=lite" & _
 "&KeywordSearch=wombat"

 ' Issue the request and wait for it to be honored
 Loaded = xdoc.Load(SearchUrl)
 ' Display the results
 Debug.Print xdoc.XML

Because the results are returned as XML, you can create an XML map from the result and import the results into a list
created from that XML map as shown here:

 Set wb = ThisWorkbook
 wb.XmlImportXml xdoc.XML, wb.XmlMaps("ProductInfo_Map"), True

Figure 24-12 displays the result of importing an Amazon search for wombats into a list on a worksheet.

The documentation for the Amazon Web Service is structured to show you how to call its methods using its URL rather
than using proxy classes and SOAP. This means that you don't have to use the Web Services Toolkit to create proxies
for the Amazon Web Service; just add a reference to the Microsoft XML type library.

This method of accessing a web service is sometimes called Representational State Transfer (REST) . That acronym is
useful as a search term when looking for this type of interface for a given web service. Type "REST Google API" in a
Google search to see an active debate on the relative features of REST and SOAP.

Figure 24-12. Displaying XML results from a web service through an XML map and
list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list

The Google Web Service doesn't support direct access through its URL, but you can avoid the proxies and call it directly
through SOAP. For example, the following code performs a search for wombats and imports the result through an XML
map directly into a list:

 Dim soap As New SoapClient30, xn As IXMLDOMNodeList, strXML As String
 soap.MSSoapInit "http://api.google.com/GoogleSearch.wsdl"
 Set xn = soap.doGoogleSearch("ekN14fFQFHK7lXIW3Znm+VXrXI7Focrl", _
 "wombats", 0, 10, False, "", False, "", "", "")
 ' Build a string containing the results from the search in XML.
 strXML = "<GoogleSearchResults>"
 For i = 1 To xn.Length - 1
 strXML = strXML & xn(i).XML
 Next
 strXML = strXML & "</GoogleSearchResults>"
 ' Import the results through an XML map into a list.
 Set wb = ThisWorkbook
 wb.XmlImportXml strXML, wb.XmlMaps("GoogleSearchResults_Map"), True

24.3.3. Call a Web Service Asynchronously

One advantage of calling a web service directly, rather than through proxies, is that it is very easy to handle the
response asynchronously. The DOMDocument object provides an ondataavailable event that occurs when the object is finished
loading XML from a source. This means that you can launch a web service request, release control to the user, and
display results when a request is complete. Being able to handle a response asynchronously is especially important
when the web service is returning a large amount of data.

To use the DOMDocument object to respond to a web service asynchronously, follow these steps:

1. Declare a DOMDocument object at the module of a class. The class can be a workbook, worksheet, or code class
module. For example, the following variable is declared in the wsAmazon worksheet class:

 Dim WithEvents xdoc As DOMDocument

2. Select the xdoc object from the object list at the top of the code window, and then select ondataavailable from the
event list to create an empty event procedure as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event list to create an empty event procedure as shown here:

 Private Sub xdoc_ondataavailable()

 End Sub

3. In other code, initialize the xdoc object, set its async property to True, and then call the web service using the
xdoc object's Load method. For example, the following event procedure searches Amazon.com for a keyword
when the user clicks the Get Titles button on the wsAmazon worksheet:

 Sub cmdTitles_Click()
 Dim SearchUrl As String
 ' Create a new DOMDocument and set its options
 Set xdoc = New DOMDocument
 xdoc.async = True

 ' Create the search request
 SearchUrl = "http://xml.amazon.com/onca/xml2" & _
 "?t=" & "webservices-20" & _
 "&dev-t=" & "D1UCR04XBIF4A6" & _
 "&page=1" & _
 "&f=xml" & _
 "&mode=books" & _
 "&type=lite" & _
 "&KeywordSearch=" & txtSearch.Text

 ' Issue the request and wait for it to be honored
 Loaded = xdoc.Load(SearchUrl)
 End Sub

4. Add code to the ondataavailable event procedure to respond to the web service data once it is returned. For
example, the following code imports the result through an XML map and displays it in a list:

 Private Sub xdoc_ondataavailable()
 Dim wb As Workbook
 ' Import the results through an XML map into a list.
 Set wb = ThisWorkbook
 wb.XmlImportXml xdoc.XML, wb.XmlMaps("ProductInfo_Map"), True
 End Sub

When the user clicks on the Get Titles button and the preceding code runs, Excel returns control to the user as soon as
the click is done. The list is updated once the web service responds.

The Microsoft SOAP type library does not support asynchronous calls, so you can't use web services that provide only a
SOAP interface asynchronously from Excel. The SOAP tools available with .NET do support asynchronous calls, however,
so if you are programming with Visual Basic .NET outside of Excel, you can make asynchronous SOAP calls.

24.3.4. Reformat XML Results for Excel

One thing you may notice when you return web service results directly to Excel through an XML map is that mixed
content is not automatically formatted. In other words, HTML formatting tags such as and <i> appear as ""
and "<i>" rather than as bold and italic, as shown in Figure 24-13.

Figure 24-13. Excel does not automatically interpret HTML formatting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's no simple way to prevent this problem, but you can fix it using the automatic text formatting features of Excel.
Excel automatically reformats HTML text pasted from the clipboard, so all you have to do is place the data in the
clipboard as HTML, then paste that data back into cells on the spreadsheet.

In Excel, you access the clipboard using the DataObject object, so the following code puts the data from each cell of a
worksheet into the clipboard as HTML, then pastes that data back, causing Excel to correctly interpret HTML formatting:

 Sub TestReformat()
 ' Call helper function to interpret HTML formatting codes.
 ReformatHTML ActiveSheet.UsedRange
 End Sub

 Sub ReformatHTML(rng As Range)
 Dim clip As New DataObject, cell As Range
 For Each cell In rng
 clip.SetText "<html>" & cell.Value & "<html>"
 clip.PutInClipboard
 cell.PasteSpecial
 Next
 End Sub

After you run TestReformat on a worksheet, Excel interprets the HTML formatting codes as if you cut/pasted them from a
web page, as shown in Figure 24-14.

Figure 24-14. HTML formatting after running ReformatHTML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.4. Resources

To learn about Look here

Microsoft Office Web Services Toolkit Search http://www.microsoft.com/downloads for "Web Services Toolkit."

MSXML 4.0 Documentation http://msdn.microsoft.com/library/en-us/xmlsdk/htm/sdk_intro_6g53.asp.

DOMDocument http://msdn.microsoft.com/library/en-
us/xmlsdk/htm/xml_obj_overview_20ab.asp.

IXMLDOMNodeList http://msdn.microsoft.com/library/en-
us/xmlsdk30/htm/xmobjxmldomnodelist.asp.

Google Web Service http://www.google.com/apis/.

Google Web Service description http://api.google.com/GoogleSearch.wsdl.

Amazon Web Service Click on Web Services link at http://www.amazon.com/.

Amazon Web Service description http://soap.amazon.com/schemas3/AmazonWebServices.wsdl.

Representational State Transfer
(REST) http://internet.conveyor.com/RESTwiki/moin.cgi/FrontPage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24. Getting Data from the Web
Today it is hard to remember a time when the Web didn't matter, but it wasn't that long ago that it didn't even exist.
Because Excel was created long before the Web existed, it has adapted as the Web evolved. There are now three main
approaches to retrieving data from the Web:

Web queries

Retrieve data directly from a web page and import that data into a query table on an Excel spreadsheet.
Although this was one of the first web access features added to Excel (introduced in 1997), it is still very useful.

Web services

Execute applications remotely over the Web to return results in XML format. The number of services available
over the Web is growing quickly as this standard is becoming broadly adopted. Web services provide a
standardized way of exchanging parameters and retrieving results over the Websomething that is missing from
web queries .

Database access over the Web

Is now available through most database software. Since the Internet is like any other computer network, this
technique is much the same as database access over a local network and is not covered in this chapter.

This chapter describes how to use web queries and web services to retrieve data from the Web and import it into Excel.
The samples in this chapter demonstrate a variety of programming tasks with these two approaches, including passing
parameters, formatting results, getting data asynchronously, and displaying results through XML maps.

Code used in this chapter and additional samples are available in ch24.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.1. Approaches to Working with .NET
There are three main approaches to using .NET with Excel. You can use .NET to create:

Components that can be used from Excel macros

This approach works with all Excel versions and is much the same as creating COM components for use with
Excel using earlier versions of Visual Basic. The .NET tools automatically generate the type libraries needed to
use .NET objects from COM applications such as Excel.

Standalone applications that use Excel as a component

This approach works best with Excel XP and 2003, since those versions provide the files needed to use Excel
from .NET applications smoothly. In this scenario, the user starts a standalone application to create or modify
Excel wo rkbooks.

Workbook-based applications that run all of their code as .NET

This approach works for Excel 2003 and later. In this scenario, the user opens the workbook, which
automatically loads the .NET assembly containing the application code. The workbook contains a link to this
assembly, so the workbook file (.xls) can be distributed to many different users and locations, while the
assembly (.dll) resides in a single location (for example at a network address).

From the user's standpoint, the main differences between these approaches are how you start the application and what
versions of Excel are supported. From a developer's standpoint, the differences affect how you develop, debug, and
deploy the applications. Even the development tools you need vary somewhat between these approaches as described
in Table 25-1.

Table 25-1. Software requirements for developing between Excel and .NET
To create You need

.NET components for use in
Excel Visual Studio .NET Standard Edition or higher

Standalone .NET applications
that use Excel

Visual Studio .NET Standard Edition or higher, Microsoft Office 2002 or later, and
Primary Interop Assemblies (PIAs)

Excel .NET applications Visual Studio .NET Tools for Office (includes project templates) and Microsoft Office
2003 or later

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.2. Create .NET Components for Excel
If you are an experienced VBA programmer, this is a great way to start learning .NET because you can take advantage
of features built into the .NET Framework in small, incremental steps.

To create a .NET component for use in Excel:

1. From within Visual Studio .NET , create a new class library project using Visual Basic .NET or C#. Visual Studio
creates a folder and template files for the project, as shown in Figure 25-1.

Figure 25-1. A new, empty .NET class library project

2. From the Project menu, choose Add Class. Visual Studio displays the Add New Item dialog box shown in Figure
25-2.

3. Give the new class a descriptive name and click OK. Visual Studio registers the project to interoperate with COM
(the Register for COM Interop selection on the Project Options, Build dialog box) and creates a new, empty code
template for your class as shown in Figure 25-3.

4. Add code to the class library for the objects, properties, and methods you want to use from Excel.

5. Compile the project by selecting Build Solution from the Build menu. Visual Studio builds the class library as a
.NET assembly (.dll) and creates a type library file (.tlb) that allows Excel and other COM applications to use
that assembly. Both of these files are placed in a \bin folder within the project folder created in Step 1.

For example, the NetForExcel project (NetForExcel.sln) includes a simple class that provides a single method that
displays a message passed in as an argument:

' .NET code.
Public Class NetObject
 Public Sub Test(ByVal arg As String)
 MsgBox(arg)
 End Sub
End Class

Figure 25-2. Create a new COM class to contain components for use from Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-2. Create a new COM class to contain components for use from Excel

Figure 25-3. The COM class code template contains the basic elements you need
for a component

The following section shows you how to use this sample .NET component from within Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.3. Use .NET Components in Excel
Once you compile a .NET component with Register for COM Interop enabled, using that component from Excel is simply
a matter of following these steps:

1. From within the Excel VBA Editor, select References from the Tools menu. VBA displays the References dialog
box.

2. Click Browse and navigate to the \bin folder for the .NET component you wish to use. Select the type library
(.tlb) for the component, as shown in Figure 25-4, and click OK to add a reference to that component.

Figure 25-4. Use the .NET component's type library to create a reference to
the component in Excel VBA

3. Click OK to close the References dialog box.

4. Declare an object variable for the .NET class using the New keyword, then call the members of the class.

The components you create using Visual Basic .NET are named using their project name (.NET calls that the namespace
of the component), so you would use the following code to call the NetForExcel project's NetObject created in the
preceding section:

' Excel code
Sub TestNetObj()
 Dim x As New NetForExcel.NetObject
 x.Test "I worked!"
End Sub

Now, if you run the preceding code, Excel uses the type library to start the .NET assembly and invoke the Test method
with a string argument. The .NET component, in turn, displays a message box saying "I worked!"

Though that demonstration isn't very impressive, what you can do with .NET components becomes exciting once you've
learned more about the classes that come with the .NET Framework. For example, you can do some pretty useful things
with even the basic .NET String and Array classes, as shown here:

' .NET code
Public Class NetString

 + COM GUIDS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' A creatable COM class must have a Public Sub New()
 ' with no parameters; otherwise, the class will not be
 ' registered in the COM registry and cannot be created
 ' via CreateObject.
 Public Sub New()
 MyBase.New()
 End Sub

 Public Function Split(ByVal arg As String, _
 Optional ByVal sep As String = " ") As String()
 If Len(sep) <> 1 Then _
 Throw New Exception("Separator must be one character long")
 Return arg.Split(CType(sep, Char))
 End Function

 Public Function Join(ByVal arg() As String, _
 Optional ByVal sep As String = " ") As String
 If IsArray(arg) Then
 If arg.Rank <> 1 Then _
 Throw New Exception("Array must have one dimension")
 Else
 Throw New Exception("First argument must be an array")
 End If
 Return String.Join(sep, arg)
 End Function

 Public Function Sort(ByVal arg As String, _
 Optional ByVal ascending As Boolean = True) As String
 ' Declare an array.
 Dim ar() As String
 ' Break the string up and put it in the array.
 ar = arg.Split(" "c)
 ' Sort the array.
 'ar.Sort(ar)
 Reverse the order if requested.
 If Not ascending Then ar.Reverse(ar)
 ' Convert the array back to a string and return it.
 Return String.Join(" ", ar)
 End Function
End Class

To use the preceding .NET class in code, compile the project and establish a reference to that project in Excel's VBA
Editor, then write code similar to the following:

' Excel code
Sub TestNetString()
 Dim str As String, ar() As String, i As Integer
 Dim NetStr As New NetForExcel.NetString
 str = "Some random text that you'd want to sort."
 Debug.Print NetStr.Sort(str)
 ar = NetStr.Split(str)
 For i = 0 To UBound(ar)
 Debug.Print ar(i)
 Next
End Sub

The preceding code displays the sorted string in the Immediate window, then splits the string into an array and displays
it one word at a time. Since Visual Studio .NET generates a type library for the component and registers it with your
system, you automatically get Intellisense and Auto Complete features when you work with .NET objects in Excel VBA,
as shown in Figure 25-5.

Figure 25-5. .NET objects registered for COM automatically get Intellisense and
Auto Complete in VBA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.3.1. Respond to Errors and Events from .NET Objects

The .NET code in the preceding section included a couple of lines that may be unfamiliar to you:

If Len(sep) <> 1 Then _
 Throw New Exception("Separator must be one character long")

and:

If IsArray(arg) Then
 If arg.Rank <> 1 Then Throw New Exception("Array must have one dimension")
Else
 Throw New Exception("First argument must be an array")
End If

These lines demonstrate Visual Basic .NET's new exception-handling constructs: Throw raises an exception, the error is
created as a New Exception object, and it would be handled by a TRy...Catch structure (not shown) if the method were called
from .NET.

Since this code is called from Excel, however, you handle it using the VBA On Error statement. For example:

' Excel code.
Sub TestNetError()
 Dim ar(1, 1) As String
 Dim NetStr As New NetForExcel.NetString
 ar(0, 0) = "causes": ar(0, 1) = "an": ar(1, 0) = "error"
 On Error Resume Next
 ' Cause error.
 Debug.Print NetStr.Join(ar)
 ' Catch and report error
 If Err Then
 Debug.Print "Error:", Err.Description
 Err.Clear
 End If
 On Error GoTo 0
End Sub

If you run the preceding code, the Join method causes an exception that can be handled in Excel the same way as any
other error. In this case, a message "Error: Array must have one dimension" is displayed in the Immediate window.

Handling events from .NET components in Excel VBA is much the same as handling events from Excel objects: declare
the object variable WithEvents at the module level of an Excel class, initialize the object, and respond to the event in an
event-handler procedure. For example, the following code defines and raises an event in the .NET NetString class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event-handler procedure. For example, the following code defines and raises an event in the .NET NetString class:

' .NET code
Public Class NetString
 ' Declare event.
 Public Event Sorted As EventHandler
 Private m_value As String

 ' Other code omitted.

 Public Function Sort(ByVal arg As String, _
 Optional ByVal ascending As Boolean = True) As String
 ' Declare an array.
 Dim ar() As String, res As String
 ' Break the string up and put it in the array.
 ar = arg.Split(" "c)
 ' Sort the array.
 ar.Sort(ar)
 ' Reverse the order if requested.
 If Not ascending Then ar.Reverse(ar)
 ' Convert the array back to a string and set value property
 m_value = String.Join(" ", ar)
 ' Raise event.
 OnSorted()
 ' Return result
 Return m_value
 End Function

 ' By convention, events are raised from OnXxx procedures in .NET
 Friend Sub OnSorted()
 RaiseEvent Sorted(Me, System.EventArgs.Empty)
 End Sub

 ' Property that returns Sort result (added to illustrate event).
 Public ReadOnly Property Value() As String
 Get
 Return m_value
 End Get
 End Property
End Class

The preceding event occurs any time the Sort method completes a sort. This actually occurs very quickly, so this isn't
the greatest use for an event, but it's clearer to build on this previous example than to start a completely new one. To
handle this event in Excel, add the following code to the class for a worksheet:

' Excel code in a worksheet class.
Dim WithEvents NetStr As NetForExcel.NetString

Private Sub Worksheet_Change(ByVal Target As Range)
 If Target.Address = "A2" Then
 ' Create object if it hasn't been initialized.
 If TypeName(NetStr) = "Nothing" Then _
 Set NetStr = New NetForExcel.NetString
 ' Sort text in range A2.
 NetStr.Sort [a2].Text
 End If
End Sub

Private Sub NetStr_Sorted(ByVal sender As Variant, _
 ByVal e As mscorlib.EventArgs)
 ' When sort is complete, display result in range B2.
 [b2].Value = NetStr.Value
End Sub

Now, you can change the text in cell A2 and the Sorted event displays the result in cell B2 once the sort is complete. A
few points to note here:

VBA can respond only to events from within classesthat includes workbook and worksheet classes, as well as
custom classes (.NET calls these instance classes). You can't use events from modules (.NET calls these static
classes or code modules).

Once you declare a .NET object WithEvents, that component's events appear in the listbox at the top of the Excel
VBA Editor Code window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA Editor Code window.

You can't combine New and WithEvents, so you must initialize the object somewhere in a procedure (as shown in
the earlier Worksheet_Change procedure).

25.3.2. Debug .NET Components

If you've been following along with the preceding example by writing code in Excel and Visual Studio .NET, you've
probably noticed that you can't build the .NET project while Excel has a reference to that project's type library. You
need to close Excel or remove the reference each time you make a change in the .NET project. That's because Visual
Studio .NET can't overwrite the type library while another application is using it.

This makes debugging .NET components from Excel difficult. In fact, it's not a very good practice. It is a much better
practice to add a second, test project to your .NET component solution and make that project the startup project. To
add a test project to the NetForExcel sample, follow these steps:

1. From the File menu, choose Add Project, New Project. Visual Studio .NET display the Add New Project dialog
box.

2. Select the Console Application template from the Visual Basic project types, give the project a descriptive name,
and click OK. Visual Studio .NET creates a folder and template files for the new Windows console application.

3. Right-click on the new project title in the Solution Explorer and select Set as Startup Project from the pop-up
menu as shown in Figure 25-6. Visual Studio .NET makes the project name bold, indicating it is the startup
project.

4. Add code to the test project's Main procedure to test the .NET component.

For example, the following code tests the NetString class from the NetForExcel component created earlier:

' .NET test code
Module Module1
 Dim WithEvents NetStr As New NetForExcel.NetString

 Sub Main()
 Dim ar() As String = {"This", "That", "Other"}
 Dim ar2(1, 1) As String, str As String = "Some more text"
 ar2(0, 0) = "This" : ar2(0, 1) = "That" : ar2(1, 0) = "Other"
 Console.WriteLine(NetStr.Join(ar, ", "))
 Console.WriteLine(NetStr.Sort(str, False))
 ' Cause error.
 Try
 'NetStr.Join("Test, That, Other")
 'NetStr.Join(ar2)
 NetStr.Split(str, " r")
 Catch ex As Exception
 Console.WriteLine("Error: " & ex.Message)
 End Try
 ' Wait for Enter keypress to end.
 Console.Read()
 End Sub

 Private Sub NetStr_Sorted(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles NetStr.Sorted
 Console.WriteLine("Sort event complete. Result: " & NetStr.Value)
 End Sub
End Module

Figure 25-6. Make the test project the startup project for the solution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you run the NetForExcel solution from Visual Studio .NET by pressing F5, Windows starts the test project and displays
the results in a console window, as shown in Figure 25-7.

Figure 25-7. Using a console test project to debug a .NET component before using
it from Excel

Now, you can use Visual Studio .NET's debugging tools to step in to procedures, set breakpoints and watches, and
perform other typical debugging and testing tasks.

25.3.3. Distribute .NET Components

Visual Studio .NET uses setup and deployment projects to create the installation applications you use to distribute .NET
components or any other type of application. These tools are greatly improved over the Visual Basic 6.0 setup wizards,
and there are a number of paths you can take to create an installation program for your .NET components; the
following steps outline one of the possible paths:

1. From the File menu, choose Add Project, New Project. Visual Studio .NET displays the Add New Project dialog
box.

2. Select the Setup and Deployment project type, then select the Setup Wizard from the Templates list. Name the
setup project descriptively and click OK. Visual Studio .NET starts the Setup Wizard to walk you through
creating the project.

3. Follow the steps in the Setup Wizard to install a Windows application and select the Primary Output from
NetForExcel project group in Step 3 of the wizard, as shown in Figure 25-8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NetForExcel project group in Step 3 of the wizard, as shown in Figure 25-8.

4. When you click Finish in the Setup Wizard, Visual Studio .NET creates a folder for the setup project, determines
the dependencies for NetForExcel, and creates a setup project as shown in Figure 25-9.

Figure 25-8. Select the primary output for the project to install

Figure 25-9. Setup project for the NetForExcel component

5. From the Build menu, select Build Solution or "Build setup project to package NetForExcel.dll and
NetForExcel.tlb," and build an installation program to install and register those files on a client's machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NetForExcel.tlb," and build an installation program to install and register those files on a client's machine.

6. The setup project creates Setup.exe, Setup.msi, and Setup.ini files in its \Debug folder by default. Use those
files to test deployment before changing the setup project's configuration to release and rebuilding.

The installation program created using the preceding steps installs the component in the \Program Files folder on the
user's machine and registers the component's type library in the system registry. Excel workbooks that reference this
type library use the system registry to find the component by its GUID (which is part of the code generated
automatically when you create the COM class in .NET).

The installation program also creates an entry in users' application lists so they can uninstall the application using the
Windows Control Panel. In short, it does everything you need it to!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.4. Use Excel as a Component in .NET
Another way for Excel to interact with the .NET world is to program with Excel objects directly in Visual Basic .NET. In
this case, Excel becomes a component for use in a .NET applicationthe reverse of the case just shown.

Using Excel as a component in a .NET application is handy when you want to present application output using the Excel
interfaceas a spreadsheet or chart, for instance.

To create a .NET application that uses Excel as a component:

1. Create a new Windows application project in Visual Studio .NET.

2. From the Project menu, choose Add Reference. Visual Studio .NET displays the Add Reference dialog box. Click
the COM tab. Visual Studio .NET displays the contents of your system's global assembly cache, as shown in
Figure 25-10.

3. Select the Microsoft Excel 11.0 Object Library and click Select, then OK to add the reference to your project.
Visual Studio .NET automatically references the PIA for the Excel object library if it is installed on your system.

4. If the PIA is not installed, Visual Studio .NET creates a new interop assembly and adds it to your project (this is
not what you wantthe PIA is much more reliable). To make sure you are using the PIA, check the Name and Path
properties of the Excel reference. They should appear as shown in Figure 25-11.

5. In code, create an instance of the Excel Application object and use that object's member to perform tasks in
Excel.

Figure 25-10. Adding a reference to the Microsoft Excel object library

Figure 25-11. Check the reference properties to make sure you are using the Excel
PIA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PIA

For example, the following code starts Excel and creates a new workbook:

' .NET Windows form code
Dim WithEvents m_xl As Microsoft.Office.Interop.Excel.Application

Private Sub cmdStartExcel_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStartExcel.Click
 ' If not initialized, create a new instance of the object.
 If IsNothing(m_xl) Then _
 m_xl = New Microsoft.Office.Interop.Excel.Application
 ' Make Excel visible.
 m_xl.Visible = True
 ' Create a new workbook.
 m_xl.Workbooks.Add()
End Sub

The m_xl variable is declared WithEvents so Visual Basic .NET can respond to events that occur in the application. The
cmdStartExcel_Click initializes the Excel Application object if it was not already initialized and then calls the Workbook
collection's Add method to create a new workbook. It is important to note that if Visible is not set to True, all this
happens invisibly in the background, and while that is kind of interesting, it is not usually what you want.

Use the following code to close the Excel application when you are done:

Private Sub cmdQuitExcel_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdQuitExcel.Click
 ' Close the Excel application.
 m_xl.Quit()
 ' Set object reference to Nothing.
 m_xl = Nothing
 ' Force .NET to perform garbage collection.
 System.GC.Collect()
End Sub

The preceding code illustrates a couple of precautions you should take when working with Excel from .NET:

First, you should set the object variable to Nothing after you call Quit. Calling Quit doesn't set m_xl to Nothing and
that can keep the application alive, running in the background.

Second, force .NET to get rid of unused resources by calling System.GC.Collect. .NET manages memory using a
process called garbage collection, and you need to force it to take out the garbage after you've thrown away
Excel. Otherwise, .NET will leave Excel in memory until resources run low and automatic garbage collection
takes place (I think of this as waiting for my son to do the job, rather than doing it myself). You don't want to
call GC.Collect frequently, because it is an expensive operation, but it is great when you want to free very large
objects like Excel.

25.4.1. Work with Excel Objects in .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've got an instance of the Excel Application object, you can use it to get at any of the other objects in the Excel
object library. Visual Basic .NET provides an Imports declaration that you can use to create a shortcut for referring to
objects from a particular library. For example, the following class-level declaration:

Imports Microsoft.Office.Interop

shortens the Excel application declaration to:

Dim WithEvents m_xl As Excel.Application

which is easier to type and read. Notice that you don't use Set to get object references in Visual Basic .NET. For
example, the following code gets a reference to Workbook and Range objects to display powers of 2 on a worksheet:

' .NET code.
Dim wb As Excel.Workbook, rng As Excel.Range
' Create a new workbook.
wb = m_xl.Workbooks.Add()
' Add some data
For i As Integer = 1 To 10
 rng = wb.Worksheets(1).Cells(1, i)
 rng.Value = 2 ^ i
Next

Visual Basic .NET could get rid of Set because it also got rid of default members. In Excel VBA, you can assign a value to
a Range object because the Value property is the default member of the Range object. This is a clearer approach to a
languagedefault members were never a very good idea.

This change can take some getting used to, especially if you don't explicitly declare a type for a variable. For example,
the following .NET code gets a reference to a Range object, but then replaces that reference with an integer:

Dim obj
' Gets a reference to the A1 range object.
obj = wb.Worksheets(1).Cells(1, 1)
' Assigns a number to obj (does not set [A1].Value!)
obj = 42

Because of this, it is a good idea to declare variables with explicit datatypes when programming in Visual Basic .NET.
Using explicit types also enables the Intellisense and Auto Complete features when working with variablesso there are a
lot of good reasons to be explicit!

25.4.2. Respond to Excel Events in .NET

Responding to Excel events in .NET code is done much the same way as in Excel VBA, but with one difference: In .NET,
event procedures are associated with objects using the Handles clause. Excel uses the procedure name to associate an
event with an object. The .NET approach means that a single procedure can handle multiple events.

To respond to Excel events in .NET:

1. Declare a WithEvents variable for the Excel object, providing the events at the class level. For example, the
following code declares a worksheet with events:

Dim WithEvents m_ws As Excel.Workbook

2. Assign the variable an instance of the object for which to handle events. For example, the following code hooks
up the events for the first worksheet in a workbook (created in earlier examples):

m_ws = wb.Worksheets(1)

3. Select the m_ws object from the object list at the top of the Code window and then select an event from the
event list. Visual Studio creates a new, empty event procedure.

4. Write code to respond to the event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Write code to respond to the event.

For example, the following code sorts any string entered in cell A2 and displays the result in B2. It may look familiar,
since it uses the NetString class created earlier to perform the sort:

Private Sub m_wb_SheetChange(ByVal Sh As Object, _
 ByVal Target As Microsoft.Office.Interop.Excel.Range) _
 Handles m_wb.SheetChange
 If Target.Address = "A2" Then
 Dim NetStr As New NetForExcel.NetString
 m_wb.Worksheets(1).Range("B2").Value = NetStr.Sort(Target.Value)
 End If
End Sub

25.4.3. Respond to Excel Exceptions in .NET

In .NET, you handle exceptions using the Visual Basic .NET try...Catch...End Try construct. When .NET receives an exception
from a COM component, such as Excel, it checks the COM exception code (COM identifies exceptions as HRESULTs that
are 32-bit numbers) and tries to map that code to one of the .NET exception classes, such as DivideByZeroException.

If .NET can't map an HRESULT to a .NET exception class, it reports that exception as a COMException. A COMException
includes Source and Message properties that are filled in if they are available, plus it includes the HRESULT as an ErrorCode
property.

When working with Excel from .NET, you will find that most errors are reported as COMExceptions and that the Source and
Message properties are sometimes, but not always, helpful. For example, referring to a worksheet that doesn't exist
causes an COMException with Source equal to "Microsoft.Office.Interop.Excel" and a Message property "Invalid index". But setting a cell
to an invalid value is reported as a COMException with an empty Source property and a Message property set to "Exception from
HRESULT: 0x800A03EC".

The following code illustrates causing, catching, and reporting different types of Excel exceptions in .NET:

Private Sub cmdCauseErrors_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdCauseError.Click
 Try
 ' This worksheet (9) doesn't exist.
 m_xl.ActiveWorkbook.Sheets(9).Range("B2").value = 42
 Catch ex As System.Runtime.InteropServices.COMException
 Debug.WriteLine(ex.Source & " " & ex.Message & " " & Hex(ex.errorcode))
 End Try
 Try
 ' This is an invalid value for a cell.
 m_ws.Range("A3").Value = "=This won't work."
 Catch ex As System.Runtime.InteropServices.COMException
 Debug.WriteLine(ex.Source & " " & ex.Message & " " & Hex(ex.errorcode))
 End Try
 Try
 ' Set breakpoint here and edit a cell in Excel to see error.
 m_xl.ActiveWorkbook.Sheets(1).Range("B3").select()
 ' Can't change a cell while Excel is editing a range.
 m_xl.ActiveWorkbook.Sheets(1).Range("B2").value = 42
 Catch ex As System.Runtime.InteropServices.COMException
 Debug.WriteLine(ex.Source & " " & ex.Message & " " & Hex(ex.errorcode))
 End Try
End Sub

The preceding code catches the COMException that occurs for each deliberately caused error. If you run the code, the
following report will display in the Visual Studio .NET Output window:

Microsoft.Office.Interop.Excel Invalid index. 8002000B
 Exception from HRESULT: 0x800A03EC. 800A03EC
mscorlib Call was rejected by callee. 80010001

As you can see, the Source and Message properties are not always helpful (or even present). In many cases, it is better to
use the ErrorCode that contains the original COM HRESULT.

HRESULTs consist of several parts, but the last 16 bits are the most useful when programming with Excel from .NET;
those 16 bits contain the Excel error code for the error. The following helper function parses an HRESULT and returns
the Excel error code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Excel error code:

' Returns the last 16 bits of HRESULT (which is Err code).
Function GetErrCode(ByVal hresult As Integer) As Integer
 Return hresult And &HFFFF
End Function

That said, Excel assigns the error code 1004 (application error) to most of the exceptions it returns. All of this means
that it is pretty hard to find out what specific error occurred within Excelusually you just know that the operation failed.

Therefore, the best strategy for handling Excel exceptions in .NET is to:

Unitize Excel operationsthat is, try to group operations that use Excel into a single procedure that performs
some atomic operation, such as creating, populating, and saving a workbook.

Call these unitized operations from within a try...Catch structure.

Notify user of a general problem if operation failed.

Avoid user-interactive modes. Operations such as changing spreadsheet cell values can fail if the user is editing
a cell when the programmatic operation occurs. Use the Excel Application object's Interactive property to turn user-
interactive mode on and off.

The following code illustrates the preceding approaches in the context of making some changes to cells on a worksheet.
The Excel operations are unitized in a single procedure, and those operations all run within a TRy...Catch block. User
interaction is turned off at the start of the procedure, then reenabled at the end:

Private Sub cmdChangeCells_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdChangeCells.Click
 If Not SquareCells() Then _
 MsgBox("Excel operation failed.")
End Sub

Private Function SquareCells() As Boolean
 Try
 ' Try to turn off interactive mode.
 m_xl.Interactive = False
 ' For each cell in the active sheet's used range...
 For Each cel As Excel.Range In m_xl.ActiveSheet.UsedRange
 ' Square the value.
 cel.Value = cel.Value ^ 2
 Next
 Catch ex As System.Runtime.InteropServices.COMException
 ' Something happened in Excel.
 Debug.Fail(ex.Source & " " & Hex(ex.errorcode), ex.Message)
 Return False
 Catch ex As Exception
 ' Something happened in .NET (display error while debugging)
 Debug.Fail(ex.Source, ex.Message)
 Return False
 Finally
 Try
 ' Try to turn interactive mode back on.
 m_xl.Interactive = True
 Catch ex As Exception
 ' No need to do anything here.
 End Try
 End Try
 ' Success.
 Return True
End Function

There are a couple of important details to point out here. First, you must turn interactivity back on inside its own
TRy...Catch block. This protects against an unhandled exception if m_xl is not a valid object (perhaps because the user has
closed Excel). Second, if the worksheet contains cells with text, an error will occur, but it will be handled. This may or
may not be what you want to occurthat decision is up to you.

Be careful when using For...Each with the Excel UsedCells collection. Visual Basic .NET doesn't
always recognize UsedCells as a proper collectionin those cases you will encounter a Member
Not Found COM error. To avoid this problem, call UsedCells directly from the
Application.ActiveSheet or Application.Worksheets(index) objects rather than from variables
referencing those objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

referencing those objects.

25.4.4. Distribute .NET Applications That Use Excel

Use the Visual Studio .NET setup and deployment project to create an installation program for applications that use
Excel as a component. (See "Distribute .NET Components," earlier in this chapter, for a walk-through of using the Setup
Wizard.)

The .NET setup tools detect the .NET Framework and Excel PIAs as dependencies of any application that uses Excel as a
component and includes those files with the installation. However, the setup tools do not automatically check for the
installation of Microsoft Excel, or any other Microsoft Office product. You can add required products as a launch
condition in the setup project for your application.

PIAs are available for Excel 2002 and later. However, you can use Visual Studio .NET type library import tools to create
interop assemblies for earlier versions of Excel (they won't work as well as the PIAs, but they will work). All interop
assemblies are tied to a specific version of Excel, so you should check that the required version of Excel is installed on
the user's computer before installing your application and each time your application starts. You can use the following
code to detect which version of Excel is installed:

' Uses the following Imports statement for RegistryKey classes:
Imports Microsoft.Win32
Function GetExcelVer() As String
 ' Define the RegistryKey objects.
 Dim regRoot As RegistryKey, regExcel As RegistryKey, ver As String
 ' Get root registry entry.
 regRoot = Microsoft.Win32.Registry.ClassesRoot
 ' Get the Excel current version registry entry.
 regExcel = regRoot.OpenSubKey("Excel.Application\CurVer")
 ' If regExcel is Nothing, then Excel is not installed.
 If IsNothing(regExcel) Then
 ' Close Registry key.
 regExcel.Close()
 ' Return 0, no version is installed
 ver = "0"
 Else
 ver = regExcel.GetValue("")
 End If
 ' Close registry.
 regExcel.Close()
 ' Return the Excel version.
 Return ver
End Function

It is possible to have a .NET application work with multiple versions of Excel; however, you would have to install interop
assemblies for each version, restrict the features you use based on the version of Excel that is installed, and expend
considerable effort debugging and testing your application for each Excel version.

According to Microsoft, you can distribute the Office PIAs and the .NET runtime as part of
your application royalty free. Of course, you can't distribute Microsoft Excel or Microsoft
Office royalty free. For answers to more subtle questions, you should consult the Microsoft
licensing agreements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.5. Create Excel Applications in .NET
A third and final way for Excel and .NET to interact is through the Visual Studio .NET Tools for Office. This set of tools
includes Visual Studio .NET project templates for Excel and Word. These project templates allow you to link a specific
document to a .NET assembly that loads whenever the user opens that document. The .NET code in the assembly can
control Excel and respond to Excel events as described in the preceding sections.

To create an Excel application in Visual Studio .NET:

1. From the Project menu, choose New, Project. Visual Studio .NET displays the New Project dialog box.

2. Select the Microsoft Office System Projects, Visual Basic Projects project type and Excel Workbook template.
Give the project a descriptive name and click OK. Visual Studio .NET starts the Microsoft Office Project Wizard
to walk you through.

3. Click Finish to create the project folder and empty workbook and code template files.

4. Visual Studio .NET doesn't automatically add the workbook to the project, so it is a good idea to add it at this
point. From the Project menu, choose Add Existing Item and then select the .xls file found in the application
folder.

5. Once the workbook is added to the project, select the workbook in the Solution Explorer and set its Build Action
property to Content. This will ensure that the workbook is distributed with your application if you create an
installation program.

When Visual Studio .NET creates an Excel project, it adds references to the Microsoft Office and Excel PIAs, adds Imports
statements to provide shortcuts to the Office and Excel classes, and generates code to ThisApplication and ThisWorkbook
objects, as shown in Figure 25-12.

Figure 25-12. A newly created Excel project in Visual Studio .NET

Visual Studio .NET links the workbook to the project's assembly through two custom document properties:
_AssemblyLocation0 and _AssemblyName0. The _AssemblyLocation0 property corresponds to the Visual Studio .NET project's
Assembly Link Location property, as shown in Figure 25-13.

You might notice that an Excel project has both a \bin and a \projectname_bin folder. Excel projects write assembly
output first to the \bin folder, then copy that file to the secondary folder. This allows the project to compile even if the
Excel workbook has the assembly open in the secondary folder. Plus it allows the project to be automatically deployed
to a public location every time you build ita process Microsoft calls no-touch deployment .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to a public location every time you build ita process Microsoft calls no-touch deployment .

When you open an Excel workbook that has _AssemblyLocation0 and _AssemblyName0 custom properties, Excel automatically
starts the Office Toolkit Loader add-in (otkloadr.dll). The Office Toolkit Loader add-in then starts the .NET assembly
specified in the AssemblyLocation0 and _AssemblyName0 properties.

Figure 25-13. Setting Assembly Link Location changes the _AssemblyLocation0
custom document property in the Excel workbook

25.5.1. Set .NET Security Policies

In order for the Office Toolkit Loader to start the assembly, that assembly must have Full Trust permissions on the
user's machine. The Microsoft Office Project Wizard automatically sets this permission on your machine, but if you move
the project or deploy it, you will need to set the permission using the .NET Configuration Tool.

To set Full Trust permissions for the Excel project's assembly on your machine:

1. From the Control Panel, choose Administrative Tools and run the .NET Framework Wizard's utility for the most
recent version of the .NET Framework installed on your machine.

2. Select Trust an Assembly Wizard. The Trust an Assembly Wizard starts and displays Step 1. Click Next.

3. Enter the address of the assembly (.dll), as shown in Figure 25-14, and click Next.

4. Set the level of trust to Full Trust, as shown in Figure 25-15, and click Next and then Finish to update your .NET
security configuration.

Figure 25-14. Set the location and name of the Excel application assembly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-15. Set Full Trust for the Excel application assembly

You can view the .NET Framework security settings for .NET Office projects by starting the .NET Configuration
Administrative Tool and expanding the My Computer, Runtime Security Policy, User, Code Groups, All_Code,
Office_Projects treeview item, as shown in Figure 25-16.

Figure 25-16. Viewing the .NET security policies for Excel .NET applications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.5.2. Respond to Events in .NET Applications

The default Visual Studio .NET Excel project contains object declarations for the Excel Application and Workbook objects
using the WithEvents keyword. That plus the initialization code in the _Startup procedure enable event handling for those
two objects:

Public Class OfficeCodeBehind

 Friend WithEvents ThisWorkbook As Excel.Workbook
 Friend WithEvents ThisApplication As Excel.Application

#Region "Generated initialization code"
 ' Default constructor.
 Public Sub New()
 End Sub

 ' Required procedure. Do not modify.
 Public Sub _Startup(ByVal application As Object, ByVal workbook As Object)
 ThisApplication = CType(application, Excel.Application)
 ThisWorkbook = CType(workbook, Excel.Workbook)
 End Sub
' Remaining class definition omitted here...

You can use events that occur for the Application and Workbook objects by selecting the object and event from the listboxes
at the top of the Visual Studio .NET Code window as you did in previous sections. If you want to add an Excel object to
the objects and events lists, declare an object variable WithEvents and initialize the object somewhere in code. For
example, the following additions (in bold) create an ActiveWorksheet object that responds to events:

Friend WithEvents ThisWorkbook As Excel.Workbook
Friend WithEvents ThisApplication As Excel.Application
Friend WithEvents ActiveWorksheet As Excel.Worksheet

' Called when the workbook is opened.
Private Sub ThisWorkbook_Open() Handles ThisWorkbook.Open
 ' Activate a worksheet.
 ThisApplication.Sheets("Sheet1").activate()
 ' Set the ActiveSheet object
 If ThisApplication.ActiveSheet.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(ThisApplication.ActiveSheet, Excel.Worksheet)
End Sub

Private Sub ThisWorkbook_SheetActivate(ByVal Sh As Object) _
 Handles ThisWorkbook.SheetActivate
 ' Change active worksheet
 If Sh.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(Sh, Excel.Worksheet)
End Sub

The preceding code creates an ActiveWorksheet object and hooks the active worksheet in Excel to that object's events.
Whenever the active worksheet changes, the SheetActivate event updates the ActiveWorksheet object, ensuring that it is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Whenever the active worksheet changes, the SheetActivate event updates the ActiveWorksheet object, ensuring that it is
always current. If you add the following event procedure, any value entered in cell A1 is automatically squared and
displayed in cell A2:

Private Sub ActiveWorksheet_Change(ByVal Target As Excel.Range) _
 Handles ActiveWorksheet.Change
 ' Square value entered in range A1 and displayed in A2.
 If Target.Address = "A1" Then
 ActiveWorksheet.Range("A2").Value = Target.Value ^ 2
 End If
End Sub

This approach works well for built-in Excel objects such as Worksheets and Charts, but when you add controls to a
worksheet, you must use the code template's FindControl method to get the control so you can hook up its events. The
FindControl method is overloaded--meaning it comes in two versions, as shown here:

' Returns the control with the specified name
' on ThisWorkbook's active worksheet.
Overloads Function FindControl(ByVal name As String) As Object
 Return FindControl(name, CType(ThisWorkbook.ActiveSheet, Excel.Worksheet))
End Function

' Returns the control with the specified name on the specified worksheet.
Overloads Function FindControl(ByVal name As String, _
 ByVal sheet As Excel.Worksheet) As Object
 Dim theObject As Excel.OLEObject
 Try
 theObject = CType(sheet.OLEObjects(name), Excel.OLEObject)
 Return theObject.Object
 Catch Ex As Exception
 ' Returns Nothing if the control is not found.
 End Try
 Return Nothing
End Function

Because FindControl is overloaded, you can call the method with one or two arguments. If you provide only the object
name, FindControl assumes that the control is on the active worksheet. Overloading is Visual Basic .NET's way of dealing
with optional arguments. The following code (in bold) hooks up events for the cmdReformat button found on Sheet1:

Friend WithEvents cmdReformat As MSForms.CommandButton

' Called when the workbook is opened.
Private Sub ThisWorkbook_Open() Handles ThisWorkbook.Open
 ' Activate the worksheet the control is found on.
 ThisApplication.Sheets("Sheet1").activate()
 ' Set the ActiveSheet object
 If ThisApplication.ActiveSheet.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(ThisApplication.ActiveSheet, Excel.Worksheet)
 ' Find the control on the sheet and hook up its events.
 cmdReformat = CType(FindControl("cmdReformat"), _
 MSForms.CommandButton)
End Sub

Notice that you need to convert the type of object returned by FindControl into a CommandButton type. That is because the
CommandButton class exposes a full set of events (Click, MouseDown, DragOver, etc.) while the OLEObject class provides only
GotFocus and LostFocus events. Once you've hooked up the control's events, you can write event procedures for that
control, as shown here:

Private Sub cmdReformat_Click() Handles cmdReformat.Click
 ReformatHTML(ActiveWorksheet)
End Sub

25.5.3. Debug Excel .NET Applications

Excel projects do not report errors that occur in Excel the way you might expect. Instead of halting execution when an
error occurs, Excel projects just continue on as if nothing happened. This can be very confusing since the code exits the
procedure where the error occurred and no warning is displayed. A good way to see this behavior is to try to activate a
worksheet that doesn't exist. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet that doesn't exist. For example:

Private Sub ThisWorkbook_Open() Handles ThisWorkbook.Open
 ThisApplication.Sheets("doesn't exist").activate() ' Error! Code exits here.
 ' Set the ActiveSheet object
 If ThisApplication.ActiveSheet.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(ThisApplication.ActiveSheet, Excel.Worksheet)
 ' Find the control on the sheet and hook up its events.
 cmdReformat = CType(FindControl("cmdReformat"), MSForms.CommandButton)
End Sub

In the preceding code, ActiveWorksheet and cmdReformat are never set because Excel can't find the worksheet to activate.
The project keeps running, though, and you're just left to wonder why none of your event procedures are working.

You can prevent this by telling Visual Studio .NET to break into the debugger when exceptions are thrown, as described
in the following steps:

1. From the Debug menu, choose Exceptions. Visual Studio .NET displays the Exceptions dialog box.

2. Select Common Language Runtime Exceptions and under "When the exception is thrown," select "Break into the
debugger," as shown in Figure 25-17. Then click OK.

Figure 25-17. Set "Break into the debugger" to detect exceptions in Excel projects

Once you tell Visual Studio .NET to break on all runtime exceptions, you'll start seeing exceptions that are handled as
well those that aren't. Two handled file-not-found exceptions occur every time an Excel project starts, as shown in
Figure 25-18.

Figure 25-18. This (handled) exception occurs twice every time an Excel project
starts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

starts

You can ignore these handled exceptionsclicking Continue a couple times each time you start is a little annoying, but at
least you can catch code that doesn't work!

Another way to detect exceptions, without breaking for all of them, is to add try...Catch blocks to your code. The FindControl
method actually does this, but it omits a useful technique for reporting exceptions while debugging. It's a good idea to
add a Debug.Fail statement to the code template's FindControl method, as shown here (in bold):

Overloads Function FindControl(ByVal name As String, _
 ByVal sheet As Excel.Worksheet) As Object
 Dim theObject As Excel.OLEObject
 Try
 theObject = CType(sheet.OLEObjects(name), Excel.OLEObject)
 Return theObject.Object
 Catch Ex As Exception
 ' Report the exception.
 Debug.Fail(Ex.Message, Ex.ToString)
 End Try
 Return Nothing
End Function

Now, FindControl displays an error message during debugging if a control is not found, rather than just continuing on.
Debug.Fail is especially useful since it doesn't affect your released applicationthe .NET Framework disables the Debug class
in code that is built for release.

Excel automatically loads the assembly associated with a workbook when you open that
workbook. If the assembly has errors, or if you just want to bypass loading the assembly,
hold the Shift key down while opening the workbook. That prevents Excel from running the
startup code and loading the assembly.

25.5.4. Display Forms

Excel projects can use Windows forms to gather information and display results. To create a Windows form in Visual
Studio .NET for use from Excel, follow these steps:

1. From the Project menu, choose Add Windows Form. Visual Studio .NET displays the Add New Item dialog box.

2. Enter a name for the form and click OK. Visual Studio .NET creates a new Windows form class and displays the
class in the Designer.

3. Use the Designer to add controls to the form; then switch to the Code window. Unlike previous versions of
Visual Basic, Visual Basic .NET describes the entire form in terms of code. The form and control properties are
all maintained in the "Windows Form Designer generated code" region of the form's class.

4. In order to enable the form to interact with Excel, add the following lines to the generated code (shown in
bold):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bold):

Imports Excel = Microsoft.Office.Interop.Excel

Public Class SimpleForm
 Inherits System.Windows.Forms.Form

 Dim xlCode As OfficeCodeBehind

#Region " Windows Form Designer generated code "

 Public Sub New(ByVal target As OfficeCodeBehind)
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call
 ' Get the OfficeCodeBehind class that created this form
 ' (used to return responses to Excel).
 xlCode = target
 End Sub
 ' Remainder of class omitted here...

5. Within the form's event procedures, use the xlCode object created in Step 4 to interact with Excel. For example,
the following code squares each of the values in the active worksheet when the user clicks the Square Values
button:

Private Sub cmdSquare_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSquare.Click
 ' If SquareCells succeeds, then close this form.
 If SquareCells() Then Me.Close()
End Sub

Private Function SquareCells() As Boolean
 Try
 ' For each cell in the active sheet's used range...
 For Each cel As Excel.Range In _
 xlCode.ThisWorkbook.ActiveSheet.UsedRange
 ' Square the value.
 cel.Value = cel.Value ^ 2
 Next
 Catch ex As System.Runtime.InteropServices.COMException
 ' Something happened in Excel.
 Debug.Fail(ex.Source & " " & Hex(ex.errorcode), ex.Message)
 Return False
 Catch ex As Exception
 ' Something happened in .NET (display error while debugging)
 Debug.Fail(ex.Source, ex.Message)
 Return False
 End Try
 ' Success.
 Return True
End Function

6. Write code in the OfficeCodeBehind class to create the form and display it. For example, the following code creates
a new form based on the SimpleForm class and displays it from Excel:

' In OfficeCodeBehind class.
Private Sub cmdSquare_Click() Handles cmdForm.Click
 ' Create a new form object.
 Dim frm As New SimpleForm(Me)
 frm.ShowDialog()
End Sub

The preceding procedure passes the OfficeCodeBehind class instance to the form's constructor in the code New
SimpleForm(Me). The form keeps that instance as the class-level xlCode variable defined in Step 4.

The .NET Framework provides two methods used to display forms: ShowDialog displays forms modally; the form stays on
top and must be closed before the user returns to Excel. Show displays forms nonmodally; the form may appear in front
of or behind the Excel window, depending on which window has focus.

When working with Excel, you'll usually want to display Windows forms modally (using ShowDialog). Exceptions to this
rule might include cases in which you want to display some output that you want to keep around, such as a floating
toolbar or a Help window. In these cases, you can use the Show method combined with the TopMost property to keep the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

toolbar or a Help window. In these cases, you can use the Show method combined with the TopMost property to keep the
nonmodal form displayed on top of Excel.

For example, the following code displays a new form based on the SimpleForm class nonmodally but keeps it on top of the
other windows:

Private Sub cmdSquare_Click() Handles cmdForm.Click
 ' Create a new form object.
 Dim frm As New SimpleForm(Me)
 ' Show the form nonmodally but keep it on top.
 frm.TopMost = True
 frm.Show()
End Sub

25.5.5. Distribute Excel .NET Applications

One of the big advantages of Excel .NET applications is that they can be easily distributed through a network. Just set
the project Assembly Link Location property to a network address and distribute the Excel workbook that uses the
assembly. Whenever anyone uses the workbook, the assembly will then be loaded from that network location.

Before you can distribute applications in this way, however, you need to make sure your users meet the following
requirements:

They must be using Excel 2003 or later. Prior versions of Excel are not supported for Excel .NET applications.

The Office PIAs must be installed on the user's machine.

The .NET Framework Version 1.1 runtime must be installed.

The user's .NET security policy must specify Full Trust for the network address from which the assembly is
distributed.

The first two requirements are best handled using the Office Resource Kit's Custom Installation Wizard or Custom
Maintenance Wizard. You can use those tools to create a chained installation that calls subsequent installation
programs, such as the setup for Excel .NET application prerequisites and security policy settings.

The .NET setup and deployment projects detect the Office PIAs and .NET Framework as dependencies of the Excel
application. According to the Visual Studio .NET Tools for Office documentation, you shouldn't distribute the PIAs
through your setup program (instead, use the Office setup to do this as mentioned earlier). Special steps for creating
an installation program for Excel .NET application prerequisites include:

1. Exclude the PIAs from the setup project. These are added as dependencies by default.

2. Optionally, exclude the Primary Output (projectname.dll) from the installation. Usually, you'll want to distribute
the assembly from a network address, rather than installing it on client machines where it is harder to update.

3. Create a batch file, script, or Windows installer to set the client's .NET security policy to enable the assembly to
load from its network address.

A simple way to set security policies on a client is to use a batch file that calls the .NET utility caspole.exe. The following
batch file assigns Full Trust to the network location \\wombat2\SharedDocs\bin:

REM Adds FullTrust for \\wombat2\Sharedocs\bin location.
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp off -m -ag
LocalIntranet_Zone -url \\wombat2\shareddocs\bin* FullTrust -n
"Excel Project Assemblies" -d "Share point for .NET code running in
Office 2003 applications."
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp on

You can also use caspole.exe to remove a security policy, as shown here:

REM Removes FullTrust for \\wombat2\Sharedocs\bin location.
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp off -remgroup
"Excel Project Assemblies"
%WINDIR%\Microsoft.NET\Framework\v1.1.4322\caspol -pp on

Another way to distribute security policies is by using the .NET configuration utility to generate a Windows installer file
(.msi) for a group policy. To do this, follow these steps:

1. Configure your machine with the security policies you want to deploy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Configure your machine with the security policies you want to deploy.

2. Start the .NET configuration utility for the current version of the .NET Framework.

3. Select the Runtime Security Policy item in the treeview and click Create Deployment Package as shown in
Figure 25-19.

Figure 25-19. Creating a Windows installer for .NET security policies

4. Follow the steps in the wizard to create an .msi file containing the security policies to deploy (Figure 25-20).

5. Click Next, then Finish to create the Windows installer file (.msi).

Once you've created the .msi file, you can deploy that policy to your enterprise by using the Group Policy Editor snap-in
from the Microsoft Management Console (mmc.exe) or by installing the .msi file individually on client computers.

Figure 25-20. Choose the policy level to deploy and enter a filename to create

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.5.6. Migrate to .NET

If you are an experienced VBA programmer, you've got a good start on learning Visual Basic .NET; however, there are
significant language differences, so be prepared for a learning curve and don't expect to be able to cut and paste code
from an Excel VBA project into Visual Basic .NET and have the code run.

Existing Excel VBA code may provide a template for Visual Basic .NET code, but Visual Basic .NET is really a different
language from Excel VBA. There are large as well as subtle differences. If you are new to Visual Basic .NET, you will
save a great deal of time by buying and reading one of the many books on Visual Basic .NET. One of the best, in my
opinion, is Programming Microsoft Visual Basic 2005 by Francesco Balena (Microsoft Press).

The following sections list a few recommendations that may make your transition easier.

25.5.6.1. Be explicit

I've already mentioned that .NET doesn't support VBA's concept of a default property. If you are going to set the value
of an object, you must use the Value property (or its equivalent).

Being explicit also applies to object references. It is much easier to program in .NET if you are using a specific object
type, such as Worksheet, rather than the generic Object type. Using the specific object enables the Intellisense and Auto
Complete features of .NET and helps detect inadvertent errors, such as incorrect variable assignments.

In many cases, Excel methods return generic object types that should be converted to the expected, more specific type.
Use CType to perform this conversion, but be sure to check if the object can be converted before performing the
conversion. For example, the following code checks if the passed-in argument Sh is a Worksheet before performing the
conversion:

Private Sub ThisWorkbook_SheetActivate(ByVal Sh As Object) _
 Handles ThisWorkbook.SheetActivate
 If Sh.Type = Excel.XlSheetType.xlWorksheet Then _
 ActiveWorksheet = CType(Sh, Excel.Worksheet)
End Sub

Trying to convert an object to an incompatible type causes a runtime error.

In .NET, everything is an object. Even simple types like strings and integers are their own classes derived from .NET's
base object type. At first, this might seem cumbersome, but the consistency and logic of this approach pay huge
dividends.

25.5.6.2. Pass arguments by value

By default in VBA, procedures pass arguments by reference. The default in .NET is to pass arguments by value. If you
cut and paste code from VBA, .NET will add ByVal to unqualified argument definitions, thus changing how the arguments
are passed.

25.5.6.3. Collections start at zero

The index of the first element of any .NET collection is zero. For Excel objects, the first element of any collection is 1.

25.5.6.4. Data access is through ADO.NET

.NET provides access to databases, XML data, and in-memory data tables through ADO.NET, which is significantly
different from prior data-access techniques. Backward-compatibility is provided for ADO data binding, but the best
advice here is to pick up a good book on the subject and start learning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25.6. Resources
Additional information about the topics in this section is available from the following online sources:

Topic Source

Converting VBA code to .NET Search http://msdn.microsoft.com for "Converting code from VBA to
Visual Basic .NET."

Structure of COM HRESULTs Search http://msdn.microsoft.com for "Structure of COM error codes."

Configuring .NET assembly security Search http://msdn.microsoft.com for "How to: grant permissions to
folders and assemblies."

Visual Studio .NET Tools for Office

Visit http://msdn.microsoft.com/vstudio/office/ or
http://msdn.microsoft.com/vstudio/howtobuy/officetools/.

Creating Excel .NET applications

Search http://msdn.microsoft.com for
"Creating Office solutions."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 25. Programming Excel with .NET
Visual Basic .NET is Microsoft's next generation of the Basic language. The name change marks another milestone in the
evolution of Basic: BASICA, QuickBasic, Visual Basic, and Visual Basic .NET each mark distinct changes in underlying
technology. This latest change marks the graduation from the Windows Common Object Model (COM) in Visual Basic to
the .NET Framework in Visual Basic .NET.

.NET is a Windows technology. It is not supported on the Macintosh.

The .NET Framework solves a lot of the shortcomings in COMit has a more complete security model; provides a well-
organized library of objects for working with HTTP, XML, SOAP, encryption, and other things; is fundamentally object-
oriented; protects against memory leaks and corruption; promotes self-describing codegosh, I'm starting to sound like
a commercial. In short, .NET is the future for programming Windows.

Now the bad news: Excel is (and probably always will be) a COM application. This means that you have to take special
steps if you want to use .NET components from Excel or if you want to program Excel from Visual Basic .NET.

But back to the good news: Microsoft provides many tools for making the transition between COM and .NET as easy as
possible. In this chapter, you will learn how to use those tools both to take advantage of .NET from Excel and vice
versa.

Code used in this chapter and additional samples are available in ch25.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.1. Security Layers
When it's cold you dress in layers , and security works the same way. The outer layer is a firewall, preventing attacks
from the Internet. Next, virus detection software scans permitted attachments and other files from bringing in malicious
code. Then, operating system security defines users and their permissions. Finally, Excel provides its own security
layer.

Data most at risk is that which is shared outside of these layers, such as a workbook posted on a public server. In that
case, Excel becomes the primary security layer. Of course not all data needs the same level (or type) of protection.
Therefore, Excel itself provides layers through these security approaches:

Password protection and encryption control read and write access to workbooks.

Worksheet protection password-protects items within a workbook and alternately can authorize changes based
on user lists.

User-based permissions allow authors to limit the rights of others to read, change, print, copy, or distribute a
document. Permissions can also set an expiration date for a document.

Digital signatures identify the author of a document, ensuring that a document is the authentic originalnot a
modified or spoof copy. Signatures can also be applied to macros and ActiveX controls to ensure their code is
from a trusted source.

Macro security levels determine what level of trust is required before Excel will run code included in worksheets,
templates, add-ins, or Smart documents.

ActiveX control security levels similarly limit which controls Excel will trust.

The Office Anti Virus API provides an interface for antivirus software to scan documents for malicious code
before they are opened.

The custom installation wizard permits administrators to configure which security options are enabled during
installation on users' machines.

These security approaches can be combined to provide a high level of assurance while still allowing files to be shared,
macros to be run, and (ultimately) work to be done. The rest of this chapter discusses each of these approaches, along
with Windows file security, then provides a list of common security tasks and describes how you complete those tasks
by combining Excel security features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.10. Worksheet Protection Members
Protecting a worksheet can prevent changes to locked cells and other items on the worksheet. The Worksheet object has
135 members. The following Worksheet members deal with protection; other Worksheet members are described in Chapter
9:

 Protect
 ProtectContents
 ProtectDrawingObjects
 Protection
 ProtectionMode
 ProtectScenarios
 Unprotect

worksheet.Protect([Password], [DrawingObjects], [Contents],
[Scenarios], [UserInterfaceOnly], [AllowFormattingCells],
[AllowFormattingColumns], [AllowFormattingRows],
[AllowInsertingColumns], [AllowInsertingRows],
[AllowInsertingHyperlinks], [AllowDeletingColumns],
[AllowDeletingRows], [AllowSorting], [AllowFiltering],
[AllowUsingPivotTables])

Protects a worksheet and sets options determining which items on the worksheet are protected. The arguments to this
method correspond to the settings on the Protect Sheet dialog box shown in Figure 26-7.

Argument Settings

Password The password required to unprotect the worksheet.

DrawingObjects
True protects graphic objects such as command buttons and
shapes on the worksheets; False does not protect. Default
is True.

Contents True protects the locked cells on the worksheet; False does
not protect. Default is True.

Scenarios True protects scenarios on the worksheets; False does not
protect. Default is True.

UserInterfaceOnly

True protects the worksheet from changes made through
the Excel interface, but allows macros to make changes to
protected items; False applies the protection to both types
of changes. Default is False.

AllowFormattingCells, AllowFormattingColumns,
AllowFormattingRows, AllowInsertingColumns, AllowInsertingRows,
AllowInsertingHyperlinks, AllowDeletingColumns, AllowDeletingRows,
AllowSorting, AllowFiltering, AllowUsingPivotTables

If the contents are protected, then setting any of these
arguments to True enables that task, such as formatting
cells, sorting, etc. The default for each of these is False.

Use the Protect method arguments to selectively protect aspects of the workbook. For example, the following code
protects only the drawing objects (which includes control objects like command buttons and text boxes) on a
worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 ws.Protect "Excel2003", True, False, False

The preceding code protects the controls on a worksheet. Don't confuse that with the UserInterfaceOnly argument, which
permits macros to make changes to protected items. For example, the following code protects a worksheet, but allows
macros to change cell values, insert rows, and make other changes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

macros to change cell values, insert rows, and make other changes:

 ws.Protect "Excel2003", , True, , True
 ws.Range("A1").Value = 42

Since UserInterfaceOnly is True in the preceding code, the macro can change the value of cell A1; however, the user can't
change that cell.

worksheet.ProtectContents

Returns True if the worksheet's contents are protected; otherwise, returns False. The following code displays the types
of protection applied to a worksheet in the Immediate window:

 Set ws = ThisWorkbook.Sheets("Protection")
 Debug.Print "Protections on workbook:"
 Debug.Print "Contents?", "Controls?", "UI?", "Scenarios?"
 Debug.Print ws.ProtectContents, ws.ProtectDrawingObjects, _
 ws.ProtectionMode, ws.ProtectScenarios

worksheet.ProtectDrawingObjects

Returns True if the worksheet's drawing objects are protected; otherwise, returns False.

worksheet.Protection

Returns a Protection object containing the protection property settings. See the section "Protection Members," later in this
chapter, for a complete description.

worksheet.ProtectionMode

Returns True if the UserInterfaceOnly argument was set to True when the worksheet was protected; otherwise, returns
False.

worksheet.ProtectScenarios

Returns True if the worksheet's scenarios are protected; otherwise, returns False.

worksheet.Unprotect([Password])

Removes protection from a worksheet.

Argument Settings

Password The password used to protect the worksheet

The following code removes the protection from a worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code removes the protection from a worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 ws.Unprotect "Excel2003"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.11. Chart Protection Members
Protecting a chart can prevent changes its appearance and data. The Chart object has 148 members. The following Chart
members deal with protection; other Chart members are detailed by task in other sections and chapters. Members with
differences from the Worksheet protection members (shown in bold) are covered in the following reference section:

Protect ProtectContents

ProtectData ProtectDrawingObjects

ProtectFormatting ProtectGoalSeek

ProtectionMode ProtectSelection

Unprotect

chart.Protect([Password], [DrawingObjects], [Contents],
[Scenarios], [UserInterfaceOnly])

The Protect method provides fewer arguments for the Chart object than for the Worksheet object.

Argument Settings

Password The password required to unprotect the chart.

DrawingObjects True protects Shape objects drawn on the chart; False does not protect. Default is True.

Contents True protects the chart. Default is True.

Scenarios This argument is ignored for charts.

UserInterfaceOnly True protects the chart from changes made through the Excel interface, but allows macros to make
changes to protected items; False applies the protection to both types of changes. Default is False.

The following code protects a chart with a password:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.Protect "Excel2003"

chart.ProtectData [= setting]

Sets or returns whether or not the user can change series formulas on the chart. Default is False. This setting operates
independent of the other protection settings. The following code prevents changes to the way series are calculated on a
chart:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.ProtectData = True

chart.ProtectGoalSeek [= setting]

Sets or returns whether or not the user can change underlying charted values by clicking and dragging series data
points on the chart. This setting operates independent of the other protection settings. The following code prevents the
user from changing data by modifying the chart:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user from changing data by modifying the chart:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.ProtectGoalSeek = True

chart.ProtectSelection [= setting]

Sets or returns whether or not the user can select items on the chart. This setting operates independent of the other
protection settings. The following code prevents the user from selecting items on the chart and thus prevents changes:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.ProtectSelection = True

chart.UnProtect([Password])

Removes protection from a chart. Does not affect the ProtectData, ProtectGoalSeek, or ProtectSelection settings of a chart.
Those properties must be reset individually. The following code removes all protections from a chart:

 Set chrt = ThisWorkbook.Sheets("Protected Chart")
 chrt.Unprotect "Excel2003"
 chrt.ProtectData = False
 chrt.ProtectGoalSeek = False
 chrt.ProtectSelection = False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.12. Protection Members
Use the Worksheet objects Protection method to get a reference to the Protection object. The Protection object has the following
members:

AllowDeletingColumns AllowDeletingRows

AllowEditRanges AllowFiltering

AllowFormattingCells AllowFormattingColumns

AllowFormattingRows AllowInsertingColumns

AllowInsertingHyperlinks AllowInsertingRows

AllowSorting AllowUsingPivotTables

The Protection object provides a set of read-only properties that describe the types of protection in effect on a worksheet.
These settings correspond to the settings in the Protect Sheet dialog box and to the arguments used in the Worksheet
object's Protect method. For example, the following code displays a report on the Protection property settings in the
Immediate window:

 Set ws = ThisWorkbook.Sheets("Protection")
 Set prot = ws.Protection
 Debug.Print "Can delete:", "Columns?", "Rows?"
 Debug.Print , prot.AllowDeletingColumns, prot.AllowDeletingRows
 Debug.Print "Can:", "Filter?", "Sort?", "Use Pivot Tables?"
 Debug.Print , prot.AllowFiltering, prot.AllowSorting, prot.AllowUsingPivotTables
 Debug.Print "Can format:", "Cells?", "Columns?", "Rows?"
 Debug.Print , prot.AllowFormattingCells, prot.AllowFormattingColumns, _
 prot.AllowFormattingRows
 Debug.Print "Can insert:", "Columns?", "Rows?", "Hyperlinks?"
 Debug.Print , prot.AllowInsertingColumns, prot.AllowInsertingRows, _
 prot.AllowInsertingHyperlinks

You also use the Protection object to get a reference to the AllowEditRanges object, which lets you set user-level permissions
on a worksheet.

protection.AllowDeletingColumns

True if the user can delete columns on the worksheet; otherwise, returns False.

protection.AllowDeletingRows

True if the user can delete rows on the worksheet; otherwise, returns False.

protection.AllowEditRanges

Returns an AllowEditRanges collection that lets you enable user-based permissions on a worksheet. See the next section,
"AllowEditRange and AllowEditRanges Members," for more information.

protection.AllowFiltering

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True if the user can filter columns on the worksheet; otherwise, returns False.

protection.AllowFormattingCells

True if the user can format individual cells on the worksheet; otherwise, returns False.

protection.AllowFormattingColumns

True if the user can format columns on the worksheet; otherwise, returns False.

protection.AllowFormattingRows

True if the user can format rows on the worksheet; otherwise, returns False.

protection.AllowInsertingColumns

True if the user can insert columns on the worksheet; otherwise, returns False.

protection.AllowInsertingHyperlinks

True if the user can insert hyperlinks on the worksheet; otherwise, returns False.

protection.AllowInsertingRows

True if the user can insert rows on the worksheet; otherwise, returns False.

protection.AllowSorting

True if the user can sort rows on the worksheet; otherwise, returns False.

protection.AllowUsingPivotTables

True if the user can use pivot tables on the worksheet; otherwise, returns False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.13. AllowEditRange and AllowEditRanges Members
Use the Protection object's AllowEditRanges property to get a reference to the AllowEditRanges collection. The AllowEditRanges
collection and AllowEditRange object provide the following members. Key members (shown in bold) are covered in the
following reference section:

Add

1
ChangePassword

Count1 Delete

Range Title

Unprotect Users

1 Collection only

Use the AllowEditRanges collection to create ranges that allow edits by specific users. Excel prevents changes to ranges of
cells that are protected and locked. The AllowEditRanges settings automatically unlock ranges of cells for the users included
in the user-access list.

You must remove protection from a worksheet before you can add user-level permissions. For example, the following
code unprotects a worksheet, creates a range that allows user-level permissions, and then restores protection:

 Dim ws As Worksheet, ual As UserAccessList, aer As AllowEditRange, _
 usr As UserAccess
 Set ws = ThisWorkbook.Sheets("Protection")
 ws.Unprotect "Excel2003"
 Set aer = ws.Protection.AllowEditRanges.Add("Edit Range", ws.[a1:c4])
 Set usr = aer.Users.Add("Power Users", True)
 ws.Protect "Excel2003"

alloweditranges.Add(Title, Range, [Password])

Creates and names a range that allows user-level permissions. Returns an AllowEditRange object.

Argument Settings

Title The name for the range. This name must be unique among the edit ranges in the worksheet.

Range The Range object to allow edits on.

Password The password the users not in the user-access list must enter before they can edit the range. Users that
are in the range's user-access list are not prompted for the password.

alloweditrange.ChangePassword(Password)

Changes an existing password or sets a new password for an edit range.

Argument Settings

Password The new password that users must enter before they can edit the range

alloweditrange.Delete()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alloweditrange.Delete()

Removes an edit range from a worksheet. For example, the following code deletes all the edit ranges in a worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 For Each aer In ws.Protection.AllowEditRanges
 aer.Delete
 Next

alloweditrange.Range

Returns the Range object that an edit range represents. For example, the following code displays the title and address
for each edit range in a worksheet:

 Set ws = ThisWorkbook.Sheets("Protection")
 For Each aer In ws.Protection.AllowEditRanges
 Debug.Print aer.Title, aer.Range.Address
 Next

alloweditrange.Title

Returns the name given to an edit range.

alloweditrange.Unprotect([Password])

Unlocks the range of cells specified by the edit range. After an edit range is unlocked, users can edit the range whether
or not they are included in the range's user-access list and whether or not the worksheet is protected.

Argument Settings

Password The password used when creating the edit range.

alloweditrange.Users

Returns a reference to the UserAccessList collection for the edit range. Use this object to add users and groups of allowed
users to the edit range. See "UserAccess and UserAccessList Members," next, for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.14. UserAccess and UserAccessList Members
Use the AllowEditRange object's Users property to get a reference to the UserAccessList collection. The UserAccessList collection
and UserAccess object provide the following members. Key members (shown in bold) are covered in the following
reference section:

Add

1
AllowEdit

Count1 Delete

DeleteAll

1
Name

1 Collection only

Use the UserAccessList collection to add users to the user-access list of an edit range on a protected worksheet. You can
add individual users or groups to the user-access list, but the names must be valid user or group names for your
system. For example, the following code adds the built-in Users group to the access list for an edit range:

 Dim ws As Worksheet, ual As UserAccessList, aer As AllowEditRange, _
 usr As UserAccess
 Set ws = ThisWorkbook.Sheets("Protection")
 Set aer = ws.Protection.AllowEditRanges("Edit Range")
 Set ual = aer.Users
 Set usr = ual.Add("Users", True)

The UserAccessList collection does not support the For Each construct in Visual Basic. Instead, you must use a For statement
with a counter to get each item in the collection as shown here:

 For i = 1 To ual.Count
 Set usr = ual(i)
 Debug.Print usr.Name
 Next

useraccesslist.Add(Name, AllowEdit)

Adds a user to the user-access list on an edit range.

Argument Settings

Name The name of the user or group to add.

AllowEdit True allows this user or group to edit the range without supplying a password; False prohibits edits.

useraccess.AllowEdit [= setting]

Sets or returns whether a user is required to enter the password specified in the Add method's AllowEdit argument before
she can make changes.

useraccess.Delete()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Removes a user from the edit range's user-access list.

useraccesslist.DeleteAll()

Removes all the users from the edit range's user-access list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.15. Set Workbook Permissions
The problems with passwords are:

They are susceptible to guessing attacks.

There is no secure way to share them among a group.

They tend to proliferate and become hard to remember. You can use the same password for all items, but that
reduces security.

The solution to this problem is identity-based security. The preceding section showed how you could allow specific users
to edit protected worksheets without the worksheet password. The larger solution is to define workbook permissions
based on the user's identity.

Identity-based security solves the password problem because users maintain their own passwordusually it's the one
they use to sign on to the networkand then their identity travels with them wherever they go on a network. You don't
have to set workbook passwords, share those with your workmates, and hope you don't lose or forget them.

Excel provides identity-based security through Microsoft Information Rights Management (IRM). This new feature comes
at a cost, however. In order to use IRM, you must have a Windows 2003 server running Microsoft Windows Rights
Management (RM) Services on your network. If you don't have that or if you want to share a workbook outside of your
network, you can use Microsoft Passport identities instead of network identities.

IRM and the workbook permissions are available only with the Windows editions of Office
2003 or later.

There are some huge advantages to IRM over other types of document protection:

Identities are not susceptible to guessing attacks.

You can control a wide variety of permissions, such as the ability to print, forward, edit, copy, save, and so on.

Documents can have an expiration date.

Changes to permissions are immediate and don't require the document to be redistributed.

Users can request additional permissions from the author as needed.

Users who don't have network accounts inside your organization can use Microsoft Passport accounts for
authentication.

The disadvantages are significant, too:

Using Passports for IRM is a trial service according to Microsoft and so might be discontinued. Microsoft pledges
to give 90 days' notice before discontinuing support for this.

The RM service for Windows 2003 requires a significant per-client license fee.

All users need an identitythere's no mechanism for an anonymous user with limited rights.

The following procedures use the Microsoft Passport identitieshopefully that trial service will still be functioning when
you read this! To set IRM permissions on a workbook for the first time:

1. From the File menu, select Permission, then select Do Not Distribute. Excel starts the Windows Rights
Management Wizard, which walks you through creating Rights Management credentials and downloading them
to your computer. When you are done, Excel displays the Permission dialog box shown in Figure 26-14.

Figure 26-14. Restricting access through permissions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-14. Restricting access through permissions

2. Select Restrict Permission to This Workbook to set permissions. Excel activates the dialog box so that you can
enter data.

3. Enter a list of the users allowed to read and/or change the workbook. Users are identified by email address.
Separate multiple addresses with semicolons.

4. To set an expiration date and restrict printing and other capabilities, click More Options. Excel displays the
expanded Permissions dialog box shown in Figure 26-15.

5. Set the additional permissions by selecting the user and then changing the permission settings in the
Permission dialog box. Click OK when done.

As the author of the workbook, you always have permission to open, edit, and distribute your document. The workbook
will not expire for you since the author always has full control.

When someone other than the author opens a workbook with permissions enabled, several things may happen:

If the user is included in the workbook's users list and has Office 2003 or later installed, the workbook opens in
Excel and he may perform the actions specified by his permissions.

If he is not included in the workbook's users list and has Office 2003 or later installed, he sees a description of
where to send email to get permission to use the workbook (Figure 26-16).

Figure 26-15. Advanced permission options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-16. Users without permissions are told how to request access to an
IRM-protected document

If he does not have Office 2003 or later installed, he sees a description of how to get the IRM add-ins for
Internet Explorer so he can view the workbook (Figure 26-17).

Figure 26-17. Users without Office 2003 are told how to get the IRM add-ins for
Internet Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.16. Program with Permissions
Microsoft provides the permissions objects through the Office object library since permissions can be applied to Excel,
Word, and PowerPoint documents. Figure 26-18 illustrates the hierarchy of the permission objects.

Figure 26-18. Office permission object model

You must have Rights Management credentials installed before you can set permissions on a document. Otherwise,
most permission methods will cause runtime errors. See the preceding section for instructions on how to install
credentials.

Once credentials are installed, you can restrict access to workbooks by setting the Permission collection's Enabled property
to True, as shown here:

 Dim irm As Office.Permission
 Set irm = ThisWorkbook.Permission
 irm.Enabled = True

The preceding code sets the workbook as Do Not Distribute. You are given full control, but no other users have
permissions. Use the Add method to add permissions for other users. You must add each user individually, even if all
have the same permissions, as shown here:

 Set irm = ThisWorkbook.Permission
 irm.Add "ExcelDemo@hotmail.com", MsoPermission.msoPermissionView
 irm.Add "someone@microsoft.com", MsoPermission.msoPermissionView

Use Or to combine permissions for a user. For example, the following code allows ExcelDemo@hotmail.com to read,
print, and copy a workbook:

 irm.Add "someone@microsoft.com", MsoPermission.msoPermissionView Or & _
 MsoPermission.msoPermissionPrint Or MsoPermission.msoPermissionExtract

When you combine permissions, they may not display in the Excel Permission options dialog box. Instead, the user may
appear as having Custom permissions in the Access Level list shown in the advanced Permission dialog (Figure 26-15).

You can set a date at which the user's permissions to the document expire using an argument in the Add method or by
setting the Expiration property, as shown here:

 Set irm = ThisWorkbook.Permission
 Set usr = irm("ExcelDemo@hotmail.com")
 usr.ExpirationDate = Date + 1

The preceding code sets the expiration date for the user one day from the current date. Expiration dates are always
calendar datesyou can't set permissions to expire at a certain time.

You may also notice from the preceding code that there is no Users collection. Instead, you use the Permission collection to
get UserPermission objects. For example, the following code displays the permissions for each user in the Immediate
window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window:

 Dim irm As Office.Permission, usr As Office.UserPermission
 Set irm = ThisWorkbook.Permission
 For Each usr In irm
 Debug.Print usr.UserId, usr.Permission, usr.ExpirationDate
 Next

The simplest way to remove permissions from a workbook is to set the Permission collection's Enabled property to False:

 ThisWorkbook.Permission.Enabled = False

Disabling the Permission collection removes all users and their permissions. Use the UserPermission object's Remove method
to selectively remove users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.17. Permission and UserPermission Members
The Permission collection and UserPermission object are unusual in that they aren't directly related by name as are most
collections and objects in Office products. (For example, the Addins collection contains Addin objects.) The Permission
collection and UserPermission object have the following members. Key members (shown in bold) are covered in the
following reference section:

Add

1
Application1

ApplyPolicy

1
Count1

Creator2
DocumentAuthor

1

Enabled

1

EnableTrustedBrowser

1

ExpirationDate Parent2

Permission
PermissionFromPolicy

1

PolicyDescription

1

PolicyName

1

Remove
RemoveAll

1

RequestPermissionURL

1

StoreLicenses

1

UserId
1 Collection only

2 Object and collection

permission.Add(UserId, [Permission], [ExpirationDate])

Adds permission for a user to access a workbook. Returns a UserPermission object.

Argument Description

UserId The identity of the user for which to grant permissions

Permission One or more of the msoPermission constants

ExpirationDate The date after which the user no longer has permissions

The Permission argument can be one or more of the following constants. Join multiple permissions with the Or operator:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Permission argument can be one or more of the following constants. Join multiple permissions with the Or operator:

 msoPermissionChange
 msoPermissionEdit
 msoPermissionExtract
 msoPermissionFullControl
 msoPermissionObjModel
 msoPermissionPrint
 msoPermissionRead
 msoPermissionSave
 msoPermissionView

For example, the following code grants a Passport account permission to view and copy a workbook:

 Set irm = ThisWorkbook.Permission
 Set usr = irm.Add("ExcelDemo@hotmail.com", MsoPermission.msoPermissionView _
 Or MsoPermission.msoPermissionExtract)

permission.ApplyPolicy(FileName)

Applies a set of externally defined usernames and permissions to a workbook.

permission.DocumentAuthor [= setting]

Sets or returns the identity of the author who set the workbook's permissions. If you are setting this property, the new
identity must have Full Control permission to become the document author. The following code displays the author's
identity and email address:

 Set irm = ThisWorkbook.Permission
 Debug.Print irm.DocumentAuthor, irm.RequestPermissionURL

permission.Enabled [= setting]

Sets or returns whether permissions are currently enforced. Setting Enabled to False sets the workbook's user count to
zero, but does not remove those users from the permissions list. For example, the following code temporarily disables
permissions:

 Set irm = ThisWorkbook.Permission
 irm.Enabled = False

and this code re-enables permissions as they were set before the preceding code ran:

 irm.Enabled = True

permission.EnableTrustedBrowser [= setting]

Sets or returns whether to allow access by users who don't have Office 2003 or later installed. Setting this property to
True is the equivalent of selecting "Allow users with earlier versions of Office to read with browsers supporting
Information Rights Management" on the Permission dialog box.

userpermission.ExpirationDate [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the date after which a user's permission expires. For example, the following code displays the identities
and expiration dates of users who have permissions on this workbook:

 Set irm = ThisWorkbook.Permission
 Debug.Print "User", , "Permission", "Permission Expires"
 For Each usr In irm
 Debug.Print usr.UserId, usr.Permission, usr.ExpirationDate
 Next

userpermission.Permission [= setting]

Sets or returns the permissions granted to a user. The Permission property can be one or more of the msoPermission
constants. Join multiple permissions with the Or operator. For example, the following code grants a Passport account
permission to change and print a workbook:

 Set irm = ThisWorkbook.Permission
 Set usr = irm("ExcelDemo@Hotmail.com")
 usr.Permission = MsoPermission.msoPermissionChange Or _
 MsoPermission.msoPermissionPrint

permission.PermissionFromPolicy

Returns True if the permission was created from a policy file. Returns False if the permission was created from the user
interface or from code.

permission.PolicyDescription

Returns the description from the policy description file used to create the permission.

permission.PolicyName

Returns the name from the policy description file used to create the permission.

userpermission.Remove()

Revokes a user's permission to use a workbook. For example, the following code removes the ExcelDemo user:

 Set irm = ThisWorkbook.Permission
 Set usr = irm("ExcelDemo@Hotmail.com")
 usr.Remove

permission.RemoveAll()

Revokes all users' permissions. Only the document's author remains in the list of permitted users. For example, the
following code removes the users from the workbook's Permission object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code removes the users from the workbook's Permission object:

 Set irm = ThisWorkbook.Permission
 irm.RemoveAll

permission.RequestPermissionURL [= setting]

Sets or returns a string used to contact the author, so that nonauthorized users can request permission to read or edit
the workbook. By default, this string takes the form mailto:authoraddress, but you can change it to include subject lines
or to display a web page. For example, the following code displays a web page when a user requests permission:

 Set irm = ThisWorkbook.Permission
 irm.RequestPermissionURL = "http://www.mstrainingkits.com/Excel/Permission.aspx"

permission.StoreLicenses [= setting]

When using Passport authentication, True caches the user's credentials after she is authenticated to allow the workbook
to be viewed if a network connection is not available. False authenticates the user each time the workbook is opened.
This property cannot be set to True if not using Passport authentication.

userpermission.UserId

Returns the identity of the user who has these permissions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.18. Add Digital Signatures
A digital signature identifies the author of the content or the macros contained in a workbook, template, or add-in. You
add a digital signature as the last step before you distribute a file. When others open a signed file, they can see who the
author is and therefore decide whether the information in the file is authentic and whether any macros it contains are
safe to run.

The signature is overwritten any time a file is saved. Therefore, no one can open a signed file, make changes, save,
then send the file on still bearing your signature. Workbooks and macros are signed separately even though they are
contained in a single file. If you want to distribute a signed workbook containing macros, you must sign the macros
first, then sign the workbook.

See Chapter 6 for instructions on how to get a digital certificate and how to use it to sign files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.19. Set Macro Security
Excel controls whether workbook macros are allowed to run through security settings. Users may choose to prohibit all
macros, allow only signed macros from known sources, allow macros of the user's choosing, or allow all macros. These
settings correspond to the Very High, High, Medium, and Low security settings on the Security dialog box (Figure 26-
19). To set macro security, from the Tools menu, choose Macro, then choose Security.

Figure 26-19. Choosing macro security settings

These settings are driven by trustthe user must choose whether to trust a publisher or a workbook. There is no way for
the user to prohibit certain operations, such as reading or writing to the registry or erasing datafiles. Users discover if
their trust is misplaced only after the damage is done.

For this reason, it is a good idea to encourage users to be suspicious of macros arriving in workbooks. It is a better idea
to deploy macros as digitally signed templates or add-ins and to distribute those files from a secure network location.

The following scenario demonstrates how to distribute macros in a secure fashion:

1. Set up a public network share, for example, \\Wombat1\Public\Templates.

2. Set Windows security on the Templates folder to allow read-only access to all network users and read/write
access to the Administrator (in this case, you).

3. Digitally sign templates and add-ins using a CA-issued digital certificate.

4. Copy the templates and add-ins to the public Templates folder.

5. Add the public Templates location to the alternate startup path for each Excel user.

6. For each user, open one of the signed templates in Excel and select "Always trust macros from this publisher"
on the Security Warning.

7. Select the High or Very High macro security option for each Excel user.

To set the alternate startup path in Excel, set the "At startup, open all files in" text box in the Options dialog box as
shown in Figure 26-20.

To set the alternate startup path in code, use the following line:

 Application.AltStartupPath = "\\wombat1\public\templates"

Figure 26-20. Setting the alternate startup path to a secure network location

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-20. Setting the alternate startup path to a secure network location

Now, when users start Excel, templates and add-ins from \\Wombat1\Public\Templates will be available automatically.
If a file changes, the user will get the latest version. And since the files are digitally signed by a trusted publisher, users
won't see the macro security warning every time they open a file.

Smart tags are provided through a type of add-in, so macro security settings apply to
them as well as the other types of files that can contain code (workbooks, templates, etc.).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.2. Understand Windows Security
Before we talk about Excel security, it is important to explain some general concepts related to the Windows operating
system. This may seem basic to some of you, but Windows security features are somewhat hidden and it's a good idea
to cover them somewhere.

Permissions are a set of capabilities that someone has or doesn't have. Permissions apply to files and locations, so
someone may be able to open a specific folder, see files, but not write to that folder or edit the files it contains.

Users are identities that Windows uses to control access. When you sign on with a username and password, Windows
authenticates that information and thereafter identifies you as machinename\username if your network uses
workgroups or domainname\username if your network uses domains. Your identity is then used any time you request
permission to use a resource, such as open a file or run an application. If your identity has permission to use that
resource, you are granted access and the requested file opens or the application runs.

Groups are the security groups to which a username belongs. Windows comes with some groups already configured:
Administrators, Users, Guests, Backup Operators, and Power Users. Groups provide an easy way to grant a set of
permissions to a set of users rather than having to grant permissions to many individual users.

Certificates and digital signatures are small identifiers that can be attached to a data file or executable that identify the
author of the file or executable. Certificates are issued by a third-party certificate authority (sometimes called a CA),
such as Verisign, which provides the service that authenticates certificates . The idea here is that if a user knows who
the author of a particular file is, he is more likely to trust that it will not harm his computer.

26.2.1. Set File Permissions in Windows XP

How you set permissions is not obvious from the default setup of Windows XP. First, you must disable the Use Simple
File Sharing folder option in Windows Explorer, as shown in Figure 26-1.

Figure 26-1. Disable simple file sharing in Windows XP to set permissions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To set permissions on a folder or file:

1. In Windows Explorer, select the file or folder to set permissions on and select Properties from the File menu.

2. Select the Security tab on the Properties dialog box (Figure 26-2). The top list displays user groups and
individual users with permissions for the item. The bottom list shows the permissions assigned to each group or
user.

3. Select a group or user, then assign or deny permissions by clicking on the boxes in the permissions list. Click
OK when done.

Figure 26-2. Setting permissions

If you're unfamiliar with how this works, it's a good idea to experiment with a file. For example, create an Excel
workbook named Book1.xls, then deny Full Control for your username. OK, then try to open Book1.xls in Excelyou'll get
an Access Denied error. Now change the file permissions to allow Read & Execute but deny Write access. You'll be able
to open the file in Excel, but you can't save it as Book1.xls.

These permissions don't have much meaning in the preceding example because you can always change them back to
allow writing or whatever. You own the file so you can do whatever you like. Permission settings are truly significant
when a file is shared with other users, such as when the file is placed in a public network address.

For example, if you want to allow others to read workbooks but not to make changes, a simple solution is to create a
shared folder that denies Write permission to everyone but you.

26.2.2. View Users and Groups in XP

When you set up user accounts from the Windows XP Control Panel, you have three types of accounts available:
Computer Adminstrator, Limited, and Guest accounts. These accounts correspond to the Administrator, User, and Guest
account groups within Windows. These aren't the only groups available, however. To view all the groups:

1. From the Control Panel, run Administrative Tools. Windows runs the Microsoft Management Console (MMC) .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. From the Control Panel, run Administrative Tools. Windows runs the Microsoft Management Console (MMC) .

2. Click Local Users and Groups in the left pane to expand that item.

3. Select the Groups folder to display a list of Groups

4. Double-click on a group to view a list of the users that belong to that group (Figure 26-3).

Figure 26-3. Viewing members of a group in MMC

Your list of groups may be different from the list shown in Figure 26-3 because applications often add groups and then
add users as members of those groups. If you click around and explore a bit, you'll see that you can't set the
permissions of groups or users through the MMC. That's because permissions are set on objects, not on identities.

For example, a folder in Windows may allow users that belong to the Administrators group to read and write files, but
allow Users group member to only read those files, and prohibit Guest members from even reading files. In this case,
the folder is the security object that defines the permissions for groups that have access.

Applications sometimes check whether a user belongs to a certain group before allowing her to perform a task. This is
referred to as role-based security .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.20. Set ActiveX Control Security
Excel workbooks may contain ActiveX controls that execute code or respond to macros. ActiveX controls may be
digitally signed and are marked by the publisher as to whether they are safe to initialize and safe to script. In this case,
safe means that the control will not harm the user's system.

Whether Excel will download or run any new ActiveX control is determined security by settings in Internet Explorer. To
see these settings in Internet Explorer:

1. From the Tools menu, select Internet Options and click on the Security tab.

2. Select the location that is the source of the ActiveX control and click Custom Level. Figure 26-21 shows the
ActiveX security settings for the local intranet location.

Figure 26-21. Changing ActiveX security settings

As a rule, you should never install unsigned ActiveX controls from any location. ActiveX controls are software, and you
should always be careful when choosing which publishers to trust.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.21. Distribute Security Settings
Changing macro security settings on individual computers is fine for personal use, but it doesn't work very well when
trying to manage security for an organization. To solve that problem, Microsoft provides the following tools:

Microsoft Office Resource Kit

Provides the Custom Installation Wizard (CIW) , Custom Maintenance Wizard , and Profile Template Wizard that
automate the installation and configuration of Microsoft Office across your organization

Certificate Manager (CertMgr.exe)

Lets you export, distribute, and install certificates for trusted publishers on users' machines

26.21.1. Change Security Settings

The Microsoft Office Resource Kit is not included with the Microsoft Office product, but is available for free download
from Microsoft (see "Resources" at the end of this chapter). Table 26-1 lists the four primary tools that come with the
Office Resource Kit.

Table 26-1. Office Resource Kit tools
Tool Use to

Custom
Installation
Wizard

Create customized installations for your organization. You can remove Office components, add your
own components, set default installation paths, and determine Start menu and Desktop items created
by Setup.

Custom
Maintenance
Wizard

Deploy changes to Office installations including new components and updates. This is similar to the
Installation Wizard, but is designed for modifying existing installations rather than creating new ones.

Removal
Wizard Removes previous versions of Office applications.

Profile
Template
Wizard

Deploy Office user settings, such as macro security settings.

The basic steps for using the Custom Installation and Custom Maintenance Wizards are the same:

1. Set up an administrative installation point on your network. This is the location from which Setup will run and
includes the Windows installer files (.msi) for Office.

2. Run the wizard to create a Windows installer transform (.mst) containing the modifications you wish to make to
the Office installation. You can also add components (such as ActiveX controls or Smart tags) to the installation
by including their .msi files to create chained installations.

3. Execute the installation from the client machines using remote administration, instructions to the user, or
installation scripts. See Setup.htm on the Office installation CD for information on Setup command-line options
and unattended installation.

The Custom Installation and Maintenance Wizards are important to security because they can remove components that
might pose security risks for some users. For example, you may choose not to install Visual Basic for Applications and
.NET Programmability Support (the Office .NET Primary Interop Assemblies or PIAs) to impede macros from running at
allthat may be an appropriate setting for public workstations such as those available in libraries.

Use the Profile Template Wizard to create a file containing the Excel security settings you want to apply to client
computers. For example, you may want to make sure all clients use the Very High macro security setting and disable
trust access to VBA projects. To use the Policy Template Wizard, follow these steps:

1. Set up a computer with the user settings you want to export to all other clients.

2. Run the Profile Template Wizard on that computer and export the settings to copy to other clients. Figure 26-22
shows the Profile Template Wizard ready to export Excel security user settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-22. Exporting user security settings

Run the Profile Template Wizard on client machines using the template exported in Step 2. The wizard can be run from
the command line; run proflwz.exe /? to see the command-line options.

26.21.2. Distribute Certificates

If you set macro security settings to Very High, Excel will not prompt the user to install certificates from new publishers.
The only way the user can run those macros is to lower the security, reload the document, and select "Always trust
macros from this publisher." If you are using the Very High security setting, you probably don't want users lowering it,
installing certificates, then (maybe) raising it again.

To avoid this problem, you can distribute the certificates from trusted publishers beforehand using the Certificate
Manager (CertMgr.exe). The Certificate Manager is available for download from Microsoft (see "Resources" at the end of
this chapter) and comes with other certificate-related tools such as SignCode.exe.

To use the Certificate Manager to distribute certificates from trusted publishers:

1. Set up a computer with the certificates you want to distribute.

2. Run the Certificate Manager (Figure 26-23) and export the desired certificates without their private keys. The
Certificate Manager provides a wizard to walk you through the export process.

3. Use the resulting certificate files (.cer or .p7b) with the command-line interface of the Certificate Manager to
install those certificates on client machines.

Figure 26-23. Use the Certificate Manager to export and import certificates from
trusted publishers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trusted publishers

Alternately, you can manage certificates using the Microsoft Management Console Certificates snap-in (CertMgr.msc).
Figure 26-24 shows the snap-in administering certificates on a remote computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.22. Using the Anti-Virus API
Microsoft provides an API for antivirus software developers so that they can write code to scan documents as they are
opened in Excel. Since the scan is focused on the current file being opened, it can be more thorough than general scans
of the user's disk. Antivirus software that uses this API may display settings on the Macro Security Options dialog in
Excel. See "Resources" at the end of this chapter for links to information on the Anti-Virus API.

Figure 26-24. Use the certificates snap-in to administer certificates through the
network

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.23. Common Tasks
The following sections list quick answers to the most common security questions.

26.23.1. Get Rid of the Macro Security Warning

If you write macros for personal use and get tired of seeing the macro security warning every time you open personal
workbooks, you can sign your macros with a personal digital certificate. To do so:

1. Choose Digital Certificate for VBA Projects from the Windows Office Tools menu to run SelfCert.exe.

2. Use SelfCert.exe to create a personal digital certificate.

3. From the Visual Basic Tools menu, choose Digital Signature.

4. Click Choose to add your digital certificate to the workbook's macros.

5. Repeat Step 4 each time you create a new workbook or template containing macros.

26.23.2. Prevent Someone from Running Any Macros

You can omit Visual Basic for Applications during installation or remove that component after installation by using Office
Setup to perform maintenance. That will prevent users from creating their own macros as well as prevent them from
running macros in existing workbooks.

Other applications, such as Windows Scripting Host (WScript.exe) will still be able to run macros that use the Excel
object library, however. You can't remove this libraryExcel needs it to run and will reinstall it if it is not found. You can
remove or disable WScript.exe and CScript.exe, but other applications can still access the Excel object library to
perform tasks in Excel.

26.23.3. Make a File Truly Secure

Security is a sliding scale, and I'd hesitate to say anything is ever completely secure. You can make Excel workbooks
fairly secure by adding password protection and encryption. Be sure to use a strong password (eight-plus characters,
upper- and lowercase, include numbers and symbols).

You can also protect access to files through Windows by using the NT Encrypting File System and using the Windows file
security settings to prevent access by users other than yourself.

Finally, you can set permissions on a workbook using IRM to prevent any user other than yourself from reading or
writing to the workbook in Excel. This last technique also provides a way to share workbooks in a secure way with
restricted permissions.

26.23.4. Add a Trusted Publisher for a Group of Users

There are two ways to do this, depending upon your network setup and your distribution needs: you can create a
command-line script that uses CertMgr.exe to install exported certificate files (.cer) on each user's machine, or you can
use the Microsoft Management Console Certificates snap-in (CertMgr.msc) to install certificates on users' machines over
a networkprovided you have administrative privileges to their machines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.24. Resources

To learn about Look here

Information Rights
Management http://www.microsoft.com/windowsserver2003/technologies/rightsmgmt/default.mspx

Anti-Virus API http://msdn.microsoft.com/workshop/security/antivirus/overview/overview.asp

Excel Key http://www.lostpassword.com/excel.htm

Microsoft Office 2000
Resource Kit http://www.microsoft.com/office/ork/2000/default.htm

Microsoft Office 2003
Resource Kit http://www.microsoft.com/office/ork/2003/tools/default.htm

Certificate management and
code-signing tools http://office.microsoft.com/downloads/2000/pvkimprt.aspx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.3. Password-Protect and Encrypt Workbooks
Passwords are a simple way to protect sensitive data in a workbook. You can use passwords to encrypt a workbook to
provide added security. Encryption prevents hackers from being able to read your workbook by disassembling the file in
some way.

To add a password to a workbook in Excel:

1. Choose Save As from the File menu. Excel displays the Save As dialog box.

2. On the Save As dialog box, click the Tools menu and select General Options. Excel displays the Save Options
dialog box shown in Figure 26-4.

Figure 26-4. Use Save Options to add passwords and encryption

3. Enter passwords in the "Password to open" and/or "Password to modify" text boxes and click OK. To create a
workbook that everyone can read but only password holders can edit, set "Password to modify" and leave
"Password to open" blank.

4. Excel prompts you to confirm the passwords entered in the previous step.

To add encryption to a workbook:

1. Click the Advanced button after Step 2 in the preceding list. Excel displays the Encryption Type dialog box
shown in Figure 26-5.

2. Select an encryption type from the listed encryption providers, choose an encryption key length, and click OK.

3. Proceed with setting the workbook password.

Figure 26-5. Choosing an encryption type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The encryption providers you have installed may vary depending on your location. Some encryption providers are not
available outside of the United States, so you will want to take that into consideration if you are distributing encrypted
files internationally. The longer the encryption key, the harder it is for a hacker to decrypt data. All software-based
encryption is potentially reversible without the key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.4. Program with Passwords and Encryption
You can set passwords and encryption options in code using the Workbook object's security members, such as the Password
property and SetEncryptionProperties method. From a security standpoint, it doesn't make sense to hardcode passwords into
Visual Basic macros. Instead, the Workbook object's security members are generally used in conjunction with User Forms
to set passwords and encryption chosen by the user through a customized interface.

For instance, you might create a document template (.xlt) for secure documents that can only be saved using a
password and encryption. Such a template might include a user form to get the password, as shown in Figure 26-6.

Figure 26-6. Password user form

The code for the user form confirms that the Password and Confirm Password text boxes match and allows the user to
cancel the operation, as shown here:

 ' Public fields
 Public Password As String, Encrypt As Boolean

 Private Sub cmdCancel_Click()
 Me.Hide
 Password = ""
 End Sub

 Private Sub cmdSave_Click()
 If txtPassword.Text <> txtConfirm.Text Then
 MsgBox "Password and confirm password must match.", , "Confirm Error"
 Else
 Password = txtPassword.Text
 Encrypt = chkEncrypt.Value
 Me.Hide
 End If
 End Sub

Then, the Secure template includes a workbook-level procedure to intercept the Save event. Whenever the user saves a
document based on this template, the following code displays the password user form and sets the workbook password
and encryption options (points of note are shown in bold):

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)
 Dim fname As String
 ' Exit if this is a template, not a workbook.
 If ThisWorkbook.FileFormat = xlTemplate Then Exit Sub ' (1)
 ' Cancel default operation.
 Cancel = True
 ' Get a password if one does not exist.
 If Not ThisWorkbook.HasPassword Then ' (2)
 frmPassword.Show
 ThisWorkbook.Password = frmPassword.Password ' (3)
 If frmPassword.Password = "" Then Exit Sub
 If frmPassword.Encrypt Then
 ThisWorkbook.SetPasswordEncryptionOptions _ ' (4)
 "Microsoft RSA SChannel Cryptographic Provider", _
 "RC4", 128, True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "RC4", 128, True
 End If
 End If
 ' Save the workbook by enabling the default action.
 Cancel = False ' (5)
 ' Make sure the user form unloads.
 Unload frmPassword
End Sub

The key points are:

1. Exit the procedure if saving a template. This allows you to save the template without a password.

2. Use the HasPassword property to determine if a password has already been set. You can't use the Password
property to test this, since it always returns asterisks whether or not a password is set (for security reasons).

3. You can set a password by assigning the workbook's Password property or by using the SaveAs method. Using
SaveAs in this case would call the Workbook_BeforeSave event procedure again, resulting in an unwanted recursion.

4. Use the SetEncryptionOptions method to choose the type of encryption and the length of the encryption key. This is
the only way to set encryption options, since the PasswordEncryption properties are all read-only.

5. Set Cancel to False to allow Excel to complete the save operation. As mentioned in Item 3, calling Save or SaveAs
would result in unwanted recursion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.5. Workbook Password and Encryption Members
The Workbook object has more than 200 members. The following Workbook members deal with security; other Workbook
members are described in Chapter 8:

HasPassword Password

PasswordEncryptionAlgorithm PasswordEncryptionFileProperties

PasswordEncryptionKeyLength PasswordEncryptionProvider

SetPasswordEncryptionOptions WritePassword

WriteReserved WriteReservedBy

workbook.HasPassword

Returns True if a password is required to open the workbook. HasPassword does not detect whether or not a workbook
has a write password. The following code removes a password if the workbook has one:

 Dim wb As Workbook, pass As String
 Set wb = ThisWorkbook
 If wb.HasPassword Then
 wb.Password = ""
 MsgBox "Password removed.", , "Password"
 Else
 MsgBox "No password found.", , "Password"
 End If

workbook.Password [= setting]

Sets a password used to open the workbook. Returns "********" whether or not a password was previously set. The
following code sets a password entered by the user in an InputBox:

 Dim wb As Workbook, pass As String
 Set wb = ThisWorkbook
 pass = InputBox("Enter a password.", "Password")
 If pass = "" Then Exit Sub
 If pass = InputBox("Enter password again to confirm.", "Password") Then
 wb.Password = pass
 MsgBox "Password set.", , "Password."
 Else
 MsgBox "Passwords don't match. No password set.", , "Password"
 End If

The InputBox displays characters as they are typed. It is a better idea to use a user form with text boxes that display a
password character to get passwords from users.

workbook.PasswordEncryptionAlgorithm

Returns a string indicating the type of encryption used for a workbook. The following code displays the encryption
properties for a workbook in the Immediate window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

properties for a workbook in the Immediate window:

 Set wb = ThisWorkbook
 Debug.Print "Encrytpion algrorythm: " & wb.PasswordEncryptionAlgorithm, _
 "Encrypt properties? " & wb.PasswordEncryptionFileProperties, _
 "Key length:" & wb.PasswordEncryptionKeyLength, _
 "Provider: " & wb.PasswordEncryptionProvider

If a workbook is not encrypted, the PasswordEncryptionAlgorithm is OfficeStandard.

workbook.PasswordEncryptionFileProperties

Returns True if workbook file properties are encrypted, False if they are not.

workbook.PasswordEncryptionKeyLength

Returns the length of the encryption key.

workbook.PasswordEncryptionProvider

Returns the full name of the workbook's encryption provider. If the workbook is not encrypted, returns "Office".

workbook.SetPasswordEncryptionOptions(PasswordEncryptionProvider,
PasswordEncryptionAlgorithm, PasswordEncryptionKeyLength,
PasswordEncryptionFileProperties)

Sets the workbook's encryption properties.

Argument Settings

PasswordEncryptionProvider A string containing the full name of the encryption provider, such as "OfficeStandard" for no
encryption or "Microsoft Base Cryptographic Provider v1.0".

PasswordEncryptionAlgorithm A string containing the type of encryption to use. Use "Office" for no encryption, "RC4" for
encryption.

PasswordEncryptionKeyLength The length of the encryption key. Must be a valid value for the encryption provider.

PasswordEncryptionFileProperties Set to True to encrypt the workbook's file properties, False to leave them unencrypted.

The following code sets strong encryption on a workbook:

 Set wb = ThisWorkbook
 wb.SetPasswordEncryptionOptions "Microsoft Strong Cryptographic Provider", _
 "RC4", 128, True

workbook.WritePassword [= setting]

Sets the workbook's Password to Modify setting in Excel. Always returns "********". The following code removes a
workbook's Password to Open setting (read/write) and creates a read-only password:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook's Password to Open setting (read/write) and creates a read-only password:

 Set wb = ThisWorkbook
 wb.Password = ""
 wb.WritePassword = "Excel2003"

workbook.WriteReserved

Returns True if the workbook has a WritePassword; otherwise, returns False. This property is similar to the HasPassword
property, only it checks for a write password. The following code checks if the workbook has a write password and
displays the name of the person who set the write password if it does:

 Set wb = ThisWorkbook
 If wb.WriteReserved Then _
 Debug.Print "Reserved by: " & wb.WriteReservedBy

workbook.WriteReservedBy

Returns the name of the author who set the write password. This is the same as the Last Author built-in document
property of the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.6. Excel Password Security
Encrypting a workbook makes it very difficult to extract passwords from a workbook by peeking inside the file in some
way. However, Excel does leave passwords open to guessing attacks. In short, you can write a macro to call the Open
method repeatedly with various passwords until you find one that works.

That's because Excel doesn't lock out attempts after a certain number of wrong passwords the way most networks do.
Therefore, Excel passwords are only as good as their complexity.

For example, a four-character all-lowercase workbook password takes about 40 minutes to guess using brute-force
techniques on a 2.0 GHz machine. By extrapolation, a mixed-case four-character password would take more than 10
hours, and a six-character password using any valid characters (letters, numbers, or symbols) would take 883 years.

That sounds pretty secure, but remember this is just using brute-force techniquesstarting at Chr(33) and working
through the valid character set. There are many ways to optimize guessing that would reduce these times. The
controlling factors are how many attempts are made before guessing correctly and how long it takes Excel to run the
Open method and return an error if the guess is wrong. For example, the Excel Key service on the Web promises
password recovery in four to seven days regardless of password length.

These same guessing techniques can be applied to password-protected items within a workbook, such as worksheets. It
is, in fact, much easier to guess the password for a protected worksheet since the Unprotect method returns an error five
times faster than the Open method.

So what should you do? Here are some recommendations:

Use strong passwords. Strong passwords are at least eight characters long and contain letters, numbers, and
symbols.

Encrypt password-protected files.

Keep passwords secret. This is obvious, but it is also where most security breaches occur.

Use third-party encryption tools for truly sensitive data. Buy a tool that is designed not to allow guessing
attacks.

Use Permissions to limit access to the file based on user identities rather than or in addition to passwords and
encryption. See "Set Workbook Permissions," later in this chapter, for more information.

Permissions or other identity-based approaches are really much better at securing data than are password-based
approaches.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.7. Protect Items in a Workbook
Protecting prevents changes to parts of a workbook. You can apply protection to worksheets, charts, ranges,
formatting, and window layout. Protection can use a password or it may omit the password if the protection is intended
to prevent accidental changes rather than malicious ones.

You can protect multiple items within a workbook and you can use different passwords for each of those items, though
that's generally a bad idea. The more passwords you use, the more likely you are to confuse themespecially within a
single workbook. It's a good idea to use the same password when protecting multiple items.

To prevent changes to a worksheet:

1. Add data to your worksheet and adjust the formatting so that it appears the way you want it to.

2. From the Tools menu, choose Protection, then Protect a Sheet. Excel displays the Protect Sheet dialog box
shown in Figure 26-7.

Figure 26-7. Use protection to prevent changes

3. Type a password and select the actions you want to permit on the worksheet from the list. Click OK. Excel
prompts you to confirm the password.

After a worksheet is protected, you can't change it without unprotecting it first. To unprotect the worksheet, select
Tools Protection Unprotect Sheet and enter the password.

Worksheet protection applies to all of the locked cells on a worksheet. To allow users to edit some cells on a worksheet
while protecting most of the others, take the following steps before protecting the worksheet:

1. Select the cells you want to allow the user to edit.

2. From the Format menu, choose Cells. Excel displays the Format Cells dialog box shown in Figure 26-8.

Figure 26-8. Unlock cells to allow changes on protected sheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-8. Unlock cells to allow changes on protected sheets

3. Select the Protection tab and clear the Locked check box. Click OK.

4. Protect the worksheet. Now, Excel allows changes in the unlocked cells.

You can also selectively protect ranges of cells by user. This lets some users but not others edit selected cells. To
protect ranges by user, take the following steps before protecting the worksheet:

1. Select the range of cells to protect.

2. From the Tools menu, choose Protection, then choose Allow Users to Edit Ranges. Excel displays the dialog box
shown in Figure 26-9.

Figure 26-9. Use edit ranges to protect cells by user

3. Click the New button. Excel displays the New Range dialog box with the range of the selected cells listed in the
Refers to Cells text box (Figure 26-10).

Figure 26-10. Setting the password for an edit range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-10. Setting the password for an edit range

4. Click on Permissions, then click Add on the Permissions dialog box. Excel displays the Select Users or Groups
dialog box (Figure 26-11).

Figure 26-11. Adding users to the edit range

5. Type the names of the users to allow to edit the range. Usernames take the form machinename\username for
workgroup-based networks or domainname\username for domain-based networks. You can also simply type the
username and click Check Names to look up a user's machine or domain name if you don't know it. To specify
multiple names, separate them with a semicolon. Click OK when done. Excel adds the names to the Permissions
dialog box, as shown in Figure 26-12.

6. If you want to require the user to enter a password before editing the range, select the username and click the
Deny check box. Click OK when done. Excel returns you to the New Range dialog box.

Figure 26-12. Viewing the users for an edit range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Enter a password for the range and click OK. Excel prompts you to confirm the password and then returns you
to the worksheet.

8. Protect the worksheet using the steps at the beginning of this section. Protecting the worksheet activates the
protection for the rangeExcel does not enforce protections until the worksheet is protected.

In general, you use the preceding procedure to allow some users to edit ranges without the worksheet-level password.
In this case, you would select the Allow check box in step 6, enter a password in Step 7, and probably specify the same
password to protect the worksheet in Step 8. Then, all other users would have to enter a password before making
changes to the range or to the rest of the worksheet.

If you don't enter a password for the range in Step 7, all users can edit the range. This is equivalent to unlocking the
range as described in the previous procedure.

You can allow edits for a group of users. In that case, specify the group name in Step 5. For instance,
WOMBAT1\Administrators allows members of the Administrators group on the machine Wombat1 to edit a range.

In all cases, you must protect the worksheet in order for the range-level protections to take effect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.8. Program with Protection
Since protecting workbooks, worksheets, and ranges is a multistep process, it is sometimes convenient to automate
protectionparticularly if you frequently use the same types of protections or if you want to make sure all protections use
the same password.

Excel provides methods for protecting Workbook, Chart, and Worksheet objects as well as subordinate objects for controlling
various aspects of protection on Worksheet objects. Figure 26-13 illustrates the relationships among the protection
objects.

Figure 26-13. Protection object model

The protection objects are organized in a somewhat unusual way: First, the Workbook and Chart objects don't provide a
Protection object since those objects allow only password protection. Second, the Worksheet object provides a Protection
object that allows you to specify a list of users who can edit ranges on the worksheet. Finally, you set which cells on a
worksheet are protected by setting the Range object's Locked property.

You can use the Worksheet object's Protect and Unprotect methods to work together with the Range object's Locked property to
conditionally protect cells on a worksheet. For instance, the following code protects all worksheet cells that contain
formulas:

 Set ws = ThisWorkbook.Sheets("Protection")
 ' Make sure worksheet is not already protected.
 ws.Unprotect
 ' Get each used cell in the worksheet.
 For Each rng In ws.UsedRange
 ' If it contains a formula, lock the cell.
 If InStr(rng.Formula, "=") Then
 rng.Locked = True
 ' Otherwise unlock the cell.
 Else
 rng.Locked = False
 End If
 Next
 ' Protect the worksheet.
 ws.Protect

After you run the preceding code, users can edit data on the worksheet but not cells that contain calculations. The
preceding Protect method doesn't specify a password, so no password is required to unprotect the cells. This isn't very
secure, but it would prevent users from making accidental changes to formulas. An alternative is to hardcode a
password into the macro or to prompt for a password as shown earlier in this chapter in "Program with Passwords and
Encryption." For example, the following code gets a password using the password user form shown earlier:

 frmPassword.Show
 ws.Protect frmPassword.Password
 Unload frmPassword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Unload frmPassword

Now, the user will be prompted for a password if he attempts to edit a formula.

Password protection works well when there is one author for a workbook, but it is not very secure for multiple authors
since the password must be shared with anyone who wants to make changes. The more people who know a password,
the less secure it becomes.

To solve this problem, Excel provides Protection and UserAccessList objects so that you can apply user-based permissions for
ranges on a worksheet. User-based permissions solve the multiple-author problem since users are authenticated by the
network when they sign on.

Protection with user-based permissions still requires a password to protect the worksheet, but cells are automatically
unlocked for certain users so those users aren't required to enter the password. For example, the following code
password-protects a worksheet but allows members of the Power Users group to edit the range A1:C4:

 Dim ws As Worksheet, aer As AllowEditRange
 Set ws = ThisWorkbook.Sheets("Protection")
 Set aer = ws.Protection.AllowEditRanges.Add("User Range", [A1:C4])
 aer.Users.Add "Power Users", True
 ws.Protect "Excel2003"

You have to get a reference to the AllowEditRange object in order to add users who are allowed to edit the range without a
password. You can't use Excel's Record Macro feature to see how to add allowed users for a rangeExcel only records the
process of adding the named edit range, not adding the users or setting their permissions.

The names of edit ranges on a worksheet must be unique. You can remove previously created edit ranges, unprotecting
the worksheet and using the Delete method as shown here:

 ws.Unprotect
 For Each aer In ws.Protection.AllowEditRanges
 aer.Delete
 Next

Similarly, you can remove users added to an edit range using the Users collection DeleteAll method or the User object's
Delete method as shown here:

 ws.Unprotect
 Set aer = ws.Protection.AllowEditRanges("User Range")
 aer.Users("Power Users").Delete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.9. Workbook Protection Members
The order of worksheets in a workbook can be protected from changes, as can the window and pane layout used to
display the workbook. You can also use workbook protection to set passwords for shared workbooks.

The Workbook object has more than 200 members. The following Workbook members deal with protection; other Workbook
members are described in Chapter 8:

 Protect
 ProtectSharing
 ProtectStructure
 ProtectWindows
 Unprotect
 UnprotectSharing

workbook.Protect([Password], [Structure], [Windows])

Protects a workbook, preventing changes to the order of sheets and/or the windows used to display the workbook.

Argument Settings

Password The password used to prevent changes.

Structure True protects the order of sheets in the workbook; False does not protect. Default is False.

Windows True protects the location and appearance of the Excel windows used to display the workbook; False
does not protect. Default is False.

The following code password-protects the structure and windows of a workbook:

 Set wb = ThisWorkbook
 wb.Protect "Excel2003", True, True

workbook.ProtectSharing([Filename], [Password],
[WriteResPassword], [ReadOnlyRecommended],
[CreateBackup], [SharingPassword])

Saves a file for sharing and optionally sets protection, read-only, and read/write passwords.

Argument Settings

Filename The name to save the file as. When saving a workbook for sharing, it is common to save the file
to a new (public) location.

Password The password used to open the workbook.

WriteResPassword The password used to open the workbook for read/write access.

ReadOnlyRecommended True displays a prompt recommending that the workbook be opened for read-only access when
the user opens the workbook in Excel; False does not prompt. Default is False.

CreateBackup True automatically creates a backup version of the file before saving the file and sharing it; False
does not create a backup. Default is False.

SharingPassword The password used to remove sharing from the workbook.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The many password arguments for the ProtectSharing method can be confusing. The following code saves a workbook to a
public location and sets three passwords for the file:

 Set wb = ThisWorkbook
 wb.ProtectSharing "\\wombat1\public\shared.xls", "pass1", "pass2", , , "pass3"

Once the preceding code runs, you use "pass1" to open the file, "pass2" to get read/write access to the file, and "pass3" to
remove file sharing from the file.

workbook.ProtectStructure

Returns True if the order of the sheets in the workbook is protected, False if not. The following code displays the
workbook's protection settings in the Immediate window:

 Set wb = ThisWorkbook
 Debug.Print "Structure protected? " & wb.ProtectStructure, _
 "Windows protected? " & wb.ProtectWindows

workbook.ProtectWindows

Returns True if the window display of the workbook is protected, False if not.

workbook.Unprotect([Password])

Removes protection from the workbook.

Argument Settings

Password The password used to protect the workbook. Password is required if the workbook was protected with a
password.

The following code unprotects a workbook:

 Set wb = ThisWorkbook
 wb.Unprotect "Excel2003"

workbook.UnprotectSharing([SharingPassword])

Removes file sharing from a protected/shared workbook.

Argument Settings

SharingPassword The password used to share the workbook. Corresponds to the SharingPassword argument in the
ProtectSharing method.

The following code removes sharing from a shared workbook stored in a public location:

 Set wb = Application.Workbooks.Open("\\wombat1\public\shared.xls", , , , "pass1", _
 "pass2")
 wb.UnprotectSharing pass3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wb.UnprotectSharing pass3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 26. Exploring Security in Depth
In the physical world, security is the freedom from danger. There are myriad dangers in the physical world, but in the
world of Excel, dangers relate to protecting data (absent an army of spreadsheet-driven killer robots). Specifically,
Excel security is designed to protect you from:

Unauthorized or accidental changes

Malicious changes or destruction of data

Theft or unauthorized distribution of restricted information

Attack from viruses

This chapter explains approaches to protecting your data from these threats and explains how to implement those
approaches within Excel.

Code used in this chapter and additional samples are available in ch26.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1. Types of Tasks
You can perform several broad categories of tasks with the Visual Basic language. Since we're talking about Visual Basic
(not Excel), these tasks tend to be very general. More specific tasks are usually handled through Excel objects.

I've organized this chapter so the simplest tasks are first. By the end, things get pretty advanced, so if you feel
overwhelmed at any point, feel free to come back lateryou may just need some time to digest these concepts. Table 3-
1 organizes the sections in this chapter to give you a bit of an overview .

Table 3-1. An overview of Visual Basic programming tasks
Category Section Overview

Users Interact with Users Use simple dialog boxes to get or display information.

Data Do Math Perform calculations.

 Work with Text Compose and modify strings of text.

 Get Dates and Times Get current dates and times and perform calculations on dates and times.

Storage Read and Write Files Open, read, write, and close files stored on disk.

Expressions Check Results Find what kind of data was returned by an operation.

 Find Truth Combine expressions to create complex conditions.

 Compare Bits Get multiple pieces of information from a single value.

Interoperate Run Other Applications Exchange data with other Windows applications.

Compiler Control the Compiler Create debug and release versions of code within the same source file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.10. Run Other Applications
Being able to start one application from another is one of the significant advantages of Windows. Within Visual Basic
you may want to start another application to load data from Excel, to display a web page, to edit text files, or to
perform some other task not easily done in Excel itself. Visual Basic provides the functions shown in Table 3-19 to run
other applications.

Table 3-19. Visual Basic functions for running other applications
Function Use to

AppActivate Switch focus to a running application

CreateObject Start an ActiveX application and get an object reference to that application

GetObject Get a running ActiveX application and get an object reference to that application

SendKeys Send keystrokes to a running Windows application

Shell Start an application using its file (.exe) name

CreateObject and GetObject work only with Windows applications that have support for ActiveX automation built in to them.
Most Microsoft products and many other Windows products support that type of automation, which is sometimes also
called OLE automation .

ActiveX or OLE automation allows you to use the internal objects, properties, and methods of the application in the
same way that you control Excel from Visual Basic. For example, the following code starts Microsoft Word from Excel,
creates a new document, inserts some text, and saves the file:

 Sub UseWord()
 Dim word As Object, doc As Object
 Set word = CreateObject("Word.Application")
 ' Show Word (otherwise it's invisible).
 word.Visible = True
 ' Create document.
 Set doc = word.Documents.Add
 ' Insert some text
 doc.Range.InsertAfter "Some text to insert."
 ' Save the file
 doc.SaveAs ThisWorkbook.Path & "\StartWord.doc"
 End Sub

You can use GetObject to get a running instance of an application. For example, the following code uses a running
instance of Word to open the document created by the preceding code:

 Sub GetWord()
 Dim word As Object, doc As Object
 ' Get a running instance of Word.
 Set word = GetObject(, "Word.Application")
 ' Open a document.
 Set doc = word.documents.Open(ThisWorkbook.Path & "\StartWord.doc")
 word.Visible = True
 End Sub

In the preceding code, GetObject fails if Word is not already running. You can use GetObject with a filename to start the
application associated with the file if it is not already running, as shown here:

 Sub GetDocument()
 Dim word As Object, doc As Object
 ' Get the demo document whether or not is it open.
 Set doc = GetObject(ThisWorkbook.Path & "\StartWord.doc")
 ' Show the document.
 doc.Application.Visible = True
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, GetObject starts Word if it is not already running and loads the document. If Word is running or if the
document is already open, the code just returns a reference to that object without starting a new instance.

Both CreateObject and GetObject do something called late binding . Late binding means that the type of the object is not
checked until the application is running. It's often better to use early binding , since that allows Visual Basic to check
that types match when the code is compiled, which helps correct type-mismatch errors.

Early binding requires that you add a reference to the library for the application you want to use from Excel. To add a
reference to an application in Visual Basic:

1. Select Tools References. Visual Basic displays the References dialog box, shown in Figure 3-5.

Figure 3-5. Visual Basic lists all the ActiveX libraries installed on your
computer

2. Scroll down the list of applications installed on your system and select the ones you want by clicking the box
next to the application's name.

3. Click OK when done.

There may be quite a few libraries installed on your computer, and sometimes it is difficult to find the one you want.
Microsoft groups most of its libraries under the company name so they sort together, and most other companies do the
same.

If you distribute your Visual Basic code to others, any applications you use must also be
installed on their computer, otherwise the code will fail.

Once you have added a reference to another application, you can use objects from that application in the same way
that you use Excel objects. For example, the following code creates a new document in Word and inserts some text:

 ' Requires reference to Microsoft Word object library.
 Sub EarlyBinding()
 Dim doc As New Word.Document
 doc.Range.InsertAfter "This is early-bound."
 doc.Application.Visible = True
 End Sub

One of the key advantages of using explicit types, such as Word.Document, is that it enables Visual Basic's Auto Complete
features to help you navigate through the various objects, properties, and methods that an application provides. Figure
3-6 shows the Auto Complete feature in action for the Word objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3-6 shows the Auto Complete feature in action for the Word objects.

Figure 3-6. References and explicit types enable Auto Complete

Table 3-20 lists some common applications that provide ActiveX objects you can use from Visual Basic. Be aware that
most of these applications provide a very complex set of objects that may be organized differently from Excel's objects.
Using the objects from other applications often requires a good deal of research and learning.

Table 3-20. Some applications that you can automate from Visual Basic

Application name Library name (for References
dialog)

Programmatic IDs (for
CreateObject/GetObject)

Microsoft Word Microsoft Word 11.0 Object Library
Word.Application

Word.Document

Microsoft PowerPoint Microsoft PowerPoint 11.0 Object
Library

PowerPoint.Application

PowerPoint.Show

PowerPoint.Slide

Microsoft Access Microsoft Access 11.0 Object Library

Access.Application

Access.Workgroup

Access.Project

Microsoft Excel Microsoft Excel 11.0 Object Library

Excel.Application

Excel.Sheet

Excel.Chart

Microsoft Graph Microsoft Graph 11.0 Object Library
MSGraph.Application

MSGraph.Chart

Microsoft Outlook Microsoft Outlook 11.0 Object Library Outlook.Application

Microsoft Internet
Explorer Microsoft Internet Controls InternetExplorer.Application

Not all applications support ActiveX, however. Some of the simple (and common) applications can be started only with
the Shell function. Shell runs the application using its filename and returns a nonzero number if the application started
successfully. You can combine Shell with SendKeys to automate applications in a simple way:

 Sub StartNotepad()
 Dim id As Integer
 id = Shell("notepad.exe", vbNormalFocus)
 ' If id is not zero, then Shell worked. This is some text to insert
 If id Then
 SendKeys "This is some text to insert", True
 SendKeys "^s", True
 SendKeys ThisWorkbook.Path & "\StartNote.txt", True
 SendKeys "~", True
 End If
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

The preceding code starts Notepad, inserts some text, and saves the file. You can send keystrokes to only the
application that currently has focus in Windows. If the user changes the focus while your code is running, the
keystrokes may go to the wrong application. This makes debugging the preceding code very difficult. If you try to step
through the code, the keystrokes are sent to the Code window, rather than to Notepad!

You can switch the focus to another application using the AppActivate function. AppActivate uses the text displayed in the
window's titlebar to select the window to grant focus. If you run the preceding code, the Notepad window will contain
the text "StartNote.txt Notepad", so the following code will switch focus to that window to make some changes:

 Sub GetNotepad()

 Dim id As Integer
 On Error Resume Next
 AppActivate "StartNote.txt - Notepad", True
 If Err Then MsgBox ("StartNote.txt is not open."): Exit Sub
 SendKeys "{end}", True
 SendKeys ". Some more text to insert.", True
 SendKeys "^s", True
 End Sub

You can also use the ID returned by the Shell function with AppActivate to activate a running application. SendKeys uses the
predefined codes listed in Table 3-21 to send special keys, such as Enter or Page Up, to an application.

Table 3-21. SendKeys codes
Key Code Key Code

Shift + Ctrl ^

Alt % Backspace {BACKSPACE}, {BS}, or {BKSP}

Break {BREAK} Caps Lock {CAPSLOCK}

Del or Delete {DELETE} or {DEL} Down Arrow {DOWN}

End {END} Enter {ENTER} or ~

Esc {ESC} Help {HELP}

Home {HOME} Ins or Insert {INSERT} or {INS}

Left Arrow {LEFT} Num Lock {NUMLOCK}

Page Down {PGDN} Page Up {PGUP}

Print Screen {PRTSC} Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK} Tab {TAB}

Up Arrow {UP} F1-F16 {F1}-{F16}

I should point out here that Excel provides methods for running two of the most commonly used applications. Use the
FollowHyperlink method to display a web page in the default browser or to create a new email message. Use the SendMail
method to send a workbook as an attachment. The following code demonstrates these different approaches:

 Sub BrowserAndMail()
 ' Starts browser and displays page.
 ThisWorkbook.FollowHyperlink "http://www.mstrainingkits.com"
 ' Creates a new, blank mail message
 ThisWorkbook.FollowHyperlink "mailto:exceldemo@hotmail.com"
 ' Sends the workbook as an attachment without displaying message.
 ThisWorkbook.SendMail "exceldemo@hotmail.com"
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.11. Control the Compiler
Visual Basic includes two instructions that tell the compiler to take special actions, as listed in Table 3-22.

Table 3-22. Visual Basic compiler directives
Directive Use to

#Const Define a literal constant. The compiler replaces these constants will their literal value in the compiled
code.

#If...Then...#End
If Conditionally compile code based on a literal constant.

These directives are commonly used to switch between debug and release versions of code. Often, debug versions
include extra statements that display output in the Immediate window. That makes it easier to locate problems while
debugging, however you might not want that code to run in the released version. Rather than remove the statements
manually, you can simply turn them off by changing a global setting, as shown here:

 #Const ISDEBUG = True

 Sub DemoDirectives()
 #If ISDEBUG Then
 MsgBox "Running in Debug mode."
 #Else
 MsgBox "Running in Release mode."
 #End If
 End Sub

Changing the value of ISDEBUG changes which code runsin fact, Visual Basic actually omits the unused code in its internal
compiled version (the source code isn't affected, however). The constant ISDEBUG isn't really a symbol: you can't see its
value with a watch. Instead, it's a literal value that the compiler replaces throughout your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.12. Not Covered Here
Chapters 2 and 3 give you a lot to think about. Still, there are a few things about Visual Basic I haven't touched on. The
two reasons I haven't covered everything yet:

Some functions are obsolete or not particularly useful from Excel.

Other Visual Basic keywords are very advanced.

Table 3-23 lists the Visual Basic functions that are obsolete or aren't often used in Excel. Table 3-24 lists advanced
keywords.

Table 3-23. Obsolete or obscure Visual Basic functions
Function Use to

Beep Play a beep through the computer's speaker.

Environ Get strings from the operating system's environment string table. For instance, Environ("path") returns the
MS-DOS PATH environment variable.

Command Get command-line arguments. Excel applications don't use command-line arguments.

Table 3-24. Advanced Visual Basic keywords
Category Keyword

System registry DeleteSetting

 GetSetting

 GetAllSettings

 SaveSetting

Windows APIs Declare

 AddressOf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.13. What You've Learned
This chapter taught you about the core language of Visual Basicthat is, all the statements and functions that perform
general programming tasks. At this point in the book, you've covered all the Visual Basic fundamentals: using the
editor, constructing a program, and performing tasks. Congratulations!

You should now be comfortable displaying simple dialogs and working with numbers, strings, and arrays, and you
should know something about working with files.

Don't worry if you're not an expert at working with dates, comparing bits, or running other applications. You can always
come back later for a refresher on those topics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2. Interact with Users
Visual Basic provides two simple ways to interact with users:

Use InputBox to get text input.

Use MsgBox to display short messages and get button-click responses.

I've already used InputBox and MsgBox a number of times in previous examples, but one more sample won't hurt:

 Sub MsgBoxInputBox()
 Dim str As String, val As VbMsgBoxResult
 ' InputBox gets simple text input.
 str = InputBox("Enter some text.", "Chapter 3", "Some text")
 ' Use If to test if a value was entered.
 If str <> "" Then
 ' You can combine style constants in MsgBox.
 val = MsgBox(str, vbQuestion + vbOKCancel, "Chapter 3")
 ' Return value indicates which button was clicked.
 If val = vbOK Then Debug.Print "OK" Else Debug.Print "Cancel"
 End If
 End Sub

The preceding code displays a simple dialog box to get text, then displays the text in another simple dialog box, as
shown in Figure 3-1.

The MsgBox function can display many different styles and buttons, depending on the Button argument setting. All of the
VbMsgBoxStyle settings are listed in Table 3-2.

Figure 3-1. InputBox and MsgBox functions display simple dialog boxes

Table 3-2. VbMsgBoxStyle settings
Setting Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting Description

Button

vbOKOnly Displays OK button.

vbOKCancel Displays OK, Cancel buttons.

vbAbortRetryIgnore Displays Abort, Retry, Ignore buttons.

vbYesNoCancel Displays Yes, No, Cancel buttons.

vbYesNo Displays Yes, No buttons.

vbRetryCancel Displays Retry, Cancel buttons.

Icon

vbCritical Adds Critical icon (red x).

vbQuestion Adds Question icon (?).

vbExclamation Adds Exclamation icon (!).

vbInformation Adds Information icon (i).

Default setting

vbDefaultButton1 First button is default.

vbDefaultButton2 Second button is default.

vbDefaultButton3 Third button is default.

vbDefaultButton4 Fourth button is default.

Focus

vbApplicationModal Halts workbook until dialog box is closed (this is the default in Excel).

vbSystemModal Halts all applications until dialog box is closed.

vbMsgBoxSetForeground Displays dialog in the foreground (this is the default in Excel).

Miscellaneous

vbMsgBoxHelpButton Adds a Help button to the dialog.

vbMsgBoxRight Right-aligns text (default is left-aligned).

vbMsgBoxRtlReading Swaps icon and button positions for right-to-left reading languages such as Arabic.

Compatible settings in Table 3-2 can be combined using addition. For instance, you can combine button, icon, and
default settings in a single message box as shown here:

 val = MsgBox("Unable to continue.", _
 vbCritical + vbAbortRetryIgnore + vbDefaultButton2, "Error")

The value returned by MsgBox is a VbMsgBoxResult constant that indicates which button the user clicked. Typically, you
compare that result to the button constants listed in Table 3-2 in an If or Select statement:

 If val = VbMsgBoxResult.vbAbort Then ...

If you are displaying a dialog with only a single OK button, you probably don't care about the value returned by MsgBox.
In that case, you can omit the parentheses:

 MsgBox "The answer is " & val, , "Chapter 3"

In addition to Visual Basic's built-in InputBox and MsgBox functions, there are several other ways to display much more
complex dialog boxes and data-entry forms from Excel (see Table 3-3).

Table 3-3. Ways to display complex data-entry forms and dialog boxes
Technique Use to See

User forms Create custom dialog boxes or data-entry forms for display from Visual Basic Chapter
20

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User forms Create custom dialog boxes or data-entry forms for display from Visual Basic 20

Excel's built-in
dialogs

Display the standard Excel dialog boxes to get filenames, printer settings, or other
common tasks

Chapter
7

InfoPath forms Collect data in XML format Chapter
26

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3. Do Math
Visual Basic provides built-in operators and functions that perform many of the same calculations that you are used to
using from Excel formulas. If you are new to programming, the way you write mathematical formulas in Visual Basic
may seem backward:

 x = 43 + 37 / 2 ' Not 43 + 37 / 2 = x

That's because the equals sign (=) performs an operation called assignment . The result of the preceding calculation is
assigned to the variable x. In Visual Basic, the assignment operation is always performed last, after all other operations.
Other operators are evaluated in the sequence shown in Table 3-4.

Table 3-4. Visual Basic mathematical operators' order of precedence (left to right)
() group ^ exponent - negation * multiply / divide

\ integer divide Mod modulus + add - subtract = assign

Most of these operators are self-explanatory, but there are two exceptions:

Use \ to divide two numbers and ignore the remainder.

Use Mod to divide two numbers and return only the remainder.

For example, the following simple function divides two numbers and returns the result as a string:

 Function IntegerMath(numerator As Integer, denominator As Integer) As String
 Dim quotient As Integer, remainder As Integer
 ' Find the quotient.
 quotient = numerator \ denominator
 ' Find the remainder
 remainder = numerator Mod denominator
 ' Return the result
 IntegerMath = "Result is " & quotient & " remainder " & denominator
 End Function

Mod is frequently used in loops to perform some task once every N number of times. For example, the following code
fragment builds a single string out of an array of words and adds a paragraph break every five words:

 For i = 0 To UBound(words) - 1
 str = str & words(i) & " "
 If i <> 0 And i Mod 5 = 0 Then _
 str = str & vbCrLf
 Next

Visual Basic also provides a set of math functions to perform some common tasks. Since these functions are built in to
the language, they are called intrinsic functions . Excel provides equivalent worksheet functions for the intrinsic
trigonometric and financial functions listed in Table 3-5. That duplication reflects the fact that Visual Basic is a general
programming language used by many different applications.

Table 3-5. Visual Basic math functions
General

Abs Exp Fix Int Log

Rnd Sgn Sqr
Trigonometric

Atn Cos Sin Tan
Financial

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DDB FV IPmt IRR MIRR

NPer NPV Pmt PPmt PV

Rate SLN SYD

As with the operators, most of the functions in Table 3-5 are self-explanatory with a couple of exceptions:

Use the Fix or Int function to get the whole-number portion of a decimal number.

Use Rnd to generate random numbers.

The Rnd function returns a random number between 0 and 1. To generate a random integer between two numbers, use
the following formula:

 ' Returns a random integer that is > min and < max.
 Function Random(min As Integer, max As Integer) As Integer
 ' Initialize the random-number generator.
 Randomize
 ' Calculate a random integer.
 Random = Int((max - min + 1) * Rnd + min)
 End Function

The Randomize statement initializes the random-number generator. You can repeat sequences of the generated numbers
by calling Randomize with a negative number, for example Randomize -1.

You can derive complex functions from Visual Basic's intrinsic functions using the formulas shown in Table 3-6. These
functions are also provided in the sample workbook and there are some worksheet function equivalents as well.

Table 3-6. Derived math functions
Function Formula

Secant (Sec) 1 / Cos(x)

Cosecant (Cosec) 1 / Sin(x)

Cotangent (Cotan) 1 / Tan(x)

Inverse Sine (Arcsin) Atn(x / Sqr(-x * x + 1))

Inverse Cosine (Arccos) Atn(-x / Sqr(-x * x + 1)) + 2 * Atn(1)

Inverse Secant (Arcsec) Atn(x / Sqr(x * x - 1)) + Sgn((x) - 1) * (2 * Atn(1))

Inverse Cosecant (Arccosec) Atn(Sgn(x) / Sqr(x * x 1))

Inverse Cotangent (Arccotan) 2 * Atn(1) - Atn(x)

Hyperbolic Sine (HSin) (Exp(x) - Exp(-x)) / 2

Hyperbolic Cosine (HCos) (Exp(x) + Exp(-x)) / 2

Hyperbolic Tangent (HTan) (Exp(x) - Exp(-x)) / (Exp(x) + Exp(-x))

Hyperbolic Secant (HSec) 2 / (Exp(x) + Exp(-x))

Hyperbolic Cosecant (HCosec) 2 / (Exp(x) - Exp(-x))

Hyperbolic Cotangent (HCotan) (Exp(x) + Exp(-x)) / (Exp(x) - Exp(-x))

Inverse Hyperbolic Sine (HArcsin) Log(x + Sqr(x * x + 1))

Inverse Hyperbolic Cosine (HArccos) Log(x + Sqr(x * x - 1))

Inverse Hyperbolic Tangent (HArctan) Log((1 + x) / (1 x)) / 2

Inverse Hyperbolic Secant (HArcsec) Log((Sqr(-x * x + 1) + 1) / x)

Inverse Hyperbolic Cosecant (HArccosec) Log((Sgn(x) * Sqr(x * x + 1) + 1) / x)

Inverse Hyperbolic Cotangent (HArccotan) Log(x + Sqr(x * x - 1))

Logarithm to base N (LogN) Log(x) / Log(n)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-5 lists Visual Basic's financial functions. Excel provides its own (larger) set of financial functions, which are
covered in Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4. Work with Text
Working with text is probably just as common as working with numbers in most programs. Visual Basic refers to text
data as strings and it provides a set of string operators and functions just as it does for math. Since strings and
numbers are very different types of data, the nature of operators and functions are very different, as shown by Tables
3-7 and 3-8.

Table 3-7. Visual Basic string operators
& (join) Like (compare) = (assign)

Table 3-8. Visual Basic string functions
Task Function Use to

Compare Option Compare Change the string comparison rules

 Instr Find one string inside of another

 StrComp Compare one string to another

Convert Asc Convert a character to its numeric ANSI value

 Chr Convert a numeric ANSI value to a character

 Format Convert a number or a date to a string using a specific format

 LCase Make a string lowercase

 UCase Make a string uppercase

 StrConv Change the capitalization, locale, or encoding of a string

 Val Get the numeric value of a string

Arrays Split Convert a string to a one-dimensional array

 Join Convert a one-dimensional array to a string

Change Left Get a number of characters from the left side of the string

 Len Get the length of a string

 LTrim Remove spaces from the left side of a string

 LSet Copy one string to another, left-aligning the result

 Mid Get a specified number of characters from within as string

 Replace Search and replace words or characters in a string

 Right Get a number of characters from the right side of a string

 RSet Copy one string to another, right-aligning the result

 RTrim Remove spaces from the right side of a string

 trim Remove spaces from the right and left sides of a string

Repeat Space Create a string containing a number of spaces

 String Create a string containing a repeating character

The following sections explain how to use the string functions to perform the major tasks listed in Table 3-8.

3.4.1. Compare Strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By default, Visual Basic compares strings in a case-sensitive way. That means "Jeff" and "jeff" are not considered the
same. You can change that by adding an Option Compare Text statement at the beginning of a module or class, as shown
here:

 ' Ignore case when comparing
 strings.
 Option Compare Text

 Sub CompareStrings()
 ' Displays True if Option Compare is Text.
 Debug.Print "Jeff" = "jeff"
 End Sub

Option Compare applies to all the ways to compare string (=, Like, StrComp) throughout the module or class. You can achieve
a similar result on a smaller scale by temporarily converting the strings to upper- or lowercase before comparing them:

 Debug.Print LCase("Jeff") = LCase("jeff")

That approach is actually more common than changing Option Compare since it allows you to use both case-sensitive and
case-insensitive comparisons within a class or module.

The Like operator is similar to = in Visual Basic, except it also allows you to match patterns of characters using the
comparison characters listed in Table 3-9.

Table 3-9. Pattern-matching characters
Use To match

? Any single character

* Zero or more characters

Any single digit

[list] Any single character in list

[!list] Any single character not in list

For example, the following function returns True if a passed-in argument is formatted as a Social Security number:

 Function IsSSN(ssn As String) As Boolean
 If ssn Like "###-##-####" Then
 IsSSN = True
 Else
 IsSSN = False
 End If
 End Function

The Instr function returns the location of one string within another string. This is one of the most-used functions in Visual
Basic, since it allows you to break up strings and to do all sorts of search-and-replace tasks.

The StrComp function compares two strings for sorting . If the first string sorts before the second string, StrComp returns -
1; if they sort the same, it returns 0; and if the first string sorts after the second string, StrComp returns 1. The following
example demonstrates how to use StrComp to sort an array:

 Sub SortArray(arr As Variant, _
 Optional compare As VbCompareMethod = vbBinaryCompare)
 Dim lb As Integer, ub As Integer, i As Integer, str As String
 Dim j As Integer
 ' If argument is not an array, then exit.
 If Not IsArray(arr) Then Exit Sub
 lb = LBound(arr)
 ub = UBound(arr)
 ' If only one element, then exit.
 If lb = ub Then Exit Sub
 For i = lb To ub
 str = arr(i)
 For j = lb To ub
 ' Swap values if out of order.
 If StrComp(str, arr(j), compare) = -1 Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If StrComp(str, arr(j), compare) = -1 Then
 str = arr(j)
 arr(j) = arr(i)
 arr(i) = str
 End If
 Next
 Next
 End Sub

There are more efficient sorting routines than the one shown here. I chose this one for its
simplicity.

The SortArray procedure lets you specify whether or not to ignore the case of characters when sorting. The default is to
use vbBinaryCompare for case-sensitive sorting. You can use the SortArray function to create a function that sorts strings:

 Function SortString(str As String, Optional ignorecase = False)
 Dim arr As Variant
 ' Covert the string to an array.
 arr = Split(str, " ")
 ' Sort the array case-sensitive or case-insensitive.
 If ignorecase Then
 SortArray arr, vbTextCompare
 Else
 SortArray arr, vbBinaryCompare
 End If
 ' Convert the array back to a string and return it.
 SortString = Join(arr, " ")
 End Function

To see how these functions work together, step through the following code in the sample worksheet:

 Sub DemoSort()
 Dim str As String, arr As Variant
 str = "Q z v w p x f g J l h r y D k i e T s u o n M a c b"
 ' Show case-sensitive sort.
 Debug.Print SortString(str, False)
 ' Show case-insensitive sort.
 Debug.Print SortString(str, True)
 End Sub

I have an ulterior motive for showing you these procedures: I'm often asked how you break tasks into procedures and I
think this set of procedures illustrates the logical division of tasks very well. SortString and SortArray both make sense as a
stand-alone procedure because they might be reused any number of ways elsewhere in the program. Writing effective,
reusable procedures is one of the key skills that identify you as an excellent programmer. The best way to learn that
skill is by studying good examples and then practicing on your own!

3.4.2. Convert Strings

I touched on two very common conversion functions already: LCase and UCase convert a string to lower- or uppercase,
usually because you want to ignore case while comparing strings. Your computer can perform these conversions and
comparisons because it actually stores strings as numbers using something called ANSI character codes .

The Asc function converts characters to their numeric ANSI character codes; Chr converts those numeric codes back to
characters. The following code displays the ANSI character codes in the Immediate window (Figure 3-2):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters. The following code displays the ANSI character codes in the Immediate window (Figure 3-2):

 Sub ShowAnsiCodes()
 Dim i As Integer, str As String
 For i = 0 To 255
 str = str & i & ": " & Chr(i) & vbTab
 If i Mod 10 = 0 Then
 Debug.Print str
 str = ""
 End If
 Next
 End Sub

Not all character codes have an appearance. Chr(0), Chr(9), Chr(10), and Chr(13) represent the
null, tab, line-feed, and carriage-return characters respectively.

Looking at Figure 3-2, you can see that you can convert individual characters from upper- to lowercase by adding 32 or
from lower- to uppercase by subtracting 32. UCase and LCase just make those conversions easier.

The StrConv function is related to UCase and LCase. It can perform the same conversions, plus it can convert the words in a
string to use initial capitalization as is used in proper names:

 ' Displays St. Thomas Aquinas
 Debug.Print StrConv("st. thomas aquinas", vbProperCase)

StrConv also converts strings to or from other encodings or locales. Those are pretty
advanced topics and I'm just going to skip them here.

Figure 3-2. ANSI character codes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Format function converts various types of data into strings using predefined or custom formats. The Val function
converts strings containing numeric data back into numeric data types. This simple example illustrates how these
functions work:

 Sub ShowFormatVal()
 Dim num As Double, str As String
 str = Format(Now, "Short Time")
 num = Val(str)
 ' If the time is 4:31 PM, displays: 16:31 16
 Debug.Print str, num
 End Sub

You might notice that Val doesn't do anything fancyit just gets the first part of the string that is numeric and returns it
as a number. Val can recognize a few special strings as numbers. For instance, it interprets &HFF as the hexadecimal
(base 16) number 255 and &o77 as the octal (base 8) number 63. Format is really more interesting, since it provides
useful built-in formats as listed in Table 3-10.

Table 3-10. The Format function's built-in formats

Category Named
format Converts

Numeric General
Number Number to string without thousands separator. This is the default.

 Currency Number to string using the decimal, separator, and currency characters that are appropriate
for the locale. Negative values are enclosed in parentheses.

 Fixed Number to string with at least one digit to the left of the decimal and two digits to the right
of the decimal.

 Standard Same as Fixed but includes a thousands separator.

 Percent Multiplies number by 100 and includes at least two digits to the right of the decimal.

 Scientific Number to string using standard scientific notation.

 Yes/No Zero to No, nonzero to Yes.

 True/False Zero to False, nonzero to True.

 On/Off Zero to Off, nonzero to On.

Date/Time General
Date

Number or date to string using MM/DD/YY HH:MM:SS format. Omits time if number is a
whole number.

 Long Date Number or date to string using your system's long date format.

 Medium
Date Number or date to string using your system's medium date format.

 Short
Date Number or date to string using your system's short date format.

 Long Time Number or date to string using your system's long time format. Includes hours, minutes,
and seconds.

 Medium
Time

Number or date to string in 12-hour time format. Includes hours, minutes, and AM/PM
designator.

 Short
Time Number or date to string in 24-hour time format. Includes hours and minutes.

If the built-in formats don't give you what you need, you can build your own format strings using the Format function's
formatting codes listed in Table 3-11.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-11. The Format function's formatting codes
Category Code Use to

String @ Include a character or space if there is no character in this position (creates fill spaces
for columns).

 & Include a character (no fill).

 < Force lowercase.

 > Force uppercase.

 ! Right-align string (default is left-align).

 \ Include characters that otherwise have special meaning in the format string (e.g., use
\@ to include the @ character).

 ""literal"" Include literal characters in a format string.

Numeric None Include number with no special formatting.

 0 Include a digit or zero if there is no digit in this position (creates zero fill).

 # Include a digit (no fill).

 . Include decimal placeholder.

 % Convert number to percentage and include % sign.

 , Include a thousands separator.

 E,-E+, e-,e+ Convert to scientific notation.

 -, +, $, () Include these literal characters (no double quotes or \ is required to include these
characters in numeric strings).

Date/Time : Include time separator.

 / Include date separator.

 c Same as General Date.

 d, dd Include day of month as digit.

 ddd Include day of week as an abbreviation.

 dddd Include full day of week.

 ddddd Same as Short Date.

 dddddd Same as Long Date.

 aaaa Include localized name of the weekday.

 w Include day of week as a number (1 to 7).

 ww Include week or year as number.

 m, mm Include month as number. (Exception: includes minutes if it follows the hour, e.g.,
hh:mm.)

 mmm Include month as an abbreviation.

 mmmm Include full month name.

 oooo Include full, localized month name.

 q Include quarter of year (1 to 4).

 y Include day of year (1 to 366).

 yy, yyyy Include year as digit.

 h, hh Include hour.

 n, nn Include minute (or you can use m, mm if following hour).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s, ss Include second.

 ttttt Same as Long Time.

 AM/PM, am/pm,
A/P, a/p Use 12-hour time and include the specified meridian designator.

 AMPM, ampm Use 12-hour time and include the system meridian designator.

Some of the format codes in Tables 3-10 and 3-11 refer to system or localized settings. Those codes allow you to use
the calendar and time features from the user's system, rather than using the default Visual Basic settings, which are
based on the Julian calendar and English month and weekday names. It's important to be aware of those settings if
your program is for use outside of the English-speaking world.

You can combine formatting code to produce quite sophisticated results. For example:

 Debug.Print Format(Now, """Today is ""dddd, mmmm d, yyyy" & _
 """ the ""y""th day of the year. The time is now"" ttttt.")

displays this result:

 Today is Thursday, June 17, 2004 the 169th day of the year. The time is now
 10:28:22 AM.

3.4.3. Change Strings

A lot of programming tasks involve getting or changing parts of a string. For simple replacement tasks, use the Replace
method as shown here:

 Sub DemoSearchAndReplace()
 Dim str As String
 str = "this is some text and some more text"
 str = Replace(str, "some", "different")
 Debug.Print str
 End Sub

The preceding code replaces all instances of some with different in a case-sensitive way. Replace also provides option for
replacing a certain number of occurrences, starting at a specific position within the string and doing case-insensitive
searches. Replace also replaces one string with another regardless of their length. If the strings are the same length, you
could use the Mid statement to change the source string, instead:

 Mid(str, InStr(1, str, "text")) = "word"
 Debug.Print str
 ' Displays: this is different word and different more text

The Mid statement is unusual in that it receives an assignmentin this case the replacement string "word". Since Mid can't
make strings longer or shorter, it is mainly useful for modifying string data that is in a fixed-width format or for
replacing single characters, such as punctuation.

Visual Basic also provides a set of functions to remove leading, trailing, or leading and trailing whitespace characters
from a string: LTrim, RTrim, and trim. Excel does Visual Basic one better by adding the trim worksheet function, which
removes repeated internal spaces as well. The following code demonstrates each of the different trim functions:

 Sub DemoTrims()
 Dim str As String
 str = " this is a string to trim. "
 Debug.Print "LTrim:", ">"; LTrim(str); "<"
 Debug.Print "RTrim:", ">"; RTrim(str); "<"
 Debug.Print "Trim:", ">"; Trim(str); "<"
 Debug.Print "Excel Trim:", ">"; _
 WorksheetFunction.Trim(str); "<"
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The preceding code produces the following output in the Immediate window:

 LTrim: >this is a string to trim. <
 RTrim: > this is a string to trim.<
 Trim: >this is a string to trim.<
 Excel Trim: >this is a string to trim.<

3.4.4. Repeat Characters

Finally, Visual Basic includes a couple of simple functions that create strings of repeated characters . The Space function
returns a string containing spaces, and the String function returns a string containing a repeated character. Those
functions are sometimes used in combination with Chr when creating reports or drawing text borders as shown here:

 ' Draws a little box in the Immediate window.
 Sub DrawBox()
 Debug.Print Chr(1) & String(20, Chr(6)) & Chr(2)
 Debug.Print Chr(5) & Space(20) & Chr(5)
 Debug.Print Chr(5) & Space(20) & Chr(5)
 Debug.Print Chr(5) & Space(20) & Chr(5)
 Debug.Print Chr(3) & String(20, Chr(6)) & Chr(4)
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5. Get Dates and Times
Visual Basic stores dates and times as decimal numbers. The digits to the left of the decimal represent the number of
days since December 30, 1899, and the digits to the right of the decimal represent the fraction of the day that has
passed (for instance, 0.5 = noon).

This means that dates and times use the same operators as numeric types. For example, the following expression
shows yesterday's date:

 Debug.Print Date - 1

This also means that you can use date or time literals to work with dates. For example, if you type #0.0# in the Code
window, Visual Basic automatically changes what you typed into the time literal for midnight shown here:

 dt = #12:00:00 AM#

You can edit that literal to add a certain number of seconds, minutes, or hours to the time. For example, the following
code pauses Excel for five seconds:

 Sub TakeFive()
 Dim dt As Date
 ' Five seconds.
 dt = #12:00:05 AM#
 Debug.Print "Paused..."
 ' Wait till five seconds from now.
 Application.Wait Now + dt
 Debug.Print "Resumed."
 End Sub

Visual Basic provides a whole set of functions for working with dates and times, as listed in Table 3-12.

Table 3-12. Visual Basic functions for working with date and time
Category Function Use to

Current Date Get or set the system date

 Now Get the current date and time

 Time Get or set the system time

 Timer Get the number of seconds since midnight (often used to measure performance)

Date DateSerial Convert year, month, and day numbers into a date

 DateValue Convert a string into a date

 Day Get the day of the month from a date

 Month Get the month of the year from a date

 Weekday Get the weekday from a date (1 to 7)

 Year Get the year from a date

Time Hour Get the hour from a time

 Minute Get the minute from a time

 Second Get the second from a time

 TimeSerial Convert hour, minute, and second numbers into a time

 TimeValue Convert a string into a time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For most conversions, the Format function works better than the functions listed in Table 3-12. The date/time functions
are mainly used for simple operations, such as getting the current year:

 Debug.Print Year(Now)

The Timer function is very handy when developing programs since it lets you see how long your code takes to run. When
developing large or complex programs, it is pretty common to record the Timer value at the start of the process, then
display the difference between that value and the current Timer when the task completes, as shown by the following
changes to DemoSort:

 Sub DemoSort()
 Dim str As String, arr As Variant, d As Double
 ' Time this operation.
 d = Timer
 str = "Q z v w p x f g J l h r y D k i e T s u o n M a c b"
 ' Show case-sensitive sort.
 Debug.Print SortString(str, False)
 ' Show case-insensitive sort.
 Debug.Print SortString(str, True)
 ' Display how long the task took.
 Debug.Print Timer - d
 End Sub

You should use the Double data type when measuring performance since many tasks take only a fraction of a second. On
my computer, DemoSort takes only about 0.00128 seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6. Read and Write Files
There are a number of different ways to read and write files in Visual Basic, and which you choose depends on what you
are trying to do, as described in Table 3-13.

Table 3-13. File-access techniques in Excel Visual Basic
Technique Use to Look here

Intrinsic functions Read or write simple datafiles This section

FileSystemObject Create files, folders, and control file attributes Chapter 6

Workbooks, Workbook objects Create, open, and save Excel workbook files; import datafiles into workbooks Chapter 8

XMLMap object Import or export XML datafiles from a workbook Chapter 15

In short, you shouldn't assume the Visual Basic intrinsic functions are the best way to read and write files in all
situations. Actually, I prefer the FileSystemObject for most general file-access tasks, but it's important to be thorough, so
I'll cover the intrinsic file-access functions here (Table 3-14).

Table 3-14. Visual Basic's intrinsic file-access functions
Category Function Use to

Access Close Close an open file

 FileCopy Copy a file

 FreeFile Get a file number for Open

 Lock...Unlock Prevent others from accessing all or part of a file

 LOF Get the length of an open file in bytes

 Open Open a file

 Reset Close all open files

Attributes FileAttr Get the attributes of an open file

 FileDateTime Get the date that a file was created or changed

 FileLen Get the length of a file in bytes before opening it

 GetAttr Get the attributes of a file, folder, or volume label

 SetAttr Change the attributes of a file, folder, or volume label

Drives ChDir Set the current folder

 ChDrive Set the current drive

 CurDir Get the current folder

 MkDir Create a new folder

 RmDir Delete an empty folder

Manage Dir List files in a folder

 Kill Delete a file

 Name Rename a file

Read Get Read data from an open binary or random-access file

 EOF Test you have reached the end of the file

 Input # Read records from an open sequential file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Line Input # Read a line from an open sequential file

 Loc Return the current position within a file

 Seek Get or set the current position within a file

Write Print # Write a line to an open sequential file

 Put Write data to an open binary or random-access file

 Spc Insert blank spaces in a sequential file

 Tab Insert tab characters in a sequential file

 Width # Set the width of a sequential file

 Write # Write records to a sequential file

The functions in Table 3-14 reflect the fact that there are three different types of file access in Visual Basic:

Sequential access

Reads files one line at a time

Random access

Reads files as a collection of fixed-length records

Binary access

Reads files as an arbitrary number of bytes

All of these types of access follow the same pattern, which is based on a very old programming concept called file
handles :

1. Use FreeFile to get a number that is available for use as a file handle.

2. Open the file using that number and the chosen file-access method.

3. Read data from the file using Input # (sequential access) or Get (random or binary access), or write data using
Print #, Write # (sequential), or Put (random or binary).

4. Close the file handle.

The modern approach, such as that used by the FileSystemObject, is to use object references
rather than numeric file handles.

Of the three types of file access, binary is the most useful in today's world because it allows you to read an entire file
into a variable with a single statement. It is by far the fastest way to get the contents of a file. The following QuickRead
function opens and reads a file and returns the data it contains as a string variable:

 ' Reads a file into a string.
 Function QuickRead(fname As String) As String
 Dim i As Integer, res As String, l As Long
 ' Get a free file handle.
 i = FreeFile
 ' Get the length of the file
 l = FileLen(fname)
 ' Create a string to contain the data.
 res = Space(l)
 ' Open the file.
 Open fname For Binary Access Read As #i
 ' Read the whole file into res.
 Get #i, , res

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get #i, , res
 ' Close the file
 Close i
 ' Return the string.
 QuickRead = res
 End Function

How big of a file can you read this way? Pretty big! I had no problem loading an 8.4 MB art file using this technique.
String variables can be very large in Visual Basic. Similarly, you can write files very quickly with binary access. The
following QuickWrite function saves a string as a file and returns True if it succeeded:

 ' Writes data to a file.
 Function QuickWrite(data As String, fname As String, _
 Optional overwrite As Boolean = False) As Boolean
 Dim i As Integer, l As Long
 ' If file exists and overwrite is True, then
 If Dir(fname) <> "" Then
 If overwrite Then
 ' delete the file.
 Kill fname
 Else
 ' else, return False and exit.
 QuickWrite = False
 Exit Function
 End If
 End If
 ' Get a free file handle.
 i = FreeFile
 ' Get the length of the file
 l = Len(data)
 ' Open the file.
 Open fname For Binary Access Write As #i Len = l
 ' Write the string to the file.
 Put #i, , data
 ' Close the file
 Close i
 ' Return True.
 QuickWrite = True
 End Function

This approach was first pointed out to me by Mark Chase, senior developer on Basic at Microsoft. He deserves credit for
clear thinking and also for being a darn nice guy. You can test that these functions work by running the following code
from the sample workbook:

 Sub DemoQuickReadWrite()
 Dim pth As String, data As String
 ' Get the folder that this workbook is in.
 pth = ThisWorkbook.Path
 ' Read the ReadMe.txt file.
 data = QuickRead(pth & "\in.txt")
 ' Display the file
 Debug.Print data
 ' Change the file.
 data = Replace(data, "text", "data")
 ' Save the file.
 Debug.Print QuickWrite(data, pth & "\out.txt", True)
 End Sub

3.6.1. Sequential Access

Sequential access reads and writes files one line at a time. In the past, sequential access was often used to write
reports or other data to human-readable files. For example, the following WriteArray function writes a two-dimensional
array to disk as a comma-delimited file using sequential access:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array to disk as a comma-delimited file using sequential access:

 ' Writes a two-dimensional array to a comma-delimited file.
 ' (Use to create CSV file out of a selected range.)
 Function WriteArray(arr As Variant, fname As String, _
 Optional overwrite As Boolean = False) As Boolean
 Dim lb1 As Long, lb2 As Long, ub1 As Long, ub2 As Long
 Dim i As Integer, rows As Long, cols As Long, rec As String
 ' If arr isn't an array, return False and exit.
 If Not IsArray(arr) Then WriteArray = False: Exit Function
 ' Get bounds for For loops.
 lb1 = LBound(arr, 1)
 lb2 = LBound(arr, 2)
 ub1 = UBound(arr, 1)
 ub2 = UBound(arr, 2)
 ' If file exists and overwrite is True, then
 If Dir(fname) <> "" Then
 If overwrite Then
 ' delete the file.
 Kill fname
 Else
 ' else, return False and exit.
 WriteArray = False
 Exit Function
 End If
 End If
 ' Get a free file handle.
 i = FreeFile
 ' Open the file.
 Open fname For Append As #i
 ' For each row in the array.
 For rows = lb1 To ub1
 ' For each column in the array.
 For cols = lb2 To ub2
 rec = rec & arr(rows, cols) & ", "
 Next
 ' Remove the last ", " from rec.
 rec = Left(rec, Len(rec) - 2)
 ' Write rec to the file.
 Print #i, rec
 ' Clear rec
 rec = ""
 Next
 ' Close the file
 Close i
 ' Return True.
 WriteArray = True
 End Function

That looks complicated, but the actual file-access code (in bold) is really very simple and follows the pattern described
previously: get a file handle, open the file, read or write to the file, close the file. Sequential access is suited to this task
since you are building the string data one line at a time as you loop over the rows in the array.

Perhaps a better approach to this task would be to build a string from the array in one procedure and then save that
string using the QuickWrite function. That approach would isolate file access in one place (QuickWrite) instead of integrating
it into the task of converting the array into a string. The following code shows that alternate approach:

 ' Better approach -- don't integrate file access within
 ' array conversion task.
 Function TableToCSV(arr As Variant) As String
 Dim lb1 As Long, lb2 As Long, ub1 As Long, ub2 As Long
 Dim rows As Long, cols As Long, rec As String
 ' If arr is not an array, return "" and exit.
 If Not IsArray(arr) Then TableToCSV = "": Exit Function
 ' Get bounds for For loops.
 lb1 = LBound(arr, 1)
 lb2 = LBound(arr, 2)
 ub1 = UBound(arr, 1)
 ub2 = UBound(arr, 2)
 For rows = lb1 To ub1
 For cols = lb2 To ub2
 rec = rec & arr(rows, cols) & ", "
 Next
 ' Remove last ", " and add carriage return/line feed.
 rec = Left(rec, Len(rec) - 2) & vbCrLf
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Next
 TableToCSV = rec
 End Function

Using TableToCSV instead of WriteArray involves the extra step of calling QuickWrite, but the logic is still very clear:

 Sub DemoTableToCSV()
 Dim arr As Variant, data As String, pth As String
 pth = ThisWorkbook.Path
 ' Get cells from the active worksheet.
 arr = ActiveSheet.UsedRange.Value
 ' If the range contains cells.
 If IsArray(arr) Then
 ' Convert array to CSV.
 data = TableToCSV(arr)
 If data <> "" Then
 ' Save the result
 QuickWrite data, pth & "\selection.csv", True
 ' Display the result
 Debug.Print data
 End If
 End If
 End Sub

3.6.2. Random Access

Random-access files are read or written one record at a time. In this case, record usually means a fixed-size data
structure identified by a user-defined type. Because Visual Basic knows the length of each record, you can jump to any
record in the file using the Seek statement (that's what makes the access random).

In order to use random access , you must first define the structure of your record with a Type statement. You then
declare a variable with that type and use it to read and/or write records to the file. I'm not going to show you how to do
all that, because XML files and databases both provide a much better approach for storing and retrieving structured
data. I cover those topics in Chapters 12 and 15.

Why is random access not such a great approach? A few reasons:

The records are fixed-length by definition, which means names, addresses, and other variable-length data must
be stored in fixed-length strings. You have to correctly guess the maximum size of those items during design.

Changes to your data structure, such as adding a field, means you have to convert all of your existing datafiles.
You have to write code to open, convert, and save files using the new structure. (In programming circles this is
called tying your data structure to your implementation, and it's a bad thing.)

You're programming in Excel! You already have better tools for doing these types of tasks.

3.6.3. Common Tasks

In addition to reading and writing files, you also often need to manage the files on a computer. The most common tasks
are listed in Table 3-15.

Table 3-15. Common tasks for Visual Basic's intrinsic file functions
Task Function Comments

Check if file exists Dir Also used to list files in a folder.

Delete a file Kill Deletes a file if it is not locked or read-only.

Get the current
folder CurDir Excel may change the current folder when a workbook is saved or opened by the

user.

Change current
folder ChDir You can use characters like .. to move up one folder.

Change current
drive ChDrive Only the first letter from the argument is used.

Create a folder MkDir May include path specifiers like . (current folder) or .. (up one folder). Does not
change the current folder.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Delete a folder RmDir Folder must be empty before it can be deleted.

Get/change file
attributes FileAttr File attributes include hidden, read-only, archive.

Make a backup copy FileCopy Copies an existing file to a new filename.

Rename a file Name Changes a filename.

In general, it is not a good idea to get the current folder (CurDir) or change the current folder (ChDir) from Visual Basic
when working with Excel because saving or opening a file from the Excel user interface may subsequently change the
current folder. It is a better practice to use the path properties provided by Excel objects when working with folders in
Excel.

For example, the following code displays the paths available for various Excel objects:

 Sub ShowPaths()
 Dim wbPth As String, appPth As String, stPth As String, _
 altPth As String, tpPth As String, adPth As String
 wbPth = ThisWorkbook.Path
 appPth = Application.Path
 stPth = Application.StartupPath
 altPth = Application.AltStartupPath
 tpPth = Application.TemplatesPath
 adPth = Application.AddIns(1).Path
 Debug.Print "Workbook path:", wbPth
 Debug.Print "Application path:", appPth
 Debug.Print "Startup path: ", stPth
 Debug.Print "Alt startup path:", altPth
 Debug.Print "Template path:", tpPth
 Debug.Print "Add-in path: ", adPth
 End Sub

I often use ThisWorkbook.Path within my samples to get or save files associated with the current workbook. That strategy
keeps all of the related files in the same folder, so it is easier to copy the samples to a new location or to install them
on your computer. Alternately, you may choose to create a fixed folder location for use in your code such as shown
here:

 ' A fixed path.
 Const SAMPLEPTH = "\Excel\Samples"

 ' Run once to create folder.
 Sub CreateSamplesFolder()
 ' Create the SAMPLEPTH folder
 On Error Resume Next
 MkDir "\Excel"
 MkDir "\Excel\Samples"
 If Err Then _
 MsgBox ("Couldn't create folder. It may already exist.")
 End Sub

Using a fixed location for your files poses the problem illustrated by the preceding exception handling: the folder may
already exist! That's another reason to use the ThisWorkbook.Path approach.

You can use the Dir function to check whether a file exists in a folder or to get a list of all of the files in a folder. When
getting a list of files, Dir acts a little strangely. The first time you call it, specify the folder you want to search; then call
Dir without an argument to get the next file in the folder, as shown here:

 Function GetFiles(filepath As String) As Variant
 Dim arr() As String, fname As String, count As Integer
 ' Get the first file.
 fname = Dir(filepath & "*")
 Do Until fname = ""
 count = count + 1
 ReDim Preserve arr(count)
 arr(count - 1) = fname
 ' Get next file.
 fname = Dir()
 Loop
 ' Return the array
 GetFiles = arr
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function

Dir does not order the files it returns alphabetically, so you may need to sort the list before displaying it. For example,
the following code uses the GetFiles function to list the files in the current workbook's folder:

 Sub DemoGetFiles()
 Dim flist As Variant, str As String
 flist = GetFiles(ThisWorkbook.Path)
 ' Sort the file list
 Text.SortArray (flist)
 str = Join(flist, vbCrLf)
 Debug.Print str
 End Sub

The FileSystemObject provides more extensive methods for working with files, folders, and drives. See Chapters 6 and 23
for information on performing these tasks using the FileSystemObject rather than Visual Basic's intrinsic functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7. Check Results
In many situations, you need to check the result of an operation to tell if it succeeded. The result-checking functions in
Visual Basic let you test results before you take actions that might otherwise cause an error. Table 3-16 lists the result-
checking functions.

Table 3-16. Visual Basic result-checking functions
Category Function Use to

Boolean tests IsArray Tell if a variable is an array

 IsDate Tell if a variable contains data that can be converted to a Date

 IsEmpty Tell if a variable has not yet been initialized

 IsError Tell if a variable contains an Error object

 IsMissing Tell if a ParamArray argument was omitted

 IsNull Tell if a variable contains no valid data

 IsNumeric Tell if a variable contains a value that can be converted to a number

 IsObject Tell if a variable is a reference to a valid object

Type tests TypeName Get the name of the variable's type as a string

 TypeOf Test the type of a variable within an If block

 VarType Get the variable's type as a VbVarType constant

Most of these tests are used with variables that were declared as Variant or Object data types. Those types of variables
can contain many different kinds of data, so it is often necessary to test what the variable contains before proceeding in
code.

There are several common uses of this in Excel. The first is ActiveSheet.property, which may refer to a Worksheet, Chart, or
other object:

 Sub ChangeSheets()
 Select Case TypeName(ActiveSheet)
 Case "Worksheet"
 If ActiveSheet.Index < Worksheets.Count Then
 Worksheets(ActiveSheet.Index + 1).Activate
 Else
 Worksheets(1).Activate
 End If
 Case "Chart"
 If ActiveSheet.Index < Charts.Count Then
 Charts(ActiveSheet.Index + 1).Activate
 Else
 Charts(1).Activate
 End If
 Case Else
 Debug.Print TypeName(ActiveSheet), ActiveSheet.Name
 End Select
 End Sub

The preceding code uses a Select statement to perform different actions based on the TypeName of the active sheet. You
usually combine TypeName with Select when there are more than two possibilities as shown in the preceding block.
TypeName is also handy for checking whether or not an optional argument has been omitted:

 Public Sub Reformat(Optional ws As Worksheet)
 ' Check if argument was omitted.
 If TypeName(ws) = "Nothing" Then
 ' Check the type of the active sheet.
 If TypeName(ActiveSheet) = "Worksheet" Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If TypeName(ActiveSheet) = "Worksheet" Then
 ' Format the active worksheet.
 Set ws = ActiveSheet
 Else
 ' You can't reformat nonworksheets.
 MsgBox "Select a worksheet and try again."
 Exit Sub
 End If
 End If
 Dim rng As Range
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat xlRangeAutoFormatSimple
 End Sub

In the preceding code, the choices are either/or: if the argument is omitted, check the active sheet; if that sheet is a
worksheet, use it. Alternately, you can use the TypeOf keyword within an If statement; however, TypeOf can't test if the
variable is Nothing. To do that, you need to use either TypeName or the Is operator, as shown by this different version of
the preceding code:

 Public Sub Reformat2(Optional ws As Worksheet)
 ' Check if argument was omitted.
 If ws Is Nothing Then
 ' Check the type of the active sheet.
 If TypeOf ActiveSheet Is Worksheet Then
 ' Format the active worksheet.
 Set ws = ActiveSheet
 Else
 ' You can't reformat nonworksheets.
 MsgBox "Select a worksheet and try again."
 Exit Sub
 End If
 End If
 Dim rng As Range
 ' Get the cells with data in them.
 Set rng = ws.UsedRange
 ' Apply AutoFormat
 rng.AutoFormat xlRangeAutoFormatSimple
 End Sub

Reformat and Reformat2 are equivalent. I tend to use the TypeName test rather than TypeOf or Is because it lets me use a
consistent test for all types of objects, but that's really just a personal preference.

The IsNumeric and IsDate functions are useful when receiving data from a user. Rather than returning specific information
about the type of the variable, they let you know if the data in the variable can be converted to those types. For
instance, the following code checks the value entered in an InputBox to determine the type of entry the user made:

 Sub CheckEntry()
 Dim var As String, msg As String
 var = InputBox("Enter a number, word, or date.")
 ' Use Boolean tests to check an entry.
 If IsNumeric(var) Then
 msg = "number."
 ElseIf IsDate(var) Then
 msg = "date."
 ElseIf var = "" Then
 msg = "empty."
 Else
 msg = "string."
 End If
 Debug.Print "Entry is a " & msg
 End Sub

IsNumeric and IsDate are a good way to check values before calling conversion functions like CDate or CDouble.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8. Find Truth
If statements and Do loops rely on Boolean expressions to control what they do. Those Boolean expressions are usually
shown as a condition placeholder in the statement's syntax:

 If condition Then ...

and:

 Do While condition ...

A Boolean expression is simply an item that Visual Basic can determine to be either True or False. Mostly those
expressions are very obvious. The fragment If str = "" Then says "if the variable str is an empty string, then execute the
following lines of code." In this case, the equal sign (=) works as a comparison operator, not an assignment operator.
Visual Basic can use the operator both ways because it understands that the context of an If statement is different from
the standalone statement:

 str = ""

That line performs an assignment, not a comparison! This type of dual use is called overloading . If you hear someone
say "operators are overloaded in Visual Basic," they are just stating that = can be used two different ways.

There's something else you need to know about Boolean expressions, though. In Visual Basic, any nonzero value is
considered to be True. I know that's weird, but it's important because it means the following two fragments are
equivalent:

 If str = "" Then ...

 If Len(str) Then ...

The second form literally says "if the length of str, then..." which doesn't make any sense unless you know that 0 equals
False and any other value equals True. This second form used to be a common optimization technique because Visual
Basic returns the length of a string very quickly. These types of optimizations are less popular today, because the
clarity of code is now considered more important than saving a few processor cycles.

Table 3-17 lists the Visual Basic operators that are used to perform comparisons that result in Boolean expressions.

Table 3-17. Visual Basic comparison operators
Operator Comparison Operator Comparison

= Equal to <> Not equal to

< Less than > Greater than

<= Less than or equal to >= Greater than or equal to

Like Pattern match (strings) Is Exact match (objects)

Expressions can also be combined to form compound Boolean expressions using the operators listed in Table 3-18.

Table 3-18. Visual Basic Boolean operators truth table
exp1 Operator exp2 = Result

True And True True

True Or False True

False Or True True

Not False True

True Eqv True True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

False Eqv False True

True Imp True True

False Imp True True

False Imp False True

True XOR False True

False XOR True True

The most-used Boolean operators are And, Or, and Not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.9. Compare Bits
Computers use binary numbers internally. That's because they don't have 10 fingers to count on; they have only 2: on
and off, which represent 1 and 0, respectively. Knowing that helps you understand another use for the operators in
Table 3-18Boolean operators can also be used in mathematical operations to change the individual bits that make up a
number, as illustrated by the following code:

 Sub ToBorNotToB()
 Dim b As Byte
 b = 93
 Debug.Print b, Not b, b Or Not b
 ' Displays: 93 162 255
 End Sub

In the preceding code, Not and Or have a mathematical effect on b. Specifically, Not returns the bits that are 0 (255 - b)
and Or combines the bits in b and Not b (93 + 162). These are called bitwise operations and they make more sense if
you look at b as a binary number (Figure 3-3).

Bitwise operations are used to determine if a number contains one or more bit flags . Bit flags are numeric constants
that can be combined in a single number without interfering with each other, as shown in Figure 3-4.

Figure 3-4 illustrates that the result of the VarType function can contain both the vbArray flag and any of the other type
flags. For instance, vbArray And vbVariant indicates an array of variants. You can test if a variable contains an array of
variants by combining the type flags with the Or operator:

Figure 3-3. Evaluating bitwise operations

Figure 3-4. VbVarType constants are bit flags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Sub TestArrayType()
 Dim arr, vt As VbVarType
 arr = Array(1, 2, 3, 4, 5)
 vt = VarType(arr)
 If vt And (vbArray Or vbVariant) Then _
 MsgBox "Variable arr is an array of variants."
 End Sub

If the bit pattern of vt and vbArray Or vbVariant match, the expression is True and the message is displayed. That kind of
test is sometimes called a bit mask . Bit masking is also used to extract parts of a variable. For instance, the Excel Color
property returns a Long integer value that contains three byte values indicating the red, green, and blue components of
the color as shown by the following code:

 Sub ShowColors()
 Dim i As Integer, rng As Range, rgb As Long
 Set rng = Range("ColorTable")
 For i = 1 To 56
 rng.Offset(i, 0).Interior.ColorIndex = i
 rgb = rng.Offset(i, 0).Interior.Color
 rng.Offset(i, 1).Value = rgb And &HFF
 rng.Offset(i, 2).Value = rgb \ &H100 And &HFF
 rng.Offset(i, 3).Value = rgb \ &H10000 And &HFF
 Next
 End Sub

The expression rgb And &HFF returns any of the bits in the first byte of rgb that are 1. The subsequent expressions use
integer division to shift to the next byte, getting the second and third bytes from rgb, which are then masked. It often
helps to see the bits in a variable when working with bitwise operators, so I wrote the following functions to convert
numbers into strings that represent the bit values:

 Function ByteToBin(byt As Byte) As String
 Dim i As Integer, bin As String
 For i = 0 To 7
 If byt And 2 ^ i Then
 bin = "1" & bin
 Else
 bin = "0" & bin
 End If
 Next
 ByteToBin = bin
 End Function

 Function IntToBin(itg As Integer) As String
 Dim i As Integer, bin As String
 For i = 0 To 15
 If itg And 2 ^ i Then
 bin = "1" & bin
 Else
 bin = "0" & bin
 End If
 Next
 IntToBin = bin
 End Function

 Function LngToBin(lng As Long) As String
 Dim i As Integer, bin As String
 ' Note that this omits 2 ^ 31 because of overflow.
 For i = 0 To 30
 If lng And 2 ^ i Then
 bin = "1" & bin
 Else
 bin = "0" & bin
 End If
 Next
 LngToBin = bin
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Tasks in Visual Basic
Once you're comfortable recording and changing code in Excel and you're familiar with the structure of a Visual Basic
program, you can focus your effort on doing real work with your programs. By real work, I mean: performing
calculations, composing text, comparing dates and times, and accomplishing the other tasks provided by the Visual
Basic language.

As with Chapter 2, most of the tasks I cover here are not unique to Excel, and if you learn them well, you can use these
skills to program Word, PowerPoint, or even Windows itself. This chapter is the companion to Chapter 2; between the
two chapters you'll learn most of what you need to know about the Visual Basic programming language.

Code used in this chapter and additional samples are available in ch03.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1. Objects and Their Members
The most obvious difference between objects and other parts of the Visual Basic language is the dot notation. Objects
use the period (or dot) to separate the object name from the member name as shown in Figure 4-1.

Figure 4-1. The dot separates the object from the member

Member is the general term for a property, method, enumeration, or constant that belongs to the object. Objects help
organize members by grouping them into functional units. Objects are used throughout Visual Basic to organize things.
In fact, if you type VBA. in the Code window, you'll see a list of the functions that are part of the Visual Basic language
(Figure 4-2).

Figure 4-2. Visual Basic uses objects to organize its members

The VBA object library even uses dot syntax to organize other objects. For example, type VBA.Strings. and you'll see a list
of the string functions. The symbols in the Auto Complete list identify the type of member, as shown in Figure 4-3.

Figure 4-3. Objects can use other objects to organize members, and the type of
member is illustrated by an icon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Figure 4-3, the Library symbol identifies a grouping of related members ; the Enumeration symbol identifies a
grouping of related constants. Visual Basic uses these same icons in the Object Browser a tool that lets you explore the
objects contained in any of the object libraries (Figure 4-4). To see the Object Browser, press F2.

The Object Browser lists only the object libraries that you have established references to. That means the libraries listed
in the Object Brower's drop-down list match the checkboxes selected in the Visual Basic References dialog box (Figure
4-5).

You may notice that not all of the Visual Basic language is listed in the VBA object library. Keywords like If, Sub, Function,
and End are structural components and so aren't part of the library. I covered those keywords (sometimes called
reserved words) in Chapter 2, and I covered the members of the VBA object library in Chapter 3.

Figure 4-4. Use the Object Browser (F2) to explore objects and search for
members

Figure 4-5. Choose Tools References to add or list object library references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You need to know about two other icons in the Object Browser (see Figure 4-6):

Global members

Members for which you can omit the object name. In the case of the VBA object library, all members are global
so you never have to type VBA.. In the case of the Excel object library, the global members are often
synonymous with the Application object. That means that Application.ActiveSheet and ActiveSheet are equivalent
expressions.

Figure 4-6. Listing global members and events

Events

Procedures that execute automatically when something happens in Excel. They take the form
objectname_eventname in Visual Basic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.10. What You've Learned
By now you should have a pretty good grasp on how to get around in the Excel object library, find the object you need
for a task, and do some simple things like switch focus to an object, get its value or name, and so on. You should also
understand how to respond to events that occur in Excel so that your code runs automatically in response to user
actions.

The Excel object library is extremely large and complex, however, so don't worry if you're a little confused about which
object to use for a specific taskthat's really what the later chapters are about.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2. Get Excel Objects
In Excel, you always get one object from another, and everything starts with the Application object. So, if you want to
change the font of cell C2 to bold, you would simply type:

 Application.ActiveWorkbook.ActiveSheet.Range("C2").Font.Bold = True

Not really! Application, ActiveWorkbook, and ActiveSheet are all global members in Excel, so you can shorten your code to:

 ActiveWorkbook.ActiveSheet.Range("C2").Font.Bold = True

or:

 ActiveSheet.Range("C2").Font.Bold = True

or more likely:

 Range("C2").Font.Bold = True

Each of the members in the original line of code returns an object reference that navigates from the top-level object
(the Excel Application object) to the low-level object (a Font object) for which you want to set the Bold property. The order
of objects looks like this:

Application Workbook Worksheet Range Font (set Bold property)

In other words, Excel's objects are arranged hierarchically, but global members provide shortcuts through that
hierarchy. Table 4-1 lists some commonly used shortcuts for navigating to Excel objects.

Table 4-1. Excel's global shortcut members
Member Returns Use to

ActiveCell Range object containing
a single cell

Work with the currently selected cell or get the upper-lefthand corner of a
selected block of cells.

ActiveChart Chart object Get the chart that currently has focus.

ActiveSheet Worksheet, Chart, or
other sheet object.

Get the sheet that has focus. The returned object may be a Worksheet, a Chart, or
one of the obsolete sheet types.

ActiveWorkbook Workbook object Get the workbook that has focus.

Cells Range object Work with cells on the active worksheet.

Range Range object Work with a specific set of cells on the active worksheet.

Selection Varies Get the selected object. That may be a range of cells, a chart, or some other
object.

Sheets
Collection of Worksheet,
Chart, or other sheet
objects

Get a sheet by its numeric index or name.

ThisWorkbook Workbook object
Get the workbook that contains the current Visual Basic project. This contrasts
with ActiveWorkbook, which may be different from ThisWorkbook if the user has
switched focus.

UsedRange Range object Get the block of cells on the active worksheet that contains data.

Workbooks Collection of Workbook
objects Get a workbook by its numeric index or name.

Worksheets Collection of Worksheet
objects Get a worksheet by its numeric index or name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In general, the members that return only one type of object are easier to work with than members that can return
various types. This is probably best demonstrated by contrasting the Sheets and Worksheets methods. Sheets can return
several different types of objects: Worksheet, Chart, DialogSheet (which is obsolete), and so on. Worksheets returns only
Worksheet objects. That means Visual Basic knows the object type when you are working with Worksheets, but not when
working with Sheets. You can tell that because Auto Complete doesn't work with Sheets. It also means you have to be
careful what methods you call objects returned by Sheets, since trying to use a Worksheet method, like Range, will fail if the
object is a Chart.

Therefore, if you want to do something to all worksheets in a workbook, you use the Worksheets method:

 Sub UseWorksheets()
 Dim ws As Worksheet
 For Each ws In Worksheets

 ' Do some task
 Next
 End Sub

If you want to do something to all of the sheets in workbook, use the Sheets method as shown here:

 Sub UseSheets()
 Dim obj As Object, ws As Worksheet, chrt As Chart
 For Each obj In Sheets
 Select Case Typename(obj)
 Case "Worksheet"
 ' OK to use Worksheet methods.
 Set ws = obj
 Case "Chart"
 ' OK to use Chart methods.
 Set chrt = obj
 Case Else
 ' An obsolete sheet type.
 End Select
 Next
 End Sub

In the preceding code, I set the generic object returned by Sheets to a specific Worksheet or Chart type so that I could make
sure I wasn't using any members that weren't allowed for the object. If I were doing a task that is common to all
objects, such as setting the Name property, I could avoid that step and just use the returned obj variable.

This points up a problem for Excel programmers: there is no ActiveWorksheet property. The ActiveSheet property returns a
generic object typethat might be a Worksheet, a Chart, or something else. Sometimes you definitely know that the sheet
that has focus is a Worksheetfor example, when you create a new worksheet in code. In this case, you can safely use the
Worksheet members. Otherwise, you need to test if the object is a worksheet before proceeding as shown here:

 If TypeName(ActiveSheet) = "Worksheet" Then
 ' OK to use Worksheet members on ActiveSheet
 End If

This isn't really an oversight by the Excel team. If they did provide an ActiveWorksheet property, it would return Nothing if a
chart sheet had focus. You'd still have to write similar code to test for that condition!

Checking and working with specific types of objects, rather than using the generic Object
type, is sometimes called type-safe programming , and it's a good technique to help
prevent errors in your code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3. Get Objects from Collections
Excel members like Workbooks, Worksheets, Charts, Sheets, and Range return groups of objects called collections. Collections
are special because they provide a hidden enumerator method that lets you use them with the For Each statement as
well as Item and Count methods that let you get specific objects from the group.

In Excel, collections are usually (but not always) named as the plural form of the objects they contain: so the Workbooks
collection contains Workbook objects, the Worksheets collection contains Worksheet objects, and so on. There are some
obvious exceptions: Sheets contains various types of sheet objects, and Range contains other Range objects, each of which
contains a single cell. The Range collection is definitely weird, but Excel has no Cell object so that's just the way things
work!

In Excel, you get collections using a property from the collection's parent object. The property usually has the same
name as the returned collection, which can make using Help a little frustrating (Figure 4-7).

Figure 4-7. Pressing F1 on Workbooks displays the Workbooks property, not the
Workbooks collection you might expect!

To see Help on the collection, including a list of its members, click the link for the collection object on the property Help
topic. Figure 4-8 shows the Help for the Workbooks collection object.

The graphic in Figure 4-8 shows how you navigate from the Application object to the Workbook object. You can interpret
that graphic as saying "Use the Application object's Workbooks property to get the Workbooks collection, which contains
Workbook objects, from which you can use other properties to get other objects." You can see why they used a graphic
instead of words! If you click on any of the boxes in the graphic, you'll get Help on that object. If you click on the
Multiple Objects box, you'll see a list of the objects you can get from the Workbook object (Figure 4-9).

Figure 4-8. It takes an extra click to get Help on collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-8. It takes an extra click to get Help on collections

You often need to use Help to figure out how to navigate to the object you need. Excel's object library is complicated,
as shown by Figure 4-10. Knowing how to navigate it is one of the key skills you must develop as an Excel programmer.

In fact, Figure 4-10 cheats by using shortcut methods like Application.Range to simplify the hierarchy. The real hierarchy is
Application Workbooks Workbook Worksheets Worksheet Range, but that really wouldn't fit!

You get specific objects from a collection using the collection's Item property:

 ' Show the name of the first worksheet.
 Debug.Print Application.Workbooks.Item(1).Worksheets.Item(1).Name

Wait! That's not the way it's usually shown. You can omit Item because it is the default property of the collection. You
can also omit Application.Workbooks since Worksheets is a global method. The way you'd usually write that code is this:

 ' Show the name of the first worksheet (simplified)
 Debug.Print Worksheets(1).Name

Figure 4-9. Click on the graphic to navigate to other objects in Help

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-10. Excel's object hierarchy doesn't fit on one Help screen (look at the
scrollbar)

Or you can use the collection with For Each to show a list of all worksheets:

 Dim ws As Worksheet
 ' Show names of all worksheets.
 For Each ws In Worksheets
 Debug.Print ws.Name
 Next

Most collections have two types of indexes . The first type is numeric (Worksheets(1)), and
the second type uses the item's name (Worksheets("Sheet1")).

Collections are also usually the way you create new objects in Excelmost collections provide an Add method for creating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Collections are also usually the way you create new objects in Excelmost collections provide an Add method for creating
new instances of objects and adding them to the collection. Interestingly, you usually delete items from Excel
collections using the individual object's Delete method. The following code illustrates adding and deleting a worksheet:

 ' Create a new workhseet
 Set ws = Worksheets.Add
 ' Delete that sheet
 ws.Delete

Table 4-2 lists the members that are common to most collections .

Table 4-2. Common members for collection objects
Member Use to Example

Add Create a new object and add it to the collection. Workbooks.Add

Count Get the number of objects in the collection.

' Alternative to For Each
For i = 1 to Sheets.Count
 Debug.Print Sheets(i).Name
Next

Item Get an object from the collection. This member name is usually
omitted since it is the default member. Worksheets("Objects").UsedRange.AutoFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4. About Me and the Active Object
The Visual Basic Me keyword provides a way to refer to an instance of the object created by the current class. I know
that's a little confusing; here's how it works: if you write code in the ThisWorkbook class, Me is the same as ThisWorkbook, as
shown by Figure 4-11.

If you write that same code for one of the Worksheet classes, you get a different result as shown by the following code:

 ' In Objects sheet class.
 Sub AboutMe() ' Displays:
 Debug.Print Me.Name ' Objects
 Debug.Print ThisWorkbook.Name ' ch04.xls
 Debug.Print Me Is Sheets("Objects") ' True
 End Sub

Figure 4-11. ThisWorkbook and Me are the same here

That's because Excel creates an object out of the class at runtime, and Me refers to that object. You can use Me to refer
to members of the class using the dot notation:

 Sub DemoMe()
 Me.AboutMe ' Calls preceding AboutMe procedure.
 End Sub

You can't use Me in a Module. It's valid only in classes since it refers to the instance of the object created from the class
and modules don't have instancesmodules are static code.

Excel provides a number of properties that return objects that currently have focus in the Excel interface. Some of
these properties were included in the list of shortcuts shown in Table 4-1, but they bear repeating in Table 4-3.

Table 4-3. Active object properties
Property Returns

ActiveCell Range containing the cell that currently has focus for input

ActiveChart Chart that has focus

ActiveMenuBar MenuBar currently displayed in Excel

ActivePane Pane within the active window

ActivePrinter Name of the default printer in Excel (not an object)

ActiveSheet Worksheet, Chart, or other sheet type that has focus

ActiveWindow Window that has focus

ActiveWorkbook Workbook that has focus

Selection Selected item (may be a Range, Chart, drawing object, or other object)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These properties are very useful in code because they tell you what the user is looking at. Often you'll want your code
to affect that itemfor example, you might want to display a result in the active cell. Normally, the user can change the
active object in Excel by clicking on a worksheet tab, switching to a new window, and the like, but she can't do that
while a Visual Basic procedure is running, as shown in Figure 4-12.

Figure 4-12. The user can't change the active object while a procedure runs

Code can change the active object, however. Many objects provide Activate methods that switch focus within Excel, and
some objects, such as Window, provide ActivateNext and ActivatePrevious methods as well. If you rely on active objects, you
need to be careful about changing the active object in code.

Many Excel programmers rely on activation a little too much in my opinion, as shown here:

 Sub DemoActivation1()
 Dim cel As range
 ' Make sure a range is selected.
 If TypeName(Selection) <> "Range" Then Exit Sub
 For Each cel In Selection
 ' Activate the cell.
 cel.Activate
 ' Insert a random value
 ActiveCell.Value = Rnd
 Next
 End Sub

In reality, there's no good reason to do this since you've got a perfectly good object reference (cel) that you can use
instead:

 Sub DemoActivation2()
 ' Make sure a range is selected.
 If TypeName(Selection) <> "Range" Then Exit Sub
 Dim cel As range
 For Each cel In Selection
 ' Insert a random value
 cel.Value = Rnd
 Next
 End Sub

DemoActivation2 runs faster because it avoids an unneeded Activate step in the For Each loop. There's nothing wrong with
using the active object when you need it; I just see it overused a lot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5. Find the Right Object
The hardest part about Excel programming is finding the right object for the job. Excel's object library is huge and not
always easy to understand. One way to tackle that problem is to categorize the objects by task. The chapters later in
this book take that approach, as shown by Table 4-4.

Table 4-4. How this book organizes Excel objects by task
Chapter Description Covers these objects

7,
Controlling
Excel

Control Excel's general options and
display and respond to application-level
events

Application, AutoCorrect, AutoRecover, ErrorChecking, Windows, and Panes

8, Opening,
Saving, and
Sharing
Workbooks

Access workbooks and their properties
and respond to workbook events Workbook and RecentFile

9, Working
with
Worksheets
and Ranges

Perform general tasks on ranges of
cells including inserting values, search
and replace, and formatting and
respond to worksheet events

Worksheet and Range

10, Linking
and
Embedding

Add comments, hyperlinks, and various
OLE objects to worksheets Comment, Hyperlink, OLEObject, Speech, and UsedObjects

11, Printing
and
Publishing

Create hardcopy and online output
from workbooks

AutoFilter, Filter, HPageBreak, VPageBreak, PageSetup, Graphic,
PublishObject, DefaultWebOptions, and WebOptions

12, Loading
and
Manipulating
Data

Bring data into a workbook from a
database or other data source

Parameter and QueryTable

ADO objects: Command, Connection, Field, Parameter, and RecordSet

DAO objects: Database, DbEngine, Document, QueryDef, and Recordset

13,
Analyzing
Data with
Pivot Tables

Organize, sort, and filter data through
pivot tables

CalculatedField, CalculatedMember, CubeField, PivotCache, PivotCell,
PivotField, PivotFormula, PivotItem, PivotItemList, PivotLayout, and
PivotTable

14, Sharing
Data Using
Lists

Use lists for data entry, filtering,
sorting, and sharing data ListObject, ListRow, ListColumn, and ListDataFormat

15, Working
with XML

Import XML data into Excel and export
data from workbooks in XML format XmlMap, XmlDataBinding, XmlNamespace, XmlSchema, and XPath

16, Charting Display numeric data graphically Axis, Chart, ChartGroup, ChartObject, DataTable, Point, Series, and
SeriesLines

17,
Formatting
Charts

Change low-level aspects of the chart

ChartArea, ChartColorFormat, ChartFillFormat, Corners, DataLabel,
DownBars, DropLines, ErrorBars, Floor, Gridlines, HiLoLines, LeaderLines,
Legend, LegendEntry, LegendKey, PlotArea, TickLabels, trendline, trendlines,
UpBars, and Walls

18, Drawing
Graphics Create graphics on Excel worksheets

Adjustments, CalloutFormat, ColorFormat, ConnectorFormat, ControlFormat,
FillFormat, FreeFormBuilder, GroupShapes, LineFormat, LinkFormat,
PictureFormat, ShadowFormat, Shape, ShapeNode, ShapeRange,
TextEffectFormat, TextFrame, and THReeDFormat

19, Adding
Menus and
Toolbars

Add items to the Excel user interface CommandBar, CommandBarButton, CommandBarComboBox, and
CommandBarPopup

20, Building
Dialog
Boxes

Create forms and use controls in Excel
Forms 2.0 objects: UserForm, CheckBox, ComboBox, CommandButton,
Control, Frame, Image, Label, ListBox, MultiPage, OptionButton, RefEdit,
ScrollBar, SpinButton, TabStrip, and ToggleButton

21, Sending
and
Receiving
Workbooks

Send mail from Excel MsoEnvelope, MailItem, and RoutingSlip

22, Building
Add-ins

Load and use add-ins as well as create
and distribute new ones AddIn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add-ins and distribute new ones AddIn

26,
Exploring
Security in
Depth

Limit edits to sheets and ranges of cells AllowEditRange, Protection, Permission, UserAccess, UserAccessList

To give you an overview of how the Excel object library is organized, the following sections break the Excel object
library into parts and illustrate how the objects are organized graphically. These illustrations are similar to those found
in online Help as shown in Figure 4-10 earlier but are a little more complete (and I think more accurate) than Excel's
Help.

4.5.1. Top-Level Objects

Excel's top-level objects control Excel's application options, such as automatic correction, and provide ways to navigate
to lower-level objects, such as workbooks. Figure 4-13 shows the objects you can get directly from the Application object
with the most significant ones shown in bold. You can also use the Application object's ActiveSheet, ActiveCell, ActiveChart, and
other methods to get lower-level objects directly (see Table 4-1).

4.5.2. Workbook Objects

Excel files are called workbooks and Excel controls its files through the Workbook object. This object is the next major
object in the Excel object library, right after the Application object, as shown in Figure 4-14. You use the Workbook objects
to share, email, and publish workbooks as well as to get to the contents of the workbook through lower-level Worksheet
and Chart objects.

4.5.3. Worksheet and Range Objects

You use the Worksheet and Range objects to control the contents of a workbook. These are perhaps the two most-
important objects in the Excel object library because they let you get at cell values and objects displayed on
worksheets, as shown in Figure 4-15.

Figure 4-13. Top-level objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.4. Chart Objects

You use the Chart objects to display data graphically. Excel charts may exist on their own sheets or be embedded on a
worksheet, so you can get at Excel charts through the Charts collection (for chart sheets) or the ChartObjects collection (for
embedded charts), as shown in Figure 4-16. This part of the Excel object library is many levels deep, because it
provides control over every graphic object on a chart...right down to the individual points in a series.

Figure 4-14. Objects for working with workbook files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-15. Objects for working with worksheets and ranges of cells

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-16. Objects for charting and formatting charts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.5. Data List and XML Objects

Data lists are new in Excel 2003 and are closely related to Excel's new XML features. That's why I show them together
in Figure 4-17. Excel controls data lists through the ListObjects collection and can import or export XML data using the
XmlMaps collection.

Figure 4-17. Objects for working with lists and importing/exporting XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.6. Database Objects

Excel interacts with databases through PivotTable and QueryTable objects , as shown in Figure 4-18. There are also a couple
of special-purpose objects at the application level for getting data-access errors and for interacting with real-time data
servers (RTD).

Figure 4-18. Objects for working with databases and pivot tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.7. Dialog Box and Form Objects

Excel's Dialogs collection lets you display any of the application's built-in dialog boxes or get information from one of
Excel's file dialog boxes. However, you display custom dialog boxes using the Microsoft Forms object library not the
Excel object library. Figure 4-19 shows the dialog box objects from both object libraries.

Figure 4-19. Objects for displaying dialog boxes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Early versions of Excel used the DialogSheets collection to display custom dialog boxes, but
that technique is now obsolete.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6. Common Members
Most objects in Excel have several members in common as listed in Table 4-5.

Table 4-5. Common Excel object members
Member Description Use to

Application Returns the Excel Application
object

This isn't really useful from within Excel since the Application object is readily
available anyway. It's somewhat useful when programming Excel from
other applications, however.

Creator
Returns a numeric code
identifying the application that
created the object

Again, this isn't really useful from within Excel. You can pretty much ignore
this property.

Parent Returns the next-higher object
in Excel's object hierarchy Map Excel's object hierarchy.

Name Returns a string describing the
object

Display information about an object or get a specific object from a
collection.

You might be able to tell from Table 4-5 that the Name property is the most useful of the common members . Most (but
not all) Excel objects have a Name property that identifies the object within its containing collection. For example,
Worksheets("Sheet1") returns the worksheet with the Name property Sheet1.

That's not true for all objects, however. The Range object, for instance, has an Address property instead of a Name
property. Other objects, such as Window, use the Caption property, instead. Table 4-6 categorizes some of the common
members that aren't as universal as those listed in Table 4-5, but are actually more useful to know.

Table 4-6. Other useful, common members by category
Category Member Use to

General Activate Set focus on an object.

 Caption Set or return the text that appears in an object's titlebar.

 Value Set or return the value displayed by an object. This is often the default property of an object.

Collections Add Create a new object and add it to the collection.

 Count Get the number of objects in a collection.

 Index Get the position of an object within a collection (use on the object, not the collection).

 Item() Get an object by name or index from a collection. This is the default property of most
collections.

 Delete Remove an object from a collection (use on the object, not the collection).

Appearance Height Set or return the height of an object in points. (There are 72 points in an inch.)

 Left Set or return the horizontal position of an object in points.

 Top Set or return the vertical position of an object in points.

 Visible Show or hide an object (True/False).

 Width Set or return the width of an object in points.

Printing PrintOut Print an object.

 PrintPreview View the object before printing.

The following sections explain using these common members.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6.1. Activate Objects: Get Names and Values

You can use the Activate method to set focus on the following objects:

Chart
ChartObject
OLEObject
Pane
Range
Window
Workbook
Worksheet

Usually, you'll use Activate in combination with one of the collection methods to set focus on a member of the collection.
For example, the following line sets focus on the first sheet in a workbook:

 Sheets(1).Activate

Similarly, the following line sets focus on the last sheet:

 Sheets(Sheets.Count).Activate

As mentioned previously, not all objects have a Name property. In those cases, the Caption or Address property is
sometimes equivalent. The following procedure uses exception handling to return the name of an object of any type:

 Function GetName(obj) As String
 Dim res As String
 ' Use exception handling in case object
 ' doesn't support Name property
.
 On Error Resume Next
 res = obj.Name
 If Err Then res = obj.Address
 If Err Then res = obj.Caption
 If Err Then res = obj.Index

 If Err Then res = "no name"
 On Error GoTo 0
 GetName = res
 End Function

Some objects (such as points within a chart series) don't have any identifiers. In that case, GetName returns no name. The
Range and Hyperlink objects use the Address property, and the following objects have Caption properties:

Application AxisTitle Characters

ChartTitle CheckBox1 CommandButton1

DataLabel Frame1 Label1

OptionButton1 Menu MenuBar

MenuItem Page1 Tab1

ToggleButton1 UserForm1
1 These objects are part of the Microsoft Forms object library that ships with Excel.

In some cases, objects may have both a Name and a Caption property. For example, the following code changes the text
displayed in the Excel titlebar:

 Application.Caption = "Programming Excel Rules!"

Many objects also have a Value property. This is usually the default property of an object, so you don't often see Value in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many objects also have a Value property. This is usually the default property of an object, so you don't often see Value in
code. Usually it looks like this:

 Range("A2") = 42

Sometimes Value is synonymous with the Name property. For example, both of the following lines display "Microsoft
Excel":

 Debug.Print Application.Value ' Displays Microsoft Excel
 Debug.Print Application.Name ' Displays Microsoft Excel

Why did Microsoft do this? I have no idea. The main thing you need to know is that the following objects all have Value
properties:

Application Borders CheckBox1

ComboBox1 CommandButton1 ControlFormat

CubeField CustomProperty Error

ListBox1 MultiPage1 Name

OptionButton1 PivotField PivotItem

PivotTable Range ScrollBar1

SpinButton1 Style TextBox1

ToggleButton1 Validation XmlNamespaces

XPath
1 These objects are part of the Microsoft Forms object library that ships with Excel.

4.6.2. Add or Delete Objects Through Collections

I already showed how to get objects from a collection and how collections help organize the Excel object library. Here, I
would like to emphasize that you create new objects in Excel using the collection's Add method and that you can usually
delete objects using the individual object's Delete method.

For example, the following code creates a new chart from a selected range and adds it to the active worksheet:

 Sub AddChart()
 Dim sel
 Set sel = Selection
 If TypeName(sel) = "Range" Then
 Charts.Add
 ActiveChart.Location xlLocationAsObject, sel.Parent.name
 End If
 End Sub

Run the preceding code a number of times, and you'll wind up with numerous charts on the worksheet. To clean that
up, use this code:

 Sub RemoveChart()
 Dim chrt As ChartObject, ans As VbMsgBoxResult
 For Each chrt In ActiveSheet.ChartObjects
 chrt.Activate
 ans = MsgBox("Delete " & chrt.name & "?", vbYesNo)
 If ans = vbYes Then _
 chrt.Delete
 Next
 End Sub

OK, these two procedures are a little tricky. The AddChart actually creates the chart as a separate sheet, but then moves
it onto the active worksheet as a Chart object using the Location method. RemoveChart then uses the worksheet's ChartObjects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it onto the active worksheet as a Chart object using the Location method. RemoveChart then uses the worksheet's ChartObjects
collection to selectively delete charts from the worksheet. It would be easier to create the chart as a separate chart
sheet, then delete it as shown here:

 ' Not as much fun...
 Sub SimpleAddDelete()
 Dim chrt As Chart
 If TypeName(Selection) = "Range" Then
 Set chrt = Charts.Add
 ' Wait five seconds.
 Application.Wait Now + #12:00:05 AM#
 ' Delete the chart
 chrt.Delete
 End If
 End Sub

Notice that the Add method returns the object that was created. The line Set chrt = Charts.Add gets a reference to the new
chart, which is later used to delete the chart. But you could just as easily use that reference to set the formatting, title,
or other attributes of the chart.

Not all collections provide an Add method, however. For example, there is no Range.Add. There is, however, an Insert
method for the Columns and Rows collections:

 Sub InsertRows()
 ' Insert rows at top of sheet. Shift other rows down.
 Range("1:1").Rows.Insert True
 End Sub

 Sub InsertColumns()
 ' Insert columns at beginning of sheet. Shift columns right.
 Range("A:A").Columns.Insert True
 End Sub

In other words, Excel collections are not always consistent. This is further illustrated by the fact that the Rows and
Columns collections provide a Delete method:

 Sub DeleteRows()
 ' Insert rows at top of sheet. Shift other rows down.
 Range("1:1").Rows.Delete True
 End Sub

 Sub DeleteColumns()
 ' Insert columns at beginning of sheet. Shift columns right.
 Range("A:A").Columns.Delete True
 End Sub

4.6.3. Change Size and Position of Objects

The following objects have Left, Top, Height, and Width properties that control their size and position:

Application Axis AxisTitle

ChartArea ChartObject ChartObjects

ChartTitle DataLabel DisplayUnitLabel

Legend LegendEntry LegendKey

MS Form controls OLEObject OLEObjects

PlotArea Range Shape

ShapeRange Window

Excel measures objects in points . A point is a typographical measure equal to 1/72nd of an inch, but since the size and
resolution of monitors varies, these units aren't useful as an absolute measure. Instead, they are used to size and
position objects relative to one another.

For example, the following code resizes Excel to half of the screen height and width and centers the window onscreen:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the following code resizes Excel to half of the screen height and width and centers the window onscreen:

 Sub ResizeExcel()
 Dim maxHeight As Double, maxWidth As Double
 ' Maximize window to get the full height/width
 Application.WindowState = xlMaximized
 maxHeight = Application.Height
 maxWidth = Application.Width
 ' Set the window style back to normal.
 Application.WindowState = xlNormal
 ' Resize the application window.
 Application.Height = maxHeight / 2
 Application.Width = maxWidth / 2
 ' Reposition the application window
 Application.Top = maxHeight / 2 - Application.Height / 2
 Application.Left = maxWidth / 2 - Application.Width / 2
 End Sub

In addition, most of the preceding objects also have a Visible property that you can use to hide or show the object. The
Visible property is mainly useful for hiding worksheets or form controls. For example, the following code hides the Objects
worksheet:

 Worksheets("Objects").Visible = False

To hide columns or rows on a worksheet, use the Hidden property instead:

 Columns("C:C").Hidden = True

You can also use the Visible property to hide the Excel application, but that's a little risky since hiding Excel prevents the
user from closing the application other than by pressing Ctrl-Alt-Delete. Just to show how this works, the following code
hides Excel for five seconds:

 Sub HideExcel()
 Application.Visible = False
 Application.Wait Now + #12:00:05 AM#
 Application.Visible = True
 End Sub

4.6.4. Print Objects

These objects provide PrintOut and PrintPreview methods:

Chart
Charts
Range
Sheets
Window
Workbook
Worksheet
Worksheets

For example, the following code prints the currently selected range:

 If TypeName(Selection) = "Range" Then Selection.PrintOut

Interestingly, the UserForm object in the Microsoft Forms object library uses the PrintForm method rather than PrintOut.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7. Respond to Events in Excel
Chapter 2 discussed events in a general way and showed you how to create your own events. Excel introduced real
events to its object library in 1997, and they are one of the key improvements that allow Excel applications to be truly
interactive with users.

The most obvious events occur for the Workbook, Worksheet, and Chart objects since those objects include accompanying
classes that you can view in the Visual Basic Editor (Figure 4-20).

Figure 4-20. Finding events in the Visual Basic Editor

You can list the events for Workbook, Worksheet, or Chart objects by clicking on the object and event listboxes in the Code
window, or you can refer to Table 4-7.

Table 4-7. Events available from Excel objects
Object Event

Application NewWorkbook

 SheetActivate

 SheetBeforeDoubleClick

 SheetBeforeRightClick

 SheetCalculate

 SheetChange

 SheetDeactivate

 SheetFollowHyperlink

 SheetPivotTableUpdate

 SheetSelectionChange

 WindowActivate

 WindowDeactivate

 WindowResize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WorkbookActivate

 WorkbookAddinInstall

 WorkbookAddinUninstall

 WorkbookAfterXmlExport

 WorkbookAfterXmlImport

 WorkbookBeforeClose

 WorkbookBeforePrint

 WorkbookBeforeSave

 WorkbookBeforeXmlExport

 WorkbookBeforeXmlImport

 WorkbookDeactivate

 WorkbookNewSheet

 WorkbookOpen

 WorkbookPivotTableCloseConnection

 WorkbookPivotTableOpenConnection

 WorkbookSync

Chart Activate

 BeforeDoubleClick

 BeforeRightClick

 Calculate

 Deactivate

 DragOver

 DragPlot

 MouseDown

 MouseMove

 MouseUp

 Resize

 Select

 SeriesChange

QueryTable AfterRefresh

 BeforeRefresh

Workbook Activate

AddinInstall

 AddinUninstall

 AfterXmlExport

 AfterXmlImport

 BeforeClose

 BeforePrint

 BeforeSave

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BeforeSave

 BeforeXmlExport

 BeforeXmlImport

 Deactivate

 NewSheet

 Open

 PivotTableCloseConnection

 PivotTableOpenConnection

 SheetActivate

 SheetBeforeDoubleClick

 SheetBeforeRightClick

 SheetCalculate

 SheetChange

 SheetDeactivate

 SheetFollowHyperlink

 SheetPivotTableUpdate

 SheetSelectionChange

 Sync

 WindowActivate

 WindowDeactivate

Worksheet Activate

 BeforeDoubleClick

 BeforeRightClick

 Calculate

 Change

 Deactivate

 FollowHyperlink

 PivotTableUpdate

 SelectionChange

You'll notice that some of the same events occur for a number of objects. For example, the SheetActivate event occurs for
the Application, Workbook, Worksheet, and Chart objects (for Worksheet and Chart, it's simply called the Activate event). In this
case, the Application-level event is the most general event handler since it receives SheetActivate events from all sheets in
all open workbooks; the Workbook-level event is next, receiving SheetActivate events only from sheets in the open
workbook; and the Worksheet- or Chart-level events are the most specific, receiving the Activate event only from that
specific Worksheet or Chart object.

Events occur at the most specific level first; then move up to more general levels. So, if the SheetActivate event is handled
at all three levels, the Worksheet-level event procedure runs first, then the Workbook-level event procedure, and finally the
Application-level procedure.

The object and event lists are built in to the Code window for Workbook and Worksheet objects (Figure 4-20), but how do
you use events for other objects, like Application? To do so:

1. Declare a variable for the object using the WithEvents keyword.

2. Initialize that object in code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Initialize that object in code.

3. Visual Basic adds the object variable to the Code window's object and event lists, which you can then use to add
event procedures.

For example, the following code from the Workbook class creates an object variable m_app for the Application object,
initializes that object in the Workbook_Activate event, then uses an Application-level event:

 Dim WithEvents m_app As Application ' (1)

 Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 ' Initialize the object variable if it was not already.
 If m_app Is Nothing Then _
 Set m_app = Application ' (2)
 ' Indicate the Workbook-level event occurred.
 MsgBox "Workbook-level event"
 End Sub

 Private Sub m_app_SheetActivate(ByVal Sh As Object) ' (3)
 ' Indicate the Application-level event occurred.
 MsgBox "App-level event"
 End Sub

The initialization step (previous) occurs in a Workbook event so that it happens automatically. I could have placed it in the
Workbook_Open event, but that would have required me to close and reopen the workbook to see the code work. It's
easier to place the initialization step in an event that happens more frequently (such as SheetActivate) and test if the
variable has already been initialized with the If m_app Is Nothing conditional statement.

Another interesting aspect of Excel events are the Before events, like BeforeRightClick. It would be pretty neat if Excel really
did know what the user was about to do, but that's not quite how it works. Instead, the Before events are simply
processed after the user action, but before Excel does anything with them. That lets you intercept and (optionally)
cancel Excel's default action for those events. To see how this works, add the following code to the ThisWorkbook class:

 Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)
 Dim ans As VbMsgBoxResult
 ans = MsgBox("Excel is about to process right-click, proceed?", vbYesNo)
 ' If no, then cancel the action.
 If ans = vbNo Then Cancel = True
 End Sub

Now, when you right-click on a sheet, you'll see a message asking if the action should be processed. If you select Yes,
Excel displays the sheet's pop-up menu (that's the default action for a right-click). If you select no, the menu is not
displayed.

That's a simple example that doesn't do much, but Before events are really pretty handyfor example, you can require
that a user saves a workbook as shown by the following code:

 Private Sub Workbook_BeforeClose(Cancel As Boolean)
 ' Require the user to save.
 If Not ThisWorkbook.Saved Then
 MsgBox "You must save this workbook before closing."
 Cancel = True
 End If
 End Sub

Try it!

Finally, you can turn Excel's event processing off and on using the Application object's EnableEvents property. Setting
EnableEvents to False tells Excel to ignore any event procedures you've written in Visual Basicthe events still occur in Excel
(so choosing File Save saves the file, for instance) but none of your event procedures are run.

EnableEvents affects only Excel events, so controls from the Microsoft Forms object library will still respond to events. You
can see this by adding a checkbox to a worksheet and then writing the following code:

 Private Sub chkEvents_Click()
 ' Turn off Excel events if checkbox cleared.
 Application.EnableEvents = chkEvents.Value
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.8. The Global Object
As mentioned earlier in this chapter, Excel provides shortcuts into its object hierarchy through properties like ActiveCell
and the Sheets collection. Those shortcuts are actually members of the Global object, which is a sort of default object that
Excel uses if you omit an object name. This allows you to write code like:

 ActiveCell = 42

rather than:

 Application.ActiveCell = 42

The Global object includes many of the same members as the Application object, as shown in this list:

ActiveCell ActiveChart ActiveDialog

ActiveMenuBar ActivePrinter ActiveSheet

ActiveWindow ActiveWorkbook AddIns

Application Assistant Calculate

Cells Charts Columns

CommandBars Creator DDEAppReturnCode

DDEExecute DDEInitiate DDEPoke

DDERequest DDETerminate DialogSheets

Equals Evaluate Excel4IntlMacroSheets

Excel4MacroSheets ExecuteExcel4Macro Intersect

MenuBars Modules Names

Parent Range Rows

Run Selection SendKeys

Sheets ShortcutMenus ThisWorkbook

Toolbars Union Windows

Workbooks WorksheetFunction Worksheets

Many of these members return objects or collections, so they look like absolute references. In reality, they are all
members of the Global object (even Application is a property of the Global object). In short, the Global object is the
granddaddy of all the Excel objects.

You don't have to understand the Global object to use Excel's object library, but knowing something about it helps
explain why the same objects turn up at various levels in the Excel object hierarchy. It also helps to explain how the
Excel team implemented their objects, which is useful for advanced tasks, such as using the Excel object library from
other programming languages, like Visual Basic .NET and C#.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.9. The WorksheetFunction Object
Another useful top-level object to know about is the WorksheetFunction object. That object provides the functions from the
Excel formula bar to your Visual Basic code. Some of these members are redundant with those provided by the VBA
object library, however, others provide very useful (and advanced) analytical and statistical functions, as described in
Table 4-8.

Table 4-8. Members of the WorksheetFunction object
Member Description

Acos Returns the arccosine, or inverse cosine, of a number. The arccosine is the angle whose cosine is a
number. The returned angle is given in radians in the range 0 to p.

Acosh Returns the inverse hyperbolic cosine of a number.

And The same as the Visual Basic And operator.

Asc Converts double-byte characters to single-byte characters.

Asin Returns the arcsine, or inverse sine, of a number. The arcsine is the angle whose sine is the given
number. The returned angle is given in radians in the range -p/2 to p/2.

Asinh Returns the inverse hyperbolic sine of a number.

Atan2 Returns the arctangent, or inverse tangent, of the specified x- and y-coordinates.

Atanh Returns the inverse hyperbolic tangent of a number.

AveDev Returns the average of the absolute deviations of data points from their mean. AveDev is a measure of the
variability in a data set.

Average Returns the average (arithmetic mean) of the arguments.

BetaDist Returns the beta cumulative distribution function.

BetaInv Returns the inverse of the cumulative distribution function for a specified beta distribution.

BinomDist Returns the individual term binomial distribution probability.

Ceiling Returns a number rounded up, away from 0, to the nearest multiple of significance.

ChiDist Returns the one-tailed probability of the chi-squared distribution.

ChiInv Returns the inverse of the one-tailed probability of the chi-squared distribution.

ChiTest Returns the test for independence. Determines whether hypothesized results are verified by an
experiment.

Choose Uses an index to return a value from the list of value arguments.

Clean Removes all nonprintable characters from text.

Combin Returns the number of combinations for a given number of items.

Confidence Returns a value that you can use to construct a confidence interval for a population mean.

Correl Returns the correlation coefficient of two cell ranges.

Cosh Returns the hyperbolic cosine of a number.

Count Counts the number of cells that contain numbers and also numbers within the list of arguments.

CountA Counts the number of cells that are not empty and the values within the list of arguments.

CountBlank Counts empty cells in a specified range of cells.

CountIf Counts the number of cells within a range that meet the given criteria.

Covar Returns covariance, the average of the products of deviations for each data point pair.

CritBinom Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a
criterion value.

DAverage Averages the values in a column of a list or database that match conditions you specify.

Days360 Returns the number of days between two dates based on a 360-day year (12 30-day months), which is
used in some accounting calculations.

Db Returns the depreciation of an asset for a specified period using the fixed-declining-balance method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DCount Counts the cells that contain numbers in a column of a list or database that match conditions you specify.

DCountA Counts the nonblank cells in a column of a list or database that match specified conditions.

Ddb Returns the depreciation of an asset for a specified period using the double-declining-balance method or
some other method you specify.

Degrees Converts radians into degrees.

DevSq Returns the sum of squares of deviations of data points from their sample mean.

DGet Extracts a single value from a column of a list or database that matches specified conditions.

DMax Returns the largest number in a column of a list or database that matches specified conditions.

DMin Returns the smallest number in a column of a list or database that matches specified conditions.

Dollar Formats a number as currency using the local currency symbol.

DProduct Multiplies the values in a column of a list or database that match conditions you specify.

DStDev Estimates the standard deviation of a population based on a sample by using the numbers in a column of
a list or database that match specified conditions.

DStDevP Calculates the standard deviation of a population based on the entire population, using the numbers in a
column of a list or database that match specified conditions.

DSum Adds the numbers in a column of a list or database that match specified conditions.

DVar Estimates the variance of a population based on a sample by using the numbers in a column of a list or
database that match conditions you specify.

DVarP Calculates the variance of a population based on the entire population by using the numbers in a column
of a list or database that match specified conditions.

Even Returns a number rounded up to the nearest even integer.

ExponDist Returns the exponential distribution.

Fact Returns the factorial of a number.

FDist Returns the F probability distribution.

Find Finds the location of one string within another (similar to Instr).

FindB Finds the location of one double-byte string within another (similar to Instr).

FInv Returns the inverse of the F probability distribution.

Fisher Returns the Fisher transformation at x. This transformation produces a function that is normally
distributed rather than skewed.

FisherInv Returns the inverse of the Fisher transformation. Use this transformation when analyzing correlations
between ranges or arrays of data.

Fixed Rounds a number to the specified number of decimals, formats the number in decimal format using a
period and commas, and returns the result as text.

Floor Rounds a number down, toward 0, to the nearest multiple of significance.

Forecast Calculates, or predicts, a future value by using existing values.

Frequency Calculates how often values occur within a range of values and then returns a vertical array of numbers.

FTest Returns the result of an F-test. An F-test returns the one-tailed probability that the variances in array1 and
array2 are not significantly different.

Fv Returns the future value of an investment based on periodic, constant payments and a constant interest
rate.

GammaDist Returns the gamma distribution. You can use this function to study variables that may have a skewed
distribution. The gamma distribution is commonly used in queuing analysis.

GammaInv Returns the inverse of the gamma cumulative distribution.

GammaLn Returns the natural logarithm of the gamma function (x).

GeoMean Returns the geometric mean of an array or range of positive data. For example, you can use GeoMean to
calculate average growth rate given compound interest with variable rates.

Growth Calculates predicted exponential growth by using existing data.

HarMean Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the arithmetic mean of
reciprocals.

HLookup Searches for a value in the top row of a table or an array of values and then returns a value in the same
column from a row you specify in the table or array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column from a row you specify in the table or array.

HypGeomDist Returns the hypergeometric distribution. Hypergeometric distribution is the probability of a given number
of sample successes, given the sample size, population successes, and population size.

Intercept
Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. The
intercept point is based on a best-fit regression line plotted through the known x-values and known y-
values.

Ipmt Returns the interest payment for a given period for an investment based on periodic, constant payments
and a constant interest rate.

Irr Returns the internal rate of return for a series of cash flows represented by the numbers in values.

IsErr Returns True if a cell contains an error other than #N/A.

IsError Returns True if a cell contains an error.

IsLogical Returns True if a cell contains a Boolean value.

IsNA Returns True if a cell contains the #N/A error value.

IsNonText Returns True if a cell does not contain text.

IsNumber Returns True if a cell contains a numeric value.

Ispmt Calculates the interest paid during a specific period of an investment.

IsText Returns True if a cell contains a string.

Kurt Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness or flatness of a
distribution compared with the normal distribution.

Large Returns the kth largest value in a data set. You can use this function to select a value based on its
relative standing.

LinEst Calculates the statistics for a line by using the least-squares method to calculate a straight line that best
fits your data, and returns an array that describes the line.

Ln Returns the natural logarithm of a number.

Log Returns the logarithm of a number to the specified base.

Log10 Returns the base-10 logarithm of a number.

LogEst Calculates an exponential curve that fits your data and returns an array of values that describes the
curve. Returns an array of values.

LogInv Returns the inverse of the lognormal cumulative distribution function of x, where ln(x) is normally
distributed with parameters mean and standard_dev.

LogNormDist Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed with parameters
mean and standard_dev.

Lookup Finds a value in an array and returns that value. For two-dimensional arrays, it is better to use HLookup or
VLookup.

Match Returns the relative position of an item in an array that matches a specified value in a specified order.

Max Returns the largest value in a set of values.

MDeterm Returns the matrix determinant of an array.

Median Returns the median of the given numbers.

Min Returns the smallest number in a set of values.

MInverse Returns the inverse matrix for the matrix stored in an array.

MIrr Returns the modified internal rate of return for a series of periodic cash flows.

MMult Returns the matrix product of two arrays. The result is an array with the same number of rows as array1
and the same number of columns as array2.

Mode Returns the most frequently occurring, or repetitive, value in an array or range of data.

NegBinomDist Returns the negative binomial distribution. NegBinomDist returns the probability that there will be number_f
failures before the number_sth success, when the constant probability of a success is probability_s.

NormDist Returns the normal distribution for the specified mean and standard deviation. This function has a wide
range of applications in statistics, including hypothesis testing.

NormInv Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation.

NormSDist Returns the standard normal cumulative distribution function. The distribution has a mean of 0 and a
standard deviation of 1. Use this function in place of a table of standard normal curve areas.

NormSInv Returns the inverse of the standard normal cumulative distribution. The distribution has a mean of 0 and
a standard deviation of 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NormSInv a standard deviation of 1.

NPer Returns the number of periods for an investment based on periodic, constant payments and a constant
interest rate.

Npv Calculates the net present value of an investment by using a discount rate and a series of future
payments (negative values) and income (positive values).

Odd Returns a number rounded up to the nearest odd integer.

Or The same as the Visual Basic Or operator.

Parent Returns the parent object for the specified object.

Pearson Returns the Pearson product moment correlation coefficient, r, a dimensionless index that ranges from -
1.0 to 1.0 inclusive and reflects the extent of a linear relationship between two data sets.

Percentile Returns the kth percentile of values in a range. You can use this function to establish a threshold of
acceptance. For example, you can decide to examine candidates who score above the 90th percentile.

PercentRank Returns the rank of a value in a data set as a percentage of the data set.

Permut Returns the number of permutations for a given number of objects that can be selected from number
objects. A permutation is any set or subset of objects or events in which internal order is significant.

Phonetic Extracts the phonetic (furigana) characters from a text string.

Pi Returns the number 3.14159265358979, the mathematical constant p, accurate to 15 digits.

Pmt Calculates the payment for a loan based on constant payments and a constant interest rate.

Poisson Returns the Poisson distribution. A common application of the Poisson distribution is predicting the
number of events over a specific time, such as the number of cars arriving at a toll plaza in one minute.

Power Returns the result of a number raised to a power.

Ppmt Returns the payment on the principal for a given period for an investment based on periodic, constant
payments and a constant interest rate.

Prob Returns the probability that values in a range are between two limits. If upper_limit is not supplied, returns
the probability that values in x_range are equal to lower_limit.

Product Multiplies all the numbers given as arguments and returns the product.

Proper Capitalizes the first letter in a text string and any other letters in text that follow any character other than
a letter. Converts all other letters to lowercase letters.

Pv
Returns the present value of an investment. The present value is the total amount that a series of future
payments is worth now. For example, when you borrow money, the loan amount is the present value to
the lender.

Quartile Returns the quartile of a data set. Quartiles often are used in sales and survey data to divide populations
into groups.

Radians Converts degrees to radians.

Rank Returns the rank of a number in a list of numbers. If you sort a list, the rank of the number is its position
in the list.

Rate Returns the interest rate per period of an annuity.

Replace Replaces part of one string with another.

ReplaceB Replaces part of one double-byte string with another.

Rept Repeats text a given number of times.

Roman Formats an Arabic numeral as a Roman numeral.

Round Rounds a number to a specified number of digits.

RoundDown Rounds a number down, toward 0.

RoundUp Rounds a number up, away from 0.

RSq Returns the square of the Pearson product moment correlation coefficient through data points in known_y's
and known_x's.

RTD Retrieves real-time data from a program that supports automation.

Search Finds the location of one string within another (similar to Instr).

SearchB Finds the location of one double-byte string within another (similar to Instr).

Sinh Returns the hyperbolic sine of a number.

Skew Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry of a distribution
around its mean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Skew around its mean.

Sln Returns the straight-line depreciation of an asset for one period.

Slope
Returns the slope of the linear regression line through data points in known_y's and known_x's. The slope is
the vertical distance divided by the horizontal distance between any two points on the line, which is the
rate of change along the regression line.

Small Returns the kth smallest value in a data set. Use this function to return values with a particular relative
standing in a data set.

Standardize Returns a normalized value from a distribution characterized by mean and standard deviation.

StDev Estimates standard deviation based on a sample. The standard deviation is a measure of how widely
values are dispersed from the average value (the mean).

StDevP Calculates standard deviation based on the entire population given as arguments. The standard deviation
is a measure of how widely values are dispersed from the average value (the mean).

StEyx Returns the standard error of the predicted y-value for each x in the regression. The standard error is a
measure of the amount of error in the prediction of y for an individual x.

Substitute Substitutes new_text for old_text in a text string.

Subtotal Returns a subtotal in a list or database.

Sum Adds all the numbers in a range of cells.

SumIf Adds cells that meet specified criteria.

SumProduct Multiplies corresponding components in the given arrays and returns the sum of those products.

SumSq Returns the sum of the squares of the arguments.

SumX2MY2 Returns the sum of the difference of squares of corresponding values in two arrays.

SumX2PY2 Returns the sum of the sum of squares of corresponding values in two arrays. The sum of the sum of
squares is a common term in many statistical calculations.

SumXMY2 Returns the sum of squares of differences of corresponding values in two arrays.

Syd Returns the sum-of-years digits depreciation of an asset for a specified period.

Tanh Returns the hyperbolic tangent of a number.

tdist
Returns the percentage points (probability) for the student t-distribution where a numeric value (x) is a
calculated value of t for which the percentage points are to be computed. The t-distribution is used in the
hypothesis testing of small sample data sets.

Text Converts a value to text in a specific number format.

TInv Returns the t-value of the student t-distribution as a function of the probability and the degrees of
freedom.

transpose Returns a vertical range of cells as a horizontal range or vice versa.

TRend Returns values along a linear trend. Fits a straight line (using the method of least squares) to the arrays
known_y's and known_x's. Returns the y-values along that line for the array of new_x's that you specify.

trim Removes all spaces from text except for single spaces between words.

trimMean
Returns the mean of the interior of a data set. trimMean calculates the mean taken by excluding a
percentage of data points from the top and bottom tails of a data set. You can use this function when you
wish to exclude outlying data from your analysis.

TTest Returns the probability associated with a student t-test. Use TTest to determine whether two samples are
likely to have come from the same two underlying populations that have the same mean.

USDollar Formats a number as U.S. currency.

Var Estimates variance based on a sample.

VarP Calculates variance based on the entire population.

Vdb
Returns the depreciation of an asset for any period you specify, including partial periods, using the
double-declining-balance method or some other method you specify. VDB stands for variable declining
balance.

VLookup Searches for a value in the leftmost column of a table and then returns a value in the same row from a
column you specify in the table.

Weekday Returns the day of the week corresponding to a date. The day is given as an integer, ranging from 1
(Sunday) to 7 (Saturday), by default.

Weibull Returns the Weibull distribution. Use this distribution in reliability analysis, such as calculating a device's
mean time to failure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ZTest Returns the one-tailed probability-value of a z-test. For a given hypothesized population mean, that is,
the observed sample mean.

There is no Help for members in Table 4-8 from Visual Basic, but you can look up these functions in the Excel Help file
as shown in Figure 4-21.

Figure 4-21. Use Excel Help to find information on the WorksheetFunction
members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Using Excel Objects
Programming Excel is all about objects . In Chapter 2, I defined what objects are and showed you a little about how
they work. In this chapter, I'll take a closer look at the Excel object library and give you the tools you need to find the
right Excel object for any task you want to perform.

Code used in this chapter and additional samples are available in ch04.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1. Modules Versus Classes
The main difference between the modules and classes is how you use them:

Code contained in modules can be used from formulas entered in cells.

Code stored in a class can respond to events that occur in Excel.

That distinction determines where you put your codewhether you create it in a module or a class. In general, put your
code in a module if it performs a general-purpose task that you plan on reusing many different places. Put your code in
a class if it responds to events or represents a visual component.

Those are just guidelines. The following two sections illustrate the differences more fully.

5.1.1. Modules

For example, to create a module containing new mathematical functions, you can use in-cell formulas:

1. In Excel, open a workbook and choose Tools Macro Visual Basic Editor to start programming.

2. In the Visual Basic Editor, choose Insert Module. Visual Basic adds a new module to the Project window
and displays the new, empty module in an Edit window.

3. Select Name in the module's Properties window and type Math to rename the module.

4. Add the following code by typing in the module's Edit window:

 ' Math module.
 Public Function Inverse(x As Double) As Double
 If x = 0 Then Inverse = 0 Else Inverse = 1 / x
 End Function

 Public Function CubeRoot(x As Double) As Double
 If x < 0 Then CubeRoot = 0 Else CubeRoot = x ^ (1 / 3)
 End Function

To use these new functions from Excel, include them in a formula as shown in Figure 5-1.

Figure 5-1. Use modules to create user-defined functions

To use these functions from Visual Basic, include them in an expression as shown here:

 Sub TestMathFunctions()
 Dim result As Double, value As Double, str As String
 value = 42
 result = Inverse(value)
 str = "The inverse of " & value & " is " & result
 result = CubeRoot(value)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 result = CubeRoot(value)
 str = str & " and the cube root is " & result
 MsgBox str, , "Test Math Functions"
 End Sub

Here, result = Inverse(value) calculates the inverse and assigns that number to result. Alternately, I could write that as
Math.Inverse(value); including the module name is optional and it's a good idea if it makes the code clearer or if you reuse
the procedure name in another project.

5.1.2. Classes

Excel provides built-in classes for each workbook and sheet. You can add code directly to those classes to respond to
events on those objects as described in Chapter 4. You can also create your own custom classes that you can use
elsewhere in code.

Custom classes need to be instantiated as objects before they can be used. This allows you to create multiple instances
of the code, each running at the same time and acting independently of one another.

To create a new class:

1. In Excel, open a workbook and choose Tools Macro Visual Basic Editor to start programming.

2. In the Visual Basic Editor, choose Insert Class Module. Visual Basic adds a new class to the Project window
and displays the new, empty class in an Edit window.

3. Select Name in the class's Properties window and type String to rename the class.

4. Add the following code by typing in the class's Edit window:

 ' Message class
 Public Value As String
 Public Title As String

 Public Sub Show()
 MsgBox value, , title
 End Sub

You can't run this class just by pressing F5; instead, you must first create an instance of the class from a module, then
use the class in some way as shown here:

 ' TestMessage module
 Sub TestMessageClass()
 Dim msg1 As New Message, msg2 As New Message
 msg1.Title = "Msg1 Object"
 msg1.Value = "This message brought to you by Msg1."
 msg2.Title = "Msg2 Object"
 msg2.Value = "This message brought to you by Msg2."
 msg1.Show
 msg2.Show
 End Sub

The preceding code creates two objects from the Message class, msg1 and msg2, to demonstrate that each has different
value and title settings. This independence is sometimes called encapsulation , because outside forces can't change the
object without having a direct reference to it. That allows objects to represent a visual element, such as a worksheet or
a message box, and respond to events on that particular object as illustrated in Figure 5-2.

Figure 5-2. Using classes to create multiple objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can't do that with modules! You can have only one, fixed instance of any given module, and variables within that
module aren't encapsulated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.10. What You've Learned
Congratulations, you are now an object-oriented programmer (OOP). You've learned most of the key terms that relate
to objects and should have an inkling of how to use them to impress your friends.

I hope you remember that classes allow you to create events and that a single class can be used to create multiple
instances of an object in memory. Don't worry if you still feel a bit at sea regarding collections and exposing objects to
other applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2. Add Methods
Methods are Sub or Function procedures within a class. You use methods to define actions within a class, such as
calculating a result. For example, the following addition to the Message class sends the message via email:

 ' Send method: sends the message via email.
 Public Sub Send(ToAddress As String)
 Dim msgToSend As String, result As Double
 msgToSend = "mailto:" & ToAddress
 msgToSend = msgToSend & "?SUBJECT=" & Title
 msgToSend = msgToSend & "&BODY=" & Value
 ThisWorkbook.FollowHyperlink msgToSend, , True
 End Sub

To use this method from code, create an object and call Send with the email address of the recipient:

 ' TestMessage module
 Sub TestMessageSend()
 Dim msg1 As New Message
 msg1.Title = "Message to Send"
 msg1.Value = "This message brought to you by Excel."
 msg1.Send ("ExcelDemo@hotmail.com")
 End Sub

If you run TestMessageSend, Excel creates a new mail message using your email client, as illustrated in Figure 5-3.

Figure 5-3. Sending mail from Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3. Create Properties
Properties are values stored by a class. Simple properties , often called fields, may just be public variables within the
class, as shown by the Title and Value properties of the Message class earlier. More complex properties are created using
Property procedures.

Why would a property need to be complex? Several possible reasons:

Most often, properties are complex if they represent a value that is calculated in some way, such as the count
of a list of items.

In other cases, a property may represent information that can be read, but not changed. These are called read-
only properties.

Less often, a property may represent information that can be set only once, but never changed. These are
called write-once properties.

Finally, a property may represent a value that can be set but never read. You almost never need to do that, but
if you do, you'd call it a write-only property.

Let's continue on with the Message class example a bit to create two new properties that extend its email capabilities.
The Recipients property that follows is another simple property that accepts a list of email addresses to send the message
to:

 ' Message class
 Public Recipients As String

To use this property from the Send method, we make these changes shown in bold:

 Public Sub Send(Optional ToAddress As String)
 Dim msgToSend As String, result As Double
 If (ToAddress = "") Then ToAddress = Recipients
 msgToSend = "mailto:" & ToAddress
 msgToSend = msgToSend & "?SUBJECT=" & Title
 msgToSend = msgToSend & "&BODY=" & Value
 ThisWorkbook.FollowHyperlink msgToSend, , True
 End Sub

Now, you can add Recipients as a list of email addresses separated by semicolons, just as they would be in a regular
email message. Send no longer requires a ToAddress; if omitted, it uses the Recipients property. For example, this code
sends a message to two recipients:

 ' TestMessage module
 Sub TestMessageRecipients1()
 Dim msg1 As New Message
 msg1.Title = "Message to Send"
 msg1.Recipients = "ExcelDemo@hotmail.com;BeigeBond@hotmail.com"
 msg1.value = "This message brought to you by Excel."
 msg1.Send
 End Sub

That was a pretty easy, but what if the addresses come from a range of cells? It would be nice if the class were smart
enough to convert those settings. To do that, you need to add Property procedures that convert values from a range of
cells into a string of email addresses. You'd want Recipients to accept string values as well, so you need to create three
different types of Property procedures: a Set procedure to accept the range setting, a Let procedure to accept a string
setting, and a Get procedure to return the setting as a string. The following sample shows those additions to the Message
class:

 ' Message class
 Private m_Recipients As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Private m_Recipients As String

 ' Accept Range settings.
 Property Set Recipients(value As Range)
 Dim cel As Range
 m_Recipients = ""
 For Each cel In value
 m_Recipients = m_Recipients & cel.value & ";"
 Next
 End Property

 ' Accept String settings as well.
 Property Let Recipients(value As String)
 ' Set the internal variable.
 m_Recipients = value
 ' Exit if ""
 If value = "" Then Exit Property
 ' Make sure last character is ;
 If Mid(value, Len(value) - 1, 1) = ";" Then
 m_Recipients = value
 Else
 m_Recipients = value & ";"
 End If
 End Property

 ' Return the internal string variable.
 Property Get Recipients() As String
 Recipients = m_Recipients
 End Property

Notice that I used a private variable, m_Recipients, to store the property setting within the class. That's a common
practice with Property proceduresthe Set, Let, and Get procedures control access to that internal variable. In programming
circles, those procedures are called accessor functions ; often, you use accessors to validate a setting. For example, you
might want to check whether email addresses are valid before allowing the property to be set.

To test the new Recipients property, enter some email addresses in A1:A3 and run the following code:

 ' TestMessage module
 Sub TestMessageRecipients2()
 Dim msg1 As New Message
 msg1.Title = "Message to Send"
 msg1.value = "Some message text."
 ' Set the property as a range.
 Set msg1.Recipients = [a1:a3]
 ' Show the addresses (gets property as string).
 MsgBox "About to send to: " & msg1.Recipients
 ' Create message.
 msg1.Send
 End Sub

5.3.1. Read-Only Properties

Recipients is a read/write property. To create a read-only property, omit the Let and Set procedures. For example, the
following code creates a RecipientCount property that returns the number of people set to receive a message:

 ' Read-only property to get the number of recipients.
 Property Get RecipientCount() As Integer
 Dim value As Integer
 If m_Recipients <> "" Then
 value = UBound(Me.AddressArray)
 Else
 value = 0
 End If
 RecipientCount = value
 End Property

 ' Read-only property to get an array of recipients.
 Property Get AddressArray() As String()
 Dim value() As String
 If m_Recipients <> "" Then
 ' This is why m_Recipients must end with ;
 value = VBA.Split(m_Recipients, ";")
 End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 AddressArray = value
 End Property

OK, I got a little tricky there and created two read-only properties. RecipientCount uses AddressArray to convert the string of
recipients into an array, and then it counts the number of items in the array. There are other ways to get the count, but
this way demonstrates using Me to call a property from within the class itself. Besides, AddressArray might come in handy
later on...

5.3.2. Write-Once/Write-Only Properties

These types of properties are rarely needed and I thought about omitting them, but in the interest of being thorough, I
decided to include some discussion here. It's easy to create a write-only propertyjust omit the Get procedurebut it's hard
to even think of a situation in which that's useful to anyone...maybe setting a password or something:

 Private m_Password As String

 ' Write-only property, rarely used.
 Property Let Password(value As String)
 m_Password = value
 End Property

Because there is only a Let procedure and m_Password is Private, users can set the Password property but they can't get it.
That might also be useful for database connection strings that can include username and password information that you
should keep secure.

Write-once properties are somewhat more useful because they can represent information used to initialize an object.
Once they are initialized, you usually don't want those settings to change, so a write-once property makes sense.

Write-once properties check to see if they have been previously set, and if they have, they raise an error:

 Private m_Connection As String

 ' Write-once property, use to initialize object settings.
 Property Let ConnectionString(value As String)
 If m_Connection <> "" Then
 Err.Raise 2001, "ConnectionString", "Property already set"
 Else
 m_Connection = value
 End If
 End Property

In this case, ConnectionString is both write-once and write-only since I don't want others to see the setting once it is
established. If the connection needs to change, the only way to do it is to create a new object with a new ConnectionString.

Anything you can do with write-only properties can be done equally well using methods.
Defining Password or ConnectionString as Sub procedures, rather than as Property Let procedures,
results in equivalent code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4. Define Enumerations
Enumerations are a handy way to publish the possible settings for a property. For example, the following addition to the
Message class allows users to set the icon that appears on the message when it is shown:

 Public Icon As IconType

 Enum IconType
 None
 Critical = VbMsgBoxStyle.vbCritical
 Warning = VbMsgBoxStyle.vbExclamation
 Question = VbMsgBoxStyle.vbQuestion
 Information = VbMsgBoxStyle.vbInformation
 End Enum

 ' Show method: displays the message.
 Public Sub Show()
 MsgBox value, Me.Icon, Title
 End Sub

I added Me.Icon to the Show method to display the appropriate icon in the MsgBox. The point of using an enumeration is
that the available settings are now automatically listed when you set the property, as shown in Figure 5-4.

You can use enumerations within methods as well. For example, the following changes allow the Show method to accept
an icon setting:

 Public Sub Show(Optional icon As IconType = -1)
 If (icon = -1) Then icon = Me.icon
 MsgBox value, icon, Title
 End Sub

In the preceding code, I made icon an optional argument with a default setting outside of the possible IconType values so
I can tell whether or not the argument was set. If icon is omitted, I use the setting from the Icon property instead. In this
case, the icon argument overrides the Icon property.

When you use Show, Visual Basic displays the possible settings for the icon argument, as shown in Figure 5-5.

Figure 5-4. Use enumerations to publish available settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-5. Enumerations are handy in methods as well

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5. Raise Events
I mentioned earlier that, unlike modules, classes can include events . Classes define events using an Event statement
and then raise those events using RaiseEvent. For example, the following additions (in bold) create an event that occurs
whenever a message is shown or sent using the Message class:

 ' Message class
 Public Event OnShow(arg As MessageType)

 ' Show method: displays the message.
 Public Sub Show(Optional icon As IconType = -1)
 If (icon = -1) Then icon = Me.icon
 MsgBox value, icon, Title
 RaiseEvent OnShow(MessageType.MessageBox)
 End Sub

 ' Send method: sends the message via email.
 Public Sub Send(Optional ToAddress As String)
 Dim msgToSend As String, result As Double
 If ToAddress = "" Then ToAddress = m_Recipients
 msgToSend = "mailto:" & ToAddress
 msgToSend = msgToSend & "?SUBJECT=" & Title
 msgToSend = msgToSend & " &BODY=" & value
 ThisWorkbook.FollowHyperlink msgToSend, , True
 RaiseEvent OnShow(Email)
 End Sub

Responding to the OnShow event from within code that uses the Message class requires a few steps:

1. Write your code in a classyou can't intercept events from a module. For example, write your code in a Sheet
object within Visual Basic.

2. Declare the object at the class level using WithEvents.

3. Initialize that object by creating an instance of the class.

4. Create an event procedure to respond to the event.

The following sample illustrates the steps to using the OnShow event from a Sheet object:

1. Create code in Sheet object.

2. Declare Message object using WithEvents:

 Dim WithEvents msg As Message

This code runs when the user double-clicks a certain range on the sheet:

 Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)
 Select Case Target.address
 Case [ShowPreview].address
 CreateMsg
 msg.Show (Information)
 Case [SendMail].address
 CreateMsg
 msg.Send
 Case Else
 ' Do nothing
 End Select
 End Sub

3. Initialize the Message class:

 Sub CreateMsg()
 Set msg = New Message
 msg.Title = "Values from Class worksheet"
 Set msg.Recipients = [Addresses]
 msg.value = RangeToString([SendRange])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 msg.value = RangeToString([SendRange])
 End Sub

 Function RangeToString(rng As Range) As String
 Dim cel As Range, result As String
 For Each cel In rng
 result = result & cel.value & ", "
 Next
 RangeToString = result
 End Function

4. Respond to the event:

 Private Sub msg_OnShow(arg As MessageType)
 Select Case arg
 Case MessageType.Email
 Application.StatusBar = "Sending message..."
 Case MessageType.MessageBox
 Application.StatusBar = "Preview complete."
 End Select
 End Sub

When you declare an object WithEvents at the class level, Visual Basic adds the events for that object to the object list as
shown in Figure 5-6.

Figure 5-6. WithEvents adds events to the event list

The object is declared at the class level, but it must be initialized within a procedure. In the preceding example, that
occurs in CreateObject, which is called by the Sheet object's Worksheet_BeforeDoubleClick event. If you are working within the
ThisWorkbook object, you should initialize your objects in the Workbook_Open event so that the objects are created once at
start-up. Unfortunately, the Sheet object doesn't have an equivalent event.

If you run the preceding example, you'll notice that the OnShow event occurs after the Message class displays a message
box, but before the email message is displayed. There's a good reason for that: the message box runs within the Excel
application, whereas the email message is displayed by your email application (e.g., Outlook). When working within
Excel, Visual Basic waits for statements to complete before it continues. When working outside of Excel, it doesn't wait.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.6. Collect Objects
Earlier I included a small procedure that converts values from a Range to a String:

 Function RangeToString(rng As Range) As String
 Dim cel As Range, result As String
 For Each cel In rng
 result = result & cel.value & ", "
 Next
 RangeToString = result
 End Function

The For Each loop in that code works because Range is a collection. A collection is a special type of object that includes a
way to enumerate items contained by the object. Excel uses collections to organize its objects into a hierarchy, which is
sometimes called the Excel object model . Figure 5-7 shows how collections are used to organize part of the Excel
object model.

Figure 5-7. Excel uses collections to create an object hierarchy

You can create the same sort of hierarchy among your own objects by defining collections. To create a collection:

1. Create a new class that provides at least one method that returns a Collection object.

2. Provide a method in the class that allows others to add items to that collection.

3. Optionally, provide methods to remove and count items in the collection.

Most collections provide the following methods: Items, Item, Add, Remove, and Count. It's a good idea to follow that
convention unless there's a specific reason not to enable one of those tasks. The following code shows the Messages
collection, which, as the name suggests, provides a collection of Message objects:

 ' Messages class.
 ' Internal variable to contain the collection.
 Private m_col As Collection

 ' Standard members provided by most collections:
 ' Items, Item, Add, Remove, Count.
 Public Function Items() As Collection
 Set Items = m_col
 End Function

 Public Function Item(index) As Message
 Set Item = m_col(index)
 End Function

 Public Sub Add(msg As Message)
 ' Initialize the collection on first Add.
 If m_col Is Nothing Then _
 Set m_col = New Collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Set m_col = New Collection
 m_col.Add msg
 End Sub

 Public Sub Remove(index)
 m_col.Remove index
 End Sub

You can use the preceding code as a template for any collection you need to create. Just change the data types of the
Item method and the msg argument in the Add method to match the class of your collected object.

To use this collection in code, create new Message objects and add them to the collection. The following code shows a
simple demo of the Messages collection. The first procedure creates three new Message objects and adds them to the
collection. The second procedure displays each of the Messages from the collection:

 ' TestMessage module
 Dim m_Messages As Messages

 Sub TestInitializeCollection()
 ' Intialize the Messages collection.
 Set colMessages = New Messages
 ' Create some messages
 Dim msg1 As New Message
 msg1.Title = "Msg1"
 msg1.Value = "From collection."
 msg1.icon = Information
 m_Messages.Add msg1
 Dim msg2 As New Message
 msg2.Title = "Msg2"
 msg2.Value = "From collection."
 msg2.icon = Warning
 m_Messages.Add msg2
 Dim msg3 As New Message
 msg3.Title = "Msg3"
 msg3.Value = "From collection."
 msg3.icon = Critical
 m_Messages.Add msg3
 End Sub

 Sub TestCollection()
 Dim msg As Message
 For Each msg In m_Messages.Items
 msg.Show
 Next
 End Sub

In the real world, you would probably initialize the collection in the ThisWorkbook class's Workbook_Open event procedure so
that the collection is created automatically on start-up.

The previous TestCollection procedure shows one key difference between custom collections and Excel's built-in
collections: custom collections don't have a default property. In other words, you must write For Each msg in
m_Message.Items, whereas Excel collections can omit the Items property.

Excel's Visual Basic doesn't provide a way to designate a default property for a class. That's probably a good thing
though, because default properties go away entirely in the .NET Framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.7. Expose Objects
The objects you create within a workbook are usually private to that workbook. That means outside applications can't
see them or use them in their code. In some rare cases, you may want to expose a custom object so that other
applications can use it. To do so:

1. Declare the object as Public.

2. Initialize the object. Usually you do that on start-up when the workbook loads.

3. Change the class's Instancing property to 2 - Public not creatable.

To see how this works, select the Messages class in the Visual Basic Project window and change the Instancing property
as shown in Figure 5-8.

Repeat that for the Message class, and then add the following code to the ThisWorkbook object:

 ' ThisWorkbook object.
 Public g_Messages As Messages

 Private Sub Workbook_Open()
 ' Intialize the Messages collection.
 Set g_Messages = New Messages
 ' Create some messages
 Dim msg1 As New Message
 msg1.Title = "Msg1"
 msg1.Value = "From collection."
 msg1.icon = Information
 g_Messages.Add msg1
 Dim msg2 As New Message
 msg2.Title = "Msg2"
 msg2.Value = "From collection."
 msg2.icon = Warning
 g_Messages.Add msg2
 End Sub

Figure 5-8. The Instancing property exposes objects outside Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The preceding code creates two Message objects and adds them to the Messages collection. That collection is then exposed
through the g_Messages collection.

Save and close the workbook, and then reopen it to run the Workbook_Open procedure. If you forgot to set the Instancing
property of the Message class, you'll see the error message in Figure 5-9.

Figure 5-9. This error occurs if you try to expose an object without setting its
Instancing property

Once the workbook is open and the Messages collection has been created, other applications can get at the object. One
common way to get at these objects is through VBScript a sort of lightweight Visual Basic built-in to Windows. You can
create the following file in Notepad, save it as TestCollection.vbs and then run it by double-clicking on the file name in
Windows Explorer:

 ' TestCollection.vbs
 dim xl, path, fso, wb, msg
 ' Start Excel and make it visible.
 set xl = CreateObject("Excel.Application")
 xl.Visible = True
 ' Use this object to get the current path.
 set fso = CreateObject("Scripting.FileSystemObject")
 path = fso.getfolder(".")
 ' Open the sample workbook.
 set wb = xl.Workbooks.Open(path & "\ch05.xls")
 ' Display the number of messages.
 MsgBox "Ch05.xls exposes " & wb.g_Messages.Count & " messages."
 ' Show each message.
 For each msg in wb.g_Messages.Items
 msg.Show
 Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.8. Destroy Objects
In Visual Basic, objects remain in memory as long as there is a reference to them in scope. What's that mean? Scope is
determined by where the variable is declared. So, a Message declared within a procedure is in scope while that procedure
executes. When the procedure ends, the Message goes out of scope and it is removed from memory (some people say it
gets destroyed).

At that point, the object is no longer available and any property settings it contained are lost. A way to prevent that is
to make a reference at another level of scope. For instance, the following m_Messages variable keeps the Message collection
around after TestInitializeCollection ends:

 ' TestMessage module
 Public m_Messages As Messages

 Sub TestInitializeCollection()
 ' Intialize the Messages collection.
 Set m_Messages = New Messages
 ' Create some messages
 Dim msg1 As New Message
 msg1.Title = "Msg1"
 msg1.Value = "From collection."
 msg1.icon = Information
 m_Messages.Add msg1
 ' and so on...
 End Sub

The trick here is that the msg1 object is also preserved, even though it is declared within the procedure that just ended.
In this case, the collection holds a reference to that Message object, which keeps it in memory until the workbook closes
or the object is explicitly destroyed. There are several ways to explicitly destroy the Message object:

Remove it from the collection.

Set the collection to Nothing.

Set the m_Messages variable to a new Messages collection.

This code illustrates each technique:

 ' You must run TestInitializeCollection
 ' before running this one.
 Sub TestDestroyObject()
 ' Remove a single object.
 m_Messages.Remove (1)
 ' Destroy the whole collection.
 Set m_Messages = Nothing
 ' Create a new collection (destroys prior one)
 Set m_Messages = New Messages
 End Sub

The concept of references is important in Excel because it is possible to leave large, invisible objects in memory
inadvertently. As long as someone holds a reference to an object, it is kept alive. Accidental references like that can
result in memory leaks a situation in which unused objects take up memory and slow your computer down
unnecessarily.

To see how bad that can be, run this code:

 Public m_xl As New Collection

 Sub DemoMemoryLeak()
 Dim i As Integer
 For i = 1 To 10
 m_xl.Add (CreateObject("Excel.application"))
 Next
 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you switch to the Windows Task Manager (Figure 5-10), you'll see that there are now 11 instances of Excel loaded on
your computer even though you can see only one of them.

Don't panic! You can make the hidden instances go way by setting m_xl to Nothing in the Immediate window as shown
here:

 Set m_xl = Nothing

My point is simple: be very careful when creating large objects that the user can't see. Watch out for module-level and
class-level object variablesespecially collectionsand remember to set them to Nothing when you are done.

Figure 5-10. Yow, 11 instances of Excel! That can't be good.

The system of keeping track of objects as described here is called reference counting , and
it's used by all Microsoft Office applications. The .NET Framework uses a more reliable
system that periodically checks whether or not objects are still in use. That approach is
called garbage collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.9. Things You Can't Do
If you are familiar with an object-oriented programming language such as Java or Visual Basic .NET you might be
waiting for me to discuss constructors, inheritance, and overloading. You'll have a long wait, because Excel's Visual
Basic can't do any of those. There are also some limits on things you might assume you can do from looking at the
Excel objects. For instance, you can't create default properties. Table 5-1 lists these language limitations and provides
some detail.

Table 5-1. Object-oriented features not available in Excel
Feature Limitation and workaround

Constructors Only a default constructor is available. If you want to initialize an object, you must implement an Initialize
method or something similar.

Destructors Only a default destructor is available. If you want to free nonmemory resources used by an object, you
must implement a separate Dispose method or something similar.

Collection
types

There is only one collection type: Collection. To implement a collection, create a class that "wraps" that
type as shown earlier in "Collect Objects."

Default
properties Not available in custom classes. Properties must be called by name.

Inheritance Not available. You can't base one class on another.

Interfaces Not available. You can't create a prototype for a class.

Overloaded
methods Not available. Use the Optional keyword to create methods that accept different sets of arguments.

I include Table 5-1 because it's hard to know what's missing simply by omission. It's not meant to denigrate Excel or to
make you feel limitedyou can still do a lot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Creating Your Own Objects
Chapter 4 showed you how to use Excel's objects; now you get to create your own. This chapter shows you how to
define custom classes and instantiate objects from those classes to create in-memory representations of visual or
functional elements.

In the process, I try to explain why you'd use classes and how you perform specific tasks that are unique to object-
oriented programming. You'll also learn how to send mail from Excel, which is kind of handy.

Code used in this chapter and additional samples are available in ch05.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1. Types of Applications
You can create three different types of applications from within Excel. Which type you choose determines how the
application is used and distributed:

Workbooks

Package code as part of a unique document. The code is stored with the workbook file (.xls) and is available
whenever the user opens that file in Excel. If the user copies the file, the code is copied along with the rest of
the workbook.

Templates

Include code as part of a template for new Excel workbooks. When a user creates a new workbook file (.xls)
from the template (.xlt), the code contained in the template is available in that new workbook though the code
is not actually copied to the workbook.

Add-ins

Include code as a file that can be loaded into the Excel application. If a user loads an add-in file (.xla), code
from that add-in is available for any workbook a user opens.

Table 6-1 describes the relative advantages of these different types of applications.

Table 6-1. Ways to distribute code in Excel
Code
stored in Available to Advantage Disadvantage

Workbook
(.xls)

Currently loaded
workbooks

No installation required;
easy to distribute.

Updates are difficult because the workbooks may be
copied/renamed and there's no way to merge new code.

Template
(.xlt)

Workbooks
based on the
template

Single file; code applies to
specific type of workbook. Templates must be installed.

Add-in
(.xla) All workbooks Single file; code most

widely available. Add-ins must be installed; don't include worksheets.

One of the major differences between templates and add-ins is that templates include worksheets, charts, and
document-based elements from Excel. Add-ins don't automatically include those visual elements.

You develop each of these application types starting from a workbook (.xls), then you save that workbook as the
appropriate type, as shown in Figure 6-1.

After you save the workbook in the target format, you can still open it for editing in Excel, but you may have to look for
the file in a different location. Excel stores templates in the C:\Documents and Settings\user\Application
Data\Microsoft\Templates folder, and it stores add-ins in C:\Documents and Settings\user\Application
Data\Microsoft\AddIns. You can save to any location; these are just the defaults.

Understanding these different application types is important before you begin the development process . The rest of this
chapter describes that process as it applies to Excel. Most of that information applies to other types of programming as
well, though it is hardly the final word. See "Resources" at the end of this chapter for further reading on how to develop
software professionally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.10. What You've Learned
By now, you should understand what it takes to deliver professional-quality code to the world. Understanding is
different from being able to accomplish something, however. It takes a great deal of practice to develop the skills you
are ready to acquire.

Be patient and develop experience with the Excel objects described in the rest of this book. As you program, look for
ways to integrate testing into your process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.11. Resources

For information on Look here

The development process Extreme Programming Explained: Embrace Change (Addison-Wesley)

Purchasing digital signatures http://www.verisign.com

Learning about nonprofit digital
signatures http://www.cacert.org

Adding timestamps to digital signatures http://searchsupport.verisign.com/content/kb/vs5069.html

Configuring a server to provide digital
certificates

Search the Windows 2003 Server Help for "Installing and configuring a
certification authority"

Digital signatures for normal people https://www.cacert.org/help.php?id=2

Compiled help files Search http://www.microsoft.com/downloads for "Help Workshop"

WinZip and WinZip self-extractor http://www.winzip.com

VBScript http://msdn.microsoft.com/library/en-us/script56/html/vtoriVBScript.asp

FileSystemObject http://msdn.microsoft.com/library/en-us/script56/html/fsooriScriptingRun-
TimeReference.asp

WScript.Shell http://msdn.microsoft.com/library/en-us/script56/html/wsObjWshShell.asp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2. The Development Process
A friend of mine jokes that developing software is like constructing a house: the first step is to build the roof. His point
is that nobody thinks you're crazy if you start implementing the user interface before you've thought through the
design, organized your tools, and built a foundation.

Figure 6-1. Saving a workbook as a template or add-in

The purpose of having a development process is to avoid that upside-down approach. Following a process helps you:

Detect problems as early as possible

Create reproducible results

Know when you're done

Much has been written on the development process; I won't try to cover all the approaches or explain their differences
here. Instead, I'll give you some practical tips specifically oriented toward working with Excel.

In my experience, the best advice is to use a test-driven approach and to get feedback as early as possible by following
these general steps:

1. Determine requirements.

2. Create an initial design.

3. Implement features and unit tests.

4. Integrate features and test their interaction.

5. Test on target platforms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Test on target platforms.

6. Document the software and create training materials for users.

7. Deploy the software.

8. Archive what was deployed and get ready for the next version.

Each of these steps includes an implicit "Gather feedback and revise" step before proceeding to the next. How you
gather and manage feedback must be tailored to your situationyour process may include formal approvals and
management sign-off, or it may be as simple as a series of email messages. My point is that you need some series of
steps to know where to start and how to proceed. The following sections describe these steps in greater detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3. Determine Requirements
Requirements may be clearly laid out by your manager, or you may be completely responsible for determining them
yourself. In either case, it is helpful to test assumptions at this point and get direct feedback from those who will use
the product to make sure the requirements are realistic and that nothing was omitted.

It's important to understand the difference between requirements and design: Requirements define what the product
does; design determines how the product does it. In other words, it is a requirement that users log on before using the
product, but determining how the username and password are validated is a design issue.

Requirements answer specific questions that help later with design, testing, and documentation. Table 6-2 categorizes
some of the common questions.

Table 6-2. Common requirements questions
Category Question

Function What tasks does the product perform?

Audience What level of experience do the users have with the tasks and with Excel in general?

Compatibility What version or versions of Excel must the product work with?

 Do users have PCs, Macs, or both?

Deployment Will the product be distributed on disk or from a network share or downloaded over the Internet?

Dependencies Are there other components that must be installed for the product to work?

 Will this product be used by other products as a component?

 Does the product use external data, and if so what is the data source?

Obviously, these general questions may need to be followed up on for more detail. The purpose of the requirements is
to state clearly what is expected and to create an understanding between those who will use the product and those who
are building it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4. Design
Design creates a framework for the product based upon requirements. Design documents usually include the following:

General description of how the product performs the tasks described in the requirements

Lists of menus presented to the user

Sketches of screens that the product displays

Conventions used in menus and screens

Descriptions of data sources used by the product

Details about any components used

Special considerations, such as how platform differences are handled

A good design document tells programmers what they need to do but not how to do it. Designs are subject to change,
so it is best if they aren't so complex that they are difficult to read or revise.

It is easiest to make changes during design, and it's important to take time to think things through. However, it's
unrealistic to think a design is ever perfect. Devote a reasonable amount of time to the initial design, then plan on
making updates along the way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5. Implement and Test
Finally, you get to write some code! But since this code is going out to a wide audience, you need to do some extra
work to make sure it functions correctly. In short, you need to test as you implement your code.

Each procedure that you write should have a unit test written to test it. Unit tests are procedures that call the functional
procedures to make sure they work correctly. I use unit tests in all of the sample workbooks; for example, the
TestMathFunctions unit test from ch05.xls tests the Inverse and CubeRoot procedures:

' Unit test
Sub TestMathFunctions()
 Dim result As Double, Value As Double, str As String
 Value = 42
 result = Inverse(Value)
 str = "The inverse of " & Value & " is " & result
 result = CubeRoot(Value)
 str = str & " and the cube root is " & result
 MsgBox str, , "Test Math Functions"
End Sub

' Functional code
Public Function Inverse(x As Double) As Double
 If x = 0 Then Inverse = 0 Else Inverse = 1 / x
End Function

' Functional code
Public Function CubeRoot(x As Double) As Double
 If x < 0 Then CubeRoot = 0 Else CubeRoot = x ^ (1 / 3)
End Function

I prefix the names of unit tests and the modules that contain them with Test to make their purpose clear. You'll see that
again and again throughout this book.

Unit testing is not the same as stepping through the functional procedures manually. Manual testing, sometimes called
ad hoc testing , is an important way to find errors during development but it does not create a reproducible result. Unit
tests can be run repeatedly, and the result should always be the same. This allows you to automate the testing process
as described in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6. Integrate
The TestMathFunctions unit test in the preceding section is a bit of a cheat because it combines the tests for two
procedures: Inverse and CubeRoot. In general, unit tests and procedures have a one-to-one correspondence to make it
easier to locate problems when they occur. Also, unit tests are easier to use if they don't display message boxes,
because that requires you to manually click through the test.

For those reasons, I generally follow these conventions when writing unit tests:

Return a string indicating pass/fail from each test.

Where the results aren't pass/fail, return the result of the operation.

Call the unit tests from a TestxxxMain procedure and display the results in the Immediate window using Debug.Print.

The following code shows unit tests for the QuickRead and QuickWrite procedures from Chapter 3 written with those
conventions in mind:

Const fpathtest = "c:\temp.txt"

Sub TestFilesMain()
 Debug.Print TestQuickWrite
 Debug.Print TestQuickRead
End Sub

Private Function TestQuickWrite() As String
 Dim s As String
 Dim result As String
 result = "failed"
 s = "This is some sample text."
 If Files.QuickWrite(s, fpathtest, True) Then result = "passed"
 TestQuickWrite = "TestQuickWrite " & result
End Function

Private Function TestQuickRead() As String
 Dim s1 As String, s2 As String
 Dim result As String
 result = "failed"
 s1 = "This is some sample text."
 s2 = Files.QuickRead(fpathtest)
 If s1 = s2 Then result = "passed"
 TestQuickRead = "TestQuickRead " & result
End Function

These tests create a new text file, c:\temp.txt, then open that file and check its contents. When run within the Visual
Basic Editor, the results appear in the Immediate window as shown in Figure 6-2.

Figure 6-2. Unit tests write output to the Immediate window

Because these two unit tests are interdependent, the combined test checks their integration as well. Furthermore, if
there are any changes to QuickRead or QuickWrite, you can rerun the test to check for regressions. Finally, you can run all
of the tests of each of the different target platforms to check for compatibility problems. Table 6-3 describes each of
these different types of tests.

Table 6-3. Types of tests

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-3. Types of tests
Test type Verifies that

Unit test The individual pieces work correctly.

Integration tests The pieces work together.

Regression test Changes to pieces don't break existing features.

Platform tests The product works correctly on various operating systems and hardware configurations.

These different tests are used together during the development process as illustrated in Figure 6-3.

In the preceding example, TestQuickRead and TestQuickWrite are the unit tests and TestFilesMain is the integration test. After
any changes, you rerun TestFilesMain as a regression test. And at the end of the cycle you run it again on each different
set of hardware as a platform test.

If a problem is reported after deployment, you can create a new unit test to help you identify and fix the bug. That new
test then becomes part of the testing cycle in Figure 6-3 to ensure the quality of future releases.

Figure 6-3. Testing is integral to the development process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7. Test Platforms
Although Excel runs on both PCs and Macs, there are quite a few differences between the objects Excel provides for
each of those operating systems. Also, code written for the PC often relies on external components that are not
available on the Mac or on early versions of Windows. In other words, it is very difficult to get the same code to work
correctly on multiple operating systems.

The easiest solution to this problem is to require a specific operating system. The second easiest solution is to pick one
operating system as your primary target and provide a reduced feature set on the others.

You can tell which operating system is in use by checking Application.OperatingSystem. The following code checks the
operating system when the workbook loads and warns the user if it is not the primary target:

' ThisWorkbook class
Private Sub Workbook_Open()
 Select Case GetOS
 Case OS.Win32
 ' Full features, no message.
 Case OS.Mac
 ' Reduced features, display a warning.
 MsgBox "Running in compatibilty mode. "& _
 "Some features are disabled.", vbExclamation
 Case OS.Win16
 ' Not supported at all!
 MsgBox "This application requires Windows NT or XP.", vbCritical
 Application.Quit
 End Select
End Sub

' Platform module
Enum OS
 Win16
 Win32
 Mac
End Enum

Function GetOS() As OS
 Dim result As OS
 Dim s As String
 s = Application.OperatingSystem
 If InStr(1, s, "Windows") Then
 If InStr(1, s, "32-bit") Then
 result = Win32
 Else
 result = Win16
 End If
 Else
 result = Mac
 End If
 GetOS = result
End Function

Similarly, different versions of Excel can pose problems since early versions support fewer features than later ones. If
your requirements specify a particular version of Excel, it is best to do all your development using that version. Then,
compatibility with later versions is (almost) guaranteed.

What! Later versions of Excel don't always include all of the previous versions' features?
No, Excel is not always forward-compatible. In particular, Windows and Mac versions are
out of sync, so code written for Excel 2003 (Windows) may not run on Excel 2004 (Mac).

If your requirements don't specify an Excel version, it's important to determine the version compatibility of your code
before you deploy it. The easiest way to do that is to run the integration tests under different versions of Excel. For
instance, you may develop a workbook using Excel 2003, then open the workbook in Excel 2000 and run the integration
test to verify compatibility. If the test passes, you can assume compatibility; otherwise, you may need to test for the
version at start-up as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

version at start-up as shown here:

' ThisWorkbook class
Private Sub Workbook_Open()
 TestVersion
End Sub

Sub TestVersion()
 If Application.Version < 10 Then
 MsgBox "This application requires Excel 2002 or later.", _
 vbCritical
 Application.Quit
 End If
End Sub

Hardware issues such as screen size, processor speed, and peripheral devices such as printers can also pose problems.
It is best to try to detect those problems before you deploy and set some minimum requirements. It may not be
necessary to test for those requirements thoroughly on start-up; it's often sufficient just to specify them in a
Readme.txt file or some other documentation .

A final word of advice: don't try to write code that dynamically adjusts features for different platforms unless you've got
a really good reason to do so. That approach requires a lot of effort in both development and testing and usually just
confuses users. Instead, code for a specific set of minimum requirements, such as "Windows Excel 2000 or later." If
you need to support two platforms, consider creating a separate version specifically for the secondary platform after
completing the primary one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.8. Document
Documentation has evolved over the last several years to the point where most Help is provided over the Internet. That
makes updating content easier, allows feedback, and probably most importantly maintains contact with customers.

You can create HTML documentation for your application using Word, FrontPage, or another editing toolI wind up using
Notepad more than I'd expect. HTML documents can be posted to a web server or they can be copied to the user's
machine along with the application.

Then, you simply link items to help pages using hyperlinks on the worksheets or by using the Application.Help or
Workbook.FollowHyperlink method in code:

Sub TestShowHelp()
 Dim result As VbMsgBoxResult
 result = MsgBox("An error occured. Click OK to show help.", _
 vbOKCancel, "Error")
 If result = vbOK Then
 ' Display Help in Help window.
 Application.Help ("http://excelworkshop.com/Help/error51.htm")
 ' Alternate approach: display Help in browser.
 'ThisWorkbook.FollowHyperlink _
 ' ("http://excelworkshop.com/Help/error51.htm")
 End If
End Sub

The Help method displays the page in Excel's Help window. The FollowHyperlink method displays the page in the browser.
Using the browser provides better navigation tools, but the Help window shares the screen with Excel a little better.

You can also add links to Help from menu items in Excel. To do so:

1. Choose Tools Customize Commands and select the Window and Help category.

2. Drag Contact Us from the Commands list to the Help menu as shown in Figure 6-4.

Figure 6-4. Drag a new item to the Help menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Expand the Help menu and right-click on the Contact Us item you just added. This puts that item in edit mode,
which is available only when the Customize dialog box is displayed.

4. Rename the menu item by typing in the Name property as shown in Figure 6-5.

5. Choose Assign Hyperlink Open to set the address of the page to display when the user selects the menu
item.

6. When finished, choose Close in the Customize dialog box.

Figure 6-5. Rename and assign a hyperlink to the new menu item

Linking an application directly to HTML pages in this way is a little different than using some of Excel's built-in help
features. For example, the MsgBox function allows you to link a Help button to a compiled help file (.chm) or a local HTML
file, but not one located on the Web:

Sub TestContextHelp()
 Dim path As String
 path = ThisWorkbook.path
 ' This works:
 MsgBox "An unexpected error occurred.", vbMsgBoxHelpButton, , _
 path & "/ch06.chm::Error51.htm", 0
 ' And so does this:
 'MsgBox "An unexpected error occurred.", vbMsgBoxHelpButton, , _
 ' path & "/error51.htm", 0
 ' But this doesn't work:
 'MsgBox "An unexpected error occurred.", vbMsgBoxHelpButton, , _
 ' "http://www.excelworkshop.com/Help/ch06.htm", 0
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The preceding code displays a message box with OK and Help buttons. If the user clicks Help, Excel displays the
error51.htm topic from the ch05.chm using Windows Help. Compiled Help is harder to create than regular HTML pages
and it offers few advantages over the HTML approach. Compiled help files are built using the Microsoft HTML Help
Workshop , which is a free download from Microsoft (see "Resources," at the end of this chapter).

Finally, you can provide help on user-defined functions by specifying a help file in the Visual Basic project properties. To
do so:

1. Right-click on the Project window in Visual Basic and select VBA Project Properties.

2. Enter the address of the help file in Help File Name and choose OK to close the dialog. You can use a web
address (e.g., http://excelworkshop.com/help/Ch06.htm), a local HTML file, or a local .chm file.

Now, the user can get help on the function from the Excel Insert Function dialog box as shown in Figure 6-6.

Figure 6-6. Set VBA Project Properties to specify a help file for user-defined
functions

Since not all users have Internet access, you may want to combine approaches and install a help file locally that links to
the Web for more detailed help and updates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.9. Deploy
Excel Visual Basic applications aren't compiled in the conventional sense. Instead, the code is saved in the file and it is
interpreted at runtime. In the old days, before viruses and security concerns, you could just save an Excel workbook
and then distribute it to your users without a second thought. Now, you need to take additional steps to make sure your
users will be able to trust the code you send them:

1. Protect your code to prevent users from seeing or changing it.

2. Digitally sign the files and provide instructions on setting macro security to allow the application to run.

3. Create an installation program to copy the files to the user's system.

The following sections describe these steps in more detail.

6.9.1. Protect Code

To protect your Visual Basic code from changes:

1. Right-click on the Project window in Visual Basic and choose VBA Project Properties.

2. Choose the Protection tab, select Lock Project for Viewing and enter a password as shown in Figure 6-7.

3. Choose OK to close the dialog box. The changes take effect after you close and reopen the workbook.

Figure 6-7. Protect your Visual Basic code

6.9.2. Sign Files

Any files that contain code for use by others should be signed with a digital signature. Chapter 1 showed you how to
self-sign macros so that the code you create for your own use can run without a security warning. If others try to run
code that you signed in that way, they will see a warning that the certificate can't be verified (Figure 6-8).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-8. Self-signed macros aren't trusted on other users' machines

Other users can't choose to trust macros that you've self-signed because they can't be authenticated through a
certificate authority.

To create code that others can choose to trust:

1. Get a digital signature from a certificate authority, such as Verisign , Inc., or CAcert.org.

2. In Visual Basic, sign your code with that digital signature (Tools Digital Signature Choose).

3. Save and close the file.

There are several types of digital signatures , which are also called digital IDs or certificates. You'll need one that
permits code signing. Other types are used to sign email messages or to identify web servers online. Licenses for digital
signatures used to be very cheap, but they've gone up to several hundred dollars a yearwhich is a significant expense
for an individual. For a company with multiple developers, this expense is less significant since a company generally
uses the same digital signature to sign all of its published code, which distributes the cost.

Lower-cost digital signatures are available from the nonprofit certificate authority CAcert. Digital signatures from CAcert
support code signing. See "Resources," at the end of this chapter, for links to more information.

Digital signatures may also be generated internally by your company if your company has a server with the certificate
authority service installed. If you think this is the case for your company, you should contact your IT department for
more information.

Once you've signed your code with a digital signature from a certificate authority (CA), the new signature appears when
users open your workbook. Because the signature can be authenticated from the CA, users can add it to their list of
trusted publishers so they will not be prompted each time they open a file from you. Figure 6-9 shows opening a
workbook that uses a signature from CAcert.

Figure 6-9. Signatures from a CA (even a free one) can be trusted

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.9.3. When Signatures Expire

Digital signatures have expiration dates to help ensure their authenticity. When a user opens a signed Excel file after
the signature's expiration date, she sees a security warning saying that the signature has expired. To avoid this
problem, you can timestamp signatures so that Excel compares the signature expiration to the timestamp rather than
the current date.

Unfortunately, timestamps aren't automatic in Excel. In order to get it working, you need to edit your system registry to
use a timestamp service provided by your certificate authority. For example, the following registry entries configure
your system to use Verisign's timestamp service (timestamp.reg):

Windows Registry Editor Version 5.00
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security]
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security\TimeStampRetryCount]
@="10"
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security\TimeStampRetryDelay]
@="10"
[HKEY_CURRENT_USER\Software\Microsoft\VBA\Security\TimpeStampURL]
@="http://timestamp.verisign.com/scripts/timstamp.dll"

To merge these entries into your system registry, double-click on the sample file timestamp.reg in Windows Explorer.
Before you rely on timestamps, you should test this procedure on your machine by signing code in an Excel file, closing
it, changing your system date, then reopening the file in Excel. Please contact your certificate authority if you have
problems.

6.9.4. Install Workbooks

Workbooks are easy to distribute since they are usually just a single file that contains code. You can distribute them as
email attachments, from a network share, by disk, or from an Internet address. Then, the user can choose where to
install the file on his machine.

If your workbook uses support files, such as a local help file or database query (.iqy), you may want to package files as
a compressed folder. To use the Windows XP compression tool to package a group of files:

1. Select the files in Windows Explorer.

2. Right-click on the files and select Send to Compressed (zipped) Folder. Windows creates a single .zip file
containing the files.

If you don't have Windows XP, you can use the WinZip tool from WinZip Computing, Inc. (see "Resources," at the end
of this chapter).

6.9.5. Install Templates and Add-ins

Templates and add-ins must be installed at specific locations on the user's machine in order to appear automatically in
Excel. Where you install the file determines whether it is available only to the current user or to all users. Table 6-4 lists
the various locations used by Excel for templates and add-ins.

Table 6-4. Install locations for workbooks, templates, and add-ins
Name Location Comments

Startup %ProgramFiles%\Microsoft
Office\OFFICE11\XLSTART

Excel loads workbooks in this folder on startup. Excel
includes templates in this folder on the General page of the
Templates dialog.

Alt startup Configured by the user on the General
page of the Options dialog.

Workbooks and templates copied to this folder are loaded
automatically on start-up in the same way as \XLSTART.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Network
templates

If the user specified a shared network
folder in Alt startup before, Excel loads
templates from that location.

If set, this folder is returned as the Application object's
NetworkTemplatesPath property.

Add-ins
library

%ProgramFiles%\Microsoft
Office\OFFICE11\Library

Add-ins copied to this folder appear in the Available Add-Ins
list of the Add-Ins dialog.

Spreadsheet
solutions
library

%ProgramFiles%\Microsoft
Office\Templates\1033

Displays templates in the Spreadsheet Solutions page of the
Templates dialog.

User add-
ins

%UserProfile%\Application
Data\Microsoft\AddIns

This is the default location when the user saves a file as an
add-in. Add-ins copied to this folder appear in the Available
Add-Ins list of the Add-Ins dialog.

User
templates

%UserProfile%\Application
Data\Microsoft\Templates

This is the default location when a user saves a file as a
template. Templates copied to this folder appear on the
General page of Templates dialog.

For earlier versions of Windows, the locations vary depending on whether user profiles are enabled. Table 6-5 lists the
folders used by earlier versions of Windows.

Table 6-5. Install locations for Windows NT and earlier
Name User profiles disabled User profiles enabled

User
templates

%windir%\Application
Data\Microsoft\Templates

%UserProfiles%\Application
Data\Microsoft\Templates

User add-ins %windir%\Application Data\Microsoft\AddIns %UserProfiles%\Application Data\Microsoft\AddIns

The values %ProgramFiles%, %UserProfile%, and %windir% are environment variables that map
to special folders on your system. For example, %ProgramFiles% is usually C:\Program Files.

There are many ways to create installation programs that install templates or add-ins to these locations. Perhaps the
simplest way is to use the WinZip self-extractor to create a compressed folder that runs a simple installation script
when finished.

See "Resources," at the end of this chapter, for information on where to get the WinZip self-extractor. That tool
includes information on how to run installation scripts after the extraction completes. You can write the installation
script as a batch file, but I prefer to use VBScript since it leverages what we already know about Visual Basic and Excel.

Templates are simply copied to one of the template locations that Excel uses. For example, this VBScript installs the
template ch06.xlt so that it shows up when the user chooses to look for templates "installed on my computer":

' Ch06TemplateSetup.vbs
' Get the objects used by this script.
Dim oXL, fso
Set oXL = CreateObject("Excel.Application")
Set fso = CreateObject("Scripting.FileSystemObject
")
' Make Excel visible (always a good idea)
oXL.Visible = True
' Get the current folder (must add "\")
srcpath = fso.GetFolder(".").Path & "\"
' Get the Excel template folder
destpath = oXL.TemplatesPath
' Copy the file to the template folder.
fso.CopyFile srcpath & "ch06.xlt", destpath & "ch06.xlt"
' Close Excel
oXL.Quit
Set oXL = Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add-ins can be installed from any location, but it is a good idea to copy them to one of the standard folders listed in
Table 6-4 so that users can find them easily. Add-ins also have an Installed property that loads them in Excel. For
example, the following VBscript installs the add-in ch06.xla:

' Ch06AddinSetup.vbs
' Get the objects used by this script.
Dim oXL, oAddin, fso, wsh, srcPath, destPath
Set oXL = CreateObject("Excel.Application")
Set fso = CreateObject("Scripting.FileSystemObject")
Set wsh = WScript.CreateObject("WScript.Shell
")
' Make Excel visible in case something goes wrong.
oXL.Visible = True
' Create a temporary workbook (required to access add-ins)
oXL.Workbooks.Add
' Get the current folder.
srcpath = fso.GetFolder(".")
destPath = wsh.Environment("PROCESS")("HOMEDRIVE") & _
 wsh.Environment("PROCESS")("HOMEPATH") & _
 "\Application Data\Microsoft\Addins"
' Copy the file to the template folder.
fso.CopyFile srcpath & "\ch06.xla", destpath & "\ch06.xla"
' Add the add-in to Excel.
Set oAddin = oXL.AddIns.Add(destpath & "\ch06.xla", true)
' Mark the add-in as installed so Excel loads it.
oAddin.Installed = True
' Close Excel.
oXL.Quit
Set oXL = Nothing

The preceding script copies ch06.xla to the user's add-ins folder, then marks the add-in as installed in Excel so the code
is available immediately.

You remove templates and add-ins by deleting them from the folder where they were copied. For add-ins, it is a good
idea to set their Installed property to False before deleting so Excel does not display an error when it no longer finds the
deleted add-in. The following script shows how to remove ch06.xla after it is installed:

' Ch06AddinRemove.vbs
' Get the objects used by this script.
Dim oXL, oAddin, fso, wsh, srcPath, destPath
Set oXL = CreateObject("Excel.Application")
Set fso = CreateObject("Scripting.FileSystemObject")
Set wsh = WScript.CreateObject("WScript.Shell")
' Make Excel visible in case something goes wrong.
oXL.Visible = True
' Create a temporary workbook (required to access add-ins)
oXL.Workbooks.Add
' Mark the add-in as not installed.
oXL.AddIns("ch06").Installed = False
' Get the add-ins folder.
destPath = wsh.Environment("PROCESS")("HOMEDRIVE") & _
 wsh.Environment("PROCESS")("HOMEPATH") & _
 "\Application Data\Microsoft\Addins"
' Delete the file.
fso.GetFile(destpath & "\ch06.xla").Delete
' Close Excel.
oXL.Quit
Set oXL = Nothing

See "Resources" for links to information on VBScript, the FileSystemObject, and WScript.Shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Writing Code for Use by Others
Programming Excel for personal use is very common and it's how most of us get started. But what happens when you
graduate to creating code for others? Once your audience expands from just yourself to your friends, your coworkers,
or even the world, you'll find that expectations changeit's no longer OK if a procedure occasionally fails or that you have
to know where to copy files to make them work. In short, programming for a wide audience requires a new set of skills.

This chapter walks you through the process of developing and distributing Excel Visual Basic code as workbooks,
templates , and add-ins. I include information about testing your code because that's probably the most important (and
most overlooked) aspect of Visual Basic programming.

Code used in this chapter and additional samples are available in ch06.xls, ch06.xlt,
ch06.xla, ch06TemplateSetup.vbs, ch06AddinSetup.vbs, and ch06AddinRemove.vbs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1. Perform Tasks
Use Application object to perform top-level tasks in Excel. The following sections describe how to:

Quit the Excel application from code

Turn user interaction and screen updates off and on

Open, close, and arrange Excel windows

Display Excel dialog boxes

These are the most common tasks for the Application object.

7.1.1. Quit Excel

Use the Quit method to quit Excel. If there are any workbooks with unsaved changes, Excel displays a dialog box asking
the user if those changes should be saved. There are several ways to change that behavior:

Save all workbooks before quitting.

Set the all workbooks Saved property to True.

Set DisplayAlerts to False.

The following code shows how to save all open workbooks before closing without prompting the user:

Sub QuitSaveAll()
 Dim wb As Workbook
 For Each wb In Workbooks
 wb.Save
 Next
 Application.Quit
End Sub

Conversely, this code quits Excel without saving any of the workbooks:

Sub QuitSaveNone()
 Dim wb As Workbook
 For Each wb In Workbooks
 ' Mark workbook as saved.
 wb.Saved = True
 Next
 Application.Quit
End Sub

Setting the Saved property fools Excel into thinking that it doesn't need to save changes and they are lost when Excel
quits.

There's one other handy member to know about when quitting Excel : the SaveWorkspace method lets you save an .xlw
file that you can use to restore the workbooks and windows currently in use. The following code saves those settings as
Resume.xlw:

Sub QuitWithResume()
 Application.SaveWorkspace "Resume.xlw"
 Application.Quit
End Sub

7.1.2. Lock Out User Actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes you want to prevent users from interrupting Excel while you perform some time-consuming task in code.
The Application object provides these ways to limit user interaction:

Set DisplayAlerts to False to hide standard Excel dialogs while code runs

Set Interactive to False to lock users out of Excel completely

Set ScreenUpdating to False to hide changes as they are made by code

Each of these approaches should include some code at the end of the procedure to change the settings back to their
defaults when your code finishes. Otherwise, you might lock a user out permanently!

The following code demonstrates how to lock out user actions temporarily while a long task executes:

Sub LockOutUser()
 Dim cel As Range
 ' Show the hourglass cursor.
 Application.Cursor = xlWait
 ' Turn off user interaction, screen updates.
 Application.Interactive = False
 Application.ScreenUpdating = False
 ' Simulate a long task.
 For Each cel In [a1:iv999]
 cel.Select
 Next
 ' Restore default settings.
 Application.Interactive = True
 Application.ScreenUpdating = True
 Application.Cursor = xlDefault
 [a1].Select
End Sub

One of the side benefits of setting ScreenUpdating to False is that the preceding code executes more quickly since Excel
doesn't have to update the screen or scroll the worksheet as cells are selected. Again, just be sure to turn screen
updates back on when done.

7.1.3. Open and Close Excel Windows

The Application object provides a Windows collection that lets you open, arrange, resize, and close Excel's child windows.
For example, the following code opens a new child window and then cascades the open windows for the active
workbook:

Sub OpenCascadeWindows()
 ActiveWindow.NewWindow
 Application.Windows.Arrange xlArrangeStyleCascade, True
End Sub

You close and maximize child windows using methods on the Window object. For example, the following code closes the
window opened in the preceding code and restores the original window to a maximized state in Excel:

Sub CloseMaximize()
 ActiveWindow.Close
 ActiveWindow.WindowState = xlMaximized
End Sub

Closing the last child window for a workbook also closes the workbook.

Finally, you can control the Excel parent window using the Application object's WindowState and DisplayFullScreen properties:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, you can control the Excel parent window using the Application object's WindowState and DisplayFullScreen properties:

Sub ChangeExcelWindowState()
 Application.WindowState = xlMaximized
 API.Sleep 1000
 Application.WindowState = xlMinimized
 API.Sleep 1000
 Application.WindowState = xlNormal
 API.Sleep 1000
 Application.DisplayFullScreen = True
 API.Sleep 1000
 Application.DisplayFullScreen = False
End Sub

7.1.4. Display Dialogs

The three different sorts of dialog boxes in Excel are built-in dialogs that perform actions, built-in dialogs that return
information, and custom dialogs you build from Visual Basic forms. The Application object gives you several ways to
display the first two types:

Use the FindFile method to let the user select a file to open in Excel.

Use the Dialogs collection to display Excel's other built-in dialog boxes to perform those specific actions.

Use FileDialog method to get file and folder names from the user.

Use the InputBox method to get ranges or formulas.

For example, the following code displays Excel's built-in Open dialog box and then opens the file selected by the user:

Sub OpenFile1()
 On Error Resume Next
 Application.FindFile
 If Err Then Debug.Print "User cancelled import."
End Sub

You can do the same thing using the Dialogs collection:

Sub OpenFile2()
 On Error Resume Next
 Application.Dialogs(XlBuiltInDialog.xlDialogOpen).Show
 If Err Then Debug.Print "User cancelled import."
End Sub

Both of the preceding samples display the Open dialog box and open the file in Excel. You have to include error-
handling statements in case the user chooses a non-Excel file then cancels importing the fileotherwise that action halts
your code with an application error.

The Dialogs collection can display any of the Excel dialog boxes. See Appendix A for a list of those dialogsabout 250 of
them! Displaying a dialog that way is just like displaying it through the user interface: Excel uses its current settings
and takes whatever actions the user chooses from the dialog.

Sometimes you don't want Excel to perform its standard action after the user closes the dialog; instead, you'd rather
get the information from the dialog and take your own actions in code. The most common example of this is when you
want to get a file or folder name. In that case, use the FileDialog method.

FileDialog displays the built-in Excel Open dialog box, but doesn't open the file. You can change the caption, file filter, and
other settings as well. The following code uses the FileDialog to open a web file in the browser:

Sub OpenWebFile()
 With Application.FileDialog(msoFileDialogFilePicker)
 ' Set dialog box options
 .Title = "Show web file"
 .Filters.Add "Web files (*.htm)", "*.htm;*.html;*.xml", 1
 .FilterIndex = 1
 .AllowMultiSelect = False
 ' If the user chose a file, open it in the browser.
 If .Show = True Then _
 ThisWorkbook.FollowHyperlink .SelectedItems(1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ThisWorkbook.FollowHyperlink .SelectedItems(1)
 End With
End Sub

Finally, the Application object's InputBox method lets you get Excel ranges and formulas from the user. This method is
otherwise identical to the Visual Basic InputBox. Figure 7-1 shows the Excel InputBox in action.

The Type argument of InputBox determines the kind of data the user can enter. The most common settings are 0 for a
formula, 1 for a number, or 8 for a range. The following code displays the input box shown in Figure 7-1:

Sub GetRange()
 Dim rng As Range
 Set rng = Application.InputBox("Select a range", _
 "Application InputBox", , , , , , 8)
 rng.Select
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.10. Pane and Panes Members
The Pane object and Panes collection have the following members . These members are the same as the Window members
of the same name.

Activate Application2

Count1 Creator2

Index LargeScroll

Parent2 ScrollColumn

ScrollIntoView ScrollRow

SmallScroll VisibleRange

1 Collection only

2 Object and collection

Pane objects represent the regions of a window. By default, Excel windows have one pane; additional panes are created
when the user or code splits the window into two or four regions.

The following code demonstrates splitting the active window into four panes, then scrolling each of those panes:

Sub TestPanes()
 Dim pn As Pane, down As Integer, right As Integer
 Dim i As Integer
 With ActiveWindow
 ' Set the location for the split.
 .SplitColumn = 10
 .SplitRow = 16
 ' Split into four panes.
 .Split = True
 For i = 1 To .Panes.Count
 down = i * 2
 right = i + 3
 ' Scroll each pane.
 .Panes(i).SmallScroll down, , right
 Next
 End With
End Sub

The preceding code demonstrates two key things:

The Panes collection can't be used in a For Each statement. Instead, you must use For Next.

Scrolling is cumulative for pairs of panes . In other words, the horizontal pairs of panes are always on the same
row and the vertical pairs are always on the same column.

To close panes, set the Window object's Split property to False:

Sub TestClosePanes()
 ActiveWindow.Split = False
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2. Control Excel Options
All of the Excel settings and options can be controlled in code through Application object properties. Quite a few of the
Application properties are devoted to Excel settings and options, but you only occasionally need to change these settings
in code-- it is usually a better idea to let the users maintain their own settings.

Figure 7-1. Use Application.InputBox to get ranges and formulas

If you do change Excel options in code, it is polite to restore the user's settings when you are done. To do that, save
the original setting in a module-level variable and restore that setting before exiting.

7.2.1. Set Startup Paths

Excel uses several predefined folders to load workbooks, add-ins, and templates. You can get or set these folders from
code using the properties in Table 7-1.

Table 7-1. Application properties for predefined folders
Property Use to

AltStartupPath Get or set the user folder used to load add-ins and workbooks automatically

DefaultFilePath Get or set the default folder to which workbooks are saved

LibraryPath Get the built-in Excel add-in library folder

NetworkTemplatesPath Get the AltStartupPath if it is a network share

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Path Get the folder where Excel is installed

StartupPath Get the built-in folder Excel uses to load add-ins and workbooks automatically (XLSTART)

TemplatesPath Get the user folder Excel from which loads templates

You use these properties when installing templates and add-ins, as covered in Chapter 6, and when your code relies on
specific locations. For example you might want to change the DefaultFilePath to a specific folder while your application
runs:

Dim m_originalPath As String
Const APP_PATH = "c:\ExcelDocs"

Sub SetPath()
 ' Store the user settng.
 m_oringalPath = Application.DefaultFilePath
 ' Use this setting while application runs.
 Application.DefaultFilePath = APP_PATH
End Sub

Sub RestorePath()
 ' Restore the user setting before exit.
 Application.DefaultFilePath = m_originalPath
End Sub

7.2.2. View System Settings

There are a great many other settings and options in Excel. Chapter 6 showed how to find operating system and
version information from the Application object. You can also get and set the options set through the Excel Options dialog
box (Figure 7-2) using individual Application properties.

For example, to select the R1C1 reference style in Figure 7-2, use this code:

Sub SetReferenceStyle()
 Application.ReferenceStyle = xlR1C1
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3. Get References
As the top-level object in Excel, Application is the source of all other object references. However, the object name
Application isn't always used in code because Excel includes shortcuts (called global members) that let you omit it. For
instance, the following two lines are equivalent:

Application.Selection.Clear ' Clear selected cells.
Selection.Clear ' Same thing!

Figure 7-2. Use Application properties to get or set these options

In this case, Selection returns the selected cells on the active worksheet as a Range object. Table 7-2 lists the Application
members that return references to other objects.

Table 7-2. Application object members that return object references
ActiveCell ActiveChart ActivePrinter

ActiveSheet ActiveWindow ActiveWorkbook

AddIns Assistant AutoCorrect

AutoRecover Cells Charts

Columns COMAddIns CommandBars

Dialogs ErrorCheckingOptions FileDialog

FileFind FileSearch FindFile

FindFormat International Intersect

LanguageSettings Names NewWorkbook

ODBCErrors OLEDBErrors PreviousSelections

Range RecentFiles Rows

RTD Selection Sheets

SmartTagRecognizers Speech SpellingOptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SmartTagRecognizers Speech SpellingOptions

ThisCell ThisWorkbook Union

UsedObjects Watches Windows

Workbooks WorksheetFunction Worksheets

Most of the names of the members in Table 7-2 are descriptive of the objects they return. The exceptions to that rule
are the members that can return a mixed collection of objects, such as Selection, and members that return Range objects:
ActiveCell, Cells, Columns, Range, Rows, and ThisCell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4. Application Members
The Application object has the following members. Key members (shown in bold) are covered in the following reference
section:

ActivateMicrosoftApp ActiveCell ActiveChart

ActivePrinter ActiveSheet ActiveWindow

ActiveWorkbook AddChartAutoFormat AddCustomList

AddIns AlertBeforeOverwriting AltStartupPath

Application ArbitraryXMLSupportAvailable AskToUpdateLinks

Assistant AutoCorrect AutoFormatAsYouType ReplaceHyperlinks

AutomationSecurity AutoPercentEntry AutoRecover

Build Calculate CalculateBeforeSave

CalculateFull CalculateFullRebuild Calculation

CalculationInterruptKey CalculationState CalculationVersion

Caller CanPlaySounds CanRecordSounds

Caption CellDragAndDrop Cells

CentimetersToPoints Charts CheckAbort

CheckSpelling ClipboardFormats ColorButtons

Columns COMAddIns CommandBars

CommandUnderlines ConstrainNumeric ControlCharacters

ConvertFormula CopyObjectsWithCells Creator

Cursor CursorMovement CustomListCount

CutCopyMode DataEntryMode DecimalSeparator

DefaultFilePath DefaultSaveFormat DefaultSheetDirection

DefaultWebOptions DeleteChartAutoFormat DeleteCustomList

Dialogs DisplayAlerts DisplayClipboardWindow

DisplayCommentIndicator DisplayDocumentActionTaskPane DisplayExcel4Menus

DisplayFormulaBar DisplayFullScreen DisplayFunctionToolTips

DisplayInsertOptions DisplayNoteIndicator DisplayPasteOptions

DisplayRecentFiles DisplayScrollBars DisplayStatusBar

DisplayXMLSourcePane DoubleClick EditDirectlyInCell

EnableAnimations EnableAutoComplete EnableCancelKey

EnableEvents EnableSound ErrorCheckingOptions

Evaluate ExtendList FeatureInstall

FileConverters FileDialog FileFind

FileSearch FindFile FindFormat

FixedDecimal FixedDecimalPlaces GenerateGetPivotData

GetCustomListContents GetCustomListNum GetOpenFilename

GetPhonetic GetSaveAsFilename Goto

Height Help Hinstance

Hwnd InchesToPoints InputBox

Interactive International Intersect

Iteration LanguageSettings LargeButtons

Left LibraryPath MacroOptions

MailLogoff MailLogon MailSession

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MailLogoff MailLogon MailSession

MailSystem MapPaperSize MaxChange

MaxIterations MoveAfterReturn MoveAfterReturnDirection

Name Names NetworkTemplatesPath

NewWorkbook NextLetter ODBCErrors

ODBCTimeout OLEDBErrors OnKey

OnRepeat OnTime OnUndo

OnWindow OperatingSystem OrganizationName

Parent Path PathSeparator

PivotTableSelection PreviousSelections ProductCode

PromptForSummaryInfo Quit Range

Ready RecentFiles RecordMacro

RecordRelative ReferenceStyle RegisteredFunctions

RegisterXLL Repeat ReplaceFormat

RollZoom Rows RTD

Run SaveWorkspace ScreenUpdating

Selection SendKeys SetDefaultChart

Sheets SheetsInNewWorkbook ShowChartTipNames

ShowChartTipValues ShowStartupDialog ShowToolTips

ShowWindowsInTaskbar SmartTagRecognizers Speech

SpellingOptions StandardFont StandardFontSize

StartupPath StatusBar TemplatesPath

ThisCell ThisWorkbook ThousandsSeparator

Top TransitionMenuKey TransitionMenuKeyAction

TransitionNavigKeys Undo Union

UsableHeight UsableWidth UsedObjects

UserControl UserLibraryPath UserName

UseSystemSeparators Value VBE

Version Visible Volatile

Wait Watches Width

Windows WindowsForPens WindowState

Workbooks WorksheetFunction Worksheets

Worksheets Worksheets Worksheets

[Application.]ActivateMicrosoftApp(XlMSApplication)

Starts or activates another Microsoft Office application. XlMSApplication can be one of the following settings:

xlMicrosoftWord

xlMicrosoftPowerPoint

xlMicrosoftMail

xlMicrosoftAccess

xlMicrosoftFoxPro

xlMicrosoftProject

xlMicrosoftSchedulePlus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method causes an error if the requested application is not installed. xlMicrosoftMail activates the user's default mail
application.

[Application.]ActivePrinter [= setting]

Sets or returns the printer that Excel will use. When setting this property, the printer name must include the port
number, for example:

Sub SetPrinter()
 ActivePrinter = "\\wombat2\Lexmark Z52 Color Jetprinter on Ne04:"
End Sub

The preceding code tells Excel to use a shared printer over the network. The port number used by Excel is Nenn: for
virtual ports but is LPTn: or COMn: for physical ports. The following code gets an array of the available printers in a format
that can be used by Excel:

Function GetPrinters() As String()
 ' Use a suitably large array (supports up to 100 printers).
 ReDim result(100) As String
 Dim wshNetwork As Object, oPrinters As Object, temp As String
 ' Get the network object
 Set wshNetwork = CreateObject("WScript.Network")
 Set oPrinters = wshNetwork.EnumPrinterConnections
 ' Get the current active printer
 temp = ActivePrinter
 ' Printers collection has two elements for each printer.
 For i = 0 To oPrinters.Count - 1 Step 2
 ' Set the default printer.
 wshNetwork.SetDefaultPrinter oPrinters.Item(i + 1)
 ' Get what Excel sees.
 result(i \ 2) = ActivePrinter
 ' For debug purposes, show printer.
 Debug.Print ActivePrinter
 Next
 ' Trim empty elements off the array.
 ReDim Preserve result(i \ 2)
 ' Change back to original printer
 ActivePrinter = temp
 ' Return the result.
 GetPrinters = result
End Function

Application.AddChartAutoFormat(Chart, Name, [Description])

Creates a new chart type based on an existing chart.

Argument Setting

Chart A chart object to get formatting from

Name The name to add to the chart autoformat list

Description A description of the chart type

The following code adds a custom chart type to Excel based on an existing chart in the current workbook:

Sub TestAddChartType()
 Application.AddChartAutoFormat Charts(1), _
 "new custom", "my description"
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

To see the new chart type, select some data on a worksheet and choose Insert Chart Custom Types
User Defined.

Application.AddCustomList(ListArray, [ByRow])

Creates a new automatic list based on an array or a range of cells.

Argument Setting

ListArray The array or range of cells containing the items for the list.

ByRow True creates the list from rows in a range; False creates the list from columns in the range. Ignored if
ListArray is a single row or column. Causes an error if ListArray is not a range.

The first item in each list must be unique. An error occurs if a list with an identical first item already exists. The
following code creates a new custom list from a range on the active worksheet:

Sub TestCustomList()
 Application.AddCustomList [a1:a10]
End Sub

To see the new list, choose Tools Options Custom Lists.

Application.AlertBeforeOverwriting [= setting]

True displays an alert if a drag-and-drop changes cells that contain data; False does not. The default is True.

Application.AltStartupPath

Sets or returns the folder from which to automatically load templates and add-ins.

Application.ArbitraryXMLSupportAvailable

Returns True if Excel accepts custom XML schemas. This property is available only in Excel 2003.

Application.AskToUpdateLinks [= setting]

True asks prompts before updating external links when a workbook is opened; False does not prompt before updating.
The default is True.

Application.Assistant

Returns a reference to the annoying Office Assistant character . For example, the following code displays the assistant
and then animates its departure:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and then animates its departure:

Sub TestAssistant()
 Application.Assistant.Visible = True
 With Application.Assistant.NewBalloon
 .Text = "Ciao for now!"
 .Show
 End With
 Application.Assistant.Animation = msoAnimationGetArtsy
 Application.Assistant.Animation = msoAnimationGoodbye
End Sub

As of Office 2003, the assistant is no longer installed by default.

Application.AutoCorrect

Returns a reference to the AutoCorrect object. That object determines how Excel makes automatic corrections to user
data entry.

Application.AutoFormatAsYouTypeReplaceHyperlinks [=
setting]

True automatically reformats entries that begin with http://, ftp://, mailto:, and other protocols as hyperlinks; False does
not. The default is True.

Application.AutomationSecurity [=MsoAutomationSecurity]

Set or returns the macro security setting used when opening Office documents in code. Possible settings are:

msoAutomationSecurityLow

Enable all macros. This is the default.

msoAutomationSecurityByUI

Use the security setting specified in the Security dialog box.

msoAutomationSecurityForceDisable

Disable all without showing any security alerts.

These settings apply only to files opened in code. Files opened by the user apply the settings in the Security dialog box.

The default setting for this property is a security hole created to provide backward compatibility with multifile macros
written for earlier versions of Excel. You should close this hole in your own code by setting the property to
msoAutomationSecurityByUI before opening files, as shown here:

Sub TestMacroSecurity()
 ' Enable macro security on file to open
 Application.AutomationSecurity = msoAutomationSecurityByUI
 With Application.FileDialog(msoFileDialogOpen)
 .AllowMultiSelect = False
 ' Get a file
 .Show
 ' Open it.
 Application.Workbooks.Open .SelectedItems(1)
 End With
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.AutoPercentEntry [= setting]

True multiplies values formatted as percentage by 100 when displayed (e.g., entering 99 displays 9900%); False does
not. Default is True.

Application.AutoRecover

Returns the AutoRecover object, which controls Excel's automatic file recovery features.

Application.Build

Returns the Excel build number. The following code displays Excel's version, build number, and calculation engine
version:

Sub ShowVersion()
 Debug.Print Application.Version; Application.Build; _
 Application.CalculationVersion
End Sub

[Application.]Calculate()

Recalculates the formulas in all open workbooks.

Application.CalculateBeforeSave [= setting]

True recalculates workbooks before they are saved; False does not. Default is True.

Application.CalculateFull()

Forces a full recalculation of all formulas in all workbooks.

Application.CalculateFullRebuild()

Forces a full recalculation of all formulas and rebuilds dependencies in all workbooks.

Application.Calculation [= XlCalculation]

Sets or returns the calculation mode. Can be one of the following settings:

xlCalculationAutomatic

Recalculates cells as data is entered (default)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recalculates cells as data is entered (default)

xlCalculationManual

Recalculates only when the user chooses Calculate Now (F9)

xlCalculationSemiautomatic

Recalculates all cells except data tables automatically

Application.CalculationInterruptKey [=
XlCalculationInterruptKey]

Sets or returns which key halts recalculation. Can be one of the following settings:

xlAnyKey (default)

xlEscKey

xlNoKey

Application.CalculationState

Sets or returns a constant indicating the state of all open workbooks. Can be one of the following:

xlCalculating

xlDone

xlPending

Application.CalculationVersion

Returns the version number of the calculation engine.

Application.Caller

Returns information about how the macro was called, as described in the following table:

When called from Returns

A formula entered in a cell A Range object for the cell

An array formula in a range of cells A Range object for the range of cells

VBA code, the Run Macro dialog box, or anywhere
else Error 2023

An Auto_Open, Auto_Close, Auto_Activate, or Auto_Deactivate
macro The name of the workbook (Obsolete)

A macro set by the OnDoubleClick or OnEntry property The name of the chart or cell to which the macro applies
(Obsolete)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.Caption [= setting]

Sets or returns the text displayed in the Excel titlebar. For example, the following code replaces "Microsoft Excel" with
"Funky Monkey" in the titlebar:

Sub TestCaption()
 Application.Caption = "Funky Monkey"
End Sub

Application.CellDragAndDrop [= setting]

True enables drag-and-drop; False disables. Default is true.

[Application.]Cells[(row, column)]

Returns a range of cells on the active worksheet. For example, the following code selects cell B1 on the active
worksheet:

Sub TestCells()
 Cells(1, 2).Select
End Sub

Application.CentimetersToPoints(Centimeters)

Converts centimeters to points. This is the same as multiplying by 0.035.

[Application.]Charts([index])

Returns a reference to the Charts collection.

Application.CheckAbort([KeepAbort])

Aborts recalculation. The argument KeepAbort accepts a Range object to continue recalculating. This lets you stop
recalculation for all but a specific range of cells.

Application.CheckSpelling(Word, [CustomDictionary],
[IgnoreUppercase])

Returns True if Word is spelled correctly; False if it is not.

Argument Setting

Word The word to spellcheck.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The word to spellcheck.

CustomDictionary The filename of the custom dictionary to use if the word isn't found in the main dictionary. Defaults to
the user setting.

IgnoreUppercase True excludes words that are all uppercase; False includes them. Defaults to the user setting.

Application.ClipboardFormats

Returns an array of XlClipboardFormat constants indicating the types of data currently on the clipboard. Possible array
values are:

xlClipboardFormatBIFF xlClipboardFormatBIFF2

xlClipboardFormatBIFF3 xlClipboardFormatBIFF4

xlClipboardFormatBinary xlClipboardFormatBitmap

xlClipboardFormatCGM xlClipboardFormatCSV

xlClipboardFormatDIF xlClipboardFormatDspText

xlClipboardFormatEmbeddedObject xlClipboardFormatEmbedSource

xlClipboardFormatLink xlClipboardFormatLinkSource

xlClipboardFormatLinkSourceDesc xlClipboardFormatMovie

xlClipboardFormatNative xlClipboardFormatObjectDesc

xlClipboardFormatObjectLink xlClipboardFormatOwnerLink

xlClipboardFormatPICT xlClipboardFormatPrintPICT

xlClipboardFormatRTF xlClipboardFormatScreenPICT

xlClipboardFormatStandardFont xlClipboardFormatStandardScale

xlClipboardFormatSYLK xlClipboardFormatTable

xlClipboardFormatText xlClipboardFormatToolFace

xlClipboardFormatToolFacePICT xlClipboardFormatVALU

xlClipboardFormatWK1

Use ClipboardFormats to determine the type of data available on the clipboard before taking other actions, such as Paste.
For example, this code copies a chart into the clipboard, then pastes it into Paint:

Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Sub TestClipBoardFormats()
 Dim fmt, chrt As Chart
 ' Copy a chart image into the clipboard.
 Set chrt = Charts(1)
 chrt.CopyPicture xlScreen, xlBitmap
 For Each fmt In Application.ClipboardFormats
 ' If the bitmap is in the clipboard
 If fmt = xlClipboardFormatBitmap Then
 ' Start Paint
 Shell "mspaint.exe", vbNormalFocus
 ' Wait a half second to catch up.
 Sleep 500
 ' and paste the Chart image.
 SendKeys "%EP", True
 Exit For
 End If
 Next
End SubEnd Sub

The Sleep API shown in the preceding code is required to wait for focus to change to the newly opened Paint
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Application].Columns([index])

Returns one or more columns on the active worksheet as a Range object. For example, the following code selects column
C on the active worksheet:

Sub TestColumns()
 Columns(3).Select
End Sub

Application.COMAddIns([index])

Returns a collection of the installed COM add-ins. If there are no COM add-ins installed, causes an error. The following
code lists the COM add-ins:

Sub TestCOMAddins()
 Dim c As COMAddIn
 On Error Resume Next
 For Each c In Application.COMAddIns
 If Err Then Debug.Print "No COM addins."
 Debug.Print Join(Array(c.Description, c.progID, c.Application, _
 c.Connect), ", ")
 Next
End Sub

Application.CommandBars([index])

Returns one or more command bars. The following code displays a list of the command bars with their status:

Sub TestCommandbars()
 Dim cb As CommandBar
 Debug.Print "Name", "Visible?", "BuiltIn?"
 For Each cb In Application.CommandBars
 Debug.Print cb.Name, cb.Visible, cb.BuiltIn
 Next
End Sub

Application.CommandUnderlines [= xlCommandUnderlines]

(Macintosh only.) Sets or returns how commands are highlighted. Can be one of the following settings:

xlCommandUnderlinesOn

xlCommandUnderlinesOff

xlCommandUnderlinesAutomatic

For Windows, CommandUnderlines always returns xlCommandUnderlinesOn and cannot be set.

Application.ConstrainNumeric [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Windows for Pen only.) True restricts handwriting recognition to numbers and punctuation; False allows the full
alphabet.

Application.ControlCharacters [= setting]

(Right-to-left language display only.) True displays control characters for right-to-left languages ; False hides the
characters.

Application.ConvertFormula(Formula, FromReferenceStyle,
[ToReferenceStyle], [ToAbsolute], [RelativeTo])

Converts cell references in a formula between the A1 and R1C1 reference styles, between relative and absolute
references, or both.

Argument Description Settings

Formula The formula you want to convert.
Must be a valid formula
beginning with an
equals sign

FromReferenceStyle The XlReferenceStyle of the formula. xlA1 xlR1C1

ToReferenceStyle
The XlReferenceStyle style you want returned. If this argument is omitted, the
reference style isn't changed; the formula stays in the style specified by
FromReferenceStyle.

xlA1 xlR1C1

ToAbsolute The converted XlReferenceStyle. If omitted, the reference type isn't changed.
Defaults to xlRelative.

xlAbsolute
xlAbsRowRelColumn
xlRelRowAbsColumn
xlRelative

RelativeTo The cell that references are relative to. Defaults to active cell. Range object

The following code converts a formula to R1C1 style relative to cell A1:

Sub TestConvertFormula()
 Dim str As String
 str = "=Sum(A1:A20)"
 Debug.Print Application.ConvertFormula(str, xlA1, xlR1C1, _
 xlRelative, [a1])
End Sub

Application.CopyObjectsWithCells [= setting]

True copies objects, such as buttons, with selected cells; False omits objects. Default is True.

Application.Cursor [= XlMousePointer]

Sets or returns the mouse pointer image. Can be one of these settings:

xlDefault

xlIBeam

xlNorthwestArrow

xlWait

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.CursorMovement [= setting]

Sets or returns whether a visual cursor or a logical cursor is used. Can be one of these settings:

xlVisualCursor

xlLogicalCursor

Application.CustomListCount

Returns the number of custom lists. To view custom lists, select Tools Options Custom Lists.

Application.CutCopyMode [= setting]

Sets or returns whether or not the user is currently cutting or copying cells. Return settings are:

False, Excel is not in either mode

xlCopy

xlCut

Setting CutCopyMode to True or False cancels the current mode.

Application.DataEntryMode [= setting]

Sets or returns whether or not Excel is in data-entry mode. Can be one of these settings:

xlOn

xlOff

xlStrict, prevents the user from exiting the mode by pressing Esc

Data-entry mode restricts users to unlocked cells. By default, cell protection is set to Locked, so you must unlock a
range to demonstrate this feature. The following code restricts data entry to range A1:D4; the user can return to
regular mode by pressing Esc, as shown by the following code:

Sub TestDataEntryMode()
 Range("a1:d4").Locked = False
 Application.DataEntryMode = xlOn
End Sub

Application.DecimalSeparator [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the character used as the decimal separator.

Application.DefaultFilePath [= setting]

Sets or returns the path Excel uses by default when opening files.

Application.DefaultSaveFormat [= XlFileFormat]

Sets or returns the file format used by Excel when saving. Can be one of these settings:

xlAddIn xlCSV xlCSVMac

xlCSVMSDOS xlCSVWindows xlCurrentPlatformText

xlDBF2 xlDBF3 xlDBF4

xlDIF xlExcel2 xlExcel2FarEast

xlExcel3 xlExcel4 xlExcel4Workbook

xlExcel5 xlExcel7 xlExcel9795

xlHtml xlIntlAddIn xlIntlMacro

xlSYLK xlTemplate xlTextMac

xlTextMSDOS xlTextPrinter xlTextWindows

xlUnicodeText xlWebArchive xlWJ2WD1

xlWJ3 xlWJ3FJ3 xlWK1

xlWK1ALL xlWK1FMT xlWK3

xlWK3FM3 xlWK4 xlWKS

xlWorkbookNormal xlWorks2FarEast xlWQ1

xlXMLSpreadsheet

Application.DefaultSheetDirection [= setting]

Sets or returns the default reading direction. Can be one of these settings:

xlRTL

xlLTR

Application.DefaultWebOptions

Returns a DefaultWebOptions object that determines how Excel saves workbooks as web pages.

Application.DeleteChartAutoFormat(Name)

Removes a custom chart type. The following code removes the custom chart type created earlier in AddChartAutoFormat:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Removes a custom chart type. The following code removes the custom chart type created earlier in AddChartAutoFormat:

Sub TestDeleteChartType()
 Application.DeleteChartAutoFormat "new custom"
End Sub

[Application.]DeleteCustomList(ListNum)

Removes a custom list. The following code removes the list created earlier in AddCustomList:

Sub TestDeleteCustomList()
 ' Delete the last list.
 Application.DeleteCustomList Application.CustomListCount
End Sub

Application.Dialogs(XlBuiltInDialog)

Returns the collection of Excel's dialog boxes. Use Dialogs to display any of the Excel dialog boxes from code. The
following code displays the Activate Workbook dialog box:

Sub TestDialogs()
 Application.Dialogs(XlBuiltInDialog.xlDialogActivate).Show
End Sub

Excel has hundreds of dialog boxes. See Appendix A for a list of them.

Application.DisplayAlerts [= setting]

True displays standard Excel dialogs while a macro runs; False hides those dialogs and automatically uses the default
response for each. Default is True.

Set this property to False for batch operations in which you don't want user intervention; be sure to reset the property
to True when done. For example, the following code closes all workbooks but the current one without saving or
prompting the user:

Sub CloseAllNoSave()
 Dim wb As Workbook
 ' Turn off warnings.
 Application.DisplayAlerts = False
 For Each wb In Workbooks
 ' Close all workbooks but this one.
 If Not (wb Is ThisWorkbook) Then _
 wb.Close
 Next
 ' Turn warnings back on.
 Application.DisplayAlerts = True
End Sub

Application.DisplayClipboardWindow [= setting]

True displays the Clipboard window; False hides it. For example, the following code copies a chart and displays the
Clipboard window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clipboard window:

Sub TestClipBoardWindow()
 Dim chrt As Chart
 ' Copy a Chart image into the Clipboard.
 Set chrt = Charts(1)
 chrt.CopyPicture xlScreen, xlBitmap
 Application.DisplayClipboardWindow = True
End Sub

Application.DisplayCommentIndicator
[=XlCommentDisplayMode]

Sets or returns the icon displayed for comments. Can be one of the following settings:

xlNoIndicator

xlCommentIndicatorOnly (default)

xlCommentAndIndicator

Application.DisplayDocumentActionTaskPane [= setting]

For Smart documents, True displays the Document Action task pane , and False hides it. Setting this property causes an
error if the workbook is not a Smart document.

Application.DisplayExcel4Menus [= setting]

True uses Excel Version 4.0 menus; False uses the current version menus. Default is False.

Application.DisplayFormulaBar [= setting]

True displays the Formula bar ; False hides it. Default is True.

Application.DisplayFullScreen [= setting]

True displays Excel in full-screen mode ; False uses the standard window mode. Default is False.

Application.DisplayFunctionToolTips [= setting]

True displays the function tool tips ; False does not. Default is True.

Application.DisplayInsertOptions [= setting]

True displays a dialog with special options, such as Clear Formatting, when inserting cells; False does not display the
dialog. Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dialog. Default is True.

Application.DisplayNoteIndicator [= setting]

True displays an icon indicating cells with notes; False hides the icon. Default is True.

Application.DisplayPasteOptions [= setting]

True displays a dialog with special options when pasting cells; False does not display the dialog. Default is True.

Application.DisplayRecentFiles [= setting]

True displays a list of recently opened files on the File menu; False does not. Default is True.

Application.DisplayScrollBars [= setting]

True displays scrollbars for workbooks; False does not. Default is True.

Application.DisplayStatusBar [= setting]

True displays application status bar; False does not. Default is True.

Application.DisplayXMLSourcePane([XmlMap])

(Excel 2003 Professional Edition only.) Displays the XML Source task pane.

Argument Setting

XmlMap The XmlMap object to display in the task pane

Application.DoubleClick()

Double-clicks the active cell. This method emulates the user action.

Application.EditDirectlyInCell [= setting]

True allows editing in cells; False requires edits to be made in the Formula bar. Default is True.

Application.EnableAnimations [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True animates insertions and deletions; False does not animate those operations. Default is True.

[Application.]EnableAutoComplete [= setting]

True automatically completes words; False does not. Default is True.

Application.EnableCancelKey [= XlEnableCancelKey]

Sets or returns how Excel handles the Esc, Ctrl-Break, and Command-Period (Macintosh) keys. Can be one of these
settings:

xlDisabled

Cancel key trapping disabled.

xlErrorHandler

Cancel key causes error 18, which can be trapped by an On Error statement.

xlInterrupt

Cancel interrupts the current procedure, and the user can debug or end it (default).

Application.EnableEvents [= setting]

True turns on Excel events; False turns off Excel events. Default is True. Setting this property to False prevents code
written for Workbook, Worksheet, and other object events from running.

Application.EnableSound [= setting]

True allows Excel to play sounds; False disables sounds. Default is True.

Application.ErrorCheckingOptions

Returns the ErrorCheckingOptions object, which controls Excel's settings for automatic error checking.

[Application.]Evaluate(Name)

Evaluates an expression and returns the result. Evaluate is equivalent to enclosing the expression in square brackets ([]).

Argument Setting

Name A range address, a named range, or a formula

It is common to use the bracket notation for the Evaluate method since it is shorter. The following code displays various

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is common to use the bracket notation for the Evaluate method since it is shorter. The following code displays various
values from the active sheet:

Sub TestEvaluate()
 ' Show value of cell A1.
 Debug.Print [a1]
 ' Show total of A1:A3.
 Debug.Print [sum(a1:a3)]
 ' Show table of named ranges
 Dim n As Name, str As String
 Debug.Print "Name", "# w/data", "Address"
 For Each n In Names
 str = "Count(" & n.Name & ")"
 Debug.Print n.Name, Evaluate(str), [n]
 Next
End Sub

Using the bracket notation with a Name object returns the address of the name.

Application.ExtendList [= setting]

True extends formatting and formulas to new data added to a custom list; False does not. Default is True.

Application.FeatureInstall [= MsoFeatureInstall]

Determines how to handle calls to methods and properties that require features that aren't yet installed. Can be one of
these settings:

msoFeatureInstallNone

Doesn't install; causes an error when uninstalled features is called (default)

msoFeatureInstallOnDemand

Prompts the user to install feature

msoFeatureInstallOnDemandWithU

Automatically installs the feature; doesn't prompt the user

Application.FileConverters[(Index1, Index2)]

Returns an array of installed file converters.

Argument Setting

Index1 The full name of the converter including file type

Index2 The path of the converter's DLL

If arguments are omitted, FileConverters returns Null if there are no converters or a two-dimensional array containing the
name, DLL path, and extension for each converter. The following code displays a table of the installed converters:

Sub TestFileConverters()
 Dim cnv As Variant, i As Integer
 cnv = Application.FileConverters
 ' Display table columns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Display table columns
 Debug.Print "Name", "DLL", "Extension"
 ' Check if converters are installed
 If Not IsNull(cnv) Then
 For i = 1 To UBound(cnv, 1)
 Debug.Print cnv(i, 1), cnv(i, 2), cnv(i, 3)
 Next
 Else
 Debug.Print "No converters installed."
 End If
End Sub

Application.FileDialog (MsoFileDialogType)

Returns the FileDialog object.

Argument Description Settings

MsoFileDialogType Determines which Excel dialog to return

msoFileDialogFilePicker

msoFileDialogFolderPicker

msoFileDialogOpen

msoFileDialogSaveAs

The following code displays the file picker dialog box and lets the user select a text file to open in Notepad:

Sub TestFileDialog()
 Dim fname As String
 With Application.FileDialog(msoFileDialogFilePicker)
 .AllowMultiSelect = False
 .Filters.Add "Text files (*.txt)", "*.txt", 1
 .FilterIndex = 1
 .Title = "Open text file"
 If .Show = True Then _
 Shell "notepad.exe " & .SelectedItems(1)
 End With
End Sub

Application.FileFind

(Macintosh only.) Returns the FileFind object. The following code displays all of the files by Jeff:

Sub TestFind() ' Macintosh only
 Dim s
 With Application.FileFind
 .Author = "Jeff"
 .Execute
 For Each s In .Results
 Debug.Print s
 Next
 End With
End Sub

Application.FileSearch

(Windows only.) Returns the FileSearch object. The following code displays all of the text files in the current folder:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Windows only.) Returns the FileSearch object. The following code displays all of the text files in the current folder:

Sub TestSearch() ' Windows only
 Dim s
 With Application.FileSearch
 .LookIn = ThisWorkbook.Path
 .Filename = ".txt"
 .Execute
 For Each s In .FoundFiles
 Debug.Print s
 Next
 End With
End Sub

Application.FindFile()

Displays the Open File dialog box and opens the selected file in Excel.

Application.FindFormat

Returns the CellFormat object used by the Find method. For example, the following code selects the first bold cell on the
active worksheet:

Sub TestFindFormat()
 With Application.FindFormat
 .Font.Bold = True
 End With
 Cells.Find("", , , , , , , , True).Select
End Sub

Application.FixedDecimal [= setting]

True assumes a fixed decimal place for data entries; False assumes each entry has a variable decimal place. Default is
False.

Application.FixedDecimalPlaces [= setting]

Sets the placement of the decimal assumed during data entry. Default is 2. The following code configures Excel to treat
the entry 1000 as 0.1, 45000 as 4.5, and so on:

Sub TestDecimal()
 ' Turn on fixed decimal.
 Application.FixedDecimal = True
 ' Set the decimal place.
 Application.FixedDecimalPlaces = 4
End Sub

Application.GenerateGetPivotData [= setting]

True turns the GenerateGetPivotData command on; False turns the command off. The GenerateGetPivotData command
substitutes cell references for GETPIVOTDATA worksheet functions in formulas.

Application.GetCustomListContents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns an array of items from a custom list. For example, the following code displays all of the items in each of the
custom lists:

Sub TestListContent()
 Dim i As Integer, lst(), str As String, num As Integer
 Debug.Print "List Number", "Contents"
 For i = 1 To Application.CustomListCount
 lst = Application.GetCustomListContents(i)
 str = Join(lst, ", ")
 num = Application.GetCustomListNum(lst)
 Debug.Print num, str
 Next
End Sub

Application.GetCustomListNum(ListArray)

Returns the index of a custom list.

Argument Setting

ListArray The array of custom list items to look up.

Application.GetOpenFilename([FileFilter], [FilterIndex], [Title],
[ButtonText], [MultiSelect])

Displays the Open File dialog box and returns a filename or False if no file is selected. Does not open the file.

Argument Setting

FileFilter A filter to use in the drop-down list on the dialog box. Each filter is a pair separated by a comma:
DisplayString, Type. See the following example.

FilterIndex The index of the filter to display initially.

Title The caption for the dialog box. Default is Open.

ButtonText (Macintosh only.) The caption to show on the action button. Default is Open.

MultiSelect True allows the user to select multiple files.

The following code displays the File Open dialog box for web file types; if the user selects a file, the code opens the file
in Notepad:

Sub TestGetOpen()
 Dim fname As String, fltr As String
 fltr = "Web page (*.htm),*.htm,XML data (*.xml),*.xml," & _
 "XML Style Sheet (*.xsl),*.xsl"
 fname = Application.GetOpenFilename(fltr, _
 1, "Open web file", , False)
 If fname <> "False" Then _
 Shell "Notepad.exe " & fname
End Sub

Application.GetPhonetic([Text])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Japanese phonetic text of a string. Available only with Japanese language support.

Application.GetSaveAsFilename([InitialFilename], [FileFilter],
[FilterIndex], [Title], [ButtonText])

Displays the Save File As dialog box and returns a filename or False if no file is selected. Does not save the file.

Argument Setting

InitialFileName The name to display in the File text box

Other arguments See "Application.GetOpenFilename"

The following code saves the active workbook as a web page, closes the newly saved file, and reopens the original
workbook in XLS format:

Sub TestGetSaveAs()
 Dim fname1 As String, fname2 As String, fname3 As String
 Dim fltr As String
 ' Save changes
 ActiveWorkbook.Save
 ' Get current filename.
 fname1 = ActiveWorkbook.Name
 ' Get filename for web page.
 fname2 = Replace(fname1, "xls", "htm")
 fltr = "Web page (*.htm),*.htm,XML data (*.xml),*.xml," & _
 "XML Style Sheet (*.xsl),*.xsl"
 ' Show the Save As dialog.
 fname3 = Application.GetSaveAsFilename(fname2, fltr, _
 1, "Export to web")
 ' If not cancelled, save the file as a web page.
 If fname3 <> "False" Then _
 ActiveWorkbook.SaveAs fname3, xlHtml
 ' Reopen the original file.
 Workbooks.Open fname1
 ' Close the web page file.
 Workbooks(fname2).Close
End Sub

Application.Goto([Reference], [Scroll])

Selects a range of cells and activates the sheet containing the cells.

Argument Setting

Reference A range, named range, or string that evaluates to one of those.

Scroll True scrolls the sheet so that the selection is in the upper-left corner.

Goto is similar to Select, except Select does not activate the sheet.

Application.Height

Returns the height of the Excel window in pixels. Use the WindowState property to maximize window or minimize Excel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.Help([HelpFile], [HelpContextID])

Displays a help topic in Excel's Help window.

Argument Setting

HelpFile The file to display. Can be compiled Help (.chm or .hlp) or a web page (.htm). Defaults to the Excel help
file.

HelpContextID For compiled help files, the numeric ID of the topic to display. Ignored for web pages.

See Chapter 6 for details on creating and displaying Help. The following code displays an error message help page in
the Help window:

Sub TestApplicationHelp()
 ' Display Help in Help window.
 Application.Help ("http://excelworkshop.com/Help/error51.htm")
End Sub

Application.Hinstance

Returns a handle to the Excel application instance.

Application.Hwnd

Returns a handle to the top-level Excel window. You use handles with the Windows API to do low-level tasks not
available through Excel objects. For example, the following code displays the Excel always on top of all other windows,
even if Excel doesn't have focus:

Declare Function SetWindowPos Lib "user32" (ByVal hwnd As Long, _
 ByVal hWndInsertAfter As Long, ByVal x As Long, ByVal y As Long, _
 ByVal cx As Long, ByVal cy As Long, ByVal wFlags As Long) As Long
Const SWP_NOSIZE = &H1
Const SWP_NOMOVE = &H2
Const HWND_TOPMOST = -1
Const HWND_NOTOPMOST = -2

Sub TestShowXLOnTop()
 ' Change to False to return to normal.
 ShowXLOnTop True
End Sub

Public Function ShowXLOnTop(ontop As Boolean)
 Dim hXl As Long, setting As Long
 If ontop Then setting = HWND_TOPMOST _
 Else setting = HWND_NOTOPMOST
 hXl = Application.hwnd
 SetWindowPos hXl, setting, 0, 0, _
 0, 0, SWP_NOSIZE Or SWP_NOMOVE
End Sub

Application.InchesToPoints(Inches)

Converts a measurement from inches to points. This is the same a multiplying the value by 72.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Application.]InputBox(Prompt, [Title], [Default], [Left], [Top],
[HelpFile], [HelpContextID], [Type])

This is the same as the Visual Basic InputBox method with one addition: Application.InputBox allows you to get a selected
range using the Type argument which accepts the settings in the following table:

Setting Input is

0 A formula

1 A number

2 Text (a string)

4 A logical value (True or False)

8 A cell reference, as a Range object

16 An error value, such as #N/A

64 An array of values

The following code demonstrates getting a range using InputBox:

Sub TestInputBox()
 Dim rng As Range
 On Error Resume Next
 Set rng = Application.InputBox(_
 "Select a cell", , , , , , , 8)
 If Not (rng Is Nothing) Then
 Debug.Print rng.Count & " cells selected."
 Else
 Debug.Print "Input cancelled."
 End If
End Sub

See Chapter 3 for details on the Visual Basic InputBox method.

Application.Interactive [= setting]

True allows users to interact with Excel; False prevents user actions. Set the Interactive property to False to prevent user
actions while performing time-consuming operations in code. Be sure to set Interactive back to True when done.

Application.International(XlApplicationInternational)

Returns an array of locale settings . XlApplicationInternational can be one of the settings from the following table:

Category Setting Returns

Cell references xlLeftBrace Character used instead of the left brace ({) in array literals.

 xlLeftBracket Character used instead of the left bracket ([) in R1C1-style relative
references.

 xlLowerCaseColumnLetter Lowercase column letter.

 xlLowerCaseRowLetter Lowercase row letter.

 xlRightBrace Character used instead of the right brace (}) in array literals.

 xlRightBracket Character used instead of the right bracket (]) in R1C1-style references.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Character used instead of the right bracket (]) in R1C1-style references.

 xlUpperCaseColumnLetter Uppercase column letter.

 xlUpperCaseRowLetter Uppercase row letter (for R1C1-style references).

Country/Region xlCountryCode Excel country/region version setting.

 xlCountrySetting Windows country/region setting.

 xlGeneralFormatName Name of the General number format.

Currency xlCurrencyBefore True if the currency symbol precedes the currency values; False if it follows
them.

 xlCurrencyCode Currency symbol.

 xlCurrencyDigits Number of decimal digits to be used in currency formats.

 xlCurrencyLeadingZeros True if leading zeros are displayed for zero currency values.

 xlCurrencyMinusSign True if a minus sign indicates negative numbers; False if using parentheses.

 xlCurrencyNegative

Currency format for negative currency values:

0, parentheses, ($nnn) or (nnn$)

1, minus before, -$nnn or -nnn$

2, minus mid, $-nnn or nnn-$

3, minus after, $nnn- or nnn$-

 xlCurrencySpaceBefore True adds a space before the currency symbol.

 xlCurrencyTrailingZeros True displays trailing zeros for zero currency values.

 xlNoncurrencyDigits Number of decimal digits to be used in noncurrency formats.

Date and Time xl24HourClock True uses 24-hour time; False uses 12-hour time.

 xl4DigitYears True uses four-digit years; False uses two-digit years.

 xlDateOrder

Order of date elements:

0, month-day-year

1, day-month-year

2, year-month-day

 xlDateSeparator Date separator (/).

 xlDayCode Day symbol (d).

 xlDayLeadingZero True includes leading zero in days.

 xlHourCode Hour symbol (h).

 xlMDY True orders dates month-day-year in the long form; False orders dates day-
month-year.

 xlMinuteCode Minute symbol (m).

 xlMonthCode Month symbol (m).

 xlMonthLeadingZero True includes leading zero in months displayed as numbers.

 xlMonthNameChars Obsolete, always returns 3.

 xlSecondCode Second symbol (s).

 xlTimeLeadingZero True includes leading zero in times.

 xlTimeSeparator Time separator (:)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 xlWeekdayNameChars Obsolete, always returns 3.

 xlYearCode Year symbol in number formats (y).

Measurement xlMetric True is metric system in use; False if the English measurement system is in
use.

 xlNonEnglishFunctions True if functions are not displayed in English.

Separators xlAlternateArraySeparator Alternate array item separator to be used if the current array separator is the
same as the decimal separator.

 xlColumnSeparator Character used to separate columns in array literals.

 xlDecimalSeparator Decimal separator.

 xlListSeparator List separator.

 xlRowSeparator Character used to separate rows in array literals.

 xlThousandsSeparator Zero or thousands separator.

[Application.]Intersect(Arg1, Arg2, [Argn], ...)

Returns the Range object containing the overlapping region of the ranges Arg1 through Argn.

Argument Setting

Arg1 The first Range object to intersect

Arg2 The second Range object to intersect

Argn Any number of additional Range objects to intersect

Application.Iteration [= setting]

True uses iteration to calculate formulas that refer to themselves (this is called a circular reference); False causes an
error for circular references . Default is False. Use the MaxChange and MaxIterations properties to control how many
calculations are performed during iteration.

Application.LanguageSettings

Returns a LanguageSettings object containing information about the user's locale.

Application.LargeButtons [= setting]

True displays large toolbar buttons; False displays regular-size buttons. Default is False.

Application.Left [= setting]

Sets or returns the distance between the left edge of the screen and the left edge of the Excel window in pixels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.LibraryPath

Returns the path to the Excel add-in library, for example C:\Program Files\Microsoft Office\OFFICE11\LIBRARY.

Application.MacroOptions([Macro], [Description], [HasMenu],
[MenuText], [HasShortcutKey], [ShortcutKey], [Category],
[StatusBar], [HelpContextId], [HelpFile])

Sets the description and help files displayed for a macro or user-defined function.

Argument Setting

Macro The name of the macro to set.

Description A description that appears in the Macro or Formula dialog box.

HasMenu Ignored.

MenuText Ignored.

HasShortcutKey True assigns a shortcut key to the macro.

ShortcutKey The shortcut key to assign.

Category The name of a category for the user-defined function. Default is User Defined.

StatusBar Ignored.

HelpContextId The context ID for the help topic within the compiled help file. Ignored for other help file types.

HelpFile The name of the help file to display for user-defined functions.

The usable arguments are different for macros (Subs) and user-defined functions (Functions). The Macro dialog box
doesn't use Category, HelpContextId, or HelpFile arguments. The Insert Function dialog box doesn't use HasShortcutKey or
ShortcutKey arguments.

The following code sets the options for the ShowXlOnTop user-defined function:

Sub TestMacroOptions()
 Application.MacroOptions "ShowXlOnTop", _
 "Set Excel as the top-most window.", , , , , _
 "Windows", "Excel On Top", , _
 "http:\\excelworkshop.com\Help\ch07.htm"
End Sub

After this code runs, Excel displays the options on the Insert Function dialog as shown in Figure 7-3.

Figure 7-3. How Excel displays macro options for user-defined functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application.MailLogoff()

Ends a MAPI mail session.

Application.MailLogon([Name], [Password],
[DownloadNewMail])

Closes any existing MAPI sessions and creates a new one, starting the Microsoft Mail spooler. Returns True if Mail is
started successfully, False if not.

Argument Setting

Name The username for the mail session.

Password User password.

DownloadNewMail True downloads new mail immediately. Default is False.

Application.MailSession

Returns the MAPI session number begun by Excel. Returns Null if there is no session.

Application.MailSystem

Returns the XlMailSystem setting indicating the users installed mail system. Can be one of these settings:

xlMAPI

xlNoMailSystem

xlPowerTalk

Application.MapPaperSize [= setting]

True adjusts printing to map from the standard paper size of one locale to another; False does not adjust.

Application.MaxChange [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The maximum amount of change allowed in resolving circular references using iteration. Once the change is less than
this amount, iteration stops.

Application.MaxIterations [= setting]

The maximum number of calculations performed when resolving a circular reference.

Application.MoveAfterReturn [= setting]

True activates the next cell after the user presses Enter; False keeps the current cell active. Default is True.

Application.MoveAfterReturnDirection [=XlDirection]

Sets or returns which cell is activated after the user presses Enter. Can be one of these settings:

xlDown (default)

xlToLeft

xlToRight

xlUp

Application.Names([index])

Returns the collection of named ranges in the active workbook. The following code displays a table of named ranges:

Sub TestNames()
 Dim n As Name
 Debug.Print "Name", "Address"
 For Each n In Names
 Debug.Print n.Name, n.RefersTo
 Next
End Sub

Application.NetworkTemplatesPath

Returns the AltStartupPath property if that setting is a network share. Otherwise, returns an empty string.

Application.NewWorkbook

Returns an Office NewFile object that represents an item on the New Workbook task pane. You can use this object to add
or remove items from the task pane. For example, the following code adds the Invoice template and displays the task
pane:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pane:

Sub TestNewWorkbook()
 With Application.NewWorkbook
 .Add "Invoice.xlt", _
 MsoFileNewSection.msoNewfromTemplate, _
 "New Invoice", MsoFileNewAction.msoCreateNewFile
 End With
 Application.CommandBars("Task Pane").Visible = True
End Sub

See the Office VBA help file (VBAOF11.CHM) for information about the NewFile object.

Application.NextLetter()

(Macintosh with PowerTalk mail only.) Opens the next unread mail message in the In Tray.

Application.ODBCErrors

Returns the ODBCErrors collection generated by the most recent query table or PivotTable report.

Application.ODBCTimeout [= setting]

Sets or returns the time limit for ODBC queries. Default is 45 seconds.

Application.OLEDBErrors

Returns the OLEDBErrors collection generated by the most recent OLE DB query.

Application.OnKey(Key, [Procedure])

Assigns a macro to run when a key is pressed. Can also be used to disable built-in Excel key combinations.

Argument Setting

Key The key combination to assign. The character codes are the same as for SendKeys. See Chapter 3 for the
SendKeys codes.

Procedure The name of the macro to run. Setting to "" disables any built-in action for those keys; omitting this
argument restores the built-in action.

The following code demonstrates how to reassign, disable, and restore a built-in key assignment:

Sub TestOnKey()
 ' Reassign Ctrl+C
 Application.OnKey "^c", "CopyMsg"
 ' Disable Ctrl+C
 'Application.OnKey "^c", ""
 ' Restore Ctrl+C
 ' Application.OnKey "^c"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ' Application.OnKey "^c"
End Sub

Sub CopyMsg()
 MsgBox "You can't copy right now."
End Sub

Application.OnRepeat(Text, Procedure)

Reassigns the Repeat item on the Edit menu (Ctrl-Y).

Argument Setting

Text The text to display instead of Repeat...

Procedure The procedure to run when the user chooses Edit Repeat or presses Ctrl-Y.

The following code replaces the Repeat item on the Edit menu with the item Do Over and runs the DoOver procedure with
the user selects the item:

Sub TestOnRepeat()
 Application.OnRepeat "Do over", "DoOver"
End Sub

Application.OnTime(EarliestTime, Procedure, [LatestTime],
[Schedule])

Sets the name of a procedure to run at a specified time.

Argument Setting

EarliestTime The earliest time you want to run the procedure.

Procedure The name of the procedure to run.

LatestTime The latest time you want to run the procedure. Default is no limit.

Schedule True schedules the procedure to run; False removes the procedure from the schedule to run. Default is
True.

Application.OnUndo(Text, Procedure)

Reassigns the Undo item on the Edit menu (Ctrl-Z). The arguments are the same as for OnRepeat.

Application.OnWindow [= setting]

Sets or returns a procedure to run when a window is activated.

Application.OperatingSystem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the name, version, and address model of the operating system. For example, "Windows (32-bit) NT 5.01"
indicates Windows XP Professional.

Application.OrganizationName

Returns the name of the user's organization as entered during installation.

Application.Path

Returns the path to the folder where Excel is installed.

Application.PathSeparator

Returns "\" in Windows and ":" on the Macintosh.

Application.PivotTableSelection [= setting]

True enables structured selection PivotTable reports; False disables. Default is False.

Application.PreviousSelections([index])

Returns one of the four last-selected ranges entered in the Go To dialog box.

Application.ProductCode

Returns the programmatic ID (ProgId) of Excel. This value is a globally unique identifier (GUID) used in Windows
programming.

Application.PromptForSummaryInfo [= setting]

True prompts the user for the workbook properties when files are first saved; False does not prompt. Default is False.

Application.Quit()

Exits Excel. Excel prompts to save changes before closing unless DisplayAlerts is set to False or the workbook's Saved
property is set to True.

[Application.]Range([cell1],[cell2])

Returns a range of cells.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a range of cells.

Argument Setting

cell1 The upper-left corner of the range

cell2 The lower-right corner of the range

The three ways to specify the Range method are cell references, strings, or brackets. The following three lines all select
the same range:

Range(Cells(1, 1), Cells(3, 3)).Select
Range("A1", "C3").Select
[A1:C3].Select

Application.Ready

Returns True if Excel is ready for input, False otherwise. Excel is not "ready" while a user is editing a cell (edit mode) or
when a dialog box is displayed. In those situations, macros must wait to run.

Application.RecentFiles([index])

Returns the RecentFiles collection. RecentFiles represents the list of recently used files displayed at the bottom of the File
menu. For example, the following code displays the path- and filenames for each file in the Recent Files list:

Sub TestRecentFiles()
 Dim f As RecentFile
 For Each f In Application.RecentFiles
 Debug.Print f.Path
 Next
End Sub

Application.RecordMacro([BasicCode], [XlmCode])

Sets the code for Excel to record if the user selects Tools Macro Record New Macro and then performs a task
that runs this macro.

Argument Setting

BasicCode The string to record in place of the default

XlmCode Obsolete

By default, Excel records Application.Run "workbook!macro" whenever a user runs a macro while recording. To prevent
recording, set BasicCode to "" for the macro:

Sub SecretMacro()
 ' Don't record this!
 Application.RecordMacro ""
 ' Secret stuff...
End Sub

Application.RecordRelative [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True uses relative references when recording; False uses absolute references. Default is False.

Application.ReferenceStyle [=XlReferenceStyle]

Sets or returns the style Excel uses to refer to cells. Can be one of these settings:

xlA1

xlR1C1

Application.RegisteredFunctions

Returns an array of DLL functions registered with Excel. The following code displays a list of the registered functions:

Sub TestRegisteredFunctions()
 Dim i As Integer, func
 func = Application.RegisteredFunctions
 Debug.Print "DLL", "Function", "Arguments/Return type"
 If Not IsNull(func) Then
 For i = 1 To UBound(func, 1)
 Debug.Print func(i, 1), func(i, 2), func(i, 3)
 Next
 Else
 Debug.Print "No functions registered."
 End If
End Sub

Application.RegisterXLL(Filename)

Loads an Excel DLL (XLL) and registers it.

Argument Setting

Filename The name of the file to register

Application.Repeat()

Repeats the last user action.

Application.ReplaceFormat [= setting]

Sets or returns the CellFormat object used when reformatting during search and replace. For example, the following code
replaces all bold with italic:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replaces all bold with italic:

Sub TestReplaceFormat()
 Dim fBold As CellFormat, fItal As CellFormat
 Set fBold = Application.FindFormat
 Set fItal = Application.ReplaceFormat
 fBold.Font.Bold = True
 fItal.Font.Bold = False
 fItal.Font.Italic = True
 Cells.Replace "", "", , , , , True, True
End Sub

Application.RollZoom [= setting]

True sets the IntelliMouse wheel to zoom the display rather than scroll it; False sets the wheel to scroll. Default is False.

[Application.]Rows([index])

Returns a range containing the cells in a row on the active worksheet. For example, the following code selects row 3:

Rows(3).Select

Application.RTD

Returns a real-time data object.

Application.Run([Macro], [Args])

Runs a macro.

Argument Setting

Macro The name of the macro to run

Args Arguments for the macro

This method is mainly used by Excel itself when recording user actions that run macros. However, you can also use it to
run automated tests during development.

Application.SaveWorkspace([Filename])

Saves the current settings as an Excel workspace file.

Argument Setting

Filename The name of the file to save. Default is RESUME.XLW.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excel workspace files include the open documents, window placement, and other settings that are restored when the
user opens the file. Don't confuse this with shared workspaces, which is a way to share a workbook with others through
SharePoint.

Application.ScreenUpdating [= setting]

True updates the Excel display as tasks are performed; False hides updates. Default is True. Setting ScreenUpdating to
False speeds up lengthy operations, such as changing all the cells on a worksheet. Be sure to set this property back to
True when done.

Application.Selection

Returns the currently selected objects on the active worksheet. Returns Nothing if no objects are selected. Use the Select
method to set the selection, and use TypeName to discover the kind of object that is selected. The following code displays
information about the current selection:

Sub TestSelection()
 Dim str As String
 Select Case TypeName(Selection)
 Case "Nothing"
 str = "Please select something."
 Case "Range"
 str = "You selected the range: " & Selection.Address
 Case "Picture"
 str = "You selected a picture."
 Case Else
 str = "You selected a " & TypeName(Selection) & "."
 End Select
 MsgBox str
End Sub

Application.SendKeys(Keys, [Wait])

This method is the same as the Visual Basic SendKeys method. See Chapter 3 for details.

Application.SetDefaultChart([FormatName], [Gallery])

Sets the default chart type used by Excel.

Argument Setting

FormatName Can be one of the XlChartType constants, xlBuiltIn, or the name of a custom chart type

Gallery Not used

For example, the following code sets the default chart type to a 3-D style:

Sub TestSetChartType()
 Application.SetDefaultChart XlChartType.xl3DArea
End Sub

[Application.]Sheets([index])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Worksheet and Chart objects in the active workbook. Sheets is a mixed collection, so you can't count on every
item being a specific type. Instead, you must test check the TypeName before calling methods on the object, as shown by
the following code:

Sub TestSheet()
 Dim itm As Object, ws As Worksheet, ct As Chart
 For Each itm In Sheets
 Select Case TypeName(itm)
 Case "Worksheet"
 Set ws = itm
 Debug.Print ws.UsedRange.Address
 Case "Chart"
 Set ct = itm
 If ct.HasTitle Then _
 Debug.Print ct.ChartTitle
 Case Else
 Debug.Print TypeName(itm)
 End Select
 Next
End Sub

Use the Worksheets or Charts method to get those specific object types.

Application.SheetsInNewWorkbook [= setting]

Gets or sets the number of worksheets automatically included in new workbooks. Default is 3.

Application.ShowChartTipNames [= setting]

True shows the names of items on a chart as tool tips; False hides the names. Default is True.

Application.ShowChartTipValues [= setting]

True includes the values of series points in the tool tips displayed on a chart; False hides the values. Default is True.

Application.ShowStartupDialog [= setting]

True displays the New Workbook task pane when the user chooses File New; False creates the workbook without
displaying the task pane. Default is True.

Application.ShowToolTips [= setting]

True displays pop-up tool tips when the mouse pointer pauses over a toolbar button; False does not display tool tips.
Default is True.

Application.ShowWindowsInTaskbar [= setting]

True displays each open workbook as a separate instance of Excel with its own item on the Windows task bar ; False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True displays each open workbook as a separate instance of Excel with its own item on the Windows task bar ; False
collects all workbooks into a single instance of Excel with only one task bar item. Default is True.

ShowWindowsInTaskbar affects only how Excel appears in Windows. It doesn't affect how much memory it uses or the
number of processes running for Excel.

Application.SmartTagRecognizers

Returns a collection of SmartTagRecognizer objects.

Application.Speech

Returns a Speech object that can be used to say words. Using Speech causes an error if the feature is not installed. The
following code tries to say "Hazelnootpasta":

Sub TestSpeech()
 On Error Resume Next
 Application.Speech.Speak "Hazelnootpasta"
 If Err Then MsgBox "Speech not installed."
End Sub

Application.SpellingOptions

Returns a SpellingOptions object that you can use to control how Excel performs spellchecking. The following code displays
the main spelling option settings:

Sub TestSpellingOptions()
 With Application.SpellingOptions
 Debug.Print .DictLang
 Debug.Print .IgnoreCaps
 Debug.Print .IgnoreMixedDigits
 Debug.Print .IgnoreFileNames
 Debug.Print .SuggestMainOnly
 End With
End Sub

Application.StandardFont [= setting]

Sets or returns the standard font name. For Windows, the default is Arial.

Application.StandardFontSize [= setting]

Sets or returns the standard font point size. For Windows, the default is 10.

Application.StartupPath

Returns the path to the XLSTART directory .

Application.StatusBar [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets or returns the text in the Excel status bar.

Application.TemplatesPath

Returns the path to the user's Templates folder.

Application.ThisCell

Returns the Range object of the cell calling the current user-defined function.

Application.ThisWorkbook

Returns the Workbook object of the Excel file that contains the current procedure. ThisWorkbook is different from
ActiveWorkbook in that ActiveWorkbook changes based on the current selection, whereas ThisWorkbook always refers to the file
that contains the running code.

Application.ThousandsSeparator [= setting]

Sets or returns the character used to separate thousands.

Application.Top [= setting]

Sets or returns the distance between the top of the Excel window and the top of the screen.

Application.Undo()

Cancels the last user action.

[Application.]Union(Arg1, Arg2, [Argn])

Joins two or more Range objects into a single Range.

Argument Setting

Arg1 The first Range object to join

Arg2 The second Range object to join

Argn Any number of additional Range objects to join

Application.UsableHeight

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the maximum height of the usable area of Excel in points. This is the Height minus the title, menu, tool, status
bars, and column header.

Application.UsableWidth

Returns the maximum width of the usable area of Excel in points. This is the Width minus the scrollbar and row header.

Application.UsedObjects

Returns a collection of all the objects used in Excel. This code displays the names and types of all the objects currently
in use by Excel:

Sub TestUsedObjects()
 Dim o, name As String
 On Error Resume Next
 Debug.Print "Type", "Name"
 For Each o In Application.UsedObjects
 name = o.name
 Debug.Print TypeName(o), name
 Next
End Sub

Application.UserControl

Returns True if Excel is visible, False if Excel was started programmatically and is not visible. When UserControl is False,
Excel quits if there are no references to it.

Application.UserLibraryPath

Returns the path to the user's Addins folder.

Application.UserName [= setting]

Sets or returns the user's name.

Application.UseSystemSeparators [= setting]

True uses the operating system settings for thousands and decimal separators ; False uses the Excel settings. Default is
True.

Application.VBE

Returns the VBE object that represents the Visual Basic Editor. The following code displays the Visual Basic Editor:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the VBE object that represents the Visual Basic Editor. The following code displays the Visual Basic Editor:

Private Sub cmdViewCode_Click()
 On Error Resume Next
 Application.VBE.MainWindow.Visible = True
 ' An error occurs if security settings prohibit this.
 If Err Then
 MsgBox "You must change Macro security options " & _
 "before you can view code in this way. " & _
 "Choose Tools>Macro>Security>Trusted Publishers and " & _
 "select Trust access to Visual Basic Project."
 End If
End Sub

Application.Version

Returns the Excel version number. For example, Excel 2003 returns 11.0.

Application.Visible [= setting]

True if the Excel window is visible; False if it is hidden. When Excel is not visible, it doesn't appear on the task bar, and
the only way to close the application may be to use the Task Manager (Ctrl-Delete) in Windows.

Application.Volatile([Volatile])

Marks a user-defined function for recalculation whenever any cells on the worksheet are recalculated.

Argument Setting

Volatile True causes the function to recalculate when any cell on the worksheet is recalculated; False recalculates
only when the input values change. Default is True.

Application.Wait(Time)

Pauses Excel.

Argument Setting

Time The time to resume Excel

You can specify an interval of time to wait by incrementing Now. The following code uses that technique to create a
procedure that pauses for an interval specified in milliseconds (the same as the Windows API Sleep function):

Sub TestSleep()
 ' Wait 5 seconds.
 Sleep 5000
 MsgBox "Time's up!"
End Sub

Sub Sleep(milsecs As Long)
 Dim dt As Date
 ' 0.00001 = 1 second in the Date type.
 dt = Now + (milsecs / 100000000)
 Application.Wait (dt)
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

Application.Watches([index])

Returns a collection of Watch objects that represent items in a Watch window.

Application.Width [= setting]

Sets or returns the width of the Excel window in pixels.

Application.Windows([index])

Returns a collection of Window objects that represent the windows displayed by Excel.

Application.WindowsForPens

Returns True if Excel is running under Windows for Pen Computing, False otherwise.

Application.WindowState [= XlWindowState]

Sets or returns the state of the Excel window. Can be one of these settings:

xlMaximized

xlNormal

xlMinimized

[Application.]Workbooks([index])

Returns a collection of Workbook objects that represent workbooks that are currently open in Excel.

[Application.]WorksheetFunction

Returns the WorksheetFunction object, which is used to access Excel's built-in functions. See Chapter 4 for a description of
the available functions.

[Application.]Worksheets([index])

Returns a collection containing the Worksheet objects in the active workbook. This is different from the Sheets collection,
which returns Worksheet, Chart, and other types of sheet objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5. AutoCorrect Members
The AutoCorrect object has the following members. Key members (shown in bold) are covered in the following reference
section:

AddReplacement Application

AutoExpandListRange CapitalizeNamesOfDays

CorrectCapsLock CorrectSentenceCap

Creator DeleteReplacement

DisplayAutoCorrectOptions Parent

ReplacementList ReplaceText

TwoInitialCapitals

The AutoCorrect object provides a set of properties that determine how Excel handles automatic correction. Most of the
AutoCorrect members are True/False properties that enable or disable specific Auto Correct options. The following code
displays a list of the current Auto Correct settings in Excel:

Sub ShowAutoCorrectSettings()
 With Application.AutoCorrect
 Debug.Print .AutoExpandListRange
 Debug.Print .CapitalizeNamesOfDays
 Debug.Print .CorrectCapsLock
 Debug.Print .CorrectSentenceCap
 Debug.Print .DisplayAutoCorrectOptions
 Debug.Print .ReplaceText
 Debug.Print .TwoInitialCapitals
 End With
End Sub

These properties correspond to the settings on the AutoCorrect dialog box (Figure 7-4). To see that dialog, choose
Tools AutoCorrect Options.

Figure 7-4. Displaying the AutoCorrect options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AutoCorrect.AddReplacement(What, Replacement)

Adds an item to the replacement list shown at the bottom of Figure 7-4.

Argument Setting

What The typed sequence to automatically correct

Replacement The correction to use

AutoCorrect.DeleteReplacement(What)

Deletes an item from the replacement list.

Argument Setting

What The typed sequence to delete from the replacement list

AutoCorrect.ReplacementList

Returns the replacement list. The following code displays the list of items that Excel will automatically replace and the
replacements that will be used:

Sub ShowReplacementList()
 Dim i As Integer
 With Application.AutoCorrect
 Debug.Print "Replace", "With"
 For i = 1 To UBound(.ReplacementList, 1)
 Debug.Print .ReplacementList(i)(1), _
 .ReplacementList(i)(2)
 Next
 End With
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6. AutoRecover Members
The AutoRecover object has the following members. Key members (shown in bold) are covered in the following reference
section:

Application

Creator

Enabled

Parent

Path

Time

AutoRecover.Enabled [= setting]

True enables automatic recovery; False disables it.

AutoRecover.Path [= setting]

Sets or returns the path where Excel stores the files used by automatic recovery.

AutoRecover.Time [= setting]

Sets or returns the number of minutes between when automatic recovery files are saved. Must be between 1 and 120.
Default is 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.7. ErrorChecking Members
The ErrorChecking object has the following members:

Application BackgroundChecking

Creator EmptyCellReferences

EvaluateToError InconsistentFormula

IndicatorColorIndex ListDataValidation

NumberAsText OmittedCells

Parent TextDate

UnlockedFormulaCells

Most of the ErrorChecking members are True/False properties that enable or disable specific error-checking options. The
following code displays a list of the current error-checking settings in Excel:

Sub ShowErrorCheckingSettings()
 With Application.ErrorCheckingOptions
 Debug.Print .BackgroundChecking
 Debug.Print .EmptyCellReferences
 Debug.Print .EvaluateToError
 Debug.Print .InconsistentFormula
 Debug.Print .IndicatorColorIndex
 Debug.Print .ListDataValidation
 Debug.Print .NumberAsText
 Debug.Print .OmittedCells
 Debug.Print .TextDate
 Debug.Print .UnlockedFormulaCells
 End With
End Sub

These properties correspond to the settings on the Error Checking dialog box shown in Figure 7-5. To see the dialog,
choose Tools Error Checking Options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.8. SpellingOptions Members
The SpellingOptions object has the following members:

ArabicModes DictLang

GermanPostReform HebrewModes

IgnoreCaps IgnoreFileNames

IgnoreMixedDigits KoreanCombineAux

KoreanProcessCompound KoreanUseAutoChangeList

SuggestMainOnly UserDict

Figure 7-5. Displaying error-checking options

The SpellingOptions object provides a set of properties that determine how Excel handles spellchecking. All of the Spelling
members are read/write properties that enable or disable specific options. The following code displays a list of the
current spell-checking settings in Excel:

Sub ShowSpellCheckSettings()
 With Application.SpellingOptions
 Debug.Print .DictLang
 Debug.Print .IgnoreCaps
 Debug.Print .IgnoreMixedDigits
 Debug.Print .SuggestMainOnly
 Debug.Print .UserDict
 End With
End Sub

These properties correspond to the settings on the Spelling tab of the Options dialog box (Figure 7-6). To see that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These properties correspond to the settings on the Spelling tab of the Options dialog box (Figure 7-6). To see that
dialog, choose Tools Options Spelling.

Language-specific settings in Figure 7-6 are disabled because my selected language is
English (U.S.). You must install those language versions of Excel to use those settings.

Figure 7-6. Displaying the spellchecking options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.9. Window and Windows Members
The Window object and Windows collection have the following members . Key members (shown in bold) are covered in the
following reference section:

Activate ActivateNext ActivatePrevious

ActiveCell ActiveChart ActivePane

ActiveSheet Application2 Arrange1

BreakSideBySide1 Caption Close

CompareSideBySideWith1 Count1 Creator2

DisplayFormulas DisplayGridlines DisplayHeadings

DisplayHorizontalScrollBar DisplayOutline DisplayRightToLeft

DisplayVerticalScrollBar DisplayWorkbookTabs DisplayZeros

EnableResize FreezePanes GridlineColor

GridlineColorIndex Height Index

LargeScroll Left Panes

Parent1 PointsToScreenPixelsX PointsToScreenPixelsY

RangeFromPoint RangeSelection ResetPositionsSideBySide1

ScrollColumn ScrollIntoView ScrollRow

ScrollWorkbookTabs SelectedSheets Selection

SmallScroll Split SplitColumn

SplitHorizontal SplitRow SplitVertical

SyncScrollingSideBySide1 TabRatio Top

Type UsableHeight UsableWidth

View Visible VisibleRange

Width WindowNumber WindowState

Zoom
1 Collection only

2 Object and collection

Use the Windows collection and Window objects to control which window has focus in Excel and to open, close, arrange,
and control the appearance of Excel windows. Use the Application object's ActiveWindow property to get the window that
currently has focus, or use the Windows collection to choose a specific window.

The following code demonstrates the most common window tasks:

Sub TestWindows()
 Dim i As Integer, wnd As Window
 Dim curWnd As Window, curState As XlWindowState
 ' Save the current settings
 Set curWnd = ActiveWindow
 curState = curWnd.WindowState
 ' Create four new windows.
 For i = 1 To 4
 Set wnd = curWnd.NewWindow
 wnd.Caption = "New Window: " & i
 Next
 ' Cascade the windows.
 Application.Windows.Arrange (xlArrangeStyleCascade)
 ' Activate each in turn.
 For Each wnd In Application.Windows
 wnd.Activate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wnd.Activate
 ' Wait 1 second.
 API.Sleep (1000)
 Next
 ' Close created windows
 For Each wnd In Application.Windows
 If wnd.Caption Like "New Window: ?" Then wnd.Close
 Next
 ' Restore original window and state.
 curWnd.Activate
 curWnd.WindowState = curState
End Sub

window.Activate()

Sets focus on the window, bringing it to the top.

window.ActivateNext()

Sets focus to the next window in the Excel windows list.

window.ActivatePrevious()

Sets focus to the previous window in the Excel windows list.

windows.Arrange([ArrangeStyle], [ActiveWorkbook],
[SyncHorizontal], [SyncVertical])

Arranges the Excel windows.

Argument Setting

ArrangeStyle Can be one of these XlArrangeStyle settings: xlArrangeStyleCascade, xlArrangeStyleTiled (default),
xlArrangeStyleHorizontal, xlArrangeStyleVertical.

ActiveWorkbook True arranges only the windows of the active workbook; False arranges all workbooks. Default is False.

SyncHorizontal True links the windows so that they scroll together horizontally; False allows independent scrolling.
Default is False. Ignored if ActiveWorkbook is not True.

SyncVertical True links the windows so that they scroll together vertically; False allows independent scrolling.
Default is False. Ignored if ActiveWorkbook is not True.

windows.BreakSideBySide()

Ends the side-by-side comparison of two workbooks. See CompareSideBySideWith for details.

window.Close([SaveChanges], [Filename], [RouteWorkbook])

Close the window. Closing the last open window for a workbook closes the workbook, so Close has these arguments in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Close the window. Closing the last open window for a workbook closes the workbook, so Close has these arguments in
the following table that determine what to do in that case:

Argument Setting

SaveChanges True saves changes to the workbook; False abandons changes. Prompts the user if omitted.

Filename The name of the file to save the workbook as; default is the current filename.

RouteWorkbook If the workbook has a routing slip attached, True routes the workbook to the next recipient; False does
not route. Prompts the user if omitted.

windows.CompareSideBySideWith(WindowName)

Starts side-by-side comparison between the active window and another window. Side-by-side comparison links the
scrolling of the two windows so that you can more easily compare different versions of a workbook. Use BreakSideBySide to
turn off this comparison.

The following code demonstrates turning side-by-side comparison on and off. Ordinarily, you would open two existing
versions of a workbook, but I create the second version here so that the demonstration is self-contained:

Sub TestBeginSideBySide()
 Dim fpath As String, wnd As Window
 ' Get the window for active workbook.
 Set wnd = Application.ActiveWindow
 ' Get the workbook's full filename.
 fname = ActiveWorkbook.Path & "\" & ActiveWorkbook.name
 ' Change it to a new filename.
 fname = VBA.Replace(fname, ".xls", "_v2.xls")
 ' Save a copy of the workbook.
 ActiveWorkbook.SaveCopyAs fpath
 ' Open the copy (makes the copy the active window).
 Application.Workbooks.Open fname
 ' Turn on side-by-side comparision.
 Application.Windows.CompareSideBySideWith wnd.Caption
End Sub

Sub TestEndSideBySide()
 ' Turn off side-by-side comparision.
 Application.Windows.BreakSideBySide
End Sub

window.DisplayFormulas [= setting]

True displays formulas in cells; False displays result of formulas (values). Default is False.

window.DisplayGridlines [= setting]

True displays gridlines showing cell boundaries; False hides gridlines. Default is True.

window.DisplayHeadings [= setting]

True displays column headings (A, B, C, ...); False hides headings. Default is True.

window.DisplayHorizontalScrollBar [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True displays the horizontal scrollbar; False hides it. Default is True.

window.DisplayOutline [= setting]

True displays outlining symbols; False hides them. Default is True. To outline a worksheet, choose Data Group and
Outline Auto Outline. The outlining symbols appear to the left of the row numbers.

window.DisplayRightToLeft [= setting]

True displays Excel in right-to-left fashion; False displays Excel left-to-right. DisplayRightToLeft is used for locales with left-
to-right languages, such as Saudi Arabia.

window.DisplayVerticalScrollBar [= setting]

True displays the vertical scrollbar; False hides it. Default is True.

window.DisplayWorkbookTabs [= setting]

True displays the sheet tabs at the bottom of the workbook; False hides them. Default is True.

window.DisplayZeros [= setting]

True displays zero values as 0 in cells; False hides zero values. Default is True.

window.EnableResize [= setting]

True allows the user to resize the window; False prohibits resizing. Default is True. Accessing this property causes an
error if WindowState is not xlNormal. The following code prevents the user from changing the active window's size:

Sub TestDisableResize()
 If ActiveWindow.WindowState = xlNormal Then _
 ActiveWindow.EnableResize = False
End Sub

window.FreezePanes [= setting]

True locks panes to prevent horizontal and vertical scrolling; False allows panes to scroll. Default is False.

window.GridlineColor [= setting]

Sets or returns the color of gridlines as an RGB color. RGB colors are long integers that you can create using the RGB
function or (commonly) by specifying a value in hexadecimal. The following code changes the grid color to red, green,
blue, and back to normal:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

blue, and back to normal:

Sub TestGridlineColor()
 ' Change grid color using hexidecimal values.
 ActiveWindow.GridlineColor = &HFF ' Red
 ' Wait 1 second.
 API.Sleep (1000)
 ActiveWindow.GridlineColor = &HFF00 ' Green
 API.Sleep (1000)
 ActiveWindow.GridlineColor = &HFF0000 ' Blue
 API.Sleep (1000)
 ' Restore the default.
 ActiveWindow.GridlineColorIndex = xlColorIndexAutomatic
End Sub

window.GridlineColorIndex [=xlColorIndexAutomatic]

Sets or returns the color of the gridlines based on the index into the color palette. Default is xlColorIndexAutomatic.

window.LargeScroll([Down], [Up], [ToRight], [ToLeft])

Scrolls the window a number of pages in a given direction. You can combine arguments to scroll diagonally.

Argument Setting

Down Number of pages to scroll down

Up Number of pages to scroll up

ToRight Number of pages to scroll right

ToLeft Number of pages to scroll left

window.Panes

Returns the collection of Panes objects for the window. Windows that are not split return one pane.

window.PointsToScreenPixelsX(Points)

Converts an application width measurement of points to a screen measurement in pixels. The following code displays
the screen dimensions in pixels:

Sub TestPointsToPixels()
 Application.DisplayFullScreen = True
 Debug.Print Application.Windows(1).PointsToScreenPixelsX(Application.Width)
 Debug.Print Application.Windows(1).PointsToScreenPixelsX(Application.Height)
 Application.DisplayFullScreen = False
End Sub

window.PointsToScreenPixelsY(Points)

Converts the application height measurement of points to a screen measurement in pixels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window.RangeFromPoint(x, y)

Returns the Range object at the specified x and y coordinates. Coordinates are in pixels, not points.

window.RangeSelection

Returns a Range object containing the selected cells on the window. RangeSelection is slightly different from Selection, since
Selection can include drawing objects as well as ranges.

windows.ResetPositionsSideBySide()

Restores the side-by-side comparison display after one of the windows is maximized or minimized while the user is
doing a comparison.

window.ScrollColumn [= setting]

Sets or returns the column number displayed in the leftmost side of the Excel window.

window.ScrollIntoView(Left, Top, Width, Height, [Start])

Scrolls the window to a rectangular region on the worksheet.

Argument Setting

Left The left edge of the rectangle in points.

Top The top edge of the rectangle in points.

Width The width of the rectangle in points.

Height The height of the rectangle in points.

Start True scrolls the upper-left corner of the rectangle to the upper-left corner of the window; False scrolls
the lower-right corner of the rectangle to the lower-right corner of the window. Default value is True.

window.ScrollRow [= setting]

Sets or returns the row number displayed at the top of the Excel window.

window.ScrollWorkbookTabs([Sheets], [Position])

Scrolls the worksheet tabs displayed at the bottom of a workbook.

Argument Setting

Sheets The number of tabs to scroll in either direction. Positive values scroll to the right; negative values scroll
left.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

left.

Position Can be one of the following settings: xlFirst, xlLast.

window.SelectedSheets

Returns the collection of worksheets and charts selected in the window. More than one sheet can be selected by
multiselecting the sheet tabs at the bottom of the window.

window.Selection

Returns the objects selected on the window.

window.SmallScroll([Down], [Up], [ToRight], [ToLeft])

Scrolls the window a number of rows or columns in a given direction. You can combine arguments to scroll diagonally.

Argument Setting

Down Number of rows to scroll down

Up Number of rows to scroll up

ToRight Number of columns to scroll right

ToLeft Number of columns to scroll left

window.Split [= setting]

True splits the window into panes; False displays the window as a single pane. Default is False. Use Split in combination
with the following properties to divide a window into panes. For example, the following code splits the active window
vertically at column C:

Sub TestSplitVertically()
 With ActiveWindow
 .SplitColumn = 3
 .SplitRow = 0
 .Split = True
 End With
End Sub

window.SplitColumn [= setting]

Sets or returns the column number at which to split a window vertically.

window.SplitHorizontal [= setting]

Sets or returns the location in points at which to split a window horizontally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window.SplitRow [= setting]

Sets or returns the row number at which to split a window horizontally.

window.SplitVertical [= setting]

Sets or returns the location in points at which to split a window vertically.

windows.SyncScrollingSideBySide [= setting]

True synchronizes the two windows displayed during side-by-side comparison so that scrolling one window scrolls the
other window an equal amount; False allows the windows to scroll independently.

window.TabRatio [= setting]

Sets or returns the ratio between the width of the tab area and the width of the window's horizontal scrollbar. Default is
0.6.

window.View [= XlWindowView]

Sets or returns whether page breaks are displayed. Can be one of these settings:

xlNormalView

xlPageBreakView

window.VisibleRange

Returns the Range object that is visible on the window.

window.WindowNumber [= setting]

Returns the number portion of the window caption. For example, the window captioned ch07.xls:2 returns 2.

window.WindowState [= XlWindowState]

Sets or returns the state of the window. Can be one of these settings:

xlMaximized

xlNormal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlMinimized

window.Zoom [= setting]

Sets or returns a percentage by which to magnify the window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Controlling Excel
I talked a little about the Application object back in Chapter 4. Application is where everything starts in Excel: it's the
grandma of all the other objects. You use the Application object to:

Perform top-level actions, such as quitting Excel, showing dialog boxes, or recalculating all workbooks

Control the Excel options, such as the settings on the Tools Options dialog box

Get references to the other objects in Excel

In this chapter, you will learn about those tasks in detail. This chapter includes task-oriented reference information for
the following objects: Application, AutoCorrect, AutoRecover, ErrorChecking, Windows, and Panes.

Code used in this chapter and additional samples are available in ch07.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1. Add, Open, Save, and Close
Use Workbook objects to open, save, and control files in Excel. To create a new, empty file in Excel, use the Add method
on the Workbooks collection:

Dim wb As Workbook
Set wb = Application.Workbooks.Add

Use the Workbook object 's Save or SaveAs method to name the workbook and save the file to disk. The default save
location in Excel is set in the Application object's DefaultFilePath property, which is usually My Documents. For example, the
following line saves the workbook created before as NewWorkbook.xls in My Documents:

wb.SaveAs "NewWorkbook"

The Save method is similar to SaveAs, except it uses the default filename (Bookn.xls) the first time a file is saved. Use
SaveAs the first time you save a file or to save an existing workbook in a new file; use Save when you want to keep the
workbook's current name.

Use the Close method to close an open workbook. Closing does not automatically save changes to the workbook, but if
there are any changes, Excel displays a Save Changes dialog box before closing. You must close a workbook before it
can be deleted. Excel doesn't provide objects to delete workbooks since they are simply files stored on disk. Instead,
you use the Kill method or a similar technique to delete a workbook. The following code closes the workbook created
previously and deletes it:

wb.Close
VBA.Kill "NewWorkbook.xls"

If you want to open an existing workbook, use the Open method:

Set wb = Application.Workbooks.Open("MyBook.xls")

As with Save, Excel looks first in the current default directory, which may or may not be where the workbook is located.
In this book, I often use the Workbook's Path property to tell Excel to look in the same folder that the current workbook
resides in:

Set wb = Application.Workbooks.Open(ThisWorkbook.Path & "\MyBook.xls")

This works well for me because I've structured my samples so that related ones are all in the same folder. Also, I don't
know where that folder might be installed on your machineI just assume they'll be kept together in the same folder.

8.1.1. Templates

The way Excel comes from Microsoft, new workbooks contain three worksheets and no charts or other sheets. You can
change this by setting Excel's Options (Tools Options General tab), but sometimes you just want to create a
workbook with one worksheet in code, leaving the Option settings alone. There's an easy way to do this:

Set wb = Workbooks.Add(XlWBATemplate.xlWBATWorksheet)

The preceding line creates a new workbook containing one worksheet. You can use a similar line to create a workbook
containing one chart:

Set wb = Workbooks.Add(XlWBATemplate.xlWBATChart)

Of course, you can also use the Add method to create a new workbook based on a template, as shown here:

Set wb = Workbooks.Add("C:\Program Files\Microsoft
Office\Templates\1033\timecard.xlt")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Office\Templates\1033\timecard.xlt")

8.1.2. Open as Read-Only or with Passwords

The Open method is actually quite complex. If you type Workbooks.Open in the Code window, Visual Basic displays a
dizzying array of possible arguments (Figure 8-1).

Figure 8-1. The Open method can be complex

Thankfully, only Filename is required! Most of these are pretty special-purpose (you can read about them later); the most
important ones are ReadOnly, Password, and Format. Opening a file as read-only is handy if a workbook is stored at a
network location and might be open by another userin that case you can open the file only as read-only:

Set wb = Workbooks.Open("//wombat1/public/copy of files.xls", , True)

If you try to open a workbook that has a password in code, Excel will prompt the user for that password. You can avoid
this by putting the password in code:

Set wb = Workbooks.Open(ThisWorkbook.Path & "/security.xls", , , , "Excel2003")

Of course, that's a spectacularly bad idea if you are at all concerned about security: never write passwords, usernames,
email addresses, or other sensitive data in code. The only reason to use this approach is if your passwords are merely
intended to prevent accidental accessthe analogy would be closing your front door rather than locking it, locking it and
setting the alarm, or locking it, setting the alarm, and releasing ravening hounds; you get the idea.

Finally, the Format argument lets you open text files as Excel workbooks. If Format is 1, Excel interprets tab characters in
the file as new columns. Each line in the file is a new row. For example, a text file that looks like Figure 8-2 can be
opened as a workbook using this code:

Set wb = Workbooks.Open(ThisWorkbook.Path & "/data.txt", , , 1)

resulting in a workbook that looks like Figure 8-3.

Figure 8-2. A tabbed text file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-3. The tabbed file open in Excel

That said, the Format argument is a bit obsolete. Instead, you can use the OpenText method to do the same task and have
much more control over how the text file is interpreted. The next section discusses that technique.

8.1.3. Open Text Files

Reading data from text files into Excel is probably the most common programming task in Excel. No, it's not exciting (at
all) but there is a surprising amount of data coming from text files into Excel. Tab-delimited and comma-delimited text
files are a sort of universal data formatmost systems can read and write those formats. Excel is very good at it.

First some basics. There are two sorts of text datafiles: delimited files (just mentioned) and fixed-width files. Delimited
files use commas, tabs, semicolons, or some other character to separate fields of data. In fixed-width files, each field
begins at a fixed location. If data in a field doesn't fill that field, the rest of the field contains spaces.

Each line in a datafile represents a record. Line is an imprecise term, however. Different systems have different
standards for what is considered a line. On Windows systems, a newline is indicated by the carriage-return and line-
feed characters (Chr(13) and Chr(10) or vbCrLf in Visual Basic). On Macintosh and Linux systems, it's just line feed (Chr(10)).

When Excel opens a text file, it needs to know how the fields and records are identified. Once it has that information, it
can read the text file, place fields into columns, and create a new row for each record. Excel can guess at a lot of
thatfor example, it just assumes that the file was created by the operating system that Excel is currently running
underand you can see these assumptions by choosing File Open txtfile to run the Excel Text Import Wizard
(Figure 8-4).

You can choose Tools Macro Record Macro before running the Text Import Wizard to generate the code
needed to import a particular text file. For example, the following code was recorded when I imported my sample text
file in Excel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file in Excel:

' Recorded code.
Sub Macro1()
 Workbooks.OpenText Filename:= _
 "C:\Documents and Settings\Jeff\My Documents\Programming Excel\products.txt"_
 , Origin:=xlWindows, StartRow:=1, DataType:=xlDelimited, TextQualifier _
 :=xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=False, Semicolon:= _
 False, Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(Array(_
 1, 9), Array(2, 1), Array(3, 9), Array(4, 9), Array(5, 1), _
 Array(6, 1), Array(7, 1), Array(8, 9), Array(9, 9), Array(10, 9)), _
 TrailingMinusNumbers:=True
End Sub

Figure 8-4. Excel's Text Import Wizard

The key parts of this code are the Filename, StartRow, DataType, Comma (delimiter), and FieldInfo. If you are going to reuse
this code, it makes sense to reorganize it a bit, as shown here:

' Modifications to recorded code.
Sub TestOpenTextModifiedCode()
 Dim fld, fil As String
 ' Filename to open (look in this workbook's folder)
 fil = ThisWorkbook.Path & "\products.txt"
 ' Array describing how to format or omit columns.
 fld = Array(Array(1, xlSkipColumn), Array(2, xlGeneralFormat), _
 Array(3, xlSkipColumn), Array(4, xlSkipColumn), _
 Array(5, xlGeneralFormat), Array(6, xlGeneralFormat), _
 Array(7, xlGeneralFormat), Array(8, xlSkipColumn), _
 Array(9, xlSkipColumn), Array(10, xlSkipColumn))
 ' Create a workbook and load the text file.
 Workbooks.OpenText fil, , 1, xlDelimited, , , , , True, , , , fld
End Sub

The changes to the recorded code are spelled out here:

1. Replaced the absolute path- and filenames with a variable using the current workbook's path. This makes it
easier to adapt the code for other files in the future.

2. Rewrote the FieldInfo arrays to use the Excel constants. The first element of each array is the column number;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Rewrote the FieldInfo arrays to use the Excel constants. The first element of each array is the column number;
the second element describes whether or not to include the column and the format for the column. In this case,
1 = xlGeneralFormat and 9 = xlSkipColumn. Using the constants makes it easier to understand what is going on.
Table 8-1 lists these constants for your reference.

3. Removed the default arguments from the OpenText method. Items that I didn't change in the Text Import Wizard
can simply be omitted. In code, this makes the important items stand out more. I also removed the argument
namesMicrosoft eliminated the concept of named arguments in .NET and I think that indicates they aren't really
very helpful.

Some of these changes are a matter of preferencefor instance, you may like named arguments and want to keep them.
My point here is to show you how the Text Import Wizard can help you tackle the multifaceted OpenText method.

Table 8-1. FieldInfo xlColumnDataType constants and values
Constant Value Constant Value

xlGeneralFormat 1 xlMYDFormat 6

xlTextFormat 2 xlDYMFormat 7

xlMDYFormat 3 xlYDMFormat 8

xlDMYFormat 4 xlSkipColumn 9

xlYMDFormat 5 xlEMDFormat 10

8.1.4. Open XML Files

Important XML features are part of Excel 2003 Professional and standalone versions for
Windows. Earlier and Macintosh versions of Excel support only limited access to XML files.

Text files may be the universal data format of today, but the future belongs to XML. XML is actually a type of text file,
since XML files are stored as text. But unlike delimited text files, they are self-describing. That means Excel doesn't
have to guess where a field or record starts; the information is right there in the file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Order>
 <ID>2002</ID>
 <BillTo>
 <Address>
 <Name>Biege Bond</Name>
 <Street1>55 Lost Lane</Street1>
 <City>Anywhere</City>
 <State>AR</State>
 <Zip>67832</Zip>
 </Address>
 </BillTo>
 <Line>
 <Number>10</Number>
 <Description>Qt Microballoons</Description>
 <Quantity>1</Quantity>
 <UnitPrice>95</UnitPrice>
 <Taxible>No</Taxible>
 <Total>95</Total>
 </Line>
</Order>

In the preceding XML, items surrounded by brackets identify the data, <tag> and </tag> notation shows where a data
item starts and ends, and the fact that some tags contain others establishes the relationships between items. You'll
notice that this is not a strict row/column relationshipnot all data is grid oriented! This means that Excel often has to be
told where to put XML items on a worksheet.

The easiest way to see how this works is to follow these steps:

1. Open an XML file in Excel. Choose File Open, select an XML file, and click OK. Excel displays a dialog box
asking how you want to open the file (Figure 8-5).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

asking how you want to open the file (Figure 8-5).

Figure 8-5. You can open XML files in several different modes

2. Select "Use the XML Source task pane" and click OK. Excel may tell you that the file doesn't contain a schema;
if this happens, click OK. Excel creates a new workbook and displays the structure of the XML file in the
righthand task pane as shown in Figure 8-6.

3. Drag items from the task pane to cells on the worksheet. Nonrepeating items, such as Address, create
nonrepeating cells; repeating items, such as Line, create lists of data.

4. Click Refresh XML Data (Data XML Refresh XML Data) to import the data from the XML file (Figure 8-
7).

I need to explain a few key concepts here:

Excel interprets XML through an XML map. That's the thing you created in Step 2. The XML map is displayed in
the XML Source task pane.

Dragging items from the XML Source task pane creates a data binding between items on a worksheet and the
XML map.

Figure 8-6. The Source task pane lets you map XML items to cells or ranges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-7. Drag items to create a mapping, then click Refresh XML Data to
display the data

Refreshing loads the XML data through the XML map and then updates the data bindings.

If you record the preceding steps, you'll get code that looks like this:

Sub Macro2()
 Workbooks.OpenXML Filename:= _
 "C:\Documents and Settings\Jeff\My Documents\Programming Office\ch08_2002.xml" _
 , LoadOption:=xlXmlLoadMapXml
 ActiveWorkbook.XmlMaps("Order_Map").DataBinding.Refresh
End Sub

The first line (OpenXML) handles the first two steps. The last line (DataBinding.Refresh) handles Step 4. Step 3 is simply
missingExcel can't record your drag actionsand if you run the recorded code, you'll get an error. Although you can
establish these data bindings in code, it is laborious and (really) unnecessary.

Instead, set up your XML the way you want it displayed, then save the workbook as an Excel template. Then you can
create new workbooks based on that template and import XML using the ImportXML method as shown here:

Sub TestImportToXMLTemplate()
 Dim xmap As XmlMap, wb As Workbook
 ' Create a workbook using the Order template.
 Set wb = Workbooks.Open(ThisWorkbook.Path & "\ch08_order.xlt")
 ' Get the XML Map.
 Set xmap = wb.XmlMaps("Order_Map")
 ' Import the data.
 wb.XmlImport ThisWorkbook.Path & "\ch08_2002.xml", xmap
End Sub

This approach takes advantage of the fact that the format of XML doesn't change as often as the content does. By using
a template, you automatically get the XML map you need to interpret data from similar XML files. Of course, if the XML
format changes (items are added, moved, or deleted), you'll need to create a new template containing a revised XML
map.

8.1.5. Close Workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you close a workbook that has unsaved changes, Excel prompts whether you want to save before closing . This works
the same way whether you close a workbook through the user interface or through code. You can turn off the prompt in
code by setting the SaveChanges argument, however:

ThisWorkbook.Close True

The preceding code saves the current file, then closes it. You can just as easily discard changes by setting SaveChanges to
False:

ThisWorkbook.Close False

In either case, Excel closes the workbook without displaying any prompts. You can even use Close to save a workbook to
a new file, as shown here:

ThisWorkbook.Close True, "Copy of " & ThisWorkbook.Name

That's a little unusual, but it comes in handy if you are creating workbooks from some other source, such as text or
XML data, as shown by the following bold additions to the previous example:

Sub TestImportToXMLTemplate()
 Dim xmap As XmlMap, wb As Workbook
 ' Create a workbook using the Order template.
 Set wb = Workbooks.Open(ThisWorkbook.Path & "\ch08_order.xlt")
 ' Get the XML Map.
 Set xmap = wb.XmlMaps("Order_Map")
 ' Import the data.
 wb.XmlImport ThisWorkbook.Path & "\ch08_2002.xml", xmap
 ' Save the file in Excel format and close.
 wb.Close True, wb.Name
End Sub

In this case, Excel creates a new workbook, imports XML data, then saves and closes the workbook. You can work
through a long list of XML files this way converting them to workbooks for later use.

If you use the Close method on the Workbooks collection, Excel closes all open workbooks. This version of Close doesn't
accept arguments so Excel always prompts whether there are unsaved changes:

Sub TestCloseAll()
 Workbooks.Close
End Sub

What's interesting about this is that Excel closes all open workbooks, but doesn't close itself. In this way, Workbooks.Close
is different from Application.Quit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2. Share Workbooks
Excel lets teams collaborate on workbooks through two main approaches:

Shared workbooks

Allow multiple users to edit a single workbook file stored in a public location. The history of changes to the
workbook can be stored with the file, and edits can be rolled back or accepted by date, user, or range of cells.

Shared workspaces

Manage collaboration through SharePoint Services, allowing users to open, check out, view revision history, and
manage contributors from a central web site.

These two approaches provide many of the same features through very different means. The most obvious difference is
that shared workspaces require Windows Server 2003 with SharePoint Services installed to be available somewhere on
the user's network, whereas shared workbooks require only read and write access to a public network address.

To create a shared workbook:

1. Choose Tools Shared Workbook. Excel displays the Share Workbook dialog box (Figure 8-8).

2. Select "Allow changes by more than one user at the same time" and click OK. Excel saves the workbook and
enables it for shared access.

Figure 8-8. Sharing a workbook

Once a workbook is shared, multiple users can open the file from a public network address and save the file back to
that address. Excel maintains a change history and merges changes automatically where it can. How conflicting changes
are resolved is determined by the share settings on the Advanced tab of the Share Workbook dialog (Figure 8-9).

Shared workspaces are created differently. To create a shared workspace:

1. Choose Tools Shared Workspace. Excel displays the Shared Workspace pane in the Task window (Figure
8-10).

2. Type the address of your SharePoint site in the Location for New Workspace text box and click Create to save
the document to the SharePoint site and create a document workspace for it there.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the document to the SharePoint site and create a document workspace for it there.

Once a shared workspace is created, users can get updates, receive alerts, check out, edit, and view revision history for
the document through the Shared Workspace pane of the Task window. How automatic updates and alerts are handled
is determined by clicking Options at the bottom of the Shared Workspace pane, which displays the Service Options
dialog (Figure 8-11).

Figure 8-9. Advanced settings determine how conflicting changes are handled

Figure 8-10. Creating a document workspace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-11. Service Options determines how shared workspace documents are
updated

Whether you choose to collaborate through shared workbooks or shared workspaces will probably depend on whether
you have access to a SharePoint server. Shared workspaces provide a more complete solution for collaborating,
including the ability to check workbooks out while editing, notify teammates of changes, and request online meetings to
discuss changes. Still, shared workbooks do provide a practical solution for sharing work among small teams and are
the only approach supported for versions of Excel prior to 2003.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3. Program with Shared Workbooks
Once you share a workbook, any Visual Basic project it contains is no longer accessible. Excel can't deal with multiple
users editing the same macros, so it simply prevents changes to those macros. You can't record new macros, either.
However, you can run macros from shared workbooks.

Use the SaveAs method to share a workbook from within code. For example, the following code saves the active
workbook for sharing:

Sub SaveAsShared()
 ActiveWorkbook.SaveAs , , , , , , xlShared
End Sub

Once you share a workbook, you can no longer edit the macros it contains. The macros
still exist and they can still run; you just can't change them. That's because Excel doesn't
support shared editing in Visual Basic. To edit the macros, remove sharing.

To remove sharing, use the ExclusiveAccess method:

Sub RemoveSharing()
 If ThisWorkbook.MultiUserEditing Then _
 ThisWorkbook.ExclusiveAccess
End Sub

Removing sharing in this way erases change history and prevents other users who currently have the file open from
saving their changes to the file. An alternate, kinder way to remove sharing is to save the workbook as a new file with
the xlExclusive setting as shown here:

Sub SaveCopyAs()
 fil = ThisWorkbook.Path & "\" & "Copy of " & _
 ThisWorkbook.Name
 ThisWorkbook.SaveAs fil, , , , , , xlExclusive
End Sub

You can't remove sharing in this way without renaming the file. The SaveAs method doesn't change the access mode if
you don't specify a new filename.

When you save a shared workbook, your changes to the file are synchronized with any changes that have been saved
by others while you have been editing. If both you and another user happened to change the same item (such as the
value of a cell), Excel displays the Resolve Conflicts dialog box during your save as shown in Figure 8-12.

If edits from other users don't conflict with any changes you've made, those edits automatically update your workbook
when you save. This is a slightly curious situation, because the act of saving changes the workbook you are working on.
To help avoid confusion about this, Excel displays a notice telling you what has happened.

You can determine whether a workbook is shared by checking its MultiUserEditing property. It is important to check
MultiUserEditing before calling other sharing-related methods because many of them cause runtime errors if the workbook
is not shared. For example, the following code verifies that a workbook is shared before accepting changes made by
others:

If ThisWorkbook.MultiUserEditing Then _
 ThisWorkbook.AcceptAllChanges

Figure 8-12. Excel lets you resolve conflicting changes to shared workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-12. Excel lets you resolve conflicting changes to shared workbooks

The AcceptAllChanges and RejectAllChanges methods let you specify a date, user list, or range of cells that you want to accept
or reject changes from. It's important to remember that these methods affect the underlying server-side copy of the
shared workbook, not just the local copy you are working on. Multiuser editing may cause the user who made those
changes some confusionhey, where'd my work go? Excel adds a note to items that changed another user's edits (Figure
8-13).

Figure 8-13. Edits from other users can change your workbook when you save

Any user who has access to the network address where the workbook is saved can open the workbook and make
changes. You can restrict access to the workbook by restricting the users who are allowed to view or open files at the
network address and/or by specifying a password for the workbook. You can view information about users who have
the workbook open using the UserStatus property. For example, the following code displays the names, time opened, and
access mode for all current users of a shared workbook:

Sub TestUserStatus
 Dim usr(), msg As String, i As Integer
 usr = ThisWorkbook.UserStatus
 For i = 1 To UBound(usr)
 msg = msg & usr(i, 1) & " Opened: " & _
 usr(i, 2) & " Shared? " & _
 (usr(i, 3) = 2) & vbCrLf
 Next
 MsgBox msg
End Sub

Finally, you can change the workbook's sharing options using the following properties:

AutoUpdateFrequency

Sets the number of minutes between automatically checking for updates

AutoUpdateSave

Determines whether current changes are sent to other users when the workbook is automatically updated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Determines whether current changes are sent to other users when the workbook is automatically updated

PersonalViewListSettings

Determines whether sorting and filter settings are shared with other users

PersonalViewPrintSettings

Determines whether print settings are shared with other users

These properties correspond to items on the Advanced tab of the Share Workbook dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4. Program with Shared Workspaces
Shared workbooks provide no infrastructure for managing users and very little ability to administer changes to a
workbook. Shared workspaces address those shortcomings by allowing users to check out files before making edits,
automatically notify others when changes occur, assign tasks, and add or remove team members.

Workbooks included in a shared workspace don't lock out changes to macros or prevent macro recording since the
change-tracking mechanism is provided externally through SharePoint Services rather than by Excel.

Don't confuse shared workspaces with Excel workspace files (.xlw). Excel workspace files
save the state of Excel's windows and open files so you can easily return to some point in
your work.

Use the Workbook object's SharedWorkspace property to share the workbook, update the workbook, and navigate among
other elements in the shared workspace. For example, use the SharedWorkspace object's CreateNew method to create a new
shared workspace and add a workbook to it:

Sub CreateWorkspace()
 ThisWorkbook.Save
 ThisWorkbook.SharedWorkspace.CreateNew "http://wombat2/", _
 "Team Wombat"
End Sub

You must save the workbook before adding it to a shared workspace; otherwise, the CreateNew method fails. The
preceding code adds the current workbook to the SharePoint site on the Wombat2 server. If you click on Open Site in
Browser in the Excel Shared Workspace pane, Excel displays the new workspace site created at
http://wombat2/Team%20Wombat, as shown in Figure 8-14.

Figure 8-14. Excel creates a new SharePoint site when you call the CreateNew
method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you call CreateNew from another workbook using the same workspace name, Excel creates another, new SharePoint
site and increments the site name to http://wombat2/Team%20Wombat(1). To add a workbook to an existing
SharePoint site instead of creating a new site, follow these steps:

1. Open an existing document from the SharePoint site.

2. Get a reference to that document's SharedWorkspace object.

3. Add workbooks to the SharedWorkspace object's Files collection.

The following code demonstrates how to add files to the current workbook's workspace:

' Run to add a file to workspace
Sub AddFile()
 Dim fname As String
 ' Check to make sure this workbook is shared.
 If ThisWorkbook.SharedWorkspace.Connected Then
 ' Show file dialog box
 With Application.FileDialog(msoFileDialogFilePicker)
 .AllowMultiSelect = False
 .Title = "Choose file to add to workspace"
 .Show
 fname = .SelectedItems(1)
 End With
 ' If a filename was selected, add it to the workspace.
 If fname <> "" Then
 ThisWorkbook.SharedWorkspace.Files.Add fname, , _
 True, True
 End If
 End If
End Sub

The key to this procedure is getting the SharedWorkspace object from a workbook that already belongs to the workspace.
In this case, the current workbook already belongs to the workspace, so the process is easy. On the other hand, if you
want to add the current workbook to an existing workspace, you must first open a workbook from the workspace, as
shown here:

Sub JoinExistingWorkspace()
 Dim wb As Workbook
 ' Get a workbook from the workspace.
 Set wb = Workbooks.Open _
 ("http://wombat2/Team Wombat/Shared Documents/ch08.xls")
 ' Save this workbook.
 ThisWorkbook.Save
 ' Make sure the workbook is part of the workspace.
 If wb.SharedWorkspace.Connected Then
 ' Add this workbook to the workspace.
 wb.SharedWorkspace.Files.Add ThisWorkbook.Path & "\" _
& ThisWorkbook.Name, , True
 End If
 ' Close the workbook.
 wb.Close
End Sub

Even though you have added the workbook file to the workspace, the currently open workbook is the local version, not
the shared version. You can't close the current workbook from code and then open it from the SharePoint site for two
reasons:

The code stops running the moment you close the current workbook.

You can't have two workbooks with the same name open at one time.

The easiest way to work around this is to display the SharePoint site and allow the user to reopen the shared workbook
from there. The following code demonstrates that last approach:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from there. The following code demonstrates that last approach:

Sub OpenWorkbookFromWorkspace()
 Dim wb As Workbook
 Set wb = Application.Workbooks.Open _
 ("http://wombat2/Team Wombat/Shared Documents/Ch08.xls")
 If MsgBox("Click Yes to close this workbook " & _
 "and then open the workbook from the SharePoint site.", vbYesNo, _
 "Workbook added to shared workspace.") = vbYes Then
 ' Open the SharePoint site in IE.
 ThisWorkbook.FollowHyperlink wb.SharedWorkspace.url, , True
 ' Close the temporary workbook.
 wb.Close
 ' Close this workbook.
 ThisWorkbook.Close
 End If
End Sub

Now, if the user clicks Yes, Excel displays the SharePoint web site and closes the current and temporary workbooks.

You can tell if a workbook belongs to a shared workspace by checking the Connected
property. Make sure the Connected property is True before using SharedWorkspace methods,
otherwise an error may occur.

8.4.1. Open Workbooks from a Shared Workspace

If you double-click on a workbook in the workspace, Excel opens the workbook as read-only. To open the workbook for
editing, select Edit in Microsoft Office Excel from the pop-up menu on the site as shown in Figure 8-15.

Figure 8-15. Opening a workbook from a shared workspace

To open a workbook from a shared workspace in code, simply use the Open method with the address of the workbook
from the workspace. For example, the following code opens a workbook from http://wombat2/TeamWombat:

Workbooks.Open "http//wombat2/Team Wombat/Shared Documents/ch08.xls"

If you want exclusive access to a file, you can choose Check Out from the pop-up menu before opening the workbook
for editing--checking out doesn't open the file; it just reserves it so other users can't make changes. You won't be able
to check the workbook out if other users have the file open, however.

To check a file out from code, use the Workbook object's CanCheckOut property and the CheckOut method. For example, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To check a file out from code, use the Workbook object's CanCheckOut property and the CheckOut method. For example, the
following code attempts to check out a file, and if it is successful, it opens the file in Excel:

Sub CheckOut()
 fil = " http//wombat2/Team Wombat/Shared Documents/ch08.xls"
 If Application.Workbooks.CanCheckOut(fil) Then
 Application.Workbooks.CheckOut fil
 Set wb = Application.Workbooks.Open(fil)
 MsgBox wb.Name & " is check out to you."
 End If
End Sub

The CheckOut method doesn't open the workbook, so you need to add the Open method as shown in the preceding code.
Checking a file in automatically closes the file as shown here:

Sub CheckIn()
 Set wb = Application.Workbooks("ch08.xls")
 If wb.CanCheckIn Then
 ' CheckIn closes the file.
 wb.CheckIn True, "Minor change"
 MsgBox "File was checked in."
 Else
 MsgBox wb.Name & " could not be checked in."
 End If
End Sub

In some cases, a file may not be able to be checked in. For instance, you can't check in the current workbook from
within its own code:

If ThisWorbook.CanCheckIn Then ' Always False!

In those cases, you can display the workspace to provide a way to check the workbook back in.

8.4.2. Link a Workbook to a Workspace

Only one user at a time may open a workbook from the workspace. However, workbooks may also be stored locally and
linked to the workspace copy. To create a local copy of the workbook that is linked to the workspace:

1. Open the workbook from the workspace.

2. Save the workbook to your computer.

3. Excel displays a prompt (Figure 8-16) asking if you want to link the local copy to the workspace. Choose Yes.

Once you've linked a workbook to the workspace, changes you make are synchronized with changes from other users.
If changes conflict, you resolve them using the Document Updates task pane (Figure 8-17).

Figure 8-16. Linking a local copy to the workspace

Figure 8-17. Resolving conflicting changes with linked files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-17. Resolving conflicting changes with linked files

8.4.3. Remove Sharing

There are two levels of removing sharing from a workbook stored in a shared workspace. You can:

Delete the file from the workspace. This breaks the connection that other users share.

Disconnect the file from the workspace. This breaks the connection only between the local copy of the workbook
and the shared workbook.

Use the RemoveDocument method to delete the current document from the shared workspace as shown by the following
code:

Sub TestRemove()
 If ThisWorkbook.SharedWorkspace.Connected Then _
 ThisWorkbook.SharedWorkspace.RemoveDocument
End Sub

The preceding code leaves local copies that users have downloaded from the shared workspace, but they become
disconnected since the shared workbook no longer exists. Alternately, you can leave the workbook in the shared
workspace, but disconnect your local copy with this code:

Sub TestDisconnect()
 If ThisWorkbook.SharedWorkspace.Connected Then _
 ThisWorkbook.SharedWorkspace.Disconnect
End Sub

Now, the local copy can no longer be updated from or send updates to the shared workbook. If you want an updatable
copy, you must reopen the workbook from the shared workspace.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copy, you must reopen the workbook from the shared workspace.

You can also use the Files collection to remove workbooks from a shared workspace. This technique works well if you
want to remove a file other than the current workbook. For example, the following code removes ch08.xls from the
current workbook's shared workspace:

Sub TestRemoveFile()
 Dim file As Office.SharedWorkspaceFile
 If ThisWorkbook.SharedWorkspace.Connected Then
 For Each file In ThisWorkbook.SharedWorkspace.Files
 If InStr(1, file.urlThisWorkbook, "ch08.xls") Then _
 file.Delete
 Next
 End If
End Sub

In the preceding case, you need to locate the file to remove using the Instr function --the Files collection doesn't provide
a way to locate the file by name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5. Respond to Actions
The Workbook object provides events you can use to respond to user actions. In order to use these events, write your
code in the ThisWorkbook module of the workbook (in the Visual Basic Editor, double-click on ThisWorkbook in the Project
window). Visual Basic displays the Workbook events in the event list at the top of the Code window as shown in Figure 8-
18.

Selecting an event from the event list inserts a template for the event in the Code window, as shown here:

Figure 8-18. Select Workbook events from the Code window events list

Private Sub Workbook_Activate()

End Sub

Any code you add to this procedure executes when the event occursin this case when the workbook receives focus. This
event doesn't just occur when the user activates the workbook, it also occurs when code activates the workbook.

The names of most events are pretty self-explanatory and I won't bore you with circular definitions. Instead, here is the
list of events that the Workbook object provides:

Private Sub Workbook_Activate()
End Sub

Private Sub Workbook_AddinInstall()
End Sub

Private Sub Workbook_AddinUninstall()
End Sub

Private Sub Workbook_AfterXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal Result As XlXmlExportResult)
End Sub

Private Sub Workbook_AfterXmlImport(ByVal Map As XmlMap, _
 ByVal IsRefresh As Boolean, ByVal Result As XlXmlImportResult)
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
End Sub

Private Sub Workbook_BeforePrint(Cancel As Boolean)
End Sub

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _
 Cancel As Boolean)
End Sub

Private Sub Workbook_BeforeXmlExport(ByVal Map As XmlMap, _
 ByVal Url As String, Cancel As Boolean)
End Sub

Private Sub Workbook_BeforeXmlImport(ByVal Map As XmlMap, _
 ByVal Url As String, ByVal IsRefresh As Boolean, Cancel As Boolean)
End Sub

Private Sub Workbook_Deactivate()
End Sub

Private Sub Workbook_NewSheet(ByVal Sh As Object)
End Sub

Private Sub Workbook_Open()
End Sub

Private Sub Workbook_PivotTableCloseConnection(_
 ByVal Target As PivotTable)
End Sub

Private Sub Workbook_PivotTableOpenConnection(_
 ByVal Target As PivotTable)
End Sub

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
End Sub

Private Sub Workbook_SheetBeforeDoubleClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)
End Sub

Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)
End Sub

Private Sub Workbook_SheetCalculate(ByVal Sh As Object)
End Sub

Private Sub Workbook_SheetChange(ByVal Sh As Object, _
 ByVal Target As Range)
End Sub

Private Sub Workbook_SheetDeactivate(ByVal Sh As Object)
End Sub

Private Sub Workbook_SheetFollowHyperlink(ByVal Sh As Object, _
 ByVal Target As Hyperlink)
End Sub

Private Sub Workbook_SheetPivotTableUpdate(ByVal Sh As Object, _
 ByVal Target As PivotTable)
End Sub

Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _
 ByVal Target As Range)
End Sub

Private Sub Workbook_Sync(_
 ByVal SyncEventType As Office.MsoSyncEventType)
End Sub

Private Sub Workbook_WindowActivate(ByVal Wn As Window)
End Sub

Private Sub Workbook_WindowDeactivate(ByVal Wn As Window)
End Sub

Private Sub Workbook_WindowResize(ByVal Wn As Window)
End Sub

As you can see, some events come in pairs that occur before and after user actions take place. The word before isn't
quite right; Excel doesn't anticipate user actions. In this case, before means after the user does something but before

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

quite right; Excel doesn't anticipate user actions. In this case, before means after the user does something but before
Excel acts on it.

Before events usually include a Cancel argument that lets you prevent Excel from acting on the user action. For instance,
this simple event procedure prevents the user from closing the workbook without saving it first:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 If Not ThisWorkbook.Saved Then Cancel = True
End Sub

Pretty handy! You can use the Before events' Cancel argument any time you want to prevent something. Just set Cancel to
False and Excel throws away the action.

Some of the Workbook events echo events from other Excel objects. For example, both the Worksheet and Workbook objects
have events that respond to the selected cell changing (Worksheet_SelectionChange and Workbook_SheetSelectionChange). If there
is code written for both event procedures, Excel processes the worksheet-level event first; then it processes the
workbook-level event.

Sometimes this is explained as events "bubbling up" through the object hierarchy. My point is simply that an event may
be handled in more than one placethey don't just stop the first time they are handled (even if Cancel is set to True).

Handling a single event multiple places isn't common, but it's important to know that high-level objects like Application
and Workbook can provide general handlers for events that may also occur on lower-level objects, such as Worksheets. So,
for instance, if you want some code to run every time a selection changes on any worksheet, put the code in the
Workbook_SheetSelectionChange event. If you want the code to run only when the selection changes on a single worksheet,
put the code in the Worksheet_SelectionChange event.

Finally, the ThisWorkbook class isn't the only place that Workbook events are available. You can hook in to Workbook events in
any class module by declaring a class-level Workbook variable WithEvents, then initializing that variable with the workbook.
For example, the following code declares a Workbook object variable in a Worksheet class; Worksheet_Activate hooks the
events up to the m_wb variable, and m_wb_SheetChange responds to worksheet change events for all worksheets in the
workbook:

Dim WithEvents m_wb As Workbook

' Initialize Workbook object if it wasn't already
Private Sub Worksheet_Activate()
 If TypeName(m_wb) = "Nothing" Then Set m_wb = ThisWorkbook
End Sub

' Workbook-level handler for Sheet change events.
Private Sub m_wb_SheetChange(ByVal Sh As Object, ByVal Target As Range)
 If Target.Address = "A1" Then _
 Sh.[a2] = Sh.[a1] ^ 2
End Sub

Whenever you declare an object variable WithEvents at the class level, Visual Basic adds that object's events to the event
list Code window. You can write code for those events, but that code won't execute unless the class-level object
variable is initialized as shown earlier in the Worksheet_Activate procedure. It's easy to forget that step. It's also important
to know that you can "unhook" the events by setting the object variable to Nothing:

' Unhook Workbook events.
Private Sub Worksheet_Deactivate()
 Set m_wb = Nothing
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6. Workbook and Workbooks Members
Use the Workbooks collection to create new and open existing workbooks in Excel. Use the Application object's Workbooks
method to get a reference to this collection. Use the Workbook object to save and control individual workbooks. The
Workbooks collection and Workbook object have the following members. Key members (shown in bold) are covered in the
following reference section:

Password and protection members are covered in Chapter 26.

AcceptAllChanges AcceptLabelsInFormulas Activate

ActiveChart ActiveSheet Add1

AddToFavorites Application2 Author

AutoUpdateFrequency AutoUpdateSaveChanges BreakLink

BuiltinDocumentProperties CalculationVersion CanCheckIn

CanCheckOut1 ChangeFileAccess ChangeHistoryDuration

ChangeLink Charts CheckIn

CheckOut1 Close2 CodeName

Colors CommandBars Comments

ConflictResolution Container (obsolete) Count1

CreateBackup Creator2 CustomDocumentProperties

CustomViews Date1904 DeleteNumberFormat

DialogSheets (obsolete) DisplayDrawingObjects DisplayInkComments

DocumentLibraryVersions EnableAutoRecover EndReview

EnvelopeVisible Excel4IntlMacroSheets Excel4MacroSheets

ExclusiveAccess FileFormat FollowHyperlink

ForwardMailer FullName FullNameURLEncoded

HasMailer HasPassword HasRoutingSlip

HighlightChangesOnScreen HighlightChangesOptions HTMLProject

InactiveListBorderVisible IsAddin IsInplace

Item1 KeepChangeHistory Keywords

LinkInfo LinkSources ListChangesOnNewSheet

Mailer MergeWorkbook Modules (obsolete)

MultiUserEditing Name Names

NewWindow OnSave (obsolete) OnSheetActivate (obsolete)

OnSheetDeactivate (obsolete) Open1 OpenDatabase1

OpenLinks OpenText1 OpenXML1

Parent2 Password PasswordEncryptionAlgorith

PasswordEncryptionFile Properties PasswordEncryptionKeyLength PasswordEncryptionProvider

Path Permission PersonalViewListSettings

PersonalViewPrintSettings PivotCaches PivotTableWizard

Post PrecisionAsDisplayed PrintOut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintPreview Protect ProtectSharing

ProtectStructure ProtectWindows PublishObjects

PurgeChangeHistoryNow ReadOnly ReadOnlyRecommended

RecheckSmartTags RefreshAll RejectAllChanges

ReloadAs RemovePersonalInformation RemoveUser

Reply ReplyAll ReplyWithChanges

ResetColors RevisionNumber Route

Routed RoutingSlip RunAutoMacros

Save SaveAs SaveAsXMLData

SaveCopyAs Saved SaveLinkValues

SendFaxOverInternet SendForReview SendMail

SendMailer SetLinkOnData SetPasswordEncryptionOptions

SharedWorkspace Sheets ShowConflictHistory

ShowPivotTableFieldList SmartDocument SmartTagOptions

Styles Subject TemplateRemoveExtData

Title ToggleFormsDesign Unprotect

UnprotectSharing UpdateFromFile UpdateLink

UpdateLinks UpdateRemoteReferences UserStatus

VBASigned VBProject WebOptions

WebPagePreview Windows Worksheets

WritePassword WriteReserved WriteReservedBy

Xmlimport XmlImportXml XmlMaps

XmlNamespaces
1 Collection only

2 Object and collection

workbook.AcceptAllChanges([When], [Who], [Where])

For shared workbooks, commits the changes to the workbook.

Argument Settings

When A string indicating the time after which to accept changes

Who A string indicating the user from which to accept changes

Where A string indicating a range of cells for which to accept changes

It's easiest to see the effect of AcceptAllChanges when you combine it with RejectAllChanges. For example, the following code
accepts all of the changes made to the range A2:D4, but rejects changes to other cells if they were made within the last
minute:

If ThisWorkbook.MultiUserEditing Then
 [a1] = "Value rejected": [b2] = "Value kept"
 ThisWorkbook.AcceptAllChanges , , "A2:D4"
 ' Reject other changes made in the last minute.
 ThisWorkbook.RejectAllChanges CStr(Now - 0.001)
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.AcceptLabelsInFormulas [= setting]

True allows formulas to include range labels as if they were named ranges; False disables the use of labels in formulas.
Default is True.

The following code creates some column headings and then makes those headings usable as labels in formulas that
display the sum of each column:

' Create two column headings.
[a1] = "col1": [b1] = "col2"
' Add some data.
[a2] = 2: [a3] = 10: [a4] = 12: [a5] = 5
[b2] = 9: [a3] = 17: [b4] = 2: [b5] = 13: [b6] = 29
' Allow labels in formulas.
ThisWorkbook.AcceptLabelsInFormulas = True
' Create labels out of the column headings.
[a1:b1].FormulaLabel = xlColumnLabels
' Use the labels in formulas
[c1] = "=sum(col1)"
[c2] = "=sum(col2)"

If you set AcceptLabelsInFormulas to False in the preceding code, C1 and C2 display an error.

workbook.Activate()

Activates the workbook giving it focus in Excel and making it the ActiveWorkbook. For example, the following code opens a
new workbook, then returns the focus to the current workbook:

Workbooks.Open (ThisWorkbook.Path & "\blank.xls")
ThisWorkbook.Activate

workbook.ActiveChart

Returns a reference to the Chart object that currently has focus in Excel. If some other type of object has focus, returns
Nothing. The following code captures a bitmap of the active chart and pastes the image into Microsoft Paint:

If Not (ActiveChart Is Nothing) Then
 ActiveChart.CopyPicture xlScreen, xlBitmap, xlScreen
 Shell "mspaint.exe", vbNormalFocus
 DoEvents
 AppActivate "Untitled - Paint", True
 SendKeys "^v", True
End If

workbook.ActiveSheet

Returns a reference to the worksheet, chart sheet, Excel 4.0 macro sheet, or Excel 5.0 dialog sheet that currently has
focus. In most cases, ActiveSheet returns a reference to the active worksheet, but it is important to make sure that it is a
worksheet before proceeding in code. For example, the following code checks whether ActiveSheet is a worksheet before
performing some task:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performing some task:

Dim ws As Worksheet
If TypeName(ActiveSheet) = "Worksheet" Then
 Set ws = ActiveSheet
 ws.Cells(1, 1) = 42
 ' Some other code...
Else
 MsgBox "Please activate a worksheet."
End If

workbooks.Add([Template])

Creates a new workbook and opens it in Excel.

Argument Settings

Template
The filename of a template to base the new workbook on. Alternately, this argument may be one of the
following XlWBATemplate settings: xlWBATChart, xlWBATExcel4IntlMacroSheet, xlWBATExcel4MacroSheet, or
xlWBATWorksheet. In those cases, the new workbook contains a single sheet of the specified type.

After calling Add, the new workbook becomes the ActiveWorkbook in Excel. The following line creates a workbook and
returns a reference to the new Workbook object:

Set wb = Application.Workbooks.Add

workbook.AddToFavorites

Adds a link to the workbook in the Internet Explorer Favorites menu. The link appears on the Favorites menu in this
form: filename.xls#[filename.xls]sheetname.

workbook.Author [= setting]

Sets or returns the name of the author displayed in the workbook's properties.

workbook.AutoUpdateFrequency [= setting]

For shared workbooks, sets or returns the number of minutes before the workbook is automatically refreshed.

workbook.AutoUpdateSaveChanges [= setting]

For shared workbooks, True saves changes to the current workbook back to the shared version when the workbook is
automatically refreshed; False does not send those changes on during automatic refresh. The default is True.

workbook.BreakLink(Name, Type)

Breaks links to other workbooks or OLE objects. When a link is broken, the data is retained at the site of the link, but
the ability to refresh the data from its source is lost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the ability to refresh the data from its source is lost.

Argument Settings

Name The name of the link to break. Link names are returned by the LinkSources method.

Type Use xlLinkTypeExcelLinks to break a link to a Microsoft Excel source; use xlLinkTypeOLELinks to break a link to an
OLE source.

For example, the following code iterates through the Excel links in a workbook and asks the user whether each link
should be broken:

Dim link, linkSources
linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If MsgBox("Break link to " & link) = vbOK Then _
 ThisWorkbook.BreakLink link, xlLinkTypeExcelLinks
 Next
End If

workbook.BuiltinDocumentProperties

Returns the collection of Excel's built-in document properties. In some cases, properties may not be initialized, so you
must use error handling when getting their values. The following code displays the names and settings of all of a
workbook's built-in properties:

Dim prop As DocumentProperty
On Error Resume Next
For Each prop In ActiveWorkbook.BuiltinDocumentProperties
 Debug.Print prop.Name, prop.Value
 If Err Then Debug.Print prop.Name, "Not set."
 Err.Clear
Next
On Error GoTo 0

workbook.CalculationVersion

Returns a number representing the major and minor versions of Excel last used to recalculate the workbook. For
example, the following code displays "114210" on my machine, where "11" is the major version of Excel (2003 is
Version 11) and "4210" is the minor, or build version:

Debug.Print ThisWorkbook.CalculationVersion

workbook.CanCheckIn

For workbooks belonging to shared workspaces, returns True if the workbook has been checked out from the workspace
and can be checked in; returns False if the workbook cannot be checked in. Use CanCheckIn before calling CheckIn.

workbooks.CanCheckOut(Filename)

For workbooks that are part of a shared workspace, verifies that the workbook is available to be checked out. Use
CanCheckOut to verify that the file is available before calling the CheckOut method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Filename The address of the file on the SharePoint server for which to verify the status

Returns True if the current user can check out a shared workbook from the SharePoint server. Returns False if the
workbook cannot be checked out. Causes an error if the SharePoint server or file can't be found.

The following code checks out a file from a SharePoint server, first verifying that it is available:

fil = "//wombat2/Team Wombat/Shared Documents/ch08.xls"
If Application.Workbooks.CanCheckOut(fil) Then
 Application.Workbooks.CheckOut (fil)
 Set wb = Application.Workbooks.Open(fil)
 If wb.SharedWorkspace.Connected Then _
 msg = "ch08.xls is check out to you."
Else
 msg = "ch08.xls could not be checked out."
End If
MsgBox msg

workbook.ChangeFileAccess(Mode, [WritePassword], [Notify])

Changes a workbook to read-only or read/write access.

Argument Settings

Mode xlReadOnly changes the access to read-only; xlReadWrite changes access to read/write.

WritePassword The password required for write access if the workbook is write-protected.

Notify True displays a message if the file is not available for read/write access, perhaps because it is open for
another user; False does not notify. Default is True.

Switching a read-only workbook to read/write may reload the file in Excel. The following code demonstrates changing
file-access modes on the current workbook:

' Save changes.
ThisWorkbook.Save
' Change to read-only.
ThisWorkbook.ChangeFileAccess xlReadOnly
' Change back. (May reload file.)
ThisWorkbook.ChangeFileAccess xlReadWrite

workbook.ChangeHistoryDuration [= setting]

For shared workbooks, sets or returns the number of days changes are tracked. The KeepChangeHistory property must be
True for this property to have an effect. The following code tracks changes for seven days if the workbook is shared:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.KeepChangeHistory = True
 ThisWorkbook.ChangeHistoryDuration = 7
End If

workbook.ChangeLink(Name, NewName, [Type])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changes the source of a link.

Argument Settings

Name The name of the link to change. Link names are returned by the LinkSources method.

NewName The source of the new link.

Type Use xlLinkTypeExcelLinks to change a link from a Microsoft Excel source; use xlLinkTypeOLELinks for an OLE
source.

For example, the following code iterates through the Excel links in a workbook and changes links from the test1.xls file
to test2.xls:

Dim link, linkSources, newLink As String
newLink = ThisWorkbook.Path & "\test2.xls"
linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If InStr(link, "test1.xls") Then _
 ThisWorkbook.ChangeLink link, newLink, xlLinkTypeExcelLinks
 Next
End If

workbook.Charts

Returns a collection of chart sheets as Chart objects. Does not return charts that are embedded in worksheets. The
following code saves each of the chart sheets as JPEG files:

For Each chrt In ThisWorkbook.Charts
 chrt.Export ThisWorkbook.Path & "/" & _
 chrt.Name & ".jpg", "jpeg"
Next

workbook.CheckIn([SaveChanges], [Comments], [MakePublic])

For workbooks that are part of a shared workspace, checks the workbook back in to the SharePoint server and closes
the workbook.

Argument Settings

SaveChanges True saves current changes back to the server before checking the workbook in; False does not save
current changes to the server.

Comments Comments to save with changes.

MakePublic True allows all users of the shared workspace to read the workbook; False denies read-only users access
to the workbook.

The following code saves changes and checks a workbook back into the shared workspace:

Set wb = ThisWorkbook
If wb.SharedWorkspace.Connected And wb.CanCheckIn Then
 ThisWorkbook.CheckIn True, "Minor change"
 MsgBox ThisWorkbook.Name & " is checked in."
Else
 MsgBox "Could not check in " & ThisWorkbook.Name
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbooks.CheckOut(Filename)

For workbooks that are part of a shared workspace, checks out a workbook from the SharePoint server. Excel returns
an error if the workbook could not be checked out, so use the CanCheckOut method before calling CheckOut.

Argument Settings

Filename The address of the file on the SharePoint server to check out

The CheckOut method doesn't open the file or download it from the SharePoint server. Use the Open method to open the
file after checking it out, as shown here:

fil = "//wombat1/Team Wombat/Shared Documents/blank.xls"
If Application.Workbooks.CanCheckOut(fil) Then
 Application.Workbooks.CheckOut fil
 Application.Workbooks.Open fil
End If

workbook.Close([SaveChanges], [Filename], [RouteWorkbook])

Closes an open workbook and optionally saves changes or distributes that workbook to a routing list. When used with
the Workbooks collection, closes all open workbooks in the current instance of Excel. The following arguments apply to
closing a single workbook.

Argument Settings

SaveChanges True saves current changes; False does not save changes. The default is to prompt the user.

Filename If SaveChanges is True, the filename with which to save the workbook. The default is to prompt for the
filename.

RouteWorkbook If the workbook has a routing list, True routes the workbook; False does not route. The default is to
prompt.

The Close method does not run Auto_Close macros, but it does trigger the Before_Close event.

The following code closes all open workbooks. If any of the workbooks has unsaved changes, the user is prompted
whether they should be saved:

Workbooks.Close

workbook.CodeName

Returns ThisWorkbook for workbook objects.

workbook.Colors [= setting]

Returns the collection of RGB colors in the workbook's color palette. Workbooks have 56 colors that can be used. The
following code displays the RGB value for each of a workbook's colors in hexadecimal:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following code displays the RGB value for each of a workbook's colors in hexadecimal:

For Each clr In ThisWorkbook.Colors
 Debug.Print Hex(clr)
Next

RGB values are often expressed in hexadecimal. For example, &hff0000 is red, &hff00 is green, &hff is blue, &hffffff is white,
and &h0 is black.

workbook.CommandBars

Returns a collection containing the command bars associated with a workbook. Returns Nothing if the workbook has no
command bars. The following code displays the name of visible workbook-level command bars:

If Not (ThisWorkbook.CommandBars Is Nothing) Then
 For Each bar In ThisWorkbook.CommandBars
 If bar.Visible Then _
 Debug.Print bar.Name
 Next
Else
 Debug.Print "No workbook-level command bars."
End If

workbook.Comments [= setting]

Sets or returns the comments property for the workbook. Comments are displayed in the workbook's Properties dialog
box.

workbook.ConflictResolution [= setting]

For shared workbooks, determines how conflicting changes are handled. Setting may be one of the following values:

xlLocalSessionChanges

Local changes overwrite changes from other users.

xlOtherSessionChanges

Changes from other users overwrite local changes.

xlUserResolution

Displays a dialog box to resolve the conflict.

workbook.Container

For workbooks contained in Office Binder documents, returns the containing binder object.

workbook.CreateBackup [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

True creates a backup copy of the workbook when the workbook is saved; False does not create a backup. Default is
False.

workbook.CustomDocumentProperties

Returns a collection of custom document properties. The following code displays the settings of a workbook's custom
properties:

For Each prop In ActiveWorkbook.CustomDocumentProperties
 Debug.Print prop.Name, prop.Value
Next

workbook.CustomViews

Returns a collection containing the custom views of a workbook . Use the CustomViews collection's Add method to create
new views.

workbook.DeleteNumberFormat(NumberFormat)

Removes a custom number format from a workbook.

workbook.DisplayDrawingObjects [= setting]

Sets or returns how drawing objects are displayed. Possible settings are:

xlDisplayShapes

Shows shapes (default)

xlPlaceholders

Shows placeholders

xlHide

Hides shapes

workbook.DisplayInkComments [= setting]

True displays comments entered using digital ink ; False hides those comments. Default is True.

workbook.DocumentLibraryVersions

For workbooks that are part of a shared workspace, returns a collection containing the revision history for the
workbook. For example, the following code displays revisions tracked for a workbook in a shared workspace:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook. For example, the following code displays revisions tracked for a workbook in a shared workspace:

Dim ver As DocumentLibraryVersion
If ThisWorkbook.SharedWorkspace.Connected Then
 For Each ver In ThisWorkbook.DocumentLibraryVersions
 Debug.Print ver.ModifiedBy, ver.Modified, ver.Comments
 Next
End If

workbook.EnableAutoRecover [= setting]

True enables Excel to automatically recover files if an error or hardware problem closes Excel unexpectedly; False
disables Auto Recover. Default is True.

workbook.EndReview

Ends the review of a workbook distributed for review by the SendForReview method. After you use this method on the
source workbook, you will not be able to automatically merge comments from reviewers.

workbook.EnvelopeVisible [= setting]

True displays the email composition header and the envelope toolbar; False hides those items.

workbook.ExclusiveAccess

For shared workbooks, removes sharing and grants the current user exclusive access to the workbook. The following
code removes sharing from a workbook:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.ExclusiveAccess
End If

workbook.FileFormat

Returns a constant indicating the file format of the workbook. May be one of the following:

xlAddIn xlCSV xlCSVMac

xlCSVMSDOS xlCSVWindows xlCurrentPlatformText

xlDBF2 xlDBF3 xlDBF4

xlDIF xlExcel2 xlExcel2FarEast

xlExcel3 xlExcel4 xlExcel4Workbook

xlExcel5 xlExcel7 xlExcel9795

xlHtml xlIntlAddIn xlIntlMacro

xlSYLK xlTemplate xlTextMac

xlTextMSDOS xlTextPrinter xlTextWindows

xlUnicodeText xlWebArchive xlWJ2WD1

xlWJ3 xlWJ3FJ3 xlWK1

xlWK1ALL xlWK1FMT xlWK3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xlWK3FM3 xlWK4 xlWKS

xlWorkbookNormal xlWorks2FarEast xlWQ1

xlXMLSpreadsheet

workbook.FollowHyperlink(Address, [SubAddress],
[NewWindow], [AddHistory], [ExtraInfo], [Method], [HeaderInfo])

Displays a web page in the default browser.

Argument Settings

Address The address of the web page to display.

SubAddress A target within the requested web page.

NewWindow True displays the browser window; False maximizes the browser window. Default is False.

AddHistory Not used.

ExtraInfo A string or byte array that specifies additional information for HTTP to use to resolve the hyperlink.

Method
msoMethodGet sends the request as an HTTP GET method; ExtraInfo is sent as a string appended to the
address. msoMethodPost sends the request as an HTTP POST method; ExtraInfo is posted as a string or byte
array.

HeaderInfo A string specifying the HTTP header to be sent with the request.

For example, the following code displays my web site in a new, maximized browser window:

ThisWorkbook.FollowHyperlink "http://www.excelworkshop.com", , False

workbook.ForwardMailer()

For Macintosh users with PowerTalk mail systems, creates a mailer used to forward the workbook after it has been
received from another user. ForwardMailer creates the mailer; use SendMailer to send the workbook.

workbook.FullName

Returns the full name of the workbook file, including path and filename extension.

workbook .FullNameURLEncoded

Returns the full name of the workbook file, including path and filename extension. If the file was opened from a web
address, this method returns the name as it is encoded. For example, spaces are replaced with %20.

workbook.HasMailer

For Macintosh users with PowerTalk mail systems; returns True if the workbook has a mailer, False otherwise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.HasPassword

Returns True if the workbook has a password, False otherwise.

workbook.HasRoutingSlip [= setting]

Returns True if the workbook has a routing slip, False otherwise. Setting this property to True creates a routing slip.

workbook.HighlightChangesOnScreen [= setting]

For shared workbooks, True highlights changes from other users; False does not. Default is False.

workbook.HighlightChangesOptions([When], [Who], [Where])

For shared workbooks, controls which changes are highlighted.

Argument Settings

When One of the following constants: xlSinceMyLastSave, xlAllChanges, or xlNotYetReviewed.

Who A string indicating the user from which to accept changes. Can be "Everyone," "Everyone but Me," or the
name of one of the users of the shared workbook.

Where A string indicating a range of cells for which to accept changes.

The following code turns on change highlighting, makes some changes to highlight, then accepts those changes:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.HighlightChangesOnScreen = True
 ThisWorkbook.HighlightChangesOptions xlSinceMyLastSave
 [b2] = "Value kept"
 MsgBox "Pause: Highlighted changes"
 ThisWorkbook.AcceptAllChanges
 MsgBox "Pause: Changes accepted"
End If

workbook.HTMLProject

Returns a reference to the workbook's HTMLProject object. For example, the following code opens the current workbook
as HTML in the Microsoft Script Editor:

ThisWorkbook.HTMLProject.Open

workbook.InactiveListBorderVisible [= setting]

True displays borders around lists even if they do not have focus; False displays a border only if the list has focus.
Default is True.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.IsAddin [= setting]

Setting IsAddin to True causes Excel to treat the workbook as an add-in; False treats the workbook as a regular
workbook. In Excel, add-ins hide any macros or worksheets they contain. To see how this works, step through the
following code in a workbook:

ThisWorkbook.IsAddin = True
ThisWorkbook.IsAddin = False

When the first line runs, all worksheets are hidden and macros no longer appear in the Run Macros dialog box. When
the second line runs, the workbook returns to its normal state.

workbook.IsInplace

True if the workbook is embedded as an OLE object and is being edited in place in another document; False if the
workbook is being edited in Excel.

workbook.KeepChangeHistory [= setting]

For shared workbooks, True tracks changes; False does not track changes. Use in combination with the
ChangeHistoryDuration property.

workbook.Keywords [= setting]

Sets or returns keywords from the workbook's Properties dialog box.

workbook.LinkInfo(Name, LinkInfo, [Type], [EditionRef])

Returns information about a link. The information returned depends on the type of link.

Argument Settings

Name The name of the link.

LinkInfo Determines the type of information to return. Possible settings are xlEditionDate, xlLinkInfoStatus.

Type The type of link to get information about. Possible settings are xlLinkInfoOLELinks, xlLinkInfoPublishers,
xlLinkInfoSubscribers.

EditionRef If the link is an edition, EditionRef specifies the edition reference. Required if there's more than one
publisher or subscriber with the same name in the workbook.

For example, the following code displays a message telling the user to update Excel links that are out-of-date:

linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If ThisWorkbook.LinkInfo(link, xlLinkInfoStatus, _
 xlLinkTypeExcelLinks) = XlLinkStatus.xlLinkStatusOld Then
 MsgBox "Update link: " & link
 End If
 Next
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

workbook.LinkSources([Type])

Returns an array containing the links in a workbook.

Argument Settings

Type The type of links to return. Possible settings are xlExcelLinks (default), xlOLELinks, xlPublishers, xlSubscribers.

The following code displays the Excel links in a workbook:

linkSources = ThisWorkbook.linkSources(xlOLELinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 Debug.Print link
 Next
End If

workbook.ListChangesOnNewSheet [= setting]

For shared workbooks, True displays changes from other users on a new worksheet; False displays changes on the
existing worksheet.

workbook.Mailer

For Macintosh users with PowerTalk mail systems; returns the Mailer object attached to a workbook.

workbook.MergeWorkbook(Filename)

Merges one workbook with another. For example, the following code merges the current workbook with Test2.xls:

ThisWorkbook.MergeWorkbook ThisWorkbook.Path & "\Test2.xls"

workbook.MultiUserEditing

True if the workbook is shared; False if the workbook is not shared. Use this method to test if the workbook is a shared
workbook before calling sharing-related methods. For example:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.KeepChangeHistory = True
End If

workbook.Names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Names collection containing all the names in the workbook. For example, the following code displays all of
the names in a workbook, allowing you to delete them individually:

Dim nm As Name
For Each nm In ThisWorkbook.Names
 If MsgBox("Delete " & nm.Name & "?", vbYesNo) = vbYes Then _
 nm.Delete
Next

workbook.NewWindow

Displays a new window for the workbook.

workbooks.Open(Filename, [UpdateLinks], [ReadOnly],
[Format], [Password], [WriteResPassword],
[IgnoreReadOnlyRecommended], [Origin], [Delimiter],
[Editable], [Notify], [Converter], [AddToMru], [Local],
[CorruptLoad])

Opens an existing workbook and adds it to the Workbooks collection . Returns a reference to the workbook that was
opened.

Argument Settings

Filename The file to open.

UpdateLinks
One of these settings: 0, don't update; 1, update external links but not remote links; 2,
update remote links but not external links; 3, update all links. The default is to prompt the
user.

ReadOnly True opens the workbook as read-only; False opens as read/write. Default is False.

Format
When opening a text file, this argument specifies the column separator character as
follows: 1, tab; 2, comma; 3, space; 4, semicolon; 5, no separator; 6, character specified in
Delimiter argument. Default is 1.

Password If the workbook requires a password, this is the password to open the file. The default is to
prompt the user.

WriteResPassword If the workbook has a password for write access, this is the password to write to the file.
The default is to prompt the user.

IgnoreReadOnlyRecommended True does not display Excel's Read Only Recommended dialog if the file was saved with that
option; False displays the prompt. Default is False.

Origin Indicates the operating system that created the file. One of the following xlPlatform settings:
xlWindows, xlMSDOS, xlMacintosh. The default is the current platform.

Delimiter When opening text files with the Format argument set to 6, this is the delimiter character
used to identify new columns.

Editable

For workbook templates (.xlt): True opens the template for editing; False creates a new
workbook based on the template. Default is False.

For Excel 4.0 add-ins: True displays the add-in in a window and does not run Auto_Open
macros; False hides the add-in. Default is False.

Notify
For shared workbooks, True opens the workbook read-only if it is not available for
read/write and notifies the user when it becomes available for read/write; False causes Open
to fail if the file is not available for the requested access type. Default is False.

Converter
The index of the converter to try first when opening the file. If the file does not match the
file type, other converters are tried in turn. This index corresponds to the first-dimension
index in the array returned by Application.FileConverters.

AddToMru True adds the workbook to Excel's list of recently used files; False does not. Default is
False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local True sets the save language for the workbook to the local language; False sets it to the
Visual Basic language (usually English). Default is False.

CorruptLoad Indicates how to handle workbooks that may be corrupted. One of the following xlCorruptLoad
settings: xlNormalLoad, xlRepairFile, xlExtractData.

The following code opens a workbook and returns a reference to the Workbook object:

Dim wb As Workbook
Set wb = Workbooks.Open("new.xls")

If the workbook does not exist, Open causes an error.

workbooks.OpenDatabase(Filename, [CommandText],
[CommandType], [BackgroundQuery], [ImportDataAs])

Creates a new workbook and imports data from a database into it. Returns a reference to the new workbook.

Argument Settings

Filename The database file to open, or an Office Data Connection (.odc) file specifying the data source.

CommandText A command to execute on the database. Typically, this is a SQL command.

CommandType The type of command to execute. This seems to be ignored, but you can specify "SQL", "Table", or
"Default" if you like.

BackgroundQuery True retrieves the data asynchronously in the background; False retrieves the data synchronously.
Default is False.

ImportDataAs It is not clear how this argument is used.

When working with file-based databases, such as from Microsoft Access, you can specify the filename to use as the data
source as shown here:

cnn = "C:\Program Files\Microsoft Office\OFFICE11" & _
 "\SAMPLES\Northwind.mdb"
sql = "SELECT * FROM Employees"
Set wb = Application.Workbooks.OpenDatabase(cnn, sql, , False)

The preceding code creates a new workbook and imports the Employees table from the Northwind Access database.

When working with server-based databases, such as from Microsoft SQL, you must specify the connection information
in an Office Data Connection file (.odc). For example, the following code creates a new workbook and imports invoice
information from the Northwind SQL database:

Dim wb As Workbook, cnn As String, sql As String
cnn = ThisWorkbook.Path & "\NWindInvoices.odc"
Set wb = Application.Workbooks.OpenDatabase(cnn, , , True)
MsgBox "Performing query..."

The preceding code also demonstrates asynchronous access. In this case, the message box is displayed before the
query is complete.

workbook.OpenLinks(Name, [ReadOnly], [Type])

Opens the source document from a link.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Opens the source document from a link.

Argument Settings

Name The name of the link.

ReadOnly True opens the source document as read-only; False opens the document as read/write.

Type The type of link to get information about. Possible settings are xlExcelLinks, xlOLELinks, xlPublishers, xlSubscribers.

For example, the following code opens the sources of each of the Excel links in a workbook:

linkSources = ThisWorkbook.linkSources(xlLinkTypeExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 ThisWorkbook.OpenLinks (link)
 Next
End If

workbooks.OpenText(Filename, [Origin], [StartRow],
[DataType], [TextQualifier], [ConsecutiveDelimiter], [Tab],
[Semicolon], [Comma], [Space], [Other], [OtherChar], [FieldInfo],
[TextVisualLayout], [DecimalSeparator], [ThousandsSeparator],
[TrailingMinusNumbers], [Local])

Opens a text file and interprets it as a workbook. How OpenText interprets the text file is determined by the method's
many arguments.

Argument Settings

Filename The text file to open.

Origin The platform to create the text file; can be one of the following xlPlatform settings: xlWindows,
xlMSDOS, xlMacintosh. The default is the current platform.

StartRow The row within the file at which to start parsing. Default is 1 for the first row.

DataType Determines how the columns are delimited; can be one of the following xlTextParsingType settings:
xlDelimited or xlFixedWidth. If omitted, Excel tries to determine the correct setting.

TextQualifier Determines how text values are identified; can be one of the following xlTextQualifier settings:
xlTextQualifierDoubleQuote (default), xlTextQualifierNone, xlTextQualifierSingleQuote.

ConsecutiveDelimiter True parses consecutive delimiters as indicating a single column; False parses consecutive
delimiters as multiple, empty columns. Default is False.

Tab True parses the tab character as the column delimiter; False does not.

Semicolon True parses the semicolon as the column delimiter; False does not.

Comma True parses the comma as the column delimiter; False does not.

Space True parses the space character as the column delimiter; False does not.

Other True uses the character specified in OtherChar as the column delimiter; False does not.

OtherChar If Other is True, the character to use as the column delimiter.

FieldInfo A two-dimensional array containing the Excel number format to use for each column.

TextVisualLayout
One of the following xlTextVisualLayoutType settings:

xlTextVisualLTR (default) or xlTextVisualRTL.

DecimalSeparator The character used as the decimal separator in the text file. Default is the system decimal
separator (for example, "." in the U.S.; "," in most of Europe).

ThousandsSeparator The character used as the thousands separator in the text file. Default is the system decimal
separator (for example, "," in the U.S.; "." in most of Europe).

TrailingMinusNumbers True interprets hyphens after numbers as negative numbers; False does not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Local True sets the save language for the workbook to the local language; False sets it to the Visual
Basic language (usually English). Default is False.

By default, Excel makes a best guess as to how to interpret data from a text file. It will use commas or tabs as the
column delimiter, depending on which is found first. For example, the following code loads a simple comma-delimited
text file as a single worksheet in a new workbook:

Workbooks.OpenText "data.csv"

This is similar to using the Open method with the Format argument set to 2. The advantage of using OpenText is the level of
control you have over how the text file is parsed. For example, you can use the FieldInfo array to interpret columns of
data as specific data types:

fld = Array(Array(1, xlGeneralFormat), Array(2, xlMDYFormat), _
Array(4, xlSkipColumn), Array(5, xlSkipColumn), Array(6, xlSkipColumn), _
Array(7, xlSkipColumn), Array(8, xlSkipColumn), Array(9, xlSkipColumn), _
Array(10, xlSkipColumn), Array(11, xlSkipColumn), Array(12, xlSkipColumn), _
Array(13, xlSkipColumn), Array(14, xlSkipColumn), Array(15, xlGeneral))
Workbooks.OpenText "data.txt", , 2, , , , True, , , , , , fld

In these cases, it is usually easiest to record the code generated by the Text Import Wizard and then modify it to get
the results you want.

workbooks.OpenXML(Filename, [Stylesheets], [LoadOption])

Creates a new workbook and loads an XML file into it. Returns a reference to the new workbook.

Argument Settings

Filename The name of the XML file to load.

Stylesheets A number or an array of numbers indicating the XML Style Sheet (XSL) instructions to execute.

LoadOption Determines how the XML file is interpreted or loaded; may be one of the following xlXMLLoadOption
settings: xlXmlLoadImportToList, xlXmlLoadMapXml, xlXmlLoadOpenXml, xlXmlLoadPromptUser.

The idea of executing a limited number of XSL processing instructions seems strange and there are no examples of this
provided in Help. Excel ignores the argument if there are no processing instructions in the XML file.

Use the LoadOption argument to control how Excel loads the XML. For example, complex XML files are "flattened" by
default, which often isn't what you want. By using the LoadOption xmlLoadMapXml, you can load the XML as an XML map and
allow the user to choose the items to import into the worksheets as lists. The following code imports an XML file as an
XML map:

 Set wb = Workbooks.OpenXML(_
 "http://www.mstrainingkits.com/excel/excelobjects.xml", , _
 XlXmlLoadOption.xlXmlLoadMapXml)

workbook.Path

Returns the path of the workbook. This property is useful for locating other files in the workbook's folder. For example,
the following code lists all the workbooks in the current workbook's folder:

fname = Dir(ThisWorkbook.Path & "*.xls")
Do While fname <> ""
 Debug.Print fname
 fname = Dir()
Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loop

workbook.PersonalViewListSettings [= setting]

For shared workbooks, True saves sort and filter settings in the user's personal view of the workbook; False does not
save those settings. Default is True.

workbook.PersonalViewPrintSettings [= setting]

For shared workbooks, True saves print settings in the user's personal view of the workbook; False does not save those
settings. Default is True.

workbook.PivotCaches

Returns the collection of PivotCache objects contained in a workbook. Pivot caches are the in-memory data sets used by
pivot tables. See Chapter 13 for examples of working with pivot caches.

workbook.PivotTableWizard([SourceType], [SourceData],
[TableDestination], [TableName], [RowGrand], [ColumnGrand],
[SaveData], [HasAutoFormat], [AutoPage], [Reserved],
[BackgroundQuery], [OptimizeCache], [PageFieldOrder],
[PageFieldWrapCount], [ReadData], [Connection])

Creates a pivot table in the workbook.

Argument Settings

SourceType One of these settings: xlConsolidation, xlDatabase (default), xlExternal, xlPivotTable.

SourceData Any of a number of possible sources, such as a Range object, an array of ranges, the name of
another pivot table, or an array of strings containing the SQL query string.

TableDestination A Range object indicating where to place the pivot table. The default is the active range.

TableName A name for the pivot table.

RowGrand True displays grand totals for rows; False does not.

ColumnGrand True displays grand totals for columns; False does not.

SaveData True saves the data with the pivot table; False saves only the pivot table definition.

HasAutoFormat True applies automatic formatting to the pivot table; False does not.

AutoPage If SourceType is xlConsolidation, true automatically creates page field; False does not.

Reserved Not used.

BackgroundQuery True performs the query asynchronously in the background; False performs the query
synchronously.

OptimizeCache True optimizes the pivot cache; False does not (default).

PageFieldOrder One of these settings: xlDownThenOver or xlOverThenDown (default).

PageFieldWrapCount The number of page fields in each column or row. Default is 0.

ReadData True reads all data into the pivot cache; False allows data to be read into the pivot cache by page.
Use False for queries that return large amounts of data.

Connection The ODBC connection string for the query that creates the pivot cache.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.Post([DestName])

For Microsoft Exchange clients, posts a workbook to a Microsoft Exchange server. The DestName argument is ignored.

workbook.PrecisionAsDisplayed [= setting]

True calculates results using the displayed precision of numbers; False uses full precision. Default is False.

workbook.PrintOut([From], [To], [Copies], [Preview],
[ActivePrinter], [PrintToFile], [Collate], [PrToFileName])

Prints the workbook.

Argument Settings

From The starting page number to print.

To The ending page number to print.

Copies The number of copies to print.

Preview True previews the workbook before printing; False does not (default).

ActivePrinter The name of the printer to use.

PrintToFile True sends output to a file; False sends output to the printer (default).

Collate True prints in collated order; False prints from first page to last (default).

PrToFileName If PrintToFile is True, the name of the file to create; Excel prompts for a filename if PrintToFile is True and
this argument is omitted.

The following code prints the first page of the current workbook:

ThisWorkbook.PrintOut 1, 1

workbook.PrintPreview([EnableChanges])

Displays the workbook in Print Preview mode.

Argument Settings

EnableChanges True allows the user to change margins from the print preview before printing; False does not allow
changes. Default is True.

workbook.PublishObjects

Returns the PublishObjects collection for the workbook. A PublishObject represents an item that has been saved to a web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the PublishObjects collection for the workbook. A PublishObject represents an item that has been saved to a web
page and can be refreshed from its source in Excel.

workbook.PurgeChangeHistoryNow(Days, [SharingPassword])

For a shared workbook, removes change history for a workbook.

Argument Settings

Days The number of days of history to keep

SharingPassword The password for the workbook if the workbook has one

workbook.ReadOnly

True if the workbook is open for read-only access; False if the workbook is read/write.

workbook.ReadOnlyRecommended

True if the workbook is read-only recommended; False if the workbook is read-only or read/write.

workbook.RecheckSmartTags

Forces Excel to scan the workbook for items that SmartTags may apply to. Generally, SmartTags are applied as the
user enters data; however, they may not be applied if data is imported through code.

workbook.RefreshAll

Refreshes external data ranges and pivot tables in the workbook.

workbook.RejectAllChanges([When], [Who], [Where])

For shared workbooks, rolls back changes made by others. RejectAllChanges can remove changes that are in the
workbook's change history that have not yet been committed by an AcceptAllChanges method.

Argument Settings

When A string indicating the time after which to reject changes.

Who A string indicating the user from which to reject changes. Can be "Everyone", "Everyone but Me", or the name
of one of the users of the shared workbook.

Where A string indicating a range of cells for which to reject changes.

For example, the following code rejects all of the changes made within the last 24 hours:

If ThisWorkbook.MultiUserEditing Then
 ThisWorkbook.RejectAllChanges CStr(Now - 1)
End If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End If

workbook.ReloadAs(Encoding)

Reloads a workbook that was based on an HTML document.

Argument Settings

Encoding An MsoEncoding constant that indicates the character encoding to use when interpreting the HTML

For example, this line reloads a workbook using the UTF8 (Unicode) character encoding:

ThisWorkbook.ReloadAs (MsoEncoding.msoEncodingUTF8)

workbook.RemovePersonalInformation [= setting]

True removes personal information, such as author name, from a workbook when it is saved; False retains that
information (default). The following code saves the workbook, omitting personal information:

ThisWorkbook.RemovePersonalInformation = True
ThisWorkbook.Save

The user receives a security warning if the workbook contains macros, since they may contain personal information that
Excel can't remove.

workbook.RemoveUser(Index)

For shared workbooks, disconnects a user from editing the workbook.

Argument Settings

Index The index of the user to disconnect

Use the UserStatus method to get an array containing the users editing a shared workbook. The following code allows you
to disconnect users from a shared workbook:

If ThisWorkbook.MultiUserEditing Then
 Dim usr(), msg As String
 usr = ThisWorkbook.UserStatus
 For i = 1 To UBound(usr)
 msg = "Disconnect user " & usr(i, 1) & "?"
 If MsgBox(msg, vbYesNo) = vbYes Then _
 ThisWorkbook.RemoveUser (i)
 Next
End If

workbook.Reply

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Macintosh users with PowerTalk mail systems, creates a copy of the workbook and attaches it as a reply to the
person who sent the workbook.

workbook.ReplyAll

For Macintosh users with PowerTalk mail systems, creates a copy of the workbook and attaches it as a reply to the
sender and recipients of the workbook.

workbook.ReplyWithChanges([ShowMessage])

For workbooks that have been distributed using the SendForReview method, this method sends notification to the original
sender letting him know that the review is complete.

Argument Settings

ShowMessage True displays the email message before sending; False does not display the message first. Default is
True.

workbook.ResetColors

Resets the workbook's color palette to the Excel defaults.

workbook.RevisionNumber

For shared workbooks, returns the number of times the workbook has been saved locally.

workbook.Route

Sends the workbook using the workbook's routing slip.

workbook.Routed

True if the workbook has been sent to the next recipient in the workbook's routing slip; False if the workbook has not
yet been sent.

workbook.RoutingSlip

Returns the workbook's RoutingSlip object. Use HasRoutingSlip to create a routing slip and to determine if a workbook has a
routing slip. The following code creates a routing slip and routes a workbook:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

routing slip. The following code creates a routing slip and routes a workbook:

ThisWorkbook.HasRoutingSlip = True
With ThisWorkbook.RoutingSlip
 .Recipients = Array("Beige Bond", "Jeff Webb")
 .Message = "For your review"
 .Subject = "New budget"
 .Delivery = xlOneAfterAnother
End With
ThisWorkbook.Route

workbook.RunAutoMacros(Which)

Runs a workbook's automacros. This method is provided for compatibility with versions of Excel that did not support
events.

Argument Settings

Which One of these settings: xlAutoActivate, xlAutoClose, xlAutoDeactivate, or xlAutoOpen

workbook.Save

Saves the workbook.

workbook.SaveAs([Filename], [FileFormat], [Password],
[WriteResPassword], [ReadOnlyRecommended],
[CreateBackup], [AccessMode], [ConflictResolution],
[AddToMru], [TextCodepage], [TextVisualLayout], [Local])

Saves the workbook and sets the workbook's file properties.

Argument Settings

Filename The name of the file to save. Default is current filename.

FileFormat

One of the following xlFileFormat settings: xlCS, xlCSVMSDOS, xlCurrentPlatformText, xlDBF3, xlDIF,
xlExcel2FarEast, xlExcel4, xlAddIn, xlCSVMac, xlCSVWindows, xlDBF2, xlDBF4, xlExcel2, xlExcel3, xlExcel4Workbook,
xlExcel5, xlExcel7, xlExcel9795, xlHtml, xlIntlAddIn, xlIntlMacro, xlSYLK, xlTemplate, xlTextMac, xlTextMSDOS,
xlTextPrinter, xlTextWindows, xlUnicodeText, xlWebArchive, xlWJ2WD1, xlWJ3, xlWJ3FJ3, xlWK1, xlWK1ALL,
xlWK1FMT, xlWK3, xlWK3FM3, xlWK4, xlWKS, xlWorkbookNormal, xlWorks2FarEast, xlWQ1, xlXMLSpreadsheet.

Password A password the user must enter to open the file.

WriteResPassword A password the user must enter to open the file for read/write access.

ReadOnlyRecommended True causes Excel to display a dialog box recommending the file be opened for read-only access
when the user opens the file; False does not display the dialog box. Default is False.

CreateBackup True creates a backup version of the file when the file is saved; False does not create a backup.
Default is False.

AccessMode One of the following xlSaveAccessMode settings: xlExclusive, xlNoChange (default), xlShared. Use xlShared
to share a workbook, xlExclusive to remove sharing.

ConflictResolution For shared workbooks, one of the following xlSaveConflictResolution settings: xlUserResolution (default),
xlLocalSessionChanges, xlOtherSessionChanges.

AddToMru True adds this workbook to Excel's most recently used file list on the File menu; False omits this
workbook from the list. Default is False.

TextCodepage For foreign-language versions of Excel only, the code page to save the workbook with.

TextVisualLayout For foreign-language versions of Excel only, orientation to use when presenting data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For foreign-language versions of Excel only, orientation to use when presenting data.

Local True saves the workbook against the local user language; False saves the workbook against the
language used in Visual Basic (typically, English).

The following code saves the workbook for single-user access using a new filename:

fil = ThisWorkbook.Path & "\Copy of " & ThisWorkbook.Name
ThisWorkbook.SaveAs fil, , , , , , xlExclusive

This code saves the workbook as an XML spreadsheet using the current filename (note that warnings are displayed if
the file contains macros or drawing objects):

ThisWorkbook.SaveAs , xlXMLSpreadsheet

workbook.SaveAsXMLData(Filename, Map)

Exports a workbook to an XML datafile through an XML map contained in the workbook.

Argument Settings

Filename The name of the XML datafile to create when the export is complete

Map A reference to an XMLMap object contained in the workbook

Use the XMLMap object's IsExportable property to test if data can be exported through the map before calling SaveAsXMLData.
In some cases, data loaded through an XML map cannot be exported through the same map.

The following code gets a reference to an XML map, checks if the workbook's data can be exported, then exports the
data to a new XML file:

Set xmap = ThisWorkbook.XmlMaps("Order_Map")
If xmap.IsExportable Then
 ThisWorkbook.SaveAsXMLData ThisWorkbook.Path & "\data.xml", xmap
Else
 MsgBox "XML data could not be exported."
End If

workbook.SaveCopyAs([Filename])

Saves a copy of the workbook without changing the name of the open workbook.

Argument Settings

Filename The filename with which to save the copy

Although Filename is optional, CopyAs may fail if it tries to use the current filename to save to the current folder since the
source workbook may be open. It is a good idea to supply a filename to avoid this problem.

The following code saves a copy of the current workbook, giving it a new name without changing the name of the
current workbook:

ThisWorkbook.SaveCopyAs "Copy of " & ThisWorkbook.Name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.Saved [= setting]

True indicates there are no unsaved changes to the workbook; False indicates that changes have not been saved.
Setting Saved to True allows you to close a workbook without being prompted to save changes, discarding any changes
since the last save.

workbook.SaveLinkValues [= setting]

True saves the values of external links with the workbook; False saves the link but not the data, refreshing the data
when the workbook is opened. Default is True.

workbook.SendFaxOverInternet([Recipients], [Subject],
[ShowMessage])

Sends a fax over the Internet using a fax service provider. If no fax service provider is configured for your system,
Excel displays a prompt directing you to providers.

Argument Settings

Recipients The email names or phone numbers of fax recipients.

Subject A subject line to include with the fax.

ShowMessage True displays the fax before sending; False does not.

The following code sends the current workbook as a fax:

ThisWorkbook.SendFaxOverInternet "ExcelDemo@Hotmail.com", _
 "Workbook Samples"

workbook.SendForReview([Recipients], [Subject],
[ShowMessage], [IncludeAttachment])

Sends a workbook via email, beginning the review process. In order to track reviewers' comments, the workbook must
be shared.

Argument Settings

Recipients The email names or aliases of the reviewers.

Subject A subject line to include with the email.

ShowMessage True displays the email message before sending; False does not. Default is True.

IncludeAttachment True includes the workbook as a file attachment; False includes a link to the workbook (file must be
saved at a network address). Default is True.

The following code sends a workbook for review, previewing the message before sending. If the workbook is not
already shared, Excel displays a prompt asking if you would like to save it as a shared workbook before sending:

ThisWorkbook.SendForReview "ExcelDemo@Hotmail.com", "Workbook samples"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ThisWorkbook.SendForReview "ExcelDemo@Hotmail.com", "Workbook samples"

Use the EndReview method to end the review process.

workbook.SendMail(Recipients, [Subject], [ReturnReceipt])

Sends a workbook via email as an attachment.

Argument Settings

Recipients The email names or aliases of the recipients.

Subject A subject line to include with the email.

ReturnReceipt True notifies the sender when the recipient receives the mail; False does not (default).

The following line sends the current workbook as an email:

ThisWorkbook.SendMail "ExcelDemo@Hotmail.com", "Workbook samples"

workbook.SendMailer([FileFormat], [Priority])

For Macintosh users with PowerTalk mail systems, sends a workbook as a PowerTalk email message.

Argument Settings

FileFormat An xlFileFormat setting that determines the format of the file to send.

Priority An xlPriority setting determining the priority of the email. Default is xlPriorityNormal.

workbook.SetLinkOnData(Name, [Procedure])

Sets a procedure to run whenever a DDE link is updated.

Argument Settings

Name The name of the OLE or DDE link as returned by the LinkSources property

Procedure The name of a procedure to run when the link is updated

The following code sets the OnUpate procedure to run whenever a DDE link is updated within the workbook:

linkSources = ThisWorkbook.linkSources(xlOLELinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 If InStr(1, link, "DDE") Then _
 ThisWorkbook.SetLinkOnData link, "OnUpdate()"
 Next
End If

workbook.SharedWorkspace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For workbooks that are part of a shared workspace, returns the SharedWorkspace object used to connect to and maintain
the workbook through the SharePoint server. The SharedWorkspace object exists even if the workbook is not shared via
SharePoint Services. You can tell whether or not a workbook is part of a shared workspace by checking the object's
Connected property. For example, the following code checks if a workbook is part of a shared workspace before adding
another workbook to the shared workspace:

Dim sw As Office.SharedWorkspace
Set sw = ThisWorkbook.SharedWorkspace
If sw.Connected Then
 sw.Files.Add ThisWorkbook.Path & "\" & "new.xls"
End If

workbook.Sheets

Returns a collection of all the sheets in a workbook. There is no "Sheet" object type, so the Sheets collection returns a
varied collection of objects that may include Worksheet, Chart, and DialogSheet objects.

DialogSheet objects are now considered obsolete by Microsoft and are no longer
documented. The same applies to the xlExcel4MacroSheet and xlExcel4IntlMacroSheet subtypes of
the Worksheet object. However, Excel still supports their creation and you may encounter
them when working with the Sheets collection.

In general, it is a good idea to use specific types for objects if at all possible. For instance, the Worksheets collection
returns the collection of Worksheet objects in the workbook, and the Charts collection returns the collection of Chart sheet
objects in the workbook.

The Sheets collection is most useful when you want to work with general aspects that apply to all sheets, such as their
order in a workbook. For instance, this code moves the currently active sheet to be the first one in the active workbook:

ActiveSheet.Move Sheets(1)

In the preceding case, it doesn't matter what type of sheet it isthe workbook is reordered.

workbook.ShowConflictHistory [= setting]

For shared workbooks, True displays the conflict history worksheet; False does not. Default is False.

workbook.ShowPivotTableFieldList [= setting]

True displays pivot table field lists; False does not. Default is True.

workbook.SmartDocument

Returns a reference to the workbook's SmartDocument object.

workbook.SmartTagOptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a reference to the workbook's SmartTagOptions object. The SmartTagOptions object controls how SmartTags are
displayed. For example, the following code displays the SmartTag button, omitting the SmartTag indicator in cells:

ThisWorkbook.SmartTagOptions.DisplaySmartTags = xlButtonOnly

By default, Excel displays both the SmartTag indicator and button.

workbook.Styles [= setting]

Returns the collection of Style objects in the workbook. The following code displays information about each style in the
current workbook:

Dim sty As Style
For Each sty In ThisWorkbook.Styles
 Debug.Print sty.Name, sty.NumberFormat, sty.Font.Name
Next

workbook.Subject [= setting]

Sets or returns the Subject item in the workbook's Properties page.

workbook.TemplateRemoveExtData [= setting]

True removes references to external data if the workbook is saved as a template; False does not remove references.
Default is False.

workbook.Title [= setting]

Sets or returns the Title item in the workbook's Properties page.

workbook.ToggleFormsDesign [= setting]

This method is undocumented. It seems to turn on and off the ability to edit Visual Basic Forms, but it is not clear how
that is useful.

workbook.UpdateFromFile

For workbooks opened as read-only, updates the open workbook with the most recent version saved to disk. Causes an
error if the workbook is not read-only. The following code updates a read-only workbook:

If ThisWorkbook.ReadOnly Then _
 ThisWorkbook.UpdateFromFile

workbook.UpdateLink([Name], [Type])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Updates a link in a workbook.

Argument Settings

Name The name of the link to update as returned by the LinkSources property.

Type The xlLinkType of the link; possible settings are xlLinkTypeExcelLinks (default) or xlLinkTypeOLELinks.

The following code updates each of the Excel links in a workbook:

Dim link, linkSources
linkSources = ThisWorkbook.linkSources(xlExcelLinks)
If IsArray(linkSources) Then
 For Each link In linkSources
 ThisWorkbook.UpdateLink Name, XlLinkType.xlLinkTypeExcelLinks
 Next
End If

workbook.UpdateLinks [= setting]

Changes the way OLE links are updated when the workbook is opened. Possible xlUpdateLink settings are:

xlUpdateLinksAlways

Updates links when the workbook is opened, does not alert the user

xlUpdateLinksNever

Does not update links when the workbook is opened or alert the user

xlUpdateLinksUserSetting

Alerts the user if the workbook contains links when the workbook is opened and asks if those links should be
updated (default)

workbook.UpdateRemoteReferences [= setting]

True updates remote references in the workbook; False does not update. Default is True.

workbook.UserStatus

Returns an array containing information about each user who is currently connected to a workbook. This property is
primarily used for listing the users of a shared workbook. The following code displays a list of the users for the current
workbook:

Dim usr(), msg As String
usr = ThisWorkbook.UserStatus
For i = 1 To UBound(usr)
 msg = msg & usr(i, 1) & " Opened: " & _
 usr(i, 2) & " Shared? " & _
 (usr(i, 3) = 2) & vbCrLf
Next
MsgBox msg

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.VBASigned

Returns True if the Visual Basic project contained in the workbook was digitally signed, otherwise, returns False.

workbook.VBProject

Returns a reference to the Visual Basic project that the workbook contains.

workbook.WebOptions

Returns the WebOptions object for a workbook. Use the WebOptions object to determine how a workbook is saved as a web
page. The following code sets the workbook's web options to support Internet Explorer, Version 3.0, then saves the
workbook as a web page:

Dim wo As WebOptions
Set wo = ThisWorkbook.WebOptions
wo.TargetBrowser = msoTargetBrowserV3
ThisWorkbook.SaveAs ThisWorkbook.Path & "\new.HTML", XlFileFormat.xlHtml

Excel's web file format features don't work well with non-Microsoft browsers.

workbook.WebPagePreview

Previews a workbook in the default web browser.

workbook.Windows [= setting]

Returns the collection of Excel windows in which the workbook is displayed. Use the NewWindow method to open new
windows, the Window Close method to close existing windows, and the Windows Arrange method to arrange open windows. If
you close the last window displaying a workbook, Excel prompts the user to save any changes before closing.

The following code opens two new windows for the current workbook, arranges them, then closes the three new
windows:

ThisWorkbook.NewWindow
ThisWorkbook.NewWindow
ThisWorkbook.Windows.Arrange
If MsgBox("Click OK to close new windows.", vbOKCancel) Then
 ThisWorkbook.Windows(3).Close
 ThisWorkbook.Windows(2).Close
End If
ThisWorkbook.Windows.Arrange

workbook.Worksheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a collection containing all the worksheets in a workbook. Use the Worksheets collection to get a specific
worksheet from a workbook. For example, the following code gets a reference to the General worksheet and assigns it
to an object variable:

Dim ws As Worksheet
Set ws = ThisWorkbook.Worksheets("General")

workbook.XmlImport(Url, ImportMap, [Overwrite], [Destination])

Imports an XML file into a list in the workbook. Returns an xlXMLImportResult value indicating whether the import
succeeded.

Argument Settings

Url The address of the XML file to import. The file may be stored on the local machine or at a network
address.

ImportMap An XMLMap object from the workbook to use to interpret the XML. If omitted, Excel creates an XML map
for the XML data.

Overwrite True overwrites any data previously imported through the XML map; False appends data. Default is True.

Destination A Range object identifying the upper-left corner of the destination for the imported data.

The ImportMap argument is required, but it doesn't have to be initialized, since XmlImport creates the XML map if none
exists. For example, the following code imports an XML file into a new worksheet and creates the XML map based on
the XML source file:

Dim ws As Worksheet, xmap As XmlMap, msg As String
' Create a new worksheet for the imported data.
Set ws = ThisWorkbook.Worksheets.Add
ret = ThisWorkbook.XmlImport(_
 "http://www.mstrainingkits.com/excel/ExcelObjects.xml", _
 xmap, , ws.Range("A1"))
Select Case ret
 Case XlXmlImportResult.xlXmlImportElementsTruncated
 msg = "Data was truncated."
 Case XlXmlImportResult.xlXmlImportSuccess
 msg = "XML data imported successfully."
 Case XlXmlImportResult.xlXmlImportValidationFailed
 msg = "XML was not valid."
End Select
MsgBox msg

The return value of XmlImport indicates one of three possible conditions:

xlXmlImportSuccess

The data was successfully imported.

xlXmlImportElementsTruncated

The entire XML file could not be downloaded for some reason, perhaps because there were more elements than
would fit on a spreadsheet.

xlXmlImportValidationFailed

The XML either wasn't valid according to the XML map's schema, or the XML simply wasn't valid XML.

workbook.XmlImportXml(Data, ImportMap, [Overwrite],

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

workbook.XmlImportXml(Data, ImportMap, [Overwrite],
[Destination])

Imports XML data into a list in the workbook. Returns an xlXMLImportResult value indicating whether the import succeeded.

This method is identical to XmlImport, however, it accepts a string argument containing the XML data, rather than the
address of an XML file. This allows you to use XML data returned from web services and to perform XSL transformations
before displaying XML data in Excel.

The following code performs an XSL transformation to limit the data displayed when importing XML data to a new
worksheet:

' Requires reference to Microsoft XML
Dim ws As Worksheet, xmap As XmlMap
Dim msg As String, xml As String
Dim xdoc As New DOMDocument, xstyle As New DOMDocument
' Create a new worksheet for the data.
Set ws = ThisWorkbook.Worksheets.Add
' Load XML.
If Not xdoc.Load("http://www.mstrainingkits.com/excel/ExcelObjects.xml") Then _
 MsgBox "Error loading XML source."
' Load XSL transform.
If Not xstyle.Load("http://www.mstrainingkits.com/excel/ObjByDate.xslt") Then _
 MsgBox "Error loading XSL transform."
' Transform XML.
xml = xdoc.transformNode(xstyle)
' Display results.
ret = ThisWorkbook.XmlImportXml(xml, xmap, , ws.Range("A1"))
Select Case ret
 Case XlXmlImportResult.xlXmlImportElementsTruncated
 msg = "Data was truncated."
 Case XlXmlImportResult.xlXmlImportSuccess
 msg = "XML data imported successfully."
 Case XlXmlImportResult.xlXmlImportValidationFailed
 msg = "XML was not valid."
End Select
MsgBox msg

workbook.XmlMaps

Returns the collection of XML maps in a workbook. Use this collection to select an existing XML map to use for importing
data or when refreshing XML data displayed in a list. The following code uses the XmlMaps collection to get the ExcelObjects
map and then refreshes the data displayed through that map:

Dim xmap As XmlMap
Set xmap = ThisWorkbook.XmlMaps("ExcelObjects")
xmap.DataBinding.Refresh

workbook.XmlNamespaces

Returns the collection of XmlNamespace objects in a workbook. The XmlNamespaces collection is primarily used to install and
manage XML expansion packs that provide SmartDocument features in Excel.

For example, the following code installs one of the sample expansion packs from the Smart Document SDK for all users:

sdoc = "C:\Program Files\Microsoft Office 2003 Developer Resources" & _
 "\Microsoft Office 2003 Smart Document SDK\Samples\SimpleSample" & _
 "\SourceFiles\manifest.xml"
ThisWorkbook.XmlNamespaces.InstallManifest sdoc, True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.7. RecentFile and RecentFiles Members
Use the RecentFiles collection to get the list of recently opened files from the Excel File menu. Use the Application object's
RecentFiles method to get a reference to this collection. Use the RecentFile object to open or remove files from this list. The
RecentFiles collection and RececentFile object have the following members. Key members (shown in bold) are covered in
the following reference section:

Add2 Application2

Count1 Creator2

Delete Index

Item1 Maximum1

Name Open

Parent2 Path

1 Collection only

2 Object and collection

By default, Excel doesn't add files opened programmatically to the recent file list. To add those files, use the Open
method with the AddToMRU argument set to True or use the RecentFiles collection's Add method.

recentfiles.Add(Name)

Adds a file to the recent-files list. If the file already appears in the recent-files list, the list does not change.

Argument Settings

Name The path and name of the file to add to the list. Excel does not check that the file exists before it is
added to the list.

The following code updates the recent-files list to make sure all currently open files are included:

Sub UpdateRecentFiles()
 Dim wb As Workbook
 For Each wb In Application.Workbooks
 Application.RecentFiles.Add wb.FullName
 Next
End Sub

Use the Workbook's FullName property when adding workbooks to the list so that Excel can
set the recent file's Path property correctly.

recentfile.Delete()

Removes a file from the recent files list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recentfiles.Maximum [= setting]

Sets or returns the number of files allowed in the recent-files list. Once this maximum is met, least-recent files are
removed as new files are added. Must be between 0 and 9.

recentfile.Name

Returns the name of the file as it appears in the recent-files list.

recentfile.Open

Attempts to open the recent file in Excel. This method may fail if the file has been deleted or moved.

recentfile.Path

Returns the full filename and path of the recent file if it is available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Opening, Saving, and Sharing Workbooks
Workbooks represent documents in Excel. Use the Workbooks collection to create new documents, to open existing ones,
or to perform operations on all open documents. Use the Workbook object to add worksheets and to save or otherwise
change a single, open document.

The Workbook object is one of the central objects in Excel and most of the code you write will use Workbook in some way.
Partly because of this, the Workbook object is also complex, providing more than 150 different properties and methods as
well as two dozen or so events. I've tried to lay out the most common tasks in this chapter first, before delving into
those details.

In this chapter, I show how to:

Create new workbooks and open existing ones

Save changes to a workbook and close without saving

Base a new workbook on a template

Create workbooks from text files

Create workbooks from XML data

Share a single workbook among multiple users

Use a workbook as part of a shared workspace through a SharePoint server

Respond to events that occur within a workbook

This chapter includes task-oriented reference information for the following objects and their related collections: Workbook
and RecentFile.

Code used in this chapter and additional samples are available in ch08.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1. Work with Worksheet Objects
Worksheets are the workhorses of Excel. Most of the time when you program Excel, you are doing something with a
worksheet, either with the active sheet or some other sheet that you specify. Use the Worksheets collection to create new
worksheets or to refer to a specific worksheet. For example, to create a new, empty worksheet in Excel, use the Add
method on the Sheets or Worksheets collection:

Dim ws1 As Worksheet
Dim ws2 As Sheet

Set ws1 = Worksheets.Add
Set ws2 = Sheets.Add

Once you've declared a worksheet variable and assigned it a reference to a Worksheet object, as in the previous code for
creating a new worksheet, you can use the variable to refer to the worksheet's properties and methods. You can also
use the ActiveSheet method to refer directly to the worksheet that currently has the focus, or refer to a specific worksheet
as a member of the Worksheets collection.

For example, to set the text for all cells in the current worksheet to bold, you can use either of the variables in the
preceding example to return an object that represents all the cells in the worksheet:

ws1.Cells.Font.Bold = True

You could accomplish the same task for the current worksheet by using the ActiveSheet property, which represents the
active worksheet. This is the most common way to refer to the properties and methods of the currently active
worksheet:

ActiveSheet.Cells.Font.Bold = True

You can also refer to a specific worksheet as a member of the Worksheets collection:

Worksheets("WombatBattingAverages").Cells.Font.Bold = True

9.1.1. Get Cells in a Worksheet

As you saw in the previous examples, you can use the Cells property of a worksheet to work with all the cells on a
worksheet as a group. Two other ways you can work with ranges of cells in a worksheet are to:

Use the Range property to work with a specific range of cells

Use the UsedRange property to work with only cells that have data

For example, you could use the Range property to set the text of cells in the range C5:D10 on the active worksheet to
bold type:

ActiveSheet.Range("C5:D10").Font.Bold = True

The Range property may be the most commonly used property in Excel programming. You will use it a lot!

The UsedRange property returns the rectangular block of cells that contain values. The upper-left corner of the block is
the first cell that contains a value, and the lower-right corner of the block is the last cell that contains a value. In
between there may or may not be empty cellsthe range is contiguous. It's more efficient to work with UsedRange than the
Cells property because it returns a smaller, more specific range of cells. For example, the following code selects all of the
cells that have negative values on the active worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cells that have negative values on the active worksheet:

Sub DemoUsedRange()
 Dim cel As Range, str As String
 For Each cel In ActiveSheet.UsedRange
 If cel.Value < 0 Then str = str & cel.Address & ","
 Next
 If str <> "" Then _
 ActiveSheet.Range(Left(str, Len(str) - 1)).Select
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.10. Resources
Additional information about the topics in this section is available from the following online source:

Topic Source

Smart Document SDK http://msdn.microsoft.com/library/en-us/sdsdk/html/sdconGettingStartedAbout.asp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2. Worksheets and Worksheet Members
Use the Worksheets collection to create new and get existing worksheets in Excel. Use the Workbook object's Worksheets
method to get a reference to this collection. Use the Worksheet object to activate and work with ranges on individual
worksheets. The Worksheets collection and Worksheet object have the following members. Key members (shown in bold)
are covered in the following reference section:

Activate Add1 Application2

AutoFilter AutoFilterMode Calculate

Cells ChartObjects CheckSpelling

CircleInvalid CircularReference ClearArrows

ClearCircles CodeName Columns

Comments ConsolidationFunction ConsolidationOptions

ConsolidationSources Copy2 Count1

Creator2 CustomProperties Delete

DisplayPageBreaks DisplayRightToLeft EnableAutoFilter

EnableCalculation EnableOutlining EnablePivotTable

EnableSelection Evaluate FillAcrossSheets1

FilterMode HPageBreaks2 Hyperlinks

Index Item ListObjects

MailEnvelope Move2 Name

Names Next OLEObjects

Outline PageSetup Parent2

Paste PasteSpecial PivotTables

PivotTableWizard Previous PrintOut2

PrintPreview2 Protect ProtectContents

ProtectDrawingObjects Protection ProtectionMode

ProtectScenarios QueryTables Range

ResetAllPageBreaks Rows SaveAs

Scenarios Scripts ScrollArea

Select2 SetBackgroundPicture Shapes

ShowAllData ShowDataForm SmartTags

StandardHeight StandardWidth Tab

TransitionExpEval TransitionFormEntry Type

Unprotect UsedRange Visible2

VPageBreaks2 XmlDataQuery XmlMapQuery

1 Collection only

2 Object and collection

worksheet.Activate()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Activates the specified worksheet giving it focus. For example, the following code activates the WombatBattingAverages
worksheet:

Worksheets("WombatBattingAverages").Activate

worksheets.Add(Before, After, Count, Type)

Creates one or more worksheets. If you create a single worksheet, it is the active sheet. If you create more than one
worksheet, the last sheet created is the active sheet.

Argument Settings

Before Specifies an existing worksheet if you want to place the new worksheet before that sheet.

After Specifies an existing worksheet if you want to place the new worksheet after that sheet.

Count Specifies the number of sheets to be added if you want to create more than one sheet.

Type Use xlChart to insert a chart, xlExcel4MacroSheet to insert a macro sheet, or the path to a template if you are
inserting a sheet based on an existing template.

The following code creates two worksheets after the WombatBattingAverages worksheet:

ActiveWorkbook.Sheets.Add After:=Worksheets("WombatBattingAverages"), Count:=2

worksheet.Calculate()

Calculates the formulas on the specified worksheet. For example, the following code calculates the formulas for the
batting averages of a renowned softball team:

Worksheets("WombatBattingAverages").Calculate

worksheet.Cells

Returns a Range object that represents cells on the worksheet. The syntax shows the Cells property without arguments,
which returns all the cells in a worksheet as a Range object. However, you can also enter the specific range you want to
return as if you were using the syntax for a Range object.

The following code sets the font size to 12 for every cell in the WombatBattingAverages worksheet so the athletes can
easily read them:

Worksheets("WombatBattingAverages").Cells.Font.Size = 12

The following code highlights batting averages .300 and over:

Dim rwIndex As Integer
For rwIndex = 1 To 3
 With Worksheets("WombatBattingAverages").Cells(rwIndex, 2)
 If .Value >= 0.3 Then
 .Font.Color = RGB(255, 0, 0)
 End If
 End With
Next rwIndex

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet.CheckSpelling(CustomDictionary, IgnoreUppercase,
AlwaysSuggest, SpellLang)

Checks the spelling of text on the specified worksheet and displays the Spelling dialog box.

The following code checks the spelling of text in the cells of the WombatBattingAverages worksheet:

Worksheets("WombatBattingAverages").CheckSpelling

worksheet.Columns([Index])

Returns a Range object that represents the column specified by Index or all the columns in a worksheet.

The following code selects the second column (column B) in the active worksheet:

ActiveSheet.Columns(2).Select

worksheet.Comments

Returns the collection of comments on a worksheet.

The following code deletes comments by Jeff Webb:

Dim cmt As Comment
For Each cmnt in ActiveSheet.Comments
 If cmnt.Author = "Jeff Webb" Then cmnt.Delete
Next

worksheet.Copy(Before, After)

Copies the specified sheet to another location in the workbook.

Argument Settings

Before Specifies an existing worksheet if you want to place the copied worksheet before that sheet

After Specifies an existing worksheet if you want to place the copied worksheet after that sheet

The following code copies the KarmaFactor worksheet after the WombatBattingAverages worksheet:

ActiveWorkbook.Worksheets("KarmaFactor").Copy
After:=Worksheets("WombatBattingAverages")

worksheet.DisplayPageBreaks

Set this property to True to display page breaks for the worksheet.

worksheet.EnableCalculation [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

worksheet.EnableCalculation [= setting]

True allows calculations on the worksheet; False disables calculations. Default is True.

worksheet.EnableOutlining [= setting]

Set this property to True to automatically enable outlining symbols on the worksheet.

worksheet.EnablePivotTable [= setting]

Set this property to True to automatically enable PivotTable controls and actions on the worksheet.

worksheet.EnableSelection [= setting]

Set this property to:

xlNoSelection

To prevent any selection on the worksheet

xlNoRestrictions

To allow any cell to be selected

xlUnlockedCells

To allow selection of only unlocked cells

worksheet.Hyperlinks

Returns the collection of hyperlinks on a worksheet.

The following code updates the names of the hyperlinks on a worksheet from one year to another:

For Each hlink in Worksheets("WombatBattingAverages").Hyperlinks
 If hlink.Name = "2005Stats" Then hlink.Name = "2006Stats"
Next

worksheet.Move(Before, After)

Moves the specified sheet to another location in the workbook.

Argument Settings

Before Specifies an existing worksheet if you want to place the worksheet before that sheet

After Specifies an existing worksheet if you want to place the worksheet after that sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code moves the KarmaFactor worksheet after the WombatBattingAverages worksheet:

ActiveWorkbook.Worksheets("KarmaFactor").Move
After:=Worksheets("WombatBattingAverages")

worksheet.Outline

Returns an Outline object that represents the outline of a worksheet.

The following code enables automatic outlining for the active worksheet and then shows the top-level view of the
outline:

ActiveSheet.Cells.AutoOutline
ActiveSheet.Outline.ShowLevels 1, 1

worksheet.PageSetup

Returns a PageSetup object that represents the page setup attributes for the worksheet.

The following code sets the page orientation of the WombatBattingAverages worksheet to landscape:

With Worksheets("WombatBattingAverages")
 .PageSetup.Orientation = xlLandscape
End With

worksheet.Paste([Destination], [Link])

Pastes the contents of the clipboard onto the specified worksheet.

Argument Settings

Destination A Range object that specifies where the clipboard contents are pasted

Link True to establish a link between the pasted clipboard contents and their source

The following code copies the range of cells B1:B3 to the range E1:E3:

Worksheets("WombatBattingAverages ").Range("B1:B3").Copy
ActiveSheet.Paste Destination:=Worksheets("WombatBattingAverages ").Range("E1:E3")

worksheet.PasteSpecial([Format], [Link], [DisplayAsIcon],
[IconFileName], [IconIndex], [IconLabel], [NoHTMLFormatting])

Pastes the contents of the clipboard, including formatting, onto the specified worksheet.

Argument Settings

Format The format of the clipboard contents to paste, using one of the strings specified in the As list box of
the Paste Special dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Format the Paste Special dialog box

Link True to establish a link between the pasted clipboard contents and their source

DisplayAsIcon True to display the pasted clipboard contents as an icon

IconFileName The name of the file containing the icon to display

IconIndex The numeric index of the icon within the icon file

IconLabel The label to display with the icon

NoHTMLFormatting True to remove all HTML formatting from the clipboard contents

The following code pastes the contents of the clipboard into cell D2 as a hyperlink:

Worksheets("WombatBattingAverages ").Range("D2").Select
ActiveSheet.PasteSpecial Format:= "Hyperlink"

worksheet.Protect([Password], [DrawingObjects], [Contents],
[Scenarios], [UserInterfaceOnly], [AllowFormattingCells],
[AllowFormattingColumns], [AllowFormattingRows], [
AllowInsertingColumns], [AllowInsertingRows],
[AllowInsertingHyperlinks], [AllowDeletingColumns], [
AllowDeletingRows], [AllowSorting], [AllowFiltering],
[AllowUsingPivotTables])

Prevents changes to a worksheet.

Argument Settings

Password A case-sensitive password string.

DrawingObjects True prevents changes to shapes.

Contents True prevents changes to the contents of cells.

Scenarios True prevents changes to scenarios.

UserInterfaceOnly True prevents changes to the user interface, but not macros.

AllowFormattingCells True allows formatting changes to cells.

AllowFormattingColumns True allows formatting changes to columns.

AllowFormattingRows True allows formatting changes to rows.

AllowInsertingColumns True allows inserting of columns.

AllowInsertingRows True allows inserting of rows.

AllowInsertingHyperlinks True allows inserting of hyperlinks.

AllowDeletingColumns True allows deleting of columns.

AllowDeletingRows True allows deleting of rows.

AllowSorting True allows sorting on the worksheet.

AllowFiltering True allows filtering on the worksheet.

AllowUsingPivotTables True allows pivot tables on the worksheet.

worksheet.ProtectContents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set this property to True to prevent changes to a worksheet.

worksheet.ProtectDrawingObjects

Set this property to True to prevent changes to shapes.

worksheet.Protection

Returns a Protection object that represents the protection attributes of the worksheet.

The following code displays a message if you can't delete rows in a worksheet:

If ActiveSheet.Protection.AllowDeletingRows = False Then
 MsgBox "Sorry, you can't delete this row."
End If

worksheet.ProtectionMode

Returns True if the user interface is protected. To protect the user interface, use the Protect method with the
UserInterfaceOnly argument set to True.

worksheet.ProtectScenarios

Returns True if scenarios are protected.

worksheet.QueryTables

Returns the QueryTables collection of the worksheet's query tables.

worksheet.Range([Cell1], [Cell2])

Returns a Range object that represents a range of cells.

The following code highlights batting averages .300 and over:

For Each c in Worksheets("WombatBattingAverages").Range("B1:B10")
 If c.Value >= 0.3 Then
 .Font.Color = RGB(255, 0, 0)
 End If
Next c

worksheet.Rows([Index])

Returns a Range object that represents the row specified by Index or all the rows in a worksheet.

The following code selects the second row in the active worksheet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code selects the second row in the active worksheet:

ActiveSheet.Rows(2).Select

worksheet.Scenarios([Index])

Returns a Scenario object that represents the scenario specified by Index or all the scenarios in a worksheet.

worksheet.ScrollArea

Sets the cell range where scrolling is allowed.

The following code sets the scroll area for the WombatBattingAverages worksheet:

Worksheets("WombatBattingAverages").ScrollArea = "B1:B10"

worksheet.SetBackgroundPicture([Filename])

Displays the specified graphic as the background for the worksheet.

worksheet.Shapes

Returns the collection of the Shape objects in the worksheet's drawing layer, such as the AutoShapes, freeforms, OLE
objects, or pictures.

worksheet.StandardHeight

Returns the default height of rows, in points.

worksheet.StandardWidth

Returns the default width of columns, in normal font character widths or the width of the zero character (0) for
proportional fonts.

worksheet.Type [= setting]

Returns or sets the type of worksheet: xlChart, xlDialogSheet, xlExcel4IntlMacroSheet, xlExcel4MacroSheet, or xlWorksheet.

worksheet.Unprotect([Password])

Allows changes to a worksheet.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password A case-sensitive password string

worksheet.UsedRange

Returns a Range object that represents the cell range that contains data.

The following code returns the cell range on the WombatBattingAverages worksheet that contains the worksheet's data.

Worksheets("WombatBattingAverages").UsedRange.Address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3. Sheets Members
Use the Sheets collection to access all the sheets in the active workbook, including both Chart and Worksheet objects. For
example, the following code inserts a worksheet after the first sheet in the active workbook and then inserts a chart
after the new worksheet:

Sheets.Add type:=xlWorksheet, after:=Sheets(1)
Sheets.Add type:=xlChart, after:=Sheets(2)

The Sheets collection has the following members . Key members (shown in bold) are covered in the following reference
section:

Add Copy

Count Delete

FillAcrossSheets HPageBreaks

Item Move

PrintOut PrintPreview

Select Visible

VPageBreaks

Sheets.Copy(Before, After)

Copies the specified sheet to another location in the workbook.

Argument Settings

Before Specifies an existing worksheet if you want to place the copied worksheet before that sheet

After Specifies an existing worksheet if you want to place the copied worksheet after that sheet

Sheets.FillAcrossSheets(Range, Type)

Copies the specified range to the same location on all the worksheets in the workbook.

Argument Settings

Range Specifies a Range object representing the range to copy to the worksheets

Type Specifies how to copy the range: xlFillWithAll, xlFillWithContents, or xlFillWithFormats

Sheets.Move(Before, After)

Moves the specified sheet to another location in the workbook.

Argument Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

Before Specifies an existing worksheet if you want to place the worksheet before that sheet

After Specifies an existing worksheet if you want to place the worksheet after that sheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.4. Work with Outlines
Outlining lets you quickly switch between the big picture and the details of a summary worksheet. In Figure 9-1, you
can see the detail view of a summary worksheet, and in Figure 9-2 you can see the corresponding big picture.

You can control outlining programmatically by using the Outline property of a Worksheet object to return an Outline object.
You can use the properties and methods of the Outline object to control how the outline is displayed and how levels are
assigned.

The following code creates an AutoOutline and displays the outline levels:

ActiveSheet.UsedRange.AutoOutline
ActiveSheet.Outline.AutomaticStyles = True
ActiveSheet.Outline.ShowLevels 1, 1

If you have an outline with many levels, the following code displays all levels. An outline can have up to eight levels:

ActiveSheet.Outline.ShowLevels 8,8

Figure 9-1. A detail view of team sales

Figure 9-2. The corresponding big picture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.5. Outline Members
Use the Outline object to control the level of summary displayed for an outlined range. Use the Worksheet object's Outline
property to get a reference to this object. The Outline object has the following members . Key members (shown in bold)
are covered in the following reference section:

Application AutomaticStyles

Creator Parent

ShowLevels SummaryColumn

SummaryRow

outline.AutomaticStyles

True if the outline uses automatic styles.

outline.ShowLevels(RowLevels, ColumnLevels)

Displays a specified number of row and column levels for the outline.

Argument Settings

RowLevels The number of row levels to display

ColumnLevels The number of column levels to display

outline.SummaryColumn

Sets or returns the location of the outline's summary columns, either xlSummaryOnRight to position the summary column
to the right of the detail columns or xlSummaryOnLeft to position the summary columns to the left of the detail columns.

outline.SummaryRow

Sets or returns the location of the outline's summary rows, either xlSummaryBelow to position the summary column below
the detail rows or xlSummaryAbove to position the summary columns above the detail rows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.6. Work with Ranges
When you want to do just about anything in code with a cell or group of cells in a worksheet, you do it using a Range
object. It is the most frequently used object in Excel programming.

It can also be confusing. You can return a Range object in many ways in your code, and it can represent both individual
cells and groups of cells, depending on the circumstances. Compounding the confusion, the Excel programming
reference topics do not document Range as an object, even though Range objects are referred to frequently throughout
the reference documentation, and you often declare variables of type Range. Once you become familiar with Range
objects, however, they are not difficult to use.

The most common way to return a Range object is using the Range property, which lets you specify a single cell or a
range of cells. The following code returns the value of cell A9 on the currently active worksheet:

ActiveSheet.Range("A9")

The following code selects all the cells in the range A1:A9:

ActiveSheet.Range("A1:A9").Select

Another common way to return a Range object is to use the Cells property to return an individual cell based on its row
and column position in a worksheet. For example, the following code sets the value of cell F4 (the cell in the fourth row
and sixth column) to 12:

ActiveSheet.Cells(4, 6)=12

The advantage of using the Cells property to return a range is that you can use variables to represent the row or column
values. For example, the following code uses the variable rwIndex to iterate through rows of a worksheet:

Dim r As Range
Dim rwIndex As Integer

For rwIndex = 1 To 3
 Set r = ActiveSheet.Cells(rwIndex, 2)
 With r
 If .Value >= 0.3 Then
 .Font.Bold = True
 End If
 End With
Next rwIndex

Other common ways to return a Range object are:

The Columns property

Returns all the cells in a specified worksheet column

The Rows property

Returns all the cells in a specified worksheet row

The UsedRange property

Returns all the cells in a worksheet that contain data

There are other ways to return a Range object, but those are the techniques you will likely use most often.

9.6.1. Find and Replace Text in a Range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finding and replacing text is a familiar operation to anyone who has spent quality time with a word processing program
such as Microsoft Word, or even good old Notepad. It's a pretty common operation in many other applications as well,
including Excel.

You would think, then, that performing an Excel find and replace operation in code would be a pretty straightforward
thing. Unfortunately, it can be a little quirky.

As you might expect, you use the Find method and its close relatives, the FindNext and FindPrevious methods, to find text,
numbers, or cell formatting in a worksheet. You use the Replace method to replace what you found. Here are a couple of
things that you might not expect:

If you specify a range in which to perform the Find operation, the first cell in the range is, by default, the current
cell. So even if that first cell contains what you are looking for, the Find operation will move to the next
occurrence in the range if one exists, rather than keeping the focus on the first cell.

If the search is not successful and your code then uses the Select method to attempt to select the result, it will
return an error.

The following code finds the first occurrence of the string "Ichiro" in the specified range:

Dim myrange As Range
Dim foundcell As Range
Dim strSearch As String

Set myrange = ActiveSheet.Range("A1:A7")
strSearch = "Ichiro"
' Check the first cell in the range.
If myrange(1).Value = strSearch Then
 myrange(1).Select
Else
 Set foundcell = myrange.Find(strSearch, LookIn:=xlValues)
 ' Check to see if the string is found before selecting the cell.
 If Not foundcell Is Nothing Then
 foundcell.Select
 Else
 MsgBox "String not found."
 End If
End If

Note that if the first cell in the range contains the string, it will be selected. If you do not explicitly check to see if the
first cell contains what you are looking for, the code will move to the next occurrence of the search string. Note also
that the code checks to see whether the string is found before selecting the cell.

The following code uses the FindNext method to find the next occurrence of the current search string:

Dim curCell As Range
Dim foundcell As Range

Set curCell = ActiveCell
Set foundcell = ActiveSheet.Range("A1:A7").FindNext(curCell)
foundcell.Select

The following code uses the Replace method to replace all occurrences of the string "Ichiro" in the specified range with the
string "Suzuki":

Dim r As Range

Set r = ActiveSheet.Range("A1:A7")
r.Replace "Ichiro", "Suzuki"

9.6.2. Use Named Ranges

Sometimes it is easier and clearer to refer to a particular range of cells by name than by notation, particularly if you
plan to refer to that range frequently. For example, if the range of cells between A1 and F10 contains monthly sales
information, you could refer to it by the name "MonthlySales" rather than Range("A1:F10").

You create a named range by defining the range that it applies to and then adding the name to the Names collection for
the workbook. For example, the following code establishes the name "MonthlySales" for the range of cells between A1 and
F10 on Sheet1:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

F10 on Sheet1:

Names.Add "MonthlySales", "=Sheet1!A1:F10"

You can use the ListNames method to display a list of all the named ranges in a workbook. The following code pastes a list
of the current named ranges into cell A1 on Sheet 2:

Worksheets("Sheet2").Range("A1").ListNames

Once you have defined a named range, you can use the name rather than specifying the beginning and ending of the
range when you want to change attributes of the range. For example, the following code changes the font of all the cells
in the specified named range to bold type:

Range("MonthlySales").Font.Bold = True

You can use the GoTo method to select the cells in the specified named range:

Application.GoTo "MonthlySales"

If you need to refer to a named range in a worksheet other than the current worksheet, you must include the name of
the worksheet when you specify the named range. For example, if the current worksheet is Sheet1, the following code
selects the MonthlySales named range on Sheet2:

Application.GoTo "Sheet2!MonthlySales"

9.6.3. Format and Change Text

Changing the appearance of text in cells is one of the most common operations when you are working with a
worksheet. You can spend hours getting your worksheet to look just the way you like.

When you want to use code to set or change the format of text in a cell, you have two choices:

Use the Font property to return a Font object , which lets you set or change the format of the entire cell.

Use the Characters collection to set or change the format of individual characters within a cell.

The following code uses the Font property to format the cells in the specified range in bold type:

ActiveSheet.Range("A1:A7").Font.Bold = True

The following code uses the Characters collection to change the font to bold type for the first six characters in cell A7. For
example, if the first word in the cell is "urgent," the following code displays only that word in bold type:

ActiveSheet.Range("A9").Characters(1, 6).Font.Bold = True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.7. Range Members
Use the Range collection to work with cells on a worksheet. Use the Worksheet object's Cells, Range, UsedRange, Columns, or
Rows method to get a reference to this object. The Range collection has the following members. Key members (shown in
bold) are covered in the following reference section:

Activate AddComment AddIndent

Address AddressLocal AdvancedFilter

AllowEdit Application ApplyNames

ApplyOutlineStyles Areas AutoComplete

AutoFill AutoFilter AutoFit

AutoFormat AutoOutline BorderAround

Borders Calculate Cells

Characters CheckSpelling Clear

ClearComments ClearContents ClearFormats

ClearNotes ClearOutline Column

ColumnDifferences Columns ColumnWidth

Comment Consolidate Copy

CopyFromRecordset CopyPicture Count

CreateNames CreatePublisher Creator

CurrentArray CurrentRegion Cut

DataSeries Delete Dependents

DialogBox DirectDependents DirectPrecedents

Dirty End EntireColumn

EntireRow Errors FillDown

FillLeft FillRight FillUp

Find FindNext FindPrevious

Font FormatConditions Formula

FormulaArray FormulaHidden FormulaLabel

FormulaLocal FormulaR1C1 FormulaR1C1Local

FunctionWizard GoalSeek Group

HasArray HasFormula Height

Hidden HorizontalAlignment Hyperlinks

ID IndentLevel Insert

InsertIndent Interior Item

Justify Left ListHeaderRows

ListNames ListObject LocationInTable

Locked Merge MergeArea

MergeCells Name NavigateArrow

Next NoteText NumberFormat

NumberFormatLocal Offset Orientation

OutlineLevel PageBreak Parent

Parse PasteSpecial Phonetic

Phonetics PivotCell PivotField

PivotItem PivotTable Precedents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PivotItem PivotTable

PrefixCharacter Previous PrintOut

PrintPreview QueryTable Range

ReadingOrder RemoveSubtotal Replace

Resize Row RowDifferences

RowHeight Rows Run

Select SetPhonetic Show

ShowDependents ShowDetail ShowErrors

ShowPrecedents ShrinkToFit SmartTags

Sort SortSpecial Speak

SpecialCells Style SubscribeTo

Subtotal Summary Table

Text TextToColumns Top

Ungroup UnMerge UseStandardHeight

UseStandardWidth Validation Value

Value2 VerticalAlignment Width

Worksheet WrapText XPath

range.Activate()

Activates the specified cell, giving it focus. The following code activates cell B2 on the current worksheet:

ActiveSheet.Range("B2").Activate

range.AddComment()

Adds a comment to the specified range. The following code adds a comment to cells with batting averages .300 and
over:

Dim r As Range
Dim rwIndex As Integer

For rwIndex = 1 To 3
 Set r = Worksheets("WombatBattingAverages").Cells(rwIndex, 2)
 With r
 If .Value >= 0.3 Then
 .AddComment "All Star!"
 End If
 End With
Next rwIndex

range.AddIndent[= setting]

Set this property to True to automatically indent text cells that have distributed alignment. Use the HorizontalAlignment and
VerticalAlignment properties to set distributed alignment.

range.Address([RowAbsolute], [ColumnAbsolute],
[ReferenceStyle], [External], [RelativeTo])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the range reference for the specified range.

Argument Settings

RowAbsolute True (default) returns the row reference as an absolute reference.

ColumnAbsolute True (default) returns the column reference as an absolute reference.

ReferenceStyle xlA1 (default) returns an A1-style reference. Use xlR1C1 to return an R1C1 reference.

External False (default) returns a local reference, without including a workbook and worksheet reference.

RelativeTo The Range object that defines the starting point for a relative range. Use this argument if RowAbsolute and
ColumnAbsolute are False, and ReferenceStyle is R1C1.

range.AllowEdit

True if the specified range on a protected worksheet can be edited.

range.Areas([Index])

Returns a collection of Range objects representing the ranges in a multiple-area selection or the range in the area
specified by Index. The following code displays the range references for each range in a multiple-area selection:

Dim r As Range

For each r in Selection.Areas
 MsgBox r.Address
Next r

range.AutoFill(Destination, [Type])

Automatically fills in the cells in a specified destination range based on the specified source range.

Argument Settings

Destination The cells to be filled, including the source range.

Type
The default value is xlFillDefault, which attempts to select the most appropriate fill type based on the
source range. You can also explicitly specify the type using one of the following constants: xlFillDays,
xlFillFormats, xlFillSeries, xlFillWeekdays, xlGrowthTrend, xlFillCopy, xlFillMonths, xlFillValues, xlFillYears, xlLinearTrend.

If the value of cell A1 is 1, the following code automatically fills in the remaining cells in the range A1:A5 with the
values 2 through 5:

Dim srcRange As Range
Dim destRange As Range

Set srcRange = ActiveSheet.Range("A1")
Set destRange = ActiveSheet.Range("A1:A5")
srcRange.AutoFill destRange, xlFillSeries

range.AutoFit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sizes the height and width of the cells in the specified range to fit their contents.

range.BorderAround([LineStyle], [Weight], [ColorIndex], [Color])

Adds a border around the specified range of cells.

Argument Settings

LineStyle
The line style of the border. The default value is xlContinuous, which uses a continuous line. You can also
explicitly specify the line style using one of the following constants: xlDash, xlDashDot, xlDashDotDot, xlDot,
xlDouble, xlLineStyleNone, xlSlantDashDot, xlLineStyleNone.

Weight The thickness of the border line. The default value is xlThin, which uses a thin line. You can also explicitly
specify the weight style using one of the following constants: xlHairline, xlMedium, xlThick.

ColorIndex The border color, as an index of the color in the current color palette or as one of the following
constants: xlColorIndexAutomatic (default) and xlColorIndexNone.

Color The border color as an RGB value.

range.Borders([Index])

Returns the collection of Border objects representing the borders of the specified range or a Border object representing a
border specified by one of the following constants: xlDiagonalDown, xlDiagonalUp, xlEdgeBottom, xlEdgeLeft, xlEdgeRight, xlEdgeTop,
xlInsideHorizontal, or xlInsideVertical.

The following code adds a border around the specified range:

With ActiveSheet.Range("B2:B5")
 .Borders(xlEdgeBottom).LineStyle = xlContinuous
 .Borders(xlEdgeLeft).LineStyle = xlContinuous
 .Borders(xlEdgeRight).LineStyle = xlContinuous
 .Borders(xlEdgeTop).LineStyle = xlContinuous
End With

range.Calculate()

Calculates the formulas in the specified range.

range.Cells([RowIndex], [ColumnIndex])

Returns a Range object representing all the cells in the specified range or a subset indexed by row number and/or
column number.

Argument Settings

RowIndex The row number of the cells to return

ColumnIndex The column number of the cells to return

The following code changes the font to bold type for cells in the specified range with batting averages over .300:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code changes the font to bold type for cells in the specified range with batting averages over .300:

Dim r As Range
Dim rwIndex As Integer

Set r = Worksheets("WombatBattingAverages").Range("B1:B3")

For rwIndex = 1 To 3
 With r.Cells(rwIndex)
 If .Value >= 0.3 Then
 .Font.Bold = True
 End If
 End With
Next rwIndex

range.Characters([Start], [Length])

Returns a Characters object representing all the characters in a text cell or a specified string within the text.

Argument Settings

Start The position of the first character in the string. The default is the first character.

Length The number of characters in the string. The default is the remaining characters in the cell.

The following code changes the font to bold type for the first six characters in cell A9. For example, if the first word in
the cell is "urgent," the following code displays only that word in bold type:

ActiveSheet.Range("A9").Characters(1, 6).Font.Bold = True

range.CheckSpelling([CustomDictionary], [IgnoreUppercase],
[AlwaysSuggest], [SpellLang])

Checks the spelling of the words in the specified range.

Argument Settings

CustomDictionary The filename of a custom dictionary. The custom dictionary is checked if a word isn't found in the main
dictionary.

IgnoreUppercase True ignores uppercase words.

AlwaysSuggest True displays suggested alternate spellings.

SpellLang An msoLanguageID constant specifying the Language ID used for the spellcheck.

range.Clear()

Clears the cells in the specified range.

range.ClearContents()

Clears the cells in the specified range but preserves formatting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.ClearFormats()

Clears the formatting of cells in the specified range.

range.Column

Returns the number of the first column in the specified range. For example, column A is 1, column B is 2, and so on.
The following code returns 2:

ActiveSheet. Range("B3").Column

range.Columns([Index])

Returns a Range object that represents the columns in the specified range or the column specified by Index. The following
code changes the font in column A of the specified range to bold type:

ActiveSheet.Range("A1:B4").Columns(1).Font.Bold = True

range.ColumnWidth

Sets the width of columns in the specified range. If all the columns have the same width, returns the width; otherwise,
returns Null.

range.Copy([Destination])

Copies the specified range to the specified destination range or to the clipboard.

Argument Settings

Destination Specifies the destination range. If this argument is omitted, the range is copied to the clipboard.

range.CopyFromRecordset([Data, MaxRows, MaxColumns])

Copies the contents of a Recordset object into the specified range.

Argument Settings

Data The Recordset object to copy.

MaxRows If you do not want to copy all records, this argument specifies the maximum number of records to copy.

MaxColumns If you do not want to copy all fields, this argument specifies the maximum number of fields to copy.

range.Cut([Destination])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cuts the specified range to the specified destination range or to the clipboard.

Argument Settings

Destination Specifies the destination range. If this argument is omitted, the range is copied to the clipboard.

range.Delete([Shift])

Deletes the specified range and shifts the cells based on the shape of the specified range or the specified Shift argument.

Argument Settings

Shift Specifies whether cells are shifted up (xlShiftUp) or to the left (xlShiftToLeft) when the specified range of cells
is deleted. If you don't supply a Shift argument, the cells are shifted according to the shape of the range.

range.Dependents

Returns a Range object that represents the cell or cells whose values depend directly or indirectly on cells in the specified
range. If cell F2 contains a formula that uses cell B2, and cell G2 contains a formula that uses cell F2, the following code
selects both cell F2 and cell G2:

Dim r As Range

Set r = ActiveSheet.Range("B2")
r.Dependents.Select

range.DirectDependents

Returns a Range object that represents the cell or cells whose values depend directly on cells in the specified range. If
cell F2 contains a formula that uses cell B2, and cell G2 contains a formula that uses cell F2, the following code selects
only cell F2:

Dim r As Range

Set r = ActiveSheet.Range("B2")
r.DirectDependents.Select

range.DirectPrecedents

Returns a Range object that represents the cell or cells that directly use the cells in the specified range. If cell F2
contains a formula that uses cell B2, and cell G2 contains a formula that uses cell F2, the following code selects only cell
F2:

Dim r As Range

Set r = ActiveSheet.Range("G2")
r.DirectPrecedents.Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.End([Direction])

Returns a Range object that represents the cell at the end a region of cells containing the specified range, in the
specified direction. The following code selects the cell at the bottom end of the region containing cell A2:

Dim r As Range

Set r = ActiveSheet.Range("A2")
r.End(xlDown).Select

range.EntireColumn

Returns a Range object that represents the entire column or columns containing the specified range.

range.EntireRow

Returns a Range object that represents the entire row or rows containing the specified range.

range.FillDown

Fills the contents and formatting of the top cell or cells in the specified range to all cells in the range in the downward
direction.

range.FillLeft

Fills the contents and formatting of the right cell or cells in the specified range to all cells in the range to the left.

range.FillRight

Fills the contents and formatting of the left cell or cells in the specified range to all cells in the range to the right.

range.FillUp

Fills the contents and formatting of the bottom cell in the specified range to all cells in the range in the upward
direction.

range.Find(What, [After], [LookIn], [LookAt]), [SearchOrder],
[SearchDirection], [MatchCase], [MatchByte], [SearchFormat])

Returns a Range object representing the cell containing the first occurrence of the specified item within the specified
range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Argument Settings

What The item to search for. Can be a string or Excel data type.

After The cell after which the search begins.

LookIn Specify xlFormulas, xlValues, or xlNotes to limit the search to those types of information.

LookAt xlPart (default) searches within the cell contents; xlWhole searches whole cells.

SearcbOrder xlByRows (default) searches one row at a time; xlByColumns searches one column at a time.

SearchDirection xlNext (default) searches down and to the right; xlPrevious searches up and to the left.

MatchCase False (default) ignores case; True performs a case-sensitive search.

MatchByte

If double-byte language support is enabled:

True matches double-byte characters.

False matches double-byte characters to their single-byte equivalents.

SearchFormat True uses the FindFormat property setting to find cells with specific formatting; False ignores the
FindFormat property. Default is False.

The following code selects the first cell in row A that contains the string "Ichiro". Note that the code checks whether the
Find method returns Nothing. If you don't check for Nothing and the Find item isn't found, the Select method returns an error.

Dim r As Range
Dim foundCell As Range

Set r = ActiveSheet.Range("A1:A6")
Set foundCell = r.Find("Ichiro", LookIn:=xlValues)
If Not foundCell Is Nothing Then
 foundCell.Select
Else
 MsgBox "String not found."
End If

range.FindNext([After])

Repeats the last Find operation and returns a Range object representing the cell containing the next occurrence of the
specified item within the specified range.

Argument Settings

After The cell after which the search begins

range.FindPrevious([After])

Repeats the last Find operation and returns a Range object representing the cell containing the previous occurrence of the
specified item within the specified range.

Argument Settings

After The cell after which the search begins

range.Font

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a Font object that lets you set Font properties for the specified range. The following code formats the cells in the
specified range in bold type:

ActiveSheet.Range("A1:A5").Font.Bold = True

range.Formula

Sets or returns a formula for the specified cell or range in A1-style notation. The following code sets a formula for cell
E1:

ActiveSheet.Range("E1").Formula = "=B1*C1"

range.FormulaR1C1

Sets or returns a formula for the specified cell or range in R1C1-style notation. It is easier to work with formulas in code
using this notation. The following code sets a formula for cell E1:

ActiveSheet.Range("E1").FormulaR1C1 = "=Sum(R2C:R[-1]C)"

range.Hidden

True if the specified row or column is hidden. The following code hides column D:

Dim r As Range

Set r = ActiveSheet.Columns("D")
r.Hidden = True

range.HorizontalAlignment

Sets or returns the horizontal alignment for the specified range. xlGeneral (default) left-aligns text and right-aligns
numbers; xlLeft left-aligns values; xlRight right-aligns values; xlCenter centers values within each cell; xlCenterAcrossSelection
centers values across the range; xlJustify and xlDistributed justify wrapped text within cells; xlFill repeats values to fill each
cell.

range.Hyperlinks

Returns a Hyperlinks collection that represents the hyperlinks in the specified range. The following code changes the
address of hyperlinks in the specified range that have the address "\\koala\bear":

Dim r As Range
Dim h As Hyperlink

Set r = ActiveSheet.Range("D1:D7")
For Each h In r.Hyperlinks
 If h.Address = "\\koala\bear" Then
 h.Address = "\\wombat\mojo"
 End If
Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next

range.Insert([Shift])

Inserts the current cut or copied range into the specified range and shifts the cells based on the shape of the specified
range or the specified Shift argument.

Argument Settings

Shift
Specifies whether cells are shifted to the right (xlShiftToRight) or down (xlShiftDown) when the specified
range of cells is inserted. If you don't supply a Shift argument, the cells are shifted according to the shape
of the range.

range.Interior

Returns an Interior object that represents the interior of the range. The following code changes the color of the specified
range to red:

ActiveSheet.Range("A1:A5").Interior.ColorIndex = 3

range.Item(RowIndex, [ColumnIndex])

Returns a Range object representing a cell within the specified range.

Argument Settings

RowIndex The row index of the row to return, relative to the first cell of the range

ColumnIndex The column index of the column to return, relative to the first cell of the range

The following code changes the color of the cell in the second row and column of the range to green:

Dim r As Range

Set r = ActiveSheet.Range("A1:B5")
r.Item(2, 2).Interior.ColorIndex = 4

range.Justify

Justifies text within cells in the range.

range.Locked

If the worksheet is protected, True prevents changes to the cells in the range, and False enables changes to the cells.

range.Merge([Across])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Merges the cells of the range.

Argument Settings

Across True merges cells in each row as separate merged cells.

range.MergeArea

Returns a Range object that represents the merged range containing the specified cell.

range.MergeCells

True if the range contains merged cells.

range.Next

Returns a Range object that represents the next cell on the worksheet if the specified range is a single cell. If the range
contains multiple cells, returns the next cell starting with the first cell in the range.

range.NoteText([Text], [Start], [Length])

Sets or returns the text of the note for the first cell in the specified range.

Argument Settings

Text The text of the note

Start The position of the first character within the note to set or return

Length The number or characters to set or return

The following code adds a note if the specified cell is greater than the specified value:

With ActiveSheet.Range("B3")
 If .Value >= 0.3 Then
 .NoteText "All Star!"
 End If
End With

range.NumberFormat

Sets or returns the number formatting for the specified range. Returns Null if the range has mixed formats. The format
code corresponds to the Format Codes option in the Format Cells dialog box. The following code changes the color of
the specified range to red:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the specified range to red:

Dim w As Worksheet

Set w = Worksheets("WombatBattingAverages")
w.Range("B1:B5").NumberFormat = "#.000"

range.NumberFormatLocal

Sets or returns the number formatting for the specified range based on the language in the current system settings.

range.Offset([RowOffset], [ColumnOffset])

Returns a Range object representing a range of cells offset from the specified range by a specified number of rows or
columns.

Argument Settings

RowOffset The number of rows by which the range should be offset. A negative value offsets the rows upward.

ColumnOffset The number of columns by which the range should be offset.

The following code activates a range one row down and one column to the right of the specified range:

Dim r As Range

Set r = ActiveSheet.Range("A1:B5")
r.Offset(1, 1).Activate

range.PageBreak

Sets or returns the location of a page break. The following code sets a page break at row 40:

ActiveSheet.Row(40).PageBreak = xlManual

range.PasteSpecial([Paste], [Operation], [SkipBlanks],
[Transpose])

Inserts the contents of the clipboard to the specified range.

Argument Settings

Paste An xlPasteType constant indicating the part of the range to be pasted. The default is xlAll, which pastes all
cell values and attributes.

Operation
xlNone (default) replaces the contents of the range; xlAdd adds the pasted values to the range; xlSubtract
subtracts the pasted values; xlMultiply multiplies values; xlDivide divides the current values by the pasted
ones.

SkipBlanks True ignores blank cells on the clipboard so existing cells aren't replaced with blank ones.

Transpose True transposes rows and columns on the clipboard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.Precedents

Returns a Range object that represents the cell or cells whose values are used directly or indirectly to calculate the
values of the specified range. If cell E1 contains a formula that uses cells B1 and C1, the following code selects cells B1
and C1:

Activesheet.Range("E1").Precedents.Select

range.Previous

Returns a Range object that represents the previous cell on the worksheet if the specified range is a single cell. If the
range contains multiple cells, returns the cell previous to the first cell in the range.

range.PrintOut([From], [To], [Copies], [Preview], [ActivePrinter],
[PrintToFile], [Collate], [PrToFileName])

Prints the specified range.

Argument Settings

From The number of the first page to print.

To The number of the last page to print.

Copies The number of copies to print.

Preview True to display Print Preview.

ActivePrinter The name of the active printer.

PrintToFile True prints to a file.

Collate True to collate multiple copies.

PrToFileName If PrintToFile is True, specifies the name of a file to print to.

range.PrintPreview

Displays Print Preview for the specified range.

range.Replace(What, Replacement, [LookAt]), [SearchOrder],
[MatchCase], [MatchByte], [SearchFormat], [ReplaceFormat])

Replaces text within the cells in the specified range.

Argument Settings

What The string to search for.

Replacement The replacement string.

LookAt xlPart (default) searches within the cell contents; xlWhole searches whole cells.

SearcbOrder xlByRows (default) searches one row at a time; xlByColumns searches one column at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MatchCase False (default) ignores case; True performs a case-sensitive search.

MatchByte

If double-byte language support is enabled:

True matches double-byte characters.

False matches double-byte characters to their single-byte equivalents.

SearchFormat The search format.

ReplaceFormat The replace format.

The following code replaces all occurrences of the string "Ichiro" in the specified range with the string "Suzuki":

Dim r As Range

Set r = ActiveSheet.Range("A1:A6")
r.Replace "Ichiro", "Suzuki"

range.Resize([RowSize]), [ColumnSize])

Resizes the specified range.

Argument Settings

RowSize The number of rows in the resized range

ColumnSize The number of columns in the resized range

range.Row

Returns the row number of the first cell in the specified range.

range.RowDifferences(Comparison)

Returns a Range object that represents all the cells whose contents are different from those of the specified comparison
cell in each row.

Argument Settings

Comparison A cell whose value should be compared to the cell values in the specified range

range.RowHeight

Sets or returns the height of rows in the specified range, measured in points. Returns Null if all rows are not the same
height.

range.Rows([Index])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a Range object that represents the row specified by Index in the specified range or all the rows in the range.

The following code selects the second row in the range:

Dim r As Range

Set r = ActiveSheet.Range("A1:A6")
r.Rows(2).Select

range.Select

Selects the specified range of cells.

range.Show

If the specified range is a single cell and not currently displayed, scrolls the worksheet to display it. The following code
displays cell F216:

Dim r As Range

Set r = ActiveSheet.Range("F216")
r.Show

range.ShowDependents([Remove])

Shows or removes the tracer arrows between a range and its dependents.

range.ShowDetail [= setting]

True displays rows or columns that are part of an outline. False hides them.

range.ShowErrors()

Draws tracer arrows to the cell that is the source of the error.

range.ShowPrecedents([Remove])

Shows or removes the tracer arrows between a range and its precedents.

range.ShrinkToFit [= setting]

True displays if text shrinks to fit the column width.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.Sort([Key1]), [Order1], [Key2], [Type], [Order2], [Key3],
[Order3], [Header], [OrderCustom], [MatchCase], [Orientation],
[SortMethod], [DataOption1], [DataOption2], [DataOption3])

Sorts the current active region or a specific range of cells using the specified range, which must be a single cell.

Argument Settings

Key1 The first row or column to sort. Can be either a single cell range or heading text.

Order1 xlAscending (default) sorts in ascending order; xlDescending sorts in descending order.

Key2 The second row or column to sort.

Type Specifies which elements should be sorted if you are sorting a PivotTable report.

Order2 Same as Order1.

Key3 The third row or column to sort.

Order3 Same as Order1.

Header
Specifies whether the first row or column contains header information. xlNo (default) sorts the entire row
or column; xlYes does not include the first row or column in the sort; xlGuess lets Excel determine if there
is a header.

OrderCustom The index of a custom sort order from the Sort Options dialog box.

MatchCase True to perform a case-sensitive search.

Orientation xlSortRows sorts by row; xlSortColumns sorts by column.

SortMethod For non-English sorts, xlStroke sorts by the quantity of strokes in each character; xlPinYin (default) uses
phonetic Chinese sort order.

DataOption1 xlSortTextAsNumber TReats text as numeric data for the sort for Key1.

DataOption2 xlSortTextAsNumber treats text as numeric data for the sort for Key2.

DataOption3 xlSortTextAsNumber treats text as numeric data for the sort for Key3.

The following code sorts column G:

Dim r As Range

Set r = ActiveSheet.Range("G1")
r.Sort ActiveSheet.Range("G1")

range.SpecialCells(Type, [Value])

Returns a Range object representing cells of the specified type.

Argument Settings

Type

xlCellTypeAllFormatConditions returns cells of any format; xlCellTypeAllValidation returns cells having validation
criteria; xlCellTypeBlanks returns empty cells; xlCellTypeComments returns cells containing notes;
xlCellTypeConstants returns cells containing constants; xlCellTypeFormulas returns cells containing formulas;
xlCellTypeLastCell returns the last cell in the used range; xlCellTypeSameFormatConditions returns cells having the
same format; xlCellTypeSameValidation returns cells having the same validation criteria; xlCellTypeVisible returns
all visible cells.

Value
It Type is xlConstants or xlFormulas, xlNumbers returns cells containing numbers; xlTextValues returns cells
containing text; xlLogical returns cells containing logical values; and xlErrors returns cells containing error
values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

range.Style

Returns a Style object representing the style of cells in the specified range or Null if the range contains a mix of styles.

range.Table([RowInput], [ColumnInput])

Creates a data table based on input values and formulas defined on a worksheet.

Argument Settings

RowInput A cell to use as the basis for row values of the data table

ColumnInput A cell to use as the basis for column values of the data table

range.Text

Returns the text in cells in the specified range if all the cells contain the same value or Null if the cells do not all contain
the same value.

range.TextToColumns([Destination]), [DataType],
[TextQualifier], [ConsecutiveDelimiter], [Tab], [Semicolon],
[Comma], [Space], [Other], [OtherChar], [FieldInfo],
[DecimalSeparator], [ThousandsSeparator],
[TrailingMinusNumbers])

Breaks a column containing text into several columns.

Argument Settings

Destination A Range object specifying the cell where the columns should be placed.

DataType xlDelimited (default) if the text is delimited; xlFixed if it has a fixed length.

TextQualifier xlDoubleQuote (default) uses double quotes to indicate text; xlSingleQuote uses single quotes;
xlNone evaluates fields to see if they are text or numbers.

ConsecutiveDelimiter True inteprets consecutive delimiters as a single delimiter.

Tab True uses tabs as the delimiter.

Semicolon True uses semicolons as the delimiter.

Comma True uses commas as the delimiter.

Space True uses spaces as the delimiter.

Other True uses OtherChar as the delimiter.

OtherChar Specifies a character to use as a delimiter.

FieldInfo An array that describes the data types of fields in the text.

DecimalSeparator The decimal separator to use when recognizing numbers.

ThousandsSeparator The thousands separator to use when recognizing numbers.

TrailingMinusNumbers True interprets numbers followed by - as being negative; False interprets numbers followed
by - as a string. Default is False.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code breaks the specified column containing semicolon-delimited text into two columns beginning at cell
J3:

Dim r As Range

Set r = ActiveSheet.Range("I1:I5")
r.TextToColumns Destination:=ActiveSheet.Range("J3"), Semicolon:=True

range.UnMerge

Returns a merged area of cells to separate cells. The following code returns a merged area containing cell C3 to
separate cells:

ActiveSheet.Range("C3").UnMerge

range.UseStandardHeight [= setting]

Returns True if all cells in the specified range are the standard height or Null if they aren't.

range.UseStandardWidth [= setting]

Returns True if all cells in the specified range are the standard width or Null if they aren't.

range.Value([RangeValueDataType]) [= setting]

Sets or returns the value of the specified range.

Argument Settings

RangeValueDataType

xlRangeValueDefault returns Empty if the specified range is empty or an array of values if the range
contains more than one cell; xlRangeValueMSPersistXML returns the recordset representation of the
range in XML format; xlRangeValueXMLSpreadsheet returns the values, formatting, formulas, and names
of the specified range in XML spreadsheet format.

The following code returns the values of the specified range in XML format:

ActiveSheet.Range("G1:G5").Value(xlRangeValueMSPersistXML)

range.VerticalAlignment

Sets or returns the vertical alignment for the specified range.

range.Worksheet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the Worksheet object that contains the specified range.

range.WrapText[= setting]

True wraps text in cells within the specified range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.8. Work with Scenario Objects
When you need to look at the possible consequences of applying different sets of values to your worksheet calculations,
it can be useful to define scenarios for each possibility. You can do this in code by creating a scenario and adding it to
the Scenarios collection, which contains all the scenarios for the specified worksheet. For example, you can create one
scenario that uses conservative sales results and another that is more optimistic, and then compare what happens to
your bottom line.

The following code adds a formula to a worksheet cell to show the sum of a set of values and then creates a scenario
for a set of values that is very conservative:

With ActiveSheet
 ' Set cell A6 as the sum of cells A1 through A5.
 .Range("A6") = "=Sum(A1:A5)"
 ' Create a low-value scenario.
 .Scenarios.Add "Low", .Range("A1:A5"), Array(10, 20, 30, 40, 50)
 .Scenarios("Low").Show
End With

The following code creates a second scenario with a set of values that is more optimistic:

With ActiveSheet
 ' Create a high-value scenario.
 .Scenarios.add "High", .Range("A1:A5"), Array(100, 200, 300, 400, 500)
 .Scenarios("High").Show
End With

If you want to change the values in a particular scenario, you can use the ChangeScenario method. The following code
upgrades the values in the "Low" scenario:

With ActiveSheet.Scenarios("Low")
 ' Change the values of the low value scenario.
 .ChangeScenario ChangingCells:=ActiveSheet.Range("A1:A5"), Values:=Array(15,
 25, 35, 45, 55)
 .Show
End With

If you want to view a summary of your current scenarios, you can use the CreateSummary method. The following code
summarizes the results of the current scenarios:

ActiveSheet.Scenarios.CreateSummary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.9. Scenario and Scenarios Members
Use the Scenarios collection to create new scenarios. Use the Worksheet object's Scenarios method to get a reference to this
collection. Use the Scenario object to set the criteria of the scenario. The Scenarios collection and Scenario object have the
following members . Key members (shown in bold) are covered in the following reference section:

Add1 Application2

ChangeScenario ChangingCells

Comment Count1

Creator2 CreateSummary1

Delete Hidden

Index Item1

Locked Merge1

Name Parent2

Show Values

1 Collection only

2 Object and collection

scenario.ChangeScenario(ChangingCells, [Values])

Resets the scenario to a new set of changing cells and values.

Argument Settings

ChangingCells A Range object that specifies a new set of changing cells

Values An optional array of new values

scenario.ChangingCells

Returns a Range object that specifies a new set of changing cells. This is equivalent to the ChangingCells argument of the
ChangeScenario method.

scenario.Comment [= setting]

Sets or returns a comment associated with the scenario.

scenario.Hidden [= setting]

True if the scenario is hidden.

scenario.Locked [= setting]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scenario.Locked [= setting]

True if the scenario is locked.

scenario.Show

Inserts the scenario values on the active worksheet.

scenario.Values

Returns an array containing the values of the scenario's changing cells.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Working with Worksheets and Ranges
If workbooks are the documents of Excel, then worksheets and ranges are the chapters and paragraphs, and individual
cells are the words. Most of the work you do takes place on a worksheet and involves manipulating ranges of cells or
individual cells. From a programmer's perspective, you are most often working with Worksheet and Range objects,
although of course you use other objects to accomplish specific tasks.

One concept that any beginning Excel programmer encounters is that, within the world of Excel objects, a cell is not a
Cell objectit is a single-cell Range object. So you will often use a Range object to manipulate individual cells. You use a
Worksheet object to control what happens at the worksheet level, and you use a Range object whenever you work with a
cell or cells.

In this chapter, I show how to:

Work with worksheets

Get cells in a worksheet

Work with the Sheets collection

Work with outlines

Work with ranges

Find and replace text in a range

Use named ranges

Format and change text

Work with scenarios

This chapter includes task-oriented reference information for the following objects and their related collections:
Worksheet, Outline, Range, and Scenario.

Code used in this chapter and additional samples are available in ch09.xls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon
The animal on the cover of Programming Excel with VBA and .NET is a shoveler duck (Anas clypeata). Native to North
America and much of the northern terrain of Europe and Asia, shovelers are easily distinguished from other breeds of
duck by their oblong, spoon-shaped bills. Shoveler ducks are also characterized by their sexual dimorphism; the male of
the species has more ostentatious coloring, with a lustrous green head, neck, and speculum, whereas the shoveler
female is tinted in a more subdued palette of browns, grays, and blacks. Both genders have light-blue forewing
feathers, visible only when the birds are in flight.

Shoveler ducks subsist in the open wetlands on a diet that consists largely of particles of plant and animal matter,
including seeds, leaves, stems, mollusks, and insects. They feed by drawing water into their large spatulate bills, which
are covered by approximately 110 teethlike projections called lamellae that filter out food for consumption.

Breeding season for shovelers typically runs from April to June. The female builds her nest on dry land, twirling her
body on the ground to dig out a cup-shaped hole, which she lines with grass and feathers. She lays anywhere from 8 to
12 olive-colored eggs, which incubate for up to 25 days. During this time, the shoveler female is extremely protective of
her offspring; if forced off her nest, she will frequently defecate on her eggs, a maneuver believed to discourage
predation.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC Garamond. The text font is Linotype
Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: Learning VBA
These chapters teach you how to write professional-quality code using Excel Visual Basic (VBA). This is
more than an entry-level tutorial to a macro language: it's a full set of lessons for readers who are
serious about programming. Once you've finished these chapters, you'll be ready to program Excel,
Word, or any other application that exposes objects to Visual Basic.

Chapter 1, Becoming an Excel Programmer

Chapter 2, Knowing the Basics

Chapter 3, Tasks in Visual Basic

Chapter 4, Using Excel Objects

Chapter 5, Creating Your Own Objects

Chapter 6, Writing Code for Use by Others

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Excel Objects
These chapters provide a comprehensive guide to using the Excel objects to perform specific tasks.
Each chapter in this part combines how-to sections and extensive examples with reference sections for
the objects used to perform the tasks. This combined approach helps you navigate the vast set of
objects, properties, and methods that Excel provides.

Chapter 7, Controlling Excel

Chapter 8, Opening, Saving, and Sharing Workbooks

Chapter 9, Working with Worksheets and Ranges

Chapter 10, Linking and Embedding

Chapter 11, Printing and Publishing

Chapter 12, Loading and Manipulating Data

Chapter 13, Analyzing Data with Pivot Tables

Chapter 14, Sharing Data Using Lists

Chapter 15, Working with XML

Chapter 16, Charting

Chapter 17, Formatting Charts

Chapter 18, Drawing Graphics

Chapter 19, Adding Menus and Toolbars

Chapter 20, Building Dialog Boxes

Chapter 21, Sending and Receiving Workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Extending Excel
These chapters teach you the advanced programming techniques used to create Excel add-ins, use
external libraries, access data from the Web, use the next generation of programming tools, and secure
your applications. These tasks extend Excel by building new components such as add-ins and by
incorporating a wide range of existing components, from Windows DLLs to .NET assemblies. Since many
of these topics are conceptual, these chapters feature more how-to and less reference than Part II.

Chapter 22, Building Add-ins

Chapter 23, Integrating DLLs and COM

Chapter 24, Getting Data from the Web

Chapter 25, Programming Excel with .NET

Chapter 26, Exploring Security in Depth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part IV: Appendixes
These appendixes feature reference tables that are too long and obtrusive to include in the regular
chapters. These tables are important when working with specific aspects of Excel, such as displaying
Excel's built-in dialogs or writing code that must work with earlier versions of Excel.

Appendix A, Reference Tables

Appendix B, Version Compatibility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Excel with VBA and .NET
by Jeff Webb and Steve Saunders

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800)
998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent, John Osborn

Production Editor: Sanders Kleinfeld

Copyeditor: Norma Emory

Indexer: Ellen Troutman-Zaig

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano, Jessamyn Read, and Lesley Borash

Printing History:
April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Programming Excel with VBA and .NET, the image of a shoveler duck, and related trade dress are trademarks of
O'Reilly Media, Inc.

Microsoft, the .NET logo, Visual Basic .NET, Visual Studio .NET, ADO.NET, Excel, Windows, and Windows 2000 are
registered trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 0-596-00766-3

[M]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
I was lucky enough to be at Microsoft when Visual Basic was added to Excel. I had just wrapped up working on OLE
Automationthe technology used to make Excel objects programmableand I remember that meetings with the Excel
group were, at times, difficult. Why should a premier Microsoft product like Excel put so much effort into adding a low-
profit item like Visual Basic when it already had a macro language?

"Because BillG said so" takes you only so far, even at Microsoft. The facts are that programmability doesn't sell
products the way some other whizbang feature might, it adds risk to delivering the product bug-free and on time, and
(we found out) it poses a security hazard.

What programmability does do is make your product a platform for others. Today, Excel is the foundation for probably
millions of small spreadsheet-based software solutions and is used by certainly thousands of very large and
sophisticated applications. That sells products.

It also makes the skill of programming Excel extremely valuable. The community of Excel programmers is large,
knowledgeable, and (I hope) well paid.

Learn by Doing
There are always new Excel programmers joining our ranks. If you are new to Excel or new to programming, I welcome
you. This book isn't a beginner series, but if you read the early chapters and are motivated, I think you'll find this book
a great way to learn a lot very quickly.

If you are an experienced Excel user or a Visual Basic programmer, howdy! I've got a lot to show you.

Don't Force It
If you get stuck, there are a number of ways to resume your progress:

Try turning on macro recording (Tools Macros Record a New Macro), performing the task in Excel,
and then turning off recording and examining the code that Excel generates.

Search MSDN (http://www.microsoft.com/msdn) to see if Microsoft has addressed your problem.

Search newsgroups (http://groups.google.com/groups) to see if someone else has solved your problem.

And of course, you can always check http://excelworkshop.com to see if I've solved the problem!

If something still seems too difficult, examine your approach. I generally go fishing in that situation and come back to
the problem later. If you don't live somewhere with good fishing, I guess you're just stuck.

Excel Versions
This book was developed with Excel 2003 Professional Edition and is designed to be compatible with Excel 2000 and
later. If a feature is not available in Excel 2000, I make an effort to note that, but if you are developing for a specific
version of Excel, please check Appendix B for specific version compatibility and read Chapter 6 for information on
developing design requirements and testing for compatibility.

If you are developing with .NET, I strongly recommend that you target Excel 2003 or later. The code shown in this book
is written in the Visual Basic Applications Edition, but parallel .NET samples are provided online (see the next section).

Get the Samples
The samples for this book are available at http://excelworkshop.com. You'll need them, so go get them now. The
examples come in a Windows compressed folder (.zip) that you'll need to expand on your computer.

The samples are organized by chapter, and each chapter has parallel samples written as Visual Studio .NET projects.
Each chapter uses one main workbook (ch01.xls, ch02.xls, etc.) as a starting point to provide instructions and
navigation.

What's in This Book

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapters in this book are organized by programming task. I cover the most common tasks for each subject within a
chapter. Subjects usually correspond to one or more Excel objects, and I include important reference information for
those objects within each chapter, rather than pushing that information to the back of the book.

I don't expect this book will be your only resource, and I try not to duplicate stuff you
already have (like online Help), so I include cross-references to other sources. I've also
included those resources as hyperlinks in the sample workbooks (see the Resources
sheet). Mostly, those links deal with much more specific issues related to the topic, but
they also include links to toolkits and other software you may need.

Here is a brief overview of each chapter:

Chapter 1, Becoming an Excel Programmer, is meant for those new to Excel programming. It covers how to
record, change, run, and debug code in the Excel Visual Basic Editor. Experienced Excel programmers can skip
this chapter, although they may want to read the section "Write Bug-Free Code."

Chapter 2, Knowing the Basics, explains the parts of a program: classes, modules, procedures, properties,
events, variables, constants, and all the other programming fundamentals. Experienced programmers might
want to skip right to "Objects" and "Exceptions" in this chapter.

Chapter 3, Tasks in Visual Basic, teaches how to use core Visual Basic features to display simple dialog boxes,
perform calculations, work with text, read and write files, check results, and run other applications. Experienced
readers will be most interested in the section "Compare Bits."

Chapter 4, Using Excel Objects, shows you how objects work and helps you find the right object for any given
task in Excel. The object diagrams in this chapter are a road map to the many objects that Excel provides. This
is the first place to look when searching for the appropriate object for a particular task.

Chapter 5, Creating Your Own Objects, goes in-depth about object-oriented programming (OOP). You'll learn
how to construct classes, methods, properties, collections, and events. I also explain why it is important to
destroy your creations once you are done using them.

Chapter 6, Writing Code for Use by Others, is about taking your skills to the next level. I cover the types of
applications you can create, explain the development process, and show how to properly deploy a completed
application.

Chapter 7, Controlling Excel, begins the task-specific part of this book. It shows how to use the top-level
Application object to open and close Excel windows, display dialogs, and get references to other Excel objects.

Chapter 8, Opening, Saving, and Sharing Workbooks, teaches you how to work with Excel document files
(workbooks). As a bonus, I cover how to work with XML and use SharePoint workspaces from Excel.

Chapter 9, Working with Worksheets and Ranges, covers the two most-used objects in Excel. Almost everything
you do in Excel involves worksheets and ranges in some way.

Chapter 10, Linking and Embedding, discusses how to add comments, hyperlinks, and objects from other
applications to a worksheet. I also show how to make Excel speak out loudweird but true!

Chapter 11, Printing and Publishing, is about sending output to the printer or the Web. I show how to control
paging, change printer settings, filter output, preview results, and publish ranges to a web page.

Chapter 12, Loading and Manipulating Data, is all about connecting to databases. I show how to use Query
Tables and use the ADO and DAO object models.

Chapter 13, Analyzing Data with Pivot Tables, shows how to program with one of Excel's most celebrated
features. I show how to reorganize data from a wide variety of data sources, including OLAP data cubes.

Chapter 14, Sharing Data Using Lists, goes into detail on one of Excel's newest features: data lists. I show how
to use them to sort, filter, and even share lists across the network through SharePoint.

Chapter 15, Working with XML, is also a ground-breaker, by showing how to convert XML datafiles into Excel
workbooks and vice versa. I provide a brief introduction to XML and XSL, then dive to the heart of how to
import XML data to lists through XML maps.

Chapter 16, Charting, covers how to create different types of charts and control the main parts of a chart.
Charting is a large and complex topic in Excel, so I also include a road map to the chart objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Charting is a large and complex topic in Excel, so I also include a road map to the chart objects.

Chapter 17, Formatting Charts, explains how to control the fonts, backgrounds, and 3-D effects used on a chart.
It is the companion to Chapter 16.

Chapter 18, Drawing Graphics, is really just for fun. Excel's drawing tools let you create diagrams and other
graphics from data, but you need to know about a couple gotchas. I cover those here.

Chapter 19, Adding Menus and Toolbars, helps you hook your application into the Excel user interface. I also
show how to distribute the menus and toolbars with your code.

Chapter 20, Building Dialog Boxes, is about creating data entry and User Forms to get input or display results to
users. I cover the controls included in the Microsoft Forms libraries here.

Chapter 21, Sending and Receiving Workbooks, shows all the ways to send email from Excel.

Chapter 22, Building Add-Ins, covers how to create and distribute your program as an Excel Add-In. This
chapter begins the advanced programming material.

Chapter 23, Integrating DLLs and COM, shows how to use code from Windows itself or other applications within
your Excel programs.

Chapter 24, Getting Data From the Web, explains how to scrape data from web pages using web queries and
how to execute web services to perform tasks remotely across a network.

Chapter 25, Programming Excel with .NET, teaches how to use .NET code from within Excel, use Excel code
from .NET, or integrate between Excel and .NET using Visual Studio Tools for Office (VSTO).

Chapter 26, Exploring Security in Depth, discusses Windows security, encryption, passwords, protection, and
Information Rights Management (IRM) within Excel. I also show how well (or poorly) certain security features
perform.

Font Conventions
This book follows certain conventions for font usage. Understanding these conventions up front makes it easier to use
this book.

Italic is used for:

Pathnames, filenames, program names, compilers, options, and commands

New terms where they are defined

Internet addresses, such as domain names and URLs

Constant width is used for:

Anything that appears literally in a Visual Basic program, including keywords, data types, constants, method
names, variables, class names, and interface names

Command lines and options that should be typed verbatim on the screen

All code listings

HTML documents, tags, and attributes

Constant width italic is used for:

General placeholders that indicate that an item is replaced by some actual value in your own program

Constant width bold is used for:

Text in code examples that is typed by the user

Highlighting code additions or changes that should be noted by the reader

This icon designates a note, which is an important aside to the nearby text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning relating to the nearby text.

Syntax Conventions
Books about computer languages require a way to express the kinds of information you need to provide on one or more
lines as you type. That is called the syntax of the language and Backus-Naur Form (BNF) is the format used in this book
and most others. In BNF notation, the following conventions apply:

Example Meaning

Keyword Roman (non-italic) words are keywords that must be typed exactly as shown.

Argument Italics indicate an item you must provide, such as an object variable a setting.

[] Square brackets indicate an optional item.

choice1 | choice2 A straight bar indicates a choice between two or more items.

{choice1 | choice2} Braces indicate that you must choose one of the indicated settings.

[choice1 | choice2] Square brackets indicate that the choice is optional.

These conventions are used in headings within the reference sections of this book and also within the text sometimes.
You'll also see them in the online help from Microsoft.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Programming Excel with VBA and .NET, by Jeff Webb and Steve Saunders. Copyright 2006 O'Reilly Media,
Inc., 0-596-00766-3."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/progexcel/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com/

Acknowledgments
It takes a long time and a great deal of help to write a book this big. I would like to thank Steve Saunders for joining
the effort and contributing Chapters 9 and 12. Steve and I go back a very long way, through years at Microsoft and
Digital Equipment Corp. Steve's an Access expert and a great writer, and he sings well, too.

I'd also like to thank Simon St.Laurent for his work throughout the project. We've done four books together nowthat's
close to 2000 pages. Finishing this together is like climbing a mountain: his company improved the ascent and it's great
to stand with him here at the summit. Nice view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

queries, performing through Lists Web Service
Query element, online information
query file (.iqy), web query saved to
Query Wizard
 creating connection to database
QueryDef object (DAO)
QueryDefs collection (DAO)
QueryOptions element, online information
QueryTable object
 asynchronous events, handling for web queries
 events
 members
 members for web queries
 Parameters collection
 Refreshing property
 web queries
 working with
QueryTables collection
 members
 members for web queries
QueryTables method (Worksheet)
QueryType (QueryTable) 2nd
QueryType property (PivotCache)
quick watches (Visual Basic)
QuickRead procedure (example), unit testing
QuickWrite procedure (example), unit testing
Quit method (Application) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

R1C1 reference style, selecting
R1C1 style, formula for cell or range
RadarAxisLabels (ChartGroup)
RaiseEvent method
random access files 2nd
random numbers (Rnd function)
Range collection
 members (key), reference summary
 members, listed
Range method
 Application object
 Hyperlink object
 ListRow object
 Shape object
 Worksheet object 2nd
Range object
 Activate method
 AddComment method 2nd
 AdvancedFilter method
 AutoFilter method 2nd
 cells, working with
 joining two or more into single
 PrintOut and PrintPreview methods
 returning for cell calling current user-defined function
 returning in code, different methods
Range object (continued)
 setting value
 VisibleRange (Window)
Range property
 AllowEditRange object
 returning a Range object
RangeFromPoint method (Window)
ranges
 converting addresses to add hyperlinks
 converting to lists
 creating list from a range
 filtering
 getting with Application.InputBox
 getting XML map from
 intersection of
 of cells in a worksheet, working with
 performing general tasks on
 query results
 security protections for
 UsedRange property
 using named range instead of address
 working with
 changing appearance of text in cells
 finding and replacing text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 finding and replacing text
 objects for
 using named ranges
RangeSelection method (Window)
read-only properties 2nd
read-only, opening file as
ReadingOrder property
 TickLabels object
ReadOnly property
 ListDataFormat object
 Workbook object
ReadOnlyRecommended (Workbook)
ReadReceiptRequested (MailItem)
Ready property (Application)
real-time data (RTD) object
real-time data (RTD) servers
rebuilding dependencies in all workbooks
RecentFile object
RecentFiles collection
RecentFiles property (Application) 2nd
RecheckSmartTags (Workbook)
Recipients property
 MailItem object
 Message object
 RoutingSlip object
Record object (ADO)
 members
record, represented by a line in text datafile
RecordCount method (PivotCache)
recorded code
 changing
 limitations of
recording code
RecordMacro method (Application)
RecordRelative property (Application)
Recordset object 2nd
 ADO, members
 DAO, members
Recordset property
 PivotCache object
 QueryTable object
Recordsets collection (DAO)
RecordType property (Record)
recovery (automatic), of files
recursion, infinite
RedoAction method (UserForm)
RefEdit object
reference counting
reference types
 arrays
references
 circular
 resolving
 conversions
 getting with Application object
 members that return references
 object
 persisting at another level of scope
 remote, updates in workbook
ReferenceStyle method (Application)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReferenceStyle method (Application)
Refresh method
 Chart object
 ListObject object
 PivotCache object
 QueryTable object 2nd
 web queries
 XmlDataBinding object 2nd
RefreshAll method, Workbook object
RefreshDate (PivotTable)
Refreshing property (QueryTable) 2nd 3rd
RefreshName (PivotTable)
RefreshOnChange (Parameter)
RefreshOnFileOpen
 PivotCache object
 QueryTable object 2nd
RefreshPeriod property
 PivotCache object
 QueryTable
 QueryTable object 2nd
RefreshStyle property
RefreshStyle property (QueryTable) 2nd
RefreshTable method (PivotTable)
RegisteredFunctions method (Application)
RegisterXLL method (Application)
regression tests
Regroup method (ShapeRange)
RejectAllChanges method (Workbook) 2nd 3rd
relative references
 conversions
 using when recording
ReleaseFocus method (CommandBars)
ReloadAs method (Workbook)
RelyOnCSS (WebOptions)
RelyOnVML (WebOptions)
Remove method
 collections
 Control object
 UserPermission object
RemoveAll method (Permission)
RemoveDocument method
RemoveItem method
 ComboBox object
 CommandBarComboBox object
RemovePersonalInformation (Workbook)
RemoveUser method (Workbook)
Repaint method (UserForm)
Repeat item, Edit menu
Repeat method (Application)
Repeating property (XPath)
Replace function
Replace method
 Range collection
ReplaceFormat method (Application)
ReplacementList method (AutoCorrect)
Reply method (Workbook)
ReplyAll method (Workbook)
ReplyWithChanges method (Workbook)
Representational State Transfer (REST)
 online information about

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 online information about
RequestPermissionURL (Permission)
Require Variable Declaration (Visual Basic)
Required property (ListDataFormat)
requirements for an application
 design versus
 hardware issues
 questions answered by
RerouteConnections method (Shape) 2nd
reserved words
Reset function
Reset method
 CommandBar object
 CommandBarControl object
 restoring context menus
 RoutingSlip object
ResetColors method (Workbook)
ResetPositionsSideBySide method (Window)
ResetTimer method
 PivotCache object
 QueryTable object 2nd
Resize method (Range)
resizing windows
resolving conflicts
 changes in linked files
 lists 2nd
ResultRange property (QueryTable) 2nd
results
 checking in Visual Basic
 viewing
return values
 procedures
ReturnWhenDone property (RoutingSlip)
ReversePlotOrder property (Axis)
review of a workbook, ending
RevisionNumber (Workbook)
Right function
right-to-left display of Excel
right-to-left languages
RightAngleAxes property (Chart)
RightFooter method (PageSetup)
RightFooterPicture (PageSetup)
RightHeader property (PageSetup)
RightHeaderPicture method (PageSetup)
RightMargin property (PageSetup)
RmDir function 2nd
Rnd function
RobustConnect (PivotCache)
role-based security
RollbackTrans method (Connection)
RootElementName (XmlMap)
RootElementNamespace
 XmlDataBinding object
 XmlMap
RotatedChars property (TextEffectFormat)
rotating shapes
Rotation property (Chart)
Rotation property (Shape)
RoundedCorners property (ChartObject)
Route method (Workbook) 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Route method (Workbook) 2nd 3rd
Routed property (Workbook)
routing slip for workbook
routing workbooks
RoutingSlip method (Workbook)
RoutingSlip object
 members
Row method (Range)
RowColSettings (CustomView)
RowDifference method (Range)
RowFields method (PivotTable)
RowGrand property (PivotTable)
RowHeight method (Range)
RowIndex property (CommandBar)
RowNumbers property (QueryTable)
RowRange method (PivotTable)
Rows collection
 Delete method
 Insert method
Rows method
 Application object
 Range collection
 Worksheet object 2nd
Rows property
RowSource property (Control)
RSet function
RTD (real-time data) servers
RTD method (Application)
RTrim function 2nd
Run method (Application)
RunAutoMacros (Workbook)
runtime errors
 fixing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

samples for this book, xvi
 organization of
Save File As dialog box
Save method
 MailItem object
 Workbook object 2nd
SaveAs method
 MailItem object
 security and
 Workbook object 2nd 3rd
SaveAsODC method (PivotCache)
SaveAsXMLData method (Workbook)
SaveCopyAs method (Workbook)
Saved property
Saved property (Workbook)
SaveData property (PivotTable)
SaveDataSourceDefinition (XmlMap)
SaveHiddenData (DefaultWebOptions)
SaveLinkValues (Workbook)
SaveNewWebPagesAsWebArchives (DefaultWebOptions)
SavePassword property
 PivotCache object
 QueryTable object
SaveSentMessageFolder (MailItem)
SaveWorkspace method (Application) 2nd
SAX (Simple API for XML)
SAXXMLReader, online information
ScaleType property (Axis)
scaling charts
Scenario object
Scenarios collection
 members
Scenarios method (Worksheet) 2nd
Schema object, Xml method
Schemas collection
Schemas method (XmlMap) 2nd
schemas, XML
 adding XML maps
 creating
 elements not supported when importing/exporting XML
 Office 2003
 viewing for XML map
 XmlSchema and XmlSchemas
scope
 constants
 global variables
 local variables
 module-level variables
 object references, in and out of scope

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 object references, in and out of scope
 object variables
 procedures
 restricting for variables
 variables
screens, full-screen mode
ScreenSize (WebOptions)
ScreenTip method (Hyperlink)
ScreenUpdating property (Application) 2nd
Scroll method (UserForm)
ScrollArea method (Worksheet)
ScrollBar object
scrollbars
 display in forms
 displaying in workbooks
 horizontal, displaying in window
 vertical scrollbar, displaying
ScrollBars property
 TextBox and RefEdit controls
 UserForm object
ScrollColumn method (Window)
ScrollHeight property (UserForm)
scrolling
 LargeScroll (Window)
 panes
 SmallScroll (Window)
 synchronizing for windows in side-by-side comparison
ScrollIntoView method (Window)
ScrollLeft property (UserForm)
ScrollRow method (Window)
ScrollTop property (UserForm)
ScrollWidth property (UserForm)
ScrollWorkbookTabs method (Window)
search and replace
 CellFormat object used during
 text in a range
Second function
SecondaryPlot property (Point)
SecondPlotSize property (ChartGroup)
security
 ActiveX controls
 setting
 AllowEditRange and AllowEditRanges
 Anti-Virus API
 Chart protection members
 common tasks
 connecting to external data source
 digital signatures
 digitally signing code files
 distributing settings
 certificates
 Excel password security
 expiration, digital signatures
 layers
 macro settings
 macros and
 macros, setting
 objects used for
 online sources for information and products
 password-protecting and encrypting workbooks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 password-protecting and encrypting workbooks
 passwords in code
 Permission and UserPermission objects
 programming permissions
 programming protection
 programming with passwords and encryption
 protecting code from changes
 protecting items in workbook
 Protection object
 setting policies in .NET
 setting workbook permissions
 threats Excel protects against
 UserAccess and UserAccessList
 Windows security
 file permissions in XP
 viewing users and groups in XP
 Workbook protection members
 Worksheet protection members
Seek function
Select Case statements
 testing error code number
Select event, charts
Select method
 Chart object
 find-and-replace opertions in a range
 Range collection
Select statements
SelectAll method (Shapes)
SelectedItem property (MultiPage)
SelectedSheets method (Window)
Selection
 avoiding for bug-free code
Selection object, ShapeRange method
Selection property (Application)
SelectionMargin property (ComboBox)
SelectionMode (PivotTable)
self-describing files
SelfCert.exe
SelLength property (ComboBox)
SelStart property (ComboBox)
SelText property (ComboBox)
semantic errors
Send method (MailItem)
SenderEmailAddress (MailItem)
SenderName property (MailItem)
SendFaxOverInternet (Workbook)
SendForReview method (Workbook) 2nd
SendKeys function 2nd
 predefined codes
SendKeys method (Application)
SendMail method
 Workbook object
SendMailer method (Workbook)
Sensitivity property (MailItem)
separator bars (menus)
Separator property (DataLabel)
sequential access files 2nd
Series object
 ChartType property
 DataLabels property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DataLabels property
 error bars, adding to chart
 LeaderLines property
 members
 Points property
 Trendlines property
SeriesCollection
 members
SeriesCollection property (Chart) 2nd
SeriesLines method (ChartGroup)
SeriesLines object
SeriesLines property (ChartGroup)
server, configuring to provide digital certificates
ServerBased property (PivotField)
Set, Let, and Get procedures
SetAttr function
SetBackgroundPicture (Worksheet)
SetBackgroundPicture method (Chart)
SetDefaultChart method (Application)
SetDefaultTabOrder (UserForm)
SetEncryptionOptions method
SetFocus method
 Control object
SetLinkOnData (Workbook)
SetParam (Parameter)
SetPasswordEncryptionOptions (Workbook)
Sets
SetShapesDefaultProperties (Shape)
SetSourceData method (Chart)
SetThreeDFormat method (ThreeDFormat)
SetValue method (XPath) 2nd
Shadow property
 ChartArea object
 OLEObject object
 Shape object
ShadowFormat object
shadowing
 constants
 variables
Shape object
 categories of, determining with Type property
 getting OLEObject from
 GroupItems property
 members
 Shadow property
 TextEffect property
 TextFrame property 2nd
 ThreeD property
Shape property
 Comment object
 Hyperlink object
ShapeNode object
ShapeNodes collection
ShapeRange object
 Group method 2nd
 members
 tasks on groups of shapes
shapes
 categories of Shape objects
 connecting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 connecting
 drawing simple
 grouping
 inserting pictures as
 preserving in workbooks saved as XML
 simple
Shapes collection
 Add methods
 AddOLEObject method
 AddTextEffect method
 members
Shapes property (Worksheet)
SharedWorkspace (Workbook) 2nd
SharePoint server
 authentication and authorization
 data format of list column
SharePoint Services
 authentication and authorization
 hosting providers
 Lists Web Service
 requirement for sharing lists
SharePoint, online sources for information
SharePointFormula (ListColumn)
SharePointURL property (ListObject) 2nd
Sheet method (PublishObject)
SheetActivate event
Sheets collection
 members
 PrintOut and PrintPreview methods
Sheets method
 Application object
 objects returned by
 Workbook object
SheetsInNewWorkbook (Application)
Shell function 2nd 3rd
Shell method
shortcut keys
 assigning to menu item
 display in tool tips for command bar controls
shortcuts (global members)
ShortcutText property (CommandBarButton)
Show method
 CommandBar object
 CustomView object
 displaying a form
 Range object
 Scenario object
 switching between views
ShowAllData method (Worksheet)
ShowAllItems property (PivotField)
ShowBubbleSize property (DataLabel)
ShowCategoryName property (DataLabel)
ShowCellBackgroundFromOLAP (PivotTable)
ShowChartTipNames (Application)
ShowChartTipValues (Application)
ShowConflictHistory (Workbook)
ShowDataForm method
ShowDependents method (Range)
ShowDetail method (Range)
ShowDropButtonWhen (ComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ShowDropButtonWhen (ComboBox)
ShowErrors method (Range)
ShowImportExportValidationErrors (XmlMap)
ShowInFieldList property (CubeField)
ShowLegendKey property (DataLabel)
ShowLevels method (Outline)
ShowNegativeBubbles (ChartGroup)
ShowPageMultipleItemLabel (PivotTable)
ShowPages method (PivotTable)
ShowPercentage property (DataLabel)
ShowPivotTableFieldList (Workbook)
ShowPopup method (CommandBar) 2nd
ShowPrecedents method (Range)
ShowSeriesName property (DataLabel)
ShowStartupDialog (Application)
ShowToolTips (Application)
ShowTotals property (ListObject)
ShowValue property (DataLabel)
ShowWindow property (Chart)
ShowWindowsInTaskbar (Application)
ShrinkToFit property (Range)
simple shapes
single-instance classes
size
 of a variable
 of numbers in Visual Basic
 properties controlling
Size property (Parameter)
SizeRepresents property (ChartGroup)
SizeWithWindow property (Chart)
Sleep function 2nd
SmallChange property (ScrollBar)
SmallScroll method (Window)
Smart Document SDK, online information
Smart Tags, rechecking
SmartDocument method (Workbook)
SmartTagOptions method (Workbook)
SmartTagRecognizers method (Application)
Smooth property (Series)
SOAP 2nd
software, task-specific
Solid method (ChartFillFormat)
solution
SortArray function
sorting
 array, using StrComp function
 Sort method (Range)
sounds, enabling
Source argument
Source method (PublishObject)
Source property (Record)
SourceConnectionFile (PivotCache)
SourceData method (PivotTable)
SourceDataFile (PivotCache)
SourceName property
 OLEObject object
 PivotField object
SourceRange property (Parameter)
SourceType property
 PivotCache object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PivotCache object
 PublishObject
SourceURI (XmlDataBinding)
Space function 2nd
Spc function
Speak method (Speech) 2nd
SpeakCellOnEnter (Speech)
SpecialCells method (Range)
SpecialEffect property (UserForm)
Speech method (Application)
Speech object 2nd
 members
spelling errors in Visual Basic
spelling, checking 2nd 3rd
SpellingOptions method (Application)
SpellingOptions object, members
SpinButton control, using to get value of a cell
SpinButton object
Split function 2nd
Split property (Window)
 closing panes
SplitColumn method (Window)
SplitHorizontal method (Window)
SplitRow method (Window)
SplitType property (ChartGroup)
SplitValue property (ChartGroup)
SplitVertical method (Window)
Sql property (PivotCache)
SQL property (QueryDef)
SQL Server database, creating pivot table from
ss namespace prefix
stack
StandardFont method (Application)
StandardFontSize (Application)
StandardFormula property (PivotField)
StandardHeight method (Worksheet)
StandardWidth method (Worksheet)
starting and stopping code in Excel
startup
 AltStartupPath (Application)
 setting startup paths
StartupPath (Application)
StartupPath property (Application)
State property
 CommandBarButton object
 Record object
statements
 conditional
 in Visual Basic programs
 failure to terminate
 listing of completing items and arguments in Visual Basic
 loops
static classes or code modules (.NET)
Static procedures
Static variables
 destroying
status bar, displaying
Status property (RoutingSlip)
StatusBar (Application)
Step keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step keyword
StoreLicenses (Permission)
StrComp function 2nd
StrConv function 2nd
String class (.NET)
String function 2nd
String type, length of
strings
 changing
 comparing
 converting
 repeating characters
 Visual Basic string functions
 Visual Basic string operators
 Visual Basic String variables
 working with, using DLL functions
structures
Style property
 ComboBox object
 CommandBarButton object
 CommandBarComboBox object
 MultiPage object
 Range object
Styles property (Workbook)
stylesheets, XML transformation
Sub procedures
 results
SubAddress method (Hyperlink)
Subject property
 AddIn object
 MailItem Object
 RoutingSlip object
 Workbook object
SubtotalHiddenPageItems (PivotTable)
SubtotalName property (PivotField)
Subtotals property (PivotField)
SummaryColumn method (Outline)
SummaryRow method (Outline)
SurfaceGroup method (Chart)
Switch statements
SyncScrollingSideBySide property (Windows)
syntax errors
 fixing
system settings, viewing
System.GC.Collect, calling in .NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

#If...Then...#End If compiler directive
+ (addition) operator
= (assignment) operator 2nd
* (asterisk), pattern-matching character
\ (division) operator
/ (division) operator
. (dot notation)
 between object and member name
 OLAP field names
= (equal to) operator
^ (exponent) operator
>= (greater than or equal to) operator
> (greater than) operator
() (grouping) operator
& (join) operator
<= (less than or equal to) operator
< (less than) operator
* (multiplication) operator
- (negation) operator
< > (not equal to) operator
? (pattern-matching character)
(pattern-matching character)
. (period), use by variables of user-defined type
? (question mark), shortcut for Print
[] (square brackets), in OLAP field names
- (subtraction) operator
_ (underline) character, continued lines of code
2-D chart types
3-D chart types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Tab function
tab order (dialog boxes)
tabbed dialogs, creating
 showing the dialog
 tabbed control property settings
TabFixedHeight property (MultiPage)
TabFixedWidth property (MultiPage)
TabIndex property (Control)
TabKeyBehavior (TextBox and RefEdit)
Table method (Range)
TableRange1 method (PivotTable)
TableRange2 method (PivotTable)
tables
TablesOnlyFromHTML (QueryTable)
TableStyle property (PivotTable)
TabOrientation property (MultiPage)
TabRatio method (Window)
tabs (sheet), displaying at bottom of workbook
Tabs property (TabStrip)
TabStop property (Control)
TabStrip object
Tag property
 CommandBarControl object
 Control object
TakeFocusOnClick (CommandButton)
TargetBrowser (WebOptions)
task-specific dialog boxes
task-specific piece of software
tasks (Visual Basic)
 Boolean tests
 breaking into procedures
 checking results
 comparing bits
 controlling the compiler
 getting dates and times
 interacting with users
 managing files
 math
 obsolete or obscure functions
 overview
 reading and writing files
 random access
 sequential access
 running other applications
 working with text
 changing strings
 comparing strings
 converting strings
 strings of repeated characters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strings of repeated characters
template (.xlt) file, Visual Basic code in
TemplateRemoveExtData (Workbook)
templates 2nd
 advantages/disadvantages of applications
 installing
 loading, predefined folders for
 removing
TemplatesPath method (Application)
TemplatesPath property (Application)
TestMathFunctions unit test (example) 2nd 3rd
tests for applications, types of
 platform tests
text
 adding to shapes
 diagram nodes, inability to get or set from code
 finding and replacing in a range
 formatting and changing in cells
 shape in HTML format worksheet or chart
 WordArt object
 working with in Visual Basic
 changing strings
 comparing strings
 converting strings
 strings of repeated characters
text box, drawing
text files
 opening and interpreting as workbook
 opening as Excel workbooks
 opening in Excel and reading data from
Text Import Wizard
Text method (Comment)
Text property
 ComboBox object
 CommandBarComboBox object
 Range collection
 TextEffectFormat object
TextAlign property (ComboBox)
TextBox object
TextColumn property (ComboBox)
TextEffect property (Shape) 2nd
TextEffectFormat object
TextFileColumnDataTypes (QueryTable)
TextFileCommaDelimiter (QueryTable)
TextFileConsecutiveDelimiter (QueryTable)
TextFileDecimalSeparator (QueryTable)
TextFileFixedColumnWidths (QueryTable)
TextFileOtherDelimiter (QueryTable)
TextFileParseType (QueryTable)
TextFilePlatform (QueryTable)
TextFilePromptOnRefresh (QueryTable)
TextFileSemicolonDelimiter (QueryTable)
TextFileSpaceDelimiter (QueryTable)
TextFileTabDelimiter (QueryTable)
TextFileTextQualifier (QueryTable)
TextFileThousandsSeparator (QueryTable)
TextFileTrailingMinusNumbers (QueryTable)
TextFrame object
TextFrame property (Shape) 2nd 3rd 4th 5th
TextLength property (ComboBox)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextLength property (ComboBox)
TextToColumns method (Range)
TextToDisplay (Hyperlink)
TextureName property (ChartFillFormat)
textures, chart background 2nd
TextureType property (ChartFillFormat)
ThisCell (Application)
ThisWorkbook (Application)
thousands separators
 operator system settings
 text file imported into query table
ThousandsSeparator (Application)
ThreeD property (Shape)
ThreeDFormat object
tick marks (on axes)
TickLabelPosition property (Axis)
TickLabels method (Axis)
TickLabels object
TickLabelSpacing property (Axis)
TickMarkSpacing property (Axis)
Time function
Time method (AutoRecover)
Timer function
TimeSerial function
timestamps
 adding to digital signatures
 comparing signature expiration to
TimeValue function
TintAndShade property (ColorFormat)
Title method
 PublishObject object
 Workbook object
Title property
 Add-In object
 AllowEditRange object
titles
 adding to charts
 formatting in charts
To property (MailItem)
Toggle Grid button
ToggleButton object
ToggleFormsDesign method (Workbook)
ToggleVerticalText method (TextEffectFormat)
tool tips
 controls
 dislaying when mouse is over toolbar button
 display for functions
 displaying pop-up for command-bar controls
 setting or returning for hyperlink
 showing items on chart as
toolbars
 adding for add-in
 adding, objects used for
 creating in code
 adding edit controls
 deleting toolbars
 creating in Excel
 creating menus with
 Forms
 large buttons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 large buttons
 saving and distributing
TooltipText property (CommandBarControl)
Top property
 Application object
top-level menus
 assigning accelerator and shortcut keys
 changing existing menus
 adding built-in commands
 adding custom commands
 creating in code
 changing existing menus
 removing on close
 resetting existing menus
 creating on Excel menu bar
 saving and distributing
top-level objects
TopIndex property (ComboBox)
TopLeftCell method (ChartObject)
TopMargin property (PageSetup)
TotalLevels method (PivotField)
TotalsAnnotation (PivotTable)
TotalsCalculation (ListColumn)
Tracking property (TextEffectFormat)
TrackStatus property (RoutingSlip)
transactions
 beginning
 committing
 rolling back
transformations, XML 2nd
 creating XSLT for XML spreadsheet
 empty worksheets removed from XML spreadsheet
 external XML files into XML spreadsheets
 from the command line
 in code
 viewer for Internet Explorer
 with processing instructions
TransformNode method (DOMDocument)
TransitionEffect property (Page)
TransitionPeriod property (Page)
Transparency property (FillFormat)
TransparencyColor property (PictureFormat)
TransparentBackground (PictureFormat)
TreeviewControl property (CubeField)
Trendline object
Trendlines collection
Trendlines property (Series) 2nd
trigonometric functions (Visual Basic)
Trim function 2nd
TripleState property (CheckBox, ToggleButton)
trusted code, creating
truth, testing for
Try...Catch...End Try construct (.NET)
two-dimensional arrays
TwoColorGradient method (ChartFillFormat)
Type method
 Hyperlink object
 PageBreak objects
 Parameter object
 Worksheet object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Worksheet object
Type property
 Axis object
 CalloutFormat object
 CommandBar object
 CommandBarControl object
 ConnectorFormat object
 context-menu CommandBar objects
 ListDataFormat object
 Shape object 2nd
 toolbar CommandBar objects
Type statement
type-declaration character
@ type-declaration character
type-safe programming
TypeName function 2nd
TypeOf function 2nd
, types of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Excel with VBA and .NET
By Steve Saunders, Jeff Webb
...
Publisher: O'Reilly
Pub Date: April 2006
Print ISBN-10: 0-596-00766-3
Print ISBN-13: 978-0-59-600766-9
Pages: 1114

Table of Contents | Index

 Programming Excel with VBA and .NET

 Preface

 Part I: Learning VBA

 Chapter 1. Becoming an Excel Programmer

 Section 1.1. Why Program?

 Section 1.2. Record and Read Code

 Section 1.3. Change Recorded Code

 Section 1.4. Fix Misteakes

 Section 1.5. Start and Stop

 Section 1.6. View Results

 Section 1.7. Where's My Code?

 Section 1.8. Macros and Security

 Section 1.9. Write Bug-Free Code

 Section 1.10. Navigate Samples and Help

 Section 1.11. What You've Learned

 Chapter 2. Knowing the Basics

 Section 2.1. Parts of a Program

 Section 2.2. Classes and Modules

 Section 2.3. Procedures

 Section 2.4. Variables

 Section 2.5. Conditional Statements

 Section 2.6. Loops

 Section 2.7. Expressions

 Section 2.8. Exceptions

 Section 2.9. What You've Learned

 Chapter 3. Tasks in Visual Basic

 Section 3.1. Types of Tasks

 Section 3.2. Interact with Users

 Section 3.3. Do Math

 Section 3.4. Work with Text

 Section 3.5. Get Dates and Times

 Section 3.6. Read and Write Files

 Section 3.7. Check Results

 Section 3.8. Find Truth

 Section 3.9. Compare Bits

 Section 3.10. Run Other Applications

 Section 3.11. Control the Compiler

 Section 3.12. Not Covered Here

 Section 3.13. What You've Learned

 Chapter 4. Using Excel Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.1. Objects and Their Members

 Section 4.2. Get Excel Objects

 Section 4.3. Get Objects from Collections

 Section 4.4. About Me and the Active Object

 Section 4.5. Find the Right Object

 Section 4.6. Common Members

 Section 4.7. Respond to Events in Excel

 Section 4.8. The Global Object

 Section 4.9. The WorksheetFunction Object

 Section 4.10. What You've Learned

 Chapter 5. Creating Your Own Objects

 Section 5.1. Modules Versus Classes

 Section 5.2. Add Methods

 Section 5.3. Create Properties

 Section 5.4. Define Enumerations

 Section 5.5. Raise Events

 Section 5.6. Collect Objects

 Section 5.7. Expose Objects

 Section 5.8. Destroy Objects

 Section 5.9. Things You Can't Do

 Section 5.10. What You've Learned

 Chapter 6. Writing Code for Use by Others

 Section 6.1. Types of Applications

 Section 6.2. The Development Process

 Section 6.3. Determine Requirements

 Section 6.4. Design

 Section 6.5. Implement and Test

 Section 6.6. Integrate

 Section 6.7. Test Platforms

 Section 6.8. Document

 Section 6.9. Deploy

 Section 6.10. What You've Learned

 Section 6.11. Resources

 Part II: Excel Objects

 Chapter 7. Controlling Excel

 Section 7.1. Perform Tasks

 Section 7.2. Control Excel Options

 Section 7.3. Get References

 Section 7.4. Application Members

 Section 7.5. AutoCorrect Members

 Section 7.6. AutoRecover Members

 Section 7.7. ErrorChecking Members

 Section 7.8. SpellingOptions Members

 Section 7.9. Window and Windows Members

 Section 7.10. Pane and Panes Members

 Chapter 8. Opening, Saving, and Sharing Workbooks

 Section 8.1. Add, Open, Save, and Close

 Section 8.2. Share Workbooks

 Section 8.3. Program with Shared Workbooks

 Section 8.4. Program with Shared Workspaces

 Section 8.5. Respond to Actions

 Section 8.6. Workbook and Workbooks Members

 Section 8.7. RecentFile and RecentFiles Members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 8.7. RecentFile and RecentFiles Members

 Chapter 9. Working with Worksheets and Ranges

 Section 9.1. Work with Worksheet Objects

 Section 9.2. Worksheets and Worksheet Members

 Section 9.3. Sheets Members

 Section 9.4. Work with Outlines

 Section 9.5. Outline Members

 Section 9.6. Work with Ranges

 Section 9.7. Range Members

 Section 9.8. Work with Scenario Objects

 Section 9.9. Scenario and Scenarios Members

 Section 9.10. Resources

 Chapter 10. Linking and Embedding

 Section 10.1. Add Comments

 Section 10.2. Use Hyperlinks

 Section 10.3. Link and Embed Objects

 Section 10.4. Speak

 Section 10.5. Comment and Comments Members

 Section 10.6. Hyperlink and Hyperlinks Members

 Section 10.7. OleObject and OleObjects Members

 Section 10.8. OLEFormat Members

 Section 10.9. Speech Members

 Section 10.10. UsedObjects Members

 Chapter 11. Printing and Publishing

 Section 11.1. Print and Preview

 Section 11.2. Control Paging

 Section 11.3. Change Printer Settings

 Section 11.4. Filter Ranges

 Section 11.5. Save and Display Views

 Section 11.6. Publish to the Web

 Section 11.7. AutoFilter Members

 Section 11.8. Filter and Filters Members

 Section 11.9. CustomView and CustomViews Members

 Section 11.10. HPageBreak, HPageBreaks, VPageBreak, VPageBreaks Members

 Section 11.11. PageSetup Members

 Section 11.12. Graphic Members

 Section 11.13. PublishObject and PublishObjects Members

 Section 11.14. WebOptions and DefaultWebOptions Members

 Chapter 12. Loading and Manipulating Data

 Section 12.1. Working with QueryTable Objects

 Section 12.2. QueryTable and QueryTables Members

 Section 12.3. Working with Parameter Objects

 Section 12.4. Parameter Members

 Section 12.5. Working with ADO and DAO

 Section 12.6. ADO Objects and Members

 Section 12.7. DAO Objects and Members

 Section 12.8. DAO.Database and DAO.Databases Members

 Section 12.9. DAO.Document and DAO.Documents Members

 Section 12.10. DAO.QueryDef and DAO.QueryDefs Members

 Section 12.11. DAO.Recordset and DAO.Recordsets Members

 Chapter 13. Analyzing Data with Pivot Tables

 Section 13.1. Quick Guide to Pivot Tables

 Section 13.2. Program Pivot Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 13.3. PivotTable and PivotTables Members

 Section 13.4. PivotCache and PivotCaches Members

 Section 13.5. PivotField and PivotFields Members

 Section 13.6. CalculatedFields Members

 Section 13.7. CalculatedItems Members

 Section 13.8. PivotCell Members

 Section 13.9. PivotFormula and PivotFormulas Members

 Section 13.10. PivotItem and PivotItems Members

 Section 13.11. PivotItemList Members

 Section 13.12. PivotLayout Members

 Section 13.13. CubeField and CubeFields Members

 Section 13.14. CalculatedMember and CalculatedMembers Members

 Chapter 14. Sharing Data Using Lists

 Section 14.1. Use Lists

 Section 14.2. ListObject and ListObjects Members

 Section 14.3. ListRow and ListRows Members

 Section 14.4. ListColumn and ListColumns Members

 Section 14.5. ListDataFormat Members

 Section 14.6. Use the Lists Web Service

 Section 14.7. Lists Web Service Members

 Section 14.8. Resources

 Chapter 15. Working with XML

 Section 15.1. Understand XML

 Section 15.2. Save Workbooks as XML

 Section 15.3. Use XML Maps

 Section 15.4. Program with XML Maps

 Section 15.5. XmlMap and XmlMaps Members

 Section 15.6. XmlDataBinding Members

 Section 15.7. XmlNamespace and XmlNamespaces Members

 Section 15.8. XmlSchema and XmlSchemas Members

 Section 15.9. Get an XML Map from a List or Range

 Section 15.10. XPath Members

 Section 15.11. Resources

 Chapter 16. Charting

 Section 16.1. Navigate Chart Objects

 Section 16.2. Create Charts Quickly

 Section 16.3. Embed Charts

 Section 16.4. Create More Complex Charts

 Section 16.5. Choose Chart Type

 Section 16.6. Create Combo Charts

 Section 16.7. Add Titles and Labels

 Section 16.8. Plot a Series

 Section 16.9. Respond to Chart Events

 Section 16.10. Chart and Charts Members

 Section 16.11. ChartObject and ChartObjects Members

 Section 16.12. ChartGroup and ChartGroups Members

 Section 16.13. SeriesLines Members

 Section 16.14. Axes and Axis Members

 Section 16.15. DataTable Members

 Section 16.16. Series and SeriesCollection Members

 Section 16.17. Point and Points Members

 Chapter 17. Formatting Charts

 Section 17.1. Format Titles and Labels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 17.1. Format Titles and Labels

 Section 17.2. Change Backgrounds and Fonts

 Section 17.3. Add Trendlines

 Section 17.4. Add Series Lines and Bars

 Section 17.5. ChartTitle, AxisTitle, and DisplayUnitLabel Members

 Section 17.6. DataLabel and DataLabels Members

 Section 17.7. LeaderLines Members

 Section 17.8. ChartArea Members

 Section 17.9. ChartFillFormat Members

 Section 17.10. ChartColorFormat Members

 Section 17.11. DropLines and HiLoLines Members

 Section 17.12. DownBars and UpBars Members

 Section 17.13. ErrorBars Members

 Section 17.14. Legend Members

 Section 17.15. LegendEntry and LegendEntries Members

 Section 17.16. LegendKey Members

 Section 17.17. Gridlines Members

 Section 17.18. TickLabels Members

 Section 17.19. Trendline and Trendlines Members

 Section 17.20. PlotArea Members

 Section 17.21. Floor Members

 Section 17.22. Walls Members

 Section 17.23. Corners Members

 Chapter 18. Drawing Graphics

 Section 18.1. Draw in Excel

 Section 18.2. Create Diagrams

 Section 18.3. Program with Drawing Objects

 Section 18.4. Program Diagrams

 Section 18.5. Shape, ShapeRange, and Shapes Members

 Section 18.6. Adjustments Members

 Section 18.7. CalloutFormat Members

 Section 18.8. ColorFormat Members

 Section 18.9. ConnectorFormat Members

 Section 18.10. ControlFormat Members

 Section 18.11. FillFormat Members

 Section 18.12. FreeFormBuilder

 Section 18.13. GroupShapes Members

 Section 18.14. LineFormat Members

 Section 18.15. LinkFormat Members

 Section 18.16. PictureFormat Members

 Section 18.17. ShadowFormat

 Section 18.18. ShapeNode and ShapeNodes Members

 Section 18.19. TextFrame

 Section 18.20. TextEffectFormat

 Section 18.21. ThreeDFormat

 Chapter 19. Adding Menus and Toolbars

 Section 19.1. About Excel Menus

 Section 19.2. Build a Top-Level Menu

 Section 19.3. Create a Menu in Code

 Section 19.4. Build Context Menus

 Section 19.5. Build a Toolbar

 Section 19.6. Create Toolbars in Code

 Section 19.7. CommandBar and CommandBars Members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 19.8. CommandBarControl and CommandBarControls Members

 Section 19.9. CommandBarButton Members

 Section 19.10. CommandBarComboBox Members

 Section 19.11. CommandBarPopup Members

 Chapter 20. Building Dialog Boxes

 Section 20.1. Types of Dialogs

 Section 20.2. Create Data-Entry Forms

 Section 20.3. Design Your Own Forms

 Section 20.4. Use Controls on Worksheets

 Section 20.5. UserForm and Frame Members

 Section 20.6. Control and Controls Members

 Section 20.7. Font Members

 Section 20.8. CheckBox, OptionButton, ToggleButton Members

 Section 20.9. ComboBox Members

 Section 20.10. CommandButton Members

 Section 20.11. Image Members

 Section 20.12. Label Members

 Section 20.13. ListBox Members

 Section 20.14. MultiPage Members

 Section 20.15. Page Members

 Section 20.16. ScrollBar and SpinButton Members

 Section 20.17. TabStrip Members

 Section 20.18. TextBox and RefEdit Members

 Chapter 21. Sending and Receiving Workbooks

 Section 21.1. Send Mail

 Section 21.2. Work with Mail Items

 Section 21.3. Collect Review Comments

 Section 21.4. Route Workbooks

 Section 21.5. Read Mail

 Section 21.6. MsoEnvelope Members

 Section 21.7. MailItem Members

 Section 21.8. RoutingSlip Members

 Part III: Extending Excel

 Chapter 22. Building Add-ins

 Section 22.1. Types of Add-ins

 Section 22.2. Code-Only Add-ins

 Section 22.3. Visual Add-ins

 Section 22.4. Set Add-in Properties

 Section 22.5. Sign the Add-in

 Section 22.6. Distribute the Add-in

 Section 22.7. Work with Add-ins in Code

 Section 22.8. AddIn and AddIns Members

 Chapter 23. Integrating DLLs and COM

 Section 23.1. Use DLLs

 Section 23.2. Use COM Applications

 Chapter 24. Getting Data from the Web

 Section 24.1. Perform Web Queries

 Section 24.2. QueryTable and QueryTables Web Query Members

 Section 24.3. Use Web Services

 Section 24.4. Resources

 Chapter 25. Programming Excel with .NET

 Section 25.1. Approaches to Working with .NET

 Section 25.2. Create .NET Components for Excel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 25.2. Create .NET Components for Excel

 Section 25.3. Use .NET Components in Excel

 Section 25.4. Use Excel as a Component in .NET

 Section 25.5. Create Excel Applications in .NET

 Section 25.6. Resources

 Chapter 26. Exploring Security in Depth

 Section 26.1. Security Layers

 Section 26.2. Understand Windows Security

 Section 26.3. Password-Protect and Encrypt Workbooks

 Section 26.4. Program with Passwords and Encryption

 Section 26.5. Workbook Password and Encryption Members

 Section 26.6. Excel Password Security

 Section 26.7. Protect Items in a Workbook

 Section 26.8. Program with Protection

 Section 26.9. Workbook Protection Members

 Section 26.10. Worksheet Protection Members

 Section 26.11. Chart Protection Members

 Section 26.12. Protection Members

 Section 26.13. AllowEditRange and AllowEditRanges Members

 Section 26.14. UserAccess and UserAccessList Members

 Section 26.15. Set Workbook Permissions

 Section 26.16. Program with Permissions

 Section 26.17. Permission and UserPermission Members

 Section 26.18. Add Digital Signatures

 Section 26.19. Set Macro Security

 Section 26.20. Set ActiveX Control Security

 Section 26.21. Distribute Security Settings

 Section 26.22. Using the Anti-Virus API

 Section 26.23. Common Tasks

 Section 26.24. Resources

 Part IV: Appendixes

 Appendix A. Reference Tables

 Section A.1. Dialogs Collection Constants

 Section A.2. Common Programmatic IDs

 Appendix B. Version Compatibility

 Section B.1. Summary of Version Changes

 Section B.2. Macintosh Compatibility

 About the Author

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UCase function
UnderlyingValue (Field)
Undo item, Edit menu
Undo method (Application)
UndoAction method (UserForm)
Ungroup method (Shape)
Union method (Application)
unit testing
 conventions when writing tests
 procedures
unit tests
Unlink method (ListObject) 2nd
Unlist method (ListObject) 2nd
UnMerge method (Range)
Unprotect method
 AllowEditRange object
 Chart object
 Workbook object
 Worksheet object
Unprotect method (Worksheet)
UnprotectSharing method (Workbook)
Until statement, using in Do...Loop
UpBars method (ChartGroup)
UpBars object
Update method
 OLEObject object
 PivotTable object
UpdateChanges method (ListObject) 2nd
UpdateFromFile (Workbook)
UpdateLink method (Workbook)
UpdateLinks method (Workbook)
UpdateLinksOnSave (DefaultWebOptions)
UpdateList method (Lists Web Service)
UpdateListItems method (Lists Web Service)
UpdateRemoteReferences (Workbook)
updating web queries periodically
upper bound of an array
Uri property (XmlNamespace)
URL for help file
UsableWidth method (Application)
UsedObjects collection
 displaying all objects loaded in Excel
 members
UsedObjects method (Application)
UsedRange method (Worksheet) 2nd
UsedRange property 2nd
 returning Range object
UseLocalConnection (PivotCache)
UseLongFileNames (WebOptions)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UseLongFileNames (WebOptions)
UsePicture method (ChartFillFormat)
user actions, locking out
user interaction, Visual Basic
user-defined functions (UDFs)
 help files displayed for
 help on
 marking for recalculation
user-defined types
UserAccess object
UserAccessList collection
UserControl property (Application)
UserForm object
 Controls property
UserId property (UserPermission)
UserLibraryPath method (Application)
UserName method (Application)
UserPermission object
users
 access control in Windows
 organization name for
 viewing in Windows XP
Users property (AllowEditRange)
UserStatus property (Workbook) 2nd
UserTextured method (ChartFillFormat)
UseSheets method
UseStandardHeight (Range)
UseStandardWidth (Range)
UseSystemSeparators (Application)
UseWorksheets method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

VacatedStyle (PivotTable)
Val function 2nd
validation
 advanced, for data form
 rules, adding to data forms
 sample settings for data form
Value method
 Parameter object
 Range object
Value property
 Field object
 objects having
 Parameter object
 PivotTable object
 XmlNamespaces object
 XPath object
value types
Values method (Scenario)
Values property (Series)
variable-length strings
variables
 arrays
 conversions
 declarations
 data types
 declaring all to avoid bugs
 declaring, benefits of
 in Visual Basic programs
 misspelled names
 multiple, referring to single-instance class
 names
 naming
 objects
 recorded code and
 replacing literal references with
 scope and lifetime
 size of
 user-defined types
Variant type
 arrays
 length of
Variants, ParamArray arguments
VarType function
VaryByCategories (ChartGroup)
VBA code, converting to .NET
VBA help files
VBASigned (Workbook)
vbBinaryCompare function
VBE (Visual Basic Editor)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBE (Visual Basic Editor)
VBE method (Application)
VbMsgBoxResult enumeration
VbMsgBoxStyle settings
VBProject method (Workbook)
VBScript
 installer for add-ins
 installing add-in
 installing template
 removing add-in
 web site for further information
Vector Markup Language (VML)
Verb method (OLEObject)
Verio, hosting provider for SharePoint Services
Verisign
 timestamp service 2nd
Version method
 Application object
 PivotTable object
Version property (Connection)
versions, Excel, xvi 2nd
 Excel objects listed by version
 Macintosh compatibility
 summary of version changes
vertical scrollbar, displaying
VerticalAlignment method (Range)
VerticalAlignment property (TextFrame)
VerticalAlignment property (title)
VerticalFlip property (Shape)
VerticalScrollBarSide (UserForm)
Vertices property (Shape)
View method (Window)
ViewCalculatedMembers (PivotTable)
ViewFields element, online information
viewing results from Excel code
views
 custom views of a workbook
 CustomView and CustomViews members
 personal view, workbooks
 saving and displaying
viruses
 Anti-Virus API
 Office Anti Virus API
Visible property
 Application object
 setting for class
VisibleFields method (PivotTable)
VisibleItems method (PivotField)
VisibleRange method (Window)
visual add-ins 2nd
 adding menu item for
 adding toolbar
 responding to application events
Visual Basic
 classes and modules
 code, storage in Excel
 conditional statements
 constants and enumerations
 DLL functions converted to
 errors, fixing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 errors, fixing
 exceptions
 expressions
 fixing compile-time errors
 fixing runtime errors
 fixing syntax errors
 help file, specifying in project properties
 loops
 names, rules for
 parts of a program
 procedures
 arguments and results
 events
 named arguments
 optional arguments
 properties
 scope for procedures
 Standard and Professional Editions
 tasks
 Boolean tests
 checking results
 comparing bits
 controlling the compiler
 getting dates and times
 interacting with users
 managing files
 math
 obsolete or obscure functions
 overview
 reading and writing files
 running other applications
 working with text
 transforming XML from
 variables
 arrays
 conversions
 declaring
 objects
 scope and lifetime
 user-defined types
 watches
Visual Basic Editor
 add-in, selecting from Available Refrences
 creating object from a class
 testing a form
Visual Basic Editor (VBE) 2nd
Visual Basic for Applications (VBA), printing and publishing objects from
Visual Basic Help for Excel
VisualTotals (PivotTable)
VML (Vector Markup Language)
void functions
Volatile method (Application)
VPageBreak object
 Delete method
 members
VPageBreaks collection
 members

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Wait method (Application)
Walls method (Chart)
Walls object
WallsAndGridlines2D (Chart)
watch points (Visual Basic)
watches (Visual Basic)
Watches method (Application)
web address for help file
web address, workbook opened from
web pages, workbooks saved as
web queries
 limitations of
 performing
 cleaning up unneeded query tables
 destination for imported data
 formatting options
 modifying a query
 periodic updates
 trapping QueryTable events
 QueryTable and QueryTables members
Web Service Description Language (WSDL)
web services 2nd
 calling asynchronously
 locating on the Internet
 reformatting XML results for Excel
 using through XML
 Web Services Toolkit
Web Services Toolkit 2nd 3rd
 online information
 using
WebConsecutiveDelimitersAsOne (QueryTable)
WebDisableDateRecognition (QueryTable)
WebDisableRedirections (QueryTable)
WebFormatting property (QueryTable)
WebOptions method (Workbook)
WebOptions object, members
WebPreFormattedTextToColumns (QueryTable)
WebSelectionType (QueryTable)
WebSelectionType property
WebSingleBlockTextImport (QueryTable)
WebTables property
WebTables property (QueryTable)
Weekday function
While statement, using in Do...Loop
While...Wend statement
whitespace, removing from strings
width
 default column width
 setting for columns in range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting for columns in range
 usable area of Excel
Width # function
Width method (Application)
Width property
Win32 API
WIN32API.TXT file
Window object
 Activate methods 2nd
 Close method
 closing and maximizing child windows
 members 2nd
 PrintOut and PrintPreview methods
windows
 panes
 setting procedure to run upon activation
Windows API
 functions
 using handles with
Windows collection
 Arrange method
 CompareSideBySideWith method
 members
 SyncScrollingSideBySide property
Windows Common Object Model (COM)
Windows method
 Application object
 Workbook object
Windows NT and earlier, install locations for applications
Windows Server 2003
Windows task bar
Windows Task Manager
WindowsForPens (Application)
WindowState method (Application)
WindowState method (Window)
WindowState property (Application)
WinExec function
WinZip self-extractor
 URL for downloads
WinZip tool
 URL for downloads
With keyword
WithEvents (Workbook variable)
WithEvents keyword
 declaring .NET object with 2nd
Word
 automation from Visual Basic
 Diagram object
 exceptions, anticipating from Excel
 integrating with Excel
 object library, referencing from Excel
 programming from Excel
 running from Excel
Word 2003, opening XML spreadsheet
Word document
 embedded on the active worksheet
 getting object from embedded document
WordArt embedded shapes 2nd 3rd
 text
WordWrap property (TextBox, RefEdit)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WordWrap property (TextBox, RefEdit)
workbook (.xls) file
 Visual Basic code in
Workbook object
 Activate method
 BeforePrint event
 CanCheckOut property
 Charts property
 CustomViews property
 events 2nd
 declaring in any class
 SheetSelectionChange
 FollowHyperlink method
 getting PublishObjects collection from
 members (key), reference summary
 members, listed
 object and event lists
 password and encryption members
 PivotCache collection
 PrintOut and PrintPreview methods
 protection members
 returning for file containing current procedure
 RoutingSlip property
 Save method
 SaveAs method
 SharedWorkspace property
 SheetActivate event
 XmlNamespaces method
workbooks
 accessing and responding to events
 advantages/disadvantages of applications
 applications, writing
 bringing data into
 closing
 creating hardcopy and online output from
 creating test workbook for add-in
 installing
 loading, predefined folders for
 objects
 opening text files as
 opening XML files
 opening, saving, and controlling files
 adding workbook with templates
 opening as read-only or with passwords
 opening text files
 recalculating before saving
 saving before quitting
 security
 encryption
 password protection and encryption
 protecting items
 sending and receiving
workbooks (continued)
 sending as email attachment
 mail items
 routing
 SendForReview method
 setting permissions
 shared, programming with
 changing sharing options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 changing sharing options
 determining if shared
 removing sharing
 resolving conflicts
 restricting user access
 sharing
 creating shared workbook
 creating shared workspace
 shared workspaces
Workbooks collection
 Add method 2nd
 Application object
 getting from Application object, Workbooks property
 members, listed
 Open method
 OpenDatabase method
 OpenText method
 OpenXML method
Workbooks method (Application)
worksheet menu bar
 adding top-level menu
Worksheet method (Range)
Worksheet object 2nd
 Activate event
 Activate method
 AutoFilter member
 AutoFilter property
 Cells, Range, UsedRange, Columns, or Rows method
 ChartObjects property
 Comments collection
 CreatePivotTableWizard method
 events
 Hyperlinks method
 MailEnvelope property
 members (key), reference summary
 members, listed
 object and event lists
 OLEObjects method
 Outline property 2nd
 PageSettings property
 PageSetup property
 PrintOut and PrintPreview methods
 protection members
 QuertyTables property
 Scenarios method
 SelectionChange event
 ShowAllData method
WorksheetFunction method (Application)
WorksheetFunction object
 members
worksheets
 adding comments, hyperlinks and OLE objects to
 changes on, listing
 controls on worksheets versus controls on forms
 creating graphics, objects used for
 embedding a control
 events
 number automatically included in new workbooks
 print settings
 repeating formatting and charting in recorded code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 repeating formatting and charting in recorded code
 security
 security protections
 sending as email using MsoEnvelope
 using controls on
 working with, objects for 2nd
Worksheets collection 2nd 3rd
 Add method
 Application object
 members, listed
 PrintOut and PrintPreview methods
 UseWorksheets method
Worksheets method
 objects returned by
 Workbook object 2nd
workspace files (.xlw)
 saving current settings
 shared workspaces versus
workspaces
 shared 2nd
 creating
 linking workbook to
 opening workbooks from
 removing sharing from workbooks
WrapText property (Range)
Write # function
write-once properties 2nd
write-only properties
 creating
WritePassword (Workbook)
WriteReserved (Workbook)
WriteReservedBy (Workbook)
WScript.Shell
 URL for
WSDL (Web Service Description Language)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XLL, loading and registering
XLSTART directory, path to
XML
 custom schemas, support of
 exporting workbook to XML datafile
 importing/exporting, objects for
 language standards
 lists stored as
 loading file into workbook
 objects
 for importing/exporting
 online resources
 opening files in Excel
 overview
 reformatting for Excel
 responding to XML events
 saving workbooks as
 data omitted by Excel
 spreadsheet format
 transforming from command line
 transforming in code
 transforming with processing instructions
 transforming XML files into spreadsheets
 transforming XML spreadsheets
 XSLT, creating for XML spreadsheets
 Source task pane, displaying
 support by Excel 2003
 supporting standards for
 using web services through
XML maps
 approaches to using
 avoiding denormalized data
 creating XML schema
 including all nodes in exports
 XML schema elements not supported
 exporting data
 items omitted by Excel
 getting from list or range
 limitations of
 programming with
 adding or deleting XML maps
 exporting/importing XML
 refresh, change, or clear data binding
 viewing the schema
 using schemas
XML method (XmlSchema)
xml-stylesheet processing instruction
XmlDataBinding object
 LoadSettings method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LoadSettings method
 Refresh method
 RootElementNamespace method
XmlImport method (Workbook)
XmlImportXml method (Workbook)
XmlMap object
 Delete method
 Export method
 Import method
 IsExportable property
 members
 Schemas method
 tasks performed in code
XMLMap property (ListObject)
XmlMaps collection
 Add method
 members
XMLMaps method (Workbook)
XMLNamespace object
XmlNamespaces collection
XmlNamespaces method (Workbook) 2nd
XMLNodeList arguments
XmlSchema object, members
XmlSchemas collection, members
XOR operator
XPath
XPath method (ListColumn)
XPath object
 members
XSD (XML Schema Definition)
 online tutorial
XSL
 online resources
xsl:processing-instruction element
XSLT
 creating for XML spreadsheet
 online tutorial
XSLT (continued)
 replacing mso-application instruction with xml-stylesheet instruction
 transformations performed by
XValues property (Series)
XYGroups method (Chart)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Year function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero values, displaying in cells
Zoom property
 PageSetup object
 UserForm object
 Window object
ZOrder property
 Control object
 OLEObject object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

