

Copyright© 1998 by David J. Kruglinski

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright (c) 1998 by David J. Kruglinski

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Kruglinski, David.

 Programming Microsoft Visual C++ / David J. Kruglinski, Scot Wingo, George

 Shepherd. -- 5th ed.

 p. cm.

 Rev. ed. of: Inside Visual C++.

 Includes index.

 ISBN 1-57231-857-0

 1. C++ (Computer program language) 2. Microsoft Visual C++.

 I. Wingo, Scot. II. Shepherd, George, 1962- . III. Kruglinski,

 David. Inside Visual C++. IV. Title

 QA76.73.C153K78 1998

 005.13'3--dc21 98-27329

 CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 3 2 1 0 9 8

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Intel is a registered
trademark of Intel Corporation. ActiveX, FoxPro, FrontPage, Microsoft, Microsoft Press, MS, MS-DOS,
Outlook, PowerPoint, SourceSafe, Visual Basic, Visual C++, Visual J++, Win32, Win64, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

Acquisitions Editor: Eric Stroo

Project Editor: Rebecca McKay

Technical Editor: Jean Ross

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments
I first met David Kruglinski at a software development conference. I had just quit my job and started a
new company, and I approached David at an author signing for an earlier edition of this book. Our new
company was going to focus on Microsoft Foundation Class (MFC)/Microsoft Visual C++ class libraries. I
hoped that David would listen to our ideas and maybe provide some feedback on our products and their
usefulness to the Visual C++ development community—a community that he had both helped to build and
understood like the back of his own hand.

Much to my surprise, David was very excited about the product ideas and asked if I could send him
evaluation copies of our products. I did, and we started a long e-mail conversation about our products and
ideas for improvements. David gave his time, expertise, and great opinions freely, without ever asking for
any compensation—he genuinely wanted to help us make products for the Visual C++ developer that
would make MFC/Visual C++ better.

I first heard about David's fatal paragliding accident via a posting on a newsgroup and initially thought it
was some kind of cruel hoax. I called David's agent, who checked into the story, and much to my shock it
was true. With David's passing, the Visual C++ community has lost one of its brightest and most giving
stars. Talk to any Visual C++ developers about how they first learned Visual C++ and invariably they will
say, "the Kruglinski book!" The Visual C++ community owes David greatly for what he gave us and taught
us about Visual C++ over the years. It goes without saying that he should receive special acknowledgment
for this book, and our thoughts go out to his family and friends for their loss.

It is a great honor to carry on the Kruglinski tradition with this fifth edition of Inside Visual C++ (now
called Programming Microsoft Visual C++, Fifth Edition). We have done our best to stay true to David's
vision of this book, following his format and style as closely as possible.

Thanks to my wife Kris and to my son, Sean, for putting up with all of the late nights and weekends of
writing. Many thanks also go to my coauthor, George Shepherd, who always helps me get motivated for a
late night of book writing with his upbeat, wacky, and great personality. Thanks to Claire Horne, our agent,
for helping us get on board with the project.

Visual C++, and therefore this book, wouldn't exist if not for the many members of the Visual C++ team.
Special thanks to Mike Blaszczak, Walter Sullivan, Dean McCrory, Rick Laplante, Marie Huwe, Christian
Gross, and Jim Springfield for all of the help they have provided over the years.

Finally, but not least, thanks to the folks at Microsoft Press who worked on this project—especially
Kathleen Atkins, Jim Fuchs, Becka McKay, John Pierce, Jean Ross, Eric Stroo, and the entire production
team who worked extremely hard to get this large book out and into your hands with the highest quality
possible.

—Scot Wingo

Much work goes into writing books—even revisions of existing work. I'd like to acknowledge the following
people for helping me get this work out the door: First I'd like to thank my wife Sandy for sticking with me
while I worked to get the pages and chapters out. Sandy has been an invaluable source of encouragement
throughout my software endeavors. Thanks to my son, Teddy, for being patient with me as I bowed out on
various activities every once in a while. I wish to thank my mother Betsy for engendering in me a desire to
write and my twin brother Patrick for being a great Java foil for me—and for arguing cogently with me
about various hardware and software platform issues.

Thanks to Claire Horne of the Moore Literary Agency for helping to get this project rolling with Microsoft
Press.

To Scot Wingo, thanks for taking on another writing project with me. And thanks to the folks at Stingray—
you all are a great bunch to work with. Thanks to all the folks at DevelopMentor for providing a great
training and learning environment. And thanks to Don Box for continuing to explain COM in a way that
makes sense.

Getting a book out involves more than just authors. I wish to thank everyone at Microsoft Press who
helped kick Programming Microsoft Visual C++, Fifth Edition out the door, especially Eric Stroo for his
kindness and patience, Kathleen Atkins and Becka McKay for sifting through our text and making it ever
more readable, Jean Ross for balancing out the technical review to catch even the most minute error, and
John Pierce for keeping everything on track.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

John Pierce for keeping everything on track.

Finally, thanks to David Kruglinski for starting this project. While I never had the opportunity to meet
David, his writing had a measuable impact on me when first learning MFC. I hope Scot and I did justice to
the work you began.

—George Shepherd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The 6.0 release of Visual C++ shows Microsoft's continued focus on Internet technologies and COM, which
are key components of the new Windows Distributed interNet Application Architecture (DNA). In addition
to supporting these platform initiatives, Visual C++ 6.0 also adds an amazing number of productivity-
boosting features such as Edit And Continue, IntelliSense, AutoComplete, and code tips. These features
take Visual C++ to a new level. We have tried to make sure that this book keeps you up to speed on the
latest technologies being introduced into Visual C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC, ATL, and WFC—Is MFC Dead?
Ever since Microsoft released the Active Template Library (ATL) as part of Visual C++, Windows developers
have speculated that the Microsoft Foundation Class Library (MFC) was no longer "en vogue" at Microsoft
and that future efforts would focus on newer libraries such as ATL. Recently, Microsoft released another
class library, Windows Foundation Classes (WFC), for Java Windows developers, which has unfortunately
helped to fan the rumors that "MFC is dead."

The rumors of MFC's demise are definitely premature. Visual C++ 6.0 has added significant functionality to
MFC and ATL in parallel, which indicates that both libraries will receive equal attention moving forward.
Part of the problem is that the design goals of each library are sometimes not clearly stated and therefore
are not clearly understood by the Visual C++ developer. MFC is designed to be a great class library for
creating graphically rich, sophisticated Windows applications. ATL is designed to make it easy to create
extremely lightweight COM objects and ActiveX controls. Each of these design goals has resulted in a
different library to empower the developer.

Another common misconception is that MFC and ATL are mutually exclusive. This is definitely not the case!
In fact, it is very easy to create ATL-based COM objects that use MFC. The only issue is that since many
developers choose ATL for its lightweight nature, using MFC, which is feature-rich and "heavy," seems to
contradict the reason for choosing ATL. While this might be the case for some developers, it doesn't make
ATL and MFC mutually exclusive.

While ATL does not replace MFC, we do think it is an important part of Visual C++, so in this edition of
Programming Microsoft Visual C++ we have added two chapters that cover the ATL class libraries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++ vs. Java
In the last couple of years, there has been a great deal of interest in the Java programming language. Why
should you choose C++ over Java? In the first place, a compiled program will always be faster than an
interpreted program. Think about a high-performance spreadsheet program with cell formulas and macros.
Now imagine the Java virtual machine interpreting the code that, in turn, interprets the formulas and
macros. Not pretty, is it? With just-in-time compilation, it's necessary to compile the program every time
you load it. Will that code be as good as the optimized output from a C++ compiler?

Execution speed is one factor; access to the operating system is another. For security reasons, Java
applets can't perform such tasks as writing to disk and accessing serial ports. In order to be platform-
independent, Java application programs are limited to the "lowest common denominator" of operating
system features. A C++ program for Microsoft Windows is more flexible because it can call any Win32
function at any time.

Java will be an important language, but we believe it's just another language, not a revolution. If you need
an Internet applet or a truly platform-independent application, choose Java. If you need efficiency and
flexibility, choose C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Who Can Use This Book
The product name "Visual C++" misleads some people. They think they've bought a pure visual
programming system similar to Microsoft Visual Basic, and for the first few days the illusion persists.
However, people soon learn that they must actually read and write C++ code. The Visual C++ wizards
save time and improve accuracy, but programmers must understand the code that the wizards generate
and, ultimately, the structure of the MFC library and the inner workings of the Windows operating system.

Visual C++, with its sophisticated application framework, is for professional programmers, and so is this
book. We assume that you're proficient in the C language—you can write an if statement without
consulting the manual. And we assume that you've been exposed to the C++ language—you've at least
taken a course or read a book, but maybe you haven't written much code. Compare learning C++ to
learning the French language. You can study French in school, but you won't be able to speak fluently
unless you go to France and start talking to people. Reading this book is like taking your trip to France!

We won't assume, however, that you already know Windows programming. We're sure that proficient C
programmers can learn Windows the MFC way. It's more important to know C++ than it is to know the
Win32 application programming interface (API). You should, however, know how to run Windows and
Windows-based applications.

What if you're already experienced with the Win32 API or with the MFC library? There's something in this
book for you too. First you'll get some help making the transition to Win32 programming. Then you'll learn
about new features such as Data Access Objects (DAO), ActiveX control container support, and the
controls introduced with Windows 95. If you haven't already figured out the Component Object Model
(COM), this book presents some important theory that will get you started on understanding ActiveX
Controls. You'll also learn about the ATL class library, the new Microsoft Internet Explorer 4.0 common
controls, and OLE/DB database programming. Finally, you'll learn C++ programming for the Internet
(including the hot new topic Dynamic HTML). We've even included coverage on how to make your Visual
C++ programs work on the new Windows CE operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's Not Covered
It's not possible to cover every aspect of Windows-based programming in a single book. We exclude topics
that depend on special-purpose hardware and software, such as MAPI, TAPI, and communications port
access. We do cover using ActiveX controls in an application, but we'll defer the subject of writing ActiveX
controls to Adam Denning and his ActiveX Controls Inside Out (Microsoft Press, 1997). We get you started
with 32-bit memory management, DLL theory, and multithreaded programming techniques, but you need
to get the third edition of Jeffrey Richter's Advanced Windows (Microsoft Press, 1997) if you're serious
about these subjects. Another useful book is MFC Internals by George Shepherd and Scot Wingo (Addison-
Wesley, 1996).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How to Use This Book
When you're starting with Visual C++, you can use this book as a tutorial by going through it sequentially.
Later you can use it as a reference by looking up topics in the table of contents or in the index. Because of
the tight interrelationships among many application framework elements, it wasn't possible to cleanly
isolate each concept in its own chapter, so the book really isn't an encyclopedia. When you use this book,
you'll definitely want to keep the online help available for looking up classes and member functions.

If you're experienced with the Win16 version of Visual C++, scan Part I for an overview of new features.
Then skip the first three chapters of Part II, but read Chapters 6 through 12, which cover elements specific
to Win32.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Organization of This Book
As the table of contents shows, this book has six parts and an appendix section.

Part I: Windows, Visual C++, and Application Framework Fundamentals

In this part, we try to strike a balance between abstract theory and practical application. After a quick
review of Win32 and the Visual C++ components, you'll be introduced, in a gentle way, to the MFC
application framework and the document-view architecture. You'll look at a simple "Hello, world!" program,
built with the MFC library classes, that requires only 30 lines of code.

Part II: The MFC Library View Class

The MFC library documentation presents all the application framework elements in quick succession, with
the assumption that you know the original Windows API. In Part II, you're confined to one major
application framework component—the view, which is really a window. You'll learn here what experienced
Windows programmers know already, but in the context of C++ and the MFC library classes. You'll use the
Visual C++ tools that eliminate much of the coding drudgery that early Windows programmers had to
endure.

Part II covers a lot of territory, including graphics programming with bitmaps, dialog data exchange,
ActiveX control usage, 32-bit memory management, and multithreaded programming. The exercises will
help you to write reasonably sophisticated Windows-based programs, but those programs won't take
advantage of the advanced application framework features.

Part III: The Document-View Architecture

This part introduces the real core of application framework programming—the document-view architecture.
You'll learn what a document is (something much more general than a word processing document), and
you'll see how to connect the document to the view that you studied in Part II. You'll be amazed, once you
have written a document class, at how the MFC library simplifies file I/O and printing.

Along the way, you'll learn about command message processing, toolbars and status bars, splitter frames,
and context-sensitive help. You'll also be introduced to the Multiple Document Interface (MDI), the current
standard for Windows-based applications.

Part III also contains a discussion of dynamic link libraries (DLLs) written with the MFC library. You'll learn
the distinction between an extension DLL and a regular DLL. If you're used to Win16 DLLs, you'll notice
some changes in the move to Win32.

Part IV: ActiveX: COM, Automation, and OLE

COM by itself deserves more than one book. Part IV will get you started in learning fundamental COM
theory from the MFC point of view. You'll progress to Automation, which is the link between C++ and
Visual Basic for Applications (VBA). You'll also become familiar with uniform data transfer and structured
storage, and you'll learn the basics of compound documents and embedded objects.

Part V: Database Management

Windows-based programs often need access to information in large databases. Visual C++ now supports
two separate database management options: Open Database Connectivity (ODBC) and Data Access
Objects (DAO). Part V offers a chapter on each option. You'll learn about the extensive MFC and wizard
support for both options, and you'll see the differences between and similarities of ODBC and DAO. We'll
also cover a new data access technology, OLE/DB, which is supported by ATL OLE/DB consumer and
providers.

Part VI: Programming for the Internet

This part starts with a technical Internet tutorial that covers the TCP/IP protocol plus the Winsock and
WinInet APIs. You'll learn how to write C++ server and client programs for the Internet and the intranet,
you'll learn how to write ISAPI DLLs that extend the Microsoft Internet Information Server, and you'll learn
how to program for Dynamic HTML. We've also included coverage on Windows CE in this section.

Appendixes

Appendix A contains a list of message map macros and their corresponding handler function prototypes.
ClassWizard usually generates this code for you, but sometimes you must make manual entries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ClassWizard usually generates this code for you, but sometimes you must make manual entries.

Appendix B offers a description of the MFC application framework's runtime class information and dynamic
creation system. This is independent of the RTTI (runtime type information) feature that is now a part of
ANSI C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 vs. Win16
Lots of old computers out there are still running Windows 3.1. However, there's not much point in
spending money writing new programs for obsolete technology. This edition of Programming Microsoft
Visual C++ is about 32-bit programming for Microsoft Windows 95, Microsoft Windows 98, and Microsoft
Windows NT using the Win32 API. If you really need to do 16-bit programming, find an old copy of the
second edition of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows 95 and Windows 98 vs. Windows NT
Visual C++ version 6.0 requires either Windows 95, Windows 98, or Windows NT version 4.0 or later, all of
which have the same user interface. We recommend that you use Windows NT as your development
platform because of its stability—you can often go for months without rebooting your computer. If you use
only the MFC programming interface, your compiled programs will run under Windows 95, Windows 98,
and Windows NT, but a program can include Win32 calls that use specific Windows 98 or Windows NT
features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with Windows:
The "For Win32 Programmers" Sidebars
This book can't offer the kind of detail, tricks, and hidden features found in the newer, specialized books on
Win32. Most of those books are written from the point of view of a C-language programmer: in order to
use them, you'll have to understand the underlying Win32 API and its relationship to the MFC library. In
addition, you'll need to know about the Windows message dispatch mechanism and the role of window
classes.

This book's "For Win32 Programmers" sidebars, scattered throughout the text, help you make the
connection to low-level programming for Windows. These specially formatted boxes help experienced C
programmers relate new MFC library concepts to principles they're already familiar with. If you're
unfamiliar with low-level programming, you should skip these notes the first time through, but you should
read them on your second pass through the book. Even though you may never write a low-level Windows-
based program with a WinMain function, for example, you eventually need to know how the Windows
operating system interacts with your program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the Companion CD-ROM
The companion CD-ROM bound inside the back cover of this book contains the source code files for all the
sample programs. The executable program files are included, so you won't have to build the samples that
you're interested in. To install the companion CD-ROM's files, insert the disc in your CD-ROM drive and run
the Setup program. Follow the on-screen instructions.

The Setup program copies about 30 MB of files to your hard disk. If you prefer, you can
manually install only the files for individual projects. Simply tree-copy the
corresponding subdirectories from the CD-ROM to c:\vcpp32. Because each project is
self-contained, no additional files from other projects are needed. (You'll need to
remove the read-only attribute from these files if you copy them using Windows
Explorer or File Manager.)

Many of the files on the companion CD-ROM have long filenames. If you use Windows
95 and your CD-ROM drive uses a real-mode driver, you'll see truncated names for
these files and you might not see all of the files or directories. The Setup program will
still work correctly, however, by copying files from a special \SETUP directory on the
CD-ROM and renaming them with their proper long filenames. You can then browse the
files on your hard disk. Alternatively, you can browse the files using the 8.3 aliases in
the \SETUP directory on the CD-ROM.

With a conventional C-language program using the Windows API, the source code files tell the whole story.
With the MFC library application framework, things are not so simple. AppWizard generates much of the
C++ code, and the resources originate in the resource editors. The examples in the early chapters of this
book include step-by-step instructions for using the tools to generate and customize the source code files.
You'd be well advised to walk through those instructions for the first few examples; there's very little code
to type. For the middle chapters, use the code from the companion CD-ROM but read through the steps in
order to appreciate the role of the resource editors and the wizards. For the final chapters, not all the
source code is listed. You'll need to examine the companion CD-ROM's files for those examples.

For Win32 Programmers: Unicode

Until recently, Windows-based programs have used only the ANSI character set, which
consists of 256 single-byte characters. Developers targeting the Asian software market
are moving to the Unicode character set, which consists of 65,536 characters, each 2
bytes (wide). A third option, the double-byte character set (DBCS), includes both 1-
byte characters and 2-byte characters, but DBCS is falling out of favor.

The MFC library and the runtime library both support Unicode applications. If you define
the constant _UNICODE and follow the steps described in the online documentation, all
your character variables and constant strings will be wide and the compiler will
generate calls to the wide-character versions of the Win32 functions. This assumes that
you use certain macros when you declare character pointers and arrays—for example,
TCHAR and _T.

You'll hit a snag, though, if you try to run your MFC Unicode applications under
Windows 95 or Windows 98, because they don't support Unicode internally. Even
though Windows 95 and Windows 98 have wide-character versions of Win32 functions,
those functions return a failure code. Windows NT, on the other hand, uses Unicode
internally and has two versions of the Win32 functions that deal with characters. If you
call a single-byte version, Windows NT makes the necessary conversions to and from
wide characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wide characters.

None of the sample programs in this book are configured for Unicode. All the programs
use single-byte types such as char and single-byte string constants, and they do not
define _UNICODE. If you run the samples under Windows NT, the operating system will
do the necessary single-to-wide conversions; if you run them under Windows 95 or
Windows 98, the interface is pure single-byte.

One area in which you're forced to deal with wide characters is COM. All non-MFC COM
functions (except DAO functions) that have string and character parameters require
wide (OLECHAR) characters. If you write a non-Unicode program, you must do the
conversions yourself with the help of the MFC CString class and various MFC macros.

If you want to write Unicode applications, read the Unicode chapter in Jeffrey Richter's
Advanced Windows. You should also read the Unicode material in the Visual C++ online
documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Technical Notes and Sample Programs
The MSDN Library for Visual Studio 6.0 contains technical notes and sample programs that are referenced
in this book. The technical notes, identified by number, are available from the Contents tab under the
heading:

MSDN Library Visual Studio 6.0

 Visual C++ Documentation Reference

 Microsoft Foundation Class Library and Templates

 Microsoft Foundation Class Library

 MFC Technical Notes

The MSDN CD-ROM also contains a number of MFC sample programs also referenced in the book and
identified by name. These sample programs are documented under the heading:

MSDN Library Visual Studio 6.0

 Visual C++ Documentation

 Samples

 MFC Samples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Support
Every effort has been made to ensure the accuracy of this book and the contents of the companion disc.
Microsoft Press provides corrections for books through the Web at:
http://mspress.microsoft.com/mspress/support/

If you have comments, questions, or ideas regarding this book or the companion disc, please send them to
Microsoft Press using postal mail or e-mail:

Microsoft Press

Attn: Programming Microsoft Visual C++ Editor

One Microsoft Way

Redmond, WA 98052-6399

MSPINPUT@MICROSOFT.COM

Please note that product support is not offered through the above mail addresses. For support information
regarding Microsoft Visual C++, you can call the technical support line at (425) 635-7007 weekdays
between 6 a.m. and 6 p.m. Pacific time. Microsoft also provides information about Visual C++ at
http://www.microsoft.com/visualc/ and about the Microsoft Developer Network at
http://www.microsoft.com/MSDN/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1
Microsoft Windows and Visual C++
Enough has already been written about the acceptance of Microsoft Windows and the benefits of the
graphical user interface (GUI). This chapter summarizes the Windows programming model (Win32 in
particular) and shows you how the Microsoft Visual C++ components work together to help you write
applications for Windows. Along the way, you might learn some new things about Windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Programming Model
No matter which development tools you use, programming for Windows is different from old-style batch-
oriented or transaction-oriented programming. To get started, you need to know some Windows
fundamentals. As a frame of reference, we'll use the well-known MS-DOS programming model. Even if you
don't currently program for plain MS-DOS, you're probably familiar with it.

Message Processing

When you write an MS-DOS-based application in C, the only absolute requirement is a function named
main. The operating system calls main when the user runs the program, and from that point on, you can
use any programming structure you want. If your program needs to get user keystrokes or otherwise use
operating system services, it calls an appropriate function, such as getchar, or perhaps uses a character-
based windowing library.

When the Windows operating system launches a program, it calls the program's WinMain function.
Somewhere your application must have WinMain, which performs some specific tasks. Its most important
task is creating the application's main window, which must have its own code to process messages that
Windows sends it. An essential difference between a program written for MS-DOS and a program written
for Windows is that an MS-DOS-based program calls the operating system to get user input, but a
Windows-based program processes user input via messages from the operating system.

Many development environments for Windows, including Microsoft Visual C++ version
6.0 with the Microsoft Foundation Class (MFC) Library version 6.0, simplify
programming by hiding the WinMain function and structuring the message-handling
process. When you use the MFC library, you need not write a WinMain function but it is
essential that you understand the link between the operating system and your
programs.

Most messages in Windows are strictly defined and apply to all programs. For example, a WM_CREATE
message is sent when a window is being created, a WM_LBUTTONDOWN message is sent when the user
presses the left mouse button, a WM_CHAR message is sent when the user types a character, and a
WM_CLOSE message is sent when the user closes a window. All messages have two 32-bit parameters
that convey information such as cursor coordinates, key code, and so forth. Windows sends
WM_COMMAND messages to the appropriate window in response to user menu choices, dialog button
clicks, and so on. Command message parameters vary depending on the window's menu layout. You can
define your own messages, which your program can send to any window on the desktop. These user-
defined messages actually make C++ look a little like Smalltalk.

Don't worry yet about how these messages are connected to your code. That's the job of the application
framework. Be aware, though, that the Windows message processing requirement imposes a lot of
structure on your program. Don't try to force your Windows programs to look like your old MS-DOS
programs. Study the examples in this book, and then be prepared to start fresh.

The Windows Graphics Device Interface

Many MS-DOS programs wrote directly to the video memory and the printer port. The disadvantage of this
technique was the need to supply driver software for every video board and every printer model. Windows
introduced a layer of abstraction called the Graphics Device Interface (GDI). Windows provides the video
and printer drivers, so your program doesn't need to know the type of video board and printer attached to
the system. Instead of addressing the hardware, your program calls GDI functions that reference a data
structure called a device context. Windows maps the device context structure to a physical device and
issues the appropriate input/output instructions. The GDI is almost as fast as direct video access, and it
allows different applications written for Windows to share the display.

Resource-Based Programming

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resource-Based Programming

To do data-driven programming in MS-DOS, you must either code the data as initialization constants or
provide separate data files for your program to read. When you program for Windows, you store data in a
resource file using a number of established formats. The linker combines this binary resource file with the
C++ compiler's output to generate an executable program. Resource files can include bitmaps, icons,
menu definitions, dialog box layouts, and strings. They can even include custom resource formats that you
define.

You use a text editor to edit a program, but you generally use wysiwyg (what you see is what you get)
tools to edit resources. If you're laying out a dialog box, for example, you select elements (buttons, list
boxes, and so forth) from an array of icons called a control palette, and you position and size the elements
with the mouse. Microsoft Visual C++ 6.0 has graphics resource editors for all standard resource formats.

Memory Management

With each new version of Windows, memory management gets easier. If you've heard horror stories about
locking memory handles, thunks, and burgermasters, don't worry. That's all in the past. Today you simply
allocate the memory you need, and Windows takes care of the details. Chapter 10 describes current
memory management techniques for Win32, including virtual memory and memory-mapped files.

Dynamic Link Libraries

In the MS-DOS environment, all of a program's object modules are statically linked during the build
process. Windows allows dynamic linking, which means that specially constructed libraries can be loaded
and linked at runtime. Multiple applications can share dynamic link libraries (DLLs), which saves memory
and disk space. Dynamic linking increases program modularity because you can compile and test DLLs
separately.

Designers originally created DLLs for use with the C language, and C++ has added some complications.
The MFC developers succeeded in combining all the application framework classes into a few ready-built
DLLs. This means that you can statically or dynamically link the application framework classes into your
application. In addition, you can create your own extension DLLs that build on the MFC DLLs. Chapter 22
includes information about creating MFC extension DLLs and regular DLLs.

The Win32 Application Programming Interface

Early Windows programmers wrote applications in C for the Win16 application programming interface
(API). Today, if you want to write 32-bit applications, you must use the new Win32 API, either directly or
indirectly. Most Win16 functions have Win32 equivalents, but many of the parameters are different—16-bit
parameters are often replaced with 32-bit parameters, for example. The Win32 API offers many new
functions, including functions for disk I/O, which was formerly handled by MS-DOS calls. With the 16-bit
versions of Visual C++, MFC programmers were largely insulated from these API differences because they
wrote to the MFC standard, which was designed to work with either Win16 or Win32 underneath.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Visual C++ Components
Microsoft Visual C++ is two complete Windows application development systems in one product. If you so
choose, you can develop C-language Windows programs using only the Win32 API. C-language Win32
programming is described in Charles Petzold's book Programming Windows 95 (Microsoft Press, 1996). You
can use many Visual C++ tools, including the resource editors, to make low-level Win32 programming
easier.

Visual C++ also includes the ActiveX Template Library (ATL), which you can use to develop ActiveX
controls for the Internet. ATL programming is neither Win32 C-language programming nor MFC
programming, and it's complex enough to deserve its own book.

This book is not about C-language Win32 programming or ATL programming (although Chapter 29 and
Chapter 30 provide an introduction to ATL). It's about C++ programming within the MFC library application
framework that's part of Visual C++. You'll be using the C++ classes documented in the Microsoft Visual
C++ MFC Library Reference (Microsoft Press, 1997), and you'll also be using application framework-specific
Visual C++ tools such as AppWizard and ClassWizard.

Use of the MFC library programming interface doesn't cut you off from the Win32
functions. In fact, you'll almost always need some direct Win32 calls in your MFC library
programs.

A quick run-through of the Visual C++ components will help you get your bearings before you zero in on
the application framework. Figure 1-1 shows an overview of the Visual C++ application build process.

Figure 1-1. The Visual C++ application build process.

Microsoft Visual C++ 6.0 and the Build Process

Visual Studio 6.0 is a suite of developer tools that includes Visual C++ 6.0. The Visual C++ IDE is shared
by several tools including Microsoft Visual J++. The IDE has come a long way from the original Visual
Workbench, which was based on QuickC for Windows. Docking windows, configurable toolbars, plus a
customizable editor that runs macros, are now part of Visual Studio. The online help system (now
integrated with the MSDN Library viewer) works like a Web browser. Figure 1-2 shows Visual C++ 6.0 in
action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

action.

Figure 1-2. Visual C++ 6.0 windows.

If you've used earlier versions of Visual C++ or another vendor's IDE, you already understand how Visual
C++ 6.0 operates. But if you're new to IDEs, you'll need to know what a project is. A project is a collection
of interrelated source files that are compiled and linked to make up an executable Windows-based program
or a DLL. Source files for each project are generally stored in a separate subdirectory. A project depends
on many files outside the project subdirectory too, such as include files and library files.

Experienced programmers are familiar with makefiles. A makefile stores compiler and linker options and
expresses all the interrelationships among source files. (A source code file needs specific include files, an
executable file requires certain object modules and libraries, and so forth.) A make program reads the
makefile and then invokes the compiler, assembler, resource compiler, and linker to produce the final
output, which is generally an executable file. The make program uses built-in inference rules that tell it, for
example, to invoke the compiler to generate an OBJ file from a specified CPP file.

In a Visual C++ 6.0 project, there is no makefile (with an MAK extension) unless you tell the system to
export one. A text-format project file (with a DSP extension) serves the same purpose. A separate text-
format workspace file (with a DSW extension) has an entry for each project in the workspace. It's possible
to have multiple projects in a workspace, but all the examples in this book have just one project per
workspace. To work on an existing project, you tell Visual C++ to open the DSW file and then you can edit
and build the project.

Visual C++ creates some intermediate files too. The following table lists the files that Visual C++
generates in the workspace.

File Extension Description

APS Supports ResourceView

BSC Browser information file

CLW Supports ClassWizard

DEP Dependency file

DSP Project file*

DSW Workspace file*

MAK External makefile

NCB Supports ClassView

OPT Holds workspace configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PLG Builds log file

* Do not delete or edit in a text editor.

The Resource Editors—Workspace ResourceView

When you click on the ResourceView tab in the Visual C++ Workspace window, you can select a resource
for editing. The main window hosts a resource editor appropriate for the resource type. The window can
also host a wysiwyg editor for menus and a powerful graphical editor for dialog boxes, and it includes tools
for editing icons, bitmaps, and strings. The dialog editor allows you to insert ActiveX controls in addition to
standard Windows controls and the new Windows common controls (which have been further extended in
Visual C++ 6.0). Chapter 3 shows pictures of the ResourceView page and one of the resource editors (the
dialog editor).

Each project usually has one text-format resource script (RC) file that describes the project's menu, dialog,
string, and accelerator resources. The RC file also has #include statements to bring in resources from
other subdirectories. These resources include project-specific items, such as bitmap (BMP) and icon (ICO)
files, and resources common to all Visual C++ programs, such as error message strings. Editing the RC file
outside the resource editors is not recommended. The resource editors can also process EXE and DLL files,
so you can use the clipboard to "steal" resources, such as bitmaps and icons, from other Windows
applications.

The C/C++ Compiler

The Visual C++ compiler can process both C source code and C++ source code. It determines the
language by looking at the source code's filename extension. A C extension indicates C source code, and
CPP or CXX indicates C++ source code. The compiler is compliant with all ANSI standards, including the
latest recommendations of a working group on C++ libraries, and has additional Microsoft extensions.
Templates, exceptions, and runtime type identification (RTTI) are fully supported in Visual C++ version
6.0. The C++ Standard Template Library (STL) is also included, although it is not integrated into the MFC
library.

The Source Code Editor

Visual C++ 6.0 includes a sophisticated source code editor that supports many features such as dynamic
syntax coloring, auto-tabbing, keyboard bindings for a variety of popular editors (such as VI and EMACS),
and pretty printing. In Visual C++ 6.0, an exciting new feature named AutoComplete has been added. If
you have used any of the Microsoft Office products or Microsoft Visual Basic, you might already be familiar
with this technology. Using the Visual C++ 6.0 AutoComplete feature, all you have to do is type the
beginning of a programming statement and the editor will provide you with a list of possible completions to
choose from. This feature is extremely handy when you are working with C++ objects and have forgotten
an exact member function or data member name—they are all there in the list for you. You no longer have
to memorize thousands of Win32 APIs or rely heavily on the online help system, thanks to this new
feature.

The Resource Compiler

The Visual C++ resource compiler reads an ASCII resource script (RC) file from the resource editors and
writes a binary RES file for the linker.

The Linker

The linker reads the OBJ and RES files produced by the C/C++ compiler and the resource compiler, and it
accesses LIB files for MFC code, runtime library code, and Windows code. It then writes the project's EXE
file. An incremental link option minimizes the execution time when only minor changes have been made to
the source files. The MFC header files contain #pragma statements (special compiler directives) that
specify the required library files, so you don't have to tell the linker explicitly which libraries to read.

The Debugger

If your program works the first time, you don't need the debugger. The rest of us might need one from
time to time. The Visual C++ debugger has been steadily improving, but it doesn't actually fix the bugs
yet. The debugger works closely with Visual C++ to ensure that breakpoints are saved on disk. Toolbar
buttons insert and remove breakpoints and control single-step execution. Figure 1-3 illustrates the Visual
C++ debugger in action. Note that the Variables and Watch windows can expand an object pointer to show
all data members of the derived class and base classes. If you position the cursor on a simple variable, the
debugger shows you its value in a little window. To debug a program, you must build the program with the
compiler and linker options set to generate debugging information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compiler and linker options set to generate debugging information.

Figure 1-3. The Visual C++ debugger window.

Visual C++ 6.0 adds a new twist to debugging with the Edit And Continue feature. Edit And Continue lets
you debug an application, change the application, and then continue debugging with the new code. This
feature dramatically reduces the amount of time you spend debugging because you no longer have to
manually leave the debugger, recompile, and then debug again. To use this feature, simply edit any code
while in the debugger and then hit the continue button. Visual C++ 6.0 automatically compiles the changes
and restarts the debugger for you.

AppWizard

AppWizard is a code generator that creates a working skeleton of a Windows application with features,
class names, and source code filenames that you specify through dialog boxes. You'll use AppWizard
extensively as you work through the examples in this book. Don't confuse AppWizard with older code
generators that generate all the code for an application. AppWizard code is minimalist code; the
functionality is inside the application framework base classes. AppWizard gets you started quickly with a
new application.

Advanced developers can build custom AppWizards. Microsoft Corporation has exposed its macro-based
system for generating projects. If you discover that your team needs to develop multiple projects with a
telecommunications interface, you can build a special wizard that automates the process.

ClassWizard

ClassWizard is a program (implemented as a DLL) that's accessible from Visual C++'s View menu.
ClassWizard takes the drudgery out of maintaining Visual C++ class code. Need a new class, a new virtual
function, or a new message-handler function? ClassWizard writes the prototypes, the function bodies, and
(if necessary) the code to link the Windows message to the function. ClassWizard can update class code
that you write, so you avoid the maintenance problems common to ordinary code generators. Some
ClassWizard features are available from Visual C++'s WizardBar toolbar, shown in Figure 1-2.

The Source Browser

If you write an application from scratch, you probably have a good mental picture of your source code files,
classes, and member functions. If you take over someone else's application, you'll need some assistance.
The Visual C++ Source Browser (the browser, for short) lets you examine (and edit) an application from
the class or function viewpoint instead of from the file viewpoint. It's a little like the "inspector" tools
available with object-oriented libraries such as Smalltalk. The browser has the following viewing modes:

Definitions and References—You select any function, variable, type, macro, or class and then see
where it's defined and used in your project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Call Graph/Callers Graph—For a selected function, you'll see a graphical representation of the
functions it calls or the functions that call it.

Derived Classes and Members/Base Classes and Members—These are graphical class
hierarchy diagrams. For a selected class, you see the derived classes or the base classes plus
members. You can control the hierarchy expansion with the mouse.

File Outline—For a selected file, the classes, functions, and data members appear together with
the places in which they're defined and used in your project.

A typical browser window is shown in Chapter 3.

If you rearrange the lines in any source code file, Visual C++ regenerates the browser
database when you rebuild the project. This increases the build time.

In addition to the browser, Visual C++ has a ClassView option that does not depend on the browser
database. You get a tree view of all the classes in your project, showing member functions and data
members. Double-click on an element, and you see the source code immediately. The ClassView does not
show hierarchy information, whereas the browser does.

Online Help

In Visual C++ 6.0, the help system has been moved to a separate application named the MSDN Library
Viewer. This help system is based on HTML. Each topic is covered in an individual HTML document; then all
are combined into indexed files. The MSDN Library Viewer uses code from Microsoft Internet Explorer 4.0,
so it works like the Web browser you already know. MSDN Library can access the help files from the Visual
C++ CD-ROM (the default installation option) or from your hard disk, and it can access HTML files on the
Internet.

Visual C++ 6.0 allows you to access help in four ways:

By book—When you choose Contents from Visual C++'s Help menu, the MSDN Library application
switches to a contents view. Here Visual Studio, Visual C++, Win32 SDK documentation, and more
is organized hierarchically by books and chapters.

By topic—When you choose Search from Visual C++'s Help menu, it automatically opens the MSDN
Library Viewer. You can then select the Index tab, type a keyword, and see the topics and articles
included for that keyword.

By word—When you choose Search from Visual C++'s Help menu, it invokes the MSDN Library
with the Search tab active. With this tab active, you can type a combination of words to view
articles that contain those words.

F1 help—This is the programmer's best friend. Just move the cursor inside a function, macro, or
class name, and then press the F1 key and the help system goes to work. If the name is found in
several places—in the MFC and Win32 help files, for example—you choose the help topic you want
from a list window.

Whichever way you access online help, you can copy any help text to the clipboard for inclusion in your
program.

Windows Diagnostic Tools

Visual C++ 6.0 contains a number of useful diagnostic tools. SPY++ gives you a tree view of your system's
processes, threads, and windows. It also lets you view messages and examine the windows of running
applications. You'll find PVIEW (PVIEW95 for Windows 95) useful for killing errant processes that aren't
visible from the Windows 95 task list. (The Windows NT Task Manager, which you can run by right-clicking
the toolbar, is an alternative to PVIEW.) Visual C++ also includes a whole suite of ActiveX utilities, an
ActiveX control test program (now with full source code in Visual C++ 6.0), the help workshop (with
compiler), a library manager, binary file viewers and editors, a source code profiler, and other utilities.

Source Code Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Source Code Control

During development of Visual C++ 5.0, Microsoft bought the rights to an established source code control
product named SourceSafe. This product has since been included in the Enterprise Edition of Visual C++
and Visual Studio Enterprise, and it is integrated into Visual C++ so that you can coordinate large software
projects. The master copy of the project's source code is stored in a central place on the network, and
programmers can check out modules for updates. These checked-out modules are usually stored on the
programmer's local hard disk. After a programmer checks in modified files, other team members can
synchronize their local hard disk copies to the master copy. Other source code control systems can also be
integrated into Visual C++.

The Gallery

The Visual C++ Components and Controls Gallery lets you share software components among different
projects. The Gallery manages three types of modules:

ActiveX controls—When you install an ActiveX control (OCX—formerly OLE control), an entry is
made in the Windows Registry. All registered ActiveX controls appear in the Gallery's window, so
you can select them in any project.

C++ source modules—When you write a new class, you can add the code to the Gallery. The code
can then be selected and copied into other projects. You can also add resources to the Gallery.

Visual C++ components—The Gallery can contain tools that let you add features to your project.
Such a tool could insert new classes, functions, data members, and resources into an existing
project. Some component modules are supplied by Microsoft (Idle time processing, Palette support,
and Splash screen, for example) as part of Visual C++. Others will be supplied by third-party soft-
ware firms.

If you decide to use one of the prepackaged Visual C++ components, try it out first in a
dummy project to see if it's what you really want. Otherwise, it might be difficult to
remove the generated code from your regular project.

All user-generated Gallery items can be imported from and exported to OGX files. These files are the
distribution and sharing medium for Visual C++ components.

The Microsoft Foundation Class Library Version 6.0

The Microsoft Foundation Class Library version 6.0 (the MFC library, for short) is really the subject of this
book. It defines the application framework that you'll be learning intimately. Chapter 2 gets you started
with actual code and introduces some important concepts.

The Microsoft Active Template Library

ATL is a tool, separate from MFC, for building ActiveX controls. You can build ActiveX controls with either
MFC or ATL, but ATL controls are much smaller and quicker to load on the Internet. Chapter 29 and
Chapter 30 provide a brief overview of ATL and creating ActiveX controls with ATL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2
The Microsoft Foundation Class Library Application Framework
This chapter introduces the Microsoft Foundation Class Library version 6.0 (the MFC library) application
framework by explaining its benefits. You'll see a stripped-down but fully operational MFC library program
for Microsoft Windows that should help you understand what application framework programming is all
about. Theory is kept to a minimum here, but the sections on message mapping and on documents and
views contain important information that will help you with the examples in later chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Use the Application Framework?
If you're going to develop applications for Windows, you've got to choose a development environment.
Assuming that you've already rejected non-C options such as Microsoft Visual Basic and Borland Delphi,
here are some of your remaining options:

Program in C with the Win32 API

Write your own C++ Windows class library that uses Win32

Use the MFC application framework

Use another Windows-based application framework such as Borland's Object Windows Library
(OWL)

If you're starting from scratch, any option involves a big learning curve. If you're already a Win16 or
Win32 programmer, you'll still have a learning curve with the MFC library. Since its release, MFC has
become the dominant Windows class library. But even if you're familiar with it, it's still a good idea to step
through the features of this programming choice.

The MFC library is the C++ Microsoft Windows API. If you accept the premise that the C++ language
is now the standard for serious application development, you'd have to say that it's natural for Windows to
have a C++ programming interface. What better interface is there than the one produced by Microsoft,
creator of Windows? That interface is the MFC library.

Application framework applications use a standard structure. Any programmer starting on a large
project develops some kind of structure for the code. The problem is that each programmer's structure is
different, and it's difficult for a new team member to learn the structure and conform to it. The MFC library
application framework includes its own application structure—one that's been proven in many software
environments and in many projects. If you write a program for Windows that uses the MFC library, you can
safely retire to a Caribbean island, knowing that your minions can easily maintain and enhance your code
back home.

Don't think that the MFC library's structure makes your programs inflexible. With the MFC library, your
program can call Win32 functions at any time, so you can take maximum advantage of Windows.

Application framework applications are small and fast. Back in the 16-bit days, you could build a
self-contained Windows EXE file that was less than 20 kilobytes (KB) in size. Today, Windows programs are
larger. One reason is that 32-bit code is fatter. Even with the large memory model, a Win16 program used
16-bit addresses for stack variables and many globals. Win32 programs use 32-bit addresses for
everything and often use 32-bit integers because they're more efficient than 16-bit integers. In addition,
the new C++ exception-handling code consumes a lot of memory.

That old 20-KB program didn't have a docking toolbar, splitter windows, print preview capabilities, or
control container support—features that users expect in modern programs. MFC programs are bigger
because they do more and look better. Fortunately, it's now easy to build applications that dynamically link
to the MFC code (and to C runtime code), so the size goes back down again—from 192 KB to about 20 KB!
Of course, you'll need some big support DLLs in the background, but those are a fact of life these days.

As far as speed is concerned, you're working with machine code produced by an optimizing compiler.
Execution is fast, but you might notice a startup delay while the support DLLs are loaded.

The Visual C++ tools reduce coding drudgery. The Visual C++ resource editors, AppWizard, and
ClassWizard significantly reduce the time needed to write code that is specific to your application. For
example, the resource editor creates a header file that contains assigned values for #define constants.
App-Wizard generates skeleton code for your entire application, and ClassWizard generates prototypes and
function bodies for message handlers.

The MFC library application framework is feature rich. The MFC library version 1.0 classes,
introduced with Microsoft C/C++ version 7.0, included the following features:

A C++ interface to the Windows API

General-purpose (non-Windows-specific) classes, including:

Collection classes for lists, arrays, and maps

A useful and efficient string class

Time, time span, and date classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Time, time span, and date classes

File access classes for operating system independence

Support for systematic object storage and retrieval to and from disk

A "common root object" class hierarchy

Streamlined Multiple Document Interface (MDI) application support

Some support for OLE version 1.0

The MFC library version 2.0 classes (in Visual C++ version 1.0) picked up where the version 1.0 classes
left off by supporting many user interface features that are found in current Windows-based applications,
plus they introduced the application framework architecture. Here's a summary of the important new
features:

Full support for File Open, Save, and Save As menu items and the most recently used file list

Print preview and printer support

Support for scrolling windows and splitter windows

Support for toolbars and status bars

Access to Visual Basic controls

Support for context-sensitive help

Support for automatic processing of data entered in a dialog box

An improved interface to OLE version 1.0

DLL support

The MFC library version 2.5 classes (in Visual C++ version 1.5) contributed the following:

Open Database Connectivity (ODBC) support that allows your application to access and update data
stored in many popular databases such as Microsoft Access, FoxPro, and Microsoft SQL Server

An interface to OLE version 2.01, with support for in-place editing, linking, drag and drop, and OLE
Automation

Visual C++ version 2.0 was the first 32-bit version of the product. It included support for Microsoft
Windows NT version 3.5. It also contained MFC version 3.0, which had the following new features:

Tab dialog (property sheet) support (which was also added to Visual C++ version 1.51, included on
the same CD-ROM)

Docking control bars that were implemented within MFC

Support for thin-frame windows

A separate Control Development Kit (CDK) for building 16-bit and 32-bit OLE controls, although no
OLE control container support was provided

A subscription release, Visual C++ 2.1 with MFC 3.1, added the following:

Support for the new Microsoft Windows 95 (beta) common controls

A new ODBC Level 2 driver integrated with the Access Jet database engine

Winsock classes for TCP/IP data communication

Microsoft decided to skip Visual C++ version 3.0 and proceeded directly to 4.0 in order to synchronize the
product version with the MFC version. MFC 4.0 contains these additional features:

New OLE-based Data Access Objects (DAO) classes for use with the Jet engine

Use of the Windows 95 docking control bars instead of the MFC control bars

Full support for the common controls in the released version of Windows 95, with new tree view and
rich-edit view classes

New classes for thread synchronization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OLE control container support

Visual C++ 4.2 was an important subscription release that included MFC version 4.2. The following new
features were included:

WinInet classes

ActiveX Documents server classes

ActiveX synchronous and asynchronous moniker classes

Enhanced MFC ActiveX Control classes, with features such as windowless activation, optimized
drawing code, and so forth

Improved MFC ODBC support, including recordset bulk fetches and data transfer without binding

Visual C++ 5.0 included MFC version 4.21, which fixed some 4.2 bugs. Visual C++ 5.0 introduced some
worthwhile features of its own as well:

A redesigned IDE, Developer Studio 97, which included an HTML-based online help system and
integration with other languages, including Java

The Active Template Library (ATL) for efficient ActiveX control construction for the Internet

C++ language support for COM (Component Object Model) client programs with the new #import
statement for type libraries, as described in Chapter 25

The latest edition of Visual C++, 6.0, includes MFC 6.0. (Notice that the versions are now synchronized
again.) Many of the features in MFC 6.0 enable the developer to support the new Microsoft Active Platform,
including the following:

MFC classes that encapsulate the new Windows common controls introduced as part of Internet
Explorer 4.0

Support for Dynamic HTML, which allows the MFC programmer to create applications that can
dynamically manipulate and generate HTML pages

Active Document Containment, which allows MFC-based applications to contain Active Documents

OLE DB Consumers and Providers Template support and Active Data Objects (ADO) data binding,
which help database developers who use MFC or ATL

The Learning Curve

All the listed benefits sound great, don't they? You're probably thinking, "You don't get something for
nothing." Yes, that's true. To use the application framework effectively, you have to learn it thoroughly,
and that takes time. If you have to learn C++, Windows, and the MFC library (without OLE) all at the same
time, it will take at least six months before you're really productive. Interestingly, that's close to the
learning time for the Win32 API alone.

How can that be if the MFC library offers so much more? For one thing, you can avoid many programming
details that C-language Win32 programmers are forced to learn. From our own experience, we can say
that an object-oriented application framework makes programming for Windows easier to learn—that is,
once you understand object-oriented programming.

The MFC library won't bring real Windows programming down to the masses. Programmers of applications
for Windows have usually commanded higher salaries than other programmers, and that situation will
continue. The MFC library's learning curve, together with the application framework's power, should ensure
that MFC library programmers will continue to be in strong demand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's an Application Framework?
One definition of application framework is "an integrated collection of object-oriented software components
that offers all that's needed for a generic application." That isn't a very useful definition, is it? If you really
want to know what an application framework is, you'll have to read the rest of this book. The application
framework example that you'll familiarize yourself with later in this chapter is a good starting point.

An Application Framework vs. a Class Library

One reason that C++ is a popular language is that it can be "extended" with class libraries. Some class
libraries are delivered with C++ compilers, others are sold by third-party software firms, and still others
are developed in-house. A class library is a set of related C++ classes that can be used in an application. A
mathematics class library, for example, might perform common mathematics operations, and a
communications class library might support the transfer of data over a serial link. Sometimes you construct
objects of the supplied classes; sometimes you derive your own classes—it all depends on the design of
the particular class library.

An application framework is a superset of a class library. An ordinary library is an isolated set of classes
designed to be incorporated into any program, but an application framework defines the structure of the
program itself. Microsoft didn't invent the application framework concept. It appeared first in the academic
world, and the first commercial version was MacApp for the Apple Macintosh. Since MFC 2.0 was
introduced, other companies, including Borland, have released similar products.

An Application Framework Example

Enough generalizations. It's time to look at some code—not pseudocode but real code that actually
compiles and runs with the MFC library. Guess what? It's the good old "Hello, world!" application, with a
few additions. (If you've used version 1.0 of the MFC library, this code will be familiar except for the frame
window base class.) It's about the minimum amount of code for a working MFC library application for
Windows. (Contrast it with an equivalent pure Win32 application such as you would see in a Petzold book!)
You don't have to understand every line now. Don't bother to type it in and test it, because EX23B on the
CD-ROM is quite similar. Wait for the next chapter, where you'll start using the "real" application
framework.

By convention, MFC library class names begin with the letter C.

Following is the source code for the header and implementation files for our MYAPP application. The classes
CMyApp and CMyFrame are each derived from MFC library base classes. First, here is the MyApp.h header
file for the MYAPP application:

// application class
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance();
};

// frame window class
class CMyFrame : public CFrameWnd
{
public:
 CMyFrame();
protected:
 // "afx_msg" indicates that the next two functions are part
 // of the MFC library message dispatch system
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnPaint();
 DECLARE_MESSAGE_MAP()
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};
And here is the MyApp.cpp implementation file for the MYAPP application:

#include <afxwin.h> // MFC library header file declares base classes
#include "myapp.h"

CMyApp theApp; // the one and only CMyApp object

BOOL CMyApp::InitInstance()
{
 m_pMainWnd = new CMyFrame();
 m_pMainWnd->ShowWindow(m_nCmdShow);

 m_pMainWnd->UpdateWindow();
 return TRUE;
}

BEGIN_MESSAGE_MAP(CMyFrame, CFrameWnd)
 ON_WM_LBUTTONDOWN()
 ON_WM_PAINT()
END_MESSAGE_MAP()

CMyFrame::CMyFrame()
{
 Create(NULL, "MYAPP Application");
}

void CMyFrame::OnLButtonDown(UINT nFlags, CPoint point)
{
 TRACE("Entering CMyFrame::OnLButtonDown - %lx, %d, %d\n",
 (long) nFlags, point.x, point.y);
}

void CMyFrame::OnPaint()
{
 CPaintDC dc(this);
 dc.TextOut(0, 0, "Hello, world!");
}
Here are some of the program elements:

The WinMain function—Remember that Windows requires your application to have a WinMain function.
You don't see WinMain here because it's hidden inside the application framework.

The CMyApp class—An object of class CMyApp represents an application. The program defines a single
global CMyApp object, theApp. The CWinApp base class determines most of theApp's behavior.

Application startup—When the user starts the application, Windows calls the application framework's
built-in WinMain function, and WinMain looks for your globally constructed application object of a class
derived from CWinApp. Don't forget that in a C++ program global objects are constructed before the main
program is executed.

The CMyApp::InitInstance member function—When the WinMain function finds the application object,
it calls the virtual InitInstance member function, which makes the calls needed to construct and display the
application's main frame window. You must override InitInstance in your derived application class because
the CWinApp base class doesn't know what kind of main frame window you want.

The CWinApp::Run member function—The Run function is hidden in the base class, but it dispatches
the application's messages to its windows, thus keeping the application running. WinMain calls Run after it
calls InitInstance.

The CMyFrame class—An object of class CMyFrame represents the application's main frame window.
When the constructor calls the Create member function of the base class CFrameWnd, Windows creates
the actual window structure and the application framework links it to the C++ object. The ShowWindow
and UpdateWindow functions, also member functions of the base class, must be called in order to display
the window.

The CMyFrame::OnLButtonDown function—This function is a sneak preview of the MFC library's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CMyFrame::OnLButtonDown function—This function is a sneak preview of the MFC library's
message-handling capability. We've elected to "map" the left mouse button down event to a CMyFrame
member function. You'll learn the details of the MFC library's message mapping in Chapter 4. For the time
being, accept that this function gets called when the user presses the left mouse button. The function
invokes the MFC library TRACE macro to display a message in the debugging window.

The CMyFrame::OnPaint function—The application framework calls this important mapped member
function of class CMyFrame every time it's necessary to repaint the window: at the start of the program,
when the user resizes the window, and when all or part of the window is newly exposed. The CPaintDC
statement relates to the Graphics Device Interface (GDI) and is explained in later chapters. The TextOut
function displays "Hello, world!"

Application shutdown—The user shuts down the application by closing the main frame window. This
action initiates a sequence of events, which ends with the destruction of the CMyFrame object, the exit
from Run, the exit from WinMain, and the destruction of the CMyApp object.

Look at the code example again. This time try to get the big picture. Most of the application's functionality
is in the MFC library base classes CWinApp and CFrameWnd. In writing MYAPP, we've followed a few simple
structure rules and we've written key functions in our derived classes. C++ lets us "borrow" a lot of code
without copying it. Think of it as a partnership between us and the application framework. The application
framework provided the structure, and we provided the code that made the application unique.

Now you're beginning to see why the application framework is more than just a class library. Not only does
the application framework define the application structure but it also encompasses more than C++ base
classes. You've already seen the hidden WinMain function at work. Other elements support message
processing, diagnostics, DLLs, and so forth.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Library Message Mapping
Refer to the OnLButtonDown member function in the previous example application. You might think that
OnLButtonDown would be an ideal candidate for a virtual function. A window base class would define
virtual functions for mouse event messages and other standard messages, and derived window classes
could override the functions as necessary. Some Windows class libraries do work this way.

The MFC library application framework doesn't use virtual functions for Windows messages. Instead, it uses
macros to "map" specified messages to derived class member functions. Why the rejection of virtual
functions? Suppose MFC used virtual functions for messages. The CWnd class would declare virtual
functions for more than 100 messages. C++ requires a virtual function dispatch table, called a vtable, for
each derived class used in a program. Each vtable needs one 4-byte entry for each virtual function,
regardless of whether the functions are actually overridden in the derived class. Thus, for each distinct
type of window or control, the application would need a table consisting of over 400 bytes to support
virtual message handlers.

What about message handlers for menu command messages and messages from button clicks? You
couldn't define these as virtual functions in a window base class because each application might have a
different set of menu commands and buttons. The MFC library message map system avoids large vtables,
and it accommodates application-specific command messages in parallel with ordinary Windows messages.
It also allows selected nonwindow classes, such as document classes and the application class, to handle
command messages. MFC uses macros to connect (or map) Windows messages to C++ member functions.
No extensions to the C++ language are necessary.

An MFC message handler requires a function prototype, a function body, and an entry (macro invocation)
in the message map. ClassWizard helps you add message handlers to your classes. You select a Windows
message ID from a list box, and the wizard generates the code with the correct function parameters and
return values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Documents and Views
The previous example used an application object and a frame window object. Most of your MFC library
applications will be more complex. Typically, they'll contain application and frame classes plus two other
classes that represent the "document" and the "view." This document-view architecture is the core of the
application framework and is loosely based on the Model/View/Controller classes from the Smalltalk world.

In simple terms, the document-view architecture separates data from the user's view of the data. One
obvious benefit is multiple views of the same data. Consider a document that consists of a month's worth
of stock quotes stored on disk. Suppose a table view and a chart view of the data are both available. The
user updates values through the table view window, and the chart view window changes because both
windows display the same information (but in different views).

In an MFC library application, documents and views are represented by instances of C++ classes. Figure 2-
1 shows three objects of class CStockDoc corresponding to three companies: AT&T, IBM, and GM. All three
documents have a table view attached, and one document also has a chart view. As you can see, there are
four view objects—three objects of class CStockTableView and one of class CStockChartView.

Figure 2-1. The document-view relationship.

The document base class code interacts with the File Open and File Save menu items; the derived
document class does the actual reading and writing of the document object's data. (The application
framework does most of the work of displaying the File Open and File Save dialog boxes and opening,
closing, reading, and writing files.) The view base class represents a window contained inside a frame
window; the derived view class interacts with its associated document class and does the application's
display and printer I/O. The derived view class and its base classes handle Windows messages. The MFC
library orchestrates all interactions among documents, views, frame windows, and the application object,
mostly through virtual functions.

Don't think that a document object must be associated with a disk file that is read entirely into memory. If
a "document" were really a database, for example, you could override selected document class member
functions and the File Open menu item would bring up a list of databases instead of a list of files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3
Getting Started with AppWizard—"Hello, world!"
Chapter 2 sketched the MFC library version 6.0 document-view architecture. This hands-on chapter shows
you how to build a functioning MFC library application, but it insulates you from the complexities of the
class hierarchy and object interrelationships. You'll work with only one document-view program element,
the "view class" that is closely associated with a window. For the time being, you can ignore elements such
as the application class, the frame window, and the document. Of course, your application won't be able to
save its data on disk, and it won't support multiple views, but Part III of this book provides plenty of
opportunity to exploit those features.

Because resources are so important in Microsoft Windows-based applications, you'll use ResourceView to
visually explore the resources of your new program. You'll also get some hints for setting up your Windows
environment for maximum build speed and optimal debugging output.

Requirements:

To compile and run the examples presented in this chapter and in the following
chapters, you must have successfully installed the released version of Microsoft
Windows 95 or Microsoft Windows NT version 4.0 or later, plus all the Microsoft Visual
C++ version 6.0 components. Be sure that Visual C++'s executable, include, and
library directories are set correctly. (You can change the directories by choosing
Options from the Tools menu.) If you have any problems with the following steps,
please refer to your Visual C++ documentation and Readme files for troubleshooting
instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's a View?
From a user's standpoint, a view is an ordinary window that the user can size, move, and close in the same
way as any other Windows-based application window. From the programmer's perspective, a view is a
C++ object of a class derived from the MFC library CView class. Like any C++ object, the view object's
behavior is determined by the member functions (and data members) of the class—both the application-
specific functions in the derived class and the standard functions inherited from the base classes.

With Visual C++, you can produce interesting applications for Windows by simply adding code to the
derived view class that the AppWizard code generator produces. When your program runs, the MFC library
application framework constructs an object of the derived view class and displays a window that is tightly
linked to the C++ view object. As is customary in C++ programming, the view class code is divided into
two source modules—the header file (H) and the implementation file (CPP).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Single Document Interface vs. Multiple Document Interface
The MFC library supports two distinct application types: Single Document Interface (SDI) and Multiple
Document Interface (MDI). An SDI application has, from the user's point of view, only one window. If the
application depends on disk-file "documents," only one document can be loaded at a time. The original
Windows Notepad is an example of an SDI application. An MDI application has multiple child windows, each
of which corresponds to an individual document. Microsoft Word is a good example of an MDI application.

When you run AppWizard to create a new project, MDI is the default application type. For the early
examples in this book, you'll be generating SDI applications because fewer classes and features are
involved. Be sure you select the Single Document option (on the first AppWizard screen) for these
examples. Starting with Chapter 18, you'll be generating MDI applications. The MFC library application
framework architecture ensures that most SDI examples can be upgraded easily to MDI applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The "Do-Nothing" Application—EX03A
The AppWizard tool generates the code for a functioning MFC library application. This working application
simply brings up an empty window with a menu attached. Later you'll add code that draws inside the
window. Follow these steps to build the application:

1. Run AppWizard to generate SDI application source code. Choose New from Visual C++'s File
menu, and then click the Projects tab in the resulting New dialog box, as shown here.

Make sure that MFC AppWizard (exe) is highlighted, and then type C:\vcpp32\ in the Location edit
box. Type ex03a as shown in the Project Name edit box, and then click the OK button. Now you will
step through a sequence of AppWizard screens, the first of which is shown here.

Be sure to select the Single Document option. Accept the defaults in the next four screens. The last
screen should look like the following illustration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

screen should look like the following illustration.

Notice that the class names and source-file names have been generated based on the project name
EX03A. You could make changes to these names at this point if you wanted to. Click the Finish
button. Just before AppWizard generates your code, it displays the New Project Information dialog
box, shown here.

When you click the OK button, AppWizard begins to create your application's subdirectory (ex03a
under \vcpp32) and a series of files in that subdirectory. When AppWizard is finished, look in the
application's subdirectory. The following files are of interest (for now).

File Description

ex03a.dsp A project file that allows Visual C++ to build your application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ex03a.dsw A workspace file that contains a single entry for ex03a.dsp

ex03a.rc An ASCII resource script file

ex03aView.cpp A view class implementation file that contains CEx03aView class member
functions

ex03aView.h A view class header file that contains the CEx03aView class declaration

ex03a.opt A binary file that tells Visual C++ which files are open for this project and
how the windows are arranged (This file is not created until you save the
project.)

ReadMe.txt A text file that explains the purpose of the generated files

resource.h A header file that contains #define constant definitions

Open the ex03aView.cpp and ex03aView.h files and look at the source code. Together these files
define the CEx03aView class, which is central to the application. An object of class CEx03aView
corresponds to the application's view window, where all the "action" takes place.

2. Compile and link the generated code. AppWizard, in addition to generating code, creates
custom project and workspace files for your application. The project file, ex03a.dsp, specifies all the
file dependencies together with the compile and link option flags. Because the new project becomes
Visual C++'s current project, you can now build the application by choosing Build Ex03a.exe from
the Build menu or by clicking the Build toolbar button, shown here.

If the build is successful, an executable program named ex03a.exe is created in a new Debug
subdirectory underneath \vcpp32\ex03a. The OBJ files and other intermediate files are also stored
in Debug. Compare the file structure on disk with the structure in the Workspace window's FileView
page shown here.

The FileView page contains a logical view of your project. The header files show up under Header
Files, even though they are in the same subdirectory as the CPP files. The resource files are stored
in the \res subdirectory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Test the resulting application. Choose Execute Ex03a.exe from the Build menu. Experiment with
the program. It doesn't do much, does it? (What do you expect for no coding?) Actually, as you
might guess, the program has a lot of features—you simply haven't activated them yet. Close the
program window when you've finished experimenting.

4. Browse the application. Choose Source Browser from the Tools menu. If your project settings
don't specify browser database creation, Visual C++ will offer to change the settings and recompile
the program for you. (To change the settings yourself, choose Settings from the Project menu. On
the C/C++ page, click Generate Browse Info, and on the Browse Info page, click Build Browse Info
File.)

When the Browse window appears, choose Base Classes And Members and then type CEx03aView.
After you expand the hierarchy, you should see output similar to this.

Compare the browser output to ClassView in the Workspace window.

ClassView doesn't show the class hierarchy, but it also doesn't involve the extra overhead of the
browser. If ClassView is sufficient for you, don't bother building the browser database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CEx03aView View Class
AppWizard generated the CEx03aView view class, and this class is specific to the EX03A application.
(AppWizard generates classes based on the project name you entered in the first AppWizard dialog box.)
CEx03aView is at the bottom of a long inheritance chain of MFC library classes, as illustrated previously in
the Browse window. The class picks up member functions and data members all along the chain. You can
learn about these classes in the Microsoft Foundation Class Reference (online or printed version), but you
must be sure to look at the descriptions for every base class because the descriptions of inherited member
functions aren't generally repeated for derived classes.

The most important CEx03aView base classes are CWnd and CView. CWnd provides CEx03aView's
"windowness," and CView provides the hooks to the rest of the application framework, particularly to the
document and to the frame window, as you'll see in Part III of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drawing Inside the View Window—The Windows Graphics Device
Interface
Now you're ready to write code to draw inside the view window. You'll be making a few changes directly to
the EX03A source code.

The OnDraw Member Function

Specifically, you'll be fleshing out OnDraw in ex03aView.cpp. OnDraw is a virtual member function of the
CView class that the application framework calls every time the view window needs to be repainted. A
window needs to be repainted if the user resizes the window or reveals a previously hidden part of the
window, or if the application changes the window's data. If the user resizes the window or reveals a hidden
area, the application framework calls OnDraw, but if a function in your program changes the data, it must
inform Windows of the change by calling the view's inherited Invalidate (or InvalidateRect) member
function. This call to Invalidate triggers a later call to OnDraw.

Even though you can draw inside a window at any time, it's recommended that you let window changes
accumulate and then process them all together in the OnDraw function. That way your program can
respond both to program-generated events and to Windows-generated events such as size changes.

The Windows Device Context

Recall from Chapter 1 that Windows doesn't allow direct access to the display hardware but communicates
through an abstraction called a "device context" that is associated with the window. In the MFC library, the
device context is a C++ object of class CDC that is passed (by pointer) as a parameter to OnDraw. After
you have the device context pointer, you can call the many CDC member functions that do the work of
drawing.

Adding Draw Code to the EX03A Program

Now let's write the code to draw some text and a circle inside the view window. Be sure that the project
EX03A is open in Visual C++. You can use the Workspace window's ClassView to locate the code for the
function (double-click on OnDraw), or you can open the source code file ex03aView.cpp from FileView and
locate the function yourself.

1. Edit the OnDraw function in ex03aView.cpp. Find the AppWizard-generated OnDraw function in
ex03aView.cpp:

void CEx03aView::OnDraw(CDC* pDC)
{
 CEx03aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: add draw code for native data here
}
The following boldface code (which you type in) replaces the previous code:

void CEx03aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Hello, world!"); // prints in default font
 // & size, top left corner
 pDC->SelectStockObject(GRAY_BRUSH); // selects a brush for the
 // circle interior
 pDC->Ellipse(CRect(0, 20, 100, 120)); // draws a gray circle
 // 100 units in diameter
}
You can safely remove the call to GetDocument because we're not dealing with documents yet. The
functions TextOut, SelectStockObject, and Ellipse are all member functions of the application
framework's device context class CDC. The Ellipse function draws a circle if the bounding rectangle's
length is equal to its width.

The MFC library provides a handy utility class, CRect, for Windows rectangles. A temporary CRect
object serves as the bounding rectangle argument for the ellipse drawing function. You'll see more
of the CRect class in quite a few of the examples in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the CRect class in quite a few of the examples in this book.

2. Recompile and test EX03A. Choose Build from the Project menu, and, if there are no compile
errors, test the application again. Now you have a program that visibly does something!

For Win32 Programmers

Rest assured that the standard Windows WinMain and window procedure functions are
hidden away inside the application framework. You'll see those functions later in this
book, when the MFC library frame and application classes are examined. In the
meantime, you're probably wondering what happened to the WM_PAINT message,
aren't you? You would expect to do your window drawing in response to this Windows
message, and you would expect to get your device context handle from a
PAINTSTRUCT structure returned by the Windows BeginPaint function.

It so happens that the application framework has done all the dirty work for you and
served up a device context (in object pointer form) in the virtual function OnDraw. As
explained in Chapter 2, true virtual functions in window classes are an MFC library
rarity. MFC library message map functions dispatched by the application framework
handle most Windows messages. MFC version 1.0 programmers always defined an
OnPaint message map function for their derived window classes. Beginning with version
2.5, however, OnPaint was mapped in the CView class, and that function made a
polymorphic call to OnDraw. Why? Because OnDraw needs to support the printer as
well as the display. Both OnPaint and OnPrint call OnDraw, thus enabling the same
drawing code to accommodate both the printer and the display.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Preview of the Resource Editors
Now that you have a complete application program, it's a good time for a quick look at the resource
editors. Although the application's resource script, ex03a.rc, is an ASCII file, modifying it with a text editor
is not a good idea. That's the resource editors' job.

The Contents of ex03a.rc

The resource file determines much of the EX03A application's "look and feel." The file ex03a.rc contains (or
points to) the Windows resources listed here.

Resource Description

Accelerator Definitions for keys that simulate menu and toolbar selections.

Dialog Layout and contents of dialog boxes. EX03A has only the About dialog box.

Icon Icons (16-by-16-pixel and 32-by-32-pixel versions), such as the application icon you
see in Microsoft Windows Explorer and in the application's About dialog box. EX03A
uses the MFC logo for its application icon.

Menu The application's top-level menu and associated pop-up menus.

String
table

Strings that are not part of the C++ source code.

Toolbar The row of buttons immediately below the menu.

Version Program description, version number, language, and so on.

In addition to the resources listed above, ex03a.rc contains the statements

#include "afxres.h"
#include "afxres.rc"
which bring in some MFC library resources common to all applications. These resources include strings,
graphical buttons, and elements needed for printing and OLE.

If you're using the shared DLL version of the MFC library, the common resources are
stored inside the MFC DLL.

The ex03a.rc file also contains the statement

#include "resource.h"
This statement brings in the application's three #define constants, which are IDR_MAINFRAME (identifying
the menu, icon, string list, and accelerator table), IDR_EX03ATYPE (identifying the default document icon,
which we won't use in this program), and IDD_ABOUTBOX (identifying the About dialog box). This same
resource.h file is included indirectly by the application's source code files. If you use a resource editor to
add more constants (symbols), the definitions ultimately show up in resource.h. Be careful if you edit this
file in text mode because your changes might be removed the next time you use a resource editor.

Running the Dialog Resource Editor

1. Open the project's RC file. Click the ResourceView button in the Workspace window. If you
expand each item, you will see the following in the resource editor window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Examine the application's resources. Now take some time to explore the individual resources.
When you select a resource by double-clicking on it, another window opens with tools appropriate
for the selected resource. If you open a dialog resource, the control palette should appear. If it
doesn't, right-click inside any toolbar, and then check Controls.

3. Modify the IDD_ABOUTBOX dialog box. Make some changes to the About Ex03a dialog box,
shown here.

4. You can change the size of the window by dragging the right and bottom borders, move the OK
button, change the text, and so forth. Simply click on an element to select it, and then right-click to
change its properties.

5. Rebuild the project with the modified resource file. In Visual C++, choose Build Ex03a.exe
from the Build menu. Notice that no actual C++ recompilation is necessary. Visual C++ saves the
edited resource file, and then the Resource Compiler (rc.exe) processes ex03a.rc to produce a
compiled version, ex03a.res, which is fed to the linker. The linker runs quickly because it can link
the project incrementally.

6. Test the new version of the application. Run the EX03A program again, and then choose About
from the application's Help menu to confirm that your dialog box was changed as expected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 Debug Target vs. Win32 Release Target
If you open the drop-down list on the Build toolbar, you'll notice two items: Win32 Debug and Win32
Release. (The Build toolbar is not present by default, but you can choose Customize from the Tools menu
to display it.) These items are targets that represent distinct sets of build options. When AppWizard
generates a project, it creates two default targets with different settings. These settings are summarized in
the following table.

Option Release Build Debug Build

Source code
debugging

Disabled Enabled for both compiler
and linker

MFC diagnostic
macros

Disabled (NDEBUG defined) Enabled (_DEBUG defined)

Library linkage MFC Release library MFC Debug libraries

Compiler
optimization

Speed optimization (not available in
Learning Edition)

No optimization (faster
compile)

You develop your application in Debug mode, and then you rebuild in Release mode prior to delivery. The
Release build EXE will be smaller and faster, assuming that you have fixed all the bugs. You select the
configuration from the build target window in the Build toolbar, as shown in Figure 1-2 in Chapter 1. By
default, the Debug output files and intermediate files are stored in the project's Debug subdirectory; the
Release files are stored in the Release subdirectory. You can change these directories on the General tab in
the Project Settings dialog box.

You can create your own custom configurations if you need to by choosing Configurations from Visual
C++'s Build menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enabling the Diagnostic Macros
The application framework TRACE macros are particularly useful for monitoring program activity. They
require that tracing be enabled, which is the default setting. If you're not seeing TRACE output from your
program, first make sure that you are running the debug target from the debugger and then run the
TRACER utility. If you check the Enable Tracing checkbox, TRACER will insert the statement

TraceEnabled = 1
in the [Diagnostics] section of a file named Afx.ini. (No, it's not stored in the Registry.) You can also use
TRACER to enable other MFC diagnostic outputs, including message, OLE, database, and Internet
information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding Precompiled Headers
When AppWizard generates a project, it generates switch settings and files for precompiled headers. You
must understand how the make system processes precompiled headers in order to manage your projects
effectively.

Visual C++ has two precompiled header "systems:" automatic and manual. Automatic
precompiled headers, activated with the /Yx compiler switch, store compiler output in a
"database" file. Manual precompiled headers are activated by the /Yc and /Yu switch
settings and are central to all AppWizard-generated projects.

Precompiled headers represent compiler "snapshots" taken at a particular line of source code. In MFC
library programs, the snapshot is generally taken immediately after the following statement:

#include "StdAfx.h"
The file StdAfx.h contains #include statements for the MFC library header files. The file's contents depend
on the options that you select when you run AppWizard, but the file always contains these statements:

#include <afxwin.h>
#include <afxext.h>
If you're using compound documents, StdAfx.h also contains the statement

#include <afxole.h>
and if you're using Automation or ActiveX Controls, it contains

#include <afxdisp.h>
If you're using Internet Explorer 4 Common Controls, StdAfx.h contains the statement

#include <afxdtctl.h>
Occasionally you will need other header files—for example, the header for template-based collection
classes that is accessed by the statement

#include <afxtempl.h>
The source file StdAfx.cpp contains only the statement

#include "StdAfx.h"
and is used to generate the precompiled header file in the project directory. The MFC library headers
included by StdAfx.h never change, but they do take a long time to compile. The compiler switch /Yc, used
only with StdAfx.cpp, causes creation of the precompiled header (PCH) file. The switch /Yu, used with all
the other source code files, causes use of an existing PCH file. The switch /Fp specifies the PCH filename
that would otherwise default to the project name (with the PCH extension) in the target's output files
subdirectory. Figure 3-1 illustrates the whole process.

AppWizard sets the /Yc and /Yu switches for you, but you can make changes if you need to. It's possible to
define compiler switch settings for individual source files. On the C/C++ tab in the Project Settings dialog
box, if you select only StdAfx.cpp, you'll see the /Yc setting. This overrides the /Yu setting that is defined
for the target.

Be aware that PCH files are big—5 MB is typical. If you're not careful, you'll fill up your hard disk. You can
keep things under control by periodically cleaning out your projects' Debug directories, or you can use the
/Fp compiler option to reroute PCH files to a common directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/Fp compiler option to reroute PCH files to a common directory.

Figure 3-1. The Visual C++ precompiled header process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two Ways to Run a Program
Visual C++ lets you run your program directly (by pressing Ctrl-F5) or through the debugger (by pressing
F5). Running your program directly is much faster because Visual C++ doesn't have to load the debugger
first. If you know you don't want to see diagnostic messages or use breakpoints, start your program by
pressing Ctrl-F5 or use the "exclamation point" button on the Build toolbar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4
Basic Event Handling, Mapping Modes, and a Scrolling View
In Chapter 3, you saw how the Microsoft Foundation Class (MFC) Library application framework called the
view class's virtual OnDraw function. Take a look at the online help for the MFC library now. If you look at
the documentation for the CView class and its base class, CWnd, you'll see several hundred member
functions. Functions whose names begin with On—such as OnKeyDown and OnLButtonUp—are member
functions that the application framework calls in response to various Windows "events" such as keystrokes
and mouse clicks.

Most of these application framework-called functions, such as OnKeyDown, aren't virtual functions and
thus require more programming steps. This chapter explains how to use the Visual C++ ClassWizard to set
up the message map structure necessary for connecting the application framework to your functions' code.
You'll see the practical application of message map functions.

The first two examples use an ordinary CView class. In EX04A, you'll learn about the interaction between
user-driven events and the OnDraw function. In EX04B, you'll see the effects of different Windows
mapping modes.

More often than not, you'll want a scrolling view. The last example, EX04C, uses CScrollView in place of the
CView base class. This allows the MFC library application framework to insert scroll bars and connect them
to the view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting User Input—Message Map Functions
Your EX03A application from Chapter 3 did not accept user input (other than the standard Microsoft
Windows resizing and window close commands). The window contained menus and a toolbar, but these
were not "connected" to the view code. The menus and the toolbar won't be discussed until Part III of this
book because they depend on the frame class, but plenty of other Windows input sources will keep you
busy until then. Before you can process any Windows event, even a mouse click, however, you must learn
how to use the MFC message map system.

The Message Map

When the user presses the left mouse button in a view window, Windows sends a message—specifically
WM_LBUTTONDOWN—to that window. If your program needs to take action in response to
WM_LBUTTONDOWN, your view class must have a member function that looks like this:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // event processing code here
}
Your class header file must also have the corresponding prototype:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
The afx_msg notation is a "no-op" that alerts you that this is a prototype for a message map function.
Next, your code file needs a message map macro that connects your OnLButtonDown function to the
application framework:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_WM_LBUTTONDOWN() // entry specifically for OnLButtonDown
 // other message map entries
END_MESSAGE_MAP()
Finally, your class header file needs the statement

DECLARE_MESSAGE_MAP()
How do you know which function goes with which Windows message? Appendix A (and the MFC library
online documentation) includes a table that lists all standard Windows messages and corresponding
member function prototypes. You can manually code the message-handling functions—indeed, that is still
necessary for certain messages. Fortunately, Visual C++ provides a tool, ClassWizard, that automates the
coding of most message map functions.

Saving the View's State—Class Data Members

If your program accepts user input, you'll want the user to have some visual feedback. The view's OnDraw
function draws an image based on the view's current "state," and user actions can alter that state. In a
full-blown MFC application, the document object holds the state of the application, but you're not to that
point yet. For now, you'll use two view class data members, m_rectEllipse and m_nColor. The first is an
object of class CRect, which holds the current bounding rectangle of an ellipse, and the second is an
integer that holds the current ellipse color value.

By convention, MFC library nonstatic class data member names begin with m_.

You'll make a message-mapped member function toggle the ellipse color (the view's state) between gray
and white. (The toggle is activated by pressing the left mouse button.) The initial values of m_rectEllipse
and m_nColor are set in the view's constructor, and the color is changed in the OnLButtonDown member
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why not use a global variable for the view's state? Because if you did, you'd be in
trouble if your application had multiple views. Besides, encapsulating data in objects is
a big part of what object-oriented programming is all about.

Initializing a View Class Data Member

The most efficient place to initialize a class data member is in the constructor, like this:

CMyView::CMyView() : m_rectEllipse(0, 0, 200, 200) {...}
You could initialize m_nColor with the same syntax. Because we're using a built-in type (integer), the
generated code is the same if you use an assignment statement in the constructor body.

Invalid Rectangle Theory

The OnLButtonDown function could toggle the value of m_nColor all day, but if that's all it did, the OnDraw
function wouldn't get called (unless, for example, the user resized the view window). The OnLButtonDown
function must call the InvalidateRect function (a member function that the view class inherits from CWnd).
InvalidateRect triggers a Windows WM_PAINT message, which is mapped in the CView class to call to the
virtual OnDraw function. If necessary, OnDraw can access the "invalid rectangle" parameter that was
passed to InvalidateRect.

There are two ways to optimize painting in Windows. First of all, you must be aware that Windows updates
only those pixels that are inside the invalid rectangle. Thus, the smaller you make the invalid rectangle (in
the OnLButtonDown handler, for instance), the quicker it can be repainted. Second, it's a waste of time to
execute drawing instructions outside the invalid rectangle. Your OnDraw function could call the CDC
member function GetClipBox to determine the invalid rectangle, and then it could avoid drawing objects
outside it. Remember that OnDraw is being called not only in response to your InvalidateRect call but also
when the user resizes or exposes the window. Thus, OnDraw is responsible for all drawing in a window,
and it has to adapt to whatever invalid rectangle it gets.

For Win32 Programmers

The MFC library makes it easy to attach your own state variables to a window through
C++ class data members. In Win32 programming, the WNDCLASS members cbClsExtra
and cbWndExtra are available for this purpose, but the code for using this mechanism
is so complex that developers tend to use global variables instead.

The Window's Client Area

A window has a rectangular client area that excludes the border, caption bar, menu bar, and any docking
toolbars. The CWnd member function GetClientRect supplies you with the client-area dimensions.
Normally, you're not allowed to draw outside the client area, and most mouse messages are received only
when the mouse cursor is in the client area.

CRect, CPoint, and CSize Arithmetic

The CRect, CPoint, and CSize classes are derived from the Windows RECT, POINT, and SIZE structures,
and thus they inherit public integer data members as follows:

CRect left, top, right, bottom

CPoint x, y

CSize cx, cy

If you look in the Microsoft Foundation Class Reference, you will see that these three classes have a
number of overloaded operators. You can, among other things, do the following:

Add a CSize object to a CPoint object

Subtract a CSize object from a CPoint object

Subtract one CPoint object from another, yielding a CSize object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subtract one CPoint object from another, yielding a CSize object

Add a CPoint or CSize object to a CRect object

Subtract a CPoint or CSize object from a CRect object

The CRect class has member functions that relate to the CSize and CPoint classes. For example, the
TopLeft member function returns a CPoint object, and the Size member function returns a CSize object.
From this, you can begin to see that a CSize object is the "difference between two CPoint objects" and that
you can "bias" a CRect object by a CPoint object.

Is a Point Inside a Rectangle?

The CRect class has a member function PtInRect that tests a point to see whether it falls inside a
rectangle. The second OnLButtonDown parameter (point) is an object of class CPoint that represents the
cursor location in the client area of the window. If you want to know whether that point is inside the
m_rectEllipse rectangle, you can use PtInRect in this way:

if (m_rectEllipse.PtInRect(point)) {
 // point is inside rectangle
}
As you'll soon see, however, this simple logic applies only if you're working in device coordinates (which
you are at this stage).

The CRect LPCRECT Operator

If you read the Microsoft Foundation Class Reference carefully, you will notice that CWnd::InvalidateRect
takes an LPCRECT parameter (a pointer to a RECT structure), not a CRect parameter. A CRect parameter is
allowed because the CRect class defines an overloaded operator, LPCRECT(), that returns the address of a
CRect object, which is equivalent to the address of a RECT object. Thus, the compiler converts CRect
arguments to LPCRECT arguments when necessary. You call functions as though they had CRect reference
parameters. The view member function code

CRect rectClient;
GetClientRect(rectClient);
retrieves the client rectangle coordinates and stores them in rectClient.

Is a Point Inside an Ellipse?

The EX04A code determines whether the mouse hit is inside the rectangle. If you want to make a better
test, you can find out whether the hit is inside the ellipse. To do this, you must construct an object of class
CRgn that corresponds to the ellipse and then use the PtInRegion function instead of PtInRect. Here's the
code:

CRgn rgn;
rgn.CreateEllipticRgnIndirect(m_rectEllipse);
if (rgn.PtInRegion(point)) {
 // point is inside ellipse
}
Note that the CreateEllipticRgnIndirect function is another function that takes an LPCRECT parameter. It
builds a special region structure within Windows that represents an elliptical region inside a window. That
structure is then attached to the C++ CRgn object in your program. (The same type of structure can also
represent a polygon.)

The EX04A Example

In the EX04A example, an ellipse (which happens to be a circle) changes color when the user presses the
left mouse button while the mouse cursor is inside the rectangle that bounds the ellipse. You'll use the
view class data members to hold the view's state, and you'll use the InvalidateRect function to cause the
view to be redrawn.

In the Chapter 3 example, drawing in the window depended on only one function, OnDraw. The EX04A
example requires three customized functions (including the constructor) and two data members. The
complete CEx04aView header and source code files are listed in Figure 4-1. (The steps for creating the
program are shown after the program listings.) All changes to the original AppWizard and OnLButtonDown
ClassWizard output are in boldface.

EX04AVIEW.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EX04AVIEW.H

// ex04aView.h : interface of the CEx04aView class
//
///

#if !defined(AFX_EX04AVIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2
__INCLUDED_)
#define AFX_EX04AVIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2
__INCLUDED_

#if _MFC_VER > 1000
#pragma once
#endif // _MFC_VER > 1000
class CEx04aView : public CView
{
protected: // create from serialization only
 CEx04aView();
 DECLARE_DYNCREATE(CEx04aView)

// Attributes
public:
 CEx04aDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx04aView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx04aView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CEx04aView)
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 int m_nColor;
 CRect m_rectEllipse;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect m_rectEllipse;
};
#ifndef _DEBUG // debug version in ex04aView.cpp
inline CEx04aDoc* CEx04aView::GetDocument()
 { return (CEx04aDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX04AVIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2__INCLUDED_)

EX04AVIEW.CPP

// ex04aView.cpp : implementation of the CEx04aView class
//

#include "stdafx.h"
#include "ex04a.h"

#include "ex04aDoc.h"
#include "ex04aView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

///
// CEx04aView

IMPLEMENT_DYNCREATE(CEx04aView, CView)

BEGIN_MESSAGE_MAP(CEx04aView, CView)
 //{{AFX_MSG_MAP(CEx04aView)
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP()
///
// CEx04aView construction/destruction

CEx04aView::CEx04aView() : m_rectEllipse(0, 0, 200, 200)
{
 m_nColor = GRAY_BRUSH;
}

CEx04aView::~CEx04aView()
{
}

BOOL CEx04aView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CView::PreCreateWindow(cs);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return CView::PreCreateWindow(cs);
}

///
// CEx04aView drawing

void CEx04aView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

///
// CEx04aView printing

BOOL CEx04aView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

void CEx04aView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEx04aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

///
// CEx04aView diagnostics

#ifdef _DEBUG
void CEx04aView::AssertValid() const
{
 CView::AssertValid();
}

void CEx04aView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CEx04aDoc* CEx04aView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx04aDoc)));
 return (CEx04aDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CEx04aView message handlers

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }
}

Figure 4-1. The CEx04aView header and source code files.

Using ClassWizard with EX04A

Look at the following ex04aView.h source code:

//{{AFX_MSG(CEx04aView)
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
//}}AFX_MSG
Now look at the following ex04aView.cpp source code:

//{{AFX_MSG_MAP(CEx04aView)
ON_WM_LBUTTONDOWN()
//}}AFX_MSG_MAP
AppWizard generated the funny-looking comment lines for the benefit of ClassWizard. ClassWizard adds
message handler prototypes between the AFX_MSG brackets and message map entries between the
AFX_MSG_MAP brackets. In addition, ClassWizard generates a skeleton OnLButtonDown member function
in ex04aView.cpp, complete with the correct parameter declarations and return type.

Notice how the AppWizard_ClassWizard combination is different from a conventional code generator. You
run a conventional code generator only once and then edit the resulting code. You run AppWizard to
generate the application only once, but you can run ClassWizard as many times as necessary, and you can
edit the code at any time. You're safe as long as you don't alter what's inside the AFX_MSG and
AFX_MSG_MAP brackets.

Using AppWizard and ClassWizard Together

The following steps show how you use AppWizard and ClassWizard together to create this application:

1. Run AppWizard to create EX04A. Use AppWizard to generate an SDI project named EX04A in
the \vcpp32\ex04a subdirectory. The options and the default class names are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add the m_rectEllipse and m_nColor data members to CEx04aView. With the Workspace
window set to ClassView, right-click the CEx04aView class, select Add Member Variable, and then
insert the following two data members:

private:
 CRect m_rectEllipse;
 int m_nColor;
If you prefer, you could type the above code inside the class declaration in the file ex04aView.h.

3. Use ClassWizard to add a CEx04aView class message handler. Choose ClassWizard from the
View menu of Visual C++, or right-click inside a source code window and choose ClassWizard from
the context menu. When the MFC ClassWizard dialog appears, be sure that the CEx04aView class is
selected, as shown in the illustration below. Now click on CEx04aView at the top of the Object IDs
list box, and then scroll down past the virtual functions in the Messages list box and double-click on
WM_LBUTTONDOWN. The OnLButtonDown function name should appear in the Member Functions
list box, and the message name should be displayed in bold in the Messages list box. Here's the
ClassWizard dialog box.

Instead of using ClassWizard, you can map the function from the Visual C++
WizardBar (shown in Figure 1-2 in Chapter 1).

4. Edit the OnLButtonDown code in ex04aView.cpp. Click the Edit Code button. ClassWizard
opens an edit window for ex04aView.cpp in Visual C++ and positions the cursor on the newly
generated OnLButtonDown member function. The following boldface code (that you type in)
replaces the previous code:

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point)) {
 if (m_nColor
== GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

5. Edit the constructor and the OnDraw function in ex04aView.cpp. The following boldface code
(that you type in) replaces the previous code:

CEx04aView::CEx04aView() : m_rectEllipse(0, 0, 200, 200)
{
 m_nColor = GRAY_BRUSH;
}
.
.
.
void CEx04aView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

6. Build and run the EX04A program. Choose Build Ex04a.exe from the Build menu, or, on the
Build toolbar, click the button shown here.

Then choose Execute Ex04a.exe from the Build menu. The resulting program responds to presses of
the left mouse button by changing the color of the circle in the view window. (Don't press the
mouse's left button quickly in succession; Windows interprets this as a double click rather than two
single clicks.)

For Win32 Programmers

A conventional Windows-based application registers a series of window classes (not the
same as C++ classes) and, in the process, assigns a unique function, known as a
window procedure, to each class. Each time the application calls CreateWindow to
create a window, it specifies a window class as a parameter and thus links the newly
created window to a window procedure function. This function, called each time
Windows sends a message to the window, tests the message code that is passed as a
parameter and then executes the appropriate code to handle the message.

The MFC application framework has a single window class and window procedure
function for most window types. This window procedure function looks up the window
handle (passed as a parameter) in the MFC handle map to get the corresponding C++
window object pointer. The window procedure function then uses the MFC runtime class
system (see Appendix B) to determine the C++ class of the window object. Next it
locates the handler function in static tables created by the dispatch map functions, and
finally it calls the handler function with the correct window object selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapping Modes
Up to now, your drawing units have been display pixels, also known as device coordinates. The EX04A
drawing units are pixels because the device context has the default mapping mode, MM_TEXT, assigned to
it. The statement

pDC->Rectangle(CRect(0, 0, 200, 200));
draws a square of 200-by-200 pixels, with its top-left corner at the top left of the window's client area.
(Positive y values increase as you move down the window.) This square would look smaller on a high-
resolution display of 1024-by-768 pixels than it would look on a standard VGA display that is 640-by-480
pixels, and it would look tiny if printed on a laser printer with 600-dpi resolution. (Try EX04A's Print
Preview feature to see for yourself.)

What if you want the square to be 4-by-4 centimeters (cm), regardless of the display device? Windows
provides a number of other mapping modes, or coordinate systems, that can be associated with the device
context. Coordinates in the current mapping mode are called logical coordinates. If you assign the
MM_HIMETRIC mapping mode, for example, a logical unit is 1/100 millimeter (mm) instead of 1 pixel. In
the MM_HIMETRIC mapping mode, the y axis runs in the opposite direction to that in the MM_TEXT mode:
y values decrease as you move down. Thus, a 4-by-4-cm square is drawn in logical coordinates this way:

pDC->Rectangle(CRect(0, 0, 4000, -4000));
Looks easy, doesn't it? Well, it isn't, because you can't work only in logical coordinates. Your program is
always switching between device coordinates and logical coordinates, and you need to know when to
convert between them. This section gives you a few rules that could make your programming life easier.
First you need to know what mapping modes Windows gives you.

The MM_TEXT Mapping Mode

At first glance, MM_TEXT appears to be no mapping mode at all, but rather another name for device
coordinates. Almost. In MM_TEXT, coordinates map to pixels, values of x increase as you move right, and
values of y increase as you move down, but you're allowed to change the origin through calls to the CDC
functions SetViewportOrg and SetWindowOrg. Here's some code that sets the window origin to (100, 100)
in logical coordinate space and then draws a 200-by-200-pixel square offset by (100, 100). (An illustration
of the output is shown in Figure 4-2.) The logical point (100, 100) maps to the device point (0, 0). A
scrolling window uses this kind of transformation.

void CMyView::OnDraw(CDC* pDC)
{
 pDC->SetMapMode(MM_TEXT);
 pDC->SetWindowOrg(CPoint(100, 100));
 pDC->Rectangle(CRect(100, 100, 300, 300));
}

Figure 4-2. A square drawn after the origin has been moved to (100, 100).

The Fixed-Scale Mapping Modes

One important group of Windows mapping modes provides fixed scaling. You have already seen that, in
the MM_HIMETRIC mapping mode, x values increase as you move right and y values decrease as you
move down. All fixed mapping modes follow this convention, and you can't change it. The only difference
among the fixed mapping modes is the actual scale factor, listed in the table shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

among the fixed mapping modes is the actual scale factor, listed in the table shown here.

Mapping Mode Logical Unit

MM_LOENGLISH 0.01 inch

MM_HIENGLISH 0.001 inch

MM_LOMETRIC 0.1 mm

MM_HIMETRIC 0.01 mm

MM_TWIPS 1/1440 inch

The last mapping mode, MM_TWIPS, is most often used with printers. One twip unit is 1/20 point. (A point
is a type measurement unit. In Windows it equals exactly 1/72 inch.) If the mapping mode is MM_TWIPS
and you want, for example, 12-point type, set the character height to 12 × 20, or 240, twips.

The Variable-Scale Mapping Modes

Windows provides two mapping modes, MM_ISOTROPIC and MM_ANISOTROPIC, that allow you to change
the scale factor as well as the origin. With these mapping modes, your drawing can change size as the user
changes the size of the window. Also, if you invert the scale of one axis, you can "flip" an image about the
other axis and you can define your own arbitrary fixed-scale factors.

With the MM_ISOTROPIC mode, a 1:1 aspect ratio is always preserved. In other words, a circle is always a
circle as the scale factor changes. With the MM_ANISOTROPIC mode, the x and y scale factors can change
independently. Circles can be squished into ellipses.

Here's an OnDraw function that draws an ellipse that fits exactly in its window:

void CMyView::OnDraw(CDC* pDC)
{
 CRect rectClient;

 GetClientRect(rectClient);
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1000, 1000);
 pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
 pDC->SetViewportOrg(rectClient.right / 2, rectClient.bottom / 2);

 pDC->Ellipse(CRect(-500, -500, 500, 500));
}
What's going on here? The functions SetWindowExt and SetViewportExt work together to set the scale,
based on the window's current client rectangle returned by the GetClientRect function. The resulting
window size is exactly 1000-by-1000 logical units. The SetViewportOrg function sets the origin to the
center of the window. Thus, a centered ellipse with a radius of 500 logical units fills the window exactly, as
illustrated in Figure 4-3.

Figure 4-3. A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-3. A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

Here are the formulas for converting logical units to device units:

x scale factor = x viewport extent / x window extent
y scale factor = y viewport extent / y window extent
device x = logical x × x scale factor + x origin offset
device y = logical y × y scale factor + y origin offset

Suppose the window is 448 pixels wide (rectClient.right). The right edge of the ellipse's client rectangle is
500 logical units from the origin. The x scale factor is 448/1000, and the x origin offset is 448/2 device units.
If you use the formulas shown on the previous page, the right edge of the ellipse's client rectangle comes
out to 448 device units, the right edge of the window. The x scale factor is expressed as a ratio (viewport
extent/window extent) because Windows device coordinates are integers, not floating-point values. The
extent values are meaningless by themselves.

If you substitute MM_ISOTROPIC for MM_ANISOTROPIC in the preceding example, the "ellipse" is always a
circle, as shown in Figure 4-4. It expands to fit the smallest dimension of the window rectangle.

Figure 4-4. A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

Coordinate Conversion

Once you set the mapping mode (plus the origin) of a device context, you can use logical coordinate
parameters for most CDC member functions. If you get the mouse cursor coordinates from a Windows
mouse message (the point parameter in OnLButtonDown), for example, you're dealing with device
coordinates. Many other MFC functions, particularly the member functions of class CRect, work correctly
only with device coordinates.

The CRect arithmetic functions use the underlying Win32 RECT arithmetic functions,
which assume that right is greater than left and bottom is greater than top. A rectangle
(0, 0, 1000, -1000) in MM_HIMETRIC coordinates, for example, has bottom less than
top and cannot be processed by functions such as CRect::PtInRect unless your program
first calls CRect::NormalizeRect, which changes the rectangle's data members to (0, -
1000, 1000, 0).

Furthermore, you're likely to need a third set of coordinates that we will call physical coordinates. Why do
you need another set? Suppose you're using the MM_LOENGLISH mapping mode in which a logical unit is
0.01 inch, but an inch on the screen represents a foot (12 inches) in the real world. Now suppose the user
works in inches and decimal fractions. A measurement of 26.75 inches translates to 223 logical units,
which must be ultimately translated to device coordinates. You will want to store the physical coordinates
as either floating-point numbers or scaled long integers to avoid rounding-off errors.

For the physical-to-logical translation you're on your own, but the Windows GDI takes care of the logical-
to-device translation for you. The CDC functions LPtoDP and DPtoLP translate between the two systems,
assuming the device context mapping mode and associated parameters have already been set. Your job is
to decide when to use each system. Here are a few rules of thumb:

Assume that the CDC member functions take logical coordinate parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assume that the CDC member functions take logical coordinate parameters.

Assume that the CWnd member functions take device coordinate parameters.

Do all hit-test operations in device coordinates. Define regions in device coordinates. Functions such
as CRect::PtInRect work best with device coordinates.

Store long-term values in logical or physical coordinates. If you store a point in device coordinates
and the user scrolls through a window, that point is no longer valid.

Suppose you need to know whether the mouse cursor is inside a rectangle when the user presses the left
mouse button. The code is shown here.

// m_rect is CRect data member of the derived view class with MM_LOENGLISH
// logical coordinates

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect = m_rect; // rect is a temporary copy of m_rect.
 CClientDC dc(this); // This is how we get a device context
 // for SetMapMode and LPtoDP
 // -- more in next chapter
 dc.SetMapMode(MM_LOENGLISH);
 dc.LPtoDP(rect); // rect is now in device coordinates
 if (rect.PtInRect(point)) {
 TRACE("Mouse cursor is inside the rectangle.\n");
 }
}
Notice the use of the TRACE macro (covered in Chapter 3).

As you'll soon see, it's better to set the mapping mode in the virtual CView function
OnPrepareDC instead of in the OnDraw function.

The EX04B Example—Converting to the MM_HIMETRIC Mapping Mode

EX04B is EX04A converted to MM_HIMETRIC coordinates. The EX04B project on the companion CD-ROM
uses new class names and filenames, but the instructions here take you through modifying the EX04A
code. Like EX04A, EX04B performs a hit-test so that the ellipse changes color only when you click inside
the bounding rectangle.

1. Use ClassWizard to override the virtual OnPrepareDC function. ClassWizard can override
virtual functions for selected MFC base classes, including CView. It generates the correct function
prototype in the class's header file and a skeleton function in the CPP file. Select the class name
CEx04aView in the Object IDs list, and then double-click on the OnPrepareDC function in the
Messages list. Edit the function as shown here:

void CEx04aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_HIMETRIC);
 CView::OnPrepareDC(pDC, pInfo);
}
The application framework calls the virtual OnPrepareDC function just before it calls OnDraw.

2. Edit the view class constructor. You must change the coordinate values for the ellipse rectangle.
That rectangle is now 4-by-4 centimeters instead of 200-by-200 pixels. Note that the y value must
be negative; otherwise, the ellipse will be drawn on the "virtual screen" right above your monitor!
Change the values as shown here:

CEx04aView::CEx04aView() : m_rectEllipse(0, 0, 4000, -4000)
{
 m_nColor = GRAY_BRUSH;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
3. Edit the OnLButtonDown function. This function must now convert the ellipse rectangle to

device coordinates in order to do the hit-test. Change the function as shown in the following code:

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(rectDevice);
 }
}

4. Build and run the EX04B program. The output should look similar to the output from EX04A,
except that the ellipse size will be different. If you try using Print Preview again, the ellipse should
appear much larger than it did in EX04A.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Scrolling View Window
As the lack of scroll bars in EX04A and EX04B indicates, the MFC CView class, the base class of
CEx04bView, doesn't directly support scrolling. Another MFC library class, CScrollView, does support
scrolling. CScrollView is derived from CView. We'll create a new program, EX04C, that uses CScrollView in
place of CView. All the coordinate conversion code you added in EX04B sets you up for scrolling.

The CScrollView class supports scrolling from the scroll bars but not from the keyboard. It's easy enough
to add keyboard scrolling, so we'll do it.

A Window Is Larger than What You See

If you use the mouse to shrink the size of an ordinary window, the contents of the window remain
anchored at the top left of the window, and items at the bottom and/or on the right of the window
disappear. When you expand the window, the items reappear. You can correctly conclude that a window is
larger than the viewport that you see on the screen. The viewport doesn't have to be anchored at the top
left of the window area, however. Through the use of the CWnd functions ScrollWindow and
SetWindowOrg, the CScrollView class allows you to move the viewport anywhere within the window,
including areas above and to the left of the origin.

Scroll Bars

Microsoft Windows makes it easy to display scroll bars at the edges of a window, but Windows by itself
doesn't make any attempt to connect those scroll bars to their window. That's where the CScrollView class
fits in. CScrollView member functions process the WM_HSCROLL and WM_VSCROLL messages sent by the
scroll bars to the view. Those functions move the viewport within the window and do all the necessary
housekeeping.

Scrolling Alternatives

The CScrollView class supports a particular kind of scrolling that involves one big window and a small
viewport. Each item is assigned a unique position in this big window. If, for example, you have 10,000
address lines to display, instead of having a window 10,000 lines long, you probably want a smaller
window with scrolling logic that selects only as many lines as the screen can display. In that case, you
should write your own scrolling view class derived from CView.

Microsoft Windows NT uses 32-bit numbers for logical coordinates, so your logical
coordinate space is almost unlimited. Microsoft Windows 95, however, still has some
16-bit components, so it uses 16-bit numbers for logical coordinates, limiting values to
the range -32,768 to 32,767. Scroll bars send messages with 16-bit values in both
operating systems. With these facts in mind, you probably want to write code to the
lowest common denominator, which is Windows 95.

The OnInitialUpdate Function

You'll be seeing more of the OnInitialUpdate function when you study the document-view architecture,
starting in Chapter 16. The virtual OnInitial-Update function is important here because it is the first
function called by the framework after your view window is fully created. The framework calls
OnInitialUpdate before it calls OnDraw for the first time, so OnInitialUpdate is the natural place for setting
the logical size and mapping mode for a scrolling view. You set these parameters with a call to the
CScrollView::SetScrollSizes function.

Accepting Keyboard Input

Keyboard input is really a two-step process. Windows sends WM_KEYDOWN and WM_KEYUP messages,
with virtual key codes, to a window, but before they get to the window they are translated. If an ANSI
character is typed (resulting in a WM_KEYDOWN message), the translation function checks the keyboard
shift status and then sends a WM_CHAR message with the proper code, either uppercase or lowercase.
Cursor keys and function keys don't have codes, so there's no translation to do. The window gets only the
WM_KEYDOWN and WM_KEYUP messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WM_KEYDOWN and WM_KEYUP messages.

You can use ClassWizard to map all these messages to your view. If you're expecting characters, map
WM_CHAR; if you're expecting other keystrokes, map WM_KEYDOWN. The MFC library neatly supplies the
character code or virtual key code as a handler function parameter.

The EX04C Example—Scrolling

The goal of EX04C is to make a logical window 20 centimeters wide by 30 centimeters high. The program
draws the same ellipse that it drew in the EX04B project. You could edit the EX04B source files to convert
the CView base class to a CScrollView base class, but it's easier to start over with AppWizard. AppWizard
generates the OnInitialUpdate override function for you. Here are the steps:

1. Run AppWizard to create EX04C.Use AppWizard to generate a program named EX04C in the
\vcpp32\ex04c subdirectory. In AppWizard Step 6, set the CEx04cView base class to CScrollView,
as shown here.

2. Add the m_rectEllipse and m_nColor data members in ex04cView.h. Insert the following
code by right-clicking the CEx04cView class in the Workspace window or by typing inside the
CEx04cView class declaration:

private:
 CRect m_rectEllipse;
 int m_nColor;
These are the same data members that were added in the EX04A and EX04B projects.

3. Modify the AppWizard-generated OnInitialUpdate function. Edit OnInitialUpdate in
ex04cView.cpp as shown here:

void CEx04cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(20000, 30000); // 20 by 30 cm
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizePage, sizeLine);
}

4. Use ClassWizard to add a message handler for the WM_KEYDOWN message. ClassWizard
generates the member function OnKeyDown along with the necessary message map entries and
prototypes. Edit the code as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx04cView::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 switch (nChar) {
 case VK_HOME:
 OnVScroll(SB_TOP, 0, NULL);
 OnHScroll(SB_LEFT, 0, NULL);
 break;
 case VK_END:
 OnVScroll(SB_BOTTOM, 0, NULL);
 OnHScroll(SB_RIGHT, 0, NULL);
 break;
 case VK_UP:
 OnVScroll(SB_LINEUP, 0, NULL);
 break;
 case VK_DOWN:
 OnVScroll(SB_LINEDOWN, 0, NULL);
 break;
 case VK_PRIOR:
 OnVScroll(SB_PAGEUP, 0, NULL);
 break;
 case VK_NEXT:
 OnVScroll(SB_PAGEDOWN, 0, NULL);
 break;
 case VK_LEFT:
 OnHScroll(SB_LINELEFT, 0, NULL);
 break;
 case VK_RIGHT:
 OnHScroll(SB_LINERIGHT, 0, NULL);
 break;
 default:
 break;
 }
}

5. Edit the constructor and the OnDraw function. Change the AppWizard-generated constructor
and the OnDraw function in ex04cView.cpp as follows:

CEx04cView::CEx04cView() : m_rectEllipse(0, 0, 4000, -4000)
{
 m_nColor = GRAY_BRUSH;
}
.
.
.
void CEx04cView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(
m_nColor);
 pDC->Ellipse(m_rectEllipse);
}
These functions are identical to those used in the EX04A and EX04B projects.

6. Map the WM_LBUTTONDOWN message and edit the handler. Make the following changes to
the ClassWizard-generated code:

void CEx04cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(rectDevice);
 }
}
This function is identical to the OnLButtonDown handler in the EX04B project. It calls OnPrepareDC
as before, but there is something different. The CEx04bView class doesn't have an overridden
OnPrepareDC function, so the call goes to CScrollView::OnPrepareDC. That function sets the
mapping mode based on the first parameter to SetScrollSizes, and it sets the window origin based
on the current scroll position. Even if your scroll view used the MM_TEXT mapping mode, you'd still
need the coordinate conversion logic to adjust for the origin offset.

7. Build and run the EX04C program. Check to be sure the mouse hit logic is working even if the
circle is scrolled partially out of the window. Also check the keyboard logic. The output should look
like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Windows Messages
The MFC library directly supports hundreds of Windows message-handling functions. In addition, you can
define your own messages. You will see plenty of message-handling examples in later chapters, including
handlers for menu items, child window controls, and so forth. In the meantime, five special Windows
messages deserve special attention: WM_CREATE, WM_CLOSE, WM_QUERYENDSESSION, WM_DESTROY,
and WM_NCDESTROY.

The WM_CREATE Message

This is the first message that Windows sends to a view. It is sent when the window's Create function is
called by the framework, so the window creation is not finished and the window is not visible. Therefore,
your OnCreate handler cannot call Windows functions that depend on the window being completely alive.
You can call such functions in an overridden OnInitialUpdate function, but you must be aware that in an
SDI application OnInitialUpdate can be called more than once in a view's lifetime.

The WM_CLOSE Message

Windows sends the WM_CLOSE message when the user closes a window from the system menu and when
a parent window is closed. If you implement the OnClose message map function in your derived view class,
you can control the closing process. If, for example, you need to prompt the user to save changes to a file,
you do it in OnClose. Only when you have determined that it is safe to close the window do you call the
base class OnClose function, which continues the close process. The view object and the corresponding
window are both still active.

When you're using the full application framework, you probably won't use the
WM_CLOSE message handler. You can override the CDocument::SaveModified virtual
function instead, as part of the application framework's highly structured program exit
procedure.

The WM_QUERYENDSESSION Message

Windows sends the WM_QUERYENDSESSION message to all running applications when the user exits
Windows. The OnQueryEndSession message map function handles it. If you write a handler for
WM_CLOSE, write one for WM_QUERYENDSESSION too.

The WM_DESTROY Message

Windows sends this message after the WM_CLOSE message, and the OnDestroy message map function
handles it. When your program receives this message, it should assume that the view window is no longer
visible on the screen but that it is still active and its child windows are still active. Use this message
handler to do cleanup that depends on the existence of the underlying window. Be sure to call the base
class OnDestroy function. You cannot "abort" the window destruction process in your view's OnDestroy
function. OnClose is the place to do that.

The WM_NCDESTROY Message

This is the last message that Windows sends when the window is being destroyed. All child windows have
already been destroyed. You can do final processing in OnNcDestroy that doesn't depend on a window
being active. Be sure to call the base class OnNcDestroy function.

Do not try to destroy a dynamically allocated window object in OnNcDestroy. That job
is reserved for a special CWnd virtual function, PostNcDestroy, that the base class
OnNcDestroy calls. MFC Technical Note #17 in the online documentation gives hints on
when it's appropriate to destroy a window object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5
The Graphics Device Interface, Colors, and Fonts
You've already seen some elements of the Graphics Device Interface (GDI). Anytime your program draws
to the display or the printer, it must use the GDI functions. The GDI provides functions for drawing points,
lines, rectangles, polygons, ellipses, bitmaps, and text. You can draw circles and squares intuitively once
you study the available functions, but text programming is more difficult.This chapter gives you the
information you need to start using the GDI effectively in the Microsoft Visual C++ environment. You'll
learn how to use fonts on both the display and the printer. You must wait until Chapter 19, however, for
details on how the framework controls the printer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Device Context Classes
In Chapter 3 and Chapter 4, the view class's OnDraw member function was passed a pointer to a device
context object. OnDraw selected a brush and then drew an ellipse. The Microsoft Windows device context
is the key GDI element that represents a physical device. Each C++ device context object has an
associated Windows device context, identified by a 32-bit handle of type HDC.

Microsoft Foundation Class (MFC) Library version 6.0 provides a number of device context classes. The
base class CDC has all the member functions (including some virtual functions) that you'll need for
drawing. Except for the oddball CMetaFileDC class, derived classes are distinct only in their constructors
and destructors. If you (or the application framework) construct an object of a derived device context
class, you can pass a CDC pointer to a function such as OnDraw. For the display, the usual derived classes
are CClientDC and CWindowDC. For other devices, such as printers or memory buffers, you construct
objects of the base class CDC.

The "virtualness" of the CDC class is an important feature of the application framework. In Chapter 19,
you'll see how easy it is to write code that works with both the printer and the display. A statement in
OnDraw such as

pDC->TextOut(0, 0, "Hello");
sends text to the display, the printer, or the Print Preview window, depending on the class of the object
referenced by the CView::OnDraw function's pDC parameter.

For display and printer device context objects, the application framework attaches the handle to the object.
For other device contexts, such as the memory device context that you'll see in Chapter 11, you must call
a member function after construction in order to attach the handle.

The Display Context Classes CClientDC and CWindowDC

Recall that a window's client area excludes the border, the caption bar, and the menu bar. If you create a
CClientDC object, you have a device context that is mapped only to this client area—you can't draw
outside it. The point (0, 0) usually refers to the upper-left corner of the client area. As you'll see later, an
MFC CView object corresponds to a child window that is contained inside a separate frame window, often
along with a toolbar, a status bar, and scroll bars. The client area of the view, then, does not include these
other windows. If the window contains a docked toolbar along the top, for example, (0, 0) refers to the
point immediately under the left edge of the toolbar.

If you construct an object of class CWindowDC, the point (0, 0) is at the upper-left corner of the nonclient
area of the window. With this whole-window device context, you can draw in the window's border, in the
caption area, and so forth. Don't forget that the view window doesn't have a nonclient area, so
CWindowDC is more applicable to frame windows than it is to view windows.

Constructing and Destroying CDC Objects

After you construct a CDC object, it is important to destroy it promptly when you're done with it. Microsoft
Windows limits the number of available device contexts, and if you fail to release a Windows device context
object, a small amount of memory is lost until your program exits. Most frequently, you'll construct a
device context object inside a message handler function such as OnLButtonDown. The easiest way to
ensure that the device context object is destroyed (and that the underlying Windows device context is
released) is to construct the object on the stack in the following way:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;

 CClientDC dc(this); // constructs dc on the stack
 dc.GetClipBox(rect); // retrieves the clipping rectangle
} // dc automatically released
Notice that the CClientDC constructor takes a window pointer as a parameter. The destructor for the
CClientDC object is called when the function returns. You can also get a device context pointer by using
the CWnd::GetDC member function, as shown in the following code. You must be careful here to call the
ReleaseDC function to release the device context.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;

 CDC* pDC = GetDC(); // a pointer to an internal dc
 pDC->GetClipBox(rect); // retrieves the clipping rectangle
 ReleaseDC(pDC); // Don't forget this
}

You must not destroy the CDC object passed by the pointer to OnDraw. The application
framework handles the destruction for you.

The State of the Device Context

You already know that a device context is required for drawing. When you use a CDC object to draw an
ellipse, for example, what you see on the screen (or on the printer's hard copy) depends on the current
"state" of the device context. This state includes the following:

Attached GDI drawing objects such as pens, brushes, and fonts

The mapping mode that determines the scale of items when they are drawn (You've already
experimented with the mapping mode in Chapter 4.)

Various details such as text alignment parameters and polygon filling mode

You have already seen, for example, that choosing a gray brush prior to drawing an ellipse results in the
ellipse having a gray interior. When you create a device context object, it has certain default
characteristics, such as a black pen for shape boundaries. All other state characteristics are assigned
through CDC class member functions. GDI objects are selected into the device context by means of the
overloaded SelectObject functions. A device context can, for example, have one pen, one brush, or one
font selected at any given time.

The CPaintDC Class

You'll need the CPaintDC class only if you override your view's OnPaint function. The default OnPaint calls
OnDraw with a properly set up device context, but sometimes you'll need display-specific drawing code.
The CPaintDC class is special because its constructor and destructor do housekeeping unique to drawing to
the display. Once you have a CDC pointer, however, you can use it as you would any other device context
pointer.

Here's a sample OnPaint function that creates a CPaintDC object:

void CMyView::OnPaint()
{
 CPaintDC dc(this);
 OnPrepareDC(&dc); // explained later
 dc.TextOut(0, 0, "for the display, not the printer");
 OnDraw(&dc); // stuff that's common to display and printer
}

For Win32 Programmers

The CPaintDC constructor calls BeginPaint for you, and the destructor calls EndPaint. If
you construct your device context on the stack, the EndPaint call is completely
automatic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GDI Objects
A Windows GDI object type is represented by an MFC library class. CGdiObject is the abstract base class
for the GDI object classes. A Windows GDI object is represented by a C++ object of a class derived from
CGdiObject. Here's a list of the GDI derived classes:

CBitmap—A bitmap is an array of bits in which one or more bits correspond to each display pixel.
You can use bitmaps to represent images, and you can use them to create brushes.

CBrush—A brush defines a bitmapped pattern of pixels that is used to fill areas with color.

CFont—A font is a complete collection of characters of a particular typeface and a particular size.
Fonts are generally stored on disk as resources, and some are device-specific.

CPalette—A palette is a color mapping interface that allows an application to take full advantage of
the color capability of an output device without interfering with other applications.

CPen—A pen is a tool for drawing lines and shape borders. You can specify a pen's color and
thickness and whether it draws solid, dotted, or dashed lines.

CRgn—A region is an area whose shape is a polygon, an ellipse, or a combination of polygons and
ellipses. You can use regions for filling, clipping, and mouse hit-testing.

Constructing and Destroying GDI Objects

You never construct an object of class CGdiObject; instead, you construct objects of the derived classes.
Constructors for some GDI derived classes, such as CPen and CBrush, allow you to specify enough
information to create the object in one step. Others, such as CFont and CRgn, require a second creation
step. For these classes, you construct the C++ object with the default constructor and then you call a
create function such as the CreateFont or CreatePolygonRgn function.

The CGdiObject class has a virtual destructor. The derived class destructors delete the Windows GDI
objects that are attached to the C++ objects. If you construct an object of a class derived from
CGdiObject, you must delete it prior to exiting the program. To delete a GDI object, you must first
separate it from the device context. You'll see an example of this in the next section.

Failure to delete a GDI object was a serious offense with Win16. GDI memory was not
released until the user restarted Windows. With Win32, however, the GDI memory is
owned by the process and is released when your program terminates. Still, an
unreleased GDI bitmap object can waste a significant amount of memory.

Tracking GDI Objects

OK, so you know that you have to delete your GDI objects and that they must first be disconnected from
their device contexts. How do you disconnect them? A member of the CDC::SelectObject family of
functions does the work of selecting a GDI object into the device context, and in the process it returns a
pointer to the previously selected object (which gets deselected in the process). Trouble is, you can't
deselect the old object without selecting a new object. One easy way to track the objects is to "save" the
original GDI object when you select your own GDI object and "restore" the original object when you're
finished. Then you'll be ready to delete your own GDI object. Here's an example:

void CMyView::OnDraw(CDC* pDC)
{
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
 // 2 pixels wide
 CPen* pOldPen = pDC->SelectObject(&newPen);

 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 pDC->SelectObject(pOldPen); // newPen is deselected
} // newPen automatically destroyed on exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

} // newPen automatically destroyed on exit
When a device context object is destroyed, all its GDI objects are deselected. Thus, if you know that a
device context will be destroyed before its selected GDI objects are destroyed, you don't have to deselect
the objects. If, for example, you declare a pen as a view class data member (and you initialize it when you
initialize the view), you don't have to deselect the pen inside OnDraw because the device context,
controlled by the view base class's OnPaint handler, will be destroyed first.

Stock GDI Objects

Windows contains a number of stock GDI objects that you can use. Because these objects are part of
Windows, you don't have to worry about deleting them. (Windows ignores requests to delete stock
objects.) The MFC library function CDC::SelectStockObject selects a stock object into the device context
and returns a pointer to the previously selected object, which it deselects. Stock objects are handy when
you want to deselect your own nonstock GDI object prior to its destruction. You can use a stock object as
an alternative to the "old" object you used in the previous example, as shown here:

void CMyView::OnDraw(CDC* pDC)
{
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
 // 2 pixels wide

 pDC->SelectObject(&newPen);
 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 pDC->SelectStockObject(BLACK_PEN); // newPen is deselected
} // newPen destroyed on exit
The Microsoft Foundation Class Reference lists, under CDC::SelectStockObject, the stock objects available
for pens, brushes, fonts, and palettes.

The Lifetime of a GDI Selection

For the display device context, you get a "fresh" device context at the beginning of each message handler
function. No GDI selections (or mapping modes or other device context settings) persist after your function
exits. You must, therefore, set up your device context from scratch each time. The CView class virtual
member function OnPrepareDC is useful for setting the mapping mode, but you must manage your own
GDI objects.

For other device contexts, such as those for printers and memory buffers, your assignments can last
longer. For these long-life device contexts, things get a little more complicated. The complexity results
from the temporary nature of GDI C++ object pointers returned by the SelectObject function. (The
temporary "object" will be destroyed by the application framework during the idle loop processing of the
application, sometime after the handler function returns the call. See MFC Technical Note #3 in the online
documentation.) You can't simply store the pointer in a class data member; instead, you must convert it to
a Windows handle (the only permanent GDI identifier) with the GetSafeHdc member function. Here's an
example:

// m_pPrintFont points to a CFont object created in CMyView's constructor
// m_hOldFont is a CMyView data member of type HFONT, initialized to 0

void CMyView::SwitchToCourier(CDC* pDC)
{
 m_pPrintFont->CreateFont(30, 10, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN,
 "Courier New"); // TrueType
 CFont* pOldFont = pDC->SelectObject(m_pPrintFont);

 // m_hOldFont is the CGdiObject public data member that stores
 // the handle
 m_hOldFont = (HFONT) pOldFont->GetSafeHandle();
}

void CMyView:SwitchToOriginalFont(CDC* pDC)
{
 // FromHandle is a static member function that returns an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // FromHandle is a static member function that returns an
 // object pointer
 if (m_hOldFont) {
 pDC->SelectObject(CFont::FromHandle(m_hOldFont));
 }
}

// m_pPrintFont is deleted in the CMyView destructor

Be careful when you delete an object whose pointer is returned by SelectObject. If
you've allocated the object yourself, you can delete it. If the pointer is temporary, as it
will be for the object initially selected into the device context, you won't be able to
delete the C++ object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Color Mapping
The Windows GDI provides a hardware-independent color interface. Your program supplies an "absolute"
color code, and the GDI maps that code to a suitable color or color combination on your computer's video
display. Most programmers of applications for Windows try to optimize their applications' color display for a
few common video card categories.

Standard Video Graphics Array Video Cards

A standard Video Graphics Array (VGA) video card uses 18-bit color registers and thus has a palette of
262,144 colors. Because of video memory constraints, however, the standard VGA board accommodates 4-
bit color codes, which means it can display only 16 colors at a time. Because Windows needs fixed colors
for captions, borders, scroll bars, and so forth, your programs can use only 16 "standard" pure colors. You
cannot conveniently access the other colors that the board can display.

Each Windows color is represented by a combination of 8-bit "red," "green," and "blue" values. The 16
standard VGA "pure" (nondithered) colors are shown in the table below.

Color-oriented GDI functions accept 32-bit COLORREF parameters that contain 8-bit color codes each for
red, green, and blue. The Windows RGB macro converts 8-bit red, green, and blue values to a COLORREF
parameter. The following statement, when executed on a system with a standard VGA board, constructs a
brush with a dithered color (one that consists of a pattern of pure-color pixels):

CBrush brush(RGB(128, 128, 192));

Red Green Blue Color

0 0 0 Black

0 0 255 Blue

0 255 0 Green

0 255 255 Cyan

255 0 0 Red

255 0 255 Magenta

255 255 0 Yellow

255 255 255 White

0 0 128 Dark blue

0 128 0 Dark green

0 128 128 Dark cyan

128 0 0 Dark red

128 0 128 Dark magenta

128 128 0 Dark yellow

128 128 128 Dark gray

192 192 192 Light gray

The following statement (in your view's OnDraw function) sets the text background to red:

pDC->SetBkColor(RGB(255, 0, 0));
The CDC functions SetBkColor and SetTextColor don't display dithered colors as the brush-oriented
drawing functions do. If the dithered color pattern is too complex, the closest matching pure color is
displayed.

256-Color Video Cards

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

256-Color Video Cards

Most video cards can accommodate 8-bit color codes at all resolutions, which means they can display 256
colors simultaneously. This 256-color mode is now considered to be the "lowest common denominator" for
color programming.

If Windows is configured for a 256-color display card, your programs are limited to 20 standard pure colors
unless you activate the Windows color palette system as supported by the MFC library CPalette class and
the Windows API, in which case you can choose your 256 colors from a total of more than 16.7 million.
Windows color palette programming is discussed in Chapter 11. In this chapter, we'll assume that the
Windows default color mapping is in effect.

With an SVGA 256-color display driver installed, you get the 16 VGA colors listed in the previous table plus
4 more, for a total of 20. The following table lists the 4 additional colors.

Red Green Blue Color

192 220 192 Money green

166 202 240 Sky blue

255 251 240 Cream

160 160 164 Medium gray

The RGB macro works much the same as it does with the standard VGA. If you specify one of the 20
standard colors for a brush, you get a pure color; otherwise, you get a dithered color. If you use the
PALETTERGB macro instead, you don't get dithered colors; you get the closest matching standard pure
color as defined by the current palette.

16-Bit-Color Video Cards

Most modern video cards support a resolution of 1024-by-768 pixels, and 1 MB of video memory can
support 8-bit color at this resolution. If a video card has 2 MB of memory, it can support 16-bit color, with
5 bits each for red, green, and blue. This means that it can display 32,768 colors simultaneously. That
sounds like a lot, but there are only 32 shades each of pure red, green, and blue. Often, a picture will look
better in 8-bit-color mode with an appropriate palette selected. A forest scene, for example, can use up to
236 shades of green. Palettes are not supported in 16-bit-color mode.

24-Bit-Color Video Cards

High-end cards (which are becoming more widely used) support 24-bit color. This 24-bit capability enables
the display of more than 16.7 million pure colors. If you're using a 24-bit card, you have direct access to
all the colors. The RGB macro allows you to specify the exact colors you want. You'll need 2.5 MB of video
memory, though, if you want 24-bit color at 1024-by-768-pixel resolution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fonts
Old-fashioned character-mode applications could display only the boring system font on the screen.
Windows provides multiple device-independent fonts in variable sizes. The effective use of these Windows
fonts can significantly energize an application with minimum programming effort. TrueType fonts, first
introduced with Windows version 3.1, are even more effective and are easier to program than the previous
device-dependent fonts. You'll see several example programs that use various fonts later in this chapter.

Fonts Are GDI Objects

Fonts are an integral part of the Windows GDI. This means that fonts behave the same way other GDI
objects do. They can be scaled and clipped, and they can be selected into a device context as a pen or a
brush can be selected. All GDI rules about deselection and deletion apply to fonts.

Choosing a Font

Choosing a Windows font used to be like going to a fruit stand and asking for "a piece of reddish-yellow
fruit, with a stone inside, that weighs about 4 ounces." You might have gotten a peach or a plum or even a
nectarine, and you could be sure that it wouldn't have weighed exactly 4 ounces. Once you took
possession of the fruit, you could weigh it and check the fruit type. Now, with TrueType, you can specify
the fruit type, but you still can't specify the exact weight.

Today you can choose between two font types—device-independent TrueType fonts and device-dependent
fonts such as the Windows display System font and the LaserJet LinePrinter font—or you can specify a font
category and size and let Windows select the font for you. If you let Windows select the font, it will choose
a TrueType font if possible. The MFC library provides a font selection dialog box tied to the currently
selected printer, so there's little need for printer font guesswork. You let the user select the exact font and
size for the printer, and then you approximate the display the best you can.

Printing with Fonts

For text-intensive applications, you'll probably want to specify printer font sizes in points (1 point = 1/72
inch). Why? Most, if not all, built-in printer fonts are defined in terms of points. The LaserJet LinePrinter
font, for example, comes in one size, 8.5 point. You can specify TrueType fonts in any point size. If you
work in points, you need a mapping mode that easily accommodates points. That's what MM_TWIPS is for.
An 8.5-point font is 8.5 × 20, or 170, twips, and that's the character height you'll want to specify.

Displaying Fonts

If you're not worried about the display matching the printed output, you have a lot of flexibility. You can
choose any of the scalable Windows TrueType fonts, or you can choose the fixed-size system fonts (stock
objects). With the TrueType fonts, it doesn't much matter what mapping mode you use; simply choose a
font height and go for it. No need to worry about points.

Matching printer fonts to make printed output match the screen presents some problems, but TrueType
makes it easier than it used to be. Even if you're printing with TrueType fonts, however, you'll never quite
get the display to match the printer output. Why? Characters are ultimately displayed in pixels (or dots),
and the width of a string of characters is equal to the sum of the pixel widths of its characters, possibly
adjusted for kerning. The pixel width of the characters depends on the font, the mapping mode, and the
resolution of the output device. Only if both the printer and the display were set to MM_TEXT mode (1 pixel
or dot = 1 logical unit) would you get an exact correspondence. If you're using the CDC::GetTextExtent
function to calculate line breaks, the screen breakpoint will occasionally be different from the printer
breakpoint.

In the MFC Print Preview mode, which we'll examine closely in Chapter 19, line breaks
occur exactly as they do on the printer, but the print quality in the preview window
suffers in the process.

If you're matching a printer-specific font on the screen, TrueType again makes the job easier. Windows
substitutes the closest matching TrueType font. For the 8.5-point LinePrinter font, Windows comes pretty
close with its Courier New font.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Logical Inches and Physical Inches on the Display

The CDC member function GetDeviceCaps returns various display measurements that are important to
your graphics programming. The six described below provide information about the display size. The
values listed are for a typical display card configured for a resolution of 640-by-480 pixels with Microsoft
Windows NT 4.0.

Index Description Value

HORZSIZE Physical width in millimeters 320

VERTSIZE Physical height in millimeters 240

HORZRES Width in pixels 640

VERTRES Height in raster lines 480

LOGPIXELSX Horizontal dots per logical inch 96

LOGPIXELSY Vertical dots per logical inch 96

The indexes HORZSIZE and VERTSIZE represent the physical dimensions of your display. (These indexes
might not be true since Windows doesn't know what size display you have connected to your video
adapter.) You can also calculate a display size by multiplying HORZRES and VERTRES by LOGPIXELSX and
LOGPIXELSY, respectively. The size calculated this way is known as the logical size of the display. Using
the values above and the fact that there are 25.4 millimeters per inch, we can quickly calculate the two
display sizes for a 640-by-480 pixel display under Windows NT 4.0. The physical display size is 12.60-by-
9.45 inches, and the logical size is 6.67-by-5.00 inches. So the physical size and the logical size need not
be the same.

For Windows NT 4.0, it turns out that HORZSIZE and VERTSIZE are independent of the display resolution,
and LOGPIXELSX and LOGPIXELSY are always 96. So the logical size changes for different display
resolutions, but the physical size does not. For Windows 95, the logical size and the physical size are equal,
so both change with the display resolution. (At a resolution of 640-by-480 pixels with Windows 95,
HORZSIZE is 169 and VERTSIZE is 127.)

Whenever you use a fixed mapping mode such as MM_HIMETRIC or MM_TWIPS, the display driver uses the
physical display size to do the mapping.

So, for Windows NT, text is smaller on a small monitor; but that's not what you want. Instead, you want
your font sizes to correspond to the logical display size, not the physical size.

You can invent a special mapping mode, called logical twips, for which one logical unit is equal to 1/1440
logical inch. This mapping mode is independent of the operating system and display resolution and is used
by programs such as Microsoft Word. Here is the code that sets the mapping mode to logical twips:

pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(1440, 1440);
pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 -pDC->GetDeviceCaps(LOGPIXELSY));

From the Windows Control Panel, you can adjust both the display font size and the
display resolution. If you change the display font size from the default 100 percent to
200 percent, HORZSIZE becomes 160, VERTSIZE becomes 120, and the dots-per-inch
value becomes 192. In that case, the logical size is divided by 2, and all text drawn
with the logical twips mapping mode is doubled in size.

Computing Character Height

Five font height measurement parameters are available through the CDC function GetTextMetrics, but only
three are significant. Figure 5-1 shows the important font measurements. The tmHeight parameter
represents the full height of the font, including descenders (for the characters g, j, p, q, and y) and any
diacritics that appear over capital letters. The tmExternalLeading parameter is the distance between the
top of the diacritic and the bottom of the descender from the line above. The sum of tmHeight and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

top of the diacritic and the bottom of the descender from the line above. The sum of tmHeight and
tmExternalLeading is the total character height. The value of tmExternalLeading can be 0.

Figure 5-1. Font height measurements.

You would think that tmHeight would represent the font size in points. Wrong! Another GetTextMetrics
parameter, tmInternalLeading, comes into play. The point size corresponds to the difference between
tmHeight and tmInternalLeading. With the MM_TWIPS mapping mode in effect, a selected 12-point font
might have a tmHeight value of 295 logical units and a tmInter-nalLeading value of 55. The font's net
height of 240 corresponds to the point size of 12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX05A Example
This example sets up a view window with the logical twips mapping mode. A text string is displayed in 10
point sizes with the Arial TrueType font. Here are the steps for building the application:

1. Run AppWizard to generate the EX05A project. Start by choosing New from the File menu, and
then select MFC AppWizard (exe) on the Project tab. Select Single Document and deselect Printing
And Print Preview; accept all the other default settings. The options and the default class names are
shown in the following illustration.

2. Use ClassWizard to override the OnPrepareDC function in the CEx05aView class.
Edit the code in ex05aView.cpp as follows:

void CEx05aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1440, 1440);
 pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 -pDC->GetDeviceCaps(LOGPIXELSY));
}

3. Add a private ShowFont helper function to the view class. Add the prototype shown
below in ex05aView.h:

private:
 void ShowFont(CDC* pDC, int& nPos, int nPoints);
Then add the function itself in ex05aView.cpp:

void CEx05aView::ShowFont(CDC* pDC, int& nPos, int nPoints)
{
 TEXTMETRIC tm;
 CFont fontText;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CFont fontText;
 CString strText;
 CSize sizeText;
 fontText.CreateFont(-nPoints * 20, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = (CFont*) pDC->SelectObject(&fontText);
 pDC->GetTextMetrics(&tm);
 TRACE("points = %d, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", nPoints, tm.tmHeight,
 tm.tmInternalLeading, tm.tmExternalLeading);
 strText.Format("This is %d-point Arial", nPoints);
 sizeText = pDC->GetTextExtent(strText);
 TRACE("string width = %d, string height = %d\n", sizeText.cx,
 sizeText.cy);
 pDC->TextOut(0, nPos, strText);
 pDC->SelectObject(pOldFont);
 nPos -= tm.tmHeight + tm.tmExternalLeading;
}

4. Edit the OnDraw function in ex05aView.cpp. AppWizard always generates a skeleton
OnDraw function for your view class. Find the function, and replace the code with the
following:

void CEx05aView::OnDraw(CDC* pDC)
{
 int nPosition = 0;
 for (int i = 6; i <= 24; i += 2) {
 ShowFont(pDC, nPosition, i);
 }
 TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",
 pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
 TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
 pDC->GetDeviceCaps(HORZSIZE),
 pDC->GetDeviceCaps(VERTSIZE));
 TRACE("HORZRES = %d, VERTRES = %d\n",
 pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));
}

5. Build and run the EX05A program. You must run the program from the debugger if you
want to see the output from the TRACE statements. You can choose Go from the Start
Debug submenu of the Build menu in Visual C++, or click the following button on the Build
toolbar.

The resulting output (assuming the use of a standard VGA card) looks like the screen shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the output string sizes don't quite correspond to the point sizes. This discrepancy
results from the font engine's conversion of logical units to pixels. The program's trace
output, partially shown below, shows the printout of font metrics. (The numbers depend on
your display driver and your video driver.)

points = 6, tmHeight = 150, tmInternalLeading = 30, tmExternalLeading = 4
string width = 990, string height = 150
points = 8, tmHeight = 210, tmInternalLeading = 45, tmExternalLeading = 5
string width = 1380, string height = 210
points = 10, tmHeight = 240, tmInternalLeading = 45, tmExternalLeading = 6
string width = 1770, string height = 240
points = 12, tmHeight = 270, tmInternalLeading = 30, tmExternalLeading = 8
string width = 2130, string height = 270

The EX05A Program Elements

Following is a discussion of the important elements in the EX05A example.

Setting the Mapping Mode in the OnPrepareDC Function

The application framework calls OnPrepareDC prior to calling OnDraw, so the OnPrepareDC function
is the logical place to prepare the device context. If you had other message handlers that needed
the correct mapping mode, those functions would have contained calls to OnPrepareDC.

The ShowFont Private Member Function

ShowFont contains code that is executed 10 times in a loop. With C, you would have made this a
global function, but with C++ it's better to make it a private class member function, sometimes
known as a helper function.

This function creates the font, selects it into the device context, prints a string to the window, and
then deselects the font. If you choose to include debug information in the program, ShowFont also
displays useful font metrics information, including the actual width of the string.

Calling CFont::CreateFont

This call includes lots of parameters, but the important ones are the first two—the font height and
width. A width value of 0 means that the aspect ratio of the selected font will be set to a value
specified by the font designer. If you put a nonzero value here, as you'll see in the next example,
you can change the font's aspect ratio.

If you want your font to be a specific point size, the CreateFont font height
parameter (the first parameter) must be negative. If you're using the
MM_TWIPS mapping mode for a printer, for example, a height parameter of -
240 ensures a true 12-point font, with tmHeight - tmInternalLeading = 240. A
+240 height parameter gives you a smaller font, with tmHeight = 240.

The last CreateFont parameter specifies the font name, in this case the Arial TrueType font. If you
had used NULL for this parameter, the FF_SWISS specification (which indicates a proportional font
without serifs) would have caused Windows to choose the best matching font, which, depending on
the specified size, might have been the System font or the Arial TrueType font. The font name takes
precedence. If you had specified FF_ROMAN (which indicates a proportional font with serifs) with
Arial, for example, you would have gotten Arial.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX05B Example
This program is similar to EX05A except that it shows multiple fonts. The mapping mode is
MM_ANISOTROPIC, with the scale dependent on the window size. The characters change size along with
the window. This program effectively shows off some TrueType fonts and contrasts them with the old-style
fonts. Here are the steps for building the application:

1. Run AppWizard to generate the EX05B project. The options and the default class names are
shown here.

2. Use ClassWizard to override the OnPrepareDC function in the CEx05bView class. Edit the
code in ex05bView.cpp as shown below.

void CEx05bView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 CRect clientRect;
 GetClientRect(clientRect);
 pDC->SetMapMode(MM_ANISOTROPIC); // +y = down
 pDC->SetWindowExt(400, 450);
 pDC->SetViewportExt(clientRect.right, clientRect.bottom);
 pDC->SetViewportOrg(0, 0);
}

3. Add a private TraceMetrics helper function to the view class. Add the following prototype in
ex05bView.h:

private:
 void TraceMetrics(CDC* pDC);
Then add the function itself in ex05bView.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx05bView::TraceMetrics(CDC* pDC)
{
 TEXTMETRIC tm;
 char szFaceName[100];
 pDC->GetTextMetrics(&tm);
 pDC->GetTextFace(99, szFaceName);
 TRACE("font = %s, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", szFaceName, tm.tmHeight,
 tm.tmInternalLeading, tm.tmExternalLeading);
}

4. Edit the OnDraw function in ex05bView.cpp. AppWizard always generates a skeleton OnDraw
function for your view class. Find the function, and edit the code as follows:

void CEx05bView::OnDraw(CDC* pDC)
{
 CFont fontTest1, fontTest2, fontTest3, fontTest4;
 fontTest1.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = pDC->SelectObject(&fontTest1);
 TraceMetrics(pDC);
 pDC->TextOut(0, 0, "This is Arial, default width");

 fontTest2.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "Courier");
 // not TrueType
 pDC->SelectObject(&fontTest2);
 TraceMetrics(pDC);
 pDC->TextOut(0, 100, "This is Courier, default width");

 fontTest3.CreateFont(50, 10, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_ROMAN, NULL);
 pDC->SelectObject(&fontTest3);
 TraceMetrics(pDC);
 pDC->TextOut(0, 200, "This is generic Roman, variable width");
 fontTest4.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "LinePrinter");
 pDC->SelectObject(&fontTest4);
 TraceMetrics(pDC);
 pDC->TextOut(0, 300, "This is LinePrinter, default width");
 pDC->SelectObject(pOldFont);
}

5. Build and run the EX05B program. Run the program from the debugger to see the TRACE
output. The program's window is shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resize the window to make it smaller, and watch the font sizes change. Compare this window with
the previous one.

If you continue to downsize the window, notice how the Courier font stops shrinking after a certain
size and how the Roman font width changes.

The EX05B Program Elements

Following is a discussion of the important elements in the EX05B example.

The OnDraw Member Function

The OnDraw function displays character strings in four fonts, as follows:

fontTest1—The TrueType font Arial with default width selection.

fontTest2—The old-style font Courier with default width selection. Notice how jagged the font
appears in larger sizes.

fontTest3—The generic Roman font for which Windows supplies the TrueType font Times New
Roman with programmed width selection. The width is tied to the horizontal window scale, so the
font stretches to fit the window.

fontTest4—The LinePrinter font is specified, but because this is not a Windows font for the display,
the font engine falls back on the FF_MODERN specification and chooses the TrueType Courier New
font.

The TraceMetrics Helper Function

The TraceMetrics helper function calls CDC::GetTextMetrics and CDC::GetTextFace to get the current font's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The TraceMetrics helper function calls CDC::GetTextMetrics and CDC::GetTextFace to get the current font's
parameters, which it prints in the Debug window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX05C Example—CScrollView Revisited
You saw the CScrollView class in Chapter 4 (in EX04C). The EX05C program allows the user to move an
ellipse with a mouse by "capturing" the mouse, using a scrolling window with the MM_LOENGLISH mapping
mode. Keyboard scrolling is left out, but you can add it by borrowing the OnKeyDown member function
from EX04C.

Instead of a stock brush, we'll use a pattern brush for the ellipse—a real GDI object. There's one
complication with pattern brushes: you must reset the origin as the window scrolls; otherwise, strips of the
pattern don't line up and the effect is ugly.

As with the EX04C program, this example involves a view class derived from CScrollView. Here are the
steps to create the application:

1. Run AppWizard to generate the EX05C project. Be sure to set the view base class to
CScrollView. The options and the default class names are shown here.

2. Edit the CEx05cView class header in the file ex05cView.h.Add the following lines in the class
CEx05cView declaration:

private:
 const CSize m_sizeEllipse; //
 logical
 CPoint m_pointTopLeft; // logical, top left of ellipse rectangle
 CSize m_sizeOffset; // device, from rect top left

 // to capture point
 BOOL m_bCaptured;

3. Use ClassWizard to add three message handlers to the CEx05cView class. Add the message
handlers as follows:

Message Member Function

WM_LBUTTONDOWN OnLButtonDown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WM_LBUTTONDOWN OnLButtonDown

WM_LBUTTONUP OnLButtonUp

WM_MOUSEMOVE OnMouseMove

4. Edit the CEx05cView message handler functions. ClassWizard generated the skeletons for the
functions listed in the preceding step. Find the functions in ex05cView.cpp, and code them as
follows.

void CEx05cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rectEllipse(m_pointTopLeft, m_sizeEllipse); // still logical
 CRgn circle;
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.LPtoDP(rectEllipse); // Now it's in device coordinates
 circle.CreateEllipticRgnIndirect(rectEllipse);
 if (circle.PtInRegion(point)) {
 // Capturing the mouse ensures subsequent LButtonUp message
 SetCapture();
 m_bCaptured = TRUE;
 CPoint pointTopLeft(m_pointTopLeft);
 dc.LPtoDP(&pointTopLeft);
 m_sizeOffset = point - pointTopLeft; // device coordinates
 // New mouse cursor is active while mouse is captured
 ::SetCursor(::LoadCursor(NULL, IDC_CROSS));
 }
}

void CEx05cView::OnLButtonUp(UINT nFlags, CPoint point)
{
 if (m_bCaptured) {
 ::ReleaseCapture();
 m_bCaptured = FALSE;
 }
}

void CEx05cView::OnMouseMove(UINT nFlags, CPoint point)
{
 if (m_bCaptured) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectOld(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectOld);
 InvalidateRect(rectOld, TRUE);
 m_pointTopLeft = point - m_sizeOffset;
 dc.DPtoLP(&m_pointTopLeft);
 CRect rectNew(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectNew);
 InvalidateRect(rectNew, TRUE);
 }
}

5. Edit the CEx05cView constructor, the OnDraw function, and the OnInitialUpdate function.
AppWizard generated these skeleton functions. Find them in ex05cView.cpp, and code them as
follows:

CEx05cView::CEx05cView() : m_sizeEllipse(100, -100),
 m_pointTopLeft(0, 0),
 m_sizeOffset(0, 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_sizeOffset(0, 0)
{
 m_bCaptured = FALSE;
}

void CEx05cView::OnDraw(CDC* pDC)
{
 CBrush brushHatch(HS_DIAGCROSS, RGB(255, 0, 0));
 CPoint point(0, 0); // logical (0, 0)
 pDC->LPtoDP(&point); // In device coordinates,
 pDC->SetBrushOrg(point); // align the brush with
 // the window origin
 pDC->SelectObject(&brushHatch);
 pDC->Ellipse(CRect(m_pointTopLeft, m_sizeEllipse));
 pDC->SelectStockObject(BLACK_BRUSH); // Deselect brushHatch
 pDC->Rectangle(CRect(100, -100, 200, -200)); // Test invalid rect
}

void CEx05cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage, sizeLine);
}

6. Build and run the EX05C program. The program allows an ellipse to be dragged with the mouse,
and it allows the window to be scrolled through. The program's window should look like the one
shown here. As you move the ellipse, observe the black rectangle. You should be able to see the
effects of invalidating the rectangle.

The EX05C Program Elements

Following is a discussion of the important elements in the EX05C example.

The m_sizeEllipse and m_pointTopLeft Data Members

Rather than store the ellipse's bounding rectangle as a single CRect object, the program separately stores

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rather than store the ellipse's bounding rectangle as a single CRect object, the program separately stores
its size (m_sizeEllipse) and the position of its top left corner (m_pointTopLeft). To move the ellipse, the
program merely recalculates m_pointTopLeft, and any round-off errors in the calculation won't affect the
size of the ellipse.

The m_sizeOffset Data Member

When OnMouseMove moves the ellipse, the relative position of the mouse within the ellipse must be the
same as it was when the user first pressed the left mouse button. The m_sizeOffset object stores this
original offset of the mouse from the top left corner of the ellipse rectangle.

The m_bCaptured Data Member

The m_bCaptured Boolean variable is set to TRUE when mouse tracking is in progress.

The SetCapture and ReleaseCapture Functions

SetCapture is the CWnd member function that "captures" the mouse, such that mouse movement
messages are sent to this window even if the mouse cursor is outside the window. An unfortunate side
effect of this function is that the ellipse can be moved outside the window and "lost." A desirable and
necessary effect is that all subsequent mouse messages are sent to the window, including the
WM_LBUTTONUP message, which would otherwise be lost. The Win32 ReleaseCapture function turns off
mouse capture.

The SetCursor and LoadCursor Win32 Functions

The MFC library does not "wrap" some Win32 functions. By convention, we use the C++ scope resolution
operator (::) when calling Win32 functions directly. In this case, there is no potential for conflict with a
CView member function, but you can deliberately choose to call a Win32 function in place of a class
member function with the same name. In that case, the :: operator ensures that you call the globally
scoped Win32 function.

When the first parameter is NULL, the LoadCursor function creates a cursor resource from the specified
predefined mouse cursor that Windows uses. The SetCursor function activates the specified cursor
resource. This cursor remains active as long as the mouse is captured.

The CScrollView::OnPrepareDC Member Function

The CView class has a virtual OnPrepareDC function that does nothing. The CScrollView class implements
the function for the purpose of setting the view's mapping mode and origin, based on the parameters that
you passed to SetScrollSizes in OnCreate. The application framework calls OnPrepareDC for you prior to
calling OnDraw, so you don't need to worry about it. You must call OnPrepareDC yourself in any other
message handler function that uses the view's device context, such as OnLButtonDown and OnMouseMove.

The OnMouseMove Coordinate Transformation Code

As you can see, this function contains several translation statements. The logic can be summarized by the
following steps:

1. Construct the previous ellipse rectangle and convert it from logical to device coordinates.

2. Invalidate the previous rectangle.

3. Update the top left coordinate of the ellipse rectangle.

4. Construct the new rectangle and convert it to device coordinates.

5. Invalidate the new rectangle.

The function calls InvalidateRect twice. Windows "saves up" the two invalid rectangles and computes a new
invalid rectangle that is the union of the two, intersected with the client rectangle.

The OnDraw Function

The SetBrushOrg call is necessary to ensure that all of the ellipse's interior pattern lines up when the user
scrolls through the view. The brush is aligned with a reference point, which is at the top left of the logical
window, converted to device coordinates. This is a notable exception to the rule that CDC member
functions require logical coordinates.

The CScrollView SetScaleToFitSize Mode

The CScrollView class has a stretch-to-fit mode that displays the entire scrollable area in the view window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CScrollView class has a stretch-to-fit mode that displays the entire scrollable area in the view window.
The Windows MM_ANISOTROPIC mapping mode comes into play, with one restriction: positive y values
always increase in the down direction, as in MM_TEXT mode.

To use the stretch-to-fit mode, make the following call in your view's function in place of the call to
SetScrollSizes:

SetScaleToFitSize(sizeTotal);
You can make this call in response to a Shrink To Fit menu command. Thus, the display can toggle
between scrolling mode and shrink-to-fit mode.

Using the Logical Twips Mapping Mode in a Scrolling View

The MFC CScrollView class allows you to specify only standard mapping modes. The EX19A example in
Chapter 19 shows a new class CLogScrollView that accommodates the logical twips mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6
The Modal Dialog and Windows Common Controls
Almost every Windows-based program uses a dialog window to interact with the user. The dialog might be
a simple OK message box, or it might be a complex data entry form. Calling this powerful element a dialog
"box" is an injustice. A dialog is truly a window that receives messages, that can be moved and closed, and
that can even accept drawing instructions in its client area.

The two kinds of dialogs are modal and modeless. This chapter explores the most common type, the modal
dialog. In the first of this chapter's two examples, you'll use all the familiar "old" controls, such as the edit
control and the list box, inherited from Win16. In the second example, you'll use the Windows common
controls, which Microsoft Windows 95 introduced. In Chapter 7 we'll take a look at the modeless dialog and
the special-purpose Windows common dialogs for opening files, selecting fonts, and so forth. In Chapter 8
we'll examine ActiveX Controls. Then Chapter 9 discusses the new Internet Explorer control classes,
introduced in MFC 6.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modal vs. Modeless Dialogs
The CDialog base class supports both modal and modeless dialogs. With a modal dialog, such as the Open
File dialog, the user cannot work elsewhere in the same application (more correctly, in the same user
interface thread) until the dialog is closed. With a modeless dialog, the user can work in another window in
the application while the dialog remains on the screen. Microsoft Word's Find and Replace dialog is a good
example of a modeless dialog; you can edit your document while the dialog is open.

Your choice of a modal or a modeless dialog depends on the application. Modal dialogs are much easier to
program, which might influence your decision.

FYI

The 16-bit versions of Windows support a special kind of modal dialog called a system
modal dialog, which prevents the user from switching to another application. Win32
also supports system modal dialogs but with weird results: the user can switch to
another application, but the dialog remains as the top window. You probably don't want
to use system modal dialogs in Win32 applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resources and Controls
So now you know a dialog is a window. What makes the dialog different from the CView windows you've
seen already? For one thing, a dialog window is almost always tied to a Windows resource that identifies
the dialog's elements and specifies their layout. Because you can use the dialog editor (one of the resource
editors) to create and edit a dialog resource, you can quickly and efficiently produce dialogs in a visual
manner.

A dialog contains a number of elements called controls. Dialog controls include edit controls (aka text
boxes), buttons, list boxes, combo boxes, static text (aka labels), tree views, progress indicators, sliders,
and so forth. Windows manages these controls using special grouping and tabbing logic, and that relieves
you of a major programming burden. The dialog controls can be referenced either by a CWnd pointer
(because they are really windows) or by an index number (with an associated #define constant) assigned
in the resource. A control sends a message to its parent dialog in response to a user action such as typing
text or clicking a button.

The Microsoft Foundation Class (MFC) Library and ClassWizard work together to enhance the dialog logic
that Windows provides. ClassWizard generates a class derived from CDialog and then lets you associate
dialog class data members with dialog controls. You can specify editing parameters such as maximum text
length and numeric high and low limits. ClassWizard generates statements that call the MFC data exchange
and data validation functions to move information back and forth between the screen and the data
members.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming a Modal Dialog
Modal dialogs are the most frequently used dialogs. A user action (a menu choice, for example) brings up a
dialog on the screen, the user enters data in the dialog, and then the user closes the dialog. Here's a
summary of the steps to add a modal dialog to an existing project:

1. Use the dialog editor to create a dialog resource that contains various controls. The dialog editor
updates the project's resource script (RC) file to include your new dialog resource, and it updates
the project's resource.h file with corresponding #define constants.

2. Use ClassWizard to create a dialog class that is derived from CDialog and attached to the resource
created in step 1. ClassWizard adds the associated code and header file to the Microsoft Visual C++
project.

When ClassWizard generates your derived dialog class, it generates a constructor that
invokes a CDialog modal constructor, which takes a resource ID as a parameter. Your
generated dialog header file contains a class enumerator constant IDD that is set to the
dialog resource ID. In the CPP file, the constructor implementation looks like this:

CMyDialog::CMyDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CMyDialog::IDD, pParent)
{
 // initialization code here
}
The use of enum IDD decouples the CPP file from the resource IDs that are defined in
the project's resource.h file.

3. Use ClassWizard to add data members, exchange functions, and validation functions to the dialog
class.

4. Use ClassWizard to add message handlers for the dialog's buttons and other event-generating
controls.

5. Write the code for special control initialization (in OnInitDialog) and for the message handlers. Be
sure the CDialog virtual member function OnOK is called when the user closes the dialog (unless the
user cancels the dialog). (Note: OnOK is called by default.)

6. Write the code in your view class to activate the dialog. This code consists of a call to your dialog
class's constructor followed by a call to the DoModal dialog class member function. DoModal returns
only when the user exits the dialog window.

Now we'll proceed with a real example, one step at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Dialog That Ate Cincinnati—The EX06A Example
Let's not mess around with wimpy little dialogs. We'll build a monster dialog that contains almost every
kind of control. The job will be easy because Visual C++'s dialog editor is there to help us. The finished
product is shown in Figure 6-1.

Figure 6-1. The finished dialog in action.

As you can see, the dialog supports a human resources application. These kinds of business programs are
fairly boring, so the challenge is to produce something that could not have been done with 80-column
punched cards. The program is brightened a little by the use of scroll bar controls for "Loyalty" and
"Reliability." Here is a classic example of direct action and visual representation of data! ActiveX controls
could add more interest, but you'll have to wait until Chapter 8 for details on ActiveX.

Building the Dialog Resource

Here are the steps for building the dialog resource:

1. Run AppWizard to generate a project called EX06A. Choose New from Visual C++'s File menu,
and then click the Projects tab and select MFC AppWizard (exe). Accept all the defaults but two:
select Single Document and deselect Printing And Print Preview. The options and the default class
names are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As usual, AppWizard sets the new project as the current project.

2. Create a new dialog resource with ID IDD_DIALOG1. Choose Resource from Visual C++'s
Insert menu. The Insert Resource dialog appears. Click on Dialog, and then click New. Visual C++
creates a new dialog resource, as shown here.

The dialog editor assigns the resource ID IDD_DIALOG1 to the new dialog. Notice that the dialog
editor inserts OK and Cancel buttons for the new dialog.

3. Size the dialog and assign a caption. Enlarge the dialog box to about 5-by-7 inches.

When you right-click on the new dialog and choose Properties from the pop-up menu, the Dialog
Properties dialog appears. Type in the caption for the new dialog as shown in the screen below. The
state of the pushpin button in the upper-left corner determines whether the Dialog Properties dialog
stays on top of other windows. (When the pushpin is "pushed," the dialog stays on top of other
windows.) Click the Toggle Grid button (on the Dialog toolbar) to reveal the grid and to help align
controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Set the dialog style. Click on the Styles tab at the top of the Dialog Properties dialog, and then set
the style properties as shown in the following illustration.

5. Set additional dialog styles. Click on the More Styles tab at the top of the Dialog Properties
dialog, and then set the style properties as shown here.

6. Add the dialog's controls. Use the control palette to add each control. (If the control palette is
not visible, right-click any toolbar and choose Controls from the list.) Drag controls from the control
palette to the new dialog, and then position and size the controls, as shown in Figure 6-1. Here are
the control palette's controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dialog editor displays the position and size of each control in the status bar.
The position units are special "dialog units," or DLUs, not device units. A
horizontal DLU is the average width of the dialog font divided by 4. A vertical
DLU is the average height of the font divided by 8. The dialog font is normally 8-
point MS Sans Serif.

Here's a brief description of the dialog's controls:

The static text control for the Name field. A static text control simply paints characters
on the screen. No user interaction occurs at runtime. You can type the text after you position
the bounding rectangle, and you can resize the rectangle as needed. This is the only static
text control you'll see listed in text, but you should also create the other static text controls
as shown earlier in Figure 6-1. Follow the same procedure for the other static text controls in
the dialog. All static text controls have the same ID, but that doesn't matter because the
program doesn't need to access any of them.

The Name edit control. An edit control is the primary means of entering text in a dialog.
Right-click the control, and then choose Properties. Change this control's ID from IDC_EDIT1
to IDC_NAME. Accept the defaults for the rest of the properties. Notice that the default sets
Auto HScroll, which means that the text scrolls horizontally when the box is filled.

The SS Nbr (social security number) edit control. As far as the dialog editor is
concerned, the SS Nbr control is exactly the same as the Name edit control. Simply change
its ID to IDC_SSN. Later you will use ClassWizard to make this a numeric field.

The Bio (biography) edit control. This is a multiline edit control. Change its ID to
IDC_BIO, and then set its properties as shown here.

The Category group box. This control serves only to group two radio buttons visually.
Type in the caption Category. The default ID is sufficient.

The Hourly and Salary radio buttons. Position these radio buttons inside the Category
group box. Set the Hourly button's ID to IDC_CAT and set the other properties as shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure that both buttons have the Auto property (the default) on the Styles tab set and that
only the Hourly button has the Group property set. When these properties are set correctly,
Windows ensures that only one of the two buttons can be selected at a time. The Category
group box has no effect on the buttons' operation.

The Insurance group box. This control holds three check boxes. Type in the caption
Insurance.

Later, when you set the dialog's tab order, you'll ensure that the
Insurance group box follows the last radio button of the Category group.
Set the Insurance control's Group property now in order to "terminate"
the previous group. If you fail to do this, it isn't a serious problem, but
you'll get several warning messages when you run the program through
the debugger.

The Life, Disability, and Medical check boxes. Place these controls inside the Insurance
group box. Accept the default properties, but change the IDs to IDC_LIFE, IDC_DIS, and
IDC_MED. Unlike radio buttons, check boxes are independent; the user can set any
combination.

The Skill combo box. This is the first of three types of combo boxes. Change the ID to
IDC_SKILL, and then click on the Styles tab and set the Type option to Simple. Click on the
Data tab, and add three skills (terminating each line with Ctrl-Enter) in the Enter Listbox
Items box.

This is a combo box of type Simple. The user can type anything in the top edit control, use
the mouse to select an item from the attached list box, or use the Up or Down direction key
to select an item from the attached list box.

The Educ (education) combo box. Change the ID to IDC_EDUC; otherwise, accept the
defaults. Add the three education levels in the Data page, as shown in Figure 6-1. In this
Dropdown combo box, the user can type anything in the edit box, click on the arrow, and
then select an item from the drop-down list box or use the Up or Down direction key to
select an item from the attached list box.

Aligning Controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Aligning Controls

To align two or more controls, select the controls by clicking on the first
control and then Shift-clicking on the other controls you want to align.
Next choose one of the alignment commands (Left, Horiz.Center, Right,
Top, Vert.Center, or Bottom) from the Align submenu on the dialog
editor's Layout menu.

To set the size for the drop-down portion of a combo box, click on the
box's arrow and drag down from the center of the bottom of the
rectangle.

The Dept (department) list box. Change the ID to IDC_DEPT; otherwise, accept all the
defaults. In this list box, the user can select only a single item by using the mouse, by using
the Up or Down direction key, or by typing the first character of a selection. Note that you
can't enter the initial choices in the dialog editor. You'll see how to set these choices later.

The Lang (language) combo box. Change the ID to IDC_LANG, and then click on the
Styles tab and set the Type option to Drop List. Add three languages (English, French, and
Spanish) in the Data page. With this Drop List combo box, the user can select only from the
attached list box. To select, the user can click on the arrow and then select an entry from
the drop-down list, or the user can type in the first letter of the selection and then refine the
selection using the Up or Down direction key.

The Loyalty and Reliability scroll bars. Do not confuse scroll bar controls with a window's
built-in scroll bars as seen in scrolling views. A scroll bar control behaves in the same
manner as do other controls and can be resized at design time. Position and size the
horizontal scroll bar controls as shown previously in Figure 6-1, and then assign the IDs
IDC_LOYAL and IDC_RELY.

Selecting a Group of Controls

To quickly select a group of controls, position the mouse cursor above and
to the left of the group. Hold down the left mouse button and drag to a
point below and to the right of the group, as shown here.

The OK, Cancel, and Special pushbuttons. Be sure the button captions are OK, Cancel,
and Special, and then assign the ID IDC_SPECIAL to the Special button. Later you'll learn
about special meanings that are associated with the default IDs IDOK and IDCANCEL.

Any icon. (The MFC icon is shown as an example.) You can use the Picture control to
display any icon or bitmap in a dialog, as long as the icon or bitmap is defined in the
resource script. We'll use the program's MFC icon, identified as IDR_MAINFRAME. Set the
Type option to Icon, and set the Image option to IDR_MAINFRAME. Leave the ID as
IDC_STATIC.

7. Check the dialog's tabbing order. Choose Tab Order from the dialog editor's Layout menu. Use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Check the dialog's tabbing order. Choose Tab Order from the dialog editor's Layout menu. Use
the mouse to set the tabbing order shown below. Click on each control in the order shown, and then
press Enter.

If you mess up the tab sequence partway through, you can recover with a Ctrl-
left mouse click on the last correctly sequenced control. Subsequent mouse
clicks will start with the next sequence number.

A static text control (such as Name or Skill) has an ampersand (&) embedded in
the text for its caption. At runtime, the ampersand will appear as an underscore
under the character that follows. (See Figure 6-1.) This enables the user to jump
to selected controls by holding down the Alt key and pressing the key
corresponding to the underlined character. (The related control must
immediately follow the static text in the tabbing order.) Thus, Alt-N jumps to the
Name edit control and Alt-K jumps to the Skill combo box. Needless to say,
designated jump characters should be unique within the dialog. The Skill control
uses Alt-K because the SS Nbr control uses Alt-S.

8. Save the resource file on disk. For safety, choose Save from the File menu or click the Save
button on the toolbar to save ex06a.rc. Keep the dialog editor running, and keep the newly built
dialog on the screen.

ClassWizard and the Dialog Class

You have now built a dialog resource, but you can't use it without a corresponding dialog class. (The
section titled "Understanding the EX06A Application" explains the relationship between the dialog window
and the underlying classes.) ClassWizard works in conjunction with the dialog editor to create that class as
follows:

1. Choose ClassWizard from Visual C++'s View menu (or press Ctrl-W). Be sure that you still
have the newly built dialog, IDD_DIALOG1, selected in the dialog editor and that EX06A is the
current Visual C++ project.

2. Add the CEx06aDialog class. ClassWizard detects the fact that you've just created a dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add the CEx06aDialog class. ClassWizard detects the fact that you've just created a dialog
resource without an associated C++ class. It politely asks whether you want to create a class, as
shown below.

Accept the default selection of Create A New Class, and click OK. Fill in the top field of the New
Class dialog, as shown here.

3. Add the CEx06aDialog variables. After ClassWizard creates the CEx06aDialog class, the MFC
ClassWizard dialog appears. Click on the Member Variables tab, and the Member Variables page
appears, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You need to associate data members with each of the dialog's controls. To do this, click on a control
ID and then click the Add Variable button. The Add Member Variable dialog appears, as shown in
the following illustration.

Type in the member variable name, and choose the variable type according to the following table.
Be sure to type in the member variable name exactly as shown; the case of each letter is
important. When you're done, click OK to return to the MFC ClassWizard dialog. Repeat this process
for each of the listed controls.

Control ID Data Member Type

IDC_BIO m_strBio CString

IDC_CAT m_nCat int

IDC_DEPT m_strDept CString

IDC_DIS m_bInsDis BOOL

IDC_EDUC m_strEduc CString

IDC_LANG m_nLang CString

IDC_LIFE m_bInsLife BOOL

IDC_LOYAL m_nLoyal int

IDC_MED m_bInsMed BOOL

IDC_NAME m_strName CString

IDC_RELY m_nRely int

IDC_SKILL m_strSkill CString

IDC_SSN m_nSsn int

As you select controls in the MFC ClassWizard dialog, various edit boxes appear at the bottom of the
dialog. If you select a CString variable, you can set its maximum number of characters; if you select
a numeric variable, you can set its high and low limits. Set the minimum value for IDC_SSN to 0
and the maximum value to 999999999.

Most relationships between control types and variable types are obvious. The way in which radio
buttons correspond to variables is not so intuitive, however. The CDialog class associates an integer
variable with each radio button group, with the first button corresponding to value 0, the second to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable with each radio button group, with the first button corresponding to value 0, the second to
1, and so forth.

4. Add the message-handling function for the Special button. CEx06aDialog doesn't need many
message-handling functions because the CDialog base class, with the help of Windows, does most
of the dialog management. When you specify the ID IDOK for the OK button (ClassWizard's
default), for example, the virtual CDialog function OnOK gets called when the user clicks the button.
For other buttons, however, you need message handlers.

Click on the Message Maps tab. The ClassWizard dialog should contain an entry for IDC_SPECIAL in
the Object IDs list box. Click on this entry, and double-click on the BN_CLICKED message that
appears in the Messages list box. ClassWizard invents a member function name, OnSpecial, and
opens the Add Member Function dialog, as shown here.

You could type in your own function name here, but this time accept the default and click OK. Click
the Edit Code button in the MFC ClassWizard dialog. This opens the file ex06aDialog.cpp and moves
to the OnSpecial function. Insert a TRACE statement in the OnSpecial function by typing in the
boldface code, shown below, which replaces the existing code:

void CEx06aDialog::OnSpecial()
{
 TRACE("CEx06aDialog::OnSpecial\n");
}

5. Use ClassWizard to add an OnInitDialog message-handling function. As you'll see in a
moment, ClassWizard generates code that initializes a dialog's controls. This DDX (Dialog Data
Exchange) code won't initialize the list-box choices, however, so you must override the
CDialog::OnInit-Dialog function. Although OnInitDialog is a virtual member function, ClassWizard
generates the prototype and skeleton if you map the WM_INITDIALOG message in the derived
dialog class. To do so, click on CEx06aDialog in the Object IDs list box and then double-click on the
WM_INITDIALOG message in the Messages list box. Click the Edit Code button in the MFC
ClassWizard dialog to edit the OnInitDialog function. Type in the boldface code, which replaces the
existing code:

BOOL CEx06aDialog::OnInitDialog()
{
 // Be careful to call CDialog::OnInitDialog
 // only once in this function
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_DEPT);
 pLB->InsertString(-1, "Documentation");
 pLB->InsertString(-1, "Accounting");
 pLB->InsertString(-1, "Human Relations");
 pLB->InsertString(-1, "Security");
 // Call after initialization
 return CDialog::OnInitDialog();
}
You could also use the same initialization technique for the combo boxes, in place of the
initialization in the resource.

Connecting the Dialog to the View

Now we've got the resource and the code for a dialog, but it's not connected to the view. In most
applications, you would probably use a menu choice to activate a dialog, but we haven't studied menus
yet. Here we'll use the familiar mouse-click message WM_LBUTTONDOWN to start the dialog. The steps
are as follows:

1. In ClassWizard, select the CEx06aView class. At this point, be sure that EX06A is Visual C++'s

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. In ClassWizard, select the CEx06aView class. At this point, be sure that EX06A is Visual C++'s
current project.

2. Use ClassWizard to add the OnLButtonDown member function. You've done this in the
examples in earlier chapters. Simply select the CEx06aView class name, click on the CEx06aView
object ID, and then double-click on WM_LBUTTONDOWN.

3. Write the code for OnLButtonDown in file ex06aView.cpp. Add the boldface code below. Most
of the code consists of TRACE statements to print the dialog data members after the user exits the
dialog. The CEx06aDialog constructor call and the DoModal call are the critical statements,
however:

void CEx06aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx06aDialog dlg;
 dlg.m_strName = "Shakespeare, Will";
 dlg.m_nSsn = 307806636;
 dlg.m_nCat = 1; // 0 = hourly, 1 = salary
 dlg.m_strBio = "This person is not a well-motivated tech writer";
 dlg.m_bInsLife = TRUE;
 dlg.m_bInsDis = FALSE;
 dlg.m_bInsMed = TRUE;
 dlg.m_strDept = "Documentation";
 dlg.m_strSkill = "Writer";
 dlg.m_nLang = 0;
 dlg.m_strEduc = "College";
 dlg.m_nLoyal = dlg.m_nRely = 50;
 int ret = dlg.DoModal();
 TRACE("DoModal return = %d\n", ret);
 TRACE("name = %s, ssn = %d, cat = %d\n",
 dlg.m_strName, dlg.m_nSsn, dlg.m_nCat);
 TRACE("dept = %s, skill = %s, lang = %d, educ = %s\n",
 dlg.m_strDept, dlg.m_strSkill, dlg.m_nLang, dlg.m_strEduc);
 TRACE("life = %d, dis = %d, med = %d, bio = %s\n",
 dlg.m_bInsLife, dlg.m_bInsDis, dlg.m_bInsMed, dlg.m_strBio);
 TRACE("loyalty = %d, reliability = %d\n",
 dlg.m_nLoyal, dlg.m_nRely);
}

4. Add code to the virtual OnDraw function in file ex06aView.cpp. To prompt the user to press
the left mouse button, code the CEx06aView::OnDraw function. (The skeleton was generated by
AppWizard.) The following boldface code (which you type in) replaces the existing code:

void CEx06aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

5. To ex06aView.cpp, add the dialog class include statement. The OnLButtonDown function
above depends on the declaration of class CEx06aDialog. You must insert the include statement

#include "ex06aDialog.h"
at the top of the CEx06aView class source code file (ex06aView.cpp), after the statement

#include "ex06aView.h"
6. Build and test the application. If you have done everything correctly, you should be able to build

and run the EX06A application through Visual C++. Try entering data in each control, and then click
the OK button and observe the TRACE results in the Debug window. Notice that the scroll bar
controls don't do much yet; we'll attend to them later. Notice what happens when you press Enter
while typing in text data in a control: the dialog closes immediately.

Understanding the EX06A Application

When your program calls DoModal, control is returned to your program only when the user closes the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When your program calls DoModal, control is returned to your program only when the user closes the
dialog. If you understand that, you understand modal dialogs. When you start creating modeless dialogs,
you'll begin to appreciate the programming simplicity of modal dialogs. A lot happens "out of sight" as a
result of that DoModal call, however. Here's a "what calls what" summary:

CDialog::DoModal
 CEx06aDialog::OnInitDialog
 …additional initialization…
 CDialog::OnInitDialog
 CWnd::UpdateData(FALSE)
 CEx06aDialog::DoDataExchange
 user enters data…
 user clicks the OK button
 CEx06aDialog::OnOK
 …additional validation…
 CDialog::OnOK
 CWnd::UpdateData(TRUE)
 CEx06aDialog::DoDataExchange
 CDialog::EndDialog(IDOK)

OnInitDialog and DoDataExchange are virtual functions overridden in the CEx06aDialog class. Windows
calls OnInitDialog as part of the dialog initialization process, and that results in a call to DoDataExchange, a
CWnd virtual function that was overridden by ClassWizard. Here is a listing of that function:

void CEx06aDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CEx06aDialog)
 DDX_Text(pDX, IDC_BIO, m_strBio);
 DDX_Radio(pDX, IDC_CAT, m_nCat);
 DDX_LBString(pDX, IDC_DEPT, m_strDept);
 DDX_Check(pDX, IDC_DIS, m_bInsDis);
 DDX_CBString(pDX, IDC_EDUC, m_strEduc);
 DDX_CBIndex(pDX, IDC_LANG, m_nLang);
 DDX_Check(pDX, IDC_LIFE, m_bInsLife);
 DDX_Scroll(pDX, IDC_LOYAL, m_nLoyal);
 DDX_Check(pDX, IDC_MED, m_bInsMed);
 DDX_Text(pDX, IDC_NAME, m_strName);
 DDX_Scroll(pDX, IDC_RELY, m_nRely);
 DDX_CBString(pDX, IDC_SKILL, m_strSkill);
 DDX_Text(pDX, IDC_SSN, m_nSsn);
 DDV_MinMaxInt(pDX, m_nSsn, 0, 999999999);
 //}}AFX_DATA_MAP
}
The DoDataExchange function and the DDX_ (exchange) and DDV_ (validation) functions are
"bidirectional." If UpdateData is called with a FALSE parameter, the functions transfer data from the data
members to the dialog controls. If the parameter is TRUE, the functions transfer data from the dialog
controls to the data members. DDX_Text is overloaded to accommodate a variety of data types.

The EndDialog function is critical to the dialog exit procedure. DoModal returns the parameter passed to
EndDialog. IDOK accepts the dialog's data, and IDCANCEL cancels the dialog.

You can write your own "custom" DDX function and wire it into Visual C++. This feature
is useful if you're using a unique data type throughout your application. See MFC
Technical Note #26 in the online documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enhancing the Dialog Program
The EX06A program required little coding for a lot of functionality. Now we'll make a new version of this
program that uses some hand-coding to add extra features. We'll eliminate EX06A's rude habit of dumping
the user in response to a press of the Enter key, and we'll hook up the scroll bar controls.

Taking Control of the OnOK Exit

In the original EX06A program, the CDialog::OnOK virtual function handled the OK button, which triggered
data exchange and the exit from the dialog. Pressing the Enter key happens to have the same effect, and
that might or might not be what you want. If the user presses Enter while in the Name edit control, for
example, the dialog closes immediately.

What's going on here? When the user presses Enter, Windows looks to see which pushbutton has the input
focus, as indicated on the screen by a dotted rectangle. If no button has the focus, Windows looks for the
default pushbutton that the program or the resource specifies. (The default pushbutton has a thicker
border.) If the dialog has no default button, the virtual OnOK function is called, even if the dialog does not
contain an OK button.

You can disable the Enter key by writing a do-nothing CEx06aDialog::OnOK function and adding the exit
code to a new function that responds to clicking the OK button. Here are the steps:

1. Use ClassWizard to "map" the IDOK button to the virtual OnOK function. In ClassWizard,
choose IDOK from the CEx06aDialog Object IDs list, and then double-click on BN_CLICKED. This
generates the prototype and skeleton for OnOK.

2. Use the dialog editor to change the OK button ID. Select the OK button, change its ID from
IDOK to IDC_OK, and then uncheck its Default Button property. Leave the OnOK function alone.

3. Use ClassWizard to create a member function called OnClickedOk. This CEx06aDialog class
member function is keyed to the BN_CLICKED message from the newly renamed control IDC_OK.

4. Edit the body of the OnClickedOk function in ex06aDialog.cpp. This function calls the base
class OnOK function, as did the original CEx06aDialog::OnOK function. Here is the code:

void CEx06aDialog::OnClickedOk()
{
 TRACE("CEx06aDialog::OnClickedOk\n");
 CDialog::OnOK();
}

5. Edit the original OnOK function in ex06aDialog.cpp. This function is a "leftover" handler for
the old IDOK button. Edit the code as shown here:

void CEx06aDialog::OnOK()
{
 // dummy OnOK function -- do NOT call CDialog::OnOK()
 TRACE("CEx06aDialog::OnOK\n");
}

6. Build and test the application. Try pressing the Enter key now. Nothing should happen, but
TRACE output should appear in the Debug window. Clicking the OK button should exit the dialog as
before, however.

For Win32 Programmers

Dialog controls send WM_ COMMAND notification messages to their parent dialogs. For
a single button click, for example, the bottom 16 bits of wParam contain the button ID,
the top 16 bits of wParam contain the BN_CLICKED notification code, and lParam
contains the button handle. Most window procedure functions process these notification
messages with a nested switch statement. MFC "flattens out" the message processing
logic by "promoting" control notification messages to the same level as other Windows
messages.

For a Delete button (for example), ClassWizard generates notification message map
entries similar to these:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entries similar to these:

ON_BN_CLICKED(IDC_DELETE, OnDeleteClicked)
ON_BN_DOUBLECLICKED(IDC_DELETE, OnDeleteDblClicked)
Button events are special because they generate command messages if your dialog
class doesn't have notification handlers like the ones above. As Chapter 13 explains,
the application framework "routes" these command messages to various objects in
your application. You could also map the control notifications with a more generic ON_
COMMAND message-handling entry like this:

ON_COMMAND(IDC_DELETE, OnDelete)
In this case, the OnDelete function is unable to distinguish between a single click and a
double click, but that's no problem because few Windows-based programs utilize
double clicks for buttons.

OnCancel Processing

Just as pressing the Enter key triggers a call to OnOK, pressing the Esc key triggers a call to OnCancel,
which results in an exit from the dialog with a DoModal return code of IDCANCEL. EX06A does no special
processing for IDCANCEL; therefore, pressing the Esc key (or clicking the Close button) closes the dialog.
You can circumvent this process by substituting a dummy OnCancel function, following approximately the
same procedure you used for the OK button.

Hooking Up the Scroll Bar Controls

The dialog editor allows you to include scroll bar controls in your dialog, and ClassWizard lets you add
integer data members. You must add code to make the Loyalty and Reliability scroll bars work.

Scroll bar controls have position and range values that can be read and written. If you set the range to (0,
100), for example, a corresponding data member with a value of 50 positions the scroll box at the center
of the bar. (The function CScrollBar::SetScrollPos also sets the scroll box position.) The scroll bars send
the WM_ HSCROLL and WM_ VSCROLL messages to the dialog when the user drags the scroll box or clicks
the arrows. The dialog's message handlers must decode these messages and position the scroll box
accordingly.

Each control you've seen so far has had its own individual message handler function. Scroll bar controls are
different because all horizontal scroll bars in a dialog are tied to a single WM_HSCROLL message handler
and all vertical scroll bars are tied to a single WM_VSCROLL handler. Because this monster dialog contains
two horizontal scroll bars, the single WM_ HSCROLL message handler must figure out which scroll bar sent
the scroll message.

Here are the steps for adding the scroll bar logic to EX06A:

1. Add the class enum statements for the minimum and maximum scroll range. In
ex06aDialog.h, add the following lines at the top of the class declaration:

enum { nMin = 0 };
enum { nMax = 100 };

2. Edit the OnInitDialog function to initialize the scroll ranges. In the OnInitDialog function,
we'll set the minimum and the maximum scroll values such that the CEx06aDialog data members
represent percentage values. A value of 100 means "Set the scroll box to the extreme right"; a
value of 0 means "Set the scroll box to the extreme left."

Add the following code to the CEx06aDialog member function OnInitDialog in the file
ex06aDialog.cpp:

CScrollBar* pSB = (CScrollBar*) GetDlgItem(IDC_LOYAL);
pSB->SetScrollRange(nMin, nMax);
pSB = (CScrollBar*) GetDlgItem(IDC_RELY);
pSB->SetScrollRange(nMin, nMax);

3. Use ClassWizard to add a scroll bar message handler to CEx06aDialog. Choose the
WM_HSCROLL message, and then add the member function OnHScroll. Enter the following boldface
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06aDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 int nTemp1, nTemp2;
 nTemp1 = pScrollBar->GetScrollPos();
 switch(nSBCode) {
 case SB_THUMBPOSITION:
 pScrollBar->SetScrollPos(nPos);
 break;
 case SB_LINELEFT: // left arrow button
 nTemp2 = (nMax - nMin) / 10;
 if ((nTemp1 - nTemp2) > nMin) {
 nTemp1 -= nTemp2;
 }
 else {
 nTemp1 = nMin;
 }
 pScrollBar->SetScrollPos(nTemp1);
 break;
 case SB_LINERIGHT: // right arrow button
 nTemp2 = (nMax - nMin) / 10;
 if ((nTemp1 + nTemp2) < nMax) {
 nTemp1 += nTemp2;
 }
 else {
 nTemp1 = nMax;
 }
 pScrollBar->SetScrollPos(nTemp1);
 break;
 }
}

The scroll bar functions use 16-bit integers for both range and position.

4. Build and test the application. Build and run EX06A again. Do the scroll bars work this time? The
scroll boxes should "stick" after you drag them with the mouse, and they should move when you
click the scroll bars' arrows. (Notice that we haven't added logic to cover the user's click on the
scroll bar itself.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Identifying Controls: CWnd Pointers and Control IDs
When you lay out a dialog resource in the dialog editor, you identify each control by an ID such as
IDC_SSN. In your program code, however, you often need access to a control's underlying window object.
The MFC library provides the CWnd::GetDlgItem function for converting an ID to a CWnd pointer. You've
seen this already in the OnInitDialog member function of class CEx06aDialog. The application framework
"manufactured" this returned CWnd pointer because there never was a constructor call for the control
objects. This pointer is temporary and should not be stored for later use.

If you need to convert a CWnd pointer to a control ID, use the MFC library GetDlgCtrlID
member function of classCWnd.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting the Color for the Dialog Background and for Controls
You can change the background color of individual dialogs or specific controls in a dialog, but you have to
do some extra work. The parent dialog is sent a WM_CTLCOLOR message for each control immediately
before the control is displayed. A WM_CTLCOLOR message is also sent on behalf of the dialog itself. If you
map this message in your derived dialog class, you can set the foreground and background text colors and
select a brush for the control or dialog nontext area.

Following is a sample OnCtlColor function that sets all edit control backgrounds to yellow and the dialog
background to red. The m_hYellowBrush and m_hRedBrush variables are data members of type HBRUSH,
initialized in the dialog's OnInitDialog function. The nCtlColor parameter indicates the type of control, and
the pWnd parameter identifies the specific control. If you wanted to set the color for an individual edit
control, you would convert pWnd to a child window ID and test it.

HBRUSH CMyDialog::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)
{
 if (nCtlColor == CTLCOLOR_EDIT) {
 pDC->SetBkColor(RGB(255, 255, 0)); // yellow
 return m_hYellowBrush;
 }
 if (nCtlColor == CTLCOLOR_DLG) {
 pDC->SetBkColor(RGB(255, 0, 0)); // red
 return m_hRedBrush;
 }
 return CDialog::OnCtlColor(pDC, pWnd, nCtlColor);
}

The dialog does not post the WM_CTLCOLOR message in the message queue; instead,
it calls the Win32 SendMessage function to send the message immediately. Thus the
message handler can return a parameter, in this case a handle to a brush. This is not
an MFC CBrush object but rather a Win32 HBRUSH. You can create the brush by calling
the Win32 functions CreateSolidBrush, CreateHatchBrush, and so forth.

For Win32 Programmers

Actually, Win32 no longer has a WM_CTLCOLOR message. It was replaced by control-
specific messages such as WM_CTLCOLORBTN, WM_CTLCOLORDLG, and so on. MFC
and ClassWizard process these messages invisibly, so your programs look as though
they're mapping the old 16-bit WM_CTLCOLOR messages. This trick makes debugging
more complex, but it makes portable code easier to write. Another option would be to
use the ON_MESSAGE macro to map the real Win32 messages.

If your dialog class (or other MFC window class) doesn't map the WM_CTLCOLOR
message, the framework reflects the message back to the control. When you study
window subclassing in Chapter 16, you'll learn how to write your own control window
classes that can process these reflected messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Painting Inside the Dialog Window
You can paint directly in the client area of the dialog window, but you'll avoid overwriting dialog elements if
you paint only inside a control window. If you want to display text only, use the dialog editor to create a
blank static control with a unique ID and then call the CWnd::SetDlgItemText function in a dialog member
function such as OnInitDialog to place text in the control.

Displaying graphics is more complicated. You must use ClassWizard to add an OnPaint member function to
the dialog; this function must convert the static control's ID to a CWnd pointer and get its device context.
The trick is to draw inside the control window while preventing Windows from overwriting your work later.
The Invalidate/UpdateWindow sequence achieves this. Here is an OnPaint function that paints a small black
square in a static control:

void CMyDialog::OnPaint()
{
 CWnd* pWnd = GetDlgItem(IDC_STATIC1); // IDC_STATIC1 specified
 // in the dialog editor
 CDC* pControlDC = pWnd->GetDC();

 pWnd->Invalidate();
 pWnd->UpdateWindow();
 pControlDC->SelectStockObject(BLACK_BRUSH);
 pControlDC->Rectangle(0, 0, 10, 10); // black square bullet
 pWnd->ReleaseDC(pControlDC);
}
As with all windows, the dialog's OnPaint function is called only if some part of the dialog is invalidated.
You can force the OnPaint call from another dialog member function with the following statement:

Invalidate();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Dialog Controls at Runtime
You've seen how to use the resource editor to create dialog controls at build time. If you need to add a
dialog control at runtime, here are the programming steps:

1. Add an embedded control window data member to your dialog class. The MFC control window
classes include CButton, CEdit, CListBox, and CComboBox. An embedded control C++ object is
constructed and destroyed along with the dialog object.

2. Choose Resource Symbols from Visual C++'s View menu. Add an ID constant for the new control.

3. Use ClassWizard to map the WM_INITDIALOG message, thus overriding CDialog::OnInitDialog. This
function should call the embedded control window's Create member function. This call displays the
new control in the dialog. Windows will destroy the control window when it destroys the dialog
window.

4. In your derived dialog class, manually add the necessary notification message handlers for your
new control.

In Chapter 13, you'll be adding a rich edit control to a view at runtime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Other Control Features
You've seen how to customize the control class CScrollBar by adding code in the dialog's OnInitDialog
member function. You can program other controls in a similar fashion. In the Microsoft Visual C++ MFC
Library Reference, or in the online help under "Microsoft Foundation Class Libary and Templates," look at
the control classes, particularly CListBox and CComboBox. Each has a number of features that ClassWizard
does not directly support. Some combo boxes, for example, can support multiple selections. If you want to
use these features, don't try to use ClassWizard to add data members. Instead, define your own data
members and add your own exchange code in OnInitDialog and OnClickedOK.

For Win32 Programmers

If you've programmed controls in Win32, you'll know that parent windows
communicate to controls via Windows messages. So what does a function such as
CListBox::InsertString do? (You've seen this function called in your OnInitDialog
function.) If you look at the MFC source code, you'll see that InsertString sends an
LB_INSERTSTRING message to the designated list-box control. Other control class
member functions don't send messages because they apply to all window types. The
CScrollView::SetScrollRange function, for example, calls the Win32 SetScrollRange
function, specifying the correct hWnd as a parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Common Controls
The controls you used in EX06A are great learning controls because they're easy to program. Now you're
ready for some more "interesting" controls. We'll take a look at some important new Windows controls,
introduced for Microsoft Windows 95 and available in Microsoft Windows NT. These include the progress
indicator, trackbar, spin button control, list control, and tree control.

The code for these controls is in the Windows COMCTL32.DLL file. This code includes the window procedure
for each control, together with code that registers a window class for each control. The registration code is
called when the DLL is loaded. When your program initializes a dialog, it uses the symbolic class name in
the dialog resource to connect to the window procedure in the DLL. Thus your program owns the control's
window, but the code is in the DLL. Except for ActiveX controls, most controls work this way.

Example EX06B uses the aforementioned controls. Figure 6-2 shows the dialog from that example. Refer to
it when you read the control descriptions that follow.

Be aware that ClassWizard offers no member variable support for the common controls. You'll have to add
code to your OnInitDialog and OnOK functions to initialize and read control data. ClassWizard will,
however, allow you to map notification messages from common controls.

Figure 6-2. The Windows Common Controls Dialog example.

The Progress Indicator Control

The progress indicator is the easiest common control to program and is represented by the MFC
CProgressCtrl class. It is generally used only for output. This control, together with the trackbar, can
effectively replace the scroll bar controls you saw in the previous example. To initialize the progress
indicator, call the SetRange and SetPos member functions in your OnInitDialog function, and then call
SetPos anytime in your message handlers. The progress indicator shown in Figure 6-2 has a range of 0 to
100, which is the default range.

The Trackbar Control

The trackbar control (class CSliderCtrl), sometimes called a slider, allows the user to set an "analog" value.
(Trackbars would have been more effective than sliders for Loyalty and Reliability in the EX06A example.)
If you specify a large range for this control—0 to 100 or more, for example—the trackbar's motion appears
continuous. If you specify a small range, such as 0 to 5, the tracker moves in discrete increments. You can
program tick marks to match the increments. In this discrete mode, you can use a trackbar to set such
items as the display screen resolution, lens f-stop values, and so forth. The trackbar does not have a
default range.

The trackbar is easier to program than the scroll bar because you don't have to map the WM_HSCROLL or
WM_VSCROLL messages in the dialog class. As long as you set the range, the tracker moves when the
user slides it or clicks in the body of the trackbar. You might choose to map the scroll messages anyway if
you want to show the position value in another control. The GetPos member function returns the current
position value. The top trackbar in Figure 6-2 operates continuously in the range 0 to 100. The bottom
trackbar has a range of 0 to 4, and those indexes are mapped to a series of double-precision values (4.0,
5.6, 8.0, 11.0, and 16.0).

The Spin Button Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Spin Button Control

The spin button control (class CSpinButtonCtrl) is an itsy-bitsy scroll bar that's most often used in
conjunction with an edit control. The edit control, located just ahead of the spin control in the dialog's
tabbing order, is known as the spin control's buddy. The idea is that the user holds down the left mouse
button on the spin control to raise or lower the value in the edit control. The spin speed accelerates as the
user continues to hold down the mouse button.

If your program uses an integer in the buddy, you can avoid C++ programming almost entirely. Just use
ClassWizard to attach an integer data member to the edit control, and set the spin control's range in the
OnInitDialog function. (You probably won't want the spin control's default range, which runs backward
from a minimum of 100 to a maximum of 0.) Don't forget to select Auto Buddy and Set Buddy Integer in
the spin control's Styles property page. You can call the SetRange and SetAccel member functions in your
OnInitDialog function to change the range and the acceleration profile.

If you want your edit control to display a noninteger, such as a time or a floating-point number, you must
map the spin control's WM_VSCROLL (or WM_HSCROLL) messages and write handler code to convert the
spin control's integer to the buddy's value.

The List Control

Use the list control (class CListCtrl) if you want a list that contains images as well as text. Figure 6-2 shows
a list control with a "list" view style and small icons. The elements are arranged in a grid, and the control
includes horizontal scrolling. When the user selects an item, the control sends a notification message,
which you map in your dialog class. That message handler can determine which item the user selected.
Items are identified by a zero-based integer index.

Both the list control and the tree control get their graphic images from a common control element called an
image list (class CImageList). Your program must assemble the image list from icons or bitmaps and then
pass an image list pointer to the list control. Your OnInitDialog function is a good place to create and
attach the image list and to assign text strings. The InsertItem member function serves this purpose.

List control programming is straightforward if you stick with strings and icons. If you implement drag and
drop or if you need custom owner-drawn graphics, you've got more work to do.

The Tree Control

You're already familiar with tree controls if you've used Microsoft Windows Explorer or Visual C++'s
Workspace view. The MFC CTreeCtrl class makes it easy to add this same functionality to your own
programs. Figure 6-2 illustrates a tree control that shows a modern American combined family. The user
can expand and collapse elements by clicking the + and - buttons or by double-clicking the elements. The
icon next to each item is programmed to change when the user selects the item with a single click.

The list control and the tree control have some things in common: they can both use the same image list,
and they share some of the same notification messages. Their methods of identifying items are different,
however. The tree control uses an HTREEITEM handle instead of an integer index. To insert an item, you
call the InsertItem member function, but first you must build up a TV_INSERTSTRUCT structure that
identifies (among other things) the string, the image list index, and the handle of the parent item (which is
null for top-level items).

As with list controls, infinite customization possibilities are available for the tree control. For example, you
can allow the user to edit items and to insert and delete items.

The WM_NOTIFY Message

The original Windows controls sent their notifications in WM_COMMAND messages. The standard 32-bit
wParam and lParam message parameters are not sufficient, however, for the information that a common
control needs to send to its parent. Microsoft solved this "bandwidth" problem by defining a new message,
WM_NOTIFY. With the WM_NOTIFY message, wParam is the control ID and lParam is a pointer to an
NMHDR structure, which is managed by the control. This C structure is defined by the following code:

typedef struct tagNMHDR {
 HWND hwndFrom; // handle to control sending the message
 UINT idFrom; // ID of control sending the message
 UINT code; // control-specific notification code
} NMHDR;
Many controls, however, send WM_NOTIFY messages with pointers to structures larger than NMHDR.
Those structures contain the three members above plus appended control-specific members. Many tree
control notifications, for example, pass a pointer to an NM_TREEVIEW structure that contains TV_ITEM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control notifications, for example, pass a pointer to an NM_TREEVIEW structure that contains TV_ITEM
structures, a drag point, and so forth. When ClassWizard maps a WM_NOTIFY message, it generates a
pointer to the appropriate structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX06B Example
I won't try to contrive a business-oriented example that uses all the custom controls. I'll just slap the
controls in a modal dialog and trust that you'll see what's going on. The steps are shown below. After step
3, the instructions are oriented to the individual controls rather than to the Visual C++ components you'll
be using.

1. Run AppWizard to generate the EX06B project. Choose New from Visual C++'s File menu, and
then select Microsoft AppWizard (exe) from the Projects page. Accept all the defaults but two:
select Single Document and deselect Printing And Print Preview. The options and the default class
names are shown here.

2. Create a new dialog resource with ID IDD_DIALOG1. Place the controls as shown back in
Figure 6-2.

You can select the controls from the control palette. The following table lists the control types and
their IDs.

Don't worry about the other properties now—you'll set those in the following steps. (Some controls
might look different than they do in Figure 6-2 until you set their properties.) Set the tab order as
shown next.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tab Sequence Control Type Child Window ID

1 Static IDC_STATIC

2 Progress IDC_PROGRESS1

3 Static IDC_STATIC

4 Trackbar (Slider) IDC_TRACKBAR1

5 Static IDC_STATIC_TRACK1

6 Static IDC_STATIC

7 Trackbar (Slider) IDC_TRACKBAR2

8 Static IDC_STATIC_TRACK2

9 Static IDC_STATIC

10 Edit IDC_BUDDY_SPIN1

11 Spin IDC_SPIN1

12 Static IDC_STATIC

13 Static IDC_STATIC

14 List control IDC_LISTVIEW1

15 Static IDC_STATIC_LISTVIEW1

16 Static IDC_STATIC

17 Tree control IDC_TREEVIEW1

18 Static IDC_STATIC_TREEVIEW1

19 Pushbutton IDOK

20 Pushbutton IDCANCEL

3. Use ClassWizard to create a new class, CEx06bDialog, derived from CDialog. ClassWizard
will automatically prompt you to create this class because it knows that the IDD_DIALOG1 resource
exists without an associated C++ class. Map the WM_INITDIALOG message, the WM_HSCROLL
message, and the WM_VSCROLL message.

4. Program the progress control. Because ClassWizard won't generate a data member for this
control, you must do it yourself. Add a public integer data member named m_nProgress in the
CEx06bDialog class header, and set it to 0 in the constructor. Also, add the following code in the
OnInitDialog member function:

CProgressCtrl* pProg =
 (CProgressCtrl*) GetDlgItem(IDC_PROGRESS1);
pProg->SetRange(0, 100);
pProg->SetPos(m_nProgress);

5. Program the "continuous" trackbar control. Add a public integer data member named
m_nTrackbar1 to the CEx06bDialog header, and set it to 0 in the constructor. Next add the
following code in the OnInitDialog member function to set the trackbar's range, to initialize its
position from the data member, and to set the neighboring static control to the tracker's current
value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CString strText1;
CSliderCtrl* pSlide1 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR1);
pSlide1->SetRange(0, 100);
pSlide1->SetPos(m_nTrackbar1);
strText1.Format("%d", pSlide1->GetPos());
SetDlgItemText(IDC_STATIC_TRACK1, strText1);
To keep the static control updated, you need to map the WM_HSCROLL message that the trackbar
sends to the dialog. Here is the code for the handler:

void CEx06bDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 CSliderCtrl* pSlide = (CSliderCtrl*) pScrollBar;
 CString strText;
 strText.Format("%d", pSlide->GetPos());
 SetDlgItemText(IDC_STATIC_TRACK1, strText);
}
Finally, you need to update the trackbar's m_nTrackbar1 data member when the user clicks OK.
Your natural instinct would be to put this code in the OnOK button handler. You would have a
problem, however, if a data exchange validation error occurred involving any other control in the
dialog. Your handler would set m_nTrackbar1 even though the user might choose to cancel the
dialog. To avoid this problem, add your code in the DoDataExchange function as shown below. If
you do your own validation and detect a problem, call the CDataExchange::Fail function, which
alerts the user with a message box.

if (pDX->m_bSaveAndValidate) {
 TRACE("updating trackbar data members\n");
 CSliderCtrl* pSlide1 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR1);
 m_nTrackbar1 = pSlide1->GetPos();
}

6. Program the "discrete" trackbar control. Add a public integer data member named
m_nTrackbar2 to the CEx06bDialog header, and set it to 0 in the constructor. This data member is
a zero-based index into the dValue, the array of numbers (4.0, 5.6, 8.0, 11.0, and 16.0) that the
trackbar can represent. Define dValue as a private static double array member variable in
ex06bDialog.h, and add to ex06bDialog.cpp the following line:

double CEx06bDialog::dValue[5] = {4.0, 5.6, 8.0, 11.0, 16.0};
Next add code in the OnInitDialog member function to set the trackbar's range and initial position.

CString strText2;
CSliderCtrl* pSlide2 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR2);
pSlide2->SetRange(0, 4);
pSlide2->SetPos(m_nTrackbar2);
strText2.Format("%3.1f", dValue[pSlide2->GetPos()]);
SetDlgItemText(IDC_STATIC_TRACK2, strText2);
If you had only one trackbar, the WM_HSCROLL handler in step 5 would work. But because you
have two trackbars that send WM_HSCROLL messages, the handler must differentiate. Here is the
new code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06bDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 CSliderCtrl* pSlide = (CSliderCtrl*) pScrollBar;
 CString strText;

 // Two trackbars are sending
 // HSCROLL messages (different processing)
 switch(pScrollBar->GetDlgCtrlID()) {
 case IDC_TRACKBAR1:
 strText.Format("%d", pSlide->GetPos());
 SetDlgItemText(IDC_STATIC_TRACK1, strText);
 break;
 case IDC_TRACKBAR2:
 strText.Format("%3.1f", dValue[pSlide->GetPos()]);
 SetDlgItemText(IDC_STATIC_TRACK2, strText);
 break;
 }
}
This trackbar needs tick marks, so you must check the control's Tick Marks and Auto Ticks
properties back in the dialog editor. With Auto Ticks set, the trackbar will place a tick at every
increment. The same data exchange considerations applied to the previous trackbar apply to this
trackbar. Add the following code in the dialog class DoDataExchange member function inside the
block for the if statement you added in the previous step:

CSliderCtrl* pSlide2 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR2);
m_nTrackbar2 = pSlide2->GetPos();
Use the dialog editor to set the Point property of both trackbars to Bottom/Right. Select Right for
the Align Text property of both the IDC_STATIC_TRACK1 and IDC_STATIC_TRACK2 static controls.

7. Program the spin button control. The spin control depends on its buddy edit control, located
immediately before it in the tab order. Use ClassWizard to add a double-precision data member
called m_dSpin for the IDC_BUDDY_SPIN1 edit control. We're using a double instead of an int
because the int would require almost no programming, and that would be too easy. We want the
edit control range to be 0.0 to 10.0, but the spin control itself needs an integer range. Add the
following code to OnInitDialog to set the spin control range to 0 to 100 and to set its initial value to
m_dSpin * 10.0:

CSpinButtonCtrl* pSpin =
 (CSpinButtonCtrl*) GetDlgItem(IDC_SPIN1);
pSpin->SetRange(0, 100);
pSpin->SetPos((int) (m_dSpin * 10.0));
To display the current value in the buddy edit control, you need to map the WM_VSCROLL message
that the spin control sends to the dialog. Here's the code:

void CEx06bDialog::OnVScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 if (nSBCode == SB_ENDSCROLL) {
 return; // Reject spurious messages
 }
 // Process scroll messages from IDC_SPIN1 only
 if (pScrollBar->GetDlgCtrlID() == IDC_SPIN1) {
 CString strValue;
 strValue.Format("%3.1f", (double) nPos / 10.0);
 ((CSpinButtonCtrl*) pScrollBar)->GetBuddy()
 ->SetWindowText(strValue);
 }
}
There's no need for you to add code in OnOK or in DoDataExchange because the dialog data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's no need for you to add code in OnOK or in DoDataExchange because the dialog data
exchange code processes the contents of the edit control. In the dialog editor, select the spin
control's Auto Buddy property and the buddy's Read-only property.

8. Set up an image list. Both the list control and the tree control need an image list, and the image
list needs icons.

First use the graphics editor to add icons to the project's RC file. On the companion CD-ROM, these
icons are circles with black outlines and different-colored interiors. Use fancier icons if you have
them. You can import an icon by choosing Resource from the Insert menu and then clicking the
Import button. For this example, the icon resource IDs are as follows.

Resource ID Icon File

IDI_BLACK Icon1

IDI_BLUE Icon3

IDI_CYAN Icon5

IDI_GREEN Icon7

IDI_PURPLE Icon6

IDI_RED Icon2

IDI_WHITE Icon0

IDI_YELLOW Icon4

Next add a private CImageList data member called m_imageList in the CEx06bDialog class header,
and then add the following code to OnInitDialog:

HICON hIcon[8];
int n;
m_imageList.Create(16, 16, 0, 8, 8); // 32, 32 for large icons
hIcon[0] = AfxGetApp()->LoadIcon(IDI_WHITE);
hIcon[1] = AfxGetApp()->LoadIcon(IDI_BLACK);
hIcon[2] = AfxGetApp()->LoadIcon(IDI_RED);
hIcon[3] = AfxGetApp()->LoadIcon(IDI_BLUE);
hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);
hIcon[5] = AfxGetApp()->LoadIcon(IDI_CYAN);
hIcon[6] = AfxGetApp()->LoadIcon(IDI_PURPLE);
hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);
for (n = 0; n < 8; n++) {
 m_imageList.Add(hIcon[n]);
}

About Icons

You probably know that a bitmap is an array of bits that represent pixels on the
display. (You'll learn more about bitmaps in Chapter 11.) In Windows, an icon is
a "bundle" of bitmaps. First of all, an icon has different bitmaps for different
sizes. Typically, small icons are 16-by-16 pixels and large icons are 32-by-32
pixels. Within each size are two separate bitmaps: one 4-bit-per-pixel bitmap for
the color image and one monochrome (1-bit-per-pixel) bitmap for the "mask." If
a mask bit is 0, the corresponding image pixel represents an opaque color. If the
mask bit is 1, an image color of black (0) means that the pixel is transparent and
an image color of white (0xF) means that the background color is inverted at the
pixel location. Windows 95 and Windows NT seem to process inverted colors a
little differently than Windows 3.x does—the inverted pixels show up transparent
against the desktop, black against a Windows Explorer window background, and
white against list and tree control backgrounds. Don't ask me why.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

white against list and tree control backgrounds. Don't ask me why.

Small icons were new with Windows 95. They're used in the task bar, in
Windows Explorer, and in your list and tree controls, if you want them there. If
an icon doesn't have a 16-by-16-pixel bitmap, Windows manufactures a small
icon out of the 32-by-32-pixel bitmap, but it won't be as neat as one you draw
yourself.

The graphics editor lets you create and edit icons. Look at the color palette
shown here.

The top square in the upper-left portion shows you the main color for brushes,
shape interiors, and so on, and the square under it shows the border color for
shape outlines. You select a main color by left-clicking on a color, and you select
a border color by right-clicking on a color. Now look at the top center portion of
the color palette. You click on the upper "monitor" to paint transparent pixels,
which are drawn in dark cyan. You click on the lower monitor to paint inverted
pixels, which are drawn in red.

9. Program the list control. In the dialog editor, set the list control's style attributes as shown in the
next illustration.

Make sure the Border style on the More Styles page is set. Next add the following code to
OnInitDialog:

static char* color[] = {"white", "black", "red",
 "blue", "yellow", "cyan",
 "purple", "green"};
CListCtrl* pList =
 (CListCtrl*) GetDlgItem(IDC_LISTVIEW1);
pList->SetImageList(&m_imageList, LVSIL_SMALL);
for (n = 0; n < 8; n++) {
 pList->InsertItem(n, color[n], n);
}
pList->SetBkColor(RGB(0, 255, 255)); // UGLY!
pList->SetTextBkColor(RGB(0, 255, 255));
As the last two lines illustrate, you don't use the WM_CTLCOLOR message with common controls;
you just call a function to set the background color. As you'll see when you run the program,
however, the icons' inverse-color pixels look shabby.

If you use ClassWizard to map the list control's LVN_ITEMCHANGED notification message, you'll be
able to track the user's selection of items. The code in the following handler displays the selected
item's text in a static control:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

item's text in a static control:

void CEx06bDialog::OnItemchangedListview1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 NM_LISTVIEW* pNMListView = (NM_LISTVIEW*)pNMHDR;
 CListCtrl* pList =
 (CListCtrl*) GetDlgItem(IDC_LISTVIEW1);
 int nSelected = pNMListView->iItem;
 if (nSelected >= 0) {
 CString strItem = pList->GetItemText(nSelected, 0);
 SetDlgItemText(IDC_STATIC_LISTVIEW1, strItem);
 }
 *pResult = 0;
}
The NM_LISTVIEW structure has a data member called iItem that contains the index of the selected
item.

10. Program the tree control. In the dialog editor, set the tree control's style attributes as shown
here.

Next, add the following lines to OnInitDialog:

CTreeCtrl* pTree = (CTreeCtrl*) GetDlgItem(IDC_TREEVIEW1);
pTree->SetImageList(&m_imageList, TVSIL_NORMAL);
// tree structure common values
TV_INSERTSTRUCT tvinsert;
tvinsert.hParent = NULL;
tvinsert.hInsertAfter = TVI_LAST;
tvinsert.item.mask = TVIF_IMAGE | TVIF_SELECTEDIMAGE |
 TVIF_TEXT;
tvinsert.item.hItem = NULL;
tvinsert.item.state = 0;
tvinsert.item.stateMask = 0;
tvinsert.item.cchTextMax = 6;
tvinsert.item.iSelectedImage = 1;
tvinsert.item.cChildren = 0;
tvinsert.item.lParam = 0;
// top level
tvinsert.item.pszText = "Homer";
tvinsert.item.iImage = 2;
HTREEITEM hDad = pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Marge";
HTREEITEM hMom = pTree->InsertItem(&tvinsert);
// second level
tvinsert.hParent = hDad;
tvinsert.item.pszText = "Bart";
tvinsert.item.iImage = 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tvinsert.item.iImage = 3;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Lisa";
pTree->InsertItem(&tvinsert);
// second level
tvinsert.hParent = hMom;
tvinsert.item.pszText = "Bart";
tvinsert.item.iImage = 4;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Lisa";
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Dilbert";
HTREEITEM hOther = pTree->InsertItem(&tvinsert);
// third level
tvinsert.hParent = hOther;
tvinsert.item.pszText = "Dogbert";
tvinsert.item.iImage = 7;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Ratbert";
pTree->InsertItem(&tvinsert);
As you can see, this code sets TV_INSERTSTRUCT text and image indexes and calls InsertItem to
add nodes to the tree.

Finally, use ClassWizard to map the TVN_SELCHANGED notification for the tree control. Here is the
handler code to display the selected text in a static control:

void CEx06bDialog::OnSelchangedTreeview1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)pNMHDR;
 CTreeCtrl* pTree = (CTreeCtrl*) GetDlgItem(IDC_TREEVIEW1);
 HTREEITEM hSelected = pNMTreeView->itemNew.hItem;
 if (hSelected != NULL) {
 char text[31];
 TV_ITEM item;
 item.mask = TVIF_HANDLE | TVIF_TEXT;
 item.hItem = hSelected;
 item.pszText = text;
 item.cchTextMax = 30;
 VERIFY(pTree->GetItem(&item));
 SetDlgItemText(IDC_STATIC_TREEVIEW1, text);
 }
 *pResult = 0;
}
The NM_TREEVIEW structure has a data member called itemNew that contains information about
the selected node; itemNew.hItem is the handle of that node. The GetItem function retrieves the
node's data, storing the text using a pointer supplied in the TV_ITEM structure. The mask variable
tells Windows that the hItem handle is valid going in and that text output is desired.

11. Add code to the virtual OnDraw function in file ex06bView.cpp. The following boldface code
replaces the previous code:

void CEx06bView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

12. Use ClassWizard to add the OnLButtonDown member function. Edit the AppWizard-
generated code as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx06bDialog dlg;
 dlg.m_nTrackbar1 = 20;
 dlg.m_nTrackbar2 = 2; // index for 8.0
 dlg.m_nProgress = 70; // write-only
 dlg.m_dSpin = 3.2;
 dlg.DoModal();
}
Add a statement to include ex06bDialog.h in file ex06bView.cpp.

13. Compile and run the program. Experiment with the controls to see how they work. We haven't
added code to make the progress indicator functional; we'll cover that in Chapter 12.

Other Windows Common Controls

You've seen most of the common controls that appear on the dialog editor control palette. We've skipped
the animation control because this book doesn't cover multimedia, and we've skipped the hot key control
because it isn't very interesting. The tab control is interesting, but you seldom use it inside another dialog.
Chapter 13 shows you how to construct a tabbed dialog, sometimes known as a property sheet. In Chapter
13, you'll also see an application that is built around the CRichEditView class, which incorporates the
Windows rich edit control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7
The Modeless Dialog and Windows Common Dialogs
In Chapter 6, you saw the ordinary modal dialog and most of the controls for Microsoft Windows. Now
you'll move on to the modeless dialog and to the common dialogs for Microsoft Windows 95 and Microsoft
Windows NT versions 4.0 and later. Modeless dialogs, as you'll remember, allow the user to work
elsewhere in the application while the dialog is active. The common dialog classes are the C++
programming interface to the group of Windows utility dialogs that include File Open, Page Setup, Color,
and so forth and that are supported by the dynamic link library COMDLG32.DLL.

In this chapter's first example, you'll build a simple modeless dialog that is controlled from a view. In the
second example, you'll derive from the COMDLG32 CFileDialog class a class that allows file deletion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modeless Dialogs
In the Microsoft Foundation Class (MFC) Library version 6.0, modal and modeless dialogs share the same
base class, CDialog, and they both use a dialog resource that you can build with the dialog editor. If you're
using a modeless dialog with a view, you'll need to know some specialized programming techniques.

Creating Modeless Dialogs

For modal dialogs, you've already learned that you construct a dialog object using a CDialog constructor
that takes a resource template ID as a parameter, and then you display the modal dialog window by calling
the DoModal member function. The window ceases to exist as soon as DoModal returns. Thus, you can
construct a modal dialog object on the stack, knowing that the dialog window has been destroyed by the
time the C++ dialog object goes out of scope.

Modeless dialogs are more complicated. You start by invoking the CDialog default constructor to construct
the dialog object, but then to create the dialog window you need to call the CDialog::Create member
function instead of DoModal. Create takes the resource ID as a parameter and returns immediately with
the dialog window still on the screen. You must worry about exactly when to construct the dialog object,
when to create the dialog window, when to destroy the dialog, and when to process user-entered data.

Here's a summary of the differences between creating a modal dialog and a modeless dialog.

 Modal Dialog Modeless Dialog

Constructor used Constructor with resource ID
param

Default constructor (no
params)

Function used to create
window

DoModal Create with resource ID
param

User-Defined Messages

Suppose you want the modeless dialog window to be destroyed when the user clicks the dialog's OK
button. This presents a problem. How does the view know that the user has clicked the OK button? The
dialog could call a view class member function directly, but that would "marry" the dialog to a particular
view class. A better solution is for the dialog to send the view a user-defined message as the result of a
call to the OK button message-handling function. When the view gets the message, it can destroy the
dialog window (but not the object). This sets the stage for the creation of a new dialog.

You have two options for sending Windows messages: the CWnd::SendMessage function or the
PostMessage function. The former causes an immediate call to the message-handling function, and the
latter posts a message in the Windows message queue. Because there's a slight delay with the
PostMessage option, it's reasonable to expect that the handler function has returned by the time the view
gets the message.

Dialog Ownership

Now suppose you've accepted the dialog default pop-up style, which means that the dialog isn't confined to
the view's client area. As far as Windows is concerned, the dialog's "owner" is the application's main frame
window (introduced in Chapter 13), not the view. You need to know the dialog's view to send the view a
message. Therefore, your dialog class must track its own view through a data member that the constructor
sets. The CDialog constructor's pParent parameter doesn't have any effect here, so don't bother using it.

A Modeless Dialog Example—EX07A

We could convert the Chapter 6 monster dialog to a modeless dialog, but starting from scratch with a
simpler dialog is easier. Example EX07A uses a dialog with one edit control, an OK button, and a Cancel
button. As in the Chapter 6 example, pressing the left mouse button while the mouse cursor is inside the
view window brings up the dialog, but now we have the option of destroying it in response to another
event—pressing the right mouse button when the mouse cursor is inside the view window. We'll allow only
one open dialog at a time, so we must be sure that a second left button press doesn't bring up a duplicate
dialog.

To summarize the upcoming steps, the EX07A view class has a single associated dialog object that is
constructed on the heap when the view is constructed. The dialog window is created and destroyed in
response to user actions, but the dialog object is not destroyed until the application terminates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

response to user actions, but the dialog object is not destroyed until the application terminates.

Here are the steps to create the EX07A example:

1. Run AppWizard to produce \vcpp32\ex07a\ex07a. Accept all the defaults but two: select
Single Document and deselect Printing And Print Preview. The options and the default class names
are shown here.

2. Use the dialog editor to create a dialog resource. Choose Resource from Visual C++'s Insert
menu, and then select Dialog. The dialog editor assigns the ID IDD_DIALOG1 to the new dialog.
Change the dialog caption to Modeless Dialog. Accept the default OK and Cancel buttons with IDs
IDOK and IDCANCEL, and then add a static text control and an edit control with the default ID
IDC_EDIT1. Change the static text control's caption to Edit 1. Here is the completed dialog.

Be sure to select the dialog's Visible property.

3. Use ClassWizard to create the CEx07aDialog class. Choose ClassWizard from Microsoft Visual
C++'s View menu. Fill in the New Class dialog as shown here, and then click the OK button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++'s View menu. Fill in the New Class dialog as shown here, and then click the OK button.

Add the message-handling functions shown next. To add a message-handling function, click on an
object ID, click on a message, and then click the Add Function button. The Add Member Function
dialog box appears. Edit the function name if necessary, and click the OK button.

Object ID Message Member Function

IDCANCEL BN_CLICKED OnCancel

IDOK BN_CLICKED OnOK

4. Add a variable to the CEx07aDialog class. While in ClassWizard, click on the Member Variables
tab, choose the IDC_EDIT1 control, and then click the Add Variable button to add the CString
variable m_strEdit1.

5. Edit ex07aDialog.h to add a view pointer and function prototypes. Type in the following
boldface code in the CEx07aDialog class declaration:

private:
 CView* m_pView;
Also, add the function prototypes as follows:

public:
 CEx07aDialog(CView* pView);
 BOOL Create();

Using the CView class rather than the CEx07aView class allows the dialog class to be
used with any view class.

6. Edit ex07aDialog.h to define the WM_GOODBYE message ID. Add the following line of code:

#define WM_GOODBYE WM_USER + 5
The Windows constant WM_USER is the first message ID available for user-defined messages. The
application framework uses a few of these messages, so we'll skip over the first five messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application framework uses a few of these messages, so we'll skip over the first five messages.

Visual C++ maintains a list of symbol definitions in your project's resource.h file, but
the resource editor does not understand constants based on other constants. Don't
manually add WM_GOODBYE to resource.h because Visual C++ might delete it.

7. Add the modeless constructor in the file ex07aDialog.cpp. You could modify the existing
CEx07aDialog constructor, but if you add a separate one, the dialog class can serve for both modal
and modeless dialogs. Add the lines shown below.

CEx07aDialog::CEx07aDialog(CView* pView) // modeless constructor
{
 m_pView = pView;
}
You should also add the following line to the AppWizard-generated modal constructor:

m_pView = NULL;
The C++ compiler is clever enough to distinguish between the modeless constructor
CEx07aDialog(CView*) and the modal constructor CEx07aDialog(CWnd*). If the compiler sees an
argument of class CView or a derived CView class, it generates a call to the modeless constructor. If
it sees an argument of class CWnd or another derived CWnd class, it generates a call to the modal
constructor.

8. Add the Create function in ex07aDialog.cpp. This derived dialog class Create function calls the
base class function with the dialog resource ID as a parameter. Add the following lines:

BOOL CEx07aDialog::Create()
{
 return CDialog::Create(CEx07aDialog::IDD);
}

Create is not a virtual function. You could have chosen a different name if you had
wanted to.

9. Edit the OnOK and OnCancel functions in ex07aDialog.cpp. These virtual functions generated
by ClassWizard are called in response to dialog button clicks. Add the following boldface code:

void CEx07aDialog::OnCancel() // not really a message handler
{
 if (m_pView != NULL) {
 // modeless case -- do not call base class OnCancel
 m_pView->PostMessage(WM_GOODBYE, IDCANCEL);
 }
 else {
 CDialog::OnCancel(); // modal case
 }
}

void CEx07aDialog::OnOK() // not really a message handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx07aDialog::OnOK() // not really a message handler
{
 if (m_pView != NULL) {
 // modeless case -- do not call base class OnOK
 UpdateData(TRUE);
 m_pView->PostMessage(WM_GOODBYE, IDOK);
 }
 else {
 CDialog::OnOK(); // modal case
 }
}
If the dialog is being used as a modeless dialog, it sends the user-defined message WM_GOODBYE
to the view. We'll worry about handling the message later.

For a modeless dialog, be sure you do not call the CDialog::OnOK or
CDialog::OnCancel function. This means you must override these virtual functions in
your derived class; otherwise, using the Esc key, the Enter key, or a button click would
result in a call to the base class functions, which call the Windows EndDialog function.
EndDialog is appropriate only for modal dialogs. In a modeless dialog, you must call
DestroyWindow instead, and if necessary, you must call UpdateData to transfer data
from the dialog controls to the class data members.

10. Edit the ex07aView.h header file. You need a data member to hold the dialog pointer:

private:
 CEx07aDialog* m_pDlg;
If you add the forward declaration

class CEx07aDialog;
at the beginning of ex07aView.h, you won't have to include ex07aDialog.h in every module that
includes ex07aView.h.

11. Modify the CEx07aView constructor and destructor in the file ex07aView.cpp. The
CEx07aView class has a data member m_pDlg that points to the view's CEx07aDialog object. The
view constructor constructs the dialog object on the heap, and the view destructor deletes it. Add
the following boldface code:

CEx07aView::CEx07aView()
{
 m_pDlg = new CEx07aDialog(this);
}

CEx07aView::~CEx07aView()
{
 delete m_pDlg; // destroys window if not already destroyed
}

12. Add code to the virtual OnDraw function in the ex07aView.cpp file. The CEx07aView OnDraw
function (whose skeleton was generated by AppWizard) should be coded as follows in order to
prompt the user to press the mouse button:

void CEx07aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

13. Use ClassWizard to add CEx07aView mouse message handlers. Add handlers for the
WM_LBUTTONDOWN and WM_RBUTTONDOWN messages. Now edit the code in file ex07aView.cpp
as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx07aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // creates the dialog if not created already
 if (m_pDlg->GetSafeHwnd() == 0) {
 m_pDlg->Create(); // displays the dialog window
 }
}

void CEx07aView::OnRButtonDown(UINT nFlags, CPoint point)
{
 m_pDlg->DestroyWindow();
 // no problem if window was already destroyed
}
For most window types except main frame windows, the DestroyWindow function does not destroy
the C++ object. We want this behavior because we'll take care of the dialog object's destruction in
the view destructor.

14. Add the dialog header include statement to file ex07aView.cpp. While you're in
ex07aView.cpp, add the following dialog header include statement after the view header include
statement:

#include "ex07aView.h"
#include "ex07aDialog.h"

15. Add your own message code for the WM_GOODBYE message. Because ClassWizard does not
support user-defined messages, you must write the code yourself. This task makes you appreciate
the work ClassWizard does for the other messages.

In ex07aView.cpp, add the following line after the BEGIN_MESSAGE_MAP statement but
outside the AFX_MSG_MAP brackets:

ON_MESSAGE(WM_GOODBYE, OnGoodbye)
Also in ex07aView.cpp, add the message handler function itself:

LRESULT CEx07aView::OnGoodbye(WPARAM wParam, LPARAM lParam)
{
 // message received in response to modeless dialog OK
 // and Cancel buttons
 TRACE("CEx07aView::OnGoodbye %x, %lx\n", wParam, lParam);
 TRACE("Dialog edit1 contents = %s\n",
 (const char*) m_pDlg->m_strEdit1);
 m_pDlg->DestroyWindow();
 return 0L;
}
In ex07aView.h, add the following function prototype before the DECLARE_MESSAGE_MAP()
statement but outside the AFX_ MSG brackets:

afx_msg LRESULT OnGoodbye(WPARAM wParam, LPARAM lParam);
With Win32, the wParam and lParam parameters are the usual means of passing message data. In
a mouse button down message, for example, the mouse x and y coordinates are packed into the
lParam value. With the MFC library, message data is passed in more meaningful parameters. The
mouse position is passed as a CPoint object. User-defined messages must use wParam and lParam,
so you can use these two variables however you want. In this example, we've put the button ID in
wParam.

16. Build and test the application. Build and run EX07A. Press the left mouse button, and then press
the right button. (Be sure the mouse cursor is outside the dialog window when you press the right
mouse button.) Press the left mouse button again and enter some data, and then click the dialog's
OK button. Does the view's TRACE statement correctly list the edit control's contents?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you use the EX07A view and dialog classes in an MDI application, each MDI child
window can have one modeless dialog. When the user closes an MDI child window, the
child's modeless dialog is destroyed because the view's destructor calls the dialog
destructor, which, in turn, destroys the dialog window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFormView Class—A Modeless Dialog Alternative
If you need an application based on a single modeless dialog, the CFormView class will save you a lot of
work. You'll have to wait until Chapter 16, however, because the CFormView class is most useful when
coupled with the CDocument class, and we haven't progressed that far in our exploration of the application
framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Common Dialogs
Windows provides a group of standard user interface dialogs, and these are supported by the MFC library
classes. You are probably familiar with all or most of these dialogs because so many Windows-based
applications, including Visual C++, already use them. All the common dialog classes are derived from a
common base class, CCommonDialog. A list of the COMDLG32 classes is shown in the following table.

Class Purpose

CColorDialog Allows the user to select or create a color

CFileDialog Allows the user to open or save a file

CFindReplaceDialog Allows the user to substitute one string for another

CPageSetupDialog Allows the user to input page measurement parameters

CFontDialog Allows the user to select a font from a list of available fonts

CPrintDialog Allows the user to set up the printer and print a document

Here's one characteristic that all common dialogs share: they gather information from the user, but they
don't do anything with it. The file dialog can help the user select a file to open, but it really just provides
your program with the pathname—your program must make the call that opens the file. Similarly, a font
dialog fills in a structure that describes a font, but it doesn't create the font.

Using the CFileDialog Class Directly

Using the CFileDialog class to open a file is easy. The following code opens a file that the user has selected
through the dialog:

CFileDialog dlg(TRUE, "bmp", "*.bmp");
if (dlg.DoModal() == IDOK) {
 CFile file;
 VERIFY(file.Open(dlg.GetPathName(), CFile::modeRead));
}
The first constructor parameter (TRUE) specifies that this object is a "File Open" dialog instead of a "File
Save" dialog. The default file extension is bmp, and *.bmp appears first in the filename edit box. The
CFileDialog::GetPathName function returns a CString object that contains the full pathname of the selected
file.

Deriving from the Common Dialog Classes

Most of the time, you can use the common dialog classes directly. If you derive your own classes, you can
add functionality without duplicating code. Each COMDLG32 dialog works a little differently, however. The
next example is specific to the file dialog, but it should give you some ideas for customizing the other
common dialogs.

In the early editions of this book, the EX07B example dynamically created controls
inside the standard file dialog. That technique doesn't work in Win32, but the nested
dialog method described here has the same effect.

Nested Dialogs

Win32 provides a way to "nest" one dialog inside another so that multiple dialogs appear as one seamless
whole. You must first create a dialog resource template with a "hole" in it—typically a group box control—
with the specific child window ID stc32 (=0x045f). Your program sets some parameters that tell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the specific child window ID stc32 (=0x045f). Your program sets some parameters that tell
COMDLG32 to use your template. In addition, your program must hook into the COMDLG32 message loop
so that it gets first crack at selected notifications. When you're done with all of this, you'll notice that you
have created a dialog window that is a child of the COMDLG32 dialog window, even though your template
wraps COMDLG32's template.

This sounds difficult, and it is unless you use MFC. With MFC, you build the dialog resource template as
described above, derive a class from one of the common dialog base classes, add the class-specific
connection code in OnInitDialog, and then happily use ClassWizard to map the messages that originate
from your template's new controls.

Windows NT 3.51 uses an earlier version of the common dialogs DLL that does not
support the new Windows namespace feature. The nested dialog technique illustrated
in the EX07B example won't work with the Windows NT 3.51 version of the file dialog.

A CFileDialog Example—EX07B

In this example, you will derive a class CEx07bDialog that adds a working Delete All Matching Files button
to the standard file dialog. It also changes the dialog's title and changes the Open button's caption to
Delete (to delete a single file). The example illustrates how you can use nested dialogs to add new controls
to standard common dialogs. The new file dialog is activated as in the previous examples—by pressing the
left mouse button when the mouse cursor is in the view window. Because you should be gaining skill with
Visual C++, the following steps won't be as detailed as those for the earlier examples. Figure 7-1 shows
what the dialog looks like.

Figure 7-1. The Delete File dialog in action.

Follow these steps to build the EX07B application:

1. Run AppWizard to produce \vcpp32\ex07b\ex07b. Accept all the defaults but two: select
Single Document and deselect Printing And Print Preview. The options and the default class names
are shown in the next graphic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the dialog editor to create a dialog resource. Make the dialog box about 3-by-5 inches,
and use the ID IDD_FILESPECIAL. Set the dialog's Style property to Child, its Border property to
None, and select its Clip Siblings and Visible properties. Create the template with a button with ID
IDC_DELETE and a group box with ID stc32=0x045f, as shown here.

Check your work by choosing Resource Symbols from the Visual C++ View menu. You should see a
symbol list like the one shown in the graphic below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Use ClassWizard to create the CSpecialFileDialog class. Fill in the New Class dialog, as shown
here, and then click the Change button.

Change the names to SpecFileDlg.h and SpecFileDlg.cpp. Unfortunately, we cannot use the Base
Class drop-down list to change the base class to CFileDialog, as that would decouple our class from
the IDD_FILESPECIAL template. We have to change the base class by hand.

4. Edit the file SpecFileDlg.h. Change the line

class CSpecialFileDialog : public CDialog
to

class CSpecialFileDialog : public CFileDialog
Add the following two public data members:

CString m_strFilename;
BOOL m_bDeleteAll;
Finally, edit the constructor declaration:

CSpecialFileDialog(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt = NULL,
 LPCTSTR lpszFileName = NULL,
 DWORD dwFlags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
 LPCTSTR lpszFilter = NULL,
 CWnd* pParentWnd = NULL
);

5. Replace CDialog with CFileDialog in SpecFileDlg.h. Choose Replace from Visual C++'s Edit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Replace CDialog with CFileDialog in SpecFileDlg.h. Choose Replace from Visual C++'s Edit
menu, and replace this name globally.

6. Edit the CSpecialFileDialog constructor in SpecFileDlg.cpp. The derived class destructor must
invoke the base class constructor and initialize the m_bDeleteAll data member. In addition, it must
set some members of the CFileDialog base class data member m_ofn, which is an instance of the
Win32 OPENFILENAME structure. The Flags and lpTemplateName members control the coupling to
your IDD_FILESPECIAL template, and the lpstrTitle member changes the main dialog box title. Edit
the constructor as follows:

CSpecialFileDialog::CSpecialFileDialog(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt, LPCTSTR lpszFileName, DWORD dwFlags,
 LPCTSTR lpszFilter, CWnd* pParentWnd)
 : CFileDialog(bOpenFileDialog, lpszDefExt, lpszFileName,
 dwFlags, lpszFilter, pParentWnd)
{
 //{{AFX_DATA_INIT(CSpecialFileDialog)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 m_ofn.Flags |= OFN_ENABLETEMPLATE;
 m_ofn.lpTemplateName = MAKEINTRESOURCE(IDD_FILESPECIAL);
 m_ofn.lpstrTitle = "Delete File";
 m_bDeleteAll = FALSE;
}

7. Map the WM_INITDIALOG message in the CSpecialDialog class. The OnInitDialog member
function needs to change the common dialog's Open button caption to Delete. The child window ID
is IDOK.

BOOL bRet = CFileDialog::OnInitDialog();
if (bRet == TRUE) {
 GetParent()->GetDlgItem(IDOK)->SetWindowText("Delete");
}
return bRet;

8. Map the new IDC_DELETE button (Delete All Matching Files) in the CSpecialDialog class.
The OnDelete member function sets the m_bDeleteAll flag and then forces the main dialog to exit
as if the Cancel button had been clicked. The client program (in this case, the view) gets the
IDCANCEL return from DoModal and reads the flag to see whether it should delete all files. Here is
the function:

 void CSpecialFileDialog::OnDelete()
{
 m_bDeleteAll = TRUE;
 // 0x480 is the child window ID of the File Name edit control
 // (as determined by SPYXX)
 GetParent()->GetDlgItem(0x480)->GetWindowText(m_strFilename);
 GetParent()->SendMessage(WM_COMMAND, IDCANCEL);
}

9. Add code to the virtual OnDraw function in file ex07bView.cpp. The CEx07bView OnDraw
function (whose skeleton was generated by AppWizard) should be coded as follows to prompt the
user to press the mouse button:

void CEx07bView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

10. Add the OnLButtonDown message handler to the CEx07bView class. Use ClassWizard to
create the message handler for WM_LBUTTON-DOWN, and then edit the code as follows:

void CEx07bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CSpecialFileDialog dlgFile(TRUE, NULL, "*.obj");
 CString strMessage;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CString strMessage;
 int nModal = dlgFile.DoModal();
 if ((nModal == IDCANCEL) && (dlgFile.m_bDeleteAll)) {
 strMessage.Format(
 "Are you sure you want to delete all %s files?",
 dlgFile.m_strFilename);
 if (AfxMessageBox(strMessage, MB_YESNO) == IDYES) {
 HANDLE h;
 WIN32_FIND_DATA fData;
 while((h = ::FindFirstFile(dlgFile.m_strFilename, &fData))
 != (HANDLE) 0xFFFFFFFF) { // no MFC equivalent
 if (::DeleteFile(fData.cFileName) == FALSE) {
 strMessage.Format("Unable to delete file %s\n",
 fData.cFileName);
 AfxMessageBox(strMessage);
 break;
 }
 }
 }
 }
 else if (nModal == IDOK) {
 CString strSingleFilename = dlgFile.GetPathName();
 strMessage.Format(
 "Are you sure you want to delete %s?", strSingleFilename);
 if (AfxMessageBox(strMessage, MB_YESNO) == IDYES) {
 CFile::Remove(strSingleFilename);
 }
 }
}
Remember that common dialogs just gather data. Since the view is the client of the dialog, the view
must call DoModal for the file dialog object and then figure out what to do with the information
returned. In this case, the view has the return value from DoModal (either IDOK or IDCANCEL) and
the value of the public m_bDeleteAll data member, and it can call various CFileDialog member
functions such as GetPathName. If DoModal returns IDCANCEL and the flag is TRUE, the function
makes the Win32 file system calls necessary to delete all the matching files. If DoModal returns
IDOK, the function can use the MFC CFile functions to delete an individual file.

Using the global AfxMessageBox function is a convenient way to pop up a simple dialog that
displays some text and then queries the user for a Yes/No answer. The Microsoft Foundation
Classes And Templates section in the online help describes all of the message box variations and
options.

Of course, you'll need to include the statement

#include "SpecFileDlg.h"
after the line

#include "ex07bView.h"
11. Build and test the application.Build and run EX07B. Pressing the left mouse button should bring

up the Delete File dialog, and you should be able to use it to navigate through the disk directory
and to delete files. Be careful not to delete your important source files!

Other Customization for CFileDialog

In the EX07B example, you added a pushbutton to the dialog. It's easy to add other controls too. Just put
them in the resource template, and if they are standard Windows controls such as edit controls or list
boxes, you can use ClassWizard to add data members and DDX/DDV code to your derived class. The client
program can set the data members before calling DoModal, and it can retrieve the updated values after
DoModal returns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even if you don't use nested dialogs, two windows are still associated with a CFileDialog
object. Suppose you have overridden OnInitDialog in a derived class and you want to
assign an icon to the file dialog. You must call CWnd::GetParent to get the top-level
window, just as you did in the EX07B example. Here's the code:

HICON hIcon = AfxGetApp()->LoadIcon(ID_MYICON);
GetParent()->SetIcon(hIcon, TRUE); // Set big icon
GetParent()->SetIcon(hIcon, FALSE); // Set small icon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8
Using ActiveX Controls
Microsoft Visual Basic (VB) was introduced in 1991 and has proven to be a wildly popular and successful
application development system for Microsoft Windows. Part of its success is attributable to its open-ended
nature. The 16-bit versions of VB (versions 1 through 3) supported Visual Basic controls (VBXs), ready-to-
run software components that VB developers could buy or write themselves. VBXs became the center of a
whole industry, and pretty soon there were hundreds of them. At Microsoft, the Microsoft Foundation Class
(MFC) team figured out a way for Microsoft Visual C++ programmers to use VBXs in their programs, too.

The VBX standard, which was highly dependent on the 16-bit segment architecture, did not make it to the
32-bit world. Now ActiveX Controls (formerly known as OLE controls, or OCXs) are the industrial-strength
replacement for VBXs based on Microsoft COM technology. ActiveX controls can be used by application
developers in both VB and Visual C++ 6.0. While VBXs were written mostly in plain C, ActiveX controls can
be written in C++ with the help of the MFC library or with the help of the ActiveX Template Library (ATL).

This chapter is not about writing ActiveX controls; it's about using them in a Visual C++ application. The
premise here is that you can learn to use ActiveX controls without knowing much about the Component
Object Model (COM) on which they're based. After all, Microsoft doesn't require that VB programmers be
COM experts. To effectively write ActiveX controls, however, you need to know a bit more, starting with
the fundamentals of COM. Consider picking up a copy of Adam Denning's ActiveX Controls Inside Out
(Microsoft Press, 1997) if you're serious about creating ActiveX controls. Of course, knowing more ActiveX
Control theory won't hurt when you're using the controls in your programs. Chapter 24, Chapter 25, and
Chapter 30 of this book are a good place to start.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls vs. Ordinary Windows Controls
An ActiveX control is a software module that plugs into your C++ program the same way a Windows
control does. At least that's the way it seems at first. It's worthwhile here to analyze the similarities and
differences between ActiveX controls and the controls you already know.

Ordinary Controls—A Frame of Reference

In Chapter 6, you used ordinary Windows controls such as the edit control and the list box, and you saw
the Windows common controls that work in much the same way. These controls are all child windows that
you use most often in dialogs, and they are represented by MFC classes such as CEdit and CTreeCtrl. The
client program is always responsible for the creation of the control's child window.

Ordinary controls send notification command messages (standard Windows messages), such as
BN_CLICKED, to the dialog. If you want to perform an action on the control, you call a C++ control class
member function, which sends a Windows message to the control. The controls are all windows in their
own right. All the MFC control classes are derived from CWnd, so if you want to get the text from an edit
control, you call CWnd::GetWindowText. But even that function works by sending a message to the
control.

Windows controls are an integral part of Windows, even though the Windows common controls are in a
separate DLL. Another species of ordinary control, the so-called custom control, is a programmer-created
control that acts as an ordinary control in that it sends WM_COMMAND notifications to its parent window
and receives user-defined messages. You'll see one of these in Chapter 22.

How ActiveX Controls Are Similar to Ordinary Controls

You can consider an ActiveX control to be a child window, just as an ordinary control is. If you want to
include an ActiveX control in a dialog, you use the dialog editor to place it there, and the identifier for the
control turns up in the resource template. If you're creating an ActiveX control on the fly, you call a Create
member function for a class that represents the control, usually in the WM_CREATE handler for the parent
window. When you want to manipulate an ActiveX control, you call a C++ member function, just as you do
for a Windows control. The window that contains a control is called a container.

How ActiveX Controls Are Different from Ordinary Controls—Properties and
Methods

The most prominent ActiveX Controls features are properties and methods. Those C++ member functions
that you call to manipulate a control instance all revolve around properties and methods. Properties have
symbolic names that are matched to integer indexes. For each property, the control designer assigns a
property name, such as BackColor or GridCellEffect, and a property type, such as string, integer, or
double. There's even a picture type for bitmaps and icons. The client program can set an individual ActiveX
control property by specifying the property's integer index and its value. The client can get a property by
specifying the index and accepting the appropriate return value. In certain cases, ClassWizard lets you
define data members in your client window class that are associated with the properties of the controls the
client class contains. The generated Dialog Data Exchange (DDX) code exchanges data between the control
properties and the client class data members.

ActiveX Controls methods are like functions. A method has a symbolic name, a set of parameters, and a
return value. You call a method by calling a C++ member function of the class that represents the control.
A control designer can define any needed methods, such as PreviousYear, LowerControlRods, and so forth.

An ActiveX control doesn't send WM_ notification messages to its container the way ordinary controls do;
instead, it "fires events." An event has a symbolic name and can have an arbitrary sequence of parameters
—it's really a container function that the control calls. Like ordinary control notification messages, events
don't return a value to the ActiveX control. Examples of events are Click, KeyDown, and NewMonth. Events
are mapped in your client class just as control notification messages are.

In the MFC world, ActiveX controls act just like child windows, but there's a significant layer of code
between the container window and the control window. In fact, the control might not even have a window.
When you call Create, the control's window isn't created directly; instead, the control code is loaded and
given the command for "in-place activation." The ActiveX control then creates its own window, which MFC
lets you access through a CWnd pointer. It's not a good idea for the client to use the control's hWnd
directly, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directly, however.

A DLL is used to store one or more ActiveX controls, but the DLL often has an OCX filename extension
instead of a DLL extension. Your container program loads the DLLs when it needs them, using
sophisticated COM techniques that rely on the Windows Registry. For the time being, simply accept the fact
that once you specify an ActiveX control at design time, it will be loaded for you at runtime. Obviously,
when you ship a program that requires special ActiveX controls, you'll have to include the OCX files and an
appropriate setup program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing ActiveX Controls
Let's assume you've found a nifty ActiveX control that you want to use in your project. Your first step is to
copy the control's DLL to your hard disk. You could put it anywhere, but it's easier to track your ActiveX
controls if you put them in one place, such as in the system directory (typically \Windows\System for
Microsoft Windows 95 or \Winnt\System32 for Microsoft Windows NT). Copy associated files such as help
(HLP) or license (LIC) files to the same directory.

Your next step is to register the control in the Windows Registry. Actually, the ActiveX control registers
itself when a client program calls a special exported function. The Windows utility Regsvr32 is a client that
accepts the control name on the command line. Regsvr32 is suitable for installation scripts, but another
program, RegComp, in the project REGCOMP on the companion CD-ROM for this book, lets you find your
control by browsing the disk. Some controls have licensing requirements, which might involve extra entries
to the Registry. (See Chapter 15, Chapter 17, Chapter 24, and Chapter 25 for information about how the
Windows Registry works.) Licensed controls usually come with setup programs that take care of those
details.

After you register your ActiveX control, you must install it in each project that uses it. That doesn't mean
that the OCX file gets copied. It means that ClassWizard generates a copy of a C++ class that's specific to
the control, and it means that the control shows up in the dialog editor control palette for that project.

To install an ActiveX control in a project, choose Add To Project from the Project menu and then choose
Components And Controls. Select Registered ActiveX Controls, as shown in the following illustration.

This gets you the list of all the ActiveX controls currently registered on your system. A typical list is shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Calendar Control
The MSCal.ocx control is a popular Microsoft ActiveX Calendar control that's probably already installed and
registered on your computer. If it isn't there, don't worry. It's on the CD-ROM that comes with this book.

Figure 8-1 shows the Calendar control inside a modal dialog.

Figure 8-1. The Calendar control in use.

The Calendar control comes with a help file that lists the control's properties, methods, and events shown
here.

Properties Methods Events

BackColor AboutBox AfterUpdate

Day NextDay BeforeUpdate

DayFont NextMonth Click

DayFontColor NextWeek DblClick

DayLength NextYear KeyDown

FirstDay PreviousDay KeyPress

GridCellEffect PreviousMonth KeyUp

GridFont PreviousWeek NewMonth

GridFontColor PreviousYear NewYear

GridLinesColor Refresh

Month Today

MonthLength

ShowDateSelectors

ShowDays

ShowHorizontalGridlines

ShowTitle

ShowVerticalGridlines

TitleFont

TitleFontColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Value

ValueIsNull

Year

You'll be using the BackColor, Day, Month, Year, and Value properties in the EX08A example later in this
chapter. BackColor is an unsigned long, but it is used as an OLE_COLOR, which is almost the same as a
COLORREF. Day, Month, and Year are short integers. Value's type is the special type VARIANT, which is
described in Chapter 25. It holds the entire date as a 64-bit value.

Each of the properties, methods, and events listed above has a corresponding integer identifier.
Information about the names, types, parameter sequences, and integer IDs is stored inside the control and
is accessible to ClassWizard at container design time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Control Container Programming
MFC and ClassWizard support ActiveX controls both in dialogs and as "child windows." To use ActiveX
controls, you must understand how a control grants access to properties, and you must understand the
interactions between your DDX code and those property values.

Property Access

The ActiveX control developer designates certain properties for access at design time. Those properties are
specified in the property pages that the control displays in the dialog editor when you right-click on a
control and choose Properties. The Calendar control's main property page looks like the one shown next.

When you click on the All tab, you will see a list of all the design- time-accessible properties, which might
include a few properties not found on the Control tab. The Calendar control's All page looks like this.

All the control's properties, including the design-time properties, are accessible at runtime. Some
properties, however, might be designated as read-only.

ClassWizard's C++ Wrapper Classes for ActiveX Controls

When you insert an ActiveX control into a project, ClassWizard generates a C++ wrapper class, derived
from CWnd, that is tailored to your control's methods and properties. The class has member functions for
all properties and methods, and it has constructors that you can use to dynamically create an instance of
the control. (ClassWizard also generates wrapper classes for objects used by the control.) Following are a
few typical member functions from the file Calendar.cpp that ClassWizard generates for the Calendar
control:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsigned long CCalendar::GetBackColor()
{
 unsigned long result;
 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYGET,
 VT_I4, (void*)&result, NULL);
 return result;
}

void CCalendar::SetBackColor(unsigned long newValue)
{
 static BYTE parms[] =
 VTS_I4;
 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYPUT,
 VT_EMPTY, NULL, parms, newValue);
}

short CCalendar::GetDay()
{
 short result;
 InvokeHelper(0x11, DISPATCH_PROPERTYGET, VT_I2,
 (void*)&result, NULL);
 return result;
}

void CCalendar::SetDay(short nNewValue)
{
 static BYTE parms[] =
 VTS_I2;
 InvokeHelper(0x11, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, nNewValue);
}

COleFont CCalendar::GetDayFont()
{
 LPDISPATCH pDispatch;
 InvokeHelper(0x1, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&pDispatch, NULL);
 return COleFont(pDispatch);
}

void CCalendar::SetDayFont(LPDISPATCH newValue)
{
 static BYTE parms[] =
 VTS_DISPATCH;
 InvokeHelper(0x1, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, newValue);
}

VARIANT CCalendar::GetValue()
{
 VARIANT result;
 InvokeHelper(0xc, DISPATCH_PROPERTYGET, VT_VARIANT,
 (void*)&result, NULL);
 return result;
}

void CCalendar::SetValue(const VARIANT& newValue)
{
 static BYTE parms[] =
 VTS_VARIANT;
 InvokeHelper(0xc, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, &newValue);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULL, parms, &newValue);
}

void CCalendar::NextDay()
{
 InvokeHelper(0x16, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CCalendar::NextMonth()
{
 InvokeHelper(0x17, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}
You don't have to concern yourself too much with the code inside these functions, but you can match up
the first parameter of each InvokeHelper function with the dispatch ID for the corresponding property or
method in the Calendar control property list. As you can see, properties always have separate Set and Get
functions. To call a method, you simply call the corresponding function. For example, to call the NextDay
method from a dialog class function, you write code such as this:

m_calendar.NextDay();
In this case, m_calendar is an object of class CCalendar, the wrapper class for the Calendar control.

AppWizard Support for ActiveX Controls

When the AppWizard ActiveX Controls option is checked (the default), AppWizard inserts the following line
in your application class InitInstance member function:

AfxEnableControlContainer();
It also inserts the following line in the project's StdAfx.h file:

#include <afxdisp.h>
If you decide to add ActiveX controls to an existing project that doesn't include the two lines above, you
can simply add the lines.

ClassWizard and the Container Dialog

Once you've used the dialog editor to generate a dialog template, you already know that you can use
ClassWizard to generate a C++ class for the dialog window. If your template contains one or more ActiveX
controls, you can use ClassWizard to add data members and event handler functions.

Dialog Class Data Members vs. Wrapper Class Usage

What kind of data members can you add to the dialog for an ActiveX control? If you want to set a control
property before you call DoModal for the dialog, you can add a dialog data member for that property. If
you want to change properties inside the dialog member functions, you must take another approach: you
add a data member that is an object of the wrapper class for the ActiveX control.

Now is a good time to review the MFC DDX logic. Look back at the Cincinnati dialog in Chapter 6. The
CDialog::OnInitDialog function calls CWnd::UpdateData(FALSE) to read the dialog class data members,
and the CDialog::OnOK function calls UpdateData(TRUE) to write the members. Suppose you added a data
member for each ActiveX control property and you needed to get the Value property value in a button
handler. If you called UpdateData(FALSE) in the button handler, it would read all the property values from
all the dialog's controls—clearly a waste of time. It's more effective to avoid using a data member and to
call the wrapper class Get function instead. To call that function, you must first tell ClassWizard to add a
wrapper class object data member.

Suppose you have a Calendar wrapper class CCalendar and you have an m_calendar data member in your
dialog class. If you want to get the Value property, you do it like this:

COleVariant var = m_calendar.GetValue();

The VARIANT type and COleVariant class are described in Chapter 25.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now consider another case: you want to set the day to the 5th of the month before the control is
displayed. To do this by hand, add a dialog class data member m_sCalDay that corresponds to the
control's short integer Day property. Then add the following line to the DoDataExchange function:

DDX_OCShort(pDX, ID_CALENDAR1, 0x11, m_sCalDay);
The third parameter is the Day property's integer index (its DispID), which you can find in the GetDay and
SetDay functions generated by ClassWizard for the control. Here's how you construct and display the
dialog:

CMyDialog dlg;
dlg.m_sCalDay = 5;
dlg.DoModal();
The DDX code takes care of setting the property value from the data member before the control is
displayed. No other programming is needed. As you would expect, the DDX code sets the data member
from the property value when the user clicks the OK button.

Even when ClassWizard correctly detects a control's properties, it can't always generate
data members for all of them. In particular, no DDX functions exist for VARIANT
properties like the Calendar's Value property. You'll have to use the wrapper class for
these properties.

Mapping ActiveX Control Events

ClassWizard lets you map ActiveX control events the same way you map Windows messages and command
messages from controls. If a dialog class contains one or more ActiveX controls, ClassWizard adds and
maintains an event sink map that connects mapped events to their handler functions. It works something
like a message map. You can see the code in Figure 8-2.

ActiveX controls have the annoying habit of firing events before your program is ready
for them. If your event handler uses windows or pointers to C++ objects, it should
verify the validity of those entities prior to using them.

Locking ActiveX Controls in Memory

Normally, an ActiveX control remains mapped in your process as long as its parent dialog is active. That
means it must be reloaded each time the user opens a modal dialog. The reloads are usually quicker than
the initial load because of disk caching, but you can lock the control into memory for better performance.
To do so, add the following line in the overridden OnInitDialog function after the base class call:

AfxOleLockControl(m_calendar.GetClsid());
The ActiveX control remains mapped until your program exits or until you call the AfxOleUnlockControl
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX08A Example—An ActiveX Control Dialog Container
Now it's time to build an application that uses a Calendar control in a dialog. Here are the steps to create
the EX08A example:

1. Verify that the Calendar control is registered. If the control does not appear in the Visual C++
Gallery's Registered ActiveX Controls page, copy the files MSCal.ocx, MSCal.hlp, and MSCal.cnt to
your system directory and register the control by running the REGCOMP program.

2. Run AppWizard to produce \vcpp32\ex08a\ex08a. Accept all of the default settings but two:
select Single Document and deselect Printing And Print Preview. In the AppWizard Step 3 dialog,
make sure the ActiveX Controls option is selected, as shown below.

3. Install the Calendar control in the EX08A project. Choose Add To Project from Visual C++'s
Project menu, and then choose Components And Controls. Choose Registered ActiveX Controls, and
then choose Calendar Control 8.0. ClassWizard generates two classes in the EX08A directory, as
shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Edit the Calendar control class to handle help messages. Add Calendar.cpp to the following
message map code:

BEGIN_MESSAGE_MAP(CCalendar, CWnd)
 ON_WM_HELPINFO()
END_MESSAGE_MAP()
In the same file, add the OnHelpInfo function:

BOOL CCalendar::OnHelpInfo(HELPINFO* pHelpInfo)
{
 // Edit the following string for your system
 ::WinHelp(GetSafeHwnd(), "c:\\winnt\\system32\\mscal.hlp",
 HELP_FINDER, 0);
 return FALSE;
}
In Calendar.h, add the function prototype and declare the message map:

protected:
 afx_msg BOOL OnHelpInfo(HELPINFO* pHelpInfo);
 DECLARE_MESSAGE_MAP()
The OnHelpInfo function is called if the user presses the F1 key when the Calendar control has the
input focus. We have to add the message map code by hand because ClassWizard doesn't modify
generated ActiveX classes.

The ON_WM_HELPINFO macro maps the WM_HELP message, which is new to
Microsoft Windows 95 and Microsoft Windows NT 4.0. You can use
ON_WM_HELPINFO in any view or dialog class and then code the handler to
activate any help system. Chapter 21 describes the MFC context-sensitive help
system, some of which predates the WM_HELP message.

5. Use the dialog editor to create a new dialog resource. Choose Resource from Visual C++'s
Insert menu, and then choose Dialog. The dialog editor assigns the ID IDD_DIALOG1 to the new
dialog. Next change the ID to IDD_ACTIVEXDIALOG, change the dialog caption to ActiveX Dialog,
and set the dialog's Context Help property (on the More Styles page). Accept the default OK and
Cancel buttons with the IDs IDOK and IDCANCEL, and then add the other controls as shown in
Figure 8-1. Make the Select Date button the default button. Drag the Calendar control from the
control palette. Then set an appropriate tab order. Assign control IDs as shown in the following
table.

Control ID

Calendar control IDC_CALENDAR1

Select Date button IDC_SELECTDATE

Edit control IDC_DAY

Edit control IDC_MONTH

Edit control IDC_YEAR

Next Week button IDC_NEXTWEEK

6. Use ClassWizard to create the CActiveXDialog class. If you run ClassWizard directly from the
dialog editor window, it will know that you want to create a CDialog-derived class based on the
IDD_ACTIVEXDIALOG template. Simply accept the default options, and name the class
CActiveXDialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CActiveXDialog.

Click on the ClassWizard Message Maps tab, and then add the message handler functions shown in
the table below. To add a message handler function, click on an object ID, click on a message, and
click the Add Function button. If the Add Member Function dialog box appears, type the function
name and click the OK button.

Object ID Message Member Function

CActiveXDialog WM_INITDIALOG OnInitDialog (virtual function)

IDC_CALENDAR1 NewMonth (event) OnNewMonthCalendar1

IDC_SELECTDATE BN_CLICKED OnSelectDate

IDC_NEXTWEEK BN_CLICKED OnNextWeek

IDOK BN_CLICKED OnOK (virtual function)

7. Use ClassWizard to add data members to the CActiveXDialog class. Click on the Member
Variables tab, and then add the data members as shown in the illustration below.

You might think that the ClassWizard ActiveX Events tab is for mapping ActiveX
control events in a container. That's not true: it's for ActiveX control developers
who are defining events for a control.

8. Edit the CActiveXDialog class. Add the m_varValue and m_BackColor data members, and then
edit the code for the five handler functions OnInitDialog, OnNewMonthCalendar1, OnSelectDate,
OnNextWeek, and OnOK. Figure 8-2 shows all the code for the dialog class, with new code in
boldface.

ACTIVEXDIALOG.H

//{{AFX_INCLUDES()
#include "calendar.h"
//}}AFX_INCLUDES
#if !defined(AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_)
#define AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

// ActiveXDialog.h : header file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ActiveXDialog.h : header file
//

//
// CActiveXDialog dialog
class CActiveXDialog : public CDialog

{
// Construction
public:
 CActiveXDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CActiveXDialog)
 enum { IDD = IDD_ACTIVEXDIALOG };
 CCalendar m_calendar;
 short m_sDay;
 short m_sMonth;
 short m_sYear;
 //}}AFX_DATA
 COleVariant m_varValue;
 unsigned long m_BackColor;
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CActiveXDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(CActiveXDialog)
 virtual BOOL OnInitDialog();
 afx_msg void OnNewMonthCalendar1();
 afx_msg void OnSelectDate();
 afx_msg void OnNextWeek();
 virtual void OnOK();
 DECLARE_EVENTSINK_MAP()
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional
// declarations immediately before the previous line.

#endif // !defined(AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_)
ACTIVEXDIALOG.CPP

// ActiveXDialog.cpp : implementation file
//

#include "stdafx.h"
#include "ex08a.h"
#include "ActiveXDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static char THIS_FILE[] = __FILE__;
#endif

//
// CActiveXDialog dialog

CActiveXDialog::CActiveXDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CActiveXDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CActiveXDialog)
 m_sDay = 0;
 m_sMonth = 0;
 m_sYear = 0;
 //}}AFX_DATA_INIT
 m_BackColor = 0x8000000F;
}

void CActiveXDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CActiveXDialog)
 DDX_Control(pDX, IDC_CALENDAR1, m_calendar);
 DDX_Text(pDX, IDC_DAY, m_sDay);
 DDX_Text(pDX, IDC_MONTH, m_sMonth);
 DDX_Text(pDX, IDC_YEAR, m_sYear);
 //}}AFX_DATA_MAP
 DDX_OCColor(pDX, IDC_CALENDAR1, DISPID_BACKCOLOR, m_BackColor);
}

BEGIN_MESSAGE_MAP(CActiveXDialog, CDialog)
 //{{AFX_MSG_MAP(CActiveXDialog)
 ON_BN_CLICKED(IDC_SELECTDATE, OnSelectDate)
 ON_BN_CLICKED(IDC_NEXTWEEK, OnNextWeek)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CActiveXDialog message handlers

BEGIN_EVENTSINK_MAP(CActiveXDialog, CDialog)
 //{{AFX_EVENTSINK_MAP(CActiveXDialog)
 ON_EVENT(CActiveXDialog, IDC_CALENDAR1, 3 /* NewMonth */, OnNewMonthCalendar1, VTS_NONE)
 //}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

BOOL CActiveXDialog::OnInitDialog()
{
 CDialog::OnInitDialog();
 m_calendar.SetValue(m_varValue); // no DDX for VARIANTs
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE

}
void CActiveXDialog::OnNewMonthCalendar1()
{
 AfxMessageBox("EVENT: CActiveXDialog::OnNewMonthCalendar1");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxMessageBox("EVENT: CActiveXDialog::OnNewMonthCalendar1");
}

void CActiveXDialog::OnSelectDate()
{
 CDataExchange dx(this, TRUE);
 DDX_Text(&dx, IDC_DAY, m_sDay);
 DDX_Text(&dx, IDC_MONTH, m_sMonth);
 DDX_Text(&dx, IDC_YEAR, m_sYear);
 m_calendar.SetDay(m_sDay);
 m_calendar.SetMonth(m_sMonth);
 m_calendar.SetYear(m_sYear);
}

void CActiveXDialog::OnNextWeek()
{
 m_calendar.NextWeek();
}

void CActiveXDialog::OnOK()
{
 CDialog::OnOK();
 m_varValue = m_calendar.GetValue(); // no DDX for VARIANTs
}

Figure 8-2. Code for the CActiveXDialog class.

The OnSelectDate function is called when the user clicks the Select Date button. The function gets
the day, month, and year values from the three edit controls and transfers them to the control's
properties. ClassWizard can't add DDX code for the BackColor property, so you must add it by hand.
In addition, there's no DDX code for VARIANT types, so you must add code to the OnInitDialog and
OnOK functions to set and retrieve the date with the control's Value property.

9. Connect the dialog to the view. Use ClassWizard to map the WM_LBUTTONDOWN message, and
then edit the handler function as follows:

void CEx08aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CActiveXDialog dlg;
 dlg.m_BackColor = RGB(255, 251, 240); // light yellow
 COleDateTime today = COleDateTime::GetCurrentTime();
 dlg.m_varValue = COleDateTime(today.GetYear(), today.GetMonth(),
 today.GetDay(), 0, 0, 0);
 if (dlg.DoModal() == IDOK) {
 COleDateTime date(dlg.m_varValue);
 AfxMessageBox(date.Format("%B %d, %Y"));
 }
}
The code sets the background color to light yellow and the date to today's date, displays the modal
dialog, and reports the date returned by the Calendar control. You'll need to include ActiveXDialog.h
in ex08aView.cpp.

10. Edit the virtual OnDraw function in the file ex08aView.cpp. To prompt the user to press the
left mouse button, replace the code in the view class OnDraw function with this single line:

pDC->TextOut(0, 0, "Press the left mouse button here.");
11. Build and test the EX08A application. Open the dialog, enter a date in the three edit controls,

and then click the Select Date button. Click the Next Week button. Try moving the selected date
directly to a new month, and observe the message box that is triggered by the NewMonth event.
Watch for the final date in another message box when you click OK. Press the F1 key for help on
the Calendar control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Win32 Programmers

If you use a text editor to look inside the ex08a.rc file, you might be quite mystified.
Here's the entry for the Calendar control in the ActiveX Dialog template:

CONTROL "",IDC_CALENDAR1,
 "{8E27C92B-1264-101C-8A2F-040224009C02}",
 WS_TABSTOP,7,7,217,113
There's a 32-digit number sequence where the window class name should be. What's
going on? Actually, the resource template isn't the one that Windows sees. The
CDialog::DoModal function "preprocesses" the resource template before passing it on
to the dialog box procedure within Windows. It strips out all the ActiveX controls and
creates the dialog window without them. Then it loads the controls (based on their 32-
digit identification numbers, called CLSIDs) and activates them in place, causing them
to create their own windows in the correct places. The initial values for the properties
you set in the dialog editor are stored in binary form inside the project's custom
DLGINIT resource.

When the modal dialog runs, the MFC code coordinates the messages sent to the dialog
window both by the ordinary controls and by the ActiveX controls. This allows the user
to tab between all the controls in the dialog, even though the ActiveX controls are not
part of the actual dialog template.

When you call the member functions for the control object, you might think you're
calling functions for a child window. The control window is quite far removed, but MFC
steps in to make it seem as if you're communicating with a real child window. In
ActiveX terminology, the container owns a site, which is not a window. You call
functions for the site, and ActiveX and MFC make the connection to the underlying
window in the ActiveX control.

The container window is an object of a class derived from CWnd. The control site is also
an object of a class derived from CWnd—the ActiveX control wrapper class. That means
that the CWnd class has built-in support for both containers and sites.

What you're seeing here is MFC ActiveX control support grafted onto regular Windows.
Maybe some future Windows version will have more direct support for ActiveX Controls.
As a matter of fact, ActiveX versions of the Windows common controls already exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls in HTML Files
You've seen the ActiveX Calendar control in an MFC modal dialog. You can use the same control in a Web
page. The following HTML code will work (assuming the person reading the page has the Calendar control
installed and registered on his or her machine):

<OBJECT
 CLASSID="clsid:8E27C92B-1264-101C-8A2F-040224009C02"
 WIDTH=300 HEIGHT=200 BORDER=1 HSPACE=5 ID=calendar>
<PARAM NAME="Day" VALUE=7>
<PARAM NAME="Month" VALUE=11>
<PARAM NAME="Year" VALUE=1998>
</OBJECT>
The CLASSID attribute (the same number that was in the EX08A dialog resource) identifies the Calendar
control in the Registry. A browser can download an ActiveX control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating ActiveX Controls at Runtime
You've seen how to use the dialog editor to insert ActiveX controls at design time. If you need to create an
ActiveX control at runtime without a resource template entry, here are the programming steps:

1. Insert the component into your project. ClassWizard will create the files for a wrapper class.

2. Add an embedded ActiveX control wrapper class data member to your dialog class or other C++
window class. An embedded C++ object is then constructed and destroyed along with the window
object.

3. Choose Resource Symbols from Visual C++'s View menu. Add an ID constant for the new control.

4. If the parent window is a dialog, use ClassWizard to map the dialog's WM_INITDIALOG message,
thus overriding CDialog-::OnInitDialog. For other windows, use ClassWizard to map the
WM_CREATE message. The new function should call the embedded control class's Create member
function. This call indirectly displays the new control in the dialog. The control will be properly
destroyed when the parent window is destroyed.

5. In the parent window class, manually add the necessary event message handlers and prototypes for
your new control. Don't forget to add the event sink map macros.

ClassWizard doesn't help you with event sink maps when you add a dynamic ActiveX
control to a project. Consider inserting the target control in a dialog in another
temporary project. After you're finished mapping events, simply copy the event sink
map code to the parent window class in your main project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX08B Example—The Web Browser ActiveX Control
Microsoft Internet Explorer 4.x has become a leading Web browser. I was surprised to find out that most of
its functionality is contained in one big ActiveX control, Shdocvw.dll. When you run Internet Explorer, you
launch a small shell program that loads this Web Browser control in its main window.

You can find complete documentation for the Web Browser control's properties,
methods, and events in the Internet SDK, downloadable from
http://www.microsoft.com. This documentation is in HTML form, of course.

Because of this modular architecture, you can write your own custom browser program with very little
effort. EX08B creates a two-window browser that displays a search engine page side-by-side with the
target page, as shown here.

This view window contains two Web Browser controls that are sized to occupy the entire client area. When
the user clicks an item in the search (right-hand) control, the program intercepts the command and routes
it to the target (left-hand) control.

Here are the steps for building the example:

1. Make sure the Web Browser control is registered. You undoubtedly have Microsoft Internet
Explorer 4.x installed, since Visual C++ 6.0 requires it, so the Web Browser control should be
registered. You can download Internet Explorer from http://www.microsoft.com if necessary.

2. Run AppWizard to produce \vcpp32\ex08b\ex08b. Accept all the default settings but two:
except select Single Document and deselect Printing And Print Preview. Make sure the ActiveX
Controls option is checked as in EX08A.

3. Install the Web Browser control in the EX08B project. Choose Add To Project from Visual
C++'s Project menu, and choose Components And Controls from the submenu. Select Registered
ActiveX Controls, and then choose Microsoft Web Browser. Visual C++ will generate the wrapper
class CWebBrowser and add the files to your project.

4. Add two CWebBrowser data members to the CEx08bView class. Click on the ClassView tab in
the Workspace window, and then right-click the CEx08bView class. Choose Add Member Variable,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Workspace window, and then right-click the CEx08bView class. Choose Add Member Variable,
and fill in the dialog as shown here.

Repeat for m_target. ClassWizard adds an #include statement for the webbrowser.h file.

5. Add the child window ID constants for the two controls. Select Resource Symbols from Visual
C++'s View menu, and then add the symbols ID_BROWSER_SEARCH and ID_BROWSER_TARGET.

6. Add a static character array data member for the AltaVista URL. Add the following static data
member to the class declaration in ex08bView.h:

private:
 static const char s_engineAltavista[];
Then add the following definition in ex08bView.cpp, outside any function:

const char CEx08bView::s_engineAltavista[] =
 "http://altavista.digital.com/";

7. Use ClassWizard to map the view's WM_CREATE and WM_SIZE messages. Edit the handler
code in ex08bView.cpp as follows:

int CEx08bView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 DWORD dwStyle = WS_VISIBLE | WS_CHILD;
 if (m_search.Create(NULL, dwStyle, CRect(0, 0, 100, 100),
 this, ID_BROWSER_SEARCH) == 0) {
 AfxMessageBox("Unable to create search control!\n");
 return -1;
 }
 m_search.Navigate(s_engineAltavista, NULL, NULL, NULL, NULL);
 if (m_target.Create(NULL, dwStyle, CRect(0, 0, 100, 100),
 this, ID_BROWSER_TARGET) == 0) {
 AfxMessageBox("Unable to create target control!\n");
 return -1;
 }
 m_target.GoHome(); // as defined in Internet Explorer 4 options
 return 0;
}

void CEx08bView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 CRect rectClient;
 GetClientRect(rectClient);
 CRect rectBrowse(rectClient);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect rectBrowse(rectClient);
 rectBrowse.right = rectClient.right / 2;
 CRect rectSearch(rectClient);
 rectSearch.left = rectClient.right / 2;
 m_target.SetWidth(rectBrowse.right - rectBrowse.left);
 m_target.SetHeight(rectBrowse.bottom - rectBrowse.top);
 m_target.UpdateWindow();
 m_search.SetLeft(rectSearch.left);
 m_search.SetWidth(rectSearch.right - rectSearch.left);
 m_search.SetHeight(rectSearch.bottom - rectSearch.top);
 m_search.UpdateWindow();
}
The OnCreate function creates two browser windows inside the view window. The right-hand
browser displays the top-level AltaVista page, and the left-hand browser displays the "home" page
as defined through the Internet icon in the Control Panel. The OnSize function, called whenever the
view window changes size, ensures that the browser windows completely cover the view window.
The CWebBrowser member functions SetWidth and SetHeight set the browser's Width and Height
properties.

8. Add the event sink macros in the CEx08bView files. ClassWizard can't map events from a
dynamic ActiveX control, so you must do it manually. Add the following lines inside the class
declaration in the file ex08bView.h:

protected:
 afx_msg void OnBeforeNavigateExplorer1(LPCTSTR URL, long Flags, LPCTSTR TargetFrameName, VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel);
 afx_msg void OnTitleChangeExplorer2(LPCTSTR Text);
 DECLARE_EVENTSINK_MAP()
Then add the following code in ex08bView.cpp:

BEGIN_EVENTSINK_MAP(CEx08bView, CView)
 ON_EVENT(CEx08bView, ID_BROWSER_SEARCH, 100, OnBeforeNavigateExplorer1, VTS_BSTR VTS_I4 VTS_BSTR VTS_PVARIANT VTS_BSTR VTS_PBOOL)
 ON_EVENT(CEx08bView, ID_BROWSER_TARGET, 113, OnTitleChangeExplorer2, VTS_BSTR)
END_EVENTSINK_MAP()

9. Add two event handler functions. Add the following member functions in ex08bView.cpp:

void CEx08bView::OnBeforeNavigateExplorer1(LPCTSTR URL,
 long Flags, LPCTSTR TargetFrameName,
 VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel)
{
 TRACE("CEx08bView::OnBeforeNavigateExplorer1 -- URL = %s\n", URL);
 if (!strnicmp(URL, s_engineAltavista, strlen(s_engineAltavista))) {
 return;
 }
 m_target.Navigate(URL, NULL, NULL, PostData, NULL);
 *Cancel = TRUE;
}
void CEx08bView::OnTitleChangeExplorer2(LPCTSTR Text)
{
 // Careful! Event could fire before we're ready.
 CWnd* pWnd = AfxGetApp()->m_pMainWnd;
 if (pWnd != NULL) {
 if (::IsWindow(pWnd->m_hWnd)) {
 pWnd->SetWindowText(Text);
 }
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The OnBeforeNavigateExplorer1 handler is called when the user clicks on a link in the search page.
The function compares the clicked URL (in the URL string parameter) with the search engine URL. If
they match, the navigation proceeds in the search window; otherwise, the navigation is cancelled
and the Navigate method is called for the target window. The OnTitleChangeExplorer2 handler
updates the EX08B window title to match the title on the target page.

10. Build and test the EX08B application. Search for something on the AltaVista page, and then
watch the information appear in the target page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX08C Example—A Complete Dual-Window Web Browser
I deliberately kept the EX08B example simple to clearly illustrate the use of the Web Browser control.
However, I couldn't resist upgrading the program so that I could use it as my primary Internet browser.
The result is EX08C, which uses MFC features described in later chapters of this book—in particular the
features below.

A splitter window with moveable vertical bar browser windows
Use of the Registry to "remember" the search and target pages
Printing of both search and target pages
Support for multiple search engines
Toolbar buttons for navigation, printing, and search engine selection
Status bar display of activity and the selected URL

If EX08B runs, \vcpp32\Debug\ex08c should run also. I'm sure you'll have your own ideas for further
customization. Once you've studied the rest of the book, you'll be able to take control of this project from
the CD-ROM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Picture Properties
Some ActiveX controls support picture properties, which can accommodate bitmaps, metafiles, and icons.
If an ActiveX control has at least one picture property, ClassWizard generates a CPicture class in your
project during the control's installation. You don't need to use this CPicture class, but you must use the
MFC class CPictureHolder. To access the CPictureHolder class declaration and code, you need the following
line in StdAfx.h:

#include <afxctl.h>
Suppose you have an ActiveX control with a picture property named Picture. Here's how you set the
Picture property to a bitmap in your program's resources:

CPictureHolder pict;
pict.CreateFromBitmap(IDB_MYBITMAP); // from project's resources
m_control.SetPicture(pict.GetPictureDispatch());

If you include the AfxCtl.h file, you can't statically link your program with the MFC
library. If you need a stand-alone program that supports picture properties, you'll have
to borrow code from the CPictureHolder class, located in the \Program Files\Microsoft
Visual Studio\VC98\mfc\src\ctlpict.cpp file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bindable Properties—Change Notifications
If an ActiveX control has a property designated as bindable, the control will send an OnChanged
notification to its container when the value of the property changes inside the control. In addition, the
control can send an OnRequestEdit notification for a property whose value is about to change but has not
yet changed. If the container returns FALSE from its OnRequestEdit handler, the control should not change
the property value.

MFC fully supports property change notifications in ActiveX control containers, but as of Visual C++ version
6.0, no ClassWizard support was available. That means you must manually add entries to your container
class's event sink map.

Suppose you have an ActiveX control with a bindable property named Note with a dispatch ID of 4. You
add an ON_PROPNOTIFY macro to the EVENTSINK macros in this way:

BEGIN_EVENTSINK_MAP(CAboutDlg, CDialog)
 //{{AFX_EVENTSINK_MAP(CAboutDlg)
 // ClassWizard places other event notification macros here
 //}}AFX_EVENTSINK_MAP
 ON_PROPNOTIFY(CAboutDlg, IDC_MYCTRL1, 4, OnNoteRequestEdit, OnNoteChanged)
END_EVENTSINK_MAP()
You must then code the OnNoteRequestEdit and OnNoteChanged functions with return types and
parameter types exactly as shown here:

BOOL CMyDlg::OnNoteRequestEdit(BOOL* pb)
{
 TRACE("CMyDlg::OnNoteRequestEdit\n");
 *pb = TRUE; // TRUE means change request granted
 return TRUE;
}

BOOL CMyDlg::OnNoteChanged()
{
 TRACE("CMyDlg::OnNoteChanged\n");
 return TRUE;
}
You'll also need corresponding prototypes in the class header, as shown here:

afx_msg BOOL OnNoteRequestEdit(BOOL* pb);
afx_msg BOOL OnNoteChanged();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other ActiveX Controls
You'll probably notice that your disk fills up with ActiveX controls, especially if you accept controls from
Web sites. Most of these controls are difficult to use unless you have the documentation on hand, but you
can have fun experimenting. Try the Marquee.ocx control that is distributed with Visual C++ 6.0. It works
fine in both MFC programs and HTML files. The trick is to set the szURL property to the name of another
HTML file that contains the text to display in the scrolling marquee window.

Many ActiveX controls were designed for use by Visual Basic programmers. The SysInfo.ocx control that
comes with Visual C++, for example, lets you retrieve system parameters as property values. This isn't of
much use to a C++ programmer, however, because you can make the equivalent Win32 calls anytime.
Unlike the many objects provided by MFC, ActiveX controls are binary objects that are not extensible. For
example, you cannot add a property or event to an ActiveX control. Nor can you use many C++ object-
oriented techniques like polymorphism with ActiveX controls. Another downside of ActiveX controls is they
are not compatible with many advanced MFC concepts such as the document/view architecture, which we
will cover later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9
Internet Explorer 4 Common Controls
When Microsoft developers released Internet Explorer 4 (IE4), they included a new and improved version
of the COMCTL32.DLL, which houses Microsoft Windows Common Controls. Since this update to the
common controls was not part of an operating system release, Microsoft calls the update Internet Explorer
4 Common Controls. IE4 Common Controls updates all of the existing controls and adds a variety of
advanced new controls. Microsoft Visual C++ 6.0 and Microsoft Foundation Class (MFC) 6.0 have added a
great deal of support for these new controls. In this chapter, we'll look at the new controls and show
examples of how to use each one. If you haven't worked with Windows controls or Windows Common
Controls, be sure you read Chapter 6 before proceeding with IE4 Common Controls.

While Microsoft Windows 95 and Microsoft Windows NT 4.0 do not include the new
COMCTL32.DLL, future versions of Windows will. To be safe, you will need to
redistribute the COMCTL32.DLL for these existing operating systems as part of your
installation. Currently you must ship a "developer's edition" of Internet Explorer to be
able to redistribute these controls. However, this might change once a version of
Windows ships with the updated controls. Be sure you check www.microsoft.com/msdn
for the latest news on this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Introduction to the New Internet Explorer 4 Common Controls
Example EX09A uses each of the new IE4 common controls. Figure 9-1 shows the dialog from that
example. Refer to it when you read the control descriptions that follow.

Figure 9-1. The new Internet Explorer 4 Common Controls dialog.

The Date and Time Picker

A common field on a dialog is a place for the user to enter a date and time. Before IE4 controls provided
the date and time picker, developers had to either use a third-party control or subclass an MFC edit control
to do significant data validation to ensure that the entered date was valid. Fortunately, the new date and
time picker control is provided as an advanced control that prompts the user for a date or time while
offering the developer a wide variety of styles and options. For example, dates can be displayed in short
formats (8/14/68) or long formats (August 14, 1968). A time mode lets the user enter a time using a
familiar hours/minutes/seconds AM/PM format.

The control also lets you decide if you want the user to select the date via in-place editing, a pull-down
calendar, or a spin button. Several selection options are available including single and multiple select (for a
range of dates) and the ability to turn on and off the "circling" in red ink of the current date. The control
even has a mode that lets the user select "no date" via a check box. In Figure 9-1, the first four controls
on the left illustrate the variety of configurations available with the date and time picker control.

The new MFC 6.0 class CDateTimeCtrl provides the MFC interface to the IE4 date and time picker common
control. This class provides a variety of notifications that enhance the programmability of the control.
CDateTimeCtrl provides member functions for dealing with either CTime or COleDateTime time structures.

You set the date and time in a CDateTimeCtrl using the SetTime member function. You can retrieve the
date and time via the GetTime function. You can create custom formats using the SetFormat member
function and change a variety of other configurations using the CDateTimeCtrl interface.

CTime vs. COleDateTime

Most "longtime" MFC developers are accustomed to using the CTime class. However,
since CTime's valid dates are limited to dates between January 1, 1970, and January
18, 2038, many developers are looking for an alternative. One popular alternative is
COleDateTime, which is provided for OLE automation support and handles dates from 1
January 100 through 31 December 9999. Both classes have various pros and cons. For
example, CTime handles all the issues of daylight savings time, while COleDateTime
does not.

With the Year 2000 crisis looming ahead, many developers choose COleDateTime
because of its much larger range. Any application that uses CTime will need to be
reworked in approximately 40 years, since the maximum value is the year 2038. To see
this limitation in action, select a date outside the CTime range in EX09A. The class you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this limitation in action, select a date outside the CTime range in EX09A. The class you
decide to use will depend on your particular needs and the potential longevity of your
application.

The Month Calendar

The large display at the bottom left of Figure 9-1 is a Month Calendar. Like the date and time picker
control, the month calendar control lets the user choose a date. However, the month calendar control can
also be used to implement a small Personal Information Manager (PIM) in your applications. You can show
as many months as room provides—from one month to a year's worth of months, if you want. EX09A uses
the month calendar control to show only two months.

The month calendar control supports single or multiple selection and allows you to display a variety of
different options such as numbered months and a circled "today's date." Notifications for the control let the
developer specify which dates are in boldface. It is entirely up to the developer to decide what boldface
dates might represent. For example, you could use the bold feature to indicate holidays, appointments, or
unusable dates. The MFC 6.0 class CMonthCalCtrl implements this control.

To initialize the CMonthCalCtrl class, you can call the SetToday() member function. CMonthCalCtrl provides
members that deal with both CTime and COleDateTime, including SetToday().

The Internet Protocol Address Control

If you write an application that uses any form of Internet or TCP/IP functionality, you might need to
prompt the user for an Internet Protocol (IP) Address. The IE4 common controls include an IP address edit
control as shown in the top right of Figure 9-1. In addition to letting the user enter a 4-byte IP address,
this control performs an automatic validation of the entered IP address. CIPAddressCtrl provides MFC
support for the IP address control.

An IP address consists of four "fields" as shown in Figure 9-2. The fields are numbered from left to right.

Figure 9-2. The fields of an IP address control.

To initialize an IP address control, you call the SetAddress member function in your OnInitDialog function.
SetAddress takes a DWORD, with each BYTE in the DWORD representing one of the fields. In your
message handlers, you can call the GetAddress member function to retrieve a DWORD or a series of BYTES
to retrieve the various values of the four IP address fields.

The Extended Combo Box

The "old-fashioned" combo box was developed in the early days of Windows. Its age and inflexible design
have been the source of a great deal of developer confusion. With the IE4 controls, Microsoft has decided
to release a much more flexible version of the combo box called the extended combo box.

The extended combo box gives the developer much easier access to and control over the edit-control
portion of the combo box. In addition, the extended combo box lets you attach an image list to the items
in the combo box. You can display graphics in the extended combo box easily, especially when compared
with the old days of using owner-drawn combo boxes. Each item in the extended combo box can be
associated with three images: a selected image, an unselected image, and an overlay image. These three
images can be used to provide a variety of graphical displays in the combo box, as we'll see in the EX09A
sample. The bottom two combo boxes in Figure 9-1 are both extended combo boxes. The MFC
CComboBoxEx class provides comprehensive extended combo box support.

Like the list control introduced in Chapter 6, CComboBoxEx can be attached to a CImageList that will
automatically display graphics next to the text in the extended combo box. If you are already familiar with
CComboBox, CComboBoxEx might cause some confusion: instead of containing strings, the extended
combo box contains items of type COMBOBOXEXITEM, a structure that consists of the following fields:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

combo box contains items of type COMBOBOXEXITEM, a structure that consists of the following fields:

UINT mask—A set of bit flags that specify which operations are to be performed using the
structure. For example, set the CBEIF_IMAGE flag if the image field is to be set or retrieved in an
operation.

int iItem—The extended combo box item number. Like the older style of combo box, the extended
combo box uses zero-based indexing.

LPSTR pszText—The text of the item.

int cchTextMax—The length of the buffer available in pszText.

int iImage—Zero-based index into an associated image list.

int iSelectedImage—Index of the image in the image list to be used to represent the "selected"
state.

int iOverlay—Index of the image in the image list to be used to overlay the current image.

int iIndent—Number of 10-pixel indentation spaces.

LPARAM lParam—32-bit parameter for the item.

You will see first-hand how to use this structure in the EX09A example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX09A Example
To illustrate how to take advantage of the new Internet Explorer 4 Common Controls, we'll build a dialog
that demonstrates how to create and program each control type. The steps required to create the dialog
are shown below.

1. Run AppWizard to generate the EX09A project. Choose New from the Visual C++ File menu,
and then select Microsoft AppWizard (exe) from the Projects page. Accept all the defaults but one:
choose Single Document Interface (SDI). The options and the default class names are shown here.

2. Create a new dialog resource with ID IDD_DIALOG1. Place the controls as shown in Figure 9-
1.

You can drag the controls from the control palette, shown in Chapter 6. Remember that IE4
Common Controls are at the bottom of the palette. The following table lists the control types and
their IDs.

Tab Sequence Control Type Child Window ID

1 Group Box IDC_STATIC

2 Static IDC_STATIC

3 Date Time Picker IDC_DATETIMEPICKER1

4 Static IDC_STATIC1

5 Static IDC_STATIC

6 Date Time Picker IDC_DATETIMEPICKER2

7 Static IDC_STATIC2

8 Static IDC_STATIC

9 Date Time Picker IDC_DATETIMEPICKER3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10 Static IDC_STATIC3

11 Static IDC_STATIC

12 Date Time Picker IDC_DATETIMEPICKER4

13 Static IDC_STATIC4

14 Static IDC_STATIC

15 Month Calendar IDC_MONTHCALENDAR

16 Static IDC_STATIC5

17 Group Box IDC_STATIC

18 Static IDC_STATIC

19 IP Address IDC_IPADDRESS1

20 Static IDC_STATIC6

21 Group Box IDC_STATIC

22 Static IDC_STATIC

23 Extended Combo Box IDC_COMBOBOXEX1

24 Static IDC_STATIC7

25 Static IDC_STATIC

26 Extended Combo Box IDC_COMBOBOXEX2

27 Static IDC_STATIC8

28 Pushbutton IDOK

29 Pushbutton IDCANCEL

The following figure shows each control and its appropriate tab order.

Until we set some properties, your dialog will not look exactly like the one in Figure 9-1.

3. Use ClassWizard to create a new class, CDialog1, derived from CDialog. ClassWizard will
automatically prompt you to create this class because it knows that the IDD_DIALOG1 resource
exists without an associated C++ class. Go ahead and create a message handler for the
WM_INITDIALOG message.

4. Set the properties for the dialog's controls. To demonstrate the full range of controls, we will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Set the properties for the dialog's controls. To demonstrate the full range of controls, we will
need to set a variety of properties on each of the IE4 common controls in the example. Here is a
brief overview of each property you will need to set:

The Short Date and Time Picker. To set up the first date and time picker control to use
the short format, select the properties for IDC_DATETIMEPICKER1, as shown in the following
figure.

The Long Date and Time Picker. Now configure the second date and time picker control
(IDC_DATETIMEPICKER2) to use the long format as shown below.

The Short and NULL Date and Time Picker. This is the third date and time picker control,
IDC_DATETIMEPICKER3. Configure this third date and time picker to use the short format
and the styles shown here.

The Time Picker. The fourth date and time picker control, IDC_DATETIMEPICKER4, is
configured to let the user choose time. To configure this control, select Time from the
Format combo box on the Styles tab as shown.

The Month View. To configure the month view, you will need to set a variety of styles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Month View. To configure the month view, you will need to set a variety of styles.
First, from the Styles tab, choose Day States, as shown here.

If we leave the default styles, the month view does not look like a control on the dialog.
There are no borders drawn at all. To make the control fit in with the other controls on the
dialog, select Client Edge and Static Edge from the Extended Styles tab, as shown below.

The IP Address.This control (IDC_IPADDRESS1) does not require any special properties.

The First Extended Combo Box.Make sure that you enter some items, as shown here, and
also make sure the list is tall enough to display several items.

The Second Extended Combo Box.Enter three items: Tweety, Mack, and Jaws. Later in
the example, we will use these items to show one of the ways to draw graphics in an
extended combo box.

5. Add the CDialog1 variables. Start ClassWizard and click on the Member Variables tab to view the
Member Variables page. Enter the following member variables for each control listed.

Control ID Data Member Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control ID Data Member Type

IDC_DATETIMEPICKER1 m_MonthCal1 CDateTimeCtrl

IDC_DATETIMEPICKER2 m_MonthCal2 CDateTimeCtrl

IDC_DATETIMEPICKER3 m_MonthCal3 CDateTimeCtrl

IDC_DATETIMEPICKER4 m_MonthCal4 CDateTimeCtrl

vIDC_IPADDRESS1 m_ptrIPCtrl CIPAddressCtrl

IDC_MONTHCALENDAR1 m_MonthCal5 CMonthCalCtrl

IDC_STATIC1 m_strDate1 CString

IDC_STATIC2 m_strDate2 CString

IDC_STATIC3 m_strDate3 CString

IDC_STATIC4 m_strDate4 CString

IDC_STATIC5 m_strDate5 CString

IDC_STATIC6 m_strIPValue CString

IDC_STATIC7 m_strComboEx1 CString

IDC_STATIC8 m_strComboEx2 CString

6. Program the short date time picker. In this example, we don't mind if the first date time picker
starts with the current date, so we don't have any OnInitDialog handling for this control. However,
if we wanted to change the date, we would make a call to SetTime for the control in OnInitDialog.
At runtime, when the user selects a new date in the first date and time picker, the companion static
control should be automatically updated. To achieve this, we need to use ClassWizard to add a
handler for the DTN_DATETIMECHANGE message. Start ClassWizard (CTRL-W) and choose
IDC_DATETIMEPICKER1 from the Object IDs list and DTN_DATETIMECHANGE from the Messages
list. Accept the default message name and click OK. Repeat this step for each of the other three
IDC_DATETIMEPICKER IDs. Your ClassWizard should look like the illustration here.

Next add the following code to the handler for Datetimepicker1 created by ClassWizard:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CDialog1::OnDatetimechangeDatetimepicker1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal1.GetTime(ct);
 m_strDate1.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}
This code uses the m_MonthCal1 data member that maps to the first date time picker to retrieve
the time into the CTime object variable ct. It then calls the CString::Format member function to set
the companion static string. Finally the call to UpdateData(FALSE) triggers MFC's DDX and causes
the static to be automatically updated to m_strDate1.

7. Program the long date time picker. Now we need to provide a similar handler for the second
date time picker.

void CDialog1::OnDatetimechangeDatetimepicker2(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal2.GetTime(ct);
 m_strDate2.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

8. Program the third date time picker. The third date time picker needs a similar handler, but since
we set the Show None style in the dialog properties, it is possible for the user to specify a NULL
date by checking the inline check box. Instead of blindly calling GetTime, we have to check the
return value. If the return value of the GetTime call is nonzero, the user has selected a NULL date.
If the return value is zero, a valid date has been selected. As in the previous two handlers, when a
CTime object is returned, it is converted into a string and automatically displayed in the companion
static control.

void CDialog1::OnDatetimechangeDatetimepicker3(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 //NOTE: this one can be null!
 CTime ct;
 int nRetVal = m_MonthCal3.GetTime(ct);
 if (nRetVal) //If not zero, it's null; and if it is,
 // do the right thing.
 {
 m_strDate3 = "NO DATE SPECIFIED!!";
 }
 else
 {
 m_strDate3.Format(_T("%02d/%02d/%2d"),ct.GetMonth(),
 ct.GetDay(),ct.GetYear());
 }
 UpdateData(FALSE);
 *pResult = 0;
}

9. Program the time picker. The time picker needs a similar handler, but this time the format
displays hours/minutes/seconds instead of months/days/years:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CDialog1::OnDatetimechangeDatetimepicker4(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal4.GetTime(ct);
 m_strDate4.Format(_T("%02d:%02d:%2d"),
 ct.GetHour(),ct.GetMinute(),ct.GetSecond());
 UpdateData(FALSE);
 *pResult = 0;
}

10. Program the Month Selector. You might think that the month selector handler is similar to the
date time picker's handler, but they are actually somewhat different. First of all, the message you
need to handle for detecting when the user has selected a new date is the MCN_SELCHANGE
message. Select this message in the ClassWizard, as shown here.

In addition to the different message handler, this control uses GetCurSel as the date time picker
instead of GetTime. The code below shows the MCN_SELCHANGE handler for the month calendar
control.

void CDialog1::OnSelchangeMonthcalendar1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal5.GetCurSel(ct);
 m_strDate5.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

11. Program the IP control. First we need to make sure the control is initialized. In this example, we
initialize the control to 0 by giving it a 0 DWORD value. If you do not initialize the control, each
segment will be blank. To initialize the control, add this call to the CDialog1::OnInitDialog function:

m_ptrIPCtrl.SetAddress(0L);
Now we need to add a handler to update the companion static control whenever the IP address
control changes. First we need to add a handler for the IPN_FIELDCHANGED notification message
using ClassWizard, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using ClassWizard, as shown here.

Next we need to implement the handler as follows:

void CDialog1::OnFieldchangedIpaddress1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 DWORD dwIPAddress;
 m_ptrIPCtrl.GetAddress(dwIPAddress);

 m_strIPValue.Format("%d.%d.%d.%d %x.%x.%x.%x",
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),
 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)),
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),
 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)));
 UpdateData(FALSE);
 *pResult = 0;
}
The first call to CIPAddressCtrl::GetAddress retrieves the current IP address into the local
dwIPAddress DWORD variable. Next we make a fairly complex call to CString::Format to
deconstruct the DWORD into the various fields. This call uses the LOWORD macro to first get to the
bottom word of the DWORD and the HIBYTE/LOBYTE macros to further deconstruct the fields in
order from field 0 to field 3.

12. Add a handler for the first extended combo box. No special initialization is required for the
extended combo box, but we do need to handle the CBN_SELCHANGE message. The following code
shows the extended combo box handler. Can you spot the ways that this differs from a "normal"
combo box control?

void CDialog1::OnSelchangeComboboxex1()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX1);
 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC7,str);
 return;
}
The first thing you probably noticed is the use of the COMBOBOXEXITEM structure for the extended
combo box instead of the plain integers used for items in an older combo box. Once the handler
retrieves the item, it extracts the string and calls SetDlgItemText to update the companion static
control.

13. Add Images to the Items in the second extended combo box. The first extended combo box
does not need any special programming. It is used to demonstrate how to implement a simple
extended combo box very similar to the older, nonextended combo box. The second combo box
requires a good bit of programming. First we created six bitmaps and eight icons that we need to
add to the resources for the project, as shown in the following illustration.

Of course, you are free to grab these images from the companion CD instead of recreating them all
by hand, or you can choose to use any bitmaps and icons.

There are two ways to add our graphics to an extended combo box. The first method is to attach
images to existing combo box items. (Remember that we used the dialog editor to add the Tweety,
Mack, and Jaws items to the combo box.) The second method is to add new items and specify their
corresponding images at the time of addition.

Before we start adding graphics to the extended combo box, let's create a public CImageList data
member in the CDialog1 class named m_imageList. Be sure you add the data member to the
header file (Dialog1.h) for the class.

Now we can add some of the bitmap images to the image list and then "attach" the images to the
three items already in the extended combo box. Add the following code to your CDialog1's
OnInitDialog method to achieve this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //Initialize the IDC_COMBOBOXEX2
 CComboBoxEx* pCombo =
 (CComboBoxEx*) GetDlgItem(IDC_COMBOBOXEX2);
 //First let's add images to the items there.
 //We have six images in bitmaps to match to our strings:
 //CImageList * pImageList = new CImageList();
 m_imageList.Create(32,16,ILC_MASK,12,4);
 CBitmap bitmap;
 bitmap.LoadBitmap(IDB_BMBIRD);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();
 bitmap.LoadBitmap(IDB_BMBIRDSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMDOG);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMDOGSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMFISH);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMFISHSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();
 //Set the imagelist
 pCombo->SetImageList(&m_imageList);
 //Now attach the images to the items in the list.
 COMBOBOXEXITEM cbi;
 cbi.mask = CBEIF_IMAGE|CBEIF_SELECTEDIMAGE|CBEIF_INDENT;
 CString strTemp;
 int nBitmapCount = 0;
 for (int nCount = 0;nCount < 3;nCount++)
 {
 cbi.iItem = nCount;
 cbi.pszText = (LPTSTR)(LPCTSTR)strTemp;
 cbi.cchTextMax = 256;
 pCombo->GetItem(&cbi);
 cbi.iImage = nBitmapCount++;
 cbi.iSelectedImage = nBitmapCount++;
 cbi.iIndent = (nCount & 0x03);
 pCombo->SetItem(&cbi);
 }
First the extended combo box initialization code creates a pointer to the control using GetDlgItem.
Next it calls Create to create memory for the images to be added and to initialize the image list. The
next series of calls loads each bitmap, adds them to the image list, and then deletes the resource
allocated in the load.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allocated in the load.

CComboBoxEx::SetImageList is called to associate the m_imageList with the extended combo box.
Next a COMBOBOXEXITEM structure is initialized with a mask, and then the for loop iterates from 0
through 2, setting the selected and unselected images with each pass through the loop. The
variable nBitmapCount increments through the image list to ensure that the correct image ID is put
into the COMBOBOXEXITEM structure. The for loop makes a call to CComboBoxEx::GetItem to
retrieve the COMBOBOXEXITEM structure for each item in the extended combo box. Then the loop
sets up the images for the list item and finally calls CComboBoxEx::SetItem to put the modified
COMBOBOXEXITEM structure back into the extended combo box and complete the association of
images with the existing items in the list.

14. Add Items to the Extended Combobox. The other technique available for putting images into an
extended combo box is to add them dynamically, as shown in the code added to OnInitDialog
below:

 HICON hIcon[8];
 int n;
//Now let's insert some color icons
 hIcon[0] = AfxGetApp()->LoadIcon(IDI_WHITE);
 hIcon[1] = AfxGetApp()->LoadIcon(IDI_BLACK);
 hIcon[2] = AfxGetApp()->LoadIcon(IDI_RED);
 hIcon[3] = AfxGetApp()->LoadIcon(IDI_BLUE);
 hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);
 hIcon[5] = AfxGetApp()->LoadIcon(IDI_CYAN);
 hIcon[6] = AfxGetApp()->LoadIcon(IDI_PURPLE);
 hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);
 for (n = 0; n < 8; n++) {
 m_imageList.Add(hIcon[n]);
 }
 static char* color[] = {"white", "black", "red",
 "blue", "yellow", "cyan",
 "purple", "green"};
 cbi.mask = CBEIF_IMAGE|CBEIF_TEXT|CBEIF_OVERLAY|
 CBEIF_SELECTEDIMAGE;
 for (n = 0; n < 8; n++) {
 cbi.iItem = n;
 cbi.pszText = color[n];
 cbi.iImage = n+6; //6 is the offset into the image list from
 cbi.iSelectedImage = n+6; // the first six items we added...
 cbi.iOverlay = n+6;
 int nItem = pCombo->InsertItem(&cbi);
 ASSERT(nItem == n);
 }
The addition of the icons above is similar to the EX06B list control example in Chapter 6. The for
loop fills out the COMBOBOXEXITEM structure and then calls CComboBoxEx::InsertItem with each
item to add it to the list.

15. Add a handler for the second extended combo box. The second extended combo box handler
is essentially the same as the first:

void CDialog1::OnSelchangeComboboxex2()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX2);
 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC8,str);
 return;
}

16. Connect the view and the dialog. Add code to the virtual OnDraw function in ex09aView.cpp.
The following boldface code replaces the previous code:

void CEx09aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

17. Use ClassWizard to add the OnLButtonDown member function to the CEx09aView class.
Edit the AppWizard-generated code as follows:

void CEx09aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CDialog1 dlg;
 dlg.DoModal();
}
Add a statement to include Dialog1.h in file ex09aView.cpp.

18. Compile and run the program. Now you can experiment with the various IE4 common controls to
see how they work and how you can apply them in your own applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10
Win32 Memory Management
Forget everything you ever knew about Win16 memory management. Some of the Win16 memory
management functions, such as GlobalAlloc, were carried forward into Win32, but this was done to enable
developers to port source code quickly. Underneath, the original functions work very differently, and many
new ones have been added.

This chapter starts out with a dose of Win32 memory management theory, which includes coverage of the
fundamental heap management functions. Then you'll see how the C++ new and delete operators connect
with the underlying heap functions. Finally, you'll learn how to use the memory-mapped file functions, and
you'll get some practical tips on managing dynamic memory. In no way is this chapter intended to be a
definitive description of Win32 memory management. For that, you'll have to read Jeffrey Richter's
Advanced Windows (Microsoft Press, 1997). (Be sure you have the latest edition—a new version may be in
the works that covers Microsoft Windows 98/NT 5.0.)

At the time this edition was written, both Windows 98 and Windows NT 5.0 were in
beta and not released. Our examination of these betas indicates that the memory
management has not changed significantly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Processes and Memory Space
Before you learn how Microsoft Windows manages memory, you must first understand what a process is. If
you already know what a program is, you're on your way. A program is an EXE file that you can launch in
various ways in Windows. Once a program is running, it's called a process. A process owns its memory, file
handles, and other system resources. If you launch the same program twice in a row, you have two
separate processes running simultaneously. Both the Microsoft Windows NT Task Manager (right-click the
taskbar) and the Microsoft Windows 95 PVIEW95 program give you a detailed list of processes that are
currently running, and they allow you to kill processes that are not responding. The SPYXX program shows
the relationships among processes, tasks, and windows.

The Windows taskbar shows main windows, not processes. A single process (such as
Windows Explorer) might have several main windows, each supported by its own
thread, and some processes don't have windows at all. (See Chapter 12 for a
discussion of threads.)

The important thing to know about a process is that it has its own "private" 4-gigabyte (GB) virtual
address space (which I'll describe in detail in the next section). For now, pretend that your computer has
hundreds of gigabytes of RAM and that each process gets 4 GB. Your program can access any byte of this
space with a single 32-bit linear address. Each process's memory space contains a variety of items,
including the following:

Your program's EXE image

Any nonsystem DLLs that your program loads, including the MFC DLLs

Your program's global data (read-only as well as read/write)

Your program's stack

Dynamically allocated memory, including Windows and C runtime library (CRT) heaps

Memory-mapped files

Interprocess shared memory blocks

Memory local to specific executing threads

All sorts of special system memory blocks, including virtual memory tables

The Windows kernel and executive, plus DLLs that are part of Windows

The Windows 95 Process Address Space

In Windows 95, only the bottom 2 GB (0 to 0x7FFFFFFF) of address space is truly private, and the bottom
4 MB of that is off-limits. The stack, heaps, and read/write global memory are mapped in the bottom 2 GB
along with application EXE and DLL files.

The top 2 GB of space is the same for all processes and is shared by all processes. The Windows 95 kernel,
executive, virtual device drivers (VxDs), and file system code, along with important tables such as page
tables, are mapped to the top 1 GB (0xC0000000 to 0xFFFFFFFF) of address space. Windows DLLs and
memory-mapped files are located in the range 0x80000000 to 0xBFFFFFFF. Figure 10-1 shows a memory
map of two processes using the same program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-1. A typical Windows 95 virtual memory map for two processes linked to the same EXE file.

How safe is all this? It's next to impossible for one process to overwrite another process's stack, global, or
heap memory because this memory, located in the bottom 2 GB of virtual address space, is assigned only
to that specific process. All EXE and DLL code is flagged as read-only, so there's no problem if the code is
mapped in several processes.

However, because important Windows read/write data is mapped there, the top 1 GB of address space is
vulnerable. An errant program could wipe out important system tables located in this region. In addition,
one process could mess up another process's memory-mapped files in the range 0x80000000 through
0xBFFFFFFF because this region is shared by all processes.

The Windows NT Process Address Space

A process in Windows NT can access only the bottom 2 GB of its address space, and the lowest and highest
64 KB of that is inaccessible. The EXE, the application's DLLs and Windows DLLs, and memory-mapped
files all reside in this space between 0x00010000 and 0x7FFEFFFF. The Windows NT kernel, executive, and
device drivers all reside in the upper 2 GB, where they are completely protected from any tampering by an
errant program. Memory-mapped files are safer, too. One process cannot access another's memory-
mapped file without knowing the file's name and explicitly mapping a view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How Virtual Memory Works
You know that your computer doesn't really have hundreds of gigabytes of RAM. And it doesn't have
hundreds of gigabytes of disk space either. Windows uses some smoke and mirrors here.

First of all, a process's 4-GB address space is going to be used sparsely. Various programs and data
elements will be scattered throughout the 4-GB address space in 4-KB units starting on 4-KB boundaries.
Each 4-KB unit, called a page, can hold either code or data. When a page is being used, it occupies
physical memory, but you never see its physical memory address. The Intel microprocessor chip efficiently
maps a 32-bit virtual address to both a physical page and an offset within the page, using two levels of 4-
KB page tables, as shown in Figure 10-2. Note that individual pages can be flagged as either read-only or
read/write. Also note that each process has its own set of page tables. The chip's CR3 register holds a
pointer to the directory page, so when Windows switches from one process to another, it simply updates
CR3.

Figure 10-2. Win32 virtual memory management (Intel).

So now our process is down from 4 GB to maybe 5 MB—a definite improvement. But if we're running
several programs, along with Windows itself, we'll still run out of RAM. If you look at Figure 10-2 again,
you'll notice that the page table entry has a "present" bit that indicates whether the 4-KB page is currently
in RAM. If we try to access a page that's not in RAM, an interrupt fires and Windows analyzes the situation
by checking its internal tables. If the memory reference was bogus, we'll get the dreaded "page fault"
message and the program will exit. Otherwise, Windows reads the page from a disk file into RAM and
updates the page table by loading the physical address and setting the present bit. This is the essence of
Win32 virtual memory.

The Windows virtual memory manager figures out how to read and write 4-KB pages so that it optimizes
performance. If one process hasn't used a page for a while and another process needs memory, the first
page is swapped out or discarded and the RAM is used for the new process's page. Your program isn't
normally aware that this is going on. The more disk I/O that happens, however, the worse your program's
performance will be, so it stands to reason that more RAM is better.

I mentioned the word "disk," but I haven't talked about files yet. All processes share a big systemwide
swap file that's used for all read/write data and some read-only data. (Windows NT supports multiple swap
files.) Windows determines the swap file size based on available RAM and free disk space, but there are
ways to fine-tune the swap file's size and specify its physical location on disk.

The swap file isn't the only file used by the virtual memory manager, however. It wouldn't make sense to
write code pages back to the swap file, so instead of using the swap file, Windows maps EXE and DLL files
directly to their files on disk. Because the code pages are marked read-only, there's never a need to write
them back to disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them back to disk.

If two processes use the same EXE file, that file is mapped into each process's address space. The code
and constants never change during program execution, so the same physical memory can be mapped for
each process. The two processes cannot share global data, however, and Windows 95 and Windows NT
handle this situation differently. Windows 95 maps separate copies of the global data to each process. In
Windows NT, both processes use the same copy of each page of global data until one process attempts to
write to that page. At that point the page is copied; as a result, each process has its own private copy
stored at the same virtual address.

A dynamic link library can be mapped directly to its DLL file only if the DLL can be
loaded at its designated base address. If a DLL were statically linked to load at, say,
0x10000000 but that address range is already occupied by another DLL, Windows must
"fix up" the addresses within the DLL code. Windows NT copies the altered pages to the
swap file when the DLL is first loaded, but Windows 95 can do the fixup "on the fly"
when the pages are brought into RAM. Needless to say, it's important to build your
DLLs with nonoverlapping address ranges. If you're using the MFC DLLs, set the base
address of your own DLLs outside the range 0x5F400000 through 0x5FFFFFFF. Chapter
22 provides more details on writing DLLs.

Memory-mapped files, which I'll talk about later, are also mapped directly. These can be flagged as
read/write and made available for sharing among processes.

For Win32 Programmers: Segment Registers in Win32

If you've experimented with the debugger in Win32, you may have noticed the
segment registers, particularly CS, DS, and SS. These 16-bit relics haven't gone away,
but you can mostly ignore them. In 32-bit mode, the Intel microprocessor still uses
segment registers, which are 16 bits long, to translate addresses prior to sending them
through the virtual memory system. A table in RAM, called the descriptor table, has
entries that contain the virtual memory base address and block size for code, data, and
stack segments. In 32-bit mode, these segments can be up to 4 GB in size and can be
flagged as read-only or read/write. For every memory reference, the chip uses the
selector, the contents of a segment register, to look up the descriptor table entry for
the purpose of translating the address.

Under Win32, each process has two segments—one for code and one for data and the
stack. You can assume that both have a base value of 0 and a size of 4 GB, so they
overlap. The net result is no translation at all, but Windows uses some tricks that
exclude the bottom 16 KB from the data segment. If you try to access memory down
there, you get a protection fault instead of a page fault, which is useful for debugging
null pointers.

Some future operating system might someday use segments to get around that
annoying 4-GB size limitation, but by then we'll have Win64 to worry about!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VirtualAlloc Function—Committed and Reserved Memory
If your program needs dynamic memory, sooner or later the Win32 VirtualAlloc function will be called.
Chances are that your program will never call VirtualAlloc; instead you'll rely on the Windows heap or the
CRT heap functions to call it directly. Knowing how VirtualAlloc works, however, will help you better
understand the functions that call it.

First you must know the meanings of reserved and committed memory. When memory is reserved, a
contiguous virtual address range is set aside. If, for example, you know that your program is going to use
a single 5-MB memory block (known as a region) but you don't need to use it all right away, you call
VirtualAlloc with a MEM_RESERVE allocation type parameter and a 5-MB size parameter. Windows rounds
the start address of the region to a 64-KB boundary and prevents your process from reserving other
memory in the same range. You can specify a start address for your region, but more often you'll let
Windows assign it for you. Nothing else happens. No RAM is allocated, and no swap file space is set aside.

When you get more serious about needing memory, you call VirtualAlloc again to commit the reserved
memory, using a MEM_COMMIT allocation type parameter. Now the start and end addresses of the region
are rounded to 4-KB boundaries, and corresponding swap file pages are set aside together with the
required page table. The block is designated either read-only or read/write. Still no RAM is allocated,
however; RAM allocation occurs only when you try to access the memory. If the memory was not
previously reserved, no problem. If the memory was previously committed, still no problem. The rule is
that memory must be committed before you can use it.

You call the VirtualFree function to "decommit" committed memory, thereby returning the designated
pages back to reserved status. VirtualFree can also free a reserved region of memory, but you have to
specify the base address you got from a previous VirtualAlloc reservation call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Heap and the GlobalAlloc Function Family
A heap is a memory pool for a specific process. When your program needs a block of memory, it calls a
heap allocation function, and it calls a companion function to free the memory. There's no assumption
about 4-KB page boundaries; the heap manager uses space in existing pages or calls VirtualAlloc to get
more pages. First we'll look at Windows heaps. Next we'll consider heaps managed by the CRT library for
functions like malloc and new.

Windows provides each process with a default heap, and the process can create any number of additional
Windows heaps. The HeapAlloc function allocates memory in a Windows heap, and HeapFree releases it.

You might never need to call HeapAlloc yourself, but it will be called for you by the GlobalAlloc function
that's left over from Win16. In the ideal 32-bit world, you wouldn't have to use GlobalAlloc, but in this real
world, we're stuck with a lot of code ported from Win16 that uses "memory handle" (HGLOBAL)
parameters instead of 32-bit memory addresses.

GlobalAlloc uses the default Windows heap. It does two different things, depending on its attribute
parameter. If you specify GMEM_FIXED, GlobalAlloc simply calls HeapAlloc and returns the address cast as
a 32-bit HGLOBAL value. If you specify GMEM_MOVEABLE, the returned HGLOBAL value is a pointer to a
handle table entry in your process. That entry contains a pointer to the actual memory, which is allocated
with HeapAlloc.

Why bother with "moveable" memory if it adds an extra level of indirection? You're looking at an artifact
from Win16, in which, once upon a time, the operating system actually moved memory blocks around. In
Win32, moveable blocks exist only to support the GlobalReAlloc function, which allocates a new memory
block, copies bytes from the old block to the new, frees the old block, and assigns the new block address
to the existing handle table entry. If nobody called GlobalReAlloc, we could always use HeapAlloc instead of
GlobalAlloc.

Unfortunately, many library functions use HGLOBAL return values and parameters instead of memory
addresses. If such a function returns an HGLOBAL value, you should assume that memory was allocated
with the GMEM_MOVEABLE attribute, and that means you must call the GlobalLock function to get the
memory address. (If the memory was fixed, the GlobalLock call just returns the handle as an address.)
Call GlobalUnlock when you're finished accessing the memory. If you're required to supply an HGLOBAL
parameter, to be absolutely safe you should generate it with a GlobalAlloc(GMEM_MOVEABLE, …) call in
case the called function decides to call GlobalReAlloc and expects the handle value to be unchanged.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Small-Block Heap, the C++ new and delete Operators, and
_heapmin
You can use the Windows HeapAlloc function in your programs, but you're more likely to use the malloc
and free functions supplied by the CRT. If you write C++ code, you won't call these functions directly;
instead, you'll use the new and delete operators, which map directly to malloc and free. If you use new to
allocate a block larger than a certain threshold (480 bytes is the default), the CRT passes the call straight
through to HeapAlloc to allocate memory from a Windows heap created for the CRT. For blocks smaller
than the threshold, the CRT manages a small-block heap, calling VirtualAlloc and VirtualFree as necessary.
Here is the algorithm:

1. Memory is reserved in 4-MB regions.

2. Memory is committed in 64-KB blocks (16 pages).

3. Memory is decommitted 64 KB at a time. As 128 KB becomes free, the last 64 KB is decommitted.

4. A 4-MB region is released when every page in that region has been decommitted.

As you can see, this small-block heap takes care of its own cleanup. The CRT's Windows heap doesn't
automatically decommit and unreserve pages, however. To clean up the larger blocks, you must call the
CRT _heapmin function, which calls the windows HeapCompact function. (Unfortunately, the Windows 95
version of HeapCompact doesn't do anything—all the more reason to use Windows NT.) Once pages are
decommitted, other programs can reuse the corresponding swap file space.

In previous versions of the CRT, the free list pointers were stored inside the heap
pages. This strategy required the malloc function to "touch" (read from the swap file)
many pages to find free space, and this degraded performance. The current system,
which stores the free list in a separate area of memory, is faster and minimizes the
need for third-party heap management software.

If you want to change or access the block size threshold, use the CRT functions _set_sbh_threshold and
_get_sbh_threshold.

A special debug version of malloc, _malloc_dbg, adds debugging information inside allocated memory
blocks. The new operator calls _malloc_dbg when you build an MFC project with _DEBUG defined. Your
program can then detect memory blocks that you forgot to free or that you inadvertently overwrote.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory-Mapped Files
In case you think you don't have enough memory management options already, I'll toss you another one.
Suppose your program needs to read a DIB (device-independent bitmap) file. Your instinct would be to
allocate a buffer of the correct size, open the file, and then call a read function to copy the whole disk file
into the buffer. The Windows memory-mapped file is a more elegant tool for handling this problem,
however. You simply map an address range directly to the file. When the process accesses a memory
page, Windows allocates RAM and reads the data from disk. Here's what the code looks like:

HANDLE hFile = ::CreateFile(strPathname, GENERIC_READ,
 FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
ASSERT(hFile != NULL);
HANDLE hMap = ::CreateFileMapping(hFile, NULL, PAGE_READONLY,
 0, 0, NULL);
ASSERT(hMap != NULL);
LPVOID lpvFile = ::MapViewOfFile(hMap, FILE_MAP_READ,
 0, 0, 0); // Map whole file
DWORD dwFileSize = ::GetFileSize(hFile, NULL); // useful info
// Use the file
::UnmapViewOfFile(lpvFile);
::CloseHandle(hMap);
::CloseHandle(hFile);
Here you're using virtual memory backed by the DIB file. Windows determines the file size, reserves a
corresponding address range, and commits the file's storage as the physical storage for this range. In this
case, lpvFile is the start address. The hMap variable contains the handle for the file mapping object, which
can be shared among processes if desired.

The DIB in the example above is a small file that you could read entirely into a buffer. Imagine a larger file
for which you would normally issue seek commands. A memory-mapped file works for such a file, too,
because of the underlying virtual memory system. RAM is allocated and pages are read when you access
them, and not before.

By default, the entire file is committed when you map it, although it's possible to map
only part of a file.

If two processes share a file mapping object (such as hMap in the sample code above), the file itself is, in
effect, shared memory, but the virtual addresses returned by MapViewOfFile might be different. Indeed,
this is the preferred Win32 method of sharing memory. (Calling the GlobalAlloc function with the
GMEM_SHARE flag doesn't create shared memory as it did in Win16.) If memory sharing is all you want to
do and you don't need a permanent disk file, you can omit the call to CreateFile and pass 0xFFFFFFFF as
the CreateFileMapping hFile parameter. Now the shared memory will be backed by pages in the swap file.
Consult Richter for details on memory-mapped files. The EX35B and EX35C sample programs in Chapter
35 illustrate sharing of memory-mapped files.

If you intend to access only a few random pages of a file mapping object that is backed
by the swap file, you can use a technique that Jeffrey Richter describes in Advanced
Windows under the heading "Sparsely Committed Memory-Mapped Files." In this case,
you call CreateFileMapping with a special flag and then you commit specific address
ranges later with the VirtualAlloc function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might want to look carefully at the Windows message WM_COPYDATA. This
message lets you transfer data between processes in shared memory without having to
deal with the file mapping API. You must send this message rather than post it, which
means the sending process has to wait while the receiving process copies and
processes the data.

Unfortunately, there's no direct support for memory-mapped files or shared memory in MFC. The
CSharedFile class supports only clipboard memory transfers using HGLOBAL handles, so the class isn't as
useful as its name implies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Accessing Resources
Resources are contained inside EXEs and DLLs and thus occupy virtual address space that doesn't change
during the life of the process. This fact makes it easy to read a resource directly. If you need to access a
bitmap, for example, you can get the DIB address with code like this:

LPVOID lpvResource = (LPVOID) ::LoadResource(NULL,
 ::FindResource(NULL, MAKEINTRESOURCE(IDB_REDBLOCKS),
 RT_BITMAP));
The LoadResource function returns an HGLOBAL value, but you can safely cast it to a pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some Tips for Managing Dynamic Memory
The more you use the heap, the more fragmented it gets and the more slowly your program runs. If your
program is supposed to run for hours or days at a time, you have to be careful. It's better to allocate all
the memory you need when your program starts and then free it when the program exits, but that's not
always possible. The CString class is a nuisance because it's constantly allocating and freeing little bits of
memory. Fortunately, MFC developers have recently made some improvements.

Don't forget to call _heapmin every once in a while if your program allocates blocks larger than the small-
block heap threshold. And be careful to remember where heap memory comes from. You'd have a big
problem, for instance, if you called HeapFree on a small-block pointer you got from new.

Be aware that your stack can be as big as it needs to be. Because you no longer have a 64-KB size limit,
you can put large objects on the stack, thereby reducing the need for heap allocations.

As in Win16, your program doesn't run at full speed and then suddenly throw an exception when Windows
runs out of swap space. Your program just slowly grinds to a halt, making your customer unhappy. And
there's not much you can do except try to figure out which program is eating memory and why. Because
the Windows 95 USER and GDI modules still have 16-bit components, there is some possibility of
exhausting the 64-KB heaps that hold GDI objects and window structures. This possibility is pretty remote,
however, and if it happens, it probably indicates a bug in your program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Optimizing Storage for Constant Data
Remember that the code in your program is backed not by the swap file but directly by its EXE and DLL
files. If several instances of your program are running, the same EXE and DLL files will be mapped to each
process's virtual address space. What about constant data? You would want that data to be part of the
program rather than have it copied to another block of address space that's backed by the swap file.

You've got to work a little bit to ensure that constant data gets stored with the program. First consider
string constants, which often permeate your programs. You would think that these would be read-only
data, but guess again. Because you're allowed to write code like this:

char* pch = "test";
*pch = `x';
"test" can't possibly be constant data, and it isn't.

If you want "test" to be a constant, you must declare it as an initialized const static or global variable.
Here's the global definition:

const char g_pch[] = "test";
Now g_pch is stored with the code, but where, specifically? To answer that, you must understand the "data
sections" that the Visual C++ linker generates. If you set the link options to generate a map file, you'll see
a long list of the sections (memory blocks) in your program. Individual sections can be designated for code
or data, and they can be read-only or read/write. The important sections and their characteristics are listed
here.

Name Type Access Contents

.text Code Read-only Program code

.rdata Data Read-only Constant initialized data

.data Data Read/write Nonconstant initialized data

.bss Data Read/write Nonconstant uninitialized data

The .rdata section is part of the EXE file, and that's where the linker puts the g_pch variable. The more
stuff you put in the .rdata section, the better. The use of the const modifier does the trick.

You can put built-in types and even structures in the .rdata section, but you can't put C++ objects there if
they have constructors. If you write a statement like the following one:

const CRect g_rect(0, 0, 100, 100);
the linker puts the object into the .bss section, and it will be backed separately to the swap file for each
process. If you think about it, this makes sense because the compiler must invoke the constructor function
after the program is loaded.

Now suppose you wanted to do the worst possible thing. You'd declare a CString global variable (or static
class data member) like this:

const CString g_str("this is the worst thing I can do");
Now you've got the CString object (which is quite small) in the .bss section, and you've also got a
character array in the .data section, neither of which can be backed by the EXE file. To make matters
worse, when the program starts, the CString class must allocate heap memory for a copy of the
characters. You would be much better off using a const character array instead of a CString object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11
Bitmaps
Without graphics images, Microsoft Windows-based applications would be pretty dull. Some applications
depend on images for their usefulness, but any application can be spruced up with the addition of
decorative clip art from a variety of sources. Windows bitmaps are arrays of bits mapped to display pixels.
That might sound simple, but you have to learn a lot about bitmaps before you can use them to create
professional applications for Windows.

This chapter starts with the "old" way of programming bitmaps—creating the device-dependent GDI
bitmaps that work with a memory device context. You need to know these techniques because many
programmers are still using them and you'll also need to use them on occasion.

Next you'll graduate to the modern way of programming bitmaps—creating device-independent bitmaps
(DIBs). If you use DIBs, you'll have an easier time with colors and with the printer. In some cases you'll
get better performance. The Win32 function CreateDIBSection gives you the benefits of DIBs combined
with all the features of GDI bitmaps.

Finally, you'll learn how to use the MFC CBitmapButton class to put bitmaps on pushbuttons. (Using
CBitmapButton to put bitmaps on pushbuttons has nothing to do with DIBs, but it's a useful technique that
would be difficult to master without an example.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GDI Bitmaps and Device-Independent Bitmaps
There are two kinds of Windows bitmaps: GDI bitmaps and DIBs. GDI bitmap objects are represented by
the Microsoft Foundation Class (MFC) Library version 6.0 CBitmap class. The GDI bitmap object has an
associated Windows data structure, maintained inside the Windows GDI module, that is device-dependent.
Your program can get a copy of the bitmap data, but the bit arrangement depends on the display
hardware. GDI bitmaps can be freely transferred among programs on a single computer, but because of
their device dependency, transferring bitmaps by disk or modem doesn't make sense.

In Win32, you're allowed to put a GDI bitmap handle on the clipboard for transfer to
another process, but behind the scenes Windows converts the device-dependent
bitmap to a DIB and copies the DIB to shared memory. That's a good reason to
consider using DIBs from the start.

DIBs offer many programming advantages over GDI bitmaps. Because a DIB carries its own color
information, color palette management is easier. DIBs also make it easy to control gray shades when
printing. Any computer running Windows can process DIBs, which are usually stored in BMP disk files or as
a resource in your program's EXE or DLL file. The wallpaper background on your monitor is read from a
BMP file when you start Windows. The primary storage format for Microsoft Paint is the BMP file, and Visual
C++ uses BMP files for toolbar buttons and other images. Other graphic interchange formats are available,
such as TIFF, GIF, and JPEG, but only the DIB format is directly supported by the Win32 API.

Color Bitmaps and Monochrome Bitmaps

Now might be a good time to reread the "Windows Color Mapping" section in Chapter 5. As you'll see in
this chapter, Windows deals with color bitmaps a little differently from the way it deals with brush colors.

Many color bitmaps are 16-color. A standard VGA board has four contiguous color planes, with 1
corresponding bit from each plane combining to represent a pixel. The 4-bit color values are set when the
bitmap is created. With a standard VGA board, bitmap colors are limited to the standard 16 colors.
Windows does not use dithered colors in bitmaps.

A monochrome bitmap has only one plane. Each pixel is represented by a single bit that is either off (0) or
on (1). The CDC::SetTextColor function sets the "off" display color, and SetBkColor sets the "on" color.
You can specify these pure colors individually with the Windows RGB macro.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using GDI Bitmaps
A GDI bitmap is simply another GDI object, such as a pen or a font. You must somehow create a bitmap,
and then you must select it into a device context. When you're finished with the object, you must deselect
it and delete it. You know the drill.

There's a catch, though, because the "bitmap" of the display or printer device is effectively the display
surface or the printed page itself. Therefore, you can't select a bitmap into a display device context or a
printer device context. You have to create a special memory device context for your bitmaps, using the
CDC::CreateCompatibleDC function. You must then use the CDC member function StretchBlt or BitBlt to
copy the bits from the memory device context to the "real" device context. These "bit-blitting" functions
are generally called in your view class's OnDraw function. Of course, you mustn't forget to clean up the
memory device context when you're finished.

Loading a GDI Bitmap from a Resource

The easiest way to use a bitmap is to load it from a resource. If you look in ResourceView in the
Workspace window, you'll find a list of the project's bitmap resources. If you select a bitmap and examine
its properties, you'll see a filename.

Here's an example entry in an RC (resource script) file, when viewed by a text editor:

IDB_REDBLOCKS BITMAP DISCARDABLE "res\\Red Blocks.bmp"
IDB_REDBLOCKS is the resource ID, and the file is Red Blocks.bmp in the project's \res subdirectory. (This
is one of the Microsoft Windows 95 wallpaper bitmaps, normally located in the \WINDOWS directory.) The
resource compiler reads the DIB from disk and stores it in the project's RES file. The linker copies the DIB
into the program's EXE file. You know that the Red Blocks bitmap must be in device-independent format
because the EXE can be run with any display board that Windows supports.

The CDC::LoadBitmap function converts a resource-based DIB to a GDI bitmap. Below is the simplest
possible self-contained OnDraw function that displays the Red Blocks bitmap:

CMyView::OnDraw(CDC* pDC)
{
 CBitmap bitmap; // Sequence is important
 CDC dcMemory;
 bitmap.LoadBitmap(IDB_REDBLOCKS);
 dcMemory.CreateCompatibleDC(pDC);
 dcMemory.SelectObject(&bitmap);
 pDC->BitBlt(100, 100, 54, 96, &dcMemory, 0, 0, SRCCOPY);
 // CDC destructor deletes dcMemory; bitmap is deselected
 // CBitmap destructor deletes bitmap
}
The BitBlt function copies the Red Blocks pixels from the memory device context to the display (or printer)
device context. The bitmap is 54 bits wide by 96 bits high, and on a VGA display it occupies a rectangle of
54-by-96 logical units, offset 100 units down and to the right of the upper-left corner of the window's client
area.

The code above works fine for the display. As you'll see in Chapter 19, the application
framework calls the OnDraw function for printing, in which case pDC points to a printer
device context. The bitmap here, unfortunately, is configured specifically for the display
and thus cannot be selected into the printer-compatible memory device context. If you
want to print a bitmap, you should look at the CDib class described later in this
chapter.

The Effect of the Display Mapping Mode

If the display mapping mode in the Red Blocks example is MM_TEXT, each bitmap pixel maps to a display
pixel and the bitmap fits perfectly. If the mapping mode is MM_LOENGLISH, the bitmap size is 0.54-by-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pixel and the bitmap fits perfectly. If the mapping mode is MM_LOENGLISH, the bitmap size is 0.54-by-
0.96 inch, or 52-by-92 pixels for Windows 95, and the GDI must do some bit crunching to make the
bitmap fit. Consequently, the bitmap might not look as good with the MM_LOENGLISH mapping mode.
Calling CDC::SetStretchBltMode with a parameter value of COLORONCOLOR will make shrunken bitmaps
look nicer.

Stretching the Bits

What if we want Red Blocks to occupy a rectangle of exactly 54-by-96 pixels, even though the mapping
mode is not MM_TEXT? The StretchBlt function is the solution. If we replace the BitBlt call with the
following three statements, Red Blocks is displayed cleanly, whatever the mapping mode:

CSize size(54, 96);
pDC->DPtoLP(&size);
pDC->StretchBlt(0, 0, size.cx, -size.cy,
 &dcMemory, 0, 0, 54, 96, SRCCOPY);
With either BitBlt or StretchBlt, the display update is slow if the GDI has to actually stretch or compress
bits. If, as in the case above, the GDI determines that no conversion is necessary, the update is fast.

The EX11A Example

The EX11A example displays a resource-based bitmap in a scrolling view with mapping mode set to
MM_LOENGLISH. The program uses the StretchBlt logic described above, except that the memory device
context and the bitmap are created in the view's OnInitialUpdate member function and last for the life of
the program. Also, the program reads the bitmap size through a call to the CGdiObject member function
GetObject, so it's not using hard-coded values as in the preceding examples.

Here are the steps for building the example:

1. Run AppWizard to produce \vcpp32\ex11a\ex11a. Accept all the default settings but two:
select Single Document, and select the CScrollView view base class, as shown in Chapter 4, for
CEx11aView. The options and the default class names are shown here.

2. Import the Gold Weave bitmap. Choose Resource from Visual C++'s Insert menu. Import the
bitmap Gold Weave.bmp from the \WINDOWS directory. (If your version of Windows doesn't have
this bitmap, load it from this book's companion CD-ROM.) Visual C++ will copy this bitmap file into
your project's \res subdirectory. Assign the ID IDB_GOLDWEAVE, and save the changes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Add the following private data members to the class CEx11aView. Edit the file ex11aView.h
or use ClassView. The bitmap and the memory device context last for the life of the view. The CSize
objects are the source (bitmap) dimensions and the destination (display) dimensions.

CDC* m_pdcMemory;
CBitmap* m_pBitmap;
CSize m_sizeSource, m_sizeDest;

4. Edit the following member functions in the class CEx11aView. Edit the file ex11aView.cpp.
The constructor and destructor do C++ housekeeping for the embedded objects. You want to keep
the constructor as simple as possible because failing constructors cause problems. The
OnInitialUpdate function sets up the memory device context and the bitmap, and it computes
output dimensions that map each bit to a pixel. The OnDraw function calls StretchBlt twice—once by
using the special computed dimensions and once by mapping each bit to a 0.01-by-0.01-inch
square. Add the following boldface code:

CEx11aView::CEx11aView()
{
 m_pdcMemory = new CDC;
 m_pBitmap = new CBitmap;
}

CEx11aView::~CEx11aView()
{
 // cleans up the memory device context and the bitmap
 delete m_pdcMemory; // deselects bitmap
 delete m_pBitmap;
}
void CEx11aView::OnDraw(CDC* pDC)
{
 pDC->SetStretchBltMode(COLORONCOLOR);
 pDC->StretchBlt(20, -20, m_sizeDest.cx, -m_sizeDest.cy,
 m_pdcMemory, 0, 0,
 m_sizeSource.cx, m_sizeSource.cy, SRCCOPY);
 pDC->StretchBlt(350, -20, m_sizeSource.cx, -m_sizeSource.cy,
 m_pdcMemory, 0, 0,
 m_sizeSource.cx, m_sizeSource.cy, SRCCOPY);
}

void CEx11aView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizeLine = CSize(sizeTotal.cx / 100, sizeTotal.cy / 100);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizeTotal, sizeLine);
 BITMAP bm; // Windows BITMAP data structure; see Win32 help
 if (m_pdcMemory->GetSafeHdc() == NULL) {
 CClientDC dc(this);
 OnPrepareDC(&dc); // necessary
 m_pBitmap->LoadBitmap(IDB_GOLDWEAVE);
 m_pdcMemory->CreateCompatibleDC(&dc);
 m_pdcMemory->SelectObject(m_pBitmap);
 m_pBitmap->GetObject(sizeof(bm), &bm);
 m_sizeSource.cx = bm.bmWidth;
 m_sizeSource.cy = bm.bmHeight;
 m_sizeDest = m_sizeSource;
 dc.DPtoLP(&m_sizeDest);
 }
}

5. Build and test the EX11A application. Your screen should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Build and test the EX11A application. Your screen should look like this.

6. Try the Print Preview and Print features. The bitmap prints to scale because the application
framework applies the MM_LOENGLISH mapping mode to the printer device context just as it does
to the display device context. The output looks great in Print Preview mode, but (depending on your
print drivers) the printed output will probably be either blank or microscopic! We'll fix that soon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Bitmaps to Improve the Screen Display
You've seen an example program that displays a bitmap that originated outside the program. Now you'll
see an example program that generates its own bitmap to support smooth motion on the screen. The
principle is simple: you draw on a memory device context with a bitmap selected, and then you zap the
bitmap onto the screen.

The EX11B Example

In the EX05C example in Chapter 5, the user dragged a circle with the mouse. As the circle moved, the
display flickered because the circle was erased and redrawn on every mouse-move message. EX11B uses a
GDI bitmap to correct this problem. The EX05C custom code for mouse message processing carries over
almost intact; most of the new code is in the OnPaint and OnInitialUpdate functions.

In summary, the EX11B OnInitialUpdate function creates a memory device context and a bitmap that are
compatible with the display. The OnPaint function prepares the memory device context for drawing, passes
OnDraw a handle to the memory device context, and copies the resulting bitmap from the memory device
context to the display.

Here are the steps to build EX11B from scratch:

1. Run AppWizard to produce \vcpp32\ex11b\ex11b. Accept all the default settings but two:
select Single Document and select CScrollView view as the base class for CEx11bView. The options
and the default class names are shown here.

2. Use ClassWizard to add CEx11bView message handlers. Add message handlers for the
following messages:

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_MOUSEMOVE

WM_PAINT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Edit the ex11bView.h header file. Add the private data members shown here to the CEx11bView
class:

private:
 const CSize m_sizeEllipse;
 CPoint m_pointTopLeft;
 BOOL m_bCaptured;
 CSize m_sizeOffset;
 CDC* m_pdcMemory;
 CBitmap* m_pBitmap;

4. Code the CEx11bView constructor and destructor in ex11bView.cpp. You need a memory
device context object and a bitmap GDI object. These are constructed in the view's constructor and
destroyed in the view's destructor. Add the following boldface code:

CEx11bView::CEx11bView() : m_sizeEllipse(100, -100),
 m_pointTopLeft(10, -10),
 m_sizeOffset(0, 0)
{
 m_bCaptured = FALSE;
 m_pdcMemory = new CDC;
 m_pBitmap = new CBitmap;
}

CEx11bView::~CEx11bView()
{
 delete m_pBitmap; // already deselected
 delete m_pdcMemory;
}

5. Add code for the OnInitialUpdate function in ex11bView.cpp. The C++ memory device
context and bitmap objects are already constructed. This function creates the corresponding
Windows objects. Both the device context and the bitmap are compatible with the display context
dc, but you must explicitly set the memory device context's mapping mode to match the display
context. You could create the bitmap in the OnPaint function, but the program runs faster if you
create it once here. Add the boldface code shown here:

void CEx11bView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage, sizeLine);
 // creates the memory device context and the bitmap
 if (m_pdcMemory->GetSafeHdc() == NULL) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectMax(0, 0, sizeTotal.cx, -sizeTotal.cy);
 dc.LPtoDP(rectMax);
 m_pdcMemory->CreateCompatibleDC(&dc);
 // makes bitmap same size as display window
 m_pBitmap->CreateCompatibleBitmap(&dc, rectMax.right,
 rectMax.bottom);
 m_pdcMemory->SetMapMode(MM_LOENGLISH);
 }
}

6. Add code for the OnPaint function in ex11bView.cpp. Normally it isn't necessary to map the
WM_PAINT message in your derived view class. The CView version of OnPaint contains the following
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CPaintDC dc(this);
OnPrepareDC(&dc);
OnDraw(&dc);
In this example, you will be using the OnPaint function to reduce screen flicker through the use of a
memory device context. OnDraw is passed this memory device context for the display, and it is
passed the printer device context for printing. Thus, OnDraw can perform tasks common to the
display and to the printer. You don't need to use the bitmap with the printer because the printer
has no speed constraint.

The OnPaint function must perform, in order, the following three steps to prepare the memory
device context for drawing:

Select the bitmap into the memory device context.

Transfer the invalid rectangle (as calculated by OnMouseMove) from the display context to
the memory device context. There is no SetClipRect function, but the CDC::IntersectClipRect
function, when called after the CDC::SelectClipRgn function (with a NULL parameter), has
the same effect. If you don't set the clipping rectangle to the minimum size, the program
runs more slowly.

Initialize the bitmap to the current window background color. The CDC::PatBlt function fills
the specified rectangle with a pattern. In this case, the pattern is the brush pattern for the
current window background. That brush must first be constructed and selected into the
memory device context.

After the memory device context is prepared, OnPaint can call OnDraw with a memory device
context parameter. Then the CDC::BitBlt function copies the updated rectangle from the memory
device context to the display device context. Add the following boldface code:

void CEx11bView::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 OnPrepareDC(&dc);
 CRect rectUpdate;
 dc.GetClipBox(&rectUpdate);
 CBitmap* pOldBitmap = m_pdcMemory->SelectObject(m_pBitmap);
 m_pdcMemory->SelectClipRgn(NULL);
 m_pdcMemory->IntersectClipRect(&rectUpdate);
 CBrush backgroundBrush((COLORREF) ::GetSysColor(COLOR_WINDOW));
 CBrush* pOldBrush = m_pdcMemory->SelectObject(&backgroundBrush);
 m_pdcMemory->PatBlt(rectUpdate.left, rectUpdate.top,
 rectUpdate.Width(), rectUpdate.Height(),
 PATCOPY);
 OnDraw(m_pdcMemory);
 dc.BitBlt(rectUpdate.left, rectUpdate.top,
 rectUpdate.Width(), rectUpdate.Height(),
 m_pdcMemory, rectUpdate.left, rectUpdate.top,
 SRCCOPY);
 m_pdcMemory->SelectObject(pOldBitmap);
 m_pdcMemory->SelectObject(pOldBrush);
}

7. Code the OnDraw function in ex11bView.cpp. Copy the code from ex05cView.cpp. In EX11B,
OnDraw is passed a pointer to a memory device context by the OnPaint function. For printing,
OnDraw is passed a pointer to the printer device context.

8. Copy the mouse message-handling code from ex05cView.cpp. Copy the functions shown
below from ex05cView.cpp to ex11bView.cpp. Be sure to change the functions' class names from
CEx05cView to CEx11bView.

OnLButtonDown

OnLButtonUp

OnMouseMove

9. Change two lines in the OnMouseMove function in ex11bView.cpp. Change the following two

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. Change two lines in the OnMouseMove function in ex11bView.cpp. Change the following two
lines:

InvalidateRect(rectOld, TRUE);
InvalidateRect(rectNew, TRUE);
to

InvalidateRect(rectOld, FALSE);
InvalidateRect(rectNew, FALSE);
If the second CWnd::InvalidateRect parameter is TRUE (the default), Windows erases the
background before repainting the invalid rectangle. That's what you needed in EX05C, but the
background erasure is what causes the flicker. Because the entire invalid rectangle is being copied
from the bitmap, you no longer need to erase the background. The FALSE parameter prevents this
erasure.

10. Build and run the application. Here is the EX11B program output.

Is the circle's movement smoother now? The problem is that the bitmap is only 8-by-10.5 inches,
and if the scrolling window is big enough, the circle goes off the edge. One solution to this problem
is to make the bitmap as big as the largest display.

Windows Animation

EX11B is a crude attempt at Windows animation. What if you wanted to move an angelfish instead of a
circle? Win32 doesn't have an Angelfish function (yet), so you'd have to keep your angelfish in its own
bitmap and use the StretchBlt mask ROP codes to merge the angelfish with the background. You'd
probably keep the background in its own bitmap, too. These techniques are outside the scope of this book.
If you are interested in learning more about Windows Animation, run out and get Nigel Thompson's
Animation Techniques in Win32 (Microsoft Press, 1995). After you read it, you can get rich writing video
games for Windows!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DIBs and the CDib Class
There's an MFC class for GDI bitmaps (CBitmap), but there's no MFC class for DIBs. Don't worry—I'm
giving you one here. It's a complete rewrite of the CDib class from the early editions of this book (prior to
the fourth edition), and it takes advantage of Win32 features such as memory-mapped files, improved
memory management, and DIB sections. It also includes palette support. Before you examine the CDib
class, however, you need a little background on DIBs.

A Few Words About Palette Programming

Windows palette programming is quite complex, but you've got to deal with it if you expect your users to
run their displays in the 8-bpp (bits per pixel) mode—and many users will if they have video cards with 1
MB or less of memory.

Suppose you're displaying a single DIB in a window. First you must create a logical palette, a GDI object
that contains the colors in the DIB. Then you must "realize" this logical palette into the hardware system
palette, a table of the 256 colors the video card can display at that instant. If your program is the
foreground program, the realization process tries to copy all your colors into the system palette, but it
doesn't touch the 20 standard Windows colors. For the most part, your DIB looks just like you want it to
look.

But what if another program is the foreground program, and what if that program has a forest scene DIB
with 236 shades of green? Your program still realizes its palette, but something different happens this
time. Now the system palette won't change, but Windows sets up a new mapping between your logical
palette and the system palette. If your DIB contains a neon pink color, for example, Windows maps it to
the standard red color. If your program forgot to realize its palette, your neon pink stuff would turn green
when the other program went active.

The forest scene example is extreme because we assumed that the other program grabbed 236 colors. If
instead the other program realized a logical palette with only 200 colors, Windows would let your program
load 36 of its own colors, including, one hopes, neon pink.

So when is a program supposed to realize its palette? The Windows message WM_PALETTECHANGED is
sent to your program's main window whenever a program, including yours, realizes its palette. Another
message, WM_QUERYNEWPALETTE, is sent whenever one of the windows in your program gets the input
focus. Your program should realize its palette in response to both these messages (unless your program
generated the message). These palette messages are not sent to your view window, however. You must
map them in your application's main frame window and then notify the view. Chapter 13 discusses the
relationship between the frame window and the view, and Chapter 26 contains a complete palette-aware
MDI application (EX26A).

You call the Win32 RealizePalette function to perform the realization, but first you must call SelectPalette
to select your DIB's logical palette into the device context. SelectPalette has a flag parameter that you
normally set to FALSE in your WM_PALETTECHANGED and WM_QUERYNEWPALETTE handlers. This flag
ensures that your palette is realized as a foreground palette if your application is indeed running in the
foreground. If you use a TRUE flag parameter here, you can force Windows to realize the palette as though
the application were in the background.

You must also call SelectPalette for each DIB that you display in your OnDraw function. This time you call it
with a TRUE flag parameter. Things do get complicated if you're displaying several DIBs, each with its own
palette. Basically, you've got to choose a palette for one of the DIBs and realize it (by selecting it with the
FALSE parameter) in the palette message handlers. The chosen DIB will end up looking better than the
other DIBs. There are ways of merging palettes, but it might be easier to go out and buy more video
memory.

DIBs, Pixels, and Color Tables

A DIB contains a two-dimensional array of elements called pixels. In many cases, each DIB pixel will be
mapped to a display pixel, but the DIB pixel might be mapped to some logical area on the display,
depending on the mapping mode and the display function stretch parameters.

A pixel consists of 1, 4, 8, 16, 24, or 32 contiguous bits, depending on the color resolution of the DIB. For
16-bpp, 24-bpp, and 32-bpp DIBs, each pixel represents an RGB color. A pixel in a 16-bpp DIB typically
contains 5 bits each for red, green, and blue values; a pixel in a 24-bpp DIB has 8 bits for each color
value. The 16-bpp and 24-bpp DIBs are optimized for video cards that can display 65,536 or 16.7 million
simultaneous colors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

simultaneous colors.

A 1-bpp DIB is a monochrome DIB, but these DIBs don't have to be black and white—they can contain any
two colors chosen from the color table that is built into each DIB. A monochrome bitmap has two 32-bit
color table entries, each containing 8 bits for red, green, and blue values plus another 8 bits for flags. Zero
(0) pixels use the first entry, and one (1) pixel uses the second. Whether you have a 65,536-color video
card or a 16.7-million-color card, Windows can display the two colors directly. (Windows truncates 8-bits-
per-color values to 5 bits for 65,536-color displays.) If your video card is running in 256-color palettized
mode, your program can adjust the system palette to load the two specified colors.

Eight-bpp DIBs are quite common. Like a monochrome DIB, an 8-bpp DIB has a color table, but the color
table has 256 (or fewer) 32-bit entries. Each pixel is an index into this color table. If you have a palettized
video card, your program can create a logical palette from the 256 entries. If another program (running in
the foreground) has control of the system palette, Windows does its best to match your logical palette
colors to the system palette.

What if you're trying to display a 24-bpp DIB with a 256-color palettized video card? If the DIB author was
nice, he or she included a color table containing the most important colors in the DIB. Your program can
build a logical palette from that table, and the DIB will look fine. If the DIB has no color table, use the
palette returned by the Win32 CreateHalftonePalette function; it's better than the 20 standard colors you'd
get with no palette at all. Another option is to analyze the DIB to identify the most important colors, but
you can buy a utility to do that.

The Structure of a DIB Within a BMP File

You know that the DIB is the standard Windows bitmap format and that a BMP file contains a DIB. So let's
look inside a BMP file to see what's there. Figure 11-1 shows a layout for a BMP file.

Figure 11-1. The layout for a BMP file.

The BITMAPFILEHEADER structure contains the offset to the image bits, which you can use to compute the
combined size of the BITMAPINFOHEADER structure and the color table that follows. The
BITMAPFILEHEADER structure contains a file size member, but you can't depend on it because you don't
know whether the size is measured in bytes, words, or double words.

The BITMAPINFOHEADER structure contains the bitmap dimensions, the bits per pixel, compression
information for both 4-bpp and 8-bpp bitmaps, and the number of color table entries. If the DIB is
compressed, this header contains the size of the pixel array; otherwise, you can compute the size from the
dimensions and the bits per pixel. Immediately following the header is the color table (if the DIB has a
color table). The DIB image comes after that. The DIB image consists of pixels arranged by column within
rows, starting with the bottom row. Each row is padded to a 4-byte boundary.

The only place you'll find a BITMAPFILEHEADER structure, however, is in a BMP file. If you get a DIB from
the clipboard, for example, there will not be a file header. You can always count on the color table to follow
the BITMAPINFOHEADER structure, but you can't count on the image to follow the color table. If you're

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the BITMAPINFOHEADER structure, but you can't count on the image to follow the color table. If you're
using the CreateDIBSection function, for example, you must allocate the bitmap info header and color
table and then let Windows allocate the image somewhere else.

This chapter and all the associated code are specific to Windows DIBs. There's also a
well-documented variation of the DIB format for OS/2. If you need to process these
OS/2 DIBs, you'll have to modify the CDib class.

DIB Access Functions

Windows supplies some important DIB access functions. None of these functions is wrapped by MFC, so
you'll need to refer to the online Win32 documentation for details. Here's a summary:

SetDIBitsToDevice—This function displays a DIB directly on the display or printer. No scaling
occurs; one bitmap bit corresponds to one display pixel or one printer dot. This scaling restriction
limits the function's usefulness. The function doesn't work like BitBlt because BitBlt uses logical
coordinates.

StretchDIBits—This function displays a DIB directly on the display or printer in a manner similar to
that of StretchBlt.

GetDIBits—This function constructs a DIB from a GDI bitmap, using memory that you allocate. You
have some control over the format of the DIB because you can specify the number of color bits per
pixel and the compression. If you are using compression, you have to call GetDIBits twice—once to
calculate the memory needed and again to generate the DIB data.

CreateDIBitmap—This function creates a GDI bitmap from a DIB. As for all these DIB functions,
you must supply a device context pointer as a parameter. A display device context will do; you
don't need a memory device context.

CreateDIBSection—This Win32 function creates a special kind of DIB known as a DIB section. It
then returns a GDI bitmap handle. This function gives you the best features of DIBs and GDI
bitmaps. You have direct access to the DIB's memory, and with the bitmap handle and a memory
device context, you can call GDI functions to draw into the DIB.

The CDib Class

If DIBs look intimidating, don't worry. The CDib class makes DIB programming easy. The best way to get
to know the CDib class is to look at the public member functions and data members. Figure 11-2 shows the
CDib header file. Consult the ex11c folder on the companion CD-ROM to see the implementation code.

CDIB.H

#ifndef _INSIDE_VISUAL_CPP_CDIB
#define _INSIDE_VISUAL_CPP_CDIB

class CDib : public CObject
{
 enum Alloc {noAlloc, crtAlloc,
 heapAlloc}; // applies to BITMAPINFOHEADER
 DECLARE_SERIAL(CDib)
public:
 LPVOID m_lpvColorTable;
 HBITMAP m_hBitmap;
 LPBYTE m_lpImage; // starting address of DIB bits
 LPBITMAPINFOHEADER m_lpBMIH; // buffer containing the
 // BITMAPINFOHEADER
private:
 HGLOBAL m_hGlobal; // for external windows we need to free;
 // could be allocated by this class or
 // allocated externally
 Alloc m_nBmihAlloc;
 Alloc m_nImageAlloc;
 DWORD m_dwSizeImage; // of bits—not BITMAPINFOHEADER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DWORD m_dwSizeImage; // of bits—not BITMAPINFOHEADER
 // or BITMAPFILEHEADER
 int m_nColorTableEntries;

 HANDLE m_hFile;
 HANDLE m_hMap;
 LPVOID m_lpvFile;
 HPALETTE m_hPalette;
public:
 CDib();
 CDib(CSize size, int nBitCount); // builds BITMAPINFOHEADER
 ~CDib();
 int GetSizeImage() {return m_dwSizeImage;}
 int GetSizeHeader()
 {return sizeof(BITMAPINFOHEADER) +
 sizeof(RGBQUAD) * m_nColorTableEntries;}
 CSize GetDimensions();
 BOOL AttachMapFile(const char* strPathname, BOOL bShare = FALSE);
 BOOL CopyToMapFile(const char* strPathname);
 BOOL AttachMemory(LPVOID lpvMem, BOOL bMustDelete = FALSE,
 HGLOBAL hGlobal = NULL);
 BOOL Draw(CDC* pDC, CPoint origin,
 CSize size); // until we implement CreateDibSection
 HBITMAP CreateSection(CDC* pDC = NULL);
 UINT UsePalette(CDC* pDC, BOOL bBackground = FALSE);
 BOOL MakePalette();
 BOOL SetSystemPalette(CDC* pDC);
 BOOL Compress(CDC* pDC,
 BOOL bCompress = TRUE); // FALSE means decompress
 HBITMAP CreateBitmap(CDC* pDC);
 BOOL Read(CFile* pFile);
 BOOL ReadSection(CFile* pFile, CDC* pDC = NULL);
 BOOL Write(CFile* pFile);
 void Serialize(CArchive& ar);
 void Empty();
private:
 void DetachMapFile();
 void ComputePaletteSize(int nBitCount);
 void ComputeMetrics();
};
#endif // _INSIDE_VISUAL_CPP_CDIB

Figure 11-2. The CDib class declaration.

Here's a rundown of the CDib member functions, starting with the constructors and the destructor:

Default constructor—You'll use the default constructor in preparation for loading a DIB from a file
or for attaching to a DIB in memory. The default constructor creates an empty DIB object.

DIB section constructor—If you need a DIB section that is created by the CreateDIBSection
function, use this constructor. Its parameters determine DIB size and number of colors. The
constructor allocates info header memory but not image memory. You can also use this constructor
if you need to allocate your own image memory.

Parameter Description

size CSize object that contains the width and height of the DIB

nBitCount Bits per pixel; should be 1, 4, 8, 16, 24, or 32

Destructor—The CDib destructor frees all allocated DIB memory.

AttachMapFile—This function opens a memory-mapped file in read mode and attaches it to the
CDib object. The return is immediate because the file isn't actually read into memory until it is
used. When you access the DIB, however, a delay might occur as the file is paged in. The
AttachMapFile function releases existing allocated memory and closes any previously attached
memory-mapped file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

memory-mapped file.

Parameter Description

strPathname Pathname of the file to be mapped

bShare Flag that is TRUE if the file is to be opened in share mode; the default value is
FALSE

Return
value

TRUE if successful

AttachMemory—This function associates an existing CDib object with a DIB in memory. This
memory could be in the program's resources, or it could be clipboard or OLE data object memory.
Memory might have been allocated from the CRT heap with the new operator, or it might have been
allocated from the Windows heap with GlobalAlloc.

Parameter Description

lpvMem Address of the memory to be attached

bMustDelete Flag that is TRUE if the CDib class is responsible for deleting this memory; the
default value is FALSE

hGlobal If memory was obtained with a call to the Win32 GlobalAlloc function, the CDib
object needs to keep the handle in order to free it later, assuming that bMustDelete
was set to TRUE

Return
value

TRUE if successful

Compress—This function regenerates the DIB as a compressed or an uncompressed DIB.
Internally, it converts the existing DIB to a GDI bitmap and then makes a new compressed or an
uncompressed DIB. Compression is supported only for 4-bpp and 8-bpp DIBs. You can't compress a
DIB section.

Parameter Description

pDC Pointer to the display device context

bCompress TRUE (default) to compress the DIB; FALSE to uncompress it

Return value TRUE if successful

CopyToMapFile—This function creates a new memory-mapped file and copies the existing CDib
data to the file's memory, releasing any previously allocated memory and closing any existing
memory-mapped file. The data isn't actually written to disk until the new file is closed, but that
happens when the CDib object is reused or destroyed.

Parameter Description

strPathname Pathname of the file to be mapped

Return value TRUE if successful

CreateBitmap—This function creates a GDI bitmap from an existing DIB and is called by the
Compress function. Don't confuse this function with CreateSection, which generates a DIB and
stores the handle.

Parameter Description

pDC Pointer to the display or printer device context

Return value Handle to a GDI bitmap—NULL if unsuccessful. This handle is not stored as a public

data member.

CreateSection—This function creates a DIB section by calling the Win32 CreateDIBSection
function. The image memory will be uninitialized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function. The image memory will be uninitialized.

Parameter Description

pDC Pointer to the display or printer device context

Return
value

Handle to a GDI bitmap—NULL if unsuccessful. This handle is also stored as a public
data member.

Draw—This function outputs the CDib object to the display (or to the printer) with a call to the
Win32 StretchDIBits function. The bitmap will be stretched as necessary to fit the specified
rectangle.

Parameter Description

pDC Pointer to the display or printer device context that will receive the DIB image

origin CPoint object that holds the logical coordinates at which the DIB will be displayed

size CSize object that represents the display rectangle's width and height in logical units

Return value TRUE if successful

Empty—This function empties the DIB, freeing allocated memory and closing the map file if
necessary.
GetDimensions—This function returns the width and height of a DIB in pixels.

Parameter Description

Return value CSize object

GetSizeHeader—This function returns the number of bytes in the info header and color table
combined.

Parameter Description

Return value 32-bit integer

GetSizeImage—This function returns the number of bytes in the DIB image (excluding the info
header and the color table).

Parameter Description

Return value 32-bit integer

MakePalette—If the color table exists, this function reads it and creates a Windows palette. The
HPALETTE handle is stored in a data member.

Parameter Description

Return value TRUE if successful

Read—This function reads a DIB from a file into the CDib object. The file must have been
successfully opened. If the file is a BMP file, reading starts from the beginning of the file. If the file
is a document, reading starts from the current file pointer.

Parameter Description

pFile Pointer to a CFile object; the corresponding disk file contains the DIB

Return value TRUE if successful

ReadSection—This function reads the info header from a BMP file, calls CreateDIBSection to
allocate image memory, and then reads the image bits from the file into that memory. Use this
function if you want to read a DIB from disk and then edit it by calling GDI functions. You can write
the DIB back to disk with Write or CopyToMapFile.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the DIB back to disk with Write or CopyToMapFile.

Parameter Description

pFile Pointer to a CFile object; the corresponding disk file contains the DIB

pDC Pointer to the display or printer device context

Return value TRUE if successful

Serialize—Serialization is covered in Chapter 17. The CDib::Serialize function, which overrides the
MFC CObject::Serialize function, calls the Read and Write member functions. See the Microsoft
Foundation Classes and Templates section of the online help for a description of the parameters.
SetSystemPalette—If you have a 16-bpp, 24-bpp, or 32-bpp DIB that doesn't have a color table,
you can call this function to create for your CDib object a logical palette that matches the palette
returned by the CreateHalftonePalette function. If your program is running on a 256-color palettized
display and you don't call SetSystemPalette, you'll have no palette at all, and only the 20 standard
Windows colors will appear in your DIB.

Parameter Description

pDC Pointer to the display context

Return value TRUE if successful

UsePalette—This function selects the CDib object's logical palette into the device context and then
realizes the palette. The Draw member function calls UsePalette prior to painting the DIB.

Parameter Description

pDC Pointer to the display device context for realization

bBackground If this flag is FALSE (the default value) and the application is running in the
foreground, Windows realizes the palette as the foreground palette (copies as many
colors as possible into the system palette). If this flag is TRUE, Windows realizes the
palette as a background palette (maps the logical palette to the system palette as
best it can).

Return value Number of entries in the logical palette mapped to the

system palette. If the function fails, the return value is GDI_ERROR.

Write—This function writes a DIB from the CDib object to a file. The file must have been
successfully opened or created.

Parameter Description

pFile Pointer to a CFile object; the DIB will be

written to the corresponding disk file.

Return value TRUE if successful

For your convenience, four public data members give you access to the DIB memory and to the DIB
section handle. These members should give you a clue about the structure of a CDib object. A CDib is just
a bunch of pointers to heap memory. That memory might be owned by the DIB or by someone else.
Additional private data members determine whether the CDib class frees the memory.

DIB Display Performance

Optimized DIB processing is now a major feature of Windows. Modern video cards have frame buffers that
conform to the standard DIB image format. If you have one of these cards, your programs can take
advantage of the new Windows DIB engine, which speeds up the process of drawing directly from DIBs. If
you're still running in VGA mode, however, you're out of luck; your programs will still work, but not as fast.

If you're running Windows in 256-color mode, your 8-bpp bitmaps will be drawn very quickly, either with
StretchBlt or with StretchDIBits. If, however, you are displaying 16-bpp or 24-bpp bitmaps, those drawing
functions will be too slow. Your bitmaps will appear more quickly in this situation if you create a separate
8-bbp GDI bitmap and then call StretchBlt. Of course, you must be careful to realize the correct palette
prior to creating the bitmap and prior to drawing it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prior to creating the bitmap and prior to drawing it.

Here's some code that you might insert just after loading your CDib object from a BMP file:

// m_hBitmap is a data member of type HBITMAP
// m_dcMem is a memory device context object of class CDC
m_pDib->UsePalette(&dc);
m_hBitmap = m_pDib->CreateBitmap(&dc); // could be slow
::SelectObject(m_dcMem.GetSafeHdc(), m_hBitmap);
Here is the code that you use in place of CDib::Draw in your view's OnDraw member function:

m_pDib->UsePalette(pDC); // could be in palette msg handler

CSize sizeDib = m_pDib->GetDimensions();

pDC->StretchBlt(0, 0, sizeDib.cx, sizeDib.cy, &m_dcMem,
 0, 0, sizeToDraw.cx, sizeToDraw.cy, SRCCOPY);

Don't forget to call DeleteObject for m_hBitmap when you're done with it.

The EX11C Example

Now you'll put the CDib class to work in an application. The EX11C program displays two DIBs, one from a
resource and the other loaded from a BMP file that you select at runtime. The program manages the
system palette and displays the DIBs correctly on the printer. Compare the EX11C code with the GDI
bitmap code in EX11A. Notice that you're not dealing with a memory device context and all the GDI
selection rules!

Following are the steps to build EX11C. It's a good idea to type in the view class code, but you'll want to
use the cdib.h and cdib.cpp files from the companion CD-ROM.

1. Run AppWizard to produce \vcpp32\ex11c\ex11c. Accept all the defaults but two: select
Single Document and select the CScrollView view base class for CEx11cView. The options and the
default class names are shown here.

2. Import the Red Blocks bitmap. Choose Resource from Visual C++'s Insert menu. Import Red

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Import the Red Blocks bitmap. Choose Resource from Visual C++'s Insert menu. Import Red
Blocks.bmp from the \WINDOWS directory. (If your version of Windows doesn't include this bitmap,
load it from the companion CD-ROM.) Visual C++ will copy this bitmap file into your project's \res
subdirectory. Assign IDB_REDBLOCKS as the ID, and save the changes.

3. Integrate the CDib class with this project. If you've created this project from scratch, copy the
cdib.h and cdib.cpp files from \vcpp32\ex11c on the companion CD-ROM. Simply copying the files
to disk isn't enough; you must also add the CDib files to the project. Choose Add To Project from
Visual C++'s Project menu, and then choose Files. Select cdib.h and cdib.cpp, and click the OK
button. If you now switch to ClassView in the Workspace window, you will see the class CDib and all
of its member variables and functions.

4. Add two private CDib data members to the class CEx11cView. In the ClassView window,
right-click the CEx11cView class. Choose Add Member Variable from the resulting pop-up menu,
and then add the m_dibResource member as shown in the following illustration.

Add m_dibFile in the same way. The result should be two data members at the bottom of the
header file:

CDib m_dibFile;
CDib m_dibResource;
ClassView also adds this statement at the top of the ex11cView.h file:

#include "cdib.h" // Added by ClassView
5. Edit the OnInitialUpdate member function in ex11cView.cpp. This function sets the mapping

mode to MM_HIMETRIC and loads the m_dibResource object directly from the IDB_REDBLOCKS
resource. Note that we're not calling LoadBitmap to load a GDI bitmap as we did in EX11A. The
CDib::AttachMemory function connects the object to the resource in your EXE file. Add the following
boldface code:

void CEx11cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(30000, 40000); // 30-by-40 cm
 CSize sizeLine = CSize(sizeTotal.cx / 100, sizeTotal.cy / 100);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizeTotal, sizeLine);
 LPVOID lpvResource = (LPVOID) ::LoadResource(NULL,
 ::FindResource(NULL, MAKEINTRESOURCE(IDB_REDBLOCKS),
 RT_BITMAP));
 m_dibResource.AttachMemory(lpvResource); // no need for
 // ::LockResource
 CClientDC dc(this);
 TRACE("bits per pixel = %d\n", dc.GetDeviceCaps(BITSPIXEL));
}

6. Edit the OnDraw member function in the file ex11cView.cpp. This code calls CDib::Draw for
each of the DIBs. The UsePalette calls should really be made by message handlers for the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages. These messages are hard to deal
with because they don't go to the view directly, so we'll take a shortcut. Add the following boldface
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx11cView::OnDraw(CDC* pDC)
{
 BeginWaitCursor();
 m_dibResource.UsePalette(pDC); // should be in palette
 m_dibFile.UsePalette(pDC); // message handlers, not here
 pDC->TextOut(0, 0,
 "Press the left mouse button here to load a file.");
 CSize sizeResourceDib = m_dibResource.GetDimensions();
 sizeResourceDib.cx *= 30;
 sizeResourceDib.cy *= -30;
 m_dibResource.Draw(pDC, CPoint(0, -800), sizeResourceDib);
 CSize sizeFileDib = m_dibFile.GetDimensions();
 sizeFileDib.cx *= 30;
 sizeFileDib.cy *= -30;
 m_dibFile.Draw(pDC, CPoint(1800, -800), sizeFileDib);
 EndWaitCursor();
}

7. Map the WM_LBUTTONDOWN message in the CEx11cView class. Edit the file ex11cView.cpp.
OnLButtonDown contains code to read a DIB in two different ways. If you leave the
MEMORY_MAPPED_FILES definition intact, the AttachMapFile code is activated to read a memory-
mapped file. If you comment out the first line, the Read call is activated. The SetSystemPalette call
is there for DIBs that don't have a color table. Add the following boldface code:

#define MEMORY_MAPPED_FILES
void CEx11cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CFileDialog dlg(TRUE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) {
 return;
 }
#ifdef MEMORY_MAPPED_FILES
 if (m_dibFile.AttachMapFile(dlg.GetPathName(),
 TRUE) == TRUE) { // share
 Invalidate();
 }
 #else
 CFile file;
 file.Open(dlg.GetPathName(), CFile::modeRead);
 if (m_dibFile.Read(&file) == TRUE) {
 Invalidate();
 }
#endif // MEMORY_MAPPED_FILES
 CClientDC dc(this);
 m_dibFile.SetSystemPalette(&dc);
}

8. Build and run the application. The bitmaps directory on the companion CD-ROM contains several
interesting bitmaps. The Chicago.bmp file is an 8-bpp DIB with 256-color table entries; the
forest.bmp and clouds.bmp files are also 8-bpp, but they have smaller color tables. The
balloons.bmp is a 24-bpp DIB with no color table. Try some other BMP files if you have them. Note
that Red Blocks is a 16-color DIB that uses standard colors, which are always included in the
system palette.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with DIBs
Each new version of Windows offers more DIB programming choices. Both Windows 95 and Microsoft
Windows NT 4.0 provide the LoadImage and DrawDibDraw functions, which are useful alternatives to the
DIB functions already described. Experiment with these functions to see if they work well in your
applications.

The LoadImage Function

The LoadImage function can read a bitmap directly from a disk file, returning a DIB section handle. It can
even process OS/2 format DIBs. Suppose you wanted to add an ImageLoad member function to CDib that
would work like ReadSection. This is the code you would add to cdib.cpp:

BOOL CDib::ImageLoad(const char* lpszPathName, CDC* pDC)
{
 Empty();
 m_hBitmap = (HBITMAP) ::LoadImage(NULL, lpszPathName,
 IMAGE_BITMAP, 0, 0,
 LR_LOADFROMFILE | LR_CREATEDIBSECTION | LR_DEFAULTSIZE);
 DIBSECTION ds;
 VERIFY(::GetObject(m_hBitmap, sizeof(ds), &ds) == sizeof(ds));
 // Allocate memory for BITMAPINFOHEADER
 // and biggest possible color table
 m_lpBMIH = (LPBITMAPINFOHEADER) new
 char[sizeof(BITMAPINFOHEADER) + 256 * sizeof(RGBQUAD)];
 memcpy(m_lpBMIH, &ds.dsBmih, sizeof(BITMAPINFOHEADER));
 TRACE("CDib::LoadImage, biClrUsed = %d, biClrImportant = %d\n",
 m_lpBMIH->biClrUsed, m_lpBMIH->biClrImportant);
 ComputeMetrics(); // sets m_lpvColorTable
 m_nBmihAlloc = crtAlloc;
 m_lpImage = (LPBYTE) ds.dsBm.bmBits;
 m_nImageAlloc = noAlloc;
 // Retrieve the DIB section's color table
 // and make a palette from it
 CDC memdc;
 memdc.CreateCompatibleDC(pDC);
 ::SelectObject(memdc.GetSafeHdc(), m_hBitmap);
 UINT nColors = ::GetDIBColorTable(memdc.GetSafeHdc(), 0, 256,
 (RGBQUAD*) m_lpvColorTable);
 if (nColors != 0) {
 ComputePaletteSize(m_lpBMIH->biBitCount);
 MakePalette();
 }
 // memdc deleted and bitmap deselected
 return TRUE;
}
Note that this function extracts and copies the BITMAPINFOHEADER structure and sets the values of the
CDib pointer data members. You must do some work to extract the palette from the DIB section, but the
Win32 GetDIBColorTable function gets you started. It's interesting that GetDIBColorTable can't tell you
how many palette entries a particular DIB uses. If the DIB uses only 60 entries, for example,
GetDIBColorTable generates a 256-entry color table with the last 196 entries set to 0.

The DrawDibDraw Function

Windows includes the Video for Windows (VFW) component, which is supported by Visual C++. The VFW
DrawDibDraw function is an alternative to StretchDIBits. One advantage of DrawDibDraw is its ability to
use dithered colors. Another is its increased speed in drawing a DIB with a bpp value that does not match
the current video mode. The main disadvantage is the need to link the VFW code into your process at
runtime.

Shown below is a DrawDib member function for the CDib class that calls DrawDibDraw:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CDib::DrawDib(CDC* pDC, CPoint origin, CSize size)
{
 if (m_lpBMIH == NULL) return FALSE;
 if (m_hPalette != NULL) {
 ::SelectPalette(pDC->GetSafeHdc(), m_hPalette, TRUE);
 }
 HDRAWDIB hdd = ::DrawDibOpen();
 CRect rect(origin, size);
 pDC->LPtoDP(rect); // Convert DIB's rectangle
 // to MM_TEXT coordinates
 rect -= pDC->GetViewportOrg();
 int nMapModeOld = pDC->SetMapMode(MM_TEXT);
 ::DrawDibDraw(hdd, pDC->GetSafeHdc(), rect.left, rect.top,
 rect.Width(), rect.Height(), m_lpBMIH, m_lpImage, 0, 0,
 m_lpBMIH->biWidth, m_lpBMIH->biHeight, 0);
 pDC->SetMapMode(nMapModeOld);
 VERIFY(::DrawDibClose(hdd));
 return TRUE;
}
Note that DrawDibDraw needs MM_TEXT coordinates and the MM_TEXT mapping mode. Thus, logical
coordinates must be converted not to device coordinates but to pixels with the origin at the top left of the
scrolling window.

To use DrawDibDraw, your program needs an #include<vfw.h> statement, and you must add vfw32.lib to
the list of linker input files. DrawDibDraw might assume the bitmap it draws is in read/write memory, a
fact to keep in mind if you map the memory to the BMP file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Putting Bitmaps on Pushbuttons
The MFC library makes it easy to display a bitmap (instead of text) on a pushbutton. If you were to
program this from scratch, you would set the Owner Draw property for your button and then write a
message handler in your dialog class that would paint a bitmap on the button control's window. If you use
the MFC CBitmapButton class instead, you end up doing a lot less work, but you have to follow a kind of
"cookbook" procedure. Don't worry too much about how it all works (but be glad that you don't have to
write much code!).

There's also another way to put bitmaps on buttons. See Chapter 36, for a description
of the CButton::SetBitmap function, which associates a single bitmap with a button.

To make a long story short, you lay out your dialog resource as usual with unique text captions for the
buttons you designate for bitmaps. Next you add some bitmap resources to your project, and you identify
those resources by name rather than by numeric ID. Finally you add some CBitmapButton data members
to your dialog class, and you call the AutoLoad member function for each one, which matches a bitmap
name to a button caption. If the button caption is "Copy", you add two bitmaps: "COPYU" for the up state
and "COPYD" for the down state. By the way, you must still set the button's Owner Draw property. (This
will all make more sense when you write a program).

If you look at the MFC source code for the CBitmapButton class, you'll see that the
bitmap is an ordinary GDI bitmap painted with a BitBlt call. Thus, you can't expect any
palette support. That's not often a problem because bitmaps for buttons are usually 16-
color bitmaps that depend on standard VGA colors.

The EX11D Example

Here are the steps for building EX11D:

1. Run AppWizard to produce \vcpp32\ex11d\ex11d. Accept all the defaults but three: select
Single Document, deselect Printing And Print Preview, and select Context-Sensitive Help. The
options and the default class names are shown in the illustration below.

The Context-Sensitive Help option was selected for one reason only: it causes AppWizard to copy
some bitmap files into your project's \hlp subdirectory. These bitmaps are supposed to be bound
into your project's help file, but we won't study help files until Chapter 21.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Modify the project's IDD_ABOUTBOX dialog resource. It's too much hassle to create a new
dialog resource for a few buttons, so we'll use the About dialog that AppWizard generates for every
project. Add three pushbuttons with captions, as shown below, accepting the default IDs
IDC_BUTTON1, IDC_BUTTON2, and IDC_BUTTON3. The size of the buttons isn't important because
the framework adjusts the button size at runtime to match the bitmap size.

Select the Owner Draw property for all three buttons.

3. Import three bitmaps from the project's \hlp subdirectory. Choose Resource from Visual
C++'s Insert menu, and then click the Import button. Start with EditCopy.bmp, as shown below.

Assign the name "COPYU" as shown.

Be sure to use quotes around the name in order to identify the resource by name rather than by ID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure to use quotes around the name in order to identify the resource by name rather than by ID.
This is now the bitmap for the button's up state. Close the bitmap window and, from the
ResourceView window, use the clipboard (or drag and drop) to make a copy of the bitmap. Rename
the copy "COPYD" (down state), and then edit this bitmap. Choose Invert Colors from the Image
menu. There are other ways of making a variation of the up image, but inversion is the quickest.

Repeat the steps listed above for the EditCut and EditPast bitmaps. When you're finished, you
should have the following bitmap resources in your project.

Resource Name Original File Invert Colors

"COPYU" EditCopy.bmp no

"COPYD" EditCopy.bmp yes

"CUTU" EditCut.bmp no

"CUTD" EditCut.bmp yes

"PASTEU" EditPast.bmp no

"PASTED" EditPast.bmp yes

4. Edit the code for the CAboutDlg class. Both the declaration and the implementation for this
class are contained in the ex11d.cpp file. First add the three private data members shown here in
the class declaration:

CBitmapButton m_editCopy;
CBitmapButton m_editCut;
CBitmapButton m_editPaste;
Then you use ClassWizard to map the WM_INITDIALOG message in the dialog class. (Be sure that
the CAboutDlg class is selected.) The message handler (actually a virtual function) is coded as
follows:

BOOL CAboutDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 VERIFY(m_editCopy.AutoLoad(IDC_BUTTON1, this));
 VERIFY(m_editCut.AutoLoad(IDC_BUTTON2, this));
 VERIFY(m_editPaste.AutoLoad(IDC_BUTTON3, this));
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}
The AutoLoad function connects each button with the two matching resources. The VERIFY macro is
an MFC diagnostic aid that displays a message box if you didn't code the bitmap names correctly.

5. Edit the OnDraw function in ex11dView.cpp. Replace the AppWizard-generated code with the
following line:

pDC->TextOut(0, 0, "Choose About from the Help menu.");
6. Build and test the application. When the program starts, choose About from the Help menu and

observe the button behavior. The image below shows the CUT button in the down state.

Note that bitmap buttons send BN_CLICKED notification messages just as ordinary buttons do.
ClassWizard can, of course, map those messages in your dialog class.

Going Further with Bitmap Buttons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with Bitmap Buttons

You've seen bitmaps for the buttons' up and down states. The CBitmapButton class also supports bitmaps
for the focused and disabled states. For the Copy button, the focused bitmap name would be "COPYF", and
the disabled bitmap name would be "COPYX". If you want to test the disabled option, make a "COPYX"
bitmap, possibly with a red line through it, and then add the following line to your program:

m_editCopy.EnableWindow(FALSE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12
Windows Message Processing and Multithreaded Programming
With its multitasking and multithreading API, Win32 revolutionized programming for Microsoft Windows. If
you've seen magazine articles and advanced programming books on these subjects, you might have been
intimidated by the complexity of using multiple threads. You could stick with single-threaded programming
for a long time and still write useful Win32 applications. If you learn the fundamentals of threads, however,
you'll be able to write more efficient and capable programs. You'll also be on your way to a better
understanding of the Win32 programming model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Message Processing
To understand threads, you must first understand how 32-bit Windows processes messages. The best
starting point is a single-threaded program that shows the importance of the message translation and
dispatch process. You'll improve that program by adding a second thread, which you'll control with a global
variable and a simple message. Then you'll experiment with events and critical sections. For heavy-duty
multithreading elements such as mutexes and semaphores, however, you'll need to refer to another book,
such as Jeffrey Richter's Advanced Windows, 3d Ed. (Microsoft Press, 1997).

How a Single-Threaded Program Processes Messages

All the programs so far in this book have been single-threaded, which means that your code has only one
path of execution. With ClassWizard's help, you've written handler functions for various Windows messages
and you've written OnDraw code that is called in response to the WM_PAINT message. It might seem as
though Windows magically calls your handler when the message floats in, but it doesn't work that way.
Deep inside the MFC code (which is linked to your program) are instructions that look something like this:

MSG message;
while (::GetMessage(&message, NULL, 0, 0)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
}
Windows determines which messages belong to your program, and the GetMessage function returns when
a message needs to be processed. If no messages are posted, your program is suspended and other
programs can run. When a message eventually arrives, your program "wakes up." The TranslateMessage
function translates WM_KEYDOWN messages into WM_CHAR messages containing ASCII characters, and
the DispatchMessage function passes control (via the window class) to the MFC message pump, which calls
your function via the message map. When your handler is finished, it returns to the MFC code, which
eventually causes DispatchMessage to return.

Yielding Control

What would happen if one of your handler functions was a pig and chewed up 10 seconds of CPU time?
Back in the 16-bit days, that would have hung up the whole computer for the duration. Only cursor
tracking and a few other interrupt-based tasks would have run. With Win32, multitasking got a whole lot
better. Other applications can run because of preemptive multitasking—Windows simply interrupts your pig
function when it needs to. However, even in Win32, your program would be locked out for 10 seconds. It
couldn't process any messages because DispatchMessage doesn't return until the pig returns.

There is a way around this problem, however, which works with both Win16 and Win32. You simply train
your pig function to be polite and yield control once in a while by inserting the following instructions inside
the pig's main loop:

MSG message;
if (::PeekMessage(&message, NULL, 0, 0, PM_REMOVE)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
}
The PeekMessage function works like GetMessage, except that it returns immediately even if no message
has arrived for your program. In that case, the pig keeps on chewing. If there is a message, however, the
pig pauses, the handler is called, and the pig starts up again after the handler exits.

Timers

A Windows timer is a useful programming element that sometimes makes multithreaded programming
unnecessary. If you need to read a communication buffer, for example, you can set up a timer to retrieve
the accumulated characters every 100 milliseconds. You can also use a timer to control animation because
the timer is independent of CPU clock speed.

Timers are easy to use. You simply call the CWnd member function SetTimer with an interval parameter,
and then you provide, with the help of ClassWizard, a message handler function for the resulting
WM_TIMER messages. Once you start the timer with a specified interval in milliseconds, WM_TIMER
messages will be sent continuously to your window until you call CWnd::KillTimer or until the timer's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages will be sent continuously to your window until you call CWnd::KillTimer or until the timer's
window is destroyed. If you want to, you can use multiple timers, each identified by an integer. Because
Windows isn't a real-time operating system, the interval between timer events becomes imprecise if you
specify an interval much less than 100 milliseconds.

Like any other Windows messages, timer messages can be blocked by other handler functions in your
program. Fortunately, timer messages don't stack up. Windows won't put a timer message in the queue if
a message for that timer is already present.

The EX12A Program

We're going to write a single-threaded program that contains a CPU-intensive computation loop. We want
to let the program process messages after the user starts the computation; otherwise, the user couldn't
cancel the job. Also, we'd like to display the percent-complete status by using a progress indicator control,
as shown in Figure 12-1. The EX12A program allows message processing by yielding control in the
compute loop. A timer handler updates the progress control based on compute parameters. The
WM_TIMER messages could not be processed if the compute process didn't yield control.

Figure 12-1. The Compute dialog box.

Here are the steps for building the EX12A application:

1. Run AppWizard to generate \vcpp32\ex12a\ex12a. Accept all the default settings but two:
select Single Document and deselect Printing And Print Preview. The options and the default class
names are shown here.

2. Use the dialog editor to create the dialog resource IDD_COMPUTE. Use the resource shown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the dialog editor to create the dialog resource IDD_COMPUTE. Use the resource shown
here as a guide.

Keep the default control ID for the Cancel button, but use IDC_START for the Start button. For the
progress indicator, accept the default ID IDC_PROGRESS1.

3. Use ClassWizard to create the CComputeDlg class. ClassWizard connects the new class to the
IDD_COMPUTE resource you just created.

After the class is generated, add a WM_TIMER message handler function. Also add BN_CLICKED
message handlers for IDC_START and IDCANCEL. Accept the default names OnStart and OnCancel.

4. Add three data members to the CComputeDlg class. Edit the file ComputeDlg.h. Add the
following private data members:

int m_nTimer;
int m_nCount;
enum { nMaxCount = 10000 };
The m_nCount data member of class CComputeDlg is incremented during the compute process. It
serves as a percent complete measurement when divided by the "constant" nMaxCount.

5. Add initialization code to the CComputeDlg constructor in the ComputeDlg.cpp file. Add
the following line to the constructor to ensure that the Cancel button will work if the compute
process has not been started:

m_nCount = 0;
Be sure to add the line outside the //{{AFX_DATA_INIT comments generated by ClassWizard.

6. Code the OnStart function in ComputeDlg.cpp. This code is executed when the user clicks the
Start button. Add the following boldface code:

void CComputeDlg::OnStart()
{
 MSG message;
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 volatile int nTemp;
 for (m_nCount = 0; m_nCount < nMaxCount; m_nCount++) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // uses up CPU cycles
 }
 if (::PeekMessage(&message, NULL, 0, 0, PM_REMOVE)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
 }
 }
 CDialog::OnOK();
}
The main for loop is controlled by the value of m_nCount. At the end of each pass through the outer
loop, PeekMessage allows other messages, including WM_TIMER, to be processed. The
EnableWindow(FALSE) call disables the Start button during the computation. If we didn't take this
precaution, the OnStart function could be reentered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Code the OnTimer function in ComputeDlg.cpp. When the timer fires, the progress indicator's
position is set according to the value of m_nCount. Add the following boldface code:

void CComputeDlg::OnTimer(UINT nIDEvent)
{
 CProgressCtrl* pBar = (CProgressCtrl*) GetDlgItem(IDC_PROGRESS1);
 pBar->SetPos(m_nCount * 100 / nMaxCount);
}

8. Update the OnCancel function in ComputeDlg.cpp. When the user clicks the Cancel button
during computation, we don't destroy the dialog; instead, we set m_nCount to its maximum value,
which causes OnStart to exit the dialog. If the computation hasn't started, it's okay to exit directly.
Add the following boldface code:

void CControlDlg::OnCancel()
{
 TRACE("entering CComputeDlg::OnCancel\n");
 if (m_nCount == 0) { // prior to Start button
 CDialog::OnCancel();
 }
 else { // computation in progress
 m_nCount = nMaxCount; // Force exit from OnStart
 }
}

9. Edit the CEx12aView class in ex12aView.cpp. First edit the virtual OnDraw function to display a
message, as shown here:

void CEx12aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

Then use ClassWizard to add the OnLButtonDown function to handle WM_LBUTTONDOWN
messages, and add the following boldface code:

void CEx12aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CComputeDlg dlg;
 dlg.DoModal();
}
This code displays the modal dialog whenever the user presses the left mouse button while the
mouse cursor is in the view window.

While you're in ex12aView.cpp, add the following #include statement:

#include "ComputeDlg.h"
10. Build and run the application. Press the left mouse button while the mouse cursor is inside the

view window to display the dialog. Click the Start button, and then click Cancel. The progress
indicator should show the status of the computation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On-Idle Processing
Before multithreaded programming came along, Windows developers used on-idle processing for
"background" tasks such as pagination. On-idle processing is no longer as important, but it's still useful.
The application framework calls a virtual member function OnIdle of class CWinApp, and you can override
this function to do background processing. OnIdle is called from the framework's message processing loop,
which is actually a little more complicated than the simple GetMessage/TranslateMessage/DispatchMessage
sequence you've seen. Generally, once the OnIdle function completes its work, it is not called again until
the next time the application's message queue has been emptied. If you override this function, your code
will be called, but it won't be called continuously unless there is a constant stream of messages. The base
class OnIdle updates the toolbar buttons and status indicators, and it cleans up various temporary object
pointers. It makes sense for you to override OnIdle to update the user interface. The fact that your code
won't be executed when no messages are coming is not important because the user interface shouldn't be
changing.

If you do override CWinApp::OnIdle, don't forget to call the base class OnIdle.
Otherwise, your toolbar buttons won't be updated and temporary objects won't be
deleted.

OnIdle isn't called at all if the user is working in a modal dialog or is using a menu. If you need to use
background processing for modal dialogs and menus, you'll have to add a message handler function for the
WM_ENTERIDLE message, but you must add it to the frame class rather than to the view class. That's
because pop-up dialogs are always "owned" by the application's main frame window, not by the view
window. Chapter 15 explores the relationship between the frame window and the view window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multithreaded Programming
As you'll recall from Chapter 10, a process is a running program that owns its own memory, file handles,
and other system resources. An individual process can contain separate execution paths, called threads.
Don't look for separate code for separate threads, however, because a single function can be called from
many threads. For the most part, all of a process's code and data space is available to all of the threads in
the process. Two threads, for example, can access the same global variables. Threads are managed by the
operating system, and each thread has its own stack.

Windows offers two kinds of threads, worker threads and user interface threads. The Microsoft Foundation
Class (MFC) Library supports both. A user interface thread has windows, and therefore it has its own
message loop. A worker thread doesn't have windows, so it doesn't need to process messages. Worker
threads are easier to program and are generally more useful. The remaining examples in this chapter
illustrate worker threads. At the end of the chapter, however, an application for a user interface thread is
described.

Don't forget that even a single-threaded application has one thread—the main thread. In the MFC
hierarchy, CWinApp is derived from CWinThread. Back in Chapter 2, I told you that InitInstance and
m_pMainWnd are members of CWinApp. Well, I lied. The members are declared in CWinThread, but of
course they're inherited by CWinApp. The important thing to remember here is that an application is a
thread.

Writing the Worker Thread Function and Starting the Thread

If you haven't guessed already, using a worker thread for a long computation is more efficient than using a
message handler that contains a PeekMessage call. Before you start a worker thread, however, you must
write a global function for your thread's main program. This global function should return a UINT, and it
should take a single 32-bit value (declared LPVOID) as a parameter. You can use the parameter to pass
anything at all to your thread when you start it. The thread does its computation, and when the global
function returns, the thread terminates. The thread would also be terminated if the process terminated,
but it's preferable to ensure that the worker thread terminates first, which will guarantee that you'll have
no memory leaks.

To start the thread (with function name ComputeThreadProc), your program makes the following call:

CWinThread* pThread =
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);
The compute thread code looks like this:

UINT ComputeThreadProc(LPVOID pParam)
{
 // Do thread processing
 return 0;
}

The AfxBeginThread function returns immediately; the return value is a pointer to the newly created
thread object. You can use that pointer to suspend and resume the thread (CWinThread::SuspendThread
and ResumeThread), but the thread object has no member function to terminate the thread. The second
parameter is the 32-bit value that gets passed to the global function, and the third parameter is the
thread's priority code. Once the worker thread starts, both threads run independently. Windows divides the
time between the two threads (and among the threads that belong to other processes) according to their
priority. If the main thread is waiting for a message, the compute thread can still run.

How the Main Thread Talks to a Worker Thread

The main thread (your application program) can communicate with the subsidiary worker thread in many
different ways. One option that will not work, however, is a Windows message; the worker thread doesn't
have a message loop. The simplest means of communication is a global variable because all the threads in
the process have access to all the globals. Suppose the worker thread increments and tests a global
integer as it computes and then exits when the value reaches 100. The main thread could force the worker
thread to terminate by setting the global variable to 100 or higher.

The code below looks as though it should work, and when you test it, it probably will:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UINT ComputeThreadProc(LPVOID pParam)
{
 g_nCount = 0;
 while (g_nCount++ < 100) {
 // Do some computation here
 }
 return 0;
}
There's a problem, however, that you could detect only by looking at the generated assembly code. The
value of g_nCount gets loaded into a register, the register is incremented, and then the register value is
stored back in g_nCount. Suppose g_nCount is 40 and Windows interrupts the worker thread just after the
worker thread loads 40 into the register. Now the main thread gets control and sets g_nCount to 100.
When the worker thread resumes, it increments the register value and stores 41 back into g_nCount,
obliterating the previous value of 100. The thread loop doesn't terminate!

If you turn on the compiler's optimization switch, you'll have an additional problem. The compiler uses a
register for g_nCount, and the register stays loaded for the duration of the loop. If the main thread
changes the value of g_nCount in memory, it will have no effect on the worker thread's compute loop.
(You can ensure that the counter isn't stored in a register, however, by declaring g_nCount as volatile.)

But suppose you rewrite the thread procedure as shown here:

UINT ComputeThreadProc(LPVOID pParam)
{
 g_nCount = 0;
 while (g_nCount < 100) {
 // Do some computation here
 ::InterlockedIncrement((long*) &g_nCount);
 }
 return 0;
}
The InterlockedIncrement function blocks other threads from accessing the variable while it is being
incremented. The main thread can safely stop the worker thread.

Now you've seen some of the pitfalls of using global variables for communication. Using global variables is
sometimes appropriate, as the next example illustrates, but there are alternative methods that are more
flexible, as you'll see later in this chapter.

How the Worker Thread Talks to the Main Thread

It makes sense for the worker thread to check a global variable in a loop, but what if the main thread did
that? Remember the pig function? You definitely don't want your main thread to enter a loop because that
would waste CPU cycles and stop your program's message processing. A Windows message is the
preferred way for a worker thread to communicate with the main thread because the main thread always
has a message loop. This implies, however, that the main thread has a window (visible or invisible) and
that the worker thread has a handle to that window.

How does the worker thread get the handle? That's what the 32-bit thread function parameter is for. You
pass the handle in the AfxBeginThread call. Why not pass the C++ window pointer instead? Doing so
would be dangerous because you can't depend on the continued existence of the object and you're not
allowed to share objects of MFC classes among threads. (This rule does not apply to objects derived
directly from CObject or to simple classes such as CRect and CString.)

Do you send the message or post it? Better to post it, because sending it could cause reentry of the main
thread's MFC message pump code, and that would create problems in modal dialogs. What kind of
message do you post? Any user-defined message will do.

The EX12B Program

The EX12B program looks exactly like the EX12A program when you run it. When you look at the code,
however, you'll see some differences. The computation is done in a worker thread instead of in the main
thread. The count value is stored in a global variable g_nCount, which is set to the maximum value in the
dialog window's Cancel button handler. When the thread exits, it posts a message to the dialog, which
causes DoModal to exit.

The document, view, frame, and application classes are the same except for their names, and the dialog
resource is the same. The modal dialog class is still named CComputeDlg, but the code inside is quite

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource is the same. The modal dialog class is still named CComputeDlg, but the code inside is quite
different. The constructor, timer handler, and data exchange functions are pretty much the same. The
following code fragment shows the global variable definition and the global thread function as given in the
\ex12b\ComputeDlg.cpp file on the companion CD-ROM. Note that the function exits (and the thread
terminates) when g_nCount is greater than a constant maximum value. Before it exits, however, the
function posts a user-defined message to the dialog window.

int g_nCount = 0;
UINT ComputeThreadProc(LPVOID pParam)
{
 volatile int nTemp; // volatile else compiler optimizes too much
 for (g_nCount = 0; g_nCount < CComputeDlg::nMaxCount;
 ::InterlockedIncrement((long*) &g_nCount)) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // uses up CPU cycles
 }
 }
 // WM_THREADFINISHED is user-defined message
 ::PostMessage((HWND) pParam, WM_THREADFINISHED, 0, 0);
 g_nCount = 0;
 return 0; // ends the thread
}
The OnStart handler below is mapped to the dialog's Start button. Its job is to start the timer and the
worker thread. You can change the worker thread's priority by changing the third parameter of
AfxBeginThread—for example, the computation runs a little more slowly if you set the priority to
THREAD_PRIORITY_LOWEST.

void CComputeDlg::OnStart()
{
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);
}
The OnCancel handler below is mapped to the dialog's Cancel button. It sets the g_nCount variable to the
maximum value, causing the thread to terminate.

void CComputeDlg::OnCancel()
{
 if (g_nCount == 0) { // prior to Start button
 CDialog::OnCancel();
 }
 else { // computation in progress
 g_nCount = nMaxCount; // Force thread to exit
 }
}
The OnThreadFinished handler below is mapped to the dialog's WM_THREADFINISHED user-defined
message. It causes the dialog's DoModal function to exit.

LRESULT CComputeDlg::OnThreadFinished(WPARAM wParam, LPARAM lParam)
{
 CDialog::OnOK();
 return 0;
}
Using Events for Thread Synchronization

The global variable is a crude but effective means of interthread communication. Now let's try something
more sophisticated. We want to think in terms of thread synchronization instead of simple communication.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

more sophisticated. We want to think in terms of thread synchronization instead of simple communication.
Our threads must carefully synchronize their interactions with one another.

An event is one type of kernel object (processes and threads are also kernel objects) that Windows
provides for thread synchronization. An event is identified by a unique 32-bit handle within a process. It
can be identified by name, or its handle can be duplicated for sharing among processes. An event can be
either in the signaled (or true) state or in the unsignaled (or false) state. Events come in two types:
manual reset and autoreset. We'll be looking at autoreset events here because they're ideal for the
synchronization of two processes.

Let's go back to our worker thread example. We want the main (user interface) thread to "signal" the
worker thread to make it start or stop, so we'll need a "start" event and a "kill" event. MFC provides a
handy CEvent class that's derived from CSyncObject. By default, the constructor creates a Win32 autoreset
event object in the unsignaled state. If you declare your events as global objects, any thread can easily
access them. When the main thread wants to start or terminate the worker thread, it sets the appropriate
event to the signaled state by calling CEvent::SetEvent.

Now the worker thread must monitor the two events and respond when one of them is signaled. MFC
provides the CSingleLock class for this purpose, but it's easier to use the Win32 WaitForSingleObject
function. This function suspends the thread until the specified object becomes signaled. When the thread is
suspended, it's not using any CPU cycles—which is good. The first WaitForSingleObject parameter is the
event handle. You can use a CEvent object for this parameter; the object inherits from CSyncObject an
operator HANDLE that returns the event handle it has stored as a public data member. The second
parameter is the time-out interval. If you set this parameter to INFINITE, the function waits forever until
the event becomes signaled. If you set the time-out to 0, WaitForSingleObject returns immediately, with a
return value of WAIT_OBJECT_0 if the event was signaled.

The EX12C Program

The EX12C program uses two events to synchronize the worker thread with the main thread. Most of the
EX12C code is the same as EX12B, but the CComputeDlg class is quite different. The StdAfx.h file contains
the following line for the CEvent class:

#include <afxmt.h>
There are two global event objects, as shown below. Note that the constructors create the Windows events
prior to the execution of the main program.

CEvent g_eventStart; // creates autoreset events
CEvent g_eventKill;
It's best to look at the worker thread global function first. The function increments g_nCount just as it did
in EX12B. The worker thread is started by the OnInitDialog function instead of by the Start button handler.
The first WaitForSingleObject call waits for the start event, which is signaled by the Start button handler.
The INFINITE parameter means that the thread waits as long as necessary. The second
WaitForSingleObject call is different—it has a 0 time-out value. It's located in the main compute loop and
simply makes a quick test to see whether the kill event was signaled by the Cancel button handler. If the
event was signaled, the thread terminates.

UINT ComputeThreadProc(LPVOID pParam)
{
 volatile int nTemp;
 ::WaitForSingleObject(g_eventStart, INFINITE);
 TRACE("starting computation\n");
 for (g_nCount = 0; g_nCount < CComputeDlg::nMaxCount;
 g_nCount++) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // Simulate computation
 }
 if (::WaitForSingleObject(g_eventKill, 0) == WAIT_OBJECT_0) {
 break;
 }
 }
 // Tell owner window we're finished
 ::PostMessage((HWND) pParam, WM_THREADFINISHED, 0, 0);
 g_nCount = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 g_nCount = 0;
 return 0; // ends the thread
}
Here is the OnInitDialog function that's called when the dialog is initialized. Note that it starts the worker
thread, which doesn't do anything until the start event is signaled.

BOOL CComputeDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd());
 return TRUE; // Return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}
The following Start button handler sets the start event to the signaled state, thereby starting the worker
thread's compute loop:

void CComputeDlg::OnStart()
{
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 g_eventStart.SetEvent();
}
The following Cancel button handler sets the kill event to the signaled state, causing the worker thread's
compute loop to terminate:

void CComputeDlg::OnCancel()
{
 if (g_nCount == 0) { // prior to Start button
 // Must start it before we can kill it
 g_eventStart.SetEvent();
 }
 g_eventKill.SetEvent();
}
Note the awkward use of the start event when the user cancels without starting the compute process. It
might be neater to define a new cancel event and then replace the first WaitForSingleObject call with a
WaitForMultipleObjects call in the ComputeThreadProc function. If WaitForMultipleObjects detected a
cancel event, it could cause an immediate thread termination.

Thread Blocking

The first WaitForSingleObject call in the ComputeThreadProc function above is an example of thread
blocking. The thread simply stops executing until an event becomes signaled. A thread could be blocked in
many other ways. You could call the Win32 Sleep function, for example, to put your thread to "sleep" for
500 milliseconds. Many functions block threads, particularly those functions that access hardware devices
or Internet hosts. Back in the Win16 days, those functions took over the CPU until they were finished. In
Win32, they allow other processes and threads to run.

You should avoid putting blocking calls in your main user interface thread. Remember that if your main
thread is blocked, it can't process its messages, and that makes the program appear sluggish. If you have
a task that requires heavy file I/O, put the code in a worker thread and synchronize it with your main
thread.

Be careful of calls in your worker thread that could block indefinitely. Check the online documentation to
determine whether you have the option of setting a time-out value for a particular I/O operation. If a call
does block forever, the thread will be terminated when the main process exits, but then you'll have some
memory leaks. You could call the Win32 TerminateThread function from your main thread, but you'd still
have the memory-leak problem.

Critical Sections

Remember the problems with access to the g_nCount global variable? If you want to share global data
among threads and you need more flexibility than simple instructions like InterlockedIncrement can
provide, critical sections might be the synchronization tools for you. Events are good for signaling, but

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provide, critical sections might be the synchronization tools for you. Events are good for signaling, but
critical sections (sections of code that require exclusive access to shared data) are good for controlling
access to data.

MFC provides the CCriticalSection class that wraps the Windows critical section handle. The constructor
calls the Win32 InitializeCriticalSection function, the Lock and Unlock member functions call
EnterCriticalSection and LeaveCriticalSection, and the destructor calls DeleteCriticalSection. Here's how
you use the class to protect global data:

CCriticalSection g_cs; // global variables accessible from all threads
int g_nCount;
void func()
{
 g_cs.Lock();
 g_nCount++;
 g_cs.Unlock();
}
Suppose your program tracks time values as hours, minutes, and seconds, each stored in a separate
integer, and suppose two threads are sharing time values. Thread A is changing a time value but is
interrupted by thread B after it has updated hours but before it has updated minutes and seconds. Thread
B will have an invalid time value.

If you write a C++ class for your time format, it's easy to control data access by making the data members
private and providing public member functions. The CHMS class, shown in Figure 12-2, does exactly that.
Notice that the class has a data member of type CCriticalSection. Thus, a critical section object is
associated with each CHMS object.

Notice that the other member functions call the Lock and Unlock member functions. If thread A is
executing in the middle of SetTime, thread B will be blocked by the Lock call in GetTotalSecs until thread A
calls Unlock. The IncrementSecs function calls SetTime, resulting in nested locks on the critical section.
That's okay because Windows keeps track of the nesting level.

The CHMS class works well if you use it to construct global objects. If you share pointers to objects on the
heap, you have another set of problems. Each thread must determine whether another thread has deleted
the object, and that means you must synchronize access to the pointers.

HMS.H

#include "StdAfx.h"

class CHMS
{
private:
 int m_nHr, m_nMn, m_nSc;
 CCriticalSection m_cs;
public:
 CHMS() : m_nHr(0), m_nMn(0), m_nSc(0) {}

 ~CHMS() {}

 void SetTime(int nSecs)
 {
 m_cs.Lock();
 m_nSc = nSecs % 60;
 m_nMn = (nSecs / 60) % 60;
 m_nHr = nSecs / 3600;
 m_cs.Unlock();
 }

 int GetTotalSecs()
 {
 int nTotalSecs;
 m_cs.Lock();
 nTotalSecs = m_nHr * 3600 + m_nMn * 60 + m_nSc;
 m_cs.Unlock();
 return nTotalSecs;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return nTotalSecs;
 }

 void IncrementSecs()
 {
 m_cs.Lock();
 SetTime(GetTotalSecs() + 1);
 m_cs.Unlock();
 }
};

Figure 12-2. The CHMS class listing.

No sample program is provided that uses the CHMS class, but the file hms.h is included in the
\vcpp32\ex12c subdirectory on the companion CD-ROM. If you write a multithreaded program, you can
share global objects of the class. You don't need any other calls to the thread-related functions.

Mutexes and Semaphores

As I mentioned, I'm leaving these synchronization objects to Jeffrey Richter's Advanced Windows. You
might need a mutex or a semaphore if you're controlling access to data across different processes because
a critical section is accessible only within a single process. Mutexes and semaphores (along with events)
are shareable by name.

User Interface Threads

The MFC library provides good support for UI threads. You derive a class from CWinThread, and you use an
overloaded version of AfxBeginThread to start the thread. Your derived CWinThread class has its own
InitInstance function, and most important, it has its own message loop. You can construct windows and
map messages as required.

Why might you want a user interface thread? If you want multiple top-level windows, you can create and
manage them from your main thread. Suppose you allow the user to run multiple instances of your
application, but you want all instances to share memory. You can configure a single process to run multiple
UI threads such that users think they are running separate processes. That's exactly what Windows
Explorer does. Check it out with SPY++.

Starting the second and subsequent threads is a little tricky because the user actually launches a new
process for each copy of Windows Explorer. When the second process starts, it signals the first process to
start a new thread, and then it exits. The second process can locate the first process either by calling the
Win32 FindWindow function or by declaring a shared data section. Shared data sections are explained in
detail in Jeffrey Richter's book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13
Menus, Keyboard Accelerators, the Rich Edit Control, and Property
Sheets
In all the book's examples to this point, mouse clicks have triggered most program activity. Even though
menu selections might have been more appropriate, you've used mouse clicks because mouse-click
messages are handled simply and directly within the Microsoft Foundation Class (MFC) Library version 6.0
view window. If you want program activity to be triggered when the user chooses a command from a
menu, you must first become familiar with the other application framework elements.

This chapter concentrates on menus and the command routing architecture. Along the way, we introduce
frames and documents, explaining the relationships between these new application framework elements
and the already familiar view element. You'll use the menu editor to lay out a menu visually, and you'll use
ClassWizard to link document and view member functions to menu items. You'll learn how to use special
update command user interface (UI) member functions to check and disable menu items, and you'll see
how to use keyboard accelerators as menu shortcut keys.

Because you're probably tired of circles and dialogs, next you'll examine two new MFC building blocks. The
rich edit common control can add powerful text editing features to your application. Property sheets are
ideal for setting edit options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Main Frame Window and Document Classes
Up to now, you've been using a view window as if it were the application's only window. In an SDI
application, the view window sits inside another window—the application's main frame window. The main
frame window has the title bar and the menu bar. Various child windows, including the toolbar window, the
view window, and the status bar window, occupy the main frame window's client area, as shown in Figure
13-1. The application framework controls the interaction between the frame and the view by routing
messages from the frame to the view.

Figure 13-1. The child windows within an SDI main frame window.

Look again at any project files generated by AppWizard. The MainFrm.h and MainFrm.cpp files contain the
code for the application's main frame window class, derived from the class CFrameWnd. Other files, with
names such as ex13aDoc.h and ex13aDoc.cpp, contain code for the application's document class, which is
derived from CDocument. In this chapter you'll begin working with the MFC document class. You'll start by
learning that each view object has exactly one document object attached and that the view's inherited
GetDocument member function returns a pointer to that object. In Chapter 15 you'll examine frame
windows, and in Chapter 16 you'll learn much more about document-view interactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Menus
A Microsoft Windows menu is a familiar application element that consists of a top-level horizontal list of
items with associated pop-up menus that appear when the user selects a top-level item. Most of the time,
you define for a frame window a default menu resource that loads when the window is created. You can
also define a menu resource independent of a frame window. In that case, your program must call the
functions necessary to load and activate the menu.

A menu resource completely defines the initial appearance of a menu. Menu items can be grayed or have
check marks, and bars can separate groups of menu items. Multiple levels of pop-up menus are possible. If
a first-level menu item is associated with a subsidiary pop-up menu, the menu item carries a right-pointing
arrow symbol, as shown next to the Start Debug menu item in Figure 13-2.

Figure 13-2. Multilevel pop-up menus (from Microsoft Visual C++).

Visual C++ includes an easy-to-use menu-resource editing tool. This tool lets you edit menus in a wysiwyg
environment. Each menu item has a properties dialog that defines all the characteristics of that item. The
resulting resource definition is stored in the application's resource script (RC) file. Each menu item is
associated with an ID, such as ID_FILE_OPEN, that is defined in the resource.h file.

The MFC library extends the functionality of the standard menus for Windows. Each menu item can have a
prompt string that appears in the frame's status bar when the item is highlighted. These prompts are really
Windows string resource elements linked to the menu item by a common ID. From the point of view of the
menu editor and your program, the prompts appear to be part of the menu item definition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keyboard Accelerators
You've probably noticed that most menu items contain an underlined letter. In Visual C++ (and most other
applications), pressing Alt-F followed by S activates the File Save menu item. This shortcut system is the
standard Windows method of using the keyboard to choose commands from menus. If you look at an
application's menu resource script (or the menu editor's properties dialog), you will see an ampersand (&)
preceding the character that is underlined in each of the application's menu items.

Windows offers an alternative way of linking keystrokes to menu items. The keyboard accelerator resource
consists of a table of key combinations with associated command IDs. The Edit Copy menu item (with
command ID ID_EDIT_COPY), for example, might be linked to the Ctrl-C key combination through a
keyboard accelerator entry. A keyboard accelerator entry does not have to be associated with a menu
item. If no Edit Copy menu item were present, the Ctrl-C key combination would nevertheless activate the
ID_EDIT_COPY command.

If a keyboard accelerator is associated with a menu item or toolbar button, the
accelerator key is disabled when the menu item or button is disabled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command Processing
As you saw in Chapter 2, the application framework provides a sophisticated routing system for command
messages. These messages originate from menu selections, keyboard accelerators, and toolbar and dialog
button clicks. Command messages can also be sent by calls to the CWnd::SendMessage or PostMessage
function. Each message is identified by a #define constant that is often assigned by a resource editor. The
application framework has its own set of internal command message IDs, such as ID_FILE_PRINT and
ID_FILE_OPEN. Your project's resource.h file contains IDs that are unique to your application.

Most command messages originate in the application's frame window, and without the application
framework in the picture, that's where you would put the message handlers. With command routing,
however, you can handle a message almost anywhere. When the application framework sees a frame
window command message, it starts looking for message handlers in one of the sequences listed here.

SDI Application MDI Application

View View

Document Document

SDI main frame window MDI child frame window

Application MDI main frame window
Application

Most applications have a particular command handler in only one class, but suppose your one-view
application has an identical handler in both the view class and the document class. Because the view is
higher in the command route, only the view's command handler function will be called.

What is needed to install a command handler function? The installation requirements are similar to those of
the window message handlers you've already seen. You need the function itself, a corresponding message
map entry, and the function prototype. Suppose you have a menu item named Zoom (with IDM_ZOOM as
the associated ID) that you want your view class to handle. First you add the following code to your view
implementation file:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND(IDM_ZOOM, OnZoom)
END_MESSAGE_MAP()

void CMyView::OnZoom()
{
 // command message processing code
}
Now add the following function prototype to the CMyView class header file (before the
DECLARE_MESSAGE_MAP macro):

afx_msg void OnZoom();
Of course, ClassWizard automates the process of inserting command message handlers the same way it
facilitates the insertion of window message handlers. You'll learn how this works in the next example,
EX13A.

Command Message Handling in Derived Classes

The command routing system is one dimension of command message handling. The class hierarchy is a
second dimension. If you look at the source code for the MFC library classes, you'll see lots of
ON_COMMAND message map entries. When you derive a class from one of these base classes—for
example, CView—the derived class inherits all the CView message map functions, including the command
message functions. To override one of the base class message map functions, you must add both a
function and a message map entry to your derived class.

Update Command User Interface Handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Update Command User Interface Handlers

You often need to change the appearance of a menu item to match the internal state of your application. If
your application's Edit menu includes a Clear All item, for example, you might want to disable that item if
there's nothing to clear. You've undoubtedly seen such grayed menu items in Windows-based applications,
and you've probably also seen check marks next to menu items.

With Win32 programming, it's difficult to keep menu items synchronized with the application's state. Every
piece of code that changes the internal state must contain statements to update the menu. The MFC library
takes a different approach by calling a special update command user interface (UI) handler function
whenever a pop-up menu is first displayed. The handler function's argument is a CCmdUI object, which
contains a pointer to the corresponding menu item. The handler function can then use this pointer to
modify the menu item's appearance. Update command UI handlers apply only to items on pop-up menus,
not to top-level menu items that are permanently displayed. You can't use an update command UI handler
to disable a File menu item, for example.

The update command UI coding requirements are similar to those for commands. You need the function
itself, a special message map entry, and of course the prototype. The associated ID—in this case,
IDM_ZOOM—is the same constant used for the command. Here is an example of the necessary additions to
the view class code file:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_UPDATE_COMMAND_UI(IDM_ZOOM, OnUpdateZoom)
END_MESSAGE_MAP()

void CMyView::OnUpdateZoom(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck(m_bZoomed); // m_bZoomed is a class data member
}
Here is the function prototype that you must add to the class header (before the DECLARE_MESSAGE_MAP
macro):

afx_msg void OnUpdateZoom(CCmdUI* pCmdUI);
Needless to say, ClassWizard automates the process of inserting update command UI handlers.

Commands That Originate in Dialogs

Suppose you have a pop-up dialog with buttons, and you want a particular button to send a command
message. Command IDs must be in the range 0x8000 to 0xDFFF, the same ID range that the resource
editor uses for your menu items. If you assign an ID in this range to a dialog button, the button will
generate a routable command. The application framework first routes this command to the main frame
window because the frame window owns all pop-up dialogs. The command routing then proceeds
normally; if your view has a handler for the button's command, that's where it will be handled. To ensure
that the ID is in the range 0x8000 to 0xDFFF, you must use Visual C++'s symbol editor to enter the ID
prior to assigning the ID to a button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Framework's Built-In Menu Items
You don't have to start each frame menu from scratch—the MFC library defines some useful menu items
for you, along with all the command handler functions, as shown in Figure 13-3.

Figure 13-3. The standard SDI frame menus.

The menu items and command message handlers that you get depend on the options you choose in
AppWizard. If you deselect Printing and Print Preview, for example, the Print and Print Preview menu items
don't appear. Because printing is optional, the message map entries are not defined in the CView class but
are generated in your derived view class. That's why entries such as the following are defined in the
CMyView class instead of in the CView class:

ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

Enabling/Disabling Menu Items

The application framework can disable a menu item if it does not find a command message handler in the
current command route. This feature saves you the trouble of having to write ON_UPDATE_COMMAND_UI
handlers. You can disable the feature if you set the CFrameWnd data member m_bAutoMenuEnable to
FALSE.

Suppose you have two views for one document, but only the first view class has a message handler for the
IDM_ZOOM command. The Zoom item on the frame menu will be enabled only when the first view is
active. Or consider the application framework-supplied Edit Cut, Copy, and Paste menu items. These will
be disabled if you have not provided message handlers in your derived view or document class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Text Editing Options
Windows itself supplies two text editing tools: edit control and Windows rich edit common control. Both can
be used as controls within dialogs, but both can also be made to look like view windows. The MFC library
supports this versatility with the CEditView and CRichEditView classes.

The CEditView Class

This class is based on the Windows edit control, so it inherits all the edit control's limitations. Text size is
limited to 64 KB, and you can't mix fonts. AppWizard gives you the option of making CEditView the base
class of your view class. When the framework gives you an edit view object, it has all the functionality of
both CView and CEdit. There's no multiple inheritance here, just some magic that involves window
subclassing. The CEditView class implements and maps the clipboard cut, copy, and paste functions, so
they appear active on the Edit menu.

The CRichEditView Class

This class uses the rich edit control, so it supports mixed formats and large quantities of text. The
CRichEditView class is designed to be used with the CRichEditDoc and CRichEditCntrItem classes to
implement a complete ActiveX container application.

The CRichEditCtrl Class

This class wraps the rich edit control, and you can use it to make a fairly decent text editor. That's exactly
what we'll do in the EX13A example. We'll use an ordinary view class derived from CView, and we'll cover
the view's client area with a big rich edit control that resizes itself when the view size changes. The
CRichEditCtrl class has dozens of useful member functions, and it picks up other functions from its CWnd
base class. The functions we'll use in this chapter are as follows.

Function Description

Create Creates the rich edit control window (called from the parent's
WM_CREATE handler)

SetWindowPos Sets the size and position of the edit window (sizes the control to cover
the view's client area)

GetWindowText Retrieves plain text from the control (other functions available to retrieve
the text with rich text formatting codes)

SetWindowText Stores plain text in the control

GetModify Gets a flag that is TRUE if the text has been modified (text modified if
the user types in the control or if the program calls SetModify(TRUE))

SetModify Sets the modify flag to TRUE or FALSE

GetSel Gets a flag that indicates whether the user has selected text

SetDefaultCharFormat Sets the control's default format characteristics

SetSelectionCharFormat Sets the format characteristics of the selected text

If you use the dialog editor to add a rich edit control to a dialog resource, your
application class InitInstance member function must call the function AfxInitRichEdit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX13A Example
This example illustrates the routing of menu and keyboard accelerator commands to both documents and
views. The application's view class is derived from CView and contains a rich edit control. View-directed
menu commands, originating from a new pop-up menu named Transfer, move data between the view
object and the document object, and a Clear Document menu item erases the document's contents. On the
Transfer menu, the Store Data In Document item is grayed when the view hasn't been modified since the
last time the data was transferred. The Clear Document item, located on the Edit menu, is grayed when
the document is empty. Figure 13-4 shows the first version of the EX13A program in use.

Figure 13-4. The EX13A program in use.

If we exploited the document-view architecture fully, we would tell the rich edit control to keep its text
inside the document, but that's rather difficult to do. Instead, we'll define a document CString data
member named m_strText, the contents of which the user can transfer to and from the control. The initial
value of m_strText is a Hello message; choosing Clear Document from the Edit menu sets it to empty. By
running this example, you'll start to understand the separation of the document and the view.

The first part of the EX13A example exercises Visual C++'s wysiwyg menu editor and keyboard accelerator
editor together with ClassWizard. You'll need to do very little C++ coding. Simply follow these steps:

1. Run AppWizard to generate \vcpp32\ex13a\ex13a. Accept all the default settings but two:
select Single Document and deselect Printing and Print Preview.

2. Use the resource editor to edit the application's main menu. Click on the ResourceView tab in
the Workspace window. Edit the IDR_MAINFRAME menu resource to add a separator and a Clear
Document item to the Edit menu, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The resource editor's menu resource editor is intuitive, but you might need some
help the first time you insert an item in the middle of a menu. A blank item is
present at the bottom of each menu. Using the mouse, drag the blank item to
the insertion position to define a new item. A new blank item will appear at the
bottom when you're finished.

Now add a Transfer menu, and then define the underlying items.

Use the following command IDs for your new menu items.

Menu Caption Command ID

Edit Clear &Document ID_EDIT_CLEAR_ALL

Transfer &Get Data From Document\tF2 ID_TRANSFER_GETDATA

Transfer &Store Data In Document\tF3 ID_TRANSFER_STOREDATA

The MFC library has defined the first item, ID_EDIT_CLEAR_ALL. (Note: \t is a tab character—but
type \t; don't press the Tab key.)

When you add the menu items, type appropriate prompt strings in the Menu Item Properties dialog.
These prompts will appear in the application's status bar window when the menu item is
highlighted.

3. Use the resource editor to add keyboard accelerators. Open the IDR_MAINFRAME accelerator
table, and then use the insert key to add the following items.

Accelerator ID Key

ID_TRANSFER_GETDATA VK_F2

ID_TRANSFER_STOREDATA VK_F3

Be sure to turn off the Ctrl, Alt, and Shift modifiers. The Accelerator edit screen and Accel
Properties dialog are shown in the illustration below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Use ClassWizard to add the view class command and update command UI message
handlers. Select the CEx13aView class, and then add the following member functions.

Object ID Message Member Function

ID_TRANSFER_GETDATA COMMAND OnTransferGetData

ID_TRANSFER_STOREDATA COMMAND OnTransferStoreData

ID_TRANSFER_STOREDATA UPDATE_COMMAND_UI OnUpdateTransferStoreData

5. Use ClassWizard to add the document class command and update command UI message
handlers. Select the CEx13aDoc class, and then add the following member functions.

Object ID Message Member Function

ID_EDIT_CLEAR_ALL COMMAND OnEditClearDocument

ID_EDIT_CLEAR_ALL UPDATE_COMMAND_UI OnUpdateEditClearDocument

6. Add a CString data member to the CEx13aDoc class. Edit the file ex13aDoc.h or use
ClassView.

public:
 CString m_strText;

7. Edit the document class member functions in ex13aDoc.cpp. The OnNewDocument function
was generated by ClassWizard. As you'll see in Chapter 16, the framework calls this function after it
first constructs the document and when the user chooses New from the File menu. Your version
sets some text in the string data member. Add the following boldface code:

BOOL CEx13aDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;
 m_strText = "Hello (from CEx13aDoc::OnNewDocument)";
 return TRUE;
}
The Edit Clear Document message handler sets m_strText to empty, and the update command UI
handler grays the menu item if the string is already empty. Remember that the framework calls
OnUpdateEditClearDocument when the Edit menu pops up. Add the following boldface code:

void CEx13aDoc::OnEditClearDocument()
{
 m_strText.Empty();
}

void CEx13aDoc::OnUpdateEditClearDocument(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_strText.IsEmpty());
}

8. Add a CRichEditCtrl data member to the CEx13aView class. Edit the file ex13aView.h or use
ClassView.

public:
 CRichEditCtrl m_rich;

9. Use ClassWizard to map the WM_CREATE and WM_SIZE messages in the CEx13aView
class. The OnCreate function creates the rich edit control. The control's size is 0 here because the
view window doesn't have a size yet. The code for the two handlers is shown below.

int CEx13aView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 CRect rect(0, 0, 0, 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect rect(0, 0, 0, 0);
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;
 m_rich.Create(ES_AUTOVSCROLL | ES_MULTILINE | ES_WANTRETURN |
 WS_CHILD | WS_VISIBLE | WS_VSCROLL, rect, this, 1);
 return 0;
}
Windows sends the WM_SIZE message to the view as soon as the view's initial size is determined
and again each time the user changes the frame size. This handler simply adjusts the rich edit
control's size to fill the view client area. Add the following boldface code:

void CEx13aView::OnSize(UINT nType, int cx, int cy)
{
 CRect rect;
 CView::OnSize(nType, cx, cy);
 GetClientRect(rect);
 m_rich.SetWindowPos(&wndTop, 0, 0, rect.right - rect.left,
 rect.bottom - rect.top, SWP_SHOWWINDOW);
}

10. Edit the menu command handler functions in ex13aView.cpp. ClassWizard generated these
skeleton functions when you mapped the menu commands in step 4. The OnTransferGetData
function gets the text from the document data member and puts it in the rich edit control. The
function then clears the control's modified flag. There is no update command UI handler. Add the
following boldface code:

void CEx13aView::OnTransferGetData()
{
 CEx13aDoc* pDoc = GetDocument();
 m_rich.SetWindowText(pDoc->m_strText);
 m_rich.SetModify(FALSE);
}
The OnTransferStoreData function copies the text from the view's rich edit control to the document
string and resets the control's modified flag. The corresponding update command UI handler grays
the menu item if the control has not been changed since it was last copied to or from the document.
Add the following boldface code:

void CEx13aView::OnTransferStoreData()
{
 CEx13aDoc* pDoc = GetDocument();
 m_rich.GetWindowText(pDoc->m_strText);
 m_rich.SetModify(FALSE);
}

void CEx13aView::OnUpdateTransferStoreData(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_rich.GetModify());
}

11. Build and test the EX13A application. When the application starts, the Clear Document item on
the Edit menu should be enabled. Choose Get Data From Document from the Transfer menu. Some
text should appear. Edit the text, and then choose Store Data In Document. That menu item should
now appear gray. Try choosing the Clear Document command, and then choose Get Data From
Document again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Sheets
You've already seen property sheets in Visual C++ and in many other modern Windows-based programs. A
property sheet is a nice UI element that allows you to cram lots of categorized information into a small
dialog. The user selects pages by clicking on their tabs. Windows offers a tab control that you can insert in
a dialog, but it's more likely that you'll want to put dialogs inside the tab control. The MFC library supports
this, and the result is called a property sheet. The individual dialogs are called property pages.

Building a Property Sheet

Follow these general steps to build a property sheet using the Visual C++ tools:

1. Use the resource editor to create a series of dialog templates that are all approximately the same
size. The captions are the strings that you want to display on the tabs.

2. Use ClassWizard to generate a class for each template. Select CPropertyPage as the base class. Add
data members for the controls.

3. Use ClassWizard to generate a single class derived from CPropertySheet.

4. To the sheet class, add one data member for each page class.

5. In the sheet class constructor, call the AddPage member function for each page, specifying the
address of the embedded page object.

6. In your application, construct an object of the derived CPropertySheet class, and then call DoModal.
You must specify a caption in the constructor call, but you can change the caption later by calling
CPropertySheet::SetTitle.

7. Take care of programming for the Apply button.

Property Sheet Data Exchange

The framework puts three buttons on a property sheet. (See, for example, Figure 13-5.) Be aware that the
framework calls the Dialog Data Exchange (DDX) code for a property page each time the user switches to
and from that page. As you would expect, the framework calls the DDX code for a page when the user
clicks OK, thus updating that page's data members. From these statements, you can conclude that all data
members for all pages are updated when the user clicks OK to exit the sheet. All this with no C++
programming on your part!

With a normal modal dialog, if the user clicks the Cancel button, the changes are
discarded and the dialog class data members remain unchanged. With a property
sheet, however, the data members are updated if the user changes one page and then
moves to another, even if the user exits by clicking the Cancel button.

What does the Apply button do? Nothing at all if you don't write some code. It won't even be enabled. To
enable it for a given page, you must set the page's modified flag by calling SetModified(TRUE) when you
detect that the user has made changes on the page.

If you've enabled the Apply button, you can write a handler function for it in your page class by overriding
the virtual CPropertyPage::OnApply function. Don't try to understand property page message processing in
the context of normal modal dialogs; it's quite different. The framework gets a WM_NOTIFY message for all
button clicks. It calls the DDX code for the page if the OK or Apply button was clicked. It then calls the
virtual OnApply functions for all the pages, and it resets the modified flag, which disables the Apply button.
Don't forget that the DDX code has already been called to update the data members in all pages, so you
need to override OnApply in only one page class.

What you put in your OnApply function is your business, but one option is to send a user-defined message
to the object that created the property sheet. The message handler can get the property page data
members and process them. Meanwhile, the property sheet stays on the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX13A Example Revisited
Now we'll add a property sheet to EX13A that allows the user to change the rich edit control's font
characteristics. Of course, we could have used the standard MFC CFontDialog function, but then you
wouldn't have learned how to create property sheets. Figure 13-5 shows the property sheet that you'll
build as you continue with EX13A.

Figure 13-5. The property sheet from EX13A.

If you haven't built EX13A, follow the instructions that begin under the EX13A Example to build it. If you
already have EX13A working with the Transfer menu commands, just continue on with these steps:

1. Use the resource editor to edit the application's main menu. Click on the ResourceView tab in
the Workspace window. Edit the IDR_MAINFRAME menu resource to add a Format menu that looks
like this.

Use the following command IDs for the new Format menu items.

Caption Command ID

&Default ID_FORMAT_DEFAULT

&Selection ID_FORMAT_SELECTION

Add appropriate prompt strings for the two menu items.

2. Use ClassWizard to add the view class command and update command UI message
handlers. Select the CEx13aView class, and then add the following member functions.

Object ID Message Member Function

ID_FORMAT_DEFAULT COMMAND OnFormatDefault

ID_FORMAT_SELECTION COMMAND OnFormatSelection

ID_FORMAT_SELECTION UPDATE_COMMAND_UI OnUpdateFormatSelection

3. Use the resource editor to add four property page dialog templates. The templates are
shown here with their associated IDs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the IDs in the table below for the controls in the dialogs. Set the Auto Buddy and the Set Buddy
Integer properties for the spin button control, and set the Group property for the IDC_FONT and
IDC_COLOR radio buttons. Set the minimum value of IDC_FONTSIZE to 8 and its maximum value
to 24.

Use ClassWizard to create the classes CPage1, CPage2, CPage3, and CPage4. In each case, select
CPropertyPage as the base class. Click the Change button in ClassWizard's New Class dialog to
generate the code for all these classes in the files Property.h and Property.cpp. Then add the data
members shown here.

Dialog Control ID Type Data Member

IDD_PAGE1 First radio button IDC_FONT int m_nFont

IDD_PAGE2 Bold check box IDC_BOLD BOOL m_bBold

IDD_PAGE2 Italic check box IDC_ITALIC BOOL m_bItalic

IDD_PAGE2 Underline check box IDC_UNDERLINE BOOL m_bUnderline

IDD_PAGE3 First radio button IDC_COLOR int m_nColor

IDD_PAGE4 Edit control IDC_FONTSIZE int m_nFontSize

IDD_PAGE4 Spin button control IDC_SPIN1

Finally, use ClassWizard to add an OnInitDialog message handler function for CPage4.

4. Use ClassWizard to create a class derived from CPropertySheet. Choose the name
CFontSheet. Generate the code in the files Property.h and Property.cpp, the same files you used for
the property page classes. Figure 13-6 shows these files with the added code in boldface.

PROPERTY.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#if !defined(AFX_PROPERTY_H__CD702F99_7495_11D0_8FDC_00C04FC2A0C2__INCLUDED_)
#define AFX_PROPERTY_H_ _CD702F99_7495_11D0_8FDC_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// Property.h : header file
//

#define WM_USERAPPLY WM_USER + 5
extern CView* g_pView;
//
// CPage1 dialog

class CPage1 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage1)

// Construction
public:
 CPage1();
 ~CPage1();

// Dialog Data
 //{{AFX_DATA(CPage1)
 enum { IDD = IDD_PAGE1 };
 int m_nFont;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage1)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnApply();
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage1)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CPage2 dialog

class CPage2 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage2)

// Construction
public:
 CPage2();
 ~CPage2();

// Dialog Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Dialog Data
 //{{AFX_DATA(CPage2)
 enum { IDD = IDD_PAGE2 };
 BOOL m_bBold;
 BOOL m_bItalic;
 BOOL m_bUnderline;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage2)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage2)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CPage3 dialog

class CPage3 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage3)

// Construction
public:
 CPage3();
 ~CPage3();

// Dialog Data
 //{{AFX_DATA(CPage3)
 enum { IDD = IDD_PAGE3 };
 int m_nColor;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage3)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage3)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CPage4 dialog

class CPage4 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage4)

// Construction
public:
 CPage4();
 ~CPage4();

// Dialog Data
 //{{AFX_DATA(CPage4)
 enum { IDD = IDD_PAGE4 };
 int m_nFontSize;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage4)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage4)
 virtual BOOL OnInitDialog();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CFontSheet

class CFontSheet : public CPropertySheet
{
 DECLARE_DYNAMIC(CFontSheet)

public:
 CPage1 m_page1;
 CPage2 m_page2;
 CPage3 m_page3;
 CPage4 m_page4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CPage4 m_page4;
// Construction
public:
 CFontSheet(UINT nIDCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);
 CFontSheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);

// Attributes
public:

// Operations
public:
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFontSheet)
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CFontSheet();

 // Generated message map functions
protected:
 //{{AFX_MSG(CFontSheet)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_PROPERTY_H_ _CD702F99_7495_11D0_8FDC_00C04FC2A0C2__INCLUDED_)
PROPERTY.CPP

// Property.cpp : implementation file
//

#include "stdafx.h"
#include "ex13a.h"
#include "Property.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

CView* g_pView;
//
// CPage1 property page

IMPLEMENT_DYNCREATE(CPage1, CPropertyPage)

CPage1::CPage1() : CPropertyPage(CPage1::IDD)
{
 //{{AFX_DATA_INIT(CPage1)
 m_nFont = -1;
 //}}AFX_DATA_INIT
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

CPage1::~CPage1()
{
}

BOOL CPage1::OnApply()
{
 TRACE("CPage1::OnApply\n");
 g_pView->SendMessage(WM_USERAPPLY);
 return TRUE;
}
BOOL CPage1::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage1::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage1::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage1)
 DDX_Radio(pDX, IDC_FONT, m_nFont);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage1, CPropertyPage)
 //{{AFX_MSG_MAP(CPage1)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CPage1 message handlers

//
// CPage2 property page

IMPLEMENT_DYNCREATE(CPage2, CPropertyPage)

CPage2::CPage2() : CPropertyPage(CPage2::IDD)
{
 //{{AFX_DATA_INIT(CPage2)
 m_bBold = FALSE;
 m_bItalic = FALSE;
 m_bUnderline = FALSE;
 //}}AFX_DATA_INIT
}

CPage2::~CPage2()
{
}

BOOL CPage2::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
void CPage2::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage2::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage2)
 DDX_Check(pDX, IDC_BOLD, m_bBold);
 DDX_Check(pDX, IDC_ITALIC, m_bItalic);
 DDX_Check(pDX, IDC_UNDERLINE, m_bUnderline);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage2, CPropertyPage)
 //{{AFX_MSG_MAP(CPage2)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CPage2 message handlers

//
// CPage3 property page

IMPLEMENT_DYNCREATE(CPage3, CPropertyPage)

CPage3::CPage3() : CPropertyPage(CPage3::IDD)
{
 //{{AFX_DATA_INIT(CPage3)
 m_nColor = -1;
 //}}AFX_DATA_INIT
}

CPage3::~CPage3()
{
}

BOOL CPage3::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage3::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage3::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage3)
 DDX_Radio(pDX, IDC_COLOR, m_nColor);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage3, CPropertyPage)
 //{{AFX_MSG_MAP(CPage3)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//
// CPage3 message handlers

//
// CPage4 property page

IMPLEMENT_DYNCREATE(CPage4, CPropertyPage)

CPage4::CPage4() : CPropertyPage(CPage4::IDD)
{
 //{{AFX_DATA_INIT(CPage4)
 m_nFontSize = 0;
 //}}AFX_DATA_INIT
}

CPage4::~CPage4()
{
}

BOOL CPage4::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage4::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage4::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage4)
 DDX_Text(pDX, IDC_FONTSIZE, m_nFontSize);
 DDV_MinMaxInt(pDX, m_nFontSize, 8, 24);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage4, CPropertyPage)
 //{{AFX_MSG_MAP(CPage4)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CPage4 message handlers

BOOL CPage4::OnInitDialog()
{
 CPropertyPage::OnInitDialog();
 ((CSpinButtonCtrl*) GetDlgItem(IDC_SPIN1))->SetRange(8, 24);
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

//
// CFontSheet

IMPLEMENT_DYNAMIC(CFontSheet, CPropertySheet)

CFontSheet::CFontSheet(UINT nIDCaption, CWnd* pParentWnd,
 UINT iSelectPage)
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage)
{
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CFontSheet::CFontSheet(LPCTSTR pszCaption, CWnd* pParentWnd,
 UINT iSelectPage)
 :CPropertySheet(pszCaption, pParentWnd, iSelectPage)
{
 AddPage(&m_page1);
 AddPage(&m_page2);
 AddPage(&m_page3);
 AddPage(&m_page4);
}

CFontSheet::~CFontSheet()
{
}

BEGIN_MESSAGE_MAP(CFontSheet, CPropertySheet)
 //{{AFX_MSG_MAP(CFontSheet)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CFontSheet message handlers

Figure 13-6. The EX13A Header and implementation file listings for the property page and
property sheet classes.

5. Add two data members and two prototypes to the CEx13aView class. If you use ClassView
for the data members, the #include for Property.h will be added automatically.

private:
 CFontSheet m_sh;
 BOOL m_bDefault; // TRUE default format, FALSE selection
Now add the prototype for the private function Format:

void Format(CHARFORMAT &cf);
Insert the prototype for the protected function OnUserApply before the DECLARE_MESSAGE_MAP
macro.

afx_msg LRESULT OnUserApply(WPARAM wParam, LPARAM lParam);
6. Edit and add code in the file ex13aView.cpp. Map the user-defined WM_USERAPPLY message,

as shown here:

ON_MESSAGE(WM_USERAPPLY, OnUserApply)
Add the following lines to the OnCreate function, just before the return 0 statement:

CHARFORMAT cf;
Format(cf);
m_rich.SetDefaultCharFormat(cf);
Edit the view constructor to set default values for the property sheet data members, as follows:

CEx13aView::CEx13aView() : m_sh("")
{
 m_sh.m_page1.m_nFont = 0;
 m_sh.m_page2.m_bBold = FALSE;
 m_sh.m_page2.m_bItalic = FALSE;
 m_sh.m_page2.m_bUnderline = FALSE;
 m_sh.m_page3.m_nColor = 0;
 m_sh.m_page4.m_nFontSize = 12;
 g_pView = this;
 m_bDefault = TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_bDefault = TRUE;
}
Edit the format command handlers, as shown here:

void CEx13aView::OnFormatDefault()
{
 m_sh.SetTitle("Default Format");
 m_bDefault = TRUE;
 m_sh.DoModal();
}

void CEx13aView::OnFormatSelection()
{
 m_sh.SetTitle("Selection Format");
 m_bDefault = FALSE;
 m_sh.DoModal();
}

void CEx13aView::OnUpdateFormatSelection(CCmdUI* pCmdUI)
{
 long nStart, nEnd;
 m_rich.GetSel(nStart, nEnd);
 pCmdUI->Enable(nStart != nEnd);
}
Add the following handler for the user-defined WM_USERAPPLY message:

LRESULT CEx13aView::OnUserApply(WPARAM wParam, LPARAM lParam)
{
 TRACE("CEx13aView::OnUserApply -- wParam = %x\n", wParam);
 CHARFORMAT cf;
 Format(cf);
 if (m_bDefault) {
 m_rich.SetDefaultCharFormat(cf);
 }
 else {
 m_rich.SetSelectionCharFormat(cf);
 }
 return 0;
}
Add the Format helper function, as shown below, to set a CHARFORMAT structure based on the
values of the property sheet data members.

void CEx13aView::Format(CHARFORMAT& cf)
{
 cf.cbSize = sizeof(CHARFORMAT);
 cf.dwMask = CFM_BOLD | CFM_COLOR | CFM_FACE |
 CFM_ITALIC | CFM_SIZE | CFM_UNDERLINE;
 cf.dwEffects = (m_sh.m_page2.m_bBold ? CFE_BOLD : 0) |
 (m_sh.m_page2.m_bItalic ? CFE_ITALIC : 0) |
 (m_sh.m_page2.m_bUnderline ? CFE_UNDERLINE : 0);
 cf.yHeight = m_sh.m_page4.m_nFontSize * 20;
 switch(m_sh.m_page3.m_nColor) {
 case -1:
 case 0:
 cf.crTextColor = RGB(0, 0, 0);
 break;
 case 1:
 cf.crTextColor = RGB(255, 0, 0);
 break;
 case 2:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case 2:
 cf.crTextColor = RGB(0, 255, 0);
 break;
 }
 switch(m_sh.m_page1.m_nFont) {
 case -1:
 case 0:
 strcpy(cf.szFaceName, "Times New Roman");
 break;
 case 1:
 strcpy(cf.szFaceName, "Arial");
 break;
 case 2:
 strcpy(cf.szFaceName, "Courier New");
 break;
 }
 cf.bCharSet = 0;
 cf.bPitchAndFamily = 0;
}

7. Build and test the enhanced EX13A application. Type some text, and then choose Default from
the Format menu. Observe the TRACE messages in the Debug window as you click on property
sheet tabs and click the Apply button. Try highlighting some text and then formatting the selection.

Apply Button Processing

You might be curious about the way the property sheet classes process the Apply button. In all the
page classes, the overridden OnCommand functions enable the Apply button whenever a control
sends a message to the page. This works fine for pages 1 through 3 in EX13A, but for page 4,
OnCommand is called during the initial conversation between the spin button control and its buddy.

The OnApply virtual override in the CPage1 class sends a user-defined message to the view. The
function finds the view in an expedient way—by using a global variable set by the view class. A
better approach would be to pass the view pointer to the sheet constructor and then to the page
constructor.

The view class calls the property sheet's DoModal function for both default formatting and selection
formatting. It sets the m_bDefault flag to indicate the mode. We don't need to check the return
from DoModal because the user-defined message is sent for both the OK button and the Apply
button. If the user clicks Cancel, no message is sent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CMenu Class
Up to this point, the application framework and the menu editor have shielded you from the menu class,
CMenu. A CMenu object can represent each Windows menu, including the top-level menu items and
associated pop-up menus. Most of the time, the menu's resource is directly attached to a frame window
when the window's Create or LoadFrame function is called, and a CMenu object is never explicitly
constructed. The CWnd member function GetMenu returns a temporary CMenu pointer. Once you have this
pointer, you can freely access and update the menu object.

Suppose you want to switch menus after the application starts. IDR_MAINFRAME always identifies the
initial menu in the resource script. If you want a second menu, you use the menu editor to create a menu
resource with your own ID. Then, in your program, you construct a CMenu object, use the
CMenu::LoadMenu function to load the menu from the resource, and call the CWnd::SetMenu function to
attach the new menu to the frame window. Then you call the Detach member function to separate the
object's HMENU handle so that the menu is not destroyed when the CMenu object goes out of scope.

You can use a resource to define a menu, and then your program can modify the menu items at runtime.
If necessary, however, you can build the whole menu at runtime, without benefit of a resource. In either
case, you can use CMenu member functions such as ModifyMenu, InsertMenu, and DeleteMenu. Each of
these functions operates on an individual menu item identified by ID or by a relative position index.

A menu object is actually composed of a nested structure of submenus. You can use the GetSubMenu
member function to get a CMenu pointer to a pop-up menu contained in the main CMenu object. The
CMenu::GetMenuString function returns the menu item string corresponding to either a zero-based index
or a command ID. If you use the command ID option, the menu is searched, together with any submenus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Floating Pop-Up Menus
Floating pop-up menus are one of the latest trends in user interface design. The user presses the right
mouse button and a floating menu offers choices that relate to the current selection. It's easy to create
these menus using the resource editor and the MFC library CMenu::TrackPopupMenu function. Just follow
these steps:

1. Use the menu editor to insert a new, empty menu in your project's resource file.

2. Type some characters in the left top-level item, and then add your menu items in the resulting pop-
up menu.

3. Use ClassWizard to add a WM_CONTEXTMENU message handler in your view class or in some other
window class that receives mouse-click messages. Code the handler as shown below.

void CMyView::OnContextMenu(CWnd *pWnd, CPoint point)
{
 CMenu menu;
 menu.LoadMenu(IDR_MYFLOATINGMENU);
 menu.GetSubMenu(0)
 ->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON,
 point.x, point.y, this);
}
You can use ClassWizard to map the floating menu's command IDs the same way you would map
the frame menu's command IDs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extended Command Processing
In addition to the ON_COMMAND message map macro, the MFC library provides an extended variation,
ON_COMMAND_EX. The extended command message map macro provides two features not supplied by
the regular command message—a command ID function parameter and the ability to reject a command at
runtime, sending it to the next object in the command route. If the extended command handler returns
TRUE, the command goes no further; if it returns FALSE, the application framework looks for another
command handler.

The command ID parameter is useful when you want one function to handle several related command
messages. You might invent some of your own uses for the rejection feature.

ClassWizard can't help you with extended command handlers, so you'll have to do the coding yourself,
outside the AFX_MSG_MAP brackets. Assume that IDM_ZOOM_1 and IDM_ZOOM_2 are related command
IDs defined in resource.h. Here's the class code you'll need to process both messages with one function,
OnZoom:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND_EX(IDM_ZOOM_1, OnZoom)
 ON_COMMAND_EX(IDM_ZOOM_2, OnZoom)
END_MESSAGE_MAP()

BOOL CMyView::OnZoom(UINT nID)
{
 if (nID == IDM_ZOOM_1) {
 // code specific to first zoom command
 }
 else {
 // code specific to second zoom command
 }
 // code common to both commands
 return TRUE; // Command goes no further
}
Here's the function prototype:

afx_msg BOOL OnZoom(UINT nID);
Other MFC message map macros are helpful for processing ranges of commands, as you might see in
dynamic menu applications. These macros include

ON_COMMAND_RANGE

ON_COMMAND_EX_RANGE

ON_UPDATE_COMMAND_UI_RANGE

If the values of IDM_ZOOM_1 and IDM_ZOOM_2 were consecutive, you could rewrite the CMyView
message map as follows:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND_EX_RANGE(IDM_ZOOM_1, IDM_ZOOM_2, OnZoom)
END_MESSAGE_MAP()
Now OnZoom is called for both menu choices, and the handler can determine the choice from the integer
parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14
Toolbars and Status Bars
All the Microsoft Visual C++ examples up to this point have included toolbars and status bars. AppWizard
generated the code that initialized these application framework elements as long as you accepted the
AppWizard default options Docking Toolbar and Initial Status Bar. The default toolbar provides graphics
equivalents for many of the standard application framework menu selections, and the default status bar
displays menu prompts together with the keyboard state indicators CAP, NUM, and SCRL.

This chapter shows you how to customize the toolbar and the status bar for your application. You'll be able
to add your own toolbar graphical buttons and control their appearance. You'll also learn how to disable the
status bar's normal display of menu prompts and keyboard indicators. This allows your application to take
over the status bar for its own use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Bars and the Application Framework
The toolbar is an object of class CToolBar, and the status bar is an object of class CStatusBar. Both these
classes are derived from class CControlBar, which is itself derived from CWnd. The CControlBar class
supports control bar windows that are positioned inside frame windows. These control bar windows resize
and reposition themselves as the parent frame moves and changes size. The application framework takes
care of the construction, window creation, and destruction of the control bar objects. AppWizard generates
control bar code for its derived frame class located in the files MainFrm.cpp and MainFrm.h.

In a typical SDI application, a CToolBar object occupies the top portion of the CMainFrame client area and
a CStatusBar object occupies the bottom portion. The view occupies the remaining (middle) part of the
frame.

Beginning with Microsoft Foundation Class (MFC) Library version 4.0, the toolbar has been built around the
toolbar common control that first became available with Microsoft Windows 95. Thus the toolbar is fully
dockable. The programming interface is much the same as it was in earlier versions of the MFC library,
however. The button images are easy to work with because a special resource type is supported by the
resource editor. The old global buttons array is gone.

Assuming that AppWizard has generated the control bar code for your application, the user can enable and
disable the toolbar and the status bar individually by choosing commands from the application's View
menu. When a control bar is disabled, it disappears and the view size is recalculated. Apart from the
common behavior just described, toolbar and status bar objects operate independently of each other and
have rather different characteristics.

In Visual C++ 6.0, a new MFC toolbar was introduced called the rebar. The rebar is based on the controls
that come as part of Microsoft Internet Explorer 4.0 and provides a Microsoft Internet Explorer-style
"sliding" toolbar. We will cover this later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Toolbar
A toolbar consists of a number of horizontally (or vertically) arranged graphical buttons that might be
clustered in groups. The programming interface determines the grouping. The graphical images for the
buttons are stored in a single bitmap that is attached to the application's resource file. When a button is
clicked, it sends a command message, as do menus and keyboard accelerators. An update command UI
message handler is used to update the button's state, which in turn is used by the application framework
to modify the button's graphical image.

The Toolbar Bitmap

Each button on a toolbar appears to have its own bitmap, but actually a single bitmap serves the entire
toolbar. The toolbar bitmap has a tile, 15 pixels high and 16 pixels wide, for each button. The application
framework supplies the button borders, and it modifies those borders, together with the button's bitmap
tile color, to reflect the current button state. Figure 14-1 shows the relationship between the toolbar
bitmap and the corresponding toolbar.

Figure 14-1. A toolbar bitmap and an actual toolbar.

The toolbar bitmap is stored in the file Toolbar.bmp in the application's \res subdirectory. The bitmap is
identified in the resource script (RC) file as IDR_MAINFRAME. You don't edit the toolbar bitmap directly;
instead you use Visual C++'s special toolbar-editing facility.

Button States

Each button can assume the following states.

State Meaning

0 Normal, unpressed state.

TBSTATE_CHECKED Checked (down) state.

TBSTATE_ENABLED Available for use. Button is grayed and unavailable if this state is not
set.

TBSTATE_HIDDEN Not visible.

TBSTATE_INDETERMINATE Grayed.

TBSTATE_PRESSED Currently selected (pressed) with the mouse.

TBSTATE_WRAP Line break follows the button.

A button can behave in either of two ways: it can be a pushbutton, which is down only when currently
selected by the mouse, or it can be a check box button, which can be toggled up and down with mouse
clicks. All buttons in the standard application framework toolbar are pushbuttons.

The Toolbar and Command Messages

When the user clicks a toolbar button with the mouse, a command message is generated. This message is
routed like the menu command messages you saw in Chapter 13. Most of the time, a toolbar button
matches a menu option. In the standard application framework toolbar, for example, the Disk button is
equivalent to the File Save menu option because both generate the ID_FILE_SAVE command. The object
receiving the command message doesn't need to know whether the message was produced by a click on
the toolbar or by a selection from the menu.

A toolbar button doesn't have to mirror a menu item. If you don't provide the equivalent menu item,
however, you are advised to define a keyboard accelerator for the button so that the user can activate the
command with the keyboard or with a keyboard macro product for Microsoft Windows. You can use
ClassWizard to define command and update command UI message handlers for toolbar buttons, whether
or not they have corresponding menu items.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or not they have corresponding menu items.

A toolbar has an associated bitmap resource and, in the RC file, a companion TOOLBAR resource that
defines the menu commands associated with the buttons. Both the bitmap and the TOOLBAR resource
have the same ID, typically IDR_MAINFRAME. The text of the AppWizard-generated TOOLBAR resource is
shown below:

IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15
BEGIN
 BUTTON ID_FILE_NEW
 BUTTON ID_FILE_OPEN
 BUTTON ID_FILE_SAVE
 SEPARATOR
 BUTTON ID_EDIT_CUT
 BUTTON ID_EDIT_COPY
 BUTTON ID_EDIT_PASTE
 SEPARATOR
 BUTTON ID_FILE_PRINT
 BUTTON ID_APP_ABOUT
END
The SEPARATOR constants serve to group the buttons by inserting corresponding spaces on the toolbar. If
the number of toolbar bitmap panes exceeds the number of resource elements (excluding separators), the
extra buttons are not displayed.

When you edit the toolbar with the resource editor, you're editing both the bitmap resource and the
TOOLBAR resource. You select a button image, and then you double-click on the left panel to edit the
properties, including the button's ID.

Toolbar Update Command UI Message Handlers

Remember from Chapter 13 that update command UI message handlers are used to disable or add check
marks to menu items. These same message handlers apply to toolbar buttons. If your update command UI
message handler calls the CCmdUI::Enable member function with a FALSE parameter, the corresponding
button is set to the disabled (grayed) state and no longer responds to mouse clicks.

On a menu item, the CCmdUI::SetCheck member function displays a check mark. For the toolbar, the
SetCheck function implements check box buttons. If the update command UI message handler calls
SetCheck with a parameter value of 1, the button is toggled to the down (checked) state; if the parameter
is 0, the button is toggled up (unchecked).

If the SetCheck parameter value is 2, the button is set to the indeterminate state. This
state looks like the disabled state, but the button is still active and its color is a bit
brighter.

The update command UI message handlers for a pop-up menu are called only when the menu is painted.
The toolbar is displayed all the time, so when are its update command UI message handlers called?
They're called during the application's idle processing, so the buttons can be updated continuously. If the
same handler covers a menu item and a toolbar button, it is called both during idle processing and when
the pop-up menu is displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolTips
You've seen ToolTips in various Windows applications, including Visual C++. When the user positions the
mouse on a toolbar button for a certain interval, text is displayed in a little ToolTip box next to the button.
In Chapter 13, you learned that menu items can have associated prompt strings, which are string resource
elements with matching IDs. To create a ToolTip, you simply add the tip text to the end of the menu
prompt, preceded by a newline (\n) character. The resource editor lets you edit the prompt string while
you are editing the toolbar images. Just double-click in the left panel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Locating the Main Frame Window
The toolbar and status bar objects you'll be working with are attached to the application's main frame
window, not to the view window. How does your view find its main frame window? In an SDI application,
you can use the CWnd::GetParentFrame function. Unfortunately, this function won't work in an MDI
application because the view's parent frame is the MDI child frame, not the MDI frame window.

If you want your view class to work in both SDI and MDI applications, you must find the main frame
window through the application object. The AfxGetApp global function returns a pointer to the application
object. You can use that pointer to get the CWinApp data member m_pMainWnd. In an MDI application,
AppWizard generates code that sets m_pMainWnd, but in an SDI application, the framework sets
m_pMainWnd during the view creation process. Once m_pMainWnd is set, you can use it in a view class to
get the frame's toolbar with statements such as this:

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
CToolBar* pToolBar = &pFrame->m_wndToolBar;

You'll need to cast m_pMainWnd from CFrameWnd* to CMainFrame* because
m_wndToolBar is a member of that derived class. You'll also have to make
m_wndToolBar public or make your class a friend of CMainFrame.

You can use similar logic to locate menu objects, status bar objects, and dialog objects.

In an SDI application, the value of m_pMainWnd is not set when the view's OnCreate
message handler is called. If you need to access the main frame window in your
OnCreate function, you must use the GetParentFrame function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX14A Toolbar Example
In this example, you will replace the standard application framework Edit Cut, Copy, and Paste toolbar
buttons with three special-purpose buttons that control drawing in the view window. You will also construct
a Draw menu with three corresponding menu items, as follows.

Menu Item Function

Circle Draws a circle in the view window

Square Draws a square in the view window

Pattern Toggles a diagonal line fill pattern for new squares and circles

The menu and toolbar options force the user to alternate between drawing circles and squares. After the
user draws a circle, the Circle menu item and toolbar button are disabled; after the user draws a square,
the Square menu item and toolbar button are disabled.

On the application's Draw menu, the Pattern menu item gets a check mark when pattern fill is active. On
the toolbar, the corresponding button is a check box button that is down when pattern fill is active and up
when it is not active.

Figure 14-2 shows the application in action. The user has just drawn a square with pattern fill. Notice the
states of the three drawing buttons.

Figure 14-2. The EX14A program in action.

The EX14A example introduces the resource editor for toolbars. You'll need to do very little C++ coding.
Simply follow these steps:

1. Run AppWizard to generate \vcpp32\ex14a\ex14a. Accept all default settings but two: select
Single Document and deselect Printing and Print Preview. The options and the default class names
are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the resource editor to edit the application's main menu. In ResourceView, double-click
on IDR_MAINFRAME under Menu. Edit the IDR_MAINFRAME menu resource to create a menu that
looks like this (which means you'll need to change the Edit menu).

Use the following command IDs for your new menu items.

Menu Caption Command ID

Draw Circle ID_DRAW_CIRCLE

Draw Square ID_DRAW_SQUARE

Draw Pattern ID_DRAW_PATTERN

When you're in the Menu Item Properties dialog, add some appropriate prompt strings and ToolTips
(following a newline character). The string for ID_DRAW_CIRCLE might be "Draw a circle\nCircle."

3. Use the resource editor to update the application's toolbar. Edit the IDR_MAINFRAME toolbar
resource to create a bitmap that looks like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll be erasing the Edit Cut, Copy, and Paste tiles (fourth, fifth, and sixth from the left) and
replacing them with new tiles. The toolbar editor is fairly intuitive. You simply move the buttons
around with the mouse. The Delete key erases a button's pixels. If you want to eliminate a button
entirely, just drag it off the toolbar. Use the rectangle and ellipse tools from the graphics toolbar.
Experiment with different line widths. Save the resource file when you're done—just in case.

Assign the IDs ID_DRAW_CIRCLE, ID_DRAW_SQUARE, and ID_DRAW_PATTERN to the three new
buttons.

4. Use ClassWizard to add CEx14aView view class message handlers. Add message handlers
for the following command and update command UI messages, and accept the default function
names shown in the following table.

Object ID Message Member Function

ID_DRAW_CIRCLE COMMAND OnDrawCircle

ID_DRAW_CIRCLE UPDATE_COMMAND_UI OnUpdateDrawCircle

ID_DRAW_PATTERN COMMAND OnDrawPattern

ID_DRAW_PATTERN UPDATE_COMMAND_UI OnUpdateDrawPattern

ID_DRAW_SQUARE COMMAND OnDrawSquare

ID_DRAW_SQUARE UPDATE_COMMAND_UI OnUpdateDrawSquare

5. Add three data members to the CEx14aView class. Edit the file ex14aView.h, or use
ClassView.

private:
 CRect m_rect;
 BOOL m_bCircle;
 BOOL m_bPattern;

6. Edit the ex14aView.cpp file. The CEx14aView constructor simply initializes the class data
members. Add the following boldface code:

CEx14aView::CEx14aView() : m_rect(0, 0, 100, 100)
{
 m_bCircle = TRUE;
 m_bPattern = FALSE;
}
The OnDraw function draws an ellipse or a rectangle, depending on the value of the m_bCircle flag.
The brush is plain white or a diagonal pattern, depending on the value of m_bPattern.

void CEx14aView::OnDraw(CDC* pDC)
{
 CBrush brush(HS_BDIAGONAL, 0L); // brush with diagonal pattern
 if (m_bPattern) {
 pDC->SelectObject(&brush);
 }
 else {
 pDC->SelectStockObject(WHITE_BRUSH);
 }
 if (m_bCircle) {
 pDC->Ellipse(m_rect);
 }
 else {
 pDC->Rectangle(m_rect);
 }
 pDC->SelectStockObject(WHITE_BRUSH); // Deselects brush
 // if selected
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The OnDrawCircle function handles the ID_DRAW_CIRCLE command message, and the
OnDrawSquare function handles the ID_DRAW_SQUARE command message. These two functions
move the drawing rectangle down and to the right, and then they invalidate the rectangle, causing
the OnDraw function to redraw it. The effect of this invalidation strategy is a diagonal cascading of
alternating squares and circles. Also, the display is not buffered, so when the window is hidden or
minimized, previously drawn items are not redisplayed.

void CEx14aView::OnDrawCircle()
{
 m_bCircle = TRUE;
 m_rect += CPoint(25, 25);
 InvalidateRect(m_rect);
}

void CEx14aView::OnDrawSquare()
{
 m_bCircle = FALSE;
 m_rect += CPoint(25, 25);
 InvalidateRect(m_rect);
}
The following two update command UI functions alternately enable and disable the Circle and
Square buttons and corresponding menu items. Only one item can be enabled at a time.

void CEx14aView::OnUpdateDrawCircle(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_bCircle);
}

void CEx14aView::OnUpdateDrawSquare(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bCircle);
}
The OnDrawPattern function toggles the state of the m_bPattern flag.

void CEx14aView::OnDrawPattern()
{
 m_bPattern ^= 1;
}
The OnUpdateDrawPattern function updates the Pattern button and menu item according to the
state of the m_bPattern flag. The toolbar button appears to move in and out, and the menu item
check mark appears and disappears.

void CEx14aView::OnUpdateDrawPattern(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck(m_bPattern);
}

7. Build and test the EX14A application. Notice the behavior of the toolbar buttons. Try the
corresponding menu items, and notice that they too are enabled, disabled, and checked as the
application's state changes. Observe the ToolTip when you stop the mouse pointer on one of the
new toolbar buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Status Bar
The status bar window neither accepts user input nor generates command messages. Its job is simply to
display text in panes under program control. The status bar supports two types of text panes—message
line panes and status indicator panes. To use the status bar for application-specific data, you must first
disable the standard status bar that displays the menu prompt and key-board status.

The Status Bar Definition

The static indicators array that AppWizard generates in the MainFrm.cpp file defines the panes for the
application's status bar. The constant ID_SEPARATOR identifies a message line pane; the other constants
are string resource IDs that identify indicator panes. Figure 14-3 shows the indicators array and its
relationship to the standard framework status bar.

Figure 14-3. The status bar and the indicators array.

The CStatusBar::SetIndicators member function, called in the application's derived frame class, configures
the status bar according to the contents of the indicators array.

The Message Line

A message line pane displays a string that the program supplies dynamically. To set the value of the
message line, you must first get access to the status bar object and then you must call the
CStatusBar::SetPaneText member function with a zero-based index parameter. Pane 0 is the leftmost
pane, 1 is the next pane to the right, and so forth.

The following code fragment is part of a view class member function. Note that you must navigate up to
the application object and then back down to the main frame window.

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
CStatusBar* pStatus = &pFrame->m_wndStatusBar;
pStatus->SetPaneText(0, "message line for first pane");
Normally, the length of a message line pane is exactly one-fourth the width of the display. If, however, the
message line is the first (index 0) pane, it is a stretchy pane without a beveled border. Its minimum length
is one-fourth the display width, and it expands if room is available in the status bar.

The Status Indicator

A status indicator pane is linked to a single resource-supplied string that is displayed or hidden by logic in
an associated update command UI message handler function. An indicator is identified by a string resource
ID, and that same ID is used to route update command UI messages. The Caps Lock indicator is handled in
the frame class by a message map entry and a handler function equivalent to those shown below. The
Enable function turns on the indicator if the Caps Lock mode is set.

ON_UPDATE_COMMAND_UI(ID_INDICATOR_CAPS, OnUpdateKeyCapsLock)

void CMainFrame::OnUpdateKeyCapsLock(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_CAPITAL) & 1);
}
The status bar update command UI functions are called during idle processing so that the status bar is
updated whenever your application receives messages.

The length of a status indicator pane is the exact length of the corresponding resource string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The length of a status indicator pane is the exact length of the corresponding resource string.

Taking Control of the Status Bar

In the standard application framework implementation, the status bar has the child window ID
AFX_IDW_STATUS_BAR. The application framework looks for this ID when it wants to display a menu
prompt. The update command UI handlers for the keyboard state indicators, embedded in the frame
window base class, are linked to the following string IDs: ID_INDICATOR_CAPS, ID_INDICATOR_NUM, and
ID_INDICATOR_SCRL. To take control of the status bar, you must use a different child window ID and you
must use different indicator ID constants.

The only reason to change the status bar's child window ID is to prevent the framework
from writing menu prompts in pane 0. If you like the menu prompts, you can disregard
the following instructions.

The status bar window ID is assigned in the CStatusBar::Create function called by the derived frame class
OnCreate member function. That function is contained in the MainFrm.cpp file that AppWizard generates.
The window ID is the third Create parameter, and it defaults to AFX_IDW_STATUS_BAR.

To assign your own ID, you must replace this call

m_wndStatusBar.Create(this);
with this call

m_wndStatusBar.Create(this, WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,
 ID_MY_STATUS_BAR);
You must also, of course, define the ID_MY_STATUS_BAR constant in the resource.h file (using Visual
C++'s resource symbol editor).

We forgot one thing. The standard application framework's View menu allows the user to turn the status
bar on and off. That logic is pegged to the AFX_IDW_STATUS_BAR window ID, so you'll have to change the
menu logic, too. In your derived frame class, you must write message map entries and handlers for the
ID_VIEW_STATUS_BAR command and update command UI messages. ID_VIEW_STATUS_BAR is the ID of
the Status Bar menu item. The derived class handlers override the standard handlers in the CFrameWnd
base class. See the EX14B example for code details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX14B Status Bar Example
The EX14B example replaces the standard application framework status bar with a new status bar that has
the following text panes.

Pane Index String ID Type Description

0 ID_SEPARATOR (0) Message line x cursor coordinate

1 ID_SEPARATOR (0) Message line y cursor coordinate

2 ID_INDICATOR_LEFT Status indicator Left mouse button status

3 ID_INDICATOR_RIGHT Status indicator Right mouse button status

The resulting status bar is shown in Figure 14-4. Notice that the leftmost pane stretches past its normal
1/20-screen length as the displayed frame window expands.

Figure 14-4. The status bar of the EX14B example.

Follow these steps to produce the EX14B example:

1. Run AppWizard to generate \vcpp32\ex14b\ex14b. Accept all default settings but two: select
Single Document and deselect Printing and Print Preview. The options and the default class names
are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the string editor to edit the application's string table resource. The application has a
single string table resource with artificial "segment" divisions left over from the 16-bit era. Double-
click on the String Table icon in the String Table folder on the ResourceView page to bring up the
string editor. Then double-click on the empty entry at the end of the list. A dialog allows you to
assign the ID and the string value as shown below.

Add two strings as follows.

String ID String Caption

ID_INDICATOR_LEFT LEFT

ID_INDICATOR_RIGHT RIGHT

3. Use Visual C++ to edit the application's symbols. Choose Resource Symbols from the View
menu. Add the new status bar identifier, ID_MY_STATUS_BAR, and accept the default value.

4. Use ClassWizard to add View menu command handlers in the class CMainFrame. Add the
following command message handlers.

Object ID Message Member Function

ID_VIEW_STATUS_BAR COMMAND OnViewStatusBar

ID_VIEW_STATUS_BAR UPDATE_COMMAND_UI OnUpdateViewStatusBar

5. Add the following function prototypes to MainFrm.h. You must add these CMainFrame
message handler prototypes manually because ClassWizard doesn't recognize the associated
command message IDs.

afx_msg void OnUpdateLeft(CCmdUI* pCmdUI);
afx_msg void OnUpdateRight(CCmdUI* pCmdUI);
Add the message handler statements inside the AFX_MSG brackets so that ClassWizard will let you
access and edit the code later. While MainFrm.h is open, make m_wndStatusBar public rather than
protected.

6. Edit the MainFrm.cpp file. Replace the original indicators array with the following boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Edit the MainFrm.cpp file. Replace the original indicators array with the following boldface code:

static UINT indicators[] =
{
 ID_SEPARATOR, // first message line pane
 ID_SEPARATOR, // second message line pane
 ID_INDICATOR_LEFT,
 ID_INDICATOR_RIGHT,
};
Next edit the OnCreate member function. Replace the following statement

if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
{
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
}
with the statement shown here:

if (!m_wndStatusBar.Create(this,
 WS_CHILD | WS_VISIBLE | CBRS_BOTTOM, ID_MY_STATUS_BAR) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
{
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
}
The modified call to Create uses our own status bar ID, ID_MY_STATUS_BAR, instead of
AFX_IDW_STATUS_BAR (the application framework's status bar object).

Now add the following message map entries for the class CMainFrame. ClassWizard can't add these
for you because it doesn't recognize the string table IDs as object IDs.

ON_UPDATE_COMMAND_UI(ID_INDICATOR_LEFT, OnUpdateLeft)
ON_UPDATE_COMMAND_UI(ID_INDICATOR_RIGHT, OnUpdateRight)
Next add the following CMainFrame member functions that update the two status indicators:

void CMainFrame::OnUpdateLeft(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_LBUTTON) < 0);
}
void CMainFrame::OnUpdateRight(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_RBUTTON) < 0);
}
Note that the left and right mouse buttons have virtual key codes like keys on the keyboard have.
You don't have to depend on mouse-click messages to determine the button status.

Finally, edit the following View menu functions that ClassWizard originally generated in
MainFrm.cpp:

void CMainFrame::OnViewStatusBar()
{
 m_wndStatusBar.ShowWindow((m_wndStatusBar.GetStyle() &
 WS_VISIBLE) == 0);
 RecalcLayout();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RecalcLayout();
}
void CMainFrame::OnUpdateViewStatusBar(CCmdUI* pCmdUI)
{
 pCmdUI-
>SetCheck((m_wndStatusBar.GetStyle() & WS_VISIBLE) != 0);
}
These functions ensure that the View menu Status Bar command is properly linked to the new
status bar.

7. Edit the OnDraw function in Ex14bView.cpp. The OnDraw function displays a message in the
view window. Add the following boldface code:

void CEx14bView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0,
 "Watch the status bar while you move and click the mouse.");
}

8. Add a WM_MOUSEMOVE handler in the CEx14bView class. Use ClassWizard to map the
message to OnMouseMove, and then edit the function as shown below. This function gets a pointer
to the status bar object and then calls the SetPaneText function to update the first and second
message line panes.

void CEx14bView::OnMouseMove(UINT nFlags, CPoint point)
{
 CString str;
 CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
 CStatusBar* pStatus = &pFrame->m_wndStatusBar;
 if (pStatus) {
 str.Format("x = %d", point.x);
 pStatus->SetPaneText(0, str);
 str.Format("y = %d", point.y);
 pStatus->SetPaneText(1, str);
 }
}
Finally, add the statement

#include "MainFrm.h"
near the top of the file ex14bView.cpp.

9. Build and test the EX14B application. Move the mouse, and observe that the left two status bar
panes accurately reflect the mouse cursor's position. Try the left and right mouse buttons. Can you
toggle the status bar on and off from the View menu?

If you want the first (index 0) status bar pane to have a beveled border like the other
panes and you want the status bar to grow and resize to fit their contents, include the
following two lines in the CMainFrame::OnCreate function, following the call to the
status bar Create function.

m_wndStatusBar.SetPaneInfo(0, 0, 0, 50);
m_wndStatusBar.SetPaneInfo(1, 0, SBPS_STRETCH, 50);
These statements change the width of the first two panes (from their default of one-
fourth the display size) and make the second pane (index 1) the stretchy one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Internet Explorer Rebar Toolbar
As we learned in Chapter 9, Visual C++ 6.0 contains many features that are part of Internet Explorer 4.0:
the Internet Explorer Common Controls. One of the new controls in the IE Common Controls is a new kind
of toolbar called a rebar.

You're probably already familiar with the rebar if you have ever used Internet Explorer 4.0. The rebar
differs from the default MFC toolbar in that it provides grippers and allows the user to "slide" its horizontal
and vertical positions, whereas the MFC toolbar's position is changed via drag-and-drop docking. Rebars
also allow the developer to provide many more internal control types—such as drop-down menus—than
are available in CToolBar.

Anatomy of a Rebar

Figure 14-5 shows the various terminology used on a rebar. Each internal toolbar in a rebar is called a
band. The raised edge where the user slides the band is called a gripper. Each band can also have a label.

Figure 14-5. Rebar terminology.

MFC provides two classes that facilitate working with rebars:

CReBar—A high-level abstraction class that provides members for adding CToolBar and CDialogBar
classes to rebars as bands. CReBar also handles communication (such as message notifications)
between the underlying control and the MFC framework.
CReBarCtrl—A low-level wrapper class that wraps the IE ReBar control. This class provides
numerous members for creating and manipulating rebars but does not provide the niceties that are
found in CReBar.

Most MFC applications use CReBar and call the member function GetReBarCtrl, which returns a CReBarCtrl
pointer to gain access to the lower-level control if needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX14C Rebar Example
Let's get familiar with the rebar by jumping into an example. This example creates an SDI application that
has a rebar with two bands: a familiar toolbar band and a dialog bar band. Figure 14-6 shows the example
in action.

Figure 14-6. EX14C rebar example.

Here are the steps required to create the EX14C example:

1. Run AppWizard to generate \vcpp32\ex14c\ex14c. Select Single Document. In Step 4, be
sure you select Internet Explorer ReBars under the How Do You Want Your Toolbars To Look option.
Figure 14-7 below shows the correct settings. Accept all other default settings.

2. Compile and run the application. When you run the application, you will see that AppWizard has
automatically created a rebar with two bands. One band contains a conventional toolbar and the
other contains the text "TODO: layout dialog bar" in the band. Figure 14-8 below shows the initial
rebar control.

At this point, you can open the MainFrm.h header file and see the code below, which declares the
CReBar data member m_ndReBar.

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;
 CReBar m_wndReBar;
 CDialogBar m_wndDlgBar;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-7. AppWizard Step 4 settings for the rebar control.

Figure 14-8. Initial windows for EX14C example with the default rebar controls.

In the MainFrm.cpp file, you can see the code that adds the toolbar and the dialog bar to the
CReBar object:

 if (!m_wndReBar.Create(this) ||
 !m_wndReBar.AddBar(&m_wndToolBar) ||
 !m_wndReBar.AddBar(&m_wndDlgBar))
 {
 TRACE0("Failed to create rebar\n");
 return -1; // fail to create
 }

3. Lay out the Dialog Bar. Open the Visual C++ resource editor. Under the Dialog heading you'll find
a dialog resource for the dialog bar with the ID IDR_MAINFRAME. Open IDR_MAINFRAME and you'll
see the dialog bar with the text "TODO: layout dialog bar". Let's follow AppWizard's friendly
suggestion and put some real controls into the dialog bar. First delete the static control with the
"TODO" text in it. Next place a combo box in the dialog bar and enter some default data items: one,
two, buckle, my, shoe! Now place a button on the dialog bar and change the button's text to
Increment. Next place a progress bar with the default properties on the dialog bar. Finally place
another button with the text Decrement on the dialog bar. When you are done laying out the dialog
bar, it should look similar to Figure 14-9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-9. Edited IDR_MAINFRAME dialog bar.

4. Associate the dialog bar with the CMainFrame class. Before we can program the handlers for
the Increment and Decrement buttons, we need to attach the dialog bar to a class using
ClassWizard. While in the resource editor, bring up ClassWizard by double-clicking on the Increment
button. You will now see this dialog.

Choose Select An Existing Class. We choose this option because we want our dialog resource to be
a band in the toolbar, not a separate dialog class. Click OK and you will see these choices.

Choose CMainFrame from the list and click Select.

ClassWizard will prompt you with one last dialog.

Click Yes and then exit ClassWizard. You have successfully associated the IDR_MAINFRAME dialog
bar with the CMainFrame class.

5. Program the dialog bar. To program the dialog bar, bring up the IDR_MAINFRAME dialog
resource in the resource editor again and double-click on the Increment button. ClassWizard will
automatically create an ONBUTTON1 handler for you—accept the default name for this function.
Enter the following boldface code in the OnButton1 function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CMainFrame::OnButton1()
{
 CProgressCtrl * pProgress =
 (CProgressCtrl*)m_wndDlgBar.GetDlgItem(IDC_PROGRESS1);
 pProgress->StepIt();
}
The OnButton1 handler first gets a pointer to the progress control and then calls StepIt to
increment the progress control.

Now we need to add similar code to the decrement handler. Double-click on the Decrement button
in the resource editor and ClassWizard will automatically create an OnButton2 handler. Add the
following boldface code to the OnButton2 member function:

void CMainFrame::OnButton2()
{
 CProgressCtrl * pProgress =
 (CProgressCtrl*)m_wndDlgBar.GetDlgItem(IDC_PROGRESS1);
 int nCurrentPos = pProgress->GetPos();
 pProgress->SetPos(nCurrentPos-10);
}

6. Compile and test. Now you can compile and run EX14C to see your custom rebar in action. The
Increment button increases the progress bar and the Decrement button decreases it.

In this chapter, we learned how to use MFC's toolbar, status bar, and the new rebar control. In the next
chapter, we'll look at how to extend MFC to implement a frame window that remembers its position.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15
A Reusable Frame Window Base Class
C++ promises programmers the ability to produce "software Lego blocks" that can be taken "off the shelf"
and fitted easily into an application. The Microsoft Foundation Class (MFC) Library version 6.0 classes are a
good example of this kind of reusable software. This chapter shows you how to build your own reusable
base class by taking advantage of what the MFC library already provides.

In the process of building the reusable class, you'll learn a few more things about Microsoft Windows and
the MFC library. In particular, you'll see how the application framework allows access to the Windows
Registry, you'll learn more about the mechanics of the CFrameWnd class, and you'll get more exposure to
static class variables and the CString class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Reusable Base Classes Are Difficult to Write
In a normal application, you write code for software components that solve particular problems. It's usually
a simple matter of meeting the project specification. With reusable base classes, however, you must
anticipate future programming needs, both your own and those of others. You have to write a class that is
general and complete yet efficient and easy to use.

This chapter's example showed me the difficulty in building reusable software. I started out intending to
write a frame class that would "remember" its window size and position. When I got into the job, I
discovered that existing Windows-based programs remember whether they have been minimized to the
taskbar or whether they have been maximized to full screen. Then there was the oddball case of a window
that was both minimized and maximized. After that, I had to worry about the toolbar and the status bar,
plus the class had to work in a dynamic link library (DLL). In short, it was surprisingly difficult to write a
frame class that would do everything that a programmer might expect.

In a production programming environment, reusable base classes might fall out of the normal software
development cycle. A class written for one project might be extracted and further generalized for another
project. There's always the temptation, though, to cut and paste existing classes without asking, "What
can I factor out into a base class?" If you're in the software business for the long term, it's beneficial to
start building your library of truly reusable components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CPersistentFrame Class
In this chapter, you'll be using a class named CPersistentFrame that is derived from the CFrameWnd class.
This CPersistentFrame class supports a persistent SDI (Single Document Interface) frame window that
remembers the following characteristics.

Window size

Window position

Maximized status

Minimized status

Toolbar and status bar enablement and position

When you terminate an application that's built with the CPersistentFrame class, the above information is
saved on disk in the Windows Registry. When the application starts again, it reads the Registry and
restores the frame to its state at the previous exit.

You can use the persistent view class in any SDI application, including the examples in this book. All you
have to do is substitute CPersistentFrame for CFrameWnd in your application's derived frame class files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFrameWnd Class and the ActivateFrame Member Function
Why choose CFrameWnd as the base class for a persistent window? Why not have a persistent view class
instead? In an MFC SDI application, the main frame window is always the parent of the view window. This
frame window is created first, and then the control bars and the view are created as child windows. The
application framework ensures that the child windows shrink and expand appropriately as the user changes
the size of the frame window. It wouldn't make sense to change the view size after the frame was created.

The key to controlling the frame's size is the CFrameWnd::ActivateFrame member function. The application
framework calls this virtual function (declared in CFrameWnd) during the SDI main frame window creation
process (and in response to the File New and File Open commands). The framework's job is to call the
CWnd::ShowWindow function with the parameter nCmdShow. ShowWindow makes the frame window
visible along with its menu, view window, and control bars. The nCmdShow parameter determines whether
the window is maximized or minimized or both.

If you override ActivateFrame in your derived frame class, you can change the value of nCmdShow before
passing it to the CFrameWnd::ActivateFrame function. You can also call the CWnd::SetWindowPlacement
function, which sets the size and position of the frame window, and you can set the visible status of the
control bars. Because all changes are made before the frame window becomes visible, no annoying flash
occurs on the screen.

You must be careful not to reset the frame window's position and size after every File New or File Open
command. A first-time flag data member ensures that your CPersistentFrame::ActivateFrame function
operates only when the application starts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PreCreateWindow Member Function
PreCreateWindow, declared at the CWnd level, is another virtual function that you can override to change
the characteristics of your window before it is displayed. The framework calls this function before it calls
ActivateFrame. AppWizard always generates an overridden PreCreateWindow function in your project's
view and frame window classes.

This function has a CREATESTRUCT structure as a parameter, and two of the data members in this
structure are style and dwExStyle. You can change these data members before passing the structure on to
the base class PreCreateWindow function. The style flag determines whether the window has a border,
scroll bars, a minimize box, and so on. The dwExStyle flag controls other characteristics, such as always-
on-top status. See the online documentation for Window Styles and Extended Window Styles for details.

The CREATESTRUCT member lpszClass is also useful to change the window's background brush, cursor, or
icon. It makes no sense to change the brush or cursor in a frame window because the view window covers
the client area. If you want an ugly red view window with a special cursor, for example, you can override
your view's PreCreateWindow function like this:

BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CView::PreCreateWindow(cs)) {
 return FALSE;
 }
 cs.lpszClass =
 AfxRegisterWndClass(CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW,
 AfxGetApp()->LoadCursor(IDC_MYCURSOR),
 ::CreateSolidBrush(RGB(255, 0, 0)));
 if (cs.lpszClass != NULL) {
 return TRUE;
 }
 else {
 return FALSE;
 }
}
If you override the PreCreateWindow function in your persistent frame class, windows of all derived classes
will share the characteristics you programmed in the base class. Of course, derived classes can have their
own overridden PreCreateWindow functions, but then you'll have to be careful about the interaction
between the base class and derived class functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Registry
If you've used Win16-based applications, you've probably seen INI files. You can still use INI files in
Win32-based applications, but Microsoft recommends that you use the Windows Registry instead. The
Registry is a set of system files, managed by Windows, in which Windows and individual applications can
store and access permanent information. The Registry is organized as a kind of hierarchical database in
which string and integer data is accessed by a multipart key.

For example, a text processing application, TEXTPROC, might need to store the most recent font and point
size in the Registry. Suppose that the program name forms the root of the key (a simplification) and that
the application maintains two hierarchy levels below the name. The structure looks something like this.

TEXTPROC

 Text formatting

 Font = Times Roman

 Points = 10

Unicode

European languages use characters that can be encoded in 8 bits—even characters with
diacritics. Most Asian languages require 16 bits for their characters. Many programs use
the double-byte character set (DBCS) standard: some characters use 8 bits and others
16 bits, depending on the value of the first 8 bits. DBCS is being replaced by Unicode,
in which all characters are 16-bit "wide" characters. No specific Unicode character
ranges are set aside for individual languages: if a character is used in both the Chinese
and the Japanese languages, for example, that character appears only once in the
Unicode character set.

When you look at MFC source code and the code that AppWizard generates, you'll see
the types TCHAR, LPTSTR, and LPCTSTR and you'll see literal strings like _T("string").
You are looking at Unicode macros. If you build your project without defining
_UNICODE, the compiler generates code for ordinary 8-bit ANSI characters (CHAR) and
pointers to 8-bit character arrays (LPSTR, LPCSTR). If you do define _UNICODE, the
compiler generates code for 16-bit Unicode characters (WCHAR), pointers (LPWSTR,
LPCWSTR), and literals (L"wide string").

The _UNICODE preprocessor symbol also determines which Windows functions your
program calls. Many Win32 functions have two versions. When your program calls
CreateWindowEx, for example, the compiler generates code to call either
CreateWindowExA (with ANSI parameters) or CreateWindowExW (with Unicode
parameters). In Microsoft Windows NT, which uses Unicode internally,
CreateWindowExW passes all parameters straight through, but CreateWindowExA
converts ANSI string and character parameters to Unicode. In Microsoft Windows 95,
which uses ANSI internally, CreateWindowExW is a stub that returns an error and
CreateWindowExA passes the parameters straight through.

If you want to create a Unicode application, you should target it for Windows NT and
use the macros throughout. You can write Unicode applications for Windows 95, but
you'll do extra work to call the "A" versions of the Win32 functions. As shown in
Chapter 24, Chapter 25, Chapter 26, Chapter 27, Chapter 28, Chapter 29, and Chapter
30, COM calls (except DAO) always use wide characters. Although Win32 functions are
available for converting between ANSI and Unicode, if you're using the CString class
you can rely on a wide character constructor and the AllocSysString member function
to do the conversions.

For simplicity, this book's example programs use ANSI only. The code AppWizard
generated uses Unicode macros, but the code I wrote uses 8-bit literal strings and the
char, char*, and const char* types.

The MFC library provides four CWinApp member functions, holdovers from the days of INI files, for
accessing the Registry. Starting with Visual C++ version 5.0, AppWizard generates a call to
CWinApp::SetRegistryKey in your application's InitInstance function as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CWinApp::SetRegistryKey in your application's InitInstance function as shown here.

SetRegistryKey(_T("Local AppWizard-Generated Applications"));
If you remove this call, your application will not use the Registry but will create and use an INI file in the
Windows directory. The SetRegistryKey function's string parameter establishes the top of the hierarchy,
and the following Registry functions define the bottom two levels: called heading name and entry name.

GetProfileInt

WriteProfileInt

GetProfileString

WriteProfileString

These functions treat Registry data as either CString objects or unsigned integers. If you need floating-
point values as entries, you must use the string functions and do the conversion yourself. All the functions
take a heading name and an entry name as parameters. In the example shown above, the heading name
is Text Formatting and the entry names are Font and Points.

To use the Registry access functions, you need a pointer to the application object. The global function
AfxGetApp does the job. With the previous sample Registry, the Font and Points entries were set with the
following code:

AfxGetApp()->WriteProfileString("Text formatting", "Font",
 "Times Roman");
AfxGetApp()->WriteProfileInt("Text formatting", "Points", 10);
You'll see a real Registry example in EX15A, and you'll learn to use the Windows Regedit program to
examine and edit the Registry.

The application framework stores a list of most recently used files in the Registry under
the heading Recent File List.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the CString Class
The MFC CString class is a significant de facto extension to the C++ language. As the Microsoft Foundation
Classes and Templates section of the online help points out, the CString class has many useful operators
and member functions, but perhaps its most important feature is its dynamic memory allocation. You
never have to worry about the size of a CString object. The statements here represent typical uses of
CString objects.

CString strFirstName("Elvis");
CString strLastName("Presley");
CString strTruth = strFirstName + " " + strLastName; // concatenation
strTruth += " is alive";
ASSERT(strTruth == "Elvis Presley is alive");
ASSERT(strTruth.Left(5) == strFirstName);
ASSERT(strTruth[2] == `v'); // subscript operator
In a perfect world, C++ programs would use all CString objects and never use ordinary zero-terminated
character arrays. Unfortunately, many runtime library functions still use character arrays, so programs
must always mix and match their string representations. Fortunately, the CString class provides a const
char*() operator that converts a CString object to a character pointer. Many of the MFC library functions
have const char* parameters. Take the global AfxMessageBox function, for example. Here is one of the
function's prototypes:

int AFXAPI AfxMessageBox(LPCTSTR lpszText, UINT nType = MB_OK,
 UINT nIDHelp = 0);
(Note: LPCTSTR is not a pointer to a CString object but rather is a Unicode-enabled replacement for const
char*.)

You can call AfxMessageBox this way:

char szMessageText[] = "Unknown error";
AfxMessageBox(szMessageText);
or you can call it this way:

CString strMessageText("Unknown ;error");
AfxMessageBox(strMessageText);
Now suppose you want to generate a formatted string. CString::Format does the job, as shown here:

int nError = 23;
CString strMessageText;
strMessageText.Format("Error number %d", nError);
AfxMessageBox(strMessageText);

Suppose you want direct write access to the characters in a CString object. If you write
code like this:

CString strTest("test");
strncpy(strTest, "T", 1);
you'll get a compile error because the first parameter of strncpy is declared char*, not
const char*. The CString::GetBuffer function "locks down" the buffer with a specified
size and returns a char*. You must call the ReleaseBuffer member function later to
make the string dynamic again. The correct way to capitalize the T is shown here.

CString strTest("test");
strncpy(strTest.GetBuffer(5), "T", 1);
strTest.ReleaseBuffer();
ASSERT(strTest == "Test");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The const char* operator takes care of converting a CString object to a constant character pointer; but
what about conversion in the other direction? It so happens that the CString class has a constructor that
converts a constant character pointer to a CString object, and it has a set of overloaded operators for
these pointers. That's why statements such as the following work.

strTruth += " is alive";
The special constructor works with functions that take a CString reference parameter, such as
CDC::TextOut. In the following statement, a temporary CString object is created on the calling program's
stack and then the object's address is passed to TextOut:

pDC->TextOut(0, 0, "Hello, world!");
It's more efficient to use the other overloaded version of CDC::TextOut if you're willing to count the
characters:

pDC->TextOut(0, 0, "Hello, world!", 13);
If you're writing a function that takes a string parameter, you've got some design choices. Here are some
programming rules.

If the function doesn't change the contents of the string and you're willing to use C runtime
functions such as strcpy, use a const char* parameter.

If the function doesn't change the contents of the string but you want to use CString member
functions inside the function, use a const CString& parameter.

If the function changes the contents of the string, use a CString& parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Position of a Maximized Window
As a Windows user, you know that you can maximize a window from the system menu or by clicking a
button at the top right corner of the window. You can return a maximized window to its original size in a
similar fashion. It's obvious that a maximized window remembers its original size and position.

The CWnd function GetWindowRect retrieves the screen coordinates of a window. If a window is
maximized, GetWindowRect returns the coordinates of the screen rather than the window's unmaximized
coordinates. If a persistent frame class is to work for maximized windows, it has to know the window's
unmaximized coordinates. CWnd::GetWindowPlacement retrieves the unmaxi-mized coordinates together
with some flags that indicate whether the window is currently minimized or maximized or both.

The companion SetWindowPlacement function lets you set the maximized and minimized status and the
size and position of the window. To calculate the position of the top left corner of a maximized window, you
need to account for the window's border size, obtainable from the Win32 GetSystemMetrics function. See
Figure 15-1 for the CPersistentFrame::ActivateFrame code for an example of how SetWindowPlacement is
used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Bar Status and the Registry
The MFC library provides two CFrameWnd member functions, SaveBarState and LoadBarState, for saving
and loading control bar status to and from the Registry. These functions process the size and position of
the status bar and docked toolbars. They don't process the position of floating toolbars, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Static Data Members
The CPersistentFrame class stores its Registry key names in static const char array data members. What
were the other storage choices? String resource entries won't work because the strings need to be defined
with the class itself. (String resources make sense if CPersistentFrame is made into a DLL, however.)
Global variables are generally not recommended because they defeat encapsulation. Static CString objects
don't make sense because the characters must be copied to the heap when the program starts.

An obvious choice would have been regular data members. But static data members are better because, as
constants, they are segregated into the program's read-only data section and can be mapped to multiple
instances of the same program. If the CPersistentFrame class is part of a DLL, all processes that are using
the DLL can map the character arrays. Static data members are really global variables, but they are
scoped to their class so there's no chance of name collisions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Default Window Rectangle
You're used to defining rectangles with device or logical coordinates. A CRect object constructed with the
statement

CRect rect(CW_USEDEFAULT, CW_USEDEFAULT, 0, 0);
has a special meaning. When Windows creates a new window with this special rectangle, it positions the
window in a cascade pattern with the top left corner below and to the right of the window most recently
created. The right and bottom edges of the window are always within the display's boundaries.

The CFrameWnd class's static rectDefault data member is constructed using CW_USEDEFAULT this way, so
it contains the special rectangle. The CPersistentFrame class declares its own rectDefault default window
rectangle with a fixed size and position as a static data member, thus hiding the base class member.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX15A Example
The EX15A program illustrates the use of a persistent frame window class, CPersistentFrame. Figure 15-1
shows the contents of the files Persist.h and Persist.cpp, which are included in the EX15A project on the
companion CD-ROM. In this example, you'll insert the new frame class into an AppWizard-generated SDI
application. EX15A is a "do-nothing" application, but you can insert the persistent frame class into any of
your own SDI "do-something" applications.

PERSIST.H

// Persist.h

#ifndef _INSIDE_VISUAL_CPP_PERSISTENT_FRAME
#define _INSIDE_VISUAL_CPP_PERSISTENT_FRAME

class CPersistentFrame : public CFrameWnd
{ // remembers where it was on the desktop
 DECLARE_DYNAMIC(CPersistentFrame)
private:
 static const CRect s_rectDefault;
 static const char s_profileHeading[];
 static const char s_profileRect[];
 static const char s_profileIcon[];
 static const char s_profileMax[];
 static const char s_profileTool[];
 static const char s_profileStatus[];
 BOOL m_bFirstTime;
protected: // Create from serialization only
 CPersistentFrame();
 ~CPersistentFrame();
//{{AFX_VIRTUAL(CPersistentFrame)
 public:
 virtual void ActivateFrame(int nCmdShow = -1);
 protected:
 //}}AFX_VIRTUAL

 //{{AFX_MSG(CPersistentFrame)
 afx_msg void OnDestroy();
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

#endif // _INSIDE_VISUAL_CPP_PERSISTENT_FRAME
PERSIST.CPP

// Persist.cpp Persistent frame class for SDI apps

#include "stdafx.h"
#include "persist.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif
///
// CPersistentFrame

const CRect CPersistentFrame::s_rectDefault(10, 10,
 500, 400); // static
const char CPersistentFrame::s_profileHeading[] = "Window size";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const char CPersistentFrame::s_profileHeading[] = "Window size";
const char CPersistentFrame::s_profileRect[] = "Rect";
const char CPersistentFrame::s_profileIcon[] = "icon";
const char CPersistentFrame::s_profileMax[] = "max";
const char CPersistentFrame::s_profileTool[] = "tool";
const char CPersistentFrame::s_profileStatus[] = "status";
IMPLEMENT_DYNAMIC(CPersistentFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CPersistentFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CPersistentFrame)
 ON_WM_DESTROY()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
CPersistentFrame::CPersistentFrame(){
 m_bFirstTime = TRUE;
}

///
CPersistentFrame::~CPersistentFrame()
{
}

///
void CPersistentFrame::OnDestroy()
{
 CString strText;
 BOOL bIconic, bMaximized;

 WINDOWPLACEMENT wndpl;
 wndpl.length = sizeof(WINDOWPLACEMENT);
 // gets current window position and
 // iconized/maximized status
 BOOL bRet = GetWindowPlacement(&wndpl);
 if (wndpl.showCmd == SW_SHOWNORMAL) {
 bIconic = FALSE;
 bMaximized = FALSE;
 }
 else if (wndpl.showCmd == SW_SHOWMAXIMIZED) {
 bIconic = FALSE;
 bMaximized = TRUE;
 }
 else if (wndpl.showCmd == SW_SHOWMINIMIZED) {
 bIconic = TRUE;
 if (wndpl.flags) {
 bMaximized = TRUE;
 }
 else {
 bMaximized = FALSE;
 }
 }
 strText.Format("%04d %04d %04d %04d",
 wndpl.rcNormalPosition.left,
 wndpl.rcNormalPosition.top,
 wndpl.rcNormalPosition.right,
 wndpl.rcNormalPosition.bottom);
 AfxGetApp()->WriteProfileString(s_profileHeading,
 s_profileRect, strText);
 AfxGetApp()->WriteProfileInt(s_profileHeading,
 s_profileIcon, bIconic);
 AfxGetApp()->WriteProfileInt(s_profileHeading,
 s_profileMax, bMaximized);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s_profileMax, bMaximized);
 SaveBarState(AfxGetApp()->m_pszProfileName);
 CFrameWnd::OnDestroy();
}

///
void CPersistentFrame::ActivateFrame(int nCmdShow)
{
 CString strText;
 BOOL bIconic, bMaximized;
 UINT flags;
 WINDOWPLACEMENT wndpl;
 CRect rect;

 if (m_bFirstTime) {
 m_bFirstTime = FALSE;
 strText = AfxGetApp()->GetProfileString(s_profileHeading,
 s_profileRect);
 if (!strText.IsEmpty()) {
 rect.left = atoi((const char*) strText);
 rect.top = atoi((const char*) strText + 5);
 rect.right = atoi((const char*) strText + 10);
 rect.bottom = atoi((const char*) strText + 15);
 }
 else {
 rect = s_rectDefault;
 }
 bIconic = AfxGetApp()->GetProfileInt(s_profileHeading,
 s_profileIcon, 0);
 bMaximized = AfxGetApp()->GetProfileInt(s_profileHeading,
 s_profileMax, 0);
 if (bIconic) {
 nCmdShow = SW_SHOWMINNOACTIVE;
 if (bMaximized) {
 flags = WPF_RESTORETOMAXIMIZED;
 }
 else {
 flags = WPF_SETMINPOSITION;
 }
 }
 else {
 if (bMaximized) {
 nCmdShow = SW_SHOWMAXIMIZED;
 flags = WPF_RESTORETOMAXIMIZED;
 }
 else {
 nCmdShow = SW_NORMAL;
 flags = WPF_SETMINPOSITION;
 }
 }
 wndpl.length = sizeof(WINDOWPLACEMENT);
 wndpl.showCmd = nCmdShow;
 wndpl.flags = flags;
 wndpl.ptMinPosition = CPoint(0, 0);
 wndpl.ptMaxPosition =
 CPoint(-::GetSystemMetrics(SM_CXBORDER),
 -::GetSystemMetrics(SM_CYBORDER));
 wndpl.rcNormalPosition = rect;
 LoadBarState(AfxGetApp()->m_pszProfileName);
 // sets window's position and minimized/maximized status
 BOOL bRet = SetWindowPlacement(&wndpl);
 }
 CFrameWnd::ActivateFrame(nCmdShow);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-1. The CPersistentView class listing.

Here are the steps for building the EX15A example program.

1. Run AppWizard to generate \vcpp32\ex15a\ex15a. Accept all default settings but two: select
Single Document and deselect Printing and Print Preview. The options and the default class names
are shown in the following illustration.

2. Modify MainFrm.h. You must change the base class of CMainFrame. To do this, simply change the
line

class CMainFrame : public CFrameWnd
to

class CMainFrame : public CPersistentFrame
Also, add the line

#include "persist.h"
3. Modify MainFrm.cpp. Globally replace all occurrences of CFrameWnd with CPersistentFrame.

4. Modify ex15a.cpp. Replace the line

SetRegistryKey(_T("Local AppWizard-Generated Applications"));
with the line

SetRegistryKey("Programming Visual C++");
5. Add the Persist.cpp file to the project. You can type in the Persist.h and Persist.cpp files from

Figure 15-1, or you can copy the files from the companion CD-ROM. Having the files in the
\vcpp32\ex15a directory is not sufficient. You must add the names of the files to the project's
project (DSP) file. Choose Add To Project from Visual C++'s Project menu, and choose Files from
the submenu. Select Persist.h and Persist.cpp from the list.

6. Rebuild the ClassWizard file to include the new CPersistentFrame class. Use Windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Rebuild the ClassWizard file to include the new CPersistentFrame class. Use Windows
Explorer to delete the ClassWizard file ex15a.clw. Back in Visual C++, choose ClassWizard from the
View menu. Follow Visual C++'s instructions if it asks you to close any files. Click Yes when asked if
you would like to rebuild the CLW file. The Select Source Files dialog box will appear. Make sure all
of the header and source files are listed in the Files In Project box, as shown in the following
illustration.

Then click OK to regenerate the CLW file. Notice that CPersistentFrame is now integrated into
ClassWizard. You'll now be able to map messages and override virtual functions in the
CPersistentFrame class.

7. Build and test the EX15A application. Size and move the application's frame window, and then
close the application. When you restart the application, does its window open at the same location
at which it was closed? Experiment with maximizing and minimizing, and then change the status
and position of the control bars. Does the persistent frame remember its settings?

8. Save the CPersistentFrame class as a Gallery component for future use. In the ClassView
window, right-click on CPersistentFrame and select Add To Gallery. Bring up the Components And
Controls Gallery by choosing Add To Project from the Project menu and then choosing Components
And Controls. Notice that Visual C++ created the file Persistent Frame.ogx in a folder named
\ex15a. Change this folder's name to Persistent Frame. Now you can add the CPersistentFrame
class to any project by simply adding Persistent Frame.ogx. We will add CPersistentFrame to EX22A
this way.

9. Examine the Windows Registry. Run the Windows regedit.exe program. Navigate to the
HKEY_CURRENT_USER\Software\Programming Visual C++\ex15a key. You should see data values
similar to those shown in the following illustration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice the relationship between the Registry key and the SetRegistryKey function parameter,
"Programming Visual C++." If you supply an empty string as the SetRegistryKey parameter, the
program name (ex15a, in this case) is positioned directly below the Software key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Persistent Frames in MDI Applications
You won't get to Multiple Document Interface (MDI) applications until Chapter 18, but if you're using this
book as a reference, you might want to apply the persistent frame technique to MDI applications.

The CPersistentFrame class, as presented in this chapter, won't work in an MDI application because the
MDI main frame window's ShowWindow function is called, not by a virtual ActivateFrame function, but
directly by the application class's InitInstance member function. If you need to control the characteristics
of an MDI main frame window, add the necessary code to InitInstance.

The ActivateFrame function is called, however, for CMDIChildWnd objects. This means your MDI application
could remember the sizes and positions of its child windows. You could store the information in the
Registry, but you would have to accommodate multiple windows. You would have to modify the
CPersistentFrame class for this purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16
Separating the Document from Its View
Now you're finally going to see the interaction between documents and views. Chapter 13 gave you a
preview of this interaction when it showed the routing of command messages to both view objects and
document objects. In this chapter, you'll see how the document maintains the application's data and how
the view presents the data to the user. You'll also learn how the document and view objects talk to each
other while the application executes.

The two examples in this chapter both use the CFormView class as the base class for their views. The first
example is as simple as possible, with the document holding only one simple object of class CStudent,
which represents a single student record. The view shows the student's name and grade and allows
editing. With the CStudent class, you'll get some practice writing classes to represent real-world entities.
You'll also get to use the Microsoft Foundation Class (MFC) Library version 6.0 diagnostic dump functions.

The second example goes further by introducing pointer collection classes—the CObList and CTypedPtrList
classes in particular. Now the document holds a collection of student records, and the view allows the
sequencing, insertion, and deletion of individual records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document-View Interaction Functions
You already know that the document object holds the data and that the view object displays the data and
allows editing. An SDI application has a document class derived from CDocument, and it has one or more
view classes, each ultimately derived from CView. A complex handshaking process takes place among the
document, the view, and the rest of the application framework. To understand this process, you need to
know about five important member functions in the document and view classes. Two are nonvirtual base
class functions that you call in your derived classes; three are virtual functions that you often override in
your derived classes. Let's look at these functions one at a time.

The CView::GetDocument Function

A view object has one and only one associated document object. The GetDocument function allows an
application to navigate from a view to its document. Suppose a view object gets a message that the user
has entered new data into an edit control. The view must tell the document object to update its internal
data accordingly. The GetDocument function provides the document pointer that can be used to access
document class member functions or public data embers.

The CDocument::GetNextView function navigates from the document to the view, but
because a document can have more than one view, it's necessary to call this member
function once for each view, inside a loop. You'll seldom call GetNextView because the
application framework provides a better method of iterating through a document's
views.

When AppWizard generates a derived CView class, it creates a special type-safe version of the
GetDocument function that returns not a CDocument pointer but a pointer to an object of your derived
class. This function is an inline function, and it looks something like this:

CMyDoc* GetDocument()
{
 return (CMyDoc*)
m_pDocument;
}
When the compiler sees a call to GetDocument in your view class code, it uses the derived class version
instead of the CDocument version, so you do not have to cast the returned pointer to your derived
document class. Because the CView::GetDocument function is not a virtual function, a statement such as

pView->GetDocument(); // pView is declared CView*
calls the base class GetDocument function and thus returns a pointer to a CDocument object.

The CDocument::UpdateAllViews Function

If the document data changes for any reason, all views must be notified so that they can update their
representations of that data. If UpdateAllViews is called from a member function of a derived document
class, its first parameter, pSender, is NULL. If UpdateAllViews is called from a member function of a
derived view class, set the pSender parameter to the current view, like this:

GetDocument()->UpdateAllViews(this);
The non-null parameter prevents the application framework from notifying the current view. The
assumption here is that the current view has already updated itself.

The function has optional hint parameters that can be used to give view-specific and application-dependent
information about which parts of the view to update. This is an advanced use of the function.

How exactly is a view notified when UpdateAllViews gets called? Take a look at the next function,
OnUpdate.

The CView::OnUpdate Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CView::OnUpdate Function

This virtual function is called by the application framework in response to your application's call to the
CDocument::UpdateAllViews function. You can, of course, call it directly within your derived CView class.
Typically, your derived view class's OnUpdate function accesses the document, gets the document's data,
and then updates the view's data members or controls to reflect the changes. Alternatively, OnUpdate can
invalidate a portion of the view, causing the view's OnDraw function to use document data to draw in the
window. The OnUpdate function might look something like this:

void CMyView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{
 CMyDocument* pMyDoc = GetDocument();
 CString lastName = pMyDoc->GetLastName();
 m_pNameStatic->SetWindowText(lastName); // m_pNameStatic is
 // a CMyView data member
}
The hint information is passed through directly from the call to UpdateAllViews. The default OnUpdate
implementation invalidates the entire window rectangle. In your overridden version, you can choose to
define a smaller invalid rectangle as specified by the hint information.

If the CDocument function UpdateAllViews is called with the pSender parameter pointing to a specific view
object, OnUpdate is called for all the document's views except the specified view.

The CView::OnInitialUpdate Function

This virtual CView function is called when the application starts, when the user chooses New from the File
menu, and when the user chooses Open from the File menu. The CView base class version of
OnInitialUpdate does nothing but call OnUpdate. If you override OnInitialUpdate in your derived view class,
be sure that the view class calls the base class's OnInitialUpdate function or the derived class's OnUpdate
function.

You can use your derived class's OnInitialUpdate function to initialize your view object. When the
application starts, the application framework calls OnInitialUpdate immediately after OnCreate (if you've
mapped OnCreate in your view class). OnCreate is called once, but OnInitialUpdate can be called many
times.

The CDocument::OnNewDocument Function

The framework calls this virtual function after a document object is first constructed and when the user
chooses New from the File menu in an SDI application. This is a good place to set the initial values of your
document's data members. AppWizard generates an overridden OnNewDocument function in your derived
document class. Be sure to retain the call to the base class function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Simplest Document-View Application
Suppose you don't need multiple views of your document but you plan to take advantage of the application
framework's file support. In this case, you can forget about the UpdateAllViews and OnUpdate functions.
Simply follow these steps when you develop the application:

1. In your derived document class header file (generated by AppWizard), declare your document's
data members. These data members are the primary data storage for your application. You can
make these data members public, or you can declare the derived view class a friend of the
document class.

2. In your derived view class, override the OnInitialUpdate virtual member function. The application
framework calls this function after the document data has been initialized or read from disk.
(Chapter 17 discusses disk file I/O.) OnInitialUpdate should update the view to reflect the current
document data.

3. In your derived view class, let your window message handlers, command message handlers and
your OnDraw function read and update the document data members directly, using GetDocument to
access the document object.

The sequence of events for this simplified document-view environment is as follows.

Application starts CMyDocument object constructed

CMyView object constructed

View window created

CMyView::OnCreate called (if mapped)

CMyDocument::OnNewDocument called

CMyView::OnInitialUpdate called

View object initialized

View window invalidated

CMyView::OnDraw called

User edits data CMyView functions update CMyDocument data members

User exits application CMyView object destroyed

CMyDocument object destroyed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFormView Class
The CFormView class is a useful view class that has many of the characteristics of a modeless dialog
window. Like a class derived from CDialog, a derived CFormView class is associated with a dialog resource
that defines the frame characteristics and enumerates the controls. The CFormView class supports the
same dialog data exchange and validation (DDX and DDV) functions that you saw in the CDialog examples
in Chapter 6.

If AppWizard generates a Form View dialog, the properties are set correctly, but if you
use the dialog editor to make a dialog for a form view, you must specify the following
items in the Dialog Properties dialog:

Style = Child

Border = None

Visible = unchecked

A CFormView object receives notification messages directly from its controls, and it receives command
messages from the application framework. This application framework command-processing ability clearly
separates CFormView from CDialog, and it makes controlling the view from the frame's main menu or
toolbar easy.

The CFormView class is derived from CView (actually, from CScrollView) and not from CDialog. You can't,
therefore, assume that CDialog member functions are supported. CFormView does not have virtual
OnInitDialog, OnOK, and OnCancel functions. CFormView member functions do not call UpdateData and
the DDX functions. You have to call UpdateData yourself at the appropriate times, usually in response to
control notification messages or command messages.

Even though the CFormView class is not derived from the CDialog class, it is built around the Microsoft
Windows dialog. For this reason, you can use many of the CDialog class member functions such as
GotoDlgCtrl and NextDlgCtrl. All you have to do is cast your CFormView pointer to a CDialog pointer. The
following statement, extracted from a member function of a class derived from CFormView, sets the focus
to a specified control. GetDlgItem is a CWnd function and is thus inherited by the derived CFormView class.

((CDialog*) this)->GotoDlgCtrl(GetDlgItem(IDC_NAME));
AppWizard gives you the option of using CFormView as the base class for your view. When you select
CFormView, AppWizard generates an empty dialog with the correct style properties set. The next step is to
use ClassWizard to add control notification message handlers, command message handlers, and update
command UI handlers. (The example steps starting after Figure 16-2 show you what to do.) You can also
define data members and validation criteria.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObject Class
If you study the MFC library hierarchy, you'll notice that the CObject class is at the top. Most other classes
are derived from the CObject root class. When a class is derived from CObject, it inherits a number of
important characteristics. The many benefits of CObject derivation will become clear as you read the
chapters that follow.

In this chapter, you'll see how CObject derivation allows objects to participate in the diagnostic dumping
scheme and allows objects to be elements in the collection classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Diagnostic Dumping
The MFC library gives you some useful tools for diagnostic dumping. You enable these tools when you
select the Debug target. When you select the Win32 Release target, diagnostic dumping is disabled and
the diagnostic code is not linked to your program. All diagnostic output goes to the Debug view in the
debugger's Output window.

To clear diagnostic output from the debugger's Output window, position the cursor in
the Output window and click the right mouse button. Then choose Clear from the pop-
up menu.

The TRACE Macro

You've seen the TRACE macro used throughout the preceding examples in this book. TRACE statements
are active whenever the constant _DEBUG is defined (when you select the Debug target and when the
afxTraceEnabled variable is set to TRUE). TRACE statements work like C language printf statements, but
they're completely disabled in the release version of the program. Here's a typical TRACE statement:

int nCount = 9;
CString strDesc("total");
TRACE("Count = %d, Description = %s\n", nCount, strDesc);

The TRACE macro takes a variable number of parameters and is thus easy to use. If
you look at the MFC source code, you won't see TRACE macros but rather TRACE0,
TRACE1, TRACE2, and TRACE3 macros. These macros take 0, 1, 2, and 3 parameters,
respectively, and are leftovers from the 16-bit environment, where it was necessary to
conserve space in the data segment.

The afxDump Object

An alternative to the TRACE statement is more compatible with the C++ language. The MFC afxDump
object accepts program variables with a syntax similar to that of cout, the C++ output stream object. You
don't need complex formatting strings; instead, overloaded operators control the output format. The
afxDump output goes to the same destination as the TRACE output, but the afxDump object is defined only
in the Debug version of the MFC library. Here is a typical stream-oriented diagnostic statement that
produces the same output as the TRACE statement above:

int nCount = 9;
CString strDesc("total");
#ifdef _DEBUG
 afxDump << "Count = " << nCount
 << ", Description = " << strDesc << "\n";
#endif // _DEBUG
Although both afxDump and cout use the same insertion operator (<<), they don't share any code. The
cout object is part of the Microsoft Visual C++ iostream library, and afxDump is part of the MFC library.
Don't assume that any of the cout formatting capability is available through afxDump.

Classes that aren't derived from CObject, such as CString, CTime, and CRect, contain their own overloaded
insertion operators for CDumpContext objects. The CDumpContext class, of which afxDump is an instance,
includes the overloaded insertion operators for the native C++ data types (int, double, char*, and so on).
The CDumpContext class also contains insertion operators for CObject references and pointers, and that's
where things get interesting.

The Dump Context and the CObject Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Dump Context and the CObject Class

If the CDumpContext insertion operator accepts CObject pointers and references, it must also accept
pointers and references to derived classes. Consider a trivial class, CAction, that is derived from CObject,
as shown here:

class CAction : public CObject
{
public:
 int m_nTime;
};
What happens when the following statement executes?

#ifdef _DEBUG
 afxDump << action; // action is an object of class CAction
#endif // _DEBUG
The virtual CObject::Dump function gets called. If you haven't overridden Dump for CAction, you don't get
much except for the address of the object. If you have overridden Dump, however, you can get the
internal state of your object. Here's a CAction::Dump function:

#ifdef _DEBUG
void CAction::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc); // Always call base class function
 dc << "time = " <<
m_nTime << "\n";
}
#endif // _DEBUG
The base class (CObject) Dump function prints a line such as this:

a CObject at $4115D4
If you have called the DECLARE_DYNAMIC macro in your CAction class definition and the
IMPLEMENT_DYNAMIC macro in your CAction declaration, you will see the name of the class in your dump

a CAction at $4115D4
even if your dump statement looks like this:

#ifdef _DEBUG
 afxDump << (CObject&) action;
#endif // _DEBUG
The two macros work together to include the MFC library runtime class code in your derived CObject class.
With this code in place, your program can determine an object's class name at runtime (for the dump, for
example) and it can obtain class hierarchy information.

The (DECLARE_SERIAL, IMPLEMENT_SERIAL) and (DECLARE_DYNCREATE,
IMPLEMENT_DYNCREATE) macro pairs provide the same runtime class features as
those provided by the (DECLARE_DYNAMIC, IMPLEMENT_DYNAMIC) macro pair.

Automatic Dump of Undeleted Objects

With the Debug target selected, the application framework dumps all objects that are undeleted when your
program exits. This dump is a useful diagnostic aid, but if you want it to be really useful, you must be sure
to delete all your objects, even the ones that would normally disappear after the exit. This object cleanup
is good programming discipline.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code that adds debug information to allocated memory blocks is now in the Debug
version of the CRT (C runtime) library rather than in the MFC library. If you choose to
dynamically link MFC, the MSVCRTD DLL is loaded along with the necessary MFC DLLs.
When you add the line

#define new DEBUG_NEW
at the top of a CPP file, the CRT library lists the filename and line number at which the
allocations were made. AppWizard puts this line at the top of all the CPP files it
generates.

Window Subclassing for Enhanced Data-Entry Control

What if you want an edit control (in a dialog or a form view) that accepts only numeric
characters? That's easy. You just set the Number style in the control's property sheet.
If, however, you want to exclude numeric characters or change the case of alphabetic
characters, you must do some programming.

The MFC library provides a convenient way to change the behavior of any standard
control, including the edit control. Actually, there are several ways. You can derive your
own classes from CEdit, CListBox, and so forth (with their own message handler
functions) and then create control objects at runtime. Or you can register a special
window class, as a Win32 programmer would do, and integrate it into the project's
resource file with a text editor. Neither of these methods, however, allows you to use
the dialog editor to position controls in the dialog resource.

The easy way to modify a control's behavior is to use the MFC library's window
subclassing feature. You use the dialog editor to position a normal control in a dialog
resource, and then you write a new C++ class that contains message handlers for the
events that you want to handle yourself. Here are the steps for subclassing an edit
control:

1. With the dialog editor, position an edit control in your dialog resource. Assume
that it has the child window ID IDC_EDIT1.

2. Write a new class—for example, CNonNumericEdit—derived from CEdit. Map the
WM_CHAR message and write a handler like this:

void CNonNumericEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 if (!isdigit(nChar)) {
 CEdit::OnChar(nChar, nRepCnt, nFlags);
 }
}

3. In your derived dialog or form view class header, declare a data member of
class CNonNumericEdit in this way:

private:
 CNonNumericEdit m_nonNumericEdit;

4. If you're working with a dialog class, add the following line to your OnInitDialog
override function:

m_nonNumericEdit.SubclassDlgItem(IDC_EDIT1, this);
5. If you're working with a form view class, add the following code to your

OnInitialUpdate override function:

if (m_nonNumericEdit.m_hWnd == NULL) {
 m_nonNumericEdit.SubclassDlgItem(IDC_EDIT1, this);
}

The CWnd::SubclassDlgItem member function ensures that all messages are routed
through the application framework's message dispatch system before being sent to the
control's built-in window procedure. This technique is called dynamic subclassing and is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control's built-in window procedure. This technique is called dynamic subclassing and is
explained in more detail in Technical Note #14 in the online documentation.

The code in the preceding steps only accepts or rejects a character. If you want to
change the value of a character, your handler must call CWnd::DefWindowProc, which
bypasses some MFC logic that stores parameter values in thread object data members.
Here's a sample handler that converts lowercase characters to uppercase:

void CUpperEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 if (islower(nChar)) {
 nChar = toupper(nChar);
 }
 DefWindowProc(WM_CHAR, (WPARAM) nChar,
 (LPARAM) (nRepCnt | (nFlags << 16)));
}
You can also use window subclassing to handle reflected messages, which were
mentioned in Chapter 6. If an MFC window class doesn't map a message from one of its
child controls, the framework reflects the message back to the control. Technical Note
#62 in the online documentation explains the details.

If you need an edit control with a yellow background, for example, you can derive a
class CYellowEdit from CEdit and use ClassWizard to map the =WM_CTLCOLOR
message in CYellowEdit. (ClassWizard lists the message name with an equal sign in
front to indicate that it is reflected.) The handler code, shown below, is substantially
the same as the nonreflected WM_CTLCOLOR handler. (Member variable
m_hYellowBrush is defined in the control class's constructor.)

HBRUSH CYellowEdit::CtlColor(CDC* pDC, UINT nCtlColor)
{
 pDC->SetBkColor(RGB(255, 255, 0)); // yellow
 return m_hYellowBrush;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX16A Example
The first of this chapter's two examples shows a very simple document-view interaction. The CEx16aDoc
document class, derived from CDocument, allows for a single embedded CStudent object. The CStudent
class represents a student record composed of a CString name and an integer grade. The CEx16aView
view class is derived from CFormView. It is a visual representation of a student record that has edit
controls for the name and grade. The default Enter pushbutton updates the document with data from the
edit controls. Figure 16-1 shows the EX16A program window.

Figure 16-1. The EX16A program in action.

Figure 16-2 shows the code for the CStudent class. Most of the class's features serve EX16A, but a few
items carry forward to EX16B and the programs discussed in Chapter 17. For now, take note of the two
data members, the default constructor, the operators, and the Dump function declaration. The
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros ensure that the class name is available for the
diagnostic dump.

STUDENT.H

// student.h

#ifndef _INSIDE_VISUAL_CPP_STUDENT
#define _INSIDE_VISUAL_CPP_STUDENT
class CStudent : public CObject
{
 DECLARE_DYNAMIC(CStudent)
public:
 CString m_strName;
 int m_nGrade;

 CStudent()
 {
 m_nGrade = 0;
 }

 CStudent(const char* szName, int nGrade) : m_strName(szName)
 {
 m_nGrade = nGrade;
 }

 CStudent(const CStudent& s) : m_strName(s.m_strName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CStudent(const CStudent& s) : m_strName(s.m_strName)
 {
 // copy constructor
 m_nGrade = s.m_nGrade;
 }

 const CStudent& operator =(const CStudent& s)
 {
 m_strName = s.m_strName;
 m_nGrade = s.m_nGrade;
 return *this;
 }

 BOOL operator ==(const CStudent& s) const
 {
 if ((m_strName == s.m_strName) && (m_nGrade == s.m_nGrade)) {
 return TRUE;
 }
 else {
 return FALSE;
 }
 }

 BOOL operator !=(const CStudent& s) const
 {
 // Let's make use of the operator we just defined!
 return !(*this == s);
 }
#ifdef _DEBUG
 void Dump(CDumpContext& dc) const;
#endif // _DEBUG
};

#endif // _INSIDE_VISUAL_CPP_STUDENT
Figure 16-2. The CPersistentView class listing.

STUDENT.CPP

#include "stdafx.h"
#include "student.h"

IMPLEMENT_DYNAMIC(CStudent, CObject)

#ifdef _DEBUG
void CStudent::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc);
 dc << "m_strName = " << m_strName << "\nm_nGrade = " <<m_nGrade;
}
#endif // _DEBUG

Follow these steps to build the EX16A example:

1. Run AppWizard to generate \vcpp32\ex16a\ex16a. In the Step 6 page, change the view's
base class to CFormView, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

base class to CFormView, as shown here.

The options and the default class names are shown here.

2. Use the menu editor to replace the Edit menu options. Delete the current Edit menu items
and replace them with a Clear All option, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the default constant ID_EDIT_CLEAR_ALL, which is assigned by the application framework. A
menu prompt automatically appears.

3. Use the dialog editor to modify the IDD_EX16A_FORM dialog. Open the AppWizard-
generated dialog IDD_EX16A_FORM, and add controls as shown below.

Be sure that the Styles properties are set exactly as shown in the Dialog Properties dialog (Style =
Child; Border = None) and that Visible is unchecked.

Use the following IDs for the controls.

Control ID

Name edit control IDC_NAME

Grade edit control IDC_GRADE

Enter pushbutton IDC_ENTER

4. Use ClassWizard to add message handlers for CEx16aView. Select the CEx16aView class, and
then add handlers for the following messages. Accept the default function names.

Object ID Message Member Function

IDC_ENTER BN_CLICKED OnEnter

ID_EDIT_CLEAR_ALL COMMAND OnEditClearAll

ID_EDIT_CLEAR_ALL UPDATE_COMMAND_UI OnUpdateEditClearAll

5. Use ClassWizard to add variables for CEx16aView. Click on the Member Variables tab in the
MFC ClassWizard dialog, and then add the following variables.

Control ID Member Variable Category Variable Type

IDC_GRADE m_nGrade Value int

IDC_NAME m_strName Value CString

For m_nGrade, enter a minimum value of 0 and a maximum value of 100. Notice that ClassWizard
generates the code necessary to validate data entered by the user.

6. Add a prototype for the helper function UpdateControlsFromDoc.In the ClassView window,
right-click on CEx16aView and choose Add Member Function. Fill out the dialog box to add the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

right-click on CEx16aView and choose Add Member Function. Fill out the dialog box to add the
following function:

private:
 void UpdateControlsFromDoc();

7. Edit the file Ex16aView.cpp. AppWizard generated the skeleton OnInitialUpdate function, and
ClassView generated the skeleton UpdateControlsFromDoc function. UpdateControlsFromDoc is a
private helper member function that transfers data from the document to the CEx16aView data
members and then to the dialog edit controls. Edit the code as shown here:

void CEx16aView::OnInitialUpdate()
{ // called on startup
 UpdateControlsFromDoc();
}
void CEx16aView::UpdateControlsFromDoc()
{ // called from OnInitialUpdate and OnEditClearAll
 CEx16aDoc* pDoc = GetDocument();
 m_nGrade = pDoc->m_student.m_nGrade;
 m_strName = pDoc->m_student.m_strName;
 UpdateData(FALSE); // calls DDX
}
The OnEnter function replaces the OnOK function you'd expect to see in a dialog class. The function
transfers data from the edit controls to the view's data members and then to the document. Add
the boldface code shown here:

void CEx16aView::OnEnter()
{
 CEx16aDoc* pDoc = GetDocument();
 UpdateData(TRUE);
 pDoc->m_student.m_nGrade = m_nGrade;
 pDoc->m_student.m_strName = m_strName;
}
In a complex multiview application, the Edit Clear All command would be routed directly to the
document. In this simple example, it's routed to the view. The update command UI handler disables
the menu item if the document's student object is already blank. Add the following boldface code:

void CEx16aView::OnEditClearAll()
{
 GetDocument()->m_student = CStudent(); // "blank" student object
 UpdateControlsFromDoc();
}
void CEx16aView::OnUpdateEditClearAll(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(GetDocument()->m_student != CStudent()); // blank?
}

8. Edit the EX16A project to add the files for CStudent. Choose Add To Project from the Project
menu, choose Files from the submenu, and select the Student.h header and the Student.cpp source
code files. Visual C++ will add the files' names to the project's DSP file so that they will be compiled
when you build the project.

9. Add a CStudent data member to the CEx16aDoc class. Use ClassView to add the following data
member, and the #include will be added automatically.

public:
 CStudent m_student;
The CStudent constructor is called when the document object is constructed, and the CStudent
destructor is called when the document object is destroyed.

10. Edit the Ex16aDoc.cpp file. Use the CEx16aDoc constructor to initialize the student object, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CEx16aDoc::CEx16aDoc() : m_student("default value", 0)
{
 TRACE("Document object constructed\n");
}
We can't tell whether the EX16A program works properly unless we dump the document when the
program exits. We'll use the destructor to call the document's Dump function, which calls the
CStudent::Dump function shown here:

CEx16aDoc::~CEx16aDoc()
{
#ifdef _DEBUG
 Dump(afxDump);
#endif // _DEBUG
}

void CEx16aDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
 dc << "\n" << m_student << "\n";
}

11. Build and test the EX16A application. Type a name and a grade, and then click Enter. Now exit
the application. Does the Debug window show messages similar to those shown here?

a CEx16aDoc at $411580
m_strTitle = Untitled
m_strPathName =
m_bModified = 0
m_pDocTemplate = $4113A0

a CStudent at $4115D4
m_strName = Sullivan, Walter
m_nGrade = 78

To see these messages, you must compile the application with the Win32 Debug target
selected and you must run the program from the debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A More Advanced Document-View Interaction
If you're laying the groundwork for a multiview application, the document-view interaction must be more
complex than the simple interaction in example EX16A. The fundamental problem is this: the user edits in
view #1, so view #2 (and any other views) must be updated to reflect the changes. Now you need the
UpdateAllViews and OnUpdate functions because the document is going to act as the clearinghouse for all
view updates. The development steps are shown here:

1. In your derived document class header file (generated by AppWizard), declare your document's
data members. If you want to, you can make these data members private and you can define
member functions to access them or declare the view class as a friend of the document class.

2. In your derived view class, use ClassWizard to override the OnUpdate virtual member function. The
application framework calls this function whenever the document data has changed for any reason.
OnUpdate should update the view with the current document data.

3. Evaluate all your command messages. Determine whether each one is document-specific or view-
specific. (A good example of a document-specific command is the Clear All command on the Edit
menu.) Now map the commands to the appropriate classes.

4. In your derived view class, allow the appropriate command message handlers to update the
document data. Be sure these message handlers call the CDocument::UpdateAllViews function
before they exit. Use the type-safe version of the CView::GetDocument member function to access
the view's document.

5. In your derived document class, allow the appropriate command message handlers to update the
document data. Be sure that these message handlers call the CDocument::UpdateAllViews function
before they exit.

The sequence of events for the complex document-view interaction is shown here.

Application starts CMyDocument object constructed
 CMyView object constructed
 Other view objects constructed
 View windows created
 CMyView::OnCreate called (if mapped)
 CDocument::OnNewDocument called
 CView::OnInitialUpdate called
 Calls CMyView::OnUpdate
 Initializes the view
User executes CMyView functions update CMyDocument
view command data members
 Call CDocument::UpdateAllViews
 Other views' OnUpdate functions called
User executes CMyDocument functions update data
document command members
 Call CDocument::UpdateAllViews
 CMyView::OnUpdate called
 Other views' OnUpdate functions called
User exits application View objects destroyed
 CMyDocument object destroyed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CDocument::DeleteContents Function
At some point, you'll need a function to delete the contents of your document. You could write your own
private member function, but it happens that the application framework declares a virtual DeleteContents
function for the CDocument class. The application framework calls your overridden DeleteContents function
when the document is closed and as you'll see in the next chapter, at other times as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObList Collection Class
Once you get to know the collection classes, you'll wonder how you ever got along without them. The
CObList class is a useful representative of the collection class family. If you're familiar with this class, it's
easy to learn the other list classes, the array classes, and the map classes.

You might think that collections are something new, but the C programming language has always
supported one kind of collection—the array. C arrays must be fixed in size, and they do not support
insertion of elements. Many C programmers have written function libraries for other collections, including
linked lists, dynamic arrays, and indexed dictionaries. For implementing collections, the C++ class is an
obvious and better alternative than a C function library. A list object, for example, neatly encapsulates the
list's internal data structures.

The CObList class supports ordered lists of pointers to objects of classes derived from CObject. Another
MFC collection class, CPtrList, stores void pointers instead of CObject pointers. Why not use CPtrList
instead? The CObList class offers advantages for diagnostic dumping, which you'll see in this chapter, and
for serialization, which you'll see in the next chapter. One important feature of CObList is that it can
contain mixed pointers. In other words, a CObList collection can hold pointers to both CStudent objects
and CTeacher objects, assuming that both CStudent and CTeacher were derived from CObject.

Using the CObList Class for a First-In, First-Out List

One of the easiest ways to use a CObList object is to add new elements to the tail, or bottom, of the list
and to remove elements from the head, or top, of the list. The first element added to the list will always be
the first element removed from the head of the list. Suppose you're working with element objects of class
CAction, which is your own custom class derived from CObject. A command-line program that puts five
elements into a list and then retrieves them in the same sequence is shown here:

#include <afx.h>
#include <afxcoll.h>

class CAction : public CObject
{
private:
 int m_nTime;
public:
 CAction(int nTime) { m_nTime = nTime; } // Constructor stores
 // integer time value
 void PrintTime() { TRACE("time = %d\n", m_nTime); }
};

int main()
{
 CAction* pAction;
 CObList actionList; // action list constructed on stack
 int i;

 // inserts action objects in sequence {0, 1, 2, 3, 4}
 for (i = 0; i < 5; i++) {
 pAction = new CAction(i);
 actionList.AddTail(pAction); // no cast necessary for pAction
 }

 // retrieves and removes action objects in sequence {0, 1, 2, 3, 4}
 while (!actionList.IsEmpty()) {
 pAction = // cast required for
 (CAction*) actionList.RemoveHead(); // return value
 pAction->PrintTime();
 delete pAction;
 }

 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Here's what's going on in the program. First a CObList object, actionList, is constructed. Then the
CObList::AddTail member function inserts pointers to newly constructed CAction objects. No casting is
necessary for pAction because AddTail takes a CObject pointer parameter and pAction is a pointer to a
derived class.

Next the CAction object pointers are removed from the list of the objects deleted. A cast is necessary for
the returned value of RemoveHead because RemoveHead returns a CObject pointer that is higher in the
class hierarchy than CAction.

When you remove an object pointer from a collection, the object is not automatically deleted. The delete
statement is necessary for deleting the CAction objects.

CObList Iteration—The POSITION Variable

Suppose you want to iterate through the elements in a list. The CObList class provides a GetNext member
function that returns a pointer to the "next" list element, but using it is a little tricky. GetNext takes a
parameter of type POSITION, which is a 32-bit variable. The POSITION variable is an internal
representation of the retrieved element's position in the list. Because the POSITION parameter is declared
as a reference (&), the function can change its value.

GetNext does the following:

1. It returns a pointer to the "current" object in the list, identified by the incoming value of the
POSITION parameter.

2. It increments the value of the POSITION parameter to the next list element.

Here's what a GetNext loop looks like, assuming you're using the list generated in the previous example:

CAction* pAction;
POSITION pos = actionList.GetHeadPosition();
while (pos != NULL) {
 pAction = (CAction*) actionList.GetNext(pos);
 pAction->PrintTime();
}
Now suppose you have an interactive Windows-based application that uses toolbar buttons to sequence
forward and backward through the list one element at a time. You can't use GetNext to retrieve the entry
because GetNext always increments the POSITION variable and you don't know in advance whether the
user is going to want the next element or the previous element. Here's a sample view class command
message handler function that gets the next list entry. In the CMyView class, m_actionList is an embedded
CObList object and the m_position data member is a POSITION variable that holds the current list position.

CMyView::OnCommandNext()
{
 POSITION pos;
 CAction* pAction;

 if ((pos = m_position) != NULL) {
 m_actionList.GetNext(pos);
 if (pos != NULL) { // pos is NULL at end of list
 pAction = (CAction*) m_actionList.GetAt(pos);
 pAction->PrintTime();
 m_position = pos;
 }
 else {
 AfxMessageBox("End of list reached");
 }
 }
}
GetNext is now called first to increment the list position, and the CObList::GetAt member function is called
to retrieve the entry. The m_position variable is updated only when we're sure we're not at the tail of the
list.

The CTypedPtrList Template Collection Class

The CObList class works fine if you want a collection to contain mixed pointers. If, on the other hand, you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObList class works fine if you want a collection to contain mixed pointers. If, on the other hand, you
want a type-safe collection that contains only one type of object pointer, you should look at the MFC library
template pointer collection classes. CTypedPtrList is a good example. Templates are a relatively new C++
language element, introduced by Microsoft Visual C++ version 2.0. CTypedPtrList is a template class that
you can use to create a list of any pointers to objects of any specified class. To make a long story short,
you use the template to create a custom derived list class, using either CPtrList or CObList as a base class.

To declare an object for CAction pointers, you write the following line of code:

CTypedPtrList<CObList, CAction*> m_actionList;
The first parameter is the base class for the collection, and the second parameter is the type for
parameters and return values. Only CPtrList and CObList are permitted for the base class because those
are the only two MFC library pointer list classes. If you are storing objects of classes derived from CObject,
you should use CObList as your base class; otherwise, use CPtrList.

By using the template as shown above, the compiler ensures that all list member functions return a
CAction pointer. Thus, you can write the following code:

pAction = m_actionList.GetAt(pos); // no cast required
If you want to clean up the notation a little, use a typedef statement to generate what looks like a class, as
shown here:

typedef CTypedPtrList<CObList, CAction*> CActionList;
Now you can declare m_actionList as follows:

CActionList m_actionList;

The Dump Context and Collection Classes

The Dump function for CObList and the other collection classes has a useful property. If you call Dump for
a collection object, you can get a display of each object in the collection. If the element objects use the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros, the dump will show the class name for each
object.

The default behavior of the collection Dump functions is to display only class names and addresses of
element objects. If you want the collection Dump functions to call the Dump function for each element
object, you must, somewhere at the start of your program, make the following call:

#ifdef _DEBUG
 afxDump.SetDepth(1);
#endif
Now the statement

#ifdef _DEBUG
 afxDump << actionList;
#endif
produces output such as this:

a CObList at $411832
with 4 elements
 a CAction at $412CD6
time = 0
 a CAction at $412632
time = 1
 a CAction at $41268E
time = 2
 a CAction at $4126EA
time = 3
If the collection contains mixed pointers, the virtual Dump function is called for the object's class and the
appropriate class name is printed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX16B Example
This second SDI example improves on EX16A in the following ways:

Instead of a single embedded CStudent object, the document now contains a list of CStudent
objects. (Now you see the reason for using the CStudent class instead of making m_strName and
m_nGrade data members of the document.)

Toolbar buttons allow the user to sequence through the list.

The application is structured to allow the addition of extra views. The Edit Clear All command is now
routed to the document object, so the document's UpdateAllViews function and the view's
OnUpdate function are brought into play.

The student-specific view code is isolated so that the CEx16bView class can later be transformed
into a base class that contains only general-purpose code. Derived classes can override selected
functions to accommodate lists of application-specific objects.

The EX16B window, shown in Figure 16-3, looks a little different from the EX16A window shown in Figure
16-1. The toolbar buttons are enabled only when appropriate. The Next (arrow-down graphic) button, for
example, is disabled when we're positioned at the bottom of the list.

Figure 16-3. The EX16B program in action.

The toolbar buttons function as follows.

Button Function

Retrieves the first student record

Retrieves the last student record

Retrieves the previous student record

Retrieves the next student record

Deletes the current student record

Inserts a new student record

The Clear button in the view window clears the contents of the Name and Grade edit controls. The Clear All
command on the Edit menu deletes all the student records in the list and clears the view's edit controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command on the Edit menu deletes all the student records in the list and clears the view's edit controls.

This example deviates from the step-by-step format in the previous examples. Because there's now more
code, we'll simply list selected code and the resource requirements. In the listing figures, boldface code
indicates additional code or other changes that you enter in the output from AppWizard and ClassWizard.
The frequent use of TRACE statements lets you follow the program's execution in the debugging window.

Resource Requirements

The file ex16b.rc defines the application's resources as follows.

Toolbar

The toolbar (visible in Figure 16-3) was created by erasing the Edit Cut, Copy, and Paste tiles (fourth, fifth,
and sixth from the left) and replacing them with six new patterns. The Flip Vertical command (on the
Image menu) was used to duplicate some of the tiles. The ex16b.rc file defines the linkage between the
command IDs and the toolbar buttons.

Student Menu

Having menu options that correspond to the new toolbar buttons isn't absolutely necessary. (ClassWizard
allows you to map toolbar button commands just as easily as menu commands.) However, most
applications for Microsoft Windows have menu options for all commands, so users generally expect them.

Edit Menu

On the Edit menu, the clipboard menu items are replaced by the Clear All menu item. See step 2 for an
illustration of the Edit menu.

The IDD_STUDENT Dialog Template

The IDD_STUDENT dialog template, shown here, is similar to the EX16A dialog shown in Figure 16-1
except that the Enter pushbutton has been replaced by the Clear pushbutton.

The following IDs identify the controls.

Control ID

Name edit control IDC_NAME

Grade edit control IDC_GRADE

Clear pushbutton IDC_CLEAR

The controls' styles are the same as for the EX16A program.

Code Requirements

Here's a list of the files and classes in the EX16B example.

Header
File

Source Code
File Classes Description

ex16b.h ex16b.cpp CEx16bApp Application class (from AppWizard)

 CAboutDlg About dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MainFrm.h MainFrm.cpp CMainFrame SDI main frame

StuDoc.h StuDoc.cpp CStudentDoc Student document

StuView.h StuView.cpp CStudentView Student form view (derived from
CFormView)

Student.h Student.cpp CStudent Student record (similar to EX16A)

StdAfx.h StdAfx.cpp Includes the standard
precompiled headers

CEx16bApp

The files ex16b.cpp and ex16b.h are standard AppWizard output.

CMainFrame

The code for the CMainFrame class in MainFrm.cpp is standard AppWizard output.

CStudent

This is the code from EX16A, except for the following line added at the end of Student.h:

typedef CTypedPtrList<CObList, CStudent*> CStudentList;

Use of the MFC template collection classes requires the following statement in StdAfx.h:

#include <afxtempl.h>

CStudentDoc

AppWizard originally generated the CStudentDoc class. Figure 16-4 shows the code used in the EX16B
example.

STUDOC.H

// StuDoc.h : interface of the CStudentDoc class
//
//

#if !defined(AFX_STUDOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
#define AFX_STUDOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "student.h"
class CStudentDoc : public CDocument
{
protected: // create from serialization only
 CStudentDoc();
 DECLARE_DYNCREATE(CStudentDoc)

// Attributes
public:
 CStudentList* GetList() {
 return &m_studentList;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CStudentDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void DeleteContents();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CStudentDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CStudentDoc)
 afx_msg void OnEditClearAll();
 afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 CStudentList m_studentList;
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_STUDOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
STUDOC.CPP

// StuDoc.cpp : implementation of the CStudentDoc class
//

#include "stdafx.h"
#include "ex16b.h"

#include "StuDoc.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CStudentDoc

IMPLEMENT_DYNCREATE(CStudentDoc, CDocument)

BEGIN_MESSAGE_MAP(CStudentDoc, CDocument)
 //{{AFX_MSG_MAP(CStudentDoc)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //{{AFX_MSG_MAP(CStudentDoc)
 ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CStudentDoc construction/destruction

CStudentDoc::CStudentDoc()
{
 TRACE("Entering CStudentDoc constructor\n");
#ifdef _DEBUG
 afxDump.SetDepth(1); // Ensure dump of list elements
#endif // _DEBUG
}

CStudentDoc::~CStudentDoc()
{
}

BOOL CStudentDoc::OnNewDocument()
{
 TRACE("Entering CStudentDoc::OnNewDocument\n");
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add reinitialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}
//
// CStudentDoc serialization

void CStudentDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

//
// CStudentDoc diagnostics

#ifdef _DEBUG
void CStudentDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CStudentDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
 dc << "\n" << m_studentList << "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dc << "\n" << m_studentList << "\n";
}
#endif //_DEBUG

//
// CStudentDoc commands

void CStudentDoc::DeleteContents()
{
#ifdef _DEBUG
 Dump(afxDump);
#endif
 while (m_studentList.GetHeadPosition()) {
 delete m_studentList.RemoveHead();
 }
}
void CStudentDoc::OnEditClearAll()
{
 DeleteContents();
 UpdateAllViews(NULL);
}

void CStudentDoc::OnUpdateEditClearAll(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_studentList.IsEmpty());
}

Figure 16-4. The CStudentDoc class listing.

ClassWizard and CStudentDoc

The Edit Clear All command is handled in the document class. The following message handlers were added
through ClassWizard.

Object ID Message Member Function

ID_EDIT_CLEAR_ALL COMMAND OnEditClearAll

ID_EDIT_CLEAR_ALL ON_UPDATE_COMMAND_UI OnUpdateEditClearAll

Data Members

The document class provides for an embedded CStudentList object, the m_studentList data member, which
holds pointers to CStudent objects. The list object is constructed when the CStudentDoc object is
constructed, and it is destroyed at program exit. CStudentList is a typedef for a CTypedPtrList for CStudent
pointers.

Constructor

The document constructor sets the depth of the dump context so that a dump of the list causes dumps of
the individual list elements.

GetList

The inline GetList function helps isolate the view from the document. The document class must be specific
to the type of object in the list—in this case, objects of the class CStudent. A generic list view base class,
however, can use a member function to get a pointer to the list without knowing the name of the list
object.

DeleteContents

The DeleteContents function is a virtual override function that is called by other document functions and by
the application framework. Its job is to remove all student object pointers from the document's list and to
delete those student objects. An important point to remember here is that SDI document objects are
reused after they are closed. DeleteContents also dumps the student list.

Dump

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dump

AppWizard generates the Dump function skeleton between the lines #ifdef _DEBUG and #endif. Because
the afxDump depth was set to 1 in the document constructor, all the CStudent objects contained in the list
are dumped.

CStudentView

Figure 16-5 shows the code for the CStudentView class. This code will be carried over into the next two
chapters.

STUVIEW.H

// StuView.h : interface of the CStudentView class
//
//

#if !defined(AFX_STUVIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
#define AFX_STUVIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CStudentView : public CFormView
{
protected:
 POSITION m_position; // current position in document list
 CStudentList* m_pList; // copied from document
protected: // create from serialization only
 CStudentView();
 DECLARE_DYNCREATE(CStudentView)

public:
 //{{AFX_DATA(CStudentView)
 enum { IDD = IDD_STUDENT };
 int m_nGrade;
 CString m_strName;
 //}}AFX_DATA

// Attributes
public:
 CStudentDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CStudentView)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate(); // called first time after construct
 virtual void OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CStudentView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

protected:
 virtual void ClearEntry();
 virtual void InsertEntry(POSITION position);
 virtual void GetEntry(POSITION position);
// Generated message map functions
protected:
 //{{AFX_MSG(CStudentView)
 afx_msg void OnClear();
 afx_msg void OnStudentHome();
 afx_msg void OnStudentEnd();
 afx_msg void OnStudentPrev();
 afx_msg void OnStudentNext();
 afx_msg void OnStudentIns();
 afx_msg void OnStudentDel();
 afx_msg void OnUpdateStudentHome(CCmdUI* pCmdUI);
 afx_msg void OnUpdateStudentEnd(CCmdUI* pCmdUI);
 afx_msg void OnUpdateStudentDel(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in StuView.cpp
inline CStudentDoc* CStudentView::GetDocument()
 { return (CStudentDoc*)m_pDocument; }
#endif

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_STUVIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
STUVIEW.CPP

// StuView.cpp : implementation of the CStudentView class
//

#include "stdafx.h"
#include "ex16b.h"

#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__ ;
#endif

//
// CStudentView

IMPLEMENT_DYNCREATE(CStudentView, CFormView)
BEGIN_MESSAGE_MAP(CStudentView, CFormView)
 //{{AFX_MSG_MAP(CStudentView)
 ON_BN_CLICKED(IDC_CLEAR, OnClear)
 ON_COMMAND(ID_STUDENT_HOME, OnStudentHome)
 ON_COMMAND(ID_STUDENT_END, OnStudentEnd)
 ON_COMMAND(ID_STUDENT_PREV, OnStudentPrev)
 ON_COMMAND(ID_STUDENT_NEXT, OnStudentNext)
 ON_COMMAND(ID_STUDENT_INS, OnStudentIns)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ON_COMMAND(ID_STUDENT_INS, OnStudentIns)
 ON_COMMAND(ID_STUDENT_DEL, OnStudentDel)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_HOME, OnUpdateStudentHome)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_END, OnUpdateStudentEnd)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_PREV, OnUpdateStudentHome)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_NEXT, OnUpdateStudentEnd)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_DEL, OnUpdateStudentDel)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CStudentView construction/destruction

CStudentView::CStudentView()
 : CFormView(CStudentView::IDD)
{
 TRACE("Entering CStudentView constructor\n");
 //{{AFX_DATA_INIT(CStudentView)
 m_nGrade = 0;
 m_strName = _T("");
 //}}AFX_DATA_INIT
 m_position = NULL;
}

CStudentView::~CStudentView()
{
}

void CStudentView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CStudentView)
 DDX_Text(pDX, IDC_GRADE, m_nGrade);
 DDV_MinMaxInt(pDX, m_nGrade, 0, 100);
 DDX_Text(pDX, IDC_NAME, m_strName);
 DDV_MaxChars(pDX, m_strName, 20);
 //}}AFX_DATA_MAP
}
BOOL CStudentView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 return CFormView::PreCreateWindow(cs);
}

void CStudentView::OnInitialUpdate()
{
 TRACE("Entering CStudentView::OnInitialUpdate\n");
 m_pList = GetDocument()->GetList();
 CFormView::OnInitialUpdate();
}

//
// CStudentView diagnostics

#ifdef _DEBUG
void CStudentView::AssertValid() const
{
 CFormView::AssertValid();
}

void CStudentView::Dump(CDumpContext& dc) const
{
 CFormView::Dump(dc);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CFormView::Dump(dc);
}

CStudentDoc* CStudentView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CStudentDoc)));
 return (CStudentDoc*)m_pDocument;
}
#endif //_DEBUG

//
// CStudentView message handlers

void CStudentView::OnClear()
{
 TRACE("Entering CStudentView::OnClear\n");
 ClearEntry();
}

void CStudentView::OnUpdate(CView* pSender, LPARAM lHint,
 CObject* pHint)
{
 // called by OnInitialUpdate and by UpdateAllViews
 TRACE("Entering CStudentView::OnUpdate\n");
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position); // initial data for view
}

void CStudentView::OnStudentHome()
{
 TRACE("Entering CStudentView::OnStudentHome\n");
 // need to deal with list empty condition
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position);
 }
}

void CStudentView::OnStudentEnd()
{
 TRACE("Entering CStudentView::OnStudentEnd\n");
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetTailPosition();
 GetEntry(m_position);
 }
}

void CStudentView::OnStudentPrev()
{
 POSITION pos;
 TRACE("Entering CStudentView::OnStudentPrev\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetPrev(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void CStudentView::OnStudentNext()
{
 POSITION pos;
 TRACE("Entering CStudentView::OnStudentNext\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }
}
void CStudentView::OnStudentIns()
{
 TRACE("Entering CStudentView::OnStudentIns\n");
 InsertEntry(m_position);
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
}

void CStudentView::OnStudentDel()
{
 // deletes current entry and positions to next one or head
 POSITION pos;
 TRACE("Entering CStudentView::OnStudentDel\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos == NULL) {
 pos = m_pList->GetHeadPosition();
 TRACE("GetHeadPos = %ld\n", pos);
 if (pos == m_position) {
 pos = NULL;
 }
 }
 GetEntry(pos);
 CStudent* ps = m_pList->GetAt(m_position);
 m_pList->RemoveAt(m_position);
 delete ps;
 m_position = pos;
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
 }
}

void CStudentView::OnUpdateStudentHome(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 POSITION pos;
 // enables button if list not empty and not at home already
 pos = m_pList->GetHeadPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CStudentView::OnUpdateStudentEnd(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 POSITION pos;
 // enables button if list not empty and not at end already
 pos = m_pList->GetTailPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CStudentView::OnUpdateStudentDel(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 pCmdUI->Enable(m_position != NULL);
}

void CStudentView::GetEntry(POSITION position)
{
 if (position) {
 CStudent* pStudent = m_pList->GetAt(position);
 m_strName = pStudent->m_strName;
 m_nGrade = pStudent->m_nGrade;
 }
 else {
 ClearEntry();
 }
 UpdateData(FALSE);
}
void CStudentView::InsertEntry(POSITION position)
{
 if (UpdateData(TRUE)) {
 // UpdateData returns FALSE if it detects a user error
 CStudent* pStudent = new CStudent;
 pStudent->m_strName = m_strName;
 pStudent->m_nGrade = m_nGrade;
 m_position = m_pList->InsertAfter(m_position, pStudent);
 }
}
void CStudentView::ClearEntry()
{
 m_strName = "";
 m_nGrade = 0;
 UpdateData(FALSE);
 ((CDialog*) this)->GotoDlgCtrl(GetDlgItem(IDC_NAME));
}

Figure 16-5. The CStudentView class listing.

ClassWizard and CStudentView

ClassWizard was used to map the CStudentView Clear pushbutton notification message as follows.

Object ID Message Member Function

IDC_CLEAR BN_CLICKED OnClear

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because CStudentView is derived from CFormView, ClassWizard supports the definition of dialog data
members. The variables shown here were added with the Add Variables button.

Control ID Member Variable Category Variable Type

IDC_GRADE m_nGrade Value int

IDC_NAME m_strName Value CString

The minimum value of the m_nGrade data member was set to 0, and its maximum value was set to 100.
The maximum length of the m_strName data member was set to 20 characters.

ClassWizard maps toolbar button commands to their handlers. Here are the commands and the handler
functions to which they were mapped.

Object ID Message Member Function

ID_STUDENT_HOME COMMAND OnStudentHome

ID_STUDENT_END COMMAND OnStudentEnd

ID_STUDENT_PREV COMMAND OnStudentPrev

ID_STUDENT_NEXT COMMAND OnStudentNext

ID_STUDENT_INS COMMAND OnStudentIns

ID_STUDENT_DEL COMMAND OnStudentDel

Each command handler has built-in error checking.

The following update command UI message handlers are called during idle processing to update the state
of the toolbar buttons and, when the Student menu is painted, to update the menu items.

Object ID Message Member Function

ID_STUDENT_HOME UPDATE_COMMAND_UI OnUpdateStudentHome

ID_STUDENT_END UPDATE_COMMAND_UI OnUpdateStudentEnd

ID_STUDENT_PREV UPDATE_COMMAND_UI OnUpdateStudentHome

ID_STUDENT_NEXT UPDATE_COMMAND_UI OnUpdateStudentEnd

ID_STUDENT_DEL UPDATE_COMMAND_UI OnUpdateCommandDel

For example, this button,

which retrieves the first student record, is disabled when the list is empty and when the m_position
variable is already set to the head of the list. The Previous button is disabled under the same
circumstances, so it uses the same update command UI handler. The End and the Next buttons share a
handler for similar reasons. Because a delay sometimes occurs in calling the update command UI
functions, the command message handlers must look for error conditions.

Data Members

The m_position data member is a kind of cursor for the document's collection. It contains the position of
the CStudent object that is currently displayed. The m_pList variable provides a quick way to get at the
student list in the document.

OnInitialUpdate

The virtual OnInitialUpdate function is called when you start the application. It sets the view's m_pList data
member for subsequent access to the document's list object.

OnUpdate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnUpdate

The virtual OnUpdate function is called both by the OnInitialUpdate function and by the
CDocument::UpdateAllViews function. It resets the list position to the head of the list, and it displays the
head entry. In this example, the UpdateAllViews function is called only in response to the Edit Clear All
command. In a multiview application, you might need a different strategy for setting the CStudentView
m_position variable in response to document updates from another view.

Protected Virtual Functions

The following three functions are protected virtual functions that deal specifically with CStudent objects:

GetEntry

InsertEntry

ClearEntry

You can transfer these functions to a derived class if you want to isolate the general-purpose list-handling
features in a base class.

Testing the EX16B Application

Fill in the student name and grade fields, and then click this button

to insert the entry into the list. Repeat this action several times, using the Clear pushbutton to erase the
data from the previous entry. When you exit the application, the debug output should look similar to this:

a CStudentDoc at $4116D0
m_strTitle = Untitled
m_strPathName =
m_bModified = 1
m_pDocTemplate = $4113F1

a CObList at $411624
with 4 elements
 a CStudent at $412770
m_strName = Fisher, Lon
m_nGrade = 67
 a CStudent at $412E80
m_strName = Meyers, Lisa
m_nGrade = 80
 a CStudent at $412880
m_strName = Seghers, John
m_nGrade = 92
 a CStudent at $4128F0
m_strName = Anderson, Bob
m_nGrade = 87

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two Exercises for the Reader
You might have noticed the absence of a Modify button on the toolbar. Without such a button, you can't
modify an existing student record. Can you add the necessary toolbar button and message handlers? The
most difficult task might be designing a graphic for the button's tile.

Recall that the CStudentView class is just about ready to be a general-purpose base class. Try separating
the CStudent-specific virtual functions into a derived class. After that, make another derived class that
uses a new element class other than CStudent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17
Reading and Writing Documents—SDI Applications
As you've probably noticed, every AppWizard-generated program has a File menu that contains the
familiar New, Open, Save, and Save As commands. In this chapter, you'll learn how to make your
application respond to read and write documents.

Here we'll stick with the Single Document Interface (SDI) application because it's familiar territory. Chapter
18 introduces the Multiple Document Interface (MDI) application, which is more flexible in its handling of
documents and files. In both chapters, you'll get a heavy but necessary dose of application-framework
theory; you'll learn a lot about the various helper classes that have been concealed up to this point. The
going will be rough, but believe me, you must know the details to get the most out of the application
framework.

This chapter's example, EX17A, is an SDI application based on the EX16B example from the previous
chapter. It uses the student list document with a CFormView-derived view class. Now the student list can
be written to and read from disk through a process called serialization. Chapter 18 shows you how to use
the same view and document classes to make an MDI application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serialization—What Is It?
The term "serialization" might be new to you, but it's already seen some use in the world of object-
oriented programming. The idea is that objects can be persistent, which means they can be saved on disk
when a program exits and then can be restored when the program is restarted. This process of saving and
restoring objects is called serialization. In the Microsoft Foundation Class (MFC) library, designated classes
have a member function named Serialize. When the application framework calls Serialize for a particular
object—for example, an object of class CStudent—the data for the student is either saved on disk or read
from disk.

In the MFC library, serialization is not a substitute for a database management system. All the objects
associated with a document are sequentially read from or written to a single disk file. It's not possible to
access individual objects at random disk file addresses. If you need database capability in your application,
consider using the Microsoft Open Database Connectivity (ODBC) software or Data Access Objects (DAO).
Chapter 31 and Chapter 32 show you how to use ODBC and DAO with the MFC application framework.

There's a storage option that fits between sequential files and a database: structured
storage, described in Chapter 27. The MFC framework already uses structured storage
for container programs that support embedded objects.

Disk Files and Archives

How do you know whether Serialize should read or write data? How is Serialize connected to a disk file?
With the MFC library, objects of class CFile represent disk files. A CFile object encapsulates the binary file
handle that you get through the Win32 function CreateFile. This is not the buffered FILE pointer that you'd
get with a call to the C runtime fopen function; rather, it's a handle to a binary file. The application
framework uses this file handle for Win32 ReadFile, WriteFile, and SetFilePointer calls.

If your application does no direct disk I/O but instead relies on the serialization process, you can avoid
direct use of CFile objects. Between the Serialize function and the CFile object is an archive object (of class
CArchive), as shown in Figure 17-1.

The CArchive object buffers data for the CFile object, and it maintains an internal flag that indicates
whether the archive is storing (writing to disk) or loading (reading from disk). Only one active archive is
associated with a file at any one time. The application framework takes care of constructing the CFile and
CArchive objects, opening the disk file for the CFile object and associating the archive object with the file.
All you have to do (in your Serialize function) is load data from or store data in the archive object. The
application framework calls the document's Serialize function during the File Open and File Save processes.

Figure 17-1. The serialization process.

Making a Class Serializable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Making a Class Serializable

A serializable class must be derived directly or indirectly from CObject. In addition (with some exceptions),
the class declaration must contain the DECLARE_SERIAL macro call, and the class implementation file must
con- tain the IMPLEMENT_SERIAL macro call. (See the Microsoft Foundation Class Reference for a
description of these macros.) This chapter's CStudent class example is modified from the class in Chapter
16 to include these macros.

Writing a Serialize Function

In Chapter 16, you saw a CStudent class, derived from CObject, with these data members:

public:
 CString m_strName;
 int m_nGrade;
Now your job is to write a Serialize member function for CStudent. Because Serialize is a virtual member
function of class CObject, you must be sure that the return value and parameter types match the CObject
declaration. The Serialize function for the CStudent class is below.

void CStudent::Serialize(CArchive& ar)
{
 TRACE("Entering CStudent::Serialize\n");
 if (ar.IsStoring()) {
 ar << m_strName << m_nGrade;
 }
 else {
 ar >> m_strName >> m_nGrade;
 }
}
Most serialization functions call the Serialize functions of their base classes. If CStudent were derived from
CPerson, for example, the first line of the Serialize function would be

CPerson::Serialize(ar);
The Serialize function for CObject (and for CDocument, which doesn't override it) doesn't do anything
useful, so there's no need to call it.

Notice that ar is a CArchive reference parameter that identifies the application's archive object. The
CArchive::IsStoring member function tells us whether the archive is currently being used for storing or
loading. The CArchive class has overloaded insertion operators (<<) and extraction operators (>>) for
many of the C++ built-in types, as shown in the following table.

Type Description

BYTE 8 bits, unsigned

WORD 16 bits, unsigned

LONG 32 bits, signed

DWORD 32 bits, unsigned

float 32 bits

double 64 bits, IEEE standard

int 32 bits, signed

short 16 bits, signed

char 8 bits, unsigned

unsigned 32 bits, unsigned

The insertion operators are overloaded for values; the extraction operators are overloaded for references.
Sometimes you must use a cast to satisfy the compiler. Suppose you have a data member m_nType that is
an enumerated type. Here's the code you would use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ar << (int) m_nType;
ar >> (int&) m_nType;
MFC classes that are not derived from CObject, such as CString and CRect, have their own overloaded
insertion and extraction operators for CArchive.

Loading from an Archive—Embedded Objects vs. Pointers

Now suppose your CStudent object has other objects embedded in it, and these objects are not instances
of standard classes such as CString, CSize, and CRect. Let's add a new data member to the CStudent
class:

public:
 CTranscript m_transcript;
Assume that CTranscript is a custom class, derived from CObject, with its own Serialize member function.
There's no overloaded << or >> operator for CObject, so the CStudent::Serialize function now becomes

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring()) {
 ar << m_strName << m_nGrade;
 }
 else {
 ar >> m_strName >> m_nGrade;
 }
 m_transcript.Serialize(ar);
}
Before the CStudent::Serialize function can be called to load a student record from the archive, a CStudent
object must exist somewhere. The embedded CTranscript object m_transcript is constructed along with the
CStudent object before the call to the CTranscript::Serialize function. When the virtual
CTranscript::Serialize function does get called, it can load the archived transcript data into the embedded
m_transcript object. If you're looking for a rule, here it is: always make a direct call to Serialize for
embedded objects of classes derived from CObject.

Suppose that, instead of an embedded object, your CStudent object contained a CTranscript pointer data
member such as this:

public:
 CTranscript* m_pTranscript;
You could use the Serialize function, as shown below, but as you can see, you must construct a new
CTranscript object yourself.

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade;
 else {
 m_pTranscript = new CTranscript;
 ar >> m_strName >> m_nGrade;
 }
 m_pTranscript->Serialize(ar);
}
Because the CArchive insertion and extraction operators are indeed overloaded for CObject pointers, you
could write Serialize this way instead:

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade << m_pTranscript;
 else
 ar >> m_strName >> m_nGrade >> m_pTranscript;
}
But how is the CTranscript object constructed when the data is loaded from the archive? That's where the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But how is the CTranscript object constructed when the data is loaded from the archive? That's where the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros in the CTranscript class come in.

When the CTranscript object is written to the archive, the macros ensure that the class name is written
along with the data. When the archive is read, the class name is read in and an object of the correct class
is dynamically constructed, under the control of code generated by the macros. Once the CTranscript
object has been constructed, the overridden Serialize function for CTranscript can be called to do the work
of reading the student data from the disk file. Finally the CTranscript pointer is stored in the m_pTranscript
data member. To avoid a memory leak, you must be sure that m_pTranscript does not already contain a
pointer to a CTranscript object. If the CStudent object was just constructed and thus was not previously
loaded from the archive, the transcript pointer will be null.

The insertion and extraction operators do not work with embedded objects of classes derived from
CObject, as shown here:

ar >> m_strName >> m_nGrade >> &m_transcript; // Don't try this

Serializing Collections

Because all collection classes are derived from the CObject class and the collection class declarations
contain the DECLARE_SERIAL macro call, you can conveniently serialize collections with a call to the
collection class's Serialize member function. If you call Serialize for a CObList collection of CStudent
objects, for example, the Serialize function for each CStudent object will be called in turn. You should,
however, remember the following specifics about loading collections from an archive:

If a collection contains pointers to objects of mixed classes (all derived from CObject), the individual
class names are stored in the archive so that the objects can be properly constructed with the
appropriate class constructor.

If a container object, such as a document, contains an embedded collection, loaded data is
appended to the existing collection. You might need to empty the collection before loading from the
archive. This is usually done in the document's virtual DeleteContents function, which is called by
the application framework.

When a collection of CObject pointers is loaded from an archive, the following processing steps take
place for each object in the collection:

1. The object's class is identified.

2. Heap storage is allocated for the object.

3. The object's data is loaded into the newly allocated storage.

4. A pointer to the new object is stored in the collection.

The EX17A example shows serialization of an embedded collection of CStudent records.

The Serialize Function and the Application Framework

OK, so you know how to write Serialize functions, and you know that these function calls can be nested.
But do you know when the first Serialize function gets called to start the serialization process? With the
application framework, everything is keyed to the document (the object of a class derived from
CDocument). When you choose Save or Open from the File menu, the application framework creates a
CArchive object (and an underlying CFile object) and then calls your document class's Serialize function,
passing a reference to the CArchive object. Your derived document class Serialize function then serializes
each of its nontemporary data members.

If you take a close look at any AppWizard-generated document class, you'll notice that
the class includes the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros
rather than the DECLARE_SERIAL and IMPLEMENT_SERIAL macros. The SERIAL macros
are unneeded because document objects are never used in conjunction with the
CArchive extraction operator or included in collections; the application framework calls
the document's Serialize member function directly. You should include the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros in all other serializable classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SDI Application
You've seen many SDI applications that have one document class and one view class. We'll stick to a single
view class in this chapter, but we'll explore the interrelationships among the application object, the main
frame window, the document, the view, the document template object, and the associated string and
menu resources.

The Windows Application Object

For each of your applications, AppWizard has been quietly generating a class derived from CWinApp. It has
also been generating a statement such as this:

CMyApp theApp;
What you're seeing here is the mechanism that starts an MFC application. The class CMyApp is derived
from the class CWinApp, and theApp is a globally declared instance of the class. This global object is called
the Windows application object.

Here's a summary of the startup steps in a Microsoft Windows MFC library application:

1. Windows loads your program into memory.

2. The global object theApp is constructed. (All globally declared objects are constructed immediately
when the program is loaded.)

3. Windows calls the global function WinMain, which is part of the MFC library. (WinMain is equivalent
to the non-Windows main function—each is a main program entry point.)

4. WinMain searches for the one and only instance of a class derived from CWinApp.

5. WinMain calls the InitInstance member function for theApp, which is overridden in your derived
application class.

6. Your overridden InitInstance function starts the process of loading a document and displaying the
main frame and view windows.

7. WinMain calls the Run member function for theApp, which starts the processes of dispatching
window messages and command messages.

You can override another important CWinApp member function. The ExitInstance function is called when
the application terminates, after all its windows are closed.

Windows allows multiple instances of programs to run. The InitInstance function is
called each time a program instance starts up. In Win32, each instance runs as an
independent process. It's only incidental that the same code is mapped to the virtual
memory address space of each process. If you want to locate other running instances
of your program, you must either call the Win32 FindWindow function or set up a
shared data section or memory-mapped file for communication.

The Document Template Class

If you look at the InitInstance function that AppWizard generates for your derived application class, you'll
see that the following statements are featured:

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CStudentView));
AddDocTemplate(pDocTemplate);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddDocTemplate(pDocTemplate);
Unless you start doing fancy things with splitter windows and multiple views, this is the only time you'll
actually see a document template object. In this case, it's an object of class CSingleDocTemplate, which is
derived from CDocTemplate. The CSingleDocTemplate class applies only to SDI applications because SDI
applications are limited to one document object. AddDocTemplate is a member function of class CWinApp.

The AddDocTemplate call, together with the document template constructor call, establishes the
relationships among classes—the application class, the document class, the view window class, and the
main frame window class. The application object exists, of course, before template construction, but the
document, view, and frame objects are not constructed at this time. The application framework later
dynamically constructs these objects when they are needed.

This dynamic construction is a sophisticated use of the C++ language. The DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE macros in a class declaration and implementation enable the MFC library to
construct objects of the specified class dynamically. If this dynamic construction capability weren't present,
more relationships among your application's classes would have to be hard-coded. Your derived application
class, for example, would need code for constructing document, view, and frame objects of your specific
derived classes. This would compromise the object-oriented nature of your program.

With the template system, all that's required in your application class is use of the RUNTIME_CLASS
macro. Notice that the target class's declaration must be included for this macro to work.

Figure 17-2 illustrates the relationships among the various classes, and Figure 17-3 illustrates the object
relationships. An SDI application can have only one template (and associated class groups), and when the
SDI program is running, there can be only one document object and only one main frame window object.

Figure 17-2. Class relationships.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-3. Object relationships.

The MFC library dynamic construction capability was designed before the runtime type
identification (RTTI) feature was added to the C++ language. The original MFC
implementation goes beyond RTTI, and the MFC library continues to use it for dynamic
object construction. See Appendix B for a description of MFC library dynamic
construction.

The Document Template Resource

The first AddDocTemplate parameter is IDR_MAINFRAME, the identifier for a string table resource. Here is
the corresponding string that AppWizard generates for EX17A in the application's RC file:

IDR_MAINFRAME
 "ex17a\n" // application window caption
 "\n" // root for default document name
 // ("Untitled" used if none provided)
 "Ex17a\n" // document type name
 "Ex17a Files (*.17a)\n" // document type description and filter
 ".17a\n" // extension for documents of this type
 "Ex17a.Document\n" // Registry file type ID
 "Ex17a Document" // Registry file type description

The resource compiler won't accept the string concatenations as shown above. If you
examine the ex17a.rc file, you'll see the substrings combined in one long string.

IDR_MAINFRAME specifies one string that is separated into substrings by newline characters (\n). The
substrings show up in various places when the application executes. The string 17A is the default
document file extension specified to AppWizard.

The IDR_MAINFRAME ID, in addition to specifying the application's strings, identifies the application's icon,
toolbar resources, and menu. AppWizard generates these resources, and you can maintain them with the
resource editors.

So now you've seen how the AddDocTemplate call ties all the application elements together. Be aware,
though, that no windows have been created yet and therefore nothing appears on the screen.

Multiple Views of an SDI Document

Providing multiple views of an SDI document is a little more complicated. You could provide a menu item
that allows the user to choose a view, or you could allow multiple views in a splitter window. Chapter 20
shows you how to implement both techniques.

Creating an Empty Document—The CWinApp::OnFileNew Function

After your application class's InitInstance function calls the AddDocTemplate member function, it calls
OnFileNew (indirectly through CWinApp::ProcessShellCommand), another important CWinApp member
function. OnFileNew sorts through the web of interconnected class names and does the following:

1. Constructs the document object but does not attempt to read data from disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Constructs the main frame object (of class CMainFrame); also creates the main frame window but
does not show it. The main frame window includes the IDR_MAINFRAME menu, the toolbar, and the
status bar.

3. Constructs the view object; also creates the view window but doesn't show it.

4. Establishes connections among the document, main frame, and view objects. Do not confuse these
object connections with the class connections established by the call to AddDocTemplate.

5. Calls the virtual CDocument::OnNewDocument member function for the document object, which
calls the virtual DeleteContents function.

6. Calls the virtual CView::OnInitialUpdate member function for the view object.

7. Calls the virtual CFrameWnd::ActivateFrame for the frame object to show the main frame window
together with the menus, view window, and control bars.

Some of the functions listed above are not called directly by OnFileNew but are called
indirectly through the application framework.

In an SDI application, the document, main frame, and view objects are created only once, and they last for
the life of the program. The CWinApp::OnFileNew function is called by InitInstance. It's also called in
response to the user choosing the File New menu item. In this case, OnFileNew must behave a little
differently. It can't construct the document, frame, and view objects because they're already constructed.
Instead, it reuses the existing document object and performs steps 5, 6, and 7 above. Notice that
OnFileNew always calls DeleteContents (indirectly) to empty the document.

The Document Class's OnNewDocument Function

You've seen the view class OnInitialUpdate member function and the document class OnNewDocument
member function in Chapter 16. If an SDI application didn't reuse the same document object, you wouldn't
need OnNewDocument because you could perform all document initialization in your document class
constructor. Now you must override OnNewDocument to initialize your document object each time the user
chooses File New or File Open. AppWizard helps you by providing a skeleton function in the derived
document class it generates.

It's a good idea to minimize the work you do in constructor functions. The fewer things
you do, the less chance there is for the constructor to fail—and constructor failures are
messy. Functions such as CDocument::OnNewDocument and CView::OnInitialUpdate
are excellent places to do initial housekeeping. If anything fails at creation time, you
can pop up a message box, and in the case of OnNewDocument, you can return FALSE.
Be advised that both functions can be called more than once for the same object. If you
need certain instructions executed only once, declare a "first time" flag data member
and then test/set it appropriately.

Connecting File Open to Your Serialization Code—The OnFileOpen Function

When AppWizard generates an application, it maps the File Open menu item to the CWinApp::OnFileOpen
member function. When called, this function invokes a sequence of functions to accomplish these steps:

1. Prompts the user to select a file.

2. Calls the virtual function CDocument::OnOpenDocument for the already existing document object.
This function opens the file, calls CDocument::DeleteContents, and constructs a CArchive object set
for loading. It then calls the document's Serialize function, which loads data from the archive.

3. Calls the view's OnInitialUpdate function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Calls the view's OnInitialUpdate function.

The Most Recently Used (MRU) file list is a handy alternative to the File Open menu item. The application
framework tracks the four most recently used files and displays their names on the File menu. These
filenames are stored in the Windows Registry between program executions.

You can change the number of recent files tracked by supplying a parameter to the
LoadStdProfileSetting function in the application class InitInstance function.

The Document Class's DeleteContents Function

When you load an existing SDI document object from a disk file, you must somehow erase the existing
contents of the document object. The best way to do this is to override the CDocument::DeleteContents
virtual function in your derived document class. The overridden function, as you've seen in Chapter 16 ,
does whatever is necessary to clean up your document class's data members. In response to both the File
New and File Open menu items, the CDocument functions OnNewDocument and OnOpenDocument both
call the DeleteContents function, which means DeleteContents is called immediately after the document
object is first constructed. It's called again when you close a document.

If you want your document classes to work in SDI applications, plan on emptying the document's contents
in the DeleteContents member function rather than in the destructor. Use the destructor only to clean up
items that last for the life of the object.

Connecting File Save and File Save As to Your Serialization Code

When AppWizard generates an application, it maps the File Save menu item to the OnFileSave member
function of the CDocument class. OnFileSave calls the CDocument function OnSaveDocument, which in
turn calls your document's Serialize function with an archive object set for storing. The File Save As menu
item is handled in a similar manner: it is mapped to the CDocument function OnFileSaveAs, which calls
OnSaveDocument. Here the application framework does all the file management necessary to save a
document on disk.

Yes, it is true that the File New and File Open menu options are mapped to application
class member functions, but File Save and File Save As are mapped to document class
member functions. File New is mapped to OnFileNew. The SDI version of InitInstance
also calls OnFileNew (indirectly). No document object exists when the application
framework calls InitInstance, so OnFileNew can't possibly be a member function of
CDocument. When a document is saved, however, a document object certainly exists.

The Document's "Dirty" Flag

Many document-oriented applications for Windows track the user's modifications of a document. If the user
tries to close a document or exit the program, a message box asks whether the user wants to save the
document. The MFC application framework directly supports this behavior with the CDocument data
member m_bModified. This Boolean variable is TRUE if the document has been modified (has become
"dirty"); otherwise, it is FALSE.

The protected m_bModified flag is accessed through the CDocument member functions SetModifiedFlag
and IsModified. The framework sets the document object's flag to FALSE when the document is created or
read from disk and when it is saved on disk. You, the programmer, must use the SetModifiedFlag function
to set the flag to TRUE when the document data changes. The virtual function CDocument::SaveModified,
which the framework calls when the user closes the document, displays a message box if the m_bModified
flag is set to TRUE. You can override this function if you need to do something else.

In the EX17A example, you'll see how a one-line update command UI function can use IsModified to
control the state of the disk button and the corresponding menu item. When the user modifies the file, the
disk button is enabled; when the user saves the file, the button changes to gray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

disk button is enabled; when the user saves the file, the button changes to gray.

In one respect, MFC SDI applications behave a little differently from other Windows SDI
applications such as Notepad. Here's a typical sequence of events:

1. The user creates a document and saves it on disk under the name (for example)
test.dat.

2. The user modifies the document.

3. The user chooses File Open and then specifies test.dat.

When the user chooses File Open, Notepad asks whether the user wants to save the
changes made to the document (in Step 2 above). If the user answers no, the program
rereads the document from disk. An MFC application, on the other hand, assumes that
the changes are permanent and does not reread the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX17A Example—SDI with Serialization
The EX17A example is similar to example EX16B. The student dialog and the toolbar are the same, and the
view class is the same. Serialization has been added, together with an update command UI function for File
Save. The header and implementation files for the view and document classes will be reused in example
EX18A in the next chapter.

All the new code (code that is different from EX16B) is listed, with additions and changes to the
AppWizard-generated code and the ClassWizard code in boldface. A list of the files and classes in the
EX17A example is shown in the following table.

Header File Source Code File Class Description

ex17a.h ex17a.cpp CEx17aApp Application class (from AppWizard)

 CAboutDlg About dialog

MainFrm.h MainFrm.cpp CMainFrame SDI main frame

StuDoc.h StuDoc.cpp CStudentDoc Student document

StuView.h StuView.cpp CStudentView Student form view (from EX16B)

Student.h Student.cpp CStudent Student record

StdAfx.h StdAfx.cpp Precompiled headers (with afxtempl.h included)

CStudent

The EX17A Student.h file is almost the same as the file in the EX16A project. (See Figure 16-2.) The
header contains the macro

DECLARE_SERIAL(CStudent)
instead of

DECLARE_DYNAMIC(CStudent)
and the implementation file contains the macro

IMPLEMENT_SERIAL(CStudent, CObject, 0)
instead of

IMPLEMENT_DYNAMIC(CStudent, Cobject)
The virtual Serialize function has also been added.

CEx17aApp

The application class files, shown in Figure 17-4, contain only code generated by AppWizard. The
application was generated with a default file extension and with the Microsoft Windows Explorer launch and
drag-and-drop capabilities. These features are described later in this chapter.

To generate additional code, you must do the following when you first run AppWizard: in the AppWizard
Step 4 page, click the Advanced button. When the Advanced Options dialog appears, you must enter the
filename extension in the upper-left control, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This ensures that the document template resource string contains the correct default extension and that
the correct Explorer-related code is inserted into your application class InitInstance member function. You
can change some of the other resource substrings if you want.

The generated calls to Enable3dControls and Enable3dControlsStatic in
CEx17aApp::InitInstance are not necessary with Microsoft Windows 95, Microsoft
Windows 98, or Microsoft Windows NT 4.0. These two functions support an older DLL
that is shipped with Microsoft Windows 3.51.

EX17A.H

// ex17a.h : main header file for the EX17A application
//

#if !defined(AFX_EX17A_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
#define AFX_EX17A_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CEx17aApp:
// See ex17a.cpp for the implementation of this class
//

class CEx17aApp : public CWinApp
{
public:
 CEx17aApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx17aApp)
 public:
 virtual BOOL InitInstance();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CEx17aApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///
//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX17A_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
EX17A.CPP

// ex17a.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "ex17a.h"

#include "MainFrm.h"
#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CEx17aApp

BEGIN_MESSAGE_MAP(CEx17aApp, CWinApp)
 //{{AFX_MSG_MAP(CEx17aApp)

 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CEx17aApp construction

CEx17aApp::CEx17aApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Place all significant initialization in InitInstance
}

///
// The one and only CEx17aApp object

CEx17aApp theApp;
///
// CEx17aApp initialization

BOOL CEx17aApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 // Change the registry key under which our settings are stored.
 // You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file options
 // (including MRU)

 // Register the application's document templates.
 // Document templates serve as the connection between
 // documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CStudentView));
 AddDocTemplate(pDocTemplate);

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);
 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized,
 // so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)

 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CEx17aApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CEx17aApp commands

Figure 17-4. The CEx17aApp class listing.

CMainFrame

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CMainFrame

The main frame window class code, shown in Figure 17-5, is almost unchanged from the code that
AppWizard generated. The overridden ActivateFrame function and the WM_DROPFILES handler exist solely
for trace purposes.

MAINFRM.H

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
#define AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_
#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CMainFrame : public CFrameWnd
{
protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void ActivateFrame(int nCmdShow = -1);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnDropFiles(HDROP hDropInfo);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#endif // !defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
MAINFRM.CPP

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "ex17a.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_CREATE()
 ON_WM_DROPFILES()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};
///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here

}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.Create(this) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 // TODO: Remove this if you don't want tool tips
 // or a resizeable toolbar
 m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

 // TODO: Delete these three lines if you don't want the toolbar to
 // be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);

DockControlBar(&m_wndToolBar);
 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CFrameWnd::PreCreateWindow(cs);
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::ActivateFrame(int nCmdShow)
{
 TRACE("Entering CMainFrame::ActivateFrame\n");
 CFrameWnd::ActivateFrame(nCmdShow);
}

void CMainFrame::OnDropFiles(HDROP hDropInfo)
{
 TRACE("Entering CMainFrame::OnDropFiles\n");
 CFrameWnd::OnDropFiles(hDropInfo);
}

Figure 17-5. The CMainFrame class listing.

CStudentDoc

The CStudentDoc class is the same as the CStudentDoc class from the previous chapter (shown in Figure
16-4) except for four functions: Serialize, DeleteContents, OnOpenDocument, and OnUpdateFileSave.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serialize

One line has been added to the AppWizard-generated function to serialize the document's student list, as
shown here:

///
// CStudentDoc serialization

void CStudentDoc::Serialize(CArchive& ar)
{
 TRACE("Entering CStudentDoc::Serialize\n");
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
 m_studentList.Serialize(ar);
}

DeleteContents

The Dump statement is replaced by a simple TRACE statement. Here is the modified code:

void CStudentDoc::DeleteContents()
{
 TRACE("Entering CStudentDoc::DeleteContents\n");
 while (m_studentList.GetHeadPosition()) {
 delete m_studentList.RemoveHead();
 }
}

OnOpenDocument

This virtual function is overridden only for the purpose of displaying a TRACE message, as shown below.

BOOL CStudentDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 TRACE("Entering CStudentDoc::OnOpenDocument\n");
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 // TODO: Add your specialized creation code here

 return TRUE;
}

OnUpdateFileSave

This message map function grays the File Save toolbar button when the document is in the unmodified
state. The view controls this state by calling the document's SetModifiedFlag function, as shown here:

void CStudentDoc::OnUpdateFileSave(CCmdUI* pCmdUI)
{
 // Disable disk toolbar button if file is not modified
 pCmdUI->Enable(IsModified());
}

CStudentView

The code for the CStudentView class comes from the previous chapter. Figure 16-5 shows the code.

Testing the EX17A Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Testing the EX17A Application

Build the program and start it from the debugger, and then test it by typing some data and saving it on
disk with the filename Test.17a. (You don't need to type the .17a.)

Exit the program, and then restart it and open the file you saved. Did the data you typed come back? Take
a look at the Debug window and observe the sequence of function calls. Is the following sequence
produced when you start the application and open the file?

Entering CStudentDoc constructor
Entering CStudentView constructor
Entering CStudentDoc::OnNewDocument
Entering CStudentDoc::DeleteContents
Entering CStudentView::OnInitialUpdate
Entering CStudentView::OnUpdate
Entering CMainFrame::ActivateFrame
Entering CStudentDoc::OnOpenDocument
Entering CStudentDoc::DeleteContents
Entering CStudentDoc::Serialize
Entering CStudent::Serialize
Entering CStudent::Serialize
Entering CStudent::Serialize
Entering CStudentView::OnInitialUpdate
Entering CStudentView::OnUpdate
Entering CMainFrame::ActivateFrame

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer Launch and Drag and Drop
In the past, PC users were accustomed to starting up a program and then selecting a disk file (sometimes
called a document) that contained data the program understood. Many MS-DOS-based programs worked
this way. The old Windows Program Manager improved things by allowing the user to double-click on a
program icon instead of typing a program name. Meanwhile, Apple Macintosh users were double-clicking
on a document icon; the Macintosh operating system figured out which program to run.

While Windows Explorer still lets users double-click on a program, it also lets users double-click on a
document icon to run the document's program. But how does Explorer know which program to run?
Explorer uses the Windows Registry to make the connection between document and program. The link
starts with the filename extension that you typed into AppWizard, but as you'll see, there's more to it than
that. Once the association is made, users can launch your program by double-clicking on its document icon
or by dragging the icon from Explorer to a running instance of your program. In addition, users can drag
the icon to a printer, and your program will print it.

Program Registration

In Chapter 15, you saw how MFC applications store data in the Windows Registry by calling SetRegistryKey
from the InitInstance function. Independent of this SetRegistryKey call, your program can write file
association information in a different part of the Registry on startup. To activate this feature, you must
type in the filename extension when you create the application with AppWizard. (Use the Advanced button
in AppWizard Step 4.) After you do that, AppWizard adds the extension as a substring in your template
string and adds the following line in your InitInstance function:

RegisterShellFileTypes(TRUE);
Now your program adds two items to the Registry. Under the HKEY_CLASSES_ROOT top-level key, it adds
a subkey and a data string as shown here (for the EX17A example):

.17A = Ex17a.Document
The data item is the file type ID that AppWizard has chosen for you. Ex17a.Document, in turn, is the key
for finding the program itself. The Registry entries for Ex17a.Document, also beneath
HKEY_CLASSES_ROOT, are shown here.

Notice that the Registry contains the full pathname of the EX17A program. Now Explorer can use the
Registry to navigate from the extension to the file type ID to the actual program itself. After the extension
is registered, Explorer finds the document's icon and displays it next to the filename, as shown here.

Double-Clicking on a Document

When the user double-clicks on a document icon, Explorer executes the associated SDI program, passing
in the selected filename on the command line. You might notice that AppWizard generates a call to
EnableShellOpen in the application class InitInstance function. This supports execution via DDE message,
the technique used by the File Manager in Windows NT 3.51. Explorer can launch your SDI application
without this call.

Enabling Drag and Drop

If you want your already-running program to open files dragged from Explorer, you must call the CWnd
function DragAcceptFiles for the application's main frame window. The application object's public data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function DragAcceptFiles for the application's main frame window. The application object's public data
member m_pMainWnd points to the CFrameWnd (or CMDIFrameWnd) object. When the user drops a file
anywhere inside the frame window, the window receives a WM_DROPFILES message, which triggers a call
to FrameWnd::OnDropFiles. The following line in InitInstance, generated by AppWizard, enables drag and
drop:

m_pMainWnd->DragAcceptFiles();

Program Startup Parameters

When you choose Run from the Start menu, or when you double-click the program directly in Explorer,
there is no command-line parameter. The InitInstance function processes the command line with calls to
ParseCommandLine and ProcessShellCommand. If the command line contains something that looks like a
filename, the program immediately loads that file. Thus, you create a Windows shortcut that can run your
program with a specific document file.

Experimenting with Explorer Launch and Drag and Drop

Once you have built EX17A, you can try running it from Explorer. You must execute the program directly,
however, in order to write the initial entries in the Registry. Be sure that you've saved at least one 17A file
to disk, and then exit EX17A. Start Explorer, and then open the \vcpp32\ex17a directory. Double-click on
one of the 17A files in the panel on the right. Your program should start with the selected file loaded. Now,
with both EX17A and Explorer open on the desktop, try dragging another file from Explorer to the EX17A
window. The program should open the new file just as if you had chosen File Open from the EX17A menu.

You might also want to look at the EX17A entries in the Registry. Run the Regedit program (possibly
named Regedt32 in Windows NT), and expand the HKEY_CLASSES_ROOT key. Look under ".17A" and
"Ex17a.Document." Also expand the HKEY_CURRENT_USER (or HKEY_USERS\.DEFAULT) key, and look
under "Software." You should see a Recent File List under the subkey ex17a. The EX17A program calls
SetRegistryKey with the string "Local AppWizard-Generated Applications", so the program name goes
beneath the ex17a subkey.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18
Reading and Writing Documents—MDI Applications
This chapter introduces the Microsoft Foundation Class (MFC) Library version 6.0 Multiple Document
Interface (MDI) application and demonstrates how it reads and writes its document files. The MDI
application appears to be the preferred MFC library program style. It's the AppWizard default, and most of
the sample programs that come with Microsoft Visual C++ are MDI applications.

In this chapter, you'll learn the similarities and differences between Single Document Interface (SDI) and
MDI applications, and you'll learn how to convert an SDI application to an MDI application. Be sure you
thoroughly understand the SDI application described in Chapter 17 before you attack the MDI application
in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MDI Application
Before you look at the MFC library code for MDI applications, you should be familiar with the operation of
Microsoft Windows MDI programs. Take a close look at Visual C++ now. It's an MDI application whose
"multiple documents" are program source code files. Visual C++ is not the most typical MDI application,
however, because it collects its documents into projects. It's better to examine Microsoft Word or, better
yet, a real MFC library MDI application—the kind that AppWizard generates.

A Typical MDI Application, MFC Style

This chapter's example, EX18A, is an MDI version of EX17A. Run the EX17A example to see an illustration
of the SDI version after the user has selected a file. Now look at the MDI equivalent, as shown in Figure
18-1.

Figure 18-1. The EX18A application with two files open and the Window menu shown.

The user has two separate document files open, each in a separate MDI child window, but only one child
window is active—the lower window, which lies on top of the other child window. The application has only
one menu and one toolbar, and all commands are routed to the active child window. The main window's
title bar reflects the name of the active child window's document file.

The child window's minimize box allows the user to reduce the child window to an icon in the main window.
The application's Window menu (shown in Figure 18-1) lets the user control the presentation through the
following items.

Menu Item Action

New Window Opens as an additional child window for the selected document

Cascade Arranges the existing windows in an overlapped pattern

Tile Arranges the existing windows in a nonoverlapped, tiled pattern

Arrange Icons Arranges minimized windows in the frame window

(document names) Selects the corresponding child window and brings it to the top

If the user closes both child windows (and opens the File menu), the application looks like Figure 18-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the user closes both child windows (and opens the File menu), the application looks like Figure 18-2.

Figure 18-2. EX18A with no child windows.

The File menu is different, most toolbar buttons are disabled, and the window caption does not show a
filename. The only choices the user has are to start a new document or to open an existing document from
disk.

Figure 18-3 shows the application when it first starts up and a new document is created. The single child
window has been maximized.

Figure 18-3. EX18A with initial child window.

The single, empty child window has the default document name Ex18a1. This name is based on the Doc
Type Name (Ex18a) that you selected in the Advanced Options dialog after clicking the Advanced button in
Step 4 of AppWizard. The first new file is Ex18a1, the second is Ex18a2, and so forth. The user normally
chooses a different name when saving the document.

An MFC library MDI application, like many commercial MDI applications, starts up with a new, empty
document. (Visual C++ is an exception.) If you want your application to start up with a blank frame, you
can modify the argument to the ProcessShellCommand call in the application class file, as shown in
example EX18A.

For Win32 Programmers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Win32 Programmers

Starting with version 3.0, Windows directly supports MDI applications. The MFC library
builds on this Windows support to create an MDI environment that parallels the SDI
environment. In a Win32 MDI application, a main application frame window contains
the menu and a single client window. The client window manages various child windows
that correspond to documents. The MDI client window has its own preregistered
window class (not to be confused with a C++ class) with a procedure that handles
special messages such as WM_MDICASCADE and WM_MDITILE. An MDI child window
procedure is similar to the window procedure for an SDI main window.

In the MFC library, the CMDIFrameWnd class encapsulates the functions of both the
main frame window and the MDI client window. This class has message handlers for all
the Windows MDI messages and thus can manage its child windows, which are
represented by objects of class CMDIChildWnd.

The MDI Application Object

You're probably wondering how an MDI application works and what code makes it different from an SDI
application. Actually, the startup sequences are pretty much the same. An application object of a class
derived from class CWinApp has an overridden InitInstance member function. This InitInstance function is
somewhat different from the SDI InitInstance function, starting with the call to AddDocTemplate.

The MDI Document Template Class

The MDI template construction call in InitInstance looks like this:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(
 IDR_EX18ATYPE,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CStudentView));
AddDocTemplate(pDocTemplate);
Unlike the SDI application you saw in Chapter 17, an MDI application can use multiple document types and
allows the simultaneous existence of more than one document object. This is the essence of the MDI
application.

The single AddDocTemplate call shown above permits the MDI application to support multiple child
windows, each connected to a document object and a view object. It's also possible to have several child
windows (and corresponding view objects) connected to the same document object. In this chapter, we'll
start with only one view class and one document class. You'll see multiple view classes and multiple
document classes in Chapter 20.

When your application is running, the document template object maintains a list of
active document objects that were created from the template. The CMultiDocTemplate
member functions GetFirstDocPosition and GetNextDoc allow you to iterate through the
list. Use CDocument::GetDocTemplate to navigate from a document to its template.

The MDI Frame Window and the MDI Child Window

The SDI examples had only one frame window class and only one frame window object. For SDI
applications, AppWizard generated a class named CMainFrame, which was derived from the class
CFrameWnd. An MDI application has two frame window classes and many frame objects, as shown in the
table below. The MDI frame-view window relationship is shown in Figure 18-4.

Base Class AppWizard-
Generated
Class

Number
of
Objects

Menu and
Control
Bars

Contains
a View

Object Constructed

CMDIFrameWnd CMainFrame 1 only Yes No In application class's
InitInstance function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CMDIChildWnd CChildFrame 1 per
child
window

No Yes By application framework
when a new child window is
opened

Figure 18-4. The MDI frame-view window relationship.

In an SDI application, the CMainFrame object frames the application and contains the view object. In an
MDI application, the two roles are separated. Now the CMainFrame object is explicitly constructed in
InitInstance, and the CChildFrame object contains the view. AppWizard generates the following code:

CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
m_pMainWnd = pMainFrame;
(code calls ProcessShellCommand to create child frame)

pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();
The application framework can create the CChildFrame objects dynamically because the CChildFrame
runtime class pointer is passed to the CMultiDocTemplate constructor.

The MDI InitInstance function sets the CWinApp data member m_pMainWnd to point to
the application's main frame window. This means you can access m_pMainWnd through
the global AfxGetApp function anytime you need to get your application's main frame
window.

The Main Frame and Document Template Resources

An MDI application (EX18A, as described later in this chapter) has two separate string and menu
resources, identified by the IDR_MAINFRAME and IDR_EX18ATYPE constants. The first resource set goes
with the empty main frame window; the second set goes with the occupied main frame window. Here are
the two string resources with substrings broken out:

IDR_MAINFRAME
 "ex18a" // application window caption

IDR_EX18ATYPE
 "\n" // (not used)
 "Ex18a\n" // root for default document name
 "Ex18a\n" // document type name
 "Ex18a Files (*.18a)\n" // document type description and filter
 ".18a\n" // extension for documents of this type
 "Ex18a.Document\n" // Registry file type ID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Ex18a.Document\n" // Registry file type ID
 "Ex18a Document" // Registry file type description

The resource compiler won't accept the string concatenations as shown above. If you
examine the ex18a.rc file, you'll see the substrings combined in one long string.

The application window caption comes from the IDR_MAINFRAME string. When a document is open, the
document filename is appended. The last two substrings in the IDR_EX18ATYPE string support embedded
launch and drag and drop.

Creating an Empty Document—The CWinApp::OnFileNew Function

The MDI InitInstance function calls OnFileNew (through ProcessShellCommand), as did the SDI
InitInstance function. This time, however, the main frame window has already been created. OnFileNew,
through a call to the CMultiDocTemplate function OpenDocumentFile, now does the following:

1. Constructs a document object but does not attempt to read data from disk.

2. Constructs a child frame window object (of class CChildFrame). Also creates the child frame window
but does not show it. In the main frame window, the IDR_EX18ATYPE menu replaces the
IDR_MAINFRAME menu. IDR_EX18ATYPE also identifies an icon resource that is used when the child
window is minimized within the frame.

3. Constructs a view object. Also creates the view window but does not show it.

4. Establishes connections among the document, the main frame, and view objects. Do not confuse
these object connections with the class associations established by the call to AddDocTemplate.

5. Calls the virtual OnNewDocument member function for the document object.

6. Calls the virtual OnInitialUpdate member function for the view object.

7. Calls the virtual ActivateFrame member function for the child frame object to show the frame
window and the view window.

The OnFileNew function is also called in response to the File New menu command. In an MDI application,
OnFileNew performs exactly the same steps as it does when called from InitInstance.

Some functions listed above are not called directly by OpenDocumentFile but are called
indirectly through the application framework.

Creating an Additional View for an Existing Document

If you choose the New Window command from the Window menu, the application framework opens a new
child window that is linked to the currently selected document. The associated CMDIFrameWnd function,
OnWindowNew, does the following:

1. Constructs a child frame object (of class CChildFrame). Also creates the child frame window but
does not show it.

2. Constructs a view object. Also creates the view window but does not show it.

3. Establishes connections between the new view object and the existing document and main frame
objects.

4. Calls the virtual OnInitialUpdate member function for the view object.

5. Calls the virtual ActivateFrame member function for the child frame object to show the frame
window and the view window.

Loading and Storing Documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loading and Storing Documents

In MDI applications, documents are loaded and stored the same way as in SDI applications but with two
important differences: a new document object is constructed each time a document file is loaded from
disk, and the document object is destroyed when the child window is closed. Don't worry about clearing a
document's contents before loading—but override the CDocument::DeleteContents function anyway to
make the class portable to the SDI environment.

Multiple Document Templates

An MDI application can support multiple document templates through multiple calls to the AddDocTemplate
function. Each template can specify a different combination of document, view, and MDI child frame
classes. When the user chooses New from the File menu of an application with multiple templates, the
application framework displays a list box that allows the user to select a template by name as specified in
the string resource (document type substring). Multiple AddDocTemplate calls are not supported in SDI
applications because the document, view, and frame objects are constructed once for the life of the
application.

When your application is running, the application object keeps a list of active document
template objects. The CWinApp member functions GetFirstDocTemplatePosition and
GetNextDocTemplate allow you to iterate through the list of templates. These
functions, together with the CDocTemplate member functions GetFirstDocPosition and
GetNextDoc, allow you to access all of the application's document objects.

If you don't want the template list box, you can edit the File menu to add a New menu item for each
document type. Code the command message handlers as shown below, using the document type substring
from each template.

void CMyApp::OnFileNewStudent()
{
 OpenNewDocument("Studnt");
}
void CMyApp::OnFileNewTeacher()
{
 OpenNewDocument("Teachr");
}
Then add the OpenNewDocument helper function as follows:

BOOL CMyApp::OpenNewDocument(const CString& strTarget)
{
 CString strDocName;
 CDocTemplate* pSelectedTemplate;
 POSITION pos = GetFirstDocTemplatePosition();
 while (pos != NULL) {
 pSelectedTemplate = (CDocTemplate*) GetNextDocTemplate(pos);
 ASSERT(pSelectedTemplate != NULL);
 ASSERT(pSelectedTemplate->IsKindOf(
 RUNTIME_CLASS(CDocTemplate)));
 pSelectedTemplate->GetDocString(strDocName,
 CDocTemplate::docName);
 if (strDocName == strTarget) { // from template's
 // string resource
 pSelectedTemplate->OpenDocumentFile(NULL);
 return TRUE;
 }
 }
 return FALSE;
}

Explorer Launch and Drag and Drop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer Launch and Drag and Drop

When you double-click on a document icon for an MDI application in Windows Explorer, the application
launches only if it was not running already; otherwise, a new child window opens in the running application
for the document you selected. The EnableShellOpen call in the application class InitInstance function is
necessary for this to work. Drag and drop works much the same way in an MDI application as it does in an
SDI application. If you drag a file from Windows Explorer to your MDI main frame window, the program
opens a new child frame (with associated document and view) just as if you'd chosen the File Open
command. As with SDI applications, you must use the AppWizard Step 4 Advanced button to specify the
filename extension.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX18A Example
This example is the MDI version of the EX17A example from the previous chapter. It uses the same
document and view class code and the same resources (except the program name). The application code
and main frame class code are different, however. All the new code is listed here, including the code that
AppWizard generates. A list of the files and classes in the EX18A example are shown in the table below.

Header File Source Code File Class Description

ex18a.h ex18a.cpp CEx18aApp Application class (from AppWizard)

 CAboutDlg About dialog

MainFrm.h MainFrm.cpp CMainFrame MDI main frame

ChildFrm.h ChildFrm.cpp CChildFrame MDI child frame

StuDoc.h StuDoc.cpp CStudentDoc Student document (from EX17A)

StuView.h StuView.cpp CStudentView Student form view (from EX16B)

Student.h Student.cpp CStudent Student record (from EX17A)

StdAfx.h StdAfx.h Precompiled headers (with afxtempl.h included)

CEx18aApp

In the CEx18aApp source code listing, the OpenDocumentFile member function is overridden only for the
purpose of inserting a TRACE statement. Also, a few lines have been added before the
ProcessShellCommand call in InitInstance. They check the argument to ProcessShellCommand and change
it if necessary to prevent the creation of any empty document window on startup. Figure 18-5 shows the
source code.

EX18A.H

// ex18a.h : main header file for the EX18A application
//

#if !defined(AFX_EX18A_H__7B5FE267_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
#define AFX_EX18A_H__7B5FE267_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif
#include "resource.h" // main symbols

//
// CEx18aApp:
// See ex18a.cpp for the implementation of this class
//

class CEx18aApp : public CWinApp
{
public:
 CEx18aApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx18aApp)
 public:
 virtual BOOL InitInstance();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL InitInstance();
 virtual CDocument* OpenDocumentFile(LPCTSTR lpszFileName);
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CEx18aApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX18A_H__7B5FE267_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
EX18A.CPP

// ex18a.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "ex18a.h"

#include "MainFrm.h"
#include "ChildFrm.h"
#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CEx18aApp

BEGIN_MESSAGE_MAP(CEx18aApp, CWinApp)
 //{{AFX_MSG_MAP(CEx18aApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

//
// CEx18aApp construction

CEx18aApp::CEx18aApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

//

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//
// The one and only CEx18aApp object

CEx18aApp theApp;

//
// CEx18aApp initialization

BOOL CEx18aApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC
 // statically
#endif

 // Change the registry key under which our settings are stored.
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));
 LoadStdProfileSettings(); // Load standard INI file options
 // (including MRU)
 // Register the application's document templates. Document
 // templates serve as the connection between documents, frame
 // windows and views.

 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(
 IDR_EX18ATYPE,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CStudentView));
 AddDocTemplate(pDocTemplate);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // no empty document window on startup
 if (cmdInfo.m_nShellCommand == CCommandLineInfo::FileNew) {
 cmdInfo.m_nShellCommand = CCommandLineInfo::FileNothing;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The main window has been initialized, so show and update it.
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}
//
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CEx18aApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}
//

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//
// CEx18aApp message handlers

CDocument* CEx18aApp::OpenDocumentFile(LPCTSTR lpszFileName)
{
 TRACE("CEx18aApp::OpenDocumentFile\n");
 return CWinApp::OpenDocumentFile(lpszFileName);
}

Figure 18-5. The CEx18aApp source code listing.

CMainFrame

This main frame class, listed in Figure 18-6, is almost identical to the SDI version, except that it's derived
from CMDIFrameWnd instead of CFrameWnd.

MAINFRM.H

// MainFrm.h : interface of the CMainFrame class
//
//

#if !defined(AFX_MAINFRM_H__7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
#define AFX_MAINFRM_H__7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CMDIFrameWnd
{
 DECLARE_DYNAMIC(CMainFrame)
public:
 CMainFrame();

// Attributes
public:
// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_MAINFRM_H__7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
MAINFRM.CPP

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "ex18a.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)
BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code !
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

//
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}
CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD
 | WS_VISIBLE | CBRS_TOP | CBRS_GRIPPER | CBRS_TOOLTIPS
 | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }
 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 // TODO: Delete these three lines if you don't want the toolbar to
 // be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_wndToolBar);

 return 0;
}
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CMDIFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return TRUE;
}
//
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CMDIFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CMDIFrameWnd::Dump(dc);
}

#endif //_DEBUG

//
// CMainFrame message handlers

Figure 18-6. The CMainFrame class listing.

CChildFrame

This child frame class, listed in Figure 18-7, lets you conveniently control the child frame window's
characteristics by adding code in the PreCreateWindow function. You can also map messages and override
other virtual functions.

CHILDFRM.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ChildFrm.h : interface of the CChildFrame class
//
//

#if !defined(AFX_CHILDFRM_H__7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
#define AFX_CHILDFRM_H__7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CChildFrame : public CMDIChildWnd
{
 DECLARE_DYNCREATE(CChildFrame)
public:
 CChildFrame();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildFrame)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void ActivateFrame(int nCmdShow = -1);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 //{{AFX_MSG(CChildFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_CHILDFRM_H__7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
CHILDFRM.CPP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ChildFrm.cpp : implementation of the CChildFrame class
//

#include "stdafx.h"
#include "ex18a.h"

#include "ChildFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CChildFrame

IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
 //{{AFX_MSG_MAP(CChildFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CChildFrame construction/destruction

CChildFrame::CChildFrame()
{
 // TODO: add member initialization code here

}

CChildFrame::~CChildFrame()
{
}

BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 if (!CMDIChildWnd::PreCreateWindow(cs))
 return FALSE;

 return TRUE;
}

//
// CChildFrame diagnostics

#ifdef _DEBUG
void CChildFrame::AssertValid() const
{
 CMDIChildWnd::AssertValid();
}

void CChildFrame::Dump(CDumpContext& dc) const
{
 CMDIChildWnd::Dump(dc);
}

#endif //_DEBUG

//
// CChildFrame message handlers

void CChildFrame::ActivateFrame(int nCmdShow)
{
 TRACE("Entering CChildFrame::ActivateFrame\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("Entering CChildFrame::ActivateFrame\n");
 CMDIChildWnd::ActivateFrame(nCmdShow);
}

Figure 18-7. The CChildFrame class listing.

Testing the EX18A Application

Do the build, run the program from Visual C++, and then make several documents. Try saving the
documents on disk, closing them, and reloading them. Also, choose New Window from the Window menu.
Notice that you now have two views (and child frames) attached to the same document. Now exit the
program and start Windows Explorer. The files you created should show up with document icons. Double-
click on a document icon and see whether the EX18A program starts up. Now, with both Windows Explorer
and EX18A on the desktop, drag a document from Windows Explorer to EX18A. Was the file opened?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19
Printing and Print Preview
If you're depending on the Win32 API alone, printing is one of the tougher programming jobs you'll have.
If you don't believe me, just skim through the 60-page chapter "Using the Printer" in Charles Petzold's
Programming Windows 95 (Microsoft Press, 1996). Other books about Microsoft Windows ignore the
subject completely. The Microsoft Foundation Class (MFC) Library version 6.0 application framework goes a
long way toward making printing easy. As a bonus, it adds a print preview capability that behaves like the
print preview functions in commercial Windows-based programs such as Microsoft Word and Microsoft
Excel.

In this chapter, you'll learn how to use the MFC library Print and Print Preview features. In the process,
you'll get a feeling for what's involved in Windows printing and how it's different from printing in MS-DOS.
First you'll do some wysiwyg printing, in which the printer output matches the screen display. This option
requires careful use of mapping modes. Later you'll print a paginated data processing-style report that
doesn't reflect the screen display at all. In that example, you will use a template array to structure your
document so that the program can print any specified range of pages on demand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Printing
In the old days, programmers had to worry about configuring their applications for dozens of printers. Now
Windows makes life easy because it provides all of the printer drivers you'll ever need. It also supplies a
consistent user interface for printing.

Standard Printer Dialogs

When the user chooses Print from the File menu of a Windows-based application, the standard Print dialog
appears, as shown in Figure 19-1.

Figure 19-1. The standard Print dialog.

If the user chooses Print Setup from the File menu, the standard Print Setup dialog appears, as shown in
Figure 19-2.

Figure 19-2. The standard Print Setup dialog.

During the printing process, the application displays a standard printer status dialog, as shown in Figure
19-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19-3.

Figure 19-3. The standard printer status dialog.

Interactive Print Page Selection

If you've worked in the data processing field, you might be used to batch-mode printing. A program reads
a record and then formats and prints selected information as a line in a report. Let's say, for example, that
every time 50 lines have been printed the program ejects the paper and prints a new page heading. The
programmer assumes that the whole report will be printed at one time and makes no allowance for
interactively printing selected pages.

As Figure 19-1 shows, page numbers are important in Windows-based printing. A program must respond
to a user's page selection by calculating which information to print and then printing the selected pages. If
you're aware of this page selection requirement, you can design your application's data structures
accordingly.

Remember the student list from Chapter 17? What if the list included 1000 students' names and the user
wanted to print page 5 of a student report? If you assumed that each student record required one print
line and that a page held 50 lines, page 5 would include records 201 through 250. With an MFC list
collection class, you're stuck iterating through the first 200 list elements before you can start printing.
Maybe the list isn't the ideal data structure. How about an array collection instead? With the CObArray
class (or with one of the template array classes), you can directly access the 201st student record.

Not every application has elements that map to a fixed number of print lines. Suppose the student record
contained a multi-line text biography field. Because you wouldn't know how many biography lines each
record included, you'd have to search through the whole file to determine the page breaks. If your
program could remember those page breaks as it calculated them, its efficiency would increase.

Display Pages vs. Printed Pages

In many cases, you'll want a printed page to correspond to a display page. As you learned in Chapter 5,
you cannot guarantee that objects will be printed exactly as they are displayed on screen. With TrueType
fonts, however, your printed page will be pretty close. If you're working with full-size paper and you want
the corresponding display to be readable, you'll certainly want a display window that is larger than the
screen. Thus, a scrolling view such as the one that the CScrollView class provides is ideal for your printable
views.

Sometimes, however, you might not care about display pages. Perhaps your view holds its data in a list
box, or maybe you don't need to display the data at all. In these cases, your program can contain stand-
alone print logic that simply extracts data from the document and sends it to the printer. Of course, the
program must properly respond to a user's page-range request. If you query the printer to determine the
paper size and orientation (portrait or landscape), you can adjust the pagination accordingly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Print Preview
The MFC library Print Preview feature shows you on screen the exact page and line breaks you'll get when
you print your document on a selected printer. The fonts might look a little funny, especially in the smaller
sizes, but that's not a problem. Look now at the print preview window that appears in "The EX19A Example
—A Wysiwyg Print Program".

Print Preview is an MFC library feature, not a Windows feature. Don't underestimate how much effort went
into programming Print Preview. The Print Preview program examines each character individually,
determining its position based on the printer's device context. After selecting an approximating font, the
program displays the character in the print preview window at the proper location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming for the Printer
The application framework does most of the work for printing and print preview. To use the printer
effectively, you must understand the sequence of function calls and know which functions to override.

The Printer Device Context and the CView::OnDraw Function

When your program prints on the printer, it uses a device context object of class CDC. Don't worry about
where the object comes from; the application framework constructs it and passes it as a parameter to your
view's OnDraw function. If your application uses the printer to duplicate the display, the OnDraw function
can do double duty. If you're displaying, the OnPaint function calls OnDraw and the device context is the
display context. If you're printing, OnDraw is called by another CView virtual function, OnPrint, with a
printer device context as a parameter. The OnPrint function is called once to print an entire page.

In print preview mode, the OnDraw parameter is actually a pointer to a CPreviewDC object. Your OnPrint
and OnDraw functions work the same regardless of whether you're printing or previewing.

The CView::OnPrint Function

You've seen that the base class OnPrint function calls OnDraw and that OnDraw can use both a display
device context and a printer device context. The mapping mode should be set before OnPrint is called. You
can override OnPrint to print items that you don't need on the display, such as a title page, headers, and
footers. The OnPrint parameters are as follows:

A pointer to the device context

A pointer to a print information object (CPrintInfo) that includes page dimensions, the current page
number, and the maximum page number

In your overridden OnPrint function, you can elect not to call OnDraw at all to support print logic that is
totally independent of the display logic. The application framework calls the OnPrint function once for each
page to be printed, with the current page number in the CPrintInfo structure. You'll soon find out how the
application framework determines the page number.

Preparing the Device Context—The CView::OnPrepareDC Function

If you need a display mapping mode other than MM_TEXT (and you often do), that mode is usually set in
the view's OnPrepareDC function. You override this function yourself if your view class is derived directly
from CView, but it's already overridden if your view is derived from CScrollView. The OnPrepareDC function
is called in OnPaint immediately before the call to OnDraw. If you're printing, the same OnPrepareDC
function is called, this time immediately before the application framework calls OnPrint. Thus, the mapping
mode is set before both the painting of the view and the printing of a page.

The second parameter of the OnPrepareDC function is a pointer to a CPrintInfo structure. This pointer is
valid only if OnPrepareDC is being called prior to printing. You can test for this condition by calling the CDC
member function IsPrinting. The IsPrinting function is particularly handy if you're using OnPrepareDC to set
different mapping modes for the display and the printer.

If you do not know in advance how many pages your print job requires, your overridden OnPrepareDC
function can detect the end of the document and reset the m_bContinuePrinting flag in the CPrintInfo
structure. When this flag is FALSE, the OnPrint function won't be called again and control will pass to the
end of the print loop.

The Start and End of a Print Job

When a print job starts, the application framework calls two CView functions, OnPreparePrinting and
OnBeginPrinting. (AppWizard generates the OnPreparePrinting, OnBeginPrinting, and OnEndPrinting
functions for you if you select the Printing And Print Preview option.) The first function, OnPreparePrinting,
is called before the display of the Print dialog. If you know the first and last page numbers, call
CPrintInfo::SetMinPage and CPrintInfo::SetMaxPage in OnPreparePrinting. The page numbers you pass to
these functions will appear in the Print dialog for the user to override.

The second function, OnBeginPrinting, is called after the Print dialog exits. Override this function to create
Graphics Device Interface (GDI) objects, such as fonts, that you need for the entire print job. A program
runs faster if you create a font once instead of re-creating it for each page.

The CView function OnEndPrinting is called at the end of the print job, after the last page has been printed.
Override this function to get rid of GDI objects created in OnBeginPrinting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Override this function to get rid of GDI objects created in OnBeginPrinting.

The following table summarizes the important overridable CView print loop functions.

Function Common Override Behavior

OnPreparePrinting Sets first and last page numbers

OnBeginPrinting Creates GDI objects

OnPrepareDC (for each page) Sets mapping mode and optionally detects end of print job

OnPrint Does print-specific output and then calls OnDraw (for each page)

OnEndPrinting Deletes GDI objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX19A Example—A Wysiwyg Print Program
This example displays and prints a single page of text stored in a document. The printed image should
match the displayed image. The MM_TWIPS mapping mode is used for both printer and display. First we'll
use a fixed drawing rectangle; later we'll base the drawing rectangle on the printable area rectangle
supplied by the printer driver.

Here are the steps for building the example:

1. Run AppWizard to generate \vcpp32\ex19a\ex19a. Accept the default options, and then
rename the document and view classes and files as shown here.

Note that this is an MDI application.

2. Add a CStringArray data member to the CPoemDoc class.Edit the PoemDoc.h header file or
use ClassView.

public:
 CStringArray m_stringArray;
The document data is stored in a string array. The MFC library CStringArray class holds an array of
CString objects, accessible by a zero-based subscript. You need not set a maximum dimension in
the declaration because the array is dynamic.

3. Add a CRect data member to the CStringView class. Edit the StringView.h header file or use
ClassView:

private:
 CRect m_rectPrint;

4. Edit three CPoemDoc member functions in the file PoemDoc.cpp. AppWizard generated
skeleton OnNewDocument and Serialize functions, but we'll have to use ClassWizard to override the
DeleteContents function. We'll initialize the poem document in the overridden OnNewDocument
function. DeleteContents is called in CDocument::OnNewDocument, so by calling the base class
function first we're sure the poem won't be deleted. (The text, by the way, is an excerpt from the
twentieth poem in Lawrence Ferlinghetti's book A Coney Island of the Mind.) Type 10 lines of your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

twentieth poem in Lawrence Ferlinghetti's book A Coney Island of the Mind.) Type 10 lines of your
choice. You can substitute another poem or maybe your favorite Win32 function description. Add
the following boldface code:

BOOL CPoemDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_stringArray.SetSize(10);
 m_stringArray[0] = "The pennycandystore beyond the El";
 m_stringArray[1] = "is where I first";
 m_stringArray[2] = " fell in love";
 m_stringArray[3] = " with unreality";
 m_stringArray[4] = "Jellybeans glowed in the semi-gloom";
 m_stringArray[5] = "of that september afternoon";
 m_stringArray[6] = "A cat upon the counter moved among";
 m_stringArray[7] = " the licorice sticks";
 m_stringArray[8] = " and tootsie rolls";
 m_stringArray[9] = " and Oh Boy Gum";
 return TRUE;
}

The CStringArray class supports dynamic arrays, but here we're using the
m_stringArray object as though it were a static array of 10 elements.

The application framework calls the document's virtual DeleteContents function when it closes the
document; this action deletes the strings in the array. A CStringArray contains actual objects, and a
CObArray contains pointers to objects. This distinction is important when it's time to delete the
array elements. Here the RemoveAll function actually deletes the string objects:

void CPoemDoc::DeleteContents()
{
 // called before OnNewDocument and when document is closed
 m_stringArray.RemoveAll();
}
Serialization isn't important in this example, but the following function illustrates how easy it is to
serialize strings. The application framework calls the DeleteContents function before loading from
the archive, so you don't have to worry about emptying the array. Add the following boldface code:

void CPoemDoc::Serialize(CArchive& ar)
{
 m_stringArray.Serialize(ar);
}

5. Edit the OnInitialUpdate function in StringView.cpp. You must override the function for all
classes derived from CScrollView. This function's job is to set the logical window size and the
mapping mode. Add the following boldface code:

void CStringView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
 CSize sizePage(sizeTotal.cx / 2,
 sizeTotal.cy / 2); // page scroll
 CSize sizeLine(sizeTotal.cx / 100,
 sizeTotal.cy / 100); // line scroll
 SetScrollSizes(MM_TWIPS, sizeTotal, sizePage, sizeLine);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
6. Edit the OnDraw function in StringView.cpp. The OnDraw function of class CStringView draws

on both the display and the printer. In addition to displaying the poem text lines in 10-point roman
font, it draws a border around the printable area and a crude ruler along the top and left margins.
OnDraw assumes the MM_TWIPS mapping mode, in which 1 inch = 1440 units. Add the boldface
code shown below.

void CStringView::OnDraw(CDC* pDC)
{
 int i, j, nHeight;
 CString str;
 CFont font;
 TEXTMETRIC tm;
 CPoemDoc* pDoc = GetDocument();
 // Draw a border — slightly smaller to avoid truncation
 pDC->Rectangle(m_rectPrint + CRect(0, 0, -20, 20));
 // Draw horizontal and vertical rulers
 j = m_rectPrint.Width() / 1440;
 for (i = 0; i <= j; i++) {
 str.Format("%02d", i);
 pDC->TextOut(i * 1440, 0, str);
 }
 j = -(m_rectPrint.Height() / 1440);
 for (i = 0; i <= j; i++) {
 str.Format("%02d", i);
 pDC->TextOut(0, -i * 1440, str);
 }
 // Print the poem 0.5 inch down and over;
 // use 10-point roman font
 font.CreateFont(-200, 0, 0, 0, 400, FALSE, FALSE, 0, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH | FF_ROMAN,
 "Times New Roman");
 CFont* pOldFont = (CFont*) pDC->SelectObject(&font);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;
 TRACE("font height = %d, internal leading = %d\n",
 nHeight, tm.tmInternalLeading);
 j = pDoc->m_stringArray.GetSize();
 for (i = 0; i < j; i++) {
 pDC->TextOut(720, -i * nHeight - 720, pDoc->m_stringArray[i]);
 }
 pDC->SelectObject(pOldFont);
 TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",
 pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
 TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
 pDC->GetDeviceCaps(HORZSIZE),
 pDC->GetDeviceCaps(VERTSIZE));
}

7. Edit the OnPreparePrinting function in StringView.cpp. This function sets the maximum
number of pages in the print job. This example has only one page. It's absolutely necessary to call
the base class DoPreparePrinting function in your overridden OnPreparePrinting function. Add the
following boldface code:

BOOL CStringView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
8. Edit the constructor in StringView.cpp. The initial value of the print rectangle should be 8-by-15

inches, expressed in twips (1 inch = 1440 twips). Add the following boldface code:

CStringView::CStringView() : m_rectPrint(0, 0, 11520, -15120)
{
}

9. Build and test the application. If you run the EX19A application under Microsoft Windows NT
with the lowest screen resolution, your MDI child window will look like the one shown below. (The
text will be larger under higher resolutions and under Windows 95 and Windows 98.)

The window text is too small, isn't it? Go ahead and choose Print Preview from the File menu, and
then click twice with the magnifying glass to enlarge the image. The print preview output is
illustrated here.

Remember "logical twips" from Chapter 5? We're going to use logical twips now to enlarge type on
the display while keeping the printed text the same size. This requires some extra work because the
CScrollView class wasn't designed for nonstandard mapping modes. You will be changing the view's
base class from CScrollView to CLogScrollView, which is a class that I created by copying and
modifying the MFC code in ViewScrl.cpp. The files LogScrollView.h and LogScrollView.cpp are in the
\vcpp32\ex19a directory on the companion CD-ROM.

10. Insert the CScrollView class into the project. Copy the files LogScrollView.h and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10. Insert the CScrollView class into the project. Copy the files LogScrollView.h and
LogScrollView.cpp from the companion CD-ROM if you have not done so already. Choose Add To
Project from the Project menu, and then choose Files from the submenu. Select the two new files
and click OK to insert them into the project.

11. Edit the StringView.h header file. Add the following line at the top of the file:

#include "LogScrollView.h"
Then change the line

class CStringView : public CScrollView
to

class CStringView : public CLogScrollView
12. Edit the StringView.cpp file. Globally replace all occurrences of CScrollView with CLogScrollView.

Then edit the OnInitialUpdate function. Here is the edited code, which is much shorter:

void CStringView::OnInitialUpdate()
{
 CLogScrollView::OnInitialUpdate();
 CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
 SetLogScrollSizes(sizeTotal);
}

13. Build and test the application again. Now the screen should look like this.

Reading the Printer Rectangle

The EX19A program prints in a fixed-size rectangle that's appropriate for a laser printer set to portrait
mode with 8.5-by-11-inch (letter-size) paper. But what if you load European-size paper or you switch to
landscape mode? The program should be able to adjust accordingly.

It's relatively easy to read the printer rectangle. Remember the CPrintInfo pointer that's passed to
OnPrint? That structure has a data member m_rectDraw that contains the rectangle in logical coordinates.
Your overridden OnPrint function simply stuffs the rectangle in a view data member, and OnDraw uses it.
There's only one problem: you can't get the rectangle until you start printing, so the constructor still needs
to set a default value for OnDraw to use before printing begins.

If you want the EX19A program to read the printer rectangle and adjust the size of the scroll view, use
ClassWizard to override OnPrint and then code the function as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CStringView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 m_rectPrint = pInfo->
m_rectDraw;
 SetLogScrollSizes(CSize(m_rectPrint.Width(),
 -
m_rectPrint.Height()));
 CLogScrollView::OnPrint(pDC, pInfo);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Template Collection Classes Revisited—The CArray Class
In EX16B in Chapter 16, you saw the MFC library CTypedPtrList template collection class, which was used
to store a list of pointers to CStudent objects. Another collection class, CArray, is appropriate for the next
example, EX19B. This class is different from CTypedPtrList in two ways. First, it's an array, with elements
accessible by index, just like CStringArray in EX19A. Second, the array holds actual objects, not pointers to
objects. In EX19B, the elements are CRect objects. The elements' class does not have to be derived from
CObject, and indeed, CRect is not.

As in EX16B, a typedef makes the template collection easier to use. We use the statement

typedef CArray<CRect, CRect&> CRectArray;
to define an array class that holds CRect objects and whose functions take CRect reference parameters.
(It's cheaper to pass a 32-bit pointer than to copy a 128bit object.) To use the template array, you declare
an instance of CRectArray and then you call CArray member functions such as SetSize. You can also use
the CArray subscript operator to get and set elements.

The template classes CArray, CList, and CMap are easy to use if the element class is sufficiently simple.
The CRect class fits that description because it contains no pointer data members. Each template class
uses a global function, SerializeElements, to serialize all the elements in the collection. The default
SerializeElements function does a bitwise copy of each element to and from the archive.

If your element class contains pointers or is otherwise complex, you'll need to write your own
SerializeElements function. If you wrote this function for the rectangle array (not required), your code
would look like this:

void AFXAPI SerializeElements(CArchive& ar, CRect* pNewRects,
 int nCount)
{
 for (int i = 0; i < nCount; i++, pNewRects++) {
 if (ar.IsStoring()) {
 ar << *pNewRects;
 }
 else {
 ar >> *pNewRects;
 }
 }
}
When the compiler sees this function, it uses the function to replace the SerializeElements function inside
the template. This only works, however, if the compiler sees the SerializeElements prototype before it sees
the template class declaration.

The template classes depend on two other global functions, ConstructElements and
DestructElements. Starting with Visual C++ version 4.0, these functions call the
element class constructor and destructor for each object. Therefore, there's no real
need to replace them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX19B Example—A Multipage Print Program
In this example, the document contains an array of 50 CRect objects that define circles. The circles are
randomly positioned in a 6-by-6-inch area and have random diameters of as much as 0.5 inch. The circles,
when drawn on the display, look like two-dimensional simulations of soap bubbles. Instead of drawing the
circles on the printer, the application prints the corresponding CRect coordinates in numeric form, 12 to a
page, with headers and footers.

1. Run AppWizard to generate \vcpp32\ex19b\ex19b. Select Single Document, and accept the
defaults for all the other settings. The options and the default class names are shown here.

2. Edit the StdAfx.h header file. You'll need to bring in the declarations for the MFC template
collection classes. Add the following statement:

#include <afxtempl.h>
3. Edit the ex19bDoc.h header file. In the EX19A example, the document data consists of strings

stored in a CStringArray collection. Because we're using a template collection for ellipse rectangles,
we'll need a typedef statement outside the class declaration, as shown here:

typedef CArray<CRect, CRect&> CRectArray;
Next add the following public data members to the ex19bDoc.h header file:

public:
 enum { nLinesPerPage = 12 };
 enum { nMaxEllipses = 50 };
 CRectArray m_ellipseArray;
The two enumerations are object-oriented replacements for #defines.

4. Edit the ex19bDoc.cpp implementation file. The overridden OnNew Document function
initializes the ellipse array with some random values, and the Serialize function reads and writes the
whole array. AppWizard generated the skeletons for both functions. You don't need a
DeleteContents function because the CArray subscript operator writes a new CRect object on top of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DeleteContents function because the CArray subscript operator writes a new CRect object on top of
any existing one. Add the following boldface code:

BOOL CEx19bDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 int n1, n2, n3;
 // Make 50 random circles
 srand((unsigned) time(NULL));
 m_ellipseArray.SetSize(nMaxEllipses);
 for (int i = 0; i < nMaxEllipses; i++) {
 n1 = rand() * 600 / RAND_MAX;
 n2 = rand() * 600 / RAND_MAX;
 n3 = rand() * 50 / RAND_MAX;
 m_ellipseArray[i] = CRect(n1, -n2, n1 + n3, -(n2 + n3));
 }
 return TRUE;
}

void CEx19bDoc::Serialize(CArchive& ar)
{
 m_ellipseArray.Serialize(ar);
}

5. Edit the ex19bView.h header file. Use ClassView to add the member variable and two function
prototypes listed below. ClassView will also generate skeletons for the functions in ex19bView.cpp.

public:
 int m_nPage;
private:
 void PrintPageHeader(CDC *pDC);
 void PrintPageFooter(CDC *pDC);
The m_nPage data member holds the document's current page number for printing. The private
functions are for the header and footer subroutines.

6. Edit the OnDraw function in ex19bView.cpp. The overridden OnDraw function simply draws the
bubbles in the view window. Add the boldface code shown here:

void CEx19bView::OnDraw(CDC* pDC)
{
 int i, j;
 CEx19bDoc* pDoc = GetDocument();
 j = pDoc->m_ellipseArray.GetUpperBound();
 for (i = 0; i < j; i++) {
 pDC->Ellipse(pDoc->m_ellipseArray[i]);
 }
}

7. Insert the OnPrepareDC function in ex19bView.cpp. The view class is not a scrolling view, so
the mapping mode must be set in this function. Use ClassWizard to override the OnPrepareDC
function, and then add the following boldface code:

void CEx19bView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_LOENGLISH);
}

8. Insert the OnPrint function in ex19bView.cpp. The CView default OnPrint function calls
OnDraw. In this example, we want the printed output to be entirely different from the displayed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnDraw. In this example, we want the printed output to be entirely different from the displayed
output, so the OnPrint function must take care of the print output without calling OnDraw. OnPrint
first sets the mapping mode to MM_TWIPS, and then it creates a fixed-pitch font. After printing the
numeric contents of 12 m_ellipseArray elements, OnPrint deselects the font. You could have created
the font once in OnBeginPrinting, but you wouldn't have noticed the increased efficiency. Use
ClassWizard to override the OnPrint function, and then add the following boldface code:

void CEx19bView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 int i, nStart, nEnd, nHeight;
 CString str;
 CPoint point(720, -1440);
 CFont font;
 TEXTMETRIC tm;
 pDC->SetMapMode(MM_TWIPS);
 CEx19bDoc* pDoc = GetDocument();
 m_nPage = pInfo->m_nCurPage; // for PrintPageFooter's benefit
 nStart = (m_nPage - 1) * CEx19bDoc::nLinesPerPage;
 nEnd = nStart + CEx19bDoc::nLinesPerPage;
 // 14-point fixed-pitch font
 font.CreateFont(-280, 0, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "Courier New");
 // Courier New is a TrueType font
 CFont* pOldFont = (CFont*) (pDC->SelectObject(&font));
 PrintPageHeader(pDC);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;
 for (i = nStart; i < nEnd; i++) {
 if (i > pDoc->m_ellipseArray.GetUpperBound()) {
 break;
 }
 str.Format("%6d %6d %6d %6d %6d", i + 1,
 pDoc->m_ellipseArray[i].left,
 pDoc->m_ellipseArray[i].top,
 pDoc->m_ellipseArray[i].right,
 pDoc->m_ellipseArray[i].bottom);
 point.y -= nHeight;
 pDC->TextOut(point.x, point.y, str);
 }
 PrintPageFooter(pDC);
 pDC->SelectObject(pOldFont);
}

9. Edit the OnPreparePrinting function in ex19bView.cpp. The OnPreparePrinting function
(whose skeleton is generated by AppWizard) computes the number of pages in the document and
then communicates that value to the application framework through the SetMaxPage function. Add
the following boldface code:

BOOL CEx19bView::OnPreparePrinting(CPrintInfo* pInfo)
{
 CEx19bDoc* pDoc = GetDocument();
 pInfo->SetMaxPage(pDoc->m_ellipseArray.GetUpperBound() /
 CEx19bDoc::nLinesPerPage + 1);
 return DoPreparePrinting(pInfo);
}

10. Insert the page header and footer functions in ex19bView.cpp. These private functions,
called from OnPrint, print the page headers and the page footers. The page footer includes the page
number, stored by OnPrint in the view class data member m_nPage. The CDC::GetTextExtent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number, stored by OnPrint in the view class data member m_nPage. The CDC::GetTextExtent
function provides the width of the page number so that it can be right-justified. Add the boldface
code shown here:

void CEx19bView::PrintPageHeader(CDC* pDC)
{
 CString str;
 CPoint point(0, 0);
 pDC->TextOut(point.x, point.y, "Bubble Report");
 point += CSize(720, -720);
 str.Format("%6.6s %6.6s %6.6s %6.6s %6.6s",
 "Index", "Left", "Top", "Right", "Bottom");
 pDC->TextOut(point.x, point.y, str);
}

void CEx19bView::PrintPageFooter(CDC* pDC)
{
 CString str;
 CPoint point(0, -14400); // Move 10 inches down
 CEx19bDoc* pDoc = GetDocument();
 str.Format("Document %s", (LPCSTR) pDoc->GetTitle());
 pDC->TextOut(point.x, point.y, str);
 str.Format("Page %d", m_nPage);
 CSize size = pDC->GetTextExtent(str);
 point.x += 11520 - size.cx;
 pDC->TextOut(point.x, point.y, str); // right-justified
}

11. Build and test the application. For one set of random numbers, the bubble view window looks
like this.

Each time you choose New from the File menu, you should see a different picture. In Print Preview,
the first page of the output should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the first page of the output should look like this.

With the Print dialog, you can specify any range of pages to print.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20
Splitter Windows and Multiple Views
Except for the EX18A example, each program you've seen so far in this book has had only one view
attached to a document. If you've used a Microsoft Windows-based word processor, you know that it's
convenient to have two windows open simultaneously on various parts of a document. Both windows might
contain normal views, or one window might contain a page layout view and another might contain an
outline view.

With the application framework, you can use a splitter window or multiple MDI child windows to display
multiple views. You'll learn about both presentation options here, and you'll see that it's easy to make
multiple view objects of the same view class (the normal view) in both cases. It's slightly more difficult,
however, to use two or more view classes in the same application (say, the outline view and the page
layout view).

This chapter emphasizes the selection and presentation of multiple views. The examples depend on a
document with data initialized in the OnNewDocument function. Look back now to Chapter 16 for a review
of document-view communication.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Splitter Window
A splitter window appears as a special type of frame window that holds several views in panes. The
application can split the window on creation, or the user can split the window by choosing a menu
command or by dragging a splitter box on the window's scroll bar. After the window has been split, the
user can move the splitter bars with the mouse to adjust the relative sizes of the panes. Splitter windows
can be used in both SDI and MDI applications. You can see examples of splitter windows in this chapter.

An object of class CSplitterWnd represents the splitter window. As far as Windows is concerned, a
CSplitterWnd object is an actual window that fully occupies the frame window (CFrameWnd or
CMDIChildWnd) client area. The view windows occupy the splitter window pane areas. The splitter window
does not take part in the command dispatch mechanism. The active view window (in a splitter pane) is
connected directly to its frame window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

View Options
When you combine multiview presentation methods with application models, you get a number of
permutations. Here are some of them:

SDI application with splitter window, single view class This chapter's first example, EX20A,
covers this case. Each splitter window pane can be scrolled to a different part of the document. The
programmer determines the maximum number of horizontal and vertical panes; the user makes the
split at runtime.

SDI application with splitter window, multiple view classes The EX20B example illustrates
this case. The programmer determines the number of panes and the sequence of views; the user
can change the pane size at runtime.

SDI application with no splitter windows, multiple view classes The EX20C example
illustrates this case. The user switches view classes by making a selection from a menu.

MDI application with no splitter windows, single view class This is the standard MDI
application you've seen already in Chapter 18. The New Window menu item lets the user open a
new child window for a document that's open already.

MDI application with no splitter windows, multiple view classes A small change to the
standard MDI application allows the use of multiple views. As example EX20D shows, all that's
necessary is to add a menu item and a handler function for each additional view class available.

MDI application with splitter child windows This case is covered thoroughly in the online
documentation. The SCRIBBLE example illustrates the splitting of an MDI child window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic and Static Splitter Windows
A dynamic splitter window allows the user to split the window at any time by choosing a menu item or by
dragging a splitter box located on the scroll bar. The panes in a dynamic splitter window generally use the
same view class. The top left pane is initialized to a particular view when the splitter window is created. In
a dynamic splitter window, scroll bars are shared among the views. In a window with a single horizontal
split, for example, the bottom scroll bar controls both views. A dynamic splitter application starts with a
single view object. When the user splits the frame, other view objects are constructed. When the user
unsplits the frame, view objects are destroyed.

The panes of a static splitter window are defined when the window is first created and they cannot be
changed. The user can move the bars but cannot unsplit or resplit the window. Static splitter windows can
accommodate multiple view classes, with the configuration set at creation time. In a static splitter window,
each pane has separate scroll bars. In a static splitter window application, all view objects are constructed
when the frame is constructed and they are all destroyed when the frame is destroyed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20A Example— A Single View Class SDI Dynamic Splitter
In this example, the user can dynamically split the view into four panes with four separate view objects, all
managed by a single view class. We'll use the document and the view code from EX19A. AppWizard lets
you add a dynamic splitter window to a new application. Create an SDI project. Click the Advanced button
in the AppWizard Step 4 dialog. Click on the Window Styles tab, and select Use Split Window as shown
here.

When you check the Use Split Window check box, AppWizard adds code to your CMainFrame class. Of
course, you could add the same code to the CMainFrame class of an existing application to add splitter
capability.

Resources for Splitting

When AppWizard generates an application with a splitter frame, it includes a Split option in the project's
View menu. The ID_WINDOW_SPLIT command ID is mapped in the CView class within the MFC library.

CMainFrame

The application's main frame window class needs a splitter window data member and a prototype for an
overridden OnCreateClient function. Here are the additions that AppWizard makes to the MainFrm.h file:

protected:
 CSplitterWnd m_wndSplitter;
public:
 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext* pContext);
The application framework calls the CFrameWnd::OnCreateClient virtual member function when the frame
object is created. The base class version creates a single view window as specified by the document
template. The AppWizard-generated OnCreateClient override shown here (in MainFrm.cpp) creates a
splitter window instead, and the splitter window creates the first view:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 return m_wndSplitter.Create(this,
 2, 2, // TODO: adjust the number of rows, columns
 CSize(10, 10), // TODO: adjust the minimum pane size
 pContext);
}
The CSplitterWnd Create member function creates a dynamic splitter window, and the CSplitterWnd object
knows the view class because its name is embedded in the CCreateContext structure that's passed as a
parameter to Create.

The second and third Create parameters (2, 2) specify that the window can be split into a maximum of two
rows and two columns. If you changed the parameters to (2, 1), you would allow only a single horizontal
split. The parameters (1, 2) allow only a single vertical split. The CSize parameter specifies the minimum
pane size.

Testing the EX20A Application

When the application starts, you can split the window by choosing Split from the View menu or by dragging
the splitter boxes at the left and top of the scroll bars. Figure 20-1 shows a typical single view window with
a four-way split. Multiple views share the scroll bars.

Figure 20-1. A single view window with a four-way split.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20B Example—A Double View Class SDI Static Splitter
In EX20B, we'll extend EX20A by defining a second view class and allowing a static splitter window to show
the two views. (The H and CPP files are cloned from the original view class.) This time the splitter window
works a little differently. Instead of starting off as a single pane, the splitter is initialized with two panes.
The user can move the bar between the panes by dragging it with the mouse or by choosing the Window
Split menu item.

The easiest way to generate a static splitter application is to let AppWizard generate a dynamic splitter
application and then edit the generated CMainFrame::OnCreateClient function.

CHexView

The CHexView class was written to allow programmers to appreciate poetry. It is essentially the same code
used for CStringView except for the OnDraw member function:

void CHexView::OnDraw(CDC* pDC)
{
 // hex dump of document strings
 int i, j, k, l, n, nHeight;
 CString outputLine, str;
 CFont font;
 TEXTMETRIC tm;

 CPoemDoc* pDoc = GetDocument();
 font.CreateFont(-160, 80, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = pDC->SelectObject(&font);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;

 j = pDoc->m_stringArray.GetSize();
 for (i = 0; i < j; i++) {
 outputLine.Format("%02x ", i);
 l = pDoc->m_stringArray[i].GetLength();
 for (k = 0; k < l; k++) {
 n = pDoc->m_stringArray[i][k] & 0x00ff;
 str.Format("%02x ", n);
 outputLine += str;
 }
 pDC->TextOut(720, -i * nHeight - 720, outputLine);
 }
 pDC->SelectObject(pOldFont);
}
This function displays a hexadecimal dump of all strings in the document's m_stringArray collection. Notice
the use of the subscript operator to access individual characters in a CString object.

CMainFrame

As in EX20A, the EX20B application's main frame window class needs a splitter window data member and a
prototype for an overridden OnCreateClient function. You can let AppWizard generate the code by
specifying Use Split Window, as in EX20A. You won't have to modify the MainFrm.h file.

The implementation file, MainFrm.cpp, needs both view class headers (and the prerequisite document
header), as shown here:

#include "PoemDoc.h"
#include "StringView.h"
#include "HexView.h"
AppWizard generates dynamic splitter code in the OnCreateClient function, so you'll have to do some

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWizard generates dynamic splitter code in the OnCreateClient function, so you'll have to do some
editing if you want a static splitter. Instead of calling CSplitterWnd::Create, you'll call the
CSplitterWnd::CreateStatic function, which is tailored for multiple view classes. The following calls to
CSplitterWnd::CreateView attach the two view classes. As the second and third CreateStatic parameters
(2, 1) dictate, this splitter window contains only two panes. The horizontal split is initially 100 device units
from the top of the window. The top pane is the string view; the bottom pane is the hex dump view. The
user can change the splitter bar position but the view configuration cannot be changed.

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 VERIFY(m_wndSplitter.CreateStatic(this, 2, 1));
 VERIFY(m_wndSplitter.CreateView(0, 0, RUNTIME_CLASS(CStringView),
 CSize(100, 100), pContext));
 VERIFY(m_wndSplitter.CreateView(1, 0, RUNTIME_CLASS(CHexView),
 CSize(100, 100), pContext));
 return TRUE;
}

Testing the EX20B Application

When you start the EX20B application, the window should look like the one shown below. Notice the
separate horizontal scroll bars for the two views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20C Example—Switching View Classes Without a Splitter
Sometimes you just want to switch view classes under program control and you don't want to be bothered
with a splitter window. The EX20C example is an SDI application that switches between CStringView and
CHexView in response to selections on the View menu. Starting with what AppWizard generates, all you
need to do is add two new menu commands and then add some code to the CMainFrame class. You also
need to change the CStringView and CHexView constructors from protected to public.

Resource Requirements

The following two items have been added to the View menu in the IDR_MAINFRAME menu resource.

Caption Command ID CMainFrame Function

St&ring View ID_VIEW_STRINGVIEW OnViewStringView

&Hex View ID_VIEW_HEXVIEW OnViewHexView

ClassWizard was used to add the command-handling functions (and corresponding update command UI
handlers) to the CMainFrame class.

CMainFrame

The CMainFrame class gets a new private helper function, SwitchToView, which is called from the two
menu command handlers. The enum parameter tells the function which view to switch to. Here are the two
added items in the MainFrm.h header file:

private:
 enum eView { STRING = 1, HEX = 2 };
 void SwitchToView(eView nView);
The SwitchToView function (in MainFrm.cpp) makes some low-level MFC calls to locate the requested view
and to activate it. Don't worry about how it works. Just adapt it to your own applications when you want
the view- switching feature. Add the following code:

void CMainFrame::SwitchToView(eView nView)
{
 CView* pOldActiveView = GetActiveView();
 CView* pNewActiveView = (CView*) GetDlgItem(nView);
 if (pNewActiveView == NULL) {
 switch (nView) {
 case STRING:
 pNewActiveView = (CView*) new CStringView;
 break;
 case HEX:
 pNewActiveView = (CView*) new CHexView;
 break;
 }
 CCreateContext context;
 context.m_pCurrentDoc = pOldActiveView->GetDocument();
 pNewActiveView->Create(NULL, NULL, WS_BORDER,
 CFrameWnd::rectDefault, this, nView, &context);
 pNewActiveView->OnInitialUpdate();
 }
 SetActiveView(pNewActiveView);
 pNewActiveView->ShowWindow(SW_SHOW);
 pOldActiveView->ShowWindow(SW_HIDE);
 pOldActiveView->SetDlgCtrlID(
 pOldActiveView->GetRuntimeClass() ==
 RUNTIME_CLASS(CStringView) ? STRING : HEX);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RUNTIME_CLASS(CStringView) ? STRING : HEX);
 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
 RecalcLayout();
}
Finally, here are the menu command handlers and update command UI handlers that ClassWizard initially
generated (along with message map entries and prototypes). The update command UI handlers test the
current view's class.

void CMainFrame::OnViewStringView()
{
 SwitchToView(STRING);
}

void CMainFrame::OnUpdateViewStringView(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(
 !GetActiveView()->IsKindOf(RUNTIME_CLASS(CStringView)));
}

void CMainFrame::OnViewHexView()
{
 SwitchToView(HEX);
}

void CMainFrame::OnUpdateViewHexView(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(
 !GetActiveView()->IsKindOf(RUNTIME_CLASS(CHexView)));
}

Testing the EX20C Application

The EX20C application initially displays the CStringView view of the document. You can toggle between the
CStringView and CHexView views by choosing the appropriate command from the View menu. Both views
of the document are shown side by side in Figure 20-2.

Figure 20-2. The CStringView view and the CHexView view of the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20D Example—A Multiple View Class MDI Application
The final example, EX20D, uses the previous document and view classes to create a multiple view class
MDI application without a splitter window. The logic is different from the logic in the other multiple view
class applications. This time the action takes place in the application class in addition to the main frame
class. As you study EX20D, you'll gain more insight into the use of CDocTemplate objects.

This example was generated with the AppWizard Context-Sensitive Help option. In Chapter 21, you'll
activate the context-sensitive help capability.

If you're starting from scratch, use AppWizard to generate an ordinary MDI application with one of the
view classes. Then add the second view class to the project and modify the application class files and main
frame class files as described in the following sections.

Resource Requirements

The two items below have been added to the Window menu in the IDR_EX20DTYPE menu resource.

Caption Command ID CMainFrame Function

New &String Window (replaces
New Window item)

ID_WINDOW_NEW_STRING CMDIFrameWnd::OnWindowNew

New &Hex Window ID_WINDOW_NEW_HEX OnWindowNewHex

ClassWizard was used to add the command-handling function OnWindowNewHex to the CMainFrame class.

CEx20dApp

In the application class header file, ex20d.h, the following data member and function prototype have been
added:

public:
 CMultiDocTemplate* m_pTemplateHex;
The implementation file, ex20d.cpp, contains the #include statements shown here:

#include "PoemDoc.h"
#include "StringView.h"
#include "HexView.h"
The CEx20dApp InitInstance member function has the code shown below inserted immediately after the
AddDocTemplate function call.

m_pTemplateHex = new CMultiDocTemplate(
 IDR_EX20DTYPE,
 RUNTIME_CLASS(CPoemDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CHexView));
The AddDocTemplate call generated by AppWizard established the primary document/frame/view
combination for the application that is effective when the program starts. The template object above is a
secondary template that can be activated in response to the New Hex Window menu item.

Now all you need is an ExitInstance member function that cleans up the secondary template:

int CEx20dApp::ExitInstance()
{
 delete m_pTemplateHex;
 return CWinApp::ExitInstance(); // saves profile settings
}

CMainFrame

The main frame class implementation file, MainFrm.cpp, has the CHexView class header (and the
prerequisite document header) included:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prerequisite document header) included:

#include "PoemDoc.h"
#include "HexView.h"
The base frame window class, CMDIFrameWnd, has an OnWindowNew function that is normally connected
to the standard New Window menu item on the Window menu. The New String Window menu item is
mapped to this function in EX20D. The New Hex Window menu item is mapped to the command handler
function below to create new hex child windows. The function is a clone of OnWindowNew, adapted for the
hex view-specific template defined in InitInstance.

void CMainFrame::OnWindowNewHex()
{
 CMDIChildWnd* pActiveChild = MDIGetActive();
 CDocument* pDocument;
 if (pActiveChild == NULL ||
 (pDocument = pActiveChild->GetActiveDocument()) == NULL) {
 TRACE("Warning: No active document for WindowNew command\n");
 AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
 return; // Command failed
 }
 // Otherwise, we have a new frame!
 CDocTemplate* pTemplate =
 ((CEx20dApp*) AfxGetApp())->m_pTemplateHex;
 ASSERT_VALID(pTemplate);
 CFrameWnd* pFrame =
 pTemplate->CreateNewFrame(pDocument, pActiveChild);
 if (pFrame == NULL) {
 TRACE("Warning: failed to create new frame\n");
 AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
 return; // Command failed
 }
 pTemplate->InitialUpdateFrame(pFrame, pDocument);
}

The function cloning above is a useful MFC programming technique. You must first find
a base class function that does almost what you want, and then copy it from the
\VC98\mfc\src subdirectory into your derived class, changing it as required. The only
danger of cloning is that subsequent versions of the MFC library might implement the
original function differently.

Testing the EX20D Application

When you start the EX20D application, a text view child window appears. Choose New Hex Window from
the Window menu. The application should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21
Context-Sensitive Help
Help technology is in a transition phase at the moment. The Hypertext Markup Language (HTML) format
seems to be replacing rich text format (RTF). You can see this in the new Visual C++ online documentation
via the MSDN viewer, which uses a new HTML-based help system called HTML Help. Microsoft is developing
tools for compiling and indexing HTML files that are not shipped with Visual C++ 6.0. In the meantime,
Microsoft Foundation Class (MFC) Library version 6.0 application framework programs are set up to use the
WinHelp help engine included with Microsoft Windows. That means you'll be writing RTF files and your
programs will be using compiled HLP files.

This chapter first shows you how to construct and process a simple stand-alone help file that has a table of
contents and lets the user jump between topics. Next you'll see how your MFC library program activates
WinHelp with help context IDs derived from window and command IDs keyed to an AppWizard-generated
help file. Finally you'll learn how to use the MFC library help message routing system to customize the help
capability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows WinHelp Program
If you've used commercial Windows-based applications, you've probably marveled at their sophisticated
help screens: graphics, hyperlinks, and popups abound. At some software firms, including Microsoft, help
authoring has been elevated to a profession in its own right. This section won't turn you into a help expert,
but you can get started by learning to prepare a simple no-frills help file.

Rich Text Format

The original Windows SDK documentation showed you how to format help files with the ASCII file format
called rich text format. We'll be using rich text format too, but we'll be working in wysiwyg mode, thereby
avoiding the direct use of awkward escape sequences. You'll write with the same fonts, sizes, and styles
that your user sees on the help screens. You'll definitely need a word processor that handles RTF. I've used
Microsoft Word for this book, but many other word processors accommodate the RTF format.

Several commercial Windows help tools are available, including RoboHELP from Blue
Sky Software and ForeHelp from the Forefront Corporation. RoboHELP is a set of
templates and macros for Microsoft Word, and ForeHelp is a stand-alone package that
simulates WinHelp, giving you immediate feedback as you write the help system.

Writing a Simple Help File

We're going to write a simple help file with a table of contents and three topics. This help file is designed to
be run directly from WinHelp and started from Windows. No C++ programming is involved. Here are the
steps:

1. Create a \vcpp32\ex21a subdirectory.

2. Write the main help text file. Use Microsoft Word (or another RTF-compatible word processor) to
type text as shown here.

 Be sure to apply the
double-underline and hidden text formatting correctly and to insert the page break at the correct
place.

To see hidden text, you must turn on your word processor's hidden text viewing
mode. In Word, choose Options from the Tools menu, click on the View tab, and
select All in the Nonprinting Characters section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

select All in the Nonprinting Characters section.

3. Insert footnotes for the Table Of Contents screen. The Table Of Contents screen is the first
topic screen in this help system. Using the specified custom footnote marks, insert the following
footnotes at the beginning of the topic title.

Footnote Mark Text Description

HID_CONTENTS Help context ID

$ SIMPLE Help Contents Topic title

When you're finished with this step, the document should look like this.

4. Insert footnotes for the Help Topic 1 screen. The Help Topic 1 screen is the second topic
screen in the help system. Using the specified custom footnote marks, insert the footnotes shown
here.

Footnote Mark Text Description

HID_TOPIC1 Help context ID

$ SIMPLE Help Topic 1 Topic title

K SIMPLE Topics Keyword text

5. Clone the Help Topic 1 screen. Copy the entire Help Topic 1 section of the document—including
the page break—to the clipboard, and then paste two copies of the text into the document. The
footnotes are copied along with the text. In the first copy, change all occurrences of 1 to 2. In the
second copy, change all occurrences of 1 to 3. Don't forget to change the footnotes. With Word,
seeing which footnote goes with which topic can be a little difficult—be careful. When you're finished
with this step, the document text (including footnotes) should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Save the document. Save the document as \vcpp32\ex21a\Simple.rtf. Specify Rich Text Format
as the file type.

7. Write a help project file. Using Visual C++ or another text editor, create the file
\vcpp32\ex21a\Simple.hpj, as follows:

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
COMPRESS=true
WARNING=2
[FILES]
Simple.rtf
This file specifies the context ID of the Table Of Contents screen and the name of the RTF file that
contains the help text. Be sure to save the file in text (ASCII) format.

8. Build the help file. From Windows, run the Microsoft Help Workshop (HCRTF) utility (located by
default in Program Files\Microsoft Visual Studio\Common\Tools). Open the file
\vcpp32\ex21a\Simple.hpj, and then click the Save And Compile button.

This step runs the Windows Help Compiler with the project file Simple.hpj. The output is the help
file Simple.hlp in the same directory.

If you use Word 97 to create or edit RTF files, make sure you use version 4.02
(or later) of the HCRTF utility. Earlier versions of the HCRTF cannot process the
rich text flags generated by Word 97.

9. Run WinHelp with the new help file. From Windows Explorer, double-click the file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. Run WinHelp with the new help file. From Windows Explorer, double-click the file
\vcpp32\ex21a\Simple.hlp. The Table Of Contents screen should look like this.

Now move the mouse cursor to Topic 1. Notice that the cursor changes from an arrow to a pointing
hand. When you press the left mouse button, the Help Topic 1 screen should appear, as shown
here.

The HID_TOPIC1 text in the Table Of Contents screen links to the corresponding context ID (the #
footnote) in the topic page. This link is known as a jump.

The link to Help Topic 2 is coded as a pop-up jump. When you click on Topic 2, here's what you see.

10. Click the WinHelp Contents pushbutton. Clicking this button should take you to the Table Of
Contents screen, as shown at the beginning of step 9. WinHelp knows the ID of the Table Of
Contents window because you specified it in the HPJ file.

11. Click the WinHelp Index pushbutton. When you click the Index button, WinHelp opens its Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11. Click the WinHelp Index pushbutton. When you click the Index button, WinHelp opens its Index
dialog, which displays the help file's list of keywords. In Simple.hlp, all topics (excluding the table of
contents) have the same keyword (the K footnotes): SIMPLE Topics. When you double-click on this
keyword, you see all associated topic titles (the $ footnotes), as shown here.

What you have here is a two-level help search hierarchy. The user can type the first few letters of
the keyword and then select a topic from a list box. The more carefully you select your keywords
and topic titles, the more effective your help system will be.

An Improved Table of Contents

You've been looking at the "old-style" help table of contents. The latest Win32 version of WinHelp
can give you a modern tree-view table of contents. All you need is a text file with a CNT extension.
Add a new file, Simple.cnt, in the \vcpp32\ex21a directory, containing this text:

:Base Simple.hlp
1 Help topics
2 Topic 1=HID_TOPIC1
2 Topic 2=HID_TOPIC2
2 Topic 3=HID_TOPIC3
Notice the context IDs that match the help file. The next time you run WinHelp with the Simple.hlp
file, you'll see a new contents screen similar to the one shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use HCRTF to edit CNT files. The CNT file is independent of the HPJ file and the RTF
files. If you update your RTF files, you must make corresponding changes in your CNT file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Framework and WinHelp
You've seen WinHelp running as a stand-alone program. The application framework and WinHelp cooperate
to give you context-sensitive help. Here are some of the main elements:

1. You select the Context-Sensitive Help option when you run AppWizard.

2. AppWizard generates a Help Topics item on your application's Help menu, and it creates one or
more generic RTF files together with an HPJ file and a batch file that runs the Help Compiler.

3. AppWizard inserts a keyboard accelerator for the F1 key, and it maps the F1 key and the Help
Topics menu item to member functions in the main frame window object.

4. When your program runs, it calls WinHelp when the user presses F1 or chooses the Help Topics
menu item, passing a context ID that determines which help topic is displayed.

You now need to understand how WinHelp is called from another application and how your application
generates context IDs for WinHelp.

Calling WinHelp

The CWinApp member function WinHelp activates WinHelp from within your application. If you look up
WinHelp in the online documentation, you'll see a long list of actions that the optional second parameter
controls. Ignore the second parameter and pretend that WinHelp has only one unsigned long integer
parameter, dwData. This parameter corresponds to a help topic. Suppose that the SIMPLE help file is
available and that your program contains the statement

AfxGetApp()->WinHelp(HID_TOPIC1);
When the statement is executed in response to the F1 key or some other event the Help Topic 1 screen
appears, as it would if the user had clicked on Topic 1 in the Help Table Of Contents screen.

"Wait a minute," you say. "How does WinHelp know which help file to use?" The name of the help file
matches the application name. If the executable program name is Simple.exe, the help file is named
Simple.hlp.

You can force WinHelp to use a different help file by setting the CWinApp data member
m_pszHelpFilePath.

"And how does WinHelp match the program constant HID_TOPIC1 to the help file's context ID?" you ask.
The help project file must contain a MAP section that maps context IDs to numbers. If your application's
resource.h file defines HID_TOPIC1 as 101, the Simple.hpj MAP section looks like this:

[MAP]
HID_TOPIC1 101
The program's #define constant name doesn't have to match the help context ID; only the numbers must
match. Making the names correspond, however, is good practice.

Using Search Strings

For a text-based application, you might need help based on a keyword rather than a numeric context ID.
In that case, use the WinHelp HELP_KEY or HELP_PARTIALKEY option as follows:

CString string("find this string");
AfxGetApp()->WinHelp((DWORD) (LPCSTR) string, HELP_KEY);
The double cast for string is necessary because the first WinHelp parameter is multipurpose; its meaning
depends on the value of the second parameter.

Calling WinHelp from the Application's Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calling WinHelp from the Application's Menu

AppWizard generates a Help Topics option on the Help menu, and it maps that option to
CWnd::OnHelpFinder in the main frame window, which calls WinHelp this way:

AfxGetApp()->WinHelp(0L, HELP_FINDER);
With this call, WinHelp displays the Help Table Of Contents screen, and the user can navigate the help file
through jumps and searches.

If you want the old-style table of contents, call WinHelp this way instead:

AfxGetApp()->WinHelp(0L, HELP_INDEX);
And if you want a "help on help" item, make this call:

AfxGetApp()->WinHelp(0L, HELP_HELPONHELP);

Help Context Aliases

The ALIAS section of the HPJ file allows you to equate one context ID with another. Suppose your HPJ file
contained the following statements:

[ALIAS]
HID_TOPIC1 = HID_GETTING_STARTED

[MAP]
HID_TOPIC1 101
Your RTF files could use HID_TOPIC1 and HID_GETTING_STARTED interchangeably. Both would be
mapped to the help context 101 as generated by your application.

Determining the Help Context

You now have enough information to add a simple context-sensitive help system to an MFC program. You
define F1 (the standard MFC library Help key) as a keyboard accelerator, and then you write a command
handler that maps the program's help context to a WinHelp parameter. You could invent your own method
for mapping the program state to a context ID, but why not take advantage of the system that's already
built into the application framework?

The application framework determines the help context based on the ID of the active program element.
These identified program elements include menu commands, frame windows, dialog windows, message
boxes, and control bars. For example, a menu item might be identified as ID_EDIT_CLEAR_ALL. The main
frame window usually has the IDR_MAINFRAME identifier. You might expect these identifiers to map
directly to help context IDs. IDR_MAINFRAME, for example, would map to a help context ID of the same
name. But what if a frame ID and a command ID had the same numeric value? Obviously, you need a way
to prevent these overlaps.

The application framework solves the overlap problem by defining a new set of help #define constants that
are derived from program element IDs. These help constants are the sum of the element ID and a base
value, as shown in the following table.

Program Element Element ID
Prefix

Help Context ID
Prefix

Base
(Hexadecimal)

Menu Item or toolbar
button

ID_, IDM_ HID_, HIDM_ 10000

Frame or dialog IDR_, IDD_ HIDR_, HIDD 20000

Error message box IDP_ HIDP_ 30000

Nonclient area H… 40000

Control bar IDW_ HIDW_ 50000

Dispatch error messages 60000

HID_EDIT_CLEAR_ALL (0x1E121) corresponds to ID_EDIT_CLEAR_ALL (0xE121), and HIDR_MAINFRAME
(0x20080) corresponds to IDR_MAINFRAME (0x80).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

F1 Help

Two separate context-sensitive help access methods are built into an MFC application and are available if
you have selected the AppWizard Context-Sensitive Help option. The first is standard F1 help. The user
presses F1; the program makes its best guess about the help context and then calls WinHelp. In this
mode, it is possible to determine the currently selected menu item or the currently selected window
(frame, view, dialog, or message box).

Shift-F1 Help

The second context-sensitive help mode is more powerful than the F1 mode. With Shift-F1 help, the
program can identify the following help contexts:

A menu item selected with the mouse cursor

A toolbar button

A frame window

A view window

A specific graphics element within a view window

The status bar

Various nonclient elements such as the system menu control

Shift-F1 help doesn't work with modal dialogs or message boxes.

The user activates Shift-F1 help by pressing Shift-F1 or by clicking the Context Help toolbar button, shown
here.

In either case, the mouse cursor changes to

On the next mouse click, the help topic appears, with the position of the mouse cursor determining the
context.

Message Box Help—The AfxMessageBox Function

The global function AfxMessageBox displays application framework error messages. This function is similar
to the CWnd::MessageBox member function except that it has a help context ID as a parameter. The
application framework maps this ID to a WinHelp context ID and then calls WinHelp when the user presses
F1. If you can use the AfxMessageBox help context parameter, be sure to use prompt IDs that begin with
IDP_. In your RTF file, use help context IDs that begin with HIDP_.

There are two versions of AfxMessageBox. In the first version, the prompt string is specified by a
character-array pointer parameter. In the second version, the prompt ID parameter specifies a string
resource. If you use the second version, your executable program will be more efficient. Both
AfxMessageBox versions take a style parameter that makes the message box display an exclamation point,
a question mark, or another graphics symbol.

Generic Help

When context-sensitive help is enabled, AppWizard assembles a series of default help topics that are
associated with standard MFC library program elements. Following are some of the standard topics:

Menu and toolbar commands (File, Edit, and so forth)

Nonclient window elements (maximize box, title bar, and so forth)

Status bar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error message boxes

These topics are contained in the files AfxCore.rtf and AfxPrint.rtf, which are copied, along with the
associated bitmap files, to the application's \hlp subdirectory. Your job is to customize the generic help
files.

AppWizard generates AfxPrint.rtf only if you specify the Printing And Print Preview
option.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Help Example—No Programming Required
If you followed the instructions for EX20D in Chapter 20, you selected the AppWizard Context-Sensitive
Help option. We'll now return to that example and explore the application framework's built-in help
capability. You'll see how easy it is to link help topics to menu command IDs and frame window resource
IDs. You edit RTF files, not CPP files.

Here are the steps for customizing the help for EX20D:

1. Verify that the help file was built correctly. If you have built the EX20D project already,
chances are that the help file was created correctly as part of the build process. Check this by
running the application and then pressing the F1 key. You should see the generic Application Help
screen with the title "Modifying the Document," as shown below.

If you do not see this screen, the MAKEHELP batch file did not run correctly. First check the last two
lines of the ex20d.hpj file in the \hlp subdirectory. Are the paths correct for your Visual C++
installation? Next choose Options from the Tools menu, and click on the Directories tab. Make sure
that the \VC98\bin subdirectory of your Visual C++ directory is one of the search directories for
Executable Files.

To generate the help file, highlight the ex20d.hpj file in the Workspace FileView window, and then
choose Compile Ex20d.hpj from the Build menu. This runs the MAKEHELP batch file that is in your
project directory. (You can also run it directly from an MS-DOS prompt.) You should observe some
"file(s) copied" messages but no error messages. Rerun the EX20D program, and press F1 again.

The Visual C++ make processor doesn't always detect all the dependencies in
your help system. Sometimes you must run the MAKEHELP batch file yourself to
rebuild the HLP file after making changes.

2. Test the generic help file. Try the following experiments:
Close the Help dialog, press Alt-F and then press F1. This should open the help topic for the
File New command. You can also press F1 while holding down the mouse button on the File
New menu item to see the same help topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Close the Help dialog, click the Context Help toolbar button (shown in "Shift-F1 Help"), and
then choose Save from the File menu. Do you get the appropriate help topic?

Click the Context Help toolbar button again, and then select the frame window's title bar.
You should get an explanation of a Windows title bar.

Close all child windows and then press F1. You should see a main index page that is also an
old-style table of contents.

3. Change the application title. The file AfxCore.rtf, in the \vcpp32\ex20d\hlp directory, contains
the string <<YourApp>> throughout. Replace it globally with EX20D.

4. Change the Modifying The Document Help screen. The file AfxCore.rtf in the
\vcpp32\ex20d\hlp directory contains text for the generic Application Help screen. Search for
Modifying the Document, and then change the text to something appropriate for the application.
This topic has the help context ID HIDR_DOC1TYPE. The generated ex20d.hpj file provides the alias
HIDR_EX20DTYPE.

5. Add a topic for the Window New String Window menu item. The New String Window menu
item was added to EX20D and thus didn't have associated help text. Add a topic to AfxCore.rtf, as
shown here.

Notice the # footnote that links the topic to the context ID HID_WINDOW_NEW_STRING as defined
in hlp\ex20d.hm. The program's command ID for the New String Window menu item is, of course,
ID_WINDOW_NEW_STRING.

6. Rebuild the help file and test the application. Run the MAKEHELP batch file again, and then
rerun the EX20D program. Try the two new help links.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MAKEHELP Process
The process of building the application's HLP file is complex. Part of the complexity results from the Help
Compiler's nonacceptance of statements such as

HID_MAINFRAME = ID_MAINFRAME + 0x20000
Because of the Help Compiler's nonacceptance, a special preprocessing program named makehm.exe must
read the resource.h file to produce a help map file that defines the help context ID values. Below is a
diagram of the entire MAKEHELP process.

AppWizard generates the application's help project file (HPJ) and the help contents file (CNT). In the
project file, the [FILES] section brings in RTF files and the [MAP] section contains #include statements for
the generic and the application-specific help map (HM) files. The Help Workshop (HCRTF) processes the
project file to produce the help file that WinHelp reads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Help Command Processing
You've seen the components of a help file, and you've seen the effects of F1 and Shift-F1. You know how
the application element IDs are linked to help context IDs. What you haven't seen is the application
framework's internal processing of the help requests. Why should you be concerned? Suppose you want to
provide help on a specific view window instead of a frame window. What if you need help topics linked to
specific graphics items in a view window? These and other needs can be met by mapping the appropriate
help messages in the view class.

Help command processing depends on whether the help request was an F1 request or a Shift-F1 request.
The processing of each help request will be described separately.

F1 Processing

The F1 key is normally handled by a keyboard accelerator entry that AppWizard inserts in the RC file. The
accelerator associates the F1 key with an ID_HELP command that is sent to the OnHelp member function
in the CFrameWnd class.

In an active modal dialog or a menu selection in progress, the F1 key is processed by a
Windows hook that causes the same OnHelp function to be called. The F1 accelerator
key would otherwise be disabled.

The CFrameWnd::OnHelp function sends an MFC-defined WM_COMMANDHELP message to the innermost
window, which is usually the view. If your view class does not map this message or if the handler returns
FALSE, the framework routes the message to the next outer window, which is either the MDI child frame or
the main frame. If you have not mapped WM_COMMANDHELP in your derived frame window classes, the
message is processed in the MFC CFrameWnd class, which displays help for the symbol that AppWizard
generates for your application or document type.

If you map the WM_COMMANDHELP message in a derived class, your handler must call CWinApp::WinHelp
with the proper context ID as a parameter.

For any application, AppWizard adds the symbol IDR_MAINFRAME to your project and the HM file defines
the help context ID HIDR_MAINFRAME, which is aliased to main_index in the HPJ file. The standard
AfxCore.rtf file associates the main index with this context ID.

For an MDI application named SAMPLE, for example, AppWizard also adds the symbol IDR_SAMPLETYPE to
your project and the HM file defines the help context ID HIDR_SAMPLETYPE, which is aliased to
HIDR_DOC1TYPE in the HPJ file. The standard AfxCore.rtf file associates the topic "Modifying the
Document" with this context ID.

Shift-F1 Processing

When the user presses Shift-F1 or clicks the Context Help toolbar button, a command message is sent to
the CFrameWnd function OnContextHelp. When the user presses the mouse button again after positioning
the mouse cursor, an MFC-defined WM_HELPHITTEST message is sent to the innermost window where the
mouse click is detected. From that point on, the routing of this message is identical to that for the
WM_COMMANDHELP message, described previously in "F1 Processing".

The lParam parameter of OnHelpHitTest contains the mouse coordinates in device units, relative to the
upper-left corner of the window's client area. The y value is in the high-order half; the x value is in the
low-order half. You can use these coordinates to set the help context ID specifically for an item in the view.
Your OnHelpHitTest handler should return the correct context ID; the framework will call WinHelp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Help Command Processing Example—EX21B
EX21B is based on example EX20D from Chapter 20. It's a two-view MDI application with view-specific
help added. Each of the two view classes has an OnCommandHelp message handler to process F1 help
requests and an OnHelpHitTest message handler to process Shift-F1 help requests.

Header Requirements

The compiler recognizes help-specific identifiers only if the following #include statement is present:

#include <afxpriv.h>
In EX21B, the statement is in the StdAfx.h file.

CStringView

The modified string view in StringView.h needs message map function prototypes for both F1 help and
Shift-F1 help, as shown here:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);
Here are the message map entries in StringView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)
The OnCommandHelp message handler member function in StringView.cpp processes F1 help requests. It
responds to the message sent from the MDI main frame and displays the help topic for the string view
window, as shown here:

LRESULT CStringView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{
 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_STRINGVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}
Finally the OnHelpHitTest member function handles Shift-F1 help, as shown here:

LRESULT CStringView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)
{
 return HID_BASE_RESOURCE + IDR_STRINGVIEW;
}
In a more complex application, you might want OnHelpHitTest to set the help context ID based on the
mouse cursor position.

CHexView

The CHexView class processes help requests the same way as the CStringView class does. Following is the
necessary header code in HexView.h:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);
Here are the message map entries in HexView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)
And here is the implementation code in HexView.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LRESULT CHexView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{
 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_HEXVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}
LRESULT CHexView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)
{
 return HID_BASE_RESOURCE + IDR_HEXVIEW;
}
Resource Requirements

Two new symbols were added to the project's Resource.h file. Their values and corresponding help context
IDs are shown here.

Symbol Value Help Context ID Value

IDR_STRINGVIEW 101 HIDR_STRINGVIEW 0x20065

IDR_HEXVIEW 102 HIDR_HEXVIEW 0x20066

Help File Requirements

Two topics were added to the AfxCore.rtf file with the help context IDs HIDR_STRINGVIEW and
HIDR_HEXVIEW, as shown here.

The generated ex21b.hm file, in the project's \hlp subdirectory, should look like this:

// MAKEHELP.BAT generated Help Map file. Used by EX21B.HPJ.

// Commands (ID_* and IDM_*)
HID_WINDOW_NEW_STRING 0x18003
HID_WINDOW_NEW_HEX 0x18005

// Prompts (IDP_*)

// Resources (IDR_*)
HIDR_STRINGVIEW 0x20065
HIDR_HEXVIEW 0x20066
HIDR_MAINFRAME 0x20080

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HIDR_MAINFRAME 0x20080
HIDR_EX21BTYPE 0x20081

// Dialogs (IDD_*)
HIDD_ABOUTBOX 0x20064

// Frame Controls (IDW_*)

Testing the EX21B Application

Open a string child window and a hexadecimal child window. Test the action of F1 help and Shift-F1 help
within those windows. If the help file didn't compile correctly, follow the instructions in step 1 of the help
example in "A Help Example—No Programming Required."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22
Dynamic Link Libraries
If you want to write modular software, you'll be very interested in dynamic link libraries (DLLs). You're
probably thinking that you've been writing modular software all along because C++ classes are modular.
But classes are build-time modular, and DLLs are runtime modular. Instead of programming giant EXEs
that you must rebuild and test each time you make a change, you can build smaller DLL modules and test
them individually. You can, for example, put a C++ class in a DLL, which might be as small as 12 KB after
compiling and linking. Client programs can load and link your DLL very quickly when they run. Microsoft
Windows itself uses DLLs for its major functions.

DLLs are getting easier to write. Win32 has greatly simplified the programming model, and there's more
and better support from AppWizard and the Microsoft Foundation Class (MFC) library. This chapter shows
you how to write DLLs in C++ and how to write client programs that use DLLs. You'll explore how Win32
maps DLLs into your processes, and you'll learn the differences between MFC library regular DLLs and MFC
library extension DLLs. You'll see examples of simple DLLs of each type as well as a more complex DLL
example that implements a custom control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fundamental DLL Theory
Before you look at the application framework's support for DLLs, you must understand how Win32
integrates DLLs into your process. You might want to review Chapter 10 to refresh your knowledge of
processes and virtual memory. Remember that a process is a running instance of a program and that the
program starts out as an EXE file on disk.

Basically, a DLL is a file on disk (usually with a DLL extension) consisting of global data, compiled
functions, and resources, that becomes part of your process. It is compiled to load at a preferred base
address, and if there's no conflict with other DLLs, the file gets mapped to the same virtual address in your
process. The DLL has various exported functions, and the client program (the program that loaded the DLL
in the first place) imports those functions. Windows matches up the imports and exports when it loads the
DLL.

Win32 DLLs allow exported global variables as well as functions.

In Win32, each process gets its own copy of the DLL's read/write global variables. If you want to share
memory among processes, you must either use a memory-mapped file or declare a shared data section as
described in Jeffrey Richter's Advanced Windows (Microsoft Press, 1997). Whenever your DLL requests
heap memory, that memory is allocated from the client process's heap.

How Imports Are Matched to Exports

A DLL contains a table of exported functions. These functions are identified to the outside world by their
symbolic names and (optionally) by integers called ordinal numbers. The function table also contains the
addresses of the functions within the DLL. When the client program first loads the DLL, it doesn't know the
addresses of the functions it needs to call, but it does know the symbols or ordinals. The dynamic linking
process then builds a table that connects the client's calls to the function addresses in the DLL. If you edit
and rebuild the DLL, you don't need to rebuild your client program unless you have changed function
names or parameter sequences.

In a simple world, you'd have one EXE file that imports functions from one or more
DLLs. In the real world, many DLLs call functions inside other DLLs. Thus, a particular
DLL can have both exports and imports. This is not a problem because the dynamic
linkage process can handle cross-dependencies.

In the DLL code, you must explicitly declare your exported functions like this:

__declspec(dllexport) int MyFunction(int n);
(The alternative is to list your exported functions in a module-definition [DEF] file, but that's usually more
troublesome.) On the client side, you need to declare the corresponding imports like this:

__declspec(dllimport) int MyFunction(int n);
If you're using C++, the compiler generates a decorated name for MyFunction that other languages can't
use. These decorated names are the long names the compiler invents based on class name, function
name, and parameter types. They are listed in the project's MAP file. If you want to use the plain name
MyFunction, you have to write the declarations this way:

extern "C" __declspec(dllexport) int MyFunction(int n);
extern "C" __declspec(dllimport) int MyFunction(int n);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By default, the compiler uses the __cdecl argument passing convention, which means
that the calling program pops the parameters off the stack. Some client languages
might require the __stdcall convention, which replaces the Pascal calling convention,
and which means that the called function pops the stack. Therefore, you might have to
use the __stdcall modifier in your DLL export declaration.

Just having import declarations isn't enough to make a client link to a DLL. The client's project must
specify the import library (LIB) to the linker, and the client program must actually contain a call to at least
one of the DLL's imported functions. That call statement must be in an executable path in the program.

Implicit Linkage vs. Explicit Linkage

The preceding section primarily describes implicit linking, which is what you as a C++ programmer will
probably be using for your DLLs. When you build a DLL, the linker produces a companion import LIB file,
which contains every DLL's exported symbols and (optionally) ordinals, but no code. The LIB file is a
surrogate for the DLL that is added to the client program's project. When you build (statically link) the
client, the imported symbols are matched to the exported symbols in the LIB file, and those symbols (or
ordinals) are bound into the EXE file. The LIB file also contains the DLL filename (but not its full
pathname), which gets stored inside the EXE file. When the client is loaded, Windows finds and loads the
DLL and then dynamically links it by symbol or by ordinal.

Explicit linking is more appropriate for interpreted languages such as Microsoft Visual Basic, but you can
use it from C++ if you need to. With explicit linking, you don't use an import file; instead, you call the
Win32 LoadLibrary function, specifying the DLL's pathname as a parameter. LoadLibrary returns an
HINSTANCE parameter that you can use in a call to GetProcAddress, which converts a symbol (or an
ordinal) to an address inside the DLL. Suppose you have a DLL that exports a function such as this:

extern "C" __declspec(dllexport) double SquareRoot(double d);
Here's an example of a client's explicit linkage to the function:

typedef double (SQRTPROC)(double);
HINSTANCE hInstance;
SQRTPROC* pFunction;
VERIFY(hInstance = ::LoadLibrary("c:\\winnt\\system32\\mydll.dll"));
VERIFY(pFunction = (SQRTPROC*)::GetProcAddress(hInstance, "SquareRoot"));
double d = (*pFunction)(81.0); // Call the DLL function
With implicit linkage, all DLLs are loaded when the client is loaded, but with explicit linkage, you can
determine when DLLs are loaded and unloaded. Explicit linkage allows you to determine at runtime which
DLLs to load. You could, for example, have one DLL with string resources in English and another with string
resources in Spanish. Your application would load the appropriate DLL after the user chose a language.

Symbolic Linkage vs. Ordinal Linkage

In Win16, the more efficient ordinal linkage was the preferred linkage option. In Win32, the symbolic
linkage efficiency was improved. Microsoft now recommends symbolic over ordinal linkage. The DLL
version of the MFC library, however, uses ordinal linkage. A typical MFC program might link to hundreds of
functions in the MFC DLL. Ordinal linkage permits that program's EXE file to be smaller because it does not
have to contain the long symbolic names of its imports. If you build your own DLL with ordinal linkage, you
must specify the ordinals in the project's DEF file, which doesn't have too many other uses in the Win32
environment. If your exports are C++ functions, you must use decorated names in the DEF file (or declare
your functions with extern "C"). Here's a short extract from one of the MFC library DEF files:

?ReadList@CRecentFileList@@UAEXXZ @ 5458 NONAME
?ReadNameDictFromStream@CPropertySection@@QAEHPAUIStream@@@Z @ 5459 NONAME
?ReadObject@CArchive@@QAEPAVCObject@@PBUCRuntimeClass@@@Z @ 5460 NONAME
?ReadString@CArchive@@QAEHAAVCString@@@Z @ 5461 NONAME
?ReadString@CArchive@@QAEPADPADI@Z @ 5462 NONAME
?ReadString@CInternetFile@@UAEHAAVCString@@@Z @ 5463 NONAME
?ReadString@CInternetFile@@UAEPADPADI@Z @ 5464 NONAME
The numbers after the at (@) symbols are the ordinals. (Kind of makes you want to use symbolic linkage
instead, doesn't it?)

The DLL Entry Point—DllMain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DLL Entry Point—DllMain

By default, the linker assigns the main entry point _DllMainCRTStartup to your DLL. When Windows loads
the DLL, it calls this function, which first calls the constructors for global objects and then calls the global
function DllMain, which you're supposed to write. DllMain is called not only when the DLL is attached to the
process but also when it is detached (and at other times as well). Here is a skeleton DllMain function:

HINSTANCE g_hInstance;
extern "C" int APIENTRY
 DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("EX22A.DLL Initializing!\n");
 // Do initialization here
 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 TRACE0("EX22A.DLL Terminating!\n");
 // Do cleanup here
 }
 return 1; // ok
}
If you don't write a DllMain function for your DLL, a do-nothing version is brought in from the runtime
library.

The DllMain function is also called when individual threads are started and terminated, as indicated by the
dwReason parameter. Richter's book tells you all you need to know about this complex subject.

Instance Handles—Loading Resources

Each DLL in a process is identified by a unique 32-bit HINSTANCE value. In addition, the process itself has
an HINSTANCE value. All these instance handles are valid only within a particular process, and they
represent the starting virtual address of the DLL or EXE. In Win32, the HINSTANCE and HMODULE values
are the same and the types can be used interchangeably. The process (EXE) instance handle is almost
always 0x400000, and the handle for a DLL loaded at the default base address is 0x10000000. If your
program uses several DLLs, each will have a different HINSTANCE value, either because the DLLs had
different base addresses specified at build time or because the loader copied and relocated the DLL code.

Instance handles are particularly important for loading resources. The Win32 FindResource function takes
an HINSTANCE parameter. EXEs and DLLs can each have their own resources. If you want a resource from
the DLL, you specify the DLL's instance handle. If you want a resource from the EXE file, you specify the
EXE's instance handle.

How do you get an instance handle? If you want the EXE's handle, you call the Win32 GetModuleHandle
function with a NULL parameter. If you want the DLL's handle, you call the Win32 GetModuleHandle
function with the DLL name as a parameter. Later you'll see that the MFC library has its own method of
loading resources by searching various modules in sequence.

How the Client Program Finds a DLL

If you link explicitly with LoadLibrary, you can specify the DLL's full pathname. If you don't specify the
pathname, or if you link implicitly, Windows follows this search sequence to locate your DLL:

1. The directory containing the EXE file

2. The process's current directory

3. The Windows system directory

4. The Windows directory

5. The directories listed in the Path environment variable

Here's a trap you can easily fall into. You build a DLL as one project, copy the DLL file to the system
directory, and then run the DLL from a client program. So far, so good. Next you rebuild the DLL with
some changes, but you forget to copy the DLL file to the system directory. The next time you run the client
program, it loads the old version of the DLL. Be careful!

Debugging a DLL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debugging a DLL

Visual C++ makes debugging a DLL easy. Just run the debugger from the DLL project. The first time you
do this, the debugger asks for the pathname of the client EXE file. Every time you "run" the DLL from the
debugger after this, the debugger loads the EXE, but the EXE uses the search sequence to find the DLL.
This means that you must either set the Path environment variable to point to the DLL or copy the DLL to a
directory in the search sequence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC DLLs—Extension vs. Regular
We've been looking at Win32 DLLs that have a DllMain function and some exported functions. Now we'll
move into the world of the MFC application framework, which adds its own support layer on top of the
Win32 basics. AppWizard lets you build two kinds of DLLs with MFC library support: extension DLLs and
regular DLLs. You must understand the differences between these two types before you decide which one
is best for your needs.

Of course, Visual C++ lets you build a pure Win32 DLL without the MFC library, just as
it lets you build a Windows program without the MFC library. This is an MFC-oriented
book, however, so we'll ignore the Win32 option here.

An extension DLL supports a C++ interface. In other words, the DLL can export whole classes and the
client can construct objects of those classes or derive classes from them. An extension DLL dynamically
links to the code in the DLL version of the MFC library. Therefore, an extension DLL requires that your
client program be dynamically linked to the MFC library (the AppWizard default) and that both the client
program and the extension DLL be synchronized to the same version of the MFC DLLs (mfc42.dll,
mfc42d.dll, and so on). Extension DLLs are quite small; you can build a simple extension DLL with a size of
10 KB, which loads quickly.

If you need a DLL that can be loaded by any Win32 programming environment (including Visual Basic
version 6.0), you should use a regular DLL. A big restriction here is that the regular DLL can export only C-
style functions. It can't export C++ classes, member functions, or overloaded functions because every
C++ compiler has its own method of decorating names. You can, however, use C++ classes (and MFC
library classes, in particular) inside your regular DLL.

When you build an MFC regular DLL, you can choose to statically link or dynamically link to the MFC library.
If you choose static linking, your DLL will include a copy of all the MFC library code it needs and will thus
be self-contained. A typical Release-build statically linked regular DLL is about 144 KB in size. If you
choose dynamic linking, the size drops to about 17 KB but you'll have to ensure that the proper MFC DLLs
are present on the target machine. That's no problem if the client program is already dynamically linked to
the same version of the MFC library.

When you tell AppWizard what kind of DLL or EXE you want, compiler #define constants are set as shown
in the following table.

Dynamically Linked to Shared MFC
Library

Statically Linked* to MFC
Library

Regular DLL _AFXDLL, _USRDLL _USRDLL

Extension
DLL

_AFXEXT, _AFXDLL unsupported option

Client EXE _AFXDLL no constants defined

* Visual C++ Learning Edition does not support the static linking option.

If you look inside the MFC source code and header files, you'll see a ton of #ifdef statements for these
constants. This means that the library code is compiled quite differently depending on the kind of project
you're producing.

The Shared MFC DLLs and the Windows DLLs

If you build a Windows Debug target with the shared MFC DLL option, your program is dynamically linked
to one or more of these (ANSI) MFC DLLs:

mfc42d.dll Core MFC classes

mfco42d.dll ActiveX (OLE) classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mfcd42d.dll Database classes (ODBC and DAO)

mfcn42d.dll Winsock, WinInet classes

When you build a Release target, your program is dynamically linked to mfc42.dll only. Linkage to these
MFC DLLs is implicit via import libraries. You might assume implicit linkage to the ActiveX and ODBC DLLs
in Windows, in which case you would expect all these DLLs to be linked to your Release-build client when it
loads, regardless of whether it uses ActiveX or ODBC features. However, this is not what happens. Through
some creative thunking, MFC loads the ActiveX and ODBC DLLs explicitly (by calling LoadLibrary) when one
of their functions is first called. Your client application thus loads only the DLLs it needs.

MFC Extension DLLs—Exporting Classes

If your extension DLL contains only exported C++ classes, you'll have an easy time building and using it.
The steps for building the EX22A example show you how to tell AppWizard that you're building an
extension DLL skeleton. That skeleton has only the DllMain function. You simply add your own C++ classes
to the project. There's only one special thing you must do. You must add the macro AFX_EXT_CLASS to
the class declaration, as shown here:

class AFX_EXT_CLASS CStudent : public CObject
This modification goes into the H file that's part of the DLL project, and it also goes into the H file that
client programs use. In other words, the H files are exactly the same for both client and DLL. The macro
generates different code depending on the situation—it exports the class in the DLL and imports the class
in the client.

The MFC Extension DLL Resource Search Sequence

If you build a dynamically linked MFC client application, many of the MFC library's standard resources
(error message strings, print preview dialog templates, and so on) are stored in the MFC DLLs (mfc42.dll,
mfco42.dll, and so on), but your application has its own resources too. When you call an MFC function such
as CString::LoadString or CBitmap::LoadBitmap, the framework steps in and searches first the EXE file's
resources and then the MFC DLL's resources.

If your program includes an extension DLL and your EXE needs a resource, the search sequence is first the
EXE file, then the extension DLL, and then the MFC DLLs. If you have a string resource ID, for example,
that is unique among all resources, the MFC library will find it. If you have duplicate string IDs in your EXE
file and your extension DLL file, the MFC library loads the string in the EXE file.

If the extension DLL loads a resource, the sequence is first the extension DLL, then the MFC DLLs, and
then the EXE.

You can change the search sequence if you need to. Suppose you want your EXE code to search the
extension DLL's resources first. Use code such as this:

HINSTANCE hInstResourceClient = AfxGetResourceHandle();
// Use DLL's instance handle
AfxSetResourceHandle(::GetModuleHandle("mydllname.dll"));
CString strRes;
strRes.LoadString(IDS_MYSTRING);
// Restore client's instance handle
AfxSetResourceHandle(hInstResourceClient);
You can't use AfxGetInstanceHandle instead of ::GetModuleHandle. In an extension DLL,
AfxGetInstanceHandle returns the EXE's instance handle, not the DLL's handle.

The EX22A Example—An MFC Extension DLL

This example makes an extension DLL out of the CPersistentFrame class you saw in Chapter 15. First you'll
build the ex22a.dll file, and then you'll use it in a test client program, EX22B.

Here are the steps for building the EX22A example:

1. Run AppWizard to produce \vcpp32\ex22a\ex22a. Choose New from Visual C++'s File menu,
and then click on the Projects tab as usual. Instead of selecting MFC AppWizard (exe), choose MFC
AppWizard (dll), as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWizard (dll), as shown here.

In this example, only one AppWizard screen appears. Choose MFC Extension DLL, as shown here.

2. Examine the ex22a.cpp file. AppWizard generates the following code, which includes the DllMain
function:

// ex22a.cpp : Defines the initialization routines for the DLL.
//

#include "stdafx.h"
#include <afxdllx.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _ _FILE_ _;
#endif

static AFX_EXTENSION_MODULE Ex22aDLL = { NULL, NULL };

extern "C" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 // Remove this if you use lpReserved
 UNREFERENCED_PARAMETER(lpReserved);

 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("EX22A.DLL Initializing!\n");

 // Extension DLL one-time initialization
 if (!AfxInitExtensionModule(Ex22aDLL, hInstance))
 return 0;

 // Insert this DLL into the resource chain

 (generated comment lines deleted)

 new CDynLinkLibrary(Ex22aDLL);
 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 TRACE0("EX22A.DLL Terminating!\n");
 // Terminate the library before destructors are called
 AfxTermExtensionModule(Ex22aDLL);
 }
 return 1; // ok
}

3. Insert the CPersistentFrame class into the project. Choose Add To Project from the Project
menu, and then choose Components And Controls from the submenu. Locate the file Persistent
Frame.ogx that you created in Chapter 15 (or locate the copy on the companion CD-ROM). Click the
Insert button to insert the class into the current project.

If you don't want to use the OGX component, you can copy the files Persist.h and
Persist.cpp into your project directory and add them to the project by choosing Add To
Project from the Visual C++ Project menu.

4. Edit the persist.h file. Modify the line

class CPersistentFrame : public CFrameWnd
to read

class AFX_EXT_CLASS CPersistentFrame : public CFrameWnd
5. Build the project and copy the DLL file. Copy the file ex22a.dll from the \vcpp32\ex22a\Debug

directory to your system directory (\Windows\System or \Winnt\System32).

The EX22B Example—A DLL Test Client Program

This example starts off as a client for ex22a.dll. It imports the CPersistentFrame class from the DLL and
uses it as a base class for the SDI frame window. Later you'll add code to load and test the other sample
DLLs in this chapter.

Here are the steps for building the EX22B example:

1. Run AppWizard to produce \vcpp32\ex22b\ex22b. This is an ordinary MFC EXE program.
Select Single Document. Otherwise, accept the default settings. Be absolutely sure that in Step 5
you accept the As A Shared DLL option.

2. Copy the file persist.h from the \vcpp32\ex22a directory. Note that you're copying the
header file, not the CPP file.

3. Change the CMainFrame base class to CPersistentFrame as you did in EX15A. Replace all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Change the CMainFrame base class to CPersistentFrame as you did in EX15A. Replace all
occurrences of CFrameWnd with CPersistentFrame in both MainFrm.h and MainFrm.cpp. Also insert
the following line into MainFrm.h:

#include "persist.h"

4. Add the ex22a import library to the linker's input library list. Choose Settings from Visual
C++'s Project menu. Select All Configurations in the Settings For drop-down list. Then fill in the
Object/Library Modules control on the Link page as shown below.

You must specify the full pathname for the ex22a.lib file unless you have a copy of that file in your
project directory.

5. Build and test the EX22B program. If you run the program from the debugger and Windows
can't find the EX22A DLL, Windows displays a message box when EX22B starts. If all goes well, you
should have a persistent frame application that works exactly like the one in EX15A. The only
difference is that the CPersistentFrame code is in an extension DLL.

MFC Regular DLLs—The CWinApp Derived Class

When AppWizard generates a regular DLL, the DllMain function is inside the framework and you end up
with a class derived from CWinApp (and a global object of that class), just as you would with an EXE
program. You can get control by overriding CWinApp::InitInstance and CWinApp::ExitInstance. Most of the
time, you don't bother overriding those functions, though. You simply write the C functions and then
export them with the __declspec(dllexport) modifier (or with entries in the project's DEF file).

Using the AFX_MANAGE_STATE Macro

When mfc42.dll is loaded as part of a process, it stores data in some truly global variables. If you call MFC
functions from an MFC program or extension DLL, mfc42.dll knows how to set these global variables on
behalf of the calling process. If you call into mfc42.dll from a regular MFC DLL, however, the global
variables are not synchronized and the effects will be unpredictable. To solve this problem, insert the line

AFX_MANAGE_STATE(AfxGetStaticModuleState());
at the start of all exported functions in your regular DLL. If the MFC code is statically linked, the macro will
have no effect.

The MFC Regular DLL Resource Search Sequence

When an EXE links to a regular DLL, resource loading functions inside the EXE will load the EXE's own
resources. Resource loading functions inside the regular DLL will load the DLL's own resources.

If you want your EXE code to load resources from the DLL, you can use AfxSetResourceHandle to
temporarily change the resource handle. The code will be nearly the same as that shown in "The MFC
Extension DLL Resource Search Sequence." If you're writing an application that needs to be localized, you
can put language-specific strings, dialogs, menus, and so forth in an MFC regular DLL. You might, for
example, include the modules English.dll, German.dll, and French.dll. Your client program would explicitly
load the correct DLL and use code such as that in "The MFC Extension DLL Resource Search Sequence" to
load the resources, which would have the same IDs in all the DLLs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX22C Example—An MFC Regular DLL

This example creates a regular DLL that exports a single square root function. First you'll build the
ex22c.dll file, and then you'll modify the test client program, EX22B, to test the new DLL.

Here are the steps for building the EX22C example:

1. Run AppWizard to produce \vcpp32\ex22c\ex22c. Proceed as you did for EX22A, but accept
Regular DLL Using Shared MFC DLL (instead of choosing MFC Extension DLL) from the one and only
AppWizard page.

2. Examine the ex22c.cpp file. AppWizard generates the following code, which includes a derived
CWinApp class:

// ex22c.cpp : Defines the initialization routines for the DLL.
//

#include "stdafx.h"
#include "ex22c.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _ _FILE_ _;
#endif

(generated comment lines omitted)

//
// CEx22cApp

BEGIN_MESSAGE_MAP(CEx22cApp, CWinApp)
 //{{AFX_MSG_MAP(CEx22cApp)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CEx22cApp construction

CEx22cApp::CEx22cApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

//
// The one and only CEx22cApp object

CEx22cApp theApp;
3. Add the code for the exported Ex22cSquareRoot function. It's okay to add this code in the

ex22c.cpp file, although you can use a new file if you want to:

extern "C" __declspec(dllexport) double Ex22cSquareRoot(double d)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 TRACE("Entering Ex22cSquareRoot\n");
 if (d >= 0.0) {
 return sqrt(d);
 }
 AfxMessageBox("Can't take square root of a negative number.");
 return 0.0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
You can see that there's no problem with the DLL displaying a message box or another modal
dialog. You'll need to include math.h in the file containing this code.

4. Build the project and copy the DLL file. Copy the file ex22c.dll from the \vcpp32\ex22c\Debug
directory to your system directory.

Updating the EX22B Example—Adding Code to Test ex22c.dll

When you first built the EX22B program, it linked dynamically to the EX22A MFC extension DLL. Now you'll
update the project to implicitly link to the EX22C MFC regular DLL and to call the DLL's square root
function.

Following are the steps for updating the EX22B example.

1. Add a new dialog resource and class to \vcpp32\ex22b\ex22b. Use the dialog editor to
create the IDD_EX22C template, as shown here.

Then use ClassWizard to generate a class CTest22cDialog, derived from CDialog. The controls, data
members, and message map function are shown in the following table.

Control ID Type Data Member Message Map Function

IDC_INPUT edit m_dInput (double)

IDC_OUTPUT edit m_dOutput (double)

IDC_COMPUTE button OnCompute

2. Code the OnCompute function to call the DLL's exported function. Edit the ClassWizard-
generated function in Test22cDialog.cpp as shown here:

void CTest22cDialog::OnCompute()
{
 UpdateData(TRUE);
 m_dOutput = Ex22cSquareRoot(m_dInput);
 UpdateData(FALSE);
}
You'll have to declare the Ex22cSquareRoot function as an imported function. Add the following line
to the Test22cDialog.h file:

extern "C" __declspec(dllimport) double Ex22cSquareRoot(double d);
3. Integrate the CTest22cDialog class into the EX22B application. You'll need to add a top-level

menu, Test, and an Ex22c DLL option with the ID ID_TEST_EX22CDLL. Use ClassWizard to map this
option to a member function in the CEx22bView class, and then code the handler in Ex22bView.cpp
as follows:

void CEx22bView::OnTestEx22cdll()
{
 CTest22cDialog dlg;
 dlg.DoModal();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Of course, you'll have to add this line to the Ex22bView.cpp file:

#include "Test22cDialog.h"
4. Add the EX22C import library to the linker's input library list. Choose Settings from Visual

C++'s Project menu, and then add \vcpp32\ex22c\Debug\ex22c.lib to the Object/Library Modules
control on the Link page. (Use a space to separate the new entry from the existing entry.) Now the
program should implicitly link to both the EX22A DLL and the EX22C DLL. As you can see, the client
doesn't care whether the DLL is a regular DLL or an extension DLL. You just specify the LIB name to
the linker.

5. Build and test the updated EX22B application. Choose Ex22c DLL from the Test menu. Type a
number in the Input edit control, and then click the Compute Sqrt button. The result should appear
in the Output control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Custom Control DLL
Programmers have been using DLLs for custom controls since the early days of Windows because custom
controls are neatly self-contained. The original custom controls were written in pure C and configured as
stand-alone DLLs. Today you can use the features of the MFC library in your custom controls, and you can
use the wizards to make coding easier. A regular DLL is the best choice for a custom control because the
control doesn't need a C++ interface and because it can be used by any development system that accepts
custom controls (such as the Borland C++ compiler). You'll probably want to use the MFC dynamic linking
option because the resulting DLL will be small and quick to load.

What Is a Custom Control?

You've seen ordinary controls and Microsoft Windows common controls in Chapter 6, and you've seen
ActiveX controls in Chapter 8. The custom control acts like an ordinary control, such as the edit control, in
that it sends WM_COMMAND notification messages to its parent window and receives user-defined
messages. The dialog editor lets you position custom controls in dialog templates. That's what the "head"
control palette item, shown here, is for.

You have a lot of freedom in designing your custom control. You can paint anything you want in its window
(which is managed by the client application) and you can define any notification and inbound messages
you need. You can use ClassWizard to map normal Windows messages in the control
(WM_LBUTTONDOWN, for example), but you must manually map the user-defined messages and manually
map the notification messages in the parent window class.

A Custom Control's Window Class

A dialog resource template specifies its custom controls by their symbolic window class names. Don't
confuse the Win32 window class with the C++ class; the only similarity is the name. A window class is
defined by a structure that contains the following:

The name of the class

A pointer to the WndProc function that receives messages sent to windows of the class

Miscellaneous attributes, such as the background brush

The Win32 RegisterClass function copies the structure into process memory so that any function in the
process can use the class to create a window. When the dialog window is initialized, Windows creates the
custom control child windows from the window class names stored in the template.

Suppose now that the control's WndProc function is inside a DLL. When the DLL is initialized (by a call to
DllMain), it can call RegisterClass for the control. Because the DLL is part of the process, the client
program can create child windows of the custom control class. To summarize, the client knows the name
string of a control window class and it uses that class name to construct the child window. All the code for
the control, including the WndProc function, is inside the DLL. All that's necessary is that the client load the
DLL prior to creating the child window.

The MFC Library and the WndProc Function

Okay, so Windows calls the control's WndProc function for each message sent to that window. But you
really don't want to write an old-fashioned switch-case statement—you want to map those messages to
C++ member functions, as you've been doing all along. Now, in the DLL, you must rig up a C++ class that
corresponds to the control's window class. Once you've done that, you can happily use ClassWizard to map
messages.

The obvious part is the writing of the C++ class for the control. You simply use ClassWizard to create a
new class derived from CWnd. The tricky part is wiring the C++ class to the WndProc function and to the
application framework's message pump. You'll see a real WndProc in the EX22D example, but here's the
pseudocode for a typical control WndProc function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LRESULT MyControlWndProc(HWND hWnd, UINT message
 WPARAM wParam, LPARAM lParam)
{
 if (this is the first message for this window) {
 CWnd* pWnd = new CMyControlWindowClass();
 attach pWnd to hWnd
 }
 return AfxCallWndProc(pWnd, hWnd, message, WParam, lParam);
}
The MFC AfxCallWndProc function passes messages to the framework, which dispatches them to the
member functions mapped in CMyControlWindowClass.

Custom Control Notification Messages

The control communicates with its parent window by sending it special WM_COMMAND notification
messages with parameters, as shown here.

Parameter Usage

(HIWORD) wParam Notification code

(LOWORD) wParam Child window ID

lParam Child window handle

The meaning of the notification code is arbitrary and depends on the control. The parent window must
interpret the code based on its knowledge of the control. For example, the code 77 might mean that the
user typed a character while positioned on the control.

The control might send a notification message such as this:

GetParent()->SendMessage(WM_COMMAND,

 GetDlgCtrlID() | ID_NOTIFYCODE << 16, (LONG) GetSafeHwnd());

On the client side, you map the message with the MFC ON_CONTROL macro like this:

ON_CONTROL(ID_NOTIFYCODE, IDC_MYCONTROL, OnClickedMyControl)
Then you declare the handler function like this:

afx_msg void OnClickedMyControl();

User-Defined Messages Sent to the Control

You have already seen user-defined messages in Chapter 7. This is the means by which the client program
communicates with the control. Because a standard message returns a 32-bit value if it is sent rather than
posted, the client can obtain information from the control.

The EX22D Example—A Custom Control

The EX22D program is an MFC regular DLL that implements a traffic light control indicating off, red, yellow,
and green states. When clicked with the left mouse button, the DLL sends a clicked notification message to
its parent and responds to two user-defined messages, RYG_SETSTATE and RYG_GETSTATE. The state is
an integer that represents the color. Credit goes to Richard Wilton, who included the original C-language
version of this control in his book Windows 3 Developer's Workshop (Microsoft Press, 1991).

The EX22D project was originally generated using AppWizard, with linkage to the shared MFC DLL, just like
EX22C. Figure 22-1 shows the code for the primary source file, with the added code in the InitInstance
function in boldface. The dummy exported Ex22dEntry function exists solely to allow the DLL to be
implicitly linked. The client program must include a call to this function. That call must be in an executable
path in the program or the compiler will eliminate the call. As an alternative, the client program could call
the Win32 LoadLibrary function in its InitInstance function to explicitly link the DLL.

EX22D.CPP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ex22d.cpp : Defines the initialization routines for the DLL.
//

#include "stdafx.h"
#include "ex22d.h"
#include "RygWnd.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

extern "C" __declspec(dllexport) void Ex22dEntry() {} // dummy function
(generated comment lines omitted)

///
// CEx22dApp

BEGIN_MESSAGE_MAP(CEx22dApp, CWinApp)
 //{{AFX_MSG_MAP(CEx22dApp)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CEx22dApp construction

CEx22dApp::CEx22dApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CEx22dApp object

CEx22dApp theApp;

BOOL CEx22dApp::InitInstance()
{
 CRygWnd::RegisterWndClass(AfxGetInstanceHandle());
 return CWinApp::InitInstance();
}

Figure 22-1. The EX22D primary source listing.

Figure 22-2 shows the code for the CRygWnd class, including the global RygWndProc function. (Click the
Add Class button in ClassWizard to create this class.) The code that paints the traffic light isn't very
interesting, so we'll concentrate on the functions that are common to most custom controls. The static
RegisterWndClass member function actually registers the RYG window class and must be called as soon as
the DLL is loaded. The OnLButtonDown handler is called when the user presses the left mouse button
inside the control window. It sends the clicked notification message to the parent window. The overridden
PostNcDestroy function is important because it deletes the CRygWnd object when the client program
destroys the control window. The OnGetState and OnSetState functions are called in response to user-
defined messages sent by the client. Remember to copy the DLL to your system directory.

RYGWND.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#if !defined(AFX_RYGWND_H__1AA889D5_9788_11D0_BED2_00C04FC2A0C2
__INCLUDED_)
#define AFX_RYGWND_H__1AA889D5_9788_11D0_BED2_00C04FC2A0C2
__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// RygWnd.h : header file
//

///
// CRygWnd window

#define RYG_SETSTATE WM_USER + 0
#define RYG_GETSTATE WM_USER + 1
LRESULT CALLBACK AFX_EXPORT
 RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam);
class CRygWnd : public CWnd
{
private:
 int m_nState; // 0=off, 1=red, 2=yellow, 3=green
 static CRect s_rect;
 static CPoint s_point;
 static CRect s_rColor[3];
 static CBrush s_bColor[4];
// Construction
public:
 CRygWnd();
public:
 static BOOL RegisterWndClass(HINSTANCE hInstance);
// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CRygWnd)
 protected:
 virtual void PostNcDestroy();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CRygWnd();

 // Generated message map functions
private:
 void SetMapping(CDC* pDC);
 void UpdateColor(CDC* pDC, int n);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void UpdateColor(CDC* pDC, int n);
protected:
 //{{AFX_MSG(CRygWnd)
 afx_msg void OnPaint();
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 afx_msg LRESULT OnSetState(WPARAM wParam, LPARAM lParam);
 afx_msg LRESULT OnGetState(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

///
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.
#endif // !defined(AFX_RYGWND_H__1AA889D5_9788_11D0_BED2_00C04FC2A0C2__INCLUDED_)
RYGWND.CPP

// RygWnd.cpp : implementation file
//

#include "stdafx.h"
#include "ex22d.h"
#include "RygWnd.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

LRESULT CALLBACK AFX_EXPORT
 RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 CWnd* pWnd;
 pWnd = CWnd::FromHandlePermanent(hWnd);
 if (pWnd == NULL) {
 // Assume that client created a CRygWnd window
 pWnd = new CRygWnd();
 pWnd->Attach(hWnd);
 }
 ASSERT(pWnd->m_hWnd == hWnd);
 ASSERT(pWnd == CWnd::FromHandlePermanent(hWnd));
 LRESULT lResult = AfxCallWndProc(pWnd, hWnd, message,
 wParam, lParam);
 return lResult;
}
///
// CRygWnd

// static data members
CRect CRygWnd::s_rect(-500, 1000, 500, -1000); // outer rectangle
CPoint CRygWnd::s_point(300, 300); // rounded corners
CRect CRygWnd::s_rColor[] = {CRect(-250, 800, 250, 300),
 CRect(-250, 250, 250, -250),
 CRect(-250, -300, 250, -800)};
CBrush CRygWnd::s_bColor[] = {RGB(192, 192, 192),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CBrush CRygWnd::s_bColor[] = {RGB(192, 192, 192),
 RGB(0xFF, 0x00, 0x00),
 RGB(0xFF, 0xFF, 0x00),
 RGB(0x00, 0xFF, 0x00)};
BOOL CRygWnd::RegisterWndClass(HINSTANCE hInstance) // static member
 // function
{
 WNDCLASS wc;
 wc.lpszClassName = "RYG"; // matches class name in client
 wc.hInstance = hInstance;
 wc.lpfnWndProc = RygWndProc;
 wc.hCursor = ::LoadCursor(NULL, IDC_ARROW);
 wc.hIcon = 0;
 wc.lpszMenuName = NULL;
 wc.hbrBackground = (HBRUSH) ::GetStockObject(LTGRAY_BRUSH);
 wc.style = CS_GLOBALCLASS;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 return (::RegisterClass(&wc) != 0);
}
///
CRygWnd::CRygWnd()
{
 m_nState = 0;
 TRACE("CRygWnd constructor\n");
}

CRygWnd::~CRygWnd()
{
 TRACE("CRygWnd destructor\n");
}

BEGIN_MESSAGE_MAP(CRygWnd, CWnd)
 //{{AFX_MSG_MAP(CRygWnd)
 ON_WM_PAINT()
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
 ON_MESSAGE(RYG_SETSTATE, OnSetState)
 ON_MESSAGE(RYG_GETSTATE, OnGetState)
END_MESSAGE_MAP()
void CRygWnd::SetMapping(CDC* pDC)
{
 CRect clientRect;
 GetClientRect(clientRect);
 pDC->SetMapMode(MM_ISOTROPIC);
 pDC->SetWindowExt(1000, 2000);
 pDC->SetViewportExt(clientRect.right, -clientRect.bottom);
 pDC->SetViewportOrg(clientRect.right / 2, clientRect.bottom / 2);
}
void CRygWnd::UpdateColor(CDC* pDC, int n)
{
 if (m_nState == n + 1) {
 pDC->SelectObject(&s_bColor[n+1]);
 }
 else {
 pDC->SelectObject(&s_bColor[0]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDC->SelectObject(&s_bColor[0]);
 }
 pDC->Ellipse(s_rColor[n]);
}
///
// CRygWnd message handlers

void CRygWnd::OnPaint()
{
 int i;
 CPaintDC dc(this); // device context for painting
 SetMapping(&dc);
 dc.SelectStockObject(DKGRAY_BRUSH);
 dc.RoundRect(s_rect, s_point);
 for (i = 0; i < 3; i++) {
 UpdateColor(&dc, i);
 }
}

void CRygWnd::OnLButtonDown(UINT nFlags, CPoint point)
{
 // Notification code is HIWORD of wParam, 0 in this case
 GetParent()->SendMessage(WM_COMMAND, GetDlgCtrlID(),
 (LONG) GetSafeHwnd()); // 0
}
void CRygWnd::PostNcDestroy()
{
 TRACE("CRygWnd::PostNcDestroy\n");
 delete this; // CWnd::PostNcDestroy does nothing
}

LRESULT CRygWnd::OnSetState(WPARAM wParam, LPARAM lParam)
{
 TRACE("CRygWnd::SetState, wParam = %d\n", wParam);
 m_nState = (int) wParam;
 Invalidate(FALSE);
 return 0L;
}
LRESULT CRygWnd::OnGetState(WPARAM wParam, LPARAM lParam)
{
 TRACE("CRygWnd::GetState\n");
 return m_nState;
}

Figure 22-2. The CRygWnd class listing.

Revising the Updated EX22B Example—Adding Code to Test ex22d.dll

The EX22B program already links to the EX22A and EX22C DLLs. Now you'll revise the project to implicitly
link to the EX22D custom control.

Here are the steps for updating the EX22B example:

1. Add a new dialog resource and class to \vcpp32\ex22b\ex22b.Use the dialog editor to
create the IDD_EX22D template with a custom control with child window ID IDC_RYG, as shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

here.

Specify RYG as the window class name of the custom control, as shown.

Then use ClassWizard to generate a class CTest22dDialog, derived from CDialog.

2. Edit the Test22dDialog.h file. Add the following private data member:

enum { OFF, RED, YELLOW, GREEN } m_nState;
Also add the following import and user-defined message IDs:

extern "C" __declspec(dllimport) void Ex22dEntry(); // dummy function
#define RYG_SETSTATE WM_USER + 0
#define RYG_GETSTATE WM_USER + 1

3. Edit the constructor in Test22dDialog.cpp to initialize the state data member. Add the
following boldface code:

CTest22dDialog::CTest22dDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CTest22dDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CTest22dDialog)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 m_nState = OFF;
 Ex22dEntry(); // Make sure DLL gets loaded
}

4. Map the control's clicked notification message. You can't use ClassWizard here, so you must
add the message map entry and handler function in the Test22dDialog.cpp file, as shown here:

ON_CONTROL(0, IDC_RYG, OnClickedRyg) // Notification code is 0

void CTest22dDialog::OnClickedRyg()
{
 switch(m_nState) {
 case OFF:
 m_nState = RED;
 break;
 case RED:
 m_nState = YELLOW;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_nState = YELLOW;
 break;
 case YELLOW:
 m_nState = GREEN;
 break;
 case GREEN:
 m_nState = OFF;
 break;
 }
 GetDlgItem(IDC_RYG)->SendMessage(RYG_SETSTATE, m_nState);
 return;
}
When the dialog gets the clicked notification message, it sends the RYG_SETSTATE message back
to the control in order to change the color. Don't forget to add this prototype in the Test22dDialog.h
file:

afx_msg void OnClickedRyg();
5. Integrate the CTest22dDialog class into the EX22B application. You'll need to add a second

item on the Test menu, an Ex22d DLL option with ID ID_TEST_EX22DDLL. Use ClassWizard to map
this option to a member function in the CEx22bView class, and then code the handler in
Ex22bView.cpp as follows:

void CEx22bView::OnTestEx22ddll()
{
 CTest22dDialog dlg;
 dlg.DoModal();
}
Of course, you'll have to add the following line to Ex22bView.cpp:

#include "Test22dDialog.h"
6. Add the EX22D import library to the linker's input library list. Choose Settings from Visual

C++'s Project menu, and then add \vcpp32\ex22d\Debug\ex22d.lib to the Object/Library Modules
control on the Link page. With this addition, the program should implicitly link to all three DLLs.

7. Build and test the updated EX22B application. Choose Ex22d DLL from the Test menu. Try
clicking the traffic light with the left mouse button. The traffic-light color should change. The result
of clicking the traffic light several times is shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23
MFC Programs Without Document or View Classes
The document-view architecture is useful for many applications, but sometimes a simpler program
structure is sufficient. This chapter illustrates three applications: a dialog-based program, a Single
Document Interface (SDI) program, and a Multiple Document Interface (MDI) program. None of these
programs uses document, view, or document-template classes, but they all use command routing and
some other Microsoft Foundation Class (MFC) library features. In Visual C++ 6.0, you can create all three
types of applications using AppWizard.

In each example, we'll look at how AppWizard generates code that doesn't rely on the document-view
architecture and show you how to add your own code to each example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX23A Example—A Dialog-Based Application
For many applications, a dialog provides a sufficient user interface. The dialog window immediately
appears when the user starts the application. The user can minimize the dialog window, and as long as the
dialog is not system modal, the user can freely switch to other applications.

In this example, the dialog functions as a simple calculator, as shown in Figure 23-1. ClassWizard takes
charge of defining the class data members and generating the DDX (Dialog Data Exchange) function calls—
everything but the coding of the compute function. The application's resource script, ex23a.rc, defines an
icon as well as the dialog.

Figure 23-1. The EX23A Calculator dialog.

AppWizard gives you the option of generating a dialog-based application. Here are the steps for building
the EX23A example:

1. Run AppWizard to produce \vcpp32\ex23a\ex23a. Select the Dialog Based option in the
AppWizard Step 1 dialog, as shown here.

In the next dialog, enter EX23A Calculator as the dialog title.

2. Edit the IDD_EX23A_DIALOG resource. Refer to Figure 23-1 as a guide. Use the dialog editor to
assign IDs to the controls shown in the table below.

Open the Properties dialog box and click on the Styles tab. Select the System Menu and Minimize
Box options.

Control ID

Left operand edit control IDC_LEFT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right operand edit control IDC_RIGHT

Result edit control IDC_RESULT

First radio button (group property set) IDC_OPERATION

Compute pushbutton IDC_COMPUTE

3. Use ClassWizard to add member variables and a command handler. AppWizard has already
generated a class CEx23aDlg. Add the following data members.

Control ID Member Variable Type

IDC_LEFT m_dLeft double

IDC_RIGHT m_dRight double

IDC_RESULT m_dResult double

IDC_OPERATION m_nOperation int

Add the message handler OnCompute for the IDC_COMPUTE button.

4. Code the OnCompute member function in the ex23aDlg.cpp file. Add the following boldface
code:

void CEx23aDlg::OnCompute()
{
 UpdateData(TRUE);
 switch (m_nOperation) {
 case 0: // add
 m_Result = m_dLeft + m_dRight;
 break;
 case 1: // subtract
 m_dResult = m_dLeft - m_dRight;
 break;
 case 2: // multiply
 m_dResult = m_dLeft * m_dRight;
 break;
 case 3: // divide
 if (m_dRight != 0.0) {
 m_dResult = m_dLeft / m_dRight;
 }
 else {
 AfxMessageBox("Divide by zero");
 m_dResult = 0.0;
 }
 break;
 default:
 TRACE("default; m_nOperation = %d\n", m_nOperation);
 }
 UpdateData(FALSE);
}

5. Build and test the EX23A application. Notice that the program's icon appears in the Microsoft
Windows taskbar. Verify that you can minimize the dialog window.

The Application Class InitInstance Function

The critical element of the EX23A application is the CEx23aApp::InitInstance function generated by
AppWizard. A normal InitInstance function creates a main frame window and returns TRUE, allowing the
program's message loop to run. The EX23A version constructs a modal dialog object, calls DoModal, and
then returns FALSE. This means that the application exits after the user exits the dialog. The DoModal
function lets the Windows dialog procedure get and dispatch messages, as it always does. Note that
AppWizard does not generate a call to CWinApp::SetRegistryKey.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWizard does not generate a call to CWinApp::SetRegistryKey.

Here is the generated InitInstance code from ex23a.cpp:

BOOL CEx23aApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 CEx23aDlg dlg;
 m_pMainWnd = &dlg;
 int nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with Cancel
 }

 // Since the dialog has been closed, return FALSE so that we
 // exit the application, rather than start the application's
 // message pump.
 return FALSE;
}

The Dialog Class and the Program Icon

The generated CEx23aDlg class contains these two message map entries:

ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
The associated handler functions take care of displaying the application's icon when the user minimizes the
program. This code applies only to Microsoft Windows NT version 3.51, in which the icon is displayed on
the desktop. You don't need the three handlers for Windows 95, Windows 98, or Windows NT 4.0 because
those versions of Windows display the program's icon directly on the taskbar.

There is some icon code that you do need. It's in the dialog's handler for WM_INITDIALOG, which is
generated by AppWizard. Notice the two SetIcon calls in the OnInitDialog function code below. If you
checked the About box option, AppWizard generates code to add an About box to the System menu. The
variable m_hIcon is a data member of the dialog class that is initialized in the constructor.

BOOL CEx23aDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
 ASSERT(IDM_ABOUTBOX < 0xF000);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);
 if (pSysMenu != NULL)
 {
 CString strAboutMenu;
 strAboutMenu.LoadString(IDS_ABOUTBOX);
 if (!strAboutMenu.IsEmpty())
 {
 pSysMenu->AppendMenu(MF_SEPARATOR);
 pSysMenu->AppendMenu(MF_STRING,
 IDM_ABOUTBOX, strAboutMenu);
 }
 }

 // Set the icon for this dialog. The framework does this
 // automatically when the application's main window
 // is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 return TRUE; // return TRUE unless you set the focus to a control
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX23B Example—An SDI Application
This SDI "Hello, world!" example builds on the code you saw way back in Chapter 2. The application has
only one window, an object of a class derived from CFrameWnd. All drawing occurs inside the frame
window and all messages are handled there.

1. Run AppWizard to produce \vcpp32\ex23b\ex23b. Select the Single Document option in the
AppWizard Step 1 dialog and uncheck the Document/View Architecture Support? option, as shown
here.

2. Add code to paint in the dialog. Add the following boldface code to the CChildView::OnPaint
function in the ChildView.cpp source code file:

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 dc.TextOut(0, 0, "Hello, world!");
 // Do not call CWnd::OnPaint() for painting messages
}

3. Compile and run. You now have a complete SDI application that has no dependencies on the
document-view architecture.

AppWizard automatically takes out dependencies on the document-view architecture and generates an
application for you with the following elements:

A main menu—You can have a Windows-based application without a menu—you don't even need a
resource script. But EX23B has both. The application framework routes menu commands to
message handlers in the frame class.
An icon—An icon is useful if the program is to be activated from Microsoft Windows Explorer. It's
also useful when the application's main frame window is minimized. The icon is stored in the
resource, along with the menu.
Window close message command handler—Many an application needs to do special processing
when its main window is closed. If you were using documents, you could override the
CDocument::SaveModified function. Here, to take control of the close process, AppWizard creates
message handlers to process close messages sent as a result of user actions and by Windows itself
when it shuts down.
Toolbar and status bar—AppWizard automatically generates a default toolbar and status bar for
you and sets up the routing even though there are no document-view classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you and sets up the routing even though there are no document-view classes.

There are several interesting features in the SDI application that have no document-view support,
including:

CChildView class—Contrary to its name, this class is actually a CWnd derivative that is declared in
ChildView.h and implemented in ChildView.cpp. CChildView implements only a virtual OnPaint
member function, which contains any code that you want to draw in the frame window (as
illustrated in step 2 of the EX23B sample).

CMainFrame class—This class contains a data member, m_wndView, that is created and initialized
in the CMainFrame::OnCreate member function.

CMainFrame::OnSetFocus function—This function makes sure the focus is translated to the
CChildView:

void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}
CMainFrame::OnCmdMsg function—This function gives the view a chance to handle any
command messages first:
BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX23C Example—An MDI Application
Now let's create an MDI application that doesn't use the document-view architecture.

1. Run AppWizard to produce \vcpp32\ex23c\ex23c. Select the Multiple Documents option in
the AppWizard Step 1 dialog and uncheck the Document/View Architecture Support? option, as
shown here.

2. Add code to paint in the dialog. Add the following boldface code to the CChildView::OnPaint
function in the ChildView.cpp source code file:

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 dc.TextOut(0, 0, "Hello, world!");
 // Do not call CWnd::OnPaint() for painting messages
}

3. Compile and run. You now have a complete MDI application without dependencies on the
document-view architecture.

As in EX23B, this example automatically creates a CChildView class. The main difference between
EX23B and EX23C is the fact that in EX23C the CChildView class is created in the
CChildFrame::OnCreate function instead of in the CMainFrame class.

In this chapter you've learned how to create three kinds of applications that do not depend on the
document-view architecture. Examining how these applications are generated is also a great way to learn
how MFC works. We recommend that you compare the generated results to similar applications with
document-view architecture support to get a complete picture of how the document-view classes work with
the rest of MFC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24
The Component Object Model
The Component Object Model (COM) is the foundation of much of the new Microsoft ActiveX technology,
and after five years it's become an integral part of Microsoft Windows. So COM is now an integral part of
Programming Visual C++. Soon, most Windows programming will involve COM, so you'd better start
learning it now. But where do you begin? You could start with the Microsoft Foundation Class classes for
ActiveX Controls, Automation, and OLE, but as useful as those classes are, they obscure the real COM
architecture. You've got to start with fundamental theory, and that includes COM and something called an
interface.

This is the first of seven chapters that make up Part IV of this book. Here you'll get the theory you need for
the next six chapters. You'll learn about interfaces and how the MFC library implements interfaces through
its macros and interface maps.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Technology Background
The terminology is changing as fast as the technology, and not all groups within Microsoft can agree on
how to use the terms ActiveX and OLE. Think of ActiveX as something that was created when the "old" OLE
collided with the Internet. ActiveX includes not only those Windows features built on COM (which you'll
study in this part of the book) but also the Microsoft Internet Information Server family and the WinInet
programming interface (covered in Part VI).

Yes, OLE is still here, but once again it stands for Object Linking and Embedding, just as it did in the days
of OLE 1. It's just another subset of ActiveX technology that includes odds and ends such as drag and
drop. Unfortunately (or fortunately, if you have existing code), the MFC source code and the Windows API
have not kept current with the naming conventions. As a result, you'll see lots of occurrences of "OLE" and
"Ole" in class names and in function names, even though some of those classes and functions go beyond
linking and embedding. In this part of the book, you might notice references to the "server" in the code
generated by AppWizard. Microsoft has now reserved this term for database servers and Internet servers;
"component" is the new term for OLE servers.

Bookstore computer sections are now full of books on OLE, COM, and ActiveX. We don't claim to offer that
level of detail here, but you should come away with a pretty good understanding of COM theory. We've
included a closer connection to the MFC library classes than you might see in other books, with the
exception of MFC Internals (Addison-Wesley, 1996) by George Shepherd and Scot Wingo. The net result
should be good preparation for the really heavy-duty ActiveX/COM books, including Kraig Brockschmidt's
Inside OLE, 2nd ed. (Microsoft Press, 1995) and Don Box's Essential COM (Addison-Wesley, 1998). A good
mid-level book is Dale Rogerson's Inside COM (Microsoft Press, 1997).

One more thing: don't expect this stuff to be easy. Kraig Brockschmidt reported "six months of mental fog"
before he started understanding these concepts. A thorough knowledge of the C++ language is the
minimum prerequisite. Don't be afraid to dig in and write code. Make sure you can do the easy things
before getting into advanced areas like multithreaded COM, custom marshaling, and distributed COM
(DCOM).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Component Object Model
COM is an "industry-standard" software architecture supported by Microsoft, Digital Equipment
Corporation, and many other companies. It's by no means the only standard. Indeed, it competes directly
against other standards, such as Corba from the Open Software Foundation (OSF). Some people are
working to establish interoperability between COM and other architectures, but my guess is that COM will
become the leading standard.

The Problem That COM Solves

The "problem" is that there's no standard way for Windows program modules to communicate with one
another. "But," you say "what about the DLL with its exported functions, Dynamic Data Exchange (DDE),
the Windows Clipboard, and the Windows API itself, not to mention legacy standards such as VBX and OLE
1? Aren't they good enough?" Well, no. You can't build an object-oriented operating system for the future
out of these ad hoc, unrelated standards. With the Component Object Model, however, you can, and that's
precisely what Microsoft is doing.

The Essence of COM

What's wrong with the old standards? A lot. The Windows API has too large a programming "surface
area"—more than 350 separate functions. VBXs don't work in the 32-bit world. DDE comes with a
complicated system of applications, topics, and items. How you call a DLL is totally application-specific.
COM provides a unified, expandable, object-oriented communications protocol for Windows that already
supports the following features:

A standard, language-independent way for a Win32 client EXE to load and call a Win32 DLL

A general-purpose way for one EXE to control another EXE on the same computer (the DDE
replacement)

A replacement for the VBX control, called an ActiveX control

A powerful new way for application programs to interact with the operating system

Expansion to accommodate new protocols such as Microsoft's OLE DB database interface

The distributed COM (DCOM) that allows one EXE to communicate with another EXE residing on a
different computer, even if the computers use different microprocessor-chip families

So what is COM? That's an easier question to ask than to answer. At DevelopMentor (a training facility for
software developers), the party line is that "COM is love." That is, COM is a powerful integrating technology
that allows you to mix all sorts of disparate software parts together at runtime. COM allows developers to
write software that runs together regardless of issues such as thread-awareness and language choice.

COM is a protocol that connects one software module with another and then drops out of the picture. After
the connection is made, the two modules can communicate through a mechanism called an interface.
Interfaces require no statically or dynamically linked entry points or hard-coded addresses other than the
few general-purpose COM functions that start the communication process. An interface (more precisely, a
COM interface) is a term that you'll be seeing a lot of.

What Is a COM Interface?

Before digging into the topic of interfaces, let's re-examine the nature of inheritance and polymorphism in
normal C++. We'll use a planetary-motion simulation (suitable for NASA or Nintendo) to illustrate C++
inheritance and polymorphism. Imagine a spaceship that travels through our solar system under the
influence of the sun's gravity. In ordinary C++, you could declare a CSpaceship class and write a
constructor that sets the spaceship's initial position and acceleration. Then you could write a nonvirtual
member function named Fly that implemented Kepler's laws to model the movement of the spaceship from
one position to the next—say, over a period of 0.1 second. You could also write a Display function that
painted an image of the spaceship in a window. The most interesting feature of the CSpaceship class is
that the interface of the C++ class (the way the client talks to the class) and the implementation are
tightly bound. One of the main goals of COM is to separate a class's interface from its implementation.

If we think of this example within the context of COM, the spaceship code could exist as a separate EXE or
DLL (the component), which is a COM module. In COM the simulation manager (the client program) can't
call Fly or any CSpaceship constructor directly: COM provides only a standard global function to gain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

call Fly or any CSpaceship constructor directly: COM provides only a standard global function to gain
access to the spaceship object, and then the client and the object use interfaces to talk to one another.
Before we tackle real COM, let's build a COM simulation in which both the component and the client code
are statically linked in the same EXE file. For our standard global function, we'll invent a function named
GetClassObject.

If you want to map this process back to the way MFC works, you can look at
CRuntimeClass, which serves as a class object for CObject-based classes. A class object
is a meta-class (either in concept or in form).

In this COM simulation, clients will use this global single abstract function (GetClassObject) for objects of a
particular class. In real COM, clients would get a class object first and then ask the class object to
manufacture the real object in much the same way MFC does dynamic creation. GetClassObject has the
following three parameters:

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj);
The first GetClassObject parameter, nClsid, is a 32-bit integer that uniquely identifies the CSpaceship
class. The second parameter, nIid, is the unique identifier of the interface that we want. The third
parameter is a pointer to an interface to the object. Remember that we're going to be dealing with
interfaces now, (which are different from classes). As it turns out, a class can have several interfaces, so
the last two parameters exist to manage interface selection. The function returns TRUE if the call is
successful.

Now let's back up to the design of CSpaceship. We haven't really explained spaceship interfaces yet. A
COM interface is a C++ base class (actually, a C++ struct) that declares a group of pure virtual functions.
These functions completely control some aspect of derived class behavior. For CSpaceship, let's write an
interface named IMotion, which controls the spaceship object's position. For simplicity's sake, we'll declare
just two functions, Fly and GetPosition, and we'll keep things uncomplicated by making the position value
an integer. The Fly function calculates the position of the spaceship, and the GetPosition function returns a
reference to the current position. Here are the declarations:

struct IMotion
{
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};

class CSpaceship : public IMotion
{
protected:
 int m_nPosition;
public:
 CSpaceship() { m_nPosition = 0; }
 void Fly();
 int& GetPosition() { return m_nPosition; }
};
The actual code for the spaceship-related functions—including GetClassObject—is located in the component
part of the program. The client part calls the GetClassObject function to construct the spaceship and to
obtain an IMotion pointer. Both parts have access to the IMotion declaration at compile time. Here's how
the client calls GetClassObject:

IMotion* pMot;
GetClassObject(CLSID_CSpaceship, IID_IMotion, (void**) &pMot);
Assume for the moment that COM can use the unique integer identifiers CLSID_CSpaceship and
IID_IMotion to construct a spaceship object instead of some other kind of object. If the call is successful,
pMot points to a CSpaceship object that GetClassObject somehow constructs. As you can see, the
CSpaceship class implements the Fly and GetPosition functions, and our main program can call them for
the one particular spaceship object, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int nPos = 50;
pMot->GetPosition() = nPos;
pMot->Fly();
nPos = pMot->GetPosition();
TRACE("new position = %d\n", nPos);
Now the spaceship is off and flying. We're controlling it entirely through the pMot pointer. Notice that pMot
is technically not a pointer to a CSpaceship object. However, in this case, a CSpaceship pointer and an
IMotion pointer are the same because CSpaceship is derived from IMotion. You can see how the virtual
functions work here: it's classic C++ polymorphism.

Let's make things a little more complex by adding a second interface, IVisual, which handles the
spaceship's visual representation. One function is enough—Display. Here's the whole base class:

struct IVisual
{
 virtual void Display() = 0;
};
Are you getting the idea that COM wants you to associate functions in groups? You're not imagining it. But
why? Well, in your space simulation, you probably want to include other kinds of objects in addition to
spaceships. Imagine that the IMotion and IVisual interfaces are being used for other classes. Perhaps a
CSun class has an implementation of IVisual but does not have an implementation of IMotion, and perhaps
a CSpaceStation class has other interfaces as well. If you "published" your IMotion and IVisual interfaces,
perhaps other space simulation software companies would adopt them.

Think of an interface as a contract between two software modules. The idea is that interface declarations
never change. If you want to upgrade your spaceship code, you don't change the IMotion or the IVisual
interface; rather, you add a new interface, such as ICrew. The existing spaceship clients can continue to
run with the old interfaces, and new client programs can use the new ICrew interface as well. These client
programs can find out at runtime which interfaces a particular spaceship software version supports.

Consider the GetClassObject function as a more powerful alternative to the C++ constructor. With the
ordinary constructor, you obtain one object with one batch of member functions. With the GetClassObject
function, you obtain the object plus your choice of interfaces. As you'll see later, you start with one
interface and then use that interface to get other interfaces to the same object.

So how do you program two interfaces for CSpaceship? You could use C++ multiple inheritance, but that
wouldn't work if two interfaces had the same member function name. The MFC library uses nested classes
instead, so that's what we'll use to illustrate multiple interfaces on the CSpaceship class. Not all C++
programmers are familiar with nested classes, so I'll offer a little help. Here's a first cut at nesting
interfaces within the CSpaceship class:

class CSpaceship
{
protected:
 int m_nPosition;
 int m_nAcceleration;
 int m_nColor;
public:
 CSpaceship()
 { m_nPosition = m_nAcceleration = m_nColor = 0; }
 class XMotion : public IMotion
 {
 public:
 XMotion() { }
 virtual void Fly();
 virtual int& GetPosition();
 } m_xMotion;

 class XVisual : public IVisual
 {
 public:
 XVisual() { }
 virtual void Display();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual void Display();
 } m_xVisual;

 friend class XVisual;
 friend class XMotion;
};

It might make sense to make m_nAcceleration a data member of XMotion and
m_nColor a data member of XVisual. We'll make them data members of CSpaceship
because that strategy is more compatible with the MFC macros, as you'll see later.

Notice that the implementations of IMotion and IVisual are contained within the "parent" CSpaceship class.
In COM, this parent class is known as the class with object identity. Be aware that m_xMotion and
m_xVisual are actually embedded data members of CSpaceship. Indeed, you could have implemented
CSpaceship strictly with embedding. Nesting, however, brings to the party two advantages : 1) nested
class member functions can access parent class data members without the need for CSpaceship pointer
data members, and 2) the nested classes are neatly packaged along with the parent while remaining
invisible outside the parent. Look at the code below for the GetPosition member function.

int& CSpaceship::XMotion::GetPosition()
{
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->m_nPosition;
}
Notice also the double scope resolution operators, which are necessary for nested class member functions.
METHOD_PROLOGUE is a one-line MFC macro that uses the C offsetof operator to retrieve the offset used
in generating a this pointer to the parent class, pThis. The compiler always knows the offset from the
beginning of parent class data to the beginning of nested class data. GetPosition can thus access the
CSpaceship data member m_nPosition.

Now suppose you have two interface pointers, pMot and pVis, for a particular CSpaceship object. (Don't
worry yet about how you got these pointers.) You can call interface member functions in the following
manner:

pMot->Fly();
pVis->Display();
What's happening under the hood? In C++, each class (at least, each class that has virtual functions and is
not an abstract base class) has a virtual function table, which is otherwise known as a vtable. In this
example, that means there are vtables for CSpaceship::XMotion and CSpaceship::XVisual. For each object,
there's a pointer to the object's data, the first element of which is a pointer to the class's vtable. The
pointer relationships are shown here.

Theoretically, it's possible to program COM in C. If you look at the Windows header
files, you'll see code such as this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#ifdef __cplusplus
 // C++-specific headers
#else
 /* C-specific headers */
#endif
In C++, interfaces are declared as C++ structs, often with inheritance; in C, they're
declared as C typedef structs with no inheritance. In C++, the compiler generates
vtables for your derived classes; in C, you must "roll your own" vtables, and that gets
tedious. It's important to realize, however, that in neither language do the interface
declarations have data members, constructors, or destructors. Therefore, you can't rely
on the interface having a virtual destructor—but that's not a problem because you
never invoke a destructor for an interface.

The IUnknown Interface and the QueryInterface Member Function

Let's get back to the problem of how to obtain your interface pointers in the first place. COM declares a
special interface named IUnknown for this purpose. As a matter of fact, all interfaces are derived from
IUnknown, which has a pure virtual member function, QueryInterface, that returns an interface pointer
based on the interface ID you feed it.

Once the interface mechanisms are hooked up, the client needs to get an IUnknown interface pointer (at
the very least) or a pointer to one of the derived interfaces. Here is the new interface hierarchy, with
IUnknown at the top:

struct IUnknown
{
 virtual BOOL QueryInterface(int nIid, void** ppvObj) = 0;
};

struct IMotion : public IUnknown
{
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};

struct IVisual : public IUnknown
{
 virtual void Display() = 0;
};
To satisfy the compiler, we must now add QueryInterface implementations in both CSpaceship::XMotion
and CSpaceship::XVisual. What do the vtables look like after this is done? For each derived class, the
compiler builds a vtable with the base class function pointers on top, as shown here.

GetClassObject can get the interface pointer for a given CSpaceship object by getting the address of the
corresponding embedded object. Here's the code for the QueryInterface function in XMotion:

BOOL CSpaceship::XMotion::QueryInterface(int nIid,
 void** ppvObj)
{
 METHOD_PROLOGUE(CSpaceship, Motion)
 switch (nIid) {
 case IID_IUnknown:
 case IID_IMotion:
 *ppvObj = &pThis->m_xMotion;
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case IID_IVisual:
 *ppvObj = &pThis->m_xVisual;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 return TRUE;
}
Because IMotion is derived from IUnknown, an IMotion pointer is a valid pointer if the caller asks for an
IUnknown pointer.

The COM standard demands that QueryInterface return exactly the same IUnknown
pointer value for IID_IUnknown, no matter which interface pointer you start with. Thus,
if two IUnknown pointers match, you can assume that they refer to the same object.
IUnknown is sometimes known as the "void*" of COM because it represents the
object's identity.

Below is a GetClassObject function that uses the address of m_xMotion to obtain the first interface pointer
for the newly constructed CSpaceship object:

BOOL GetClassObject(int& nClsid, int& nIid,
 void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 CSpaceship* pObj = new CSpaceship();
 IUnknown* pUnk = &pObj->m_xMotion;
 return pUnk->QueryInterface(nIid, ppvObj);
}
Now your client program can call QueryInterface to obtain an IVisual pointer, as shown here:

IMotion* pMot;
IVisual* pVis;
GetClassObject(CLSID_CSpaceship, IID_IMotion, (void**) &pMot);
pMot->Fly();
pMot->QueryInterface(IID_IVisual, (void**) &pVis);
pVis->Display();
Notice that the client uses a CSpaceship object, but it never has an actual CSpaceship pointer. Thus, the
client cannot directly access CSpaceship data members even if they're public. Notice also that we haven't
tried to delete the spaceship object yet—that will come shortly.

There's a special graphical representation for interfaces and COM classes. Interfaces are shown as small
circles (or jacks) with lines attached to their class. The IUnknown interface, which every COM class
supports, is at the top, and the others are on the left. The CSpaceship class can be represented like this.

Reference Counting: The AddRef and Release Functions

COM interfaces don't have virtual destructors, so it isn't cool to write code like the following:

delete pMot; // pMot is an IMotion pointer; don't do this
COM has a strict protocol for deleting objects; the two other IUnknown virtual functions, AddRef and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM has a strict protocol for deleting objects; the two other IUnknown virtual functions, AddRef and
Release, are the key. Each COM class has a data member—m_dwRef, in the MFC library—that keeps track
of how many "users" an object has. Each time the component program returns a new interface pointer (as
in QueryInterface), the program calls AddRef, which increments m_dwRef. When the client program is
finished with the pointer, it calls Release. When m_dwRef goes to 0, the object destroys itself. Here's an
example of a Release function for the CSpaceship::XMotion class:

DWORD CSpaceship::XMotion::Release()
{
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 if (pThis->m_dwRef == 0)
 return 0;
 if (--pThis->m_dwRef == 0) {
 delete pThis; // the spaceship object
 return 0;
 }
 return pThis->m_dwRef;
}
In MFC COM-based programs, the object's constructor sets m_dwRef to 1. This means that it isn't
necessary to call AddRef after the object is first constructed. A client program should call AddRef, however,
if it makes a copy of an interface pointer.

Class Factories

Object-oriented terminology can get a little fuzzy sometimes. Smalltalk programmers, for example, talk
about "objects" the way C++ programmers talk about "classes." The COM literature often uses the term
"component object" to refer to the object plus the code associated with it. COM carries with it the notion of
a "class object," which is sometimes referred to as a "class factory." To be more accurate, it should
probably be called an "object factory." A COM class object represents the global static area of a specific
COM class. Its analog in MFC is the CRuntimeClass. A class object is sometimes called a class factory
because it often implements a special COM interface named IClassFactory. This interface, like all interfaces,
is derived from IUnknown. IClassFactory's principal member function is CreateInstance, which in our COM
simulation is declared like this:

virtual BOOL CreateInstance(int& nIid, void** ppvObj) = 0;
Why use a class factory? We've already seen that we can't call the target class constructor directly; we
have to let the component module decide how to construct objects. The component provides the class
factory for this purpose and thus encapsulates the creation step, as it should. Locating and launching
component modules—and thus establishing the class factory—is expensive, but constructing objects with
CreateInstance is cheap. We can therefore allow a single class factory to create multiple objects.

What does all this mean? It means that we screwed up when we let GetClassObject construct the
CSpaceship object directly. We were supposed to construct a class factory object first and then call
CreateInstance to cause the class factory (object factory) to construct the actual spaceship object.

Let's properly construct the spaceship simulation. First we declare a new class, CSpaceshipFactory. To
avoid complication, we'll derive the class from IClassFactory so that we don't have to deal with nested
classes. In addition, we'll add the code that tracks references:

struct IClassFactory : public IUnknown
{
 virtual BOOL CreateInstance(int& nIid, void** ppvObj) = 0;
};

class CSpaceshipFactory : public IClassFactory
{
private:
 DWORD m_dwRef;
public:
 CSpaceshipFactory() { m_dwRef = 1; }
 // IUnknown functions
 virtual BOOL QueryInterface(int& nIid,
 void** ppvObj);
 virtual DWORD AddRef();
 virtual DWORD Release();
 // IClassFactory function
 virtual BOOL CreateInstance(int& nIid,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL CreateInstance(int& nIid,
 void** ppvObj);
};
Next we'll write the CreateInstance member function:

BOOL CSpaceshipFactory::CreateInstance(int& nIid, void** ppvObj)
{
 CSpaceship* pObj = new CSpaceship();
 IUnknown* pUnk = &pObj->m_xMotion;
 return pUnk->QueryInterface(nIid, ppvObj);
}
Finally, here is the new GetClassObject function, which constructs a class factory object and returns an
IClassFactory interface pointer.

BOOL GetClassObject(int& nClsid, int& nIid,
 void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 ASSERT((nIid == IID_IUnknown) || (nIid == IID_IClassFactory));
 CSpaceshipFactory* pObj = new CSpaceshipFactory();
 ppObj = pObj; // IUnknown = IClassFactory* = CSpaceship*
}
The CSpaceship and CSpaceshipFactory classes work together and share the same class ID. Now the client
code looks like this (without error-checking logic):

IMotion* pMot;
IVisual* pVis;
IClassFactory* pFac;
GetClassObject(CLSID_CSpaceship, IID_IClassFactory, (void**) &pFac);
pFac->CreateInstance(IID_IMotion, &pMot);
pMot->QueryInterface(IID_IVisual, (void**) &pVis);
pMot->Fly();
pVis->Display();
Notice that the CSpaceshipFactory class implements the AddRef and Release functions. It must do this
because AddRef and Release are pure virtual functions in the IUnknown base class. We'll start using these
functions in the next iteration of the program.

The CCmdTarget Class

We're still a long way from real MFC COM-based code, but we can take one more step in the COM
simulation before we switch to the real thing. As you might guess, some code and data can be "factored
out" of our spaceship COM classes into a base class. That's exactly what the MFC library does. The base
class is CCmdTarget, the standard base class for document and window classes. CCmdTarget, in turn, is
derived from CObject. We'll use CSimulatedCmdTarget instead, and we won't put too much in it—only the
reference-counting logic and the m_dwRef data member. The CSimulatedCmdTarget functions
ExternalAddRef and ExternalRelease can be called in derived COM classes. Because we're using
CSimulatedCmdTarget, we'll bring CSpaceshipFactory in line with CSpaceship, and we'll use a nested class
for the IClassFactory interface.

We can also do some factoring out inside our CSpaceship class. The QueryInterface function can be
"delegated" from the nested classes to the outer class helper function ExternalQueryInterface, which calls
ExternalAddRef. Thus, each QueryInterface function increments the reference count, but CreateInstance
calls ExternalQueryInterface, followed by a call to ExternalRelease. When the first interface pointer is
returned by CreateInstance, the spaceship object has a reference count of 1. A subsequent QueryInterface
call increments the count to 2, and in this case, the client must call Release twice to destroy the spaceship
object.

One last thing—we'll make the class factory object a global object. That way we won't have to call its
constructor. When the client calls Release, there isn't a problem because the class factory's reference
count is 2 by the time the client receives it. (The CSpaceshipFactory constructor sets the reference count
to 1, and ExternalQueryInterface, called by GetClassObject, sets the count to 2.)

The EX24A Example—A Simulated COM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX24A Example—A Simulated COM

Figures 24-1, 24-2, 24-3, and 24-4 show code for a working "simulated COM" program, EX24A. This is a
Win32 Console Application (without the MFC library) that uses a class factory to construct an object of
class CSpaceship, calls its interface functions, and then releases the spaceship. The Interface.h header file,
shown in Figure 24-1, contains the CSimulatedCmdTarget base class and the interface declarations that
are used by both the client and component programs. The Spaceship.h header file shown in Figure 24-2
contains the spaceship-specific class declarations that are used in the component program. Spaceship.cpp,
shown in Figure 24-3, is the component that implements GetClassObject; Client.cpp, shown in Figure 24-4,
is the client that calls GetClassObject. What's phony here is that both client and component code are linked
within the same ex24a.exe program. Thus, our simulated COM is not required to make the connection at
runtime. (You'll see how that's done later in this chapter.)

INTERFACE.H

// definitions that make our code look like MFC code
#define BOOL int
#define DWORD unsigned int
#define TRUE 1
#define FALSE 0
#define TRACE printf
#define ASSERT assert
//----------definitions and macros-----------------------------------
#define CLSID_CSpaceship 10
#define IID_IUnknown 0
#define IID_IClassFactory 1
#define IID_IMotion 2
#define IID_IVisual 3
// this macro for 16-bit Windows only
#define METHOD_PROLOGUE(theClass, localClass) \
 theClass* pThis = ((theClass*)((char*)(this) - \
 offsetof(theClass, m_x##localClass))); \

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj);

//----------interface declarations-----------------------------------
struct IUnknown
{
 IUnknown() { TRACE("Entering IUnknown ctor %p\n", this); }
 virtual BOOL QueryInterface(int nIid, void** ppvObj) = 0;
 virtual DWORD Release() = 0;
 virtual DWORD AddRef() = 0;
};

struct IClassFactory : public IUnknown
{
 IClassFactory()
 { TRACE("Entering IClassFactory ctor %p\n", this); }
 virtual BOOL CreateInstance(int nIid, void** ppvObj) = 0;
};

struct IMotion : public IUnknown
{
 IMotion() { TRACE("Entering IMotion ctor %p\n", this); }
 virtual void Fly() = 0; // pure
 virtual int& GetPosition() = 0;
};
struct IVisual : public IUnknown
{
 IVisual() { TRACE("Entering IVisual ctor %p\n", this); }
 virtual void Display() = 0;
};

class CSimulatedCmdTarget // `simulated' CSimulatedCmdTarget

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class CSimulatedCmdTarget // `simulated' CSimulatedCmdTarget
{
public:
 DWORD m_dwRef;

protected:
 CSimulatedCmdTarget() {
 TRACE("Entering CSimulatedCmdTarget ctor %p\n", this);
 m_dwRef = 1; // implied first AddRef
 }
 virtual ~CSimulatedCmdTarget()
 { TRACE("Entering CSimulatedCmdTarget dtor %p\n", this); }
 DWORD ExternalRelease() {
 TRACE("Entering CSimulatedCmdTarget::ExternalRelease--RefCount = \
 %ld\n", m_dwRef);
 if (m_dwRef == 0)
 return 0;
 if(--m_dwRef == 0L) {
 TRACE("deleting\n");
 delete this;
 return 0;
 }
 return m_dwRef;
 }
 DWORD ExternalAddRef() { return ++m_dwRef; }
};

Figure 24-1. The Interface.h file.

SPACESHIP.H

class CSpaceship;

//----------class declarations---
class CSpaceshipFactory : public CSimulatedCmdTarget
{
public:
 CSpaceshipFactory()
 { TRACE("Entering CSpaceshipFactory ctor %p\n", this); }
 ~CSpaceshipFactory()
 { TRACE("Entering CSpaceshipFactory dtor %p\n", this); }
 BOOL ExternalQueryInterface(int lRid, void** ppvObj);
 class XClassFactory : public IClassFactory
 {
 public:
 XClassFactory()
 { TRACE("Entering XClassFactory ctor %p\n", this); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual BOOL CreateInstance(int lRid, void** ppvObj);
 } m_xClassFactory;
 friend class XClassFactory;
};
class CSpaceship : public CSimulatedCmdTarget
{
private:
 int m_nPosition; // We can access these from
 // all the interfaces
 int m_nAcceleration;
 int m_nColor;
public:
 CSpaceship() {
 TRACE("Entering CSpaceship ctor %p\n", this);
 m_nPosition = 100;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_nPosition = 100;
 m_nAcceleration = 101;
 m_nColor = 102;
 }
 ~CSpaceship()
 { TRACE("Entering CSpaceship dtor %p\n", this); }
 BOOL ExternalQueryInterface(int lRid, void** ppvObj);
 class XMotion : public IMotion
 {
 public:
 XMotion()
 { TRACE("Entering XMotion ctor %p\n", this); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual void Fly();
 virtual int& GetPosition();
 } m_xMotion;

class XVisual : public IVisual
 {
 public:
 XVisual() { TRACE("Entering XVisual ctor\n"); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual void Display();
 } m_xVisual;

 friend class XVisual; // These must be at the bottom!
 friend class XMotion;
 friend class CSpaceshipFactory::XClassFactory;
};

Figure 24-2. The Spaceship.h file.

SPACESHIP.CPP

#include <stdio.h>
#include <stddef.h> // for offsetof in METHOD_PROLOGUE
#include <ASSERT.h>
#include "Interface.h"
#include "Spaceship.h"

CSpaceshipFactory g_factory;

//----------member functions---
BOOL CSpaceshipFactory::ExternalQueryInterface(int nIid,
 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::ExternalQueryInterface--nIid = \
 %d\n", nIid);
 switch (nIid) {
 case IID_IUnknown:
 case IID_IClassFactory:
 *ppvObj = &m_xClassFactory;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 ExternalAddRef();
 return TRUE;
}
BOOL CSpaceshipFactory::XClassFactory::QueryInterface(int nIid,
 void** ppvObj) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::XClassFactory::\
 QueryInterface--nIid = %d\n", nIid);
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->
 ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceshipFactory
}

BOOL CSpaceshipFactory::XClassFactory::CreateInstance(int nIid,
 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::XClassFactory::CreateInstance\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 CSpaceship* pObj = new CSpaceship();
 if (pObj->ExternalQueryInterface(nIid, ppvObj)) {
 pObj->ExternalRelease(); // balance reference count
 return TRUE;
 }
 return FALSE;
}

DWORD CSpaceshipFactory::XClassFactory::Release() {
 TRACE("Entering CSpaceshipFactory::XClassFactory::Release\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}

DWORD CSpaceshipFactory::XClassFactory::AddRef() {
 TRACE("Entering CSpaceshipFactory::XClassFactory::AddRef\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}

BOOL CSpaceship::ExternalQueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::ExternalQueryInterface--nIid =
 %d\n", nIid);
 switch (nIid) {
 case IID_IUnknown:
 case IID_IMotion:
 *ppvObj = &m_xMotion; // Both IMotion and IVisual are derived
 break; // from IUnknown, so either pointer will do
 case IID_IVisual:
 *ppvObj = &m_xVisual;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 ExternalAddRef();
 return TRUE;
}

BOOL CSpaceship::XMotion::QueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::XMotion::QueryInterface--nIid = \
 %d\n", nIid);
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceship
}

DWORD CSpaceship::XMotion::Release() {
 TRACE("Entering CSpaceship::XMotion::Release\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}

DWORD CSpaceship::XMotion::AddRef() {
 TRACE("Entering CSpaceship::XMotion::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}

void CSpaceship::XMotion::Fly() {
 TRACE("Entering CSpaceship::XMotion::Fly\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
}

int& CSpaceship::XMotion::GetPosition() {
 TRACE("Entering CSpaceship::XMotion::GetPosition\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return pThis->m_nPosition;
}

BOOL CSpaceship::XVisual::QueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::XVisual::QueryInterface--nIid = \
 %d\n", nIid);
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceship
}

DWORD CSpaceship::XVisual::Release() {
 TRACE("Entering CSpaceship::XVisual::Release\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}

DWORD CSpaceship::XVisual::AddRef() {
 TRACE("Entering CSpaceship::XVisual::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}

void CSpaceship::XVisual::Display() {
 TRACE("Entering CSpaceship::XVisual::Display\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nColor = %d\n", pThis->m_nColor);
}

//----------simulates COM component -----------------------------------
// In real COM, this would be DllGetClassObject, which would be called
// whenever a client called CoGetClassObject

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 ASSERT((nIid == IID_IUnknown) || (nIid == IID_IClassFactory));
 return g_factory.ExternalQueryInterface(nIid, ppvObj);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return g_factory.ExternalQueryInterface(nIid, ppvObj);
 // Refcount is 2, which prevents accidental deletion
}

Figure 24-3. The Spaceship.cpp file.

CLIENT.CPP

#include <stdio.h>
#include <stddef.h> // for offsetof in METHOD_PROLOGUE
#include <assert.h>
#include "interface.h"

//----------main program---
int main() // simulates OLE client program
{
 TRACE("Entering client main\n");
 IUnknown* pUnk; // If you declare these void*, you lose type-safety
 IMotion* pMot;
 IVisual* pVis;
 IClassFactory* pClf;

 GetClassObject(CLSID_CSpaceship, IID_IClassFactory,
 (void**) &pClf);

 pClf->CreateInstance(IID_IUnknown, (void**) &pUnk);
 pUnk->QueryInterface(IID_IMotion, (void**) &pMot); // All three
 pMot->QueryInterface(IID_IVisual, (void**) &pVis); // pointers
 // should work

 TRACE("main: pUnk = %p, pMot = %p, pDis = %p\n", pUnk, pMot, pVis);

 // Test all the interface virtual functions
 pMot->Fly();
 int nPos = pMot->GetPosition();
 TRACE("nPos = %d\n", nPos);
 pVis->Display();

 pClf->Release();
 pUnk->Release();
 pMot->Release();
 pVis->Release();
 return 0;
}

Figure 24-4. The Client.cpp file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Real COM with the MFC Library
So much for simulations. Now we'll get ready to convert the spaceship example to genuine COM. You need
to acquire a little more knowledge before we start, though. First you must learn about the
CoGetClassObject function, then you must learn how COM uses the Windows Registry to load the
component, and then you have to understand the difference between an in-process component (a DLL)
and an out-of-process component (an EXE or a DLL running as a surrogate). Finally, you must become
familiar with the MFC macros that support nested classes.

The net result will be an MFC regular DLL component that contains all the CSpaceship code with the
IMotion and IVisual interfaces. A regular MFC library Windows application acts as the client. It loads and
runs the component when the user selects a menu item.

The COM CoGetClassObject Function

In our simulation, we used a phony function named GetClassObject. In real COM, we use the global
CoGetClassObject function. (Co stands for "component object.") Compare the following prototype to the
GetClassObject function you've seen already:

STDAPI CoGetClassObject(REFCLSID rclsid, DWORD dwClsContext,
 COSERVERINFO* pServerInfo, REFIID riid, LPVOID* ppvObj)
The interface pointer goes in the ppvObj parameter, and pServerInfo is a pointer to a machine on which
the class object is instantiated (NULL if the machine is local). The types REFCLSID and REFIID are
references to 128-bit GUIDs (globally unique identifiers for COM classes and interfaces). STDAPI indicates
that the function returns a 32-bit value of type HRESULT.

The standard GUIDs (for example, those GUIDs naming interfaces that Microsoft has already created) are
defined in the Windows libraries that are dynamically linked to your program. GUIDs for custom classes
and interfaces, such as those for spaceship objects, must be defined in your program in this way:

// {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IMotion =
 {0x692d03a4, 0xc689, 0x11ce, {0xb3, 0x37, 0x88, 0xea, 0x36,
 0xde, 0x9e, 0x4e}};
If the dwClsContext parameter is CLSCTX_INPROC_SERVER, the COM subsytem looks for a DLL. If the
parameter is CLSCTX_LOCAL_SERVER, COM looks for an EXE. The two codes can be combined to select
either a DLL or an EXE—selected in order of performance. For example, inproc servers are fastest because
everybody shares the same address space. Communication EXE servers are considerably slower because
the interprocess calls involve data copying as well as many thread context switches. The return value is an
HRESULT value, which is 0 (NOERROR) if no error occurs.

Another COM function, CoCreateInstance, combines the functionality of
CoGetClassObject and IClassFactory::CreateInstance.

COM and the Windows Registry

In the EX24A example, the component was statically linked to the client, a clearly bogus circumstance. In
real COM, the component is either a DLL or a separate EXE. When the client calls the CoGetClassObject
function, COM steps in and finds the correct component, which is located somewhere on disk. How does
COM make the connection? It looks up the class's unique 128-bit class ID number in the Windows Registry.
Thus, the class must be registered permanently on your computer.

If you run the Windows Regedit program (Regedt32 in Microsoft Windows NT 3.51), you'll see a screen
similar to the one shown in Figure 24-5. This figure shows subfolders for four class IDs, three of which are
class IDs associated with DLLs (InprocServer32) and one of which is a class ID associated with an EXE
(LocalServer32). The CoGetClassObject function looks up the class ID in the Registry and then loads the
DLL or EXE as required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DLL or EXE as required.

What if you don't want to track those ugly class ID numbers in your client program? No problem. COM
supports another type of registration database entry that translates a human-readable program ID into the
corresponding class ID. Figure 24-6 shows the Registry entries. The COM function CLSIDFromProgID reads
the database and performs the translation.

Figure 24-5. Subfolders of four class IDs in the Registry.

Figure 24-6. Human-readable program IDs in the Registry.

The first CLSIDFromProgID parameter is a string that holds the program ID, but it's not
an ordinary string. This is your first exposure to double-byte characters in COM. All
string parameters of COM functions (except Data Access Objects [DAOs]) are Unicode
character string pointers of type OLECHAR*. Your life is going to be made miserable
because of the constant need to convert between double-byte strings and ordinary
strings. If you need a double-byte literal string, prefix the string with an L character,

like this:

CLSIDFromProgID(L"Spaceship", &clsid);
You'll begin learning about the MFC library's Unicode string conversion capabilities in
Chapter 25.

How does the registration information get into the Registry? You can program your component application
to call Windows functions that directly update the Registry. The MFC library conveniently wraps these
functions with the function COleObjectFactory::UpdateRegistryAll, which finds all your program's global
class factory objects and registers their names and class IDs.

Runtime Object Registration

You've just seen how the Windows Registry registers COM classes on disk. Class factory objects also must

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You've just seen how the Windows Registry registers COM classes on disk. Class factory objects also must
be registered. It's unfortunate that the word "register" is used in both contexts. Objects in out-of-process
component modules are registered at runtime with a call to the COM CoRegisterClassObject function, and
the registration information is maintained in memory by the Windows DLLs. If the factory is registered in a
mode that permits a single instance of the component module to create multiple COM objects, COM can
use an existing process when a client calls CoGetClassObject.

How a COM Client Calls an In-Process Component

We're beginning with a DLL component instead of an EXE component because the program interactions are
simpler. I'll show pseudocode here because you're going to be using the MFC library classes, which hide
much of the detail.

Client

CLSID clsid;
IClassFactory* pClf;
IUnknown* pUnk;
CoInitialize(NULL); // Initialize COM
CLSIDFromProgID("componentname", &clsid);

COM

COM uses the Registry to look up the class ID from "componentname"

Client

CoGetClassObject(clsid, CLSCTX_INPROC_SERVER, NULL,
 IID_IClassFactory, (void**) &pClf);

COM

COM uses the class ID to look for a component in memory
if (component DLL is not loaded already) {
 COM gets DLL filename from the Registry
 COM loads the component DLL into process memory
}

DLL Component

if (component just loaded) {
 Global factory objects are constructed
 DLL's InitInstance called (MFC only)
}

COM

COM calls DLL's global exported DllGetClassObject with the CLSID
 value that was passed to CoGetClassObject

DLL Component

DllGetClassObject returns IClassFactory*

COM

COM returns IClassFactory* to client

Client

pClf->CreateInstance (NULL, IID_IUnknown, (void**) &pUnk);

DLL Component

Class factory's CreateInstance function called (called directly—through
 component's vtable)
Constructs object of "componentname" class
Returns requested interface pointer

Client

pClf->Release();
pUnk->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DLL Component

"componentname" Release is called through vtable
 if (refcount == 0) {
 Object destroys itself
}

Client

CoFreeUnusedLibraries();

COM

COM calls DLL's global exported DllCanUnloadNow

DLL Component

DllCanUnloadNow called if (all DLL's objects destroyed) {
 return TRUE
}

Client

CoUninitialize(); // COM frees the DLL if DllCanUnloadNow returns
 TRUE just prior to exit

COM

COM releases resources

Client

Client exits

DLL Component

Windows unloads the DLL if it is still loaded and no other programs are using it

Some important points to note: first, the DLL's exported DllGetClassObject function is called in response to
the client's CoGetClassObject call. Second, the class factory interface address returned is the actual
physical address of the class factory vtable pointer in the DLL. Third, when the client calls CreateInstance,
or any other interface function, the call is direct (through the component's vtable).

The COM linkage between a client EXE and a component DLL is quite efficient—as efficient as the linkage to
any C++ virtual function in the same process, plus the full C++ parameter and return type-checking at
compile time. The only penalty for using ordinary DLL linkage is the extra step of looking up the class ID in
the Registry when the DLL is first loaded.

How a COM Client Calls an Out-of-Process Component

The COM linkage to a separate EXE component is more complicated than the linkage to a DLL component.
The EXE component is in a different process, or possibly on a different computer. Don't worry, though.
Write your programs as if a direct connection existed. COM takes care of the details through its remoting
architecture, which usually involves Remote Procedure Calls (RPCs).

In an RPC, the client makes calls to a special DLL called a proxy. The proxy sends a stream of data to a
stub, which is inside a DLL in the component's process. When the client calls a component function, the
proxy alerts the stub by sending a message to the component program, which is processed by a hidden
window. The mechanism of converting parameters to and from data streams is called marshaling.

If you use standard interfaces (those interfaces defined by Microsoft) such as IClassFactory and IPersist
(an interface we haven't seen yet but will appear when we examine COM persistence), the proxy and stub
code, which implements marshaling, is provided by the Windows OLE32 DLL. If you invent your own
interfaces, such as IMotion and IVisual, you need to write the proxies and stubs yourself. Fortunately,
creating proxy and stub classes only involves defining your interfaces in Interface Definition Language
(IDL) and compiling the code produced by the Microsoft Interface Definition Language (MIDL) compiler.

Here's the pseudocode interaction between an EXE client and an EXE component. Compare it to the DLL
version found above. Notice that the client-side calls are exactly the same.

Client

CLSID clsid;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLSID clsid;
IClassFactory* pClf;
IUnknown* pUnk;
CoInitialize(NULL); // Initialize COM
CLSIDFromProgID("componentname", &clsid);

COM

COM uses the Registry to look up the class ID from "componentname"

Client

CoGetClassObject(clsid, CLSCTX_LOCAL_SERVER, NULL,
 IID_IClassFactory, (void**) &pClf);

COM

COM uses the class ID to look for a component in memory
 if (component EXE is not loaded already, or
 if we need another instance) {
 COM gets EXE filename from the Registry
 COM loads the component EXE
}

EXE Component

if (just loaded) {
 Global factory objects are constructed
 InitInstance called (MFC only)
 CoInitialize(NULL);
 for each factory object {
 CoRegisterClassObject(...);
 Returns IClassFactory* to COM
 }
 }

COM

COM returns the requested interface pointer to the client
 (client's pointer is not the same as the component's interface pointer)

Client

pClf->CreateInstance(NULL, IID_IUnknown, (void**) &pUnk);

EXE Component

Class factory's CreateInstance function called
 (called indirectly through marshaling)
 Constructs object of "componentname" class
 Returns requested interface pointer indirectly

Client

pClf->Release();
pUnk->Release();

EXE Component

"componentname" Release is called indirectly
if (refcount == 0) {
 Object destroys itself
}
if (all objects released) {
 Component exits gracefully
}

Client

CoUninitialize(); // just prior to exit

COM

COM calls Release for any objects this client has failed to release

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM calls Release for any objects this client has failed to release

EXE Component

Component exits

COM

COM releases resources

Client

Client exits

As you can see, COM plays an important role in the communication between the client and the component.
COM keeps an in-memory list of class factories that are in active EXE components, but it does not keep
track of individual COM objects such as the CSpaceship object. Individual COM objects are responsible for
updating the reference count and for destroying themselves through the AddRef/Release mechanism. COM
does step in when a client exits. If that client is using an out-of-process component, COM "listens in" on
the communication and keeps track of the reference count on each object. COM disconnects from
component objects when the client exits. Under certain circumstances, this causes those objects to be
released. Don't depend on this behavior, however. Be sure that your client program releases all its
interface pointers prior to exiting.

The MFC Interface Macros

In EX24A, you saw nested classes used for interface implementation. The MFC library has a set of macros
that automate this process. For the CSpaceship class, derived from the real MFC CCmdTarget class, you
use the macros shown here inside the declaration.

BEGIN_INTERFACE_PART(Motion, IMotion)
 STDMETHOD_(void, Fly) ();
 STDMETHOD_(int&, GetPosition) ();
END_INTERFACE_PART(Motion)

BEGIN_INTERFACE_PART(Visual, IVisual)
 STDMETHOD_(void, Display) ();
END_INTERFACE_PART(Visual)

DECLARE_INTERFACE_MAP()
The INTERFACE_PART macros generate the nested classes, adding X to the first parameter to form the
class name and adding m_x to form the embedded object name. The macros generate prototypes for the
specified interface functions plus prototypes for QueryInterface, AddRef, and Release.

The DECLARE_INTERFACE_MAP macro generates the declarations for a table that holds the IDs of all the
class's interfaces. The CCmdTarget::ExternalQueryInterface function uses the table to retrieve the
interface pointers.

In the CSpaceship implementation file, use the following macros:

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
 INTERFACE_PART(CSpaceship, IID_IMotion, Motion)
 INTERFACE_PART(CSpaceship, IID_IVisual, Visual)
END_INTERFACE_MAP()
These macros build the interface table used by CCmdTarget::ExternalQueryInterface. A typical interface
member function looks like this:

STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
{
 METHOD_PROLOGUE(CSpaceship, Motion)
 pThis->m_nPosition += 10;
 return;
}
Don't forget that you must implement all the functions for each interface, including QueryInterface,
AddRef, and Release. Those three functions can delegate to functions in CCmdTarget.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The STDMETHOD_ and STDMETHODIMP_ macros declare and implement functions with
the __stdcall parameter passing convention, as required by COM. These macros allow
you to specify the return value as the first parameter. Two other macros, STDMETHOD
and STDMETHODIMP, assume an HRESULT return value.

The MFC COleObjectFactory Class

In the simulated COM example, you saw a CSpaceshipFactory class that was hard-coded to generate
CSpaceship objects. The MFC library applies its dynamic creation technology to the problem. Thus, a single
class, aptly named COleObjectFactory, can create objects of any class specified at runtime. All you need to
do is use macros like these in the class declaration:

DECLARE_DYNCREATE(CSpaceship)
DECLARE_OLECREATE(CSpaceship)
And use macros like these in the implementation file:

IMPLEMENT_DYNCREATE(CSpaceship, CCmdTarget)
// {692D03A3-C689-11CE-B337-88EA36DE9E4E}
IMPLEMENT_OLECREATE(CSpaceship, "Spaceship", 0x692d03a3, 0xc689, 0x11ce,
 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e)
The DYNCREATE macros set up the standard dynamic creation mechanism as described in Appendix B. The
OLECREATE macros declare and define a global object of class COleObjectFactory with the specified unique
CLSID. In a DLL component, the exported DllGetClassObject function finds the specified class factory
object and returns a pointer to it based on global variables set by the OLECREATE macros. In an EXE
component, initialization code calls the static COleObjectFactory::RegisterAll, which finds all factory objects
and registers each one by calling CoRegisterClassObject. The RegisterAll function is called also when a DLL
is initialized. In that case, it merely sets a flag in the factory object(s).

We've really just scratched the surface of MFC's COM support. If you need more details, be sure to refer to
Shepherd and Wingo's MFC Internals (Addison-Wesley, 1996).

AppWizard/ClassWizard Support for COM In-Process Components

AppWizard isn't optimized for creating COM DLL components, but you can fool it by requesting a regular
DLL with Automation support. The following functions in the project's main source file are of interest:

BOOL CEx24bApp::InitInstance()
{
 COleObjectFactory::RegisterAll();
 return TRUE;
}

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllGetClassObject(rclsid, riid, ppv);
}

STDAPI DllCanUnloadNow(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModule_State());
 return AfxDllCanUnloadNow();
}

STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 COleObjectFactory::UpdateRegistryAll();
 return S_OK;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The three global functions are exported in the project's DEF file. By calling MFC functions, the global
functions do everything you need in a COM in-process component. The DllRegisterServer function can be
called by a utility program to update the system Registry.

Once you've created the skeleton project, your next step is to use ClassWizard to add one or more COM-
creatable classes to the project. Just fill in the New Class dialog box, as shown here.

In your generated class, you end up with some Automation elements such as dispatch maps, but you can
safely remove those. You can also remove the following two lines from StdAfx.h:

#include <afxodlgs.h>
#include <afxdisp.h>

MFC COM Client Programs

Writing an MFC COM client program is a no-brainer. You just use AppWizard to generate a normal
application. Add the following line in StdAfx.h:

#include <afxole.h>
Then add the following line at the beginning of the application class InitInstance member function:

AfxOleInit();
You're now ready to add code that calls CoGetClassObject.

The EX24B Example—An MFC COM In-Process Component

The EX24B example is an MFC regular DLL that incorporates a true COM version of the CSpaceship class
you saw in EX24A. AppWizard generated the ex24b.cpp and ex24b.h files, as described previously. Figure
24-7 shows the Interface.h file, which declares the IMotion and IVisual interfaces. Figures 24-8 and 24-9
show the code for the CSpaceship class. Compare the code to the code in EX24A. Do you see how the use
of the MFC macros reduces code size? Note that the MFC CCmdTarget class takes care of the reference
counting and QueryInterface logic.

INTERFACE.H

struct IMotion : public IUnknown
{
 STDMETHOD_(void, Fly) () = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STDMETHOD_(void, Fly) () = 0;
 STDMETHOD_(int&, GetPosition) () = 0;
};

struct IVisual : public IUnknown
{
 STDMETHOD_(void, Display) () = 0;
};

Figure 24-7. The Interface.h file. ,

SPACESHIP.H

void ITrace(REFIID iid, const char* str);

//
// CSpaceship command target

class CSpaceship : public CCmdTarget
{
 DECLARE_DYNCREATE(CSpaceship)

private:
 int m_nPosition; // We can access this from all the interfaces
 int m_nAcceleration;
 int m_nColor;
protected:
 CSpaceship(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSpaceship)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CSpaceship();

 // Generated message map functions
 //{{AFX_MSG(CSpaceship)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CSpaceship)
 BEGIN_INTERFACE_PART(Motion, IMotion)
 STDMETHOD_(void, Fly) ();

 STDMETHOD_(int&, GetPosition) ();
 END_INTERFACE_PART(Motion)

 BEGIN_INTERFACE_PART(Visual, IVisual)
 STDMETHOD_(void, Display) ();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STDMETHOD_(void, Display) ();
 END_INTERFACE_PART(Visual)

 DECLARE_INTERFACE_MAP()
};
//

Figure 24-8. The Spaceship.h file.

SPACESHIP.CPP

#include "stdAfx.h"
#include "ex24b.h"
#include "Interface.h"
#include "Spaceship.h"

#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif
//
// CSpaceship

// {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IMotion =
{ 0x692d03a4, 0xc689, 0x11ce,
 { 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e } };

// {692D03A5-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IVisual =
{ 0x692d03a5, 0xc689, 0x11ce,
 { 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e } };

IMPLEMENT_DYNCREATE(CSpaceship, CCmdTarget)
CSpaceship::CSpaceship()
{
 TRACE("CSpaceship ctor\n");
 m_nPosition = 100;
 m_nAcceleration = 101;
 m_nColor = 102;
 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 AfxOleLockApp();
}

CSpaceship::~CSpaceship()
{
 TRACE("CSpaceship dtor\n");
 // To terminate the application when all objects created with
 // OLE automation, the destructor calls AfxOleUnlockApp.

 AfxOleUnlockApp();
}
void CSpaceship::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. This implementation deletes the
 // object. Add additional cleanup required for your object before
 // deleting it from memory.

 delete this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delete this;
}
BEGIN_MESSAGE_MAP(CSpaceship, CCmdTarget)
 //{{AFX_MSG_MAP(CSpaceship)
 // NOTE - ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
 INTERFACE_PART(CSpaceship, IID_IMotion, Motion)
 INTERFACE_PART(CSpaceship, IID_IVisual, Visual)
END_INTERFACE_MAP()

// {692D03A3-C689-11CE-B337-88EA36DE9E4E}
IMPLEMENT_OLECREATE(CSpaceship, "Spaceship", 0x692d03a3, 0xc689,
 0x11ce, 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde,
 0x9e, 0x4e)
STDMETHODIMP_(ULONG) CSpaceship::XMotion::AddRef()
{
 TRACE("CSpaceship::XMotion::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CSpaceship::XMotion::Release()
{
 TRACE("CSpaceship::XMotion::Release\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalRelease();
}

STDMETHODIMP CSpaceship::XMotion::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CSpaceship::XMotion::QueryInterface");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}
STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
{
 TRACE("CSpaceship::XMotion::Fly\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return;
}

STDMETHODIMP_(int&) CSpaceship::XMotion::GetPosition()
{
 TRACE("CSpaceship::XMotion::GetPosition\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return pThis->m_nPosition;
}

//
STDMETHODIMP_(ULONG) CSpaceship::XVisual::AddRef()
{
 TRACE("CSpaceship::XVisual::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Visual)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CSpaceship::XVisual::Release()
{
 TRACE("CSpaceship::XVisual::Release\n");
 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalRelease();
}

STDMETHODIMP CSpaceship::XVisual::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CSpaceship::XVisual::QueryInterface");

 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}
STDMETHODIMP_(void) CSpaceship::XVisual::Display()
{
 TRACE("CSpaceship::XVisual::Display\n");
 METHOD_PROLOGUE(CSpaceship, Visual)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nColor = %d\n", pThis->m_nColor);
}

//
void ITrace(REFIID iid, const char* str)
{
 OLECHAR* lpszIID;
 ::StringFromIID(iid, &lpszIID);
 CString strTemp = (LPCWSTR) lpszIID;
 TRACE("%s - %s\n", (const char*) strTemp, (const char*) str);
 AfxFreeTaskMem(lpszIID);
}

//
// CSpaceship message handlers

Figure 24-9. The Spaceship.cpp file.

The EX24C Example—An MFC COM Client

The EX24C example is an MFC program that incorporates a true COM version of the client code you saw in
EX24A. This is a generic AppWizard MFC Single Document Interface (SDI) EXE program with an added
#include statement for the MFC COM headers and a call to AfxOleInit, which initializes the DLL. A
Spaceship option on an added Test menu is mapped to the view class handler function shown in Figure 24-
10. The project also contains a copy of the EX24B component's Interface.h file, shown in Figure 24-7. You
can see an #include statement for this file at the top of ex24cView.cpp.

void CEx24cView::OnTestSpaceship()
{
 CLSID clsid;
 LPCLASSFACTORY pClf;
 LPUNKNOWN pUnk;
 IMotion* pMot;
 IVisual* pVis;

 HRESULT hr;
 if ((hr = ::CLSIDFromProgID(L"Spaceship", &clsid)) != NOERROR) {
 TRACE("unable to find Program ID -- error = %x\n", hr);
 return;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 if ((hr = ::CoGetClassObject(clsid, CLSCTX_INPROC_SERVER,
 NULL, IID_IClassFactory, (void **) &pClf)) != NOERROR) {;
 TRACE("unable to find CLSID -- error = %x\n", hr);
 return;
 }

 pClf->CreateInstance(NULL, IID_IUnknown, (void**) &pUnk);
 pUnk->QueryInterface(IID_IMotion, (void**) &pMot); // All three
 pMot->QueryInterface(IID_IVisual, (void**) &pVis); // pointers
 // should work
 TRACE("main: pUnk = %p, pMot = %p, pDis = %p\n", pUnk, pMot, pVis);

 // Test all the interface virtual functions
 pMot->Fly();
 int nPos = pMot->GetPosition();
 TRACE("nPos = %d\n", nPos);
 pVis->Display();

 pClf->Release();
 pUnk->Release();
 pMot->Release();
 pVis->Release();
 AfxMessageBox("Test succeeded. See Debug window for output.");
}

Figure 24-10. The client's command handler that loads and tests the CSpaceship component.

To test the client and the component, you must first run the component to update the Registry. Several
utilities can be used to do this, but you might want to try the REGCOMP program in the \vcpp32\RegComp
project on the companion CD-ROM. This program prompts you to select a DLL or an OCX file, and then it
calls the exported DllRegisterServer function.

Both client and component show their progress through TRACE calls, so you need the debugger. You can
run either the client or the component from the debugger. If you try to run the component, you'll be
prompted for the client pathname. In either case, you don't have to copy the DLL because Windows finds it
through the Registry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Containment and Aggregation vs. Inheritance
In normal C++ programming, you frequently use inheritance to factor out common behavior into a
reusable base class. The CPersistentFrame class (discussed in Chapter 15) is an example of reusability
through inheritance.

COM uses containment and aggregation instead of inheritance. Let's start with containment. Suppose you
extended the spaceship simulation to include planets in addition to spaceships. Using C++ by itself, you
would probably write a COrbiter base class that encapsulated the laws of planetary motion. With COM, you
would have "outer" CSpaceship and CPlanet classes plus an "inner" COrbiter class. The outer classes would
implement the IVisual interface directly, but those outer classes would delegate their IMotion interfaces to
the inner class. The result would look something like this.

Note that the COrbiter object doesn't know that it's inside a CSpaceship or CPlanet object, but the outer
object certainly knows that it has a COrbiter object embedded inside. The outer class needs to implement
all its interface functions, but the IMotion functions, including QueryInterface, simply call the same IMotion
functions of the inner class.

A more complex alternative to containment is aggregation. With aggregation, the client can have direct
access to the inner object's interfaces. Shown here is the aggregation version of the space simulation.

The orbiter is embedded in the spaceship and planet, just as it was in the containment case. Suppose the
client obtains an IVisual pointer for a spaceship and then calls QueryInterface for an IMotion pointer. Using
the outer IUnknown pointer will draw a blank because the CSpaceship class doesn't support IMotion. The
CSpaceship class keeps track of the inner IUnknown pointer (of its embedded COrbiter object), so the class
uses that pointer to obtain the IMotion pointer for the COrbiter object.

Now suppose the client obtains an IMotion pointer and then calls QueryInterface for IVisual. The inner
object must be able to navigate to the outer object, but how? Take a close look at the CreateInstance call
back in Figure 24-10. The first parameter is set to NULL in that case. If you are creating an aggregated
(inner) object, you use that parameter to pass an IUnknown pointer for the outer object that you have
already created. This pointer is called the controlling unknown. The COrbiter class saves this pointer in a
data member and then uses it to call QueryInterface for interfaces that the class itself doesn't support.

The MFC library supports aggregation. The CCmdTarget class has a public data member
m_pOuterUnknown that holds the outer object's IUnknown pointer (if the object is aggregated). The
CCmdTarget member functions ExternalQueryInterface, ExternalAddRef, and ExternalRelease delegate to
the outer IUnknown if it exists. Member functions InternalQueryInterface, InternalAddRef, and
InternalRelease do not delegate. See Technical Note #38 in the online documentation for a description of
the MFC macros that support aggregation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 25
Automation
After reading Chapter 24, you should know what an interface is; you've already seen two standard COM
interfaces, IUnknown and IClassFactory. Now you're ready for "applied" COM, or at least one aspect of it—
Automation (formerly known as OLE Automation). You'll learn about the COM IDispatch interface, which
enables C++ programs to communicate with Microsoft Visual Basic for Applications (VBA) programs and
with programs written in other scripting languages. In addition, IDispatch is the key to getting your COM
object onto a Web page. You'll use the MFC library implementation of IDispatch to write C++ Automation
component and client programs. Both out-of-process components and in-process components are
explored.

But before jumping into C++ Automation programming, you need to know how the rest of the world writes
programs. In this chapter, you'll get some exposure to VBA as it is implemented in Microsoft Excel. You'll
run your C++ components from Excel, and you'll run Excel from a C++ client program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Connecting C++ with Visual Basic for Applications
Not all programmers for Microsoft Windows-based applications are going to be C++ programmers,
especially if they have to learn the intricacies of COM theory. If you've been paying attention over the last
few years, you've probably noticed a trend in which C++ programmers produce reusable modules.
Programmers using higher-level languages (Visual Basic, VBA, and Web scripting languages, for example)
consume those modules by integrating them into applications. You can participate in this programming
model by learning how to make your software Script-friendly. Automation is one tool available now that is
supported by the Microsoft Foundation Class library. ActiveX Controls are another tool for C++/VBA
integration and are very much a superset of Automation because both tools use the IDispatch interface.
Using ActiveX Controls, however, might be overkill in many situations. Many applications, including
Microsoft Excel 97, can support both Automation components and ActiveX controls. You'll be able to apply
all that you learn about Automation when you write and use ActiveX controls.

Two factors are responsible for Automation's success. First, VBA (or VB Script) is now the programming
standard in most Microsoft applications, including Microsoft Word, Microsoft Access, and Excel, not to
mention Microsoft Visual Basic itself. All these applications support Automation, which means they can be
linked to other Automation-compatible components, including those written in C++ and VBA. For example,
you can write a C++ program that uses the text-processing capability of Word, or you can write a C++
matrix inversion component that can be called from a VBA macro in an Excel worksheet.

The second factor connected to Automation's success is that dozens of software companies provide
Automation programming interfaces for their applications, mostly for the benefit of VBA programmers.
With a little effort, you can run these applications from C++. You can, for example, write an MFC program
that controls Shapeware's Visio drawing program.

Automation isn't just for C++ and VBA programmers. Software-tool companies are already announcing
Automation-compatible, Basic-like languages that you can license for your own programmable applications.
One version of Smalltalk even supports Automation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Clients and Automation Components
A clearly defined "master-slave" relationship is always present in an Automation communication dialog. The
master is the Automation client and the slave is the Automation component (server). The client initiates
the interaction by constructing a component object (it might have to load the component program) or by
attaching to an existing object in a component program that is already running. The client then calls
interface functions in the component and releases those interfaces when it's finished.

Here are some interaction scenarios:

A C++ Automation client uses a Microsoft or third-party application as a component. The interaction
could trigger the execution of VBA code in the component application.

A C++ Automation component is used from inside a Microsoft application (or a Visual Basic
application), which acts as the Automation client. Thus, VBA code can construct and use C++
objects.

A C++ Automation client uses a C++ Automation component.

A Visual Basic program uses an Automation-aware application such as Excel. In this case, Visual
Basic is the client and Excel is the component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft Excel—A Better Visual Basic than Visual Basic
At the time that the first three editions of this book were written, Visual Basic worked as an Automation
client, but you couldn't use it to create an Automation component. Since version 5.0, Visual Basic lets you
write components too, even ActiveX controls. We originally used Excel instead of VB because Excel was the
first Microsoft application to support VBA syntax and it could serve as both a client and a component. We
decided to stick with Excel because C++ programmers who look down their noses at Visual Basic might be
inclined to buy Excel (if only to track their software royalties).

We strongly recommend that you get a copy of Excel 97 (or a later version). This is a true 32-bit
application and a part of the Microsoft Office suite. With this version of Excel, you can write VBA code in a
separate location that accesses worksheet cells in an object-oriented manner. Adding visual programming
elements—such as pushbuttons—is easy. Forget all you ever knew about the old spreadsheet programs
that forced you to wedge macro code inside cells.

This chapter isn't meant to be an Excel tutorial, but we've included a simple Excel workbook. (A workbook
is a file that can contain multiple worksheets plus separate VBA code.) This workbook demonstrates a VBA
macro that executes from a pushbutton. You can use Excel to load Demo.xls from the \vcpp32\ex25a
subdirectory, or you can key in the example from scratch. Figure 25-1 shows the actual spreadsheet with
the button and sample data.

In this spreadsheet, you highlight cells A4 through A9 and click the Process Col button. A VBA program
iterates down the column and draws a hatched pattern on cells with numeric values greater than 10.

Figure 25-2 shows the macro code itself, which is "behind" the worksheet. In Excel 97, choose Macro from
the Tools menu, and then choose Visual Basic Editor. (Alt-F11 is the shortcut.) As you can see, you're
working in the standard VBA 5.0 environment at this point.

Figure 25-1. An Excel spreadsheet that uses VBA code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-2. The VBA code for the Excel spreadsheet.

If you want to create the example yourself, follow these steps:

1. Start Excel with a new workbook, press Alt-F11, and then double-click Sheet1 in the top left
window.

2. Type in the macro code shown in Figure 25-2.

3. Return to the Excel window by choosing Close And Return To Microsoft Excel from the File menu.
Choose Toolbars from the View menu. Check Forms to display the Forms toolbar. (You can also
access the list of toolbars by right-clicking on any existing toolbar.)

4. Click the Button control, and then create the pushbutton by dragging the mouse in the upper-left
corner of the worksheet. Assign the button to the Sheet1.ProcessColumn macro.

5. Size the pushbutton, and type the caption Process Col, as shown in Figure 25-1.

6. Type some numbers in the column starting at cell A4. Select the cells containing these numbers,
and then click the button to test the program.

Pretty easy, isn't it?

Let's analyze an Excel VBA statement from the macro above:

Selection.Offset(1, 0).Range("A1").Select
The first element, Selection, is a property of an implied object, the Excel application. The Selection
property in this case is assumed to be a Range object that represents a rectangular array of cells. The
second element, Offset, is a property of the Range object that returns another Range object based on the
two parameters. In this case, the returned Range object is the one-cell range that begins one row down
from the original range. The third element, Range, is a property of the Range object that returns yet
another range. This time it's the upper-left cell in the second range. Finally, the Select method causes
Excel to highlight the selected cell and makes it the new Selection property of the application.

As the program iterates through the loop, the preceding statement moves the selected cell down the
worksheet one row at a time. This style of programming takes some getting used to, but you can't afford
to ignore it. The real value here is that you now have all the capabilities of the Excel spreadsheet and
graphics engine available to you in a seamless programming environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties, Methods, and Collections
The distinction between a property and a method is somewhat artificial. Basically, a property is a value
that can be both set and retrieved. You can, for example, set and get the Selection property for an Excel
application. Another example is Excel's Width property, which applies to many object types. Some Excel
properties are read-only; most are read/write.

Properties don't officially have parameters, but some properties are indexed. The property index acts a lot
like a parameter. It doesn't have to be an integer, and it can have more than one element (row and
column, for example). You'll find many indexed properties in Excel's object model, and Excel VBA can
handle indexed properties in Automation components.

Methods are more flexible than properties. They can have zero or many parameters, and they can either
set or retrieve object data. Most frequently they perform some action, such as showing a window. Excel's
Select method is an example of an action method.

The Excel object model supports collection objects. If you use the Worksheets property of the Application
object, you get back a Sheets collection object, which represents all the worksheets in the active
workbook. You can use the Item property (with an integer index) to get a specific Worksheet object from a
Sheets collection, or you can use an integer index directly on the collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Problem That Automation Solves
You've already learned that a COM interface is the ideal way for Windows programs to communicate with
one another, but you've also learned that designing your own COM interfaces is mostly impractical.
Automation's general-purpose interface, IDispatch, serves the needs of both C++ and VBA programmers.
As you might guess from your glimpse of Excel VBA, this interface involves objects, methods, and
properties.

You can write COM interfaces that include functions with any parameter types and return values you
specify. IMotion and IVisual, created in Chapter 24, are some examples. If you're going to let VBA
programmers in, however, you can't be fast and loose anymore. You can solve the communication problem
with one interface that has a member function smart enough to accommodate methods and properties as
defined by VBA. Needless to say, IDispatch has such a function: Invoke. You use IDispatch::Invoke for
COM objects that can be constructed and used in either C++ or VBA programs.

Now you're beginning to see what Automation does. It funnels all intermodule communication through the
IDispatch::Invoke function. How does a client first connect to its component? Because IDispatch is merely
another COM interface, all the registration logic supported by COM comes into play. Automation
components can be DLLs or EXEs, and they can be accessed over a network using distributed COM
(DCOM).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IDispatch Interface
IDispatch is the heart of Automation. It's fully supported by COM marshaling (that is, Microsoft has already
marshaled it for you), as are all the other standard COM interfaces, and it's supported well by the MFC
library. At the component end, you need a COM class with an IDispatch interface (plus the prerequisite
class factory, of course). At the client end, you use standard COM techniques to obtain an IDispatch
pointer. (As you'll see, the MFC library and the wizards take care of a lot of these details for you.)

Remember that Invoke is the principal member function of IDispatch. If you looked up IDispatch::Invoke
in the Visual C++ online documentation, you'd see a really ugly set of parameters. Don't worry about
those now. The MFC library steps in on both sides of the Invoke call, using a data-driven scheme to call
component functions based on dispatch map parameters that you define with macros.

Invoke isn't the only IDispatch member function. Another function your controller might call is
GetIDsOfNames. From the VBA programmer's point of view, properties and methods have symbolic names,
but C++ programmers prefer more efficient integer indexes. Invoke uses integers to specify properties and
methods, so GetIDsOfNames is useful at the start of a program for converting each name to a number if
you don't know the index numbers at compile time. You've already seen that IDispatch supports symbolic
names for methods. In addition, the interface supports symbolic names for a method's parameters. The
GetIDsOfNames function returns those parameter names along with the method name. Unfortunately, the
MFC IDispatch implementation doesn't support named parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Programming Choices
Suppose you're writing an Automation component in C++. You've got some choices to make. Do you want
an in-process component or an out-of-process component? What kind of user interface do you want? Does
the component need a user interface at all? Can users run your EXE component as a stand-alone
application? If the component is an EXE, will it be SDI or MDI? Can the user shut down the component
program directly?

If your component is a DLL, COM linkage will be more efficient than it would be with an EXE component
because no marshaling is required. Most of the time, your in-process Automation components won't have
their own user interfaces, except for modal dialog boxes. If you need a component that manages its own
child window, you should use an ActiveX control, and if you want to use a main frame window, use an out-
of-process component. As with any 32-bit DLL, an Automation DLL is mapped into the client's process
memory. If two client programs happen to request the same DLL, Windows loads and links the DLL twice.
Each client is unaware that the other is using the same component.

With an EXE component, however, you must be careful to distinguish between a component program and a
component object. When a client calls IClassFactory::CreateInstance to construct a component object, the
component's class factory constructs the object, but COM might or might not need to start the component
program.

Here are some scenarios:

1. The component's COM-creatable class is programmed to require a new process for each object
constructed. In this case, COM starts a new process in response to the second and subsequent
CreateInstance calls, each of which returns an IDispatch pointer.

2. Here's a special case of scenario 1 above, specific to MFC applications. The component class is an
MFC document class in an SDI application. Each time a client calls CreateInstance, a new
component process starts, complete with a document object, a view object, and an SDI main frame
window.

3. The component class is programmed to allow multiple objects in a single process. Each time a client
calls CreateInstance, a new component object is constructed. There is only one component process,
however.

4. Here's a special case of scenario 3 above, specific to MFC applications. The component class is an
MFC document class in an MDI application. There is a single component process with one MDI main
frame window. Each time a client calls CreateInstance, a new document object is constructed, along
with a view object and an MDI child frame window.

There's one more interesting case. Suppose a component EXE is running before the client needs it, and
then the client decides to access a component object that already exists. You'll see this case with Excel.
The user might have Excel running but minimized on the desktop, and the client needs access to Excel's
one and only Application object. Here the client calls the COM function GetActiveObject, which provides an
interface pointer for an existing component object. If the call fails, the client can create the object with
CoCreateInstance.

For component object deletion, normal COM rules apply. Automation objects have reference counts, and
they delete themselves when the client calls Release and the reference count goes to 0. In an MDI
component, if the Automation object is an MFC document, its destruction causes the corresponding MDI
child window to close. In an SDI component, the destruction of the document object causes the component
process to exit. The client is responsible for calling Release for each IDispatch interface before the client
exits. For EXE components, COM will intervene if the client exits without releasing an interface, thus
allowing the component process to exit. You can't always depend on this intervention, however, so be sure
that your client cleans up its interfaces!

With generic COM, a client application often obtains multiple interface pointers for a single component
object. Look back at the spaceship example in Chapter 24, in which the simulated COM component class
had both an IMotion pointer and an IVisual pointer. With Automation, however, there's usually only a
single (IDispatch) pointer per object. As in all COM programming, you must be careful to release all your
interface pointers. In Excel, for example, many properties return an IDispatch pointer to new or existing
objects. If you fail to release a pointer to an in-process COM component, the Debug version of the MFC
library alerts you with a memory-leak dump when the client program exits.

The MFC IDispatch Implementation

The component program can implement its IDispatch interface in several ways. The most common of these

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The component program can implement its IDispatch interface in several ways. The most common of these
pass off much of the work to the Windows COM DLLs by calling the COM function CreateStdDispatch or by
delegating the Invoke call to the ITypeInfo interface, which involves the component's type library. A type
library is a table, locatable through the Registry, which allows a client to query the component for the
symbolic names of objects, methods, and properties. A client could, for example, contain a browser that
allows the user to explore the component's capabilities.

The MFC library supports type libraries, but it doesn't use them in its implementation of IDispatch, which is
instead driven by a dispatch map. MFC programs don't call CreateStdDispatch at all, nor do they use a type
library to implement IDispatch::GetIDsOfNames. This means that you can't use the MFC library if you
implement a multilingual Automation component—one that supports English and German property and
method names, for example. (CreateStdDispatch doesn't support multilingual components either.)

Later in this chapter you'll learn how a client can use a type library, and you'll see how AppWizard and
ClassWizard create and maintain type libraries for you. Once your component has a type library, a client
can use it for browsing, independent of the IDispatch implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MFC Automation Component
Let's look at what happens in an MFC Automation component—in this case, a simplified version of the
EX25C alarm clock program that is discussed later in this chapter. In the MFC library, the IDispatch
implementation is part of the CCmdTarget base class, so you don't need INTERFACE_MAP macros. You
write an Automation component class—CClock, for example—derived from CCmdTarget. This class's CPP
file contains DISPATCH_MAP macros:

BEGIN_DISPATCH_MAP(CClock, CCmdTarget)
 DISP_PROPERTY(CClock, "Time", m_time, VT_DATE)
 DISP_PROPERTY_PARAM(CClock, "Figure", GetFigure,
 SetFigure, VT_VARIANT, VTS_I2)
 DISP_FUNCTION(CClock, "RefreshWin", Refresh, VT_EMPTY, VTS_NONE)
 DISP_FUNCTION(CClock, "ShowWin", ShowWin, VT_BOOL, VTS_I2)
END_DISPATCH_MAP()
Looks a little like an MFC message map, doesn't it? The CClock class header file contains related code,
shown here:

public:
 DATE m_time;
 afx_msg VARIANT GetFigure(short n);
 afx_msg void SetFigure(short n, const VARIANT& vaNew);
 afx_msg void Refresh();
 afx_msg BOOL ShowWin(short n);
 DECLARE_DISPATCH_MAP()
What does all this stuff mean? It means that the CClock class has the following properties and methods.

Name Type Description

Time Property Linked directly to class data member m_time

Figure Property Indexed property, accessed through member functions GetFigure and
SetFigure: first parameter is the index; second (for SetFigure) is the string
value (The figures are the "XII," "III," "VI," and "IX" that appear on the
clock face.)

RefreshWin Method Linked to class member function Refresh—no parameters or return value

ShowWin Method Linked to class member function ShowWin—short integer parameter,
Boolean return value

How does the MFC dispatch map relate to IDispatch and the Invoke member function? The dispatch-map
macros generate static data tables that the MFC library's Invoke implementation can read. A controller gets
an IDispatch pointer for CClock (connected through the CCmdTarget base class), and it calls Invoke with
an array of pointers as a parameter. The MFC library's implementation of Invoke, buried somewhere inside
CCmdTarget, uses the CClock dispatch map to decode the supplied pointers and either calls one of your
member functions or accesses m_time directly.

As you'll see in the examples, ClassWizard can generate the Automation component class for you and help
you code the dispatch map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MFC Automation Client Program
Let's move on to the client's end of the Automation conversation. How does an MFC Automation client
program call Invoke? The MFC library provides a base class COleDispatchDriver for this purpose. This class
has a data member, m_lpDispatch, which contains the corresponding component's IDispatch pointer. To
shield you from the complexities of the Invoke parameter sequence, COleDispatchDriver has several
member functions, including InvokeHelper, GetProperty, and SetProperty. These three functions call
Invoke for an IDispatch pointer that links to the component. The COleDispatchDriver object incorporates
the IDispatch pointer.

Let's suppose our client program has a class CClockDriver, derived from COleDispatchDriver, that drives
CClock objects in an Automation component. The functions that get and set the Time property are shown
here.

DATE CClockDriver::GetTime()
{
 DATE result;
 GetProperty(1, VT_DATE, (void*)&result);
 return result;
}

void CClockDriver::SetTime(DATE propVal)
{
 SetProperty(1, VT_DATE, propVal);
}
Here are the functions for the indexed Figure property:

VARIANT CClockDriver::GetFigure(short i)
{
 VARIANT result;
 static BYTE parms[] = VTS_I2;
 InvokeHelper(2, DISPATCH_PROPERTYGET, VT_VARIANT,
 (void*)&result, parms, i);
 return result;
}

void CClockDriver::SetFigure(short i, const VARIANT& propVal)
{
 static BYTE parms[] = VTS_I2 VTS_VARIANT;
 InvokeHelper(2, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL,
 parms, i, &propVal);
}
And finally, here are the functions that access the component's methods:

void CClockDriver::RefreshWin()
{
 InvokeHelper(3, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

BOOL CClockDriver::ShowWin(short i)
{
 BOOL result;
 static BYTE parms[] = VTS_I2;
 InvokeHelper(4, DISPATCH_METHOD, VT_BOOL,
 (void*)&result, parms, i);
 return result;
}
The function parameters identify the property or method, its return value, and its parameters. You'll learn
about dispatch function parameters later, but for now take special note of the first parameter for the
InvokeHelper, GetProperty, and SetProperty functions. This is the unique integer index, or dispatch ID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InvokeHelper, GetProperty, and SetProperty functions. This is the unique integer index, or dispatch ID
(DISPID), for the property or method. Because you're using compiled C++, you can establish these IDs at
compile time. If you're using an MFC Automation component with a dispatch map, the indexes are
determined by the map sequence, beginning with 1. If you don't know a component's dispatch indexes,
you can call the IDispatch member function GetIDsOfNames to convert the symbolic property or method
names to integers.

The following illustration shows the interactions between the client (or controller) and the component.

The solid lines show the actual connections through the MFC base classes and the Invoke function. The
dotted lines represent the resulting logical connections between client class members and component class
members.

Most Automation components have a binary type library file with a TLB extension. ClassWizard can access
this type library file to generate a class derived from COleDispatchDriver. This generated controller class
contains member functions for all the component's methods and properties with hard-coded dispatch IDs.
Sometimes you need to do some surgery on this generated code, but that's better than writing the
functions from scratch.

After you have generated your driver class, you embed an object of this class in your client application's
view class (or in another class) like this:

CClockDriver m_clock;
Then you ask COM to create a clock component object with this statement:

m_clock.CreateDispatch("Ex25c.Document");
Now you're ready to call the dispatch driver functions:

m_clock.SetTime(COleDateTime::GetCurrentTime());
m_clock.RefreshWin();
When the m_clock object goes out of scope, its destructor releases the IDispatch pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Automation Client Program Using the Compiler's #import
Directive
Now there's an entirely new way of writing Automation client programs. Instead of using ClassWizard to
generate a class derived from COleDispatchDriver, you use the compiler to generate header and
implementation files directly from a component's type library. For the clock component, your client
program contains the following statement:

#import"..\ex25c\debug\ex25c.tlb" rename_namespace("ClockDriv") using namespace ClockDriv;
The compiler then generates (and processes) two files, ex25c.tlh and ex25c.tli, in the project's Debug or
Release subdirectory. The TLH file contains the IEx25c clock driver class declaration plus this smart pointer
declaration:

_COM_SMARTPTR_TYPEDEF(IEx25c, __uuidof(IDispatch));
The _COM_SMARTPTR_TYPEDEF macro generates the IEx25cPtr pointer type, which encapsulates the
component's IDispatch pointer. The TLI file contains inline implementations of member functions, some of
which are shown in the following code:

inline HRESULT IEx25c::RefreshWin () {
 return _com_dispatch_method(this, 0x4, DISPATCH_METHOD,
 VT_EMPTY, NULL, NULL);
}

inline DATE IEx25c::GetTime () {
 DATE _result;
 _com_dispatch_propget(this, 0x1, VT_DATE, (void*)&_result);
 return _result;
}

inline void IEx25c::PutTime (DATE _val) {
 _com_dispatch_propput(this, 0x1, VT_DATE, _val);
}
Note the similarity between these functions and the COleDispatchDriver member functions you've already
seen. The functions _com_dispatch_method, _com_dispatch_propget, and _com_dispatch_propput are in
the runtime library.

In your Automation client program, you declare an embedded smart pointer member in your view class (or
in another class) like this:

IEx25cPtr m_clock;
Then you create a clock component object with this statement:

m_clock.CreateInstance(__uuidof(Document));
Now you're ready to use the IEx25cPtr class's overloaded -> operator to call the member functions defined
in the TLI file:

m_clock->PutTime(COleDateTime::GetCurrentTime());
m_clock->RefreshWin();
When the m_clock smart pointer object goes out of scope, its destructor calls the COM Release function.

The #import directive is the future of COM programming. With each new version of Visual C++, you'll see
COM features moving into the compiler, along with the document_view architecture itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VARIANT Type
No doubt you've noticed the VARIANT type used in both Automation client and component functions in the
previous example. VARIANT is an all-purpose data type that IDispatch::Invoke uses to transmit
parameters and return values. The VARIANT type is the natural type to use when exchanging data with
VBA. Let's look at a simplified version of the VARIANT definition in the Windows header files.

struct tagVARIANT {
 VARTYPE vt; // unsigned short integer type code
 WORD wReserved1, wReserved2, wReserved3;
 union {
 short iVal; // VT_I2 short integer
 long lVal; // VT_I4 long integer
 float fltVal; // VT_R4 4-byte float
 double dblVal; // VT_R8 8-byte IEEE float
 DATE date; // VT_DATE stored as dbl
 // date.time
 CY vtCY // VT_CY 64-bit integer
 BSTR bstrVal; // VT_BSTR
 IUnknown* punkVal; // VT_UNKNOWN
 IDispatch* pdispVal; // VT_DISPATCH
 short* piVal; // VT_BYREF | VT_I2
 long* plVal; // VT_BYREF | VT_I4
 float* pfltVal; // VT_BYREF | VT_R4
 double* pdblVal; // VT_BYREF | VT_R8
 DATE* pdate; // VT_BYREF | VT_DATE
 CY* pvtCY; // VT_BYREF | VT_CY
 BSTR* pbstrVal; // VT_BYREF | VT_BSTR
 }
};

typedef struct tagVARIANT VARIANT;
As you can see, the VARIANT type is a C structure that contains a type code vt, some reserved bytes, and
a big union of types that you already know about. If vt is VT_I2, for example, you would read the
VARIANT's value from iVal, which contains a 2-byte integer. If vt is VT_R8, you would read this value from
dblVal, which contains an 8-byte real value.

A VARIANT object can contain actual data or a pointer to data. If vt has the VT_BYREF bit set, you must
access a pointer in piVal, plVal, and so on. Note that a VARIANT object can contain an IUnknown pointer or
an IDispatch pointer. This means that you can pass a complete COM object using an Automation call, but if
you want VBA to process that object, its class should have an IDispatch interface.

Strings are special. The BSTR type is yet another way to represent character strings. A BSTR variable is a
pointer to a zero-terminated character array with a character count in front. A BSTR variable could,
therefore, contain binary characters, including zeros. If you had a VARIANT object with vt = VT_BSTR,
memory would look like this.

Because the string has a terminating 0, you can use bstrVal as though it were an ordinary char pointer, but
you have to be very, very careful about memory cleanup. You can't simply delete the string pointer,
because the allocated memory begins with the character count. Windows provides the SysAllocString and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because the allocated memory begins with the character count. Windows provides the SysAllocString and
SysFreeString functions for allocating and deleting BSTR objects.

SysAllocString is another COM function that takes a wide string pointer as a parameter.
This means that all BSTRs contain wide characters, even if you haven't defined
_UNICODE. Be careful.

Windows supplies some useful functions for VARIANTs, including those shown in the following table. If a
VARIANT contains a BSTR, these functions ensure that memory is allocated and cleared properly. The
VariantInit and VariantClear functions set vt to VT_EMPTY. All the variant functions are global functions
and take a VARIANT* parameter.

Function Description

VariantInit Initializes a VARIANT

VariantClear Clears a VARIANT

VariantCopy Frees memory associated with the destination VARIANT and copies the source
VARIANT

VariantCopyInd Frees the destination VARIANT and performs any indirection necessary to
copy the source VARIANT

VariantChangeType Changes the type of the VARIANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COleVariant Class
Writing a C++ class to wrap the VARIANT structure makes a lot of sense. Constructors can call VariantInit,
and the destructor can call VariantClear. The class can have a constructor for each standard type, and it
can have copy constructors and assignment operators that call VariantCopy. When a variant object goes
out of scope, its destructor is called and memory is cleaned up automatically.

Well, the MFC team created just such a class, mostly for use in the Data Access Objects (DAO) subsystem,
described in Chapter 32. It works well in Automation clients and components, however. A simplified
declaration is shown here.

class COleVariant : public tagVARIANT
{
// Constructors
public:
 COleVariant();

 COleVariant(const VARIANT& varSrc);
 COleVariant(const COleVariant& varSrc);

 COleVariant(LPCTSTR lpszSrc);
 COleVariant(CString& strSrc);

 COleVariant(BYTE nSrc);
 COleVariant(short nSrc, VARTYPE vtSrc = VT_I2);
 COleVariant(long lSrc, VARTYPE vtSrc = VT_I4);

 COleVariant(float fltSrc);
 COleVariant(double dblSrc);
 COleVariant(const COleDateTime& dateSrc);
// Destructor
 ~COleVariant(); // deallocates BSTR
// Operations
public:
 void Clear(); // deallocates BSTR
 VARIANT Detach(); // more later
 void ChangeType(VARTYPE vartype, LPVARIANT pSrc = NULL);
};
In addition, the CArchive and CDumpContext classes have comparison operators, assignment operators,
conversion operators, and friend insertion/extraction operators. See the online documentation for a
complete description of this useful MFC COleVariant class.

Now let's see how the COleVariant class helps us write the component's GetFigure function that you
previously saw referenced in the sample dispatch map. Assume that the component stores strings for four
figures in a class data member:

private:
 CString m_strFigure[4];
Here's what we'd have to do if we used the VARIANT structure directly:

VARIANT CClock::GetFigure(short n)
{
 VARIANT vaResult;
 ::VariantInit(&vaResult);
 vaResult.vt = VT_BSTR;
 // CString::AllocSysString creates a BSTR
 vaResult.bstrVal =
m_strFigure[n].AllocSysString();
 return vaResult; // Copies vaResult without copying BSTR
 // BSTR still must be freed later
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Here's the equivalent, with a COleVariant return value:

VARIANT CClock::GetFigure(short n)
{
 return COleVariant(m_strFigure[n]).Detach();
}
Calling the COleVariant::Detach function is critical here. The GetFigure function is constructing a temporary
object that contains a pointer to a BSTR. That object gets bitwise-copied to the return value. If you didn't
call Detach, the COleVariant destructor would free the BSTR memory and the calling program would get a
VARIANT that contained a pointer to nothing.

A component's variant dispatch function parameters are declared as const VARIANT&. You can always cast
a VARIANT pointer to a COleVariant pointer inside the function. Here's the SetFigure function:

void CClock::SetFigure(short n, const VARIANT& vaNew)
{
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &vaNew);
 m_strFigure[n] = vaTemp.bstrVal;
}

Remember that all BSTRs contain wide characters. The CString class has a constructor
and an assignment operator for the LPCWSTR (wide-character pointer) type. Thus, the
m_strFigure string will contain single-byte characters, even though bstrVal points to a
wide-character array.

Client dispatch function variant parameters are also typed as const VARIANT&. You can call those functions
with either a VARIANT or a COleVariant object. Here's an example of a call to the CClockDriver::SetFigure
function:

pClockDriver->SetFigure(0, COleVariant("XII"));

Visual C++ 5.0 added two new classes for BSTRs and VARIANTs. These classes are
independent of the MFC library:_bstr_t and _variant_t. The _bstr_t class encapsulates
the BSTR data type; the _variant_t class encapsulates the VARIANT type. Both classes
manage resource allocation and deallocation. For more information on these classes,
see the online documentation.

Parameter and Return Type Conversions for Invoke

All IDispatch::Invoke parameters and return values are processed internally as VARIANTs. Remember that!
The MFC library implementation of Invoke is smart enough to convert between a VARIANT and whatever
type you supply (where possible), so you have some flexibility in declaring parameter and return types.
Suppose, for example, that your controller's GetFigure function specifies the return type BSTR. If a
component returns an int or a long, all is well: COM and the MFC library convert the number to a string.
Suppose your component declares a long parameter and the controller supplies an int. Again, no problem.

An MFC library Automation client specifies the expected return type as a VT_ parameter
to the COleDispatchDriver functions GetProperty, SetProperty, and InvokeHelper. An
MFC library Automation component specifies the expected parameter types as VTS_
parameters in the DISP_PROPERTY and DISP_FUNCTION macros.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike C++, VBA is not a strongly typed language. VBA variables are often stored internally as VARIANTs.
Take an Excel spreadsheet cell value, for example. A spreadsheet user can type a text string, an integer, a
floating-point number, or a date/time in a cell. VBA treats the cell value as a VARIANT and returns a
VARIANT object to an Automation client. If your client function declares a VARIANT return value, it can test
vt and process the data accordingly.

VBA uses a date/time format that is distinct from the MFC library CTime class. Variables of type DATE hold
both the date and the time in one double value. The fractional part represents time (.25 is 6:00 AM), and
the whole part represents the date (number of days since December 30, 1899). The MFC library provides a
COleDateTime class that makes dates easy to deal with. You could construct a date this way:

COleDateTime date(1998, 10, 1, 18, 0, 0);
The above declaration initializes the date to October 1, 1998, at 6:00 PM.

The COleVariant class has an assignment operator for COleDateTime, and the COleDateTime class has
member functions for extracting date/time components. Here's how you print the time:

TRACE("time = %d:%d:%d\n",
 date.GetHour(),date.GetMinute(),date.GetSecond());
If you have a variant that contains a DATE, you use the COleVariant::ChangeType function to convert a
date to a string, as shown here:

COleVariant vaTimeDate = date;
COleVariant vaTemp;
vaTemp.ChangeType(VT_BSTR, &vaTimeDate);
CString str = vaTemp.bstrVal;
TRACE("date = %s\n", str);
One last item concerning Invoke parameters: a dispatch function can have optional parameters. If the
component declares trailing parameters as VARIANTs, the client doesn't have to supply them. If the client
calls the function without supplying an optional parameter, the VARIANT object's vt value on the
component end is VT_ERROR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Examples
The remainder of this chapter presents five sample programs. The first three programs are Automation
components—an EXE component with no user interface, a DLL component, and a multi-instance SDI EXE
component. Each of these component programs comes with a Microsoft Excel driver workbook file. The
fourth sample program is an MFC Automation client program that drives the three components and also
runs Excel using the COleDispatchDriver class. The last sample is a client program that uses the C++
#import directive instead of the MFC COleDispatchDriver class.

The EX25A Automation Component
EXE Example—No User Interface

The Visual C++ Autoclik example is a good demonstration of an MDI framework application with the
document object as the Automation component. (To find the Autoclik example, look in the online
documentation under Visual C++ Documentation/Samples/MFC Samples/Tutorial Samples.) The EX25A
example is different from the Autoclik example because EX25A has no user interface. There is one
Automation-aware class, and in the first version of the program, a single process supports the construction
of multiple Automation component objects. In the second version, a new process starts up each time an
Automation client creates an object.

The EX25A example represents a typical use of Automation. A C++ component implements financial
transactions. VBA programmers can write User-interface-intensive applications that rely on the audit rules
imposed by the Automation component. A production component program would probably use a database,
but EX25A is simpler. It implements a bank account with two methods, Deposit and Withdrawal, and one
read-only property, Balance. Obviously, Withdrawal can't permit withdrawals that make the balance
negative. You can use Excel to control the component, as shown in Figure 25-3.

Figure 25-3. This Excel workbook is controlling the EX25A component.

Here are the steps for creating the program from scratch:

1. Run AppWizard to create the EX25A project in the \vcpp32\ex25a directory. Select the
Dialog Based option (Step 1). Deselect all options in Step 2, and accept the remaining default
settings. This is the simplest application that AppWizard can generate.

2. Eliminate the dialog class from the project. Using Windows Explorer or the command-line
prompt, delete the files ex25aDlg.cpp and ex25aDlg.h. Remove ex25aDlg.cpp and ex25aDlg.h from
the project by deleting them from the project's Workspace window (FileView). Edit ex25a.cpp.
Remove the dialog #include, and remove all dialog-related code from the InitInstance function. In
ResourceView, delete the IDD_EX25A_DIALOG dialog resource template.

3. Add code to enable Automation. Add this line in StdAfx.h:

#include <afxdisp.h>
Edit the InitInstance function (in Ex25a.cpp) to look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CEx25aApp::InitInstance()
{
 AfxOleInit();
 if(RunEmbedded() || RunAutomated()) {
 // component started by COM
 COleTemplateServer::RegisterAll();
 return TRUE;
 }
 // Component is being run directly by the user
 COleObjectFactory::UpdateRegistryAll();
 AfxMessageBox("Bank server is registered");
 return FALSE;
}

4. Use ClassWizard to add a new class, CBank, as shown here.

Be sure to select the Createable By Type ID option.

5. Use ClassWizard to add two methods and a property. Click on the Automation tab, and then
add a Withdrawal method, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dAmount parameter is the amount to be withdrawn, and the return value is the actual amount
withdrawn. If you try to withdraw $100 from an account that contains $60, the amount withdrawn
is $60.

Add a similar Deposit method that returns void, and then add the Balance property, as shown here.

We could have chosen direct access to a component data member, but then we wouldn't have read-
only access. We choose Get/Set Methods so that we can code the SetBalance function to do
nothing.

6. Add a public m_dBalance data member of type double to the CBank class. Because we've
chosen the Get/Set Methods option for the Balance property, ClassWizard doesn't generate a data
member for us. You should declare m_dBalance in the Bank.h file and initialize m_dBalance to 0.0
in the CBank constructor located in the bank.cpp file.

7. Edit the generated method and property functions. Add the following boldface code:

double CBank::Withdrawal(double dAmount)
{
 if (dAmount < 0.0) {
 return 0.0;
 }
 if (dAmount <= m_dBalance) {
 m_dBalance -= dAmount;
 return dAmount
 }
 double dTemp = m_dBalance;
 m_dBalance = 0.0;
 return dTemp;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return dTemp;
}

void CBank::Deposit(double dAmount)
{
 if (dAmount < 0.0) {
 return;
 }
 m_dBalance += dAmount;
}

double CBank::GetBalance()
{
 return m_dBalance;
}

void CBank::SetBalance(double newValue)
{
 TRACE("Sorry, Dave, I can't do that!\n");
}

8. Build the EX25A program; run it once to register the component.

9. Set up five Excel macros in a new workbook file, ex25a.xls. Add the following code:

Dim Bank As Object
Sub LoadBank()
 Set Bank = CreateObject("Ex25a.Bank")
End Sub

Sub UnloadBank()
 Set Bank = Nothing
End Sub

Sub DoDeposit()
 Range("D4").Select
 Bank.Deposit (ActiveCell.Value)
End Sub

Sub DoWithdrawal()
 Range("E4").Select
 Dim Amt
 Amt = Bank.Withdrawal(ActiveCell.Value)
 Range("E5").Select
 ActiveCell.Value = Amt
End Sub

Sub DoInquiry()
 Dim Amt
 Amt = Bank.Balance()
 Range("G4").Select
 ActiveCell.Value = Amt
End Sub

10. Arrange an Excel worksheet as shown in Figure 25-3. Attach the macros to the pushbuttons
(by right-clicking the pushbuttons).

11. Test the EX25A bank component. Click the Load Bank Program button, and then enter a deposit
value in cell D4 and click the Deposit button. Click the Balance Inquiry button, and watch the
balance appear in cell G4. Enter a withdrawal value in cell E4, and click the Withdrawal button. To
see the balance, click the Balance Inquiry button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes you need to click the buttons twice. The first click switches the focus to the
worksheet, and the second click runs the macro. The hourglass pointer tells you the
macro is working.

What's happening in this program? Look closely at the CEx25aApp::InitInstance function. When you run
the program directly from Windows, it displays a message box and then quits, but not before it updates
the Registry. The COleObjectFactory::UpdateRegistryAll function hunts for global class factory objects, and
the CBank class's IMPLEMENT_OLECREATE macro invocation defines such an object. (The
IMPLEMENT_OLECREATE line was generated because you checked ClassWizard's Createable By Type ID
check box when you added the CBank class.) The unique class ID and the program ID, EX25A.BANK, are
added to the Registry.

When Excel now calls CreateObject, COM loads the EX25A program, which contains the global factory for
CBank objects; COM then calls the factory object's CreateInstance function to construct the CBank object
and return an IDispatch pointer. Here's the CBank class declaration that ClassWizard generated in the
bank.h file, with unnecessary detail (and the method and property functions you've already seen) omitted:

class CBank : public CCmdTarget
{
 DECLARE_DYNCREATE(CBank)
public:
 double m_dBalance;
 CBank(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CBank)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CBank();

 // Generated message map functions
 //{{AFX_MSG(CBank)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CBank)

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CBank)
 afx_msg double GetBalance();
 afx_msg void SetBalance(double newValue);
 afx_msg double Withdrawal(double dAmount);
 afx_msg void Deposit(double dAmount);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};
Here is the code automatically generated by ClassWizard in bank.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IMPLEMENT_DYNCREATE(CBank, CCmdTarget)

CBank::CBank()
{
 EnableAutomation();

 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 AfxOleLockApp();
}

CBank::~CBank()
{
 // To terminate the application when all objects created with
 // OLE automation, the destructor calls AfxOleUnlockApp.

 AfxOleUnlockApp();
}

void CBank::OnFinalRelease()
{
 // When the last reference for an automation object is released,
 // OnFinalRelease is called. This implementation deletes the
 // object. Add additional cleanup required for your object
 // before deleting it from memory.

 CCmdTarget::OnFinalRelease
}

BEGIN_MESSAGE_MAP(CBank, CCmdTarget)
 //{{AFX_MSG_MAP(CBank)
 // NOTE - the ClassWizard will add and remove
 // mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CBank, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CBank)
 DISP_PROPERTY_EX(CBank, "Balance", GetBalance, SetBalance, VT_R8)
 DISP_FUNCTION(CBank, "Withdrawal", Withdrawal, VT_R8, VTS_R8)
 DISP_FUNCTION(CBank, "Deposit", Deposit, VT_EMPTY, VTS_R8)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IBank to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {A9515AB6-5B85-11D0-848F-00400526305B}
static const IID IID_IBank =
{ 0xa9515ab6, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26,
 0x30, 0x5b } };

BEGIN_INTERFACE_MAP(CBank, CCmdTarget)
 INTERFACE_PART(CBank, IID_IBank, Dispatch)
END_INTERFACE_MAP()

// {632B1E4C-F287-11CE-B5E3-00AA005B1574}
IMPLEMENT_OLECREATE2(CBank, "EX25A.BANK", 0x632b1e4c, 0xf287,
 0x11ce, 0xb5, 0xe3, 0x0, 0xaa, 0x0, 0x5b, 0x15, 0x74)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 0x11ce, 0xb5, 0xe3, 0x0, 0xaa, 0x0, 0x5b, 0x15, 0x74)
This first version of the EX25A program runs in single-process mode, as does the Autoclik program. If a
second Automation client asks for a new CBank object, COM calls the class factory CreateInstance function
again and the existing process constructs another CBank object on the heap. You can verify this by making
a copy of the ex25a.xls workbook (under a different name) and loading both the original and the copy.
Click the Load Bank Program button in each workbook, and watch the Debug window. InitInstance should
be called only once.

A small change in the EX25A program makes it behave differently. To have a new EX25A process start up
each time a new component object is requested, follow these steps.

1. Add the following macro in bank.h:

#define IMPLEMENT_OLECREATE2(class_name, external_name, \
 l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
 AFX_DATADEF COleObjectFactory class_name::factory(class_name::guid, \
 RUNTIME_CLASS(class_name), TRUE, _T(external_name)); \
 const AFX_DATADEF GUID class_name::guid = \
 { l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } };
This macro is the same as the standard MFC IMPLEMENT_OLECREATE macro except that the
original FALSE parameter (after the RUNTIME_CLASS parameter) has been changed to TRUE.

2. In bank.cpp, change the IMPLEMENT_OLECREATE macro invocation to
IMPLEMENT_OLECREATE2.

3. Build the program and test it using Excel. Start two Excel processes and then load the bank
program from each. Use the Microsoft Windows NT Task Manager or PVIEW95 to verify that two
EX25A processes are running.

The EX25A program on the companion CD-ROM uses the
IMPLEMENT_OLECREATE2 macro.

Debugging an EXE Component Program

When an Automation client launches an EXE component program, it sets the /Embedding
command-line parameter. If you want to debug your component, you must do the same.
Choose Settings from the Visual C++ Project menu, and then enter /Embedding in the
Program Arguments box on the Debug page, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the Go button on the Debug toolbar, your program will start and then wait
for a client to activate it. At this point, you should start the client program from Windows (if
it is not already running) and then use it to create a component object. Your component
program in the debugger should then construct its object. It might be a good idea to include
a TRACE statement in the component object's constructor.

Don't forget that your component program must be registered before the client can find it.
That means you have to run it once without the /Embedding flag. Many clients don't
synchronize with Registry changes. If your client is running when you register the
component, you may have to restart the client.

The EX25B Automation Component DLL Example

You could easily convert EX25A from an EXE to a DLL. The CBank class would be exactly the same, and the
Excel driver would be similar. It's more interesting, though, to write a new application—this time with a
minimal user interface (UI). We'll use a modal dialog box because it's the most complex UI we can
conveniently use in an Automation DLL.

Parameters Passed by Reference

So far, you've seen VBA parameters passed by value. VBA has pretty strange rules for calling
methods. If the method has one parameter, you can use parentheses; if it has more than one, you
can't (unless you're using the function's return value, in which case you must use parentheses).
Here is some sample VBA code that passes the string parameter by value:

Object.Method1 parm1, "text"
Object.Method2("text")
Dim s as String
s = "text"
Object.Method2(s)
Sometimes, though, VBA passes the address of a parameter (a reference). In this example, the
string is passed by reference:

Dim s as String
s = "text"
Object.Method1 parm1, s
You can override VBA's default behavior by prefixing a parameter with ByVal or ByRef. Your
component can't predict if it's getting a value or a reference—it must prepare for both. The trick is
to test vt to see whether its VT_BYREF bit is set. Here's a sample method implementation that
accepts a string (in a VARIANT) passed either by reference or value:

void CMyComponent::Method(long nParm1, const VARIANT& vaParm2)
{
 CString str;
 if ((vaParm2.vt & 0x7f) == VT_BSTR) {
 if ((vaParm2.vt & VT_BYREF) != 0)
 str = *(vaParm2.pbstrVal); // byref
 else
 str = vaParm2.bstrVal; // byval
 }
 AfxMessageBox(str);
}
If you declare a BSTR parameter, the MFC library does the conversion for you. Suppose your client
program passed a BSTR reference to an out-of-process component and the component program
changed the value. Because the component can't access the memory of the client process, COM
must copy the string to the component and then copy it back to the client after the function
returns. So before you declare reference parameters, remember that passing references through
IDispatch is not like passing references in C++.

The EX25B program is fairly simple. An Automation component class, identified by the registered name
Ex25b.Auto, has the following properties and method:

LongData Long integer property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextData VARIANT property

DisplayDialog Method—no parameters, BOOL return

DisplayDialog displays the EX25B data gathering dialog box shown in Figure 25-4. An Excel macro passes
two cell values to the DLL and then updates the same cells with the updated values.

Figure 25-4. The EX25B DLL dialog in action.

The example was first generated as an MFC AppWizard DLL with the Regular DLL Using Shared MFC DLL
option and the Automation option selected. Here are the steps for building and testing the EX25B
component DLL from the code installed from the companion CD-ROM:

1. From Visual C++, open the \vcpp32\ex25b\ex25b.dsw workspace. Build the project.

2. Register the DLL with the RegComp utility. You can use the RegComp program in the
\vcpp32\RegComp\Release directory on the companion CD-ROM; a file dialog makes it easy to
select the DLL file.

3. Start Excel, and then load the \vcpp32\ex25b\ex25b.xls workbook file. Type an integer in
cell C3, and type some text in cell D3.

Debugging a DLL Component

To debug a DLL, you must tell the debugger which EXE file to load. Choose Settings from
Visual C++'s Project menu, and then enter the controller's full pathname (including the EXE
extension) in the Executable For Debug Session box on the Debug page.

When you click the Go button on the Debug toolbar, your controller will start (loading the
DLL as part of its process) and then wait for you to activate the component.

When you activate the component, your DLL in the debugger should then construct its
component object. It might be a good idea to include a TRACE statement in the component
object's constructor. Don't forget that your DLL must be registered before the client can load
it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it.

Here's another option. If you have the source code for the client program, you can start the
client program in the debugger. When the client loads the component DLL, you can see the
output from the component program's TRACE statements.

Click the Load DLL button, and then click the Gather Data button. Edit the data, click OK, and watch
the new values appear in the spreadsheet.

4. Click the Unload DLL button.If you've started the DLL (and Excel) from the debugger, you can
watch the Debug window to be sure the DLL's ExitInstance function is called.

Now let's look at the EX25B code. Like an MFC EXE, an MFC regular DLL has an application class (derived
from CWinApp) and a global application object. The overridden InitInstance member function in ex25b.cpp
looks like this:

BOOL CEx25bApp::InitInstance()
{
 TRACE("CEx25bApp::InitInstance\n");
 // Register all OLE server (factories) as running. This
 // enables the OLE libraries to create objects from other
 // applications.
 COleObjectFactory::RegisterAll();

 return TRUE;
}
There's also an ExitInstance function for diagnostic purposes only, as well as the following code for the
three standard COM DLL exported functions:

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllGetClassObject(rclsid, riid, ppv);
}

STDAPI DllCanUnloadNow(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllCanUnloadNow();
}

STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 COleObjectFactory::UpdateRegistryAll();
 VERIFY(AfxOleRegisterTypeLib(AfxGetInstanceHandle(),
 theTypeLibGUID, "ex25b.tlb"));
 return S_OK;
}
The PromptDl.cpp file contains code for the CPromptDlg class, but that class is a standard class derived
from CDialog. The file PromptDl.h contains the CPromptDlg class header.

The CEx25bAuto class, the Automation component class initially generated by ClassWizard (with the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CEx25bAuto class, the Automation component class initially generated by ClassWizard (with the
Createable By Type ID option), is more interesting. This class is exposed to COM under the program ID
ex25b.Auto. Figure 25-5 below shows the header file ex25bAuto.h.

EX25BAUTO.H

class CEx25bAuto : public CCmdTarget
{
 DECLARE_DYNCREATE(CEx25bAuto)

 CEx25bAuto(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx25bAuto)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CEx25bAuto();

 // Generated message map functions
 //{{AFX_MSG(CEx25bAuto)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CEx25bAuto)

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CEx25bAuto)
 long m_lData;
 afx_msg void OnLongDataChanged();
 VARIANT m_vaTextData;
 afx_msg void OnTextDataChanged();
 afx_msg BOOL DisplayDialog();
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};

Figure 25-5. Excerpt from the ex25bAuto.h header file.

Figure 25-6 shows the implementation file ex25bAuto.cpp.

EX25BAUTO.CPP

#include "stdafx.h"
#include "ex25b.h"
#include "Ex25bAuto.h"
#include "PromptDl.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#endif

//
// CEx25bAuto

IMPLEMENT_DYNCREATE(CEx25bAuto, CCmdTarget)

CEx25bAuto::CEx25bAuto()
{
 EnableAutomation();

 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 ::VariantInit(&m_vaTextData); // necessary initialization
 m_lData = 0;

 AfxOleLockApp();
}

CEx25bAuto::~CEx25bAuto()
{
 // To terminate the application when all objects created with
 // with OLE automation, the destructor calls AfxOleUnlockApp.

 AfxOleUnlockApp();
}

void CEx25bAuto::OnFinalRelease()
{
 // When the last reference for an automation object is released,
 // OnFinalRelease is called. The base class will automatically
 // delete the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CEx25bAuto, CCmdTarget)
 //{{AFX_MSG_MAP(CEx25bAuto)
 // NOTE - the ClassWizard will add and remove mapping
 // macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CEx25bAuto, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CEx25bAuto)
 DISP_PROPERTY_NOTIFY(CEx25bAuto, "LongData",
m_lData,
 OnLongDataChanged, VT_I4)
 DISP_PROPERTY_NOTIFY(CEx25bAuto, "TextData",
m_vaTextData,
Figure 25-6.continued
 OnTextDataChanged, VT_VARIANT)
 DISP_FUNCTION(CEx25bAuto, "DisplayDialog", DisplayDialog,
 VT_BOOL, VTS_NONE)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IEx25bAuto to support typesafe
// binding from VBA. This IID must match the GUID that is attached
// to the dispinterface in the .ODL file.

// {A9515AD7-5B85-11D0-848F-00400526305B}
static const IID IID_IEx25bAuto =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static const IID IID_IEx25bAuto =
{ 0xa9515ad7, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26,
 0x30, 0x5b } };

BEGIN_INTERFACE_MAP(CEx25bAuto, CCmdTarget)
 INTERFACE_PART(CEx25bAuto, IID_IEx25bAuto, Dispatch)
END_INTERFACE_MAP()

// {A9515AD8-5B85-11D0-848F-00400526305B}
IMPLEMENT_OLECREATE(CEx25bAuto, "ex25b.Auto", 0xa9515ad8, 0x5b85,
 0x11d0, 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26, 0x30, 0x5b)

//
// CEx25bAuto message handlers

void CEx25bAuto::OnLongDataChanged()
{
 TRACE("CEx25bAuto::OnLongDataChanged\n");
}
void CEx25bAuto::OnTextDataChanged()
{
 TRACE("CEx25bAuto::OnTextDataChanged\n");
}

BOOL CEx25bAuto::DisplayDialog()
{
 TRACE("Entering CEx25bAuto::DisplayDialog %p\n", this);
 BOOL bRet = TRUE;
 AfxLockTempMaps(); // See MFC Tech Note #3
 CWnd* pTopWnd = CWnd::FromHandle(::GetTopWindow(NULL));
 try {
 CPromptDlg dlg /*(pTopWnd)*/;
 if (
m_vaTextData.vt == VT_BSTR){
 dlg.
m_strData = m_vaTextData.bstrVal; // converts
 //
 double-byte
 // character to
 // single-byte
 // character
 }
 dlg.
m_lData = m_lData;
 if (dlg.DoModal() == IDOK) {

m_vaTextData = COleVariant(dlg.m_strData).Detach();

m_lData = dlg.m_lData;
 bRet = TRUE;
 }
 else {
 bRet = FALSE;
 }
 }
 catch (CException* pe) {
 TRACE("Exception: failure to display dialog\n");
 bRet = FALSE;
 pe->Delete();
 }
 AfxUnlockTempMaps();
 return bRet;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-6. The ex25bAuto.cpp implementation file.

The two properties, LongData and TextData, are represented by class data members m_lData and
m_vaTextData, both initialized in the constructor. When the LongData property was added in ClassWizard,
a notification function, OnLongDataChanged, was specified. This function is called whenever the controller
changes the property value. Notification functions apply only to properties that are represented by data
members. Don't confuse this notification with the notifications that ActiveX controls give their container
when a bound property changes.

The DisplayDialog member function, which is the DisplayDialog method, is ordinary except that the
AfxLockTempMaps and AfxUnlockTempMaps functions are necessary for cleaning up temporary object
pointers that would normally be deleted in an EXE program's idle loop.

What about the Excel VBA code? Here are the three macros and the global declarations:

Dim Dllcomp As Object
Private Declare Sub CoFreeUnusedLibraries Lib "OLE32" ()

Sub LoadDllComp()
 Set Dllcomp = CreateObject("Ex25b.Auto")
 Range("C3").Select
 Dllcomp.LongData = Selection.Value
 Range("D3").Select
 Dllcomp.TextData = Selection.Value
End Sub

Sub RefreshDllComp() `Gather Data button
 Range("C3").Select
 Dllcomp.LongData = Selection.Value
 Range("D3").Select
 Dllcomp.TextData = Selection.Value
 Dllcomp.DisplayDialog
 Range("C3").Select
 Selection.Value = Dllcomp.LongData
 Range("D3").Select
 Selection.Value = Dllcomp.TextData
End Sub

Sub UnloadDllComp()
 Set Dllcomp = Nothing
 Call CoFreeUnusedLibraries
End Sub
The first line in LoadDllComp creates a component object as identified by the registered name Ex25b.Auto.
The RefreshDllComp macro accesses the component object's LongData and TextData properties. The first
time you run LoadDllComp, it loads the DLL and constructs an Ex25b.Auto object. The second time you run
LoadDllComp, something curious happens: a second object is constructed, and the original object is
destroyed. If you run LoadDllComp from another copy of the workbook, you get two separate Ex25b.Auto
objects. Of course, there's only one mapping of ex25b.dll in memory at any time unless you're running
more than one Excel process.

Look closely at the UnloadDllComp macro. When the "Set Dllcomp = Nothing" statement is executed, the
DLL is disconnected, but it's not unmapped from Excel's address space, which means the component's
ExitInstance function is not called. The CoFreeUnusedLibraries function calls the exported
DllCanUnloadNow function for each component DLL and, if that function returns TRUE,
CoFreeUnusedLibraries frees the DLL. MFC programs call CoFreeUnusedLibraries in the idle loop (after a
one-minute delay), but Excel doesn't. That's why UnloadDllComp must call CoFreeUnusedLibraries after
disconnecting the component.

The CoFreeUnusedLibraries function doesn't do anything in Windows NT 3.51 unless
you have Service Pack 2 (SP2) installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX25C SDI Automation Component

EXE Example—with User Interface

This Automation component example illustrates the use of a document component class in an SDI
application in which a new process is started for each object. This component program demonstrates an
indexed property plus a method that constructs a new COM object.

The first Automation component example you saw, EX25A, didn't have a user interface. The global class
factory constructed a CBank object that did the component's work. What if you want your EXE component
to have a window? If you've bought into the MFC document_view architecture, you'll want the document,
view, and frame, with all the benefits they provide.

Suppose you created a regular MFC application and then added a COM-creatable class such as CBank. How
do you attach the CBank object to the document and view? From a CBank class member function, you
could navigate through the application object and main frame to the current document or view, but you'd
have a tough time in an MDI application if you encountered several component objects and several
documents. There is a better way. You make the document class the creatable class, and you have the full
support of AppWizard for this task. This is true for both MDI and SDI applications.

The MDI Autoclik example demonstrates how COM triggers the construction of new document, view, and
child frame objects each time an Automation client creates a new component object. Because the EX25C
example is an SDI program, Windows starts a new process each time the client creates an object.
Immediately after the program starts, COM, with the help of the MFC application framework, constructs
not only the Automation-aware document but also the view and the main frame window.

Now is a good time to experiment with the EX25C application, which was first generated by AppWizard
with the Automation option checked. It's a Windows-based alarm clock program designed to be
manipulated from an Automation client such as Excel. EX25C has the following properties and methods.

Name Description

Time DATE property that holds a COM DATE (m_vaTime)

Figure Indexed VARIANT property for the four figures on the clockface (m_strFigure[])

RefreshWin Method that invalidates the view window and brings the main frame window to the
top (Refresh)

ShowWin Method that displays the application's main window (ShowWin)

CreateAlarm Method that creates a CAlarm object and returns its IDispatch pointer (CreateAlarm)

Here are the steps for building and running EX25C from the companion CD-ROM:

1. From Visual C++, open the workspace \vcpp32\ex25c\ex25c.dsw. Build the project to
produce the ex25c.exe file in the project's Debug subdirectory.

2. Run the program once to register it. The program is designed to be executed either as a stand-
alone application or as an Automation component. When you run it from Windows or from Visual
C++, it updates the Registry and displays the face of a clock with the characters XII, III, VI, and IX
at the 12, 3, 6, and 9 o'clock positions. Exit the program.

3. Load the Excel workbook file \vcpp32\ex25c\ex25c.xls.The worksheet should look like the
one shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Load Clock button, and then double-click the Set Alarm button. (There could be a long
delay after you click the Load Clock button, depending on your system.) The clock should appear as
shown below, with the letter A indicating the alarm setting.

If you've started the component program from the debugger, you can watch the Debug window to
see when InitInstance is called and when the document object is constructed.

If you're wondering why there's no menu, it's because of the following statement in the
CMainFrame::PreCreateWindow function:

cs.hMenu = NULL;
4. Close the Clock program and then click the Unload Clock button. If you've started the

component program from the debugger, you can watch the Debug window for a message box that
indicates that the ExitInstance function is called.

AppWizard did most of the work of setting up the document as an Automation component. In the derived
application class CEx25cApp, it generated a data member for the component, as shown here:

public:
 COleTemplateServer m_server;
The MFC COleTemplateServer class is derived from COleObjectFactory. It is designed to create a COM
document object when a client calls IClassFactory::CreateInstance. The class ID comes from the global
clsid variable defined in ex25c.cpp. The human-readable program ID (Ex25c.Document) comes from the
IDR_MAINFRAME string resource.

In the InitInstance function (in ex25c.cpp), AppWizard generated the code below, which connects the
component object (the document) to the application's document template.

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CEx25cDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CEx25cView));
AddDocTemplate(pDocTemplate);
.
.
.
m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);
Now all the plumbing is in place for COM and the framework to construct the document, together with the
view and frame. When the objects are constructed, however, the main window is not made visible. That's
your job. You must write a method that shows the window.

The following UpdateRegistry call from the InitInstance function updates the Windows Registry with the
contents of the project's IDR_MAINFRAME string resource:

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);
The following dispatch map in the ex25cDoc.cpp file shows the properties and methods for the CEx25cDoc
class. Note that the Figure property is an indexed property that ClassWizard can generate if you specify a
parameter. Later you'll see the code you have to write for the GetFigure and SetFigure functions.

BEGIN_DISPATCH_MAP(CEx25cDoc, CDocument)
 //{{AFX_DISPATCH_MAP(CEx25cDoc)
 DISP_PROPERTY_NOTIFY(CEx25cDoc, "Time",
m_time, OnTimeChanged,
 VT_DATE)
 DISP_FUNCTION(CEx25cDoc, "ShowWin", ShowWin, VT_EMPTY, VTS_NONE)
 DISP_FUNCTION(CEx25cDoc, "CreateAlarm", CreateAlarm,
 VT_DISPATCH, VTS_DATE)
 DISP_FUNCTION(CEx25cDoc, "RefreshWin", Refresh, VT_EMPTY,
 VTS_NONE)
 DISP_PROPERTY_PARAM(CEx25cDoc, "Figure", GetFigure, SetFigure,
 VT_VARIANT, VTS_I2)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()
The ShowWin and RefreshWin member functions aren't very interesting, but the CreateAlarm method is
worth a close look. Here's the corresponding CreateAlarm member function:

LPDISPATCH CEx25cDoc::CreateAlarm(DATE time)
{
 TRACE("Entering CEx25cDoc::CreateAlarm, time = %f\n", time);
 // OLE deletes any prior CAlarm object
 m_pAlarm = new CAlarm(time);
 return m_pAlarm->GetIDispatch(FALSE); // no AddRef here
}
We've chosen to have the component create an alarm object when a controller calls CreateAlarm. CAlarm
is an Automation component class that we've generated with ClassWizard. It is not COM-creatable, which
means there's no IMPLEMENT_OLECREATE macro and no class factory. The CreateAlarm function
constructs a CAlarm object and returns an IDispatch pointer. (The FALSE parameter for
CCmdTarget::GetIDispatch means that the reference count is not incremented; the CAlarm object already
has a reference count of 1 when it is constructed.)

The CAlarm class is declared in alarm.h as follows:

class CAlarm : public CCmdTarget
{
 DECLARE_DYNAMIC(CAlarm)
public:
 CAlarm(DATE time);

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAlarm)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CAlarm();

 // Generated message map functions
 //{{AFX_MSG(CAlarm)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 // Generated OLE dispatch map functions
public:
 //{{AFX_DISPATCH(CAlarm)
 DATE m_time;
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};
Notice the absence of the DECLARE_DYNCREATE macro.

Alarm.cpp contains a dispatch map, as follows:

BEGIN_DISPATCH_MAP(CAlarm, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CAlarm)
 DISP_PROPERTY(CAlarm, "Time",
m_time, VT_DATE)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()
Why do we have a CAlarm class? We could have added an AlarmTime property in the CEx25cDoc class
instead, but then we would have needed another property or method to turn the alarm on and off. By
using the CAlarm class, what we're really doing is setting ourselves up to support multiple alarms—a
collection of alarms.

To implement an Automation collection, we would write another class, CAlarms, that would contain the
methods Add, Remove, and Item. Add and Remove are self-explanatory; Item returns an IDispatch pointer
for a collection element identified by an index, numeric, or some other key. We would also implement a
read-only Count property that returned the number of elements. The document class (which owns the
collection) would have an Alarms method with an optional VARIANT parameter. If the parameter were
omitted, the method would return the IDispatch pointer for the collection. If the parameter specified an
index, the method would return an IDispatch pointer for the selected alarm.

If we wanted our collection to support the VBA "For Each" syntax, we'd have some
more work to do. We'd add an IEnum VARIANT interface to the CAlarms class to
enumerate the collection of variants and implement the Next member function of this
interface to step through the collection. Then we'd add a CAlarms method named
_NewEnum that returned an IEnumVARIANT interface pointer. If we wanted the
collection to be general, we'd allow separate enumerator objects (with an IEnum
VARIANT interface) and we'd implement the other IEnumVARIANT functions—Skip,
Reset, and Clone.

The Figure property is an indexed property, which makes it interesting. The Figure property represents the
four figures on the clock face—XII, III, VI, and IX. It's a CString array, so we can use Roman numerals.
Here's the declaration in ex25cDoc.h:

public:
 CString m_strFigure[4];
And here are the GetFigure and SetFigure functions in ex25cDoc.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VARIANT CEx25cDoc::GetFigure(short n)
{
 TRACE("Entering CEx25cDoc::GetFigure -
- n = %d
m_strFigure[n] = %s\n",
 n,
m_strFigure[n]);
 return COleVariant(m_strFigure[n]).Detach();
}

void CEx25cDoc::SetFigure(short n, const VARIANT FAR& newValue)
{
 TRACE("Entering CEx25cDoc::SetFigure -- n = %d, vt = %d\n", n,
 newValue.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &newValue);
 m_strFigure[n] = vaTemp.bstrVal; // converts double-to-single
}
These functions tie back to the DISP_PROPERTY_PARAM macro in the CEx25cDoc dispatch map. The first
parameter is the index number, specified as a short integer by the last macro parameter. Property indexes
don't have to be integers, and the index can have several components (row and column numbers, for
example). The ChangeType call in SetFigure is necessary because the controller might otherwise pass
numbers instead of strings.

You've just seen collection properties and indexed properties. What's the difference? A controller can't add
or delete elements of an indexed property, but it can add elements to a collection and it can delete
elements from a collection.

What draws the clock face? As you might expect, it's the OnDraw member function of the view class. This
function uses GetDocument to get a pointer to the document object, and then it accesses the document's
property data members and method member functions.

The Excel macro code appears below.

Dim Clock As Object
Dim Alarm As Object

Sub LoadClock()
 Set Clock = CreateObject("ex25c.Document")
 Range("A3").Select
 n = 0
 Do Until n = 4
 Clock.figure(n) = Selection.Value
 Selection.Offset(0, 1).Range("A1").Select
 n = n + 1
 Loop
 RefreshClock
 Clock.ShowWin
End Sub

Sub RefreshClock()
 Clock.Time = Now()
 Clock.RefreshWin
End Sub

Sub CreateAlarm()
 Range("E3").Select
 Set Alarm = Clock.CreateAlarm(Selection.Value)
 RefreshClock
End Sub

Sub UnloadClock()
 Set Clock = Nothing
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub
Notice the Set Alarm statement in the CreateAlarm macro. It calls the CreateAlarm method to return an
IDispatch pointer, which is stored in an object variable. If the macro is run a second time, a new alarm is
created, but the original one is destroyed because its reference count goes to 0.

You've seen a modal dialog in a DLL (EX25B) and you've seen a main frame window in
an EXE (EX25C). Be careful with modal dialogs in EXEs. It's fine to have an About
dialog that is invoked directly by the component program, but it isn't a good idea to
invoke a modal dialog in an out-of-process component method function. The problem is
that once the modal dialog is on the screen, the user can switch back to the client
program. MFC clients handle this situation with a special "Server Busy" message box,
which appears right away. Excel does something similar, but it waits 30 seconds, and
this could confuse the user.

The EX25D Automation Client Example

So far, you've seen C++ Automation component programs. Now you'll see a C++ Automation client
program that runs all the previous components and also controls Microsoft Excel 97. The EX25D program
was originally generated by AppWizard, but without any COM options. It was easier to add the COM code
than it would have been to rip out the component-specific code. If you do use AppWizard to build such an
Automation controller, add the following line at the end of StdAfx.h:

#include <afxdisp.h>
Then add this call at the beginning of the application's InitInstance function:

AfxOleInit();
To prepare EX25D, open the \vcpp32\ex25d\ex25d project and do the build. Run the application from the
debugger, and you'll see a standard SDI application with a menu structure similar to that shown in Figure
25-7.

If you have built and registered all the components, you can test them from EX25D. Notice that the DLL
doesn't have to be copied to the \Winnt\System32 directory because Windows finds it through the
Registry. For some components, you'll have to watch the Debug window to verify that the test results are
correct. The program is reasonably modular. Menu commands and update command UI events are mapped
to the view class. Each component object has its own C++ controller class and an embedded data member
in ex25dView.h. We'll look at each part separately after we delve into type libraries.

Figure 25-7. A sample menu structure for a standard SDI application.

Type Libraries and ODL Files

We've told you that type libraries aren't necessary for the MFC IDispatch implementation, but Visual C++
has been quietly generating and updating type libraries for all your components. What good are these type
libraries? VBA can use a type library to browse your component's methods and properties, and it can use
the type library for improved access to properties and methods, a process called early binding described
later in this chapter. But we're building a C++ client program here, not a VBA program. It so happens that
ClassWizard can read a component's type library and use the information to generate C++ code for the
client to use to "drive" an Automation component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

client to use to "drive" an Automation component.

AppWizard initializes a project's Object Description Language (ODL) file when you first
create it. ClassWizard edits this file each time you generate a new Automation
component class or add properties and methods to an existing class. Unlike it does with
the ClassWizard (CLW) file, ClassWizard can't rebuild an ODL file from the contents of
your source files. If you mess up your ODL file, you'll have to re-create it manually.

When you were adding properties and methods to your component classes, ClassWizard was updating the
project's ODL file. This file is a text file that describes the component in an ODL. (Your GUID will be
different if you used AppWizard to generate this project.) Here's the ODL file for the bank component:

// ex25a.odl : type library source for ex25a.exe

// This file will be processed by the MIDL compiler to produce the
// type library (ex25a.tlb).

[uuid(85D56DE4-789D-11D0-92E1-D74D1B9CCD32), version(1.0)]
library Ex25a
{
 importlib("stdole32.tlb");

 // Primary dispatch interface for CBank

 [uuid(99EA95E1-78A1-11D0-92E1-D74D1B9CCD32)]
 dispinterface IBank
 {
 properties:
 // NOTE - ClassWizard will maintain property information
 // here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CBank)
 [id(1)] double Balance;
 //}}AFX_ODL_PROP

 methods:
 // NOTE - ClassWizard will maintain method information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_METHOD(CBank)
 [id(2)] double Withdrawal(double dAmount);
 [id(3)] void Deposit(double dAmount);
 //}}AFX_ODL_METHOD

 };

 // Class information for CBank

 [uuid(99EA95E2-78A1-11D0-92E1-D74D1B9CCD32)]
 coclass Bank
 {
 [default] dispinterface IBank;
 };

 // {{AFX_APPEND_ODL}}
};
The ODL file has a unique GUID type library identifier, 85D56DE4-789D-11D0-92E1-D74D1B9CCD32, and
it completely describes the bank component's properties and methods under a dispinterface named IBank.
In addition, it specifies the dispinterface GUID, 99EA95E1-78A1-11D0-92E1-D74D1B9CCD32, which is the
same GUID that's in the interface map of the CBank class. You'll see the significance of this GUID when

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same GUID that's in the interface map of the CBank class. You'll see the significance of this GUID when
you read the "VBA Early Binding" section near the end of this chapter. The CLSID, 99EA95E2-78A1-11D0-
92E1-D74D1B9CCD32, is what a VBA browser can actually use to load your component.

Anyway, when you build your component project, Visual C++ invokes the MIDL utility, which reads the
ODL file and generates a binary TLB file in your project's debug or release subdirectory. Now when you
develop a C++ client program, you can ask ClassWizard to generate a driver class from the component
project's TLB file.

The MIDL utility generates the type library in a stand-alone TLB file, and that's what
Automation controllers such as Excel look for. ActiveX controls have their type libraries
bound into their resources.

To actually do this, you click the ClassWizard Add Class button and then select From A Type Library from
the drop-down list. You navigate to the component project's TLB file, and then ClassWizard shows you a
dialog similar to the illustration below.

IBank is the dispinterface specified in the ODL file. You can keep this name for the class if you want, and
you can specify the H and CPP filenames. If a type library contains several interfaces you can make
multiple selections. You'll see the generated controller classes in the sections that follow.

The Controller Class for ex25a.exe

ClassWizard generated the IBank class (derived from COleDispatchDriver) listed in Figure 25-8. Look
closely at the member function implementations. Note the first parameters of the GetProperty,
SetProperty, and InvokeHelper function calls. These are hard-coded DISPIDs for the component's
properties and methods, as determined by the component's dispatch map sequence.

If you use ClassWizard to delete a property and then add the property back, you'll
probably change the component's dispatch IDs. That means that you'll have to
regenerate or edit the controller class so that the IDs match.

BANKDRIVER.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BANKDRIVER.H

class IBank : public COleDispatchDriver
{
public:
 IBank() {} // calls COleDispatchDriver default constructor
 IBank(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IBank(const IBank& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 double GetBalance();
 void SetBalance(double);

// Operations
public:
 double Withdrawal(double dAmount);
 void Deposit(double dAmount);
};
BANKDRIVER.CPP

#include "StdAfx.h"
#include "BankDriver.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

//
// IBank properties

double IBank::GetBalance()
{
 double result;
 GetProperty(0x1, VT_R8, (void*)&result);
 return result;
}
void IBank::SetBalance(double propVal)
{
 SetProperty(0x1, VT_R8, propVal);
}

//
// IBank operations

double IBank::Withdrawal(double dAmount)
{
 double result;
 static BYTE parms[] =
 VTS_R8;
 InvokeHelper(0x2, DISPATCH_METHOD, VT_R8, (void*)&result, parms,
 dAmount);
 return result;
}

void IBank::Deposit(double dAmount)
{
 static BYTE parms[] =
 VTS_R8;
 InvokeHelper(0x3, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 dAmount);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dAmount);
}

Figure 25-8. The IBank class listing.

The CEx25dView class has a data member m_bank of class IBank. The CEx25dView member functions for
the Ex25a.Bank component are listed below. They are hooked up to options on the EX25D main menu. Of
particular interest is the OnBankoleLoad function. The COleDispatchDriver::CreateDispatch function loads
the component program (by calling CoGetClassObject and IClassFactory::CreateInstance) and then calls
QueryInterface to get an IDispatch pointer, which it stores in the object's m_lpDispatch data member. The
COleDispatchDriver::ReleaseDispatch function, called in OnBankoleUnload, calls Release on the pointer.

void CEx25dView::OnBankoleLoad()
{
 if(!m_bank.CreateDispatch("Ex25a.Bank")) {
 AfxMessageBox("Ex25a.Bank component not found");
 return;
 }
}

void CEx25dView::OnUpdateBankoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch == NULL);
}

void CEx25dView::OnBankoleTest()
{
 m_bank.Deposit(20.0);
 m_bank.Withdrawal(15.0);
 TRACE("new balance = %f\n",
m_bank.GetBalance());
}

void CEx25dView::OnUpdateBankoleTest(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch != NULL);
}

void CEx25dView::OnBankoleUnload()
{
 m_bank.ReleaseDispatch();
}

void CEx25dView::OnUpdateBankoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch != NULL);
}
The Controller Class for ex25b.dll

Figure 25-9 shows the class header file generated by ClassWizard.

AUTODRIVER.H

class IEx25bAuto : public COleDispatchDriver
{
public:
 IEx25bAuto() {} // calls COleDispatchDriver default constructor
 IEx25bAuto(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IEx25bAuto(const IEx25bAuto& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 long GetLongData();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 long GetLongData();
 void SetLongData(long);
 VARIANT GetTextData();
 void SetTextData(const VARIANT&);

// Operations
public:
 BOOL DisplayDialog();
};

Figure 25-9. The Ex25bAuto class header file.

Notice that each property requires separate Get and Set functions in the client class, even though a data
member in the component represents the property.

The view class header has a data member m_auto of class IEx25bAuto. Here are some DLL-related
command handler member functions from ex25dView.cpp:

void CEx25dView::OnDlloleGetdata()
{
 m_auto.DisplayDialog();
 COleVariant vaData =
m_auto.GetTextData();
 ASSERT(vaData.vt == VT_BSTR);
 CString strTextData = vaData.bstrVal;
 long lData =
m_auto.GetLongData();
 TRACE("CEx25dView::OnDlloleGetdata — long = %ld, text = %s\n",
 lData, strTextData);
}

void CEx25dView::OnUpdateDlloleGetdata(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch != NULL);
}

void CEx25dView::OnDlloleLoad()
{
 if(!m_auto.CreateDispatch("Ex25b.Auto")) {
 AfxMessageBox("Ex25b.Auto component not found");
 return;
 }
 m_auto.SetTextData(COleVariant("test")); // testing
 m_auto.SetLongData(79); // testing
 // verify dispatch interface
 // {A9515AD7-5B85-11D0-848F-00400526305B}
 static const IID IID_IEx25bAuto =
 { 0xa9515ad7, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5,
 0x26, 0x30, 0x5b } };
 LPDISPATCH p;
 HRESULT hr =
m_auto.m_lpDispatch->QueryInterface(IID_IEx25bAuto,
 (void**) &p);
 TRACE("OnDlloleLoad — QueryInterface result = %x\n", hr);
 p->Release();
}

void CEx25dView::OnUpdateDlloleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch == NULL);
}

void CEx25dView::OnDlloleUnload()
{
 m_auto.ReleaseDispatch();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_auto.ReleaseDispatch();
}

void CEx25dView::OnUpdateDlloleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch != NULL);
}
The Controller Class for ex25c.exe

Figure 25-10 shows the headers for the IEx25c and IAlarm classes, which drive the EX25C Automation
component.

CLOCKDRIVER.H

class IEx25c : public COleDispatchDriver
{
public:
 IEx25c() {} // calls COleDispatchDriver default constructor
 IEx25c(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IEx25c(const IEx25c& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 DATE GetTime();
 void SetTime(DATE);

// Operations
public:
 void ShowWin();
 LPDISPATCH CreateAlarm(DATE time);
 void RefreshWin();
 void SetFigure(short n, const VARIANT& newValue);
 VARIANT GetFigure(short n);
};

class IAlarm : public COleDispatchDriver
{
public:
 IAlarm() {} // calls COleDispatchDriver default constructor
 IAlarm(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IAlarm(const IAlarm& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 DATE GetTime();
 void SetTime(DATE);

// Operations
public:
};

Figure 25-10. The IEx25c and IAlarm class header files.

Of particular interest is the IEx25c::CreateAlarm member function in ClockDriver.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LPDISPATCH IEx25c::CreateAlarm(DATE time)
{
 LPDISPATCH result;
 static BYTE parms[] =
 VTS_DATE;
 InvokeHelper(0x3, DISPATCH_METHOD, VT_DISPATCH, (void*)&result,
 parms, time);
 return result;
}
This function can be called only after the clock object (document) has been constructed. It causes the
EX25C component to construct an alarm object and return an IDispatch pointer with a reference count of
1. The COleDispatchDriver::AttachDispatch function connects that pointer to the client's m_alarm object,
but if that object already has a dispatch pointer, the old pointer is released. That's why, if you watch the
Debug window, you'll see that the old EX25C instance exits immediately after you ask for a new instance.
You'll have to test this behavior with the Excel driver because EX25D disables the Load menu option when
the clock is running.

The view class has the data members m_clock and m_alarm. Here are the view class command handlers:

void CEx25dView::OnClockoleCreatealarm()
{
 CAlarmDialog dlg;
 if (dlg.DoModal() == IDOK) {
 COleDateTime dt(1995, 12, 23, dlg.
m_nHours, dlg.m_nMinutes,
 dlg.
m_nSeconds);
 LPDISPATCH pAlarm =
m_clock.CreateAlarm(dt);
 m_alarm.AttachDispatch(pAlarm); // releases prior object!
 m_clock.RefreshWin();
 }
}
void CEx25dView::OnUpdateClockoleCreatealarm(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m
_lpDispatch != NULL);
}

void CEx25dView::OnClockoleLoad()
{
 if(!m_clock.CreateDispatch("Ex25c.Document")) {
 AfxMessageBox("Ex25c.Document component not found");
 return;
 }
 m_clock.SetFigure(0, COleVariant("XII"));
 m_clock.SetFigure(1, COleVariant("III"));
 m_clock.SetFigure(2, COleVariant("VI"));
 m_clock.SetFigure(3, COleVariant("IX"));
 OnClockoleRefreshtime();
 m_clock.ShowWin();
}

void CEx25dView::OnUpdateClockoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m
_lpDispatch == NULL);
}

void CEx25dView::OnClockoleRefreshtime()
{
 COleDateTime now = COleDateTime::GetCurrentTime();
 m_clock.SetTime(now);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_clock.SetTime(now);
 m_clock.RefreshWin();
}

void CEx25dView::OnUpdateClockoleRefreshtime(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m_lpDispatch != NULL);
}

void CEx25dView::OnClockoleUnload()
{
 m_clock.ReleaseDispatch();
}

void CEx25dView::OnUpdateClockoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m
_lpDispatch != NULL);
}
Controlling Microsoft Excel

The EX25D program contains code that loads Excel, creates a workbook, and reads from and writes to cells
from the active worksheet. Controlling Excel is exactly like controlling an MFC Automation component, but
you need to know about a few Excel peculiarities.

If you study Excel VBA, you'll notice that you can use more than 100 "objects" in your programs. All of
these objects are accessible through Automation, but if you write an MFC Automation client program, you'll
need to know about the objects' properties and methods. Ideally, you'd like a C++ class for each object,
with member functions coded to the proper dispatch IDs.

Excel has its own type library, found in the file Excel8.olb, usually in the \Program Files\Microsoft
Office\Office directory. ClassWizard can read this file—exactly as it reads TLB files—to create C++ driver
classes for individual Excel objects. It makes sense to select the objects you need and then combine the
classes into a single pair of files, as shown in Figure 25-11.

Figure 25-11. ClassWizard can create C++ classes for the Excel objects listed in Excel8.olb.

You might need to edit the generated code to suit your needs. Let's look at an example. If you use
ClassWizard to generate a driver class for the Worksheet object, you get a GetRange member function, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LPDISPATCH _Worksheet::GetRange(const VARIANT& Cell1,
 const VARIANT& Cell2)
{
 LPDISPATCH result;
 static BYTE parms[] = VTS_VARIANT VTS_VARIANT;
 InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&result, parms, &Cell1, &Cell2);
 return result;
}
You know (from the Excel VBA documentation) that you can call the method with either a single cell (one
parameter) or a rectangular area specified by two cells (two parameters). Remember: you can omit
optional parameters in a call to InvokeHelper. Now it makes sense to add a second overloaded GetRange
function with a single cell parameter like this:

LPDISPATCH _Worksheet::GetRange(const VARIANT& Cell1) // added
{
 LPDISPATCH result;
 static BYTE parms[] = VTS_VARIANT;
 InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&result, parms, &Cell1);
 return result;
}
How do you know which functions to fix up? They're the functions you decide to use in your program. You'll
have to read the Excel VBA reference manual to figure out the required parameters and return values.
Perhaps someday soon someone will write a set of C++ Excel controller classes.

The EX25D program uses the Excel objects and contains the corresponding classes shown in the table
below. All the code for these objects is contained in the files excel8.h and excel8.cpp.

Object/Class View Class Data Member

_Application m_app

Range m_range[5]

_Worksheet m_worksheet

Workbooks m_workbooks

Worksheets m_worksheets

The following view member function, OnExceloleLoad, handles the Excel Comp Load menu command. This
function must work if the user already has Excel running on the desktop. The COM GetActiveObject
function tries to return an IUnknown pointer for Excel. GetActiveObject requires a class ID, so we must
first call CLSIDFromProgID. If GetActiveObject is successful, we call QueryInterface to get an IDispatch
pointer and we attach it to the view's m_app controller object of class _Application. If GetActiveObject is
unsuccessful, we call COleDispatchDriver::CreateDispatch, as we did for the other components.

void CEx25dView::OnExceloleLoad()
{ // If Excel is already running, attach to it; otherwise, start it
 LPDISPATCH pDisp;
 LPUNKNOWN pUnk;
 CLSID clsid;
 TRACE("Entering CEx25dView::OnExcelLoad\n");
 BeginWaitCursor();
 ::CLSIDFromProgID(L"Excel.Application.8", &clsid); // from Registry
 if(::GetActiveObject(clsid, NULL, &pUnk) == S_OK) {
 VERIFY(pUnk->QueryInterface(IID_IDispatch,
 (void**) &pDisp) == S_OK);
 m_app.AttachDispatch(pDisp);
 pUnk->Release();
 TRACE(" attach complete\n");
 }
 else {
 if(!m_app.CreateDispatch("Excel.Application.8")) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(!m_app.CreateDispatch("Excel.Application.8")) {
 AfxMessageBox("Excel 97 program not found");
 }
 TRACE(" create complete\n");
 }
 EndWaitCursor();
}
OnExceloleExecute is the command handler for the Execute item in the Excel Comp menu. Its first task is
to find the Excel main window and bring it to the top. We must write some Windows code here because a
method for this purpose couldn't be found. We must also create a workbook if no workbook is currently
open.

We have to watch our method return values closely. The Workbooks Add method, for example, returns an
IDispatch pointer for a Workbook object and, of course, increments the reference count. If we generated a
class for Workbook, we could call COleDispatchDriver::AttachDispatch so that Release would be called
when the Workbook object was destroyed. Because we don't need a Workbook class, we'll simply release
the pointer at the end of the function. If we don't properly clean up our pointers, we might get memory-
leak messages from the Debug version of MFC.

The rest of the OnExceloleExecute function accesses the cells in the worksheet. It's easy to get and set
numbers, dates, strings, and formulas. The C++code is similar to the VBA code you would write to do the
same job.

void CEx25dView::OnExceloleExecute()
{
 LPDISPATCH pRange, pWorkbooks;

 CWnd* pWnd = CWnd::FindWindow("XLMAIN", NULL);
 if (pWnd != NULL) {
 TRACE("Excel window found\n");
 pWnd->ShowWindow(SW_SHOWNORMAL);
 pWnd->UpdateWindow();
 pWnd->BringWindowToTop();
 }

 m_app.SetSheetsInNewWorkbook(1);

 VERIFY(pWorkbooks = m_app.GetWorkbooks());
 m_workbooks.AttachDispatch(pWorkbooks);

 LPDISPATCH pWorkbook = NULL;
 if (m_workbooks.GetCount() == 0) {
 // Add returns a Workbook pointer, but we
 // don't have a Workbook class
 pWorkbook =
m_workbooks.Add(); // Save the pointer for
 // later release
 }
 LPDISPATCH pWorksheets =
m_app.GetWorksheets();
 ASSERT(pWorksheets != NULL);
 m_worksheets.AttachDispatch(pWorksheets);
 LPDISPATCH pWorksheet =
m_worksheets.GetItem(COleVariant((short) 1));

 m_worksheet.AttachDispatch(pWorksheet);
 m_worksheet.Select();

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A1")));
 m_range[0].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A2")));
 m_range[1].AttachDispatch(pRange);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_range[1].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A3")));
 m_range[2].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A3"),
 COleVariant("C5")));
 m_range[3].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A6")));
 m_range[4].AttachDispatch(pRange);

 m_range[4].SetValue(COleVariant(COleDateTime
 (1998, 4, 24, 15, 47, 8)));
 // Retrieve the stored date and print it as a string
 COleVariant vaTimeDate =
m_range[4].GetValue();
 TRACE("returned date type = %d\n", vaTimeDate.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, &vaTimeDate);
 CString str = vaTemp.bstrVal;
 TRACE("date = %s\n", (const char*) str);

 m_range[0].SetValue(COleVariant("test string"));

 COleVariant vaResult0 =
m_range[0].GetValue();
 if (vaResult0.vt == VT_BSTR) {
 CString str = vaResult0.bstrVal;
 TRACE("vaResult0 = %s\n", (const char*) str);
 }

 m_range[1].SetValue(COleVariant(3.14159));

 COleVariant vaResult1 =
m_range[1].GetValue();
 if (vaResult1.vt == VT_R8) {
 TRACE("vaResult1 = %f\n", vaResult1.dblVal);
 }

 m_range[2].SetFormula(COleVariant("=$A2*2.0"));

 COleVariant vaResult2 =
m_range[2].GetValue();
 if (vaResult2.vt == VT_R8) {
 TRACE("vaResult2 = %f\n", vaResult2.dblVal);
 }

 COleVariant vaResult2a =
m_range[2].GetFormula();
 if (vaResult2a.vt == VT_BSTR) {
 CString str = vaResult2a.bstrVal;
 TRACE("vaResult2a = %s\n", (const char*) str);
 }

 m_range[3].FillRight();
 m_range[3].FillDown();

 // cleanup
 if (pWorkbook != NULL) {
 pWorkbook->Release();
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX25E Automation Client Example

This program uses the new #import directive to generate smart pointers. It behaves just like EX25D
except that it doesn't run Excel. The #import statements are in the StdAfx.h file to minimize the number of
times the compiler has to generate the driver classes. Here is the added code:

#include <afxdisp.h>

#import "..\ex25a\debug\ex25a.tlb" rename_namespace("BankDriv")
using namespace BankDriv;

#import "..\ex25b\debug\ex25b.tlb" rename_namespace("Ex25bDriv")
using namespace Ex25bDriv;

#import "..\ex25c\debug\ex25c.tlb" rename_namespace("ClockDriv")
using namespace ClockDriv;
And of course you'll need to call AfxOleInit in your application class InitInstance member function.

The view class header contains embedded smart pointers as shown:

IEx25bAutoPtr m_auto;
IBankPtr m_bank;
IEx25cPtr m_clock;
IAlarmPtr m_alarm;
Here is the code for the view class menu command handlers:

void CEx25eView::OnBankoleLoad()
{
 if(m_bank.CreateInstance(__uuidof(Bank)) != S_OK) {
 AfxMessageBox("Bank component not found");
 return;
 }
}

void CEx25eView::OnUpdateBankoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() == NULL);
}

void CEx25eView::OnBankoleTest()
{
 try {
 m_bank->Deposit(20.0);
 m_bank->Withdrawal(15.0);
 TRACE("new balance = %f\n",
m_bank->GetBalance());
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateBankoleTest(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() != NULL);
}

void CEx25eView::OnBankoleUnload()
{
 m_bank.Release();
}

void CEx25eView::OnUpdateBankoleUnload(CCmdUI* pCmdUI)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx25eView::OnUpdateBankoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() != NULL);
}

void CEx25eView::OnClockoleCreatealarm()
{
 CAlarmDialog dlg;
 try {
 if (dlg.DoModal()
== IDOK) {
 COleDateTime dt(1995, 12, 23, dlg.
m_nHours, dlg.m_nMinutes,
 dlg.
m_nSeconds);
 LPDISPATCH pAlarm = m_clock->CreateAlarm(dt);

m_alarm.Attach((IAlarm*) pAlarm); // releases prior object!

m_clock->RefreshWin();
 }
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateClockoleCreatealarm(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}

void CEx25eView::OnClockoleLoad()
{
 if(m_clock.CreateInstance(_
_uuidof(Document)) != S_OK) {
 AfxMessageBox("Clock component not found");
 return;
 }
 try {
 m_clock->PutFigure(0, COleVariant("XII"));
 m_clock->PutFigure(1, COleVariant("III"));
 m_clock->PutFigure(2, COleVariant("VI"));
 m_clock->PutFigure(3, COleVariant("IX"));
 OnClockoleRefreshtime();
 m_clock->ShowWin();
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateClockoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() == NULL);
}

void CEx25eView::OnClockoleRefreshtime()
{
 COleDateTime now = COleDateTime::GetCurrentTime();
 try {
 m_clock->PutTime(now);
 m_clock->RefreshWin();
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateClockoleRefreshtime(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}

void CEx25eView::OnClockoleUnload()
{
 m_clock.Release();
}

void CEx25eView::OnUpdateClockoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}

void CEx25eView::OnDlloleGetdata()
{
 try {
 m_auto->DisplayDialog();
 COleVariant vaData =
m_auto->GetTextData();
 ASSERT(vaData.vt == VT_BSTR);
 CString strTextData = vaData.bstrVal;
 long lData =
m_auto->GetLongData();
 TRACE("CEx25dView::OnDlloleGetdata—long = %ld, text = %s\n",
 lData, strTextData);
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateDlloleGetdata(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() != NULL);
}

void CEx25eView::OnDlloleLoad()
{
 if(m_auto.CreateInstance(__uuidof(Ex25bAuto)) != S_OK) {
 AfxMessageBox("Ex25bAuto component not found");
 return;
 }
}

void CEx25eView::OnUpdateDlloleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() == NULL);
}

void CEx25eView::OnDlloleUnload()
{
 m_auto.Release();
}

void CEx25eView::OnUpdateDlloleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() != NULL);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Note the use of the try/catch blocks in the functions that manipulate the components. These are
particularly necessary for processing errors that occur when a component program stops running. In the
previous example, EX25D, the MFC COleDispatchDriver class took care of this detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA Early Binding
When you ran the EX25A, EX25B, and EX25C components from Excel VBA, you used something called late
binding. Normally, each time VBA accesses a property or a method, it calls IDispatch::GetIDsOfNames to
look up the dispatch ID from the symbolic name. Not only is this inefficient, VBA can't do type-checking
until it actually accesses a property or a method. Suppose, for example, that a VBA program tried to get a
property value that it assumed was a number, but the component provided a string instead. VBA would
give you a runtime error when it executed the Property Get statement.

With early binding, VBA can preprocess the Visual Basic code, converting property and method symbols to
DISPIDs before it runs the component program. In so doing, it can check property types, method return
types, and method parameters, giving you compile-time error messages. Where can VBA get the advance
information it needs? From the component's type library, of course. It can use that same type library to
allow the VBA programmer to browse the component's properties and methods. VBA reads the type library
before it even loads the component program.

Registering a Type Library

You've already seen that Visual C++ generates a TLB file for each component. For VBA to locate that type
library, its location must be specified in the Windows Registry. The simplest way of doing this is to write a
text REG file that the Windows Regedit program can import. Here's the ex25b.reg file for the EX25B DLL
component:

REGEDIT4

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}]

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0]
@="Ex25b"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\0]

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\0\win32]
@="C:\\vcpp32\\ex25b\\Debug\\ex25b.tlb"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\FLAGS]
@="0"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\HELPDIR]
@="C:\\vcpp32\\ex25b\\Debug"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}]
@="IEx25bAuto"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}\ProxyStubClsid]
@="{00020420-0000-0000-C000-000000000046}"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}\ProxyStubClsid32]
@="{00020420-0000-0000-C000-000000000046}"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}\TypeLib]
@="{A9515ACA-5B85-11D0-848F-00400526305B}"
"Version"="1.0"
Notice that this file generates subtrees under the Registry's TypeLib and Interface keys. The third entry
specifies the path for the version 1.0 TLB file. The 0 subkey stands for "neutral language." If you had a
multilingual application, you would have separate entries for English, French, and so forth. Browsers use
the TypeLib entries, and the Interface entries are used for runtime type-checking and, for an EXE
component, marshaling the dispinterface.

How a Component Can Register Its Own Type Library

When an EXE component is run stand-alone, it can call the MFC AfxRegisterTypeLib function to make the
necessary Registry entries, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VERIFY(AfxOleRegisterTypeLib(AfxGetInstanceHandle(), theTypeLibGUID,
 "ex25b.tlb"));
Shown here is theTypeLibGUID, a static variable of type GUID:

// {A9515ACA-5B85-11D0-848F-00400526305B}
static const GUID theTypeLibGUID =
{ 0xa9515aca, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x00, 0x40, 0x05, 0x26,
 0x30, 0x5b } };
The AfxRegisterTypeLib function is declared in the afxwin.h header, which requires _AFXDLL to be defined.
That means you can't use it in a regular DLL unless you copy the code from the MFC source files.

The ODL File

Now is a good time to look at the ODL file for the same project.

// ex25b.odl : type library source for ex25b.dll

// This file will be processed by the MIDL compiler to produce the
// type library (ex25b.tlb)

[uuid(A9515ACA-5B85-11D0-848F-00400526305B), version(1.0)]

// GUID for the type library—matches TypeLib Registry key and
// AfxOleRegisterTypeLib parameter
library Ex25b
{
 // library name for Excel's object borrower

 importlib("stdole32.tlb");
 // primary dispatch interface for CEx25bAuto

 [uuid(A9515AD7-5B85-11D0-848F-00400526305B)]

 // GUID from component's interface map—matches Registry Interface
 // entry

 dispinterface IEx25bAuto
 {
 // name used in VBA Dim statement and Object list
 properties:
 // NOTE - ClassWizard will maintain property
 // information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CEx25bAuto)
 [id(1)] long LongData;
 [id(2)] VARIANT TextData;
 //}}AFX_ODL_PROP

 methods:
 // NOTE - ClassWizard will maintain method
 // information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_METHOD(CEx25bAuto)
 [id(3)] boolean DisplayDialog();
 //}}AFX_ODL_METHOD
 };

 [uuid(A9515AD8-5B85-11D0-848F-00400526305B)]

// component's CLSID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// component's CLSID

 coclass Ex25bAuto
 {
 [default] dispinterface IEx25bAuto;
 };

 //{{AFX_APPEND_ODL}}
};
As you can see, numerous connections exist among the Registry, the type library, the component, and the
VBA client.

A useful Visual C++ utility, OLEVIEW, lets you examine registered components and
their type libraries.

How Excel Uses a Type Library

Let's examine the sequence of steps Excel uses to utilize your type library:

1. When Excel starts up, it reads the TypeLib section of the Registry to compile a list of all type
libraries. It loads the type libraries for VBA and for the Excel object library.

2. After starting Excel, loading a workbook, and switching to the Visual Basic Editor, the user (or
workbook author) chooses References from the Tools menu and checks the EX25B LIB line.

When the workbook is saved, this reference information is saved with it.

3. Now the Excel user will be able to browse through the EX25B properties and methods by choosing
Object Browser from the Visual Basic Editor's View menu to view the Object Browser dialog.

4. To make use of the type library in your VBA program, you simply replace the line

Dim DllComp as Object
with

Dim DllComp as IEx25bAuto
The VBA program will exit immediately if it can't find IEx25bAuto in its list of references.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Immediately after VBA executes the CreateObject statement and loads the component program, it
calls QueryInterface for IID_IEx25bAuto, which is defined in the Registry, the type library, and the
component class's interface map. (IEx25bAuto is really an IDispatch interface.) This is a sort of
security check. If the component can't deliver this interface, the VBA program exits. Theoretically,
Excel could use the CLSID in the type library to load the component program, but it uses the CLSID
from the Registry instead, just as it did in late binding mode.

Why Use Early Binding?

You might think that early binding would make your Automation component run faster. You probably won't
notice any speed increase, though, because the IDispatch::Invoke calls are the limiting factor. A typical
MFC Invoke call from a compiled C++ client to a compiled C++ component requires about 0.5 millisecond,
which is pretty gross.

The browse capability that the type library provides is probably more valuable than the compiled linkage. If
you are writing a C++ controller, for example, you can load the type library through various COM
functions, including LoadTypeLib, and then you can access it through the ITypeLib and ITypeInfo
interfaces. Plan to spend some time on that project, however, because the type library interfaces are
tricky.

Faster Client-Component Connections

Microsoft has recognized the limitations of the IDispatch interface. It's naturally slow because all data must
be funneled through VARIANTs and possibly converted on both ends. There's a new variation called a dual
interface. (A discussion of dual interfaces is beyond the scope of this book. See Kraig Brockschmidt's Inside
OLE, 2d ed. [Microsoft Press, 1995], for more information.) In a dual interface, you define your own
custom interface, derived from IDispatch. The Invoke and GetIDsOfNames functions are included, but so
are other functions. If the client is smart enough, it can bypass the inefficient Invoke calls and use the
specialized functions instead. Dual interfaces can support only standard Automation types, or they can
support arbitrary types.

There is no direct MFC support for dual interfaces in Visual C++ 6.0, but the ACDUAL Visual C++ sample
should get you started.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 26
Uniform Data Transfer—Clipboard Transfer and OLE Drag and Drop
ActiveX technology includes a powerful mechanism for transferring data within and among Microsoft
Windows-based applications. The COM IDataObject interface is the key element of what is known as
Uniform Data Transfer. As you'll see, Uniform Data Transfer (UDT) gives you all sorts of options for the
formatting and storage of your transferred data, going well beyond standard clipboard transfers.

Microsoft Foundation Class support is available for Uniform Data Transfer, but MFC's support for UDT is not
so high-level as to obscure what's going on at the COM interface level. One of the useful applications of
UDT is OLE Drag and Drop. Many developers want to use drag-and-drop capabilities in their applications,
and drag-and-drop support means that programs now have a standard for information interchange. The
MFC library supports drag-and-drop operations, and that, together with clipboard transfer, is the main
focus of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IDataObject Interface
The IDataObject interface is used for clipboard transfers and drag-and-drop operations, but it's also used
in compound documents, ActiveX Controls, and custom OLE features. In his book Inside OLE, 2d ed.
(Microsoft Press, 1995) Kraig Brockschmidt says, "Think of objects as little piles of stuff." The IDataObject
interface helps you move those piles around, no matter what kind of stuff they contain.

If you were programming at the Win32 level, you would write C++ code that supported the IDataObject
interface. Your program would then construct data objects of this class, and you would manipulate those
objects with the IDataObject member functions. In this chapter you'll see how to accomplish the same
results by using MFC's implementation of IDataObject. Let's start by taking a quick look at why the OLE
clipboard is an improvement on the regular Windows clipboard.

How IDataObject Improves on Standard Clipboard Support

There has never been much MFC support for the Windows Clipboard. If you've written programs for the
clipboard already, you've used Win32 clipboard functions such as OpenClipboard, CloseClipboard,
GetClipboardData, and SetClipboardData. One program copies a single data element of a specified format
to the clipboard, and another program selects the data by format code and pastes it. Standard clipboard
formats include global memory (specified by an HGLOBAL variable) and various GDI objects, such as
bitmaps and metafiles (specified by their handles). Global memory can contain text as well as custom
formats.

The IDataObject interface picks up where the Windows Clipboard leaves off. To make a long story short,
you transfer a single IDataObject pointer to or from the clipboard instead of transferring a series of
discrete formats. The underlying data object can contain a whole array of formats. Those formats can carry
information about target devices, such as printer characteristics, and they can specify the data's aspect or
view. The standard aspect is content. Other aspects include an icon for the data and a thumbnail picture.

Note that the IDataObject interface specifies the storage medium of a data object format. Conventional
clipboard transfer relies exclusively on global memory. The IDataObject interface permits the transmission
of a disk filename or a structured storage pointer instead. Thus, if you want to transfer a very large block
of data that's already in a disk file, you don't have to waste time copying it to and from a memory block.

In case you were wondering, IDataObject pointers are compatible with programs that use existing
clipboard transfer methods. The format codes are the same. Windows takes care of the conversion to and
from the data object. Of course, if an OLE-aware program puts an IStorage pointer in a data object and
puts the object on the clipboard, older, non-OLE-aware programs are unable to read that format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FORMATETC and STGMEDIUM Structures
Before you're ready for the IDataObject member functions, you need to examine two important COM
structures that are used as parameter types: the FORMATETC structure and the STGMEDIUM structure.

FORMATETC

The FORMATETC structure is often used instead of a clipboard format to represent data format information.
However, unlike the clipboard format, the FORMATETC structure includes information about a target
device, the aspect or view of the data, and a storage medium indicator. Here are the members of the
FORMATETC structure.

Type Name Description

CLIPFORMAT cfFormat Structure that contains clipboard formats, such as standard
interchange formats (for example, CF_TEXT, which is a text
format, and CF_DIB, which is an image compression format),
custom formats (such as rich text format), and OLE formats used
to create linked or embedded objects

DVTARGETDEVICE* ptd Structure that contains information about the target device for
the data, including the device driver name (can be NULL)

DWORD dwAspect A DVASPECT enumeration constant (DVASPECT_CONTENT,
DVASPECT _THUMBNAIL, and so on)

LONG lindex Usually -1

DWORD tymed Specifies type of media used to transfer the object's data
(TYMED_HGLOBAL, TYMED_FILE, TYMED_ISTORAGE, and so on)

An individual data object accommodates a collection of FORMATETC elements, and the IDataObject
interface provides a way to enumerate them. A useful macro for filling in a FORMATETC structure appears
below.

#define SETFORMATETC(fe, cf, asp, td, med, li) \
 ((fe).cfFormat=cf, \
 (fe).dwAspect=asp, \
 (fe).ptd=td, \
 (fe).tymed=med, \
 (fe).lindex=li)

STGMEDIUM

The other important structure for IDataObject members is the STGMEDIUM structure. The STGMEDIUM
structure is a global memory handle used for operations involving data transfer. Here are the members.

Type Name Description

DWORD tymed Storage medium value used in marshaling and unmarshaling
routines

HBITMAP hBitmap Bitmap handle*

HMETAFILEPICT hMetaFilePict Metafile handle*

HENHMETAFILE hEnhMetaFile Enhanced metafile handle*

HGLOBAL hGlobal Global memory handle*

LPOLESTR lpszFileName Disk filename (double-byte)*

ISTREAM* pstm IStream interface pointer*

ISTORAGE* pstg IStorage interface pointer*

IUNKNOWN pUnkForRelease Used by clients to call Release for formats with interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IUNKNOWN pUnkForRelease Used by clients to call Release for formats with interface
pointers

* This member is part of a union, including handles, strings, and interface pointers used by the receiving
process to access the transferred data.

As you can see, the STGMEDIUM structure specifies where data is stored. The tymed variable determines
which union member is valid.

The IDataObject Interface Member Functions

This interface has nine member functions. Both Brockschmidt and the online documentation do a good job
of describing all of these functions. Following are the functions that are important for this chapter.

HRESULT EnumFormatEtc(DWORD dwDirection, IEnumFORMATETC ppEnum);

If you have an IDataObject pointer for a data object, you can use EnumFormatEtc to enumerate all the
formats that it supports. This is an ugly API that the MFC library insulates you from. You'll learn how this
happens when you examine the COleDataObject class.

HRESULT GetData(FORMATETC* pFEIn, STGMEDIUM* pSTM);

GetData is the most important function in the interface. Somewhere, up in the sky, is a data object, and
you have an IDataObject pointer to it. You specify, in a FORMATETC variable, the exact format you want to
use when you retrieve the data, and you prepare an empty STGMEDIUM variable to accept the results. If
the data object has the format you want, GetData fills in the STGMEDIUM structure. Otherwise, you get an
error return value.

HRESULT QueryGetData(FORMATETC* pFE);

You call QueryGetData if you're not sure whether the data object can deliver data in the format specified in
the FORMATETC structure. The return value says, "Yes, I can" (S_OK) or "No, I can't" (an error code).
Calling this function is definitely more efficient than allocating a STGMEDIUM variable and calling GetData.

HRESULT SetData(FORMATETC* pFEIn, STGMEDIUM* pSTM, BOOL fRelease);

Data objects rarely support SetData. Data objects are normally loaded with formats in their own server
module; clients retrieve data by calling GetData. With SetData, you'd be transferring data in the other
direction—like pumping water from your house back to the water company.

Other IDataObject Member Functions—Advisory Connections

The interface contains other important functions that let you implement an advisory connection. When the
program using a data object needs to be notified whether the object's data changes, the program can pass
an IAdviseSink pointer to the object by calling the IDataObject::DAdvise function. The object then calls
various IAdviseSink member functions, which the client program implements. You won't need advisory
connections for drag-and-drop operations, but you will need them when you get to embedding in Chapter
28.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Uniform Data Transfer Support
The MFC library does a lot to make data object programming easier. As you study the MFC data object
classes, you'll start to see a pattern in MFC COM support. At the component end, the MFC library provides
a base class that implements one or more OLE interfaces. The interface member functions call virtual
functions that you override in your derived class. At the client end, the MFC library provides a class that
wraps an interface pointer. You call simple member functions that use the interface pointer to make COM
calls.

The terminology needs some clarification here. The data object that's been described is the actual C++
object that you construct, and that's the way Brockschmidt uses the term. In the MFC documentation, a
data object is what the client program sees through an IDataObject pointer. A data source is the object
you construct in a component program.

The COleDataSource Class

When you want to use a data source, you construct an object of class COleDataSource, which implements
the IDataObject interface (without advisory connection support). This class builds and manages a collection
of data formats stored in a cache in memory. A data source is a regular COM object that keeps a reference
count. Usually, you construct and fill a data source, and then you pass it to the clipboard or drag and drop
it in another location, never to worry about it again. If you decide not to pass off a data source, you can
invoke the destructor, which cleans up all its formats.

Following are some of the more useful member functions of the COleDataSource class.

void CacheData(CLIPFORMAT cfFormat, STGMEDIUM* lpStgMedium, FORMATETC*
lpFormatEtc = NULL);

This function inserts an element in the data object's cache for data transfer. The lpStgMedium parameter
points to the data, and the lpFormatEtc parameter describes the data. If, for example, the STGMEDIUM
structure specifies a disk filename, that filename gets stored inside the data object. If lpFormatEtc is set to
NULL, the function fills in a FORMATETC structure with default values. It's safer, though, if you create your
FORMATETC variable with the tymed member set.

void CacheGlobalData(CLIPFORMAT cfFormat, HGLOBAL hGlobal, FORMATETC*
lpFormatEtc = NULL);

You call this specialized version of CacheData to pass data in global memory (identified by an HGLOBAL
variable). The data source object is considered the owner of that global memory block, so you should not
free it after you cache it. You can usually omit the lpFormatEtc parameter. The CacheGlobalData function
does not make a copy of the data.

DROPEFFECT DoDragDrop(DWORD dwEffects =
DROPEFFECT_COPY|DROPEFFECT_MOVE| DROPEFFECT_LINK, LPCRECT
lpRectStartDrag = NULL, COleDropSource* pDropSource = NULL);

You call this function for drag-and-drop operations on a data source. You'll see it used in the EX26B
example.

void SetClipboard(void);

The SetClipboard function, which you'll see in the EX26A example, calls the OleSetClipboard function to put
a data source on the Windows Clipboard. The clipboard is responsible for deleting the data source and thus
for freeing the global memory associated with the formats in the cache. When you construct a
COleDataSource object and call SetClipboard, COM calls AddRef on the object.

The COleDataObject Class

This class is on the destination side of a data object transfer. Its base class is CCmdTarget, and it has a
public member m_lpDataObject that holds an IDataObject pointer. That member must be set before you
can effectively use the object. The class destructor only calls Release on the IDataObject pointer.

Following are a few of the more useful COleDataObject member functions.

BOOL AttachClipboard(void);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL AttachClipboard(void);

As Brockschmidt points out, OLE clipboard processing is internally complex. From your point of view,
however, it's straightforward—as long as you use the COleDataObject member functions. You first
construct an "empty" COleDataObject object, and then you call AttachClipboard, which calls the global
OleGetClipboard function. Now the m_lpDataObject data member points back to the source data object (or
so it appears), and you can access its formats.

If you call the GetData member function to get a format, you must remember that the clipboard owns the
format and you cannot alter its contents. If the format consists of an HGLOBAL pointer, you must not free
that memory and you cannot hang on to the pointer. If you need to have long-term access to the data in
global memory, consider calling GetGlobalData instead.

If a non-COM-aware program copies data onto the clipboard, the AttachClipboard function still works
because COM invents a data object that contains formats corresponding to the regular Windows data on
the clipboard.

void BeginEnumFormats(void); BOOL GetNextFormat(FORMATETC* lpFormatEtc);

These two functions allow you to iterate through the formats that the data object contains. You call
BeginEnumFormats first, and then you call GetNextFormat in a loop until it returns FALSE.

BOOL GetData(CLIPFORMAT cfFormat, STGMEDIUM* lpStgMedium FORMATETC*
lpFormatEtc = NULL);

This function calls IDataObject::GetData and not much more. The function returns TRUE if the data source
contains the format you asked for. You generally need to supply the lpFormatEtc parameter.

HGLOBAL GetGlobalData(CLIPFORMAT cfFormat, FORMATETC* lpFormatEtc = NULL);

Use the GetGlobalData function if you know your requested format is compatible with global memory. This
function makes a copy of the selected format's memory block, and it gives you an HGLOBAL handle that
you must free later. You can often omit the lpFormatEtc parameter.

BOOL IsDataAvailable(CLIPFORMAT cfFormat, FORMATETC* lpFormatEtc = NULL);

The IsDataAvailable function tests whether the data object contains a given format.

MFC Data Object Clipboard Transfer

Now that you've seen the COleDataObject and COleDataSource classes, you'll have an easy time doing
clipboard data object transfers. But why not just do clipboard transfers the old way with GetClipboardData
and SetClipboardData? You could for most common formats, but if you write functions that process data
objects, you can use those same functions for drag and drop.

Figure 26-1 shows the relationship between the clipboard and the COleDataSource and COleDataObject
classes. You construct a COleDataSource object

Figure 26-1. MFC OLE clipboard processing.

on the copy side, and then you fill its cache with formats. When you call SetClipboard, the formats are
copied to the clipboard. On the paste side, you call AttachClipboard to attach an IDataObject pointer to a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copied to the clipboard. On the paste side, you call AttachClipboard to attach an IDataObject pointer to a
COleDataObject object, after which you can retrieve individual formats.

Suppose you have a document-view application whose document has a CString data member m_strText.
You want to use view class command handler functions that copy to and paste from the clipboard. Before
you write those functions, write two helper functions. The first, SaveText, creates a data source object
from the contents of m_strText. The function constructs a COleDataSource object, and then it copies the
string contents to global memory. Last it calls CacheGlobalData to store the HGLOBAL handle in the data
source object. Here is the SaveText code:

COleDataSource* CMyView::SaveText()

{
 CEx26fDoc* pDoc = GetDocument();
 if (!pDoc->m_strtext.IsEmpty()) {
 COleDataSource* pSource = new COleDataSource();
 int nTextSize = GetDocument()->
m_strText.GetLength() + 1;
 HGLOBAL hText = ::GlobalAlloc(GMEM_SHARE, nTextSize);
 LPSTR pText = (LPSTR) ::GlobalLock(hText);
 ASSERT(pText);
 strcpy(pText, GetDocument()->
m_strText);
 ::GlobalUnlock(hText);
 pSource->CacheGlobalData(CF_TEXT, hText);
 return pSource;
 }
 return NULL;
}
The second helper function, DoPasteText, fills in m_strText from a data object specified as a parameter.
We're using COleDataObject::GetData here instead of GetGlobalData because GetGlobalData makes a copy
of the global memory block. That extra copy operation is unnecessary because we're copying the text to
the CString object. We don't free the original memory block because the data object owns it. Here is the
DoPasteText code:

// Memory is MOVEABLE, so we must use GlobalLock!
 SETFORMATETC(fmt, CF_TEXT, DVASPECT_CONTENT, NULL, TYMED_HGLOBAL, -1);
 VERIFY(pDataObject->GetData(CF_TEXT, &stg, &fmt));
 HGLOBAL hText = stg.hGlobal;
 GetDocument()->m_strText = (LPSTR) ::GlobalLock(hText);
 ::GlobalUnlock(hText);
 return TRUE;
}
Here are the two command handler functions:

void CMyView::OnEditCopy()
{
 COleDataSource* pSource = SaveText();
 if (pSource) {
 pSource->SetClipboard();
 }
}
void CMyView::OnEditPaste()
{
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 DoPasteText(&dataObject);
 // dataObject released
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRectTracker Class
The CRectTracker class is useful in both OLE and non-OLE programs. It allows the user to move and resize
a rectangular object in a view window. There are two important data members: the m_nStyle member
determines the border, resize handle, and other characteristics; and the m_rect member holds the device
coordinates for the rectangle.

The important member functions follow.

void Draw(CDC* pDC) const;

The Draw function draws the tracker, including border and resize handles, but it does not draw anything
inside the rectangle. That's your job.

BOOL Track(CWnd* pWnd, CPoint point, BOOL bAllowInvert = FALSE, CWnd*
pWndClipTo = NULL);

You call this function in a WM_LBUTTONDOWN handler. If the cursor is on the rectangle border, the user
can resize the tracker by holding down the mouse button; if the cursor is inside the rectangle, the user can
move the tracker. If the cursor is outside the rectangle, Track returns FALSE immediately; otherwise,
Track returns TRUE only when the user releases the mouse button. That means Track works a little like
CDialog::DoModal. It contains its own message dispatch logic.

int HitTest(CPoint point) const;

Call HitTest if you need to distinguish between mouse button hits inside and on the tracker rectangle. The
function returns immediately with the hit status in the return value.

BOOL SetCursor(CWnd* pWnd, UINT nHitTest) const;

Call this function in your view's WM_SETCURSOR handler to ensure that the cursor changes during
tracking. If SetCursor returns FALSE, call the base class OnSetCursor function; if SetCursor returns TRUE,
you return TRUE.

CRectTracker Rectangle Coordinate Conversion

You must deal with the fact that the CRectTracker::m_rect member stores device coordinates. If you are
using a scrolling view or have otherwise changed the mapping mode or viewport origin, you must do
coordinate conversion. Here's a strategy:

1. Define a CRectTracker data member in your view class. Use the name m_tracker.

2. Define a separate data member in your view class to hold the rectangle in logical coordinates. Use
the name m_rectTracker.

3. In your view's OnDraw function, set m_rect to the updated device coordinates, and then draw the
tracker. This adjusts for any scrolling since the last OnDraw. Some sample code appears below.

m_tracker.m_rect = m_rectTracker;
pDC->LPtoDP(m_tracker.m_rect); // tracker requires device
 // coordinates
m_tracker.Draw(pDC);

4. In your mouse button down message handler, call Track, set m_rectTracker to the updated logical
coordinates, and call Invalidate, as shown here:

if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker);
 Invalidate();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX26A Example—A Data Object Clipboard
This example uses the CDib class from EX11C. Here you'll be able to move and resize the DIB image with a
tracker rectangle, and you'll be able to copy and paste the DIB to and from the clipboard using a COM data
object. The example also includes functions for reading DIBs from and writing DIBs to BMP files.

If you create such an example from scratch, use AppWizard without any ActiveX or Automation options and
then add the following line in your StdAfx.h file:

#include <afxole.h>
Add the following call at the start of the application's InitInstance function:

AfxOleInit();
To prepare EX26A, open the \vcpp32\ex26a\ex26a.dsw workspace and then build the project. Run the
application, and paste a bitmap into the rectangle by choosing Paste From on the Edit menu. You'll see an
MDI application similar to the one shown in Figure 26-2.

Figure 26-2. The EX26A program in operation.

The CMainFrame Class

This class contains the handlers OnQueryNewPalette and OnPaletteChanged for the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages, respectively. These handlers send a user-
defined WM_VIEWPALETTECHANGED message to all the views, and then the handler calls CDib::UsePalette
to realize the palette. The value of wParam tells the view whether it should realize the palette in
background or foreground mode.

The CEx26aDoc Class

This class is pretty straightforward. It contains an embedded CDib object, m_dib, plus a Clear All command
handler. The overridden DeleteContents member function calls the CDib::Empty function.

The CEx26aView Class

This class contains the clipboard function command handlers, the tracking code, the DIB drawing code, and
the palette message handler. Figure 26-3 shows the header and implementation files with manually
entered code in boldface.

EX26AVIEW.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EX26AVIEW.H
#if !defined(AFX_EX26AVIEW_H__4F329B0F_5DF1_11D0_848F_00400526305B
_ _INCLUDED_)
#define AFX_EX26AVIEW_H__4F329B0F_5DF1_11D0_848F_00400526305B
_ _INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif// _MSC_VER > 1000

#define WM_VIEWPALETTECHANGED WM_USER + 5

class CEx26aView : public CScrollView
{
 // for tracking
 CRectTracker m_tracker;
 CRect m_rectTracker; // logical coordinates
 CSize m_sizeTotal; // document size
protected: // create from serialization only
 CEx26aView();
 DECLARE_DYNCREATE(CEx26aView)

// Attributes
public:
 CEx26aDoc* GetDocument();
// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx26aView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NULL);
 virtual void OnInitialUpdate();
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx26aView();

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// generated message map functions
protected:
 //{{AFX_MSG(CEx26aView)
 afx_msg void OnEditCopy();
 afx_msg void OnUpdateEditCopy(CCmdUI* pCmdUI);]
 afx_msg void OnEditCopyto();
 afx_msg void OnEditCut();
 afx_msg void OnEditPaste();
 afx_msg void OnUpdateEditPaste(CCmdUI* pCmdUI);
 afx_msg void OnEditPastefrom();
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message);
 afx_msg LONG OnViewPaletteChanged(UINT wParam, LONG lParam);
 afx_msg void OnSetFocus(CWnd* pOldWnd);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 BOOL DoPasteDib(COleDataObject* pDataObject);
 COleDataSource* SaveDib();
};

#ifndef _DEBUG // debug version in Ex26aView.cpp
inline CEx26aDoc* CEx26aView::GetDocument()
 { return (CEx26aDoc*)
m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line

#endif
// !defined(AFX_EX26AVIEW_H__4F329B0F_5DF1_11D0_848F_00400526305B
__INCLUDED_)

EX26AVIEW.CPP
#include "stdafx.h"
#include "ex26a.h"

#include "cdib.h"
#include "ex26aDoc.h"
#include "ex26aView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

///
// CEx26aView

IMPLEMENT_DYNCREATE(CEx26aView, CScrollView)

BEGIN_MESSAGE_MAP(CEx26aView, CScrollView)
 //{{AFX_MSG_MAP(CEx26aView)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_COPYTO, OnEditCopyto)
 ON_COMMAND(ID_EDIT_CUT, OnEditCut)
 ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ON_COMMAND(ID_EDIT_PASTEFROM, OnEditPastefrom)
 ON_WM_LBUTTONDOWN()
 ON_WM_SETCURSOR()
 ON_MESSAGE(WM_VIEWPALETTECHANGED, OnViewPaletteChanged)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPYTO, OnUpdateEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, OnUpdateEditCopy)
 ON_WM_SETFOCUS()
 //}}AFX_MSG_MAP
 // standard printing commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CScrollView::OnFilePrintPreview)
END_MESSAGE_MAP()

//
// CEx26aView construction/destruction

CEx26aView::CEx26aView() : m_sizeTotal(800, 1050), // 8-by-10.5 inches
 // when printed
 m_rectTracker(50, 50, 250, 250)
{
}

CEx26aView::~CEx26aView()
{
}

BOOL CEx26aView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CScrollView::PreCreateWindow(cs);
}

//
// CEx26aView drawing

void CEx26aView::OnDraw(CDC* pDC)
{
 CDib& dib = GetDocument()->m_dib;
 m_tracker.m_rect = m_rectTracker;
 pDC->LPtoDP(m_tracker.m_rect); // tracker wants device coordinates
 m_tracker.Draw(pDC);
 dib.Draw(pDC, m_rectTracker.TopLeft(),
m_rectTracker.Size());
}

//
// CEx26aView printing

BOOL CEx26aView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}

void CEx26aView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEx26aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

//
// CEx26aView diagnostics

#ifdef _DEBUG
void CEx26aView::AssertValid() const

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx26aView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CEx26aView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CEx26aDoc* CEx26aView::GetDocument() // nondebug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx26aDoc)));
 return (CEx26aDoc*)m_pDocument;
}
#endif //_DEBUG

//
// helper functions used for clipboard and drag-drop
BOOL CEx26aView::DoPasteDib(COleDataObject* pDataObject)
{
 // update command user interface should keep us out of
 // here if not CF_DIB
 if (!pDataObject->IsDataAvailable(CF_DIB)) {
 TRACE("CF_DIB format is unavailable\n");
 return FALSE;
 }
 CEx26aDoc* pDoc = GetDocument();
 // Seems to be MOVEABLE memory, so we must use GlobalLock!
 // (hDib != lpDib) GetGlobalData copies the memory, so we can
 // hang onto it until we delete the CDib.
 HGLOBAL hDib = pDataObject->GetGlobalData(CF_DIB);
 ASSERT(hDib != NULL);
 LPVOID lpDib = ::GlobalLock(hDib);
 ASSERT(lpDib != NULL);
 pDoc->m_dib.AttachMemory(lpDib, TRUE, hDib);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
 return TRUE;
}
COleDataSource* CEx26aView::SaveDib()
{
 CDib& dib = GetDocument()->m_dib;
 if (dib.GetSizeImage() > 0) {
 COleDataSource* pSource = new COleDataSource();
 int nHeaderSize = dib.GetSizeHeader();
 int nImageSize = dib.GetSizeImage();
 HGLOBAL hHeader = ::GlobalAlloc(GMEM_SHARE,
 nHeaderSize + nImageSize);
 LPVOID pHeader = ::GlobalLock(hHeader);
 ASSERT(pHeader != NULL);
 LPVOID pImage = (LPBYTE) pHeader + nHeaderSize;
 memcpy(pHeader, dib.m_lpBMIH, nHeaderSize);
 memcpy(pImage, dib.m_lpImage, nImageSize);
 // Receiver is supposed to free the global memory
 ::GlobalUnlock(hHeader);
 pSource->CacheGlobalData(CF_DIB, hHeader);
 return pSource;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return pSource;
 }
 return NULL;
}

//
// CEx26aView message handlers

void CEx26aView::OnEditCopy()
{
 COleDataSource* pSource = SaveDib();
 if (pSource) {
 pSource->SetClipboard(); // OLE deletes data source
 }
}

void CEx26aView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{
 // serves Copy, Cut, and Copy To
 CDib& dib = GetDocument()->m_dib;
 pCmdUI->Enable(dib.GetSizeImage() > 0L);
}

void CEx26aView::OnEditCopyto()
{
 CDib& dib = GetDocument()->m_dib;
 CFileDialog dlg(FALSE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) return;
 BeginWaitCursor();
 dib.CopyToMapFile(dlg.GetPathName());
 EndWaitCursor();
}

void CEx26aView::OnEditCut()
{
 OnEditCopy();
 GetDocument()->OnEditClearAll();
}
void CEx26aView::OnEditPaste()
{
 CEx26aDoc* pDoc = GetDocument();
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 DoPasteDib(&dataObject);
 CClientDC dc(this);
 pDoc->m_dib.UsePalette(&dc);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
}

void CEx26aView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{
 COleDataObject dataObject;
 BOOL bAvail = dataObject.AttachClipboard() &&
 dataObject.IsDataAvailable(CF_DIB);
 pCmdUI->Enable(bAvail);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pCmdUI->Enable(bAvail);
}

void CEx26aView::OnEditPastefrom()
{
 CEx26aDoc* pDoc = GetDocument();
 CFileDialog dlg(TRUE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) return;
 if (pDoc->m_dib.AttachMapFile(dlg.GetPathName(), TRUE)) { // share
 CClientDC dc(this);
 pDoc->m_dib.SetSystemPalette(&dc);
 pDoc->m_dib.UsePalette(&dc);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
 }
}

void CEx26aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 // custom MM_LOENGLISH; positive y is down
 if (pDC->IsPrinting()) {
 int nHsize = pDC->GetDeviceCaps(HORZSIZE) * 1000 / 254;
 int nVsize = pDC->GetDeviceCaps(VERTSIZE) * 1000 / 254;
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(nHsize, nVsize);
 pDC->SetViewportExt(pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));
 }
 else {
 CScrollView::OnPrepareDC(pDC, pInfo);
 }
}
void CEx26aView::OnInitialUpdate()
{
 SetScrollSizes(MM_TEXT, m_sizeTotal);
 m_tracker.m_nStyle = CRectTracker::solidLine |
 CRectTracker::resizeOutside;
 CScrollView::OnInitialUpdate();
}

void CEx26aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker); // Update logical coordinates
 Invalidate();
 }
}

BOOL CEx26aView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{
 if (m_tracker.SetCursor(pWnd, nHitTest)) {
 return TRUE;
 }
 else {
 return CScrollView::OnSetCursor(pWnd, nHitTest, message);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

LONG CEx26aView::OnViewPaletteChanged(UINT wParam, LONG lParam)
{
 TRACE("CEx26aView::OnViewPaletteChanged, HWND = %x, \
 code = %d\n", GetSafeHwnd(), wParam);
 CClientDC dc(this);
 GetDocument()->m_dib.UsePalette(&dc, wParam);
 Invalidate();
 return 0;
}

void CEx26aView::OnSetFocus(CWnd* pOldWnd)
{
 CScrollView::OnSetFocus(pOldWnd);
 AfxGetApp()->m_pMainWnd->SendMessage(WM_PALETTECHANGED,
 (UINT) GetSafeHwnd());
}

Figure 26-3. The CEx26aView class listing.

Several interesting things happen in the view class. In the DoPasteDib helper, we can call GetGlobalData
because we can attach the returned HGLOBAL variable to the document's CDib object. If we called
GetData, we would have to copy the memory block ourselves. The Paste From and Copy To command
handlers rely on the memory-mapped file support in the CDib class. The OnPrepareDC function creates a
special printer-mapping mode that is just like MM_LOENGLISH except that positive y is down. One pixel on
the display corresponds to 0.01 inch on the printer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Drag and Drop
Drag and drop was the ultimate justification for the data object code you've been looking at. OLE supports
this feature with its IDropSource and IDropTarget interfaces plus some library code that manages the
drag-and-drop process. The MFC library offers good drag-and-drop support at the view level, so we'll use
it. Be aware that drag-and-drop transfers are immediate and independent of the clipboard. If the user
cancels the operation, there's no "memory" of the object being dragged.

Drag-and-drop transfers should work consistently between applications, between windows of the same
application, and within a window. When the user starts the operation, the cursor should change to an
arrow_rectangle combination. If the user holds down the Ctrl key, the cursor turns into a plus sign (+),
which indicates that the object is being copied rather than moved.

MFC also supports drag-and-drop operations for items in compound documents. This is the next level up in
MFC OLE support, and it's not covered in this chapter. Look up the OCLIENT example in the online
documentation under Visual C++ Samples.

The Source Side of the Transfer

When your source program starts a drag-and-drop operation for a data object, it calls
COleDataSource::DoDragDrop. This function internally creates an object of MFC class COleDropSource,
which implements the IOleDropSource interface. DoDragDrop is one of those functions that don't return for
a while. It returns when the user drops the object or cancels the operation or when a specified number of
milliseconds have elapsed.

If you're programming drag-and-drop operations to work with a CRectTracker object, you should call
DoDragDrop only when the user clicks inside the tracking rectangle, not on its border.
CRectTracker::HitTest gives you that information. When you call DoDragDrop, you need to set a flag that
tells you whether the user is dropping the object into the same view (or document) that it was dragged
from.

The Destination Side of the Transfer

If you want to use the MFC library's view class drag-and-drop support, you must add a data member of
class COleDropTarget to your derived view class. This class implements the IDropTarget interface, and it
holds an IDropSource pointer that links back to the COleDropSource object. In your view's OnInitialUpdate
function, you call the Register member function for the embedded COleDropTarget object.

After you have made your view a drop target, you must override four CView virtual functions, which the
framework calls during the drag-and-drop operation. Here's a summary of what they should do, assuming
that you're using a tracker.

OnDragEnter Adjusts the focus rectangle and then calls OnDragOver

OnDragOver Moves the dotted focus rectangle and sets the drop effect (determines cursor
shape)

OnDragLeave Cancels the transfer operation; returns the rectangle to its original position and size

OnDrop Adjusts the focus rectangle and then calls the DoPaste helper function to get
formats from the data object

The Drag-and-Drop Sequence

Figure 26-4 illustrates the MFC drag-and-drop process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-4. MFC OLE drag-and-drop processing.

Here's a summary of what's going on:

1. User presses the left mouse button in the source view window.

2. Mouse button handler calls CRectTracker::HitTest and finds out that the cursor was inside the
tracker rectangle.

3. Handler stores formats in a COleDataSource object.

4. Handler calls COleDataSource::DoDragDrop for the data source.

5. User moves the cursor to the view window of the target application.

6. OLE calls IDropTarget::OnDragEnter and OnDragOver for the COleDropTarget object, which calls
the corresponding virtual functions in the target's view. The OnDragOver function is passed a
COleDataObject pointer for the source object, which the target tests for a format it can understand.

7. OnDragOver returns a drop effect code, which OLE uses to set the cursor.

8. OLE calls IDataSource::QueryContinueDrag on the source side to find out whether the drag
operation is still in progress. The MFC COleDataSource class responds appropriately.

9. User releases the mouse button to drop the object in the target view window.

10. OLE calls IDropTarget::OnDrop, which calls OnDrop for the target's view. Because OnDrop is passed
a COleDataObject pointer, it can retrieve the desired format from that object.

11. When OnDrop returns in the target program, DoDragDrop can return in the source program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX26B Example—OLE Drag and Drop
This example picks up where the EX26A example leaves off. It adds drag-and-drop support, using the
existing SaveDib and DoPasteDib helper functions. All of the clipboard code is the same. You should be
able to adapt EX26B to other applications that require drag and drop for data objects.

To prepare EX26B, open the \vcpp32\ex26b\ex26b.dsw workspace and build the project. Run the
application, and test drag and drop between child windows and between instances of the program.

The CEx26bDoc Class

This class is just like the EX26A version except for an added flag data member, m_bDragHere. This flag is
TRUE when a drag-and-drop operation is in progress for this document. The flag is in the document and
not in the view because it is possible to have multiple views attached to the same document. It doesn't
make sense to drag a DIB from one view to another when both views reflect the document's m_dib
member.

The CEx26bView Class

To start with, this class has three additional data members and a constructor that initializes all the data
members, as shown here:

CRect m_rectTrackerEnter; // original logical coordinates
COleDropTarget m_dropTarget;
CSize m_dragOffset; // device coordinates

CEx26bView::CEx26bView() : m_sizeTotal(800, 1050), // 8-by-10.5 inches
 // when printed
 m_rectTracker(50, 50, 250, 250),
 m_dragOffset(0, 0),
 m_rectTrackerEnter(50, 50, 250, 250)
{
}
The OnInitialUpdate function needs one additional line to register the drop target:

m_dropTarget.Register(this);
Following are the drag-and-drop virtual override functions. Note that OnDrop replaces the DIB only if the
document's m_bDragHere flag is TRUE, so if the user drops the DIB in the same window or in another
window connected to the same document, nothing happens.

DROPEFFECT CEx26bView::OnDragEnter(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 TRACE("Entering CEx26bView::OnDragEnter, point = (%d, %d)\n",
 point.x, point.y);
 m_rectTrackerEnter = m_rectTracker; // save original coordinates
 // for cursor leaving
 // rectangle
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker); // will be erased in OnDragOver
 return OnDragOver(pDataObject, dwKeyState, point);
}

DROPEFFECT CEx26bView::OnDragOver(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 if (!pDataObject->IsDataAvailable(CF_DIB)) {
 return DROPEFFECT_NONE;
 }
 MoveTrackRect(point);
 if ((dwKeyState & MK_CONTROL) == MK_CONTROL) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if ((dwKeyState & MK_CONTROL) == MK_CONTROL) {
 return DROPEFFECT_COPY;
 }
 // Check for force move
 if ((dwKeyState & MK_ALT) == MK_ALT) {
 return DROPEFFECT_MOVE;
 }
 // default -- recommended action is move
 return DROPEFFECT_MOVE;
}

void CEx26bView::OnDragLeave()
{
 TRACE("Entering CEx26bView::OnDragLeave\n");
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker);
 m_rectTracker = m_rectTrackerEnter; // Forget it ever happened
}

BOOL CEx26bView::OnDrop(COleDataObject* pDataObject,
 DROPEFFECT dropEffect, CPoint point)
{
 TRACE("Entering CEx26bView::OnDrop --
 dropEffect = %d\n", dropEffect);
 BOOL bRet;
 CEx26bDoc* pDoc = GetDocument();
 MoveTrackRect(point);
 if (pDoc->m_bDragHere) {
 pDoc->m_bDragHere = FALSE;
 bRet = TRUE;
 }
 else {
 bRet = DoPasteDib(pDataObject);
 }
 return bRet;
}
The handler for the WM_LBUTTONDOWN message needs substantial overhaul. It must call DoDragDrop if
the cursor is inside the rectangle and Track if it is on the rectangle border. The revised code is shown here:

void CEx26bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx26bDoc* pDoc = GetDocument();
 if (m_tracker.HitTest(point) == CRectTracker::hitMiddle) {
 COleDataSource* pSource = SaveDib();
 if (pSource) {
 // DoDragDrop returns only after drop is complete
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CPoint topleft = m_rectTracker.TopLeft();
 dc.LPtoDP(&topleft);
 // `point' here is not the same as the point parameter in
 // OnDragEnter, so we use this one to compute the offset
 m_dragOffset = point - topleft; // device coordinates
 pDoc->m_bDragHere = TRUE;
 DROPEFFECT dropEffect = pSource->DoDragDrop(
 DROPEFFECT_MOVE | DROPEFFECT_COPY, CRect(0, 0, 0, 0));
 TRACE("after DoDragDrop -- dropEffect = %ld\n", dropEffect);
 if (dropEffect == DROPEFFECT_MOVE && pDoc->m_bDragHere) {
 pDoc>OnEditClearAll();
 }
 pDoc->m_bDragHere = FALSE;
 delete pSource;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 else {
 if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 // should have some way to prevent it going out of bounds
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker); // update logical coordinates
 }
 }
 Invalidate();
}
Finally, the new MoveTrackRect helper function, shown here, moves the tracker's focus rectangle each
time the OnDragOver function is called. This job was done by CRectTracker::Track in the EX26A example.

void CEx26bView::MoveTrackRect(CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker);
 dc.LPtoDP(m_rectTracker);
 CSize sizeTrack = m_rectTracker.Size();
 CPoint newTopleft = point - m_dragOffset; // still device
 m_rectTracker = CRect(newTopleft, sizeTrack);
 m_tracker.m_rect = m_rectTracker;
 dc.DPtoLP(m_rectTracker);
 dc.DrawFocusRect(m_rectTracker);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Applications and Drag and Drop—Dobjview
I tested EX26B with the Microsoft Office 97 suite. I tried both drag-and-drop and clipboard transfers, with
the results shown in the following table.

EX26B Word Excel PowerPoint

Sends clipboard data to x x (no palettes) x

Accepts clipboard data from

Sends drag-drop data to x x

Accepts drag-drop data from

When I started to investigate why these programs were so uncooperative, I discovered a useful OLE utility
called Dobjview (IDataObject viewer). I could use Dobjview to examine a data object on the clipboard, and
I could drag objects to the Dobjview window. Here's what I got when I dragged a picture from Microsoft
Excel.

No CF_DIB format is present. If you want pictures from Excel, you must enhance EX26B to process
metafiles. Another alternative is to rewrite the program with compound document support as described in
Chapter 28. The OLE libraries contain code to display bitmaps and metafiles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
As you can see, MFC makes clipboard and drag-and-drop data transfer pretty easy. While you can always
write all the code necessary to implement the interfaces (IDataObject, IDropTarget, and IDropSource),
using MFC's implementations is much more convenient. While we've looked only at clipboard and drag and
drop transfers through IDataObject in this chapter, everything you learn about the IDataObject interface
will carry forward to your study of compound documents in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 27
Structured Storage
Like Automation and Uniform Data Transfer, structured storage is one of those COM features that you can
use effectively by itself. Of course, it's also behind much of the ActiveX technology, particularly compound
documents.

In this chapter, you'll learn to write and read compound files with the IStorage and IStream interfaces. The
IStorage interface is used to create and manage structured storage objects. IStream is used to manipulate
the data contained by the storage object. The IStorage and IStream interfaces, like all COM interfaces, are
simply virtual function declarations. Compound files, on the other hand, are implemented by code in the
Microsoft Windows OLE32 DLL. Compound files represent a Microsoft file I/O standard that you can think of
as "a file system inside a file."

When you're familiar with IStorage and IStream, you'll move on to the IPersistStorage and IPersistStream
interfaces. With the IPersistStorage and IPersistStream interfaces, you can program a class to save and
load objects to and from a compound file. You say to an object, "Save yourself," and it knows how.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compound Files
This book discusses four options for file I/O. You can read and write whole sequential files (like the MFC
archive files you saw first in Chapter 17). You can use a database management system (as described in
Chapter 31 and Chapter 32). You can write your own code for random file access. Finally, you can use
compound files.

Think of a compound file as a whole file system within a file. Figure 27-1 shows a traditional disk directory
as supported by early MS-DOS systems and by Microsoft Windows. This directory is composed of files and
subdirectories, with a root directory at the top. Now imagine the same structure inside a single disk file.
The files are called streams, and the directories are called storages. Each is identified by a name of up to
32 wide characters in length. A stream is a logically sequential array of bytes, and a storage is a collection
of streams and substorages.

Figure 27-1. A disk directory with files and subdirectories.

(A storage can contain other storages, just as a directory can contain subdirectories.) In a disk file, the
bytes aren't necessarily stored in contiguous clusters. Similarly, the bytes in a stream aren't necessarily
contiguous in their compound file. They just appear that way.

Storage and stream names cannot contain the characters /, \, :, or !. If the first
character has an ASCII value of less than 32, the element is marked as managed by
some agent other than the owner.

You can probably think of many applications for a compound file. The classic example is a large document
composed of chapters and paragraphs within chapters. The document is so large that you don't want to
read the whole thing into memory when your program starts, and you want to be able to insert and delete
portions of the document. You could design a compound file with a root storage that contains substorages
for chapters. The chapter substorages would contain streams for the paragraphs. Other streams could be
for index information.

One useful feature of compound files is transactioning. When you start a transaction for a compound file,
all changes are written to a temporary file. The changes are made to your file only when you commit the
transaction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Storages and the IStorage Interface
If you have a storage object, you can manipulate it through the IStorage interface. Pay attention to these
functions because Microsoft Foundation Class offers no support for storage access. Following are some of
the important member functions and their significant parameters.

HRESULT Commit(…);

Commits all the changes to this storage and to all elements below it.

HRESULT CopyTo(…, IStorage**
pStgDest);

Copies a storage, with its name and all its substorages and streams (recursively), to another existing
storage. Elements are merged into the target storage, replacing elements with matching names.

HRESULT CreateStorage(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Creates a new substorage under this storage object.

HRESULT CreateStream(const WCHAR*
pName, …, DWORD mode, …, IStream** ppStream);

Creates a new stream under this storage object.

HRESULT DestroyElement(const WCHAR* pName);

Destroys the named storage or stream that is under this storage object. A storage cannot destroy itself.

HRESULT EnumElements(…, IEnumSTATSTG** ppEnumStatstg);

Iterates through all the storages and streams under this storage object. The IEnumSTATSTG interface has
Next, Skip, and Clone member functions, as do other COM enumerator interfaces.

HRESULT MoveElementTo(const WCHAR* pName,
IStorage* pStgDest, const LPWSTR* pNewName, DWORD flags);

Moves an element from this storage object to another storage object.

HRESULT OpenStream(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Opens an existing stream object, designated by name, under this storage object.

HRESULT OpenStorage(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Opens an existing substorage object, designated by name, under this storage object.

DWORD Release(void);

Decrements the reference count. If the storage is a root storage representing a disk file, Release closes the
file when the reference count goes to 0.

HRESULT RenameElement(const
WCHAR* pOldName, const WCHAR* pNewName);

Assigns a new name to an existing storage or stream under this storage object.

HRESULT Revert(void);

Abandons a transaction, leaving the compound file unchanged.

HRESULT SetClass(CLSID& clsid);

Inserts a 128-bit class identifier into this storage object. This ID can then be retrieved with the Stat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inserts a 128-bit class identifier into this storage object. This ID can then be retrieved with the Stat
function.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);

Fills in a STATSTG structure with useful information about the storage object, including its name and class
ID.

Getting an IStorage Pointer

Where do you get the first IStorage pointer? COM gives you the global function StgCreateDocfile to create
a new structured storage file on disk and the function StgOpenStorage to open an existing file. Both of
these set a pointer to the file's root storage. Here's some code that opens an existing storage file named
MyStore.stg and then creates a new substorage:

IStorage* pStgRoot;
IStorage* pSubStg;

if (::StgCreateDocfile(L"MyStore.stg",
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK) {
 if (pStgRoot->CreateStorage(L"MySubstorageName",
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, 0, &pSubStg) == S_OK) {
 // Do something with pSubStg
 pSubStg->Release();
 }
 pStgRoot->Release();
}

Freeing STATSTG Memory

When you call IStorage::Stat with a STATFLAG_DEFAULT value for the flag parameter, COM allocates
memory for the element name. You must free this memory in a manner compatible with its allocation.
COM has its own allocation system that uses an allocator object with an IMalloc interface. You must get an
IMalloc pointer from COM, call IMalloc::Free for the string, and then release the allocator. The code below
illustrates this.

If you want just the element size and type and not the name, you can call Stat with the
STATFLAG_NONAME flag. In that case, no memory is allocated and you don't have to free it. This seems
like an irritating detail, but if you don't follow the recipe, you'll have a memory leak.

Enumerating the Elements in a Storage Object

Following is some code that iterates through all the elements under a storage object, differentiating
between substorages and streams. The elements are retrieved in a seemingly random sequence,
independent of the sequence in which they were created; however, I've found that streams are always
retrieved first. The IEnumSTATSTG::Next element fills in a STATSTG structure that tells you whether the
element is a stream or a storage object.

IEnumSTATSTG* pEnum;
IMalloc* pMalloc;
STATSTG statstg;
extern IStorage* pStg; // maybe from OpenStorage
::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit called
VERIFY(pStg->EnumElements(0, NULL, 0, &pEnum) == S_OK)
while (pEnum->Next(1, &statstg, NULL) == NOERROR) {
 if (statstg.type == STGTY_STORAGE) {
 if (pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK) {
 // Do something with the substorage
 }
 else if (statstg.type == STGTY_STREAM) {
 // Process the stream
 }
 pMalloc->Free(statstg.pwcsName); // avoids memory leaks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pMalloc->Free(statstg.pwcsName); // avoids memory leaks
 }
 pMalloc->Release();
}

Sharing Storages Among Processes

If you pass an IStorage pointer to another process, the marshaling code ensures that the other process
can access the corresponding storage element and everything below it. This is a convenient way of sharing
part of a file. One of the standard data object media types of the TYMED enumeration is
TYMED_ISTORAGE, and this means you can pass an IStorage pointer on the clipboard or through a drag-
and-drop operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Streams and the IStream Interface
If you have a stream object, you can manipulate it through the IStream interface. Streams are always
located under a root storage or a substorage object. Streams grow automatically (in 512-byte increments)
as you write to them. An MFC class for streams, COleStreamFile, makes a stream look like a CFile object.
That class won't be of much use to us in this chapter, however.

Once you have a pointer to IStream, a number of functions are available to you for manipulating the
stream. Here is a list of all the IStream functions:

HRESULT CopyTo(IStream** pStm, ULARGE_INTEGER cb, …);

Copies cb bytes from this stream to the named stream. ULARGE_INTEGER is a structure with two 32-bit
members—HighPart and LowPart.

HRESULT Clone(IStream** ppStm);

Creates a new stream object with its own seek pointer that references the bytes in this stream. The bytes
are not copied, so changes in one stream are visible in the other.

HRESULT Commit(…);

Transactions are not currently implemented for streams.

HRESULT Read(void const* pv, ULONG cb, ULONG* pcbRead);

Tries to read cb bytes from this stream into the buffer pointed to by pv. The variable pcbRead indicates
how many bytes were actually read.

DWORD Release(void);

Closes this stream.

HRESULT Revert(void);

Has no effect for streams.

HRESULT Seek(LARGE_INTEGER dlibMove,
DWORD dwOrigin, ULARGE_INTEGER* NewPosition);

Seeks to the specified position in this stream. The dwOrigin parameter specifies the origin of the offset
defined in the NewPosition parameter.

HRESULT SetSize(ULARGE_INTEGER libNewSize);

Extends or truncates a stream. Streams grow automatically as they are written, but calling SetSize can
optimize performance.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);

Fills in the STATSTG structure with useful information about the stream, including the stream name and
size. The size is useful if you need to allocate memory for a read.

HRESULT Write(void const* pv, ULONG cb, ULONG* pcbWritten);

Tries to write cb bytes to this stream from the buffer pointed to by pv. The variable pcbWritten indicates
how many bytes were actually written.

IStream Programming

Here is some sample code that creates a stream under a given storage object and writes some bytes from
m_buffer to the stream:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extern IStorage* pStg;
IStream* pStream;
ULONG nBytesWritten;

if (pStg->CreateStream(L"MyStreamName",
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK) {
 ASSERT(pStream != NULL);
 pStream->Write(m_buffer, m_nLength, &nBytesWritten);
 pStream->Release();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ILockBytes Interface
As already mentioned, the compound file system you've been looking at is implemented in the OLE32 DLL.
The structured storage interfaces are flexible enough, however, to permit you to change the underlying
implementation. The key to this flexibility is the ILockBytes interface. The StgCreateDocfile and
StgOpenStorage global functions use the default Windows file system. You can write your own file access
code that implements the ILockBytes interface and then call StgCreateDocfileOnILockBytes or
StgOpenStorageOnILockBytes to create or open the file, instead of calling the other global functions.

Rather than implement your own ILockBytes interface, you can call CreateILockBytesOnHGlobal to create a
compound file in RAM. If you wanted to put compound files inside a database, you would implement an
ILockBytes interface that used the database's blobs (binary large objects).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX27A Example—Structured Storage
When you choose the Storage Write option in the EX27A example, the program walks through your entire
disk directory looking for TXT files. As it looks, it writes a compound file (\direct.stg) on the top level of
your directory structure. This file contains storages that match your subdirectories. For each TXT file that
the program finds in a subdirectory, it copies the first line of text to a stream in the corresponding storage.
When you choose the Storage Read option, the program reads the direct.stg compound file and prints the
contents of this file in the Debug window.

If you create such an example from scratch, use AppWizard without any ActiveX or Automation options and
then add the following lines in your StdAfx.h file:

#include <afxole.h>
#include <afxpriv.h> // for wide-character conversion
Then delete the following line:

#define VC_EXTRALEAN
To prepare EX27A, open the \vcpp32\ex27a\ex27a.dsw workspace and build the project. Run the program
from the debugger. First choose Write from the Storage menu and wait for a "Write complete" message
box. Then choose Read. Observe the output in the Debug window.

The Menu

The EX27A example has an added top-level Storage menu with Write and Read options.

The CEx27aView Class

This class maps the new Storage Read and Write menu commands listed above to start worker threads.
The handlers are shown here:

void CEx27aView::OnStorageRead()
{
 CWinThread* pThread = AfxBeginThread(ReadThreadProc, GetSafeHwnd());
}

void CEx27aView::OnStorageWrite()
{
 CWinThread* pThread = AfxBeginThread(WriteThreadProc, GetSafeHwnd());
}

The Worker Threads

Figure 27-2 lists the code for the Storage Write and Storage Read worker threads.

THREAD.H

extern int g_nIndent;
extern const char* g_szBlanks;
extern const char* g_szRootStorageName;

UINT WriteThreadProc(LPVOID pParam);
UINT ReadThreadProc(LPVOID pParam);
void ReadDirectory(const char* szPath, LPSTORAGE pStg);
void ReadStorage(LPSTORAGE pStg);
WRITETHREAD.CPP

#include "StdAfx.h"
#include "Thread.h"

int g_nIndent = 0;
const char* g_szBlanks = " ";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const char* g_szBlanks = " ";
const char* g_szRootStorageName = "\\direct.stg";

UINT WriteThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 g_nIndent = 0;
 VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName),
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK);
 ReadDirectory("\\", pStgRoot);
 pStgRoot->Release();
 AfxMessageBox("Write complete");
 return 0;
}

void ReadDirectory(const char* szPath, LPSTORAGE pStg)
{
 // recursive function
 USES_CONVERSION;
 WIN32_FIND_DATA fData;
 HANDLE h;
 char szNewPath[MAX_PATH];
 char szStorageName[100];
 char szStreamName[100];
 char szData[81];
 char* pch = NULL;
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;

 g_nIndent++;
 strcpy(szNewPath, szPath);
 strcat(szNewPath, "*.*");
 h = ::FindFirstFile(szNewPath, &fData);
 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory
 do {
 if (!strcmp(fData.cFileName, "..") ||
 !strcmp(fData.cFileName, ".")) continue;
 while((pch = strchr(fData.cFileName, `!')) != NULL) {
 *pch = `|';
 }
 if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 // It's a directory, so make a storage
 strcpy(szNewPath, szPath);
 strcat(szNewPath, fData.cFileName);
 strcat(szNewPath, "\\");

 strcpy(szStorageName, fData.cFileName);
 szStorageName[31] = `\0'; // limit imposed by OLE
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szStorageName);
 VERIFY(pStg->CreateStorage(T2COLE(szStorageName),
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadDirectory(szNewPath, pSubStg);
 pSubStg->Release();
 }
 else {
 if ((pch = strrchr(fData.cFileName, `.')) != NULL) {
 if (!stricmp(pch, ".TXT")) {
 // It's a text file, so make a stream
 strcpy(szStreamName, fData.cFileName);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strcpy(szStreamName, fData.cFileName);
 strcpy(szNewPath, szPath);
 strcat(szNewPath, szStreamName);
 szStreamName[32] = `\0'; // OLE max length
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szNewPath);
 CStdioFile file(szNewPath, CFile::modeRead);
 // Ignore zero-length files
 if(file.ReadString(szData, 80)) {
 TRACE("%s\n", szData);
 VERIFY(pStg->CreateStream(T2COLE(szStreamName),
 STGM_CREATE | STGM_READWRITE |
 STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 // Include the null terminator in the stream
 pStream->Write(szData, strlen(szData) + 1, NULL);
 pStream->Release();
 }
 }
 }
 }
 } while (::FindNextFile(h, &fData));
 g_nIndent—;
}
READTHREAD.CPP

#include "StdAfx.h"
#include "Thread.h"

UINT ReadThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 // doesn't work without STGM_SHARE_EXCLUSIVE
 g_nIndent = 0;
 if (::StgOpenStorage(T2COLE(g_szRootStorageName), NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK) {
 ASSERT(pStgRoot!= NULL);
 ReadStorage(pStgRoot);
 pStgRoot->Release();
 }
 else {
 AfxMessageBox("Storage file not available or not readable.");
 }
 AfxMessageBox("Read complete");
 return 0;
}

void ReadStorage(LPSTORAGE pStg)
// reads one storage — recursive calls for substorages
{
 USES_CONVERSION;
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPENUMSTATSTG pEnum = NULL;
 LPMALLOC pMalloc = NULL; // for freeing statstg
 STATSTG statstg;
 ULONG nLength;
 BYTE buffer[101];

 g_nIndent++;
 ::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit
 // was called
 VERIFY(pStg->EnumElements(0, NULL, 0, &pEnum) == S_OK);
 while (pEnum->Next(1, &statstg, NULL) == S_OK) {
 if (statstg.type == STGTY_STORAGE) {
 VERIFY(pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, OLE2CT(statstg.pwcsName));
 ReadStorage(pSubStg);
 pSubStg->Release();
 }
 else if (statstg.type == STGTY_STREAM) {
 VERIFY(pStg->OpenStream(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, OLE2CT(statstg.pwcsName));
 pStream->Read(buffer, 100, &nLength);
 buffer[nLength] = `\0';
 TRACE("%s\n", buffer);
 pStream->Release();
 }
 else {
 ASSERT(FALSE); // LockBytes?
 }
 pMalloc->Free(statstg.pwcsName); // avoids memory leaks
 }
 pMalloc->Release();
 pEnum->Release();
 g_nIndent—;
}

Figure 27-2. The Storage menu worker threads.

To keep the program simple, there's no synchronization between the main thread and the two worker
threads. You could run both threads at the same time if you used two separate compound files.

From your study of the Win32 threading model, you might expect that closing the main window would
cause the read thread or write thread to terminate "midstream," possibly causing memory leaks. But this
does not happen because MFC senses that the worker threads are using COM objects. Even though the
window closes immediately, the program does not exit until all threads exit.

Both threads use recursive functions. The ReadStorage function reads a storage and calls itself to read the
substorages. The ReadDirectory function reads a directory and calls itself to read the subdirectories. This
function calls the Win32 functions FindFirstFile and FindNextFile to iterate through the elements in a
directory. The dwFileAttributes member of the WIN32_FIND_DATA structure indicates whether the element
is a file or a subdirectory. ReadDirectory uses the MFC CStdioFile class because the class is ideal for
reading text.

The USES_CONVERSION macro is necessary to support the wide-character conversion macros OLE2CT and
T2COLE. These macros are used here because the example doesn't use the CString class, which has built-
in conversion logic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structured Storage and Persistent COM Objects
The EX27A program explicitly called member functions of IStorage and IStream to write and read a
compound file. In the object-oriented world, objects should know how to save and load themselves to and
from a compound file. That's what the IPersistStorage and IPersistStream interfaces are for. If a COM
component implements these interfaces, a container program can "connect" the object to a compound file
by passing the file's IStorage pointer as a parameter to the Save and Load member functions of the
IPersistStorage interface. Such objects are said to be persistent. Figure 27-3 shows the process of calling
the IPersistStorage::Save function.

A COM component is more likely to work with an IStorage interface than an IStream interface. If the COM
object is associated with a particular storage, the COM component can manage substorages and streams
under that storage once it gets the IStorage pointer. A COM component uses the IStream interface only if
it stores all its data in an array of bytes. ActiveX controls implement the IStream interface for storing and
loading property values.

Figure 27-3. Calling IPersistStorage::Save.

The IPersistStorage Interface

Both the IPersistStorage and IPersistStream interfaces are derived from IPersist, which contributes the
GetClassID member function. Here's a summary of the IPersistStorage member functions:

HRESULT GetClassID(CLSID* pClsid);

Returns the COM component's 128-bit class identifier.

HRESULT InitNew(IStorage* pStg);

Initializes a newly created object. The component might need to use the storage for temporary data, so
the container must provide an IStorage pointer that's valid for the life of the object. The component should
call AddRef if it intends to use the storage. The component should not use this IStorage pointer for saving
and loading; it should wait for Save and Load calls and then use the passed-in IStorage pointer to call
IStorage::Write and Read.

HRESULT IsDirty(void);

Returns S_OK if the object has changed since it was last saved; otherwise, returns S_FALSE.

HRESULT Load(IStorage* pStg);

Loads the COM object's data from the designated storage.

HRESULT Save(IStorage* pStg, BOOL fSameAsLoad);

Saves the COM object's data in the designated storage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IPersistStream Interface

Here's a summary of the IPersistStream member functions:

HRESULT GetClassID(CLSID* pClsid);

Returns the COM component's 128-bit class identifier.

HRESULT GetMaxSize(ULARGE_INTEGER* pcbSize);

Returns the number of bytes needed to save the object.

HRESULT IsDirty(void);

Returns S_OK if the object has changed since it was last saved; otherwise, returns S_FALSE.

HRESULT Load(IStream* pStm);

Loads the COM object's data from the designated stream.

HRESULT Save(IStream* pStm, BOOL fClearDirty);

Saves the COM object's data to the designated stream. If the fClearDirty parameter is TRUE, Save clears
the object's dirty flag.

IPersistStream Programming

The following container program code fragment creates a stream and saves a COM object's data in it. Both
the IPersistStream pointer for the COM object and the IStorage pointer are set elsewhere.

extern IStorage* pStg;
extern IPersistStream* pPersistStream;
IStream* pStream;
if (pStg->CreateStream(L"MyStreamName",
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK) {
 ASSERT(pStream != NULL);
 pPersistStream->Save(pStream, TRUE);
 pStream->Release();
}
If you program your own COM class for use in a container, you'll need to use the MFC interface macros to
add the IPersistStream interface. Too bad there's not an "interface wizard" to do the job.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX27B Example—A Persistent DLL Component
The EX27B program, which is used by EX27C, is a COM DLL that contains the CText component. This is a
simple COM class that implements the IDispatch and IPersistStream interfaces. The IDispatch interface
allows access to the component's one and only property, Text, and the IPersistStream interface allows an
object to save and load that Text property to and from a structured storage file.

To prepare EX27B, open the \vcpp32\ex27b\ex27b.dsw workspace and build the project. Use regsvr32 or
REGCOMP to register the DLL.

Figure 27-4 lists the code for the CText class in Text.h and Text.cpp.

TEXT.H

#ifndef __TEXT_H__
#define __TEXT_H__
// CText command target
class CText : public CCmdTarget
{
private:
 char* m_pchText;

 DECLARE_DYNCREATE(CText)

 CText(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CText)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CText();
// Generated message map functions

 //{{AFX_MSG(CText)
 // NOTE the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CText)

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CText)
 afx_msg VARIANT GetText();
 afx_msg void SetText(const VARIANT FAR& newValue);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()

 BEGIN_INTERFACE_PART(PersistStream, IPersistStream)
 STDMETHOD(GetClassID)(LPCLSID);
 STDMETHOD(IsDirty)();
 STDMETHOD(Load)(LPSTREAM);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STDMETHOD(Load)(LPSTREAM);
 STDMETHOD(Save)(LPSTREAM, BOOL);
 STDMETHOD(GetSizeMax)(ULARGE_INTEGER FAR*);
 END_INTERFACE_PART(PersistStream)
};

//
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // __TEXT_H__
TEXT.CPP

#include "stdafx.h"
#include "ex27b.h"
#include "Text.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] =__FILE__;
#endif
//
// CText

IMPLEMENT_DYNCREATE(CText, CCmdTarget)

CText::CText()
{
 EnableAutomation();

 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 AfxOleLockApp();
 m_pchText = NULL;
}

CText::~CText()
{
 // To terminate the application when all objects created
 // with OLE automation, the destructor calls AfxOleUnlockApp.

 if(m_pchText != NULL) {
 delete [] m_pchText;
 }
 AfxOleUnlockApp();
}

void CText::OnFinalRelease()
{
 // When the last reference for an automation object is released,
 // OnFinalRelease is called. The base class will automatically
 // delete the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CText, CCmdTarget)
 //{{AFX_MSG_MAP(CText)
 // NOTE - ClassWizard will add and remove mapping macros here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // NOTE - ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()
BEGIN_DISPATCH_MAP(CText, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CText)
 DISP_PROPERTY_EX(CText, "Text", GetText, SetText, VT_VARIANT)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IText to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the ODL file.

// {4EBFDD71-5F7D-11D0-848F-00400526305B}
static const IID IID_IText =
{ 0x4ebfdd71, 0x5f7d, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26,
 0x30, 0x5b } };

BEGIN_INTERFACE_MAP(CText, CCmdTarget)
 INTERFACE_PART(CText, IID_IPersistStream, PersistStream)
 INTERFACE_PART(CText, IID_IText, Dispatch)
END_INTERFACE_MAP()

// {4EBFDD72-5F7D-11D0-848F-00400526305B}
IMPLEMENT_OLECREATE(CText, "Ex27b.Text", 0x4ebfdd72, 0x5f7d,
 0x11d0, 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26, 0x30, 0x5b)

//
// CText message handlers

VARIANT CText::GetText()
{
 return COleVariant(m_pchText).Detach();
}

void CText::SetText(const VARIANT FAR& newValue)
{
 CString strTemp;
 ASSERT(newValue.vt == VT_BSTR);
 if(m_pchText != NULL) {
 delete [] m_pchText;
 }
 strTemp = newValue.bstrVal; // converts to narrow chars
 m_pchText = new char[strTemp.GetLength() + 1];
 strcpy(m_pchText, strTemp);
}
//

STDMETHODIMP_(ULONG) CText::XPersistStream::AddRef()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CText::XPersistStream::Release()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalRelease();
}

STDMETHODIMP CText::XPersistStream::QueryInterface(REFIID iid,
 void FAR* FAR* ppvObj)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void FAR* FAR* ppvObj)
{
 METHOD_PROLOGUE(CText, PersistStream)
 // ExternalQueryInterface looks up IID in the macro-generated tables
 return (HRESULT) pThis->ExternalQueryInterface(&iid, ppvObj);
}
//

STDMETHODIMP CText::XPersistStream::GetClassID(LPCLSID lpClassID)
{
 TRACE("Entering CText::XPersistStream::GetClassID\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 *lpClassID = CText::guid;
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::IsDirty()
{
 TRACE("Entering CText::XPersistStream::IsDirty\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 return NOERROR;
}
STDMETHODIMP CText::XPersistStream::Load(LPSTREAM pStm)
{
 ULONG nLength;
 STATSTG statstg;
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 if(pThis->m_pchText != NULL) {
 delete [] pThis->m_pchText;
 }
 // don't need to free statstg.pwcsName because of NONAME flag
 VERIFY(pStm->Stat(&statstg, STATFLAG_NONAME) == NOERROR);
 int nSize = statstg.cbSize.LowPart; // assume < 4 GB
 if(nSize > 0) {
 pThis->m_pchText = new char[nSize];
 pStm->Read(pThis->m_pchText, nSize, &nLength);
 }
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::Save(LPSTREAM pStm, BOOL fClearDirty)
{
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 int nSize = strlen(pThis->m_pchText) + 1;
 pStm->Write(pThis->m_pchText, nSize, NULL);
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::GetSizeMax(ULARGE_INTEGER FAR* pcbSize)
{
 TRACE("Entering CText::XPersistStream::GetSizeMax\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 pcbSize->LowPart = strlen(pThis->m_pchText) + 1;
 pcbSize->HighPart = 0; // assume < 4 GB
 return NOERROR;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 27-4. The code listing for the CText class in Text.h and Text.cpp.

ClassWizard generated the CText class as an ordinary Automation component. The IPersistStream interface
was added manually. Look carefully at the XPersistStream::Load and XPersistStream::Save functions. The
Load function allocates heap memory and then calls IStream::Read to load the contents of the stream. The
Save function copies the object's data to the stream by calling IStream::Write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX27C Example—A Persistent Storage Client Program
This program is similar to EX27A in function—indeed, the storage files are compatible. Internally, however,
both worker threads use the persistent COM class CText (EX27B) for loading and storing text.

To prepare EX27C, open the \vcpp32\ex27c\ex27c.dsw workspace and build the project. Run the program
from the debugger, first choosing Write from the Storage menu and then choosing Read. Observe the
output in the Debug window.

The menu, the view class, and the application class are the same as the EX27A versions. Only the thread
code is different.

Figure 27-5 lists the code for both the WriteThread.cpp and the ReadThread.cpp files. ,

WRITETHREAD.CPP

#include "StdAfx.h"
#include "Thread.h"
#include "itext.h"

CLSID g_clsid; // for the Text server
int g_nIndent = 0;
const char* g_szBlanks = " ";
const char* g_szRootStorageName = "\\direct.stg";

UINT WriteThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 g_nIndent = 0;
 ::CoInitialize(NULL);
 ::CLSIDFromProgID(L"EX27B.TEXT", &g_clsid);
 VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName),
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK);
 ReadDirectory("\\", pStgRoot);
 pStgRoot->Release();
 AfxMessageBox("Write complete");
 return 0;
}
void ReadDirectory(const char* szPath, LPSTORAGE pStg)
{
 // recursive function
 USES_CONVERSION;
 WIN32_FIND_DATA fData;
 HANDLE h;
 char szNewPath[MAX_PATH];
 char szStorageName[100];
 char szStreamName[100];
 char szData[81];
 char* pch = NULL;

 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPPERSISTSTREAM pPersistStream = NULL;

 g_nIndent++;
 strcpy(szNewPath, szPath);
 strcat(szNewPath, "*.*");
 h = ::FindFirstFile(szNewPath, &fData);

 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory
 do {
 if (!strcmp(fData.cFileName, "..") ||
 !strcmp(fData.cFileName, ".")) continue;
 while((pch = strchr(fData.cFileName, `!')) != NULL) {
 *pch = `|';
 }
 if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 // It's a directory, so make a storage
 strcpy(szNewPath, szPath);
 strcat(szNewPath,fData.cFileName);
 strcat(szNewPath, "\\");

 strcpy(szStorageName, fData.cFileName);
 szStorageName[31] = `\0'; // limit imposed by OLE
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szStorageName);
 VERIFY(pStg->CreateStorage(T2COLE(szStorageName),
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadDirectory(szNewPath, pSubStg);
 pSubStg->Release();
 }
 else {
 if ((pch = strrchr(fData.cFileName, `.')) != NULL) {
 if (!stricmp(pch, ".TXT")) {
 // It's a text file, so make a stream
 strcpy(szStreamName, fData.cFileName);
 strcpy(szNewPath, szPath);
 strcat(szNewPath, szStreamName);
 szStreamName[32] = `\0'; // OLE max length
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szNewPath);
 CStdioFile file(szNewPath, CFile::modeRead);
 // Ignore zero-length files
 if(file.ReadString(szData, 80)) {
 TRACE("%s\n", szData);
 VERIFY(pStg->CreateStream(T2COLE(szStreamName),
 STGM_CREATE | STGM_READWRITE |
 STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 // Include the null terminator in the stream
 IText text;
 VERIFY(text.CreateDispatch(g_clsid));
 text.m_lpDispatch->QueryInterface
 (IID_IPersistStream,
 (void**) &pPersistStream);
 ASSERT(pPersistStream != NULL);
 text.SetText(COleVariant(szData));
 pPersistStream->Save(pStream, TRUE);
 pPersistStream->Release();
 pStream->Release();
 }
 }
 }
 }
 } while (::FindNextFile(h, &fData));
 g_nIndent—;
}
READTHREAD.CPP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "StdAfx.h"
#include "Thread.h"
#include "itext.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

UINT ReadThreadProc(LPVOID pParam)
{
 g_nIndent = 0;
 ::CoInitialize(NULL);
 ::CLSIDFromProgID(L"EX27B.TEXT", &g_clsid);
 LPSTORAGE pStgRoot = NULL;
 if(::StgOpenStorage(L"\\DIRECT.STG", NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK) {
 ASSERT(pStgRoot!= NULL);
 ReadStorage(pStgRoot);
 pStgRoot->Release();
 }
 else {
 AfxMessageBox("Storage file not available or not readable.");
 }
 AfxMessageBox("Read complete");
 return 0;
}

void ReadStorage(LPSTORAGE pStg)
// reads one storage — recursive calls for substorages
{
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPENUMSTATSTG pEnum = NULL;
 STATSTG statstg;
 LPPERSISTSTREAM pPersistStream = NULL;

 g_nIndent++;
 if(pStg->EnumElements(0, NULL, 0, &pEnum) != NOERROR) {
 ASSERT(FALSE);
 return;
 }
 while(pEnum->Next(1, &statstg, NULL) == NOERROR) {
 if(statstg.type == STGTY_STORAGE) {
 VERIFY(pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadStorage(pSubStg);
 pSubStg->Release();
 }
 else if(statstg.type == STGTY_STREAM) {
 VERIFY(pStg->OpenStream(statstg.pwcsName, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 IText text;
 VERIFY(text.CreateDispatch(g_clsid));
 text.m_lpDispatch->QueryInterface(IID_IPersistStream,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 text.m_lpDispatch->QueryInterface(IID_IPersistStream,
 (void**) &pPersistStream);
 ASSERT(pPersistStream != NULL);
 pPersistStream->Load(pStream);
 pPersistStream->Release();
 COleVariant va = text.GetText();
 ASSERT(va.vt == VT_BSTR);
 CString str = va.bstrVal;
 TRACE("%s\n", str);
 pStream->Release();
 }
 else {
 ASSERT(FALSE); // LockBytes?
 }
 ::CoTaskMemFree(statstg.pwcsName);
 }
 pEnum->Release();
 g_nIndent—;
}

Figure 27-5. The code listing for the two worker threads in EX27C.

Look at the second half of the ReadDirectory function in the WriteThread.cpp file in Figure 27-5. For each
TXT file, the program constructs a CText object by constructing an IText driver object and then calling
CreateDispatch. Then it calls the SetText member function to write the first line of the file to the object.
After that, the program calls IPersistStream::Save to write the object to the compound file. The CText
object is deleted after the IPersistStream pointer is released and after the IText object is deleted, releasing
the object's IDispatch pointer.

Now look at the second half of the ReadStorage function in the ReadThread.cpp file. Like ReadDirectory, it
constructs an IText driver object and calls CreateDispatch. Then it calls QueryInterface to get the object's
IPersistStream pointer, which it uses to call Load. Finally, the program calls GetText to retrieve the line of
text for tracing.

As you've learned already, a COM component usually implements IPersistStorage, not IPersistStream. The
CText class could have worked this way, but then the compound file would have been more complex
because each TXT file would have needed both a storage element (to support the interface) and a
subsidiary stream element (to hold the text).

Now get ready to take a giant leap. Suppose you have a true creatable-by-CLSID COM component that
supports the IPersistStorage interface. Recall the IStorage functions for class IDs. If a storage element
contains a class ID, together with all the data an object needs, COM can load the server, use the class
factory to construct the object, get an IPersistStorage pointer, and call Load to load the data from a
compound file. This is a preview of compound documents, which you'll see in Chapter 28.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compound File Fragmentation
Structured storage has a dark side. Like the disk drive itself, compound files can become fragmented with
frequent use. If a disk drive becomes fragmented, however, you still have the same amount of free space.
With a compound file, space from deleted elements isn't always recovered. This means that compound files
can keep growing even if you delete data.

Fortunately, there is a way to recover unused space in a compound file. You simply create a new file and
copy the contents. The IStorage::CopyTo function can do the whole job in one call if you use it to copy the
root storage. You can either write a stand-alone utility or build a file regeneration capability into your
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Compound File Advantages
You've seen how compound files add a kind of random access capability to your programs, and you can
appreciate the value of transactioning. Now consider the brave new world in which every program can read
any other program's documents. We're not there yet, but we have a start. Compound files from Microsoft
applications have a stream under the root storage named \005SummaryInformation. This stream is
formatted as a property set, as defined for ActiveX controls. If you can decode the format for this stream,
you can open any conforming file and read the summary.

Visual C++ comes with a compound file viewing utility named DocFile Viewer (Dfview.exe), which uses a
tree view to display the file's storages and streams. Here is the DocFile Viewer output for the structured
storage file generated by EX27A.

As a matter of fact, you can use DFVIEW to view the structure of any compound file. Are you starting to
see the potential of this "universal file format?"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 28
OLE Embedded Components and Containers
In this chapter, you'll get familiar with the core of Object Linking and Embedding (OLE). You'll learn how an
embedded component talks to its container. This is knowledge you'll need to use ActiveX controls, in-place
activation (Visual Editing), and linking, all of which are described in Adam Denning's ActiveX Controls
Inside Out (Microsoft Press, 1997), Kraig Brockschmidt's Inside OLE, 2d ed. (Microsoft Press, 1995), and
other books.

You'll get started with a Microsoft Foundation Class mini-server, an out-of-process OLE component
program that supports in-place activation but can't run as a stand-alone program. Running this component
will give you a good idea of what OLE looks like to the user, in case you don't know already. You'll also see
the extensive MFC support for this kind of application. If you work at only the top MFC level, however, you
won't appreciate or understand the underlying OLE mechanisms. For that, you'll have to dig deeper.
Shepherd and Wingo's MFC Internals (Addison-Wesley, 1996) provides extensive coverage of the internal
workings of MFC's OLE Document support.

Next you'll build a container program that uses the familiar parts of the MFC library but supports
embedded OLE objects that can be edited in their own windows. This container can, of course, run your
MFC mini-server, but you'll really start to learn OLE when you build a mini-server from scratch and watch
the interactions between it and the container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Embedding vs. In-Place Activation (Visual Editing)
Visual Editing is Microsoft's name for in-place activation. A component that supports in-place activation
also supports embedding. Both in-place activation and embedding store their data in a container's
document, and the container can activate both. An in-place-capable component can run inside the
container application's main window, taking over the container's menu and toolbar, and it can run in its
own top-level window if necessary. An embedded component can run only in its own window, and that
window has a special menu that does not include file commands. Figure 28-1 shows a Microsoft Excel
spreadsheet in-place activated inside a Microsoft Word document. Notice the Excel menus and toolbars.

Some container applications support only embedded components; others support both in-place and
embedded components. Usually, an in-place container program allows the user to activate in-place
components either in place or in their own windows. You should be getting the idea that embedding is a
subset of in-place activation. This is true not only at the user level but also at the OLE implementation
level. Embedding relies on two key interfaces, IOleObject and IOleClientSite, which are used for in-place
activation as well.

Figure 28-1. An Excel spreadsheet activated inside a Word document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mini-Servers vs. Full Servers (Components)—Linking
A mini-server can't be run as a stand-alone program; it depends on a container application to launch it. It
can't do its own file I/O but depends on the container's files. A full server, on the other hand, can be run
both as a stand-alone program and from a container. When it's running as a stand-alone program, it can
read and write its own files, which means that it supports OLE linking. With embedding, the container
document contains all the data that the component needs; with linking, the container contains only the
name of a file that the component must open.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Dark Side of Visual Editing
We're really enthusiastic about the COM architecture, and we truly believe that ActiveX Controls will take
over the programming world. We're not so sure about Visual Editing, though, and we aren't alone. From
our cumulative experience meeting developers around the world, we've learned that few developers are
writing applications that fit the "objects embedded in a document" model. From our programming
experiences, we've learned that it is tricky for containers and components to coordinate the size and scale
of embedded objects. From our "user" experience, we've learned that in-place activation can be slow and
awkward, although the situation is improving with faster computers.

If you don't believe us, try embedding an Excel worksheet in a Word document, as shown in Figure 28-1.
Resize the worksheet in both the active mode and the nonactive mode. Notice that the two sizes don't
track and that processing is slow.

Consider the need for drawing graphics. Older versions of Microsoft PowerPoint used an in-place
component named Microsoft Draw. The idea was that other applications could use this component for all
their graphics needs. Well, it didn't work out that way, and PowerPoint now has its own built-in drawing
code. If you have old PowerPoint files with Microsoft Draw objects, you'll have a hard time converting
them.

Now consider printing. Let's say you receive a Word document over the Internet from Singapore, and that
document contains the metafiles for some embedded objects. You don't have the objects' component
programs, however. You print the document on your trusty 1200-dpi color laser printer, and the metafiles
print with it. Embedded object metafiles can be rendered for a specific printer, but it's doubtful that the
person in Singapore used your printer driver when creating the document. The result is less-than-optimal
output with incorrect line breaks.

We do believe, however, that the OLE embedding technology has a lot of potential. Playing sounds and
movies is cool, and storing objects in a database is interesting. What you learn in this chapter will help you
think of new uses for this technology.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Metafiles and Embedded Objects
You're going to need a little more Windows theory before you can understand how in-place and embedded
components draw in their clients' windows. We've avoided metafiles up to this point because we haven't
needed them, but they've always been an integral part of Windows. Think of a metafile as a cassette tape
for GDI instructions. To use a cassette, you need a player/recorder, and that's what the metafile device
context (DC) is. If you specify a filename when you create the metafile DC, your metafile will be saved on
disk; otherwise, it's saved in memory and you get a handle.

In the world of OLE embedding, components create metafiles and containers play them. Here's some
component code that creates a metafile containing some text and a rectangle:

CMetaFileDC dcm; // MFC class for metafile DC
VERIFY(dcm.Create());
dcm.SetMapMode(MM_ANISOTROPIC);
dcm.SetWindowOrg(0,0);
dcm.SetWindowExt(5000, -5000);
// drawing code
dcm.Rectangle(CRect(500, -1000, 1500, -2000));
dcm.TextOut(0, 0, m_strText);
HMETAFILE hMF = dcm.Close();
ASSERT(hMF != NULL);
It's possible to create a metafile that uses a fixed mapping mode such as MM_LOENGLISH, but with OLE
we'll always use the MM_ANISOTROPIC mode, which is not fixed. The metafile contains a SetWindowExt
call to set the x and y extents of the window, and the program that plays the metafile calls SetViewportExt
to set the extents of the viewport. Here's some code that you might put inside your container view's
OnDraw function:

pDC->SetMapMode(MM_HIMETRIC);
pDC->SetViewportExt(5000, 5000);
pDC->PlayMetafile(hMF);
What's supposed to show up on the screen is a rectangle 1-by-1-cm square because the component
assumes the MM_HIMETRIC mapping mode. It will be 1-by-1 cm as long as the viewport extent matches
the window extent. If the container sets the viewport extent to (5000, 10000) instead, the rectangle will
be stretched vertically but the text will be the same size because it's drawn with the nonscalable system
font. If the container decided to use a mapping mode other than MM_HIMETRIC, it could adjust the
viewport extent to retain the 1-by-1-cm size.

To reiterate, the component sets the window extent to the assumed size of the viewable area and draws
inside that box. If the component uses a negative y extent, the drawing code works just as it does in
MM_HIMETRIC mapping mode. The container somehow gets the component's extent size and attempts to
draw the metafile in an area with those HIMETRIC dimensions.

Why are we bothering with metafiles? Because the container needs to draw something in the component's
rectangle, even if the component program isn't running. The component creates the metafile and hands it
off in a data object to the in-process OLE handler module on the container side of the Remote Procedure
Call (RPC) link. The handler then caches the metafile and plays it on demand and also transfers it to and
from the container's storage. When a component is in-place active, however, its view code is drawing
directly in a window that's managed by the container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC OLE Architecture for Component Programs
We're not going into too many details here—just enough to allow you to understand the new files in the
next example. You need to know about three new MFC base classes—COleIPFrameWnd, COleServerDoc,
and COleServerItem.

When you use AppWizard to generate an OLE component, AppWizard generates a class derived from each
of the base classes, in addition to an application class, a main frame class, and a view class. The
COleIPFrameWnd class is rather like CFrameWnd. It's your application's main frame window, which
contains the view. It has a menu associated with it, IDR_SRVR_INPLACE, which will be merged into the
container program's menu. When your component program is running in place, it's using the in-place
frame, and when it's running stand-alone or embedded, it's using the regular frame, which is an object of
a class derived from CFrameWnd. The embedded menu is IDR_SRVR_EMBEDDED, and the stand-alone
menu is IDR_MAINFRAME.

The COleServerDoc class is a replacement for CDocument. It contains added features that support OLE
connections to the container. The COleServerItem class works with the COleServerDoc class. If
components never supported OLE linking, the functionality of the two classes could be combined into one
class. Because stand-alone component programs do support linking, the MFC architecture dictates that
both classes be present in all components. You'll see in the EX28C example that we can make our own
simple mini-server without this division.

Together, the COleServerItem class and the COleServerDoc class implement a whole series of OLE
interfaces, including IOleObject, IDataObject, IPersistStorage, and IOleInPlaceActiveObject. These classes
make calls to the container, using interface pointers that the container passes to them. The important
things to know, however, are that your derived CView class draws in the component's in-place-active
window and that the derived COleServerItem class draws in the metafile on command from the container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX28A Example—An MFC In-Place-Activated Mini-Server
You don't need much OLE theory to build an MFC mini-server. This example is a good place to start,
though, because you'll get an idea of how containers and components interact. This component isn't too
sophisticated. It simply draws some text and graphics in a window. The text is stored in the document, and
there's a dialog for updating it.

Here are the steps for creating the program from scratch:

1. Run AppWizard to create the EX28A project in the \vcpp32\ex28a directory. Select Single
Document interface. Click the Mini-Server option in the AppWizard Step 3 dialog shown here.

2. Examine the generated files. You've got the familiar application, document, main frame, and
view files, but you've got two new files too.

Header Implementation Class MFC Base Class

SrvrItem.h SrvrItem.cpp CEx28aSrvrItem COleServerItem

IpFrame.h IpFrame.cpp CInPlaceFrame COleIPFrameWnd

3. Add a text member to the document class. Add the following public data member in the class
declaration in ex28aDoc.h:

CString m_strText;
Set the string's initial value to Initial default text in the document's OnNewDocument member
function.

4. Add a dialog to modify the text. Insert a new dialog template with an edit control, and then use
ClassWizard to generate a CTextDialog class derived from CDialog. Don't forget to include the dialog
class header in ex28aDoc.cpp. Also, use ClassWizard to add a CString member variable named
m_strText for the edit control.

5. Add a new menu command in both the embedded and in-place menus. Add a Modify menu
command in both the IDR_SRVR_EMBEDDED and IDR_SRVR_INPLACE menus. To insert this menu
command on the IDR_SRVR_EMBEDDED menu, use the resource editor to add an EX28A-EMBED
menu item on the top level, and then add a Modify option on the submenu for this item. Next add
an EX28A-INPLACE menu item on the top level of the IDR_SRVR_INPLACE menu and add a Modify
option on the EX28A-INPLACE submenu.

To associate both Modify options with one OnModify function, use ID_MODIFY as the ID for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To associate both Modify options with one OnModify function, use ID_MODIFY as the ID for the
Modify option of both the IDR_SRVR_EMBEDDED and IDR_SRVR_INPLACE menus. Then use
ClassWizard to map both Modify options to the OnModify function in the document class. Code the
Modify command handler as shown here:

void CEx28aDoc::OnModify()
{
 CTextDialog dlg;
 dlg.m_strText = m_strText;
 if (dlg.DoModal() == IDOK) {
 m_strText = dlg.m_strText;
 UpdateAllViews(NULL); // Trigger CEx28aView::OnDraw
 UpdateAllItems(NULL); // Trigger CEx28aSrvrItem::OnDraw
 SetModifiedFlag();
 }
}

6. Override the view's OnPrepareDC function. Use ClassWizard to generate the function, and then
replace any existing code with the following line:

pDC->SetMapMode(MM_HIMETRIC);
7. Edit the view's OnDraw function. The following code in ex28aView.cpp draws a 2-cm circle

centered in the client rectangle, with the text wordwrapped in the window:

void CEx28aView::OnDraw(CDC* pDC)
{
 CEx28aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 CFont font;
 font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pFont = pDC->SelectObject(&font);
 CRect rectClient;
 GetClientRect(rectClient);
 CSize sizeClient = rectClient.Size();
 pDC->DPtoHIMETRIC(&sizeClient);
 CRect rectEllipse(sizeClient.cx / 2 - 1000,
 -sizeClient.cy / 2 + 1000,
 sizeClient.cx / 2 + 1000,
 -sizeClient.cy / 2 - 1000);
 pDC->Ellipse(rectEllipse);
 pDC->TextOut(0, 0, pDoc->m_strText);
 pDC->SelectObject(pFont);
}

8. Edit the server item's OnDraw function. The following code in the SrvrItem.cpp file tries to
draw the same circle drawn in the view's OnDraw function. You'll learn what a server item is
shortly.

BOOL CEx28aSrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{
 // Remove this if you use rSize
 UNREFERENCED_PARAMETER(rSize);

 CEx28aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: set mapping mode and extent
 // (The extent is usually the same as the size returned from
 // OnGetExtent)
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowOrg(0,0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDC->SetWindowOrg(0,0);
 pDC->SetWindowExt(3000, -3000);
 CFont font;
 font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pFont = pDC->SelectObject(&font);
 CRect rectEllipse(CRect(500, -500, 2500, -2500));
 pDC->Ellipse(rectEllipse);
 pDC->TextOut(0, 0, pDoc->m_strText);
 pDC->SelectObject(pFont);
 return TRUE;
}

9. Edit the document's Serialize function. The framework takes care of loading and saving the
document's data from and to an OLE stream named Contents that is attached to the object's main
storage. You simply write normal serialization code, as shown here:

void CEx28aDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_strText;
 }
 else
 {
 ar >> m_strText;
 }
}
There is also a CEx28aSrvrItem::Serialize function that delegates to the document Serialize
function.

10. Build and register the EX28A application. You must run the application directly once to update
the Registry.

11. Test the EX28A application. You need a container program that supports in-place activation. Use
Microsoft Excel 97 or a later version if you have it, or build the project in the MFC DRAWCLI sample.
Choose the container's Insert Object menu item. If this option does not appear on the Insert menu,
it might appear on the Edit menu instead. Then select Ex28a Document from the list.

You debug an embedded component the same way you debug an Automation EXE
component. See the sidebar, "Debugging an EXE Component Program", for more
information.

When you first insert the EX28A object, you'll see a hatched border, which indicates that the object is in-
place active. The bounding rectangle is 3-by-3-cm square, with a 2-cm circle in the center, as illustrated
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click elsewhere in the container's window, the object becomes inactive, and it's shown like this.

In the first case, you saw the output of the view's OnDraw function; in the second case, you saw the
output of the server item's OnDraw function. The circles are the same, but the text is formatted differently
because the server (component) item code is drawing on a metafile device context.

If you use the resize handles to extend the height of the object (click once on the object to see the resize
handles; don't double-click), you'll stretch the circle and the font will get bigger, as shown below in the
figure on the left. If you reactivate the object by double-clicking on it, it's reformatted as shown in the
figure on the right.

Click elsewhere in the container's window, single-click on the object, and then choose Ex28a Object from
the bottom of the Edit menu. Choose Open from the submenu. This starts the component program in
embedded mode rather than in in-place mode, as shown here.

Notice that the component's IDR_SRVR_EMBEDDED menu is visible.

An MDI Embedded Component?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MDI Embedded Component?

The EX28A example is an SDI mini-server. Each time a controller creates an EX28A object, a new EX28A
process is started. You might expect an MDI mini-server process to support multiple component objects,
each with its own document, but this is not the case. When you ask AppWizard to generate an MDI mini-
server, it generates an SDI program, as in EX28A. It's theoretically possible to have a single process
support multiple embedded objects in different windows, but you can't easily create such a program with
the MFC library.

In-Place Component Sizing Strategy

If you look at the EX28A output, you'll observe that the metafile image does not always match the image
in the in-place frame window. We had hoped to create another example in which the two images matched.
We were unsuccessful, however, when we tried to use the Microsoft Office 97 applications as containers.
Each one did something a little different and unpredictable. A complicating factor is the containers'
different zooming abilities.

When AppWizard generates a component program, it gives you an overridden OnGetExtent function in
your server item class. This function returns a hard-coded size of (3000, 3000). You can certainly change
this value to suit your needs, but be careful if you change it dynamically. We tried maintaining our own
document data member for the component's extent, but that messed us up when the container's zoom
factor changed. We thought containers would make more use of another component item virtual function,
OnSetExtent, but they don't.

You'll be safest if you simply make your component extents fixed and assume that the container will do the
right thing. Keep in mind that when the container application prints its document, it prints the component
metafiles. The metafiles are more important than the in-place views.

If you control both container and component programs, however, you have more flexibility. You can build
up a modular document processing system with its own sizing protocol. You can even use other OLE
interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Container-Component Interactions
Analyzing the component and the container separately won't help you to understand fully how they work.
You must watch them working together to understand their interactions. Let's reveal the complexity one
step at a time. Consider first that you have a container EXE and a component EXE, and the container must
manage the component by means of OLE interfaces.

Look back to the space simulation example in Chapter 24. The client program called CoGetClassObject and
IClassFactory::CreateInstance to load the spaceship component and to create a spaceship object, and then
it called QueryInterface to get IMotion and IVisual pointers. An embedding container program works the
same way that the space simulation client works. It starts the component program based on the
component's class ID, and the component program constructs an object. Only the interfaces are different.

Figure 28-2 shows a container program looking at a component. You've already seen all the interfaces
except one—IOleObject.

Figure 28-2. A container program's view of the component.

Using the Component's IOleObject Interface

Loading a component is not the same as activating it. Loading merely starts a process, which then sits
waiting for further instructions. If the container gets an IOleObject pointer to the component object, it can
call the DoVerb member function with a verb parameter such as OLEIVERB_SHOW. The component should
then show its main window and act like a Windows-based program. If you look at the IOleObject::DoVerb
description, you'll see an IOleClientSite* parameter. We'll consider client sites shortly, but for now you can
simply set the parameter to NULL and most components will work okay.

Another important IOleObject function, Close, is useful at this stage. As you might expect, the container
calls Close when it wants to terminate the component program. If the component process is currently
servicing one embedded object (as is the case with MFC components), the process exits.

Loading and Saving the Component's Native Data—Compound Documents

Figure 28-2 demonstrates that the container manages a storage through an IStorage pointer and that the
component implements IPersistStorage. That means that the component can load and save its native data
when the container calls the Load and Save functions of IPersistStorage. You've seen the IStorage and
IPersistStorage interfaces used in Chapter 27, but this time the container is going to save the component's
class ID in the storage. The container can read the class ID from the storage and use it to start the
component program prior to calling IPersistStorage::Load.

Actually, the storage is very important to the embedded object. Just as a virus needs to live in a cell, an
embedded object needs to live in a storage. The storage must always be available because the object is
constantly loading and saving itself and reading and writing temporary data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constantly loading and saving itself and reading and writing temporary data.

A compound document appears at the bottom of Figure 28-2. The container manages the whole file, but
the embedded components are responsible for the storages inside it. There's one main storage for each
embedded object, and the container doesn't know or care what's inside those storages.

Clipboard Data Transfers

If you've run any OLE container programs, including Microsoft Excel, you've noticed that you can copy and
paste whole embedded objects. There's a special data object format, CF_EMBEDDEDOBJECT, for
embedded objects. If you put an IDataObject pointer on the clipboard and that data object contains the
CF_EMBEDDEDOBJECT format (and the companion CF_OBJECTDESCRIPTOR format), another program can
load the proper component program and reconstruct the object.

There's actually less here than meets the eye. The only thing inside the CF_EMBEDDEDOBJECT format is
an IStorage pointer. The clipboard copy program verifies that IPersistStorage::Save has been called to
save the embedded object's data in the storage, and then it passes off the IStorage pointer in a data
object. The clipboard paste program gets the class ID from the source storage, loads the component
program, and then calls IPersistStorage::Load to load the data from the source storage.

The data objects for the clipboard are generated as needed by the container program. The component's
IDataObject interface isn't used for transferring the objects' native data.

Getting the Component's Metafile

You already know that a component program is supposed to draw in a metafile and that a container is
supposed to play it. But how does the component deliver the metafile? That's what the IDataObject
interface, shown in Figure 28-2, is for. The container calls IDataObject::GetData, asking for a
CF_METAFILEPICT format. But wait a minute. The container is supposed to get the metafile even if the
component program isn't running. So now you're ready for the next complexity level.

The Role of the In-Process Handler

If the component program is running, it's in a separate process. Sometimes it's not running at all. In either
case, the OLE32 DLL is linked into the container's process. This DLL is known as the object handler.

It's possible for an EXE component to have its own custom handler DLL, but most
components use the "default" OLE32 DLL.

Figure 28-3 shows the new picture. The handler communicates with the component over the RPC link,
marshaling all interface function calls. But the handler does more than act as the component's proxy for
marshaling; it maintains a cache that contains the component object's metafile. The handler saves and
loads the cache to and from storage, and it can fill the cache by calling the component's
IDataObject::GetData function.

When the container wants to draw the metafile, it doesn't do the drawing itself; instead, it asks the
handler to draw the metafile by calling the handler's IViewObject2::Draw function. The handler tries to
satisfy as many container requests as it can without bothering the component program. If the handler
needs to call a component function, it takes care of loading the component program if it is not already
loaded.

The IViewObject2 interface is an example of OLE's design evolution. Someone decided
to add a new function—in this case, GetExtent—to the IViewObject interface.
IViewObject2 is derived from IViewObject and contains the new function. All new
components should implement the new interface and should return an IViewObject2
pointer when QueryInterface is called for either IID_IViewObject or IID_IViewObject2.
This is easy with the MFC library because you write two interface map entries that link
to the same nested class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-3. The in-process handler and the component.

Figure 28-3 shows both object data and metafile data in the object's storage. When the container calls the
handler's IPersistStorage::Save function, the handler writes the cache (containing the metafile) to the
storage and then calls the component's IPersistStorage::Save function, which writes the object's native
data to the same storage. The reverse happens when the object is loaded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Component States
Now that you know what a handler is, you're ready for a description of the four states that an embedded
object can assume.

State Description

Passive The object exists only in a storage.

Loaded The object handler is running and has a metafile in its cache, but the EXE component
program is not running.

Running The EXE component program is loaded and running, but the window is not visible to the
user.

Active The EXE component's window is visible to the user.

The Container Interfaces

Now for the container side of the conversation. Look at Figure 28-4. The container consists of a document
and one or more sites. The IOleContainer interface has functions for iterating over the sites, but we won't
worry about iterating over the client sites here. The important interface is IOleClientSite. Each site is an
object that the component accesses through an IOleClientSite pointer. When the container creates an
embedded object, it calls IOleObject::SetClientSite to establish one of the two connections from
component to container. The site maintains an IOleObject pointer to its component object.

One important IOleClientSite function is SaveObject. When the component decides it's time to save itself to
its storage, it doesn't do so directly; instead, it asks the site to do the job by calling
IOleClientSite::SaveObject. "Why the indirection?" you ask. The handler needs to save the metafile to the
storage, that's why. The SaveObject function calls IPersistStorage::Save at the handler level, so the
handler can do its job before calling the component's Save function.

Another important IOleClientSite function is OnShowWindow. The component program calls this function
when it starts running and when it stops running. The client is supposed to display a hatched pattern in the
embedded object's rectangle when the component program is running or active.

Figure 28-4. The interaction between the container and the component.

The Advisory Connection

Figure 28-4 shows another interface attached to the site—IAdviseSink. This is the container's end of the
second component connection. Why have another connection? The IOleClientSite connection goes directly
from the component to the container, but the IAdviseSink connection is routed through the handler. After
the site has created the embedded object, it calls IViewObject2::SetAdvise, passing its IAdviseSink
pointer. Meanwhile, the handler has gone ahead and established two advisory connections to the
component. When the embedded object is created, the handler calls IOleObject::Advise and then calls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

component. When the embedded object is created, the handler calls IOleObject::Advise and then calls
IDataObject::DAdvise to notify the advise sink of changes in the data object. When the component's data
changes, it notifies the handler through the IDataObject advisory connection. When the user saves the
component's data or closes the program, the component notifies the handler through the IOleObject
advisory connection. Figure 28-5 shows these connections.

When the handler gets the notification that the component's data has changed (the component calls
IAdviseSink::OnDataChange), it can notify the container by calling IAdviseSink::OnViewChange. The
container responds by calling IViewObject2::Draw in the handler. If the component program is not
running, the handler draws its metafile from the cache. If the component program is running, the handler
calls the component's IDataObject::GetData function to get the latest metafile, which it draws. The
OnClose and OnSave notifications are passed in a similar manner.

Figure 28-5. Advisory connection details.

A Metafile for the Clipboard

As you've just learned, the container doesn't deal with the metafile directly when it wants to draw the
embedded object; instead, it calls IViewObject2::Draw. In one case, however, the container needs direct
access to the metafile. When the container copies an embedded object to the clipboard, it must copy a
metafile in addition to the embedded object and the object descriptor. That's what the handler's
IDataObject interface is for. The container calls IDataObject::GetData, requesting a metafile format, and it
copies that format into the clipboard's data object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Interface Summary
Following is a summary of the important OLE interfaces we'll be using in the remaining examples in this
chapter. The function lists are by no means complete, nor are the parameter lists. See MSDN Online Help
or Brockschmidt's book for the complete specifications.

The IOleObject Interface

Embedded components implement this interface. The client site maintains an IOleObject pointer to an
embedded object.

HRESULT Advise(IAdviseSink* AdvSink, DWORD* pdwConnection);

The handler calls this function to establish one of the two advisory connections from the component to the
handler. The component usually implements Advise with an OLE advise holder object, which can manage
multiple advisory connections.

HRESULT Close(DWORD dwSaveOption);

The container calls Close to terminate the component application but to leave the object in the loaded
state. Containers call this function when the user clicks outside an in-place-active component's window.
Components that support in-place activation should clean up and terminate.

HRESULT DoVerb(LONG iVerb, …, IOleClientSite* pActiveSite, …);

Components support numeric verbs as defined in the Registry. A sound component might support a "Play"
verb, for example. Embedded components should support the OLEIVERB_SHOW verb, which instructs the
object to show itself for editing or viewing. If the component supports in-place activation, this verb starts
the Visual Editing process; otherwise, it starts the component program in a window separate from that of
its container. The OLEIVERB_OPEN verb causes an in-place-activation-capable component to start in a
separate window.

HRESULT GetExtent(DWORD dwDrawAspect, SIZEL* pSizel);

The component returns the object extent in HIMETRIC dimensions. The container uses these dimensions to
size the rectangle for the component's metafile. Sometimes the container uses the extents that are
included in the component's metafile picture.

HRESULT SetClientSite(IOleClientSite* pClientSite);

The container calls SetClientSite to enable the component to store a pointer back to the site in the
container.

HRESULT SetExtent(DWORD dwDrawAspect, SIZEL* pSizel);

Some containers call this function to impose extents on the component.

HRESULT SetHostNames(LPCOLESTR szContainerApp, PCOLESTR szContainerObj);

The container calls SetHostNames so that the component can display the container program's name in its
window caption.

HRESULT Unadvise(DWORD* dwConnection);

This function terminates the advisory connection set up by Advise.

The IViewObject2 Interface

Embedded component handlers implement this interface. Handlers are a type of COM component for
dealing with certain client-side aspects of linking and embedding. The default handler (the one provided by
Microsoft) lives in a DLL named "OLE32.DLL." The container calls its functions, but the component program
itself doesn't implement them. An IViewObject2 interface cannot be marshaled across a process boundary
because it's associated with a device context.

HRESULT Draw(DWORD dwAspect, …, const LPRECTL lprcBounds, …);

The container calls this function to draw the component's metafile in a specified rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HRESULT SetAdvise(DWORD dwAspect, …, IAdviseSink* pAdvSink);

The container calls SetAdvise to set up the advisory connection to the handler, which in turn sets up the
advisory connection to the component.

The IOleClientSite Interface

Containers implement this interface. There is one client site object per component object.

HRESULT GetContainer(IOleContainer** ppContainer);

The GetContainer function retrieves a pointer to the container object (document), which can be used to
enumerate the container's sites.

HRESULT OnShowWindow(BOOL fShow);

The component program calls this function when it switches between the running and the loaded (or
active) state. When the object is in the loaded state, the container should display a hatched pattern on the
embedded object's rectangle.

HRESULT SaveObject(void);

The component program calls SaveObject when it wants to be saved to its storage. The container calls
IPersistStorage::Save.

The IAdviseSink Interface

Containers implement this interface. Embedded object handlers call its functions in response to component
notifications.

void OnClose(void);

Component programs call this function when they are being terminated.

void OnViewChange(DWORD dwAspect, …);

The handler calls OnViewChange when the metafile has changed. Because the component program must
have been running for this notification to have been sent, the handler can call the component's
IDataObject::GetData function to get the latest metafile for its cache. The container can then draw this
metafile by calling IViewObject2::Draw.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OLE Helper Functions
A number of global OLE functions encapsulate a sequence of OLE interface calls. Following are some that
we'll use in the EX28B example:

HRESULT OleCreate(REFCLSID rclsid, REFIID riid, …, IOleClientSite* pClientSite,
IStorage* pStg, void** ppvObj);

The OleCreate function first executes the COM creation sequence using the specified class ID. This loads
the component program. Then the function calls QueryInterface for an IPersistStorage pointer, which it
uses to call InitNew, passing the pStg parameter. It also calls QueryInterface to get an IOleObject pointer,
which it uses to call SetClientSite using the pClientSite parameter. Finally it calls QueryInterface for the
interface specified by riid, which is usually IID_IOleObject.

HRESULT OleCreateFromData(IDataObject* pSrcDataObj, REFIID riid, …,
IOleClientSite* pClientSite, IStorage* pStg, void** ppvObj);

The OleCreateFromData function creates an embedded object from a data object. In the EX28B example,
the incoming data object has the CF_EMBEDDEDOBJECT format with an IStorage pointer. The function
then loads the component program based on the class ID in the storage, and then it calls
IPersistStorage::Load to make the component load the object's native data. Along the way, it calls
IOleObject::SetClientSite.

HRESULT OleDraw(IUnknown* pUnk, DWORD dwAspect, HDC hdcDraw, LPCRECT
lprcBounds);

This function calls QueryInterface on pUnk to get an IViewObject pointer, and then it calls
IViewObject::Draw, passing the lprcBounds parameter.

HRESULT OleLoad(IStorage* pStg, REFIID riid, IOleClientSite* pClientSite, void**
ppvObj);

The OleLoad function first executes the COM creation sequence by using the class ID in the specified
storage. Then it calls IOleObject::SetClientSite and IPersistStorage::Load. Finally, it calls QueryInterface
for the interface specified by riid, which is usually IID_IOleObject.

HRESULT OleSave(IPersistStorage* pPS, IStorage* pStg, …);

This function calls IPersistStorage::GetClassID to get the object's class ID, and then it writes that class ID
in the storage specified by pStg. Finally it calls IPersistStorage::Save.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An OLE Embedding Container Application
Now that we've got a working mini-server that supports embedding (EX28A), we'll write a container
program to run it. We're not going to use the MFC container support, however, because you need to see
what's happening at the OLE interface level. We will use the MFC document-view architecture and the MFC
interface maps, and we'll also use the MFC data object classes.

MFC Support for OLE Containers

If you did use AppWizard to build an MFC OLE container application, you'd get a class derived from
COleDocument and a class derived from COleClientItem. These MFC base classes implement a number of
important OLE container interfaces for embedding and in-place activation. The idea is that you have one
COleClientItem object for each embedded object in a single container document. Each COleClientItem
object defines a site, which is where the component object lives in the window.

The COleDocument class maintains a list of client items, but it's up to you to specify how to select an item
and how to synchronize the metafile's position with the in-place frame position. AppWizard generates a
basic container application with no support for linking, clipboard processing, or drag and drop. If you want
those features, you might be better off looking at the MFC DRAWCLI and OCLIENT samples.

We will use one MFC OLE class in the container—COleInsertDialog. This class wraps the OleUIInsertObject
function, which invokes the standard Insert Object dialog box. This Insert Object dialog enables the user to
select from a list of registered component programs.

Some Container Limitations

Because our container application is designed for learning, we'll make some simplifications to reduce the
bulk of the code. First of all, this container won't support in-place activation—it allows the user to edit
embedded objects only in a separate window. Also, the container supports only one embedded item per
document, and that means there's no linking support. The container uses a structured storage file to hold
the document's embedded item, but it handles the storage directly, bypassing the framework's serialization
system. Clipboard support is provided; drag-and-drop support is not. Outside these limitations, however,
it's a pretty good container!

Container Features

So, what does the container actually do? Here's a list of features:

As an MFC MDI application, it handles multiple documents.

Displays the component's metafile in a sizeable, moveable tracker rectangle in the view window.

Maintains a temporary storage for each embedded object.

Implements the Insert Object menu option, which allows the user to select a registered component.
The selected component program starts in its own window.

Allows embedded objects to be copied (and cut) to the clipboard and pasted. These objects can be
transferred to and from other containers such as Microsoft Word and Microsoft Excel.

Allows an embedded object to be deleted.

Tracks the component program's loaded-running transitions and hatches the tracker rectangle when
the component is running or active.

Redraws the embedded object's metafile on receipt of component change notifications.

Saves the object in its temporary storage when the component updates the object or exits.

Copies the embedded object's temporary storage to and from named storage files in response to
Copy To and Paste From commands on the Edit menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX28B Example—An Embedding Container
Now we can move on to the working program. It's a good time to open the \vcpp32\ex28b\ex28b.dsw
workspace and build the EX28B project. If you choose Insert Object from the Edit menu and select Ex28a
Document, the EX28A component will start. If you change the component's data, the container and the
component will look like this.

The CEx28bView Class

You can best understand the program by first concentrating on the view class. Look at the code in Figure
28-6, but ignore all IOleClientSite pointers. The container program will actually work if you pass NULL in
every IOleClientSite pointer parameter. It just won't get notifications when the metafile or the native data
changes. Also, components will appear displaying their stand-alone menus instead of the special embedded
menus.

EX28BVIEW.H

#if !defined(AFX_EX28BVIEW_H__1EAAB6E1_6011_11D0_848F_00400526305B__INCLUDED_)
#define AFX_EX28BVIEW_H__1EAAB6E1_6011_11D0_848F_00400526305B__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#define CF_OBJECTDESCRIPTOR "Object Descriptor"
#define CF_EMBEDDEDOBJECT "Embedded Object"
#define SETFORMATETC(fe, cf, asp, td, med, li) \
 ((fe).cfFormat=cf, \
 (fe).dwAspect=asp, \
 (fe).ptd=td, \
 (fe).tymed=med, \
 (fe).lindex=li)
//
class CEx28bView : public CScrollView
{
public:
 CLIPFORMAT m_cfObjDesc;
 CLIPFORMAT m_cfEmbedded;
 CSize m_sizeTotal; // document size
 CRectTracker m_tracker;
 CRect m_rectTracker; // logical coords
protected: // create from serialization only
 CEx28bView();
 DECLARE_DYNCREATE(CEx28bView)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DECLARE_DYNCREATE(CEx28bView)

// Attributes
public:
 CEx28bDoc* GetDocument();

private:
 void GetSize();
 void SetNames();
 void SetViewAdvise();
 BOOL MakeMetafilePict(COleDataSource* pSource);
 COleDataSource* SaveObject();
 BOOL DoPasteObject(COleDataObject* pDataObject);
 BOOL DoPasteObjectDescriptor(COleDataObject* pDataObject);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx28bView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void OnInitialUpdate();
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx28bView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CEx28bView)
 afx_msg void OnEditCopy();
 afx_msg void OnUpdateEditCopy(CCmdUI* pCmdUI);
 afx_msg void OnEditCopyto();
 afx_msg void OnEditCut();
 afx_msg void OnEditPaste();
 afx_msg void OnUpdateEditPaste(CCmdUI* pCmdUI);
 afx_msg void OnEditPastefrom();
 afx_msg void OnEditInsertobject();
 afx_msg void OnUpdateEditInsertobject(CCmdUI* pCmdUI);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point);
 afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest,
 UINT message);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in ex28bView.cpp
inline CEx28bDoc* CEx28bView::GetDocument()
 { return (CEx28bDoc*)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { return (CEx28bDoc*)
m_pDocument; }
#endif

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
//!defined(AFX_EX28BVIEW_H__1EAAB6E1_6011_11D0_848F_00400526305B__INCLUDED_)
EX28BVIEW.CPP

#include "stdafx.h"
#include "ex28b.h"

#include "ex28bDoc.h"
#include "ex28bView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

//
// CEx28bView

IMPLEMENT_DYNCREATE(CEx28bView, CScrollView)

BEGIN_MESSAGE_MAP(CEx28bView, CScrollView)
 //{{AFX_MSG_MAP(CEx28bView)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_COPYTO, OnEditCopyto)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPYTO, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_CUT, OnEditCut)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ON_COMMAND(ID_EDIT_PASTEFROM, OnEditPastefrom)
 ON_COMMAND(ID_EDIT_INSERTOBJECT, OnEditInsertobject)
 ON_UPDATE_COMMAND_UI(ID_EDIT_INSERTOBJECT,
 OnUpdateEditInsertobject)
 ON_WM_LBUTTONDOWN()
 ON_WM_LBUTTONDBLCLK()
 ON_WM_SETCURSOR()
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW,
 CScrollView::OnFilePrintPreview)
END_MESSAGE_MAP()

//
// CEx28bView construction/destruction

CEx28bView::CEx28bView() : m_sizeTotal(20000, 25000),
 // 20 x 25 cm when printed
 m_rectTracker(0, 0, 0, 0)
{
 m_cfObjDesc = ::RegisterClipboardFormat(CF_OBJECTDESCRIPTOR);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_cfObjDesc = ::RegisterClipboardFormat(CF_OBJECTDESCRIPTOR);
 m_cfEmbedded = ::RegisterClipboardFormat(CF_EMBEDDEDOBJECT);
}

CEx28bView::~CEx28bView()
{
}

BOOL CEx28bView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CScrollView::PreCreateWindow(cs);
}

//
// CEx28bView drawing

void CEx28bView::OnDraw(CDC* pDC)
{
 CEx28bDoc* pDoc = GetDocument();

 if(pDoc->m_lpOleObj != NULL) {
 VERIFY(::OleDraw(pDoc->
m_lpOleObj, DVASPECT_CONTENT,
 pDC->GetSafeHdc(),
m_rectTracker) == S_OK);
 }

 m_tracker.m_rect =
m_rectTracker;
 pDC->LPtoDP(m_tracker.m_rect); // device
 if(pDoc->m_bHatch) {
 m_tracker.
m_nStyle |= CRectTracker::hatchInside;
 }
 else {
 m_tracker.
m_nStyle &= ~CRectTracker::hatchInside;
 }
 m_tracker.Draw(pDC);
}

//
// CEx28bView printing

BOOL CEx28bView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}

void CEx28bView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEx28bView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx28bView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

//
// CEx28bView diagnostics

#ifdef _DEBUG
void CEx28bView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CEx28bView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CEx28bDoc* CEx28bView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx28bDoc)));
 return (CEx28bDoc*)m_pDocument;
}
#endif //_DEBUG

//
// CEx28bView message handlers

void CEx28bView::OnInitialUpdate()
{
 TRACE("CEx28bView::OnInitialUpdate\n");
 m_rectTracker = CRect(1000, -1000, 5000, -5000);
 m_tracker.m_nStyle = CRectTracker::solidLine |
 CRectTracker::resizeOutside;
 SetScrollSizes(MM_HIMETRIC,
m_sizeTotal);
 CScrollView::OnInitialUpdate();
}

void CEx28bView::OnEditCopy()
{
 COleDataSource* pSource = SaveObject();
 if(pSource) {
 pSource->SetClipboard(); // OLE deletes data source
 }
}

void CEx28bView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{
 // serves Copy, Cut, and Copy To
 pCmdUI->Enable(GetDocument()->
m_lpOleObj != NULL);
}

void CEx28bView::OnEditCopyto()
{
 // Copy text to an STG file (nothing special about STG ext)
 CFileDialog dlg(FALSE, "stg", "*.stg");
 if (dlg.DoModal() != IDOK) {
 return;
 }
 CEx28bDoc* pDoc = GetDocument();
 // Create a structured storage home for the object (pStgSub).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Create a structured storage home for the object (pStgSub).
 // Create a root storage file, then a substorage named "sub".
 LPSTORAGE pStgRoot;
 VERIFY(::StgCreateDocfile(dlg.GetPathName().AllocSysString(),
 STGM_READWRITE|STGM_SHARE_EXCLUSIVE|STGM_CREATE,
 0, &pStgRoot) == S_OK);
 ASSERT(pStgRoot != NULL);

 LPSTORAGE pStgSub;
 VERIFY(pStgRoot->CreateStorage(CEx28bDoc::s_szSub,
 STGM_CREATE|STGM_READWRITE|STGM_SHARE_EXCLUSIVE,
 0, 0, &pStgSub) == S_OK);
 ASSERT(pStgSub != NULL);

 // Get the IPersistStorage* for the object
 LPPERSISTSTORAGE pPS = NULL;
 VERIFY(pDoc->m_lpOleObj->QueryInterface(IID_IPersistStorage,
 (void**) &pPS) == S_OK);

 // Finally, save the object in its new home in the user's file
 VERIFY(::OleSave(pPS, pStgSub, FALSE) == S_OK);
 // FALSE means different stg
 pPS->SaveCompleted(NULL); // What does this do?
 pPS->Release();

 pStgSub->Release();
 pStgRoot->Release();
}

void CEx28bView::OnEditCut()
{
 OnEditCopy();
 GetDocument()->OnEditClearAll();
}
void CEx28bView::OnEditPaste()
{
 CEx28bDoc* pDoc = GetDocument();
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 pDoc->DeleteContents();
 DoPasteObjectDescriptor(&dataObject);
 DoPasteObject(&dataObject);
 SetViewAdvise();
 GetSize();
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
}

void CEx28bView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{
 // Make sure that object data is available
 COleDataObject dataObject;
 if (dataObject.AttachClipboard() &&
 dataObject.IsDataAvailable(
m_cfEmbedded)) {
 pCmdUI->Enable(TRUE);
 } else {
 pCmdUI->Enable(FALSE);
 }
}

void CEx28bView::OnEditPastefrom()
{
 CEx28bDoc* pDoc = GetDocument();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CEx28bDoc* pDoc = GetDocument();
 // Paste from an STG file
 CFileDialog dlg(TRUE, "stg", "*.stg");
 if (dlg.DoModal() != IDOK) {
 return;
 }
 // Open the storage and substorage
 LPSTORAGE pStgRoot;
 VERIFY(::StgOpenStorage(dlg.GetPathName().AllocSysString(),
 NULL, STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK);
 ASSERT(pStgRoot != NULL);

 LPSTORAGE pStgSub;
 VERIFY(pStgRoot->OpenStorage(CEx28bDoc::s_szSub, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgSub) == S_OK);
 ASSERT(pStgSub != NULL);

 // Copy the object data from the user storage to the temporary
 // storage
 VERIFY(pStgSub->CopyTo(NULL, NULL, NULL,
 pDoc->
m_pTempStgSub) == S_OK);
 // Finally, load the object -- pClientSite not necessary
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE) pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 pDoc->DeleteContents();
 VERIFY(::OleLoad(pDoc->m
_pTempStgSub, IID_IOleObject,
 pClientSite, (void**) &pDoc->
m_lpOleObj) == S_OK);
 SetViewAdvise();
 pStgSub->Release();
 pStgRoot->Release();
 GetSize();
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
}

void CEx28bView::OnEditInsertobject()
{
 CEx28bDoc* pDoc = GetDocument();
 COleInsertDialog dlg;
 if(dlg.DoModal() == IDCANCEL) return;
 // no addrefs done for GetInterface
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE) pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 pDoc->DeleteContents();
 VERIFY(::OleCreate(dlg.GetClassID(), IID_IOleObject,
 OLERENDER_DRAW, NULL, pClientSite, pDoc->m_pTempStgSub,
 (void**) &pDoc->
m_lpOleObj) == S_OK);
 SetViewAdvise();

 pDoc->m_lpOleObj->DoVerb(OLEIVERB_SHOW, NULL, pClientSite, 0,
 NULL, NULL); // OleRun doesn't show it
 SetNames();
 GetDocument()->SetModifiedFlag();
 GetSize();
 pDoc->UpdateAllViews(NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDoc->UpdateAllViews(NULL);
}

void CEx28bView::OnUpdateEditInsertobject(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(GetDocument()->m_lpOleObj == NULL);
}

void CEx28bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 TRACE("**Entering CEx28bView::OnLButtonDown -- point = "
 "(%d, %d)\n", point.x, point.y);
 if(m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker =
m_tracker.m_rect;
 dc.DPtoLP(
m_rectTracker); // Update logical coords
 GetDocument()->UpdateAllViews(NULL);
 }
 TRACE("**Leaving CEx28bView::OnLButtonDown\n");
}

void CEx28bView::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 if(m_tracker.HitTest(point) == CRectTracker::hitNothing) return;
 // Activate the object
 CEx28bDoc* pDoc = GetDocument();
 if(pDoc->m_lpOleObj != NULL) {
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE)
 pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 VERIFY(pDoc->
m_lpOleObj->DoVerb(OLEIVERB_OPEN, NULL,
 pClientSite, 0,GetSafeHwnd(), CRect(0, 0, 0, 0))
 == S_OK);
 SetNames();
 GetDocument()->SetModifiedFlag();
 }
}

BOOL CEx28bView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{
 if(m_tracker.SetCursor(pWnd, nHitTest)) {
 return TRUE;
 }
 else {
 return CScrollView::OnSetCursor(pWnd, nHitTest, message);
 }
}

//

void CEx28bView::SetViewAdvise()
{
 CEx28bDoc* pDoc = GetDocument();
 if(pDoc->m_lpOleObj != NULL) {
 LPVIEWOBJECT2 pViewObj;
 pDoc->
m_lpOleObj->QueryInterface(IID_IViewObject2,
 (void**) &pViewObj);
 LPADVISESINK pAdviseSink =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LPADVISESINK pAdviseSink =
 (LPADVISESINK) pDoc->GetInterface(&IID_IAdviseSink);
 VERIFY(pViewObj->SetAdvise(DVASPECT_CONTENT, 0, pAdviseSink)
 == S_OK);
 pViewObj->Release();
 }
}

void CEx28bView::SetNames() // sets host names
{
 CEx28bDoc* pDoc = GetDocument();
 CString strApp = AfxGetApp()->
m_pszAppName;
 if(pDoc->m_lpOleObj != NULL) {
 pDoc->
m_lpOleObj->SetHostNames(strApp.AllocSysString(),
 NULL);
 }
}

void CEx28bView::GetSize()
{
 CEx28bDoc* pDoc = GetDocument();
 if(pDoc->m_lpOleObj != NULL) {
 SIZEL size; // Ask the component for its size
 pDoc->
m_lpOleObj->GetExtent(DVASPECT_CONTENT, &size);
 m_rectTracker.right = m_rectTracker.left + size.cx;
 m_rectTracker.bottom = m_rectTracker.top - size.cy;
 }
}

BOOL CEx28bView::DoPasteObject(COleDataObject* pDataObject)
{
 TRACE("Entering CEx28bView::DoPasteObject\n");
 // Update command UI should keep us out of here if not
 // CF_EMBEDDEDOBJECT
 if (!pDataObject->IsDataAvailable(m_cfEmbedded)) {
 TRACE("CF_EMBEDDEDOBJECT format is unavailable\n");
 return FALSE;
 }
 CEx28bDoc* pDoc = GetDocument();
 // Now create the object from the IDataObject*.
 // OleCreateFromData will use CF_EMBEDDEDOBJECT format if
 // available.
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE) pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 VERIFY(::OleCreateFromData(pDataObject->m_lpDataObject,
 IID_IOleObject, OLERENDER_DRAW, NULL, pClientSite,
 pDoc->
m_pTempStgSub, (void**) &pDoc->m_lpOleObj) == S_OK);
 return TRUE;
}

BOOL CEx28bView::DoPasteObjectDescriptor(COleDataObject* pDataObject)
{
 TRACE("Entering CEx28bView::DoPasteObjectDescriptor\n");
 STGMEDIUM stg;

 FORMATETC fmt;
 CEx28bDoc* pDoc = GetDocument();
 if (!pDataObject->IsDataAvailable(m_cfObjDesc)) {
 TRACE("OBJECTDESCRIPTOR format is unavailable\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("OBJECTDESCRIPTOR format is unavailable\n");
 return FALSE;
 }
 SETFORMATETC(fmt, m_cfObjDesc, DVASPECT_CONTENT, NULL,
 TYMED_HGLOBAL, -1);
 VERIFY(pDataObject->GetDatam_cfObjDesc, &stg, &fmt));

 return TRUE;
}

// helper function used for clipboard and drag-drop
COleDataSource* CEx28bView::SaveObject()
{
 TRACE("Entering CEx28bView::SaveObject\n");
 CEx28bDoc* pDoc = GetDocument();
 if (pDoc->m_lpOleObj != NULL) {
 COleDataSource* pSource = new COleDataSource();

 // CODE FOR OBJECT DATA
 FORMATETC fmte;
 SETFORMATETC(fmte, m_cfEmbedded, DVASPECT_CONTENT, NULL,
 TYMED_ISTORAGE, -1);
 STGMEDIUM stgm;
 stgm.tymed = TYMED_ISTORAGE;
 stgm.pstg = pDoc->m_pTempStgSub;
 stgm.pUnkForRelease = NULL;
 pDoc->m_pTempStgSub->AddRef(); // must do both!
 pDoc->m_pTempStgRoot->AddRef();
 pSource->CacheData(m_cfEmbedded, &stgm, &fmte);

 // metafile needed too
 MakeMetafilePict(pSource);

 // CODE FOR OBJECT DESCRIPTION DATA
 HGLOBAL hObjDesc = ::GlobalAlloc(GMEM_SHARE,
 sizeof(OBJECTDESCRIPTOR));
 LPOBJECTDESCRIPTOR pObjDesc =
 (LPOBJECTDESCRIPTOR) ::GlobalLock(hObjDesc);
 pObjDesc->cbSize = sizeof(OBJECTDESCRIPTOR);
 pObjDesc->clsid = CLSID_NULL;
 pObjDesc->dwDrawAspect = 0;
 pObjDesc->dwStatus = 0;
 pObjDesc->dwFullUserTypeName = 0;
 pObjDesc->dwSrcOfCopy = 0;
 pObjDesc->sizel.cx = 0;
 pObjDesc->sizel.cy = 0;
 pObjDesc->pointl.x = 0;
 pObjDesc->pointl.y = 0;
 ::GlobalUnlock(hObjDesc);
 pSource->CacheGlobalData(
m_cfObjDesc, hObjDesc);
 return pSource;
 }
 return NULL;
}

BOOL CEx28bView::MakeMetafilePict(COleDataSource* pSource)
{
 CEx28bDoc* pDoc = GetDocument();
 COleDataObject dataObject;
 LPDATAOBJECT pDataObj; // OLE object's IDataObject interface
 VERIFY(pDoc->m_lpOleObj->QueryInterface(IID_IDataObject,
 (void**) &pDataObj) == S_OK);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void**) &pDataObj) == S_OK);
 dataObject.Attach(pDataObj);
 FORMATETC fmtem;
 SETFORMATETC(fmtem, CF_METAFILEPICT, DVASPECT_CONTENT, NULL,
 TYMED_MFPICT, -1);
 if (!dataObject.IsDataAvailable(CF_METAFILEPICT, &fmtem)) {
 TRACE("CF_METAFILEPICT format is unavailable\n");
 return FALSE;
 }
 // Just copy the metafile handle from the OLE object
 // to the clipboard data object
 STGMEDIUM stgmm;
 VERIFY(dataObject.GetData(CF_METAFILEPICT, &stgmm, &fmtem));
 pSource->CacheData(CF_METAFILEPICT, &stgmm, &fmtem);
 return TRUE;
}

Figure 28-6. The container's CEx28bView class listing.

Study the message map and the associated command handlers. They're all relatively short, and they
mostly call the OLE functions described earlier. A few private helper functions need some explanation,
however.

You'll see many calls to a GetInterface function. This is a member of class CCmdTarget
and returns the specified OLE interface pointer for a class in your project. It's used
mostly to get the IOleClientSite interface pointer for your document. It's more efficient
than calling ExternalQueryInterface, but it doesn't increment the object's reference
count.

GetSize

This function calls IOleObject::GetSize to get the embedded object's extents, which it converts to a
rectangle for storage in the tracker.

SetNames

The SetNames function calls IOleObject::SetHostNames to send the container application's name to the
component.

SetViewAdvise

This function calls the embedded object's IViewObject2::SetAdvise function to set up the advisory
connection from the component object to the container document.

MakeMetafilePict

The MakeMetafilePict function calls the embedded object's IDataObject::GetData function to get a metafile
picture to copy to the clipboard data object. (A metafile picture, by the way, is a Windows METAFILEPICT
structure instance, which contains a pointer to the metafile plus extent information.)

SaveObject

This function acts like the SaveDib function in the EX25A example. It creates a COleDataSource object with
three formats: embedded object, metafile, and object descriptor.

DoPasteObjectDescriptor

The DoPasteObjectDescriptor function pastes an object descriptor from the clipboard but doesn't do
anything with it. This function must be called prior to calling DoPasteObject.

DoPasteObject

This function calls OleCreateFromData to create an embedded object from an embedded object format on
the clipboard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the clipboard.

The CEx28bDoc Class

This class implements the IOleClientSite and IAdviseSink interfaces. Because of our one-embedded-item-
per-document simplification, we don't need to track separate site objects. The document is the site. We're
using the standard MFC interface macros, and, as always, we must provide at least a skeleton function for
all interface members.

Look carefully at the functions XOleClientSite::SaveObject, XOleClientSite::OnShowWindow, and
XAdviseSink::OnViewChange in Figure 28-7. They're the important ones. The other ones are less
important, but they contain TRACE statements as well, so you can watch the functions as they're called by
the handler. Look also at the OnNewDocument, OnCloseDocument, and DeleteContents functions of the
CEx28bView class. Notice how the document is managing a temporary storage. The document's
m_pTempStgSub data member holds the storage pointer for the embedded object, and the m_lpOleObj
data member holds the embedded object's IOleObject pointer.

EX28BDOC.H

#if !defined(AFX_EX28BDOC_H__1EAAB6DF_6011_11D0_848F_00400526305B__INCLUDED_)
#define AFX_EX28BDOC_H__1EAAB6DF_6011_11D0_848F_00400526305B__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif //_MSC_VER > 1000

void ITrace(REFIID iid, const char* str);

class CEx28bDoc : public CDocument
{
protected: // create from serialization only
 CEx28bDoc();
 DECLARE_DYNCREATE(CEx28bDoc)
 BEGIN_INTERFACE_PART(OleClientSite, IOleClientSite)
 STDMETHOD(SaveObject)();
 STDMETHOD(GetMoniker)(DWORD, DWORD, LPMONIKER*);
 STDMETHOD(GetContainer)(LPOLECONTAINER*);
 STDMETHOD(ShowObject)();
 STDMETHOD(OnShowWindow)(BOOL);
 STDMETHOD(RequestNewObjectLayout)();
 END_INTERFACE_PART(OleClientSite)

 BEGIN_INTERFACE_PART(AdviseSink, IAdviseSink)
 STDMETHOD_(void,OnDataChange)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD_(void,OnViewChange)(DWORD, LONG);
 STDMETHOD_(void,OnRename)(LPMONIKER);
 STDMETHOD_(void,OnSave)();
 STDMETHOD_(void,OnClose)();
 END_INTERFACE_PART(AdviseSink)

 DECLARE_INTERFACE_MAP()

friend class CEx28bView;
private:
 LPOLEOBJECT m_lpOleObj;
 LPSTORAGE m_pTempStgRoot;
 LPSTORAGE m_pTempStgSub;
 BOOL m_bHatch;
 static const OLECHAR* s_szSub;
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx28bDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void OnCloseDocument();
 virtual void DeleteContents();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual void DeleteContents();
 protected:
 virtual BOOL SaveModified();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx28bDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CEx28bDoc)
 afx_msg void OnEditClearAll();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_EX28BDOC_H__1EAAB6DF_6011_11D0_848F_00400526305B__INCLUDED_)
EX28BDOC.CPP
#include "stdafx.h"
#include "ex28b.h"

#include "ex28bDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif
const OLECHAR* CEx28bDoc::s_szSub = L"sub"; // static

//
// CEx28bDoc

IMPLEMENT_DYNCREATE(CEx28bDoc, CDocument)

BEGIN_MESSAGE_MAP(CEx28bDoc, CDocument)
 //{{AFX_MSG_MAP(CEx28bDoc)
 ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_INTERFACE_MAP(CEx28bDoc, CDocument)
 INTERFACE_PART(CEx28bDoc, IID_IOleClientSite, OleClientSite)
 INTERFACE_PART(CEx28bDoc, IID_IAdviseSink, AdviseSink)
END_INTERFACE_MAP()

//
// implementation of IOleClientSite

STDMETHODIMP_(ULONG) CEx28bDoc::XOleClientSite::AddRef()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STDMETHODIMP_(ULONG) CEx28bDoc::XOleClientSite::AddRef()
{
 TRACE("CEx28bDoc::XOleClientSite::AddRef\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 return pThis->InternalAddRef();
}

STDMETHODIMP_(ULONG) CEx28bDoc::XOleClientSite::Release()
{
 TRACE("CEx28bDoc::XOleClientSite::Release\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 return pThis->InternalRelease();
}

STDMETHODIMP CEx28bDoc::XOleClientSite::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CEx28bDoc::XOleClientSite::QueryInterface");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 return pThis->InternalQueryInterface(&iid, ppvObj);
}

STDMETHODIMP CEx28bDoc::XOleClientSite::SaveObject()
{
 TRACE("CEx28bDoc::XOleClientSite::SaveObject\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 ASSERT_VALID(pThis);

 LPPERSISTSTORAGE lpPersistStorage;
 pThis->m_pOleObj->QueryInterface(IID_IPersistStorage,
 (void**) &lpPersistStorage);
 ASSERT(lpPersistStorage != NULL);
 HRESULT hr = NOERROR;
 if (lpPersistStorage->IsDirty() == NOERROR)
 {
 // NOERROR == S_OK != S_FALSE, therefore object is dirty!
 hr = ::OleSave(lpPersistStorage, pThis->
m_pTempStgSub,
 TRUE);
 if (hr != NOERROR)
 hr = lpPersistStorage->SaveCompleted(NULL);

 // Mark the document as dirty if save successful
 pThis->SetModifiedFlag();
 }
 lpPersistStorage->Release();
 pThis->UpdateAllViews(NULL);
 return hr;
}

STDMETHODIMP CEx28bDoc::XOleClientSite::GetMoniker(
 DWORD dwAssign, DWORD dwWhichMoniker, LPMONIKER* ppMoniker)
{
 TRACE("CEx28bDoc::XOleClientSite::GetMoniker\n");
 return E_NOTIMPL;
}

STDMETHODIMP CEx28bDoc::XOleClientSite::GetContainer(
 LPOLECONTAINER* ppContainer)
{
 TRACE("CEx28bDoc::XOleClientSite::GetContainer\n");
 return E_NOTIMPL;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STDMETHODIMP CEx28bDoc::XOleClientSite::ShowObject()
{
 TRACE("CEx28bDoc::XOleClientSite::ShowObject\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 ASSERT_VALID(pThis);
 pThis->UpdateAllViews(NULL);
 return NOERROR;
}

STDMETHODIMP CEx28bDoc::XOleClientSite::OnShowWindow(BOOL fShow)
{
 TRACE("CEx28bDoc::XOleClientSite::OnShowWindow\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 ASSERT_VALID(pThis);
 pThis->m_bHatch = fShow;
 pThis->UpdateAllViews(NULL);
 return NOERROR;
}
STDMETHODIMP CEx28bDoc::XOleClientSite::RequestNewObjectLayout()
{
 TRACE("CEx28bDoc::XOleClientSite::RequestNewObjectLayout\n");
 return E_NOTIMPL;
}

//
// implementation of IAdviseSink

STDMETHODIMP_(ULONG) CEx28bDoc::XAdviseSink::AddRef()
{
 TRACE("CEx28bDoc::XAdviseSink::AddRef\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 return pThis->InternalAddRef();
}

STDMETHODIMP_(ULONG) CEx28bDoc::XAdviseSink::Release()
{
 TRACE("CEx28bDoc::XAdviseSink::Release\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 return pThis->InternalRelease();
}
STDMETHODIMP CEx28bDoc::XAdviseSink::QueryInterface(
 REFIID iid, LPVOID* ppvObj)

{
 ITrace(iid, "CEx28bDoc::XAdviseSink::QueryInterface");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 return pThis->InternalQueryInterface(&iid, ppvObj);
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnDataChange(
 LPFORMATETC lpFormatEtc, LPSTGMEDIUM lpStgMedium)
{
 TRACE("CEx28bDoc::XAdviseSink::OnDataChange\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 // Interesting only for advanced containers. Forward it such
 // that containers do not have to implement the entire
 // interface.
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnViewChange(
 DWORD aspects, LONG /*lindex*/)
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 TRACE("CEx28bDoc::XAdviseSink::OnViewChange\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 pThis->UpdateAllViews(NULL); // the really important one
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnRename(
 LPMONIKER /*lpMoniker*/)
{
 TRACE("CEx28bDoc::XAdviseSink::OnRename\n");
 // Interesting only to the OLE link object. Containers ignore
 // this.
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnSave()
{
 TRACE("CEx28bDoc::XAdviseSink::OnSave\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 pThis->UpdateAllViews(NULL);
}
STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnClose()
{
 TRACE("CEx28bDoc::XAdviseSink::OnClose\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 pThis->UpdateAllViews(NULL);
}

//
// CEx28bDoc construction/destruction

CEx28bDoc::CEx28bDoc()
{
 m_lpOleObj = NULL;
 m_pTempStgRoot = NULL;
 m_pTempStgSub = NULL;
 m_bHatch = FALSE;
}

CEx28bDoc::~CEx28bDoc()
{
}

BOOL CEx28bDoc::OnNewDocument()
{
 TRACE("Entering CEx28bDoc::OnNewDocument\n");
 // Create a structured storage home for the object
 // (m_pTempStgSub). This is a temporary file -- random name
 // supplied by OLE.
 VERIFY(::StgCreateDocfile(NULL,
 STGM_READWRITE|STGM_SHARE_EXCLUSIVE|STGM_CREATE|
 STGM_DELETEONRELEASE,
 0, &m_pTempStgRoot) == S_OK);
 ASSERT(m_pTempStgRoot != NULL);

 VERIFY(m_pTempStgRoot->CreateStorage(OLESTR("sub"),
 STGM_CREATE|STGM_READWRITE|STGM_SHARE_EXCLUSIVE,
 0, 0, &m_pTempStgSub) == S_OK);
 ASSERT(m_pTempStgSub != NULL);
 return CDocument::OnNewDocument();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return CDocument::OnNewDocument();
}

//
// CEx28bDoc serialization

void CEx28bDoc::Serialize(CArchive& ar)
{
 // no hookup to MFC serialization
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

//
// CEx28bDoc diagnostics

#ifdef _DEBUG
void CEx28bDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CEx28bDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

//
// CEx28bDoc commands

void CEx28bDoc::OnCloseDocument()
{
 m_pTempStgSub->Release(); // must release BEFORE calling
 // base class
 m_pTempStgRoot->Release();
 CDocument::OnCloseDocument();
}

void CEx28bDoc::DeleteContents()
{
 if(m_lpOleObj != NULL) {
 // If object is running, close it, which releases our
 // IOleClientSite
 m_lpOleObj->Close(OLECLOSE_NOSAVE);
 m_lpOleObj->Release(); // should be final release
 // (or else...)
 m_lpOleObj = NULL;
 }
}

void CEx28bDoc::OnEditClearAll()
{
 DeleteContents();
 UpdateAllViews(NULL);
 SetModifiedFlag();
 m_bHatch = FALSE;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

BOOL CEx28bDoc::SaveModified()
{
 // Eliminate "save to file" message
 return TRUE;
}

void ITrace(REFIID iid, const char* str)
{
 OLECHAR* lpszIID;
 ::StringFromIID(iid, &lpszIID);
 CString strIID = lpszIID;
 TRACE("%s - %s\n", (const char*) strIID, (const char*) str);
 AfxFreeTaskMem(lpszIID);
}

Figure 28-7. The container's CEx28bDoc class listing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX28C Example—An OLE Embedded Component
You've already seen an MFC embedded component with in-place-activation capability (EX28A). Now you'll
see a bare-bones component program that activates an embedded object in a separate window. It doesn't
do much except display text and graphics in the window, but you'll learn a lot if you study the code. The
application started as an SDI AppWizard Automation component with the document as the creatable
object. The document's IDispatch interface was ripped out and replaced with IOleObject, IDataObject, and
IPersistStorage interfaces. All the template server code carries through, so the document, view, and main
frame objects are created when the container starts the component.

Open and build the EX28C project now. Run the application to register it, and then try it with the EX28B
container or any other container program.

The CEx28cView Class

This class is straightforward. The only member functions of interest are the OnDraw function and the
OnPrepareDC function, shown here:

void CEx28cView::OnDraw(CDC* pDC)
{
 CEx28cDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->Rectangle(CRect(500, -1000, 1500, -2000));
 pDC->TextOut(0, 0, pDoc->m_strText);
}

void CEx28cView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_HIMETRIC);
}

The CEx28cDoc Class

This class does most of the component's work and is too big to list here. Figure 28-8 lists the header file,
but you'll have to go to the companion CD-ROM for the implementation code. A few of the important
functions are listed here, however.

EX28CDOC.H

#if !defined(AFX_EX28CDOC_H__1EAAB6F5_6011_11D0_848F_00400526305B __INCLUDED_)
#define AFX_EX28CDOC_H__1EAAB6F5_6011_11D0_848F_00400526305B __INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

extern const CLSID clsid; // defined in ex28c.cpp
void ITrace(REFIID iid, const char* str);

#define SETFORMATETC(fe, cf, asp, td, med, li) \
 ((fe).cfFormat=cf, \
 (fe).dwAspect=asp, \
 (fe).ptd=td, \

 (fe).tymed=med, \
 (fe).lindex=li)

class CEx28cDoc : public CDocument
{
friend class CEx28cView;
private:
 CString m_strText;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CString m_strText;
 LPOLECLIENTSITE m_lpClientSite;
 LPOLEADVISEHOLDER m_lpOleAdviseHolder;
 LPDATAADVISEHOLDER m_lpDataAdviseHolder;
 CString m_strContainerApp;
 CString m_strContainerObj;
 HGLOBAL MakeMetaFile();

 BEGIN_INTERFACE_PART(OleObject, IOleObject)
 STDMETHOD(SetClientSite)(LPOLECLIENTSITE);
 STDMETHOD(GetClientSite)(LPOLECLIENTSITE*);
 STDMETHOD(SetHostNames)(LPCOLESTR, LPCOLESTR);
 STDMETHOD(Close)(DWORD);
 STDMETHOD(SetMoniker)(DWORD, LPMONIKER);
 STDMETHOD(GetMoniker)(DWORD, DWORD, LPMONIKER*);
 STDMETHOD(InitFromData)(LPDATAOBJECT, BOOL, DWORD);
 STDMETHOD(GetClipboardData)(DWORD, LPDATAOBJECT*);
 STDMETHOD(DoVerb)(LONG, LPMSG, LPOLECLIENTSITE, LONG,
 HWND, LPCRECT);
 STDMETHOD(EnumVerbs)(LPENUMOLEVERB*);
 STDMETHOD(Update)();
 STDMETHOD(IsUpToDate)();
 STDMETHOD(GetUserClassID)(LPCLSID);
 STDMETHOD(GetUserType)(DWORD, LPOLESTR*);
 STDMETHOD(SetExtent)(DWORD, LPSIZEL);
 STDMETHOD(GetExtent)(DWORD, LPSIZEL);
 STDMETHOD(Advise)(LPADVISESINK, LPDWORD);
 STDMETHOD(Unadvise)(DWORD);
 STDMETHOD(EnumAdvise)(LPENUMSTATDATA*);
 STDMETHOD(GetMiscStatus)(DWORD, LPDWORD);
 STDMETHOD(SetColorScheme)(LPLOGPALETTE);
 END_INTERFACE_PART(OleObject)

 BEGIN_INTERFACE_PART(DataObject, IDataObject)
 STDMETHOD(GetData)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD(GetDataHere)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD(QueryGetData)(LPFORMATETC);
 STDMETHOD(GetCanonicalFormatEtc)(LPFORMATETC, LPFORMATETC);
 STDMETHOD(SetData)(LPFORMATETC, LPSTGMEDIUM, BOOL);

 STDMETHOD(EnumFormatEtc)(DWORD, LPENUMFORMATETC*);
 STDMETHOD(DAdvise)(LPFORMATETC, DWORD, LPADVISESINK, LPDWORD);
 STDMETHOD(DUnadvise)(DWORD);
 STDMETHOD(EnumDAdvise)(LPENUMSTATDATA*);
 END_INTERFACE_PART(DataObject)

 BEGIN_INTERFACE_PART(PersistStorage, IPersistStorage)
 STDMETHOD(GetClassID)(LPCLSID);
 STDMETHOD(IsDirty)();
 STDMETHOD(InitNew)(LPSTORAGE);
 STDMETHOD(Load)(LPSTORAGE);
 STDMETHOD(Save)(LPSTORAGE, BOOL);
 STDMETHOD(SaveCompleted)(LPSTORAGE);
 STDMETHOD(HandsOffStorage)();
 END_INTERFACE_PART(PersistStorage)

 DECLARE_INTERFACE_MAP()

protected: // Create from serialization only
 CEx28cDoc();
 DECLARE_DYNCREATE(CEx28cDoc)

// Overrides
 // ClassWizard generated virtual function overrides

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx28cDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void OnFinalRelease();
 virtual void OnCloseDocument();
 protected:
 virtual BOOL SaveModified();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx28cDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
public:
 //{{AFX_MSG(CEx28cDoc)
 afx_msg void OnModify();
 afx_msg void OnFileUpdate();
 afx_msg void OnUpdateFileUpdate(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional
// declarations immediately before the previous line

#endif
// !defined(AFX_EX28CDOC_H__1EAAB6F5_6011_11D0_848F_00400526305B __INCLUDED_)

Figure 28-8. The component's CEx28cDoc class handler file listing.

Here's a list of the important interface functions in ex28cDoc.cpp:

XOleObject::SetClientSite
XOleObject::DoVerb
XOleObject::Advise
XDataObject::GetData
XDataObject::QueryGetData
XDataObject::DAdvise
XPersistStorage::GetClassID
XPersistStorage::InitNew
XPersistStorage::Load
XPersistStorage::Save

You've seen the container code that draws a metafile. Here's the component code that creates it. The
object handler calls the component's XDataObject::GetData function when it needs a metafile. This
GetData implementation calls a helper function, MakeMetaFile, which creates the metafile picture. Compare
the drawing code with the drawing code in CEx28cView::OnDraw.

STDMETHODIMP CEx28cDoc::XDataObject::GetData(
 LPFORMATETC lpFormatEtc, LPSTGMEDIUM lpStgMedium)
{
 TRACE("CEx28cDoc::XDataObject::GetData -- %d\n",
 lpFormatEtc->cfFormat);
 METHOD_PROLOGUE(CEx28cDoc, DataObject)
 ASSERT_VALID(pThis);

 if (lpFormatEtc->cfFormat != CF_METAFILEPICT) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (lpFormatEtc->cfFormat != CF_METAFILEPICT) {
 return S_FALSE;
 }
 HGLOBAL hPict = pThis->MakeMetaFile();
 lpStgMedium->tymed = TYMED_MFPICT;
 lpStgMedium->hMetaFilePict = hPict;
 lpStgMedium->pUnkForRelease = NULL;
 return S_OK;
}

HGLOBAL CEx28cDoc::MakeMetaFile
{
 HGLOBAL hPict;
 CMetaFileDC dcm;
 VERIFY(dcm.Create());
 CSize size(5000, 5000); // initial size of object in Excel & Word
 dcm.SetMapMode(MM_ANISOTROPIC);
 dcm.SetWindowOrg(0,0);
 dcm.SetWindowExt(size.cx, -size.cy);
 // drawing code
 dcm.Rectangle(CRect(500, -1000, 1500, -2000));
 CFont font;
 font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pFont = dcm.SelectObject(&font);
 dcm.TextOut(0, 0, m_strText);
 dcm.SelectObject(pFont);

 HMETAFILE hMF = dcm.Close();
 ASSERT(hMF != NULL);
 hPict = ::GlobalAlloc(GMEM_SHARE|GMEM_MOVEABLE,
 sizeof(METAFILEPICT));
 ASSERT(hPict != NULL);
 LPMETAFILEPICT lpPict;
 lpPict = (LPMETAFILEPICT) ::GlobalLock(hPict);
 ASSERT(lpPict != NULL);
 lpPict->mm = MM_ANISOTROPIC;
 lpPict->hMF = hMF;
 lpPict->xExt = size.cx;
 lpPict->yExt = size.cy; // HIMETRIC height
 ::GlobalUnlock(hPict);
 return hPict;
}
The XOleObject::Advise and the XDataObject::DAdvise functions are similar. Both functions call global OLE
functions to set up OLE advise holder objects that can manage multiple advise sinks. (In this program,
there is only one advise sink per OLE advise holder object.) The XOleObject::Advise function, listed below,
establishes an OLE advise holder object with the IOleAdviseHolder interface. Other document functions call
IOleAdviseHolder::SendOnClose and SendOnSave, which in turn call IAdviseSink::OnClose and OnSave for
each attached sink.

STDMETHODIMP CEx28cDoc::XOleObject::Advise(
 IAdviseSink* pAdvSink, DWORD* pdwConnection)
{
 TRACE("CEx28cDoc::XOleObject::Advise\n");
 METHOD_PROLOGUE(CEx28cDoc, OleObject)
 ASSERT_VALID(pThis);
 *pdwConnection = 0;
 if (pThis->m_lpOleAdviseHolder == NULL &&
 ::CreateOleAdviseHolder(&pThis->m_lpOleAdviseHolder)
 != NOERROR) {
 return E_OUTOFMEMORY;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 ASSERT(pThis->m_lpOleAdviseHolder != NULL);
 return pThis->m_lpOleAdviseHolder->Advise(pAdvSink,
 pdwConnection);
}
The framework calls the OnModify function when the user chooses Modify from the EX28C-MAIN menu.
The user enters a string through a dialog, and the function sends the OnDataChange notification to the
object handler's data advise sink. (Figure 28-5 illustrates the advisory connections.)

Here is the OnModify function code:

void CEx28cDoc::OnModify()
{
 CTextDialog dlg;
 dlg.m_strText = m_strText;
 if (dlg.DoModal() == IDOK) {
 m_strText = dlg.m_strText;
 UpdateAllViews(NULL); // redraw view
 // Notify the client that the metafile has changed.
 // Client must call IViewObject::SetAdvise.
 LPDATAOBJECT lpDataObject =
 (LPDATAOBJECT) GetInterface(&IID_IDataObject);
 HRESULT hr =
 m_lpDataAdviseHolder->SendOnDataChange(lpDataObject,
 0, NULL);
 ASSERT(hr == NOERROR);
 SetModifiedFlag(); // won't update without this
 }
}
The framework calls the OnFileUpdate function when the user chooses Update from the File menu. The
function calls IOleClientSite::SaveObject, which in turn causes the container to save the metafile and the
object's native data in the storage. The function also sends the OnSave notification back to the client's
advise sink. Here is the OnFileUpdate function code:

void CEx28cDoc::OnFileUpdate()
{
 if (m_lpClientSite == NULL) return;
 VERIFY(m_lpClientSite->SaveObject() == NOERROR);
 if (m_lpOleAdviseHolder != NULL)
 m_lpOleAdviseHolder->SendOnSave();
 SetModifiedFlag(FALSE);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 29
Introducing the Active Template Library
In this chapter, you'll take a look at the second framework (MFC being the first) now included within
Microsoft Visual C++—the Active Template Library (ATL). You'll start by quickly revisiting the Component
Object Model (COM) and looking at an alternative method of writing Chapter 24's CSpaceship object,
illustrating that there is more than one way to write a COM class. (This will become important as you
examine ATL's class composition methods.) Next you'll investigate the Active Template Library, focusing
first on C++ templates and raw C++ smart pointers and how they might be useful in COM development.
You'll cover the client side of ATL programming and examine some of ATL's smart pointers. Finally you'll
check out the server side of ATL programming, reimplementing the Chapter 24 spaceship example using
ATL to get a feel for ATL's architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Revisiting COM
The most important concept to understand about COM programming is that it is interface-based. As you
saw in Chapter 24, you don't need real COM or even Microsoft runtime support to use interface-based
programming. All you need is some discipline.

Think back to the spaceship example in Chapter 24. You started out with a single class named CSpaceship
that implemented several functions. Seasoned C++ developers usually sit down at the computer and start
typing a class like this:

class CSpaceship {
 void Fly();
 int& GetPosition();
};
However, the procedure is a little different with interface-based development. Instead of writing the class
directly, interface-based programming involves spelling out an interface before implementing it. In Chapter
24, the Fly and GetPosition functions were moved into an abstract base class named IMotion.

struct IMotion {
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};
Then we inherited the CSpaceship class from the IMotion interface like this:

class CSpaceship : IMotion {
 void Fly();
 int& GetPosition();
};
Notice that at this point the motion interface has been separated from its implementation. When practicing
interface development, the interface comes first. You can work on the interface as you develop it, making
sure it's complete while at the same time not over-bloated. But once the interface has been published (that
is, once a lot of other developers have started coding to it), the interface is frozen and can never change.

This subtle distinction between class-based programming and interface-based programming seems to
introduce some programming overhead. However, it turns out to be one of the key points to understanding
COM. By collecting the Fly and the GetPosition functions in an interface, you've developed a binary
signature. That is, by defining the interface ahead of time and talking to the class through the interface,
client code has a potentially language-neutral way of talking to the class.

Gathering functions together into interfaces is itself quite powerful. Imagine you want to describe
something other than a spaceship—an airplane, for example. It's certainly conceivable that an airplane
would also have Fly and GetPosition functions. Interface programming provides a more advanced form of
polymorphism—polymorphism at the interface level, not only at the single-function level.

Separating interface from implementation is the basis of interface-based development. The Component
Object Model is centered on interface programming. COM enforces the distinction between interface and
implementation. In COM, the only way client code can talk to an object is through an interface. However,
gathering functions together into interfaces isn't quite enough. There's one more ingredient needed—a
mechanism for discovering functionality at runtime.

The Core Interface: IUnknown

The key element that makes COM different from ordinary interface programming is this rule: the first three
functions of every COM interface are the same. The core interface in COM, IUnknown, looks like this:

struct IUnknown {
 virtual HRESULT QueryInterface(REFIID riid, void** ppv) = 0;
 virtual ULONG AddRef() = 0;
 virtual ULONG Release() = 0;
};
Every COM interface derives from this interface (meaning the first three functions of every COM interface
you ever see will be QueryInterface, AddRef, and Release). To turn IMotion into a COM interface, derive it
from IUnknown like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from IUnknown like this:

struct IMotion : IUnknown {
 void Fly();
 int& GetPosition();
};

If you wanted these interfaces to work out-of-process, you'd have to make each
function return an HRESULT. You'll see this when we cover Interface Definition
Language (IDL) later in this chapter.

AddRef and Release deserve some mention because they are part of IUnknown. AddRef and Release allow
an object to control its own lifetime if it chooses to. As a rule, clients are supposed to treat interface
pointers like resources: clients acquire interfaces, use them, and release them when they are done using
them. Objects learn about new references to themselves via AddRef. Objects learn they have been
unreferenced through the Release function. Objects often use this information to control their lifetimes. For
example, many objects self-destruct when their reference count reaches zero.

Here's how some client code might use the spaceship:

void UseSpaceship() {
 IMotion* pMotion = NULL;

 pMotion = GetASpaceship(); // This is a member of the
 // hypothetical Spaceship
 // API. It's presumably an
 // entry point into some DLL.
 // Returns an IMotion* and
 // causes an implicit AddRef.
 If(pMotion) {
 pMotion->Fly();
 int i = pMotion->GetPosition();
 pMotion->Release(); // done with this instance of CSpaceship
 }
}
The other (and more important) function within IUnknown is the first one: QueryInterface. QueryInterface
is the COM mechanism for discovering functionality at runtime. If someone gives you a COM interface
pointer to an object and you don't want to use that pointer, you can use the pointer to ask the object for a
different interface to the same object. This mechanism, along with the fact that interfaces remain constant
once published, are the key ingredients that allow COM-based software to evolve safely over time. The
result is that you can add functionality to your COM software without breaking older versions of the clients
running that software. In addition, clients have a widely recognized means of acquiring that new
functionality once they know about it. For example, you add functionality to the implementation of
CSpaceship by adding a new interface named IVisual. Adding this interface makes sense because you can
have objects in three-dimensional space that move in and out of view. You might also have an invisible
object in three-dimensional space (a black hole, for example). Here's the IVisual interface:

struct IVisual : IUnknown {
 virtual void Display() = 0;
};
A client might use the IVisual interface like this:

void UseSpaceship() {
 IMotion* pMotion = NULL;

 pMotion = GetASpaceship(); // Implicit AddRef
 if(pMotion) {
 pMotion->Fly();
 int i = pMotion->GetPosition();

 IVisual* pVisual = NULL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IVisual* pVisual = NULL;
 PMotion->QueryInterface(IID_IVisual, (void**) &pVisual);
 // Implicit AddRef within QueryInterface

 if(pVisible) {
 pVisual->Display(); // uncloaking now
 pVisual->Release(); // done with this interface
 }
 }
 pMotion->Release(); // done with this instance of IMotion
}
Notice that the preceding code uses interface pointers very carefully: it uses them only if the interface was
acquired properly, and then it releases the interface pointers when it is done using them. This is raw COM
programming at the lowest level—you acquire an interface pointer, you use the interface pointer, and you
release it when you're done with it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing COM Code
As you can see, writing COM client code isn't a whole lot different from writing regular C++ code.
However, the C++ classes that the client talks to are abstract base classes. Instead of calling operator new
as you would in C++, you create COM objects and acquire COM interfaces by explicitly calling some sort of
API function. And instead of deleting the object outright, you simply follow the COM interface rule of
balancing calls to AddRef with calls to Release.

What does it take to get the COM class up and running? You saw how to do it using MFC in Chapter 24.
Here's another example of implementing CSpaceship as a COM class. This example uses the multiple
inheritance approach to writing COM classes. That is, the C++ class inherits from several interfaces and
then implements the union of all the functions (including IUnknown, of course).

struct CSpaceship : IMotion, IDisplay {
 ULONG m_cRef;
 int m_nPosition;

 CSpaceship() : m_cRef(0),
 m_nPosition(0) {
 }

 HRESULT QueryInterface(REFIID riid,
 void** ppv);
 ULONG AddRef() {
 return InterlockedIncrement(&m_cRef);
 }
 ULONG Release() {
 ULONG cRef = InterlockedIncrement(&m_cRef);
 if(cRef == 0){
 delete this;
 return 0;
 } else
 return m_cRef;
 }

 // IMotion functions:
 void Fly() {
 // Do whatever it takes to fly here
 }
 int GetPosition() {
 return m_nPosition;
 }

 // IVisual functions:
 void Display() {
 // Uncloak
 }
};

COM Classes Using Multiple Inheritance

If you're used to seeing plain C++ code, the preceding code might look a little strange to you. This is a
less common form of multiple inheritance called interface inheritance. Most C++ developers are used to an
implementation inheritance in which the derived class inherits everything from the base class—including
the implementation. Interface inheritance simply means the derived class inherits the interfaces of the
base class. The preceding code effectively adds two data members to the CSpaceship class—a vptr for
each implied vtable.

When using the multiple inheritance approach to implementing interfaces, each interface shares
CSpaceship's implementation of IUnknown. This sharing illustrates a rather esoteric yet important concept
known as COM identity. The basic idea of COM identity is that IUnknown is the void* of COM. IUknown is
the one interface guaranteed to be hanging off any object, and you can always get to it. COM identity also
says (in the previous example) the client can call QueryInterface through the CSpaceship IMotion interface
to get the IVisible interface. Conversely, the client can call QueryInterface through the CSpaceship IVisible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to get the IVisible interface. Conversely, the client can call QueryInterface through the CSpaceship IVisible
interface to get the IMotion interface. Finally, the client can call QueryInterface through IUnknown to
acquire the IMotion or the IVisible interface, and the client can call QueryInterface through either IMotion
or IVisual to get a pointer to IUnknown. To learn more about COM identity, see Essential COM by Don Box
(Addison-Wesley, 1997) or Inside COM by Dale Rogerson (Microsoft Press, 1997).

Often you'll see COM classes illustrated with "lollipop" diagrams depicting the interfaces implemented by a
COM class. You can see an example of a lollipop diagram in "The IUnknown Interface and the
QueryInterface Member Function" in Chapter 24.

The multiple inheritance method of implementing CSpaceship automatically fulfills the rules of COM
identity. Note that all calls to QueryInterface, AddRef, and Release land in the same place in the C++
class, regardless of the interface through which they were called.

This is more or less the essence of COM. As a COM developer, your job is to create useful services and
expose them through COM interfaces. At the most basic level, this means wiring up some function tables to
follow COM's identity rules. You've seen two ways to accomplish this so far. (Chapter 24 showed you how
to do it using nested classes and MFC. This chapter just showed you how to write a COM class using
multiple inheritance in C++.) However, in addition to interface programming and writing classes to
implement interfaces, there are several other pieces to the COM puzzle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COM Infrastructure
Once you get your mind around the concept of interface-based programming, quite a few details need
implementation in order to get the class to mix in with the rest of the system. These details often
overshadow the fundamental beauty of COM.

To start off with, COM classes need a place to live, so you must package them in either an EXE or a DLL. In
addition, each COM class you write needs an accompanying class object (often referred to as a class
factory). The way in which a COM server's class object is exposed differs depending upon how you package
the COM class (in a DLL or an EXE). The server lifetime also needs to be considered. The server should
stay in memory for as long as it's needed, and it should go away when it's not needed. To accomplish this,
servers maintain global lock counts indicating the number of objects with extant interface pointers. Finally,
well-behaved servers insert the necessary values in the Windows Registry so that client software can easily
activate them.

You've spent a lot of time looking at MFC while reading this book. As you saw in Chapter 24, MFC takes
care of most of the COM-based details for you. For example, CCmdTarget has an implementation of
IUnknown. MFC has even created C++ classes and macros to implement class objects (such as
COleObjectFactory, COleTemplateServer, DECLARE_OLE_CREATE, and IMPLEMENT_OLE_CREATE) that will
put most of the correct entries into the Registry. MFC has the easiest-to-implement, zippiest version of
IDispatch around—all you need is a CCmdTarget object and ClassWizard. If you decide OLE Documents or
ActiveX Documents are your thing, MFC provides standard implementations of the Object Linking and
Embedding and ActiveX Document protocols. Finally, MFC remains hands-down the easiest way to write
fast, powerful ActiveX controls. (You can write ActiveX controls in Microsoft Visual Basic, but you don't
have quite as much flexibility). These are all great features. However, using MFC has a downside.

To get these features, you need to buy into MFC 100%. Now, that's not necessarily a bad idea. However,
you should be aware of the cost of entry when you decide to use MFC. MFC is big. It has to be—it's a C++
framework with many capabilities.

A New Framework

As you can see from the examples we've looked at so far, implementing COM classes and making them
available to clients involves writing a great deal of code—code that remains the same from one class
implementation to another. IUnknown implementations are generally the same for every COM class you
encounter—the main difference between them is the interfaces exposed by each class.

But just as you no longer need to understand assembly language to get software working these days,
pretty soon you'll no longer need to understand all the nuances of IUnknown and COM's relationship to
C++ to get your COM-based software up and running. You're not quite at that stage, but the Active
Template Library (ATL) from Microsoft is a great first step in that direction. (However, ATL does not
absolve you from learning the important concepts behind COM, such as apartments and remoting.)

Before diving into ATL, let's take a quick peek at where COM and ATL fit into the big picture.

ActiveX, OLE, and COM

COM is simply the plumbing for a series of higher-level application integration technologies consisting of
such items as ActiveX Controls and OLE Documents. These technologies define protocols based on COM
interfaces. For example, for a COM object to qualify as a minimal OLE Document object, that COM object
has to implement at least three interfaces—IPersistStorage, IOleObject, and IDataObject. You might
choose to implement the higher-level features of OLE Documents and controls. However, it makes more
sense to let some sort of application framework do the grunt work. Of course, that's why there's MFC.

For more information about how to implement higher-level features in raw C++, see
Kraig Brockschmidt's Inside OLE, 2d. ed. (Microsoft Press, 1995).

ActiveX, MFC, and COM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX, MFC, and COM

While the pure plumbing of COM is quite interesting by itself (it's simply amazing to see how COM remoting
works), the higher-level features are what sell applications. MFC is a huge framework geared toward
creating entire Windows applications. Inside MFC, you'll find tons of utility classes, a data
management/rendering mechanism (the Document-View architecture), as well as support for OLE
Documents, drag and drop, Automation, and ActiveX Controls. You probably don't want to develop an OLE
Document application from scratch; you're much better off using MFC. However, if you need to create a
small or medium-size COM-based service, you might want to turn away from MFC so you don't have to
include all the baggage MFC maintains for the higher-level features.

You can use raw C++ to create COM components, but doing so forces you to spend a good portion of your
time hacking out the boilerplate code (IUnknown and class objects, for example). Using MFC to write COM-
based applications turns out to be a less painful way of adding the big-ticket items to your application, but
it's difficult to write lightweight COM classes in MFC. ATL sits between pure C++ and MFC as a way to
implement COM-based software without having to type in the boilerplate code or buy into all of MFC's
architecture. ATL is basically a set of C++ templates and other kinds of support for writing COM classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ATL Roadmap
If you look at the source code for ATL, you'll find ATL consists of a collection of header files and C++
source code files. Most of it resides inside ATL's Include directory. Here's a rundown of some of the ATL
files and what's inside each of them.

ATLBASE.H

This file contains:

ATL's function typedefs

Structure and macro definitions

Smart pointers for managing COM interface pointers

Thread synchronization support classes

Definitions for CComBSTR, CComVariant, threading, and apartment support

ATLCOM.H

This file contains:

Template classes for class object/class factory support

IUnknown implementations

Support for tear-off interfaces

Type information management and support

ATL's IDispatch implementation

COM enumerator templates

Connection point support

ATLCONV.CPP and ATLCONV.H

These two source code files include support for Unicode conversions.

ATLCTL.CPP and ATLCTL.H

These two files contain:

The source code for ATL's IDispatch client support and event firing support

CComControlBase

The OLE embedding protocol support for controls

Property page support

ATLIFACE.IDL and ATLIFACE.H

ATLIFACE.IDL (which generates ATLIFACE.H) includes an ATL-specific interface named IRegistrar.

ATLIMPL.CPP

ATLIMPL.CPP implements such classes as CComBSTR, which is declared in ATLBASE.H.

ATLWIN.CPP and ATLWIN.H

These files provide windowing and user-interface support, including:

A message-mapping mechanism

A windowing class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dialog support

STATREG.CPP and STATREG.H

ATL features a COM component named the Registrar that handles putting appropriate entries into the
Registry. The code for implementing this feature is in STATREG.H and STATREG.CPP.

Let's start our excursions into ATL by examining ATL's support for client-side COM development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Client-Side ATL Programming
There are basically two sides to ATL—client-side support and object-side support. By far the largest portion
of support is on the object side because of all the code necessary to implement ActiveX controls. However,
the client-side support provided by ATL turns out to be useful and interesting also. Let's take a look at the
client side of ATL. Because C++ templates are the cornerstone of ATL, we'll take a little detour first to
examine them.

C++ Templates

The key to understanding the Active Template Library is understanding C++ templates. Despite the
intimidating template syntax, the concept of templates is fairly straightforward. C++ templates are
sometimes called compiler-approved macros, which is an appropriate description. Think about what macros
do: when the preprocessor encounters a macro, the preprocessor looks at the macro and expands it into
regular C++ code. But the problem with macros is that they are sometimes error-prone and they are
never type-safe. If you use a macro and pass an incorrect parameter, the compiler won't complain but
your program might very well crash. Templates, however, are like type-safe macros. When the compiler
encounters a template, the compiler expands the template just as it would a macro. But because templates
are type-safe, the compiler catches any type problems before the user encounters them.

Using templates to reuse code is different from what you're used to with conventional C++ development.
Components written using templates reuse code by template substitution rather than by inheriting
functionality from base classes. All the boilerplate code from templates is literally pasted into the project.

The archetypal example of using a template is a dynamic array. Imagine you need an array for holding
integers. Rather than declaring the array with a fixed size, you want the array to grow as necessary. So
you develop the array as a C++ class. Then someone you work with gets wind of your new class and says
that he or she needs the exact same functionality. However, this person wants to use floating point
numbers in the array. Rather than pumping out the exact same code (except for using a different type of
data), you can use a C++ template.

Here's an example of how you might use templates to solve the problem described above. The following is
a dynamic array implemented as a template:

template <class T> class DynArray {
public:
 DynArray();
 ~DynArray(); // clean up and do memory management
 int Add(T Element); // adds an element and does
 // memory management
 void Remove(int nIndex) // remove element and
 // do memory management
 T GetAt(nIndex) const;
 int GetSize();
private:
 T* TArray;
 int m_nArraysize;
};

void UseDynArray() {
 DynArray<int> intArray;
 DynArray<float> floatArray;

 intArray.Add(4);
 floatArray.Add(5.0);

 intArray.Remove(0);
 floatArray.Remove(0);

 int x = intArray.GetAt(0);
 float f = floatArray.GetAt(0);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
As you can imagine, creating templates is useful for implementing boilerplate COM code, and templates are
the mechanism ATL uses for providing COM support. The previous example is just one of the many uses
available for templates. Not only are templates useful for applying type information to a certain kind of
data structure, they're also useful for encapsulating algorithms. You'll see how when you take a closer look
at ATL. Let's take a look at the Active Template Library to see what comes with it.

Smart Pointers

One of the most common uses of templates is for smart pointers. The traditional C++ literature calls C++'s
built-in pointers "dumb" pointers. That's not a very nice name, but normal C++ pointers don't do much
except point. It's often up to the client to perform details such as pointer initialization.

As an example, let's model two types of software developer using C++ classes. You can start by creating
the classes: CVBDeveloper and CCPPDeveloper.

class CVBDeveloper {
public:
 CVBDeveloper() {
 }
 ~CVBDeveloper() {
 AfxMessageBox("I used VB, so I got home early.");
 }
 virtual void DoTheWork() {
 AfxMessageBox("Write them forms");
 }
};

class CCPPDeveloper {
public:
 CCPPDeveloper() {
 }
 ~CCPPDeveloper() {
 AfxMessageBox("Stay at work and fix those pointer problems");
 }
 virtual void DoTheWork() {
 AfxMessageBox("Hacking C++ code");
 }
};
The Visual Basic developer and the C++ developer both have functions for eliciting optimal performance.
Now imagine some client code that looks like this:

//UseDevelopers.CPP

void UseDevelopers() {
 CVBDeveloper* pVBDeveloper;
 .
 .
 .
 // The VB Developer pointer needs
 // to be initialized
 // sometime. But what if
 // you forget to initialize and later
 // on do something like this:
 if(pVBDeveloper) {
 // Get ready for fireworks
 // because pVBDeveloper is
 // NOT NULL, it points
 // to some random data.
 c->DoTheWork();
 }
}
In this case, the client code forgot to initialize the pVBDeveloper pointer to NULL. (Of course, this never
happens in real life!) Because pVBDeveloper contains a non-NULL value (the value is actually whatever

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

happens in real life!) Because pVBDeveloper contains a non-NULL value (the value is actually whatever
happened to be on the stack at the time), the test to make sure the pointer is valid succeeds when in fact
you're expecting it to fail. The client gleefully proceeds, believing all is well. The client crashes, of course,
because the client is "calling into darkness." (Who knows where pVBDeveloper is pointing—probably to
nothing that even resembles a Visual Basic developer.) Naturally, you'd like some mechanism for ensuring
that the pointers are initialized. This is where smart pointers come in handy.

Now imagine a second scenario. Perhaps you'd like to plug a little extra code into your developer-type
classes that performs some sort of operation common to all developers. For example, perhaps you'd like all
the developers to do some design work before they begin coding. Consider the earlier VB developer and
C++ developer examples. When the client calls DoTheWork, the developer gets right to coding without
proper design, and he or she probably leaves the poor clients in a lurch. What you'd like to do is add a very
generic hook to the developer classes so they make sure the design is done before beginning to code.

The C++ solution to coping with these problems is called a smart pointer. Let's find out exactly what a
smart pointer is.

Giving C++ Pointers Some Brains

Remember that a smart pointer is a C++ class for wrapping pointers. By wrapping a pointer in a class (and
specifically, a template), you can make sure certain operations are taken care of automatically instead of
deferring mundane, boilerplate-type operations to the client. One good example of such an operation is to
make sure pointers are initialized correctly so that embarrassing crashes due to randomly assigned
pointers don't occur. Another good example is to make certain that boilerplate code is executed before
function calls are made through a pointer.

Let's invent a smart pointer for the developer model described earlier. Consider a template-based class
named SmartDeveloper:

template<class T>
class SmartDeveloper {
 T* m_pDeveloper;

public:
 SmartDeveloper(T* pDeveloper) {
 ASSERT(pDeveloper != NULL);
 m_pDeveloper = pDeveloper;
 }
 ~SmartDeveloper() {
 AfxMessageBox("I'm smart so I'll get paid.");
 }
 SmartDeveloper &
 operator=(const SmartDeveloper& rDeveloper) {
 return *this;
 }
 T* operator->() const {
 AfxMessageBox("About to de-reference pointer. Make /
 sure everything's okay. ");
 return m_pDeveloper;
 }
};
The SmartDeveloper template listed above wraps a pointer—any pointer. Because the SmartDeveloper
class is based on a template, it can provide generic functionality regardless of the type associated with the
class. Think of templates as compiler-approved macros: declarations of classes (or functions) whose code
can apply to any type of data.

We want the smart pointer to handle all developers, including those using VB, Visual C++, Java, and
Delphi (among others). The template <class T> statement at the top accomplishes this. The
SmartDeveloper template includes a pointer (m_pDeveloper) to the type of developer for which the class
will be defined. The SmartDeveloper constructor takes a pointer to that type as a parameter and assigns it
to m_pDeveloper. Notice that the constructor generates an assertion if the client passes a NULL parameter
to construct SmartDeveloper.

In addition to wrapping a pointer, the SmartDeveloper implements several operators. The most important

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to wrapping a pointer, the SmartDeveloper implements several operators. The most important
one is the "->" operator (the member selection operator). This operator is the workhorse of any smart
pointer class. Overloading the member selection operator is what turns a regular class into a smart
pointer. Normally, using the member selection operator on a regular C++ dumb pointer tells the compiler
to select a member belonging to the class or structure being pointed to. By overriding the member
selection operator, you provide a way for the client to hook in and call some boilerplate code every time
that client calls a method. In the SmartDeveloper example, the smart developer makes sure the work area
is in order before working. (This example is somewhat contrived. In real life, you might want to put in a
debugging hook, for example.)

Adding the -> operator to the class causes the class to behave like C++'s built-in pointer. To behave like
native C++ pointers in other ways, smart pointer classes need to implement the other standard operators
such as the de-referencing and assignment operators.

Using Smart Pointers

Using smart pointers is really no different from using the regular built-in C++ pointers. Let's start by
looking at a client that uses plain vanilla developer classes:

void UseDevelopers() {
 CVBDeveloper VBDeveloper;
 CCPPDeveloper CPPDeveloper;

 VBDeveloper.DoTheWork();
 CPPDeveloper.DoTheWork();
}
No surprises here—executing this code causes the developers simply to come in and do the work.
However, you want to use the smart developers—the ones that make sure the design is done before
actually starting to hack. Here's the code that wraps the VB developer and C++ developer objects in the
smart pointer class:

void UseSmartDevelopers {
 CVBDeveloper VBDeveloper;
 CCPPDeveloper CPPDeveloper;

 SmartDeveloper<CVBDeveloper> smartVBDeveloper(&VBDeveloper);
 SmartDeveloper<CCPPDeveloper> smartCPPDeveloper(&CPPDeveloper);

 smartVBDeveloper->DoTheWork();
 smartCPPDeveloper->DoTheWork();
}
Instead of bringing in any old developer to do the work (as in the previous example), the client asks the
smart developers to do the work. The smart developers will automatically prepare the design before
proceeding with coding.

Smart Pointers and COM

While the last example was fabricated to make an interesting story, smart pointers do have useful
applications in the real world. One of those applications is to make client-side COM programming easier.

Smart pointers are frequently used to implement reference counting. Because reference counting is a very
generic operation, hoisting client-side reference count management up into a smart pointer makes sense.

Because you're now familiar with the Microsoft Component Object Model, you understand that COM objects
expose interfaces. To C++ clients, interfaces are simply pure abstract base classes, and C++ clients treat
interfaces more or less like normal C++ objects. However, as you discovered in previous chapters, COM
objects are a bit different from regular C++ objects. COM objects live at the binary level. As such, they are
created and destroyed using language- independent means. COM objects are created via API functions
calls. Most COM objects use a reference count to know when to delete themselves from memory. Once a
COM object is created, a client object can refer to it in a number of ways by referencing multiple interfaces
belonging to the same COM object. In addition, several different clients can talk to a single COM object. In
these situations, the COM object must stay alive for as long as it is referred to. Most COM objects destroy
themselves when they're no longer referred to by any clients. COM objects use reference counting to
accomplish this self-destruction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

accomplish this self-destruction.

To support this reference-counting scheme, COM defines a couple of rules for managing COM interfaces
from the client side. The first rule is that creating a new copy of a COM interface should result in bumping
the object's reference count up by one. The second rule is that clients should release interface pointers
when they have finished with them. Reference counting is one of the more difficult aspects of COM to get
right—especially from the client side. Keeping track of COM interface reference counting is a perfect use of
smart pointers.

For example, the smart pointer's constructor might take the live interface pointer as an argument and set
an internal pointer to the live interface pointer. Then the destructor might call the interface pointer's
Release function to release the interface so that the interface pointer will be released automatically when
the smart pointer is deleted or falls out of scope. In addition, the smart pointer can help manage COM
interfaces that are copied.

For example, imagine you've created a COM object and you're holding on to the interface. Suppose you
need to make a copy of the interface pointer (perhaps to pass it as an out parameter). At the native COM
level, you'd perform several steps. First you must release the old interface pointer. Next you need to copy
the old pointer to the new pointer. Finally you must call AddRef on the new copy of the interface pointer.
These steps need to occur regardless of the interface being used, making this process ideal for boilerplate
code. To implement this process in the smart pointer class, all you need to do is override the assignment
operator. The client can then assign the old pointer to the new pointer. The smart pointer does all the work
of managing the interface pointer, relieving the client of the burden.

ATL's Smart Pointers

Much of ATL's support for client-side COM development resides in a pair of ATL smart pointers: CComPtr
and CComQIPtr. CComPtr is a basic smart pointer that wraps COM interface pointers. CComQIPtr adds a
little more smarts by associating a GUID (for use as the interface ID) with a smart pointer. Let's start by
looking at CComPtr.

CComPtr

Here's an abbreviated version of CComPtr showing its most important parts:

template <class T>
class CComPtr {
public:
 typedef T _PtrClass;
 CComPtr() {p=NULL;}
 CComPtr(T* lp) {
 if ((p = lp) != NULL) p->AddRef();
 }
 CComPtr(const CComPtr<T>& lp) {
 if ((p = lp.p) != NULL) p->AddRef();
 }
 ~CComPtr() {if (p) p->Release();}
 void Release() {if (p) p->Release(); p=NULL;}
 operator T*() {return (T*)p;}
 T& operator*() {_ASSERTE(p!=NULL); return *p; }
 T** operator&() { _ASSERTE(p==NULL); return &p; }
 T* operator->() { _ASSERTE(p!=NULL); return p; }
 T* operator=(T* lp){return (T*)AtlComPtrAssign(
 (IUnknown**)&p, lp);}
 T* operator=(const CComPtr<T>& lp) {
 return (T*)AtlComPtrAssign((IUnknown**)&p, lp.p);
 }
 T* p;
};
CComPtr is a fairly basic smart pointer. Notice the data member p of type T (the type introduced by the
template parameter). CComPtr's constructor performs an AddRef on the pointer while the destructor
releases the pointer—no surprises here. CComPtr also has all the necessary operators for wrapping a COM
interface. Only the assignment operator deserves special mention. The assignment does a raw pointer re-
assignment. The assignment operator calls a function named AtlComPtrAssign:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ATLAPI_(IUnknown*) AtlComPtrAssign(IUnknown** pp, IUnknown* lp) {
 if (lp != NULL)
 lp->AddRef();
 if (*pp)
 (*pp)->Release();
 *pp = lp;
 return lp;
}
AtlComPtrAssign does a blind pointer assignment, AddRef-ing the assignee before calling Release on the
assignor. You'll soon see a version of this function that calls QueryInterface.

CComPtr's main strength is that it helps you manage the reference count on a pointer to some degree.

Using CComPtr

In addition to helping you manage AddRef and Release operations, CComPtr can help you manage code
layout. Looking at a bit of code will help illustrate the usefulness of CComPtr. Imagine that your client code
needs three interface pointers to get the work done as shown here:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 LPPERSIST pPersist;
 LPDISPATCH pDispatch;
 LPDATAOBJECT pDataObject;
 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&pPersist);
 if(SUCCEEDED(hr)) {
 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *)
 &pDispatch);
 if(SUCCEEDED(hr)) {
 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &pDataObject);
 if(SUCCEEDED(hr)) {
 DoIt(pPersist, pDispatch, pDataObject);
 pDataObject->Release();
 }
 pDispatch->Release();
 }
 pPersist->Release();
 }
}
You could use the controversial goto statement (and risk facing derisive comments from your co-workers)
to try to make your code look cleaner, like this:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 LPPERSIST pPersist; LPDISPATCH pDispatch;
 LPDATAOBJECT pDataObject;

 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&pPersist);
 if(FAILED(hr)) goto cleanup;

 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *) &pDispatch);
 if(FAILED(hr)) goto cleanup;

 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &pDataObject);
 if(FAILED(hr)) goto cleanup;

 DoIt(pPersist, pDispatch, pDataObject);

cleanup:
 if (pDataObject) pDataObject->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (pDataObject) pDataObject->Release();
 if (pDispatch) pDispatch->Release();
 if (pPersist) pPersist->Release();
}
That may not be as elegant a solution as you would like. Using CComPtr makes the same code a lot
prettier and much easier to read, as shown here:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 CComPtr<IUnknown> persist;
 CComPtr<IUnknown> dispatch;
 CComPtr<IUnknown> dataobject;

 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&persist);
 if(FAILED(hr)) return;

 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *) &dispatch);
 if(FAILED(hr)) return;

 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &dataobject);
 if(FAILED(hr)) return;

 DoIt(pPersist, pDispatch, pDataObject);

 // Destructors call release...
}
At this point, you're probably wondering why CComPtr doesn't wrap QueryInterface. After all,
QueryInterface is a hot spot for reference counting. Adding QueryInterface support for the smart pointer
requires some way of associating a GUID with the smart pointer. CComPtr was introduced in the first
version of ATL. Rather than disrupt any existing code base, Microsoft introduced a beefed-up version of
CComPtr named CComQIPtr.

CComQIPtr

Here's part of CComQIPtr's definition:

template <class T, const IID* piid = &__uuidof(T)>
class CComQIPtr {
public:
 typedef T _PtrClass;
 CComQIPtr() {p=NULL;}
 CComQIPtr(T* lp) {
 if ((p = lp) != NULL)
 p->AddRef();
 }
 CComQIPtr(const CComQIPtr<T,piid>& lp) {
 if ((p = lp.p) != NULL)
 p->AddRef();
 }
 CComQIPtr(IUnknown* lp) {
 p=NULL;
 if (lp != NULL)
 lp->QueryInterface(*piid, (void **)&p);
 }
 ~CComQIPtr() {if (p) p->Release();}
 void Release() {if (p) p->Release(); p=NULL;}
 operator T*() {return p;}
 T& operator*() {_ASSERTE(p!=NULL); return *p; }
 T** operator&() { _ASSERTE(p==NULL); return &p; }
 T* operator->() {_ASSERTE(p!=NULL); return p; }
 T* operator=(T* lp){
 return (T*)AtlComPtrAssign((IUnknown**)&p, lp);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return (T*)AtlComPtrAssign((IUnknown**)&p, lp);
 }
 T* operator=(const CComQIPtr<T,piid>& lp) {
 return (T*)AtlComPtrAssign((IUnknown**)&p, lp.p);
 }
 T* operator=(IUnknown* lp) {
 return (T*)AtlComQIPtrAssign((IUnknown**)&p, lp, *piid);
 }
 bool operator!(){return (p == NULL);}
 T* p;
};
What makes CComQIPtr different from CComPtr is the second template parameter, piid—the interfaces's
GUID. This smart pointer has several constructors: a default constructor, a copy constructor, a constructor
that takes a raw interface pointer of unspecified type, and a constructor that accepts an IUnknown
interface as a parameter. Notice in this last constructor that if the developer creates an object of this type
and initializes it with a plain old IUnknown pointer, CComQIPtr calls QueryInterface using the GUID
template parameter. Also notice that the assignment to an IUnknown pointer calls AtlComQIPtrAssign to
make the assignment. As you can imagine, AtlComQIPtrAssign performs a QueryInterface under the hood
using the GUID template parameter.

Using CComQIPtr

Here's how you might use CComQIPtr in some COM client code:

void GetLottaPointers(ISomeInterface* pSomeInterface){
 HRESULT hr;
 CComQIPtr<IPersist, &IID_IPersist> persist;
 CComQIPtr<IDispatch, &IID_IDispatch> dispatch;
 CComPtr<IDataObject, &IID_IDataObject> dataobject;

 dispatch = pSomeInterface; // implicit QI
 persist = pSomeInterface; // implicit QI
 dataobject = pSomeInterface; // implicit QI

 DoIt(persist, dispatch, dataobject); // send to a function
 // that needs IPersist*,
 // IDispatch*, and
 // IDataObject*

 // Destructors call release...
}
The CComQIPtr is useful whenever you want the Java-style or Visual Basic-style type conversions. Notice
that the code listed above didn't require any calls to QueryInterface or Release. Those calls happened
automatically.

ATL Smart Pointer Problems

Smart pointers can be quite convenient in some places (as in the CComPtr example where we eliminated
the goto statement). Unfortunately, C++ smart pointers aren't the panacea that programmers pray for to
solve their reference-counting and pointer-management problems. Smart pointers simply move these
problems to a different level.

One situation in which to be very careful with smart pointers is when converting from code that is not
smart-pointer based to code that uses the ATL smart pointers. The problem is that the ATL smart pointers
don't hide the AddRef and Release calls. This just means you need to take care to understand how the
smart pointer works rather than be careful about how you call AddRef and Release.

For example, imagine taking this code:

void UseAnInterface(){
 IDispatch* pDispatch = NULL;

 HRESULT hr = GetTheObject(&pDispatch);
 if(SUCCEEDED(hr)) {
 DWORD dwTICount;
 pDispatch->GetTypeInfoCount(&dwTICount);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDispatch->GetTypeInfoCount(&dwTICount);
 pDispatch->Release();
 }
}
and capriciously converting the code to use a smart pointer like this:

void UseAnInterface() {
 CComPtr<IDispatch> dispatch = NULL;

 HRESULT hr = GetTheObject(&dispatch);
 if(SUCCEEDED(hr)) {
 DWORD dwTICount;
 dispatch->GetTypeInfoCount(&dwTICount);
 dispatch->Release();
 }
}
Because CComPtr and CComQIPtr do not hide calls to AddRef and Re-lease, this blind conversion causes a
problem when the release is called through the dispatch smart pointer. The IDispatch interface performs
its own release, so the code above calls Release twice—the first time explicitly through the call dispatch-
>Release() and the second time implicitly at the function's closing curly bracket.

In addition, ATL's smart pointers include the implicit cast operator that allows smart pointers to be
assigned to raw pointers. In this case, what's actually happening with the reference count starts to get
confusing.

The bottom line is that while smart pointers make some aspect of client-side COM development more
convenient, they're not foolproof. You still have to have some degree of knowledge about how smart
pointers work if you want to use them safely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Server-Side ATL Programming
We've covered ATL's client-side support. While a fair amount of ATL is devoted to client-side development
aids (such as smart pointers and BSTR wrappers), the bulk of ATL exists to support COM-based servers,
which we'll cover next. First you'll get an overview of ATL in order to understand how the pieces fit
together. Then you'll re-implement the spaceship example in ATL to investigate ATL's Object Wizard and
get a good feel for what it takes to write COM classes using ATL.

ATL and COM Classes

Your job as a COM class developer is to wire up the function tables to their implementations and to make
sure QueryInterface, AddRef, and Release work as advertised. How you get that to happen is your own
business. As far as users are concerned, they couldn't care less what methods you use. You've seen two
basic approaches so far—the raw C++ method using multiple inheritance of interfaces and the MFC
approach using macros and nested classes. The ATL approach to implementing COM classes is somewhat
different from either of these approaches.

Compare the raw C++ approach to MFC's approach. Remember that one way of developing COM classes
using raw C++ involves multiply inheriting a single C++ class from at least one COM interface and then
writing all the code for the C++ class. At that point, you've got to add any extra features (such as
supporting IDispatch or COM aggregation) by hand. The MFC approach to COM classes involves using
macros that define nested classes (with one nested class implementing each interface). MFC supports
IDispatch and COM aggregation—you don't have to do a lot to get those features up and running.
However, it's very difficult to paste any new interfaces onto a COM class without a lot of typing. (As you
saw in Chapter 24, MFC's COM support uses some lengthy macros.)

The ATL approach to composing COM classes requires inheriting a C++ class from several template-based
classes. However, Microsoft has already done the work of implementing IUnknown for you through the
class templates within ATL.

Let's dive right in and create the spaceship example as a COM class. As always, start by selecting New
from the File in Visual C++. This opens the New dialog with the Projects tab activated, as shown in Figure
29-1. Select ATL COM AppWizard from the Projects tab. Give your project a useful name such as
spaceshipsvr, and click OK.

Figure 29-1. Selecting ATL COM AppWizard from the New dialog box.

ATL COM AppWizard Options

In the Step 1 dialog, shown in Figure 29-2, you can choose the server type for your project from a list of
options. The ATL COM AppWizard gives you the choice of creating a Dynamic Link Library (DLL), an
Executable (EXE), or a Service (EXE). If you select the DLL option, the options for attaching the proxy/stub
code to the DLL and for including MFC in your ATL project will be activated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code to the DLL and for including MFC in your ATL project will be activated.

Figure 29-2. Step 1 of the ATL COM AppWizard.

Selecting DLL as the server type produces all the necessary pieces to make your server DLL fit into the
COM milieu. Among these pieces are the following well-known COM functions: DllGetClassObject,
DllCanUnloadNow, DllRegisterServer, and DllUnregisterServer. Also included are the correct server lifetime
mechanisms for a DLL.

If you decide you might want to run your DLL out of process as a surrogate, selecting the Allow Merging Of
Proxy/Stub Code option permits you to package all your components into a single binary file. (Proxy/stub
code has traditionally shipped as a separate DLL.) That way you have to distribute only a single DLL. If you
decide you absolutely must include MFC in your DLL, go ahead and select the Support MFC check box. MFC
support includes AfxWin.h and AfxDisp.h in your StdAfx.h file and links your project to the current version
of MFC's import library. While using MFC can be very convenient and almost addictive at times, beware of
dependencies you're inheriting when you include MFC. You can also select Support MTS to add support for
Microsoft Transaction Server.

If you elect to produce an Executable EXE server, the ATL COM AppWizard produces code that compiles to
an EXE file. The EXE will correctly register the class objects with the operating system by using
CoRegisterClassObject and CoRevokeClassObject. The project will also insert the correct code for managing
the lifetime of the executable server. Finally, if you choose the Service EXE option, the ATL COM
AppWizard adds the necessary service-oriented code.

Using the ATL COM AppWizard to write a lightweight COM server yields several products. First, you get a
project file for compiling your object. The project file ties together all the source code for the project and
maintains the proper build instructions for each of the files. Second, you get some boilerplate Interface
Definition Language (IDL) code. The IDL file is important because as the starting point for genuine COM
development, it's one of the primary files you'll focus on when writing COM classes.

IDL is a purely declarative language for describing COM interfaces. Once a COM interface is described in an
IDL file, a simple pass though the Microsoft Interface Definition Language (MIDL) compiler creates several
more useful products.

These products include:

The pure abstract base classes needed to write COM classes

A type library

Source code for building the proxy stub DLL (necessary for standard COM remoting)

Creating a COM Class

Once you've created a COM server, you're ready to start piling COM classes into the server. Fortunately,
there's an easy way to do that with the ATL Object Wizard, shown in Figure 29-3. Select New ATL Object
from the Insert menu to start the ATL Object Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from the Insert menu to start the ATL Object Wizard.

Using the ATL Object Wizard to generate a new object adds a C++ source file and a header file containing
the new class definition and implementation to your project. In addition, the ATL Object Wizard adds an
interface to the IDL code. Although the ATL Object Wizard takes care of pumping out a skeleton IDL file,
you'll still need to understand IDL to some extent if you want to write effective COM interfaces (as you'll
soon see).

Figure 29-3. Using the ATL Object Wizard to insert a new ATL-based COM class into the project.

After you choose the type of ATL object, click Next to display the ATL Object Wizard Properties dialog.
Depending on which object you choose, the Attributes tab of the ATL Object Wizard Properties dialog
allows you to select the threading model for your COM class, and whether you want a dual (IDispatch-
based) or a custom interface. The dialog also allows you to choose how your class will support aggregation.
In addition, the Object Wizard lets you easily include the ISupportErrorInfo interface and connection points
in your class. Finally, you can aggregate to the Free-Threaded Marshaler if you so choose.

Apartments and Threading

To figure out COM, you have to understand that COM is centered on the notion of abstraction—hiding as
much information as possible from the client. One piece of information that COM hides from the client is
whether COM class is thread-safe. The client should be able to use an object as it sees fit without having to
worry about whether an object properly serializes access to itself—that is, properly protects access to its
internal data. COM defines the notion of an apartment to provide this abstraction.

An apartment defines an execution context, or thread, that houses interface pointers. A thread enters an
apartment by calling a function from the CoInitialize family: CoInitialize, CoInitializeEx, or OleInitialize.
Then COM requires that all method calls to an interface pointer be executed within the apartment that
initialized the pointer (in other words, from the same thread that called CoCreateInstance). COM defines
two kinds of apartments—single-threaded apartments and multithreaded apartments. Single-threaded
apartments can house only one thread while multithreaded apartments can house several threads. While a
process can have only one multithreaded apartment, it can have many single-threaded apartments. An
apartment can house any number of COM objects.

A single-threaded apartment guarantees that COM objects created within it will have method calls
serialized through the remoting layer, while a COM object created within a multithreaded apartment will
not. A helpful way to remember the difference between apartments is to think of it this way: instantiating a
COM object within the multithreaded apartment is like putting a piece of data into the global scope where
multiple threads can get to it. Instantiating a COM object within a single-threaded apartment is like putting
data within the scope of only one thread. The bottom line is that COM classes that want to live in the
multithreaded apartment had better be thread-safe, while COM classes that are satisfied living in their own
apartments need not worry about concurrent access to their data.

A COM object living within a different process space from its client has its method calls serialized
automatically via the remoting layer. However, a COM object living in a DLL might want to provide its own
internal protection (using critical sections, for example) rather than having the remoting layer protect it. A
COM class advertises its thread safety to the world via a Registry setting. This named value lives in the
Registry under the CLSID under HKEY_CLASSES_ROOT like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[HKCR\CLSID\{some GUID …}\InprocServer32]
@="C:\SomeServer.DLL"
ThreadingModel=<thread model>
The ThreadingModel can be one of four values: Single, Both, Free, or Apartment, or it can be blank. ATL
provides support for all current threading models. Here's a rundown of what each value indicates:

Single or blank indicates that the class executes in the main thread only (the first single thread
created by the client).

Both indicates that the class is thread-safe and can execute in both the single-threaded and
multithreaded apartments. This value tells COM to use the same kind of apartment as the client.

Free indicates that the class is thread-safe. This value tells COM to force the object inside the
multithreaded apartment.

Apartment indicates that the class isn't thread-safe and must live in its own single-threaded
apartment.

When you choose a threading model in the ATL Object Wizard, the wizard inserts different code into your
class depending upon your selection. For example, if you select the apartment model, the Object Wizard
derives your class from CComObjectRootEx and includes CComSingleThreadModel as the template
parameter like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
The CComSingleThreadModel template parameter mixes in the more efficient standard increment and
decrement operations for IUnknown (because access to the class is automatically serialized). In addition,
the ATL Object Wizard causes the class to insert the correct threading model value in the Registry. If you
choose the Single option in the ATL Object Wizard, the class uses the CComSingleThreadModel but leaves
the ThreadingModel value blank in the Registry.

Choosing Both or Free causes the class to use the CComMultiThreadModel template parameter, which
employs the thread-safe Win32 increment and decrement operations InterlockedIncrement and
InterlockedDecrement. For example, a free-threaded class definition looks like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx< CComMultiThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
Choosing Both for your threading model inserts Both as the data for the ThreadingModel value, while
choosing Free uses the data value Free for the ThreadingModel value.

Connection Points and ISupportErrorInfo

Adding connection to your COM class is easy. Selecting the Support Connection Points check box causes
the class to derive from IConnectionPointImpl. This option also adds a blank connection map to your class.
Adding connection points (for example, an event set) to your class is simply a matter of performing the
following four steps:

1. Define the callback interface in the IDL file.

2. Use the ATL proxy generator to create a proxy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the ATL proxy generator to create a proxy.

3. Add the proxy class to the COM class.

4. Add the connection points to the connection point map.

ATL also includes support for ISupportErrorInfo. The ISupportErrorInfo interface ensures that error
information is propagated up the call chain correctly. OLE Automation objects that use the error-handling
interfaces must implement ISupportErrorInfo. Selecting Support ISupportErrorInfo in the ATL Object
Wizard dialog causes the ATL-based class to derive from ISupportErrorInfoImpl.

The Free-Threaded Marshaler

Selecting the Free Threaded Marshaler option aggregates the COM free-threaded marshaler to your class.
The generated class does this by calling CoCreateFreeThreadedMarshaler in its FinalConstruct function. The
free-threaded marshaler allows thread-safe objects to bypass the standard marshaling that occurs
whenever cross-apartment interface methods are invoked, allowing threads living in one apartment to
access interface methods in another apartment as though they were in the same apartment. This process
speeds up cross-apartment calls tremendously. The free-threaded marshaler does this by implementing
the IMarshal interface. When the client asks the object for an interface, the remoting layer calls
QueryInterface, asking for IMarshal. If the object implements IMarshal (in this case, the object implements
IMarshal because the ATL Object Wizard also adds an entry into the class's interface to handle
QueryInterface requests for IMarshal) and the marshaling request is in process, the free-threaded
marshaler actually copies the pointer into the marshaling packet. That way, the client receives an actual
pointer to the object. The client talks to the object directly without having to go through proxies and stubs.
Of course, if you choose the Free Threaded Marshaler option, all data in your object had better be thread-
safe. Just be very cautious if you check this box.

Implementing the Spaceship Class Using ATL

We'll create the spaceship class using the defaults provided by the ATL Object Wizard in the ATL Object
Wizard Properties dialog. For example, the spaceship class will have a dual interface, so it will be accessible
from environments such as VBScript on a Web page. In addition, the spaceship class will be an apartment
model object, meaning COM will manage most of the concurrency issues. The only information you need to
supply to the ATL Object Wizard is a clever name. Enter a value such as AtlSpaceship in the Short Name
text box on the Names tab.

You don't need to set any of the other options right now. For instance, you don't need to set the Support
Connection Points option because we'll cover connections in the next chapter. You can always add
connection points later by typing them in by hand.

If you tell the ATL Object Wizard to create a Simple Object COM class named ATLSpaceship, here's the
class definition it generates:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
While ATL includes quite a few COM-oriented C++ classes, those listed in the spaceship class's inheritance
list above are enough to get a flavor of how ATL works.

The most generic ATL-based COM objects derive from three base classes: CComObjectRoot, CComCoClass,
and IDispatch. CComObjectRoot implements IUnknown and manages the identity of the class. This means
CComObjectRoot implements AddRef and Release and hooks into ATL's QueryInterface mechanism.
CComCoClass manages the COM class's class object and some general error reporting. In the class
definition above, CComCoClass adds the class object that knows how to create CAtlSpaceship objects.
Finally, the code produced by the ATL Object Wizard includes an implementation of IDispatch based on the
type library produced by compiling the IDL. The default IDispatch is based on a dual interface (which is an
IDispatch interface followed by the functions defined in the IDL).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDispatch interface followed by the functions defined in the IDL).

As you can see, using ATL to implement COM classes is different from using pure C++. The Tao of ATL
differs from what you might be used to when developing normal C++ classes. With ATL, the most
important part of the project is the interfaces, which are described in IDL. By adding functions to the
interfaces in the IDL code, you automatically add functions to the concrete classes implementing the
interfaces. The functions are added automatically because the projects are set up such that compiling the
IDL file yields a C++ header file with those functions. All that's left for you to do after adding the functions
in the interface is to implement those functions in the C++ class. The IDL file also provides a type library
so the COM class can implement IDispatch. However, while ATL is useful for implementing lightweight COM
services and objects, ATL is also a new means by which you can create ActiveX controls, as you'll see in
the next chapter.

Basic ATL Architecture

If you've experimented at all with ATL, you've seen how it simplifies the process of implementing COM
classes. The tool support is quite good—it's almost as easy to develop COM classes using Visual C++ 6.0
as it is to create MFC-based programs. Just use AppWizard to create a new ATL-based class. However,
instead of using ClassWizard (as you would to handle messages and to add dialog box member variables),
use ClassView to add new function definitions to an interface. Then simply fill in the functions within the
C++ code generated by ClassView. The code generated by AppWizard includes all the necessary code for
implementing your class, including an implementation of IUnknown, a server module to house your COM
class, and a class object that implements IClassFactory.

Writing COM objects as we've just described is certainly more convenient than most other methods. But
exactly what happens when you use the AppWizard to generate the code for you? Understanding how ATL
works is important if you want to extend your ATL-based COM classes and servers much beyond what
AppWizard and ClassView provide. For example, ATL provides support for advanced interface techniques
such as tear-off interfaces. Unfortunately, there's no Wizard option for implementing a tear-off interface.
Even though ATL supports it, you've got to do a little work by hand to accomplish the tear-off interface.
Understanding how ATL implements IUnknown is helpful in this situation.

Let's examine the CAtlSpaceship class in a bit more detail. Here's the entire definition:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
public:
 CAtlSpaceship()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_ATLSPACESHIP)

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

// IAtlSpaceship
public:
};
While this is ordinary vanilla C++ source code, it differs from normal everyday C++ source code for
implementing a COM object in several ways. For example, while many COM class implementations derive
strictly from COM interfaces, this COM class derives from several templates. In addition, this C++ class
uses several odd-looking macros. As you examine the code, you'll see ATL's implementation of IUnknown,
as well as a few other interesting topics, such as a technique for managing vtable bloat and an uncommon
use for templates. Let's start by taking a look at the first symbol in the wizard-generated macro code:
ATL_NO_VTABLE.

Managing VTBL Bloat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managing VTBL Bloat

COM interfaces are easily expressed in C++ as pure abstract base classes. Writing COM classes using
multiple inheritance (there are other ways to write COM classes) is merely a matter of adding the COM
interface base classes to your inheritance list and implementing the union of all the functions. Of course,
this means that the memory footprint of your COM server will include a significant amount of vtable
overhead for each interface implemented by your class. That's not a big deal if you have only a few
interfaces and your C++ class hierarchy isn't very deep. However, implementing interfaces this way does
add overhead that tends to accumulate as interfaces are added and hierarchies deepen. ATL provides a
way to cut down on some of the overhead introduced by a lot of virtual functions. ATL defines the following
symbol:

#define ATL_NO_VTABLE __declspec(novtable)
Using ATL_NO_VTABLE prevents an object's vtable (vtable) from being initialized in the constructor,
thereby eliminating from the linker the vtable and all the functions pointed to by the vtable for that class.
This elimination can lower the size of your COM server somewhat, provided the most-derived class does
not use the novtable declspec shown above. You'll notice the size difference in classes with deep derivation
lists. One caveat, however: calling virtual functions from the constructor of any object that uses this
declspec is unsafe because vptr is uninitialized.

The second line in the class declaration previously shown demonstrates that CAtlSpaceship derives from
CComObjectRootEx. This is where you get to ATL's version of IUnknown.

ATL's IUnknown: CComObjectRootEx

While CComObjectRootEx isn't quite at the top of the ATL hierarchy, it's pretty close. The actual base class
for a COM object in ATL is a class named CComObjectRootBase. (Both class definitions are located in
ATLCOM.H.) Looking at CComObjectRootBase reveals the code you might expect for a C++ based COM
class. CComObjectRootBase includes a DWORD member named m_dwRef for reference counting. You'll
also see OuterAddRef, OuterRelease, and OuterQueryInterface to support COM aggregation and tear-off
interfaces. Looking at CComObjectRootEx reveals InternalAddRef, InternalRelease, and
InternalQueryInterface for performing the regular native reference counting, and QueryInterface
mechanisms for class instances with object identity.

Notice that CAtlSpaceship's definition shows that the class is derived from CComObjectRootEx and that
CComObjectRootEx is a parameterized template class. The listing below shows the definition of
CComObjectRootEx.

template <class ThreadModel>
class CComObjectRootEx : public CComObjectRootBase
{
public:
 typedef ThreadModel _ThreadModel;
 typedef _ThreadModel::AutoCriticalSection _CritSec;
 typedef CComObjectLockT<_ThreadModel> ObjectLock;

 ULONG InternalAddRef() {
 ATLASSERT(m_dwRef != -1L);
 return _ThreadModel::Increment(&m_dwRef);
 }
 ULONG InternalRelease() {
 ATLASSERT(m_dwRef > 0);
 return _ThreadModel::Decrement(&m_dwRef);
 }

 void Lock() {m_critsec.Lock();}
 void Unlock() {m_critsec.Unlock();}
private:
 _CritSec m_critsec;
};
CComObjectRootEx is a template class that varies in type based on the kind of threading model class
passed in as the template parameter. In fact, ATL supports several threading models: Single-Threaded
Apartments (STAs), Multi-Threaded Apartments (MTAs), and Free Threading. ATL includes three
preprocessor symbols for selecting the various default threading models for your project:
_ATL_SINGLE_THREADED, _ATL_APARTMENT_THREADED, and _ATL_FREE_THREADED.

Defining the preprocessor symbol _ATL_SINGLE_THREADED in stdafx.h changes the default threading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defining the preprocessor symbol _ATL_SINGLE_THREADED in stdafx.h changes the default threading
model to support only one STA-based thread. This option is useful for out-of-process servers that don't
create any extra threads. Because the server supports only one thread, ATL's global state can remain
unprotected by critical sections and the server is therefore more efficient. The downside is that your server
can support only one thread. Defining _ATL_APARTMENT_THREADED for the preprocessor causes the
default threading model to support multiple STA-based threads. This is useful for apartment model in-
process servers (servers supporting the ThreadingModel=Apartment Registry value). Because a server
employing this threading model can support multiple threads, ATL protects its global state using critical
sections. Finally, defining the _ATL_FREE_THREADED preprocessor symbol creates servers compatible with
any threading environment. That is, ATL protects its global state using critical sections, and each object in
the server will have its own critical sections to maintain data safety.

These preprocessor symbols merely determine which threading class to plug into CComObjectRootEx as a
template parameter. ATL provides three threading model classes. The classes provide support for the most
efficient yet thread-safe behavior for COM classes within each of the three contexts listed above. The three
classes are CComMultiThreadModelNoCS, CComMultiThreadModel, and CComSingleThreadModel. The
following listing shows the three threading model classes within ATL:

class CComMultiThreadModelNoCS
{
public:
 static ULONG WINAPI Increment(LPLONG p)
 {return InterlockedIncrement(p);}
 static ULONG WINAPI Decrement(LPLONG p)
 {return InterlockedDecrement(p);}
 typedef CComFakeCriticalSection AutoCriticalSection;
 typedef CComFakeCriticalSection CriticalSection;
 typedef CComMultiThreadModelNoCS ThreadModelNoCS;
};

class CComMultiThreadModel
{
public:
 static ULONG WINAPI Increment(LPLONG p)
 {return InterlockedIncrement(p);}
 static ULONG WINAPI Decrement(LPLONG p)
 {return InterlockedDecrement(p);}
 typedef CComAutoCriticalSection AutoCriticalSection;
 typedef CComCriticalSection CriticalSection;
 typedef CComMultiThreadModelNoCS ThreadModelNoCS;
};

class CComSingleThreadModel
{
public:
 static ULONG WINAPI Increment(LPLONG p) {return ++(*p);}
 static ULONG WINAPI Decrement(LPLONG p) {return --(*p);}
 typedef CComFakeCriticalSection AutoCriticalSection;
 typedef CComFakeCriticalSection CriticalSection;
 typedef CComSingleThreadModel ThreadModelNoCS;
};
Notice that each of these classes exports two static functions—Increment and Decrement—and various
aliases for critical sections.

CComMultiThreadModel and CComMultiThreadModelNoCS both implement Increment and Decrement using
the thread-safe Win32 InterlockedIncrement and InterlockedDecrement functions.
CComSingleThreadModel implements Increment and Decrement using the more conventional ++ and --
operators.

In addition to implementing incrementing and decrementing differently, the three threading models also
manage critical sections differently. ATL provides wrappers for two critical sections—a CComCriticalSection
(which is a plain wrapper around the Win32 critical section API) and CComAutoCriticalSection (which is the
same as CComCriticalSection with the addition of automatic initialization and cleanup of critical sections).
ATL also defines a "fake" critical section class that has the same binary signature as the other critical
section classes but doesn't do anything. As you can see from the class definitions, CComMultiThreadModel
uses real critical sections while CComMultiThreadModelNoCS and CComSingleThreadModel use the fake no-
op critical sections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

op critical sections.

So now the minimal ATL class definition makes a bit more sense. CComObjectRootEx takes a thread model
class whenever you define it. CAtlSpaceship is defined using the CComSingleThreadModel class, so it uses
the CComSingleThreadModel methods for incrementing and decrementing as well as the fake no-op critical
sections. Thus CAtlSpaceship uses the most efficient behavior since it doesn't need to worry about
protecting data. However, you're not stuck with that model. If you want to make CAtlSpaceship safe for
any threading environment, for example, simply redefine CAtlSpaceship to derive from CComObjectRootEx
using CComMultiThreadModel as the template parameter. AddRef and Release calls are automatically
mapped to the correct Increment and Decrement functions.

ATL and QueryInterface

It looks as though ATL took a cue from MFC for implementing QueryInterface—ATL uses a lookup table just
like MFC's version. Take a look at the middle of CAtlSpaceship's definition—you'll see a construct based on
macros called the interface map. ATL's interface maps constitute its QueryInterface mechanism.

Clients use QueryInterface to arbitrarily widen the connection to an object. That is, when a client needs a
new interface, it calls QueryInterface through an existing interface. The object then looks at the name of
the requested interface and compares that name to all the interfaces implemented by the object. If the
object implements the interface, the object hands the interface back to the client. Otherwise,
QueryInterface returns an error indicating that no interface was found.

Traditional QueryInterface implementations usually consist of long if-then statements. For example, a
standard implementation of QueryInterface for a multiple-inheritance COM class might look like this:

class CAtlSpaceship: public IDispatch,
 IAtlSpaceship {
 HRESULT QueryInterface(RIID riid,
 void** ppv) {
 if(riid == IID_IDispatch)
 ppv = (IDispatch) this;
 else if(riid == IID_IAtlSpaceship ||
 riid == IID_IUnknown)
 *ppv = (IAtlSpaceship *) this;
 else {
 *ppv = 0;
 return E_NOINTERFACE;
 }

 ((IUnknown*)(*ppv))->AddRef();
 return NOERROR;
 }
 // AddRef, Release, and other functions
};
As you'll see in a moment, ATL uses a lookup table instead of this conventional if-then statement.

ATL's lookup table begins with a macro named BEGIN_COM_MAP. The listing below shows the full definition
of BEGIN_COM_MAP.

#define BEGIN_COM_MAP(x) public:
 typedef x _ComMapClass;
 static HRESULT WINAPI _Cache(void* pv,
 REFIID iid,
 void** ppvObject,
 DWORD dw) {
 _ComMapClass* p = (_ComMapClass*)pv;
 p->Lock();
 HRESULT hRes =
 CComObjectRootBase::_Cache(pv,
 iid,
 ppvObject,
 dw);
 p->Unlock();
 return hRes;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 IUnknown* GetRawUnknown() {
 ATLASSERT(_GetEntries()[0].pFunc ==
 _ATL_SIMPLEMAPENTRY);
 return (IUnknown*)((int)this+_GetEntries()->dw);
 }
 _ATL_DECLARE_GET_UNKNOWN(x)
 HRESULT _InternalQueryInterface(REFIID iid,
 void** ppvObject) {
 return InternalQueryInterface(this,
 _GetEntries(),
 iid,
 ppvObject);
 }
 const static _ATL_INTMAP_ENTRY* WINAPI _GetEntries() {
 static const _ATL_INTMAP_ENTRY _entries[] = {
 DEBUG_QI_ENTRY(x)
 .
 .
 .
 #define END_COM_MAP() {NULL, 0, 0}};\
 return _entries;}
Each class that uses ATL for implementing IUnknown specifies an interface map to provide to
InternalQueryInterface. ATL's interface maps consist of structures containing interface ID
(GUID)/DWORD/function pointer tuples. The following listing shows the type named _ATL_INTMAP_ENTRY
that contains these tuples.

struct _ATL_INTMAP_ENTRY {
 const IID* piid;
 DWORD dw;
 _ATL_CREATORARGFUNC* pFunc;
};
The first member is the interface ID (a GUID), and the second member indicates what action to take when
the interface is queried. There are three ways to interpret the third member. If pFunc is equal to the
constant _ATL_SIMPLEMAPENTRY (the value 1), dw is an offset into the object. If pFunc is non-null but not
equal to 1, pFunc indicates a function to be called when the interface is queried. If pFunc is NULL, dw
indicates the end of the QueryInterface lookup table.

Notice that CAtlSpaceship uses COM_INTERFACE_ENTRY. This is the interface map entry for regular
interfaces. Here's the raw macro:

#define offsetofclass(base, derived)
((DWORD)(static_cast<base*>((derived*)8))-8)

#define COM_INTERFACE_ENTRY(x)\
 {&_ATL_IIDOF(x), \
 offsetofclass(x, _ComMapClass), \
 _ATL_SIMPLEMAPENTRY}
COM_INTERFACE_ENTRY fills the _ATL_INTMAP_ENTRY structure with the interface's GUID. In addition,
notice how offsetofclass casts the this pointer to the right kind of interface and fills the dw member with
that value. Finally, COM_INTERFACE_ENTRY fills the last field with _ATL_SIMPLEMAPENTRY to indicate that
dw points to an offset into the class.

For example, the interface map for CAtlSpaceship looks like this after the preprocessor is done with it:

const static _ATL_INTMAP_ENTRY* _
_stdcall _GetEntries() {
 static const _ATL_INTMAP_ENTRY _entries[] = {
 {&IID_IAtlSpaceship,
 ((DWORD)(static_cast< IAtlSpaceship*>((_ComMapClass*)8))-8),
 ((_ATL_CREATORARGFUNC*)1)},
 {&IID_IDispatch,
 ((DWORD)(static_cast<IDispatch*>((_ComMapClass*)8))-8),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ((DWORD)(static_cast<IDispatch*>((_ComMapClass*)8))-8),
 ((_ATL_CREATORARGFUNC*)1)},
 {0, 0, 0}
 };
 return _entries;
}
Right now, the CAtlSpaceship class supports two interfaces—IAtlSpaceship and IDispatch, so there are only
two entries in the map.

CComObjectRootEx's implementation of InternalQueryInterface uses the _GetEntries function as the
second parameter. CComObjectRootEx::InternalQueryInterface uses a global ATL function named
AtlInternalQueryInterface to look up the interface in the map. AtlInternalQueryInterface simply walks
through the map trying to find the interface.

In addition to COM_INTERFACE_ENTRY, ATL includes 16 other macros for implementing composition
techniques ranging from tear-off interfaces to COM aggregation. Now you'll see what it takes to beef up
the IAtlSpaceship interface and add those two other interfaces, IMotion and IVisual. You'll also learn about
the strange COM beast known as a dual interface.

Making the Spaceship Go

Now that you've got some ATL code staring you in the face, what can you do with it? This is COM, so the
place to start is in the IDL file. Again, if you're a seasoned C++ developer, this is a new aspect of software
development you're probably not used to. Remember that these days, software distribution and integration
are becoming very important. You've been able to get away with hacking out C++ classes and throwing
them into a project together because you (as a developer) know the entire picture. However, component
technologies (like COM) change that. You as a developer no longer know the entire picture. Often you have
only a component—you don't have the source code for the component. The only way to know how to talk
to a component is through the interfaces it exposes.

Keep in mind that modern software developers use many different tools—not just C++. You've got Visual
Basic developers, Java developers, Delphi developers, and C developers. COM is all about making the
edges line up so that software pieces created by these various components can all integrate smoothly
when they come together. In addition, distributing software remotely (either out-of-process on the same
machine or even to a different machine) requires some sort of inter-process communication. That's why
there's Interface Definition Language (IDL). Here's the default IDL file created by the ATL wizards with the
new spaceship class:

import "oaidl.idl";
import "ocidl.idl";
 [
 object,
 uuid(A9D750E1-51A1-11D1-8CAA-FD10872CC837),
 dual,
 helpstring("IAtlSpaceship Interface"),
 pointer_default(unique)
]
 interface IAtlSpaceship : IDispatch
 {
 };

[
 uuid(A0736061-50DF-11D1-8CAA-FD10872CC837),
 version(1.0),
 helpstring("spaceshipsvr 1.0 Type Library")
]
library SPACESHIPSVRLib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 [
 uuid(A9D750E2-51A1-11D1-8CAA-FD10872CC837),
 helpstring("AtlSpaceship Class")
]
 coclass AtlSpaceship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 coclass AtlSpaceship
 {
 [default] interface IAtlSpaceship;
 };
};
The key concept involved here is that IDL is a purely declarative language. This language defines how
other clients will talk to an object. Remember—you'll eventually run this code through the MIDL compiler to
get a pure abstract base class (useful for C++ clients) and a type library (useful for Visual Basic and Java
clients as well as others). If you understand plain C code, you're well on your way to understanding IDL.
You might think of IDL as C with footnotes. The syntax of IDL dictates that attributes will always precede
what they describe. For example, attributes precede items such as interface declarations, library
declarations, and method parameters.

If you look at the IDL file, you'll notice that it begins by importing oaidl.idl and ocidl.idl. Importing these
files is somewhat akin to including windows.h inside one of your C or C++ files. These IDL files include
definitions for all of the basic COM infrastructures (including definitions for IUnknown and IDispatch).

An open square bracket ([) follows the import statement. In IDL, square brackets always enclose
attributes. The first element described in this IDL file is the IAtlSpaceship interface. However, before you
can describe the interface, you need to apply some attributes to it. For example, it needs a name (a
GUID), and you need to tell the MIDL compiler that this interface is COM-oriented rather than being used
for standard RPC and that this is a dual interface (more on dual interfaces shortly). Next comes the actual
interface itself. Notice how it appears very much like a normal C structure.

Once the interfaces are described in IDL, it is often useful to collect this information into a type library,
which is what the next section of the IDL file does. Notice the type library section also begins with an open
square bracket, designating that attributes are to follow. As always, the type library is a discrete "thing" in
COM and as such requires a name (GUID). The library statement tells the MIDL compiler that this library
includes a COM class named AtlSpaceship and that clients of this class can acquire the IAtlSpaceship
interface.

Adding Methods to an Interface

Right now the IAtlSpaceship interface is pretty sparse. It looks like it could use a method or two. Let's add
one. Notice that Visual C++ now extends ClassView to include COM interfaces. (You can tell they're COM
interfaces because of the little lollipop next to the symbol.) Notice also that CAtlSpaceship de- rives from
something named IAtlSpaceship. IAtlSpaceship is, of course, a COM interface. Double-clicking on
IAtlSpaceship in the ClassView brings that specific section of the IDL into the editor window, as shown in
Figure 29-4.

Figure 29-4. Interfaces in ClassView.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-4. Interfaces in ClassView.

At this point, you could begin typing the COM interface into the IDL file. If you add functions and methods
this way (straight into the IDL file), you'll have to touch the AtlSpaceship.h and AtlSpaceship.cpp files and
insert the methods by hand. A more effective way to add functions to the interface is through the
ClassView. To edit the IDL through the ClassView, simply right-click the mouse on the interface within
ClassView. Two items that appear in the context menu are Add Method and Add Property. Let's add a
method named CallStarFleet. Figure 29-5 shows the dialog box that appears when adding a method.

To add a method, simply type the name of the method into the Method Name text box. Then type the
method parameters into the Parameters text box. Here's where it helps to understand a little bit about
IDL.

Figure 29-5. Adding a method to an interface.

Remember that IDL's purpose is to provide completely unambiguous information about how methods can
be invoked. In the standard C++ world, you could often get away with ambiguities like open-ended arrays
because the caller and the callee shared the same stack frame—there was always a lot of wiggle room
available. Now that method calls might eventually go over the wire, it's important to tell the remoting layer
exactly what to expect when it encounters a COM interface. This is done by applying attributes to the
method parameters (more square brackets).

The method call shown in Figure 29-5 (CallStartFleet) has two parameters in its list—a floating point
number indicating the stardate and a BSTR indicating who received the communication. Notice that the
method definition spells out the parameter direction. The stardate is passed into the method call,
designated by the [in] attribute. A BSTR identifying the recipient is passed back as a pointer to a BSTR.
The [out] attribute indicates the direction of the parameter is from the object back to the client. The
[retval] attribute indicates that you can assign the result of this method to a variable in higher languages
supporting this feature.

Dual Interfaces

If you read through Chapter 25, you had a chance to see the IDispatch interface. IDispatch makes it
possible to expose functionality (at the binary level) to environments such as VBScript that don't have a
clue about vtables. For IDispatch to work, the client has to go through a lot of machinations before it can
call Invoke. The client first has to acquire the invocation tokens. Then the client has to set up the VARIANT
arguments. On the object side, the object has to decode all those VARIANT parameters, make sure they're
correct, put them on some sort of stack frame, and then make the function call. As you can imagine, all
this work is complex and time-consuming. If you're writing a COM object and you expect some of your
clients to use scripting languages and other clients to use languages like C++, you've got a dilemma.
You've got to include IDispatch or you lock your scripting language clients out. If you provide only
IDispatch, you make accessing your object from C++ very inconvenient. Of course, you can provide access
through both IDispatch and a custom interface, but that involves a lot of bookkeeping work. Dual
interfaces evolved to handle this problem.

A dual interface is simply IDispatch with functions pasted onto the end. For example, the IMotion interface
described below is a valid dual interface:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface IMotion : public IDispatch {
 virtual HRESULT Fly() = 0;
 virtual HRESULT GetPosition() = 0;
};
Because IMotion derives from IDispatch, the first seven functions of IMotion are those of IDispatch. Clients
who understand only IDispatch (VBScript for instance) look at the interface as just another version of
IDispatch and feed DISPIDs to the Invoke function in the hopes of invoking a function. Clients who
understand vtable-style custom interfaces look at the entire interface, ignore the middle four functions (the
IDispatch functions), and concentrate on the first three functions (IUnknown) and the last three functions
(the ones that represent the interface's core functions). Figure 29-6 shows the vtable layout of IMotion.

Most raw C++ implementations load the type library right away and delegate to ITypeInfo to perform the
nasty task of implementing Invoke and GetIDsOfNames. To get an idea of how this works, see Kraig
Brockschmidt's book Inside OLE, 2d. ed. (Microsoft Press, 1995) or Dale Rogerson's book Inside COM
(Microsoft Press, 1997).

Figure 29-6.

The layout of a dual interface.

ATL and IDispatch

ATL's implementation of IDispatch delegates to the type library. ATL's implementation of IDispatch lives in
the class IDispatchImpl. Objects that want to implement a dual interface include the IDispatchImpl
template in the inheritance list like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IVisual, &IID_IVisual,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
In addition to including the IDispatchImpl template class in the inheritance list, the object includes entries
for the dual interface and for IDispatch in the interface map so that QueryInterface works properly:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END_COM_MAP()
As you can see, the IDispatchImpl template class arguments include the dual interface itself, the GUID for
the interface, and the GUID representing the type library holding all the information about the interface. In
addition to these template arguments, the IDispatchImpl class has some optional parameters not
illustrated in Figure 29-6. The template parameter list also includes room for a major and minor version of
the type library. Finally, the last template parameter is a class for managing the type information. ATL
provides a default class named CComTypeInfoHolder.

In most raw C++ implementations of IDispatch, the class calls LoadTypeLib and
ITypeLib::GetTypeInfoOfGuid in the constructor and holds on to the ITypeInfo pointer for the life of the
class. ATL's implementation does things a little differently by using the CComTypeInfoHolder class to help
manage the ITypeInfo pointer. CComTypeInfoHolder maintains an ITypeInfo pointer as a data member and
wraps the critical IDispatch-related functions GetIDsOfNames and Invoke.

Clients acquire the dual interface by calling QueryInterface for IID_IAtlSpaceship. (The client can also get
this interface by calling QueryInterface for IDispatch.) If the client calls CallStartFleet on the interface, the
client accesses those functions directly (as for any other COM interface).

When a client calls IDispatch::Invoke, the call lands inside IDispatchImpl's Invoke function as you'd
expect. From there, IDispatchImpl::Invoke delegates to the CComTypeInfoHolder class to perform the
invocation, CComTypeInfoHolder's Invoke. The CComTypeInfoHolder class doesn't call LoadTypeLib until
an actual call to Invoke or GetIDsOfNames. CComTypeInfoHolder has a member function named GetTI that
consults the Registry for the type information (using the GUID and any major/minor version numbers
passed in as a template parameter). Then CComTypeInfoHolder calls ITypeLib::GetTypeInfo to get the
information about the interface. At that point, the type information holder delegates to the type
information pointer. IDispatchImpl implements IDispatch::GetIDsOfNames in the same manner.

The IMotion and IVisual Interfaces

To get this COM class up to snuff with the other versions (the raw C++ version and the MFC version
described in Chapter 24), you need to add the IMotion and IVisible interfaces to the project and to the
class. Unfortunately, at the present time the only way to get this to happen is by typing the interfaces in
by hand (the ATL AppWizard gives you only one interface by default). Open the IDL file and position the
cursor near the top (somewhere after the #import statements but before the library statement), and start
typing interface definitions as described in the following paragraph.

Once you get the hang of IDL, your first instinct when describing an interface should be to insert an open
square bracket. Remember that in IDL, distinct items get attributes. One of the most important attributes
for an interface is the name, or the GUID. In addition, at the very least the interface has to have the object
attribute to tell the MIDL compiler you're dealing with COM at this point (as opposed to regular RPC). You
also want these interfaces to be dual interfaces. The keyword "dual" in the interface attributes indicates
this and inserts certain Registry entries to get the universal marshaling working correctly. After the
attributes are closed off with a closing square bracket, the interface keyword kicks in to describe the
interface. You'll make IMotion a dual interface and IVisual a plain custom interface to illustrate how the two
different types of interfaces are attached to the CSpaceship class. Here are the IMotion and IVisible
interfaces described in IDL:

 [
 object,
 uuid(97B5C101-5299-11d1-8CAA-FD10872CC837),
 dual,
 helpstring("IMotion interface")
]
 interface IMotion : IDispatch
 {
 HRESULT Fly();
 HRESULT GetPosition([out,retval]long* nPosition);
 };

 [
 object,
 uuid(56F58464-52A4-11d1-8CAA-FD10872CC837),
 helpstring("IVisual interface")
]
 interface IVisual : IUnknown
 {
 HRESULT Display();
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 };
Once the interfaces are described in IDL, you run the IDL through the MIDL compiler again. The MIDL
compiler spits out a new copy of spaceshipsvr.h with the pure abstract base classes for IMotion and
IVisual.

Now you need to add these interfaces to the CSpaceship class. There are two steps here. The first step is
to create the interface part of the COM class's identity. Let's do the IMotion interface first. Adding the
IMotion interface to CSpaceship is easy. Just use the IDispatchImpl template to provide an implementation
of a dual interface like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
The second step involves beefing up the interface map so the client can acquire the IMotion interface.
However, having two dual interfaces in a single COM class brings up an interesting issue. When a client
calls QueryInterface for IMotion, the client should definitely get IMotion. However, when the client calls
QueryInterface for IDispatch, which version of IDispatch should the client get—IAtlSpaceship's dispatch
interface or IMotion's dispatch interface?

Multiple Dual Interfaces

Remember that all dual interfaces begin with the seven functions of IDispatch. A problem occurs whenever
the client calls QueryInterface for IID_IDispatch. As a developer, you need to choose which version of
IDispatch to pass out.

The interface map is where the QueryInterface for IID_IDispatch is specified. ATL has a specific macro for
handling the dual interface situation. First consider the interface map for CAtlSpaceship so far:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()
When the client calls QueryInterface, ATL rips through the table trying to match the requested IID to one
in the table. The interface map above handles two interfaces: IAtlSpaceship and IDispatch. If you want to
add another dual interface to the CAtlSpaceship class, you need a different macro.

The macro handling multiple dispatch interfaces in an ATL-based COM class is named
COM_INTERFACE_ENTRY2. To get QueryInterface working correctly, all you need to do is decide which
version of IDispatch the client should get when asking for IDispatch, like this:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IMotion)
 COM_INTERFACE_ENTRY2(IDispatch, IAtlSpaceship)
END_COM_MAP()
In this case, a client asking for IDispatch gets a pointer to IAtlSpaceship (whose first seven functions
include the IDispatch functions).

Adding a nondual interface to an ATL-based COM class is even easier. Just add the interface to the
inheritance list like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>,
 public IVisual
{
.
.
.
};
Then add an interface map entry like this:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IMotion)
 COM_INTERFACE_ENTRY2(IDispatch, IAtlSpaceship)
 COM_INTERFACE_ENTRY(IVisual)
END_COM_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
There are a couple of key points in this chapter to remember. COM is a binary object model. Clients and
objects agree on a binary layout (the interface). Once both parties agree on the layout, they talk together
via the interface. The client is not at all concerned about how that interface is actually wired up. As long as
the functions work as advertised, the client is happy. There are a number of ways to hook up COM
interfaces, including multiply inheriting a single C++ class from several interfaces, using nested classes, or
using a framework such as ATL.

ATL is Microsoft's framework for assembling small COM classes. ATL has two sides—some smart pointers to
help with client-side coding and a complete framework for implementing COM classes. ATL implements
IUnknown, IDispatch, and IClassFactory in templates provided through the library. In addition, ATL
includes a wizard for helping you get started with a COM server and a wizard for inserting COM classes into
your project.

While ATL does a lot for you, it doesn't completely excuse you from learning the basics of how COM works.
In fact, you'll be able to use ATL a lot more efficiently once you understand COM. In the next chapter, we'll
take a look at how to use ATL to write ActiveX controls effectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 30
ATL and ActiveX Controls
If you've finished reading about COM and ATL and still wonder how COM fits into your day-to-day
programming activities, you're not alone. Figuring out how to use COM in real life isn't always obvious at
first glance. After all, a whole lot of extra code must be typed in just to get a COM object up and running.
However, there's a very real application of COM right under your nose —ActiveX Controls. ActiveX controls
are small gadgets (usually UI-oriented) written around the Component Object Model.

In Chapter 29, you examined COM classes created by using ATL. In this chapter, you'll learn how to write a
certain kind of COM class—an ActiveX control. You had a chance to work with ActiveX Controls from the
client side in Chapter 8. Now it's time to write your own.

There are several steps involved in creating an ActiveX control using ATL, including:

Deciding what to draw

Developing incoming interfaces for the control

Developing outgoing interfaces (events) for the control

Implementing a persistence mechanism for the control

Providing a user interface for manipulating the control's properties

This chapter covers all these steps. Soon you'll be able to use ATL to create ActiveX controls that you (or
other developers) can use within other programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls
Even today, there's some confusion as to what really constitutes an ActiveX control. In 1994, Microsoft
tacked some new interfaces onto its Object Linking and Embedding protocol, packaged them within DLLs,
and called them OLE Controls. Originally, OLE Controls implemented nearly the entire OLE Document
embedding protocol. In addition, OLE Controls supported the following:

Dynamic invocation (Automation)

Property pages (so the user could modify the control's properties)

Outbound callback interfaces (event sets)

Connections (a standard way to for clients and controls to hook up the event callbacks)

When the Internet became a predominant factor in Microsoft's marketing plans, Microsoft announced its
intention to plant ActiveX Controls on Web pages. At that point, the size of these components became an
issue. Microsoft took its OLE Control specification, changed the name from OLE Controls to ActiveX
Controls, and stated that all the features listed above were optional. This means that under the new
ActiveX Control definition, a control's only requirement is that it be based on COM and that it implement
IUnknown. Of course, for a control to be useful it really needs to implement most of the features listed
above. So in the end, ActiveX Controls and OLE Controls refer to more or less the same animal.

Developers have been able to use MFC to create ActiveX controls since mid-1994. However, one of the
downsides of using MFC to create ActiveX controls is that the controls become bound to MFC. Sometimes
you want your controls to be smaller or to work even if the end user doesn't have the MFC DLLs on his or
her system. In addition, using MFC to create ActiveX controls forces you into making certain design
decisions. For example, if you decide to use MFC to write an ActiveX control, you more or less lock yourself
out of using dual interfaces (unless you feel like writing a lot of extra code). Using MFC to create ActiveX
controls also means the control and its property pages need to use IDispatch to communicate between
themselves.

To avoid the problems described so far, developers can now use ATL to create ActiveX controls. ATL now
includes the facilities to create full-fledged ActiveX controls, complete with every feature an ActiveX control
should have. These features include incoming interfaces, persistent properties, property pages, and
connection points. If you've ever written an ActiveX control using MFC, you'll see how much more flexible
using ATL can be.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using ATL to Write a Control
Although creating an ActiveX control using ATL is actually a pretty straightforward process, using ATL ends
up being a bit more burdensome than using MFC. That's because ATL doesn't include all of MFC's
amenities. For example, ATL doesn't include device context wrappers. When you draw on a device context,
you need to use the raw device context handle. In addition, ClassWizard doesn't understand ATL-based
source code, so when you want your control to handle messages, you end up using the "TypingWizard".
(That is, you end up typing the message maps in by hand.)

Despite these issues, creating an ActiveX control using ATL is a whole lot easier than creating one from
scratch. Also, using ATL gives you a certain amount of flexibility you don't get when you use MFC. For
example, while adding dual interfaces to your control is a tedious process with MFC, you get them for free
when you use ATL. The ATL COM Object Wizard also makes adding more COM classes (even noncontrol
classes) to your project very easy, while adding new controls to an MFC-based DLL is a bit more difficult.

For this chapter's example, we'll represent a small pair of dice as an ATL-based ActiveX control. The dice
control will illustrate the most important facets of ActiveX Controls, including control rendering, incoming
interfaces, properties, property pages, and events.

Creating the Control

As always, the easiest way to create a COM server in ATL is to use the ATL COM Object Wizard. To use the
ATL COM Object Wizard, select New from the File menu. Select the Project tab in the New dialog, and
highlight the ATL COM AppWizard item. Name the project something clever like ATLDiceSvr. As you step
through AppWizard, just leave the defaults checked. Doing so will ensure that the server you create is a
DLL.

Once the DLL server has been created, perform the following steps:

1. Select New ATL Object from the Insert menu to insert a new ATL object into the project.

2. In the ATL Object Wizard, select Controls from the Category list and then select Full Control from
the Objects list.

3. Click Next to open the ATL Object Wizard Properties dialog. In the Short Name text box on the
Names tab, give the control some clever name (like ATLDiceOb). The dialog box should look similar
to Figure 30-1.

Figure 30-1. The ATL Object Wizard Properties dialog box.

4. Select the Attributes tab. Here's where you configure the control. For example, you can
Designate the threading model for the control

Decide whether the main interface is a dual or custom interface

Indicate whether your control supports aggregation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Choose whether you want to use COM exceptions and connection points in your control

5. To make your life easier for now, select Support Connection Points. (This will save you some typing
later on.) Leave everything else as the default value. Figure 30-2 shows what the Attributes tab on
the ATL Object Wizard Properties dialog box looks like now.

6. Select the Miscellaneous tab. Here you have the option of applying some miscellaneous traits to
your control. For example, you can give the control behaviors based on regular Microsoft Windows
controls such as buttons and edit controls. You might also select other options for your control, such
as having your control appear invisible at runtime or giving your control an opaque background.
Figure 30-3 shows the available options.

Figure 30-2. The Attributes tab on the ATL Object Wizard Properties dialog box.

Figure 30-3. The Miscellaneous control properties tab on the ATL Object Wizard Properties dialog
box.

7. Finally, select the Stock Properties tab if you want to give your control some stock properties. Stock
properties are those properties that you might expect any control to have, including background
colors, border colors, foreground colors, and a caption. Figure 30-4 shows the Stock Properties tab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-4. The Stock Properties tab on the ATL Object Wizard Properties dialog box.

8. When you've finished selecting the attributes for the control, click OK.

The ATL Object Wizard adds a header file and a source file defining the new control. In addition, the
ATL Object Wizard sets aside space in the IDL file to hold the control's main interface and assigns a
GUID to the interface. Here's the C++ definition of the control produced by the ATL Object Wizard:

class ATL_NO_VTABLE CATLDiceObjj :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IDispatchImpl<IATLDieceObj,
 &IID_IATLDieceObj,
 &LIBID_ATLDICESVRLib>,
 public CComControl<CATLDiceObj>,
 public IPersistStreamInitImpl<CATLDiceObj>,
 public IOleControlImpl<CATLDiceObj>,
 public IOleObjectImpl<CATLDiceObj>,
 public IOleInPlaceActiveObjectImpl<CATLDiceObj>,
 public IViewObjectExImpl<CATLDiceObj>,
 public IOleInPlaceObjectWindowlessImpl<CATLDiceObj>,
 public IConnectionPointContainerImpl<CATLDiceObj>,
 public IPersistStorageImpl<CATLDiceObj>,
 public ISpecifyPropertyPagesImpl<CATLDiceObj>,
 public IQuickActivateImpl<CATLDiceObj>,
 public IDataObjectImpl<CATLDiceObj>,
 public IProvideClassInfo2Impl<&CLSID_ATLDiceOb,
 &DIID__DDiceEvents,
 &LIBID_ATLDICESVRLib>,
 public IPropertyNotifySinkCP<CATLDiceObj>,
 public CComCoClass<CATLDiceObj, &CLSID_ATLDiceOb>
{
.
.
.
};
That's a pretty long inheritance list. You've already seen the template implementations of IUnknown
and support for class objects. They exist in CComObjectRootEx and CComCoClass. You've also seen
how ATL implements IDispatch within the IDispatchImpl template. However, for a basic control
there are about 11 more interfaces required to make everything work. These in- terfaces can be
categorized into several areas as shown in the following table.

Category Interface

Interfaces for handling self-description IProvideClassInfo2

Interfaces for handling persistence IPersistStreamInit
IPersistStorage

Interfaces for handling activation IQuickActivate (and some of
IOleObject)

Interfaces from the original OLE Control specification IOleControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interfaces from the OLE Document specification IOleObject

Interfaces for rendering IOleInPlaceActiveObject
IViewObject
IOleInPlaceObjectWindowless
IDataObject

Interfaces for helping the container manage property
pages

ISpecifyPropertyPages

Interfaces for handling connections IPropertyNotifySinkCP
IConnectionPointContainer

These are by and large boilerplate interfaces—ones that a COM class must
implement to qualify as an ActiveX control. Most of the implementations are
standard and vary only slightly (if at all) from one control to the next. The
beauty of ATL is that it implements this standard behavior and gives you
programmatic hooks where you can plug in your custom code. That way, you
don't have to burn your eyes out by looking directly at the COM code. You can
live a full and rich life without understanding exactly how these interfaces work.
However, if you want to know more about the internal workings of ActiveX
Controls, be sure to check out these books: Inside OLE by Kraig Brockschmidt
(Microsoft Press, 1995), ActiveX Controls Inside Out by Adam Denning (Microsoft
Press, 1997), and Designing and Using ActiveX Controls by Tom Armstrong (IDG
Books Worldwide, 1997).

ATL's Control Architecture

From the highest level, an ActiveX control has two aspects to it: its external state (what it renders
on the screen) and its internal state (its properties). Once an ActiveX control is hosted by some sort
of container (such as a Microsoft Visual Basic form or an MFC dialog box), it maintains a symbiotic
relationship with that container. The client code talks to the control through incoming COM
interfaces such as IDispatch and OLE Document interfaces like IOleObject and IDataObject.

The control also has the opportunity to talk back to the client. One method of implementing this
two-way communication is for the client to implement an IDispatch interface to represent the
control's event set. The container maintains a set of properties called ambient properties that the
control can use to find out about its host. For instance, a control can camouflage itself within the
container because the container makes the information stored in these properties available through
a specifically named IDispatch interface. The container can implement an interface named
IPropertyNotifySink to find out when the properties within a control might change. Finally, the
container implements IOleClientSite and IOleControlSite as part of the control-embedding protocol.

The interfaces listed allow the client and the object to exhibit the behaviors expected of an ActiveX
control. We'll tackle some of these interfaces as we go along. The best place to begin looking at
ATL-based controls is the CComControl class and its base classes.

CComControl

You can find the definition of CComControl in Microsoft's ATLCTL.H file under ATL's Include
directory. CComControl is a template class that takes a single class parameter:

template <class T>
class ATL_NO_VTABLE CComControl : public CComControlBase,
 public CWindowImpl<T>
{
.
.
.
};
CComControl is a rather lightweight class that does little by itself—it derives functionality from
CComControlBase and CWindowImpl. CComControl expects the template parameter to be an ATL-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CComControlBase and CWindowImpl. CComControl expects the template parameter to be an ATL-
based COM object derived from CComObjectRootEx. CComControl requires the template parameter
for various reasons, the primary reason being that from time to time the control class uses the
template parameter to call back to the control's InternalQueryInterface.

CComControl implements several functions that make it easy for the control to call back to the
client. For example, CComControl implements a function named FireOnRequestEdit to give controls
the ability to tell the client that a specified property is about to change. This function calls back to
the client through the client-implemented interface IPropertyNotifySink. FireOnRequestEdit notifies
all connected IPropertyNotifySink interfaces that the property specified by a certain DISPID is about
to change.

CComControl also implements the FireOnChanged function. FireOnChanged is very much like
FireOnRequestEdit in that it calls back to the client through the IPropertyNotifySink interface. This
function tells the clients of the control (all clients connected to the control through
IPropertyNotifySink) that a property specified by a certain DISPID has already changed.

In addition to mapping the IPropertyNotifySink interface to some more easily understood functions,
CComControl implements a function named ControlQueryInterface, which simply forwards on to the
control's IUnknown interface. (This is how you can get a control's IUnknown interface from inside
the control.) Finally, CComControl implements a function named CreateControlWindow. The default
behavior for this function is to call CWindowImpl::Create. (Notice that CComControl also derives
from CWindowImpl.) If you want to, you can override this function to do something other than
create a single window. For example, you might want to create multiple windows for your control.

Most of the real functionality for CComControl exists within those two other classes
—CComControlBase and CWindowImpl. Let's take a look at those classes now.

CComControlBase

CComControlBase is a much more substantial class than CComControl. To begin with,
CComControlBase maintains all the pointers used by the control to talk back to the client.
CComControlBase uses ATL's CComPtr smart pointer to include member variables that wrap the
following interfaces implemented for calling back to the client:

A wrapper for IOleInPlaceSite(m_spInPlaceSite)

An advise holder for the client's data advise sink (m_spDataAdviseHolder)

An OLE advise holder for the client's OLE advise sink (m_spOleAdviseHolder)

A wrapper for IOleClientSite (m_spClientSite)

A wrapper for IAdviseSink (m_spAdviseSink)

CComControlBase also uses ATL's CComDispatchDriver to wrap the client's dispatch interface for
exposing its ambient properties.

CComControlBase is also where you'll find the member variables that contain the control's sizing
and positioning information: m_sizeNatural, m_sizeExtent, and m_rcPos. The other important data
member within CComControlBase is the control's window handle. Most ActiveX controls are UI
gadgets and as such maintain a window. CWindowImpl and CWindowImplBase handle the
windowing aspects of an ATL-based ActiveX control.

CWindowImpl and CWindowImplBase

CWindowImpl derives from CWindowImplBase, which in turn derives from CWindow and
CMessageMap. As a template class, CWindowImpl takes a single parameter upon instantiation. The
template parameter is the control being created. CWindowImpl needs the control type because
CWindowImpl calls back to the control during window creation. Let's take a closer look at how ATL
handles windowing.

ATL Windowing

Just as CComControl is relatively lightweight (most work happens in CComControlBase),
CWindowImpl is also relatively lightweight. CWindowImpl more or less handles only window
creation. In fact, that's the only function explicitly defined by CWindowImpl. CWindowImpl::Create
creates a new window based on the window class information managed by a class named
_ATLWNDCLASSINFO. There's an ASCII character version and a wide character version.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

struct _ATL_WNDCLASSINFOA
{
 WNDCLASSEXA m_wc;
 LPCSTR m_lpszOrigName;
 WNDPROC pWndProc;
 LPCSTR m_lpszCursorID;
 BOOL m_bSystemCursor;
 ATOM m_atom;
 CHAR m_szAutoName[13];
 ATOM Register(WNDPROC* p)
 {
 return AtlModuleRegisterWndClassInfoA(&_Module, this, p);
 }
};
struct _ATL_WNDCLASSINFOW
{
 WNDCLASSEXW m_wc;
 LPCWSTR m_lpszOrigName;
 WNDPROC pWndProc;
 LPCWSTR m_lpszCursorID;
 BOOL m_bSystemCursor;
 ATOM m_atom;
 WCHAR m_szAutoName[13];
 ATOM Register(WNDPROC* p)
 {
 return AtlModuleRegisterWndClassInfoW(&_Module, this, p);
 }
};
Then ATL uses typedefs to alias this structure to a single class named CWndClassInfo:

typedef _ATL_WNDCLASSINFOA CWndClassInfoA;
typedef _ATL_WNDCLASSINFOW CWndClassInfoW;
#ifdef UNICODE
#define CWndClassInfo CWndClassInfoW
#else
#define CWndClassInfo CWndClassInfoA
#endif
CWindowImpl uses a macro named DECLARE_WND_CLASS to add window class information to a
CWindowImpl-derived class. DECLARE_WND_CLASS also adds a function named GetWndClassInfo.
Here's the DECLARE_WND_CLASS macro:

#define DECLARE_WND_CLASS(WndClassName) \
static CWndClassInfo& GetWndClassInfo() \
{ \
 static CWndClassInfo wc = \
 { \
 { sizeof(WNDCLASSEX), CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS,\
 StartWindowProc, \
 0, 0, NULL, NULL, NULL, (HBRUSH)(COLOR_WINDOW + 1), \
 NULL, WndClassName, NULL }, \
 NULL, NULL, IDC_ARROW, TRUE, 0, _T("") \
 }; \
 return wc; \
}
This macro expands to provide a CWndClassInfo structure for the control class. Because
CWndClassInfo manages the information for a single window class, each window created through a
specific instance of CWindowImpl will be based on the same window class.

CWindowImpl derives from CWindowImplBaseT. CWindowImplBaseT derives from
CWindowImplRoot, which is specialized around the CWindow class and the CControlWinTraits
classes like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

template <class TBase = CWindow,
 class TWinTraits = CControlWinTraits>
class ATL_NO_VTABLE CWindowImplBaseT :
 public CWindowImplRoot< TBase >
{
public:
.
.
.
};
CWindowImplRoot derives from CWindow (by default) and CMessageMap. CWindowImplBaseT
manages the window procedure of a CWindowImpl-derived class. CWindow is a lightweight class
that wraps window handles in the same way (but not as extensively) as MFC's CWnd class.
CMessageMap is a tiny class that defines a single pure virtual function named
ProcessWindowMessage. ATL-based message-mapping machinery assumes this function is
available, so ATL-based classes that want to use message maps need to derive from CMessageMap.
Let's take a quick look at ATL message maps.

ATL Message Maps

The root of ATL's message mapping machinery lies within the CMessageMap class. ATL-based
controls expose message maps by virtue of indirectly deriving from CWindowImplBase. In MFC, by
contrast, deriving from CCmdTarget enables message mapping. However, just as in MFC, it's not
enough to derive from a class that supports message maps. The message maps actually have to be
there—and those message maps are implemented via macros.

To implement a message map in an ATL-based control, use message map macros. First ATL's
BEGIN_MSG_MAP macro goes into the control class's header file. BEGIN_MSG_MAP marks the
beginning of the default message map. CWindowImpl::WindowProc uses this default message map
to process messages sent to the window. The message map directs messages either to the
appropriate handler function or to another message map. ATL defines another macro named
END_MSG_MAP to mark the end of a message map. Between BEGIN_MSG_MAP and
END_MSG_MAP lie some other macros for mapping window messages to member functions in the
control. For example, here's a typical message map you might find in an ATL-based control:

BEGIN_MSG_MAP(CAFullControl)
 CHAIN_MSG_MAP(CComControl<CAFullControl>)
 DEFAULT_REFLECTION_HANDLER()
 MESSAGE_HANDLER(WM_TIMER, OnTimer);
 MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButton);
END_MSG_MAP()
This message map delegates most of the message processing to the control through the
CHAIN_MSG_MAP macro and handles message reflection through the
DEFAULT_REFLECTION_HANDLER macro. The message map also handles two window messages
explicitly: WM_TIMER and WM_LBUTTONDOWN. These are standard window messages that are
mapped using the MESSAGE_HANDLER macro. The macros simply produce a table relating window
messages to member functions in the class. In addition to regular messages, message maps are
capable of handling other sorts of events. Here's a rundown of the kinds of macros that can go in a
message map.

Macro Description

MESSAGE_HANDLER Maps a Windows message to a handler function

MESSAGE_RANGE_HANDLER Maps a contiguous range of Windows messages to a handler
function

COMMAND_HANDLER Maps a WM_COMMAND message to a handler function,
based on the identifier and the notification code of the menu
item, control, or accelerator

COMMAND_ID_HANDLER Maps a WM_COMMAND message to a handler function,
based on the identifier of the menu item, control, or
accelerator

COMMAND_CODE_HANDLER Maps a WM_COMMAND message to a handler function,
based on the notification code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMMAND_RANGE_HANDLER Maps a contiguous range of WM_COMMAND messages to a
handler function, based on the identifier of the menu item,
control, or accelerator

NOTIFY_HANDLER Maps a WM_NOTIFY message to a handler function, based
on the notification code and the control identifier

NOTIFY_ID_HANDLER Maps a WM_NOTIFY message to a handler function, based
on the control identifier

NOTIFY_CODE_HANDLER Maps a WM_NOTIFY message to a handler function, based
on the notification code

NOTIFY_RANGE_HANDLER Maps a contiguous range of WM_NOTIFY messages to a
handler function, based on the control identifier

Handling messages within ATL works much the same as in MFC. ATL includes a single window
procedure through which messages are routed. Technically, you can build your controls effectively
without understanding everything about ATL's control architecture. However, this knowledge is
sometimes helpful as you develop a control, and it's even more useful when debugging a control.

Developing the Control

Once the control is inserted into the server, you need to add some code to make the control do
something. If you were to compile and load ATL's default control into a container, the results
wouldn't be particularly interesting. You'd simply see a blank rectangle with the string "ATL 3.0 :
ATLDiceOb." You'll want to add code to render the control, to represent the internal state of the
control, to respond to events, and to generate events to send back to the container.

Deciding What to Draw

A good place to start working on a control is on its drawing code—you get instant gratification that
way. This is a control that is visually represented by a couple of dice. The easiest way to render to
the dice control is to draw bitmaps representing each of the six possible dice sides and then show
the bitmaps on the screen. This implies that the dice control will maintain some variables to
represent its state. For example, the control needs to manage the bitmaps for representing the dice
as well as two numbers representing the first value shown by each die. Here is the code from
ATLDICEOBJ.H that represents the state of the dice:

 #define MAX_DIEFACES 6

 HBITMAP m_dieBitmaps[MAX_DIEFACES];
 unsigned short m_nFirstDieValue;
 unsigned short m_nSecondDieValue;
Before diving headfirst into the control's drawing code, you need to do a bit of preliminary work—
the bitmaps need to be loaded. Presumably each die rendered by the dice control will show any one
of six dice faces, so the control needs one bitmap for each face. Figure 30-5 shows what one of the
dice bitmaps looks like.

Figure 30-5. A bitmap for the dice control.

If you draw the bitmaps one at a time, they'll have sequential identifiers in the resource.h file.
Giving the bitmaps sequential identifiers will make them easier to load. Otherwise, you might need
to modify the resource.h file, which contains the following identifiers:

#define IDB_DICE1 207
#define IDB_DICE2 208
#define IDB_DICE3 209
#define IDB_DICE4 210
#define IDB_DICE5 211
#define IDB_DICE6 212

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#define IDB_DICE6 212
Loading bitmaps is fairly straightforward. Cycle through the bitmap array, and load the bitmap
resources. When they're stored in an array like this, grabbing the bitmap out of the array and
showing it is much easier than if you didn't use an array. Here is the function that loads the bitmaps
into the array:

BOOL CATLDiceObj::LoadBitmaps() {
 BOOL bSuccess = TRUE;

 for(int i=0; i<MAX_DIEFACES; i++) {
 DeleteObject(m_dieBitmaps[i]);
 m_dieBitmaps[i] = LoadBitmap(_Module.m_hInst,
 MAKEINTRESOURCE(IDB_DICE1+i));
 if(!m_dieBitmaps[i]) {
 ::MessageBox(NULL,
 "Failed to load bitmaps",
 NULL,
 MB_OK);
 bSuccess = FALSE;
 }
 }
 return bSuccess;
}
The best place to call LoadBitmaps is from within the control's constructor, as shown in the
following code. To simulate a random roll of the dice, set the control's state so that the first and
second die values are random numbers between 0 and 5 (these numbers will be used when the dice
control is drawn):

class CATLDiceObj : // big inheritance list {
 CATLDiceObj () {
 LoadBitmaps();
 srand((unsigned)time(NULL));
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 }
Once the bitmaps are loaded, you'll want to render them. The dice control should include a function
for showing each die face based on the current internal state of the dice. Here's where you first
encounter ATL's drawing machinery.

One of the most convenient things about ATL-based controls (and MFC-based controls) is that all
the drawing code happens in one place: within the control's OnDraw function. OnDraw is a virtual
function of COleControlBase. Here's OnDraw's signature:

virtual HRESULT OnDraw(ATL_DRAWINFO& di);

OnDraw takes a single parameter: a pointer to an ATL_DRAWINFO structure. Among other things,
the ATL_DRAWINFO structure contains a device context on which to render your control. Here's the
ATL_DRAWINFO structure:

struct ATL_DRAWINFO {
 UINT cbSize;
 DWORD dwDrawAspect;
 LONG lindex;
 DVTARGETDEVICE* ptd;
 HDC hicTargetDev;
 HDC hdcDraw;
 LPCRECTL prcBounds; //Rectangle in which to draw
 LPCRECTL prcWBounds; //WindowOrg and Ext if metafile
 BOOL bOptimize;
 BOOL bZoomed;
 BOOL bRectInHimetric;
 SIZEL ZoomNum; //ZoomX = ZoomNum.cx/ZoomNum.cy
 SIZEL ZoomDen;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};
As you can see, there's a lot more information here than a simple device context. While you can
count on the framework filling it out correctly for you, it's good to know where the information in
the structure comes from and how it fits into the picture.

ActiveX Controls are interesting because they are drawn in two contexts. The first and most obvious
context is when the control is active and it draws within the actual drawing space of the client. The
other, less-obvious context in which controls are drawn is during design time (as when an ActiveX
control resides in a Visual Basic form in design mode). In the first context, ActiveX Controls render
themselves to a live screen device context. In the second context, ActiveX Controls render
themselves to a metafile device context.

Many (though not all) ATL-based controls are composed of at least one window. So ActiveX Controls
need to render themselves during the WM_PAINT message. Once the control receives the
WM_PAINT message, the message routing architecture passes control to
CComControlBase::OnPaint. (Remember, CComControlBase is one of the control's base classes.)
CComControlBase::OnPaint performs several steps. The function begins by creating a painting
device context (using BeginPaint). Then OnPaint creates an ATL_DRAWINFO structure on the stack
and initializes the fields within the structure. OnPaint sets up ATL_DRAWINFO to show the entire
content (the dwDrawAspect field is set to DVASPECT_CONTENT). OnPaint also sets the lindex field
to _1, sets the drawing device context to the newly created painting device context, and sets up the
bounding rectangle to be the client area of the control's window. Then OnPaint goes on to call
OnDrawAdvanced.

The default OnDrawAdvanced function prepares a normalized device context for drawing. You can
override this method if you want to use the device context passed by the container without
normalizing it. ATL then calls your control class's OnDraw method.

The second context in which the OnDraw function is called is when the control draws on to a
metafile. The control draws itself on to a metafile whenever someone calls IViewObjectEx::Draw.
(IViewObjectEx is one of the interfaces implemented by the ActiveX control.) ATL implements the
IViewObjectEx interface through the template class IViewObjectExImpl. IViewObjectEx- Impl::Draw
is called whenever the control needs to take a snapshot of its presentation space for the container
to store. In this case, the container creates a metafile device context and hands it to the control.
IViewObjectExImpl puts an ATL_DRAWINFO structure on the stack and initializes. The bounding
rectangle, the index, the drawing aspect, and the device contexts are all passed in as parameters
by the client. The rest of the drawing is the same in this case—the control calls OnDrawAdvanced,
which in turn calls your version of OnDraw.

Once you're armed with this knowledge, writing functions to render the bitmaps becomes fairly
straightforward. To show the first die face, create a memory-based device context, select the object
into the device context, and BitBlt the memory device context into the real device context. Here's
the code:

void CATLDiceObj::ShowFirstDieFace(ATL_DRAWINFO& di) {

 BITMAP bmInfo;
 GetObject(m_dieBitmaps[m_nFirstDieValue-1],
 sizeof(bmInfo), &bmInfo);

 SIZE size;

 size.cx = bmInfo.bmWidth;
 size.cy = bmInfo.bmHeight;

 HDC hMemDC;
 hMemDC = CreateCompatibleDC(di.hdcDraw);

 HBITMAP hOldBitmap;
 HBITMAP hbm = m_dieBitmaps[m_nFirstDieValue-1];
 hOldBitmap = (HBITMAP)SelectObject(hMemDC, hbm);

 if (hOldBitmap == NULL)
 return; // destructors will clean up

 BitBlt(di.hdcDraw,
 di.prcBounds->left+1,
 di.prcBounds->top+1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 di.prcBounds->top+1,
 size.cx,
 size.cy,
 hMemDC, 0,
 0,
 SRCCOPY);

 SelectObject(di.hdcDraw, hOldBitmap);
 DeleteDC(hMemDC);
}
Showing the second die face is more or less the same process—just make sure that the dice are
represented separately. For example, you probably want to change the call to BitBlt so that the two
dice bitmaps are shown side by side.

void CATLDiceObj::ShowSecondDieFace(ATL_DRAWINFO& di) {
 //
 // This code is exactly the same as ShowFirstDieFace
 // except the second die is positioned next to the first die.
 //
 BitBlt(di.hdcDraw,
 di.prcBounds->left+size.cx + 2,
 di.prcBounds->top+1,
 size.cx,
 size.cy,
 hMemDC, 0,
 0, SRCCOPY);
 // The rest is the same as in ShowFirstDieFace
}
The last step is to call these two functions whenever the control is asked to render itself—during the
control's OnDraw function. ShowFirstDieFace and ShowSecondDieFace will show the correct bitmap
based on the state of m_nFirstDieValue and m_nSecondDieValue:

HRESULT CATLDiceObj::OnDraw(ATL_DRAWINFO& di) {
 ShowFirstDieFace(di);
 ShowSecondDieFace(di);
 return S_OK;
}
At this point, if you compile and load this control into some ActiveX Control container (like a Visual
Basic form or an MFC-based dialog), you'll see two die faces staring back at you. Now it's time to
add some code to enliven the control and roll the dice.

Responding to Window Messages

Just looking at two dice faces isn't that much fun. You want to make the dice work. A good way to
get the dice to appear to jiggle is to use a timer to generate events and then respond to the timer
by showing a new pair of dice faces. Setting up a Windows timer in the control means adding a
function to handle the timer message and adding a macro to the control's message map. Start by
using ClassView to add a handler for WM_TIMER. Right-click on the CAtlDiceOb symbol in
ClassView, and select Add Windows Message Handler from the context menu. This adds a prototype
for the OnTimer function and an entry into the message map to handle the WM_TIMER message.
Add some code to the OnTimer function to handle the WM_TIMER message. The OnTimer function
should look like the code shown below.

LRESULT CATLDiceObj::OnTimer(UINT msg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled) {

 if(m_nTimesRolled > 15) {

 m_nTimesRolled = 0;
 KillTimer(1);
 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FireViewChange();
 m_nTimesRolled++;
 }
 bHandled = TRUE;
 return 0;
}
This function responds to the timer message by generating two random numbers, setting up the
control's state to reflect these two new numbers, and then asking the control to refresh itself by
calling FireViewChange. Notice the function kills the timer as soon as the dice have rolled a certain
number of times. Also notice that the message handler tells the framework that it successfully
handled the function by setting the bHandled variable to TRUE.

Notice there's an entry for WM_TIMER in the control's message map. Because WM_TIMER is just a
plain vanilla window message, it's represented with a standard MESSAGE_HANDLER macro as
follows:

BEGIN_MSG_MAP(CATLDiceObj)
 CHAIN_MSG_MAP(CComControl<CATLDiceObj>)
 DEFAULT_REFLECTION_HANDLER()
 MESSAGE_HANDLER(WM_TIMER, OnTimer);
END_MSG_MAP()
As you can tell from this message map, the dice control already handles the gamut of Windows
messages through the CHAIN_MSG_MAP macro. However, now the pair of dice has the ability to
simulate rolling by responding to the timer message. Setting a timer causes the control to repaint
itself with a new pair of dice numbers every quarter of a second or so. Of course, there needs to be
some way to start the dice rolling. Because this is an ActiveX control, it's reasonable to allow client
code to start rolling the dice via a call to a function in one of its incoming interfaces. Use ClassView
to add a RollDice function to the main interface. Do this by right-clicking on the IATLDiceObj
interface appearing in ClassView on the left side of the screen and selecting Add Method from the
pop up menu. Then add a RollDice function. Microsoft Visual C++ adds a function named RollDice to
your control. Implement RollDice by setting the timer for a reasonably short interval and then
returning S_OK. Add the following boldface code:

STDMETHODIMP CATLDiceObj::RollDice()
{
 SetTimer(1, 250);
 return S_OK;
}
If you load the dice into an ActiveX control container, you'll now be able to browse and call the
control's methods and roll the dice.

In addition to using the incoming interface to roll the dice, the user might reasonably expect to roll
the dice by double-clicking the control. To enable this behavior, just add a message handler to trap
the mouse-button-down message by adding a function to handle a left-mouse double click.

LRESULT CATLDiceObj::OnLButtonDblClick(UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 BOOL& bHandled) {
 RollDice();
 bHandled = TRUE;
 return 0;
}
Then be sure you add an entry to the message map to handle the WM_LBUTTONDOWN message:

BEGIN_MSG_MAP(CATLDiceObj)
 // Other message handlers
 MESSAGE_HANDLER(WM_LBUTTONDBLCLK, OnLButtonDblClick)
END_MSG_MAP()
When you load the dice control into a container and double-click on it, you should see the dice roll.
Now that you've added rendering code and given the control the ability to roll, it's time to add some
properties.

Adding Properties and Property Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Properties and Property Pages

You've just seen that ActiveX controls have an external presentation state. (The presentation state
is the state reflected when the control draws itself.) In addition, most ActiveX controls also have an
internal state. The control's internal state is a set of variables exposed to the outside world via
interface functions. These internal variables are also known as properties.

For example, imagine a simple grid implemented as an ActiveX control. The grid has an external
presentation state and a set of internal variables for describing the state of the grid. The properties
of a grid control would probably include the number of rows in the grid, the number of columns in
the grid, the color of the lines composing the grid, the type of font used, and so forth.

As you saw in Chapter 29, adding properties to an ATL-based class means adding member variables
to the class and then using ClassWizard to create get and put functions to access these properties.
For example, two member variables that you might add to the dice control include the dice color
and the number of times the dice are supposed to roll before stopping. Those two properties could
easily be represented as a pair of short integers as shown here:

class ATL_NO_VTABLE CATLDiceObj :
.
.
.
{
 .
 .
 .
 short m_nDiceColor;
 short m_nTimesToRoll;
 .
 .
 .
};
To make these properties accessible to the client, you need to add get and put functions to the
control. Right-clicking on the interface symbol in ClassView brings up a context menu, giving you a
choice to Add Property, which will present you with the option of adding these functions. Adding
DiceColor and TimesToRoll properties to the control using ClassView will add four new functions to
the control: get_DiceColor, put_DiceColor, get_TimesToRoll, and put_TimesToRoll.

The get_DiceColor function should retrieve the state of m_nDiceColor:

STDMETHODIMP CATLDiceObj::get_DiceColor(short * pVal)
{
 *pVal = m_nDiceColor;
 return S_OK;
}
To make the control interesting, put_DiceColor should change the colors of the dice bitmaps and
redraw the control immediately. This example uses red and blue dice as well as the original black
and white dice. To make the control show the new color bitmaps immediately after the client sets
the dice color, the put_DiceColor function should load the new bitmaps according to new color, and
redraw the control:

STDMETHODIMP CATLDiceObj::put_DiceColor(short newVal)
{
 if(newVal < 3 && newVal >= 0)
 m_nDiceColor = newVal;
 LoadBitmaps();
 FireViewChange();
 return S_OK;
}
Of course, this means that LoadBitmaps needs to load the bitmaps based on the state of
m_nDiceColor, so we need to add the following boldface code to our existing LoadBitmaps function:

BOOL CATLDiceObj::LoadBitmaps() {
 int i;
 BOOL bSuccess = TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BOOL bSuccess = TRUE;
 int nID = IDB_DICE1;
 switch(m_nDiceColor) {
 case 0:
 nID = IDB_DICE1;
 break;
 case 1:
 nID = IDB_BLUEDICE1;
 break;
 case 2:
 nID = IDB_REDDICE1;
 break;
 }
 for(i=0; i<MAX_DIEFACES; i++) {
 DeleteObject(m_dieBitmaps[i]);
 m_dieBitmaps[i] = LoadBitmap(_Module.m_hInst,
 MAKEINTRESOURCE(nID+i));
 if(!m_dieBitmaps[i]) {
 ::MessageBox(NULL,
 "Failed to load bitmaps",
 NULL, MB_OK);
 bSuccess = FALSE;
 }
 }
 return bSuccess;
}
Just as the dice color property reflects the color of the dice, the number of times the dice rolls
should be reflected by the state of the TimesToRoll property. The get_TimesToRoll function needs to
read the m_nTimesToRoll member, and the put_TimesToRoll function needs to modify
m_nTimesToRoll. Add boldface code shown below.

STDMETHODIMP CATLDiceObj::get_TimesToRoll(short * pVal)
{
 *pVal = m_nTimesToRoll;
 return S_OK;
}

STDMETHODIMP CATLDiceObj::put_TimesToRoll(short newVal)
{
 m_nTimesToRoll = newVal;
 return S_OK;
}
Finally, instead of hard-coding the number of times the dice rolls, use the m_nTimesToRoll variable
to determine when to kill the timer.

LRESULT CATLDiceObj::OnTimer(UINT msg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled) {

 if(m_nTimesRolled > m_nTimesToRoll) {
 m_nTimesRolled = 0;
 KillTimer(1);
 Fire_DiceRolled(m_nFirstDieValue, m_nSecondDieValue);
 if(m_nFirstDieValue == m_nSecondDieValue)
 Fire_Doubles(m_nFirstDieValue);
 if(m_nFirstDieValue == 1 && m_nSecondDieValue == 1)
 Fire_SnakeEyes();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Fire_SnakeEyes();
 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();
 m_nTimesRolled++;
 }

 bHandled = TRUE;
 return 0;
}
Now these two properties are exposed to the outside world. When the client code changes the color
of the dice, the control loads a new set of bitmaps and redraws the control with the new dice faces.
When the client code changes the number of times to roll, the dice control uses that information to
determine the number of times the dice control should respond to the WM_TIMER message. So the
next question is, "How are these properties accessed by the client code?" One way is through a
control's property pages.

Property Pages

Since ActiveX controls are usually UI gadgets meant to be mixed into much larger applications, they
often find their homes within places such as Visual Basic forms and MFC form views and dialogs.
When a control is instantiated, the client code can usually reach into the control and manipulate its
properties by calling certain functions on the control's incoming interface functions. However, when
an ActiveX control is in design mode, accessing the properties through the interface functions isn't
always practical. It would be unkind to tool developers to force them to go through the interface
functions all the time just to tweak some properties in the control. Why should the tool vendor who
is creating the client have to provide UI for managing control properties? That's what property
pages are for. Property pages are sets of dialogs implemented by the control for manipulating
properties. That way, the tool vendors don't have to keep re-creating dialog boxes for tweaking the
properties of an ActiveX control.

How Property Pages Are Used Property pages are usually used in one of two ways. The first way
is through the control's IOleObject interface. The client can call IOleObject's DoVerb function,
passing in the properties verb identifier (named OLEIVERB_PROPERTIES and defined as the number
-7) to ask the control to show its property pages. The control then displays a dialog, or property
frame, that contains all the control's property pages. For example, Figure 30-6 shows the Property
Pages dialog containing the property pages for the Microsoft FlexGrid 6.0 control.

Figure 30-6. The Microsoft FlexGrid 6.0 control executing the properties verb.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-6. The Microsoft FlexGrid 6.0 control executing the properties verb.

Property pages are a testament to the power of COM. As it turns out, each single property page is a
separate COM object (named using a GUID and registered like all the other COM classes on your
system). When a client asks an ActiveX control to show its property pages via the properties verb,
the control passes its own list of property page GUIDs into a system API function named
OleCreatePropertyFrame. OleCreatePropertyFrame enumerates the property page GUIDs, calling
CoCreateInstance for each property page. The property frame gets a copy of an interface so that
the frame can change the properties within the control. OleCreatePropertyFrame calls back to the
control when the user clicks the OK or Apply button.

The second way clients use property pages is when the client asks the control for a list of property
page GUIDs. Then the client calls CoCreateInstance on each property page and installs each
property page in its own frame. Figure 30-7 shows an example of how Visual C++ uses the
Microsoft FlexGrid property pages in its own property dialog frame.

This second method is by far the most common way for a control's property pages to be used.
Notice that the property sheet in Figure 30-7 contains a General tab in addition to the control's
property pages, and that the General tab shown in Figure 30-6 has been renamed to the Control
tab. The General property page in Figure 30-7 belongs to Visual C++. The Control, Style, Font,
Color, and Picture property pages belong to the control (even though they're being shown within
the context of Visual C++).

Figure 30-7. Microsoft Visual C++ inserting the Microsoft FlexGrid 6.0 property pages into its own
dialog box for editing resource properties.

For a property page to work correctly, the control that the property page is associated with needs to
implement ISpecifyPropertyPages and the property page object needs to implement an interface
named IPropertyPage. With this in mind, let's examine exactly how ATL implements property pages.

Adding a Property Page to Your Control You can use the Visual Studio ATL Object Wizard to
create property pages in your ATL project. To create a property page, perform the following steps:

1. Select New ATL Object from the Visual C++ Insert menu.

2. From the ATL Object Wizard dialog, select Controls from the Category list.

3. Select Property Page from the Objects list.

4. Click Next.

5. Fill in the required information on the ATL Object Wizard Properties dialog, and click OK.

ATL's Object Wizard generates a dialog template and includes it as part of a control's resources. In
the dice control example, the two properties you're concerned with are the color of the dice and the
number of times to roll the dice. The dialog template created by ATL's Object Wizard is blank, so
you'll want to add a couple of controls to represent these properties. In this example, the user will
be able to select the dice color from a combo box and enter the number of times the dice should roll
in an edit control, as shown in Figure 30-8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in an edit control, as shown in Figure 30-8.

Figure 30-8. The property page dialog template.

The ATL Object Wizard also creates a C++ class for you that implements the interface necessary for
the class to behave as a property page. In addition to generating this C++ class, the ATL Object
Wizard makes the class part of the project. The ATL Object Wizard adds the new property page
class to the IDL file within the coclass section. In addition, the ATL Object Wizard appends the
property page to the object map so that DllGetClassObject can find the property page class. Finally,
the ATL Object Wizard adds a new Registry script (so that the DLL makes the correct Registry
entries when the control is registered). Here is the header file created by the ATL Object Wizard for
a property page named DiceMainPropPage:

#include "resource.h" // main symbols

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{
public:
 CDiceMainPropPage()
 {
 m_dwTitleID = IDS_TITLEDiceMainPropPage;
 m_dwHelpFileID = IDS_HELPFILEDiceMainPropPage;
 m_dwDocStringID = IDS_DOCSTRINGDiceMainPropPage;
 }

 enum {IDD = IDD_DICEMAINPROPPAGE};

DECLARE_REGISTRY_RESOURCEID(IDR_DICEMAINPROPPAGE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CDiceMainPropPage)
 COM_INTERFACE_ENTRY(IPropertyPage)
END_COM_MAP()

BEGIN_MSG_MAP(CDiceMainPropPage)
 CHAIN_MSG_MAP(IPropertyPageImpl<CDiceMainPropPage>)
END_MSG_MAP()

STDMETHOD(Apply)(void)
{
 ATLTRACE(_T("CDiceMainPropPage::Apply\n"));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 // Do something interesting here
 // ICircCtl* pCirc;
 // m_ppUnk[i]->QueryInterface(IID_ICircCtl, (void**)&pCirc);
 // pCirc->put_Caption(CComBSTR("something special"));
 // pCirc->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // pCirc->Release();
 }
 m_bDirty = FALSE;
 return S_OK;
}
};
Examining this property page listing reveals that ATL's property page classes are composed of
several ATL templates: CComObjectRootEx (to implement IUnknown), CComCoClass (the class
object for the property page), IPropertyPageImpl (for implementing IPropertyPage), and
CDialogImpl (for implementing the dialog-specific behavior).

As with most other COM classes created by ATL's Object Wizard, most of the code involved in
getting a property page to work is boilerplate code. Notice that besides the constructor and some
various maps, the only other function is one named Apply.

Before getting into the mechanics of implementing a property page, it's helpful to take a moment to
understand how the property page architecture works. The code you need to type in to get the
property pages working will then make more sense.

When the client decides it's time to show some property pages, a modal dialog frame needs to be
constructed. The frame is constructed by either the client or by the control itself. If the property
pages are being shown via the DoVerb function, the control constructs the frame. If the property
pages are being shown within the context of another application—as when Visual C++ shows the
control's property pages within the IDE—the client constructs the dialog frame. The key to the
dialog frame is that it holds property page sites (small objects that implement IPropertyPageSite)
for each property page.

The client code (the modal dialog frame, in this case) then enumerates through a list of GUIDs,
calling CoCreateInstance on each one of them and asking for the IPropertyPage interface. If the
COM object produced by CoCreateInstance is a property page, it implements the IPropertyPage
interface. The dialog frame uses the IPropertyPage interface to talk to the property page. Here's the
declaration of the IPropertyPage interface:

interface IPropertyPage : public IUnknown {
 HRESULT SetPageSite(IPropertyPageSite *pPageSite) = 0;
 HRESULT Activate(HWND hWndParent,
 LPCRECT pRect,
 BOOL bModal) = 0;
 HRESULT Deactivate(void) = 0;
 HRESULT GetPageInfo(PROPPAGEINFO *pPageInfo) = 0;
 HRESULT SetObjects(ULONG cObjects,
 IUnknown **ppUnk) = 0;
 HRESULT Show(UINT nCmdShow) = 0;
 HRESULT Move(LPCRECT pRect) = 0;
 HRESULT IsPageDirty(void) = 0;
 HRESULT Apply(void) = 0;
 HRESULT Help(LPCOLESTR pszHelpDir) = 0;
 HRESULT TranslateAccelerator(MSG *pMsg) = 0;
};
Once a property page has been created, the property page and the client code need some channels
to communicate back and forth with the control. After the property dialog frame successfully calls
QueryInterface for IPropertyPage on the property page objects, the frame calls
IPropertyPage::SetPageSite on each IPropertyPage interface pointer it holds, passing in an
IPropertyPageSite interface pointer. The property page sites within the property frame provide a
way for each property page to call back to the frame. The property page site provides information
to the property page and receives notifications from the page when changes occur. Here's the
IPropertyPageSite interface:

interface IPropertyPageSite : public IUnknown {
 public:
 virtual HRESULT OnStatusChange(DWORD dwFlags) = 0;
 virtual HRESULT GetLocaleID(LCID *pLocaleID) = 0;
 virtual HRESULT GetPageContainer(IUnknown *ppUnk) = 0;
 virtual HRESULT TranslateAccelerator(MSG *pMsg) = 0;
};
In addition to the frame and control connecting to each other through IPropertyPage and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the frame and control connecting to each other through IPropertyPage and
IPropertyPageSite, each property page needs a way to talk back to the control. This is usually done
when the dialog frame calls IPropertyPage::SetObjects, passing in the control's IUnknown. Figure
30-9 illustrates the property page architecture.

Now that you see how ActiveX Control property pages work in general, understanding how they
work within ATL will be a lot easier. You'll see how ATL's property pages work—in cases when the
client code exercises the control's properties verb as well as in cases when environments like Visual
C++ integrate a control's property pages into the IDE.

Figure 30-9. How the property pages, the property frame, and the property page sites
communicate.

ATL and the Properties Verb The first way in which an ActiveX control shows its property pages
is when the client invokes the properties verb by calling IOleObject::DoVerb using the constant
OLEIVERB_PROPERTIES. When the client calls DoVerb in an ATL-based control, the call ends up in
the function CComControlBase::DoVerbProperties, which simply calls OleCreatePropertyFrame,
passing in its own IUnknown pointer and the list of property page GUIDs. OleCreatePropertyFrame
takes the list of GUIDs, calling CoCreateInstance on each one to create the property pages, and
arranges them within the dialog frame. OleCreatePropertyFrame uses each property page's
IPropertyPage interface to manage the property page, as described in "How Property Pages Are
Used"

ATL Property Maps Of course, understanding how OleCreatePropertyFrame works from within the
ATL-based control begs the next question: where does the list of property pages actually come
from? ATL uses macros to generate lists of property pages called property maps. Whenever you add
a new property page to an ATL-based control, you need to set up the list of property pages through
these macros. ATL includes several macros for implementing property maps:
BEGIN_PROPERTY_MAP, PROP_ENTRY, PROP_ENTRY_EX, PROP_PAGE, and END_PROPERTY_MAP.
Here are those macros in the raw:

struct ATL_PROPMAP_ENTRY
{
 LPCOLESTR szDesc;
 DISPID dispid;
 const CLSID* pclsidPropPage;
 const IID* piidDispatch;
 DWORD dwOffsetData;
 DWORD dwSizeData;
 VARTYPE vt;
};

#define BEGIN_PROPERTY_MAP(theClass) \
 typedef _ATL_PROP_NOTIFY_EVENT_CLASS __ATL_PROP_NOTIFY_EVENT_CLASS; \
 typedef theClass _PropMapClass; \
 static ATL_PROPMAP_ENTRY* GetPropertyMap()\

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 static ATL_PROPMAP_ENTRY* GetPropertyMap()\
 {\
 static ATL_PROPMAP_ENTRY pPropMap[] = \
 {

#define PROP_PAGE(clsid) \
 {NULL, NULL, &clsid, &IID_NULL},

#define PROP_ENTRY(szDesc, dispid, clsid) \
 {OLESTR(szDesc), dispid, &clsid, &IID_IDispatch},

#define PROP_ENTRY_EX(szDesc, dispid, clsid, iidDispatch) \
 {OLESTR(szDesc), dispid, &clsid, &iidDispatch},

#define END_PROPERTY_MAP() \
 {NULL, 0, NULL, &IID_NULL} \
 }; \
 return pPropMap; \
}
When you decide to add property pages to a COM class using ATL's property page macros,
according to the ATL documentation you should put these macros into your class's header file. For
example, if you want to add property pages to the dice control, you'd add the following code to the
C++ class:

class ATL_NO_VTABLE CATLDiceObj :
 .
 .
 .
{
 .
 .
 .

 BEGIN_PROP_MAP(CATLDiceObj)
 PROP_ENTRY("Caption goes here…", 2,
 CLSID_MainPropPage)
 PROP_ENTRY_EX("Caption goes here…", 3,
 CLSID_SecondPropPage,
 DIID_SecondDualInterface)
 PROP_PAGE(CLSID_StockColorPage)
 END_PROPERTY_MAP()

};
ATL's property map macros set up the list of GUIDs representing property pages. ATL's property
maps are composed of an array of ATL_PROPMAP_ENTRY structures. The BEGIN_PROPERTY_MAP
macro declares a static variable of this structure. The PROP_PAGE macro inserts a GUID into the list
of property pages. PROP_ENTRY inserts a property page GUID into the list as well as associating a
specific control property with the property page. The final macro, PROP_ENTRY_EX, lets you
associate a certain dual interface to a property page. When client code invokes the control's
properties verb, the control just rips through this list of GUIDs and hands the list over to the
OleCreatePropertyFrame so that the property can create the property pages.

Property Pages and Development Tools Executing the properties verb isn't the only way for an
ActiveX control to show its property pages. As we mentioned before, folks who write tools such as
Visual Basic and Visual C++ might want programmatic access to a control's property pages. For
example, when using MFC to work on a dialog box containing an ActiveX control, right-clicking on
the control to view the properties gives you a dialog frame produced by Visual C++ (as opposed to
the dialog frame produced by OleCreatePropertyFrame).

Visual C++ uses the control's ISpecifyPropertyPages interface to get the list of GUIDs (the list
generated by the property page macros). Here's the ISpecifyPropertyPages interface definition:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface ISpecifyPropertyPages : public IUnknown {
 HRESULT GetPages(CAUUID *pPages);
};

typedef struct tagCAUUID
{
 ULONG cElems;
 GUID FAR* pElems;
} CAUUID;
ATL implements the ISpecifyPropertyPages::GetPages function by cycling through the list of GUIDS
(produced by the property map macros) and returning them within the CAUUID structure.
Environments like Visual C++ use each GUID in a call to CoCreateInstance to create a new property
page. The property page site and the property page exchange interfaces. The property page site
holds on to the property page's IPropertyPage interface, and the property page holds on to the
property site's IPropertyPageSite interface. After the dialog frame constructs the property pages, it
needs to reflect the current state of the ActiveX control through the dialog controls. For that you
need to override the property page's Show method.

Showing the Property Page The property page's Show method is called whenever the property
page is about to be shown. A good thing for a property page to do at this time is fetch the values
from the ActiveX control and populate the property page's controls. Remember that the property
page holds on to an array of unknown pointers (they're held in the IPropertyPageImpl's m_ppUnk
array.) To access the ActiveX control's properties, you need to call QueryInterface on the unknown
pointers and ask for the interface that exposes the properties. In this case, the interface is
IATLDiceObj. Once the property page has the interface, it can use the interface to fetch the
properties and plug the values into the dialog box controls. Here's the overridden Show method:

#include "atldicesrvr.h"

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{
 .
 .
 .
STDMETHOD(Show)(UINT nCmdShow) {
 HRESULT hr;

 USES_CONVERSION;

 if(nCmdShow == SW_SHOW ||
 nCmdShow == SW_SHOWNORMAL) {
 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr< IATLDieceObj,
 &IID_IATLDieceObj > pATLDiceOb(m_ppUnk[i]);
 short nColor = 0;

 if FAILED(pATLDiceOb->get_DiceColor(&nColor))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"), MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 HWND hWndComboBox = GetDlgItem(IDC_COLOR);
 ::SendMessage(hWndComboBox,
 CB_SETCURSEL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CB_SETCURSEL,
 nColor, 0);

 short nTimesToRoll = 0;
 if FAILED(
 pATLDiceOb->get_TimesToRoll(&nTimesToRoll))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"), MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 SetDlgItemInt(IDC_TIMESTOROLL, nTimesToRoll, FALSE);
 }
 }
 m_bDirty = FALSE;
 hr = IPropertyPageImpl<CDiceMainPropPage>::Show(nCmdShow);
 return hr;
 }
};
In addition to adding code to prepare to show the dialog box, you need to add code allowing users
to set the control's properties. Whenever the user changes a property, the property dialog activates
the Apply button, indicating that the user can apply the newly set properties. When the user
presses the Apply button, control jumps to the property page's Apply function so you need to insert
some code in here to make the Apply button work.

Handling the Apply Button After the user finishes manipulating the properties, he or she clicks
either the Apply button or the OK button to save the changes. In response, the client code asks the
property page to apply the new properties to the control. Remember that the ActiveX control and
the property page are separate COM objects, so they need to communicate via interfaces. Here's
how the process works.

When you create a property page using the ATL Object Wizard, ATL overrides the Apply function
from IPropertyPage for you. The property page site uses this function for notifying the property
page of changes that need to be made to the control. When the property page's Apply function is
called, it's time to synch up the state of the property page with the state of the control. Remember,
the control's IUnknown interface was passed into the property page early in the game via a call to
IPropertyPage::SetObjects. (The interface pointers are stored in the property page's m_ppUnk
array.) Most property pages respond to the Apply function by setting the state of the ActiveX
control properties through the interface provided. In the case of our example ATL-based property
page, this means examining the value in the combo box and the edit box and setting the new
values inside the control itself, like this:

#include "atldicesrvr.h"

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{
 .
 .
 .
 STDMETHOD(Apply)(void)
 {
 USES_CONVERSION;
 ATLTRACE(_T("CDiceMainPropPage::Apply\n"));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr<IATLDieceObj,
 &IID_IATLDieceObj> pATLDiceOb(m_ppUnk[i]);
 HWND hWndComboBox = GetDlgItem(IDC_COLOR);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HWND hWndComboBox = GetDlgItem(IDC_COLOR);
 short nColor = (short)::SendMessage(hWndComboBox,
 CB_GETCURSEL,
 0, 0);
 if(nColor >= 0 && nColor <= 2) {
 if FAILED(pATLDiceOb->put_DiceColor(nColor))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"),
 MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 short nTimesToRoll = (short)GetDlgItemInt
 (IDC_TIMESTOROLL);
 if FAILED(pATLDiceOb->put_TimesToRoll(nTimesToRoll))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"),
 MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 m_bDirty = FALSE;
 return S_OK;
 }

Property Persistence

Once you have added properties to the control, it's logical that you might want to have those
properties persist with their container. For example, imagine Hasbro buys your dice control to
include in its new Windows version of Monopoly. The game vendor uses your dice control within one
of the Monopoly dialog boxes and configures the control so that the dice are blue and they roll 23
times before stopping. If the dice control had a sound property, the Mono-poly authors could
configure the dice to emit a beep every time they roll. When someone plays the game and rolls the
dice, that person will see a pair of blue dice that roll 23 times before stopping and they will hear the
dice make a sound while they roll. Remember that these properties are all properties of the control.
If you're using the control in an application, chances are good you'll want these properties to be
saved with the application.

Fortunately, adding persistence support to your control is almost free when you use the ATL
property macros. You've already seen how to add the property pages to the control DLL using the
property map macros. As it turns out, these macros also make the properties persistent.

You can find ATL's code for handling the persistence of a control's properties within the
CComControlBase class. CComControlBase has a member function named IPersistStreamInit_Save
that handles saving a control's properties to a stream provided by the client. Whenever the
container calls IPersistStreamInit::Save, ATL ends up calling IPersistStreamInit_Save to do the
actual work. IPersistStreamInit_Save works by retrieving the control's property map—the list of
properties maintained by the control. (Remember that the BEGIN_PROPERTY_MAP macro adds a
function named GetPropertyMap to the control.) The first item written out by
IPersistStreamInit_Save is the control's extents (its size on the screen). IPersistStreamInit_Save
then cycles through the property map to write the contents of the property map out to the stream.
For each property, the control calls QueryInterface on itself to get its own dispatch interface. As
IPersistStreamInit_Save goes through the list of properties, the control calls IDispatch::Invoke on
itself to get the property based on the DISPID associated with the property. (The property's DISPID
is included as part of the property map structure.) The property comes back from IDispatch::Invoke
as a Variant, and IPersistStreamInit_Save writes the property to the stream provided by the client.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bidirectional Communication (Events)

Now that the dice control has properties and property pages and renders itself to a device context,
the last thing to do is to add some events to the control. Events provide a way for the control to call
back to the client code and inform the client code of certain events as they occur.

For example, the user can roll the dice. Then when the dice stop rolling, the client application can
fish the dice values out of the control. However, another way to implement the control is to set it up
so that the control notifies the client application when the dice have rolled using an event. Here
you'll see how to add some events to the dice control. We'll start by understanding how ActiveX
Control events work.

How Events Work When a control is embedded in a container (such as a Visual Basic form or an
MFC-based dialog box), one of the steps the client code takes is to establish a connection to the
control's event set. That is, the client implements an interface that has been described by the
control and makes that interface available to the control. That way, the control can talk back to the
container.

Part of developing a control involves defining an interface that the control can use to call back to
the client. For example, if you're developing the control using MFC, ClassWizard will define the
interface and produce some functions you can call from within the control to fire events back to the
client. If you're developing the control in ATL, you can accomplish the same result by defining the
event callback interface in the control's IDL and using ClassView to create a set of callback proxy
functions for firing the events to the container. When the callback interface is defined by the
control, the container needs to implement that interface and hand it over to the control. The client
and the control do this through the IConnectionPointContainer and IConnectionPoint interfaces.

IConnectionPointContainer is the interface a COM object implements to indicate that it supports
connections. IConnectionPointContainer represents a collection of connections available to the
client. Within the context of ActiveX Controls, one of these connections is usually the control's main
event set. Here's the IConnectionPointContainer interface:

interface IConnectionPointContainer : IUnknown {
 HRESULT FindConnectionPoint(REFIID riid,
 IConnectionPoint **ppcp) = 0;
 HRESULT EnumConnectionPoints(IEnumConnectionsPoint **ppec) = 0;
};
IConnectionPointContainer represents a collection of IConnectionPoint interfaces. Here's the
IConnectionPoint interface:

interface IConnectionPoint : IUnknown {
 HRESULT GetConnectionInterface(IID *pid) = 0;
 HRESULT GetConnectionPointContainer(
 IConnectionPointContainer **ppcpc) = 0;
 HRESULT Advise(IUnknown *pUnk, DWORD *pdwCookie) = 0;
 HRESULT Unadvise(dwCookie) = 0;
 HRESULT EnumConnections(IEnumConnections **ppec) = 0;
}
The container creates the control by calling CoCreateInstance on the control. As the control and the
container are establishing the interface connections between themselves, one of the interfaces the
container asks for is IConnectionPointContainer (that is, the container calls QueryInterface asking
for IID_IConnectionPointContainer). If the control supports connection points (the control answers
"Yes" when queried for IConnectionPointContainer), the control uses
IConnectionPointContainer::FindConnectionPoint to get the IConnectionPoint interface representing
the main event set. The container knows the GUID representing the main event set by looking at
the control's type information as the control is inserted into the container.

If the container can establish a connection point to the control's main event set (that is,
IConnectionPointContainer::FindConnectionPoint returns an IConnectionPoint interface pointer), the
container uses IConnectionPoint::Advise to subscribe to the callbacks. Of course, to do this the
container needs to implement the callback interface defined by the control (which the container can
learn about by using the control's type library). Once the connection is established, the control can
call back to the container whenever the control fires off an event. Here's what it takes to make
events work within an ATL-based ActiveX control.

Adding Events to the Dice Control There are several steps to adding event sets to your control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Events to the Dice Control There are several steps to adding event sets to your control.
Some of them are hidden by clever wizardry. First, use IDL to describe the events. Second, add a
proxy that encapsulates the connection points and event functions. Finally, fill out the control's
connection map so that the client and the object have a way to connect to each other. Let's
examine each step in detail.

When using ATL to write an ActiveX control, IDL is the place to start adding events to your control.
The event callback interface is described within the IDL so the client knows how to implement the
callback interface correctly. The IDL is compiled into a type library that the client will use to figure
out how to implement the callback interface. For example, if you wanted to add events indicating
the dice were rolled, doubles were rolled, and snake eyes were rolled, you'd describe the callback
interface like this in the control's IDL file:

library ATLDICESRVRLib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 [
 uuid(21C85C43-0BFF-11d1-8CAA-FD10872CC837),
 helpstring("Events created from rolling dice")
]
 dispinterface _IATLDiceObjEvents {
 properties:
 methods:
 [id(1)] void DiceRolled([in]short x, [in] short y);
 [id(2)] void Doubles([in] short x);
 [id(3)] void SnakeEyes();
 }

 [
 uuid(6AED4EBD-0991-11D1-8CAA-FD10872CC837),
 helpstring("ATLDiceOb Class")
]
 coclass ATLDiceOb
 {
 [default] interface IATLDieceObj;
 [default, source] dispinterface _IATLDiceObjEvents;
 };
The control's callback interface is defined as a dispatch interface (note the dispinterface keyword)
because that's the most generic kind of interface available. When it comes to callback interfaces,
most environments understand only IDispatch. The code on the previous page describes a callback
interface to be implemented by the client (if the client decides it wants to receive these callbacks).
We added this dice events interface by hand. The Object Wizard will put one in for you. It might
have a different name than the one we have listed. (For example, the Wizard is likely to put in an
interface named IATLObjEvents.)

Implementing the Connection Point After you've described the callback interface within the IDL
and compiled the control, the control's type information will contain the callback interface
description so that the client will know how to implement the callback interface. However, you don't
yet have a convenient way to fire these events from the control. You could, of course, call back to
the client by setting up calls to IDispatch::Invoke by hand. However, a better way to do this is to
set up a proxy (a set of functions wrapping calls to IDispatch) to handle the hard work for you. To
generate a set of functions that you can call to fire events in the container, use the Implement
Connection Point menu option from ClassView.

In ClassView, click the right mouse button while the cursor is hovering over the CATLDiceOb
symbol. This brings up the context menu for the CATLDiceOb item. Choose Implement Connection
Point from the menu to bring up the Implement Connection Point dialog box. This dialog box asks
you to locate the type information describing the interface you expect to use when calling back to
the container (the _IATLDiceObjEvents interface, in this case). By default, this dialog box looks at
your control's type library. The dialog box reads the type library and shows the interfaces found
within it. Choose _IATLDiceObjEvents and click OK. Doing so creates a C++ class that wraps the
dice events interface. Given the above interface definition, here's the code generated by the
Implement Connection Point dialog box:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

template <class T>
class CProxy_IATLDieceObjEvents :
public IConnectionPointImpl<T,
 &DIID__IATLDieceObjEvents,
 CComDynamicUnkArray>
{
 //Warning this class may be recreated by the wizard.
public:
};

{
 //Warning this class may be recreated by the wizard.
public:
 VOID Fire_Doubles(SHORT x)
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 CComVariant* pvars = new CComVariant[1];
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0;
 nConnectionIndex < nConnections;
 nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch =
 reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 pvars[0].vt = VT_I2;
 pvars[0].iVal= x;
 DISPPARAMS disp = { pvars, NULL, 1, 0 };
 pDispatch->Invoke(0x1, IID_NULL,
 LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &disp,
 NULL, NULL, NULL);
 }
 }
 delete[] pvars;
 }
 VOID Fire_DiceRolled(SHORT x, SHORT y)
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 CComVariant* pvars = new CComVariant[2];
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0;
 nConnectionIndex < nConnections;
 nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch =
 reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 pvars[1].vt = VT_I2;
 pvars[1].iVal= x;
 pvars[0].vt = VT_I2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pvars[0].vt = VT_I2;
 pvars[0].iVal= y;
 DISPPARAMS disp = { pvars, NULL, 2, 0 };
 pDispatch->Invoke(0x2, IID_NULL,
 LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &disp,
 NULL, NULL, NULL);
 }
 }
 delete[] pvars;

 }
 VOID Fire_SnakeEyes()
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0;
 nConnectionIndex < nConnections;
 nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch =
 reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 DISPPARAMS disp = { NULL, NULL, 0, 0 };
 pDispatch->Invoke(0x3, IID_NULL,
 LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &disp,
 NULL, NULL, NULL);
 }
 }

 }
};
The C++ class generated by the connection point generator serves a dual purpose. First, it acts as
the specific connection point. (Notice that it derives from IConnectionPointImpl.) Second, the class
serves as a proxy to the interface implemented by the container. For example, if you want to call
over to the client and tell the client that doubles were rolled, you'd simply call the proxy's
Fire_Doubles function. Notice how the proxy wraps the IDispatch call so that you don't have to get
your hands messy dealing with variants by yourself.

Establishing the Connection and Firing the Events The final step in setting up the event set is
to add the connection point to the dice control and turn on the IConnectionPointContainer interface.
The connection point dialog box added the CProxy_IATLDiceObjEvents class to the dice control's
inheritance list, which provides the IConnectionPoint implementation inside the control. An ATL
class named IConnectionPointContainerImpl provides the implementation of
IConnectionPointContainer. These two interfaces should be in the dice control's inheritance list like
this:

class CATLDiceObj :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CStockPropImpl<CATLDiceObj, IATLDieceObj,
 &IID_IATLDieceObj,
 &LIBID_ATLDICESRVRLib>,
 public CComControl<CATLDiceObj>,
 public IPersistStreamInitImpl<CATLDiceObj>,
 public IOleControlImpl<CATLDiceObj>,
 public IOleObjectImpl<CATLDiceObj>,
 public IOleInPlaceActiveObjectImpl<CATLDiceObj>,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public IOleInPlaceActiveObjectImpl<CATLDiceObj>,
 public IViewObjectExImpl<CATLDiceObj>,
 public IOleInPlaceObjectWindowlessImpl<CATLDiceObj>,
 public IConnectionPointContainerImpl<CATLDiceObj>,
 public IPersistStorageImpl<CATLDiceObj>,
 public ISpecifyPropertyPagesImpl<CATLDiceObj>,
 public IQuickActivateImpl<CATLDiceObj>,
 public IDataObjectImpl<CATLDiceObj>,
 public IProvideClassInfo2Impl<&CLSID_ATLDiceOb,
 &DIID__IATLDiceObjEvents,
 &LIBID_ATLDICESRVRLib>,
 public IPropertyNotifySinkCP<CATLDiceObj>,
 public CComCoClass<CATLDiceObj, &CLSID_ATLDiceOb>,
 public CProxy_DDiceEvents< CATLDiceObj >
{
.
.
.
};
Having these classes in the inheritance list inserts the machinery in your control that makes
connection points work. Whenever you want to fire an event to the container, all you need to do is
call one of the functions in the proxy. For example, a good time to fire these events is from within
the control's OnTimer method, firing a DiceRolled event whenever the timer stops, firing a
SnakeEyes event whenever both die faces have the value 1, and firing a Doubles event when both
die faces are equal:

CATLDiceObj::OnTimer(UINT msg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled) {

 if(m_nTimesRolled > m_nTimesToRoll) {
 m_nTimesRolled = 0;
 KillTimer(1);
 Fire_DiceRolled(m_nFirstDieValue, m_nSecondDieValue);
 if(m_nFirstDieValue == m_nSecondDieValue)
 Fire_Doubles(m_nFirstDieValue);
 if(m_nFirstDieValue == 1 &&
 m_nSecondDieValue == 1)
 Fire_SnakeEyes();
 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();
 m_nTimesRolled++;
 }
 bHandled = TRUE;
 return 0;
}
Finally, notice the connection map contains entries for the control's connection points:

BEGIN_CONNECTION_POINT_MAP(CATLDiceObj)
 CONNECTION_POINT_ENTRY(DIID__IATLDiceObjEvents)
 CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)
END_CONNECTION_POINT_MAP()
The control uses this map to hand back connection points as the client requests them.

Using the Control

So how do you use the control once you've written it? The beauty of COM is that as long as the
client and the object agree on their shared interfaces, they don't need to know anything else about
each other. All the interfaces implemented within the dice control are well understood by a number
of programming environments. You've already seen how to use ActiveX Controls within an MFC-
based dialog box. The control you just wrote will work fine within an MFC-based dialog box—just
use the Add To Project menu option under the Project menu. Select Registered ActiveX Controls
and insert the ATLDiceOb component into your project. Visual C++ will read the dice control's type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and insert the ATLDiceOb component into your project. Visual C++ will read the dice control's type
information and insert all the necessary COM glue to make the dialog box and the control talk
together. (This includes all the OLE embedding interfaces as well as the connection and event
interfaces.) In addition, you could just as easily use this control from within a Visual Basic form.
When working on a Visual Basic project, select References from the Project menu and insert the
dice control into the Visual Basic project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
ActiveX Controls are one of the most widely used applications of COM in the real world today. To
summarize, ActiveX controls are just COM objects that happen to implement a number of standard
interfaces that environments like Visual C++ and Visual Basic understand how to use. These interfaces
deal with rendering, persistence, and events, allowing you to drop these components into the
aforementioned programming environments and use them right away.

In the past, MFC was the only practical way to implement ActiveX Controls. However, these days ATL
provides a reasonable way of implementing ActiveX Controls, provided you're willing to follow ATL's rules.
For example, if you buy into the ATL architecture for writing controls, you'll have to dip down into Windows
and start working with window handles and device context handles in their raw forms. However, the
tradeoff is often worthwhile, because ATL provides more flexibility when developing ActiveX controls. For
example, dual interfaces are free when using ATL, whereas they're a real pain to implement in MFC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 31
Database Management with Microsoft ODBC
Microcomputers became popular, in part, because businesspeople saw them as a low-cost means of
tracking inventory, processing orders, printing payroll checks, and so forth. Business applications required
fast access to individual records in a large database. One of the first microcomputer database tools was
dBASE II, a single-user product with its own programming language and file format. Today Windows
programmers have a wide choice of programmable database management systems (DBMS's), including
Inprise Paradox, Microsoft Access, Microsoft FoxPro, and Powersoft PowerBuilder. Most of these products
can access both local data and remote data on a central computer. The latter case requires the addition of
database server software such as ORACLE or Microsoft SQL Server.

Microsoft SQL Server is included with the Enterprise Edition of Visual C++.

How do you, as an MFC programmer, fit into the picture? Visual C++ contains all the components you'll
need to write C++ database applications for Microsoft Windows. Indeed, the product contains two separate
client-side database access systems: Open Database Connectivity (ODBC) and Data Access Objects (DAO).
In addition, Visual C++ now contains wrapper templates for interacting with data directly through OLE DB.
This chapter covers the ODBC standard, which consists of an extensible set of dynamic link libraries (DLLs)
that provide a standard database application programming interface. ODBC is based on a standardized
version of Structured Query Language (SQL). With ODBC and SQL, you can write database access code
that is independent of any database product.

Visual C++ includes tools and MFC classes for ODBC, and that's the subject of this chapter. You'll learn the
basics of ODBC, and you'll see four sample programs: one that uses the ODBC rowset with support from
the MFC CRecordset class (EX31A), one that uses the MFC CRecordView class (EX31B), one that uses
multiple recordsets (EX31C), and one that uses the CRecordset class without binding (EX31D).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Advantages of Database Management
The serialization process, introduced in Chapter 17 and Chapter 18, ties a document object to a disk file.
All the document's data must be read into memory when the document is opened, and all the data must
be written back to disk when an updated document is closed. Obviously, you can't serialize a document
that's bigger than the available virtual memory. Even if the document is small enough to fit in memory,
you might not need to read and write all the data every time the program runs.

You could program your own random access disk file, thus inventing your own DBMS, but you probably
have enough work to do already. Besides, using a real DBMS gives you many advantages, including the
following:

Use of standard file formats—Many people think of dBASE/Xbase DBF files when they think of
database formats. This is only one database file format, but it's a popular one. A lot of data is
distributed in DBF files, and many programs can read and write in this format. Lately, the Microsoft
Access MDB format has become popular, too. With the MDB format, all of a database's tables and
indexes can be contained in a single disk file.

Indexed file access—If you need quick access to records by key (a customer name, for example),
you need indexed file access. You could always write your own B-tree file access routines, but that's
a tedious job that's been done already. All DBMS's contain efficient indexed access routines.

Data integrity safeguards—Many professional DBMS products have procedures for protecting
their data. One example is transaction processing. A transaction encompasses a series of related
changes. If the entire transaction can't be processed, it is rolled back so that the database reverts
to its original state before the transaction.

Multiuser access control—If your application doesn't need multiuser access now, it might in the
future. Most DBMS's provide record locking to prevent interference among simultaneous users.
Some multiuser DBMS's use the client-server model, which means that most processing is handled
on a single database server computer; the workstations handle the user interface. Other multiuser
DBMSs handle database processing on the workstations, and they control each workstation's access
to shared files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structured Query Language
You could not have worked in the software field without at least hearing about Structured Query Language
(SQL), a standard database access language with its own grammar. In the SQL world, a database is a
collection of tables that consist of rows and columns. Many DBMS products support SQL, and many
programmers know SQL. The SQL standard is continually evolving, and SQL grammar varies among
products. SQL extensions, such as blob (binary large object) capability, allow storage of pictures, sound,
and complex data structures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ODBC Standard
The Microsoft Open Database Connectivity (ODBC) standard defines not only the rules of SQL grammar but
also the C-language programming interface to any SQL database. It's now possible for a single compiled C
or C++ program to access any DBMS that has an ODBC driver. The ODBC Software Development Kit
(SDK), included with Visual C++, contains 32-bit drivers for DBF files, Microsoft Access MDB databases,
Microsoft Excel XLS files, Microsoft FoxPro files, ASCII text files, and Microsoft SQL Server databases.

Other database companies, including Oracle, Informix, Progress, Ingres, and Centura Software, provide
ODBC drivers for their own DBMS's. If you develop an MFC program with the dBASE/Xbase driver, for
example, you can run the same program with an Access database driver. No recompilation is necessary—
the program simply loads a different DLL.

Not only can C++ programs use ODBC but other DBMS programming environments can also take
advantage of this new standard. You could write a C++ program to update a SQL Server database, and
then you could use an off-the-shelf ODBC-compatible report writer to format and print the data. ODBC
thus separates the user interface from the actual database-management process. You no longer have to
buy your interface tools from the same company that supplies the database engine.

Some people have criticized ODBC because it doesn't let programmers take advantage of the special
features of some particular DBMS's. Well, that's the whole point! Programmers only need to learn one
application programming interface (API), and they can choose their software components based on price,
performance, and support. No longer will developers be locked into buying all their tools from their
database suppliers.

What's the future of ODBC? That's a difficult question. Microsoft is driving the standard, but it isn't actually
"selling" ODBC; it's giving ODBC away for the purpose of promoting other products. Other companies are
selling their own proprietary ODBC libraries. Meanwhile, Microsoft has introduced OLE-based DAO, which
relies on the Jet database engine from Microsoft Access. (Chapter 32 describes DAO and compares its
features with the features of ODBC.) And if that isn't enough, Microsoft is in the process of introducing OLE
DB, an alternative to ODBC based on the Component Object Model (COM). Chapter 33 covers Visual C++'s
new templates for wrapping OLE DB consumer and provider code.

The ODBC Architecture

ODBC's unique DLL-based architecture makes the system fully modular. A small top-level DLL,
ODBC32.DLL, defines the API. ODBC32.DLL loads database-specific DLLs, known as drivers, during
program execution. With the help of the Windows Registry (maintained by the ODBC Administrator module
in the Windows Control Panel), ODBC32.DLL tracks which database-specific DLLs are available and thus
allows a single program to access data in several DBMSs simultaneously. A program could, for example,
keep some local tables in DBF format and use other tables controlled by a database server. Figure 31-1
shows the 32-bit ODBC DLL hierarchy.

Note from this figure that many standard database formats can be accessed through the Microsoft Access
Jet database engine, a redistributable module packaged with Visual C++. If, for example, you access a
DBF file through the Jet engine, you're using the same code that Microsoft Access uses.

ODBC SDK Programming

If you program directly at the ODBC C-language API level, you must know about three important ODBC
elements: the environment, the connection, and the statement. All three are accessed through handles.

First you need an environment that establishes the link between your program and the ODBC system. An
application usually has only one environment handle.

Next you need one or more connections. The connection references a specific driver and data source
combination. You might have several connections to subdirectories that contain DBF files, and you might
have connections to several SQL servers on the same network. A specific ODBC connection can be
hardwired into a program, or the user can be allowed to choose from a list of available drivers and data
sources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sources.

Figure 31-1. 32-bit ODBC architecture.

ODBC32.DLL has a built-in Windows dialog box that lists the connections that are defined in the Registry
(under HKEY_LOCAL_MACHINE-\SOFTWARE\ODBC). Once you have a connection, you need a SQL
statement to execute. The statement might be a query, such as this:

SELECT FNAME, LNAME, CITY FROM AUTHORS
WHERE STATE = 'UT' ORDER BY LNAME

Or the statement could be an update statement, such as this:

UPDATE AUTHORS SET PHONE = '801 232-5780'
WHERE ID = '357-86-4343'

Because query statements need a program loop to process the returned rows, your program might need
several statements active at the same time. Many ODBC drivers allow multiple active statement handles
per connection.

Look again at the SQL statement above. Suppose there were 10 authors in Utah. ODBC lets you define the
query result as a block of data, called a rowset, which is associated with an SQL statement. Through the
ODBC SDK function SQLExtendedFetch, your program can move forward and backward through the 10
selected records by means of an ODBC cursor. This cursor is a programmable pointer into the rowset.

What if, in a multiuser situation, another program modified (or deleted) a Utah author record while your
program was stepping through the rowset? With an ODBC Level 2 driver, the rowset would probably be
dynamic and ODBC could update the rowset whenever the database changed. A dynamic rowset is called a
dynaset. The Jet engine supports ODBC Level 2, and thus it supports dynasets.

Visual C++ includes the ODBC cursor library module ODBCCR32.DLL, which supports static rowsets (called
snapshots) for Level 1 drivers. With a snapshot, a SELECT statement causes ODBC to make what amounts
to a local copy of the 10 author records and build an in-memory list of pointers to those records. These
records are guaranteed not to change once you've scrolled through them; in a multiuser situation, you
might need to requery the database periodically to rebuild the snapshot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC ODBC Classes—CRecordset and CDatabase
With the MFC classes for Windows, you use C++ objects instead of window handles and device context
handles; with the MFC ODBC classes, you use objects instead of connection handles and statement
handles. The environment handle is stored in a global variable and is not represented by a C++ object.
The two principal ODBC classes are CDatabase and CRecordset. Objects of class CDatabase represent
ODBC connections to data sources, and objects of class CRecordset represent scrollable rowsets. The
Visual C++ documentation uses the term "recordset" instead of "rowset" to be consistent with Microsoft
Visual Basic and Microsoft Access. You seldom derive classes from CDatabase, but you generally derive
classes from CRecordset to match the columns in your database tables.

For the author query in the previous section, you would derive (with the help of ClassWizard) a CAuthorSet
class from CRecordset that had data members for first name, last name, city, state, and zip code. Your
program would construct a CAuthorSet object (typically embedded in the document) and call its inherited
Open member function. Using the values of parameters and data members, CRecordset::Open constructs
and opens a CDatabase object; this function issues an SQL SELECT statement and then moves to the first
record. Your program would then call other CRecordset member functions to position the ODBC cursor and
exchange data between the database fields and the CAuthorSet data members. When the CAuthorSet
object is deleted, the recordset is closed and, under certain conditions, the database is closed and deleted.
Figure 31-2 shows the relationships between the C++ objects and the ODBC components.

Figure 31-2. MFC ODBC class database relationships.

It's important to recognize that the CAuthorSet object contains data members that represent only one row
in a table, the so-called "current record." The CRecordset class, together with the underlying ODBC rowset
code, manages the database dynaset or snapshot.

It's possible to have several active dynasets or snapshots per data source, and you can
use multiple data sources within the same program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use multiple data sources within the same program.

The important CRecordset member functions discussed in this chapter are summarized in the table below.

Function Description

Open Opens the recordset

AddNew Prepares to add a new record to the table

Update Completes an AddNew or Edit operation by saving the new or edited data in
the data source

Delete Deletes the current record from the recordset

Edit Prepares to implement changes on the current record

IsBOF Determines whether the recordset has been positioned before the first record

IsEOF Determines whether the recordset has been positioned after the last record

MoveNext Sets the current record to the next record or to the next rowset

MoveFirst Sets the current record to the first record in the recordset

MoveLast Sets the current record to the last record or to the last rowset

MovePrev Sets the current record to the previous record or to the previous rowset

GetDefaultConnect Gets the default connect string for the data source on which the recordset is
based

GetDefaultSQL Gets the default SQL string

DoFieldExchange Exchanges data between the recordset data fields and the corresponding
record on the data source

GetStatus Gets the index of the current record in the recordset and the final count
status

GetRecordCount Determines the highest-numbered record yet encountered as the user moves
through the records

GetODBCFieldCount Gets the number of fields in the recordset object

GetODBCFieldInfo Gets information about the fields in the recordset

Counting the Rows in a Recordset

It's difficult to know how many records are contained in an ODBC recordset. ODBC doesn't provide an
accurate count of the rows in a recordset until you've read past the end. Until that time, the count
returned from the CRecordset::GetRecordCount member function is a "high-water mark" that returns only
the last row accessed by CRecordset::MoveNext. The CRecordset::GetStatus function returns a
CRecordsetStatus object, which has a member m_bRecordCountFinal that indicates whether the count is
final.

The CRecordset::MoveLast function does not register the record count for you, even for dynasets. If you
want to know how many records are included in a recordset, loop through the whole table with MoveNext
calls. (A faster alternative is to use the COUNT function.) If your program adds or deletes a record or if
another user adds or deletes a record, the record count is not adjusted.

Processing ODBC Exceptions

Many MFC ODBC calls don't return an error code but instead throw a CDBException object, which contains
a string describing the error. Suppose you are trying to delete a record from a table in an Access database.
Access might be enforcing referential integrity rules, which means that you're not allowed to delete that
row because a row in another table depends on it. If you call CRecordset::Delete, you'll see an ODBC error
message box that came from the MFC base classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

message box that came from the MFC base classes.

You certainly appreciate the error message, but now ODBC has "lost its place" in the recordset, and there
is no longer a current record. Your program needs to detect the error so that it won't call functions that
depend on a current record, such as CRecordset::MoveNext. You must handle the exception in this way:

try {
 m_pSet->Delete();
}
catch(CDBException* e) {
 AfxMessageBox(e->m_strError);
 e->Delete();
 m_pSet->MoveFirst(); // lost our place!
 UpdateData(FALSE);
 return;
}
m_pSet->MoveNext();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Student Registration Database
The Visual C++ Enroll tutorial uses a ready-made sample Access database (STDREG32.MDB) that tracks
students, classes, and instructors. (See Tutorial Samples under Visual C++ Documentation\Samples\MFC
Samples\Database Samples in the online documentation.) Figure 31-3 shows the four database tables and
the relationships among them. The boldfaced fields are indexed fields, and the 1-? relationships represent
referential integrity constraints. If there's at least one section for the course MATH101, for example,
Access prevents the user from deleting the MATH101 course record.

Figure 31-3. The Student Registration database schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX31A Recordset Example
You can use AppWizard to generate a complete forms-oriented database application, and that's what the
Enroll tutorial is all about. If customers or users wanted a straightforward business database application
like that, however, they probably wouldn't call in a Visual C++ programmer; instead, they might use a less
technical tool, such as Microsoft Access. Visual C++ and the MFC ODBC classes are more appropriate for a
complex application that might have an incidental need for database access. You can also use the classes
to make your own general-purpose database query tool.

The EX31A program isolates the database access code from user interface code so that you can see how to
add ODBC database capability to any MFC application. You'll be using ClassWizard to generate a
CRecordset class, but you won't be using the CRecordView class that AppWizard generates when you ask
for a database view application.

The EX31A application is fairly simple. It displays the rows from the student database table in a scrolling
view, as shown in the screen at the end of this section. The student table is part of the Student
Registration (Microsoft Access 97) sample database that's included with Visual C++.

Here are the steps for building the EX31A example:

1. Copy the Student Registration database to your hard disk. You can find the file stdreg32.mdb
in the \Samples\VC98\Mfc\Database\Stdreg directory on the Visual C++ MSDN CD-ROM. Copy it to
the new project directory on your hard disk, and make sure the copy does not have its read-only
attribute set.

2. Run the ODBC Data Source Administrator to install the Student Registration data source.
Click the ODBC icon in the Windows Control Panel. The Visual C++ Setup program should have
already installed the required ODBC drivers on your hard disk. If you are running Windows 95, click
the Drivers button to see whether the Microsoft Access driver is available. If you're running
Windows 98, click the Drivers tab to see whether the Microsoft Access driver is available. (If the
Microsoft Access driver is not available, rerun Visual C++ Setup.) Click the Add button (in Windows
98, the Add button is on the User DSN tab), choose Microsoft Access Driver in the Add Data Source
dialog box (in Windows 98, select the Microsoft Access Driver in the Create New Data Source dialog
box and click the Finish button), and fill in the ODBC Microsoft Access 97 Setup dialog box as shown
here.

Set the database to point to stdreg32.mdb using the Select button. Finally, click the OK button.

If you are using Microsoft Windows NT version 4.0, click on the ODBC icon in the
Windows Control Panel and then click on the ODBC Drivers tab to see whether
the Microsoft Access Driver is available. On the User DSN tab, click the Add
button, choose Microsoft Access Driver in the Create New Data Source dialog
box, click the Finish button, and then fill in the dialog box as shown above.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

box, click the Finish button, and then fill in the dialog box as shown above.

3. Run AppWizard to produce \vcpp32\ex31a\. Specify an SDI application (Step 1 dialog box)
with CScrollView as the view's class type (Step 6 dialog box). Select the Header Files Only option
from the AppWizard Step 2 dialog box, as shown here.

4. Use ClassWizard to create the CEx31aSet recordset class. Choose New from the Add Class
menu, and then fill in the New Class dialog box as shown here.

5. Select the Student Registration database's Student table for the CEx31aSet class. When

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Select the Student Registration database's Student table for the CEx31aSet class. When
you click the OK button in the New Class dialog box, ClassWizard displays the Database Options
dialog box. Select the Student Registration data source, and select the Dynaset option as shown
here.

After you select the data source, ClassWizard prompts you to select a table. Select Student, as
shown here.

6. Examine the data members that ClassWizard generates. Click on the Member Variables tab
for the newly generated CEx31aSet class. ClassWizard should have generated data members based
on student column names, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Declare an embedded recordset object in ex31aDoc.h. Add the following public data member
in the CEx31aDoc class declaration:

CEx31aSet m_ex31aSet;
8. Edit the ex31aDoc.cpp file. Add the line

#include "ex31aSet.h"
just before the line

#include "ex31aDoc.h"
9. Declare a recordset pointer in ex31aView.h. Add the following private data member in the

CEx31aView class declaration:

CEx31aSet* m_pSet;
10. Edit the OnDraw and OnInitialUpdate functions in ex31aView.cpp. Add the following

boldface code:

void CEx31aView::OnDraw(CDC* pDC)
{
 TEXTMETRIC tm;
 pDC->GetTextMetrics(&tm);
 int nLineHeight=tm.tmHeight+tm.tmExternalLeading;
 CPoint pText(0,0);
 int y = 0;
 CString str;
 if (m_pSet->IsBOF()) { // detects empty recordset
 return;
 }
 m_pSet->MoveFirst(); // fails if recordset is empty
 while (!m_pSet->IsEOF()) {
 str.Format("%ld", m_pSet->m_StudentID);
 pDC->TextOut(pText.x, pText.y, str);
 pDC->TextOut(pText.x+1000, pText.y, m_pSet->m_Name);
 str.Format("%d", m_pSet->m_GradYear);
 pDC->TextOut(pText.x+4000, pText.y, str);
 m_pSet->MoveNext();
 pText.y -= nLineHeight;
 }
}
void CEx31aView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(8000, 10500);

 SetScrollSizes(MM_HIENGLISH, sizeTotal);
 m_pSet = &GetDocument()->m_ex31aSet;
 // Remember that documents/views are reused in SDI applications!
 if (m_pSet->IsOpen()) {
 m_pSet->Close();
 }
 m_pSet->Open();
}
Also in ex31aView.cpp, add the line

#include "ex31aSet.h"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "ex31aSet.h"
just before the line

#include "ex31aDoc.h"
11. Edit the ex31a.cpp file. Add the line

#include "ex31aSet.h"
just before the line

#include "ex31aDoc.h"
12. Build and test the EX31A application. Does the resulting screen look like the one shown here?

Adding ODBC Capability to an MFC Application

If you need to add ODBC capability to an existing MFC application, make the following
changes to the project:

Add the following line at the end of StdAfx.h:

#include <afxdb.h>
Edit the RC file in text mode. After the line

"#include ""afxprint.rc"" // printing print preview resources\r\n"
add the line

"#include ""afxdb.rc"" // database resources\r\n"
And after the line

#include "afxprint.rc" // printing print preview resources
add the line

#include "afxdb.rc" // database resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX31A Program Elements
Let's take a look at the major elements in the EX31A program.

Connecting the Recordset Class to the Application

When ClassWizard generates the CEx31aSet class, it adds the CPP and H files to the project—and that's all
it does. It's up to you to link the recordset to your view and to your document. By embedding a CEx31aSet
object inside the CEx31aDoc class, you ensure that the recordset object will be constructed when the
application starts.

The view could always get the recordset from the document, but it's more efficient if the view has its own
recordset pointer. Notice how the view's OnInitialUpdate function sets the m_pSet data member.

If you run AppWizard with either of the Database View options, AppWizard generates a
class derived from CRecordset, a class derived from CRecordView (for ODBC), and all
the necessary linkage as just described. We're not using AppWizard in this mode
because we don't want a form-based application.

The CEx31aView Class's OnInitialUpdate Member Function

The job of the CEx31aView::OnInitialUpdate function is to open the recordset that's associated with the
view. The recordset constructor was called with a NULL database pointer parameter, so the
CRecordset::Open function knows it must construct a CDatabase object and link that database one to one
with the recordset. But how does Open know what data source and table to use? It calls two CRecordset
virtual functions, GetDefaultConnect and GetDefaultSQL. ClassWizard generates implementations of these
functions in your derived recordset class, as shown here:

CString CEx31aSet::GetDefaultConnect()
{
 return _T("ODBC;DSN=Student Registration");
}

CString CEx31aSet::GetDefaultSQL()
{
 return _T("[Student]");
}

ClassWizard and AppWizard place brackets around all column and table [names]. These
brackets are necessary only if the names contain embedded blanks.

GetDefaultSQL is a pure virtual function, so the derived class must implement it. GetDefaultConnect, on
the other hand, has a base class implementation that opens an ODBC dialog box, which in turn prompts
the user for the data source name.

Because documents and views are reused in SDI applications, the OnInitialUpdate function must close any
open recordset before it opens a new recordset. The CRecordSet::IsOpen member function is used to test
this.

The CEx31aView Class's OnDraw Member Function

As in any document_view application, the CEx31aView::OnDraw function is called every time the view is
invalidated and once for every printed page. Here OnDraw inefficiently slogs through every row in the
recordset and paints its column values with the CDC::TextOut function. The principal CRecordset member
functions it calls are MoveFirst and MoveNext. MoveFirst will fail if the recordset is empty, so the initial call
to CRecordset::IsBOF is necessary to detect the beginning-of-file condition. The CRecordset::IsEOF call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to CRecordset::IsBOF is necessary to detect the beginning-of-file condition. The CRecordset::IsEOF call
detects the end-of-file condition for the recordset and terminates the row loop.

Remember that ClassWizard generated CEx31aSet class data members for the recordset's columns. This
means that the recordset class and now the view class are both hard-coded for the student record. The
CRecordset member functions call a pure virtual function, DoFieldExchange, that ClassWizard generates
based on the data members m_StudentID, m_Name, and m_GradYear. Here is the code for this example's
derived recordset class:

void CEx31aSet::DoFieldExchange(CFieldExchange* pFX)
{
 //{{AFX_FIELD_MAP(CEx31aSet)
 pFX->SetFieldType(CFieldExchange::outputColumn);
 RFX_Long(pFX, _T("[StudentID]"), m_StudentID);
 RFX_Text(pFX, _T("[Name]"), m_Name);
 RFX_Int(pFX, _T("[GradYear]"), m_GradYear);
 //}}AFX_FIELD_MAP
}
Each SQL data type has a record field exchange (RFX) function. RFX functions are quite complex and are
called many times during database processing. You might think at first that the RFX functions are like the
CDialog DDX functions and thus actually transfer data between the database and the data members. This
is not the case. The primary purpose of the RFX functions is to bind the database columns to the data
members so that the underlying ODBC functions, such as SQLExtendedFetch, can transfer the column
data. To this end, the DoFieldExchange function is called from CRecordSet::Open. DoFieldExchange is also
called by the Move functions for the purpose of reallocating strings and clearing status bits.

Because the DoFieldExchange function is so tightly integrated with MFC database processing, you are
advised not to call this function directly in your programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Filter and Sort Strings
SQL query statements can have an ORDER BY clause and a WHERE clause. The CRecordset class has a
public data member m_strSort that holds the text of the ORDER BY clause (excluding the words "ORDER
BY"). Another public data member, m_strFilter, holds the text of the WHERE clause (excluding the word
"WHERE"). You can set the values of these strings prior to opening the recordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Joining Two Database Tables
Most database programmers know that a join is one big logical table composed of fields from two or more
related tables. In the Student Registration database, you could join the Student table with the Enrollment
table to get a list of students and the classes they are enrolled in.

Joins are easy to do with Visual C++ because ClassWizard lets you add tables to an existing recordset. A
few additional programming tasks are needed, though. Here are the steps for joining the Enrollment table
to the Student table in EX31A.

1. Use ClassWizard to access the CEx31aSet class on the Member Variables tab. Click the Update
Columns button, and then select the Enrollment table from the Student Registration database. If
you get a warning message indicating that the data source does not contain all the columns that the
recordset classes need, click the Yes button to continue. Then click the Bind All button to add the
data members for the Enrollment fields.

2. Edit the CEx31aSet::GetDefaultSQL function, as shown here, to access the Student and Enrollment
tables:

CString CEx31aSet::GetDefaultSQL()
{
 return _T("[Student],[Enrollment]");
}

3. Two StudentID fields are now in the joined table. In the CEx31aSet::DoFieldExchange function, edit
the StudentID line to qualify the field with a table name:

RFX_Long(pFX, _T("[Student].[StudentID]"), m_StudentID);
4. In the CEx31aView::OnInitialUpdate function, set the recordset's m_strFilter string as follows:

m_pSet->m_strFilter = "[Student].[StudentID] =
 [Enrollment].[StudentID]";

5. In the CEx31aView::OnDraw function, add code to display the new Enrollment fields. Here is a
sample:

pDC->TextOut(pText.x+5000, pText.y, m_pSet->m_CourseID);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRecordView Class
The CRecordView class is a form view class that's attached to a recordset. Figure 31-4 illustrates an MFC
record view application. The toolbar buttons enable the user to step forward and backward through a
database table.

Figure 31-4. An MFC application based on the CRecordView class.

Like the CFormView class, the CRecordView class depends on a dialog template resource. The CFormView
class has data members that correspond to the controls in the dialog box, but the CRecordView class
accesses data members in a foreign object, namely the attached CRecordset object. When the user enters
data in the controls, the record view's DDX (Dialog Data Exchange) code moves the data into the
recordset's data members, which are bound to database columns by the recordset's RFX (Record Field
Exchange) code.

When you specify a database view application, AppWizard generates a class derived from CRecordView
together with an empty dialog template. AppWizard also generates a class derived from CRecordset, so it
must ask you for a database table name. At runtime, the record view object and the recordset object are
connected. Your job is to add controls to the dialog template and match the controls to recordset data
members—no C++ programming is required to create a working form-based database application.

AppWizard generates a read-only, view-based database application. If you want to modify, add, and delete
records, you must do some coding. The default behavior of the resulting application matches the behavior
of Visual Basic and Access, which is a little weird. A record is added or modified only when the user moves
out of it. If that's what you want, you can pattern your applications after the ENROLL sample program in
the \ \Samples\VC98\Mfc\Tutorial\Enroll directory on the Visual C++ MSDN CD-ROM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX31B Record View Example
The EX31B example is an "add-change-delete" application that's different from the Access model. The user
must explicitly add, update, and delete records. Even if you prefer the Access-style behavior, you can learn
a lot about the CRecordView class by going through the steps in the EX31B example.

Here are the steps for building the EX31B example:

1. Run AppWizard to produce \vcpp32\ex31b. As you move through the AppWizard steps, select
Single Document Interface (Step 1 dialog box) and Database View Without File Support (Step 2). In
the Step 2 dialog box, also click the Data Source button and choose the ODBC datasource named
Student Registration. Choose Dynaset as the Recordset Type, then select the Instructor table.
Finally, deselect Printing And Print Preview (Step 4). The options and the default class names are
shown below.

2. Add edit controls to the IDD_EX31B_FORM template. Use the IDs IDC_ID, IDC_NAME, and
IDC_ROOM, and position the controls as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Use ClassWizard to link the edit controls to the recordset data members. To add a data
member, click on the Member Variables tab and choose the ID corresponding to the edit box for
each variable. Click the Add Variable button, and click the arrow in the Member Variable Name
combo box to display a list of variables. Select only the appropriate variable, as shown here.

When you're finished adding variable names for each edit box, you'll see a screen like the one
shown here.

4. Build and test the EX31B application.You should have a working read-only database application
that looks like Figure 31-4. Use the toolbar buttons to sequence through the instructor records.

5. Back up your database. Now you're going to include the logic to add, change, and delete records.
It's a good idea to make a copy of the STDREG32.MDB file first. That way you have something to
refer back to after you delete all the records.

6. Add menu commands. Add the following items to the Record pop-up menu in the
IDR_MAINFRAME menu. Also, use ClassWizard to map the commands to the specified CEx31bView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDR_MAINFRAME menu. Also, use ClassWizard to map the commands to the specified CEx31bView
class members.

Menu
Command

Command ID Command
Handler

Update Command UI
Handler

Add Record ID_RECORD_ADD OnRecordAdd

Clear Fields ID_RECORD_CLEARFIELDS OnRecordClearfields

Delete Record ID_RECORD_DELETE OnRecordDelete OnUpdateRecordDelete

Update Record ID_RECORD_UPDATE OnRecordUpdate OnUpdateRecordUpdate

7. Add and override the OnMove function in the CEx31bView class. The CRecordView::OnMove
function does the work of updating the database when the user moves out of a record. Because we
don't want this behavior, we must override the function as follows:

BOOL CEx31bView::OnMove(UINT nIDMoveCommand)
{
 switch (nIDMoveCommand)
 {
 case ID_RECORD_PREV:
 m_pSet->MovePrev();
 if (!m_pSet->IsBOF())
 break;
 case ID_RECORD_FIRST:
 m_pSet->MoveFirst();
 break;
 case ID_RECORD_NEXT:
 m_pSet->MoveNext();
 if (!m_pSet->IsEOF())
 break;
 if (!m_pSet->CanScroll()) {
 // Clear screen since we're sitting on EOF
 m_pSet->SetFieldNull(NULL);
 break;
 }
 case ID_RECORD_LAST:
 m_pSet->MoveLast();
 break;
 default:
 // unexpected case value
 ASSERT(FALSE);
 }
 // Show results of Move operation
 UpdateData(FALSE);
 return TRUE;
}
Also, add the declaration for this overridden function to the ex31bView.h header file.

8. Edit the menu command handlers.The following functions call various CRecordset member
functions to edit the database. To add a record, you must call CRecordset::AddNew, followed by
Update. To modify a record, you must call CRecordset::Edit, followed by Update. When you add a
new record to the database, you should call CRecordset::MoveLast because the new record is
always added to the end of the dynaset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you have a sorted recordset (or if your ODBC driver doesn't put added records
in the recordset), you should call CRecordset::Requery to completely regenerate
the recordset. In that case, there's no convenient way to position the cursor on
the newly added record, and that's a basic problem with SQL.

Add the following boldface code:

void CEx31bView::OnRecordAdd()
{
 m_pSet->AddNew();
 UpdateData(TRUE);
 if (m_pSet->CanUpdate()) {
 m_pSet->Update();
 }
 if (!m_pSet->IsEOF()) {
 m_pSet->MoveLast();
 }
 m_pSet->Requery(); // for sorted sets
 UpdateData(FALSE);
}

void CEx31bView::OnRecordClearfields()
{
 m_pSet->SetFieldNull(NULL);
 UpdateData(FALSE);
}

void CEx31bView::OnRecordDelete()
{
 CRecordsetStatus status;
 try {
 m_pSet->Delete();
 }
 catch(CDBException* e) {
 AfxMessageBox(e->m_strError);
 e->Delete();
 m_pSet->MoveFirst(); // lost our place!
 UpdateData(FALSE);
 return;
 }
 m_pSet->GetStatus(status);
 if (status.m_lCurrentRecord == 0) {
 // We deleted last of 2 records
 m_pSet->MoveFirst();
 }
 else {
 m_pSet->MoveNext();
 }
 UpdateData(FALSE);
}

void CEx31bView::OnUpdateRecordDelete(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_pSet->IsEOF());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pCmdUI->Enable(!m_pSet->IsEOF());
}

void CEx31bView::OnRecordUpdate()
{
 m_pSet->Edit();
 UpdateData(TRUE);
 if (m_pSet->CanUpdate()) {
 m_pSet->Update();
 }
// should requery if key field changed
}

void CEx31bView::OnUpdateRecordUpdate(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_pSet->IsEOF());
}

9. Build and test the EX31B application again. Now you can add, change, and delete records.
Observe what happens if you try to add a record with a duplicate key. You get an error message
that comes from an exception handler inside the framework. You can add try/catch logic in
OnRecordAdd to customize the error processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multiple Recordsets
Both the EX31A and EX31B examples relied on a single recordset. In many cases, you'll need simultaneous
access to multiple recordsets. Suppose you're writing a program that lets the user add Section records, but
you want the user to select a valid CourseID and InstructorID. You'll need auxiliary Course and Instructor
recordsets in addition to the primary Section recordset.

In the previous examples, the view object contained an embedded recordset that was created with the
CRecordset default constructor, which caused the creation of a CDatabase object. The view's
OnInitialUpdate function called CRecordset::Open, which called the virtual CRecordset::GetDefaultConnect
function, opened the database, and then called the virtual CRecordset::GetDefaultSQL function. The
problem with this scenario is that there can be only one recordset per database because the database is
embedded in the recordset.

To get multiple recordsets, you have to do things differently—you must create the CDatabase object first.
Then you can construct as many recordsets as you want, passing a CDatabase pointer as a parameter to
the CRecordset constructor. You start by embedding a CDatabase object in the document in place of the
CRecordset object. You also include a pointer to the primary recordset. Here are the document data
members:

CEx31bSet* m_pEx31bSet;
CDatabase m_database;
In your overridden CDocument::OnNewDocument function, you construct the primary recordset on the
heap, passing the address of the CDatabase object to the recordset constructor. Here's the code you
insert:

if (m_pEx31bSet == NULL) {
 m_pEx31bSet = new CEx31bSet(&m_database);
 CString strConnect = m_pEx31bSet->GetDefaultConnect();
 m_database.Open(NULL, FALSE, FALSE, strConnect, FALSE);
}
The CRecordView::OnInitialUpdate function still opens the recordset, but this time CRecordset::Open does
not open the database. (It's already open.) Now the code for setting the view's m_pSet data member is a
little different:

m_pSet = GetDocument()->m_pEx31bSet;
Figure 31-5 shows the new relationship between the document, the view, and the primary recordset. Also
shown are possible auxiliary recordsets.

Figure 31-5. Object relationships for multiple recordsets.

The EX31C Multiple Recordset Example

The EX31C program is similar to EX31B except that the new database_recordset relationships are
implemented and an auxiliary recordset allows listing of the sections an instructor teaches. The EX31C
window looks like the screen shown below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window looks like the screen shown below.

Build the EX31C project, and test the application. Sequence through the instructor records, and watch the
Sections Taught list change.

As you can see, there's a new list-box control in the form dialog box. Also, there's one short helper
function in the view class, LoadListbox, which loads the list box with the rows in the Section recordset, as
shown here:

void CEx31cView::LoadListbox()
{
 CEx31cDoc* pDoc = GetDocument();
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_SECTIONS);
 CSectionSet sect(&pDoc->m_database); // db passed via constructor

 sect.m_strFilter.Format("InstructorID = `%s'",
 (LPCSTR) m_pSet->m_InstructorID);

 sect.Open();
 pLB->ResetContent();
 while (!sect.IsEOF()) {
 pLB->AddString(sect.m_CourseID + " " + sect.m_SectionNo);
 sect.MoveNext();
 }
 // sect closed by CRecordset destructor
}
Notice that this function sets up a filter string based on the value of the InstructorID field in the primary
recordset. LoadListbox is called from these member functions: OnInitDialog, OnMove, OnUpdate,
OnRecordAdd, and OnRecordDelete.

Parameterized Queries

The EX31C example sets up and executes a new query each time it accesses the auxiliary recordset. It's
more efficient, however, if you set up a single parameterized query, which enables ODBC to bind to a
parameter in your program. You can simply change the value of that parameter and re-execute the query.

Here are the steps for querying the section set for all the sections a selected instructor teaches.

1. Add a parameter data member to the section recordset class:

CString m_InstructorIDParam;
2. Add the following line to the section recordset constructor, which sets the value of the inherited

m_nParams data member to the total number of query parameters, in this case 1:

m_nParams = 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Add the following code to the section recordset DoFieldExchange function:

pFX->SetFieldType(CFieldExchange::param);
RFX_Text(pFX, "Param", m_InstructorIDParam); // Any name will do

4. Add the following code to the view class prior to calling Open for the section recordset:

sect.m_strFilter = "InstructorID = ?";
sect.m_InstructorIDParam = m_pSet->m_InstructorID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ODBC Multithreading
ODBC itself supports multithreaded programming, but not all ODBC drivers do. In particular, the Access
driver you've used for the preceding examples does not support multithreading, but the Microsoft SQL
Server driver does. Even if your ODBC driver does not support multithreading, you can put all your
database access code in a worker thread if you want to. (Multithreaded programming and worker threads
are described in Chapter 12.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bulk Row Fetches
If you're using Microsoft SQL Server or another client_server DBMS, you can speed up your database
access by using the bulk row_fetch feature of ODBC that is now supported by the CRecordset class. As the
name implies, your program fetches multiple records from the data source instead of only one record at a
time. The data source is bound to elements in an array that is attached to an object of a class derived from
CRecordset. Currently, no MFC support exists for adding, changing, or deleting records from a bulk-
fetch_enabled recordset. (See the InfoView article "Recordset: Fetching Records in Bulk (ODBC)" for
details.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Recordsets Without Binding
All three of the examples in this chapter used recordset classes derived from CRecordset. The data
members of those classes were bound to database columns at recordset creation time using the ODBC
binding mechanism. When the programs called CRecordset::Move, the ODBC driver copied data directly
from the data source into the data members.

ODBC has always supported unbound data access through the functions SQLGetData and SQLPutData.
Now the CRecordset class supports read-only unbound data access through its GetFieldValue member
function. One overloaded version of this function retrieves the value of a field specified by name and then
stores it in an object of class CDBVariant. This class is similar to the COleVariant class described in Chapter
25, but it does not use any OLE code and it doesn't have as many overloaded operators and member
functions. The COleVariant class has a data member, m_dwType, followed by a union. If the type code is
DBVT_LONG, for example, you access an integer in the union member m_lVal.

You can use CRecordset::GetFieldValue for circumstances in which you don't know the database schema at
design time. Your "dynamic database" program constructs an object of class CRecordset, and you access
the column values with code like this:

void CEx31dView::DrawDataRow(CDC* pDC, int y)
{
 int x = 0;
 CString strTime, str;
 CEx31dDoc* pDoc = GetDocument();
 for (int i = 0; i < pDoc->m_nFields; i++) {
 CDBVariant var; // must declare this inside the loop
 m_pSet->GetFieldValue(i, var);
 switch (var.m_dwType) {
 case DBVT_STRING:
 str = *var.m_pstring; // narrow characters
 break;
 case DBVT_SHORT:
 str.Format("%d", (int) var.m_iVal);
 break;
 case DBVT_LONG:
 str.Format("%d", var.m_lVal);
 break;
 case DBVT_SINGLE:
 str.Format("%10.2f", (double) var.m_fltVal);
 break;
 case DBVT_DOUBLE:
 str.Format("%10.2f", var.m_dblVal);
 break;
 case DBVT_DATE:
 str.Format("%d/%d/%d", var.m_pdate->month, var.m_pdate->day,
 var.m_pdate->year);
 break;
 case DBVT_BOOL:
 str = (var.m_boolVal == 0) ? "FALSE" : "TRUE";
 break;
 case DBVT_NULL:
 str = "——";
 break;
 default:
 str.Format("Unk type %d\n", var.m_dwType);
 TRACE("Unknown type %d\n", var.m_dwType);
 }
 pDC->TextOut(x, y, str);
 x += pDoc->m_arrayFieldSize[i] * m_nCharWidth;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The code above is excerpted from a sample program EX31D, which is on the CD-ROM included with this
book. That program uses the CRowView code from the DAO example, EX32A, described in the next
chapter. The programs EX31D and EX32A are similar in architecture and function. EX31D uses ODBC, and
EX32A uses DAO.

Although MFC gives you the CRecordset functions GetODBCFieldCount and GetODBCFieldInfo to get field
lengths and types, you must call the ODBC function SQLTables to get a "table of tables." The CTables class
in the EX31D project encapsulates this table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 32
Database Management with Microsoft Data Access Objects
In Chapter 31, you saw database management programming with the Microsoft Foundation Class (MFC)
Library and Microsoft Open Database Connectivity (ODBC). In this chapter, you'll see a completely different
database programming approach—the MFC Data Access Objects (DAO) classes and the underlying DAO
software. Actually, the approach is not so different. Instead of the ODBC classes CDatabase and
CRecordset, you'll be using CDaoDatabase and CDaoRecordset. The ODBC and DAO classes are so similar
(many member function names are the same) that you can convert ODBC applications, such as the
examples in Chapter 31, to DAO applications simply by changing class names and little else. Thus, you can
look at DAO as a sort of replacement for ODBC. But as you'll see, DAO goes far beyond ODBC.

This chapter merely scratches the surface of DAO, highlighting its features and outlining the differences
between DAO and ODBC. Along the way, it explains the relationships between DAO, COM, the Microsoft Jet
database engine, Visual Basic for Applications (VBA), and the MFC library. Finally, it presents a dynamic
database example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO, COM, and the Microsoft Jet Database Engine
One feature of DAO is a set of COM interfaces, which, like all COM interfaces, are nothing more than
specifications—sets of pure virtual function declarations. These interfaces have names such as
DAOWorkspace, DAODatabase, and DAORecordset. (Notice that these interface names don't begin with the
letter I as do most other interface names.)

The other feature of DAO is the implementation of those interfaces. Microsoft supplies the COM module
DAO350.DLL, which connects to the same Jet database engine DLL that serves the Microsoft Access
database product. As a Visual C++ developer, you have royalty-free redistribution rights to these DLLs. At
the moment, the only DAO implementation available with Jet is DAO350.DLL, but nothing prevents other
database software companies from providing their own DAO implementations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO and VBA
In Chapter 25, you learned about Automation. A VBA Automation controller (such as Microsoft Excel or
Microsoft Visual Basic) can load any Automation component and then use it to create objects. Once the
objects are created, the component can get and set properties and can call methods. The components you
created in Chapter 25 all communicated through the COM IDispatch interface. But VBA can use interfaces
other than IDispatch to communicate with a component.

If you look in the Windows Registry under HKEY_CLASSES_ROOT-\TypeLib, you'll find the class ID
{00025E01-0000-0000-C000-000000000046} and the pathname for DAO350.DLL, which contains the DAO
type library. If you select this item as a VBA reference (by pressing Alt-F11 in Excel and then choosing
Object Browser from the Visual Basic View menu, for example), your VBA programs can use the DAO
objects and you can browse the DAO library, as shown here.

Like IDispatch servers, the Microsoft DAO component implements objects that have properties and
methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO and MFC
The MFC library has the following five DAO database classes.

Class Use

CDaoWorkspace An interface for managing a single user's database session

CDaoDatabase An interface for working with a database

CDaoRecordset An interface for working with a set of records (such as table-type recordsets,
dynaset-type recordsets, or snapshot-type recordsets)

CDaoTableDef An interface for manipulating a definition of a base table or an attached table

CDaoQueryDef An interface for querying a database

These classes more or less wrap the COM interfaces with corresponding names. (CDaoRecordset wraps
DAORecordset, for example.) The CDaoWorkspace class actually wraps two interfaces, DAOWorkspace and
DAODBEngine. The MFC wrapping is fairly complete, so you need to make direct COM DAO calls only when
you need access to certain database security features. If you use the MFC library, all reference counting is
taken care of; if you call DAO directly, you must be sure to call Release on your interfaces.

Both AppWizard and ClassWizard fully support DAO. You can use AppWizard to generate a complete form-
based application that works like EX31B in Chapter 31, and you can use ClassWizard to generate a table-
specific class that is derived from CDaoRecordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Databases Can You Open with DAO?
The following four database options are supported by DAO:

Opening an Access database (MDB file)—An MDB file is a self-contained database that includes
query definitions, security information, indexes, relationships, and of course the actual data tables.
You simply specify the MDB file's pathname.

Opening an ODBC data source directly—There's a significant limitation here. You can't open an
ODBC data source that uses the Jet engine as a driver; you can use only data sources that have
their own ODBC driver DLLs.

Opening an ISAM-type (indexed sequential access method) data source (a group of
dBASE, FoxPro, Paradox, Btrieve, Excel, or text files) through the Jet engine—Even if
you've set up an ODBC data source that uses the Jet engine to access one of these file types, you
must open the file as an ISAM-type data source, not as an ODBC data source.

Attaching external tables to an Access database—This is actually the preferred way of using
DAO to access ODBC data. First you use Access to attach the ODBC tables to an MDB file, and then
you use DAO to open the MDB file as in the first option. You can also use Access to attach ISAM files
to an MDB file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using DAO in ODBC Mode—Snapshots and Dynasets
You've already heard that DAO goes far beyond ODBC, but let's take things one step at a time. We'll start
with DAO snapshots and dynasets, which behave pretty much the same way in DAO as they do in ODBC.
You can use snapshots and dynasets with ODBC data sources, ISAM-type files, and Access tables. You
write programs using the MFC library classes CDaoDatabase and CDaoRecordset, which are very similar to
the ODBC classes CDatabase and CRecordset. There are a few notable differences, however:

The CDaoRecordset::GetRecordCount function works differently from the
CRecordset::GetRecordCount function. For attached tables and ODBC data sources,
CDaoRecordset::GetRecordCount always returns -1. For Access tables and ISAM-type files, it
returns the number of records actually read, which is the final count for the recordset only if you
have moved to the last record. Unfortunately, DAO has no equivalent for the ODBC
CRecordset::GetStatus function, so you can't test a DAO recordset to find out whether the record
count is indeed final.

With DAO, you can get and set the absolute position of the current record in a dynaset or a
snapshot, you can get and set a percent position, you can find a record containing a matching
string, and you can use bookmarks to mark records for later retrieval.

DAO makes it easy to get and set column values without binding. Because values are passed as
VARIANTs, you can build dynamic applications that adjust to the database schema at runtime.

One important thing to remember about snapshot recordsets is that the record count never changes. With
dynasets, the record count changes only if you delete or add records in the dynaset. If another user
deletes a record, that record is marked as deleted in your dynaset; if another user adds a record, you don't
see that record in your dynaset. If you add a record to a dynaset, that record is added at the end of the
dynaset, regardless of the sort order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO Table-Type Recordsets
DAO introduces a new type of recordset unknown in the ODBC universe. A table-type recordset (supported
by the CDaoRecordset class) is a direct view of an entire database table. You can use a table-type
recordset only with a table in an Access database. Table-type recordsets have the following characteristics
that distinguish them from snapshots and dynasets:

The CDaoRecordset::GetRecordCount function returns an approximate record count that reflects
records added or deleted by other users.

You can't use the CDaoRecordset functions that access a record's absolute position or percent
position.

The CDaoRecordset::Seek function lets you position to a record by key value. You first call the
CDaoRecordset::SetCurrentIndex function to select the index.

If you add a record to a table-type recordset, the record is added in its proper place using the sort
order that is determined by the current index.

The table-type recordset is a significant departure from ODBC and SQL. You can now select an individual
record without first issuing a query. You can find a record with one index and then move sequentially using
a different index. It's like dBASE or FoxPro programming!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO QueryDefs and TableDefs
If you're working with an Access database, you can store parameterized queries in the database, using the
MFC CDaoQueryDef class. Also, you can use the CDaoTableDef class to define tables at runtime, which is
more convenient than using a SQL CREATE statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO Multithreading
The Microsoft Access Jet engine is not multithreaded, and that means that DAO is not multithreaded.
Furthermore, you must confine all DAO calls to your application's main thread.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Displaying Database Rows in a Scrolling Window
You've seen all the general DAO theory you're going to get here. Now you're ready for a practical example.
Before you dig into the code for EX32A, however, you need to study the general problem of displaying
database rows in a scrolling window. If this were an easy problem to solve, there would probably be an
MFC CScrollDatabaseView class. But there isn't, so we'll write our own class. Actually, it's not that difficult
if we make some simplifying assumptions about the database. First, our scrolling row-view class will be
based on a dynaset, and that means that it can accommodate any table, including those in ODBC data
sources and ISAM-type files. Second, we'll specify read-only access, which means that the number of rows
in the dynaset can't change.

Scrolling Alternatives

There are lots of ways to implement scrolling with Visual C++. If you look at the DAOVIEW MFC sample
database program on the Visual C++ CD-ROM, you'll see the use of the MFC CListView class, which
encapsulates the Windows list view common control. The trouble with this approach is that you must copy
all the selected rows into the control, which can be slow, and more significantly, you can't see updates that
other programs are making in the same table. The list view is a de facto snapshot of a database table.

We'll base our scrolling view on the MFC CScrollView class, and our code will be smart enough to retrieve
only those records that are needed for the client area of the window. The only limitation here is the logical
size of the scrolling window. In Microsoft Windows 95, the limits are ±32,767, and that restricts the
number of rows we can display. If the distance between rows is 14 units, we can display only up to 2340
rows.

A Row-View Class

If you've read other books about programming for Windows, you know that authors spend lots of time on
the problem of scrolling lists. This is a tricky programming exercise that must be repeated over and over.
Why not encapsulate a scrolling list in a base class? All the ugly details would be hidden, and you could get
on with the business of writing your application.

The CRowView class, adapted from the class of the identical name in the CHKBOOK MFC advanced sample
program on the Visual C++ CD-ROM, does the job. Through its use of virtual callback functions, it serves
as a model for other derivable base classes. CRowView has some limitations, and it's not built to industrial-
strength specifications, but it works well in the DAO example. Figure 32-1 shows the header file listing.

ROWVIEW.H

// rowview.h : interface of the CRowView class
//
// This class implements the behavior of a scrolling view that presents
// multiple rows of fixed-height data. A row view is similar to an
// owner-draw list box in its visual behavior; but unlike list boxes,
// a row view has all of the benefits of a view (as well as scroll view),
// including perhaps most importantly printing and print preview.
///

class CRowView : public CScrollView
{
DECLARE_DYNAMIC(CRowView)
protected:
// Construction/destruction
 CRowView();
 virtual ~CRowView();

// Attributes
protected:
 int m_nRowWidth; // width of row in logical units
 int m_nRowHeight; // height of row in logical units
 int m_nCharWidth; // avg char width in logical units
 int m_nPrevSelectedRow; // index of the most recently selected row
 int m_nPrevRowCount; // most recent row count, before update
 int m_nRowsPerPrintedPage; // how many rows fit on a printed page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int m_nRowsPerPrintedPage; // how many rows fit on a printed page

// Operations-Attributes
protected:
 virtual void UpdateRow(int nInvalidRow); // called by derived class
 // OnUpdate
 virtual void CalculateRowMetrics(CDC* pDC)
 { GetRowWidthHeight(pDC, m_nRowWidth, m_nRowHeight,
 m_nCharWidth); }
 virtual void UpdateScrollSizes();
 virtual CRect RowToWndRect(CDC* pDC, int nRow);

virtual int RowToYPos(int nRow);
 virtual void RectLPtoRowRange(const CRect& rectLP, int& nFirstRow,
 int& nLastRow, BOOL bIncludePartiallyShownRows);
 virtual int LastViewableRow();

// Overridables
protected:
 virtual void GetRowWidthHeight(CDC* pDC, int& nRowWidth,
 int& nRowHeight, int& nCharWidth) = 0;
 virtual int GetActiveRow() = 0;
 virtual int GetRowCount() = 0;
 virtual void OnDrawRow(CDC* pDC, int nRow, int y, BOOL bSelected) = 0;
 virtual void ChangeSelectionNextRow(BOOL bNext) = 0;
 virtual void ChangeSelectionToRow(int nRow) = 0;

// Implementation
protected:
 // standard overrides of MFC classes
 virtual void OnInitialUpdate();
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NULL);
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnPrint(CDC* pDC, CPrintInfo* pInfo);

// Generated message map functions
protected:
 //{{AFX_MSG(CRowView)
 afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnSize(UINT nType, int cx, int cy);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Figure 32-1. The CRowView header file listing.

Dividing the Work Between Base and Derived Classes

Because the CRowView class (itself derived from CScrollView) is designed to be a base class, it is as
general as possible. CRowView relies on its derived class to access and paint the row's data. The EX32A
example's document class obtains its row data from a scrollable DAO database, but the CHKBOOK example
uses a random access disk file. The CRowView class serves both examples effectively. It supports the
concept of a selected row that is highlighted in the view. Through the CRowView virtual member functions,
the derived class is alerted when the user changes the selected row.

The CRowView Pure Virtual Member Functions

Classes derived from CRowView must implement the following pure virtual member functions:

GetRowWidthHeight—This function returns the character width and height of the currently
selected font and the width of the row, based on average character widths. As the device context
switches between printer and display, the returned font metric values change accordingly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetActiveRow—The base class calls this function frequently, so if another view changes the
selected row, this view can track it.

ChangeSelectionNextRow, ChangeSelectionToRow—These two functions serve to alert the
derived class that the user has changed the selected row. The derived class can then update the
document (and other views) if necessary.

OnDrawRow—The OnDrawRow function is called by the function CRowView::OnDraw to draw a
specific row.

Other CRowView Functions

Three other CRowView functions are available to be called by derived classes and the application
framework:

UpdateRow—This public function triggers a view update when the row selection changes.
Normally, only the newly selected row and the deselected row are invalidated, and this means that
the final invalid rectangle spans both rows. If the total number of rows has changed, UpdateRow
calls UpdateScrollSizes.

UpdateScrollSizes—This is a virtual function, so you can override it if necessary. The CRowView
implementation updates the size of the view, which invalidates the visible portion.
UpdateScrollSizes is called by OnSize and by OnUpdate (after the user executes a new query).

OnPrint—The CRowView class overrides this function to cleverly adjust the viewport origin and
clipping rectangle so that OnDraw can paint on the printed page exactly as it does in the visible
portion of a window.

The MFC Dialog Bar

You haven't seen the CDialogBar class yet because it hasn't made sense to use it. (A
dialog bar is a child of the frame window that is arranged according to a dialog
template resource and that routes commands in a manner similar to that of a toolbar.)
It fits well in the DAO example, however. (See Figure 32-2.) The dialog bar contains an
edit control for the SQL query string, and it has a pushbutton to re-execute the query.
The button sends a command message that can be handled in the view, and it can be
disabled by an update command UI handler. Most dialog bars reside at the top of the
frame window, immediately under the toolbar. It's surprisingly easy to add a dialog bar
to an application. You don't even need a new derived class. Here are the steps:

1. Use the resource editor to lay out the dialog bar. Apply the following styles:

Style = Child

Border = None

Visible = Unchecked

You can choose a horizontally oriented bar for the top or bottom of the frame, or
you can choose a vertically oriented bar for the left or right side of the frame.
Add any controls you need, including buttons and edit controls.

2. Declare an embedded CDialogBar object in your derived main frame class
declaration, as shown here:

CDialogBar m_wndMyBar;
3. Add dialog bar object creation code to your main frame class OnCreate member

function, as shown here:

if (!m_wndMyBar.Create(this, IDD_MY_BAR, CBRS_TOP,
 ID_MY_BAR)) {
 TRACE("Failed to create dialog bar\n");
 return -1;
}

IDD_MY_BAR is the dialog resource ID assigned in the resource editor. The CBRS_TOP
style tells the application framework to place the dialog bar at the top of the frame
window. ID_MY_BAR is the dialog bar's control window ID, which should be within the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window. ID_MY_BAR is the dialog bar's control window ID, which should be within the
range 0xE800 through 0xE820 to ensure that the Print Preview window preempts the
dialog bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming a Dynamic Recordset
If you use AppWizard to create a DAO database application, AppWizard generates a class derived from
CDaoRecordset with a DoFieldExchange function that binds data members to the columns in a specific
database table. For a dyna-mic recordset class, however, you need to determine the column names and
data types at runtime. The EX31A example shows how to do this with ODBC.

With DAO, the procedure is similar. You simply construct a CDaoRecordset object and call the
GetFieldValue member function, which returns a VARIANT representing the column value. Other member
functions tell you the number of columns in the table and the name, type, and width of each column.

If a field VARIANT contains a BSTR, assume the string contains 8-bit characters. This is
an exception to the rule that all BSTRs contain wide characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX32A Example
Now we'll put everything together and build another working program—an MDI application that connects to
any DAO data source. The application dynamically displays tables in scrolling view windows, and it allows
the user to type in the SQL QUERY statement, which is stored in the document along with data source and
table information. AppWizard generates the usual MDI main frame, document, application, and view
classes, and we change the view class base to CRowView and add the DAO-specific code. Figure 32-2
shows the EX32A program in operation.

The document's File menu includes the following commands:

DAO Open MDB

DAO Open ISAM

DAO Open ODBC

The user must choose one of these commands after opening a document. As you will see, the code for
opening the database is different depending on the data source type.

You can learn a lot about this application by looking at the three-view window in Figure 32-2. The two view
windows in the upper part of the main window are tied to the same document, and the lower view window
is tied to another document. The dialog bar shows the SQL statement associated with the active view
window.

Figure 32-2. The EX32A program in operation.

The EX32A example includes source code listings and resource requirements. Here is a table of the files
and classes.

Header File Source Code File Class Description

Ex32a.h Ex32a.cpp CEx32aApp Main application

MainFrm.h MainFrm.cpp CMainFrame MDI main frame

ChildFrm.h ChildFrm.cpp CChildFrame MDI child frame

Ex32aDoc.h Ex32aDoc.cpp CEx32aDoc EX32A document

Ex32aView.h Ex32aView.cpp CEx32aView Scrolling database view class

Rowview.h Rowview.cpp CRowView Row view base class

Tablesel.h Tablesel.cpp CTableSelect Table selection dialog class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsamSelect.h IsamSelect.cpp CIsamSelect ISAM-type data source selection dialog class

StdAfx.h StdAfx.cpp Precompiled headers

Now we'll go through the application's classes one at a time, excluding CRowView. You'll see the important
data members and the principal member functions.

CEx32aApp

The application class is the unmodified output from AppWizard. Nothing special here.

CMainFrame and CChildFrame

These classes are the standard output from AppWizard except for the addition of the dialog bar created in
the CMainFrame::OnCreate member function.

CEx32aDoc

The document class manages the database connections and recordsets. Each document object can support
one main recordset attached to one data source. A document object can have several views attached. Data
sources (represented by CDaoDatabase objects) are not shared among document objects; each document
has its own.

Data Members

The important CEx32aDoc data members are listed in the following table.

Data Member Description

m_pRecordset Pointer to the document's recordset object

m_database Document's embedded CDaoDatabase object

m_strDatabase Database pathname (MDB file)

m_strConnect ODBC connection string or ISAM connection string

m_strQuery Entire SQL SELECT statement

m_bConnected Flag that is TRUE when the document is connected to a recordset

m_nFields Number of fields (columns) in the recordset

m_nRowCount Number of records (rows) in the recordset

m_nDatabaseType enum {UNK, MDB, ISAM, ODBC}

OnOpenDocument

This overridden CDocument function is called when the user loads a document from disk. The document
contains the name of the database and the query string, so the program can open the database and run
the query upon loading.

BOOL CEx32aDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;
 PutQuery();
 switch (m_nDatabaseType) {
 case UNK:
 break;
 case MDB:
 DaoOpenMdb();
 break;
 case ISAM:
 DaoOpenIsam();
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case ODBC:
 DaoOpenOdbc();
 break;
 }
 return TRUE;
}

OnCloseDocument

This overridden CDocument function closes the database if one is connected:

void CEx32aDoc::OnCloseDocument()
{
 m_strQuery.Empty();
 PutQuery();
 if (m_bConnected) {
 delete m_pRecordset; // Destructor calls Close
 m_database.Close();
 m_bConnected = FALSE;
 m_pRecordset = NULL;
 m_nRowCount = 0;
 }
 CDocument::OnCloseDocument();
}

OnFileDaoOpenOdbc and DaoOpenOdbc

These functions are called in response to the user choosing the DAO Open ODBC command from the File
menu. DaoOpenOdbc, which is also called by OnOpenDocument, calls CDaoDatabase::Open with the
connect parameter string. The string "ODBC;" causes the ODBC data source selection dialog to be
displayed. Notice the use of the try/catch block to detect SQL processing errors.

void CEx32aDoc::OnFileDaoOpenOdbc()
{
 m_strConnect.Empty();
 m_strQuery.Empty();
 DaoOpenOdbc();
}

void CEx32aDoc::DaoOpenOdbc()
{
 // can't open ODBC using Access driver
 if (m_strConnect.IsEmpty()) {
 m_strConnect = "ODBC;";
 }
 BeginWaitCursor();
 try {
 // nonexclusive, read-only
 m_database.Open("", FALSE, TRUE, m_strConnect);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 EndWaitCursor();
 e->Delete();
 return;
 }
 m_strConnect = m_database.GetConnect();
 TRACE("database name = %s, connect = %s\n",
 (const char*) m_strDatabase,
 (const char*) m_strConnect);
 OpenRecordset();
 m_nDatabaseType = ODBC;
 EndWaitCursor();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnFileDaoOpenIsam and DaoOpenIsam

These functions are called in response to the user choosing the DAO Open ISAM command from the File
menu. DaoOpenIsam, which is also called by OnOpenDocument, gets a directory name from the user
(through the CIsamSelect class) and then calls CDaoDatabase::Open with the connect parameter string.
The CIsamSelect::m_strIsam string specifies the type of file. Example strings are "dBASE III", "FoxPro
2.6", and "Excel 8.0".

void CEx32aDoc::OnFileDaoOpenIsam()
{
 m_strConnect.Empty();
 m_strQuery.Empty();
 DaoOpenIsam();
}

void CEx32aDoc::DaoOpenIsam()
{
 BeginWaitCursor();
 if (m_strConnect.IsEmpty()) {
 CIsamSelect isamDlg;
 if (isamDlg.DoModal() != IDOK) {
 return;
 }
 m_strConnect = isamDlg.m_strIsam + ";DATABASE=" +
 isamDlg.m_strDirectory;
 TRACE("m_strConnect = %s\n", (const char*) m_strConnect);
 }
 try {
 // nonexclusive, read-only
 m_database.Open("", FALSE, TRUE, m_strConnect);
 }
 catch(CDaoException* e) {
 ::DaoErrorMsg(e);
 EndWaitCursor();
 e->Delete();
 return;
 }
 m_strConnect = m_database.GetConnect();
 TRACE("database name = %s, connect = %s\n",
 (const char*) m_strDatabase, (const char*) m_strConnect);
 OpenRecordset();
 m_nDatabaseType = ISAM;
 EndWaitCursor();
}

OnFileDaoOpenMdb and DaoOpenMdb

These functions are called in response to the user choosing the DAO Open MDB command from the File
menu. DaoOpenMdb, which is also called by OnOpenDocument, uses the MFC CFileDialog class to get an
MDB file pathname from the user. Compare the CDaoDatabase::Open call with the calls in the two
preceding functions. Notice that the MDB pathname is passed as the first parameter.

void CEx32aDoc::OnFileDaoOpenMdb()
{
 m_strDatabase.Empty();
 m_strQuery.Empty();
 DaoOpenMdb();
}

void CEx32aDoc::DaoOpenMdb()
{
 if (m_strDatabase.IsEmpty()) {
 CFileDialog dlg(TRUE, ".mdb", "*.mdb");
 if (dlg.DoModal() == IDCANCEL) return;
 m_strDatabase = dlg.GetPathName();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_strDatabase = dlg.GetPathName();
 }
 BeginWaitCursor();
 try {
 // nonexclusive, read-only
 m_database.Open(m_strDatabase, FALSE, TRUE);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 EndWaitCursor();
 e->Delete();
 return;
 }
 m_strDatabase = m_database.GetName();
 TRACE("database name = %s, connect = %s\n",
 (const char*) m_strDatabase, (const char*) m_strConnect);
 OpenRecordset();
 m_nDatabaseType = MDB;
 EndWaitCursor();
}

OnFileDaoDisconnect

This function closes the DAO database, enabling the document to be saved.

void CEx32aDoc::OnFileDaoDisconnect()
{
 if (m_bConnected) {
 delete m_pRecordset; // Destructor calls Close
 m_database.Close();
 m_bConnected = FALSE;
 m_pRecordset = NULL;
 m_nRowCount = 0;
 UpdateAllViews(NULL);
 }
}

OpenRecordset

This helper function is called by DaoOpenOdbc, DaoOpenIsam, and DaoOpenMdb. The CTableSelect class
allows the user to select a table name, which is used to construct a SELECT statement. Calls to
CDaoRecordset::MoveLast and CDaoRecordset::GetAbsolutePosition set the record count for ODBC, ISAM,
and MDB data sources.

void CEx32aDoc::OpenRecordset()
{
 GetQuery();
 if (m_strQuery.IsEmpty()) {
 CTableSelect tableDlg(&m_database);
 if (tableDlg.DoModal() != IDOK) {
 m_database.Close(); // escape route
 return;
 }
 m_strQuery.Format("select * from [%s]", tableDlg.m_strSelection);
 PutQuery();
 }

 m_pRecordset = new CDaoRecordset(&m_database);
 try {
 m_pRecordset->Open(dbOpenDynaset, m_strQuery, dbReadOnly);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 UpdateAllViews(NULL);
 m_bConnected = FALSE;
 e->Delete();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e->Delete();
 return;
 }
 if (!m_pRecordset->IsBOF()) {
 // might be expensive for a really big table
 // View adjusts its m_nRowCount if you supply a big value here
 m_pRecordset->MoveLast(); // to validate record count
 }
 m_nRowCount = m_pRecordset->GetAbsolutePosition() + 2;
 TRACE("m_nRowCount = %d\n", m_nRowCount);
 GetFieldSpecs();
 UpdateAllViews(NULL);
 m_bConnected = TRUE;
}

The MFC CDaoRecordset class has m_strFilter and m_strSort data members, as does
the ODBC CRecordset class. You can't use these strings, however, if your recordset
doesn't have bound fields; you must construct the entire SELECT statement as shown
above.

OnRequery

This message handler is called in response to the user clicking the Requery button on the dialog bar. This
message handler reads the query string value and regenerates the recordset. Note that the
CDaoRecordset::Requery function doesn't handle an updated SELECT statement, so we close and reopen
the recordset instead.

void CEx32aDoc::OnRequery()
{
 GetQuery();
 // Requery won't work because we're changing the SQL statement
 BeginWaitCursor();
 if(m_pRecordset->IsOpen()) {
 m_pRecordset->Close();
 }
 try {
 m_pRecordset->Open(dbOpenDynaset, m_strQuery, dbReadOnly);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 m_nRowCount = 0;
 UpdateAllViews(NULL);
 EndWaitCursor();
 e->Delete();
 return;
 }
 if (!m_pRecordset->IsBOF()) {
 m_pRecordset->MoveLast(); // to validate record count
 }
 m_nRowCount = m_pRecordset->GetAbsolutePosition() + 2;
 TRACE("m_nRowCount = %d\n", m_nRowCount);
 GetFieldSpecs();
 UpdateAllViews(NULL);
 EndWaitCursor();
}

PutQuery and GetQuery

These utility functions move the document's query string to and from the edit control on the dialog bar.

Serialize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serialize

The Serialize function reads and writes the m_strConnect, m_strDatabase, and m_strQuery data members.

CEx32aView

This class is derived from CRowView and implements the virtual functions.

Data Members

The CEx32aView class uses the integer variable m_nSelectedRow to track the currently selected row. The
recordset pointer is held in m_pSet.

OnUpdate

This virtual CView function is called through the application framework when the view is created and when
the document's contents change in response to a database open or requery event. If several views are
active for a given document, all views reflect the current query but each can maintain its own current row
and scroll position. OnUpdate also sets the value of the m_pSet data member. This can't be done in
OnInitialUpdate because the recordset is not open at that point.

GetRowWidthHeight, GetActiveRow,
ChangeSelectionNextRow, and ChangeSelectionToRow

These functions are implementations of the CRowView class pure virtual functions. They take care of
drawing a specified query result row, and they track the current selection.

GetRowCount

This virtual function, which is called from CRowView, simply returns the record count value stored in the
document.

OnDrawRow and DrawDataRow

The OnDrawRow virtual function is called from CRowView member functions to perform the actual work of
drawing a designated row. OnDrawRow reads the recordset's current row and then calls the
CDaoRecordset::Move function to position the cursor and read the data. The try/catch block detects
catastrophic errors resulting from unreadable data. The DrawDataRow helper function steps through the
columns and prints the values. Notice that OnDrawRow displays "**RECORD DELETED**" when it
encounters a record that has been deleted by another user since the dynaset was first created.
OnDrawRow and DrawDataRow are shown here:

void CEx32aView::OnDrawRow(CDC* pDC, int nRow, int y, BOOL bSelected)
{
 int x = 0;
 int i;
 CEx32aDoc* pDoc = GetDocument();

 if (m_pSet == NULL) return;

 if (nRow == 0) { // title row
 for (i = 0; i < pDoc->m_nFields; i++) {
 pDC->TextOut(x, y, pDoc->m_arrayFieldName[i]);
 x += pDoc->m_arrayFieldSize[i] * m_nCharWidth;
 }
 }
 else {
 try {
 m_pSet->SetAbsolutePosition(nRow - 1);
 // adjust for title row
 // SetAbsolutePosition doesn't throw exception until AFTER
 // end of set
 if (m_pSet->GetAbsolutePosition() == (nRow - 1)) {
 DrawDataRow(pDC, y);
 }
 }
 catch (CDaoException* e) {
 // might be a time delay before delete is seen in this program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // might be a time delay before delete is seen in this program
 if (e->m_pErrorInfo->m_lErrorCode == 3167) {
 pDC->TextOut(0, y, "**RECORD DELETED**");
 }
 else {
 m_pSet->MoveLast(); // in case m_nRowCount is too big
 pDoc->m_nRowCount = m_pSet->GetAbsolutePosition() + 2;
 }
 e->Delete();
 }
 }
}

void CEx32aView::DrawDataRow(CDC* pDC, int y)
{
 int x = 0;
 CString strTime;

 COleVariant var;
 CString str;
 CEx32aDoc* pDoc = GetDocument();
 for (int i = 0; i < pDoc->m_nFields; i++) {
 var = m_pSet->GetFieldValue(i);
 switch (var.vt) {
 case VT_BSTR:
 str = (LPCSTR) var.bstrVal; // narrow characters in DAO
 break;

 case VT_I2:
 str.Format("%d", (int) var.iVal);
 break;
 case VT_I4:
 str.Format("%d", var.lVal);
 break;
 case VT_R4:
 str.Format("%10.2f", (double) var.fltVal);
 break;
 case VT_R8:
 str.Format("%10.2f", var.dblVal);
 break;
 case VT_CY:
 str = COleCurrency(var).Format();
 break;
 case VT_DATE:
 str = COleDateTime(var).Format();
 break;
 case VT_BOOL:
 str = (var.boolVal == 0) ? "FALSE" : "TRUE";
 break;
 case VT_NULL:
 str = "----";
 break;
 default:
 str.Format("Unk type %d\n", var.vt);
 TRACE("Unknown type %d\n", var.vt);
 }
 pDC->TextOut(x, y, str);
 x += pDoc->m_arrayFieldSize[i] * m_nCharWidth;
 }
}

OnInitialUpdate and OnTimer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnInitialUpdate and OnTimer

Because we're working with a dynaset, we want to show database changes made by other programs. The
timer handler calls CWnd::Invalidate, which causes all records in the client area to be refreshed, as shown
here:

void CEx32aView::OnInitialUpdate()
{
 CRowView::OnInitialUpdate();
}

void CEx32aView::OnTimer(UINT nIDEvent)
{
 Invalidate(); // Update view from database
}

CTableSelect

This is a ClassWizard-generated dialog class that contains a list box used for selecting the table. For the
student registration database, the dialog looks like the one shown below.

Data Members

The CTableSelect data members are as follows.

Data Member Description

m_pDatabase Pointer to the recordset's CDaoDatabase object

m_strSelection ClassWizard-generated variable that corresponds to the list-box selection

Constructor

The constructor takes a database pointer parameter, which it uses to set the m_pDatabase data member,
as shown here:

CTableSelect::CTableSelect(CDaoDatabase* pDatabase,
 CWnd* pParent /*=NULL*/)
 : CDialog(CTableSelect::IDD, pParent)
{
 //{{AFX_DATA_INIT(CTableSelect)
 m_strSelection = "";
 //}}AFX_DATA_INIT
 m_pDatabase = pDatabase;
}

OnInitDialog

This self-contained function creates, opens, and reads the data source's list of tables and puts the table
name strings in the dialog's list box, as shown here:

BOOL CTableSelect::OnInitDialog()
{
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_LIST1);
 int nTables = m_pDatabase->GetTableDefCount();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int nTables = m_pDatabase->GetTableDefCount();
 TRACE("CTableSelect::OnInitDialog, nTables = %d\n", nTables);
 CDaoTableDefInfo tdi;
 for (int n = 0; n < nTables; n++) {
 m_pDatabase->GetTableDefInfo(n, tdi);
 TRACE("table name = %s\n", (const char*) tdi.m_strName);
 if (tdi.m_strName.Left(4) != "MSys") {
 pLB->AddString(tdi.m_strName);
 }
 }
 return CDialog::OnInitDialog();
}

OnDblclkList1

It's handy for the user to choose a list-box entry with a double click. This function is mapped to the
appropriate list-box notification message, as shown here:

void CTableSelect::OnDblclkList1()
{
 OnOK(); // Double-clicking on list-box item exits dialog
}

CIsamSelect

This ClassWizard-generated dialog class contains a list box and an edit control used for selecting the ISAM-
type data source. The user must type the directory for the files, as shown here.

Data Members

The CIsamSelect class data members are as follows.

Data Member Definition

m_strIsam ClassWizard-generated variable that corresponds to the list-box selection

m_strDirectory ClassWizard-generated variable that corresponds to the edit control contents

OnInitDialog

This function sets the initial values of the list box, which are the options from the "Connect Property" topic
in Books Online, as shown here:

BOOL CIsamSelect::OnInitDialog()
{
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_LIST1);
 pLB->AddString("dBASE III");
 pLB->AddString("dBASE IV");
 pLB->AddString("dBASE 5");
 pLB->AddString("Paradox 3.x");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pLB->AddString("Paradox 3.x");
 pLB->AddString("Paradox 4.x");
 pLB->AddString("Paradox 5.x");
 pLB->AddString("Btrieve");
 pLB->AddString("FoxPro 2.0");
 pLB->AddString("FoxPro 2.5");
 pLB->AddString("FoxPro 2.6");
 pLB->AddString("Excel 3.0");
 pLB->AddString("Excel 4.0");
 pLB->AddString("Excel 5.0");
 pLB->AddString("Excel 7.0");
 pLB->AddString("Text");
 CDialog::OnInitDialog();

 return TRUE; // Return TRUE unless you set the focus to a control.
 // EXCEPTION: OCX Property Pages should return FALSE.
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX32A Resource File
This application uses a dialog bar, so you'll need a dialog resource for it. Figure 32-2 shows the dialog bar.
The dialog resource ID is IDD_QUERY_BAR. The controls are listed below.

Control ID

Button IDC_REQUERY

Edit IDC_QUERY

The following styles are set:

Style = Child

Border = None

Visible = Unchecked

There's also a table selection dialog template, IDD_TABLE_SELECT, which has a list-box control with ID
IDC_LIST1 and an ISAM selection dialog template, IDD_ISAM_SELECT. The File menu has the following
four added items.

Menu Item Command ID

DAO Open MDB ID_FILE_DAOOPEN_MDB

DAO Open ISAM ID_FILE_DAOOPEN_ISAM

DAO Open ODBC ID_FILE_DAOOPEN_ODBC

DAO Disconnect ID_FILE_DAODISCONNECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running the EX32A Program
You can run the EX32A program with any DAO data source, but try the student registration database
(STDREG32.MDB) from the Visual C++ CD-ROM first. To test the multiuser capabilities of the program, run
it simultaneously with EX31B. Use EX31B to change and delete instructor records while displaying the
instructor table in EX32A.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 33
The OLE DB Templates
Chapter 31 and Chapter 32 covered two alternative ways to manage databases using the Microsoft
Foundation Class Library version 6.0 and Microsoft Visual C++ 6.0—using ODBC and using DAO. Microsoft
has defined another way to access data—through a technology called OLE DB. This chapter covers the new
OLE DB templates—Visual C++ 6.0's support for accessing data through OLE DB directly. While ODBC is
designed to provide access primarily to Structured Query Language (SQL) data in a multiplatform
environment, OLE DB is designed to provide access to all types of data within a system. OLE DB uses the
Component Object Model (COM) to accomplish this. OLE DB is fairly flexible: it covers all the SQL
functionality defined in ODBC as well as defining interfaces suitable for gaining access to other-than-SQL
types of data.

This chapter covers the highlights of the new OLE DB templates. OLE DB data access is divided into two
major pieces: consumers and providers. We'll take a look at the basic OLE DB architecture and then
examine how the consumer templates work. Then we'll look at how the provider side templates work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why OLE DB?
OLE DB exists to provide a uniform way to access all sorts of disparate data sources. For example, imagine
all the types of data sources you might find in a typical organization. These might include sources as varied
as production systems, file systems, spreadsheets, personal databases (such as Xbase and Btrieve), and e-
mail. The problem is that each of these sources requires its own protocol: if you want to access data from
a specific source, you need to learn the protocol for managing the data source. (ugh!) OLE DB is the
middle layer that makes accessing data from different sources uniform. With OLE DB, client-side
developers need to concentrate on only a few details to get access to data (instead of needing to know
tons of different database access protocols).

The most important thing to realize about OLE DB is that it is built upon COM. In other words, OLE DB is a
set of ActiveX interfaces for accessing data through COM. The OLE DB interfaces are general enough to
provide a uniform means of accessing data, regardless of the method that is used to store the data. For
example, developers use the same OLE DB interfaces to get to data without being concerned as to whether
data is stored in a DBMS or a non-DBMS information source. At the same time, OLE DB lets developers
continue to take advantage of the benefits of the underlying database technology (like speed and
flexibility) without having to move data around just to access those benefits.

At the highest level, the OLE DB architecture consists of consumers and providers. A consumer is any bit of
system or application code that uses an OLE DB interface. This includes OLE DB components themselves. A
provider is any software component that exposes an OLE DB interface.

There are two types of OLE DB providers: data providers and service providers. The names are pretty self-
explanatory. Data providers own data and expose that data in a tabular form as a rowset. (A rowset is just
an abstraction for exposing data in a tabular form.) Some good examples of data providers include
relational Database Management Systems (DBMS's), storage managers, spreadsheets, and Indexed
Sequential Access Method (ISAM) databases.

A service provider is any OLE DB component that does not own data but encapsulates some service by
massaging data through OLE DB interfaces. In one sense, a service component is both a consumer and a
provider. For example, a heterogeneous query processor is a service component. In one case where a
consumer tries to join data from tables in two different data sources, as a consumer the query processor
retrieves rows from rowsets created over each of the base tables. As a provider, the query processor
creates a rowset from these rows and returns it to the consumer.

To sum up, there are many different kinds of data and numerous ways of accessing that data in the real
world. However, many developers understand how to manipulate data using standard database-
management techniques. OLE DB defines an architecture that "component-izes" data access. As a
component database-management system, OLE DB offers greater efficiency than traditional database-
management systems by separating database functionality into the roles of consumers and producers.
Because data consumers generally require only a portion of the database-management functionality, OLE
DB separates that functionality, thereby reducing client-side resource overhead.

By the same token, OLE DB reduces the burden on the provider side, since providers need to worry only
about providing data (and don't have to concern themselves with any client-side junk). For example, OLE
DB allows a simple tabular data provider to implement functionality native to its data store yet provide a
singular access protocol to get to the data. That way, a minimal implementation of a provider can choose
to use only the interfaces that expose data as tables. This opens up the opportunity for the development of
completely different query-processor components that can consume tabular information from any provider
that exposes its data through OLE DB. In addition, SQL DBMS's can expose their functionality in a more
layered manner by using the OLE DB interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Basic OLE DB Architecture
In addition to defining a basic relationship between consumers and providers, OLE DB defines the following
components that make up the OLE DB architecture (each component is a COM object):

Enumerators Enumerators search for available data sources. Consumers that are not hardwired
for a particular data source employ enumerators to search for a data source to use.

Data source objects Data source objects contain the machinery to connect to a data source, such
as a file or a DBMS. A data source object generates sessions.

Sessions Sessions represent connections to a database. For example, sessions provide a context
for database transactions. A single data source object can create multiple sessions. Sessions
generate transactions, commands, and rowsets.

Transaction objects Transaction objects are used for managing database transactions in order to
maintain database security.

Commands Commands execute text commands, such as a SQL statement. If the text command
specifies a rowset, such as a SQL SELECT statement, the command generates rowsets. A single
session can create multiple commands.

Rowsets Rowsets expose data in a tabular format. A special case of a rowset is an index. Rowsets
can be created from the session or the command.

Errors Errors can be created by any interface on any OLE DB object. They contain additional
information about an error, including an optional custom error object.

Here's an example of how you might apply these components to create an OLE DB consumer. If you aren't
sure where the data source is, you might first use an enumerator to find a data source. Once you've
located a data source, you create a session with it. The session lets you access the data as rowsets as well
as create commands that generate rowsets.

The upside of using the OLE DB architecture is that you get a terrific, homogenous way to access
heterogeneous data sources. The downside is that you have to implement a bunch of COM interfaces to
make that happen. That's why the OLE DB templates exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Basic OLE DB Template Architecture
Now that you understand the basic architecture behind OLE DB, it's time to take a look at a specific
implementation of the OLE DB interfaces (provided by the new OLE DB consumer and provider templates).
Like most other COM-based technologies, OLE DB involves implementing a bunch of interfaces. Of course,
just as with ActiveX Controls, you can choose to implement them by hand (often an inefficient approach—
unless you're just trying to understand the technology inside-out), or you can find someone else to do
most of the dirty work. While OLE DB is a rich and powerful data access technology, getting it up and
running by hand is a somewhat tedious task.

Just as Visual C++ provides a template library (ATL) for implementing ActiveX Controls, Visual C++ also
provides a template library that helps you manage OLE DB. The OLE DB template support provides classes
that implement many of the commonly used OLE DB interfaces. In addition, Visual C++ provides great
wizard support for generating code to apply to common scenarios.

From a high level, you can divide the classes in this template library into the two groups defined by OLE DB
itself: the consumer classes and the provider classes. The consumer classes help you implement database
client (consumer) applications, while the provider classes help you implement database server (provider)
applications. Remember that OLE DB consumers are applications that call the COM interfaces exposed by
OLE DB service providers (or regular providers) to access data. OLE DB providers are COM servers that
provide data and services in a form that a consumer can understand.

OLE DB Consumer Template Architecture

Microsoft has kept the top layer classes in the OLE DB Consumer Templates as close to the OLE DB
specification as possible. That is, OLE DB templates don't define another object model. Their purpose is
simply to wrap the existing OLE DB object model. For each of the consumer-related components listed,
you'll find a corresponding C++ template class. This design philosophy leverages the flexibility of OLE DB
and allows more advanced features—such as multiple accessors on rowsets—to be available through the
OLE DB Templates.

The OLE DB Templates are small and flexible. They are implemented using C++ templates and multiple
inheritance. Because OLE DB templates are close to the metal (they wrap only the existing OLE DB
architecture), each class mirrors an existing OLE DB component. For example, CDataSource corresponds to
the data source object in OLE DB.

The OLE DB Consumer Template architecture can be divided into three parts: the general data source
support classes, classes for supporting data access and rowset operations, and classes for handling tables
and commands. Here's a quick summary of these classes.

General Data Source Support

A data source is the most fundamental concept to remember when talking about data access using OLE
DB. That is, where is the data coming from? Of course, the OLE DB templates have support for data
sources. General data source support comprises three classes as shown in this table.

Class Use

CDataSource This class represents the data source component and manages the connection to a
data source.

CEnumerator
This class provides a way to select a provider by cycling through a list of providers.
Its functionality is equivalent to the SQLBrowseConnect and SQLDriverConnect
functions.

CSession
This class handles transactions. You can use this class to create rowsets,
commands, and many other objects. A CDataSource object creates a CSession
object using the CSession::Open method.

Data Access and Rowset Support

The OLE DB templates provide binding and rowset support through several classes. The accessor classes
talk to the data source while the rowset manages the data in tabular form. The data access and rowset
components are implemented through the CAccessorRowset class. CAccessorRowset is a template class
that's specialized on an accessor and a rowset. This class can handle multiple accessors of different types.

The OLE DB Template library defines the accessors in this table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OLE DB Template library defines the accessors in this table.

Class Use

CAccessor

This class is used when a record is statically bound to a data source
—it contains the pre-existing data buffer and understands the data
format up front. CAccessor is used when you know the structure
and the type of the database ahead of time.

CDynamicAccessor

This class is used for retrieving data from a source whose structure
is not known at design time. This class uses
IColumnsInfo::GetColumnInfo to get the database column
information. CDynamicAccessor creates and manages the data
buffer.

CDynamicParameterAccessor

This class is similar to CDynamicAccessor except that it's used with
commands. When used to prepare commands,
CDynamicParameterAccessor can get parameter information from
the ICommandWithParameters interface, which is especially useful
for handling unknown command types.

CManualAccessor
This class lets you access whatever data types you want as long as
the provider can convert the type. CManualAccessor handles both
result columns and command parameters.

Along with the accessors, the OLE DB templates define three types of rowsets: single fetching, bulk, and
array. These are fairly self-explanatory descriptions. Clients use a function named MoveNext to navigate
through the data. The difference between the single fetching, bulk, and array rowsets lies in the number of
row handles retrieved when MoveNext is called. Single fetching rowsets retrieve a single rowset for each
call to MoveNext while bulk rowsets fetch multiple rows. Array rowsets provide a convenient array syntax
for fetching data. The OLE DB Templates provide the single row-fetching capability by default.

Table and Command Support

The final layer in the OLE DB Template consumer architecture consists of two more classes: table and
command classes (CTable and CCommand). These classes are used to open the rowset, execute
commands, and initiate bindings. Both classes derive from CAccessorRowset

The CTable class is a minimal class implementation that opens a table on a data source (which you can
specify programmatically). Use this class when you need bare-bones access to a source, since CTable is
designed for simple providers that do not support commands.

Other data sources also support commands. For those sources, you'll want to use the OLE DB Templates'
CCommand class. As its name implies, CCommand is used mostly for executing commands. This class has
a function named Open that executes singular commands. This class also has a function named Prepare for
setting up a command to execute multiple times.

When using the CCommand class, you'll specialize it with three template arguments: an accessor, a
rowset, and a third template argument (which defaults to CNoMultipleResults). If you specify
CMultipleResults for this third argu- ment, the CCommand class will support the IMultipleResults interface
for a command that returns multiple rowsets.

OLE DB Provider Template Architecture

Remember that OLE DB is really just a set of interfaces that specify a protocol for managing data. OLE DB
defines several interfaces (some mandatory and others optional) for the following types of objects: data
source, session, rowset, and command. Here's a description of each followed by a code snippet that shows
how the templates bring in the correct functionality for each component.

Data source object A data source object wraps most aspects of data access. For example, a data
source consists of actual data and its associated database management system (DBMS), the
platform on which the DBMS exists, and the network used to access that platform. A data source is
just a COM object that implements a bunch of interfaces, as shown in Table 33-1.

Interface Required? Implemented?

IDBInitialize Mandatory Yes

IDBCreateSession Mandatory Yes

IDBProperties Mandatory Yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDBProperties Mandatory Yes

IPersist Mandatory Yes

IDBDataSourceAdmin Optional No

IDBInfo Optional No

IPersistFile Optional No

ISupportErrorInfo Optional No

Table 33-1. Data source object interface requirements.

Tables in this section were compiled from the Microsoft Visual Studio MSDN Online
Help.

Here's a code snippet showing the code that is inserted by the ATL Object Wizard when you create
a data source for an OLE DB provider:

class ATL_NO_VTABLE CAProviderSource :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAProviderSource, &CLSID_AProvider>,
 public IDBCreateSessionImpl<CAProviderSource, CAProviderSession>,
 public IDBInitializeImpl<CAProviderSource>,
 public IDBPropertiesImpl<CAProviderSource>,
 public IPersistImpl<CAProviderSource>,
 public IInternalConnectionImpl<CAProviderSource> {
};
Notice that this is a normal COM class (with ATL's IUnknown implementation). The OLE DB data
source object brings in implementations of the IDBCreateSession, IDBInitialize, IDBProperties, and
IPersist interfaces through inheritance. Notice how the templates are specialized on the
CAProviderSource and CAProviderSession classes. If you decide to add more functionality to your
class, you can do so by inheriting from one of the OLE DB interface implementation classes.

Command object Providers that support building and executing queries expose a command
object. Command objects specify, prepare, and execute a Database Manipulation Language (DML)
query or Data Definition Language (DDL) definition and its associated properties. For example, the
command object translates a SQL-type command into an operation specific to the data source.
Compared to ODBC, the command corresponds to the general functionality of an ODBC statement
in an unexecuted state. A single session can be associated with multiple commands. Table 33-2
shows the interfaces used in a command object.

Here's a code snippet showing the code inserted by the ATL Object Wizard to implement a
command object when you create an OLE DB provider:

class ATL_NO_VTABLE CAProviderCommand :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IAccessorImpl<CAProviderCommand>,
 public ICommandTextImpl<CAProviderCommand>,
 public ICommandPropertiesImpl<CAProviderCommand>,
 public IObjectWithSiteImpl<CAProviderCommand>,
 public IConvertTypeImpl<CAProviderCommand>,
 public IColumnsInfoImpl<CAProviderCommand> {
};
As with the data source, notice that this is just a regular COM class. This class brings in the required
interfaces through inheritance. (For example, IAccesor comes in through the IAccessorImpl
template.) A command object uses IAccessor to specify parameter bindings. Consumers call
IAccessor::CreateAccessor, passing an array of DBBINDING structures. DBBINDING contains
information on the column bindings (type, length, and so on). The provider receives the structures
and determines how the data should be transferred and whether conversions are necessary.

The ICommandText interface provides a way to specify a text command. The ICommandProperties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ICommandText interface provides a way to specify a text command. The ICommandProperties
interface handles all of the command properties.

The command class is the heart of the data provider. Most of the action happens within this class.

Interface Required? Implemented?

IAccessor Mandatory Yes

IColumnsInfo Mandatory Yes

ICommand Mandatory Yes

ICommandProperties Mandatory Yes

ICommandText Mandatory Yes

IConvertType Mandatory Yes

IColumnsRowset Optional No

ICommandPrepare Optional No

ICommandWithParameters Optional No

ISupportErrorInfo Optional No

Table 33-2. Command object interfaces requirements.

Session object Session objects define the scope of a transaction and generate rowsets from the
data source. Session objects also generate command objects. The command object executes
commands on the rowset. For providers that support commands, the session acts as a command
factory. Compared to ODBC, the session object and the data source object encapsulate the
functionality of the ODBC connection. Calling IDBCreateSession::CreateSession creates a session
from the data source object. A single data source object can be associated with many sessions.
Table 33-3 shows the interfaces found on a session object.

Interface Required? Implemented?

IGetDataSource Mandatory Yes

IOpenRowset Mandatory Yes

ISessionProperties Mandatory Yes

IDBCreateCommand Optional Yes

IDBSchemaRowset Optional Yes

IIndexDefinition Optional No

ISupportErrorInfo Optional No

ITableDefinition Optional No

ITransactionJoin Optional No

ITransactionLocal Optional No

ITransactionObject Optional No

Table 33-3. Session object interfaces requirements.

Here's a code snippet showing the code inserted by the ATL Object Wizard to implement a session
object when you create an OLE DB provider:

class ATL_NO_VTABLE CAProviderSession :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IGetDataSourceImpl<CAProviderSession>,
 public IOpenRowsetImpl<CAProviderSession>,
 public ISessionPropertiesImpl<CAProviderSession>,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public ISessionPropertiesImpl<CAProviderSession>,
 public IObjectWithSiteSessionImpl<CAProviderSession>,
 public IDBSchemaRowsetImpl<CAProviderSession>,
 public IDBCreateCommandImpl<CAProviderSession, CAProviderCommand>
{
};
Rowset object A rowset object represents tabular data. At the raw OLE DB level, rowsets are
generated by calling IOpenRowset::OpenRowset on the session. For providers that support
commands, rowsets are used to represent the results of row-returning queries. In addition to
IOpenRowset::OpenRowset, there are a number of other methods in OLE DB that return rowsets.
For example, the schema functions return rowsets. Compared to ODBC, a rowset encapsulates the
general functionality of an ODBC statement in the executed state. Single sessions can be associated
with multiple rowsets. In addition, single command objects can be associated with multiple rowsets.
Table 33-4 shows the interfaces associated with the rowset object.

Interface Required? Implemented?

IAccessor Mandatory Yes

IColumnsInfo Mandatory Yes

IConvertType Mandatory Yes

IRowset Mandatory Yes

IRowsetInfo Mandatory Yes

IColumnsRowset Optional No

IConnectionPointContainer Optional Yes, through ATL

IRowsetChange Optional No

IRowsetIdentity Required for Level 0 Yes

IRowsetLocate Optional No

IRowsetResynch Optional No

IRowsetScroll Optional No

IRowsetUpdate Optional No

ISupportErrorInfo Optional No

Table 33-4. Rowset object interfaces requirements.

Here's a code snippet showing the code inserted by the ATL Object Wizard to implement a rowset
object when you create an OLE DB provider:

class CAProviderWindowsFile:
 public WIN32_FIND_DATA
{
public:
BEGIN_PROVIDER_COLUMN_MAP(CAProviderWindowsFile)
 PROVIDER_COLUMN_ENTRY("FileAttributes", 1, dwFileAttributes)
 PROVIDER_COLUMN_ENTRY("FileSizeHigh", 2, nFileSizeHigh)
 PROVIDER_COLUMN_ENTRY("FileSizeLow", 3, nFileSizeLow)
 PROVIDER_COLUMN_ENTRY("FileName", 4, cFileName)
 PROVIDER_COLUMN_ENTRY("AltFileName", 5, cAlternateFileName)
END_PROVIDER_COLUMN_MAP()
};

class CAProviderRowset :
public CRowsetImpl<CAProviderRowset,
 CAProviderWindowsFile,
 CAProviderCommand> {
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The wizard-generated rowset object implements the IAccessor, IRowset, and IRowsetInfo
interfaces, among others. IAccessorImpl binds both output columns. The IRowset interface fetches
rows and data. The IRowsetInfo interface handles the rowset properties. The CWindowsFile class
represents the user record class. The class generated by the Wizard is really just a placeholder. It
doesn't do very much. When you decide on the column format of your data provider, this is the
class you'll modify.

How the Provider Parts Work Together

The use for the first part of the architecture—the data source—should be obvious. Every provider must
include a data source object. When a consumer application needs data, the consumer calls
CoCreateInstance to create the data source object and start the provider. Within the provider, it's the data
source object's job to create a session object using the IDBCreateSession interface. The consumer uses
this interface to connect to the data source object. In comparing this to how ODBC works, the data source
object is equivalent to ODBC's HENV and the session object is the equivalent of ODBC's HDBC.

The command object does most of the work. To make the data provider actually do something, you'll
modify the command class's Execute function.

Like most COM-based protocols, the OLE DB protocol makes sense once you've examined it for a little
while. Also, like most COM-based protocols, the OLE DB protocol involves a good amount of code to get
going—code that could be easily implemented by some sort of framework. That's what the Data Consumer
and Data Provider templates are all about. The rest of the chapter shows you what you need to do to
create Data Consumers and Data Providers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an OLE DB Consumer
Creating an OLE DB consumer is pretty straightforward—most of the support comes through the ATL
Object Wizard. You can see an example of a consumer in the x33a folder on the companion CD. Here are
the steps for creating a consumer using the ATL Object Wizard.

1. Create an application or a control to drive the data consumption. For example, you might want to
create an ActiveX control.

2. While inside the IDE, use the ATL Object Wizard to insert a data consumer. Do this by either
selecting New ATL Object from the Insert menu or by right-clicking on the project icon in ClassView
and selecting New ATL Object from the context menu to start the ATL Object Wizard.

3. From the ATL Object Wizard, select the Data Access category of objects. Then select Consumer and
click Next. This will cause the ATL Object Wizard Properties dialog, shown in Figure 33-1, to appear.
There will be only one page in it, for naming the class and selecting the data source.

Figure 33-1. The ATL Object Wizard Properties.

4. Click Select Datasource to configure the data consumer. Once you've picked out a data source,
choose OK. The ATL Object Wizard will create an OLE DB Consumer template ready for you to use.

As an example, we took the BIBLIO.MDB database (a Microsoft Access database) that comes in the Visual
Studio VB98 directory and made a data consumer out of it. The BIBLIO database includes the titles and the
authors of various programming texts. Using the ATL Object Wizard to create the OLE DB Consumer
template for the authors in the database yielded these classes:

// Authors.H : Declaration of the CAuthors class

#ifndef __AUTHORS_H_
#define __AUTHORS_H_

class CAuthorsAccessor
{
public:
 LONG m_AuID;
 TCHAR m_Author[51];
 SHORT m_YearBorn;

BEGIN_COLUMN_MAP(CAuthorsAccessor)
 COLUMN_ENTRY(1, m_AuID)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 COLUMN_ENTRY(1, m_AuID)
 COLUMN_ENTRY(2, m_Author)
 COLUMN_ENTRY(3, m_YearBorn)
END_COLUMN_MAP()

DEFINE_COMMAND(CAuthorsAccessor, _T("SELECT * FROM Authors"))
};

class CAuthors : public CCommand<CAccessor<CAuthorsAccessor> >
{
public:
 HRESULT Open()
 {
 HRESULT hr;

 hr = OpenDataSource();
 if (FAILED(hr))
 return hr;

 return OpenRowset();
 }
 HRESULT OpenDataSource()
 {
 HRESULT hr;
 CDataSource db;
 CDBPropSet dbinit(DBPROPSET_DBINIT);

 dbinit.AddProperty(DBPROP_AUTH_CACHE_AUTHINFO, true);
 dbinit.AddProperty(DBPROP_AUTH_ENCRYPT_PASSWORD, false);
 dbinit.AddProperty(DBPROP_AUTH_MASK_PASSWORD, false);
 dbinit.AddProperty(DBPROP_AUTH_PASSWORD, OLESTR(""));
 dbinit.AddProperty(DBPROP_AUTH_PERSIST_ENCRYPTED, false);
 dbinit.AddProperty(DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO,
 false);
 dbinit.AddProperty(DBPROP_AUTH_USERID, OLESTR("Admin"));
 dbinit.AddProperty(DBPROP_INIT_DATASOURCE,
 OLESTR("c:\\biblio.mdb"));
 dbinit.AddProperty(DBPROP_INIT_MODE, (long)16);
 dbinit.AddProperty(DBPROP_INIT_PROMPT, (short)4);
 dbinit.AddProperty(DBPROP_INIT_PROVIDERSTRING, OLESTR
 (";COUNTRY=0;CP=1252;LANGID=0x0409"));
 dbinit.AddProperty(DBPROP_INIT_LCID, (long)1033);
 hr = db.Open(_T("Microsoft.Jet.OLEDB.3.51"), &dbinit);
 if (FAILED(hr))
 return hr;

 return m_session.Open(db);
 }
 HRESULT OpenRowset()
 {
 return CCommand<CAccessor<CAuthorsAccessor>
 >::Open(m_session, _T("Authors"));
 }
 Csession m_session;
};

#endif // __AUTHORS_H_
The CAuthorsAccessor class defines the structure of the author record. Notice that the class includes an
author ID field, a name field, and a field indicating when the author was born.

The CAuthors class represents the actual data consumer class that connects to the database. Notice that
it's derived from CCommand. Remember that command objects represent a command (such as a SQL
statement) and generate rowsets. The COLUMN_MAP represents data returned in the rowset. The
PARAM_MAP represents parameter data for a command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PARAM_MAP represents parameter data for a command.

The column maps and the parameter maps represent the user's view of the accessor. As with many data
structures in ATL and MFC, these maps are built up with macros. Here's how the maps work: when running
against a database, the data that comes back is contained in a contiguous block of memory. OLE DB
templates work with this block of memory to extract the data. The data members in the entries represent
offsets into that block of memory. The entries in the maps filter out the data from the database. That way,
you as a developer do not have to worry about doing anything funky like performing pointer arithmetic on
the block to get information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the OLE DB Consumer Code
Using the database consumer class is just about as easy as creating it. Here's how to take advantage of
the database consumer class:

1. Declare an instance of CAuthors wherever you need to use it:

class CUseAuthors : public CDialog {
 CAuthors m_authors;
 .
 .
 .
};

2. Open the Authors database by calling Open on the database consumer object:

CUseAuthors::OnInitDialog() {
 m_authors.Open();
}

3. Use member functions to navigate through and manipulate the database. Here's a short sampling of
some of the things you can do:

CUseAuthors::OnNext() {
 m_authors.MoveNext();
}
CUseAuthors::OnFirst() {
 m_authors.MoveFirst();
}
CUseAuthors::OnLast() {
 m_authors.MoveLast();
}
CUseAuthors::OnInsert() {
 m_authors.Insert();
}

4. As you navigate through the database, the data ends up in the member variables. For example, if
you want to find out the name of the next author in the database, the code would look like this:

m_authors.MoveNext();
m_strAuthorName = m_authors.m_Author;

As you can see, using the templates greatly simplifies getting the data out of the database. All you need to
do is find the database, point the ATL Object Wizard there, and get the Wizard to generate your code.
Then the accessor class has functions useful for moving around the database and fetching the data. The
other half of the OLE DB Template equation is the data provider. Here's a rundown of how to work with
providers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an OLE DB Provider
It's pretty obvious how OLE DB consumers are useful. You just ask a wizard to create a wrapper for you,
and you get a fairly easy way to access the data in a database. However, it might be a bit less obvious why
you'd want to create an OLE DB provider.

Why Write an OLE DB Provider?

Writing an OLE DB allows you to insert a layer between a client of some data and the actual data itself.
Here are just a few reasons you might want to write a provider.

Writing an OLE DB provider means clients don't necessarily touch the data directly. Therefore, you
can add additional capabilities to your data, such as query processing.

In some cases, writing an OLE DB provider gives you the opportunity to increase data access
performance by controlling how the data is manipulated.

Adding an OLE DB provider layer increases the potential audience of your data. For example, if you
have a proprietary data format that can be accessed by only one programming language, you have
a single point of failure. OLE DB providers give you a way to open that proprietary format to a wider
variety of programmers, regardless of the programming language they use.

Writing an OLE DB Provider

Working with the OLE DB Providers is similar to working with the Consumers. The wizards do a lot of the
work for you. You just need to know how to work with the generated classes. The steps for creating an
OLE DB Provider are listed here.

1. The first step is to decide what you want the provider to do. Remember the philosophy behind OLE
DB: it's all about providing a singular way to access multiple data sources. For example, you might
want to write a provider that recursively enumerates the contents of a structured storage file. Or
you might want a provider that sifts through e-mail folders and allows clients database-style access
to your e-mail system. The possibilities are nearly endless.

2. Just as you did when writing a data consumer, use the ATL Object Wizard to create a provider. Just
start the ATL Object Wizard from ClassView or from the Insert menu. Select the Data Access
objects category, and choose Provider. The ATL Object Wizard will ask you to provide a name for
your object and will allow you to modify the default names for the files it will create.

3. After you click OK, the ATL Object Wizard creates the code for a provider, including a data source, a
rowset, and a session. In addition to these objects, a provider supports one or more properties,
which are defined in property maps within the files created by the OLE DB Provider Template
Wizard. When the Wizard creates the files, it inserts maps for the properties belonging to the OLE
DB property group defined for the object or objects included in those files. For example, the header
file containing the data source object also contains the property map for the DataSource properties.
The session header file contains the property map for the Session properties. Finally, the rowset
and command objects reside in a single header file, which includes properties for the command
object.

For example, here's what the ATL Object Wizard produces for an OLE DB provider named AProvider. First
the ATL Object Wizard creates a data source object, which lives in a file named AProviderDS.H:

class ATL_NO_VTABLE CAProviderSource :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAProviderSource, &CLSID_AProvider>,
 public IDBCreateSessionImpl<CAProviderSource, CAProviderSession>,
 public IDBInitializeImpl<CAProviderSource>,
 public IDBPropertiesImpl<CAProviderSource>,
 public IPersistImpl<CAProviderSource>,
 public IInternalConnectionImpl<CAProviderSource>
{
public:
 HRESULT FinalConstruct()
 {
 return FInit();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
DECLARE_REGISTRY_RESOURCEID(IDR_APROVIDER)
BEGIN_PROPSET_MAP(CAProviderSource)
 BEGIN_PROPERTY_SET(DBPROPSET_DATASOURCEINFO)
 PROPERTY_INFO_ENTRY(ACTIVESESSIONS)
 PROPERTY_INFO_ENTRY(DATASOURCEREADONLY)
 PROPERTY_INFO_ENTRY(BYREFACCESSORS)
 PROPERTY_INFO_ENTRY(OUTPUTPARAMETERAVAILABILITY)
 PROPERTY_INFO_ENTRY(PROVIDEROLEDBVER)
 PROPERTY_INFO_ENTRY(DSOTHREADMODEL)
 PROPERTY_INFO_ENTRY(SUPPORTEDTXNISOLEVELS)
 PROPERTY_INFO_ENTRY(USERNAME)
 END_PROPERTY_SET(DBPROPSET_DATASOURCEINFO)
 BEGIN_PROPERTY_SET(DBPROPSET_DBINIT)
 PROPERTY_INFO_ENTRY(AUTH_PASSWORD)
 PROPERTY_INFO_ENTRY(AUTH_PERSIST_SENSITIVE_AUTHINFO)
 PROPERTY_INFO_ENTRY(AUTH_USERID)
 PROPERTY_INFO_ENTRY(INIT_DATASOURCE)
 PROPERTY_INFO_ENTRY(INIT_HWND)
 PROPERTY_INFO_ENTRY(INIT_LCID)
 PROPERTY_INFO_ENTRY(INIT_LOCATION)
 PROPERTY_INFO_ENTRY(INIT_MODE)
 PROPERTY_INFO_ENTRY(INIT_PROMPT)
 PROPERTY_INFO_ENTRY(INIT_PROVIDERSTRING)
 PROPERTY_INFO_ENTRY(INIT_TIMEOUT)
 END_PROPERTY_SET(DBPROPSET_DBINIT)
 CHAIN_PROPERTY_SET(CAProviderCommand)
END_PROPSET_MAP()
BEGIN_COM_MAP(CAProviderSource)
 COM_INTERFACE_ENTRY(IDBCreateSession)
 COM_INTERFACE_ENTRY(IDBInitialize)
 COM_INTERFACE_ENTRY(IDBProperties)
 COM_INTERFACE_ENTRY(IPersist)
 COM_INTERFACE_ENTRY(IInternalConnection)
END_COM_MAP()
public:
};
In addition to the data object, the ATL Object Wizard produces a command object and a rowset that both
live within AProviderRS.H:

class ATL_NO_VTABLE CAProviderCommand :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IAccessorImpl<CAProviderCommand>,
 public ICommandTextImpl<CAProviderCommand>,
 public ICommandPropertiesImpl<CAProviderCommand>,
 public IObjectWithSiteImpl<CAProviderCommand>,
 public IConvertTypeImpl<CAProviderCommand>,
 public IColumnsInfoImpl<CAProviderCommand>
{
public:
BEGIN_COM_MAP(CAProviderCommand)
 COM_INTERFACE_ENTRY(ICommand)
 COM_INTERFACE_ENTRY(IObjectWithSite)
 COM_INTERFACE_ENTRY(IAccessor)
 COM_INTERFACE_ENTRY(ICommandProperties)
 COM_INTERFACE_ENTRY2(ICommandText, ICommand)
 COM_INTERFACE_ENTRY(IColumnsInfo)
 COM_INTERFACE_ENTRY(IConvertType)
END_COM_MAP()
// ICommand
public:
 HRESULT FinalConstruct()
 {
 HRESULT hr = CConvertHelper::FinalConstruct();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HRESULT hr = CConvertHelper::FinalConstruct();
 if (FAILED (hr))
 return hr;
 hr = IAccessorImpl<CAProviderCommand>::FinalConstruct();
 if (FAILED(hr))
 return hr;
 return CUtlProps<CAProviderCommand>::FInit();
 }
 void FinalRelease()
 {
 IAccessorImpl<CAProviderCommand>::FinalRelease();
 }
 HRESULT WINAPI Execute(IUnknown * pUnkOuter,
 REFIID riid, DBPARAMS * pParams,
 LONG * pcRowsAffected,
 IUnknown ** ppRowset);
 static ATLCOLUMNINFO* GetColumnInfo(CAProviderCommand* pv,
 ULONG* pcInfo)
 {
 return CAProviderWindowsFile::GetColumnInfo(pv,pcInfo);
 }
BEGIN_PROPSET_MAP(CAProviderCommand)
 BEGIN_PROPERTY_SET(DBPROPSET_ROWSET)
 PROPERTY_INFO_ENTRY(IAccessor)
 PROPERTY_INFO_ENTRY(IColumnsInfo)
 PROPERTY_INFO_ENTRY(IConvertType)
 PROPERTY_INFO_ENTRY(IRowset)
 PROPERTY_INFO_ENTRY(IRowsetIdentity)
 PROPERTY_INFO_ENTRY(IRowsetInfo)
 PROPERTY_INFO_ENTRY(IRowsetLocate)
 PROPERTY_INFO_ENTRY(BOOKMARKS)
 PROPERTY_INFO_ENTRY(BOOKMARKSKIPPED)
 PROPERTY_INFO_ENTRY(BOOKMARKTYPE)
 PROPERTY_INFO_ENTRY(CANFETCHBACKWARDS)
 PROPERTY_INFO_ENTRY(CANHOLDROWS)
 PROPERTY_INFO_ENTRY(CANSCROLLBACKWARDS)
 PROPERTY_INFO_ENTRY(LITERALBOOKMARKS)
 PROPERTY_INFO_ENTRY(ORDEREDBOOKMARKS)
 END_PROPERTY_SET(DBPROPSET_ROWSET)
END_PROPSET_MAP()
};

class RAProviderRowset : public CRowsetImpl<RAProviderRowset,
 CWindowsFile,
 CAProviderCommand>
{
public:
 HRESULT Execute(DBPARAMS * pParams, LONG* pcRowsAffected)
 {
 USES_CONVERSION;
 BOOL bFound = FALSE;
 HANDLE hFile;
 LPTSTR szDir = (m_strCommandText == _T("")) ? _T("*.*") :
 OLE2T(m_strCommandText);
 CAProviderWindowsFile wf;
 hFile = FindFirstFile(szDir, &wf);
 if (hFile == INVALID_HANDLE_VALUE)
 return DB_E_ERRORSINCOMMAND;
 LONG cFiles = 1;
 BOOL bMoreFiles = TRUE;
 while (bMoreFiles)
 {
 if (!m_rgRowData.Add(wf))
 return E_OUTOFMEMORY;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return E_OUTOFMEMORY;
 bMoreFiles = FindNextFile(hFile, &wf);
 cFiles++;
 }
 FindClose(hFile);
 if (pcRowsAffected != NULL)
 *pcRowsAffected = cFiles;
 return S_OK;
 }
};
The ATL Object Wizard produces a session object in a file named AProviderSess.H as shown in this code:

class ATL_NO_VTABLE CAProviderSession :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IGetDataSourceImpl<CAProviderSession>,
 public IOpenRowsetImpl<CAProviderSession>,
 public ISessionPropertiesImpl<CAProviderSession>,
 public IObjectWithSiteSessionImpl<CAProviderSession>,
 public IDBSchemaRowsetImpl<CAProviderSession>,
 public IDBCreateCommandImpl<CAProviderSession, CAProviderCommand>
{
public:
 CAProviderSession()
 {
 }
 HRESULT FinalConstruct()
 {
 return FInit();
 }
 STDMETHOD(OpenRowset)(IUnknown *pUnk, DBID *pTID,
 DBID *pInID, REFIID riid,
 ULONG cSets, DBPROPSET rgSets[],
 IUnknown **ppRowset)
 {
 CAProviderRowset* pRowset;
 return CreateRowset(pUnk, pTID, pInID, riid,
 cSets, rgSets, ppRowset, pRowset);
 }
BEGIN_PROPSET_MAP(CAProviderSession)
 BEGIN_PROPERTY_SET(DBPROPSET_SESSION)
 PROPERTY_INFO_ENTRY(SESS_AUTOCOMMITISOLEVELS)
 END_PROPERTY_SET(DBPROPSET_SESSION)
END_PROPSET_MAP()
BEGIN_COM_MAP(CAProviderSession)
 COM_INTERFACE_ENTRY(IGetDataSource)
 COM_INTERFACE_ENTRY(IOpenRowset)
 COM_INTERFACE_ENTRY(ISessionProperties)
 COM_INTERFACE_ENTRY(IObjectWithSite)
 COM_INTERFACE_ENTRY(IDBCreateCommand)
 COM_INTERFACE_ENTRY(IDBSchemaRowset)
END_COM_MAP()
BEGIN_SCHEMA_MAP(CAProviderSession)
 SCHEMA_ENTRY(DBSCHEMA_TABLES, CAProviderSessionTRSchemaRowset)
 SCHEMA_ENTRY(DBSCHEMA_COLUMNS, CAProviderSessionColSchemaRowset)
 SCHEMA_ENTRY(DBSCHEMA_PROVIDER_TYPES, CAProviderSessionPTSchemaRowset)
END_SCHEMA_MAP()
};
class CAProviderSessionTRSchemaRowset :
 public CRowsetImpl< CAProviderSessionTRSchemaRowset,
 CTABLESRow, CAProviderSession>
{
public:
 HRESULT Execute(LONG* pcRowsAffected, ULONG, const VARIANT*)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 USES_CONVERSION;
 CAProviderWindowsFile wf;
 CTABLESRow trData;
 lstrcpyW(trData.m_szType, OLESTR("TABLE"));
 lstrcpyW(trData.m_szDesc, OLESTR("The Directory Table"));
 HANDLE hFile = INVALID_HANDLE_VALUE;
 TCHAR szDir[MAX_PATH + 1];
 DWORD cbCurDir = GetCurrentDirectory(MAX_PATH, szDir);
 lstrcat(szDir, _T("*.*"));
 hFile = FindFirstFile(szDir, &wf);
 if (hFile == INVALID_HANDLE_VALUE)
 return E_FAIL; // User doesn't have a c:\ drive
 FindClose(hFile);
 lstrcpynW(trData.m_szTable, T2OLE(szDir),
 SIZEOF_MEMBER(CTABLESRow, m_szTable));
 if (!m_rgRowData.Add(trData))
 return E_OUTOFMEMORY;
 *pcRowsAffected = 1;
 return S_OK;
 }
};
class CAProviderSessionColSchemaRowset :
 public CRowsetImpl< CAProviderSessionColSchemaRowset,
 CCOLUMNSRow, CAProviderSession>
{
public:
 HRESULT Execute(LONG* pcRowsAffected, ULONG, const VARIANT*)
 {
 USES_CONVERSION;
 CAProviderWindowsFile wf;
 HANDLE hFile = INVALID_HANDLE_VALUE;
 TCHAR szDir[MAX_PATH + 1];
 DWORD cbCurDir = GetCurrentDirectory(MAX_PATH, szDir);
 lstrcat(szDir, _T("*.*"));
 hFile = FindFirstFile(szDir, &wf);
 if (hFile == INVALID_HANDLE_VALUE)
 return E_FAIL; // User doesn't have a c:\ drive
 FindClose(hFile);// szDir has got the tablename
 DBID dbid;
 memset(&dbid, 0, sizeof(DBID));
 dbid.uName.pwszName = T2OLE(szDir);
 dbid.eKind = DBKIND_NAME;
 return InitFromRowset <RowsetArrayType> (m_rgRowData,
 &dbid,
 NULL,
 m_spUnkSite,
 pcRowsAffected);
 }
};
class CAProviderSessionPTSchemaRowset :
 public CRowsetImpl<CAProviderSessionPTSchemaRowset,
 CPROVIDER_TYPERow, CAProviderSession>
{
public:
 HRESULT Execute(LONG* pcRowsAffected, ULONG, const VARIANT*)
 {
 return S_OK;
 }
};

Modifying the Provider Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modifying the Provider Code

As with most Wizard-generated code, the OLE DB Provider code generated by the ATL Object Wizard is just
boilerplate code—it doesn't do very much. You need to take several steps to turn this boilerplate code into
a real OLE DB Provider. The two critical pieces that need to be added to a provider are the user record and
code to manage a data set and to set the data up as rows and columns.

The user record The ATL Object Wizard provides a default user record named
CAProviderWindowsFile. You don't really want to use this user record. You'll probably scrap it and
replace it with something useful in your domain. As a simple example, imagine you want to write an
OLE DB Provider that enumerates the compound file. Your user record might look like this:

struct CStgInfo {
BEGIN_PROVIDER_COLUMN_MAP(CStgInfo)
 PROVIDER_COLUMN_ENTRY("StgName", 1, szName)
 PROVIDER_COLUMN_ENTRY("Size", 2, cbSizeLow)
 PROVIDER_COLUMN_ENTRY("Size", 2, cbSizeHigh)

END_PROVIDER_COLUMN_MAP()

 OLECHAR szName[256];
 long cbSizeLow;
 long cbSizeHigh;
};
This structure contains the data fields for the name and size of the substorage. The provider column
map macros map the data into columns. You could actually derive the structure from a STATSTG
structure (used to enumerate structured storages). You just need to add entries to the provider
column map to handle the members.

Code to open the data set The other important addition to the provider is the code necessary to
open the data set. This happens in the rowset's Execute function. There are many different kinds of
functionality that can go on here. For example, if you want to enumerate the top-level substorages
in a compound file, you'd first open the storage and then enumerate the contents as shown in the
following code snippet:

class RStgInfoProviderRowset :
 public CRowsetImpl<RStgInfoProviderRowset,
 CStgInfo,
 CStgInfoProviderCommand>
{
public:
 HRESULT Execute(DBPARAMS * pParams, LONG* pcRowsAffected)
 {
 USES_CONVERSION;
 LPTSTR szFile =
 m_strCommandText == _T("")) ? _T("") :
 OLE2T(m_strCommandText);

 IStorage* pStg = NULL;

 HRESULT hr = StgOpenStorage(szFile, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, NULL, &pStg);

 if(FAILED(hr))
 return DB_E_ERRORSINCOMMAND;

 LONG cStgs = 0;

 IEnumSTATSTG* pEnumSTATSTG;

 hr = pStg->EnumElements(0, 0, 0, &pEnumSTATSTG);

 if(pEnumSTATSTG) {

 STATSTG rgSTATSTG[100];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STATSTG rgSTATSTG[100];
 ULONG nFetched;

 hr = pEnumSTATSTG->Next(100, rgSTATSTG, &nFetched);

 for(ULONG i = 0; i < nFetched; i++) {
 CStgInfo stgInfo;

 stgInfo.cbSizeLow = rgSTATSTG[i].cbSize.LowPart;
 stgInfo.cbSizeHigh = rgSTATSTG[i].cbSize.HighPart;

 wcsncpy(stgInfo.szName,
 rgSTATSTG[i].pwcsName,
 255);

 CoTaskMemFree(rgSTATSTG[i].pwcsName);

 if (!m_rgRowData.Add(stgInfo))
 return E_OUTOFMEMORY;
 cStgs++;
 }
 pEnumSTATSTG->Release();
 }

 if(pStg)
 pStg->Release();

 if (pcRowsAffected != NULL)
 *pcRowsAffected = cStgs;
 return S_OK;
 }
}
When some client code tries to open the OLE DB data provider, the call ends up inside this function.
This function simply opens the structured storage file passed in as the command text and uses the
standard structured storage enumerator to find the top-level substorages. Then the Execute
function stores the name of the substorage and the size of the substorage in an array. The OLE DB
provider uses this array to fulfill requests for the column data.

Enhancing the Provider

Of course, there's a lot you can do to beef up this OLE DB provider. We've barely scratched the surface of
what you can do with a provider. When the ATL Object Wizard pumps out the default provider, it's a read-
only provider. That is, users cannot change the contents of the data. In addition, the OLE DB templates
provide support for locating rowsets and setting bookmarks. In most cases, enhancing the provider is a
matter of tacking on implementations of COM interfaces provided by the OLE DB templates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
With so many disparate data sources available today, the only way you can hope to manage access to that
data is through some sort of homogeneous mechanism such as OLE DB. The high-level OLE DB
architecture is divided into two parts: consumers and providers. Consumers use the data that is made
available through providers.

As with most other COM-based architectures, OLE DB involves developers in the task of implementing a
good many interfaces—a number of which are boilerplate in nature. The OLE DB Templates available
through Visual C++ make creating OLE DB consumers and providers much easier.

You can create a simple consumer by pointing the ATL Object Wizard at a data source when you generate
a consumer object. The ATL Object Wizard will examine the data source and create the client-side proxy to
the database. From there, you can use the standard navigation functions available through the OLE DB
Consumer Templates.

Writing a provider is somewhat more involved (if you want the provider to do anything useful). While the
wizards give you a good start, they generate only a simple provider that enumerates the files in a
directory. However, the Provider Templates contain a full complement of OLE DB support. With this
support, you can create OLE DB providers that implement rowset location strategies, data reading and
writing, and bookmarking.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 34
TCP/IP, Winsock, and WinInet
As a C++ programmer, you're going to be asked to do more than create Web pages. You'll be the one who
makes the Internet reach its true potential and who creates distributed applications that haven't even been
imagined yet. To be successful, you'll have to understand how the Internet works and how to write
programs that can access other computers on the Internet.

In this section, you'll start with a primer on the Transmission Control Protocol/Internet Protocol (TCP/IP)
that's used throughout the Internet, and then you'll move up one level to see the workings of HyperText
Transport Protocol (HTTP). Then it's time to get something running. You'll assemble your own intranet (a
local version of the Internet) and study an HTTP client-server program based on Winsock, the fundamental
API for TCP/IP. Finally you'll move on to WinInet, which is a higher level API than Winsock and part of
Microsoft's ActiveX technology.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To COM or Not to COM
Surely you've read about ActiveX Controls for the Internet. You've probably encountered concepts such as
composite monikers and anti-monikers, which are part of the Microsoft Component Object Model (COM). If
you were overwhelmed, don't worry—it's possible to program for the Internet without COM, and that's a
good place to start. This chapter and the next chapter are mostly COM-free. In Chapter 36, you'll be
writing a COM-based ActiveX document server, but MFC effectively hides the COM details so you can
concentrate on Winsock and WinInet programming. It's not that ActiveX controls aren't important, but we
can't do them justice in this book. We'll defer to Adam Denning's book on this subject, ActiveX Controls
Inside Out (Microsoft Press, 1997). Your study of this book's COM material and Internet material will
prepare you well for Adam's book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internet Primer
You can't write a good Winsock program without understanding the concept of a socket, which is used to
send and receive packets of data across the network. To fully understand sockets, you need a thorough
knowledge of the underlying Internet protocols. This section contains a concentrated dose of Internet
theory. It should be enough to get you going, but you might want to refer to one of the TCP/IP textbooks if
you want more theory.

Network Protocols—Layering

All networks use layering for their transmission protocols, and the collection of layers is often called a
stack. The application program talks to the top layer, and the bottom layer talks to the network. Figure 34-
1 shows you the stack for a local area network (LAN) running TCP/IP. Each layer is logically connected to
the corresponding layer at the other end of the communications channel. The server program, as shown at
the right in Figure 34-1, continuously listens on one end of the channel, while the client program, as shown
on the left, periodically connects with the server to exchange data. Think of the server as an HTTP-based
World Wide Web server, and think of the client as a browser program running on your computer.

Figure 34-1. The stack for a LAN running TCP/IP.

The Internet Protocol

The Internet Protocol (IP) layer is the best place to start in your quest to understand TCP/IP. The IP
protocol defines packets called datagrams that are fundamental units of Internet communication. These
packets, typically less than 1000 bytes in length, go bouncing all over the world when you open a Web
page, download a file, or send e-mail. Figure 34-2 shows a simplified layout of an IP datagram.

Notice that the IP datagram contains 32-bit addresses for both the source and destination computers.
These IP addresses uniquely identify computers on the Internet and are used by routers (specialized
computers that act like telephone switches) to direct the individual datagrams to their destinations. The
routers don't care about what's inside the datagrams—they're only interested in that datagram's
destination address and total length. Their job is to resend the datagram as quickly as possible.

The IP layer doesn't tell the sending program whether a datagram has successfully reached its destination.
That's a job for the next layer up the stack. The receiving program can look only at the checksum to
determine whether the IP datagram header was corrupted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-2. A simple IP datagram layout.

The User Datagram Protocol

The TCP/IP protocol should really be called TCP/UDP/IP because it includes the User Datagram Protocol
(UDP), which is a peer of TCP. All IP-based transport protocols store their own headers and data inside the
IP data block. First let's look at the UDP layout in Figure 34-3.

Figure 34-3. A simple UDP layout.

A complete UDP/IP datagram is shown in Figure 34-4.

Figure 34-4. The relationship between the IP datagram and the UDP datagram.

UDP is only a small step up from IP, but applications never use IP directly. Like IP, UDP doesn't tell the
sender when the datagram has arrived. That's up to the application. The sender could, for example,
require that the receiver send a response, and the sender could retransmit the datagram if the response
didn't arrive within, say, 20 seconds. UDP is good for simple one-shot messages and is used by the
Internet Domain Name System (DNS), which is explained later in this chapter. (UDP is used for
transmitting live audio and video, for which some lost or out-of-sequence data is not a big problem.)

Figure 34-3 shows that the UDP header does convey some additional information—namely the source and
destination port numbers. The application programs on each end use these 16-bit numbers. For example, a
client program might send a datagram addressed to port 1700 on the server. The server program is
listening for any datagram that includes 1700 in its destination port number, and when the server finds
one, it can respond by sending another datagram back to the client, which is listening for a datagram that
includes 1701 in its destination port number.

IP Address Format—Network Byte Order

You know that IP addresses are 32-bits long. You might think that 232 (more than 4 billion) uniquely
addressed computers could exist on the Internet, but that's not true. Part of the address identifies the LAN
on which the host computer is located, and part of it identifies the host computer within the network. Most
IP addresses are Class C addresses, which are formatted as shown in Figure 34-5.

Figure 34-5. The layout of a Class C IP address.

This means that slightly more than 2 million networks can exist, and each of those networks can have 28

(256) addressable host computers. The Class A and Class B IP addresses, which allow more host
computers on a network, are all used up.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

computers on a network, are all used up.

The Internet "powers-that-be" have recognized the shortage of IP addresses, so they
have proposed a new standard, the IP Next Generation (IPng) protocol. IPng defines a
new IP datagram format that uses 128-bit addresses instead of 32-bit addresses. With
IPng, you'll be able, for example, to assign a unique Internet address to each light
switch in your house, so you can switch off your bedroom light from your portable
computer from anywhere in the world. IPng implementation doesn't yet have a
schedule.

By convention, IP addresses are written in dotted-decimal format. The four parts of the address refer to
the individual byte values. An example of a Class C IP address is 194.128.198.201. In a computer with an
Intel CPU, the address bytes are stored low-order-to-the-left, in so-called little-endian order. In most other
computers, including the UNIX machines that first supported the Internet, bytes are stored high-order-to-
the-left, in big-endian order. Because the Internet imposes a machine-independent standard for data
interchange, all multibyte numbers must be transmitted in big-endian order. This means that programs
running on Intel-based machines must convert between network byte order (big-endian) and host byte
order (little-endian). This rule applies to 2-byte port numbers as well as to 4-byte IP addresses.

The Transmission Control Protocol

You've learned about the limitations of UDP. What you really need is a protocol that supports error-free
transmission of large blocks of data. Obviously, you want the receiving program to be able to reassemble
the bytes in the exact sequence in which they are transmitted, even though the individual datagrams
might arrive in the wrong sequence. TCP is that protocol, and it's the principal transport protocol for all
Internet applications, including HTTP and File Transfer Protocol (FTP). Figure 34-6 shows the layout of a
TCP segment. (It's not called a datagram.) The TCP segment fits inside an IP datagram, as shown in Figure
34-7.

Figure 34-6. A simple layout of a TCP segment.

Figure 34-7. The relationship between an IP datagram and a TCP segment.

The TCP protocol establishes a full-duplex, point-to-point connection between two computers, and a
program at each end of this connection uses its own port. The combination of an IP address and a port
number is called a socket. The connection is first established with a three-way handshake. The initiating
program sends a segment with the SYN flag set, the responding program sends a segment with both the
SYN and ACK flags set, and then the initiating program sends a segment with the ACK flag set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SYN and ACK flags set, and then the initiating program sends a segment with the ACK flag set.

After the connection is established, each program can send a stream of bytes to the other program. TCP
uses the sequence number fields together with ACK flags to control this flow of bytes. The sending
program doesn't wait for each segment to be acknowledged but instead sends a number of segments
together and then waits for the first acknowledgment. If the receiving program has data to send back to
the sending program, it can piggyback its acknowledgment and outbound data together in the same
segments.

The sending program's sequence numbers are not segment indexes but rather indexes into the byte
stream. The receiving program sends back the sequence numbers (in the acknowledgment number field)
to the sending program, thereby ensuring that all bytes are received and assembled in sequence. The
sending program resends unacknowledged segments.

Each program closes its end of the TCP connection by sending a segment with the FIN flag set, which must
be acknowledged by the program on the other end. A program can no longer receive bytes on a connection
that has been closed by the program on the other end.

Don't worry about the complexity of the TCP protocol. The Winsock and WinInet APIs hide most of the
details, so you don't have to worry about ACK flags and sequence numbers. Your program calls a function
to transmit a block of data, and Windows takes care of splitting the block into segments and stuffing them
inside IP datagrams. Windows also takes care of delivering the bytes on the receiving end, but that gets
tricky, as you'll see later in this chapter.

The Domain Name System

When you surf the Web, you don't use IP addresses. Instead, you use human-friendly names like
microsoft.com or www.cnn.com. A significant portion of Internet resources is consumed when host names
(such as microsoft.com) are translated into IP addresses that TCP/IP can use. A distributed network of
name server (domain server) computers performs this translation by processing DNS queries. The entire
Internet namespace is organized into domains, starting with an unnamed root domain. Under the root is a
series of top-level domains such as com, edu, gov, and org.

Do not confuse Internet domains with Microsoft Windows NT domains. The latter are
logical groups of networked computers that share a common security database.

Servers and Domain Names

Let's look at the server end first. Suppose a company named SlowSoft has two host computers connected
to the Internet, one for World Wide Web (WWW) service and the other for FTP service. By convention,
these host computers are named www.slowsoft.com and ftp.slowsoft.com, respectively, and both are
members of the second-level domain slowsoft, which SlowSoft has registered with an organization called
InterNIC. (See http://www.internic.com/.)

Now SlowSoft must designate two (or more) host computers as its name servers. The name servers for the
com domain each have a database entry for the slowsoft domain, and that entry contains the names and
IP addresses of SlowSoft's two name servers. Each of the two slowsoft name servers has database entries
for both of SlowSoft's host computers. These servers might also have database entries for hosts in other
domains, and they might have entries for name servers in third-level domains. Thus, if a name server can't
provide a host's IP address directly, it can redirect the query to a lower-level name server. Figure 34-8
illustrates SlowSoft's domain configuration.

A top-level name server runs on its own host computer. InterNIC manages (at last
count) nine computers that serve the root domain and top-level domains. Lower-level
name servers could be programs running on host computers anywhere on the Net.
SlowSoft's Internet service provider (ISP), ExpensiveNet, can furnish one of SlowSoft's
name servers. If the ISP is running Windows NT Server, the name server is usually the
DNS program that comes bundled with the operating system. That name server might
be designated ns1.expensivenet.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clients and Domain Names

Now for the client side. A user types http://www.slowsoft.com in the browser. (The http:// prefix tells the
browser to use the HTTP protocol when it eventually finds the host computer.) The browser must then
resolve www.slowsoft.com into an IP address, so it uses TCP/IP to send a DNS query to the default
gateway IP address for which TCP/IP is configured. This default gateway address identifies a local name
server, which might have the needed host IP address in its cache. If not, the local name server relays the
DNS query up to one of the root name servers. The root server looks up slowsoft in its database and sends
the query back down to one of SlowSoft's designated name servers. In the process, the IP address for
www.slowsoft.com will be cached for later use if it was not cached already. If you want to go the other
way, name servers are also capable of converting an IP address to a name.

Figure 34-8. SlowSoft's domain configuration.

HTTP Basics

You're going to be doing some Winsock programming soon, but just sending raw byte streams back and
forth isn't very interesting. You need to use a higher-level protocol in order to be compatible with existing
Internet servers and browsers. HTTP is a good place to start because it's the protocol of the popular World
Wide Web and it's relatively simple.

HTTP is built on TCP, and this is the way it works: First a server program listens on port 80. Then some
client program (typically a browser) connects to the server (www.slowsoft.com, in this case) after receiving
the server's IP address from a name server. Using its own port number, the client sets up a two-way TCP
connection to the server. As soon as the connection is established, the client sends a request to the server,
which might look like this:

GET /customers/newproducts.html HTTP/1.0
The server identifies the request as a GET, the most common type, and it concludes that the client wants a
file named newproducts.html that's located in a server directory known as /customers (which might or
might not be \customers on the server's hard disk). Immediately following are request headers, which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

might not be \customers on the server's hard disk). Immediately following are request headers, which
mostly describe the client's capabilities.

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/x
-jg, */*
Accept-Language: en
UA-pixels: 1024x768
UA-color: color8
UA-OS: Windows NT
UA-CPU: x86
User-Agent: Mozilla/2.0 (compatible; MSIE 3.0; AK; Windows NT)
Host: www.slowsoft.com
Connection: Keep-Alive
If-Modified-Since: Wed, 26 Mar 1997 20:23:04 GMT
(blank line)

The If-Modified-Since header tells the server not to bother to transmit newproducts.html unless the file has
been modified since March 26, 1997. This implies that the browser already has a dated copy of this file
stored in its cache. The blank line at the end of the request is crucial; it provides the only way for the
server to tell that it is time to stop receiving and start transmitting, and that's because the TCP connection
stays open.

Now the server springs into action. It sends newproducts.html, but first it sends an OK response:

HTTP/1.0 200 OK
immediately followed by some response header lines:

Server: Microsoft-IIS/2.0
Date: Thu, 03 Mar 1997 17:33:12 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, Mar 26 1997 20:23:04 GMT
Content-Length: 407
(blank line)

The contents of newproducts.html immediately follow the blank line:

<html>
<head><title>SlowSoft's New Products</title></head>
<body><body background="/images/clouds.jpg">
<h1><center>Welcome to SlowSoft's New Products List
</center></h1><p>
Unfortunately, budget constraints have prevented SlowSoft from
 introducing any new products this year. We suggest you keep
 enjoying the old products.<p>
SlowSoft's Home Page<p>
</body>
</html>
You're looking at elementary HyperText Markup Language (HTML) code here, and the resulting Web page
won't win any prizes. We won't go into details because dozens of HTML books are already available. From
these books, you'll learn that HTML tags are contained in angle brackets and that there's often an "end"
tag (with a / character) for every "start" tag. Some tags, such as <a> (hypertext anchor), have attributes.
In the example above, the line

SlowSoft's Home Page<p>
creates a link to another HTML file. The user clicks on "SlowSoft's Home Page," and the browser requests
default.htm from the original server.

Actually, newproducts.html references two server files, default.htm and /images/clouds.jpg. The clouds.jpg
file is a JPEG file that contains a background picture for the page. The browser downloads each of these
files as a separate transaction, establishing and closing a separate TCP connection each time. The server
just dishes out files to any client that asks for them. In this case, the server doesn't know or care whether
the same client requested newproducts.html and clouds.jpg. To the server, clients are simply IP addresses
and port numbers. In fact, the port number is different for each request from a client. For example, if ten
of your company's programmers are surfing the Web via your company's proxy server (more on proxy
servers later), the server sees the same IP address for each client.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

servers later), the server sees the same IP address for each client.

Web pages use two graphics formats, GIF and JPEG. GIF files are compressed images
that retain all the detail of the original uncompressed image but are usually limited to
256 colors. They support transparent regions and animation. JPEG files are smaller, but
they don't carry all the detail of the original file. GIF files are often used for small
images such as buttons, and JPEG files are often used for photographic images for
which detail is not critical. Visual C++ can read, write, and convert both GIF and JPEG
files, but the Win32 API cannot handle these formats unless you supply a special
compression/decompression module.

The HTTP standard includes a PUT request type that enables a client program to upload a file to the server.
Client programs and server programs seldom implement PUT.

FTP Basics

The File Transfer Protocol handles the uploading and downloading of server files plus directory navigation
and browsing. A Windows command-line program called ftp (it doesn't work through a Web proxy server)
lets you connect to an FTP server using UNIX-like keyboard commands. Browser programs usually support
the FTP protocol (for downloading files only) in a more user-friendly manner. You can protect an FTP
server's directories with a user-name/password combination, but both strings are passed over the Internet
as clear text. FTP is based on TCP. Two separate connections are established between the client and
server, one for control and one for data.

Internet vs. Intranet

Up to now, we've been assuming that client and server computers were connected to the worldwide
Internet. The fact is you can run exactly the same client and server software on a local intranet. An
intranet is often implemented on a company's LAN and is used for distributed applications. Users see the
familiar browser interface at their client computers, and server computers supply simple Web-like pages or
do complex data processing in response to user input.

An intranet offers a lot of flexibility. If, for example, you know that all your computers are Intel-based, you
can use ActiveX controls and ActiveX document servers that provide ActiveX document support. If
necessary, your server and client computers can run custom TCP/IP software that allows communication
beyond HTTP and FTP. To secure your company's data, you can separate your intranet completely from the
Internet or you can connect it through a firewall, which is another name for a proxy server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Build Your Own $99 Intranet
Building a Microsoft Windows-based intranet is easy and cheap. Microsoft Windows 95, Microsoft Windows
98, and Microsoft Windows NT all contain the necessary networking capabilities. If you don't want to spend
the $99, you can build a free intranet within a single computer. All the code in this chapter will run on this
one-computer configuration.

NT File System vs. File Allocation Table

With Windows 95 and Windows 98, you are restricted to one file system, File Allocation Table (FAT—
actually VFAT for long filenames). With Windows NT, you choose between NT File System (NTFS) and FAT
at setup time. Your intranet will be much more secure if you choose NTFS because NTFS allows you to set
user permissions for individual directories and files. Users log on to a Windows server (or to an attached
workstation) supplying a user name and password.

Intranet and Internet clients participate in this operating-system security scheme because the server can
log them on as though they were local users. Thus you can restrict access to any server directory or file to
specific users who must supply passwords. If those user workstations are Windows network clients (as
would be the case with a LAN-based intranet), the user name and password are passed through from the
user's logon.

Network Hardware

You obviously need more than one computer to make a network. While your main development computer
is probably a Pentium, a Pentium Pro, or a Pentium II, chances are you have at least one old computer
hanging around. If it's at least a 486, it makes sense to connect it to your main computer for intranet
testing and file backups.

You will need a network board for each computer, but 10-megabit-per-second Ethernet boards now cost
less than $50 each. Choose a brand that either comes with its own drivers for Windows 95, Windows 98,
and Windows NT, or is already supported by those operating systems. To see a list of supported boards,
click on the Network icon in the Control Panel and then click the Add button to add an Adapter.

Most network boards have connectors for both thin coaxial (coax) and 10BaseT twisted pair. With 10BaseT,
you must buy a hub, which costs several hundred dollars and needs a power supply. Thin coax requires
only coaxial cable (available in precut lengths with connectors) plus terminator plugs. With coax, you
daisy-chain your computers together and put terminators on each end of the chain.

Follow the instructions that come with the network board. In most cases you'll have to run an MS-DOS
program that writes to the electrically erasable/programmable read-only memory (EEPROM) on the board.
Write down the values you select—you'll need them later.

Configuring Windows for Networking

After clicking on the Network icon in the Control Panel, you select protocols, adapters (network boards),
and services. The screens that appear depend on whether you're using Windows 95, Windows 98, or
Windows NT. You must select TCP/IP as one of your protocols if you want to run an intranet. You must also
install the Windows driver for your network board, ensuring that the IRQ and I/O address values match
what you put into the board's EEPROM. You must also assign an IP address to each of your network
boards. If you're not connected directly to the Internet, you can choose any unique address you want.

That's actually enough configuring for an intranet, but you'll probably want to use your network for sharing
files and printers, too. For Windows NT, install Client And Server Services and bind them to TCP/IP. For
Windows 95 and Windows 98, install Client For Microsoft Networks and File And Printer Sharing For
Microsoft Networks. If you have an existing network with another protocol installed (Novell IPX/SPX or
Microsoft NetBEUI, for example), you can continue to use that protocol on the network along with TCP/IP.
In that case, Windows file and print sharing will use the existing protocol and your intranet will use TCP/IP.
If you want one computer to share another computer's resources, you must enable sharing from Microsoft
Windows Explorer (for disk directories) or from the Printers folder (for printers).

Host Names for an Intranet—The HOSTS File

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Host Names for an Intranet—The HOSTS File

Both Internet and intranet users expect their browsers to use host names, not IP addresses. There are
various methods of resolving names to addresses, including your own DNS server, which is an installable
component of Windows NT Server. The easiest way of mapping Internet host names to IP addresses,
however, is to use the HOSTS file. On Windows NT, this is a text file in the \Winnt\System32\DRIVERS\ETC
directory. On Windows 95 and Windows 98, it's in the \WINDOWS directory, in a prototype HOSTS.SAM file
that's already there. Just copy that file to HOSTS, and make the entries with Notepad. Make sure that you
copy the edited HOSTS file to all computers in the network.

Testing Your Intranet—The Ping Program

You can use the Windows Ping program to test your intranet. From the command line, type ping followed
by the IP address (dotted-decimal format) or the host name of another computer on the network. If you
get a positive response, you'll know that TCP/IP is configured correctly. If you get no response or an error
message, proceed no further. Go back and troubleshoot your network connections and configuration.

An Intranet for One Computer—The TCP/IP Loopback Address

The first line in the HOSTS file should be

127.0.0.1 localhost
This is the standard loopback IP address. If you start a server program to listen on this address, client
programs running on the same machine can connect to localhost to get a TCP/IP connection to the server
program. This works whether or not you have network boards installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Winsock
Winsock is the lowest level Windows API for TCP/IP programming. Part of the code is located in wsock32.dll
(the exported functions that your program calls), and part is inside the Windows kernel. You can write both
internet server programs and internet client programs using the Winsock API. This API is based on the
original Berkely Sockets API for UNIX. A new and much more complex version, Winsock 2, is included for
the first time with Windows NT 4.0, but we'll stick with the old version because it's the current standard for
both Windows NT, Windows 95, and Windows 98.

Synchronous vs. Asynchronous Winsock Programming

Winsock was introduced first for Win16, which did not support multithreading. Consequently, most
developers used Winsock in the asynchronous mode. In that mode, all sorts of hidden windows and
PeekMessage calls enabled single-threaded programs to make Winsock send and receive calls without
blocking, thus keeping the user interface (UI) alive. Asynchronous Winsock programs were complex, often
implementing "state machines" that processed callback functions, trying to figure out what to do next
based on what had just happened. Well, we're not in 16-bit land anymore, so we can do modern
multithreaded programming. If this scares you, go back and review Chapter 12. Once you get used to
multithreaded programming, you'll love it.

In this chapter, we will make the most of our Winsock calls from worker threads so that the program's
main thread is able to carry on with the UI. The worker threads contain nice, sequential logic consisting of
blocking Winsock calls.

The MFC Winsock Classes

We try to use MFC classes where it makes sense to use them, but the MFC developers informed us that the
CAsyncSocket and CSocket classes were not appropriate for 32-bit synchronous programming. The Visual
C++ online help says you can use CSocket for synchronous programming, but if you look at the source
code you'll see some ugly message-based code left over from Win16.

The Blocking Socket Classes

Since we couldn't use MFC, we had to write our own Winsock classes. CBlockingSocket is a thin wrapping
of the Winsock API, designed only for synchronous use in a worker thread. The only fancy features are
exception-throwing on errors and time-outs for sending and receiving data. The exceptions help you write
cleaner code because you don't need to have error tests after every Winsock call. The time-outs
(implemented with the Winsock select function) prevent a communication fault from blocking a thread
indefinitely.

CHttpBlockingSocket is derived from CBlockingSocket and provides functions for reading HTTP data.
CSockAddr and CBlockingSocketException are helper classes.

The CSockAddr Helper Class

Many Winsock functions take socket address parameters. As you might remember, a socket address
consists of a 32-bit IP address plus a 16-bit port number. The actual Winsock type is a 16-byte
sockaddr_in structure, which looks like this:

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};
The IP address is stored as type in_addr, which looks like this:

struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
}
These are ugly structures, so we'll derive a programmer-friendly C++ class from sockaddr_in. The file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These are ugly structures, so we'll derive a programmer-friendly C++ class from sockaddr_in. The file
\vcpp32\ex34a\Blocksock.h on the CD-ROM contains the following code for doing this, with inline functions
included:

class CSockAddr : public sockaddr_in {
public:
 // constructors
 CSockAddr()
 {
 sin_family = AF_INET;
 sin_port = 0;
 sin_addr.s_addr = 0;
 } // Default
 CSockAddr(const SOCKADDR& sa) { memcpy(this, &sa,
 sizeof(SOCKADDR)); }
 CSockAddr(const SOCKADDR_IN& sin) { memcpy(this, &sin,
 sizeof(SOCKADDR_IN)); }
 CSockAddr(const ULONG ulAddr, const USHORT ushPort = 0)
 // parms are host byte ordered
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = htonl(ulAddr);
 }
 CSockAddr(const char* pchIP, const USHORT ushPort = 0)
 // dotted IP addr string
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = inet_addr(pchIP);
 } // already network byte ordered
 // Return the address in dotted-decimal format
 CString DottedDecimal()
 { return inet_ntoa(sin_addr); }
 // constructs a new CString object
 // Get port and address (even though they're public)
 USHORT Port() const
 { return ntohs(sin_port); }
 ULONG IPAddr() const
 { return ntohl(sin_addr.s_addr); }
 // operators added for efficiency
 const CSockAddr& operator=(const SOCKADDR& sa)
 {
 memcpy(this, &sa, sizeof(SOCKADDR));
 return *this;
 }
 const CSockAddr& operator=(const SOCKADDR_IN& sin)
 {
 memcpy(this, &sin, sizeof(SOCKADDR_IN));
 return *this;
 }
 operator SOCKADDR()
 { return *((LPSOCKADDR) this); }
 operator LPSOCKADDR()
 { return (LPSOCKADDR) this; }
 operator LPSOCKADDR_IN()
 { return (LPSOCKADDR_IN) this; }
};
As you can see, this class has some useful constructors and conversion operators, which make the
CSockAddr object interchangeable with the type sockaddr_in and the equivalent types SOCKADDR_IN,
sockaddr, and SOCKADDR. There's a constructor and a member function for IP addresses in dotted-
decimal format. The internal socket address is in network byte order, but the member functions all use
host byte order parameters and return values. The Winsock functions htonl, htons, ntohs, and ntohl take
care of the conversions between network and host byte order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

care of the conversions between network and host byte order.

The CBlockingSocketException Class

All the CBlockingSocket functions throw a CBlockingSocketException object when Winsock returns an error.
This class is derived from the MFC CException class and thus overrides the GetErrorMessage function. This
function gives the Winsock error number and a character string that CBlockingSocket provided when it
threw the exception.

The CBlockingSocket Class

Figure 34-9 shows an excerpt from the header file for the CBlockingSocket class.

BLOCKSOCK.H

class CBlockingSocket : public CObject
{
 DECLARE_DYNAMIC(CBlockingSocket)
public:
 SOCKET m_hSocket;
 CBlockingSocket(); { m_hSocket = NULL; }
 void Cleanup();
 void Create(int nType = SOCK_STREAM);
 void Close();
 void Bind(LPCSOCKADDR psa);
 void Listen();
 void Connect(LPCSOCKADDR psa);
 BOOL Accept(CBlockingSocket& s, LPCSOCKADDR psa);
 int Send(const char* pch, const int nSize, const int nSecs);
 int Write(const char* pch, const int nSize, const int nSecs);
 int Receive(char* pch, const int nSize, const int nSecs);
 int SendDatagram(const char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 int ReceiveDatagram(char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 void GetPeerAddr(LPCSOCKADDR psa);
 void GetSockAddr(LPCSOCKADDR psa);
 static CSockAddr GetHostByName(const char* pchName,
 const USHORT ushPort = 0);
 static const char* GetHostByAddr(LPCSOCKADDR psa);
 operator SOCKET();
 { return m_hSocket; }
};

Figure 34-9. Excerpt from the header file for the CBlockingSocketclass.

Following is a list of the CBlockingSocket member functions, starting with the constructor:

Constructor—The CBlockingSocket constructor makes an uninitialized object. You must call the
Create member function to create a Windows socket and connect it to the C++ object.

Create—This function calls the Winsock socket function and then sets the m_hSocket data member
to the returned 32-bit SOCKET handle.

Parameter Description

nType Type of socket; should be SOCK_STREAM (the default value) or SOCK_DGRAM

Close—This function closes an open socket by calling the Winsock closesocket function. The Create
function must have been called previously. The destructor does not call this function because it
would be impossible to catch an exception for a global object. Your server program can call Close
anytime for a socket that is listening.
Bind—This function calls the Winsock bind function to bind a previously created socket to a
specified socket address. Prior to calling Listen, your server program calls Bind with a socket
address containing the listening port number and server's IP address. If you supply INADDR_ANY as
the IP address, Winsock deciphers your computer's IP address.

Parameter Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

Listen—This TCP function calls the Winsock listen function. Your server program calls Listen to
begin listening on the port specified by the previous Bind call. The function returns immediately.
Accept—This TCP function calls the Winsock accept function. Your server program calls Accept
immediately after calling Listen. Accept returns when a client connects to the socket, sending back
a new socket (in a CBlockingSocket object that you provide) that corresponds to the new
connection.

Parameter Description

s A reference to an existing CBlockingSocket object for which Create has not been
called

psa A CSockAddr object or a pointer to a variable of type sockaddr for the connecting
socket's address

Return
value

TRUE if successful

Connect—This TCP function calls the Winsock connect function. Your client program calls Connect
after calling Create. Connect returns when the connection has been made.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

Send—This TCP function calls the Winsock send function after calling select to activate the time-
out. The number of bytes actually transmitted by each Send call depends on how quickly the
program at the other end of the connection can receive the bytes. Send throws an exception if the
program at the other end closes the socket before it reads all the bytes.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

nSecs Time-out value in seconds

Return value The actual number of bytes sent

Write—This TCP function calls Send repeatedly until all the bytes are sent or until the receiver
closes the socket.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

nSecs Time-out value in seconds

Return value The actual number of bytes sent

Receive—This TCP function calls the Winsock recv function after calling select to activate the time-
out. This function returns only the bytes that have been received. For more information, see the
description of the CHttpBlockingSocket class in the next section.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming bytes

nSize The maximum number of bytes to receive

nSecs Time-out value in seconds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return value The actual number of bytes received

SendDatagram—This UDP function calls the Winsock sendto function. The program on the other
end needs to call ReceiveDatagram. There is no need to call Listen, Accept, or Connect for
datagrams. You must have previously called Create with the parameter set to SOCK_DGRAM.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

psa The datagram's destination address; a CSockAddr object or a pointer to a variable of
type sockaddr

nSecs Time-out value in seconds

Return
value

The actual number of bytes sent

ReceiveDatagram—This UDP function calls the Winsock recvfrom function. The function returns
when the program at the other end of the connection calls SendDatagram. You must have
previously called Create with the parameter set to SOCK_DGRAM.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming bytes

nSize The size (in bytes) of the block to send

psa The datagram's destination address; a CSockAddr object or a pointer to a variable of
type sockaddr

nSecs Time-out value in seconds

Return
value

The actual number of bytes received

GetPeerAddr—This function calls the Winsock getpeername function. It returns the port and IP
address of the socket on the other end of the connection. If you are connected to the Internet
through a Web proxy server, the IP address is the proxy server's IP address.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

GetSockAddr—This function calls the Winsock getsockname function. It returns the socket address
that Winsock assigns to this end
of the connection. If the other program is a server on a LAN, the IP address is the address assigned
to this computer's network board. If the other program is a server on the Internet, your service
provider assigns the IP address when you dial in. In both cases, Winsock assigns the port number,
which is different for each connection.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

GetHostByName—This static function calls the Winsock function gethostbyname. It queries a
name server and then returns the socket address corresponding to the host name. The function
times out by itself.

Parameter Description

pchName A pointer to a character array containing the host name to resolve

ushPort The port number (default value 0) that will become part of the returned socket
address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return
value

The socket address containing the IP address from the DNS plus the port number
ushPort

GetHostByAddr—This static function calls the Winsock gethostbyaddr function. It queries a name
server and then returns the host name corresponding to the socket address. The function times out
by itself.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

Return
value

A pointer to a character array containing the host name; the caller should not delete
this memory

Cleanup—This function closes the socket if it is open. It doesn't throw an exception, so you can call
it inside an exception catch block.
operator SOCKET—This overloaded operator lets you use a CBlockingSocket object in place of a
SOCKET parameter.

The CHttpBlockingSocket Class

If you call CBlockingSocket::Receive, you'll have a difficult time knowing when to stop receiving bytes.
Each call returns the bytes that are stacked up at your end of the connection at that instant. If there are
no bytes, the call blocks, but if the sender closed the socket, the call returns zero bytes.

In the HTTP section, you learned that the client sends a request terminated by a blank line. The server is
supposed to send the response headers and data as soon as it detects the blank line, but the client needs
to analyze the response headers before it reads the data. This means that as long as a TCP connection
remains open, the receiving program must process the received data as it comes in. A simple but
inefficient technique would be to call Receive for 1 byte at a time. A better way is to use a buffer.

The CHttpBlockingSocket class adds buffering to CBlockingSocket, and it provides two new member
functions. Here is part of the \vcpp32\ex34A\Blocksock.h file:

class CHttpBlockingSocket : public CBlockingSocket
{
public:
 DECLARE_DYNAMIC(CHttpBlockingSocket)
 enum {nSizeRecv = 1000}; // max receive buffer size (> hdr line
 // length)
 CHttpBlockingSocket();
 ~CHttpBlockingSocket();
 int ReadHttpHeaderLine(char* pch, const int nSize, const int nSecs);
 int ReadHttpResponse(char* pch, const int nSize, const int nSecs);
private:
 char* m_pReadBuf; // read buffer
 int m_nReadBuf; // number of bytes in the read buffer
};
The constructor and destructor take care of allocating and freeing a 1000-character buffer. The two new
member functions are as follows:

ReadHttpHeaderLine—This function returns a single header line, terminated with a <cr><lf>
pair. ReadHttpHeaderLine inserts a terminating zero at the end of the line. If the line buffer is full,
the terminating zero is stored in the last position.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming line (zero-terminated)

nSize The size of the pch buffer

nSecs Time-out value in seconds

Return value The actual number of bytes received, excluding the terminating zero

ReadHttpResponse—This function returns the remainder of the server's response received when

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReadHttpResponse—This function returns the remainder of the server's response received when
the socket is closed or when the buffer is full. Don't assume that the buffer contains a terminating
zero.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming data

nSize The maximum number of bytes to receive

nSecs Time-out value in seconds

Return value The actual number of bytes received

A Simplified HTTP Server Program

Now it's time to use the blocking socket classes to write an HTTP server program. All the frills have been
eliminated, but the code actually works with a browser. This server doesn't do much except return some
hard-coded headers and HTML statements in response to any GET request. (See the EX34A program later
in this chapter for a more complete HTTP server.)

Initializing Winsock

Before making any Winsock calls, the program must initialize the Winsock library. The following statements
in the application's InitInstance member function do the job:

WSADATA wsd;
WSAStartup(0x0101, &wsd);

Starting the Server

The server starts in response to some user action, such as a menu choice. Here's the command handler:

CBlockingSocket g_sListen; // one-and-only global socket for listening
void CSocketView::OnInternetStartServer()
{
 try {
 CSockAddr saServer(INADDR_ANY, 80);
 g_sListen.Create();
 g_sListen.Bind(saServer);
 g_sListen.Listen();
 AfxBeginThread(ServerThreadProc, GetSafeHwnd());
 }
 catch(CBlockingSocketException* e) {
 g_sListen.Cleanup();
 // Do something about the exception
 e->Delete();
 }
}
Pretty simple, really. The handler creates a socket, starts listening on it, and then starts a worker thread
that waits for some client to connect to port 80. If something goes wrong, an exception is thrown. The
global g_sListen object lasts for the life of the program and is capable of accepting multiple simultaneous
connections, each managed by a separate thread.

The Server Thread

Now let's look at the ServerThreadProc function:

UINT ServerThreadProc(LPVOID pParam)
{
 CSockAddr saClient;
 CHttpBlockingSocket sConnect;
 char request[100];
 char headers[] = "HTTP/1.0 200 OK\r\n"
 "Server: Inside Visual C++ SOCK01\r\n"
 "Date: Thu, 05 Sep 1996 17:33:12 GMT\r\n"
 "Content-Type: text/html\r\n"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Content-Type: text/html\r\n"
 "Accept-Ranges: bytes\r\n"
 "Content-Length: 187\r\n"
 "\r\n"; // the important blank line
 char html[] =
 "<html><head><title>Inside Visual C++ Server</title></head>\r\n"
 "<body><body background=\"/samples/images/usa1.jpg\">\r\n"
 "<h1><center>This is a custom home page</center></h1><p>\r\n"
 "</body></html>\r\n\r\n";
 try {
 if(!g_sListen.Accept(sConnect, saClient)) {
 // Handler in view class closed the listening socket
 return 0;
 }
 AfxBeginThread(ServerThreadProc, pParam);
 // read request from client
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the first header
 if(strnicmp(request, "GET", 3) == 0) {
 do { // Process the remaining request headers
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the other headers
 } while(strcmp(request, "\r\n"));
 sConnect.Write(headers, strlen(headers), 10); // response hdrs
 sConnect.Write(html, strlen(html), 10); // HTML code
 }
 else {
 TRACE("SERVER: not a GET\n");
 // don't know what to do
 }
 sConnect.Close(); // Destructor doesn't close it
 }
 catch(CBlockingSocketException* e) {
 // Do something about the exception
 e->Delete();
 }
 return 0;
}
The most important function call is the Accept call. The thread blocks until a client connects to the server's
port 80, and then Accept returns with a new socket, sConnect. The current thread immediately starts
another thread.

In the meantime, the current thread must process the client's request that just came in on sConnect. It
first reads all the request headers by calling ReadHttpHeaderLine until it detects a blank line. Then it calls
Write to send the response headers and the HTML statements. Finally, the current thread calls Close to
close the connection socket. End of story for this connection. The next thread is sitting, blocked at the
Accept call, waiting for the next connection.

Cleaning Up

To avoid a memory leak on exit, the program must ensure that all worker threads have been terminated.
The simplest way to do this is to close the listening socket. This forces any thread's pending Accept to
return FALSE, causing the thread to exit.

try {
 g_sListen.Close();
 Sleep(340); // Wait for thread to exit
 WSACleanup(); // Terminate Winsock
}
catch(CUserException* e) {
 e->Delete();
}
A problem might arise if a thread were in the process of fulfilling a client request. In that case, the main
thread should positively ensure that all threads have terminated before exiting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Simplified HTTP Client Program

Now for the client side of the story—a simple working program that does a blind GET request. When a
server receives a GET request with a slash, as shown below, it's supposed to deliver its default HTML file:

GET / HTTP/1.0
If you typed http://www.slowsoft.com in a browser, the browser sends the blind GET request.

This client program can use the same CHttpBlockingSocket class you've already seen, and it must initialize
Winsock the same way the server did. A command handler simply starts a client thread with a call like this:

AfxBeginThread(ClientSocketThreadProc, GetSafeHwnd());
Here's the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientSocketThreadProc(LPVOID pParam)
{
 CHttpBlockingSocket sClient;
 char* buffer = new char[MAXBUF];
 int nBytesReceived = 0;
 char request[] = "GET / HTTP/1.0\r\n";
 char headers[] = // Request headers
 "User-Agent: Mozilla/1.22 (Windows; U; 32bit)\r\n"
 "Accept: */*\r\n"
 "Accept: image/gif\r\n"
 "Accept: image/x-xbitmap\r\n"
 "Accept: image/jpeg\r\n"
 "\r\n"; // need this
 CSockAddr saServer, saClient;
 try {
 sClient.Create();
 saServer = CBlockingSocket::GetHostByName(g_strServerName, 80);
 sClient.Connect(saServer);
 sClient.Write(request, strlen(request), 10);
 sClient.Write(headers, strlen(headers), 10);
 do { // Read all the server's response headers
 nBytesReceived = sClient.ReadHttpHeaderLine(buffer, 100, 10);
 } while(strcmp(buffer, "\r\n")); // through the first blank line
 nBytesReceived = sClient.ReadHttpResponse(buffer, 100, 10);
 if(nBytesReceived == 0) {
 AfxMessageBox("No response received");
 }
 else {
 buffer[nBytesReceived] = `\0';
 AfxMessageBox(buffer);
 }
 }
 catch(CBlockingSocketException* e) {
 // Log the exception
 e->Delete();
 }
 sClient.Close();
 delete [] buffer;
 return 0; // The thread exits
}
This thread first calls CBlockingSocket::GetHostByName to get the server computer's IP address. Then it
creates a socket and calls Connect on that socket. Now there's a two-way communication channel to the
server. The thread sends its GET request followed by some request headers, reads the server's response
headers, and then reads the response file itself, which it assumes is a text file. After the thread displays
the text in a message box, it exits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Server with CHttpBlockingSocket
If you need a Web server, your best bet is to buy one or to use the Microsoft Internet Information Server
(IIS) that comes bundled with Windows NT Server. Of course, you'll learn more if you build your own
server and you'll also have a useful diagnostic tool. And what if you need features that IIS can't deliver?
Suppose you want to add Web server capability to an existing Windows application, or suppose you have a
custom ActiveX control that sets up its own non-HTTP TCP connection with the server. Take a good look at
the server code in EX34A, which works under Windows NT, Windows 95, and Windows 98. It might work
as a foundation for your next custom server application.

EX34A Server Limitations

The server part of the EX34A program honors GET requests for files, and it has logic for processing POST
requests. (POST requests are described in Chapter 35.) These are the two most common HTTP request
types. EX34A will not, however, launch Common Gateway Interface (CGI) scripts or load Internet Server
Application Programming Interface (ISAPI) DLLs. (You'll learn more about ISAPI in Chapter 35.) EX34A
makes no provision for security, and it doesn't have FTP capabilities. Other than that, it's a great server! If
you want the missing features, just write the code for them yourself.

EX34A Server Architecture

You'll soon see that EX34A combines an HTTP server, a Winsock HTTP client, and two WinInet HTTP clients.
All three clients can talk to the built-in server or to any other server on the Internet. Any client program,
including the Telnet utility and standard browsers such as Microsoft Internet Explorer 4.0, can
communicate with the EX34A server. You'll examine the client sections a little later in this chapter.

EX34A is a standard MFC SDI document-view application with a view class derived from CEditView. The
main menu includes Start Server and Stop Server menu choices as well as a Configuration command that
brings up a tabbed dialog for setting the home directory, the default file for blind GETs, and the listening
port number (usually 80).

The Start Server command handler starts a global socket listening and then launches a thread, as in the
simplified HTTP server described previously. Look at the ServerThreadProc function included in the file
\vcpp32\ex34a\ServerThread.cpp of the EX34A project on the companion CD-ROM. Each time a server
thread processes a request, it logs the request by sending a message to the CEditView window. It also
sends messages for exceptions, such as bind errors.

The primary job of the server is to deliver files. It first opens a file, storing a CFile pointer in pFile, and
then it reads 5 KB (SERVERMAXBUF) blocks and writes them to the socket sConnect, as shown in the code
below:

char* buffer = new char[SERVERMAXBUF];
DWORD dwLength = pFile->GetLength();
nBytesSent = 0;
DWORD dwBytesRead = 0;
UINT uBytesToRead;
while(dwBytesRead < dwLength) {
 uBytesToRead = min(SERVERMAXBUF, dwLength - dwBytesRead);
 VERIFY(pFile->Read(buffer, uBytesToRead) == uBytesToRead);
 nBytesSent += sConnect.Write(buffer, uBytesToRead, 10);
 dwBytesRead += uBytesToRead;
}
The server is programmed to respond to a GET request for a phony file named Custom. It generates some
HTML code that displays the client's IP address, port number, and a sequential connection number. This is
one possibility for server customization.

The server normally listens on a socket bound to address INADDR_ANY. This is the server's default IP
address determined by the Ethernet board or assigned during your connection to your ISP. If your server
computer has several IP addresses, you can force the server to listen to one of them by filling in the Server
IP Address in the Advanced Configuration page. You can also change the server's listening port number on
the Server page. If you choose port 90, for example, browser users would connect to http://localhost:90.

The leftmost status bar indicator pane displays "Listening" when the server is running.

Using the Win32 TransmitFile Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the Win32 TransmitFile Function

If you have Windows NT 4.0, you can make your server more efficient by using the Win32 TransmitFile
function in place of the CFile::Read loop in the code excerpt shown. TransmitFile sends bytes from an open
file directly to a socket and is highly optimized. The EX34A ServerThreadProc function contains the
following line:

if (::TransmitFile(sConnect, (HANDLE) pFile >m_hFile, dwLength, 0,
 NULL, NULL, TF_DISCONNECT))
If you have Windows NT, uncomment the line

#define USE_TRANSMITFILE
at the top of ServerThread.cpp to activate the TransmitFile logic.

Building and Testing EX34A

Open the \vcpp32\ex34a project in Visual C++, and then build the project. A directory under EX34A, called
Website, contains some HTML files and is set up as the EX34A server's home directory, which appears to
clients as the server's root directory.

If you have another HTTP server running on your computer, stop it now. If you have
installed IIS along with Windows NT Server, it is probably running now, so you must
run the Internet Service Manager program from the Microsoft Internet Server menu.
Select the WWW Service line, and then click the stop button (the one with the square).
EX34A reports a bind error (10048) if another server is already listening on port 80.

Run the program from the debugger, and then choose Start Server from the Internet menu. Now go to
your Web browser and type localhost. You should see the Welcome To The Inside Visual C++ Home Page
complete with all graphics. The EX34A window should look like this.

Look at the Visual C++ debug window for a listing of the client's request headers.

If you click the browser's Refresh button, you might notice EX34A error messages like this:

WINSOCK ERROR--SERVER: Send error #10054 -- 10/05/96 04:34:10 GMT
This tells you that the browser read the file's modified date from the server's response header and figured
out that it didn't need the data because it already had the file in its cache. The browser then closed the
socket, and the server detected an error. If the EX34A server were smarter, it would have checked the
client's If-Modified-Since request header before sending the file.

Of course, you can test the server on your $99 intranet. Start the server on one computer, and then run
the browser from another, typing in the server's host name as it appears in the HOSTS file.

Using Telnet

The Telnet utility is included with Windows 95, Windows 98, and Windows NT. It's useful for testing server
programs such as EX34A. With Telnet, you're sending one character at a time, which means that the
server's CBlockingSocket::Receive function is receiving one character at a time. The Telnet window is
shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shown here.

The first time you run Telnet, choose Preferences from the Terminal menu and turn on Local Echo. Each
time thereafter, choose Remote System from the Connect menu and then type your server name and port
number 80. You can type a GET request (followed by a double carriage return), but you'd better type fast
because the EX34A server's Receive calls are set to time-out after 10 seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Client with CHttpBlockingSocket
If you had written your own Internet browser program a few years ago, you could have made a billion
dollars by now. But these days, you can download browsers for free, so it doesn't make sense to write one.
It does make sense, however, to add Internet access features to your Windows applications. Winsock is
not the best tool if you need HTTP or FTP access only, but it's a good learning tool.

The EX34A Winsock Client

The EX34A program implements a Winsock client in the file \vcpp32\ex34a\ClientSockThread.cpp on the
CD-ROM. The code is similar to the code for the simplified HTTP client. The client thread uses global
variables set by the Configuration property sheet, including server filename, server host name, server IP
address and port, and client IP address. The client IP address is necessary only if your computer supports
multiple IP addresses. When you run the client, it connects to the specified server and issues a GET
request for the file that you specified. The Winsock client logs error messages in the EX34A main window.

EX34A Support for Proxy Servers

If your computer is connected to a LAN at work, chances are it's not exposed directly to the Internet but
rather connected through a proxy server, sometimes called a firewall. There are two kinds of proxy
servers: Web and Winsock. Web proxy servers, sometimes called CERN proxies, support only the HTTP,
FTP, and gopher protocols. (The gopher protocol, which predates HTTP, allows character-mode terminals to
access Internet files.) A Winsock client program must be specially adapted to use a Web proxy server. A
Winsock proxy server is more flexible and thus can support protocols such as RealAudio. Instead of
modifying your client program source code, you link to a special Remote Winsock DLL that can
communicate with a Winsock proxy server.

The EX34A client code can communicate through a Web proxy if you check the Use Proxy check box in the
Client Configuration page. In that case, you must know and enter the name of your proxy server. From
that point on, the client code connects to the proxy server instead of to the real server. All GET and POST
requests must then specify the full Uniform Resource Locator (URL) for the file.

If you were connected directly to SlowSoft's server, for example, your GET request might look like this:

GET /customers/newproducts.html HTTP/1.0
But if you were connected through a Web proxy server, the GET would look like this:

GET http://slowsoft.com/customers/newproducts.html HTTP/1.0

Testing the EX34A Winsock Client

The easiest way to test the Winsock client is by using the built-in Winsock server. Just start the server as
before, and then choose Request (Winsock) from the Internet menu. You should see some HTML code in a
message box. You can also test the client against IIS, the server running in another EX34A process on the
same computer, the EX34A server running on another computer on the Net, and an Internet server.
Ignore the "Address" URL on the dialog bar for the time being; it's for one of the WinInet clients. You must
enter the server name and filename in the Client page of the Configuration dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WinInet
WinInet is a higher-level API than Winsock, but it works only for HTTP, FTP, and gopher client programs in
both asynchronous and synchronous modes. You can't use it to build servers. The WININET DLL is
independent of the WINSOCK32 DLL. Microsoft Internet Explorer 3.0 (IE3) uses WinInet, and so do ActiveX
controls.

WinInet's Advantages over Winsock

WinInet far surpasses Winsock in the support it gives to a professional-level client program. Following are
just some of the WinInet benefits:

Caching—Just like IE3, your WinInet client program caches HTML files and other Internet files. You
don't have to do a thing. The second time your client requests a particular file, it's loaded from a
local disk instead of from the Internet.

Security—WinInet supports basic authentication, Windows NT challenge/response authentication,
and the Secure Sockets Layer (SSL). Authentication is described in Chapter 35.

Web proxy access—You enter proxy server information through the Control Panel (click on the
Internet icon), and it's stored in the Registry. WinInet reads the Registry and uses the proxy server
when required.

Buffered I/O—WinInet's read function doesn't return until it can deliver the number of bytes you
asked for. (It returns immediately, of course, if the server closes the socket.) Also, you can read
individual text lines if you need to.

Easy API—Status callback functions are available for UI update and cancellation. One function,
CInternetSession::OpenURL, finds the server's IP address, opens a connection, and makes the file
ready for reading, all in one call. Some functions even copy Internet files directly to and from disk.

User friendly—WinInet parses and formats headers for you. If a server has moved a file to a new
location, it sends back the new URL in an HTTP Location header. WinInet seamlessly accesses the
new server for you. In addition, WinInet puts a file's modified date in the request header for you.

The MFC WinInet Classes

WinInet is a modern API available only for Win32. The MFC wrapping is quite good, which means we didn't
have to write our own WinInet class library. Yes, MFC WinInet supports blocking calls in multithreaded
programs, and by now you know that makes us happy.

The MFC classes closely mirror the underlying WinInet architecture, and they add exception processing.
These classes are summarized in the sections on the following pages.

CInternetSession

You need only one CInternetSession object for each thread that accesses the Internet. After you have your
CInternetSession object, you can establish HTTP, FTP, or gopher connections or you can open remote files
directly by calling the OpenURL member function. You can use the CInternetSession class directly, or you
can derive a class from it in order to support status callback functions.

The CInternetSession constructor calls the WinInet InternetOpen function, which returns an HINTERNET
session handle that is stored inside the CInternetSession object. This function initializes your application's
use of the Win- Inet library, and the session handle is used internally as a parameter for other WinInet
calls.

CHttpConnection

An object of class CHttpConnection represents a "permanent" HTTP connection to a particular host. You
know already that HTTP doesn't support permanent connections and that FTP doesn't either. (The
connections last only for the duration of a file transfer.) WinInet gives the appearance of a permanent
connection because it remembers the host name.

After you have your CInternetSession object, you call the GetHttpConnection member function, which
returns a pointer to a CHttpConnection object. (Don't forget to delete this object when you are finished
with it.)

The GetHttpConnection member function calls the WinInet InternetConnect function, which returns an
HINTERNET connection handle that is stored inside the CHttpConnection object and used for subsequent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HINTERNET connection handle that is stored inside the CHttpConnection object and used for subsequent
WinInet calls.

CFtpConnection, CGopherConnection

These classes are similar to CHttpConnection, but they use the FTP and gopher protocols. The
CFtpConnection member functions GetFile and PutFile allow you to transfer files directly to and from your
disk.

CInternetFile

With HTTP, FTP, or gopher, your client program reads and writes byte streams. The MFC WinInet classes
make these byte streams look like ordinary files. If you look at the class hierarchy, you'll see that
CInternetFile is derived from CStdioFile, which is derived from CFile. Therefore, CInternetFile and its
derived classes override familiar CFile functions such as Read and Write. For FTP files, you use
CInternetFile objects directly, but for HTTP and gopher files, you use objects of the derived classes
CHttpFile and CGopherFile. You don't construct a CInternetFile object directly, but you call
CFtpConnection::OpenFile to get a CInternetFile pointer.

If you have an ordinary CFile object, it has a 32-bit HANDLE data member that represents the underlying
disk file. A CInternetFile object uses the same m_hFile data member, but that data member holds a 32-bit
Internet file handle of type HINTERNET, which is not interchangeable with a HANDLE. The CInternetFile
overridden member functions use this handle to call WinInet functions such as InternetReadFile and
InternetWriteFile.

CHttpFile

This Internet file class has member functions that are unique to HTTP files, such as AddRequestHeaders,
SendRequest, and GetFileURL. You don't construct a CHttpFile object directly, but you call the
CHttpConnection::OpenRequest function, which calls the WinInet function HttpOpenRequest and returns a
CHttpFile pointer. You can specify a GET or POST request for this call.

Once you have your CHttpFile pointer, you call the CHttpFile::SendRequest member function, which
actually sends the request to the server. Then you call Read.

CFtpFileFind, CGopherFileFind

These classes let your client program explore FTP and gopher directories.

CInternetException

The MFC WinInet classes throw CInternetException objects that your program can process with try/catch
logic.

Internet Session Status Callbacks

WinInet and MFC provide callback notifications as a WinInet operation progresses, and these status
callbacks are available in both synchronous (blocking) and asynchronous modes. In synchronous mode
(which we're using exclusively here), your WinInet calls block even though you have status callbacks
enabled.

Callbacks are easy in C++. You simply derive a class and override selected virtual functions. The base class
for WinInet is CInternetSession. Now let's derive a class named CCallbackInternetSession:

class CCallbackInternetSession : public CInternetSession
{
public:
 CCallbackInternetSession(LPCTSTR pstrAgent = NULL, DWORD dwContext = 1,
 DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS,
 LPCTSTR pstrProxyName = NULL, LPCTSTR pstrProxyBypass = NULL,
 DWORD dwFlags = 0) { EnableStatusCallback() }
protected:
 virtual void OnStatusCallback(DWORD dwContext, DWORD dwInternalStatus,
 LPVOID lpvStatusInformation, DWORD dwStatusInformationLength);
};
The only coding that's necessary is a constructor and a single overridden function, OnStatusCallback. The
constructor calls CInternetSession::EnableStatusCallback to enable the status callback feature. Your
WinInet client program makes its various Internet blocking calls, and when the status changes,
OnStatusCallback is called. Your overridden function quickly updates the UI and returns, and then the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnStatusCallback is called. Your overridden function quickly updates the UI and returns, and then the
Internet operation continues. For HTTP, most of the callbacks originate in the CHttpFile::SendRequest
function.

What kind of events trigger callbacks? A list of the codes passed in the dwInternalStatus parameter is
shown here.

Code Passed Action Taken

INTERNET_STATUS_RESOLVING_NAME Looking up the IP address of the supplied name.
The name is now in lpvStatusInformation.

INTERNET_STATUS_NAME_RESOLVED Successfully found the IP address. The IP address
is now in lpvStatusInformation.

INTERNET_STATUS_CONNECTING_TO_SERVER Connecting to the socket.

INTERNET_STATUS_CONNECTED_TO_SERVER Successfully connected to the socket.

INTERNET_STATUS_SENDING_REQUEST Send the information request to the server.

INTERNET_STATUS_REQUEST_SENT Successfully sent the information request to the
server.

INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to respond to a request.

INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a response from the server.

INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to the server.

INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the connection to the server.

INTERNET_STATUS_HANDLE_CREATED Program can now close the handle.

INTERNET_STATUS_HANDLE_CLOSING Successfully terminated this handle value.

INTERNET_STATUS_REQUEST_COMPLETE Successfully completed the asynchronous
operation.

You can use your status callback function to interrupt a WinInet operation. You could, for example, test for
an event set by the main thread when the user cancels the operation.

A Simplified WinInet Client Program

And now for the WinInet equivalent of our Winsock client program that implements a blind GET request.
Because you're using WinInet in blocking mode, you must put the code in a worker thread. That thread is
started from a command handler in the main thread:

AfxBeginThread(ClientWinInetThreadProc, GetSafeHwnd());
Here's the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientWinInetThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 try {
 pConnection = session.GetHttpConnection(g_strServerName, 80);
 pFile1 = pConnection->OpenRequest(1, "/"); // blind GET
 pFile1->SendRequest();
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = `\0'; // necessary for message box
 char temp[10];
 if(pFile1->Read(temp, 10) != 0) {
 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxMessageBox("File overran buffer — not cached");
 }
 AfxMessageBox(buffer);
 }
 catch(CInternetException* e) {
 // Log the exception
 e->Delete();
 }
 if(pFile1) delete pFile1;
 if(pConnection) delete pConnection;
 delete [] buffer;
 return 0;
}
The second Read call needs some explanation. It has two purposes. If the first Read doesn't read the
whole file, that means that it was longer than MAXBUF -1. The second Read will get some bytes, and that
lets you detect the overflow problem. If the first Read reads the whole file, you still need the second Read
to force WinInet to cache the file on your hard disk. Remember that WinInet tries to read all the bytes you
ask it to—through the end of the file. Even so, you need to read 0 bytes after that.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Client with the MFC WinInet Classes
There are two ways to build a Web client with WinInet. The first method, using the CHttpConnection class,
is similar to the simplified WinInet client on the preceding page. The second method, using
CInternetSession::OpenURL, is even easier. We'll start with the CHttpConnection version.

The EX34A WinInet Client #1—Using CHttpConnection

The EX34A program implements a WinInet client in the file \vcpp32\ex34a\ClientInetThread.cpp on the
CD-ROM. Besides allowing the use of an IP address as well as a host name, the program uses a status
callback function. That function, CCallbackInternetSession::OnStatusCallback in the file
\vcpp32\ex34a\utility.cpp, puts a text string in a global variable g_pchStatus, using a critical section for
synchronization. The function then posts a user-defined message to the application's main window. The
message triggers an Update Command UI handler (called by CWinApp::OnIdle), which displays the text in
the second status bar text pane.

Testing the WinInet Client #1

To test the WinInet client #1, you can follow the same procedure you used to test the Winsock client. Note
the status bar messages as the connection is made. Note that the file appears more quickly the second
time you request it.

The EX34A WinInet Client #2—Using OpenURL

The EX34A program implements a different WinInet client in the file ClientUrlThread.cpp on the companion
CD-ROM. This client uses the "Address" URL (that you type to access the Internet site). Here's the actual
code:

CString g_strURL = "http:// ";

UINT ClientUrlThreadProc(LPVOID pParam)
{
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;

 CInternetSession session; // can't get status callbacks for OpenURL
 CStdioFile* pFile1 = NULL; // could call ReadString to get 1 line
 try {
 pFile1 = session.OpenURL(g_strURL, 0, INTERNET_FLAG_TRANSFER_BINARY
 |INTERNET_FLAG_KEEP_CONNECTION);
 // If OpenURL fails, we won't get past here
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = `\0'; // necessary for message box
 char temp[100];
 if(pFile1->Read(temp, 100) != 0) {
 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");
 }
 ::MessageBox(::GetTopWindow(::GetDesktopWindow()), buffer,
 "URL CLIENT", MB_OK);
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1) delete pFile1;
 delete [] buffer;
 return 0;
}
Note that OpenURL returns a pointer to a CStdioFile object. You can use that pointer to call Read as
shown, or you can call ReadString to get a single line. The file class does all the buffering. As in the
previous WinInet client, it's necessary to call Read a second time to cache the file. The OpenURL
INTERNET_FLAG_KEEP_CONNECTION parameter is necessary for Windows NT challenge/response

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INTERNET_FLAG_KEEP_CONNECTION parameter is necessary for Windows NT challenge/response
authentication, which is described in Chapter 35. If you added the flag INTERNET_FLAG_RELOAD, the
program would bypass the cache just as the browser does when you click the Refresh button.

Testing the WinInet Client #2

You can test the WinInet client #2 against any HTTP server. You run this client by typing in the URL
address, not by using the menu. You must include the protocol (http:// or ftp://) in the URL address. Type
http://localhost. You should see the same HTML code in a message box. No status messages appear here
because the status callback doesn't work with OpenURL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asynchronous Moniker Files
Just when you thought you knew all the ways to download a file from the Internet, you're going to learn
about another one. With asynchronous moniker files, you'll be doing all your programming in your
application's main thread without blocking the user interface. Sounds like magic, doesn't it? The magic is
inside the Windows URLMON DLL, which depends on WinInet and is used by Microsoft Internet Explorer.
The MFC CAsyncMonikerFile class makes the programming easy, but you should know a little theory first.

Monikers

A moniker is a "surrogate" COM object that holds the name (URL) of the "real" object, which could be an
embedded component but more often is just an Internet file (HTML, JPEG, GIF, and so on). Monikers
implement the IMoniker interface, which has two important member functions: BindToObject and
BindToStorage. The BindToObject function puts an object into the running state, and the BindToStorage
function provides an IStream or an IStorage pointer from which the object's data can be read. A moniker
has an associated IBindStatusCallback interface with member functions such as OnStartBinding and
OnDataAvailable, which are called during the process of reading data from a URL.

The callback functions are called in the thread that created the moniker. This means that the URLMON DLL
must set up an invisible window in the calling thread and send the calling thread messages from another
thread, which uses WinInet functions to read the URL. The window's message handlers call the callback
functions.

The MFC CAsyncMonikerFile Class

Fortunately, MFC can shield you from the COM interfaces described above. The CAsyncMonikerFile class is
derived from CFile, so it acts like a regular file. Instead of opening a disk file, the class's Open member
function gets an IMoniker pointer and encapsulates the IStream interface returned from a call to
BindToStorage. Furthermore, the class has virtual functions that are tied to the member functions of
IBindStatusCallback. Using this class is a breeze; you construct an object or a derived class and call the
Open member function, which returns immediately. Then you wait for calls to overridden virtual functions
such as OnProgress and OnDataAvailable, named, not coincidentally, after their IBindStatusCallback
equivalents.

Using the CAsyncMonikerFile Class in a Program

Suppose your application downloads data from a dozen URLs but has only one class derived from
CAsyncMonikerFile. The overridden callback functions must figure out where to put the data. That means
you must associate each derived class object with some UI element in your program. The steps listed
below illustrate one of many ways to do this. Suppose you want to list the text of an HTML file in an edit
control that's part of a form view. This is what you can do:

1. Use ClassWizard to derive a class from CAsyncMonikerFile.

2. Add a character pointer data member m_buffer. Invoke new for this pointer in the constructor;
invoke delete in the destructor.

3. Add a public data member m_edit of class CEdit.

4. Override the OnDataAvailable function thus:

void CMyMonikerFile::OnDataAvailable(DWORD dwSize, DWORD bscfFlag)
{
 try {
 UINT nBytesRead = Read(m_buffer, MAXBUF - 1);
 TRACE("nBytesRead = %d\n", nBytesRead);
 m_buffer[nBytesRead] = `\0'; // necessary for edit control
 // The following two lines add text to the edit control
 m_edit.SendMessage(EM_SETSEL, (WPARAM) 999999, 1000000);
 m_edit.SendMessage(EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) m_buffer);
 }
 catch(CFileException* pe) {
 TRACE("File exception %d\n, pe->m_cause");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("File exception %d\n, pe->m_cause");
 pe->Delete();
 }
}

5. Embed an object of your new moniker file class in your view class.

6. In you view's OnInitialUpdate function, attach the CEdit member to the edit control like this:

m_myEmbeddedMonikerFile.m_edit.SubClassDlgItem(ID_MYEDIT, this);
7. In your view class, open the moniker file like this:

m_myEmbeddedMonikerFile.Open("http://host/filename");
For a large file, OnDataAvailable will be called several times, each time adding text to the edit
control. If you override OnProgress or OnStopBinding in your derived moniker file class, your
program can be alerted when the transfer is finished. You can also check the value of bscfFlag in
OnDataAvailable to determine whether the transfer is completed. Note that everything here is in
your main thread and—most important—the moniker file object must exist for as long as the
transfer is in progress. That's why it's a data member of the view class.

Asynchronous Moniker Files vs. WinInet Programming

In the WinInet examples earlier in this chapter, you started a worker thread that made blocking calls and
sent a message to the main thread when it was finished. With asynchronous moniker files, the same thing
happens—the transfer takes place in another thread, which sends messages to the main thread. You just
don't see the other thread. There is one very important difference, however, between asynchronous
moniker files and WinInet programming: with blocking WinInet calls, you need a separate thread for each
transfer; with asynchronous moniker files, only one extra thread handles all transfers together. For
example, if you're writing a browser that must download 50 bitmaps simultaneously, using asynchronous
moniker files saves 49 threads, which makes the program much more efficient.

Of course, you have some extra control with WinInet, and it's easier to get information from the response
headers, such as total file length. Your choice of programming tools, then, depends on your application.
The more you know about your options, the better your choice will be.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 35
Programming the Microsoft Internet Information Server
In Chapter 34, you used a "homemade" Web based on the Winsock APIs. In this chapter, you'll learn how
to use and extend Microsoft Internet Information Server (IIS) 4.0, which is bundled with Microsoft
Windows NT Server 4.0. IIS is actually three separate servers—one for HTTP (for the World Wide Web),
one for FTP, and one for gopher. This chapter tells you how to write HTTP server extensions using the
Microsoft IIS application programming interface (ISAPI) that is part of Microsoft ActiveX technology. You'll
examine two kinds of extensions: an ISAPI server extension and an ISAPI filter, both of which are DLLs. An
ISAPI server extension can perform Internet business transactions such as order entry. An ISAPI filter
intercepts data traveling to and from the server and thus can perform specialized logging and other tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IIS Alternatives
The exercises in this chapter assume that you have Windows NT Server 4.0 and IIS. If you are running
Windows NT Workstation, you can use Peer Web Services, which supports fewer connections and doesn't
allow virtual servers. If you are running Microsoft Windows 95 or Windows 98, you can use Personal Web
Server, which is packaged with Microsoft FrontPage. Internet Information Server, Peer Web Services, and
Personal Web Server can all use ISAPI extension DLLs. See your server's documentation for operating
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft IIS
Microsoft IIS is a high-performance Internet/intranet server that takes advantage of Windows NT features
such as I/O completion ports, the Win32 function TransmitFile, file-handle caching, and CPU scaling for
threads.

Installing and Controlling IIS

When you install Windows NT Server 4.0, you are given the option of installing IIS. If you selected IIS at
setup, the server will be running whenever Windows NT is running. IIS is a special kind of Win32 program
called a service (actually three services—WWW, HTTP, and gopher—in one program called inetinfo.exe),
which won't appear in the taskbar. You can control IIS from the Services icon in the Control Panel, but
you'll probably want to use the Internet Service Manager program instead.

Running Internet Service Manager

You can run Internet Service Manager from the Microsoft Internet Server menu that's accessible on the
Start menu.

You can also run an HTML-based version of Internet Service Manager remotely from a
browser. That version allows you to change service parameters, but it won't let you
turn services on and off.

Figure 35-1 shows the Microsoft Internet Service Manager screen with the World Wide Web (WWW)
running and FTP services stopped.

You can select a service by clicking on its icon at the left. The triangle and square buttons on the toolbar of
the screen allow you to turn the selected service on or off.

Figure 35-1. The Microsoft Internet Service Manager screen.

IIS Security

After you double-click on the WWW service icon of the Microsoft Internet Service Manager screen, you'll
see a property sheet. The Service page lets you configure IIS security. When a client browser requests a
file, the server impersonates a local user for the duration of the request and that user name determines
which files the client can access. Which local user does the server impersonate? Most often, it's the one
you see in the Username field, shown in Figure 35-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-2. The WWW Service Properties screen.

Most Web page visitors don't supply a user name and password, so they are considered anonymous users.
Those users have the same rights they would have if they had logged on to your server locally as
IUSR_MYMACHINENAME. That means that IUSR_MYMACHINENAME must appear in the list of users that is
displayed when you run User Manager or User Manager For Domains (from the Administrative Tools
menu), and the passwords must match. The IIS Setup program normally defines this anonymous user for
you. You can define your own WWW anonymous user name, but you must be sure that the entry on the
Service page matches the entry in the computer's (or Windows NT domain's) user list.

Note also the Password Authentication options. For the time being, stick to the Allow Anonymous option
only, which means that all Web users are logged on as IUSR_MYMACHINENAME. Later in this chapter, we'll
explain Windows NT Challenge/Response.

IIS Directories

Remember SlowSoft's Web site from Chapter 34? If you requested the URL
http://slowsoft.com/newproducts.html, the newproducts.html file would be displayed from the
slowsoft.com home directory. Each server needs a home directory, even if that directory contains only
subdirectories. The home directory does not need to be the server computer's root directory, however. As
shown in Figure 35-3, the WWW home directory is really \WebHome, so clients read the disk file
\WebHome\newproducts.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-3. The \WebHome WWW home directory screen.

Your server could get by with a home directory only, but the IIS virtual directory feature might be useful.
Suppose SlowSoft wanted to allow Web access to the directory \BF on the D drive. The screen above
shows a virtual /BugsFixed directory that maps to D:\BF. Clients would access files with a URL similar to
this: http://slowsoft.com/BugsFixed/file1.html.

If your computer was configured for multiple IP addresses (see the Control Panel
Network icon), IIS would allow you to define virtual Web servers. Each virtual server
would have its own home directory (and virtual directories) attached to a specified IP
address, making it appear as though you had several server computers. Unfortunately,
the IIS Web server listens on all the computer's IP addresses, so you can't run IIS
simultaneously with the EX34A server with both listening on port 80.

As described in Chapter 34, browsers can issue a blind request. As Figure 35-3 shows, Internet Service
Manager lets you specify the file that a blind request selects, usually Default.htm. If you select the
Directory Browsing Allowed option of the Directories page on the service property screen, browser clients
can see a hypertext list of files in the server's directory instead.

IIS Logging

IIS is capable of making log entries for all connections. You control logging from the Internet Service
Manager's Logging property page. You can specify text log files, or you can specify logging to an
SQL/ODBC database. Log entries consist of date, time, client IP address, file requested, query string, and
so forth.

Testing IIS

It's easy to test IIS with a browser or with any of the EX35A clients. Just make sure that IIS is running and
that the EX35A server is not running. The default IIS home directory is
\Winnt\System32\inetsrv\wwwroot, and some HTML files are installed there. If you're running a single
machine, you can use the localhost host name. For a network, use a name from the Hosts file. If you can't
access the server from a remote machine, run ping to make sure the network is configured correctly. Don't
try to build and run ISAPI DLLs until you have successfully tested IIS on your computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISAPI Server Extensions
An ISAPI server extension is a program (implemented as a DLL loaded by IIS) that runs in response to a
GET or POST request from a client program (browser). The browser can pass parameters to the program,
which are often values that the browser user types into edit controls, selects from list boxes, and so forth.
The ISAPI server extension typically sends back HTML code based on those parameter values. You'll better
understand this process when you see an example.

Common Gateway Interface and ISAPI

Internet server programs were first developed for UNIX computers, so the standards were in place long
before Microsoft introduced IIS. The Common Gateway Interface (CGI) standard, actually part of HTTP,
evolved as a way for browser programs to interact with scripts or separate executable programs running
on the server. Without altering the HTTP/CGI specifications, Microsoft designed IIS to allow any browser to
load and run a server DLL. DLLs are part of the IIS process and thus are faster than scripts that might
need to load separate executable programs. Because of your experience, you'll probably find it easier to
write an ISAPI DLL in C++ than to write a script in PERL, the standard Web scripting language for servers.

CGI shifts the programming burden to the server. Using CGI parameters, the browser sends small
amounts of information to the server computer, and the server can do absolutely anything with this
information, including access a database, generate images, and control peripheral devices. The server
sends a file (HTML or otherwise) back to the browser. The file can be read from the server's disk, or it can
be generated by the program. No ActiveX controls or Java applets are necessary, and the browser can be
running on any type of computer.

A Simple ISAPI Server Extension GET Request

Suppose an HTML file contains the following tag:

Idaho Weather Map<p>
When the user clicks on Idaho Weather Map, the browser sends the server a CGI GET request like this:

GET scripts/maps.dll?State=Idaho HTTP/1.0
IIS then loads maps.dll from its scripts (virtual) directory, calls a default function (often named Default),
and passes it the State parameter Idaho. The DLL then goes to work generating a JPG file containing the
up-to-the-minute satellite weather map for Idaho and sends it to the client.

If maps.dll had more than one function, the tag could specify the function name like this:

<a href="scripts/maps.dll?GetMap?State=Idah
o&Res=5">Idaho Weather Map<p>
In this case, the function GetMap is called with two parameters, State and Res.

You'll soon learn how to write an ISAPI server similar to maps.dll, but first you'll need to understand HTML
forms, because you don't often see CGI GET requests by themselves.

HTML Forms—GET vs. POST

In the HTML code for the simple CGI GET request above, the state name was hard-coded in the tag. Why
not let the user select the state from a drop-down list? For that, you need a form, and here's a simple one
that can do the job.

<html>
<head><title>Weathermap HTML Form</title>
</head>
<body>
<h1><center>Welcome to the Satellite Weathermap Service</center></h1>
<form action="scripts/maps.dll?GetMap" method=GET>
 <p>Select your state:
 <select name="State">
 <option> Alabama
 <option> Alaska
 <option> Idaho
 <option> Washington

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <option> Washington
 </select>
<p><input type="submit"><input type="reset">
</form>
</body></html>
If you looked at this HTML file with a browser, you would see the form shown in Figure 35-4.

Figure 35-4. The Weathermap HTML Form window.

The select tag provides the state name from a list of four states, and the all-important "submit" input tag
displays the pushbutton that sends the form data to the server in the form of a CGI GET request that looks
like this:

GET scripts/maps.dll?GetMap?State=Idaho HTTP/1.0
(various request headers)
(blank line)

Unfortunately, some early versions of the Netscape browser omit the function name in form-originated GET
requests, giving you two choices: provide only a default function in your ISAPI DLL, and use the POST
method inside a form instead of the GET method.

If you want to use the POST option, change one HTML line in the form above to the following:

<form action="scripts/maps.dll?GetMap" method=POST>
Now here's what the browser sends to the server:

POST scripts/maps.dll?GetMap
(various request headers)
(blank line)

State=Idaho
Note that the parameter value is in the last line instead of in the request line.

ISAPI DLLs are usually stored in a separate virtual directory on the server because
these DLLs must have execute permission but do not need read permission. Clicking
the Edit Properties button shown in Figure 35-3 will allow you to access these
permissions from the Internet Service Manager, or you can double-click on a directory
to change its properties.

Writing an ISAPI Server Extension DLL

Visual C++ gives you a quick start for writing ISAPI server extensions. Just select ISAPI Extension Wizard
from the Projects list. After you click the OK button, your first screen looks like Figure 35-5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from the Projects list. After you click the OK button, your first screen looks like Figure 35-5.

Figure 35-5. The Step 1 page of the ISAPI Extension Wizard.

Check the Generate A Server Extension Object box, and you've got a do-nothing DLL project with a class
derived from the MFC CHttpServer class and a Default member function. Now it's time for a little
programming.

You must write your ISAPI functions as members of the derived CHttpServer class, and you must write
parse map macros to link them to IIS. There's no "parse map wizard," so you have to do some coding. It's
okay to use the Default function, but you need a GetMap function too. First insert these lines into the
wizard-generated parse map:

ON_PARSE_COMMAND(GetMap, CWeatherExtension, ITS_PSTR)
ON_PARSE_COMMAND_PARAMS("State")
Then write the GetMap function:

void CWeatherExtension::GetMap(CHttpServerContext* pCtxt, LPCTSTR pstrState)
{
 StartContent(pCtxt);
 WriteTitle(pCtxt);
 *pCtxt << "Visualize a weather map for the state of ";
 *pCtxt << pstrState;
 EndContent(pCtxt);
}
This function doesn't actually generate the weather map (what did you expect?), but it does display the
selected state name in a custom HTML file. The CHttpServer::StartContent and CHttpServer::EndContent
functions write the HTML boilerplate, and CHttpServer::WriteTitle calls the virtual CHttpServer::GetTitle
function, which you need to override:

LPCTSTR CWeatherExtension::GetTitle() const
{
 return "Your custom weather map"; // for browser's title window
}
The MFC CHttpServerContext class has an overloaded << operator, which you use to put text in the HTML
file you're building. Behind the scenes, an attached object of the MFC class CHtmlStream represents the
output to the server's socket.

The MFC ISAPI Server Extension Classes

Now is a good time to review the three MFC classes that are used to create an MFC ISAPI server extension.
Remember that these classes are for ISAPI server extensions only. Don't even think of using them in
ordinary Winsock or WinInet applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ordinary Winsock or WinInet applications.

CHttpServer

With the help of the ISAPI Extension Wizard, you derive a class from CHttpServer for each ISAPI server
extension DLL that you create. You need one member function for each extension function (including the
default function), and you need an overridden GetTitle function. The framework calls your extension
functions in response to client requests, using the connections established in the parse map. The ISAPI
Extension Wizard provides an overridden GetExtensionVersion function, which you seldom edit unless you
need initialization code to be executed when the DLL is loaded.

One of the CHttpServer member functions that you're likely to call is AddHeader, which adds special
response headers, such as Set-Cookie, before the response is sent to the server. (More on cookies later.)

CHttpServerContext

There's one CHttpServer object per DLL, but there is one CHttpServerContext object for each server
transaction request. Your extension functions each provide a pointer to one of these objects. You don't
derive from CHttpServerContext, so you can't easily have variables for individual transactions. Because
different IIS threads can manage transactions, you have to be careful to perform synchronization for any
data members of your CHttpServer class or global variables.

You've already seen the use of the StartContent, EndContent, and WriteTitle functions of the CHttpServer
class plus the overloaded >> operator. You might also need to call the
CHttpServerContext::GetServerVariable function to read information sent by the client in the request
headers.

CHtmlStream

Most of the time, you don't use the CHtmlStream class directly. The CHttpServerContext class has a
CHtmlStream data member, m_pStream, that's hooked up to the >> operator and serves as the output for
HTML data. You could access the CHtmlStream object and call its Write member function if you needed to
send binary data to the client. Because objects of the CHtmlStream class accumulate bytes in memory
before sending them to the client, you need an alternative approach if your DLL relays large files directly
from disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Practical ISAPI Server Extension—ex35a.dll
The weather map server isn't interesting enough to make into a real project. You'll probably find the
EX35A example more to your taste. It's a real Internet commerce application—a pizza-ordering program.
Imagine a computer-controlled pizza oven and a robot arm that selects frozen pizzas. (Microsoft Internet
Explorer 17.0 is supposed to be able to deliver the hot pizzas directly from your clients' monitors, but in
the meantime, you'll have to hire some delivery drivers.)

The First Step—Getting the Order

Junior sales trainees are constantly admonished to "get the order." That's certainly necessary in any form
of commerce, including the Internet. When the hungry customer hyperlinks to your site (by clicking on a
picture of a pizza, of course), he or she simply downloads an HTML file that looks like this:

<html>
<head><title>Inside Visual C++ HTML Form 1</title>
</head>
<body>
<h1><center>Welcome to CyberPizza</center></h1>
<p> Enter your order.
<form action="scripts/ex35a.dll?ProcessPizzaForm" method=POST>
 <p> Your Name: <input type="text" name="name" value="">
 <p> Your Address: <input type="text" name="address" value="">
 <p> Number of Pies: <input type="text" name="quantity" value=1>
 <p>Pizza Size:
 <menu>
 <input type="radio" name="size" value=8>8-inch
 <input type="radio" name="size" value=10>10-inch
 <input type="radio" name="size" value=12 checked>12-inch
 <input type="radio" name="size" value=14>14-inch
 </menu>
 <p> Toppings:
 <p>
 <input type="checkbox" name="top1" value="Pepperoni" checked>
 Pepperoni
 <input type="checkbox" name="top2" value="Onions"> Onions
 <input type="checkbox" name="top3" value="Mushrooms"> Mushrooms
 <input type="checkbox" name="top4" value="Sausage"> Sausage
 <p>
 (you can select multiple toppings)
 <p><input type="submit" value="Submit Order Now"><input type="reset">
</form>
</body></html>
Figure 35-6 shows how the order form appears in the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-6. The CyberPizza order form.

So far, no ISAPI DLL is involved. When the customer clicks the Submit Order Now button, the action
begins. Here's what the server sees:

POST scripts/ex35a.dll?ProcessPizzaForm HTTP/1.0
(request headers)
(blank line)
name=Walter+Sullivan&address=Redmond%2C+WA&quantity=2&size=12&top1=Pepperoni
 &top3=Mushrooms
Looks like Walter Sullivan has ordered two 12-inch pepperoni and mushroom pizzas. The browser inserts a
+ sign in place of a space, the %2C is a comma, and the & is the parameter separator. Now let's look at
the parse map entries in ex35a.cpp:

ON_PARSE_COMMAND(ProcessPizzaForm, CEx35aExtension,
 ITS_PSTR ITS_PSTR ITS_I4 ITS_PSTR ITS_PSTR ITS_PSTR ITS_PSTR ITS_PSTR)
ON_PARSE_COMMAND_PARAMS("name address quantity size top1=~ top2=~ top3=~ top4=~")

Optional Parameters

When you write your parse map statements, you must understand the browser's rules
for sending parameter values from a form. In the EX35A pizza form, the browser
always sends parameters for text fields, even if the user enters no data. If the user left
the Name field blank, for example, the browser would send name=&. For check box
fields, however, it's a different story. The browser sends the check box parameter
value only if the user checks the box. The parameters associated with check boxes are
thus defined as optional parameters.

If your parse macro for parameters looked like this

ON_PARSE_COMMAND_PARAMS("name address quantity size top1 top2 top3 top4")
there would be trouble if the customer didn't check all the toppings. The HTTP request
would simply fail, and the customer would have to search for another pizza site. The
=~ symbols in the ex35a.cpp code designate the last four parameters as optional, with
default values ~. If the Toppings option is checked, the form transmits the value;
otherwise, it transmits a ~ character, which the DLL can test for. Optional parameters
must be listed last.

The DLL's ProcessPizzaForm function reads the parameter values and produces an HTML confirmation
form, which it sends to the customer. Here is part of the function's code:

 *pCtxt << "<form action=\"ex35a.dll?ConfirmOrder\" method=POST>";
 *pCtxt << "<p><input type=\"hidden\" name=\"name\" value=\"";
 *pCtxt << pstrName << "\">"; // xref to original order
 *pCtxt << "<p><input type=\"submit\" value=\"Confirm and charge my credit card\">";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 *pCtxt << "<p><input type=\"submit\" value=\"Confirm and charge my credit card\">";
 *pCtxt << "</form>";
 // Store this order in a disk file or database, referenced by name
 }
 else {
 *pCtxt << "You forgot to enter name or address. Back up and try again. ";
 }
 EndContent(pCtxt);
The resulting browser screen is shown in Figure 35-7.

Figure 35-7. The pizza confirmation browser screen.

As you can see, we took a shortcut computing the price. To accept, the customer clicks the submit button
named Confirm And Charge My Credit Card.

The Second Step—Processing the Confirmation

When the user clicks the Confirm And Charge My Credit Card button, the browser sends a second POST
request to the server, specifying that the CEx35aExtension::ConfirmOrder function be called. But now you
have to solve a big problem. Each HTTP connection (request/response) is independent of all others. How
are you going to link the confirmation request with the original order? Although there are different ways to
do this, the most common approach is to send some text back with the confirmation in a hidden input tag.
When the confirmation parameter values come back, the server uses the hidden text to match the
confirmation to the original order, which it has stored somewhere on its hard disk.

In the EX35A example, the customer's name is used in the hidden field, although it might be safer to use
some combination of the name, date, and time. Here's the HTML code that
CEx35aExtension::ProcessPizzaForm sends to the customer as part of the confirmation form:

<input type="hidden" name="name" value="Walter Sullivan">
Here's the code for the CEx35aExtension::ConfirmOrder function:

void CEx35aExtension::ConfirmOrder(CHttpServerContext* pCtxt,
 LPCTSTR pstrName)
{
 StartContent(pCtxt);
 WriteTitle(pCtxt);
 *pCtxt << "<p>Our courteous delivery person will arrive within 30 minutes.
 *pCtxt << "<p>Thank you, " << pstrName << ", for using CyberPizza. ";
 // Now retrieve the order from disk by name, and then make the pizza.
 // Be prepared to delete the order after a while if the customer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Be prepared to delete the order after a while if the customer
 // doesn't confirm.
 m_cs.Lock(); // gotta be threadsafe
 long int nTotal = ++m_nTotalPizzaOrders;
 m_cs.Unlock();
 *pCtxt << "<p>Total pizza orders = " << nTotal;
 EndContent(pCtxt);
}
The customer's name comes back in the pstrName parameter, and that's what you use to retrieve the
original order from disk. The function also keeps track of the total number of orders, using a critical section
(m_cs) to ensure thread synchronization.

Building and Testing ex35a.dll

If you have copied the code from the companion CD-ROM, your project is located in \vcpp32\ex35a.
Building the project adds a DLL to the Debug subdirectory. You must copy this DLL to a directory that the
server can find and copy PizzaForm.html also. You can use the scripts and wwwroot subdirec- tories
already under \Winnt\System32\inetsrv, or you can set up new virtual directories.

If you make changes to the EX35A DLL in the Visual C++ project, be sure to use
Internet Service Manager (Figure 35-1) to turn off the WWW service (because the old
DLL stays loaded), copy the new DLL to the scripts directory, and then turn the WWW
service on again. The revised DLL will be loaded as soon as the first client requests it.

If everything has been installed correctly, you should be able to load PizzaForm.html from the browser and
then order some pizza. Enjoy!

Debugging the EX35A DLL

The fact that IIS is a Windows NT service complicates debugging ISAPI DLLs. Services normally run as part
of the operating system, controlled by the service manager database. They have their own window station,
and they run on their own invisible desktop. This involves some of the murkier parts of Windows NT, and
not much published information is available.

However, you can use these steps to debug your EX35A DLL (or any ISAPI DLL):

1. Use the Internet Service Manager to stop all IIS services.

2. Choose Settings from the EX35A project Build menu, and in the Project Settings dialog, type in the
data as shown.

3. Start User Manager or User Manager For Domains (Administrative Tools menu). Choose User Rights
from the Policies menu, check Show Advanced User Rights, select the right Act As Part Of The
Operating System, and add your user group as shown on the facing page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Operating System, and add your user group as shown on the facing page.

4. Repeat step 3 to set the right for Generate Security Audits.

5. Log back on to Windows NT to activate the new permission. (Don't forget this step.)

6. Make sure that the current EX35A DLL file has been copied into the scripts directory.

7. Start debugging. You can set breakpoints, step through code, and see the output of TRACE
messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISAPI Database Access
Your ISAPI server extension could use ODBC to access an SQL database. Before you write pages of ODBC
code, however, check out the Internet Database Connector described in the IIS documentation. The
Internet Database Connector is a ready-to-run DLL, Httpodbc.dll, that collects SQL query parameters and
formats the output. You control the process by writing an IDC file that describes the data source and an
HTX file that is a template for the resulting HTML file. No C++ programming is necessary.

The Internet Database Connector is for queries only. If you want to update a database, you must write
your own ISAPI server extension with ODBC calls. Make sure your ODBC driver is multithreaded, as is the
latest SQL server driver.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using HTTP Cookies to Link Transactions
Now that you've wolfed down the pizza, it's time for some dessert. However, the cookies that we'll be
digesting in this section are not made with chocolate chips. Cookies are used to store information on our
customers' hard disks. In the EX35A example, the server stores the customer name in a hidden field of the
confirmation form. That works fine for linking the confirmation to the order, but it doesn't help you track
how many pizzas Walter ordered this year. If you notice that Walter consistently orders pepperoni pizzas,
you might want to send him some e-mail when you have a surplus of pepperoni.

How Cookies Work

With cookies, you assign Walter a customer ID number with his first order and make him keep track of that
number on his computer. The server assigns the number by sending a response header such as this one:

Set-Cookie: customer_id=12345; path=/; expires=Monday,
 02-Sep-99 00:00:00 GMT
The string customer_id is the arbitrary cookie name you have assigned, the / value for path means that
the browser sends the cookie value for any request to your site (named CyberPizza.com), and the
expiration date is necessary for the browser to store the cookie value.

When the browser sees the Set-Cookie response header, it creates (or replaces) an entry in its cookies.txt
file as follows:

customer_id
12345
cyberpizza.com/
0
2096697344
0
2093550622
35
*
Thereafter, when the browser requests anything from CyberPizza.com, the browser sends a request
header like this:

Cookie: customer_id=12345

How an ISAPI Server Extension Processes Cookies

Your ISAPI server extension function makes a call like this one to store the cookie at the browser:

AddHeader(pCtxt, "Set-Cookie: session_id=12345; path=/;"
 " expires=Monday, " 02-Sep-99 00:00:00 GMT\r\n");
To retrieve the cookie, another function uses code like this:

char strCookies[200];
DWORD dwLength = 200;
pCtxt->GetServerVariable("HTTP_COOKIE", strCookies, &dwLength);
The strCookies variable should now contain the text customer_id=12345.

Problems with Cookies

There was an uproar some time ago when Internet users first discovered that companies were storing data
on the users' PCs. New browser versions now ask permission before storing a cookie from a Web site.
Customers could thus refuse to accept your cookie, they could erase their cookies.txt file, or this file could
become full. If you decide to use cookies at your Web site, you'll just have to deal with those possibilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WWW Authentication
Up to now, your IIS has been set to allow anonymous logons, which means that anyone in the world can
access your server without supplying a user name or password. All users are logged on as
IUSR_MYMACHINENAME and can access any files for which that user name has permissions.

As stated in Chapter 34, you should be using NTFS on your server for maximum
security.

Basic Authentication

The simplest way to limit server access is to enable basic authentication. Then, if a client makes an
anonymous request, the server sends back the response

HTTP/1.0 401 Unauthorized
together with a response header like this:

WWW-Authenticate: Basic realm="xxxx"
The client prompts the user for a user name and password, and then it resends the request with a request
header something like this:

Authorization: Basic 2rc234ldfd8kdr
The string that follows Basic is a pseudoencrypted version of the user name and password, which the
server decodes and uses to impersonate the client.

The trouble with basic authentication is that intruders can pick up the user name and password and use it
to gain access to your server. IIS and most browsers support basic authentication, but it's not very
effective.

Windows NT Challenge/Response Authentication

Windows NT challenge/response authentication is often used for intranets running on Microsoft networks,
but you can use it on the Internet as well. IIS supports it (see Figure 35-2), but not all browsers do.

If the server has challenge/response activated, a client making an ordinary request gets this response
header:

WWW-Authenticate: NTLM
Authorization: NTLM T1RMTVNTUAABAAAAA5IAA ...
The string after NTLM is the well-encoded user name—the password is never sent over the network. The
server issues a challenge, with a response header like this:

WWW-Authenticate: NTLM RPTUFJTgAAAAAA ...
The client, which knows the password, does some math on the challenge code and the password and then
sends back a response in a request header like this:

Authorization: NTLM AgACAAgAAAAAAAAAA ...
The server, which has looked up the client's password from the user name, runs the same math on the
password and challenge code. It then compares the client's response code against its own result. If the
client's and the server's results match, the server honors the client's request by impersonating the client's
user name and sending the requested data.

When the client resends the request, the challenge/response dialog is performed over a single-socket
connection with keep-alive capability as specified in the Connection request header.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection with keep-alive capability as specified in the Connection request header.

WinInet fully supports Windows NT challenge/response authentication. Thus, Internet Explorer 4.0 and the
EX34A WinInet clients support it. If the client computer is logged on to a Windows NT domain, the user
name and password are passed through. If the client is on the Internet, WinInet prompts for the user
name and password. If you're writing WinInet code, you must use the
INTERNET_FLAG_KEEP_CONNECTION flag in all CHttpConnection::OpenRequest and
CInternetSession::OpenURL calls, as EX34A illustrates.

The Secure Sockets Layer

Windows NT challenge/response authentication controls only who logs on to a server. Anyone snooping on
the Net can read the contents of the TCP/IP segments. The secure sockets layer (SSL) goes one step
further and encodes the actual requests and responses (with a performance hit, of course). Both IIS and
WinInet support SSL. (The secure sockets layer is described in the IIS documentation.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISAPI Filters
An ISAPI server extension DLL is loaded the first time a client references it in a GET or POST request. An
ISAPI filter DLL is loaded (based on a Registry entry) when the WWW service is started. The filter is then in
the loop for all HTTP requests, so you can read and/or change any data that enters or leaves the server.

Writing an ISAPI Filter DLL

The ISAPI Extension Wizard makes writing filters as easy as writing server extensions. Choose Generate A
Filter Object, and Step 2 looks like this.

The list of options under Which Notifications Will Your Filter Process? refers to seven places where your
filter can get control during the processing of an HTTP request. You check the boxes, and the wizard
generates the code.

The MFC ISAPI Filter Classes

There are two MFC classes for ISAPI filters, CHttpFilter and CHttpFilterContext.

CHttpFilter

With the help of the ISAPI Extension Wizard, you derive a class from CHttpFilter for each ISAPI filter you
create. There's just one object of this class. The class has virtual functions for each of seven notifications.
The list of filters in the order in which IIS calls them is below.

virtual DWORD OnReadRawData(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_RAW_DATA pRawData);
virtual DWORD OnPreprocHeaders(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_PREPROC_HEADERS pHeaderInfo);
virtual DWORD OnUrlMap(CHttpFilterContext* pCtxt,

 PHTTP_FILTER_URL_MAP pMapInfo);
virtual DWORD OnAuthentication(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_AUTHENT pAuthent);
virtual DWORD OnSendRawData(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_RAW_DATA pRawData);
virtual DWORD OnLog(CHttpFilterContext* pfc, PHTTP_FILTER_LOG pLog);
virtual DWORD OnEndOfNetSession(CHttpFilterContext* pCtxt);
If you override a function, you get control. It would be inefficient, however, if IIS made virtual function
calls for every notification for each transaction. Another virtual function, GetFilterVersion, is called once

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

calls for every notification for each transaction. Another virtual function, GetFilterVersion, is called once
when the filter is loaded. The ISAPI Extension Wizard always overrides this function for you, and it sets
flags in the function's pVer parameter, depending on which notifications you want. Here's a simplified
sample with all the flags set:

BOOL CMyFilter::GetFilterVersion(PHTTP_FILTER_VERSION pVer)
{
 CHttpFilter::GetFilterVersion(pVer);
 pVer->dwFlags |= SF_NOTIFY_ORDER_LOW | SF_NOTIFY_NONSECURE_PORT |
 SF_NOTIFY_LOG | SF_NOTIFY_AUTHENTICATION |
 SF_NOTIFY_PREPROC_HEADERS | SF_NOTIFY_READ_RAW_DATA |
 SF_NOTIFY_SEND_RAW_DATA | SF_NOTIFY_URL_MAP |
 SF_NOTIFY_END_OF_NET_SESSION;
 return TRUE;
}
If you had specified URL mapping requests only, the wizard would have set only the SF_NOTIFY_URL_MAP
flag and it would have overridden only OnUrlMap. IIS would not call the other virtual functions, even if they
were overridden in your derived class.

CHttpFilterContext

An object of this second MFC class exists for each server transaction, and each of the notification functions
gives you a pointer to that object. The CHttpFilterContext member functions you might call are
GetServerVariable, AddResponseHeaders, and WriteClient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Sample ISAPI Filter—ex35b.dll, ex35c.exe
It was hard to come up with a cute application for ISAPI filters. The one we thought up, ex35b.dll, is a
useful visual logging utility. IIS, of course, logs all transactions to a file (or database), but you must stop
the server before you can see the log file entries. With this example, you have a real-time transaction
viewer that you can customize.

Choosing the Notification

Start by looking at the list of CHttpFilter virtual member functions on page 1050. Observe the calling
sequence and the parameters. For the EX35B logging application, we chose OnReadRawData because it
allowed full access to the incoming request and header text (from pRawData) and to the source and
destination IP addresses (from pCtxt->GetServerVariable).

Sending Transaction Data to the Display Program

The ISAPI filter DLL can't display the transactions directly because it runs (as part of the IIS service
process) on an invisible desktop. You need a separate program that displays text in a window, and you
need a way to send data from the DLL to the display program. There are various ways to send the data
across the process boundary. A conversation with Jeff Richter, the Windows guru who wrote Advanced
Windows (Microsoft Press, 1997), led to the data being put in shared memory. Then a user-defined
message, WM_SENDTEXT, is posted to the display program. These messages can queue up, so IIS can
keep going independently of the display program.

We declared two handle data members in CEx35bFilter::m_hProcessDest and CEx35bFilter::m_hWndDest.
We added code at the end of the GetFilterVersion function to set these data members to the display
program's process ID and main window handle. The code finds the display program's main window by its
title, ex35b, and then it gets the display program's process ID.

m_hProcessDest = NULL;
if((m_hWndDest = ::FindWindow(NULL, "ex35b")) != NULL) {
 DWORD dwProcessId;
 GetWindowThreadProcessId(m_hWndDest, &dwProcessId);
 m_hProcessDest = OpenProcess(PROCESS_DUP_HANDLE, FALSE, dwProcessId);
 SendTextToWindow("EX35B filter started\r\n");
}
Below is a helper function, SendTextToWindow, which sends the WM_SENDTEXT message to the display
program.

void CEx35bFilter::SendTextToWindow(char* pchData)
{
 if(m_hProcessDest != NULL) {
 int nSize = strlen(pchData) + 1;

 HANDLE hMMFReceiver;
 HANDLE hMMF = ::CreateFileMapping((HANDLE) 0xFFFFFFFF, NULL,
 PAGE_READWRITE, 0, nSize, NULL);
 ASSERT(hMMF != NULL);
 LPVOID lpvFile = ::MapViewOfFile(hMMF, FILE_MAP_WRITE, 0, 0, nSize);
 ASSERT(lpvFile != NULL);
 memcpy((char*) lpvFile, pchData, nSize);
 ::DuplicateHandle(::GetCurrentProcess(), hMMF, m_hProcessDest,
 &hMMFReceiver, 0, FALSE, DUPLICATE_SAME_ACCESS |
 DUPLICATE_CLOSE_SOURCE);
 ::PostMessage(m_hWndDest, WM_SENDTEXT, (WPARAM) 0,
 (LPARAM) hMMFReceiver);
 ::UnmapViewOfFile(lpvFile);
 }
}
The DuplicateHandle function makes a copy of EX35B's map handle, which it sends to the EX35C program
in a message parameter. The EX35C process ID, determined in GetFilterVersion, is necessary for the
DuplicateHandle call. Here is the filter's OnReadRawData function, which calls SendTextToWindow:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DWORD CEx35bFilter::OnReadRawData(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_RAW_DATA pRawData)
{
 TRACE ("CEx35bFilter::OnReadRawData\n");
 // sends time/date, from IP, to IP, request data to a window
 char pchVar[50] = "";
 char pchOut[2000];
 DWORD dwSize = 50;
 BOOL bRet;
 CString strGmt = CTime::GetCurrentTime().FormatGmt("%m/%d/%y %H:%M:%SGMT");
 strcpy(pchOut, strGmt);
 bRet = pCtxt->GetServerVariable("REMOTE_ADDR", pchVar, &dwSize);
 if(bRet && dwSize > 1) {
 strcat(pchOut, ", From ");
 strcat(pchOut, pchVar);
 }
 bRet = pCtxt->GetServerVariable("SERVER_NAME", pchVar, &dwSize);
 if(bRet && dwSize > 1) {
 strcat(pchOut, ", To ");
 strcat(pchOut, pchVar);
 }
 strcat(pchOut, "\r\n");
 int nLength = strlen(pchOut);
 // Raw data is not zero-terminated
 strncat(pchOut, (const char*) pRawData->pvInData, pRawData->cbInData);
 nLength += pRawData->cbInData;
 pchOut[nLength] = `\0';
 SendTextToWindow(pchOut);
 return SF_STATUS_REQ_NEXT_NOTIFICATION;
}

The Display Program

The display program, ex35c.exe, isn't very interesting. It's a standard AppWizard CRichEditView program
with a WM_SENDTEXT handler in the main frame class:

LONG CMainFrame::OnSendText(UINT wParam, LONG lParam)
{
 TRACE("CMainFrame::OnSendText\n");
 LPVOID lpvFile = ::MapViewOfFile((HANDLE) lParam, FILE_MAP_READ, 0, 0,
 0);
 GetActiveView()->SendMessage(EM_SETSEL, (WPARAM) 999999, 1000000);
 GetActiveView()->SendMessage(EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) lpvFile);
 ::UnmapViewOfFile(lpvFile);
 ::CloseHandle((HANDLE) lParam);

 return 0;
}
This function just relays the text to the view.

The EX35C CMainFrame class overrides OnUpdateFrameTitle to eliminate the document name from the
main window's title. This ensures that the DLL can find the EX35C window by name.

The view class maps the WM_RBUTTONDOWN message to implement a context menu for erasing the view
text. Apparently rich edit view windows don't support the WM_CONTEXTMENU message.

Building and Testing the EX35B ISAPI Filter

Build both the EX35B and EX35C projects, and then start the EX35C program. To specify loading of your
new filter DLL, you must manually update the Registry. Run the Regedit application, and then double-click
on Filter DLLs in \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters. Add
the full pathname of the DLL separated from other DLL names with a comma.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the full pathname of the DLL separated from other DLL names with a comma.

There's one more thing to do. You must change the IIS mode to allow the service to interact with the
EX35C display program. To do this, click on the Services icon in the Control Panel, double-click on World
Wide Web Publishing Service, and then check Allow Service To Interact With Desktop. Finally, use Internet
Service Manager to stop and restart the WWW service to load the filter DLL. When you use the browser to
retrieve pages from the server, you should see output like this.

You can use the same steps for debugging an ISAPI filter that you used for an ISAPI server extension.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 36
ActiveX Document Servers and the Internet
An ActiveX document is a special file that you can download from a Web server. When the browser sees an
ActiveX document file, it automatically loads the corresponding ActiveX document server program from
your hard disk, and that program takes over the whole browser window to display the contents of the
document. The Microsoft Internet Explorer browser is not the only ActiveX document container program.
The Microsoft Office Binder program also runs ActiveX document server programs, storing the several
ActiveX documents in a single disk file.

In the COM world, an ActiveX document server program is called a server because it
implements a COM component. The container program (Internet Explorer or Office
Binder) creates and controls that COM component. In the Internet world, the same
program looks like a client because it can request information from a remote host
(Microsoft Internet Information Server).

In this chapter, you'll learn about ActiveX document servers and ActiveX documents and you'll build two
ActiveX document servers that work over the Internet in conjunction with Internet Explorer. Pay attention
to this technology now because you'll be seeing a lot more of it as Microsoft Windows evolves.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Document Theory
It's helpful to put ActiveX documents within the context of COM and OLE, which you already understand if
you've read the other chapters in this book. You can, however, get started with ActiveX document servers
without fully understanding all the COM concepts covered in Part VI.

ActiveX Document Servers vs. OLE Embedded Servers

As you saw in Chapter 28, an OLE embedded server program runs in a child window of an OLE container
application and occupies a rectangular area in a page of the container's document (see Figure 28-1).
Unless an embedded server program is classified as a mini-server, it can run stand-alone also. In
embedded mode, the server program's data is held in a storage inside the container application's file. The
embedded server program takes over the container program's menu and toolbar when the user activates it
by double-clicking on its rectangle.

In contrast to an embedded server, an ActiveX document server takes over a whole frame window in its
container application, and the document is always active. An ActiveX server application, running inside a
container's frame window, runs pretty much the same way it would in stand-alone mode. You can see this
for yourself if you have Microsoft Office 97. Office includes an ActiveX container program called Binder
(accessible from the Office shortcut bar), and the Office applications (Microsoft Word, Microsoft Excel, and
so on) have ActiveX server capability. Figure 36-1 shows a Word document and an Excel chart inside the
same binder.

Figure 36-1. A Word document and an Excel chart inside a Microsoft Office Binder window.

Like an embedded server, the ActiveX document server saves its data in a storage inside the ActiveX
container's file. When the Office user saves the Binder program from the File menu, Binder writes a single
OBD file to disk; the file contains one storage for the Word document and another for the Excel
spreadsheet. You can see this file structure yourself with the DFVIEW utility, as shown in Figure 36-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 36-2. A file structure displayed by the DocFile Viewer.

Running an ActiveX Document Server from Internet Explorer

Running an ActiveX document server from Internet Explorer is more fun than running one from Microsoft
Office Binder (Internet Explorer refers to Internet Explorer 3.0 or greater). Rather than load a storage only
from an OBD file, the server program can load its storage from the other side of the world. You just type in
a URL, such as http://www.DaliLama.in/SecretsOfTheUniverse.doc, and a Microsoft Word document opens
inside your Browse window, taking over the browser's menu and toolbar. That's assuming, of course, that
you have installed the Microsoft Word program. If not, a Word document viewer is available, but it must be
on your hard disk before you download the file.

An ActiveX document server won't let you save your changes back to the Internet host, but it will let you
save them on your own hard disk. In other words, File Save is disabled but File Save As is enabled.

If you have Microsoft Office, try running Word or Excel in Internet Explorer now. The EX34A server is quite
capable of delivering documents or worksheets to your browser, assuming that they are accessible from its
home directory. Note that Internet Explorer recognizes documents and worksheets not by their file
extensions but by the CLSID inside the files. You can prove this for yourself by renaming a file prior to
accessing it.

ActiveX Document Servers vs. ActiveX Controls

Both ActiveX document servers and ActiveX controls can run with and without the Internet. Both are
compiled programs that can run inside a browser. The following table lists some of the differences between
the two.

 ActiveX Document
Server

ActiveX
Control

Module type EXE Most often a
DLL

Can run stand-alone Yes No

Code automatically downloaded and registered by a
WWW browser

No Yes

Can be embedded in an HTML file No Yes

Occupies the entire browser window Yes Sometimes

Can be several pages Yes Not usually

Can read/write disk files Yes Not usually

OLE Interfaces for ActiveX Document Servers and Containers

ActiveX document servers implement the same interfaces as OLE embedded servers, including IOleObject,
IOleInPlaceObject, and IOleInPlaceActiveObject. ActiveX document containers implement IOleClientSite,
IOleInPlaceFrame, and IOleInPlaceSite. The menu negotiation works the same as it does for Visual Editing.

Some additional interfaces are implemented, however. ActiveX document servers implement
IOleDocument, IOleDocumentView, IOleCommandTarget, and IPrint. ActiveX document containers
implement IOleDocumentSite. The architecture allows for multiple views of the same document—sort of
like the MFC document-view architecture—but most ActiveX document servers implement only one view
per document.

The critical function in an OLE embedded server is IOleObject::DoVerb, which is called by the container
when the user double-clicks on an embedded object or activates it through the menu. For an ActiveX
document server, however, the critical function is IOleDocumentView::UIActivate. (Before calling this
function, the container calls IOleDocument::CreateView, but generally the server just returns an interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function, the container calls IOleDocument::CreateView, but generally the server just returns an interface
pointer to the single document-view object.) UIActivate finds the container site and frame window, sets
that window as the server's parent, sets the server's window to cover the container's frame window, and
then activates the server's window.

It's important to realize that the COM interaction takes place between the container
program (Internet Explorer or Binder) and the ActiveX document server (your
program), which are both running on the client computer. We know of no cases in
which remote procedure calls (RPCs) are made over the Internet. That means that the
remote host (the server computer) does not use COM interfaces to communicate with
clients, but it can deliver data in the form of storages.

MFC Support for ActiveX Document Servers

MFC allows you to create your own ActiveX document server programs. In addition, Visual C++ 6.0 now
allows you to write ActiveX document containers. To get a server program, create a new MFC AppWizard
EXE project and then check the Active Document Server check box, as shown in Figure 36-3. To create a
container program, just make sure the Active Document Container check box is marked.

Figure 36-3. Step 3 of the MFC AppWizard.

Here's a rundown of the classes involved in MFC's ActiveX Document Server Architecture.

COleServerDoc

As it is for any COM component, your ActiveX document server's document class is derived from
COleServerDoc, which implements IPersistStorage, IOleObject, IDataObject, IOleInPlaceObject, and
IOleInPlaceActiveObject.

The COM interfaces and MFC classes discussed here were named before Microsoft
introduced ActiveX technology. An ActiveX document server was formerly known as a
document object server or a doc object server, so those are the names you'll see in the
source code and in some online documentation.

CDocObjectServerItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDocObjectServerItem

This class is derived from the COleServerItem class used in embedded servers. Your ActiveX document
server program has a class derived from CDocObjectServerItem, but that class isn't used when the
program is running in ActiveX document mode.

CDocObjectServer

This class implements the new ActiveX server interfaces. Your application creates an object of class
CDocObjectServer and attaches it to the COleServerDoc object. If you look at
COleServerDoc::GetDocObjectServer in your derived document class, you'll see the construction code.
Thereafter, the document object and attached CDocObjectServer object work together to provide ActiveX
document server functionality. This class implements both IOleDocument and IOleDocumentView, which
means that you can have only one view per document in an MFC ActiveX document server. You generally
don't derive classes from CDocObjectServer.

COleDocIPFrameWnd

This class is derived from COleIPFrameWnd. Your application has a frame window class derived from
COleDocIPFrameWnd. The framework constructs an object of that class when the application starts in
embedded server mode or in ActiveX document server mode. In ActiveX document server mode, the
server's window completely covers the container's frame window and has its own menu resource attached,
with the identifier IDR_SRVR_INPLACE (for an SDI application).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Document Server Example EX36A
You could construct the EX36A example in two phases. The first phase is a plain ActiveX document server
that loads a file from its container. The view base class is CRichEditView, which means the program loads,
edits, and stores text plus embedded objects. In the second phase, the application is enhanced to
download a separate text file from the Internet one line at a time, demonstrating that ActiveX document
servers can make arbitrary WinInet calls.

EX36A Phase 1—A Simple Server

The EX36A example on the book's CD-ROM is complete with the text download feature from Phase 2. You
can exercise its Phase 1 capabilities by building it, or you can create a new application with AppWizard. If
you do use AppWizard, you should refer to Figure 36-3 to see the AppWizard EXE project dialog and select
the appropriate options. All other options are the default options, except those for selecting SDI (Step 1),
setting the project's filename extension to 36a using the Advanced button in Step 4, and changing the
view's base class (CRichEditView—on the wizard's last page). You don't have to write any C++ code at all.

Be sure to run the program once in stand-alone mode to register it. While the program is running in stand-
alone mode, type some text (and insert some OLE embedded objects) and then save the document as
test.36a in your Internet server's home directory (\scripts or \wwwroot directory). Try loading test.36a
from Internet Explorer and from Office Binder. Use Binder's Section menu for loading and storing EX36A
documents to and from disk files.

You should customize the document icons for your ActiveX document servers because those icons show up
on the right side of an Office Binder window.

Debugging an ActiveX Document Server

If you want to debug your program in ActiveX document server mode, click on the Debug tab in the Build
Settings dialog. Set Program Arguments to /Embedding, and then start the program. Now start the
container program and use it to "start" the server, which has in fact already started in the debugger and is
waiting for the container.

EX36A Phase 2—Adding WinInet Calls

The EX36A example on the CD-ROM includes two dialog bar objects, one for the main frame window and
another for the in-place frame window. Both are attached to the same resource template,
IDD_DIALOGBAR, which contains an edit control that accepts a text file URL plus start and stop buttons
that display green and red bitmaps. If you click the green button (handled by the OnStart member function
of the CEx36aView class), you'll start a thread that reads the text file one line at a time. The thread code
from the file UrlThread.cpp is shown here:

CString g_strURL = "http:// ";
volatile BOOL g_bThreadStarted = FALSE;
CEvent g_eKill;

UINT UrlThreadProc(LPVOID pParam)
{
 g_bThreadStarted = TRUE;
 CString strLine;
 CInternetSession session;
 CStdioFile* pFile1 = NULL;

 try {
 pFile1 = session.OpenURL(g_strURL, 0, INTERNET_FLAG_TRANSFER_BINARY
 | INTERNET_FLAG_KEEP_CONNECTION); // needed for Windows NT
 // c/r authentication
 // Keep displaying text from the URL until the Kill event is
 // received
 while(::WaitForSingleObject(g_eKill.m_hObject, 0) != WAIT_OBJECT_0) {
 // one line at a time
 if(pFile1->ReadString(strLine) == FALSE) break;
 strLine += `\n';
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999,
 1000000);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1000000);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) (const char*) strLine);
 Sleep(250); // Deliberately slow down the transfer
 }
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1 != NULL) delete pFile1; // closes the file—prints a warning
 g_bThreadStarted = FALSE;
 // Post any message to update the toolbar buttons
 ::PostMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999, 1000000);
 TRACE("Post thread exiting normally\n");
 return 0;
}
This code uses the CStdioFile pointer to pFile1 returned from OpenURL. The ReadString member function
reads one line at a time, and each line is sent to the rich edit view window. When the main thread sets the
"kill" event (the red button), the URL thread exits.

Before you test EX36A, make sure that the server (EX34A or IIS) is running and that you have a text file in
the server's home directory. Test the EX36A program first in stand-alone mode by entering the text file
URL in the dialog bar. Next try running the program in server mode from Internet Explorer. Enter test.36a
(the document you created when you ran EX36A in stand-alone mode) in Internet Explorer's Address field
to load the server.

We considered using the CAsyncMonikerFile class (see Asynchronous Moniker Files)
instead of the MFC WinInet classes to read the text file. We stuck with WinInet,
however, because the program could use the CStdioFile class ReadString member
function to "pull" individual text lines from the server when it wanted them. The
CAsyncMonikerFile class would have "pushed" arbitrary blocks of characters into the
program (by calling the overridden OnDataAvailable function) as soon as the characters
had been received.

Displaying Bitmaps on Buttons

Chapter 11 describes the CBitmapButton class for associating a group of bitmaps with a
pushbutton. Microsoft Windows 95, Microsoft Windows 98, and Microsoft Windows NT
4.0 support an alternative technique that associates a single bitmap with a button. First
you apply the Bitmap style (on the button's property sheet) to the button, and then
you declare a variable of class CBitmap that will last at least as long as the button is
enabled. Then you make sure that the CButton::SetBitmap function is called just after
the button is created.

Here is the code for associating a bitmap with a button, from the EX36A MainFrm.cpp
and IpFrame.cpp files:

m_bitmapGreen.LoadBitmap(IDB_GREEN);
HBITMAP hBitmap = (HBITMAP) m_bitmapGreen.GetSafeHandle();
((CButton*) m_wndDialogBar.GetDlgItem(IDC_START))
->SetBitmap(hBitmap);
If your button was in a dialog, you could put similar code in the OnInitDialog member
function and declare a CBitmap member in the class derived from CDialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Document Server Example EX36B
Look at the pizza form example from Chapter 35 (EX35A). Note that the server (the ISAPI DLL) processes
the order only when the customer clicks the Submit Order Now button. This is okay for ordering pizzas
because you're probably happy to accept money from anyone, no matter what kind of browser is used.

For a form-based intranet application, however, you can be more selective. You can dictate what browser
your clients have, and you can distribute your own client software on the net. In that environment, you
can make data entry more sophisticated, allowing, for example, the client computer to validate each entry
as the user types it. That's exactly what's happening in EX36B, which is another ActiveX document server,
of course. EX36B is a form-based employee time-sheet entry program that works inside Internet Explorer
(as shown in Figure 36-4) or works as a stand-alone application. Looks like a regular HTML form, doesn't
it? It's actually an MFC form view, but the average user probably won't know the difference. The Name
field is a drop-down combo box, however—which is different from the select field you would see in an
HTML form—because the user can type in a value if necessary. The Job Number field has a spin button
control that helps the user select the value. These aren't necessarily the ideal controls for time-sheet
entry, but the point here is that you can use any Windows controls you want, including tree controls, list
controls, trackbars, and ActiveX controls, and you can make them interact any way you want.

Figure 36-4. Employee time-sheet entry form.

Field Validation in an MFC Form View

Problem: MFC's standard validation scheme validates data only when
CWnd::UpdateData(TRUE) is called, usually when the user exits the dialog. Applications
often need to validate data the moment the user leaves a field (edit control, list box,
and so on). The problem is complex because Windows permits the user to freely jump
between fields in any sequence by using the mouse. Ideally, standard MFC DDX- /DDV
(data exchange/validation) code should be used for field validation, and the standard
DoDataExchange function should be called when the user finishes the transaction.

Solution: Derive your field validation form view classes from the class CValidForm,
derived from CFormView, with this header:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// valform.h
#ifndef _VALIDFORM
#define _VALIDFORM

#define WM_VALIDATE WM_USER + 5

class CValidForm : public CFormView
{
DECLARE_DYNAMIC(CValidForm)
private:
 BOOL m_bValidationOn;
public:
 CValidForm(UINT ID);
 // override in derived dlg to perform validation
 virtual void ValidateDlgItem(CDataExchange* pDX, UINT ID);
 //{{AFX_VIRTUAL(CValidForm)
 protected:
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 //}}AFX_VIRTUAL

 //{{AFX_MSG(CValidForm)
 afx_msg LONG OnValidate(UINT wParam, LONG lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
#endif // _VALIDFORM
This class has one virtual function, ValidateDlgItem, which accepts the control ID as the
second parameter. The derived form view class implements this function to call the
DDX/DDV functions for the appropriate field. Here is a sample ValidateDlgItem
implementation for a form view that has two numeric edit controls:

void CMyForm::ValidateDlgItem(CDataExchange* pDX, UINT uID)
{
 switch (uID) {
 case IDC_EDIT1:
 DDX_Text(pDX, IDC_EDIT1, m_nEdit1);
 DDV_MinMaxInt(pDX, m_nEdit1, 0, 10);
 break;
 case IDC_EDIT2:
 DDX_Text(pDX, IDC_EDIT2, m_nEdit2);
 DDV_MinMaxInt(pDX, m_nEdit2, 20, 30);
 break;
 default:
 break;
 }
}
Notice the similarity to the wizard-generated DoDataExchange function:

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 //{{AFX_DATA_MAP(CMyForm)
 DDX_Text(pDX, IDC_EDIT1, m_nEdit1);
 DDV_MinMaxInt(pDX, m_nEdit1, 0, 10);
 DDX_Text(pDX, IDC_EDIT2, m_nEdit2);
 DDV_MinMaxInt(pDX, m_nEdit2, 20, 30);
 //}}AFX_DATA_MAP
}
How does it work? The CValidForm class traps the user's attempt to move away from a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How does it work? The CValidForm class traps the user's attempt to move away from a
control. When the user presses the Tab key or clicks on another control, the original
control sends a killfocus command message (a control notification message) to the
parent window, the exact format depending on the kind of control. An edit control, for
example, sends an EN_KILLFOCUS command. When the form window receives this
killfocus message, it invokes the DDX/DDV code that is necessary for that field, and if
there's an error, the focus is set back to that field.

There are some complications, however. First, we want to allow the user to freely
switch the focus to another application—we're not interested in trapping the killfocus
message in that case. Next, we must be careful how we set the focus back to the
control that produced the error. We can't just call SetFocus in direct response to the
killfocus message; instead we must allow the killfocus process to complete. We can
achieve this by posting a user-defined WM_VALIDATE message back to the form
window. The WM_VALIDATE handler calls our ValidateDlgItem virtual function after the
focus has been moved to the next field. Also, we must ignore the killfocus message
that results when we switch back from the control that the user tried to select, and we
must allow the IDCANCEL button to abort the transaction without validation.

Most of the work here is done in the view's virtual OnCommand handler, which is called
for all control notification messages. We could, of course, individually map each
control's killfocus message in our derived form view class, but that would be too much
work. Here is the OnCommand handler:

BOOL CValidForm::OnCommand(WPARAM wParam, LPARAM lParam)
{
 // specific for WIN32 — wParam/lParam processing different for
 // WIN16
 TRACE("CValidForm::OnCommand, wParam = %x, lParam = %x\n",
 wParam, lParam);
 TRACE("m_bValidationOn = %d\n", m_bValidationOn);
 if(m_bValidationOn) { // might be a killfocus
 UINT notificationCode = (UINT) HIWORD(wParam);
 if((notificationCode == EN_KILLFOCUS) ||
 (notificationCode == LBN_KILLFOCUS) ||
 (notificationCode == CBN_KILLFOCUS)) {
 CWnd* pFocus = CWnd::GetFocus(); // static function call
 // if we're changing focus to another control in the
 // same form
 if(pFocus && (pFocus->GetParent() == this)) {
 if(pFocus->GetDlgCtrlID() != IDCANCEL) {
 // and focus not in Cancel button
 // validate AFTER drawing finished
 BOOL rtn = PostMessage(WM_VALIDATE, wParam);
 TRACE("posted message, rtn = %d\n", rtn);
 }
 }
 }
 }
 return CFormView::OnCommand(wParam, lParam); // pass it on
}
Note that m_bValidationOn is a Boolean data member in CValidForm.

Finally, here is the OnValidate message handler, mapped to the user-defined
WM_VALIDATE message:

LONG CValidForm::OnValidate(UINT wParam, LONG lParam)
{
 TRACE("Entering CValidForm::OnValidate\n");
 CDataExchange dx(this, TRUE);
 m_bValidationOn = FALSE; // temporarily off
 UINT controlID = (UINT) LOWORD(wParam);
 try {
 ValidateDlgItem(&dx, controlID);
 }
 catch(CUserException* pUE) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch(CUserException* pUE) {
 pUE->Delete();
 TRACE("CValidForm caught the exception\n");
 // fall through — user already alerted via message box
 }
 m_bValidationOn = TRUE;
 return 0; // goes no further
}
Instructions for use:

1. Add valform.h and valform.cpp to your project.

2. Insert the following statement in your view class header file:

#include "valform.h"
3. Change your view class base class from CFormView to CValidForm.

4. Override ValidateDlgItem for your form's controls as shown above.

That's all.

For dialogs, follow the same steps, but use valid.h and valid.cpp. Derive your dialog
class from CValidDialog instead of from CDialog.

Generating POST Requests Under Program Control

The heart of the EX36B program is a worker thread that generates a POST request and sends it to a
remote server. The server doesn't care whether the POST request came from an HTML form or from your
program. It could process the POST request with an ISAPI DLL, with a PERL script, or with a Common
Gateway Interface (CGI) executable program.

Here's what the server receives when the user clicks the EX36B Submit button:

POST scripts/ex35a.dll?ProcessTimesheet HTTP/1.0
(request headers)
(blank line)
Period=12&Name=Dunkel&Hours=6.5&Job=5
And here's the thread code from PostThread.cpp:
// PostThread.cpp (uses MFC WinInet calls)

#include <stdafx.h>
#include "PostThread.h"

#define MAXBUF 50000

CString g_strFile = "/scripts/ex35a.dll";
CString g_strServerName = "localhost";
CString g_strParameters;

UINT PostThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 DWORD dwStatusCode;
 BOOL bOkStatus = FALSE;
 try {
 pConnection = session.GetHttpConnection(g_strServerName,
 (INTERNET_PORT) 80);
 pFile1 = pConnection->OpenRequest(0, g_strFile +
 "?ProcessTimesheet", // POST request
 NULL, 1, NULL, NULL, INTERNET_FLAG_KEEP_CONNECTION |
 INTERNET_FLAG_RELOAD); // no cache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTERNET_FLAG_RELOAD); // no cache
 pFile1->SendRequest(NULL, 0,
 (LPVOID) (const char*) g_strParameters,
 g_strParameters.GetLength());
 pFile1->QueryInfoStatusCode(dwStatusCode);
 if(dwStatusCode == 200) { // OK status
 // doesn't matter what came back from server — we're looking
 // for OK status
 bOkStatus = TRUE;
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = `\0'; // necessary for TRACE
 TRACE(buffer);
 TRACE("\n");
 }
 }
 catch(CInternetException* pe) {
 char text[100];
 pe->GetErrorMessage(text, 99);
 TRACE("WinInet exception %s\n", text);
 pe->Delete();
 }
 if(pFile1) delete pFile1; // does the close — prints a warning
 if(pConnection) delete pConnection; // Why does it print a warning?
 delete [] buffer;
 ::PostMessage((HWND) pParam, WM_POSTCOMPLETE, (WPARAM) bOkStatus, 0);
 return 0;
}
The main thread assembles the g_strParameters string based on what the user typed, and the worker
thread sends the POST request using the CHttpFile::SendRequest call. The tQueryInfoStatusCode to find
out if the server sent back an OK response. Before exiting, the thread posts a message to the main thread,
using the bOkStatus value in wParam to indicate success or failure.

The EX36B View Class

The CEx36bView class is derived from CValidForm, as described in "Field Validation in an MFC Form View".
CEx36bView collects user data and starts the post thread when the user clicks the Submit button after all
fields have been successfully validated. Field validation is independent of the internet application. You
could use CValidForm in any MFC form view application.

Here is the code for the overridden or the overridden ValidateDlgItem member function, which is called
whenever the user moves from one control to another:

void CEx36bView::ValidateDlgItem(CDataExchange* pDX, UINT uID)
{
 ASSERT(this);
 TRACE("CEx36bView::ValidateDlgItem\n");
 switch (uID) {
 case IDC_EMPLOYEE:
 DDX_CBString(pDX, IDC_EMPLOYEE, m_strEmployee);
 // need custom DDV for empty string
 DDV_MaxChars(pDX, m_strEmployee, 10);
 if(m_strEmployee.IsEmpty()) {
 AfxMessageBox("Must supply an employee name");
 pDX->Fail();
 }
 break;
 case IDC_HOURS:
 DDX_Text(pDX, IDC_HOURS, m_dHours);
 DDV_MinMaxDouble(pDX, m_dHours, 0.1, 100.);
 break;
 case IDC_JOB:
 DDX_Text(pDX, IDC_JOB, m_nJob);
 DDV_MinMaxInt(pDX, m_nJob, 1, 20);
 break;
 default:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 default:
 break;
 }
 return;
}
The OnSubmit member function is called when the user clicks the Submit button. CWnd::UpdateData
returns TRUE only when all the fields have been successfully validated. At that point, the function disables
the Submit button, formats g_strParameters, and starts the post thread.

void CEx36bView::OnSubmit()
{
 if(UpdateData(TRUE) == TRUE) {
 GetDlgItem(IDC_SUBMIT)->EnableWindow(FALSE);
 CString strHours, strJob, strPeriod;
 strPeriod.Format("%d", m_nPeriod);
 strHours.Format("%3.2f", m_dHours);
 strJob.Format("%d", m_nJob);
 g_strParameters = "Period=" + strPeriod + "&Employee=" +
 m_strEmployee + "&Hours=" +strHours + "&Job=" +
 strJob + "\r\n";
 TRACE("parameter string = %s", g_strParameters);
 AfxBeginThread(PostThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);
 }
}
The OnCancel member function is called when the user clicks the Reset button. The CValidForm logic
requires that the button's control ID be IDCANCEL.

void CEx36bView::OnCancel()
{
 CEx36bDoc* pDoc = GetDocument();
 m_dHours = 0;
 m_strEmployee = "" ;
 m_nJob = 0;
 m_nPeriod = pDoc->m_nPeriod;
 UpdateData(FALSE);
}
The OnPostComplete handler is called in response to the user-defined WM_POSTCOMPLETE message sent
by the post thread:

LONG CEx36bView::OnPostComplete(UINT wParam, LONG lParam)
{
 TRACE("CEx36bView::OnPostComplete - %d\n", wParam);
 if(wParam == 0) {
 AfxMessageBox("Server did not accept the transaction");
 }
 else
 OnCancel();
 GetDlgItem(IDC_SUBMIT)->EnableWindow(TRUE);
 return 0;
}
This function displays a message box if the server didn't send an OK response. It then enables the Submit
button, allowing the user to post another time-sheet entry.

Building and Testing EX36B

Build the /vcpp36/ex36b project, and then run it once in stand-alone mode to register it and to write a
document file called test.36b in your WWW root directory. Make sure the EX35A DLL is available in the
scripts directory (with execute permission) because that DLL contains an ISAPI function,
ProcessTimesheet, which handles the server end of the POST request. Be sure that you have IIS or some
other ISAPI-capable server running.

Now run Internet Explorer and load test.36b from your server. The EX36B program should be running in
the Browse window, and you should be able to enter time-sheet transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Browse window, and you should be able to enter time-sheet transactions.

ActiveX Document Servers vs. VB Script

It's possible to insert VB Script (or JavaScript) code into an HTML file. We're not experts on VB Script, but
we've seen some sample code. You could probably duplicate the EX36B time-sheet application with VB
Script, but you would be limited to the standard HTML input elements. It would be interesting to see how a
VB Script programmer would solve the problem. (In any case, you're a C++ programmer, not a Visual
Basic programmer, so you might as well stick to what you know.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with ActiveX Document Servers
EX36A used a worker thread to read a text file from an Internet server. It used the MFC WinInet classes,
and it assumed that a standard HTTP server was available. An ActiveX document server could just as easily
make Winsock calls using the CBlockingSocket class from Chapter 34. That would imply that you were
going beyond the HTTP and FTP protocols. You could, for example, write a custom internet server program
that listened on port 81. (That server could run concurrently with IIS if necessary.) Your ActiveX document
server could use a custom TCP/IP protocol to get binary data from an open socket. The server could use
this data to update its window in real-time, or it could send the data to another device, such as a sound
board.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 37
Introducing Dynamic HTML
Dynamic HyperText Markup Language (DHTML) is a new and exciting technology—introduced as part of
Microsoft Internet Explorer 4.0 (IE4)—that provides serious benefits to Webmasters and developers.
DHTML could ultimately change the way we think about developing Windows applications. Why the buzz
about DHTML?

It began with the IE4 "HTML display engine"—sometimes called Trident in Microsoft literature. As part of
the design of Internet Explorer 4, Microsoft made Trident a COM component that exposes many of its
internal objects that are used for displaying HTML pages in Internet Explorer 4. This feature allows you to
traverse the portions of an HTML page in script or code, as if the HTML page were a data structure. Gone
are the days of having to parse HTML or write grotesque Common Gateway Interface (CGI) scripts to get
to data in a form. The real power of DHTML, however, is not this ability to access the HTML objects but the
ability to actually change and manipulate the HTML page on the fly—thus the name Dynamic HTML.

Once you grasp the concept of DHTML, a million possible applications come to mind. For Webmasters,
DHTML means that much of the logic that manipulates a Web page can live in scripts that are downloaded
to the client. C++ developers can embed DHTML in their applications and use it as an embedded Web
client or as a super-flexible, dynamic "form" that their application changes on the fly. Microsoft Visual J++
developers (who use Windows Foundation Classes [WFC]) can actually program DHTML on the server while
an Internet Explorer client responds to the commands—an excellent alternative to CGI and potentially
more powerful than Active Server Pages (ASP) server-side scripting.

Unfortunately, DHTML is so powerful and extensive that it requires a separate book to fill you in on all of
the copious details. For example, to really leverage DHTML you need to understand all of the possible
elements of an HTML page: forms, lists, style sheets, and so on. Inside Dynamic HTML by Scott Isaacs
(Microsoft Press, 1997) is a great resource for learning the details of DHTML.

Instead of covering all aspects of DHTML, we will briefly introduce you to the DHTML object model, show
you how to work with the model from the scripting angle (as a reference), and then show you how to work
with the model from both the Microsoft Foundation Class Library version 4.21 (MFC) and the Active
Template Library (ATL). These features are all made possible by the excellent DHTML support introduced in
Visual C++ 6.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DHTML Object Model
If you've been heads down on a Visual C++ project and haven't yet had time to take a peek at HTML, the
first thing you should know is that HTML is an ASCII markup language format. Here is the code for a very
basic HTML page:

<html>
<head>
<title>
This is an example very basic HTML page!
</title>
</head>
<body>
<h1>This is some text with H1!
</h1>
<h3>
This is some text with H3!
</h3>
</body>
</html>
This basic HTML "document" is composed of the following elements:

A head (or header) In this example, the header contains a title: "This is an example very basic
HTML page!"

The body of the document The body in this example contains two text elements. The first has the
heading 1 (h1) style and reads, "This is some text with H1!" The second text element has the
heading 3 (h3) style and reads, "This is some text with H3!"

The end result is an HTML page that—when displayed in Internet Explorer 4—looks like Figure 37-1.

When Internet Explorer 4 loads this sample HTML page, it creates an internal representation that you can
traverse, read, and manipulate through the DHTML object model. Figure 37-2 shows the basic hierarchy of
the DHTML object model.

Figure 37-1. A very basic HTML page, as seen in Internet Explorer 4.

At the root of the object model is the window object. This object can be used from a script to perform
some action, such as popping up a dialog box. Here's an example of some JScript that accesses the
window object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<SCRIPT LANGUAGE="JScript">
function about()
{
 window.showModalDialog("about.htm","",
 "dialogWidth:25em;dialogHeight13em")
}
</SCRIPT>
When the about script function is called, it will call the showModalDialog function in the window DHTML
object to display a dialog. This example also illustrates how scripts access the object model—through
globally accessible objects that map directly to the corresponding object in the DTHML object model.

The window object has several "subobjects" that allow you to further manipulate portions of Internet
Explorer 4. The document object is what we will spend most of our time on in this chapter because it gives
us programmatic access to the various elements of the currently loaded HTML document. Below, some
JScript shows how to create basic dynamic content that changes the document object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 37-2. Basic hierarchy of the DHTML object model.

<HTML>
<HEAD>
<TITLE>Welcome!</TITLE>
<SCRIPT LANGUAGE="JScript">
function changeMe() {
 document.all.MyHeading.outerHTML =
 "<H1 ID=MyHeading>Dynamic HTML is magic!</H1>";
 document.all.MyHeading.style.color = "green";
 document.all.MyText.innerText = "Presto Change-o! ";
 document.all.MyText.align = "center";
 document.body.insertAdjacentHTML("BeforeEnd",
 "<P ALIGN=\"center\">Open Sesame!</P>");
}
</SCRIPT>
<BODY onclick="changeMe()">
<H3 ID=MyHeading> Dynamic HTML demo!</H3>
<P ID=MyText>Click anywhere to see the power of DHTML!</P>
</BODY>
</HTML>
This script changes the MyHeading and MyText objects in the HTML documents on the fly. Not only does it
change the text, it also changes attributes of the elements such as color and alignment. If you want to see
this script in action, you can find it in the ex37_1.html file on the companion CD.

Before we further deconstruct the DHTML object model, let's examine the DHTML concept of a collection.
Collections in DHTML are logically equivalent to C++ data structures such as linked lists. In fact, access to
the DHTML object model is performed largely by iterating through collections searching for a particular
HTML element and then potentially iterating through another subcollection to get to yet another element.
Elements contain several methods, such as contains and length, that you use to traverse the elements.

For example, one of the subelements of the document object is a collection named all that contains all of
the document's elements. In fact, most of the subobjects of the document object are collections. The
following script (ex37_2.html) shows how to iterate through the all collection and list the various items of a
document.

<HTML>
<HEAD><TITLE>Iterating through the all collection.</TITLE>
<SCRIPT LANGUAGE="JScript">
function listAllElements() {
 var tag_names = "";
 for (i=0; i<document.all.length; i++)
 tag_names = tag_names + document.all(i).tagName + " ";
 alert("This document contains: " + tag_names);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 alert("This document contains: " + tag_names);
}
</SCRIPT>
</HEAD>
<BODY onload="listAllElements()">
<H1>DHTML Rocks!</H1>
<P>This document is very short.
</BODY>
</HTML>
Notice how easy it is to retrieve items with script. (The syntax calls for parentheses, similar to accessing an
array in C++.) Also notice that each element in an HTML document has properties such as tagName that
allow you to programmatically "search" for various elements. For example, if you wanted to write a script
that filtered out all bold items, you would scan the all collection for an element with tagName equal to B.

Now you have the basics of the DHTML object model down and you understand how to access them
through scripts from the Webmaster's perspective. Let's look at how Visual C++ lets us work with DHTML
from an application developer's perspective.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual C++ and DHTML
Visual C++ 6.0 supports DHTML through both MFC and ATL. Both MFC and ATL give you complete access
to the DHTML object model. Unfortunately, access to the object model from languages like C++ is done
through OLE Automation (IDispatch) and in many cases isn't as cut-and-dried as some of the scripts we
looked at earlier.

The DHTML object model is exposed to C++ developers through a set of COM objects with the prefix
IHTML (IHTMLDocument, IHTMLWindow, IHTMLElement, IHTMLBodyElement, and so on). In C++, once
you obtain the document interface, you can use any of the IHTMLDocument2 interface methods to obtain
or to modify the document's properties.

You can access the all collection by calling the IHTMLDocument2::get_all method. This method returns an
IHTMLElementCollection collection interface that contains all the elements in the document. You can then
iterate through the collection using the IHTMLElementCollection::item method (similar to the parentheses
in the script above). The IHTMLElementCollection::item method supplies you with an IDispatch pointer that
you can call QueryInterface on, requesting the IID_IHTMLElement interface. This call to QueryInterface will
give you an IHTMLElement interface pointer that you can use to get or set information for the HTML
element.

Most elements also provide a specific interface for working with that particular element type. These
element-specific interface names take the format of IHTMLXXXXElement, where XXXX is the name of the
element (IHTMLBodyElement, for example). You must call QueryInterface on the IHTMLElement object to
request the element-specific interface you need. This might sound confusing (because it can be!). But
don't worry—the MFC and ATL sections in this chapter contain plenty of samples that demonstrate how it
all ties together. You'll be writing DHTML code in no time.

MFC and DHTML

MFC's support for DHTML starts with a new CView derivative, CHtmlView. CHtmlView allows you to embed
an HTML view inside frame windows or splitter windows, where with some DHTML work it can act as a
dynamic form. Example EX37A demonstrates how to use the new CHtmlView class in a vanilla MDI
application.

Follow these steps to create the EX37A example:

1. Run AppWizard and create \vcpp32\ex37a\ex37a. Choose New from Visual C++'s File menu.
Then click the Projects tab, and select MFC AppWizard (exe). Accept all defaults, except in Step 6
choose CHtmlView as the Base Class, as shown here.

2. Edit the URL to be loaded. In the CEx37aView::OnInitialUpdate function, you will see this line:

Navigate2(_T("http://www.microsoft.com/visualc/"),NULL,NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Navigate2(_T("http://www.microsoft.com/visualc/"),NULL,NULL);
You can edit this line to have the application load a local page or a URL other than the Visual C++
page.

3. Compile and run. Figure 37-3 shows the application running with the default Web page.

Figure 37-3. The EX37A example.

Now let's create a sample that really shows how to use DHTML with MFC. EX37B creates a
CHtmlView object and a CListView object separated by a splitter. The example then uses DHTML to
enumerate the HTML elements in the CHtmlView object and displays the results in the CListView
object. The end result will be a DHTML explorer that you can use to view the DHTML object model of
any HTML file.

Here are the steps to create EX37B:

4. Run AppWizard and create \vcpp32\ex37b\ex37b. Choose New from Visual C++'s File menu.
Then click the Projects tab, and select MFC AppWizard (exe). Accept all the defaults but three:
select Single Document, select Windows Explorer in Step 5, and select CHtmlView as the Base Class
in Step 6. The options that you should see after finishing the wizard are shown in the graphic below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Change the CLeftView to be a CListView derivative. By default, AppWizard makes the
CLeftView of the splitter window a CTreeView derivative. Open the LeftView.h file, and do a global
search for CTreeView and replace it with CListView. Open LeftView.cpp and do the same find and
replace (Hint: Use Edit/Replace/Replace All.)

6. Edit the URL to be loaded. In the CEx37bView::OnInitialUpdate function, change the URL to
res://ie4tour.dll/welcome.htm.

7. Add a DoDHTMLExplore function to CMainFrame. First add the fol-lowing declaration to the
MainFrm.h file:

 virtual void DoDHTMLExplore(void);
Now add the implementation for DoHTMLExplore to MainFrm.cpp.

void CMainFrame::DoDHTMLExplore(void)
{

 CLeftView *pListView =
 (CLeftView *)m_wndSplitter.GetPane(0,0);

 CEx37bView * pDHTMLView =
 (CEx37bView *)m_wndSplitter.GetPane(0,1);

 //Clear the listview
 pListView->GetListCtrl().DeleteAllItems();
 IDispatch* pDisp = pDHTMLView->GetHtmlDocument();

 if (pDisp != NULL)
 {
 IHTMLDocument2* pHTMLDocument2;
 HRESULT hr;

 hr = pDisp->QueryInterface(IID_IHTMLDocument2,
 (void**)&pHTMLDocument2);
 if (hr == S_OK)
 {
 IHTMLElementCollection* pColl = NULL;

 hr = pHTMLDocument2->get_all(&pColl);
 if (hr == S_OK && pColl != NULL)
 {
 LONG celem;
 hr = pColl->get_length(&celem);

 if (hr == S_OK)
 {
 for (int i=0; i< celem; i++)
 {
 VARIANT varIndex;
 varIndex.vt = VT_UINT;
 varIndex.lVal = i;
 VARIANT var2;
 VariantInit(&var2);
 IDispatch* pDisp;

 hr = pColl->item(varIndex, var2, &pDisp);
 if (hr == S_OK)
 {
 IHTMLElement* pElem;

 hr = pDisp->QueryInterface(

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 hr = pDisp->QueryInterface(
 IID_IHTMLElement,
 (void **)&pElem);
 if (hr == S_OK)
 {
 BSTR bstr;
 hr = pElem->get_tagName(&bstr);
 CString strTag = bstr;
 IHTMLImgElement* pImgElem;

 //Is it an image element?
 hr = pDisp->QueryInterface(
 IID_IHTMLImgElement,
 (void **)&pImgElem);
 if (hr == S_OK)
 {
 pImgElem->get_href(&bstr);
 strTag += " - ";
 strTag += bstr;
 pImgElem->Release();
 }
 else
 {
 IHTMLAnchorElement* pAnchElem;

 //Is it an anchor?
 hr = pDisp->QueryInterface(
 IID_IHTMLAnchorElement,
 (void **)&pAnchElem);
 if (hr == S_OK)
 {
 pAnchElem->get_href(&bstr);
 strTag += " - ";
 strTag += bstr;
 pAnchElem->Release();
 }
 }//end of else

 pListView->GetListCtrl().InsertItem(
 pListView->GetListCtrl()
 .GetItemCount(), strTag);
 pElem->Release();
 }
 pDisp->Release();
 }
 }
 }
 pColl->Release();
 }
 pHTMLDocument2->Release();
 }
 pDisp->Release();
 }
}
Here are the steps that this function takes to "explore" the HTML document using DHTMLs:

First DoHTMLExplore gets pointers to the CListView and CHtmlView views in the splitter
window.

Then it makes a call to GetHtmlDocument to get an IDispatch pointer to the DHTML
document object.

Next DoHTMLExplore gets the IHTMLDocument2 interface.

With the IHTMLDocument2 interface, DoHTMLExplore retrieves the all collection and iterates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With the IHTMLDocument2 interface, DoHTMLExplore retrieves the all collection and iterates
through it. In each iteration, DoHTMLExplore checks the element type.If the element is an
image or an anchor, DoHTMLExplore retrieves additional information such as the link for the
image. The all collection loop then places the textual description of the HTML element in the
CListView object.

8. Make sure that Mainfrm.cpp includes mshtml.h. Add the following line to the top of
Mainfrm.cpp so that the DoHTMLExplore code will compile.

#include <mshtml.h>
9. Add a call to DoHTMLExplore. For this example, we will change the CEx37bApp::OnAppAbout

function to call the DoDHTMLExplore function in the ex37b.cpp file. Replace the existing code with
the following boldface code:

void CEx37bApp::OnAppAbout()
{
 CMainFrame * pFrame = (CMainFrame*)AfxGetMainWnd();
 pFrame->DoDHTMLExplore();
}

10. Customize the list view. In the CLeftView::PreCreateWindow function (LeftView.cpp), add this
line:

cs.style |= LVS_LIST;
11. Compile and run. Compile and run the sample. Press the "?" toolbar item, or choose Help/About to

invoke the explore function.

Figure 37-4 shows the EX37B example in action.

Figure 37-4. The EX37B example in action.

Now that you've seen how to use DHTML and MFC, let's look at how ATL implements DHMTL support.

ATL and DHTML

ATL's support for DHTML comes in the form of an HTML object that can be embedded in any ATL ActiveX
control. EX37C creates an ATL control that illustrates DHTML support.

To create the example, follow these steps:

1. Run the ATL COM AppWizard and create \vcpp32\ex37c\ex37c. Choose New from Visual
C++'s File menu. Then click the Projects tab, and select ATL COM AppWizard. Choose Executable as
the server type.

2. Insert an HTML control. In ClassView, right-click on the ex37c classes item and select New ATL
Object. Select Controls and HTML Control as shown in the graphic below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Click Next and fill in the C++ Short Name as shown here.

If you look at the IDHTMLUI object, you will see this stock implementation of the
OnClick handler:

 STDMETHOD(OnClick)(IDispatch* pdispBody, VARIANT varColor)
 {
 CComQIPtr<IHTMLBodyElement> spBody(pdispBody);
 if (spBody != NULL)
 spBody->put_bgColor(varColor);
 return S_OK;
 }
The default OnClick handler uses QueryInterface on the IDispatch pointer to get
the IHTMLBodyElement object. The handler then calls the put_bgColor method
to change the background color.

4. Compile, load, and run the control to see the ATL DHTML code in action. After you build the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Compile, load, and run the control to see the ATL DHTML code in action. After you build the
project, select ActiveX Control Test Container from the Tools menu. In the test container, select
Insert New Control from the Edit menu and choose CDHTML Class from the list box. Figure 37-5
shows the resulting ActiveX control that uses DHTML to change the background when the user clicks
the button.

Figure 37-5. EX37C ActiveX control.

For More Information…

We hope this introduction to DHTML has you thinking of some ways to use this exciting new technology in
your Visual C++ applications. The possibilities are endless: completely dynamic applications, applications
that update from the Internet, client/server ActiveX controls, and many more.

If you would like to learn more about DHTML, we suggest the following resources:

Inside Dynamic HTML by Scott Isaacs (Microsoft Press, 1997)

Dynamic HTML in Action by William J. Pardi and Eric M. Schurman (Microsoft Press, 1998)

The Internet SDK (an excellent resource on DHTML and other Microsoft technologies)

www.microsoft.com (several areas discuss DHTML)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 38
Visual C++ for Windows CE
In early 1997, Microsoft released a new version of the Windows family of operating systems named
Windows CE. Original equipment managers (OEMs) are the target audience for Windows CE. OEMs create
small, portable devices—such as hand-held computers—and embedded systems. A myriad of different
operating systems, a lack of strong development tools, and a maze of user interfaces have plagued both
the portable-device and embedded system markets. In the past, these problems limited the use of these
systems and restricted the availability of inexpensive software applications.

At the time of this writing, Windows CE support for Visual C++ 6.0 was not available.
All screen shots and samples programs in this chapter were created using Visual C++
for Windows CE 5.0.

Microsoft hopes that Windows CE can do for the embedded and handheld markets what Windows did for
the desktop PC industry. Based on the target audience, you can probably guess that Windows CE has
different design goals than Windows 98 and Windows NT. One goal was modularity: if an OEM is using
Windows CE in an embedded device for a refrigerator, the keyboard and graphics output modules are not
required. The OEM does not pay a penalty for modules not used by the application of Windows CE.

To date, there have been two major releases of Windows CE. The first release was primarily for Handheld
PCs (H/PCs) and was limited to noncolor applications. Windows CE 1.0 lacked many advanced Win32
features such as COM and ActiveX, large chunks of GDI, and many Windows controls. Win- dows CE 2.0
was released in late 1997 and added support for a variety of new device types, color, COM and ActiveX
technology, and also a Java virtual machine.

Before we look at the details of the Win32 support in Windows CE, let's examine some of the existing
device types to get a feel for possible Windows CE applications.

Windows CE devices

Currently the best known Windows CE devices are the H/PCs such as those available from HP, Sharp, Casio
and a variety of vendors. Figure 38-1 shows a typical H/PC machine.

Figure 38-1. A typical Handheld PC.

H/PCs currently have display resolutions anywhere from 480 by 240 pixels to as large as 640by 240 pixels.
They typically have a keyboard, infrared port, serial port, and microphone. The standard software on these
devices includes: Pocket Word, Pocket Excel, Internet Explorer, Outlook Express, and other scaled-down
Microsoft productivity applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft productivity applications.

A smaller device called a Palm-size PC (P/PC) shown in Figure 38-2 is completely pen-based and does not
have a keyboard. Screen sizes are also smaller (240 by 320 pixels) and only gray-scale displays are
currently available for P/PCs.

Figure 38-2. A Palm-size PC.

Note: At the time of this book's publication, MFC is not supported on the Palm-size PC
platform. The SDK for Palm-size PCs and embedded development is also not included
with the Visual C++ for Windows CE product. These SDKs must be downloaded from
the Microsoft website http://www.microsoft.com.

Perhaps the most exciting Windows CE devices now reaching the market are embedded applications. For
example, the CD player from Clarion shown in Figure 38-3 features a GUI, voice recognition, cellular phone
support, and a variety of other features that are changing the way we think about electronic devices and
appliances. Unlike Windows 95, which only supports Intel processors, and Windows NT, which only
supports the Intel and Alpha processors, Windows CE supports a myriad of embeddable 32-bit processors
such as the MIPS chip, Hitachi chips, and a variety of other chip sets. This flexibility dramatically increases
the potential reach of Windows CE in the embedded market.

Figure 38-3. An automotive CD player powered by Window CE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-3. An automotive CD player powered by Window CE.

Because all of these devices are based on Windows CE, you can write applications for them using a subset
of the familiar Win32 APIs that you have learned throughout this book. Before we investigate Visual C++
programming for Windows CE, let's take a look at the subset of Win32 implemented by Windows CE.

Windows CE vs. Windows 98 and Windows NT

Each Windows CE platform (H/PC, Palm-size PC and embedded) supports various subsets of the Win32 API
based on which Windows CE modules are loaded. The "core" functionality is fairly static among devices—
GDI, windows, and controls and so on, but some user input functions are different. (On a Palm-size PC, for
example, it doesn't make sense to have keyboard functions.)

The Win32 support in Windows CE matches the primary design goal of Windows CE: keep everything as
small as possible. Whenever a duplicate Win32 call exists, Windows CE provides only the most general API
function. For example, instead of implementing both TextOut and ExtTextOut, Windows CE supports only
the more flexible ExtTextOut, because in this single API you have the functionality of both.

Another interesting aspect of the Win32 Windows CE implementation is that only Unicode functions and
strings are supported. You need to be sure to wrap your Windows CE MFC strings with the _T macro.

At the GDI layer, Windows CE supports a relatively small subset of the implementations found in Windows
95, Windows 98, and Windows NT. The key groups of GDI Win32 API functions not implemented in
Windows CE are mapping modes, arcs, chords, metafiles, and Bézier curves. When you draw lines, you
must use PolyLine because MoveTo and LineTo are not supported. Cursor and mouse handling in Windows
CE can also be different from what you are accustomed to on larger systems.

Version 2.0 of Windows CE adds many key features that allow for parity with its big brothers, such as color
support, TrueType font support, printing, and memory DCs. Many other nuances of the various GDI
implementations are well documented in the Windows CE SDK, which is shipped as part of the Visual C++
for Windows CE product.

Windows CE also has some major differences in windowing. Perhaps the largest difference is the fact that
only SDI applications are supported. Thus, porting existing MDI applications to Windows CE is relatively
difficult. Another interesting windowing fact is that Windows CE windows are not resizable. Since there are
a wide variety of screen resolutions, you should programmatically size windows based on the resolution of
the display, instead of using static layouts.

Most of the standard Windows 95, Windows 98, and Internet Explorer 4.0 common controls are available
on Windows CE, except for the following: the rich edit control, the IP control, ComboBoxEx controls, and
the hot key control. Windows CE actually introduces a new common control—the command bar. Command
bars implement a hybrid menu bar and toolbar that occupies considerably less space than the standard
menu bar and toolbar configuration found in most desktop applications. Figure 38-4 shows an example of a
Windows CE command bar.

Figure 38-4. A Windows CE command bar.

ActiveX and COM are supported in Windows CE 2.0, but only for in-process COM objects such as ActiveX
controls. Multithreading, memory management, exception handling, and most other areas of Win32 are
fully supported —with a few caveats—by Windows CE.

Now that you're familiar with the basics of Windows CE, let's take a look at the Visual C++ development
environment for this new operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual C++ for Windows CE
Visual C++ for Windows CE is an add-on to Visual C++. When you install C++ for Windows CE, it extends
the Visual C++ environment by adding several Windows CE-specific features:

An Intel-based Windows CE emulation environment

New targets for each of the Windows CE supported processors (MIPS/SH and the emulation
environment)

New AppWizards for Windows CE applications

A Windows CE compatible port of MFC

A Windows CE compatible port of ATL

Tools for remote execution and debugging of Windows CE applications on actual devices

One interesting aspect of Visual C++ for Windows CE is the fact that it also supports the older 1.0 and
1.01 versions of Windows CE. Figure 38-5 shows the Windows CE operating system and processor
configuration bars that have been added to Visual C++.

While the environment lets you remotely run and debug your applications on a connected Windows CE
device, it also includes a very powerful Windows CE emulation environment. The Windows CE emulator
(WCE) is an Intel-based software-only version of Windows CE that runs on your desktop and gives you the
convenience of being able to run and test your applications on your development machine. Of course, to
ensure that your applications work correctly, you still need to test on real devices, but the emulator takes
much of the pain out of the early compile and debug stages of Windows CE development. Figure 38-6
shows the emulation environment in action.

There are four Windows-CE-specific AppWizards that ship with Visual C++ for WCE:

WCE ATL COM AppWizard—An ATL-based COM object project

WCE MFC ActiveX ControlWizard—An MFC ActiveX control project

WCE MFC AppWizard (dll)—An MFC DLL project

WCE MFC AppWizard (exe)—An MFC executable project

Figure 38-5. Visual C++ for the Windows CE environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-5. Visual C++ for the Windows CE environment.

Figure 38-6. The Windows CE emulator.

The WCE AppWizards are basically the same as their big brother Win32 counterparts, except that they
have different features that take advantage of the Windows CE operating system, such as the Windows CE
help environment. Figure 38-7 shows the first three steps of the Windows CE MFC executable AppWizard.
Notice that there are only two project types: SDI and dialog-based. Notice also the variety of Windows-CE-
specific options that you can choose from.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-7. The Windows CE MFC AppWizard.

MFC for Windows CE

Visual C++ for Windows CE ships with a smaller version of MFC named Mini MFC. To get a feel for which
MFC classes are and are not supported, see Figure 38-8—the MFC for Windows CE hierarchy chart. The
grayed out classes are not supported on Windows CE.

Several classes have been added to Mini MFC, including classes for command bars, object store, and
socket classes. Windows CE functions provide the command bars in the Mini MFC CFrameWnd class.

Instead of implementing a file metaphor, Windows CE provides an object store. Several new MFC classes
were added to give the Windows CE developer access to the object store:

CCeDBDatabase—Encapsulates a database in the object store

CCeDBEnum—Enumerates the databases in the object store

CCeDBProp—Encapsulates a database property (Database properties are data items consisting of
an application-defined property identifier, a data-type identifier, and the data value.)

CCeDBRecord—Provides access to a record in the database

In addition to these data store classes, a new class CCeSocket is provided. CCeSocket implements an
asynchronous CSocket derivative.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-8. MFC for Windows CE hierarchy chart.

Using Mini MFC

Let's look at a couple of examples to get a feel for the Mini version of MFC. In example EX38A, we will
create a basic SDI application that draws some text in the view and displays a dialog when the user
presses the left mouse button (or taps the screen on a Windows CE machine). EX38A is similar to the
EX06A example, so you can compare the steps in creating a similar application for Windows 98, Windows
NT, and Windows CE. For this example, you will create a simulated expense-tracking application for
Windows CE—a perfect candidate for portable computing. For demonstration purposes, we will focus on
creating a dialog that allows the user to enter expense information. Figure 38-9 shows the application
running in the emulation environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

running in the emulation environment.

Figure 38-9. The EX38A expense-tracking application.

Here are the steps to create the EX38A example:

1. Run the MFC Executable for Windows CE AppWizard to produce \vcpp32\ex38a\ex38a.
Select the WCE MFC AppWizard project type and accept all the defaults. The options and the default
class names are shown here.

2. Select the WCE x86em Debug configuration. Choose the Set Active Configuration command
from the Set menu and then select Ex38a-Win32 (WCE x86em) Debug from the list. Click OK. This
configuration will allow you to work with the desktop emulator instead of working remotely with a
connected Windows CE device. (If you have a connected Windows CE device you can select its
configuration instead. For example, select Ex38a—Win32 [WCE SH] Debug if you have a connected
HP 620LX.)

3. Use the dialog editor to create a dialog resource. Choose Resource from the Insert menu,
select Dialog, and then click New. The dialog editor assigns the ID IDD_DIALOG1 to the new dialog.
Change the dialog caption to The Dialog that Ate Windows CE! You can resize the dialog to be wider
but not much taller. (Windows CE displays are much wider than they are tall.)

4. Remove the OK and CANCEL buttons and add an OK caption button. Since screen real estate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Remove the OK and CANCEL buttons and add an OK caption button. Since screen real estate
is at a premium in Windows CE, we can save a good deal of space in our dialog by deleting the OK
and CANCEL buttons. For Cancel functionality, users can use the close button that is part of the
dialog caption. Windows CE also supports an OK caption button that you can create by setting the
dialog's property bar. To set the property, open the properties editor for the dialog, click the
Extended Styles tab, and then check the Caption Bar OK (WCE Only) option as shown here.

(You might also need to set the dialog's Visible property on the More Styles tab.)

5. Add the dialog's controls. Add the following controls shown in Figure 38-9 and accept the default
names:

A static control and an edit control for a name

A static control and an edit control for an amount

A static control and a drop-down combo box with for an expense type

A City group box with three radio buttons labeled Atlanta, Detroit, and Chicago

A Payment Option group box with three check boxes labeled Check, Credit Card, and Cash.

6. Add the CEx38aDialog class. After adding the controls, double-click on the dialog. ClassWizard
detects that you have created a dialog resource and asks whether you want to create a class for the
dialog. Click OK and accept the defaults to create the CEx06aDialog class.

7. Program the controls. Use ClassWizard to create the following member variables in the dialog
class:

m_pComboBox—a member variable used to configure the expense type combo box

m_pProgressCtrl—A member variable for the progress control

If you need a refresher on how to program modal dialogs, please refer to
Chapter 6.

Next, add the following code to the CEx38aDialog::OnInitDialog handler to initialize the controls:

BOOL CWindowsCEDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 m_pComboBox.AddString(_T("Travel"));
 m_pComboBox.AddString(_T("Meal"));
 m_pComboBox.AddString(_T("Cab Fare"));
 m_pComboBox.AddString(_T("Entertainment"));
 m_pComboBox.AddString(_T("Other"));
 m_pProgressCtrl.SetPos(50);
 return TRUE;
}
Notice that you must use the _T macro whenever you have inline strings.

8. Connect the dialog to the View. In ClassWizard, select the CEx38aView class and use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. Connect the dialog to the View. In ClassWizard, select the CEx38aView class and use
ClassWizard to add the OnLButtonDown member function.

9. Write the code for the OnLButtonDown handler. Add the boldface code below:

void CEx38aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CWindowsCEDlg dlg;
 dlg.DoModal();
 CView::OnLButtonDown(nFlags, point);
}

10. Add code to the virtual OnDraw function in file ex38aView.cpp. The CDC::TextOut function
used in previous examples is not supported on Windows CE, so we need to use the CDC::DrawText
function as shown here:

void CEx38aView::OnDraw(CDC* pDC)
{
 CRect rect;
 GetClientRect(rect);
 pDC->SetTextColor(::GetSysColor(COLOR_WINDOWTEXT));
 pDC->SetBkMode(TRANSPARENT);
 pDC->DrawText(_T("Press the left mouse button here."),
 rect, DT_SINGLELINE);
}

11. Add the ex38aDialog.h header file to ex38aView.cpp. Insert the include statement

#include "ex38aDialog.h"
at the top of the ex38aView.cpp source file, after the statement

#include "ex38aView.h"

12. Build and run the application. The EX38A application should appear as shown in Figure 38-10. If
everything works satisfactorily, you can change the configuration for a real Windows CE device.
Then you can run (or debug) the application remotely on the device to ensure it works in a real-
world situation.

Figure 38-10. The EX 38A application running in the Windows CE emulator.

As you can tell from the EX38A application, programming for Windows CE is very similar to programming
for Windows 98 and Windows.

Many Windows CE developers are interested in porting existing applications to the Windows CE
environment. The next section shows you how to tackle this problem.

Porting an Existing MFC Application to Windows CE

In example EX38B we will port an existing application (EX06B from Chapter 6) from Windows 98 and
Windows NT to Windows CE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows NT to Windows CE.

We chose the EX06B sample because it is an SDI application. If you are porting an MDI
application to Windows CE, we recommend that you first convert it into an SDI
application (or a series of SDI applications, if you have several views) and then port it
to Windows CE.

Here are the steps for converting EX06B:

1. Run the MFC AppWizard to produce \vcpp32\ex38b\ex38b. Select the WCE MFC AppWizard
project type and accept all defaults. (You might have thought that we could copy the EX06B
workspace and then add a Windows CE configuration. However, it is actually easier to start with a
WCE MFC AppWizard project instead because there are many complicated build settings that the
wizard automatically sets up for you.)

2. Using Windows Explorer, copy the EX06B files to the EX38B directory. Be sure to copy the
following files: Ex06bDialog.h, Ex06bDialog.cpp, Ex06bDoc.h, Ex06bDoc.cpp, ex06bView.h, and
ex06bView.cpp.

3. Insert the new files into the project. Choose the Add To Project/Files command from the Project
menu and insert the files from step 2 into the project.

4. Copy the dialog and Icon resources from EX06B. Choose Open from the File menu and select
\vcpp32\ex06b\ex06b\ex06b.rc. Drag and drop IDD_DIALOG1 from ex06b.rc into the EX38B
project. Next, drag and drop the color icon resources (IDI_BLACK, IDI_BLUE, and so on) from the
ex06b.rc file into the EX38B project.

5. Build the application and repair any compiler errors or warnings. Now that you have moved
the key files that you need (the document, view, and dialog classes) from the EX06B application to
the Windows CE EX38B application, try to build the project. You should see a number of errors that
can be fixed with the following steps:

Change all references to the file ex06b.h to ex38b.h

Make sure that all inline strings use the _T macro. For example, in Ex06bDialog.cpp the line

TRACE("updating trackbar data members\n");
should be changed to use the _T macro as follows:

TRACE(_T("updating trackbar data members\n"));
Convert any other non-Unicode strings to Unicode. (This is the most frequently encountered
porting problem.)

Ex06bView::OnDraw uses the unsupported CDC::TextOut member function. Change it to use
DrawText as follows:

 CRect rect;
 GetClientRect(rect);
 pDC->SetTextColor(::GetSysColor(COLOR_WINDOWTEXT));
 pDC->SetBkMode(TRANSPARENT);
 pDC->DrawText(_T("Press the left mouse button here."),
 rect, DT_SINGLELINE);

6. Replace the wizard-generated view with the real view. Open the ex38b.cpp file and do a
global search and replace:

Change CEx38bDoc to CEx06bDoc

Change CEx38bView to CEx06bView

Also, make sure that ex38b.cpp #includes both the ex06bView.h and ex06bDoc.h header files.

7. Using the dialog editor, adjust the dialog's layout for Windows CE. As it stands, the dialog is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Using the dialog editor, adjust the dialog's layout for Windows CE. As it stands, the dialog is
far too tall for Windows CE. You can rearrange it by following these steps:

Remove the OK and CANCEL buttons and use the OK window button (see step 4 in the
EX38A example).

Move the progress bar controls, sliders, and spinners closer together at the top of the dialog.

Move the list control and tree control closer together. To save vertical space, move the
current selection static controls to the left of both the tree and list control.

Size the dialog to fit on a smaller screen.

8. Clean up the project. Now you can remove the document and view classes created by the MFC
AppWizard by selecting the files in FileView and pressing the Delete key.

9. Build and test. In eight easy steps, you have converted a small MFC application from Windows 98
and Windows NT to Windows CE.

Figure 38-11 shows EX38B running in emulation mode for Window CE.

Figure 38-11. The EX38B application running in the Windows CE emulator.

ATL and Windows CE

In addition to Mini MFC, Visual C++ for Windows CE also provides a Windows CE-friendly version of ATL.
ATL is already a lightweight framework, so Microsoft didn't need to reduce the feature set for size
constraints. However, there are some areas of COM not covered by Windows CE 2.0 that impact the
feature set of ATL for Windows CE.

Windows CE doesn't support the apartment-threading model, so ATL for Windows CE doesn't implement
the CComApartment, CComAutoThreadModule, CComClassFactoryAutoThread, or
CComSimpleThreadAllocator classes.

Windows CE also doesn't support asynchronous monikers, so ATL for Windows CE doesn't implement the
IBindStatusCallbackImpl or CBindStatusCallback classes. A variety of other ATL class member functions
that behave differently on Windows CE are documented in the Visual C++ for Windows CE documentation.

In addition to ATL, a Windows CE version of the ATL Wizard is provided. Figure 38-12 shows the wizard
that has only one option: to use MFC or not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-12. The WCE ATL COM AppWizard.

When you write ActiveX controls for Windows CE, remember that they are binary objects and therefore
processor-dependent. Depending on the devices you plan to support, you might have to provide several
versions of the control (MIPS or SH, for example).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For More Information on Windows CE…
Windows CE is an exciting new environment for Windows developers to explore. The ability to leverage
your knowledge of Windows, Win32, and Visual C++ makes Windows CE an extremely appealing and easy-
to-work-with environment. Programming Windows CE by Doug Boling (Microsoft Press, 1998) is an
excellent resource for learning the details of Windows CE.

Microsoft is developing Windows CE and related technologies at an incredible pace. To stay up to date, we
recommend using the Web. Keep an eye on these sites:

http://www.microsoft.com/windowsce. This site provides news and information about the Windows
CE operating system, devices and development tools. You can sign up for a useful newsletter here.

http://www.microsoft.com/msdn. The Microsoft Developer Network (MSDN) has tons of Windows
CE articles. They are all online and searchable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A

Message Map Functions in the Microsoft Foundation Class Library
HANDLERS FOR WM_COMMAND MESSAGES

Map Entry Function Prototype

ON_COMMAND(<id>, <memberFxn>) afx_msg void memberFxn();

ON_COMMAND_EX(<id>, <memberFxn>) afx_msg BOOL
memberFxn(UINT);

ON_COMMAND_EX_RANGE(<id>, <idLast>, <memberFxn>) afx_msg BOOL
memberFxn(UINT);

ON_COMMAND_RANGE(<id>, <idLast>, <memberFxn>) afx_msg void memberFxn(UINT);

ON_UPDATE_COMMAND_UI(<id>, <memberFxn>) afx_msg void
memberFxn(CCmdUI*);

ON_UPDATE_COMMAND_UI_RANGE (<id>, <idLast>,
<memberFxn>)

afx_msg void
memberFxn(CCmdUI*);

ON_UPDATE_COMMAND_UI_REFLECT (<memberFxn>) afx_msg void
memberFxn(CCmdUI*);

HANDLERS FOR CHILD WINDOW NOTIFICATION MESSAGES

Map Entry Function Prototype

Generic Control Notification Codes

ON_CONTROL(<wNotifyCode>, <id>, <memberFxn>) afx_msg void memberFxn();

ON_CONTROL_RANGE(<wNotifyCode>, <id>
<idLast>, <memberFxn>)

afx_msg void memberFxn(UINT);

ON_CONTROL_REFLECT(<wNotifyCode>,
<memberFxn>)

afx_msg void memberFxn();

ON_CONTROL_REFLECT_EX(<wNotifyCode>,
<memberFxn>)

afx_msg BOOL memberFxn();

ON_NOTIFY(<wNotifyCode>, <id>, <memberFxn>) afx_msg void memberFxn(NMHDR*,
LRESULT*);

ON_NOTIFY_EX(<wNotifyCode>, <id>,
<memberFxn>)

afx_msg BOOL memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_EX_RANGE(<wNotifyCode>, <id>,
<idLast>, <memberFxn>)

afx_msg BOOL memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_RANGE(<wNotifyCode>, <id>, <idLast>,
<memberFxn>)

afx_msg void memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_REFLECT(<wNotifyCode>,
<memberFxn>)

afx_msg void memberFxn(NMHDR*,
LRESULT*);

ON_NOTIFY_REFLECT_EX(<wNotifyCode>,
<memberFxn>)

afx_msg BOOL memberFxn(NMHDR*,
LRESULT*);

User Button Notification Codes

ON_BN_CLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_DOUBLECLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_BN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Combo Box Notification Codes

ON_CBN_CLOSEUP(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_DROPDOWN(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITUPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELENDCANCEL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELENDOK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Check List Box Notification Codes

ON_CLBN_CHKCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

Edit Control Notification Codes

ON_EN_CHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_HSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_MAXTEXT(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_UPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_VSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

List Box Notification Codes

ON_LBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SELCANCEL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Static Control Notification Codes

ON_STN_CLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_STN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_STN_DISABLE(<id>, <memberFxn>) afx_msg void memberFxn();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_STN_ENABLE(<id>, <memberFxn>) afx_msg void memberFxn();

HANDLERS FOR WINDOW NOTIFICATION MESSAGES

Map Entry Function Prototype

ON_WM_ACTIVATE() afx_msg void OnActivate(UINT, CWnd*, BOOL);

ON_WM_ACTIVATEAPP() afx_msg void OnActivateApp(BOOL, HTASK);

ON_WM_ASKCBFORMATNAME() afx_msg void OnAskCbFormatName(UINT, LPTSTR);

ON_WM_CANCELMODE() afx_msg void OnCancelMode();

ON_WM_CAPTURECHANGED() afx_msg void OnCaptureChanged(CWnd*);

ON_WM_CHANGECBCHAIN() afx_msg void OnChangeCbChain(HWND, HWND);

ON_WM_CHAR() afx_msg void OnChar(UINT, UINT, UINT);

ON_WM_CHARTOITEM() afx_msg int OnCharToItem(UINT, CListBox*, UINT);

ON_WM_CHARTOITEM_REFLECT() afx_msg int CharToItem(UINT, UINT);

ON_WM_CHILDACTIVATE() afx_msg void OnChildActivate();

ON_WM_CLOSE() afx_msg void OnClose();

ON_WM_COMPACTING() afx_msg void OnCompacting(UINT);

ON_WM_COMPAREITEM() afx_msg int OnCompareItem(int, LPCOMPAREITEMSTRUCT);

ON_WM_COMPAREITEM_REFLECT() afx_msg int CompareItem (LPCOMPAREITEMSTRUCT);

ON_WM_CONTEXTMENU() afx_msg void OnContextMenu(CWnd*, CPoint);

ON_WM_COPYDATA() afx_msg BOOL OnCopyData(CWnd*, COPYDATASTRUCT*);

ON_WM_CREATE() afx_msg int OnCreate(LPCREATESTRUCT);

ON_WM_CTLCOLOR() afx_msg HBRUSH OnCtlColor(CDC*, CWnd*, UINT);

ON_WM_CTLCOLOR_REFLECT() afx_msg HBRUSH CtlColor(CDC*, UINT);

ON_WM_DEADCHAR() afx_msg void OnDeadChar(UINT, UINT, UINT);

ON_WM_DELETEITEM() afx_msg void OnDeleteItem(int, LPDELETEITEMSTRUCT);

ON_WM_DELETEITEM_REFLECT() afx_msg void DeleteItem (LPDELETEITEMSTRUCT)

ON_WM_DESTROY() afx_msg void OnDestroy();

ON_WM_DESTROYCLIPBOARD() afx_msg void OnDestroyClipboard();

ON_WM_DEVICECHANGE() afx_msg BOOL OnDeviceChange(UINT, DWORD);

ON_WM_DEVMODECHANGE() afx_msg void OnDevModeChange(LPTSTR);

ON_WM_DRAWCLIPBOARD() afx_msg void OnDrawClipboard();

ON_WM_DRAWITEM() afx_msg void OnDrawItem(int, LPDRAWITEMSTRUCT);

ON_WM_DRAWITEM_REFLECT() afx_msg void DrawItem (LPDRAWITEMSTRUCT);

ON_WM_DROPFILES() afx_msg void OnDropFiles(HDROP);

ON_WM_ENABLE() afx_msg void OnEnable(BOOL);

ON_WM_ENDSESSION() afx_msg void OnEndSession(BOOL);

ON_WM_ENTERIDLE() afx_msg void OnEnterIdle(UINT, CWnd*);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_ENTERMENULOOP() afx_msg void OnEnterMenuLoop(BOOL);

ON_WM_ERASEBKGND() afx_msg BOOL OnEraseBkgnd(CDC*);

ON_WM_EXITMENULOOP() afx_msg void OnExitMenuLoop(BOOL);

ON_WM_FONTCHANGE() afx_msg void OnFontChange();

ON_WM_GETDLGCODE() afx_msg UINT OnGetDlgCode();

ON_WM_GETMINMAXINFO() afx_msg void OnGetMinMaxInfo (MINMAXINFO*);

ON_WM_HELPINFO() afx_msg BOOL OnHelpInfo(HELPINFO*);

ON_WM_HSCROLL() afx_msg void OnHScroll(UINT, UINT, CScrollBar*);

ON_WM_HSCROLL_REFLECT() afx_msg void HScroll(UINT, UINT);

ON_WM_HSCROLLCLIPBOARD() afx_msg void OnHScrollClipboard(CWnd*, UINT, UINT);

ON_WM_ICONERASEBKGND() afx_msg void OnIconEraseBkgnd(CDC*);

ON_WM_INITMENU() afx_msg void OnInitMenu(CMenu*);

ON_WM_INITMENUPOPUP() afx_msg void OnInitMenuPopup(CMenu*, UINT, BOOL);

ON_WM_KEYDOWN() afx_msg void OnKeyDown(UINT, UINT, UINT);

ON_WM_KEYUP() afx_msg void OnKeyUp(UINT, UINT, UINT);

ON_WM_KILLFOCUS() afx_msg void OnKillFocus(CWnd*);

ON_WM_LBUTTONDBLCLK() afx_msg void OnLButtonDblClk(UINT, CPoint);

ON_WM_LBUTTONDOWN() afx_msg void OnLButtonDown(UINT, CPoint);

ON_WM_LBUTTONUP() afx_msg void OnLButtonUp(UINT, CPoint);

ON_WM_MBUTTONDBLCLK() afx_msg void OnMButtonDblClk(UINT, CPoint);

ON_WM_MBUTTONDOWN() afx_msg void OnMButtonDown(UINT, CPoint);

ON_WM_MBUTTONUP() afx_msg void OnMButtonUp(UINT, CPoint);

ON_WM_MDIACTIVATE() afx_msg void OnMDIActivate(BOOL, CWnd*, CWnd*);

ON_WM_MEASUREITEM() afx_msg void OnMeasureItem(int,
LPMEASUREITEMSTRUCT);

ON_WM_MEASUREITEM_REFLECT() afx_msg void MeasureItem (LPMEASUREITEMSTRUCT);

ON_WM_MENUCHAR() afx_msg LRESULT OnMenuChar(UINT, UINT, CMenu*);

ON_WM_MENUSELECT() afx_msg void OnMenuSelect(UINT, UINT, HMENU);

ON_WM_MOUSEACTIVATE() afx_msg int OnMouseActivate(CWnd*, UINT, UINT);

ON_WM_MOUSEMOVE() afx_msg void OnMouseMove(UINT, CPoint);

ON_WM_MOUSEWHEEL() afx_msg BOOL OnMouseWheel(UINT, short, CPoint);

ON_WM_MOVE() afx_msg void OnMove(int, int);

ON_WM_MOVING() afx_msg void OnMoving(UINT, LPRECT);

ON_WM_NCACTIVATE() afx_msg BOOL OnNcActivate(BOOL);

ON_WM_NCCALCSIZE() afx_msg void OnNcCalcSize(BOOL, NCCALCSIZE_PARAMS*);

ON_WM_NCCREATE() afx_msg BOOL OnNcCreate (LPCREATESTRUCT);

ON_WM_NCDESTROY() afx_msg void OnNcDestroy();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_NCHITTEST() afx_msg UINT OnNcHitTest(CPoint);

ON_WM_NCLBUTTONDBLCLK() afx_msg void OnNcLButtonDblClk(UINT, CPoint);

ON_WM_NCLBUTTONDOWN() afx_msg void OnNcLButtonDown(UINT, CPoint);

ON_WM_NCLBUTTONUP() afx_msg void OnNcLButtonUp(UINT, CPoint);

ON_WM_NCMBUTTONDBLCLK() afx_msg void OnNcMButtonDblClk(UINT, CPoint);

ON_WM_NCMBUTTONDOWN() afx_msg void OnNcMButtonDown(UINT, CPoint);

ON_WM_NCMBUTTONUP() afx_msg void OnNcMButtonUp(UINT, CPoint);

ON_WM_NCMOUSEMOVE() afx_msg void OnNcMouseMove(UINT, CPoint);

ON_WM_NCPAINT() afx_msg void OnNcPaint();

ON_WM_NCRBUTTONDBLCLK() afx_msg void OnNcRButtonDblClk(UINT, CPoint);

ON_WM_NCRBUTTONDOWN() afx_msg void OnNcRButtonDown(UINT, CPoint);

ON_WM_NCRBUTTONUP() afx_msg void OnNcRButtonUp(UINT, CPoint);

ON_WM_PAINT() afx_msg void OnPaint();

ON_WM_PAINTCLIPBOARD() afx_msg void OnPaintClipboard(CWnd*, HGLOBAL);

ON_WM_PALETTECHANGED() afx_msg void OnPaletteChanged(CWnd*);

ON_WM_PALETTEISCHANGING() afx_msg void OnPaletteIsChanging(CWnd*);

ON_WM_PARENTNOTIFY() afx_msg void OnParentNotify(UINT, LPARAM);

ON_WM_PARENTNOTIFY_REFLECT() afx_msg void ParentNotify(UINT, LPARAM);

ON_WM_QUERYDRAGICON() afx_msg HCURSOR OnQueryDragIcon();

ON_WM_QUERYENDSESSION() afx_msg BOOL OnQueryEndSession();

ON_WM_QUERYNEWPALETTE() afx_msg BOOL OnQueryNewPalette();

ON_WM_QUERYOPEN() afx_msg BOOL OnQueryOpen();

ON_WM_RBUTTONDBLCLK() afx_msg void OnRButtonDblClk(UINT, CPoint);

ON_WM_RBUTTONDOWN() afx_msg void OnRButtonDown(UINT, CPoint);

ON_WM_RBUTTONUP() afx_msg void OnRButtonUp(UINT, CPoint);

ON_WM_RENDERALLFORMATS() afx_msg void OnRenderAllFormats();

ON_WM_RENDERFORMAT() afx_msg void OnRenderFormat(UINT);

ON_WM_SETCURSOR() afx_msg BOOL OnSetCursor(CWnd*, UINT, UINT);

ON_WM_SETFOCUS() afx_msg void OnSetFocus(CWnd*);

ON_WM_SETTINGCHANGE() afx_msg void OnSettingChange(UINT, LPCTSTR);

ON_WM_SHOWWINDOW() afx_msg void OnShowWindow(BOOL, UINT);

ON_WM_SIZE() afx_msg void OnSize(UINT, int, int);

ON_WM_SIZECLIPBOARD() afx_msg void OnSizeClipboard(CWnd*, HGLOBAL);

ON_WM_SIZING() afx_msg void OnSizing(UINT, LPRECT);

ON_WM_SPOOLERSTATUS() afx_msg void OnSpoolerStatus(UINT, UINT);

ON_WM_STYLECHANGED() afx_msg void OnStyleChanged(int, LPSTYLESTRUCT);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_STYLECHANGING() afx_msg void OnStyleChanging(int, LPSTYLESTRUCT);

ON_WM_SYSCHAR() afx_msg void OnSysChar(UINT, UINT, UINT);

ON_WM_SYSCOLORCHANGE() afx_msg void OnSysColorChange();

ON_WM_SYSCOMMAND() afx_msg void OnSysCommand(UINT, LPARAM);

ON_WM_SYSDEADCHAR() afx_msg void OnSysDeadChar(UINT, UINT, UINT);

ON_WM_SYSKEYDOWN() afx_msg void OnSysKeyDown(UINT, UINT, UINT);

ON_WM_SYSKEYUP() afx_msg void OnSysKeyUp(UINT, UINT, UINT);

ON_WM_TCARD() afx_msg void OnTCard(UINT, DWORD);

ON_WM_TIMECHANGE() afx_msg void OnTimeChange();

ON_WM_TIMER() afx_msg void OnTimer(UINT);

ON_WM_VKEYTOITEM() afx_msg int OnVKeyToItem(UINT, CListBox*, UINT);

ON_WM_VKEYTOITEM_REFLECT() afx_msg int VKeyToItem(UINT, UINT);

ON_WM_VSCROLL() afx_msg void OnVScroll(UINT, UINT, CScrollBar*);

ON_WM_VSCROLL_REFLECT() afx_msg void VScroll(UINT, UINT);

ON_WM_VSCROLLCLIPBOARD() afx_msg void OnVScrollClipboard(CWnd*, UINT, UINT);

ON_WM_WINDOWPOSCHANGED() afx_msg void OnWindowPosChanged (WINDOWPOS*);

ON_WM_WINDOWPOSCHANGING() afx_msg void OnWindowPosChanging (WINDOWPOS*);

ON_WM_WININICHANGE() afx_msg void OnWinIniChange(LPCTSTR);

USER-DEFINED MESSAGE CODES

Map Entry Function Prototype

ON_MESSAGE(<message>, <memberFxn>) afx_msg LRESULT
memberFxn(WPARAM, LPARAM);

ON_REGISTERED_MESSAGE (<nMessageVariable>,
<memberFxn>)

afx_msg LRESULT
memberFxn(WPARAM, LPARAM);

ON_REGISTERED_THREADMESSAGE(<nMessageVariable>,
<memberFxn>)

afx_msg void memberFxn(WPARAM,
LPARAM);

ON_THREAD_MESSAGE (<message>, <memberFxn>) afx_msg void memberFxn(WPARAM,
LPARAM);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B

MFC Library Runtime Class Identification and Dynamic Object
Creation
Long before runtime type information (RTTI) was added to the C++ language specification, the MFC library
designers realized that they needed runtime access to an object's class name and to the position of the
class in the hierarchy. Also, the document-view architecture (and, later, COM class factories) demanded
that objects be constructed from a class specified at runtime. So the MFC team created an integrated
macro-based class identification and dynamic creation system that depends on the universal CObject base
class. And in spite of the fact that the Visual C++ version 6.0 compiler supports the ANSI RTTI syntax, the
MFC library continues to use the original system, which actually has more features.

This appendix explains how the MFC library implements the class identification and dynamic creation
features. You'll see how the DECLARE_DYNAMIC, DECLARE_DYNCREATE, and associated macros work, and
you'll learn about the RUNTIME_CLASS macro and the CRuntimeClass structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting an Object's Class Name at Runtime
If you wanted only an object's class name, you'd have an easy time, assuming that all your classes were
derived from a common base class, CObject. Here's how you'd get the class name:

class CObject
{
public:
 virtual char* GetClassName() const { return NULL; }
};

class CMyClass : public CObject
{
public:
 static char s_lpszClassName[];
 virtual char* GetClassName() const { return s_lpszClassName; }
};
char CMyClass::s_szClassName[] = "CMyClass";
Each derived class would override the virtual GetClassName function, which would return a static string.
You would get an object's actual class name even if you used a CObject pointer to call GetClassName. If
you needed the class name feature in many classes, you could save yourself some work by writing macros.
A DECLARE_CLASSNAME macro might insert the static data member and the GetClassName function in the
class declaration, and an IMPLEMENT_CLASSNAME macro might define the class name string in the
implementation file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRuntimeClass Structure and the RUNTIME_CLASS Macro
In a real MFC program, an instance of the CRuntimeClass structure replaces the static s_lpszClassName
data member shown above. This structure has data members for the class name and the object size; it
also contains a pointer to a special static function, CreateObject, that's supposed to be implemented in the
target class. Here's a simplified version of CRuntimeClass:

struct CRuntimeClass
{
 char m_lpszClassName[21];
 int m_nObjectSize; // used for memory validation
 CObject* (*m_pfnCreateObject)();
 CObject* CreateObject();
};

The real MFC CRuntimeClass structure has additional data members and functions that
navigate through the class's hierarchy. This navigation feature is not supported by the
official C++ RTTI implementation.

This structure supports not only class name retrieval but also dynamic creation. Each class you derive from
CObject has a static CRuntimeClass data member, provided that you use the MFC DECLARE_DYNAMIC,
DECLARE_DYNCREATE, or DECLARE_SERIAL macro in the declaration and the corresponding IMPLEMENT
macro in the implementation file. The name of the static data member is, by convention,
class<class_name>. If your class were named CMyClass, the CRuntimeClass data member would be
named classCMyClass.

If you want a pointer to a class's static CRuntimeClass object, you use the MFC RUNTIME_CLASS macro,
defined as follows:

#define RUNTIME_CLASS(class_name) (&class_name::class##class_name)
Here's how you use the macro to get the name string from a class name:

ASSERT(RUNTIME_CLASS(CMyClass)->m_lpszClassName == "CMyClass");
If you want the class name string from an object, you call the virtual CObject::GetRuntimeClass function.
The function simply returns a pointer to the class's static CRuntimeClass object, just as earlier the
GetClassName function returned the name string. Here's the function you'd write for CMyClass:

virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCMyClass; }
And here's how you'd call it:

ASSERT(pMyObject->GetRuntimeClass()->m_lpszClassName == "CMyClass");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic Creation
You've already learned that the DECLARE and IMPLEMENT macros add a static CRuntimeClass object to a
class. If you use the DECLARE_DYNCREATE or DECLARE_SERIAL macro (and the corresponding
IMPLEMENT macro), you get an additional static member function CreateObject (distinct from
CRuntimeClass::CreateObject) in your class. Here's an example:

CObject* CMyClass::CreateObject()
{
 return new CMyClass;
}
Obviously, CMyClass needs a default constructor. This constructor is declared protected in wizard-
generated classes that support dynamic creation.

Now look at the code for the CRuntimeClass::CreateObject function:

CObject* CRuntimeClass::CreateObject()
{
 return (*m_pfnCreateObject)();
}
This function makes an indirect call to the CreateObject function in the target class. Here's how you would
dynamically construct an object of class CMyClass:

CRuntimeClass* pRTC = RUNTIME_CLASS(CMyObject);
CMyClass* pMyObject = (CMyClass*)pRTC->CreateObject();
Now you know how document templates work. A document template object has three CRuntimeClass*
data members initialized at construction to point to the static CRuntimeClass data members for the
document, frame, and view classes. When CWinApp::OnFileNew is called, the framework calls the
CreateObject functions for the three stored pointers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Sample Program
Here is the code for a command-line program that dynamically constructs objects of two classes. Note that
this isn't real MFC code—the CObject class is a simplified version of the MFC library CObject class. You can
find this code in the dyncreat.cpp file in the \vcpp32\appendb folder.

#include <stdio.h>

#define RUNTIME_CLASS(class_name) (&class_name::class##class_name)

class CObject;

struct CRuntimeClass
{
 char m_lpszClassName[21];
 int m_nObjectSize;
 CObject* (*m_pfnCreateObject)();
 CObject* CreateObject();
};

// not a true abstract class because there are no pure
// virtual functions, but user can't create CObject objects
// because of the protected constructor
class CObject
{
public:
 // not pure because derived classes don't necessarily
 // implement it
 virtual CRuntimeClass* GetRuntimeClass() const { return NULL; }

 // We never construct objects of class CObject, but in MFC we
 // use this to get class hierarchy information
 static CRuntimeClass classCObject; // DYNAMIC
 virtual ~CObject() {}; // gotta have it
protected:
 CObject() { printf("CObject constructor\n"); }
};

CRuntimeClass CObject::classCObject = { "CObject",
 sizeof(CObject), NULL };

CObject* CRuntimeClass::CreateObject()
{
 return (*m_pfnCreateObject)(); // indirect function call
}

class CAlpha : public CObject
{
public:
 virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCAlpha; }
 static CRuntimeClass classCAlpha; // DYNAMIC
 static CObject* CreateObject(); // DYNCREATE
protected:
 CAlpha() { printf("CAlpha constructor\n"); }
};

CRuntimeClass CAlpha::classCAlpha = { "CAlpha",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CRuntimeClass CAlpha::classCAlpha = { "CAlpha",
 sizeof(CAlpha), CAlpha::CreateObject };

CObject* CAlpha::CreateObject() // static function
{
 return new CAlpha;
}

class CBeta : public CObject
{
public:
 virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCBeta; }
 static CRuntimeClass classCBeta; // DYNAMIC
 static CObject* CreateObject(); // DYNCREATE
protected:
 CBeta() { printf("CBeta constructor\n"); }
};

CRuntimeClass CBeta::classCBeta = { "CBeta",
 sizeof(CBeta), CBeta::CreateObject };

CObject* CBeta::CreateObject() // static function
{
 return new CBeta;
}

int main()
{
 printf("Entering dyncreate main\n");

 CRuntimeClass* pRTCAlpha = RUNTIME_CLASS(CAlpha);
 CObject* pObj1 = pRTCAlpha->CreateObject();
 printf("class of pObj1 = %s\n",
 pObj1->GetRuntimeClass()->m_lpszClassName);

 CRuntimeClass* pRTCBeta = RUNTIME_CLASS(CBeta);
 CObject* pObj2 = pRTCBeta->CreateObject();
 printf("class of pObj2 = %s\n",
 pObj2->GetRuntimeClass()->m_lpszClassName);

 delete pObj1;
 delete pObj2;
 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments
I first met David Kruglinski at a software development conference. I had just quit my job and started a
new company, and I approached David at an author signing for an earlier edition of this book. Our new
company was going to focus on Microsoft Foundation Class (MFC)/Microsoft Visual C++ class libraries. I
hoped that David would listen to our ideas and maybe provide some feedback on our products and their
usefulness to the Visual C++ development community—a community that he had both helped to build and
understood like the back of his own hand.

Much to my surprise, David was very excited about the product ideas and asked if I could send him
evaluation copies of our products. I did, and we started a long e-mail conversation about our products and
ideas for improvements. David gave his time, expertise, and great opinions freely, without ever asking for
any compensation—he genuinely wanted to help us make products for the Visual C++ developer that
would make MFC/Visual C++ better.

I first heard about David's fatal paragliding accident via a posting on a newsgroup and initially thought it
was some kind of cruel hoax. I called David's agent, who checked into the story, and much to my shock it
was true. With David's passing, the Visual C++ community has lost one of its brightest and most giving
stars. Talk to any Visual C++ developers about how they first learned Visual C++ and invariably they will
say, "the Kruglinski book!" The Visual C++ community owes David greatly for what he gave us and taught
us about Visual C++ over the years. It goes without saying that he should receive special acknowledgment
for this book, and our thoughts go out to his family and friends for their loss.

It is a great honor to carry on the Kruglinski tradition with this fifth edition of Inside Visual C++ (now
called Programming Microsoft Visual C++, Fifth Edition). We have done our best to stay true to David's
vision of this book, following his format and style as closely as possible.

Thanks to my wife Kris and to my son, Sean, for putting up with all of the late nights and weekends of
writing. Many thanks also go to my coauthor, George Shepherd, who always helps me get motivated for a
late night of book writing with his upbeat, wacky, and great personality. Thanks to Claire Horne, our agent,
for helping us get on board with the project.

Visual C++, and therefore this book, wouldn't exist if not for the many members of the Visual C++ team.
Special thanks to Mike Blaszczak, Walter Sullivan, Dean McCrory, Rick Laplante, Marie Huwe, Christian
Gross, and Jim Springfield for all of the help they have provided over the years.

Finally, but not least, thanks to the folks at Microsoft Press who worked on this project—especially
Kathleen Atkins, Jim Fuchs, Becka McKay, John Pierce, Jean Ross, Eric Stroo, and the entire production
team who worked extremely hard to get this large book out and into your hands with the highest quality
possible.

—Scot Wingo

Much work goes into writing books—even revisions of existing work. I'd like to acknowledge the following
people for helping me get this work out the door: First I'd like to thank my wife Sandy for sticking with me
while I worked to get the pages and chapters out. Sandy has been an invaluable source of encouragement
throughout my software endeavors. Thanks to my son, Teddy, for being patient with me as I bowed out on
various activities every once in a while. I wish to thank my mother Betsy for engendering in me a desire to
write and my twin brother Patrick for being a great Java foil for me—and for arguing cogently with me
about various hardware and software platform issues.

Thanks to Claire Horne of the Moore Literary Agency for helping to get this project rolling with Microsoft
Press.

To Scot Wingo, thanks for taking on another writing project with me. And thanks to the folks at Stingray—
you all are a great bunch to work with. Thanks to all the folks at DevelopMentor for providing a great
training and learning environment. And thanks to Don Box for continuing to explain COM in a way that
makes sense.

Getting a book out involves more than just authors. I wish to thank everyone at Microsoft Press who
helped kick Programming Microsoft Visual C++, Fifth Edition out the door, especially Eric Stroo for his
kindness and patience, Kathleen Atkins and Becka McKay for sifting through our text and making it ever
more readable, Jean Ross for balancing out the technical review to catch even the most minute error, and
John Pierce for keeping everything on track.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

John Pierce for keeping everything on track.

Finally, thanks to David Kruglinski for starting this project. While I never had the opportunity to meet
David, his writing had a measuable impact on me when first learning MFC. I hope Scot and I did justice to
the work you began.

—George Shepherd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright© 1998 by David J. Kruglinski

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright (c) 1998 by David J. Kruglinski

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Kruglinski, David.

 Programming Microsoft Visual C++ / David J. Kruglinski, Scot Wingo, George

 Shepherd. -- 5th ed.

 p. cm.

 Rev. ed. of: Inside Visual C++.

 Includes index.

 ISBN 1-57231-857-0

 1. C++ (Computer program language) 2. Microsoft Visual C++.

 I. Wingo, Scot. II. Shepherd, George, 1962- . III. Kruglinski,

 David. Inside Visual C++. IV. Title

 QA76.73.C153K78 1998

 005.13'3--dc21 98-27329

 CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 3 2 1 0 9 8

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh and TrueType fonts are registered trademarks of Apple Computer, Inc. Intel is a registered
trademark of Intel Corporation. ActiveX, FoxPro, FrontPage, Microsoft, Microsoft Press, MS, MS-DOS,
Outlook, PowerPoint, SourceSafe, Visual Basic, Visual C++, Visual J++, Win32, Win64, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries. Other product and company names mentioned herein may be the trademarks of
their respective owners.

Acquisitions Editor: Eric Stroo

Project Editor: Rebecca McKay

Technical Editor: Jean Ross

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1
Microsoft Windows and Visual C++
Enough has already been written about the acceptance of Microsoft Windows and the benefits of the
graphical user interface (GUI). This chapter summarizes the Windows programming model (Win32 in
particular) and shows you how the Microsoft Visual C++ components work together to help you write
applications for Windows. Along the way, you might learn some new things about Windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Programming Model
No matter which development tools you use, programming for Windows is different from old-style batch-
oriented or transaction-oriented programming. To get started, you need to know some Windows
fundamentals. As a frame of reference, we'll use the well-known MS-DOS programming model. Even if you
don't currently program for plain MS-DOS, you're probably familiar with it.

Message Processing

When you write an MS-DOS-based application in C, the only absolute requirement is a function named
main. The operating system calls main when the user runs the program, and from that point on, you can
use any programming structure you want. If your program needs to get user keystrokes or otherwise use
operating system services, it calls an appropriate function, such as getchar, or perhaps uses a character-
based windowing library.

When the Windows operating system launches a program, it calls the program's WinMain function.
Somewhere your application must have WinMain, which performs some specific tasks. Its most important
task is creating the application's main window, which must have its own code to process messages that
Windows sends it. An essential difference between a program written for MS-DOS and a program written
for Windows is that an MS-DOS-based program calls the operating system to get user input, but a
Windows-based program processes user input via messages from the operating system.

Many development environments for Windows, including Microsoft Visual C++ version
6.0 with the Microsoft Foundation Class (MFC) Library version 6.0, simplify
programming by hiding the WinMain function and structuring the message-handling
process. When you use the MFC library, you need not write a WinMain function but it is
essential that you understand the link between the operating system and your
programs.

Most messages in Windows are strictly defined and apply to all programs. For example, a WM_CREATE
message is sent when a window is being created, a WM_LBUTTONDOWN message is sent when the user
presses the left mouse button, a WM_CHAR message is sent when the user types a character, and a
WM_CLOSE message is sent when the user closes a window. All messages have two 32-bit parameters
that convey information such as cursor coordinates, key code, and so forth. Windows sends
WM_COMMAND messages to the appropriate window in response to user menu choices, dialog button
clicks, and so on. Command message parameters vary depending on the window's menu layout. You can
define your own messages, which your program can send to any window on the desktop. These user-
defined messages actually make C++ look a little like Smalltalk.

Don't worry yet about how these messages are connected to your code. That's the job of the application
framework. Be aware, though, that the Windows message processing requirement imposes a lot of
structure on your program. Don't try to force your Windows programs to look like your old MS-DOS
programs. Study the examples in this book, and then be prepared to start fresh.

The Windows Graphics Device Interface

Many MS-DOS programs wrote directly to the video memory and the printer port. The disadvantage of this
technique was the need to supply driver software for every video board and every printer model. Windows
introduced a layer of abstraction called the Graphics Device Interface (GDI). Windows provides the video
and printer drivers, so your program doesn't need to know the type of video board and printer attached to
the system. Instead of addressing the hardware, your program calls GDI functions that reference a data
structure called a device context. Windows maps the device context structure to a physical device and
issues the appropriate input/output instructions. The GDI is almost as fast as direct video access, and it
allows different applications written for Windows to share the display.

Resource-Based Programming

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resource-Based Programming

To do data-driven programming in MS-DOS, you must either code the data as initialization constants or
provide separate data files for your program to read. When you program for Windows, you store data in a
resource file using a number of established formats. The linker combines this binary resource file with the
C++ compiler's output to generate an executable program. Resource files can include bitmaps, icons,
menu definitions, dialog box layouts, and strings. They can even include custom resource formats that you
define.

You use a text editor to edit a program, but you generally use wysiwyg (what you see is what you get)
tools to edit resources. If you're laying out a dialog box, for example, you select elements (buttons, list
boxes, and so forth) from an array of icons called a control palette, and you position and size the elements
with the mouse. Microsoft Visual C++ 6.0 has graphics resource editors for all standard resource formats.

Memory Management

With each new version of Windows, memory management gets easier. If you've heard horror stories about
locking memory handles, thunks, and burgermasters, don't worry. That's all in the past. Today you simply
allocate the memory you need, and Windows takes care of the details. Chapter 10 describes current
memory management techniques for Win32, including virtual memory and memory-mapped files.

Dynamic Link Libraries

In the MS-DOS environment, all of a program's object modules are statically linked during the build
process. Windows allows dynamic linking, which means that specially constructed libraries can be loaded
and linked at runtime. Multiple applications can share dynamic link libraries (DLLs), which saves memory
and disk space. Dynamic linking increases program modularity because you can compile and test DLLs
separately.

Designers originally created DLLs for use with the C language, and C++ has added some complications.
The MFC developers succeeded in combining all the application framework classes into a few ready-built
DLLs. This means that you can statically or dynamically link the application framework classes into your
application. In addition, you can create your own extension DLLs that build on the MFC DLLs. Chapter 22
includes information about creating MFC extension DLLs and regular DLLs.

The Win32 Application Programming Interface

Early Windows programmers wrote applications in C for the Win16 application programming interface
(API). Today, if you want to write 32-bit applications, you must use the new Win32 API, either directly or
indirectly. Most Win16 functions have Win32 equivalents, but many of the parameters are different—16-bit
parameters are often replaced with 32-bit parameters, for example. The Win32 API offers many new
functions, including functions for disk I/O, which was formerly handled by MS-DOS calls. With the 16-bit
versions of Visual C++, MFC programmers were largely insulated from these API differences because they
wrote to the MFC standard, which was designed to work with either Win16 or Win32 underneath.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Visual C++ Components
Microsoft Visual C++ is two complete Windows application development systems in one product. If you so
choose, you can develop C-language Windows programs using only the Win32 API. C-language Win32
programming is described in Charles Petzold's book Programming Windows 95 (Microsoft Press, 1996). You
can use many Visual C++ tools, including the resource editors, to make low-level Win32 programming
easier.

Visual C++ also includes the ActiveX Template Library (ATL), which you can use to develop ActiveX
controls for the Internet. ATL programming is neither Win32 C-language programming nor MFC
programming, and it's complex enough to deserve its own book.

This book is not about C-language Win32 programming or ATL programming (although Chapter 29 and
Chapter 30 provide an introduction to ATL). It's about C++ programming within the MFC library application
framework that's part of Visual C++. You'll be using the C++ classes documented in the Microsoft Visual
C++ MFC Library Reference (Microsoft Press, 1997), and you'll also be using application framework-specific
Visual C++ tools such as AppWizard and ClassWizard.

Use of the MFC library programming interface doesn't cut you off from the Win32
functions. In fact, you'll almost always need some direct Win32 calls in your MFC library
programs.

A quick run-through of the Visual C++ components will help you get your bearings before you zero in on
the application framework. Figure 1-1 shows an overview of the Visual C++ application build process.

Figure 1-1. The Visual C++ application build process.

Microsoft Visual C++ 6.0 and the Build Process

Visual Studio 6.0 is a suite of developer tools that includes Visual C++ 6.0. The Visual C++ IDE is shared
by several tools including Microsoft Visual J++. The IDE has come a long way from the original Visual
Workbench, which was based on QuickC for Windows. Docking windows, configurable toolbars, plus a
customizable editor that runs macros, are now part of Visual Studio. The online help system (now
integrated with the MSDN Library viewer) works like a Web browser. Figure 1-2 shows Visual C++ 6.0 in
action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

action.

Figure 1-2. Visual C++ 6.0 windows.

If you've used earlier versions of Visual C++ or another vendor's IDE, you already understand how Visual
C++ 6.0 operates. But if you're new to IDEs, you'll need to know what a project is. A project is a collection
of interrelated source files that are compiled and linked to make up an executable Windows-based program
or a DLL. Source files for each project are generally stored in a separate subdirectory. A project depends
on many files outside the project subdirectory too, such as include files and library files.

Experienced programmers are familiar with makefiles. A makefile stores compiler and linker options and
expresses all the interrelationships among source files. (A source code file needs specific include files, an
executable file requires certain object modules and libraries, and so forth.) A make program reads the
makefile and then invokes the compiler, assembler, resource compiler, and linker to produce the final
output, which is generally an executable file. The make program uses built-in inference rules that tell it, for
example, to invoke the compiler to generate an OBJ file from a specified CPP file.

In a Visual C++ 6.0 project, there is no makefile (with an MAK extension) unless you tell the system to
export one. A text-format project file (with a DSP extension) serves the same purpose. A separate text-
format workspace file (with a DSW extension) has an entry for each project in the workspace. It's possible
to have multiple projects in a workspace, but all the examples in this book have just one project per
workspace. To work on an existing project, you tell Visual C++ to open the DSW file and then you can edit
and build the project.

Visual C++ creates some intermediate files too. The following table lists the files that Visual C++
generates in the workspace.

File Extension Description

APS Supports ResourceView

BSC Browser information file

CLW Supports ClassWizard

DEP Dependency file

DSP Project file*

DSW Workspace file*

MAK External makefile

NCB Supports ClassView

OPT Holds workspace configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PLG Builds log file

* Do not delete or edit in a text editor.

The Resource Editors—Workspace ResourceView

When you click on the ResourceView tab in the Visual C++ Workspace window, you can select a resource
for editing. The main window hosts a resource editor appropriate for the resource type. The window can
also host a wysiwyg editor for menus and a powerful graphical editor for dialog boxes, and it includes tools
for editing icons, bitmaps, and strings. The dialog editor allows you to insert ActiveX controls in addition to
standard Windows controls and the new Windows common controls (which have been further extended in
Visual C++ 6.0). Chapter 3 shows pictures of the ResourceView page and one of the resource editors (the
dialog editor).

Each project usually has one text-format resource script (RC) file that describes the project's menu, dialog,
string, and accelerator resources. The RC file also has #include statements to bring in resources from
other subdirectories. These resources include project-specific items, such as bitmap (BMP) and icon (ICO)
files, and resources common to all Visual C++ programs, such as error message strings. Editing the RC file
outside the resource editors is not recommended. The resource editors can also process EXE and DLL files,
so you can use the clipboard to "steal" resources, such as bitmaps and icons, from other Windows
applications.

The C/C++ Compiler

The Visual C++ compiler can process both C source code and C++ source code. It determines the
language by looking at the source code's filename extension. A C extension indicates C source code, and
CPP or CXX indicates C++ source code. The compiler is compliant with all ANSI standards, including the
latest recommendations of a working group on C++ libraries, and has additional Microsoft extensions.
Templates, exceptions, and runtime type identification (RTTI) are fully supported in Visual C++ version
6.0. The C++ Standard Template Library (STL) is also included, although it is not integrated into the MFC
library.

The Source Code Editor

Visual C++ 6.0 includes a sophisticated source code editor that supports many features such as dynamic
syntax coloring, auto-tabbing, keyboard bindings for a variety of popular editors (such as VI and EMACS),
and pretty printing. In Visual C++ 6.0, an exciting new feature named AutoComplete has been added. If
you have used any of the Microsoft Office products or Microsoft Visual Basic, you might already be familiar
with this technology. Using the Visual C++ 6.0 AutoComplete feature, all you have to do is type the
beginning of a programming statement and the editor will provide you with a list of possible completions to
choose from. This feature is extremely handy when you are working with C++ objects and have forgotten
an exact member function or data member name—they are all there in the list for you. You no longer have
to memorize thousands of Win32 APIs or rely heavily on the online help system, thanks to this new
feature.

The Resource Compiler

The Visual C++ resource compiler reads an ASCII resource script (RC) file from the resource editors and
writes a binary RES file for the linker.

The Linker

The linker reads the OBJ and RES files produced by the C/C++ compiler and the resource compiler, and it
accesses LIB files for MFC code, runtime library code, and Windows code. It then writes the project's EXE
file. An incremental link option minimizes the execution time when only minor changes have been made to
the source files. The MFC header files contain #pragma statements (special compiler directives) that
specify the required library files, so you don't have to tell the linker explicitly which libraries to read.

The Debugger

If your program works the first time, you don't need the debugger. The rest of us might need one from
time to time. The Visual C++ debugger has been steadily improving, but it doesn't actually fix the bugs
yet. The debugger works closely with Visual C++ to ensure that breakpoints are saved on disk. Toolbar
buttons insert and remove breakpoints and control single-step execution. Figure 1-3 illustrates the Visual
C++ debugger in action. Note that the Variables and Watch windows can expand an object pointer to show
all data members of the derived class and base classes. If you position the cursor on a simple variable, the
debugger shows you its value in a little window. To debug a program, you must build the program with the
compiler and linker options set to generate debugging information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compiler and linker options set to generate debugging information.

Figure 1-3. The Visual C++ debugger window.

Visual C++ 6.0 adds a new twist to debugging with the Edit And Continue feature. Edit And Continue lets
you debug an application, change the application, and then continue debugging with the new code. This
feature dramatically reduces the amount of time you spend debugging because you no longer have to
manually leave the debugger, recompile, and then debug again. To use this feature, simply edit any code
while in the debugger and then hit the continue button. Visual C++ 6.0 automatically compiles the changes
and restarts the debugger for you.

AppWizard

AppWizard is a code generator that creates a working skeleton of a Windows application with features,
class names, and source code filenames that you specify through dialog boxes. You'll use AppWizard
extensively as you work through the examples in this book. Don't confuse AppWizard with older code
generators that generate all the code for an application. AppWizard code is minimalist code; the
functionality is inside the application framework base classes. AppWizard gets you started quickly with a
new application.

Advanced developers can build custom AppWizards. Microsoft Corporation has exposed its macro-based
system for generating projects. If you discover that your team needs to develop multiple projects with a
telecommunications interface, you can build a special wizard that automates the process.

ClassWizard

ClassWizard is a program (implemented as a DLL) that's accessible from Visual C++'s View menu.
ClassWizard takes the drudgery out of maintaining Visual C++ class code. Need a new class, a new virtual
function, or a new message-handler function? ClassWizard writes the prototypes, the function bodies, and
(if necessary) the code to link the Windows message to the function. ClassWizard can update class code
that you write, so you avoid the maintenance problems common to ordinary code generators. Some
ClassWizard features are available from Visual C++'s WizardBar toolbar, shown in Figure 1-2.

The Source Browser

If you write an application from scratch, you probably have a good mental picture of your source code files,
classes, and member functions. If you take over someone else's application, you'll need some assistance.
The Visual C++ Source Browser (the browser, for short) lets you examine (and edit) an application from
the class or function viewpoint instead of from the file viewpoint. It's a little like the "inspector" tools
available with object-oriented libraries such as Smalltalk. The browser has the following viewing modes:

Definitions and References—You select any function, variable, type, macro, or class and then see
where it's defined and used in your project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Call Graph/Callers Graph—For a selected function, you'll see a graphical representation of the
functions it calls or the functions that call it.

Derived Classes and Members/Base Classes and Members—These are graphical class
hierarchy diagrams. For a selected class, you see the derived classes or the base classes plus
members. You can control the hierarchy expansion with the mouse.

File Outline—For a selected file, the classes, functions, and data members appear together with
the places in which they're defined and used in your project.

A typical browser window is shown in Chapter 3.

If you rearrange the lines in any source code file, Visual C++ regenerates the browser
database when you rebuild the project. This increases the build time.

In addition to the browser, Visual C++ has a ClassView option that does not depend on the browser
database. You get a tree view of all the classes in your project, showing member functions and data
members. Double-click on an element, and you see the source code immediately. The ClassView does not
show hierarchy information, whereas the browser does.

Online Help

In Visual C++ 6.0, the help system has been moved to a separate application named the MSDN Library
Viewer. This help system is based on HTML. Each topic is covered in an individual HTML document; then all
are combined into indexed files. The MSDN Library Viewer uses code from Microsoft Internet Explorer 4.0,
so it works like the Web browser you already know. MSDN Library can access the help files from the Visual
C++ CD-ROM (the default installation option) or from your hard disk, and it can access HTML files on the
Internet.

Visual C++ 6.0 allows you to access help in four ways:

By book—When you choose Contents from Visual C++'s Help menu, the MSDN Library application
switches to a contents view. Here Visual Studio, Visual C++, Win32 SDK documentation, and more
is organized hierarchically by books and chapters.

By topic—When you choose Search from Visual C++'s Help menu, it automatically opens the MSDN
Library Viewer. You can then select the Index tab, type a keyword, and see the topics and articles
included for that keyword.

By word—When you choose Search from Visual C++'s Help menu, it invokes the MSDN Library
with the Search tab active. With this tab active, you can type a combination of words to view
articles that contain those words.

F1 help—This is the programmer's best friend. Just move the cursor inside a function, macro, or
class name, and then press the F1 key and the help system goes to work. If the name is found in
several places—in the MFC and Win32 help files, for example—you choose the help topic you want
from a list window.

Whichever way you access online help, you can copy any help text to the clipboard for inclusion in your
program.

Windows Diagnostic Tools

Visual C++ 6.0 contains a number of useful diagnostic tools. SPY++ gives you a tree view of your system's
processes, threads, and windows. It also lets you view messages and examine the windows of running
applications. You'll find PVIEW (PVIEW95 for Windows 95) useful for killing errant processes that aren't
visible from the Windows 95 task list. (The Windows NT Task Manager, which you can run by right-clicking
the toolbar, is an alternative to PVIEW.) Visual C++ also includes a whole suite of ActiveX utilities, an
ActiveX control test program (now with full source code in Visual C++ 6.0), the help workshop (with
compiler), a library manager, binary file viewers and editors, a source code profiler, and other utilities.

Source Code Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Source Code Control

During development of Visual C++ 5.0, Microsoft bought the rights to an established source code control
product named SourceSafe. This product has since been included in the Enterprise Edition of Visual C++
and Visual Studio Enterprise, and it is integrated into Visual C++ so that you can coordinate large software
projects. The master copy of the project's source code is stored in a central place on the network, and
programmers can check out modules for updates. These checked-out modules are usually stored on the
programmer's local hard disk. After a programmer checks in modified files, other team members can
synchronize their local hard disk copies to the master copy. Other source code control systems can also be
integrated into Visual C++.

The Gallery

The Visual C++ Components and Controls Gallery lets you share software components among different
projects. The Gallery manages three types of modules:

ActiveX controls—When you install an ActiveX control (OCX—formerly OLE control), an entry is
made in the Windows Registry. All registered ActiveX controls appear in the Gallery's window, so
you can select them in any project.

C++ source modules—When you write a new class, you can add the code to the Gallery. The code
can then be selected and copied into other projects. You can also add resources to the Gallery.

Visual C++ components—The Gallery can contain tools that let you add features to your project.
Such a tool could insert new classes, functions, data members, and resources into an existing
project. Some component modules are supplied by Microsoft (Idle time processing, Palette support,
and Splash screen, for example) as part of Visual C++. Others will be supplied by third-party soft-
ware firms.

If you decide to use one of the prepackaged Visual C++ components, try it out first in a
dummy project to see if it's what you really want. Otherwise, it might be difficult to
remove the generated code from your regular project.

All user-generated Gallery items can be imported from and exported to OGX files. These files are the
distribution and sharing medium for Visual C++ components.

The Microsoft Foundation Class Library Version 6.0

The Microsoft Foundation Class Library version 6.0 (the MFC library, for short) is really the subject of this
book. It defines the application framework that you'll be learning intimately. Chapter 2 gets you started
with actual code and introduces some important concepts.

The Microsoft Active Template Library

ATL is a tool, separate from MFC, for building ActiveX controls. You can build ActiveX controls with either
MFC or ATL, but ATL controls are much smaller and quicker to load on the Internet. Chapter 29 and
Chapter 30 provide a brief overview of ATL and creating ActiveX controls with ATL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2
The Microsoft Foundation Class Library Application Framework
This chapter introduces the Microsoft Foundation Class Library version 6.0 (the MFC library) application
framework by explaining its benefits. You'll see a stripped-down but fully operational MFC library program
for Microsoft Windows that should help you understand what application framework programming is all
about. Theory is kept to a minimum here, but the sections on message mapping and on documents and
views contain important information that will help you with the examples in later chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Use the Application Framework?
If you're going to develop applications for Windows, you've got to choose a development environment.
Assuming that you've already rejected non-C options such as Microsoft Visual Basic and Borland Delphi,
here are some of your remaining options:

Program in C with the Win32 API

Write your own C++ Windows class library that uses Win32

Use the MFC application framework

Use another Windows-based application framework such as Borland's Object Windows Library
(OWL)

If you're starting from scratch, any option involves a big learning curve. If you're already a Win16 or
Win32 programmer, you'll still have a learning curve with the MFC library. Since its release, MFC has
become the dominant Windows class library. But even if you're familiar with it, it's still a good idea to step
through the features of this programming choice.

The MFC library is the C++ Microsoft Windows API. If you accept the premise that the C++ language
is now the standard for serious application development, you'd have to say that it's natural for Windows to
have a C++ programming interface. What better interface is there than the one produced by Microsoft,
creator of Windows? That interface is the MFC library.

Application framework applications use a standard structure. Any programmer starting on a large
project develops some kind of structure for the code. The problem is that each programmer's structure is
different, and it's difficult for a new team member to learn the structure and conform to it. The MFC library
application framework includes its own application structure—one that's been proven in many software
environments and in many projects. If you write a program for Windows that uses the MFC library, you can
safely retire to a Caribbean island, knowing that your minions can easily maintain and enhance your code
back home.

Don't think that the MFC library's structure makes your programs inflexible. With the MFC library, your
program can call Win32 functions at any time, so you can take maximum advantage of Windows.

Application framework applications are small and fast. Back in the 16-bit days, you could build a
self-contained Windows EXE file that was less than 20 kilobytes (KB) in size. Today, Windows programs are
larger. One reason is that 32-bit code is fatter. Even with the large memory model, a Win16 program used
16-bit addresses for stack variables and many globals. Win32 programs use 32-bit addresses for
everything and often use 32-bit integers because they're more efficient than 16-bit integers. In addition,
the new C++ exception-handling code consumes a lot of memory.

That old 20-KB program didn't have a docking toolbar, splitter windows, print preview capabilities, or
control container support—features that users expect in modern programs. MFC programs are bigger
because they do more and look better. Fortunately, it's now easy to build applications that dynamically link
to the MFC code (and to C runtime code), so the size goes back down again—from 192 KB to about 20 KB!
Of course, you'll need some big support DLLs in the background, but those are a fact of life these days.

As far as speed is concerned, you're working with machine code produced by an optimizing compiler.
Execution is fast, but you might notice a startup delay while the support DLLs are loaded.

The Visual C++ tools reduce coding drudgery. The Visual C++ resource editors, AppWizard, and
ClassWizard significantly reduce the time needed to write code that is specific to your application. For
example, the resource editor creates a header file that contains assigned values for #define constants.
App-Wizard generates skeleton code for your entire application, and ClassWizard generates prototypes and
function bodies for message handlers.

The MFC library application framework is feature rich. The MFC library version 1.0 classes,
introduced with Microsoft C/C++ version 7.0, included the following features:

A C++ interface to the Windows API

General-purpose (non-Windows-specific) classes, including:

Collection classes for lists, arrays, and maps

A useful and efficient string class

Time, time span, and date classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Time, time span, and date classes

File access classes for operating system independence

Support for systematic object storage and retrieval to and from disk

A "common root object" class hierarchy

Streamlined Multiple Document Interface (MDI) application support

Some support for OLE version 1.0

The MFC library version 2.0 classes (in Visual C++ version 1.0) picked up where the version 1.0 classes
left off by supporting many user interface features that are found in current Windows-based applications,
plus they introduced the application framework architecture. Here's a summary of the important new
features:

Full support for File Open, Save, and Save As menu items and the most recently used file list

Print preview and printer support

Support for scrolling windows and splitter windows

Support for toolbars and status bars

Access to Visual Basic controls

Support for context-sensitive help

Support for automatic processing of data entered in a dialog box

An improved interface to OLE version 1.0

DLL support

The MFC library version 2.5 classes (in Visual C++ version 1.5) contributed the following:

Open Database Connectivity (ODBC) support that allows your application to access and update data
stored in many popular databases such as Microsoft Access, FoxPro, and Microsoft SQL Server

An interface to OLE version 2.01, with support for in-place editing, linking, drag and drop, and OLE
Automation

Visual C++ version 2.0 was the first 32-bit version of the product. It included support for Microsoft
Windows NT version 3.5. It also contained MFC version 3.0, which had the following new features:

Tab dialog (property sheet) support (which was also added to Visual C++ version 1.51, included on
the same CD-ROM)

Docking control bars that were implemented within MFC

Support for thin-frame windows

A separate Control Development Kit (CDK) for building 16-bit and 32-bit OLE controls, although no
OLE control container support was provided

A subscription release, Visual C++ 2.1 with MFC 3.1, added the following:

Support for the new Microsoft Windows 95 (beta) common controls

A new ODBC Level 2 driver integrated with the Access Jet database engine

Winsock classes for TCP/IP data communication

Microsoft decided to skip Visual C++ version 3.0 and proceeded directly to 4.0 in order to synchronize the
product version with the MFC version. MFC 4.0 contains these additional features:

New OLE-based Data Access Objects (DAO) classes for use with the Jet engine

Use of the Windows 95 docking control bars instead of the MFC control bars

Full support for the common controls in the released version of Windows 95, with new tree view and
rich-edit view classes

New classes for thread synchronization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OLE control container support

Visual C++ 4.2 was an important subscription release that included MFC version 4.2. The following new
features were included:

WinInet classes

ActiveX Documents server classes

ActiveX synchronous and asynchronous moniker classes

Enhanced MFC ActiveX Control classes, with features such as windowless activation, optimized
drawing code, and so forth

Improved MFC ODBC support, including recordset bulk fetches and data transfer without binding

Visual C++ 5.0 included MFC version 4.21, which fixed some 4.2 bugs. Visual C++ 5.0 introduced some
worthwhile features of its own as well:

A redesigned IDE, Developer Studio 97, which included an HTML-based online help system and
integration with other languages, including Java

The Active Template Library (ATL) for efficient ActiveX control construction for the Internet

C++ language support for COM (Component Object Model) client programs with the new #import
statement for type libraries, as described in Chapter 25

The latest edition of Visual C++, 6.0, includes MFC 6.0. (Notice that the versions are now synchronized
again.) Many of the features in MFC 6.0 enable the developer to support the new Microsoft Active Platform,
including the following:

MFC classes that encapsulate the new Windows common controls introduced as part of Internet
Explorer 4.0

Support for Dynamic HTML, which allows the MFC programmer to create applications that can
dynamically manipulate and generate HTML pages

Active Document Containment, which allows MFC-based applications to contain Active Documents

OLE DB Consumers and Providers Template support and Active Data Objects (ADO) data binding,
which help database developers who use MFC or ATL

The Learning Curve

All the listed benefits sound great, don't they? You're probably thinking, "You don't get something for
nothing." Yes, that's true. To use the application framework effectively, you have to learn it thoroughly,
and that takes time. If you have to learn C++, Windows, and the MFC library (without OLE) all at the same
time, it will take at least six months before you're really productive. Interestingly, that's close to the
learning time for the Win32 API alone.

How can that be if the MFC library offers so much more? For one thing, you can avoid many programming
details that C-language Win32 programmers are forced to learn. From our own experience, we can say
that an object-oriented application framework makes programming for Windows easier to learn—that is,
once you understand object-oriented programming.

The MFC library won't bring real Windows programming down to the masses. Programmers of applications
for Windows have usually commanded higher salaries than other programmers, and that situation will
continue. The MFC library's learning curve, together with the application framework's power, should ensure
that MFC library programmers will continue to be in strong demand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's an Application Framework?
One definition of application framework is "an integrated collection of object-oriented software components
that offers all that's needed for a generic application." That isn't a very useful definition, is it? If you really
want to know what an application framework is, you'll have to read the rest of this book. The application
framework example that you'll familiarize yourself with later in this chapter is a good starting point.

An Application Framework vs. a Class Library

One reason that C++ is a popular language is that it can be "extended" with class libraries. Some class
libraries are delivered with C++ compilers, others are sold by third-party software firms, and still others
are developed in-house. A class library is a set of related C++ classes that can be used in an application. A
mathematics class library, for example, might perform common mathematics operations, and a
communications class library might support the transfer of data over a serial link. Sometimes you construct
objects of the supplied classes; sometimes you derive your own classes—it all depends on the design of
the particular class library.

An application framework is a superset of a class library. An ordinary library is an isolated set of classes
designed to be incorporated into any program, but an application framework defines the structure of the
program itself. Microsoft didn't invent the application framework concept. It appeared first in the academic
world, and the first commercial version was MacApp for the Apple Macintosh. Since MFC 2.0 was
introduced, other companies, including Borland, have released similar products.

An Application Framework Example

Enough generalizations. It's time to look at some code—not pseudocode but real code that actually
compiles and runs with the MFC library. Guess what? It's the good old "Hello, world!" application, with a
few additions. (If you've used version 1.0 of the MFC library, this code will be familiar except for the frame
window base class.) It's about the minimum amount of code for a working MFC library application for
Windows. (Contrast it with an equivalent pure Win32 application such as you would see in a Petzold book!)
You don't have to understand every line now. Don't bother to type it in and test it, because EX23B on the
CD-ROM is quite similar. Wait for the next chapter, where you'll start using the "real" application
framework.

By convention, MFC library class names begin with the letter C.

Following is the source code for the header and implementation files for our MYAPP application. The classes
CMyApp and CMyFrame are each derived from MFC library base classes. First, here is the MyApp.h header
file for the MYAPP application:

// application class
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance();
};

// frame window class
class CMyFrame : public CFrameWnd
{
public:
 CMyFrame();
protected:
 // "afx_msg" indicates that the next two functions are part
 // of the MFC library message dispatch system
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnPaint();
 DECLARE_MESSAGE_MAP()
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};
And here is the MyApp.cpp implementation file for the MYAPP application:

#include <afxwin.h> // MFC library header file declares base classes
#include "myapp.h"

CMyApp theApp; // the one and only CMyApp object

BOOL CMyApp::InitInstance()
{
 m_pMainWnd = new CMyFrame();
 m_pMainWnd->ShowWindow(m_nCmdShow);

 m_pMainWnd->UpdateWindow();
 return TRUE;
}

BEGIN_MESSAGE_MAP(CMyFrame, CFrameWnd)
 ON_WM_LBUTTONDOWN()
 ON_WM_PAINT()
END_MESSAGE_MAP()

CMyFrame::CMyFrame()
{
 Create(NULL, "MYAPP Application");
}

void CMyFrame::OnLButtonDown(UINT nFlags, CPoint point)
{
 TRACE("Entering CMyFrame::OnLButtonDown - %lx, %d, %d\n",
 (long) nFlags, point.x, point.y);
}

void CMyFrame::OnPaint()
{
 CPaintDC dc(this);
 dc.TextOut(0, 0, "Hello, world!");
}
Here are some of the program elements:

The WinMain function—Remember that Windows requires your application to have a WinMain function.
You don't see WinMain here because it's hidden inside the application framework.

The CMyApp class—An object of class CMyApp represents an application. The program defines a single
global CMyApp object, theApp. The CWinApp base class determines most of theApp's behavior.

Application startup—When the user starts the application, Windows calls the application framework's
built-in WinMain function, and WinMain looks for your globally constructed application object of a class
derived from CWinApp. Don't forget that in a C++ program global objects are constructed before the main
program is executed.

The CMyApp::InitInstance member function—When the WinMain function finds the application object,
it calls the virtual InitInstance member function, which makes the calls needed to construct and display the
application's main frame window. You must override InitInstance in your derived application class because
the CWinApp base class doesn't know what kind of main frame window you want.

The CWinApp::Run member function—The Run function is hidden in the base class, but it dispatches
the application's messages to its windows, thus keeping the application running. WinMain calls Run after it
calls InitInstance.

The CMyFrame class—An object of class CMyFrame represents the application's main frame window.
When the constructor calls the Create member function of the base class CFrameWnd, Windows creates
the actual window structure and the application framework links it to the C++ object. The ShowWindow
and UpdateWindow functions, also member functions of the base class, must be called in order to display
the window.

The CMyFrame::OnLButtonDown function—This function is a sneak preview of the MFC library's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CMyFrame::OnLButtonDown function—This function is a sneak preview of the MFC library's
message-handling capability. We've elected to "map" the left mouse button down event to a CMyFrame
member function. You'll learn the details of the MFC library's message mapping in Chapter 4. For the time
being, accept that this function gets called when the user presses the left mouse button. The function
invokes the MFC library TRACE macro to display a message in the debugging window.

The CMyFrame::OnPaint function—The application framework calls this important mapped member
function of class CMyFrame every time it's necessary to repaint the window: at the start of the program,
when the user resizes the window, and when all or part of the window is newly exposed. The CPaintDC
statement relates to the Graphics Device Interface (GDI) and is explained in later chapters. The TextOut
function displays "Hello, world!"

Application shutdown—The user shuts down the application by closing the main frame window. This
action initiates a sequence of events, which ends with the destruction of the CMyFrame object, the exit
from Run, the exit from WinMain, and the destruction of the CMyApp object.

Look at the code example again. This time try to get the big picture. Most of the application's functionality
is in the MFC library base classes CWinApp and CFrameWnd. In writing MYAPP, we've followed a few simple
structure rules and we've written key functions in our derived classes. C++ lets us "borrow" a lot of code
without copying it. Think of it as a partnership between us and the application framework. The application
framework provided the structure, and we provided the code that made the application unique.

Now you're beginning to see why the application framework is more than just a class library. Not only does
the application framework define the application structure but it also encompasses more than C++ base
classes. You've already seen the hidden WinMain function at work. Other elements support message
processing, diagnostics, DLLs, and so forth.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Library Message Mapping
Refer to the OnLButtonDown member function in the previous example application. You might think that
OnLButtonDown would be an ideal candidate for a virtual function. A window base class would define
virtual functions for mouse event messages and other standard messages, and derived window classes
could override the functions as necessary. Some Windows class libraries do work this way.

The MFC library application framework doesn't use virtual functions for Windows messages. Instead, it uses
macros to "map" specified messages to derived class member functions. Why the rejection of virtual
functions? Suppose MFC used virtual functions for messages. The CWnd class would declare virtual
functions for more than 100 messages. C++ requires a virtual function dispatch table, called a vtable, for
each derived class used in a program. Each vtable needs one 4-byte entry for each virtual function,
regardless of whether the functions are actually overridden in the derived class. Thus, for each distinct
type of window or control, the application would need a table consisting of over 400 bytes to support
virtual message handlers.

What about message handlers for menu command messages and messages from button clicks? You
couldn't define these as virtual functions in a window base class because each application might have a
different set of menu commands and buttons. The MFC library message map system avoids large vtables,
and it accommodates application-specific command messages in parallel with ordinary Windows messages.
It also allows selected nonwindow classes, such as document classes and the application class, to handle
command messages. MFC uses macros to connect (or map) Windows messages to C++ member functions.
No extensions to the C++ language are necessary.

An MFC message handler requires a function prototype, a function body, and an entry (macro invocation)
in the message map. ClassWizard helps you add message handlers to your classes. You select a Windows
message ID from a list box, and the wizard generates the code with the correct function parameters and
return values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Documents and Views
The previous example used an application object and a frame window object. Most of your MFC library
applications will be more complex. Typically, they'll contain application and frame classes plus two other
classes that represent the "document" and the "view." This document-view architecture is the core of the
application framework and is loosely based on the Model/View/Controller classes from the Smalltalk world.

In simple terms, the document-view architecture separates data from the user's view of the data. One
obvious benefit is multiple views of the same data. Consider a document that consists of a month's worth
of stock quotes stored on disk. Suppose a table view and a chart view of the data are both available. The
user updates values through the table view window, and the chart view window changes because both
windows display the same information (but in different views).

In an MFC library application, documents and views are represented by instances of C++ classes. Figure 2-
1 shows three objects of class CStockDoc corresponding to three companies: AT&T, IBM, and GM. All three
documents have a table view attached, and one document also has a chart view. As you can see, there are
four view objects—three objects of class CStockTableView and one of class CStockChartView.

Figure 2-1. The document-view relationship.

The document base class code interacts with the File Open and File Save menu items; the derived
document class does the actual reading and writing of the document object's data. (The application
framework does most of the work of displaying the File Open and File Save dialog boxes and opening,
closing, reading, and writing files.) The view base class represents a window contained inside a frame
window; the derived view class interacts with its associated document class and does the application's
display and printer I/O. The derived view class and its base classes handle Windows messages. The MFC
library orchestrates all interactions among documents, views, frame windows, and the application object,
mostly through virtual functions.

Don't think that a document object must be associated with a disk file that is read entirely into memory. If
a "document" were really a database, for example, you could override selected document class member
functions and the File Open menu item would bring up a list of databases instead of a list of files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3
Getting Started with AppWizard—"Hello, world!"
Chapter 2 sketched the MFC library version 6.0 document-view architecture. This hands-on chapter shows
you how to build a functioning MFC library application, but it insulates you from the complexities of the
class hierarchy and object interrelationships. You'll work with only one document-view program element,
the "view class" that is closely associated with a window. For the time being, you can ignore elements such
as the application class, the frame window, and the document. Of course, your application won't be able to
save its data on disk, and it won't support multiple views, but Part III of this book provides plenty of
opportunity to exploit those features.

Because resources are so important in Microsoft Windows-based applications, you'll use ResourceView to
visually explore the resources of your new program. You'll also get some hints for setting up your Windows
environment for maximum build speed and optimal debugging output.

Requirements:

To compile and run the examples presented in this chapter and in the following
chapters, you must have successfully installed the released version of Microsoft
Windows 95 or Microsoft Windows NT version 4.0 or later, plus all the Microsoft Visual
C++ version 6.0 components. Be sure that Visual C++'s executable, include, and
library directories are set correctly. (You can change the directories by choosing
Options from the Tools menu.) If you have any problems with the following steps,
please refer to your Visual C++ documentation and Readme files for troubleshooting
instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's a View?
From a user's standpoint, a view is an ordinary window that the user can size, move, and close in the same
way as any other Windows-based application window. From the programmer's perspective, a view is a
C++ object of a class derived from the MFC library CView class. Like any C++ object, the view object's
behavior is determined by the member functions (and data members) of the class—both the application-
specific functions in the derived class and the standard functions inherited from the base classes.

With Visual C++, you can produce interesting applications for Windows by simply adding code to the
derived view class that the AppWizard code generator produces. When your program runs, the MFC library
application framework constructs an object of the derived view class and displays a window that is tightly
linked to the C++ view object. As is customary in C++ programming, the view class code is divided into
two source modules—the header file (H) and the implementation file (CPP).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Single Document Interface vs. Multiple Document Interface
The MFC library supports two distinct application types: Single Document Interface (SDI) and Multiple
Document Interface (MDI). An SDI application has, from the user's point of view, only one window. If the
application depends on disk-file "documents," only one document can be loaded at a time. The original
Windows Notepad is an example of an SDI application. An MDI application has multiple child windows, each
of which corresponds to an individual document. Microsoft Word is a good example of an MDI application.

When you run AppWizard to create a new project, MDI is the default application type. For the early
examples in this book, you'll be generating SDI applications because fewer classes and features are
involved. Be sure you select the Single Document option (on the first AppWizard screen) for these
examples. Starting with Chapter 18, you'll be generating MDI applications. The MFC library application
framework architecture ensures that most SDI examples can be upgraded easily to MDI applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The "Do-Nothing" Application—EX03A
The AppWizard tool generates the code for a functioning MFC library application. This working application
simply brings up an empty window with a menu attached. Later you'll add code that draws inside the
window. Follow these steps to build the application:

1. Run AppWizard to generate SDI application source code. Choose New from Visual C++'s File
menu, and then click the Projects tab in the resulting New dialog box, as shown here.

Make sure that MFC AppWizard (exe) is highlighted, and then type C:\vcpp32\ in the Location edit
box. Type ex03a as shown in the Project Name edit box, and then click the OK button. Now you will
step through a sequence of AppWizard screens, the first of which is shown here.

Be sure to select the Single Document option. Accept the defaults in the next four screens. The last
screen should look like the following illustration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

screen should look like the following illustration.

Notice that the class names and source-file names have been generated based on the project name
EX03A. You could make changes to these names at this point if you wanted to. Click the Finish
button. Just before AppWizard generates your code, it displays the New Project Information dialog
box, shown here.

When you click the OK button, AppWizard begins to create your application's subdirectory (ex03a
under \vcpp32) and a series of files in that subdirectory. When AppWizard is finished, look in the
application's subdirectory. The following files are of interest (for now).

File Description

ex03a.dsp A project file that allows Visual C++ to build your application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ex03a.dsw A workspace file that contains a single entry for ex03a.dsp

ex03a.rc An ASCII resource script file

ex03aView.cpp A view class implementation file that contains CEx03aView class member
functions

ex03aView.h A view class header file that contains the CEx03aView class declaration

ex03a.opt A binary file that tells Visual C++ which files are open for this project and
how the windows are arranged (This file is not created until you save the
project.)

ReadMe.txt A text file that explains the purpose of the generated files

resource.h A header file that contains #define constant definitions

Open the ex03aView.cpp and ex03aView.h files and look at the source code. Together these files
define the CEx03aView class, which is central to the application. An object of class CEx03aView
corresponds to the application's view window, where all the "action" takes place.

2. Compile and link the generated code. AppWizard, in addition to generating code, creates
custom project and workspace files for your application. The project file, ex03a.dsp, specifies all the
file dependencies together with the compile and link option flags. Because the new project becomes
Visual C++'s current project, you can now build the application by choosing Build Ex03a.exe from
the Build menu or by clicking the Build toolbar button, shown here.

If the build is successful, an executable program named ex03a.exe is created in a new Debug
subdirectory underneath \vcpp32\ex03a. The OBJ files and other intermediate files are also stored
in Debug. Compare the file structure on disk with the structure in the Workspace window's FileView
page shown here.

The FileView page contains a logical view of your project. The header files show up under Header
Files, even though they are in the same subdirectory as the CPP files. The resource files are stored
in the \res subdirectory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Test the resulting application. Choose Execute Ex03a.exe from the Build menu. Experiment with
the program. It doesn't do much, does it? (What do you expect for no coding?) Actually, as you
might guess, the program has a lot of features—you simply haven't activated them yet. Close the
program window when you've finished experimenting.

4. Browse the application. Choose Source Browser from the Tools menu. If your project settings
don't specify browser database creation, Visual C++ will offer to change the settings and recompile
the program for you. (To change the settings yourself, choose Settings from the Project menu. On
the C/C++ page, click Generate Browse Info, and on the Browse Info page, click Build Browse Info
File.)

When the Browse window appears, choose Base Classes And Members and then type CEx03aView.
After you expand the hierarchy, you should see output similar to this.

Compare the browser output to ClassView in the Workspace window.

ClassView doesn't show the class hierarchy, but it also doesn't involve the extra overhead of the
browser. If ClassView is sufficient for you, don't bother building the browser database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CEx03aView View Class
AppWizard generated the CEx03aView view class, and this class is specific to the EX03A application.
(AppWizard generates classes based on the project name you entered in the first AppWizard dialog box.)
CEx03aView is at the bottom of a long inheritance chain of MFC library classes, as illustrated previously in
the Browse window. The class picks up member functions and data members all along the chain. You can
learn about these classes in the Microsoft Foundation Class Reference (online or printed version), but you
must be sure to look at the descriptions for every base class because the descriptions of inherited member
functions aren't generally repeated for derived classes.

The most important CEx03aView base classes are CWnd and CView. CWnd provides CEx03aView's
"windowness," and CView provides the hooks to the rest of the application framework, particularly to the
document and to the frame window, as you'll see in Part III of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drawing Inside the View Window—The Windows Graphics Device
Interface
Now you're ready to write code to draw inside the view window. You'll be making a few changes directly to
the EX03A source code.

The OnDraw Member Function

Specifically, you'll be fleshing out OnDraw in ex03aView.cpp. OnDraw is a virtual member function of the
CView class that the application framework calls every time the view window needs to be repainted. A
window needs to be repainted if the user resizes the window or reveals a previously hidden part of the
window, or if the application changes the window's data. If the user resizes the window or reveals a hidden
area, the application framework calls OnDraw, but if a function in your program changes the data, it must
inform Windows of the change by calling the view's inherited Invalidate (or InvalidateRect) member
function. This call to Invalidate triggers a later call to OnDraw.

Even though you can draw inside a window at any time, it's recommended that you let window changes
accumulate and then process them all together in the OnDraw function. That way your program can
respond both to program-generated events and to Windows-generated events such as size changes.

The Windows Device Context

Recall from Chapter 1 that Windows doesn't allow direct access to the display hardware but communicates
through an abstraction called a "device context" that is associated with the window. In the MFC library, the
device context is a C++ object of class CDC that is passed (by pointer) as a parameter to OnDraw. After
you have the device context pointer, you can call the many CDC member functions that do the work of
drawing.

Adding Draw Code to the EX03A Program

Now let's write the code to draw some text and a circle inside the view window. Be sure that the project
EX03A is open in Visual C++. You can use the Workspace window's ClassView to locate the code for the
function (double-click on OnDraw), or you can open the source code file ex03aView.cpp from FileView and
locate the function yourself.

1. Edit the OnDraw function in ex03aView.cpp. Find the AppWizard-generated OnDraw function in
ex03aView.cpp:

void CEx03aView::OnDraw(CDC* pDC)
{
 CEx03aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: add draw code for native data here
}
The following boldface code (which you type in) replaces the previous code:

void CEx03aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Hello, world!"); // prints in default font
 // & size, top left corner
 pDC->SelectStockObject(GRAY_BRUSH); // selects a brush for the
 // circle interior
 pDC->Ellipse(CRect(0, 20, 100, 120)); // draws a gray circle
 // 100 units in diameter
}
You can safely remove the call to GetDocument because we're not dealing with documents yet. The
functions TextOut, SelectStockObject, and Ellipse are all member functions of the application
framework's device context class CDC. The Ellipse function draws a circle if the bounding rectangle's
length is equal to its width.

The MFC library provides a handy utility class, CRect, for Windows rectangles. A temporary CRect
object serves as the bounding rectangle argument for the ellipse drawing function. You'll see more
of the CRect class in quite a few of the examples in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the CRect class in quite a few of the examples in this book.

2. Recompile and test EX03A. Choose Build from the Project menu, and, if there are no compile
errors, test the application again. Now you have a program that visibly does something!

For Win32 Programmers

Rest assured that the standard Windows WinMain and window procedure functions are
hidden away inside the application framework. You'll see those functions later in this
book, when the MFC library frame and application classes are examined. In the
meantime, you're probably wondering what happened to the WM_PAINT message,
aren't you? You would expect to do your window drawing in response to this Windows
message, and you would expect to get your device context handle from a
PAINTSTRUCT structure returned by the Windows BeginPaint function.

It so happens that the application framework has done all the dirty work for you and
served up a device context (in object pointer form) in the virtual function OnDraw. As
explained in Chapter 2, true virtual functions in window classes are an MFC library
rarity. MFC library message map functions dispatched by the application framework
handle most Windows messages. MFC version 1.0 programmers always defined an
OnPaint message map function for their derived window classes. Beginning with version
2.5, however, OnPaint was mapped in the CView class, and that function made a
polymorphic call to OnDraw. Why? Because OnDraw needs to support the printer as
well as the display. Both OnPaint and OnPrint call OnDraw, thus enabling the same
drawing code to accommodate both the printer and the display.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Preview of the Resource Editors
Now that you have a complete application program, it's a good time for a quick look at the resource
editors. Although the application's resource script, ex03a.rc, is an ASCII file, modifying it with a text editor
is not a good idea. That's the resource editors' job.

The Contents of ex03a.rc

The resource file determines much of the EX03A application's "look and feel." The file ex03a.rc contains (or
points to) the Windows resources listed here.

Resource Description

Accelerator Definitions for keys that simulate menu and toolbar selections.

Dialog Layout and contents of dialog boxes. EX03A has only the About dialog box.

Icon Icons (16-by-16-pixel and 32-by-32-pixel versions), such as the application icon you
see in Microsoft Windows Explorer and in the application's About dialog box. EX03A
uses the MFC logo for its application icon.

Menu The application's top-level menu and associated pop-up menus.

String
table

Strings that are not part of the C++ source code.

Toolbar The row of buttons immediately below the menu.

Version Program description, version number, language, and so on.

In addition to the resources listed above, ex03a.rc contains the statements

#include "afxres.h"
#include "afxres.rc"
which bring in some MFC library resources common to all applications. These resources include strings,
graphical buttons, and elements needed for printing and OLE.

If you're using the shared DLL version of the MFC library, the common resources are
stored inside the MFC DLL.

The ex03a.rc file also contains the statement

#include "resource.h"
This statement brings in the application's three #define constants, which are IDR_MAINFRAME (identifying
the menu, icon, string list, and accelerator table), IDR_EX03ATYPE (identifying the default document icon,
which we won't use in this program), and IDD_ABOUTBOX (identifying the About dialog box). This same
resource.h file is included indirectly by the application's source code files. If you use a resource editor to
add more constants (symbols), the definitions ultimately show up in resource.h. Be careful if you edit this
file in text mode because your changes might be removed the next time you use a resource editor.

Running the Dialog Resource Editor

1. Open the project's RC file. Click the ResourceView button in the Workspace window. If you
expand each item, you will see the following in the resource editor window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Examine the application's resources. Now take some time to explore the individual resources.
When you select a resource by double-clicking on it, another window opens with tools appropriate
for the selected resource. If you open a dialog resource, the control palette should appear. If it
doesn't, right-click inside any toolbar, and then check Controls.

3. Modify the IDD_ABOUTBOX dialog box. Make some changes to the About Ex03a dialog box,
shown here.

4. You can change the size of the window by dragging the right and bottom borders, move the OK
button, change the text, and so forth. Simply click on an element to select it, and then right-click to
change its properties.

5. Rebuild the project with the modified resource file. In Visual C++, choose Build Ex03a.exe
from the Build menu. Notice that no actual C++ recompilation is necessary. Visual C++ saves the
edited resource file, and then the Resource Compiler (rc.exe) processes ex03a.rc to produce a
compiled version, ex03a.res, which is fed to the linker. The linker runs quickly because it can link
the project incrementally.

6. Test the new version of the application. Run the EX03A program again, and then choose About
from the application's Help menu to confirm that your dialog box was changed as expected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 Debug Target vs. Win32 Release Target
If you open the drop-down list on the Build toolbar, you'll notice two items: Win32 Debug and Win32
Release. (The Build toolbar is not present by default, but you can choose Customize from the Tools menu
to display it.) These items are targets that represent distinct sets of build options. When AppWizard
generates a project, it creates two default targets with different settings. These settings are summarized in
the following table.

Option Release Build Debug Build

Source code
debugging

Disabled Enabled for both compiler
and linker

MFC diagnostic
macros

Disabled (NDEBUG defined) Enabled (_DEBUG defined)

Library linkage MFC Release library MFC Debug libraries

Compiler
optimization

Speed optimization (not available in
Learning Edition)

No optimization (faster
compile)

You develop your application in Debug mode, and then you rebuild in Release mode prior to delivery. The
Release build EXE will be smaller and faster, assuming that you have fixed all the bugs. You select the
configuration from the build target window in the Build toolbar, as shown in Figure 1-2 in Chapter 1. By
default, the Debug output files and intermediate files are stored in the project's Debug subdirectory; the
Release files are stored in the Release subdirectory. You can change these directories on the General tab in
the Project Settings dialog box.

You can create your own custom configurations if you need to by choosing Configurations from Visual
C++'s Build menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enabling the Diagnostic Macros
The application framework TRACE macros are particularly useful for monitoring program activity. They
require that tracing be enabled, which is the default setting. If you're not seeing TRACE output from your
program, first make sure that you are running the debug target from the debugger and then run the
TRACER utility. If you check the Enable Tracing checkbox, TRACER will insert the statement

TraceEnabled = 1
in the [Diagnostics] section of a file named Afx.ini. (No, it's not stored in the Registry.) You can also use
TRACER to enable other MFC diagnostic outputs, including message, OLE, database, and Internet
information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding Precompiled Headers
When AppWizard generates a project, it generates switch settings and files for precompiled headers. You
must understand how the make system processes precompiled headers in order to manage your projects
effectively.

Visual C++ has two precompiled header "systems:" automatic and manual. Automatic
precompiled headers, activated with the /Yx compiler switch, store compiler output in a
"database" file. Manual precompiled headers are activated by the /Yc and /Yu switch
settings and are central to all AppWizard-generated projects.

Precompiled headers represent compiler "snapshots" taken at a particular line of source code. In MFC
library programs, the snapshot is generally taken immediately after the following statement:

#include "StdAfx.h"
The file StdAfx.h contains #include statements for the MFC library header files. The file's contents depend
on the options that you select when you run AppWizard, but the file always contains these statements:

#include <afxwin.h>
#include <afxext.h>
If you're using compound documents, StdAfx.h also contains the statement

#include <afxole.h>
and if you're using Automation or ActiveX Controls, it contains

#include <afxdisp.h>
If you're using Internet Explorer 4 Common Controls, StdAfx.h contains the statement

#include <afxdtctl.h>
Occasionally you will need other header files—for example, the header for template-based collection
classes that is accessed by the statement

#include <afxtempl.h>
The source file StdAfx.cpp contains only the statement

#include "StdAfx.h"
and is used to generate the precompiled header file in the project directory. The MFC library headers
included by StdAfx.h never change, but they do take a long time to compile. The compiler switch /Yc, used
only with StdAfx.cpp, causes creation of the precompiled header (PCH) file. The switch /Yu, used with all
the other source code files, causes use of an existing PCH file. The switch /Fp specifies the PCH filename
that would otherwise default to the project name (with the PCH extension) in the target's output files
subdirectory. Figure 3-1 illustrates the whole process.

AppWizard sets the /Yc and /Yu switches for you, but you can make changes if you need to. It's possible to
define compiler switch settings for individual source files. On the C/C++ tab in the Project Settings dialog
box, if you select only StdAfx.cpp, you'll see the /Yc setting. This overrides the /Yu setting that is defined
for the target.

Be aware that PCH files are big—5 MB is typical. If you're not careful, you'll fill up your hard disk. You can
keep things under control by periodically cleaning out your projects' Debug directories, or you can use the
/Fp compiler option to reroute PCH files to a common directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/Fp compiler option to reroute PCH files to a common directory.

Figure 3-1. The Visual C++ precompiled header process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two Ways to Run a Program
Visual C++ lets you run your program directly (by pressing Ctrl-F5) or through the debugger (by pressing
F5). Running your program directly is much faster because Visual C++ doesn't have to load the debugger
first. If you know you don't want to see diagnostic messages or use breakpoints, start your program by
pressing Ctrl-F5 or use the "exclamation point" button on the Build toolbar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4
Basic Event Handling, Mapping Modes, and a Scrolling View
In Chapter 3, you saw how the Microsoft Foundation Class (MFC) Library application framework called the
view class's virtual OnDraw function. Take a look at the online help for the MFC library now. If you look at
the documentation for the CView class and its base class, CWnd, you'll see several hundred member
functions. Functions whose names begin with On—such as OnKeyDown and OnLButtonUp—are member
functions that the application framework calls in response to various Windows "events" such as keystrokes
and mouse clicks.

Most of these application framework-called functions, such as OnKeyDown, aren't virtual functions and
thus require more programming steps. This chapter explains how to use the Visual C++ ClassWizard to set
up the message map structure necessary for connecting the application framework to your functions' code.
You'll see the practical application of message map functions.

The first two examples use an ordinary CView class. In EX04A, you'll learn about the interaction between
user-driven events and the OnDraw function. In EX04B, you'll see the effects of different Windows
mapping modes.

More often than not, you'll want a scrolling view. The last example, EX04C, uses CScrollView in place of the
CView base class. This allows the MFC library application framework to insert scroll bars and connect them
to the view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting User Input—Message Map Functions
Your EX03A application from Chapter 3 did not accept user input (other than the standard Microsoft
Windows resizing and window close commands). The window contained menus and a toolbar, but these
were not "connected" to the view code. The menus and the toolbar won't be discussed until Part III of this
book because they depend on the frame class, but plenty of other Windows input sources will keep you
busy until then. Before you can process any Windows event, even a mouse click, however, you must learn
how to use the MFC message map system.

The Message Map

When the user presses the left mouse button in a view window, Windows sends a message—specifically
WM_LBUTTONDOWN—to that window. If your program needs to take action in response to
WM_LBUTTONDOWN, your view class must have a member function that looks like this:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // event processing code here
}
Your class header file must also have the corresponding prototype:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
The afx_msg notation is a "no-op" that alerts you that this is a prototype for a message map function.
Next, your code file needs a message map macro that connects your OnLButtonDown function to the
application framework:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_WM_LBUTTONDOWN() // entry specifically for OnLButtonDown
 // other message map entries
END_MESSAGE_MAP()
Finally, your class header file needs the statement

DECLARE_MESSAGE_MAP()
How do you know which function goes with which Windows message? Appendix A (and the MFC library
online documentation) includes a table that lists all standard Windows messages and corresponding
member function prototypes. You can manually code the message-handling functions—indeed, that is still
necessary for certain messages. Fortunately, Visual C++ provides a tool, ClassWizard, that automates the
coding of most message map functions.

Saving the View's State—Class Data Members

If your program accepts user input, you'll want the user to have some visual feedback. The view's OnDraw
function draws an image based on the view's current "state," and user actions can alter that state. In a
full-blown MFC application, the document object holds the state of the application, but you're not to that
point yet. For now, you'll use two view class data members, m_rectEllipse and m_nColor. The first is an
object of class CRect, which holds the current bounding rectangle of an ellipse, and the second is an
integer that holds the current ellipse color value.

By convention, MFC library nonstatic class data member names begin with m_.

You'll make a message-mapped member function toggle the ellipse color (the view's state) between gray
and white. (The toggle is activated by pressing the left mouse button.) The initial values of m_rectEllipse
and m_nColor are set in the view's constructor, and the color is changed in the OnLButtonDown member
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why not use a global variable for the view's state? Because if you did, you'd be in
trouble if your application had multiple views. Besides, encapsulating data in objects is
a big part of what object-oriented programming is all about.

Initializing a View Class Data Member

The most efficient place to initialize a class data member is in the constructor, like this:

CMyView::CMyView() : m_rectEllipse(0, 0, 200, 200) {...}
You could initialize m_nColor with the same syntax. Because we're using a built-in type (integer), the
generated code is the same if you use an assignment statement in the constructor body.

Invalid Rectangle Theory

The OnLButtonDown function could toggle the value of m_nColor all day, but if that's all it did, the OnDraw
function wouldn't get called (unless, for example, the user resized the view window). The OnLButtonDown
function must call the InvalidateRect function (a member function that the view class inherits from CWnd).
InvalidateRect triggers a Windows WM_PAINT message, which is mapped in the CView class to call to the
virtual OnDraw function. If necessary, OnDraw can access the "invalid rectangle" parameter that was
passed to InvalidateRect.

There are two ways to optimize painting in Windows. First of all, you must be aware that Windows updates
only those pixels that are inside the invalid rectangle. Thus, the smaller you make the invalid rectangle (in
the OnLButtonDown handler, for instance), the quicker it can be repainted. Second, it's a waste of time to
execute drawing instructions outside the invalid rectangle. Your OnDraw function could call the CDC
member function GetClipBox to determine the invalid rectangle, and then it could avoid drawing objects
outside it. Remember that OnDraw is being called not only in response to your InvalidateRect call but also
when the user resizes or exposes the window. Thus, OnDraw is responsible for all drawing in a window,
and it has to adapt to whatever invalid rectangle it gets.

For Win32 Programmers

The MFC library makes it easy to attach your own state variables to a window through
C++ class data members. In Win32 programming, the WNDCLASS members cbClsExtra
and cbWndExtra are available for this purpose, but the code for using this mechanism
is so complex that developers tend to use global variables instead.

The Window's Client Area

A window has a rectangular client area that excludes the border, caption bar, menu bar, and any docking
toolbars. The CWnd member function GetClientRect supplies you with the client-area dimensions.
Normally, you're not allowed to draw outside the client area, and most mouse messages are received only
when the mouse cursor is in the client area.

CRect, CPoint, and CSize Arithmetic

The CRect, CPoint, and CSize classes are derived from the Windows RECT, POINT, and SIZE structures,
and thus they inherit public integer data members as follows:

CRect left, top, right, bottom

CPoint x, y

CSize cx, cy

If you look in the Microsoft Foundation Class Reference, you will see that these three classes have a
number of overloaded operators. You can, among other things, do the following:

Add a CSize object to a CPoint object

Subtract a CSize object from a CPoint object

Subtract one CPoint object from another, yielding a CSize object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subtract one CPoint object from another, yielding a CSize object

Add a CPoint or CSize object to a CRect object

Subtract a CPoint or CSize object from a CRect object

The CRect class has member functions that relate to the CSize and CPoint classes. For example, the
TopLeft member function returns a CPoint object, and the Size member function returns a CSize object.
From this, you can begin to see that a CSize object is the "difference between two CPoint objects" and that
you can "bias" a CRect object by a CPoint object.

Is a Point Inside a Rectangle?

The CRect class has a member function PtInRect that tests a point to see whether it falls inside a
rectangle. The second OnLButtonDown parameter (point) is an object of class CPoint that represents the
cursor location in the client area of the window. If you want to know whether that point is inside the
m_rectEllipse rectangle, you can use PtInRect in this way:

if (m_rectEllipse.PtInRect(point)) {
 // point is inside rectangle
}
As you'll soon see, however, this simple logic applies only if you're working in device coordinates (which
you are at this stage).

The CRect LPCRECT Operator

If you read the Microsoft Foundation Class Reference carefully, you will notice that CWnd::InvalidateRect
takes an LPCRECT parameter (a pointer to a RECT structure), not a CRect parameter. A CRect parameter is
allowed because the CRect class defines an overloaded operator, LPCRECT(), that returns the address of a
CRect object, which is equivalent to the address of a RECT object. Thus, the compiler converts CRect
arguments to LPCRECT arguments when necessary. You call functions as though they had CRect reference
parameters. The view member function code

CRect rectClient;
GetClientRect(rectClient);
retrieves the client rectangle coordinates and stores them in rectClient.

Is a Point Inside an Ellipse?

The EX04A code determines whether the mouse hit is inside the rectangle. If you want to make a better
test, you can find out whether the hit is inside the ellipse. To do this, you must construct an object of class
CRgn that corresponds to the ellipse and then use the PtInRegion function instead of PtInRect. Here's the
code:

CRgn rgn;
rgn.CreateEllipticRgnIndirect(m_rectEllipse);
if (rgn.PtInRegion(point)) {
 // point is inside ellipse
}
Note that the CreateEllipticRgnIndirect function is another function that takes an LPCRECT parameter. It
builds a special region structure within Windows that represents an elliptical region inside a window. That
structure is then attached to the C++ CRgn object in your program. (The same type of structure can also
represent a polygon.)

The EX04A Example

In the EX04A example, an ellipse (which happens to be a circle) changes color when the user presses the
left mouse button while the mouse cursor is inside the rectangle that bounds the ellipse. You'll use the
view class data members to hold the view's state, and you'll use the InvalidateRect function to cause the
view to be redrawn.

In the Chapter 3 example, drawing in the window depended on only one function, OnDraw. The EX04A
example requires three customized functions (including the constructor) and two data members. The
complete CEx04aView header and source code files are listed in Figure 4-1. (The steps for creating the
program are shown after the program listings.) All changes to the original AppWizard and OnLButtonDown
ClassWizard output are in boldface.

EX04AVIEW.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EX04AVIEW.H

// ex04aView.h : interface of the CEx04aView class
//
///

#if !defined(AFX_EX04AVIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2
__INCLUDED_)
#define AFX_EX04AVIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2
__INCLUDED_

#if _MFC_VER > 1000
#pragma once
#endif // _MFC_VER > 1000
class CEx04aView : public CView
{
protected: // create from serialization only
 CEx04aView();
 DECLARE_DYNCREATE(CEx04aView)

// Attributes
public:
 CEx04aDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx04aView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx04aView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CEx04aView)
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 int m_nColor;
 CRect m_rectEllipse;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect m_rectEllipse;
};
#ifndef _DEBUG // debug version in ex04aView.cpp
inline CEx04aDoc* CEx04aView::GetDocument()
 { return (CEx04aDoc*)m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX04AVIEW_H__B188BE41_6377_11D0_8FD4_00C04FC2A0C2__INCLUDED_)

EX04AVIEW.CPP

// ex04aView.cpp : implementation of the CEx04aView class
//

#include "stdafx.h"
#include "ex04a.h"

#include "ex04aDoc.h"
#include "ex04aView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

///
// CEx04aView

IMPLEMENT_DYNCREATE(CEx04aView, CView)

BEGIN_MESSAGE_MAP(CEx04aView, CView)
 //{{AFX_MSG_MAP(CEx04aView)
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP()
///
// CEx04aView construction/destruction

CEx04aView::CEx04aView() : m_rectEllipse(0, 0, 200, 200)
{
 m_nColor = GRAY_BRUSH;
}

CEx04aView::~CEx04aView()
{
}

BOOL CEx04aView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CView::PreCreateWindow(cs);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return CView::PreCreateWindow(cs);
}

///
// CEx04aView drawing

void CEx04aView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

///
// CEx04aView printing

BOOL CEx04aView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

void CEx04aView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEx04aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

///
// CEx04aView diagnostics

#ifdef _DEBUG
void CEx04aView::AssertValid() const
{
 CView::AssertValid();
}

void CEx04aView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CEx04aDoc* CEx04aView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx04aDoc)));
 return (CEx04aDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CEx04aView message handlers

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }
}

Figure 4-1. The CEx04aView header and source code files.

Using ClassWizard with EX04A

Look at the following ex04aView.h source code:

//{{AFX_MSG(CEx04aView)
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
//}}AFX_MSG
Now look at the following ex04aView.cpp source code:

//{{AFX_MSG_MAP(CEx04aView)
ON_WM_LBUTTONDOWN()
//}}AFX_MSG_MAP
AppWizard generated the funny-looking comment lines for the benefit of ClassWizard. ClassWizard adds
message handler prototypes between the AFX_MSG brackets and message map entries between the
AFX_MSG_MAP brackets. In addition, ClassWizard generates a skeleton OnLButtonDown member function
in ex04aView.cpp, complete with the correct parameter declarations and return type.

Notice how the AppWizard_ClassWizard combination is different from a conventional code generator. You
run a conventional code generator only once and then edit the resulting code. You run AppWizard to
generate the application only once, but you can run ClassWizard as many times as necessary, and you can
edit the code at any time. You're safe as long as you don't alter what's inside the AFX_MSG and
AFX_MSG_MAP brackets.

Using AppWizard and ClassWizard Together

The following steps show how you use AppWizard and ClassWizard together to create this application:

1. Run AppWizard to create EX04A. Use AppWizard to generate an SDI project named EX04A in
the \vcpp32\ex04a subdirectory. The options and the default class names are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add the m_rectEllipse and m_nColor data members to CEx04aView. With the Workspace
window set to ClassView, right-click the CEx04aView class, select Add Member Variable, and then
insert the following two data members:

private:
 CRect m_rectEllipse;
 int m_nColor;
If you prefer, you could type the above code inside the class declaration in the file ex04aView.h.

3. Use ClassWizard to add a CEx04aView class message handler. Choose ClassWizard from the
View menu of Visual C++, or right-click inside a source code window and choose ClassWizard from
the context menu. When the MFC ClassWizard dialog appears, be sure that the CEx04aView class is
selected, as shown in the illustration below. Now click on CEx04aView at the top of the Object IDs
list box, and then scroll down past the virtual functions in the Messages list box and double-click on
WM_LBUTTONDOWN. The OnLButtonDown function name should appear in the Member Functions
list box, and the message name should be displayed in bold in the Messages list box. Here's the
ClassWizard dialog box.

Instead of using ClassWizard, you can map the function from the Visual C++
WizardBar (shown in Figure 1-2 in Chapter 1).

4. Edit the OnLButtonDown code in ex04aView.cpp. Click the Edit Code button. ClassWizard
opens an edit window for ex04aView.cpp in Visual C++ and positions the cursor on the newly
generated OnLButtonDown member function. The following boldface code (that you type in)
replaces the previous code:

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point)) {
 if (m_nColor
== GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

5. Edit the constructor and the OnDraw function in ex04aView.cpp. The following boldface code
(that you type in) replaces the previous code:

CEx04aView::CEx04aView() : m_rectEllipse(0, 0, 200, 200)
{
 m_nColor = GRAY_BRUSH;
}
.
.
.
void CEx04aView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

6. Build and run the EX04A program. Choose Build Ex04a.exe from the Build menu, or, on the
Build toolbar, click the button shown here.

Then choose Execute Ex04a.exe from the Build menu. The resulting program responds to presses of
the left mouse button by changing the color of the circle in the view window. (Don't press the
mouse's left button quickly in succession; Windows interprets this as a double click rather than two
single clicks.)

For Win32 Programmers

A conventional Windows-based application registers a series of window classes (not the
same as C++ classes) and, in the process, assigns a unique function, known as a
window procedure, to each class. Each time the application calls CreateWindow to
create a window, it specifies a window class as a parameter and thus links the newly
created window to a window procedure function. This function, called each time
Windows sends a message to the window, tests the message code that is passed as a
parameter and then executes the appropriate code to handle the message.

The MFC application framework has a single window class and window procedure
function for most window types. This window procedure function looks up the window
handle (passed as a parameter) in the MFC handle map to get the corresponding C++
window object pointer. The window procedure function then uses the MFC runtime class
system (see Appendix B) to determine the C++ class of the window object. Next it
locates the handler function in static tables created by the dispatch map functions, and
finally it calls the handler function with the correct window object selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mapping Modes
Up to now, your drawing units have been display pixels, also known as device coordinates. The EX04A
drawing units are pixels because the device context has the default mapping mode, MM_TEXT, assigned to
it. The statement

pDC->Rectangle(CRect(0, 0, 200, 200));
draws a square of 200-by-200 pixels, with its top-left corner at the top left of the window's client area.
(Positive y values increase as you move down the window.) This square would look smaller on a high-
resolution display of 1024-by-768 pixels than it would look on a standard VGA display that is 640-by-480
pixels, and it would look tiny if printed on a laser printer with 600-dpi resolution. (Try EX04A's Print
Preview feature to see for yourself.)

What if you want the square to be 4-by-4 centimeters (cm), regardless of the display device? Windows
provides a number of other mapping modes, or coordinate systems, that can be associated with the device
context. Coordinates in the current mapping mode are called logical coordinates. If you assign the
MM_HIMETRIC mapping mode, for example, a logical unit is 1/100 millimeter (mm) instead of 1 pixel. In
the MM_HIMETRIC mapping mode, the y axis runs in the opposite direction to that in the MM_TEXT mode:
y values decrease as you move down. Thus, a 4-by-4-cm square is drawn in logical coordinates this way:

pDC->Rectangle(CRect(0, 0, 4000, -4000));
Looks easy, doesn't it? Well, it isn't, because you can't work only in logical coordinates. Your program is
always switching between device coordinates and logical coordinates, and you need to know when to
convert between them. This section gives you a few rules that could make your programming life easier.
First you need to know what mapping modes Windows gives you.

The MM_TEXT Mapping Mode

At first glance, MM_TEXT appears to be no mapping mode at all, but rather another name for device
coordinates. Almost. In MM_TEXT, coordinates map to pixels, values of x increase as you move right, and
values of y increase as you move down, but you're allowed to change the origin through calls to the CDC
functions SetViewportOrg and SetWindowOrg. Here's some code that sets the window origin to (100, 100)
in logical coordinate space and then draws a 200-by-200-pixel square offset by (100, 100). (An illustration
of the output is shown in Figure 4-2.) The logical point (100, 100) maps to the device point (0, 0). A
scrolling window uses this kind of transformation.

void CMyView::OnDraw(CDC* pDC)
{
 pDC->SetMapMode(MM_TEXT);
 pDC->SetWindowOrg(CPoint(100, 100));
 pDC->Rectangle(CRect(100, 100, 300, 300));
}

Figure 4-2. A square drawn after the origin has been moved to (100, 100).

The Fixed-Scale Mapping Modes

One important group of Windows mapping modes provides fixed scaling. You have already seen that, in
the MM_HIMETRIC mapping mode, x values increase as you move right and y values decrease as you
move down. All fixed mapping modes follow this convention, and you can't change it. The only difference
among the fixed mapping modes is the actual scale factor, listed in the table shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

among the fixed mapping modes is the actual scale factor, listed in the table shown here.

Mapping Mode Logical Unit

MM_LOENGLISH 0.01 inch

MM_HIENGLISH 0.001 inch

MM_LOMETRIC 0.1 mm

MM_HIMETRIC 0.01 mm

MM_TWIPS 1/1440 inch

The last mapping mode, MM_TWIPS, is most often used with printers. One twip unit is 1/20 point. (A point
is a type measurement unit. In Windows it equals exactly 1/72 inch.) If the mapping mode is MM_TWIPS
and you want, for example, 12-point type, set the character height to 12 × 20, or 240, twips.

The Variable-Scale Mapping Modes

Windows provides two mapping modes, MM_ISOTROPIC and MM_ANISOTROPIC, that allow you to change
the scale factor as well as the origin. With these mapping modes, your drawing can change size as the user
changes the size of the window. Also, if you invert the scale of one axis, you can "flip" an image about the
other axis and you can define your own arbitrary fixed-scale factors.

With the MM_ISOTROPIC mode, a 1:1 aspect ratio is always preserved. In other words, a circle is always a
circle as the scale factor changes. With the MM_ANISOTROPIC mode, the x and y scale factors can change
independently. Circles can be squished into ellipses.

Here's an OnDraw function that draws an ellipse that fits exactly in its window:

void CMyView::OnDraw(CDC* pDC)
{
 CRect rectClient;

 GetClientRect(rectClient);
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1000, 1000);
 pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
 pDC->SetViewportOrg(rectClient.right / 2, rectClient.bottom / 2);

 pDC->Ellipse(CRect(-500, -500, 500, 500));
}
What's going on here? The functions SetWindowExt and SetViewportExt work together to set the scale,
based on the window's current client rectangle returned by the GetClientRect function. The resulting
window size is exactly 1000-by-1000 logical units. The SetViewportOrg function sets the origin to the
center of the window. Thus, a centered ellipse with a radius of 500 logical units fills the window exactly, as
illustrated in Figure 4-3.

Figure 4-3. A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-3. A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

Here are the formulas for converting logical units to device units:

x scale factor = x viewport extent / x window extent
y scale factor = y viewport extent / y window extent
device x = logical x × x scale factor + x origin offset
device y = logical y × y scale factor + y origin offset

Suppose the window is 448 pixels wide (rectClient.right). The right edge of the ellipse's client rectangle is
500 logical units from the origin. The x scale factor is 448/1000, and the x origin offset is 448/2 device units.
If you use the formulas shown on the previous page, the right edge of the ellipse's client rectangle comes
out to 448 device units, the right edge of the window. The x scale factor is expressed as a ratio (viewport
extent/window extent) because Windows device coordinates are integers, not floating-point values. The
extent values are meaningless by themselves.

If you substitute MM_ISOTROPIC for MM_ANISOTROPIC in the preceding example, the "ellipse" is always a
circle, as shown in Figure 4-4. It expands to fit the smallest dimension of the window rectangle.

Figure 4-4. A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

Coordinate Conversion

Once you set the mapping mode (plus the origin) of a device context, you can use logical coordinate
parameters for most CDC member functions. If you get the mouse cursor coordinates from a Windows
mouse message (the point parameter in OnLButtonDown), for example, you're dealing with device
coordinates. Many other MFC functions, particularly the member functions of class CRect, work correctly
only with device coordinates.

The CRect arithmetic functions use the underlying Win32 RECT arithmetic functions,
which assume that right is greater than left and bottom is greater than top. A rectangle
(0, 0, 1000, -1000) in MM_HIMETRIC coordinates, for example, has bottom less than
top and cannot be processed by functions such as CRect::PtInRect unless your program
first calls CRect::NormalizeRect, which changes the rectangle's data members to (0, -
1000, 1000, 0).

Furthermore, you're likely to need a third set of coordinates that we will call physical coordinates. Why do
you need another set? Suppose you're using the MM_LOENGLISH mapping mode in which a logical unit is
0.01 inch, but an inch on the screen represents a foot (12 inches) in the real world. Now suppose the user
works in inches and decimal fractions. A measurement of 26.75 inches translates to 223 logical units,
which must be ultimately translated to device coordinates. You will want to store the physical coordinates
as either floating-point numbers or scaled long integers to avoid rounding-off errors.

For the physical-to-logical translation you're on your own, but the Windows GDI takes care of the logical-
to-device translation for you. The CDC functions LPtoDP and DPtoLP translate between the two systems,
assuming the device context mapping mode and associated parameters have already been set. Your job is
to decide when to use each system. Here are a few rules of thumb:

Assume that the CDC member functions take logical coordinate parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assume that the CDC member functions take logical coordinate parameters.

Assume that the CWnd member functions take device coordinate parameters.

Do all hit-test operations in device coordinates. Define regions in device coordinates. Functions such
as CRect::PtInRect work best with device coordinates.

Store long-term values in logical or physical coordinates. If you store a point in device coordinates
and the user scrolls through a window, that point is no longer valid.

Suppose you need to know whether the mouse cursor is inside a rectangle when the user presses the left
mouse button. The code is shown here.

// m_rect is CRect data member of the derived view class with MM_LOENGLISH
// logical coordinates

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect = m_rect; // rect is a temporary copy of m_rect.
 CClientDC dc(this); // This is how we get a device context
 // for SetMapMode and LPtoDP
 // -- more in next chapter
 dc.SetMapMode(MM_LOENGLISH);
 dc.LPtoDP(rect); // rect is now in device coordinates
 if (rect.PtInRect(point)) {
 TRACE("Mouse cursor is inside the rectangle.\n");
 }
}
Notice the use of the TRACE macro (covered in Chapter 3).

As you'll soon see, it's better to set the mapping mode in the virtual CView function
OnPrepareDC instead of in the OnDraw function.

The EX04B Example—Converting to the MM_HIMETRIC Mapping Mode

EX04B is EX04A converted to MM_HIMETRIC coordinates. The EX04B project on the companion CD-ROM
uses new class names and filenames, but the instructions here take you through modifying the EX04A
code. Like EX04A, EX04B performs a hit-test so that the ellipse changes color only when you click inside
the bounding rectangle.

1. Use ClassWizard to override the virtual OnPrepareDC function. ClassWizard can override
virtual functions for selected MFC base classes, including CView. It generates the correct function
prototype in the class's header file and a skeleton function in the CPP file. Select the class name
CEx04aView in the Object IDs list, and then double-click on the OnPrepareDC function in the
Messages list. Edit the function as shown here:

void CEx04aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_HIMETRIC);
 CView::OnPrepareDC(pDC, pInfo);
}
The application framework calls the virtual OnPrepareDC function just before it calls OnDraw.

2. Edit the view class constructor. You must change the coordinate values for the ellipse rectangle.
That rectangle is now 4-by-4 centimeters instead of 200-by-200 pixels. Note that the y value must
be negative; otherwise, the ellipse will be drawn on the "virtual screen" right above your monitor!
Change the values as shown here:

CEx04aView::CEx04aView() : m_rectEllipse(0, 0, 4000, -4000)
{
 m_nColor = GRAY_BRUSH;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
3. Edit the OnLButtonDown function. This function must now convert the ellipse rectangle to

device coordinates in order to do the hit-test. Change the function as shown in the following code:

void CEx04aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(rectDevice);
 }
}

4. Build and run the EX04B program. The output should look similar to the output from EX04A,
except that the ellipse size will be different. If you try using Print Preview again, the ellipse should
appear much larger than it did in EX04A.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Scrolling View Window
As the lack of scroll bars in EX04A and EX04B indicates, the MFC CView class, the base class of
CEx04bView, doesn't directly support scrolling. Another MFC library class, CScrollView, does support
scrolling. CScrollView is derived from CView. We'll create a new program, EX04C, that uses CScrollView in
place of CView. All the coordinate conversion code you added in EX04B sets you up for scrolling.

The CScrollView class supports scrolling from the scroll bars but not from the keyboard. It's easy enough
to add keyboard scrolling, so we'll do it.

A Window Is Larger than What You See

If you use the mouse to shrink the size of an ordinary window, the contents of the window remain
anchored at the top left of the window, and items at the bottom and/or on the right of the window
disappear. When you expand the window, the items reappear. You can correctly conclude that a window is
larger than the viewport that you see on the screen. The viewport doesn't have to be anchored at the top
left of the window area, however. Through the use of the CWnd functions ScrollWindow and
SetWindowOrg, the CScrollView class allows you to move the viewport anywhere within the window,
including areas above and to the left of the origin.

Scroll Bars

Microsoft Windows makes it easy to display scroll bars at the edges of a window, but Windows by itself
doesn't make any attempt to connect those scroll bars to their window. That's where the CScrollView class
fits in. CScrollView member functions process the WM_HSCROLL and WM_VSCROLL messages sent by the
scroll bars to the view. Those functions move the viewport within the window and do all the necessary
housekeeping.

Scrolling Alternatives

The CScrollView class supports a particular kind of scrolling that involves one big window and a small
viewport. Each item is assigned a unique position in this big window. If, for example, you have 10,000
address lines to display, instead of having a window 10,000 lines long, you probably want a smaller
window with scrolling logic that selects only as many lines as the screen can display. In that case, you
should write your own scrolling view class derived from CView.

Microsoft Windows NT uses 32-bit numbers for logical coordinates, so your logical
coordinate space is almost unlimited. Microsoft Windows 95, however, still has some
16-bit components, so it uses 16-bit numbers for logical coordinates, limiting values to
the range -32,768 to 32,767. Scroll bars send messages with 16-bit values in both
operating systems. With these facts in mind, you probably want to write code to the
lowest common denominator, which is Windows 95.

The OnInitialUpdate Function

You'll be seeing more of the OnInitialUpdate function when you study the document-view architecture,
starting in Chapter 16. The virtual OnInitial-Update function is important here because it is the first
function called by the framework after your view window is fully created. The framework calls
OnInitialUpdate before it calls OnDraw for the first time, so OnInitialUpdate is the natural place for setting
the logical size and mapping mode for a scrolling view. You set these parameters with a call to the
CScrollView::SetScrollSizes function.

Accepting Keyboard Input

Keyboard input is really a two-step process. Windows sends WM_KEYDOWN and WM_KEYUP messages,
with virtual key codes, to a window, but before they get to the window they are translated. If an ANSI
character is typed (resulting in a WM_KEYDOWN message), the translation function checks the keyboard
shift status and then sends a WM_CHAR message with the proper code, either uppercase or lowercase.
Cursor keys and function keys don't have codes, so there's no translation to do. The window gets only the
WM_KEYDOWN and WM_KEYUP messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WM_KEYDOWN and WM_KEYUP messages.

You can use ClassWizard to map all these messages to your view. If you're expecting characters, map
WM_CHAR; if you're expecting other keystrokes, map WM_KEYDOWN. The MFC library neatly supplies the
character code or virtual key code as a handler function parameter.

The EX04C Example—Scrolling

The goal of EX04C is to make a logical window 20 centimeters wide by 30 centimeters high. The program
draws the same ellipse that it drew in the EX04B project. You could edit the EX04B source files to convert
the CView base class to a CScrollView base class, but it's easier to start over with AppWizard. AppWizard
generates the OnInitialUpdate override function for you. Here are the steps:

1. Run AppWizard to create EX04C.Use AppWizard to generate a program named EX04C in the
\vcpp32\ex04c subdirectory. In AppWizard Step 6, set the CEx04cView base class to CScrollView,
as shown here.

2. Add the m_rectEllipse and m_nColor data members in ex04cView.h. Insert the following
code by right-clicking the CEx04cView class in the Workspace window or by typing inside the
CEx04cView class declaration:

private:
 CRect m_rectEllipse;
 int m_nColor;
These are the same data members that were added in the EX04A and EX04B projects.

3. Modify the AppWizard-generated OnInitialUpdate function. Edit OnInitialUpdate in
ex04cView.cpp as shown here:

void CEx04cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(20000, 30000); // 20 by 30 cm
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizePage, sizeLine);
}

4. Use ClassWizard to add a message handler for the WM_KEYDOWN message. ClassWizard
generates the member function OnKeyDown along with the necessary message map entries and
prototypes. Edit the code as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx04cView::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 switch (nChar) {
 case VK_HOME:
 OnVScroll(SB_TOP, 0, NULL);
 OnHScroll(SB_LEFT, 0, NULL);
 break;
 case VK_END:
 OnVScroll(SB_BOTTOM, 0, NULL);
 OnHScroll(SB_RIGHT, 0, NULL);
 break;
 case VK_UP:
 OnVScroll(SB_LINEUP, 0, NULL);
 break;
 case VK_DOWN:
 OnVScroll(SB_LINEDOWN, 0, NULL);
 break;
 case VK_PRIOR:
 OnVScroll(SB_PAGEUP, 0, NULL);
 break;
 case VK_NEXT:
 OnVScroll(SB_PAGEDOWN, 0, NULL);
 break;
 case VK_LEFT:
 OnHScroll(SB_LINELEFT, 0, NULL);
 break;
 case VK_RIGHT:
 OnHScroll(SB_LINERIGHT, 0, NULL);
 break;
 default:
 break;
 }
}

5. Edit the constructor and the OnDraw function. Change the AppWizard-generated constructor
and the OnDraw function in ex04cView.cpp as follows:

CEx04cView::CEx04cView() : m_rectEllipse(0, 0, 4000, -4000)
{
 m_nColor = GRAY_BRUSH;
}
.
.
.
void CEx04cView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(
m_nColor);
 pDC->Ellipse(m_rectEllipse);
}
These functions are identical to those used in the EX04A and EX04B projects.

6. Map the WM_LBUTTONDOWN message and edit the handler. Make the following changes to
the ClassWizard-generated code:

void CEx04cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(rectDevice);
 }
}
This function is identical to the OnLButtonDown handler in the EX04B project. It calls OnPrepareDC
as before, but there is something different. The CEx04bView class doesn't have an overridden
OnPrepareDC function, so the call goes to CScrollView::OnPrepareDC. That function sets the
mapping mode based on the first parameter to SetScrollSizes, and it sets the window origin based
on the current scroll position. Even if your scroll view used the MM_TEXT mapping mode, you'd still
need the coordinate conversion logic to adjust for the origin offset.

7. Build and run the EX04C program. Check to be sure the mouse hit logic is working even if the
circle is scrolled partially out of the window. Also check the keyboard logic. The output should look
like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Windows Messages
The MFC library directly supports hundreds of Windows message-handling functions. In addition, you can
define your own messages. You will see plenty of message-handling examples in later chapters, including
handlers for menu items, child window controls, and so forth. In the meantime, five special Windows
messages deserve special attention: WM_CREATE, WM_CLOSE, WM_QUERYENDSESSION, WM_DESTROY,
and WM_NCDESTROY.

The WM_CREATE Message

This is the first message that Windows sends to a view. It is sent when the window's Create function is
called by the framework, so the window creation is not finished and the window is not visible. Therefore,
your OnCreate handler cannot call Windows functions that depend on the window being completely alive.
You can call such functions in an overridden OnInitialUpdate function, but you must be aware that in an
SDI application OnInitialUpdate can be called more than once in a view's lifetime.

The WM_CLOSE Message

Windows sends the WM_CLOSE message when the user closes a window from the system menu and when
a parent window is closed. If you implement the OnClose message map function in your derived view class,
you can control the closing process. If, for example, you need to prompt the user to save changes to a file,
you do it in OnClose. Only when you have determined that it is safe to close the window do you call the
base class OnClose function, which continues the close process. The view object and the corresponding
window are both still active.

When you're using the full application framework, you probably won't use the
WM_CLOSE message handler. You can override the CDocument::SaveModified virtual
function instead, as part of the application framework's highly structured program exit
procedure.

The WM_QUERYENDSESSION Message

Windows sends the WM_QUERYENDSESSION message to all running applications when the user exits
Windows. The OnQueryEndSession message map function handles it. If you write a handler for
WM_CLOSE, write one for WM_QUERYENDSESSION too.

The WM_DESTROY Message

Windows sends this message after the WM_CLOSE message, and the OnDestroy message map function
handles it. When your program receives this message, it should assume that the view window is no longer
visible on the screen but that it is still active and its child windows are still active. Use this message
handler to do cleanup that depends on the existence of the underlying window. Be sure to call the base
class OnDestroy function. You cannot "abort" the window destruction process in your view's OnDestroy
function. OnClose is the place to do that.

The WM_NCDESTROY Message

This is the last message that Windows sends when the window is being destroyed. All child windows have
already been destroyed. You can do final processing in OnNcDestroy that doesn't depend on a window
being active. Be sure to call the base class OnNcDestroy function.

Do not try to destroy a dynamically allocated window object in OnNcDestroy. That job
is reserved for a special CWnd virtual function, PostNcDestroy, that the base class
OnNcDestroy calls. MFC Technical Note #17 in the online documentation gives hints on
when it's appropriate to destroy a window object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5
The Graphics Device Interface, Colors, and Fonts
You've already seen some elements of the Graphics Device Interface (GDI). Anytime your program draws
to the display or the printer, it must use the GDI functions. The GDI provides functions for drawing points,
lines, rectangles, polygons, ellipses, bitmaps, and text. You can draw circles and squares intuitively once
you study the available functions, but text programming is more difficult.This chapter gives you the
information you need to start using the GDI effectively in the Microsoft Visual C++ environment. You'll
learn how to use fonts on both the display and the printer. You must wait until Chapter 19, however, for
details on how the framework controls the printer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Device Context Classes
In Chapter 3 and Chapter 4, the view class's OnDraw member function was passed a pointer to a device
context object. OnDraw selected a brush and then drew an ellipse. The Microsoft Windows device context
is the key GDI element that represents a physical device. Each C++ device context object has an
associated Windows device context, identified by a 32-bit handle of type HDC.

Microsoft Foundation Class (MFC) Library version 6.0 provides a number of device context classes. The
base class CDC has all the member functions (including some virtual functions) that you'll need for
drawing. Except for the oddball CMetaFileDC class, derived classes are distinct only in their constructors
and destructors. If you (or the application framework) construct an object of a derived device context
class, you can pass a CDC pointer to a function such as OnDraw. For the display, the usual derived classes
are CClientDC and CWindowDC. For other devices, such as printers or memory buffers, you construct
objects of the base class CDC.

The "virtualness" of the CDC class is an important feature of the application framework. In Chapter 19,
you'll see how easy it is to write code that works with both the printer and the display. A statement in
OnDraw such as

pDC->TextOut(0, 0, "Hello");
sends text to the display, the printer, or the Print Preview window, depending on the class of the object
referenced by the CView::OnDraw function's pDC parameter.

For display and printer device context objects, the application framework attaches the handle to the object.
For other device contexts, such as the memory device context that you'll see in Chapter 11, you must call
a member function after construction in order to attach the handle.

The Display Context Classes CClientDC and CWindowDC

Recall that a window's client area excludes the border, the caption bar, and the menu bar. If you create a
CClientDC object, you have a device context that is mapped only to this client area—you can't draw
outside it. The point (0, 0) usually refers to the upper-left corner of the client area. As you'll see later, an
MFC CView object corresponds to a child window that is contained inside a separate frame window, often
along with a toolbar, a status bar, and scroll bars. The client area of the view, then, does not include these
other windows. If the window contains a docked toolbar along the top, for example, (0, 0) refers to the
point immediately under the left edge of the toolbar.

If you construct an object of class CWindowDC, the point (0, 0) is at the upper-left corner of the nonclient
area of the window. With this whole-window device context, you can draw in the window's border, in the
caption area, and so forth. Don't forget that the view window doesn't have a nonclient area, so
CWindowDC is more applicable to frame windows than it is to view windows.

Constructing and Destroying CDC Objects

After you construct a CDC object, it is important to destroy it promptly when you're done with it. Microsoft
Windows limits the number of available device contexts, and if you fail to release a Windows device context
object, a small amount of memory is lost until your program exits. Most frequently, you'll construct a
device context object inside a message handler function such as OnLButtonDown. The easiest way to
ensure that the device context object is destroyed (and that the underlying Windows device context is
released) is to construct the object on the stack in the following way:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;

 CClientDC dc(this); // constructs dc on the stack
 dc.GetClipBox(rect); // retrieves the clipping rectangle
} // dc automatically released
Notice that the CClientDC constructor takes a window pointer as a parameter. The destructor for the
CClientDC object is called when the function returns. You can also get a device context pointer by using
the CWnd::GetDC member function, as shown in the following code. You must be careful here to call the
ReleaseDC function to release the device context.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;

 CDC* pDC = GetDC(); // a pointer to an internal dc
 pDC->GetClipBox(rect); // retrieves the clipping rectangle
 ReleaseDC(pDC); // Don't forget this
}

You must not destroy the CDC object passed by the pointer to OnDraw. The application
framework handles the destruction for you.

The State of the Device Context

You already know that a device context is required for drawing. When you use a CDC object to draw an
ellipse, for example, what you see on the screen (or on the printer's hard copy) depends on the current
"state" of the device context. This state includes the following:

Attached GDI drawing objects such as pens, brushes, and fonts

The mapping mode that determines the scale of items when they are drawn (You've already
experimented with the mapping mode in Chapter 4.)

Various details such as text alignment parameters and polygon filling mode

You have already seen, for example, that choosing a gray brush prior to drawing an ellipse results in the
ellipse having a gray interior. When you create a device context object, it has certain default
characteristics, such as a black pen for shape boundaries. All other state characteristics are assigned
through CDC class member functions. GDI objects are selected into the device context by means of the
overloaded SelectObject functions. A device context can, for example, have one pen, one brush, or one
font selected at any given time.

The CPaintDC Class

You'll need the CPaintDC class only if you override your view's OnPaint function. The default OnPaint calls
OnDraw with a properly set up device context, but sometimes you'll need display-specific drawing code.
The CPaintDC class is special because its constructor and destructor do housekeeping unique to drawing to
the display. Once you have a CDC pointer, however, you can use it as you would any other device context
pointer.

Here's a sample OnPaint function that creates a CPaintDC object:

void CMyView::OnPaint()
{
 CPaintDC dc(this);
 OnPrepareDC(&dc); // explained later
 dc.TextOut(0, 0, "for the display, not the printer");
 OnDraw(&dc); // stuff that's common to display and printer
}

For Win32 Programmers

The CPaintDC constructor calls BeginPaint for you, and the destructor calls EndPaint. If
you construct your device context on the stack, the EndPaint call is completely
automatic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GDI Objects
A Windows GDI object type is represented by an MFC library class. CGdiObject is the abstract base class
for the GDI object classes. A Windows GDI object is represented by a C++ object of a class derived from
CGdiObject. Here's a list of the GDI derived classes:

CBitmap—A bitmap is an array of bits in which one or more bits correspond to each display pixel.
You can use bitmaps to represent images, and you can use them to create brushes.

CBrush—A brush defines a bitmapped pattern of pixels that is used to fill areas with color.

CFont—A font is a complete collection of characters of a particular typeface and a particular size.
Fonts are generally stored on disk as resources, and some are device-specific.

CPalette—A palette is a color mapping interface that allows an application to take full advantage of
the color capability of an output device without interfering with other applications.

CPen—A pen is a tool for drawing lines and shape borders. You can specify a pen's color and
thickness and whether it draws solid, dotted, or dashed lines.

CRgn—A region is an area whose shape is a polygon, an ellipse, or a combination of polygons and
ellipses. You can use regions for filling, clipping, and mouse hit-testing.

Constructing and Destroying GDI Objects

You never construct an object of class CGdiObject; instead, you construct objects of the derived classes.
Constructors for some GDI derived classes, such as CPen and CBrush, allow you to specify enough
information to create the object in one step. Others, such as CFont and CRgn, require a second creation
step. For these classes, you construct the C++ object with the default constructor and then you call a
create function such as the CreateFont or CreatePolygonRgn function.

The CGdiObject class has a virtual destructor. The derived class destructors delete the Windows GDI
objects that are attached to the C++ objects. If you construct an object of a class derived from
CGdiObject, you must delete it prior to exiting the program. To delete a GDI object, you must first
separate it from the device context. You'll see an example of this in the next section.

Failure to delete a GDI object was a serious offense with Win16. GDI memory was not
released until the user restarted Windows. With Win32, however, the GDI memory is
owned by the process and is released when your program terminates. Still, an
unreleased GDI bitmap object can waste a significant amount of memory.

Tracking GDI Objects

OK, so you know that you have to delete your GDI objects and that they must first be disconnected from
their device contexts. How do you disconnect them? A member of the CDC::SelectObject family of
functions does the work of selecting a GDI object into the device context, and in the process it returns a
pointer to the previously selected object (which gets deselected in the process). Trouble is, you can't
deselect the old object without selecting a new object. One easy way to track the objects is to "save" the
original GDI object when you select your own GDI object and "restore" the original object when you're
finished. Then you'll be ready to delete your own GDI object. Here's an example:

void CMyView::OnDraw(CDC* pDC)
{
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
 // 2 pixels wide
 CPen* pOldPen = pDC->SelectObject(&newPen);

 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 pDC->SelectObject(pOldPen); // newPen is deselected
} // newPen automatically destroyed on exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

} // newPen automatically destroyed on exit
When a device context object is destroyed, all its GDI objects are deselected. Thus, if you know that a
device context will be destroyed before its selected GDI objects are destroyed, you don't have to deselect
the objects. If, for example, you declare a pen as a view class data member (and you initialize it when you
initialize the view), you don't have to deselect the pen inside OnDraw because the device context,
controlled by the view base class's OnPaint handler, will be destroyed first.

Stock GDI Objects

Windows contains a number of stock GDI objects that you can use. Because these objects are part of
Windows, you don't have to worry about deleting them. (Windows ignores requests to delete stock
objects.) The MFC library function CDC::SelectStockObject selects a stock object into the device context
and returns a pointer to the previously selected object, which it deselects. Stock objects are handy when
you want to deselect your own nonstock GDI object prior to its destruction. You can use a stock object as
an alternative to the "old" object you used in the previous example, as shown here:

void CMyView::OnDraw(CDC* pDC)
{
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
 // 2 pixels wide

 pDC->SelectObject(&newPen);
 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 pDC->SelectStockObject(BLACK_PEN); // newPen is deselected
} // newPen destroyed on exit
The Microsoft Foundation Class Reference lists, under CDC::SelectStockObject, the stock objects available
for pens, brushes, fonts, and palettes.

The Lifetime of a GDI Selection

For the display device context, you get a "fresh" device context at the beginning of each message handler
function. No GDI selections (or mapping modes or other device context settings) persist after your function
exits. You must, therefore, set up your device context from scratch each time. The CView class virtual
member function OnPrepareDC is useful for setting the mapping mode, but you must manage your own
GDI objects.

For other device contexts, such as those for printers and memory buffers, your assignments can last
longer. For these long-life device contexts, things get a little more complicated. The complexity results
from the temporary nature of GDI C++ object pointers returned by the SelectObject function. (The
temporary "object" will be destroyed by the application framework during the idle loop processing of the
application, sometime after the handler function returns the call. See MFC Technical Note #3 in the online
documentation.) You can't simply store the pointer in a class data member; instead, you must convert it to
a Windows handle (the only permanent GDI identifier) with the GetSafeHdc member function. Here's an
example:

// m_pPrintFont points to a CFont object created in CMyView's constructor
// m_hOldFont is a CMyView data member of type HFONT, initialized to 0

void CMyView::SwitchToCourier(CDC* pDC)
{
 m_pPrintFont->CreateFont(30, 10, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN,
 "Courier New"); // TrueType
 CFont* pOldFont = pDC->SelectObject(m_pPrintFont);

 // m_hOldFont is the CGdiObject public data member that stores
 // the handle
 m_hOldFont = (HFONT) pOldFont->GetSafeHandle();
}

void CMyView:SwitchToOriginalFont(CDC* pDC)
{
 // FromHandle is a static member function that returns an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // FromHandle is a static member function that returns an
 // object pointer
 if (m_hOldFont) {
 pDC->SelectObject(CFont::FromHandle(m_hOldFont));
 }
}

// m_pPrintFont is deleted in the CMyView destructor

Be careful when you delete an object whose pointer is returned by SelectObject. If
you've allocated the object yourself, you can delete it. If the pointer is temporary, as it
will be for the object initially selected into the device context, you won't be able to
delete the C++ object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Color Mapping
The Windows GDI provides a hardware-independent color interface. Your program supplies an "absolute"
color code, and the GDI maps that code to a suitable color or color combination on your computer's video
display. Most programmers of applications for Windows try to optimize their applications' color display for a
few common video card categories.

Standard Video Graphics Array Video Cards

A standard Video Graphics Array (VGA) video card uses 18-bit color registers and thus has a palette of
262,144 colors. Because of video memory constraints, however, the standard VGA board accommodates 4-
bit color codes, which means it can display only 16 colors at a time. Because Windows needs fixed colors
for captions, borders, scroll bars, and so forth, your programs can use only 16 "standard" pure colors. You
cannot conveniently access the other colors that the board can display.

Each Windows color is represented by a combination of 8-bit "red," "green," and "blue" values. The 16
standard VGA "pure" (nondithered) colors are shown in the table below.

Color-oriented GDI functions accept 32-bit COLORREF parameters that contain 8-bit color codes each for
red, green, and blue. The Windows RGB macro converts 8-bit red, green, and blue values to a COLORREF
parameter. The following statement, when executed on a system with a standard VGA board, constructs a
brush with a dithered color (one that consists of a pattern of pure-color pixels):

CBrush brush(RGB(128, 128, 192));

Red Green Blue Color

0 0 0 Black

0 0 255 Blue

0 255 0 Green

0 255 255 Cyan

255 0 0 Red

255 0 255 Magenta

255 255 0 Yellow

255 255 255 White

0 0 128 Dark blue

0 128 0 Dark green

0 128 128 Dark cyan

128 0 0 Dark red

128 0 128 Dark magenta

128 128 0 Dark yellow

128 128 128 Dark gray

192 192 192 Light gray

The following statement (in your view's OnDraw function) sets the text background to red:

pDC->SetBkColor(RGB(255, 0, 0));
The CDC functions SetBkColor and SetTextColor don't display dithered colors as the brush-oriented
drawing functions do. If the dithered color pattern is too complex, the closest matching pure color is
displayed.

256-Color Video Cards

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

256-Color Video Cards

Most video cards can accommodate 8-bit color codes at all resolutions, which means they can display 256
colors simultaneously. This 256-color mode is now considered to be the "lowest common denominator" for
color programming.

If Windows is configured for a 256-color display card, your programs are limited to 20 standard pure colors
unless you activate the Windows color palette system as supported by the MFC library CPalette class and
the Windows API, in which case you can choose your 256 colors from a total of more than 16.7 million.
Windows color palette programming is discussed in Chapter 11. In this chapter, we'll assume that the
Windows default color mapping is in effect.

With an SVGA 256-color display driver installed, you get the 16 VGA colors listed in the previous table plus
4 more, for a total of 20. The following table lists the 4 additional colors.

Red Green Blue Color

192 220 192 Money green

166 202 240 Sky blue

255 251 240 Cream

160 160 164 Medium gray

The RGB macro works much the same as it does with the standard VGA. If you specify one of the 20
standard colors for a brush, you get a pure color; otherwise, you get a dithered color. If you use the
PALETTERGB macro instead, you don't get dithered colors; you get the closest matching standard pure
color as defined by the current palette.

16-Bit-Color Video Cards

Most modern video cards support a resolution of 1024-by-768 pixels, and 1 MB of video memory can
support 8-bit color at this resolution. If a video card has 2 MB of memory, it can support 16-bit color, with
5 bits each for red, green, and blue. This means that it can display 32,768 colors simultaneously. That
sounds like a lot, but there are only 32 shades each of pure red, green, and blue. Often, a picture will look
better in 8-bit-color mode with an appropriate palette selected. A forest scene, for example, can use up to
236 shades of green. Palettes are not supported in 16-bit-color mode.

24-Bit-Color Video Cards

High-end cards (which are becoming more widely used) support 24-bit color. This 24-bit capability enables
the display of more than 16.7 million pure colors. If you're using a 24-bit card, you have direct access to
all the colors. The RGB macro allows you to specify the exact colors you want. You'll need 2.5 MB of video
memory, though, if you want 24-bit color at 1024-by-768-pixel resolution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fonts
Old-fashioned character-mode applications could display only the boring system font on the screen.
Windows provides multiple device-independent fonts in variable sizes. The effective use of these Windows
fonts can significantly energize an application with minimum programming effort. TrueType fonts, first
introduced with Windows version 3.1, are even more effective and are easier to program than the previous
device-dependent fonts. You'll see several example programs that use various fonts later in this chapter.

Fonts Are GDI Objects

Fonts are an integral part of the Windows GDI. This means that fonts behave the same way other GDI
objects do. They can be scaled and clipped, and they can be selected into a device context as a pen or a
brush can be selected. All GDI rules about deselection and deletion apply to fonts.

Choosing a Font

Choosing a Windows font used to be like going to a fruit stand and asking for "a piece of reddish-yellow
fruit, with a stone inside, that weighs about 4 ounces." You might have gotten a peach or a plum or even a
nectarine, and you could be sure that it wouldn't have weighed exactly 4 ounces. Once you took
possession of the fruit, you could weigh it and check the fruit type. Now, with TrueType, you can specify
the fruit type, but you still can't specify the exact weight.

Today you can choose between two font types—device-independent TrueType fonts and device-dependent
fonts such as the Windows display System font and the LaserJet LinePrinter font—or you can specify a font
category and size and let Windows select the font for you. If you let Windows select the font, it will choose
a TrueType font if possible. The MFC library provides a font selection dialog box tied to the currently
selected printer, so there's little need for printer font guesswork. You let the user select the exact font and
size for the printer, and then you approximate the display the best you can.

Printing with Fonts

For text-intensive applications, you'll probably want to specify printer font sizes in points (1 point = 1/72
inch). Why? Most, if not all, built-in printer fonts are defined in terms of points. The LaserJet LinePrinter
font, for example, comes in one size, 8.5 point. You can specify TrueType fonts in any point size. If you
work in points, you need a mapping mode that easily accommodates points. That's what MM_TWIPS is for.
An 8.5-point font is 8.5 × 20, or 170, twips, and that's the character height you'll want to specify.

Displaying Fonts

If you're not worried about the display matching the printed output, you have a lot of flexibility. You can
choose any of the scalable Windows TrueType fonts, or you can choose the fixed-size system fonts (stock
objects). With the TrueType fonts, it doesn't much matter what mapping mode you use; simply choose a
font height and go for it. No need to worry about points.

Matching printer fonts to make printed output match the screen presents some problems, but TrueType
makes it easier than it used to be. Even if you're printing with TrueType fonts, however, you'll never quite
get the display to match the printer output. Why? Characters are ultimately displayed in pixels (or dots),
and the width of a string of characters is equal to the sum of the pixel widths of its characters, possibly
adjusted for kerning. The pixel width of the characters depends on the font, the mapping mode, and the
resolution of the output device. Only if both the printer and the display were set to MM_TEXT mode (1 pixel
or dot = 1 logical unit) would you get an exact correspondence. If you're using the CDC::GetTextExtent
function to calculate line breaks, the screen breakpoint will occasionally be different from the printer
breakpoint.

In the MFC Print Preview mode, which we'll examine closely in Chapter 19, line breaks
occur exactly as they do on the printer, but the print quality in the preview window
suffers in the process.

If you're matching a printer-specific font on the screen, TrueType again makes the job easier. Windows
substitutes the closest matching TrueType font. For the 8.5-point LinePrinter font, Windows comes pretty
close with its Courier New font.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Logical Inches and Physical Inches on the Display

The CDC member function GetDeviceCaps returns various display measurements that are important to
your graphics programming. The six described below provide information about the display size. The
values listed are for a typical display card configured for a resolution of 640-by-480 pixels with Microsoft
Windows NT 4.0.

Index Description Value

HORZSIZE Physical width in millimeters 320

VERTSIZE Physical height in millimeters 240

HORZRES Width in pixels 640

VERTRES Height in raster lines 480

LOGPIXELSX Horizontal dots per logical inch 96

LOGPIXELSY Vertical dots per logical inch 96

The indexes HORZSIZE and VERTSIZE represent the physical dimensions of your display. (These indexes
might not be true since Windows doesn't know what size display you have connected to your video
adapter.) You can also calculate a display size by multiplying HORZRES and VERTRES by LOGPIXELSX and
LOGPIXELSY, respectively. The size calculated this way is known as the logical size of the display. Using
the values above and the fact that there are 25.4 millimeters per inch, we can quickly calculate the two
display sizes for a 640-by-480 pixel display under Windows NT 4.0. The physical display size is 12.60-by-
9.45 inches, and the logical size is 6.67-by-5.00 inches. So the physical size and the logical size need not
be the same.

For Windows NT 4.0, it turns out that HORZSIZE and VERTSIZE are independent of the display resolution,
and LOGPIXELSX and LOGPIXELSY are always 96. So the logical size changes for different display
resolutions, but the physical size does not. For Windows 95, the logical size and the physical size are equal,
so both change with the display resolution. (At a resolution of 640-by-480 pixels with Windows 95,
HORZSIZE is 169 and VERTSIZE is 127.)

Whenever you use a fixed mapping mode such as MM_HIMETRIC or MM_TWIPS, the display driver uses the
physical display size to do the mapping.

So, for Windows NT, text is smaller on a small monitor; but that's not what you want. Instead, you want
your font sizes to correspond to the logical display size, not the physical size.

You can invent a special mapping mode, called logical twips, for which one logical unit is equal to 1/1440
logical inch. This mapping mode is independent of the operating system and display resolution and is used
by programs such as Microsoft Word. Here is the code that sets the mapping mode to logical twips:

pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(1440, 1440);
pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 -pDC->GetDeviceCaps(LOGPIXELSY));

From the Windows Control Panel, you can adjust both the display font size and the
display resolution. If you change the display font size from the default 100 percent to
200 percent, HORZSIZE becomes 160, VERTSIZE becomes 120, and the dots-per-inch
value becomes 192. In that case, the logical size is divided by 2, and all text drawn
with the logical twips mapping mode is doubled in size.

Computing Character Height

Five font height measurement parameters are available through the CDC function GetTextMetrics, but only
three are significant. Figure 5-1 shows the important font measurements. The tmHeight parameter
represents the full height of the font, including descenders (for the characters g, j, p, q, and y) and any
diacritics that appear over capital letters. The tmExternalLeading parameter is the distance between the
top of the diacritic and the bottom of the descender from the line above. The sum of tmHeight and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

top of the diacritic and the bottom of the descender from the line above. The sum of tmHeight and
tmExternalLeading is the total character height. The value of tmExternalLeading can be 0.

Figure 5-1. Font height measurements.

You would think that tmHeight would represent the font size in points. Wrong! Another GetTextMetrics
parameter, tmInternalLeading, comes into play. The point size corresponds to the difference between
tmHeight and tmInternalLeading. With the MM_TWIPS mapping mode in effect, a selected 12-point font
might have a tmHeight value of 295 logical units and a tmInter-nalLeading value of 55. The font's net
height of 240 corresponds to the point size of 12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX05A Example
This example sets up a view window with the logical twips mapping mode. A text string is displayed in 10
point sizes with the Arial TrueType font. Here are the steps for building the application:

1. Run AppWizard to generate the EX05A project. Start by choosing New from the File menu, and
then select MFC AppWizard (exe) on the Project tab. Select Single Document and deselect Printing
And Print Preview; accept all the other default settings. The options and the default class names are
shown in the following illustration.

2. Use ClassWizard to override the OnPrepareDC function in the CEx05aView class.
Edit the code in ex05aView.cpp as follows:

void CEx05aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1440, 1440);
 pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 -pDC->GetDeviceCaps(LOGPIXELSY));
}

3. Add a private ShowFont helper function to the view class. Add the prototype shown
below in ex05aView.h:

private:
 void ShowFont(CDC* pDC, int& nPos, int nPoints);
Then add the function itself in ex05aView.cpp:

void CEx05aView::ShowFont(CDC* pDC, int& nPos, int nPoints)
{
 TEXTMETRIC tm;
 CFont fontText;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CFont fontText;
 CString strText;
 CSize sizeText;
 fontText.CreateFont(-nPoints * 20, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = (CFont*) pDC->SelectObject(&fontText);
 pDC->GetTextMetrics(&tm);
 TRACE("points = %d, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", nPoints, tm.tmHeight,
 tm.tmInternalLeading, tm.tmExternalLeading);
 strText.Format("This is %d-point Arial", nPoints);
 sizeText = pDC->GetTextExtent(strText);
 TRACE("string width = %d, string height = %d\n", sizeText.cx,
 sizeText.cy);
 pDC->TextOut(0, nPos, strText);
 pDC->SelectObject(pOldFont);
 nPos -= tm.tmHeight + tm.tmExternalLeading;
}

4. Edit the OnDraw function in ex05aView.cpp. AppWizard always generates a skeleton
OnDraw function for your view class. Find the function, and replace the code with the
following:

void CEx05aView::OnDraw(CDC* pDC)
{
 int nPosition = 0;
 for (int i = 6; i <= 24; i += 2) {
 ShowFont(pDC, nPosition, i);
 }
 TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",
 pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
 TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
 pDC->GetDeviceCaps(HORZSIZE),
 pDC->GetDeviceCaps(VERTSIZE));
 TRACE("HORZRES = %d, VERTRES = %d\n",
 pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));
}

5. Build and run the EX05A program. You must run the program from the debugger if you
want to see the output from the TRACE statements. You can choose Go from the Start
Debug submenu of the Build menu in Visual C++, or click the following button on the Build
toolbar.

The resulting output (assuming the use of a standard VGA card) looks like the screen shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the output string sizes don't quite correspond to the point sizes. This discrepancy
results from the font engine's conversion of logical units to pixels. The program's trace
output, partially shown below, shows the printout of font metrics. (The numbers depend on
your display driver and your video driver.)

points = 6, tmHeight = 150, tmInternalLeading = 30, tmExternalLeading = 4
string width = 990, string height = 150
points = 8, tmHeight = 210, tmInternalLeading = 45, tmExternalLeading = 5
string width = 1380, string height = 210
points = 10, tmHeight = 240, tmInternalLeading = 45, tmExternalLeading = 6
string width = 1770, string height = 240
points = 12, tmHeight = 270, tmInternalLeading = 30, tmExternalLeading = 8
string width = 2130, string height = 270

The EX05A Program Elements

Following is a discussion of the important elements in the EX05A example.

Setting the Mapping Mode in the OnPrepareDC Function

The application framework calls OnPrepareDC prior to calling OnDraw, so the OnPrepareDC function
is the logical place to prepare the device context. If you had other message handlers that needed
the correct mapping mode, those functions would have contained calls to OnPrepareDC.

The ShowFont Private Member Function

ShowFont contains code that is executed 10 times in a loop. With C, you would have made this a
global function, but with C++ it's better to make it a private class member function, sometimes
known as a helper function.

This function creates the font, selects it into the device context, prints a string to the window, and
then deselects the font. If you choose to include debug information in the program, ShowFont also
displays useful font metrics information, including the actual width of the string.

Calling CFont::CreateFont

This call includes lots of parameters, but the important ones are the first two—the font height and
width. A width value of 0 means that the aspect ratio of the selected font will be set to a value
specified by the font designer. If you put a nonzero value here, as you'll see in the next example,
you can change the font's aspect ratio.

If you want your font to be a specific point size, the CreateFont font height
parameter (the first parameter) must be negative. If you're using the
MM_TWIPS mapping mode for a printer, for example, a height parameter of -
240 ensures a true 12-point font, with tmHeight - tmInternalLeading = 240. A
+240 height parameter gives you a smaller font, with tmHeight = 240.

The last CreateFont parameter specifies the font name, in this case the Arial TrueType font. If you
had used NULL for this parameter, the FF_SWISS specification (which indicates a proportional font
without serifs) would have caused Windows to choose the best matching font, which, depending on
the specified size, might have been the System font or the Arial TrueType font. The font name takes
precedence. If you had specified FF_ROMAN (which indicates a proportional font with serifs) with
Arial, for example, you would have gotten Arial.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX05B Example
This program is similar to EX05A except that it shows multiple fonts. The mapping mode is
MM_ANISOTROPIC, with the scale dependent on the window size. The characters change size along with
the window. This program effectively shows off some TrueType fonts and contrasts them with the old-style
fonts. Here are the steps for building the application:

1. Run AppWizard to generate the EX05B project. The options and the default class names are
shown here.

2. Use ClassWizard to override the OnPrepareDC function in the CEx05bView class. Edit the
code in ex05bView.cpp as shown below.

void CEx05bView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 CRect clientRect;
 GetClientRect(clientRect);
 pDC->SetMapMode(MM_ANISOTROPIC); // +y = down
 pDC->SetWindowExt(400, 450);
 pDC->SetViewportExt(clientRect.right, clientRect.bottom);
 pDC->SetViewportOrg(0, 0);
}

3. Add a private TraceMetrics helper function to the view class. Add the following prototype in
ex05bView.h:

private:
 void TraceMetrics(CDC* pDC);
Then add the function itself in ex05bView.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx05bView::TraceMetrics(CDC* pDC)
{
 TEXTMETRIC tm;
 char szFaceName[100];
 pDC->GetTextMetrics(&tm);
 pDC->GetTextFace(99, szFaceName);
 TRACE("font = %s, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", szFaceName, tm.tmHeight,
 tm.tmInternalLeading, tm.tmExternalLeading);
}

4. Edit the OnDraw function in ex05bView.cpp. AppWizard always generates a skeleton OnDraw
function for your view class. Find the function, and edit the code as follows:

void CEx05bView::OnDraw(CDC* pDC)
{
 CFont fontTest1, fontTest2, fontTest3, fontTest4;
 fontTest1.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = pDC->SelectObject(&fontTest1);
 TraceMetrics(pDC);
 pDC->TextOut(0, 0, "This is Arial, default width");

 fontTest2.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "Courier");
 // not TrueType
 pDC->SelectObject(&fontTest2);
 TraceMetrics(pDC);
 pDC->TextOut(0, 100, "This is Courier, default width");

 fontTest3.CreateFont(50, 10, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_ROMAN, NULL);
 pDC->SelectObject(&fontTest3);
 TraceMetrics(pDC);
 pDC->TextOut(0, 200, "This is generic Roman, variable width");
 fontTest4.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "LinePrinter");
 pDC->SelectObject(&fontTest4);
 TraceMetrics(pDC);
 pDC->TextOut(0, 300, "This is LinePrinter, default width");
 pDC->SelectObject(pOldFont);
}

5. Build and run the EX05B program. Run the program from the debugger to see the TRACE
output. The program's window is shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resize the window to make it smaller, and watch the font sizes change. Compare this window with
the previous one.

If you continue to downsize the window, notice how the Courier font stops shrinking after a certain
size and how the Roman font width changes.

The EX05B Program Elements

Following is a discussion of the important elements in the EX05B example.

The OnDraw Member Function

The OnDraw function displays character strings in four fonts, as follows:

fontTest1—The TrueType font Arial with default width selection.

fontTest2—The old-style font Courier with default width selection. Notice how jagged the font
appears in larger sizes.

fontTest3—The generic Roman font for which Windows supplies the TrueType font Times New
Roman with programmed width selection. The width is tied to the horizontal window scale, so the
font stretches to fit the window.

fontTest4—The LinePrinter font is specified, but because this is not a Windows font for the display,
the font engine falls back on the FF_MODERN specification and chooses the TrueType Courier New
font.

The TraceMetrics Helper Function

The TraceMetrics helper function calls CDC::GetTextMetrics and CDC::GetTextFace to get the current font's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The TraceMetrics helper function calls CDC::GetTextMetrics and CDC::GetTextFace to get the current font's
parameters, which it prints in the Debug window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX05C Example—CScrollView Revisited
You saw the CScrollView class in Chapter 4 (in EX04C). The EX05C program allows the user to move an
ellipse with a mouse by "capturing" the mouse, using a scrolling window with the MM_LOENGLISH mapping
mode. Keyboard scrolling is left out, but you can add it by borrowing the OnKeyDown member function
from EX04C.

Instead of a stock brush, we'll use a pattern brush for the ellipse—a real GDI object. There's one
complication with pattern brushes: you must reset the origin as the window scrolls; otherwise, strips of the
pattern don't line up and the effect is ugly.

As with the EX04C program, this example involves a view class derived from CScrollView. Here are the
steps to create the application:

1. Run AppWizard to generate the EX05C project. Be sure to set the view base class to
CScrollView. The options and the default class names are shown here.

2. Edit the CEx05cView class header in the file ex05cView.h.Add the following lines in the class
CEx05cView declaration:

private:
 const CSize m_sizeEllipse; //
 logical
 CPoint m_pointTopLeft; // logical, top left of ellipse rectangle
 CSize m_sizeOffset; // device, from rect top left

 // to capture point
 BOOL m_bCaptured;

3. Use ClassWizard to add three message handlers to the CEx05cView class. Add the message
handlers as follows:

Message Member Function

WM_LBUTTONDOWN OnLButtonDown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WM_LBUTTONDOWN OnLButtonDown

WM_LBUTTONUP OnLButtonUp

WM_MOUSEMOVE OnMouseMove

4. Edit the CEx05cView message handler functions. ClassWizard generated the skeletons for the
functions listed in the preceding step. Find the functions in ex05cView.cpp, and code them as
follows.

void CEx05cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rectEllipse(m_pointTopLeft, m_sizeEllipse); // still logical
 CRgn circle;
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.LPtoDP(rectEllipse); // Now it's in device coordinates
 circle.CreateEllipticRgnIndirect(rectEllipse);
 if (circle.PtInRegion(point)) {
 // Capturing the mouse ensures subsequent LButtonUp message
 SetCapture();
 m_bCaptured = TRUE;
 CPoint pointTopLeft(m_pointTopLeft);
 dc.LPtoDP(&pointTopLeft);
 m_sizeOffset = point - pointTopLeft; // device coordinates
 // New mouse cursor is active while mouse is captured
 ::SetCursor(::LoadCursor(NULL, IDC_CROSS));
 }
}

void CEx05cView::OnLButtonUp(UINT nFlags, CPoint point)
{
 if (m_bCaptured) {
 ::ReleaseCapture();
 m_bCaptured = FALSE;
 }
}

void CEx05cView::OnMouseMove(UINT nFlags, CPoint point)
{
 if (m_bCaptured) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectOld(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectOld);
 InvalidateRect(rectOld, TRUE);
 m_pointTopLeft = point - m_sizeOffset;
 dc.DPtoLP(&m_pointTopLeft);
 CRect rectNew(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectNew);
 InvalidateRect(rectNew, TRUE);
 }
}

5. Edit the CEx05cView constructor, the OnDraw function, and the OnInitialUpdate function.
AppWizard generated these skeleton functions. Find them in ex05cView.cpp, and code them as
follows:

CEx05cView::CEx05cView() : m_sizeEllipse(100, -100),
 m_pointTopLeft(0, 0),
 m_sizeOffset(0, 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_sizeOffset(0, 0)
{
 m_bCaptured = FALSE;
}

void CEx05cView::OnDraw(CDC* pDC)
{
 CBrush brushHatch(HS_DIAGCROSS, RGB(255, 0, 0));
 CPoint point(0, 0); // logical (0, 0)
 pDC->LPtoDP(&point); // In device coordinates,
 pDC->SetBrushOrg(point); // align the brush with
 // the window origin
 pDC->SelectObject(&brushHatch);
 pDC->Ellipse(CRect(m_pointTopLeft, m_sizeEllipse));
 pDC->SelectStockObject(BLACK_BRUSH); // Deselect brushHatch
 pDC->Rectangle(CRect(100, -100, 200, -200)); // Test invalid rect
}

void CEx05cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage, sizeLine);
}

6. Build and run the EX05C program. The program allows an ellipse to be dragged with the mouse,
and it allows the window to be scrolled through. The program's window should look like the one
shown here. As you move the ellipse, observe the black rectangle. You should be able to see the
effects of invalidating the rectangle.

The EX05C Program Elements

Following is a discussion of the important elements in the EX05C example.

The m_sizeEllipse and m_pointTopLeft Data Members

Rather than store the ellipse's bounding rectangle as a single CRect object, the program separately stores

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rather than store the ellipse's bounding rectangle as a single CRect object, the program separately stores
its size (m_sizeEllipse) and the position of its top left corner (m_pointTopLeft). To move the ellipse, the
program merely recalculates m_pointTopLeft, and any round-off errors in the calculation won't affect the
size of the ellipse.

The m_sizeOffset Data Member

When OnMouseMove moves the ellipse, the relative position of the mouse within the ellipse must be the
same as it was when the user first pressed the left mouse button. The m_sizeOffset object stores this
original offset of the mouse from the top left corner of the ellipse rectangle.

The m_bCaptured Data Member

The m_bCaptured Boolean variable is set to TRUE when mouse tracking is in progress.

The SetCapture and ReleaseCapture Functions

SetCapture is the CWnd member function that "captures" the mouse, such that mouse movement
messages are sent to this window even if the mouse cursor is outside the window. An unfortunate side
effect of this function is that the ellipse can be moved outside the window and "lost." A desirable and
necessary effect is that all subsequent mouse messages are sent to the window, including the
WM_LBUTTONUP message, which would otherwise be lost. The Win32 ReleaseCapture function turns off
mouse capture.

The SetCursor and LoadCursor Win32 Functions

The MFC library does not "wrap" some Win32 functions. By convention, we use the C++ scope resolution
operator (::) when calling Win32 functions directly. In this case, there is no potential for conflict with a
CView member function, but you can deliberately choose to call a Win32 function in place of a class
member function with the same name. In that case, the :: operator ensures that you call the globally
scoped Win32 function.

When the first parameter is NULL, the LoadCursor function creates a cursor resource from the specified
predefined mouse cursor that Windows uses. The SetCursor function activates the specified cursor
resource. This cursor remains active as long as the mouse is captured.

The CScrollView::OnPrepareDC Member Function

The CView class has a virtual OnPrepareDC function that does nothing. The CScrollView class implements
the function for the purpose of setting the view's mapping mode and origin, based on the parameters that
you passed to SetScrollSizes in OnCreate. The application framework calls OnPrepareDC for you prior to
calling OnDraw, so you don't need to worry about it. You must call OnPrepareDC yourself in any other
message handler function that uses the view's device context, such as OnLButtonDown and OnMouseMove.

The OnMouseMove Coordinate Transformation Code

As you can see, this function contains several translation statements. The logic can be summarized by the
following steps:

1. Construct the previous ellipse rectangle and convert it from logical to device coordinates.

2. Invalidate the previous rectangle.

3. Update the top left coordinate of the ellipse rectangle.

4. Construct the new rectangle and convert it to device coordinates.

5. Invalidate the new rectangle.

The function calls InvalidateRect twice. Windows "saves up" the two invalid rectangles and computes a new
invalid rectangle that is the union of the two, intersected with the client rectangle.

The OnDraw Function

The SetBrushOrg call is necessary to ensure that all of the ellipse's interior pattern lines up when the user
scrolls through the view. The brush is aligned with a reference point, which is at the top left of the logical
window, converted to device coordinates. This is a notable exception to the rule that CDC member
functions require logical coordinates.

The CScrollView SetScaleToFitSize Mode

The CScrollView class has a stretch-to-fit mode that displays the entire scrollable area in the view window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CScrollView class has a stretch-to-fit mode that displays the entire scrollable area in the view window.
The Windows MM_ANISOTROPIC mapping mode comes into play, with one restriction: positive y values
always increase in the down direction, as in MM_TEXT mode.

To use the stretch-to-fit mode, make the following call in your view's function in place of the call to
SetScrollSizes:

SetScaleToFitSize(sizeTotal);
You can make this call in response to a Shrink To Fit menu command. Thus, the display can toggle
between scrolling mode and shrink-to-fit mode.

Using the Logical Twips Mapping Mode in a Scrolling View

The MFC CScrollView class allows you to specify only standard mapping modes. The EX19A example in
Chapter 19 shows a new class CLogScrollView that accommodates the logical twips mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6
The Modal Dialog and Windows Common Controls
Almost every Windows-based program uses a dialog window to interact with the user. The dialog might be
a simple OK message box, or it might be a complex data entry form. Calling this powerful element a dialog
"box" is an injustice. A dialog is truly a window that receives messages, that can be moved and closed, and
that can even accept drawing instructions in its client area.

The two kinds of dialogs are modal and modeless. This chapter explores the most common type, the modal
dialog. In the first of this chapter's two examples, you'll use all the familiar "old" controls, such as the edit
control and the list box, inherited from Win16. In the second example, you'll use the Windows common
controls, which Microsoft Windows 95 introduced. In Chapter 7 we'll take a look at the modeless dialog and
the special-purpose Windows common dialogs for opening files, selecting fonts, and so forth. In Chapter 8
we'll examine ActiveX Controls. Then Chapter 9 discusses the new Internet Explorer control classes,
introduced in MFC 6.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modal vs. Modeless Dialogs
The CDialog base class supports both modal and modeless dialogs. With a modal dialog, such as the Open
File dialog, the user cannot work elsewhere in the same application (more correctly, in the same user
interface thread) until the dialog is closed. With a modeless dialog, the user can work in another window in
the application while the dialog remains on the screen. Microsoft Word's Find and Replace dialog is a good
example of a modeless dialog; you can edit your document while the dialog is open.

Your choice of a modal or a modeless dialog depends on the application. Modal dialogs are much easier to
program, which might influence your decision.

FYI

The 16-bit versions of Windows support a special kind of modal dialog called a system
modal dialog, which prevents the user from switching to another application. Win32
also supports system modal dialogs but with weird results: the user can switch to
another application, but the dialog remains as the top window. You probably don't want
to use system modal dialogs in Win32 applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resources and Controls
So now you know a dialog is a window. What makes the dialog different from the CView windows you've
seen already? For one thing, a dialog window is almost always tied to a Windows resource that identifies
the dialog's elements and specifies their layout. Because you can use the dialog editor (one of the resource
editors) to create and edit a dialog resource, you can quickly and efficiently produce dialogs in a visual
manner.

A dialog contains a number of elements called controls. Dialog controls include edit controls (aka text
boxes), buttons, list boxes, combo boxes, static text (aka labels), tree views, progress indicators, sliders,
and so forth. Windows manages these controls using special grouping and tabbing logic, and that relieves
you of a major programming burden. The dialog controls can be referenced either by a CWnd pointer
(because they are really windows) or by an index number (with an associated #define constant) assigned
in the resource. A control sends a message to its parent dialog in response to a user action such as typing
text or clicking a button.

The Microsoft Foundation Class (MFC) Library and ClassWizard work together to enhance the dialog logic
that Windows provides. ClassWizard generates a class derived from CDialog and then lets you associate
dialog class data members with dialog controls. You can specify editing parameters such as maximum text
length and numeric high and low limits. ClassWizard generates statements that call the MFC data exchange
and data validation functions to move information back and forth between the screen and the data
members.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming a Modal Dialog
Modal dialogs are the most frequently used dialogs. A user action (a menu choice, for example) brings up a
dialog on the screen, the user enters data in the dialog, and then the user closes the dialog. Here's a
summary of the steps to add a modal dialog to an existing project:

1. Use the dialog editor to create a dialog resource that contains various controls. The dialog editor
updates the project's resource script (RC) file to include your new dialog resource, and it updates
the project's resource.h file with corresponding #define constants.

2. Use ClassWizard to create a dialog class that is derived from CDialog and attached to the resource
created in step 1. ClassWizard adds the associated code and header file to the Microsoft Visual C++
project.

When ClassWizard generates your derived dialog class, it generates a constructor that
invokes a CDialog modal constructor, which takes a resource ID as a parameter. Your
generated dialog header file contains a class enumerator constant IDD that is set to the
dialog resource ID. In the CPP file, the constructor implementation looks like this:

CMyDialog::CMyDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CMyDialog::IDD, pParent)
{
 // initialization code here
}
The use of enum IDD decouples the CPP file from the resource IDs that are defined in
the project's resource.h file.

3. Use ClassWizard to add data members, exchange functions, and validation functions to the dialog
class.

4. Use ClassWizard to add message handlers for the dialog's buttons and other event-generating
controls.

5. Write the code for special control initialization (in OnInitDialog) and for the message handlers. Be
sure the CDialog virtual member function OnOK is called when the user closes the dialog (unless the
user cancels the dialog). (Note: OnOK is called by default.)

6. Write the code in your view class to activate the dialog. This code consists of a call to your dialog
class's constructor followed by a call to the DoModal dialog class member function. DoModal returns
only when the user exits the dialog window.

Now we'll proceed with a real example, one step at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Dialog That Ate Cincinnati—The EX06A Example
Let's not mess around with wimpy little dialogs. We'll build a monster dialog that contains almost every
kind of control. The job will be easy because Visual C++'s dialog editor is there to help us. The finished
product is shown in Figure 6-1.

Figure 6-1. The finished dialog in action.

As you can see, the dialog supports a human resources application. These kinds of business programs are
fairly boring, so the challenge is to produce something that could not have been done with 80-column
punched cards. The program is brightened a little by the use of scroll bar controls for "Loyalty" and
"Reliability." Here is a classic example of direct action and visual representation of data! ActiveX controls
could add more interest, but you'll have to wait until Chapter 8 for details on ActiveX.

Building the Dialog Resource

Here are the steps for building the dialog resource:

1. Run AppWizard to generate a project called EX06A. Choose New from Visual C++'s File menu,
and then click the Projects tab and select MFC AppWizard (exe). Accept all the defaults but two:
select Single Document and deselect Printing And Print Preview. The options and the default class
names are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As usual, AppWizard sets the new project as the current project.

2. Create a new dialog resource with ID IDD_DIALOG1. Choose Resource from Visual C++'s
Insert menu. The Insert Resource dialog appears. Click on Dialog, and then click New. Visual C++
creates a new dialog resource, as shown here.

The dialog editor assigns the resource ID IDD_DIALOG1 to the new dialog. Notice that the dialog
editor inserts OK and Cancel buttons for the new dialog.

3. Size the dialog and assign a caption. Enlarge the dialog box to about 5-by-7 inches.

When you right-click on the new dialog and choose Properties from the pop-up menu, the Dialog
Properties dialog appears. Type in the caption for the new dialog as shown in the screen below. The
state of the pushpin button in the upper-left corner determines whether the Dialog Properties dialog
stays on top of other windows. (When the pushpin is "pushed," the dialog stays on top of other
windows.) Click the Toggle Grid button (on the Dialog toolbar) to reveal the grid and to help align
controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Set the dialog style. Click on the Styles tab at the top of the Dialog Properties dialog, and then set
the style properties as shown in the following illustration.

5. Set additional dialog styles. Click on the More Styles tab at the top of the Dialog Properties
dialog, and then set the style properties as shown here.

6. Add the dialog's controls. Use the control palette to add each control. (If the control palette is
not visible, right-click any toolbar and choose Controls from the list.) Drag controls from the control
palette to the new dialog, and then position and size the controls, as shown in Figure 6-1. Here are
the control palette's controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dialog editor displays the position and size of each control in the status bar.
The position units are special "dialog units," or DLUs, not device units. A
horizontal DLU is the average width of the dialog font divided by 4. A vertical
DLU is the average height of the font divided by 8. The dialog font is normally 8-
point MS Sans Serif.

Here's a brief description of the dialog's controls:

The static text control for the Name field. A static text control simply paints characters
on the screen. No user interaction occurs at runtime. You can type the text after you position
the bounding rectangle, and you can resize the rectangle as needed. This is the only static
text control you'll see listed in text, but you should also create the other static text controls
as shown earlier in Figure 6-1. Follow the same procedure for the other static text controls in
the dialog. All static text controls have the same ID, but that doesn't matter because the
program doesn't need to access any of them.

The Name edit control. An edit control is the primary means of entering text in a dialog.
Right-click the control, and then choose Properties. Change this control's ID from IDC_EDIT1
to IDC_NAME. Accept the defaults for the rest of the properties. Notice that the default sets
Auto HScroll, which means that the text scrolls horizontally when the box is filled.

The SS Nbr (social security number) edit control. As far as the dialog editor is
concerned, the SS Nbr control is exactly the same as the Name edit control. Simply change
its ID to IDC_SSN. Later you will use ClassWizard to make this a numeric field.

The Bio (biography) edit control. This is a multiline edit control. Change its ID to
IDC_BIO, and then set its properties as shown here.

The Category group box. This control serves only to group two radio buttons visually.
Type in the caption Category. The default ID is sufficient.

The Hourly and Salary radio buttons. Position these radio buttons inside the Category
group box. Set the Hourly button's ID to IDC_CAT and set the other properties as shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure that both buttons have the Auto property (the default) on the Styles tab set and that
only the Hourly button has the Group property set. When these properties are set correctly,
Windows ensures that only one of the two buttons can be selected at a time. The Category
group box has no effect on the buttons' operation.

The Insurance group box. This control holds three check boxes. Type in the caption
Insurance.

Later, when you set the dialog's tab order, you'll ensure that the
Insurance group box follows the last radio button of the Category group.
Set the Insurance control's Group property now in order to "terminate"
the previous group. If you fail to do this, it isn't a serious problem, but
you'll get several warning messages when you run the program through
the debugger.

The Life, Disability, and Medical check boxes. Place these controls inside the Insurance
group box. Accept the default properties, but change the IDs to IDC_LIFE, IDC_DIS, and
IDC_MED. Unlike radio buttons, check boxes are independent; the user can set any
combination.

The Skill combo box. This is the first of three types of combo boxes. Change the ID to
IDC_SKILL, and then click on the Styles tab and set the Type option to Simple. Click on the
Data tab, and add three skills (terminating each line with Ctrl-Enter) in the Enter Listbox
Items box.

This is a combo box of type Simple. The user can type anything in the top edit control, use
the mouse to select an item from the attached list box, or use the Up or Down direction key
to select an item from the attached list box.

The Educ (education) combo box. Change the ID to IDC_EDUC; otherwise, accept the
defaults. Add the three education levels in the Data page, as shown in Figure 6-1. In this
Dropdown combo box, the user can type anything in the edit box, click on the arrow, and
then select an item from the drop-down list box or use the Up or Down direction key to
select an item from the attached list box.

Aligning Controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Aligning Controls

To align two or more controls, select the controls by clicking on the first
control and then Shift-clicking on the other controls you want to align.
Next choose one of the alignment commands (Left, Horiz.Center, Right,
Top, Vert.Center, or Bottom) from the Align submenu on the dialog
editor's Layout menu.

To set the size for the drop-down portion of a combo box, click on the
box's arrow and drag down from the center of the bottom of the
rectangle.

The Dept (department) list box. Change the ID to IDC_DEPT; otherwise, accept all the
defaults. In this list box, the user can select only a single item by using the mouse, by using
the Up or Down direction key, or by typing the first character of a selection. Note that you
can't enter the initial choices in the dialog editor. You'll see how to set these choices later.

The Lang (language) combo box. Change the ID to IDC_LANG, and then click on the
Styles tab and set the Type option to Drop List. Add three languages (English, French, and
Spanish) in the Data page. With this Drop List combo box, the user can select only from the
attached list box. To select, the user can click on the arrow and then select an entry from
the drop-down list, or the user can type in the first letter of the selection and then refine the
selection using the Up or Down direction key.

The Loyalty and Reliability scroll bars. Do not confuse scroll bar controls with a window's
built-in scroll bars as seen in scrolling views. A scroll bar control behaves in the same
manner as do other controls and can be resized at design time. Position and size the
horizontal scroll bar controls as shown previously in Figure 6-1, and then assign the IDs
IDC_LOYAL and IDC_RELY.

Selecting a Group of Controls

To quickly select a group of controls, position the mouse cursor above and
to the left of the group. Hold down the left mouse button and drag to a
point below and to the right of the group, as shown here.

The OK, Cancel, and Special pushbuttons. Be sure the button captions are OK, Cancel,
and Special, and then assign the ID IDC_SPECIAL to the Special button. Later you'll learn
about special meanings that are associated with the default IDs IDOK and IDCANCEL.

Any icon. (The MFC icon is shown as an example.) You can use the Picture control to
display any icon or bitmap in a dialog, as long as the icon or bitmap is defined in the
resource script. We'll use the program's MFC icon, identified as IDR_MAINFRAME. Set the
Type option to Icon, and set the Image option to IDR_MAINFRAME. Leave the ID as
IDC_STATIC.

7. Check the dialog's tabbing order. Choose Tab Order from the dialog editor's Layout menu. Use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Check the dialog's tabbing order. Choose Tab Order from the dialog editor's Layout menu. Use
the mouse to set the tabbing order shown below. Click on each control in the order shown, and then
press Enter.

If you mess up the tab sequence partway through, you can recover with a Ctrl-
left mouse click on the last correctly sequenced control. Subsequent mouse
clicks will start with the next sequence number.

A static text control (such as Name or Skill) has an ampersand (&) embedded in
the text for its caption. At runtime, the ampersand will appear as an underscore
under the character that follows. (See Figure 6-1.) This enables the user to jump
to selected controls by holding down the Alt key and pressing the key
corresponding to the underlined character. (The related control must
immediately follow the static text in the tabbing order.) Thus, Alt-N jumps to the
Name edit control and Alt-K jumps to the Skill combo box. Needless to say,
designated jump characters should be unique within the dialog. The Skill control
uses Alt-K because the SS Nbr control uses Alt-S.

8. Save the resource file on disk. For safety, choose Save from the File menu or click the Save
button on the toolbar to save ex06a.rc. Keep the dialog editor running, and keep the newly built
dialog on the screen.

ClassWizard and the Dialog Class

You have now built a dialog resource, but you can't use it without a corresponding dialog class. (The
section titled "Understanding the EX06A Application" explains the relationship between the dialog window
and the underlying classes.) ClassWizard works in conjunction with the dialog editor to create that class as
follows:

1. Choose ClassWizard from Visual C++'s View menu (or press Ctrl-W). Be sure that you still
have the newly built dialog, IDD_DIALOG1, selected in the dialog editor and that EX06A is the
current Visual C++ project.

2. Add the CEx06aDialog class. ClassWizard detects the fact that you've just created a dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add the CEx06aDialog class. ClassWizard detects the fact that you've just created a dialog
resource without an associated C++ class. It politely asks whether you want to create a class, as
shown below.

Accept the default selection of Create A New Class, and click OK. Fill in the top field of the New
Class dialog, as shown here.

3. Add the CEx06aDialog variables. After ClassWizard creates the CEx06aDialog class, the MFC
ClassWizard dialog appears. Click on the Member Variables tab, and the Member Variables page
appears, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You need to associate data members with each of the dialog's controls. To do this, click on a control
ID and then click the Add Variable button. The Add Member Variable dialog appears, as shown in
the following illustration.

Type in the member variable name, and choose the variable type according to the following table.
Be sure to type in the member variable name exactly as shown; the case of each letter is
important. When you're done, click OK to return to the MFC ClassWizard dialog. Repeat this process
for each of the listed controls.

Control ID Data Member Type

IDC_BIO m_strBio CString

IDC_CAT m_nCat int

IDC_DEPT m_strDept CString

IDC_DIS m_bInsDis BOOL

IDC_EDUC m_strEduc CString

IDC_LANG m_nLang CString

IDC_LIFE m_bInsLife BOOL

IDC_LOYAL m_nLoyal int

IDC_MED m_bInsMed BOOL

IDC_NAME m_strName CString

IDC_RELY m_nRely int

IDC_SKILL m_strSkill CString

IDC_SSN m_nSsn int

As you select controls in the MFC ClassWizard dialog, various edit boxes appear at the bottom of the
dialog. If you select a CString variable, you can set its maximum number of characters; if you select
a numeric variable, you can set its high and low limits. Set the minimum value for IDC_SSN to 0
and the maximum value to 999999999.

Most relationships between control types and variable types are obvious. The way in which radio
buttons correspond to variables is not so intuitive, however. The CDialog class associates an integer
variable with each radio button group, with the first button corresponding to value 0, the second to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable with each radio button group, with the first button corresponding to value 0, the second to
1, and so forth.

4. Add the message-handling function for the Special button. CEx06aDialog doesn't need many
message-handling functions because the CDialog base class, with the help of Windows, does most
of the dialog management. When you specify the ID IDOK for the OK button (ClassWizard's
default), for example, the virtual CDialog function OnOK gets called when the user clicks the button.
For other buttons, however, you need message handlers.

Click on the Message Maps tab. The ClassWizard dialog should contain an entry for IDC_SPECIAL in
the Object IDs list box. Click on this entry, and double-click on the BN_CLICKED message that
appears in the Messages list box. ClassWizard invents a member function name, OnSpecial, and
opens the Add Member Function dialog, as shown here.

You could type in your own function name here, but this time accept the default and click OK. Click
the Edit Code button in the MFC ClassWizard dialog. This opens the file ex06aDialog.cpp and moves
to the OnSpecial function. Insert a TRACE statement in the OnSpecial function by typing in the
boldface code, shown below, which replaces the existing code:

void CEx06aDialog::OnSpecial()
{
 TRACE("CEx06aDialog::OnSpecial\n");
}

5. Use ClassWizard to add an OnInitDialog message-handling function. As you'll see in a
moment, ClassWizard generates code that initializes a dialog's controls. This DDX (Dialog Data
Exchange) code won't initialize the list-box choices, however, so you must override the
CDialog::OnInit-Dialog function. Although OnInitDialog is a virtual member function, ClassWizard
generates the prototype and skeleton if you map the WM_INITDIALOG message in the derived
dialog class. To do so, click on CEx06aDialog in the Object IDs list box and then double-click on the
WM_INITDIALOG message in the Messages list box. Click the Edit Code button in the MFC
ClassWizard dialog to edit the OnInitDialog function. Type in the boldface code, which replaces the
existing code:

BOOL CEx06aDialog::OnInitDialog()
{
 // Be careful to call CDialog::OnInitDialog
 // only once in this function
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_DEPT);
 pLB->InsertString(-1, "Documentation");
 pLB->InsertString(-1, "Accounting");
 pLB->InsertString(-1, "Human Relations");
 pLB->InsertString(-1, "Security");
 // Call after initialization
 return CDialog::OnInitDialog();
}
You could also use the same initialization technique for the combo boxes, in place of the
initialization in the resource.

Connecting the Dialog to the View

Now we've got the resource and the code for a dialog, but it's not connected to the view. In most
applications, you would probably use a menu choice to activate a dialog, but we haven't studied menus
yet. Here we'll use the familiar mouse-click message WM_LBUTTONDOWN to start the dialog. The steps
are as follows:

1. In ClassWizard, select the CEx06aView class. At this point, be sure that EX06A is Visual C++'s

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. In ClassWizard, select the CEx06aView class. At this point, be sure that EX06A is Visual C++'s
current project.

2. Use ClassWizard to add the OnLButtonDown member function. You've done this in the
examples in earlier chapters. Simply select the CEx06aView class name, click on the CEx06aView
object ID, and then double-click on WM_LBUTTONDOWN.

3. Write the code for OnLButtonDown in file ex06aView.cpp. Add the boldface code below. Most
of the code consists of TRACE statements to print the dialog data members after the user exits the
dialog. The CEx06aDialog constructor call and the DoModal call are the critical statements,
however:

void CEx06aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx06aDialog dlg;
 dlg.m_strName = "Shakespeare, Will";
 dlg.m_nSsn = 307806636;
 dlg.m_nCat = 1; // 0 = hourly, 1 = salary
 dlg.m_strBio = "This person is not a well-motivated tech writer";
 dlg.m_bInsLife = TRUE;
 dlg.m_bInsDis = FALSE;
 dlg.m_bInsMed = TRUE;
 dlg.m_strDept = "Documentation";
 dlg.m_strSkill = "Writer";
 dlg.m_nLang = 0;
 dlg.m_strEduc = "College";
 dlg.m_nLoyal = dlg.m_nRely = 50;
 int ret = dlg.DoModal();
 TRACE("DoModal return = %d\n", ret);
 TRACE("name = %s, ssn = %d, cat = %d\n",
 dlg.m_strName, dlg.m_nSsn, dlg.m_nCat);
 TRACE("dept = %s, skill = %s, lang = %d, educ = %s\n",
 dlg.m_strDept, dlg.m_strSkill, dlg.m_nLang, dlg.m_strEduc);
 TRACE("life = %d, dis = %d, med = %d, bio = %s\n",
 dlg.m_bInsLife, dlg.m_bInsDis, dlg.m_bInsMed, dlg.m_strBio);
 TRACE("loyalty = %d, reliability = %d\n",
 dlg.m_nLoyal, dlg.m_nRely);
}

4. Add code to the virtual OnDraw function in file ex06aView.cpp. To prompt the user to press
the left mouse button, code the CEx06aView::OnDraw function. (The skeleton was generated by
AppWizard.) The following boldface code (which you type in) replaces the existing code:

void CEx06aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

5. To ex06aView.cpp, add the dialog class include statement. The OnLButtonDown function
above depends on the declaration of class CEx06aDialog. You must insert the include statement

#include "ex06aDialog.h"
at the top of the CEx06aView class source code file (ex06aView.cpp), after the statement

#include "ex06aView.h"
6. Build and test the application. If you have done everything correctly, you should be able to build

and run the EX06A application through Visual C++. Try entering data in each control, and then click
the OK button and observe the TRACE results in the Debug window. Notice that the scroll bar
controls don't do much yet; we'll attend to them later. Notice what happens when you press Enter
while typing in text data in a control: the dialog closes immediately.

Understanding the EX06A Application

When your program calls DoModal, control is returned to your program only when the user closes the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When your program calls DoModal, control is returned to your program only when the user closes the
dialog. If you understand that, you understand modal dialogs. When you start creating modeless dialogs,
you'll begin to appreciate the programming simplicity of modal dialogs. A lot happens "out of sight" as a
result of that DoModal call, however. Here's a "what calls what" summary:

CDialog::DoModal
 CEx06aDialog::OnInitDialog
 …additional initialization…
 CDialog::OnInitDialog
 CWnd::UpdateData(FALSE)
 CEx06aDialog::DoDataExchange
 user enters data…
 user clicks the OK button
 CEx06aDialog::OnOK
 …additional validation…
 CDialog::OnOK
 CWnd::UpdateData(TRUE)
 CEx06aDialog::DoDataExchange
 CDialog::EndDialog(IDOK)

OnInitDialog and DoDataExchange are virtual functions overridden in the CEx06aDialog class. Windows
calls OnInitDialog as part of the dialog initialization process, and that results in a call to DoDataExchange, a
CWnd virtual function that was overridden by ClassWizard. Here is a listing of that function:

void CEx06aDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CEx06aDialog)
 DDX_Text(pDX, IDC_BIO, m_strBio);
 DDX_Radio(pDX, IDC_CAT, m_nCat);
 DDX_LBString(pDX, IDC_DEPT, m_strDept);
 DDX_Check(pDX, IDC_DIS, m_bInsDis);
 DDX_CBString(pDX, IDC_EDUC, m_strEduc);
 DDX_CBIndex(pDX, IDC_LANG, m_nLang);
 DDX_Check(pDX, IDC_LIFE, m_bInsLife);
 DDX_Scroll(pDX, IDC_LOYAL, m_nLoyal);
 DDX_Check(pDX, IDC_MED, m_bInsMed);
 DDX_Text(pDX, IDC_NAME, m_strName);
 DDX_Scroll(pDX, IDC_RELY, m_nRely);
 DDX_CBString(pDX, IDC_SKILL, m_strSkill);
 DDX_Text(pDX, IDC_SSN, m_nSsn);
 DDV_MinMaxInt(pDX, m_nSsn, 0, 999999999);
 //}}AFX_DATA_MAP
}
The DoDataExchange function and the DDX_ (exchange) and DDV_ (validation) functions are
"bidirectional." If UpdateData is called with a FALSE parameter, the functions transfer data from the data
members to the dialog controls. If the parameter is TRUE, the functions transfer data from the dialog
controls to the data members. DDX_Text is overloaded to accommodate a variety of data types.

The EndDialog function is critical to the dialog exit procedure. DoModal returns the parameter passed to
EndDialog. IDOK accepts the dialog's data, and IDCANCEL cancels the dialog.

You can write your own "custom" DDX function and wire it into Visual C++. This feature
is useful if you're using a unique data type throughout your application. See MFC
Technical Note #26 in the online documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enhancing the Dialog Program
The EX06A program required little coding for a lot of functionality. Now we'll make a new version of this
program that uses some hand-coding to add extra features. We'll eliminate EX06A's rude habit of dumping
the user in response to a press of the Enter key, and we'll hook up the scroll bar controls.

Taking Control of the OnOK Exit

In the original EX06A program, the CDialog::OnOK virtual function handled the OK button, which triggered
data exchange and the exit from the dialog. Pressing the Enter key happens to have the same effect, and
that might or might not be what you want. If the user presses Enter while in the Name edit control, for
example, the dialog closes immediately.

What's going on here? When the user presses Enter, Windows looks to see which pushbutton has the input
focus, as indicated on the screen by a dotted rectangle. If no button has the focus, Windows looks for the
default pushbutton that the program or the resource specifies. (The default pushbutton has a thicker
border.) If the dialog has no default button, the virtual OnOK function is called, even if the dialog does not
contain an OK button.

You can disable the Enter key by writing a do-nothing CEx06aDialog::OnOK function and adding the exit
code to a new function that responds to clicking the OK button. Here are the steps:

1. Use ClassWizard to "map" the IDOK button to the virtual OnOK function. In ClassWizard,
choose IDOK from the CEx06aDialog Object IDs list, and then double-click on BN_CLICKED. This
generates the prototype and skeleton for OnOK.

2. Use the dialog editor to change the OK button ID. Select the OK button, change its ID from
IDOK to IDC_OK, and then uncheck its Default Button property. Leave the OnOK function alone.

3. Use ClassWizard to create a member function called OnClickedOk. This CEx06aDialog class
member function is keyed to the BN_CLICKED message from the newly renamed control IDC_OK.

4. Edit the body of the OnClickedOk function in ex06aDialog.cpp. This function calls the base
class OnOK function, as did the original CEx06aDialog::OnOK function. Here is the code:

void CEx06aDialog::OnClickedOk()
{
 TRACE("CEx06aDialog::OnClickedOk\n");
 CDialog::OnOK();
}

5. Edit the original OnOK function in ex06aDialog.cpp. This function is a "leftover" handler for
the old IDOK button. Edit the code as shown here:

void CEx06aDialog::OnOK()
{
 // dummy OnOK function -- do NOT call CDialog::OnOK()
 TRACE("CEx06aDialog::OnOK\n");
}

6. Build and test the application. Try pressing the Enter key now. Nothing should happen, but
TRACE output should appear in the Debug window. Clicking the OK button should exit the dialog as
before, however.

For Win32 Programmers

Dialog controls send WM_ COMMAND notification messages to their parent dialogs. For
a single button click, for example, the bottom 16 bits of wParam contain the button ID,
the top 16 bits of wParam contain the BN_CLICKED notification code, and lParam
contains the button handle. Most window procedure functions process these notification
messages with a nested switch statement. MFC "flattens out" the message processing
logic by "promoting" control notification messages to the same level as other Windows
messages.

For a Delete button (for example), ClassWizard generates notification message map
entries similar to these:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entries similar to these:

ON_BN_CLICKED(IDC_DELETE, OnDeleteClicked)
ON_BN_DOUBLECLICKED(IDC_DELETE, OnDeleteDblClicked)
Button events are special because they generate command messages if your dialog
class doesn't have notification handlers like the ones above. As Chapter 13 explains,
the application framework "routes" these command messages to various objects in
your application. You could also map the control notifications with a more generic ON_
COMMAND message-handling entry like this:

ON_COMMAND(IDC_DELETE, OnDelete)
In this case, the OnDelete function is unable to distinguish between a single click and a
double click, but that's no problem because few Windows-based programs utilize
double clicks for buttons.

OnCancel Processing

Just as pressing the Enter key triggers a call to OnOK, pressing the Esc key triggers a call to OnCancel,
which results in an exit from the dialog with a DoModal return code of IDCANCEL. EX06A does no special
processing for IDCANCEL; therefore, pressing the Esc key (or clicking the Close button) closes the dialog.
You can circumvent this process by substituting a dummy OnCancel function, following approximately the
same procedure you used for the OK button.

Hooking Up the Scroll Bar Controls

The dialog editor allows you to include scroll bar controls in your dialog, and ClassWizard lets you add
integer data members. You must add code to make the Loyalty and Reliability scroll bars work.

Scroll bar controls have position and range values that can be read and written. If you set the range to (0,
100), for example, a corresponding data member with a value of 50 positions the scroll box at the center
of the bar. (The function CScrollBar::SetScrollPos also sets the scroll box position.) The scroll bars send
the WM_ HSCROLL and WM_ VSCROLL messages to the dialog when the user drags the scroll box or clicks
the arrows. The dialog's message handlers must decode these messages and position the scroll box
accordingly.

Each control you've seen so far has had its own individual message handler function. Scroll bar controls are
different because all horizontal scroll bars in a dialog are tied to a single WM_HSCROLL message handler
and all vertical scroll bars are tied to a single WM_VSCROLL handler. Because this monster dialog contains
two horizontal scroll bars, the single WM_ HSCROLL message handler must figure out which scroll bar sent
the scroll message.

Here are the steps for adding the scroll bar logic to EX06A:

1. Add the class enum statements for the minimum and maximum scroll range. In
ex06aDialog.h, add the following lines at the top of the class declaration:

enum { nMin = 0 };
enum { nMax = 100 };

2. Edit the OnInitDialog function to initialize the scroll ranges. In the OnInitDialog function,
we'll set the minimum and the maximum scroll values such that the CEx06aDialog data members
represent percentage values. A value of 100 means "Set the scroll box to the extreme right"; a
value of 0 means "Set the scroll box to the extreme left."

Add the following code to the CEx06aDialog member function OnInitDialog in the file
ex06aDialog.cpp:

CScrollBar* pSB = (CScrollBar*) GetDlgItem(IDC_LOYAL);
pSB->SetScrollRange(nMin, nMax);
pSB = (CScrollBar*) GetDlgItem(IDC_RELY);
pSB->SetScrollRange(nMin, nMax);

3. Use ClassWizard to add a scroll bar message handler to CEx06aDialog. Choose the
WM_HSCROLL message, and then add the member function OnHScroll. Enter the following boldface
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06aDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 int nTemp1, nTemp2;
 nTemp1 = pScrollBar->GetScrollPos();
 switch(nSBCode) {
 case SB_THUMBPOSITION:
 pScrollBar->SetScrollPos(nPos);
 break;
 case SB_LINELEFT: // left arrow button
 nTemp2 = (nMax - nMin) / 10;
 if ((nTemp1 - nTemp2) > nMin) {
 nTemp1 -= nTemp2;
 }
 else {
 nTemp1 = nMin;
 }
 pScrollBar->SetScrollPos(nTemp1);
 break;
 case SB_LINERIGHT: // right arrow button
 nTemp2 = (nMax - nMin) / 10;
 if ((nTemp1 + nTemp2) < nMax) {
 nTemp1 += nTemp2;
 }
 else {
 nTemp1 = nMax;
 }
 pScrollBar->SetScrollPos(nTemp1);
 break;
 }
}

The scroll bar functions use 16-bit integers for both range and position.

4. Build and test the application. Build and run EX06A again. Do the scroll bars work this time? The
scroll boxes should "stick" after you drag them with the mouse, and they should move when you
click the scroll bars' arrows. (Notice that we haven't added logic to cover the user's click on the
scroll bar itself.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Identifying Controls: CWnd Pointers and Control IDs
When you lay out a dialog resource in the dialog editor, you identify each control by an ID such as
IDC_SSN. In your program code, however, you often need access to a control's underlying window object.
The MFC library provides the CWnd::GetDlgItem function for converting an ID to a CWnd pointer. You've
seen this already in the OnInitDialog member function of class CEx06aDialog. The application framework
"manufactured" this returned CWnd pointer because there never was a constructor call for the control
objects. This pointer is temporary and should not be stored for later use.

If you need to convert a CWnd pointer to a control ID, use the MFC library GetDlgCtrlID
member function of classCWnd.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting the Color for the Dialog Background and for Controls
You can change the background color of individual dialogs or specific controls in a dialog, but you have to
do some extra work. The parent dialog is sent a WM_CTLCOLOR message for each control immediately
before the control is displayed. A WM_CTLCOLOR message is also sent on behalf of the dialog itself. If you
map this message in your derived dialog class, you can set the foreground and background text colors and
select a brush for the control or dialog nontext area.

Following is a sample OnCtlColor function that sets all edit control backgrounds to yellow and the dialog
background to red. The m_hYellowBrush and m_hRedBrush variables are data members of type HBRUSH,
initialized in the dialog's OnInitDialog function. The nCtlColor parameter indicates the type of control, and
the pWnd parameter identifies the specific control. If you wanted to set the color for an individual edit
control, you would convert pWnd to a child window ID and test it.

HBRUSH CMyDialog::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)
{
 if (nCtlColor == CTLCOLOR_EDIT) {
 pDC->SetBkColor(RGB(255, 255, 0)); // yellow
 return m_hYellowBrush;
 }
 if (nCtlColor == CTLCOLOR_DLG) {
 pDC->SetBkColor(RGB(255, 0, 0)); // red
 return m_hRedBrush;
 }
 return CDialog::OnCtlColor(pDC, pWnd, nCtlColor);
}

The dialog does not post the WM_CTLCOLOR message in the message queue; instead,
it calls the Win32 SendMessage function to send the message immediately. Thus the
message handler can return a parameter, in this case a handle to a brush. This is not
an MFC CBrush object but rather a Win32 HBRUSH. You can create the brush by calling
the Win32 functions CreateSolidBrush, CreateHatchBrush, and so forth.

For Win32 Programmers

Actually, Win32 no longer has a WM_CTLCOLOR message. It was replaced by control-
specific messages such as WM_CTLCOLORBTN, WM_CTLCOLORDLG, and so on. MFC
and ClassWizard process these messages invisibly, so your programs look as though
they're mapping the old 16-bit WM_CTLCOLOR messages. This trick makes debugging
more complex, but it makes portable code easier to write. Another option would be to
use the ON_MESSAGE macro to map the real Win32 messages.

If your dialog class (or other MFC window class) doesn't map the WM_CTLCOLOR
message, the framework reflects the message back to the control. When you study
window subclassing in Chapter 16, you'll learn how to write your own control window
classes that can process these reflected messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Painting Inside the Dialog Window
You can paint directly in the client area of the dialog window, but you'll avoid overwriting dialog elements if
you paint only inside a control window. If you want to display text only, use the dialog editor to create a
blank static control with a unique ID and then call the CWnd::SetDlgItemText function in a dialog member
function such as OnInitDialog to place text in the control.

Displaying graphics is more complicated. You must use ClassWizard to add an OnPaint member function to
the dialog; this function must convert the static control's ID to a CWnd pointer and get its device context.
The trick is to draw inside the control window while preventing Windows from overwriting your work later.
The Invalidate/UpdateWindow sequence achieves this. Here is an OnPaint function that paints a small black
square in a static control:

void CMyDialog::OnPaint()
{
 CWnd* pWnd = GetDlgItem(IDC_STATIC1); // IDC_STATIC1 specified
 // in the dialog editor
 CDC* pControlDC = pWnd->GetDC();

 pWnd->Invalidate();
 pWnd->UpdateWindow();
 pControlDC->SelectStockObject(BLACK_BRUSH);
 pControlDC->Rectangle(0, 0, 10, 10); // black square bullet
 pWnd->ReleaseDC(pControlDC);
}
As with all windows, the dialog's OnPaint function is called only if some part of the dialog is invalidated.
You can force the OnPaint call from another dialog member function with the following statement:

Invalidate();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Dialog Controls at Runtime
You've seen how to use the resource editor to create dialog controls at build time. If you need to add a
dialog control at runtime, here are the programming steps:

1. Add an embedded control window data member to your dialog class. The MFC control window
classes include CButton, CEdit, CListBox, and CComboBox. An embedded control C++ object is
constructed and destroyed along with the dialog object.

2. Choose Resource Symbols from Visual C++'s View menu. Add an ID constant for the new control.

3. Use ClassWizard to map the WM_INITDIALOG message, thus overriding CDialog::OnInitDialog. This
function should call the embedded control window's Create member function. This call displays the
new control in the dialog. Windows will destroy the control window when it destroys the dialog
window.

4. In your derived dialog class, manually add the necessary notification message handlers for your
new control.

In Chapter 13, you'll be adding a rich edit control to a view at runtime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Other Control Features
You've seen how to customize the control class CScrollBar by adding code in the dialog's OnInitDialog
member function. You can program other controls in a similar fashion. In the Microsoft Visual C++ MFC
Library Reference, or in the online help under "Microsoft Foundation Class Libary and Templates," look at
the control classes, particularly CListBox and CComboBox. Each has a number of features that ClassWizard
does not directly support. Some combo boxes, for example, can support multiple selections. If you want to
use these features, don't try to use ClassWizard to add data members. Instead, define your own data
members and add your own exchange code in OnInitDialog and OnClickedOK.

For Win32 Programmers

If you've programmed controls in Win32, you'll know that parent windows
communicate to controls via Windows messages. So what does a function such as
CListBox::InsertString do? (You've seen this function called in your OnInitDialog
function.) If you look at the MFC source code, you'll see that InsertString sends an
LB_INSERTSTRING message to the designated list-box control. Other control class
member functions don't send messages because they apply to all window types. The
CScrollView::SetScrollRange function, for example, calls the Win32 SetScrollRange
function, specifying the correct hWnd as a parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Common Controls
The controls you used in EX06A are great learning controls because they're easy to program. Now you're
ready for some more "interesting" controls. We'll take a look at some important new Windows controls,
introduced for Microsoft Windows 95 and available in Microsoft Windows NT. These include the progress
indicator, trackbar, spin button control, list control, and tree control.

The code for these controls is in the Windows COMCTL32.DLL file. This code includes the window procedure
for each control, together with code that registers a window class for each control. The registration code is
called when the DLL is loaded. When your program initializes a dialog, it uses the symbolic class name in
the dialog resource to connect to the window procedure in the DLL. Thus your program owns the control's
window, but the code is in the DLL. Except for ActiveX controls, most controls work this way.

Example EX06B uses the aforementioned controls. Figure 6-2 shows the dialog from that example. Refer to
it when you read the control descriptions that follow.

Be aware that ClassWizard offers no member variable support for the common controls. You'll have to add
code to your OnInitDialog and OnOK functions to initialize and read control data. ClassWizard will,
however, allow you to map notification messages from common controls.

Figure 6-2. The Windows Common Controls Dialog example.

The Progress Indicator Control

The progress indicator is the easiest common control to program and is represented by the MFC
CProgressCtrl class. It is generally used only for output. This control, together with the trackbar, can
effectively replace the scroll bar controls you saw in the previous example. To initialize the progress
indicator, call the SetRange and SetPos member functions in your OnInitDialog function, and then call
SetPos anytime in your message handlers. The progress indicator shown in Figure 6-2 has a range of 0 to
100, which is the default range.

The Trackbar Control

The trackbar control (class CSliderCtrl), sometimes called a slider, allows the user to set an "analog" value.
(Trackbars would have been more effective than sliders for Loyalty and Reliability in the EX06A example.)
If you specify a large range for this control—0 to 100 or more, for example—the trackbar's motion appears
continuous. If you specify a small range, such as 0 to 5, the tracker moves in discrete increments. You can
program tick marks to match the increments. In this discrete mode, you can use a trackbar to set such
items as the display screen resolution, lens f-stop values, and so forth. The trackbar does not have a
default range.

The trackbar is easier to program than the scroll bar because you don't have to map the WM_HSCROLL or
WM_VSCROLL messages in the dialog class. As long as you set the range, the tracker moves when the
user slides it or clicks in the body of the trackbar. You might choose to map the scroll messages anyway if
you want to show the position value in another control. The GetPos member function returns the current
position value. The top trackbar in Figure 6-2 operates continuously in the range 0 to 100. The bottom
trackbar has a range of 0 to 4, and those indexes are mapped to a series of double-precision values (4.0,
5.6, 8.0, 11.0, and 16.0).

The Spin Button Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Spin Button Control

The spin button control (class CSpinButtonCtrl) is an itsy-bitsy scroll bar that's most often used in
conjunction with an edit control. The edit control, located just ahead of the spin control in the dialog's
tabbing order, is known as the spin control's buddy. The idea is that the user holds down the left mouse
button on the spin control to raise or lower the value in the edit control. The spin speed accelerates as the
user continues to hold down the mouse button.

If your program uses an integer in the buddy, you can avoid C++ programming almost entirely. Just use
ClassWizard to attach an integer data member to the edit control, and set the spin control's range in the
OnInitDialog function. (You probably won't want the spin control's default range, which runs backward
from a minimum of 100 to a maximum of 0.) Don't forget to select Auto Buddy and Set Buddy Integer in
the spin control's Styles property page. You can call the SetRange and SetAccel member functions in your
OnInitDialog function to change the range and the acceleration profile.

If you want your edit control to display a noninteger, such as a time or a floating-point number, you must
map the spin control's WM_VSCROLL (or WM_HSCROLL) messages and write handler code to convert the
spin control's integer to the buddy's value.

The List Control

Use the list control (class CListCtrl) if you want a list that contains images as well as text. Figure 6-2 shows
a list control with a "list" view style and small icons. The elements are arranged in a grid, and the control
includes horizontal scrolling. When the user selects an item, the control sends a notification message,
which you map in your dialog class. That message handler can determine which item the user selected.
Items are identified by a zero-based integer index.

Both the list control and the tree control get their graphic images from a common control element called an
image list (class CImageList). Your program must assemble the image list from icons or bitmaps and then
pass an image list pointer to the list control. Your OnInitDialog function is a good place to create and
attach the image list and to assign text strings. The InsertItem member function serves this purpose.

List control programming is straightforward if you stick with strings and icons. If you implement drag and
drop or if you need custom owner-drawn graphics, you've got more work to do.

The Tree Control

You're already familiar with tree controls if you've used Microsoft Windows Explorer or Visual C++'s
Workspace view. The MFC CTreeCtrl class makes it easy to add this same functionality to your own
programs. Figure 6-2 illustrates a tree control that shows a modern American combined family. The user
can expand and collapse elements by clicking the + and - buttons or by double-clicking the elements. The
icon next to each item is programmed to change when the user selects the item with a single click.

The list control and the tree control have some things in common: they can both use the same image list,
and they share some of the same notification messages. Their methods of identifying items are different,
however. The tree control uses an HTREEITEM handle instead of an integer index. To insert an item, you
call the InsertItem member function, but first you must build up a TV_INSERTSTRUCT structure that
identifies (among other things) the string, the image list index, and the handle of the parent item (which is
null for top-level items).

As with list controls, infinite customization possibilities are available for the tree control. For example, you
can allow the user to edit items and to insert and delete items.

The WM_NOTIFY Message

The original Windows controls sent their notifications in WM_COMMAND messages. The standard 32-bit
wParam and lParam message parameters are not sufficient, however, for the information that a common
control needs to send to its parent. Microsoft solved this "bandwidth" problem by defining a new message,
WM_NOTIFY. With the WM_NOTIFY message, wParam is the control ID and lParam is a pointer to an
NMHDR structure, which is managed by the control. This C structure is defined by the following code:

typedef struct tagNMHDR {
 HWND hwndFrom; // handle to control sending the message
 UINT idFrom; // ID of control sending the message
 UINT code; // control-specific notification code
} NMHDR;
Many controls, however, send WM_NOTIFY messages with pointers to structures larger than NMHDR.
Those structures contain the three members above plus appended control-specific members. Many tree
control notifications, for example, pass a pointer to an NM_TREEVIEW structure that contains TV_ITEM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control notifications, for example, pass a pointer to an NM_TREEVIEW structure that contains TV_ITEM
structures, a drag point, and so forth. When ClassWizard maps a WM_NOTIFY message, it generates a
pointer to the appropriate structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX06B Example
I won't try to contrive a business-oriented example that uses all the custom controls. I'll just slap the
controls in a modal dialog and trust that you'll see what's going on. The steps are shown below. After step
3, the instructions are oriented to the individual controls rather than to the Visual C++ components you'll
be using.

1. Run AppWizard to generate the EX06B project. Choose New from Visual C++'s File menu, and
then select Microsoft AppWizard (exe) from the Projects page. Accept all the defaults but two:
select Single Document and deselect Printing And Print Preview. The options and the default class
names are shown here.

2. Create a new dialog resource with ID IDD_DIALOG1. Place the controls as shown back in
Figure 6-2.

You can select the controls from the control palette. The following table lists the control types and
their IDs.

Don't worry about the other properties now—you'll set those in the following steps. (Some controls
might look different than they do in Figure 6-2 until you set their properties.) Set the tab order as
shown next.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tab Sequence Control Type Child Window ID

1 Static IDC_STATIC

2 Progress IDC_PROGRESS1

3 Static IDC_STATIC

4 Trackbar (Slider) IDC_TRACKBAR1

5 Static IDC_STATIC_TRACK1

6 Static IDC_STATIC

7 Trackbar (Slider) IDC_TRACKBAR2

8 Static IDC_STATIC_TRACK2

9 Static IDC_STATIC

10 Edit IDC_BUDDY_SPIN1

11 Spin IDC_SPIN1

12 Static IDC_STATIC

13 Static IDC_STATIC

14 List control IDC_LISTVIEW1

15 Static IDC_STATIC_LISTVIEW1

16 Static IDC_STATIC

17 Tree control IDC_TREEVIEW1

18 Static IDC_STATIC_TREEVIEW1

19 Pushbutton IDOK

20 Pushbutton IDCANCEL

3. Use ClassWizard to create a new class, CEx06bDialog, derived from CDialog. ClassWizard
will automatically prompt you to create this class because it knows that the IDD_DIALOG1 resource
exists without an associated C++ class. Map the WM_INITDIALOG message, the WM_HSCROLL
message, and the WM_VSCROLL message.

4. Program the progress control. Because ClassWizard won't generate a data member for this
control, you must do it yourself. Add a public integer data member named m_nProgress in the
CEx06bDialog class header, and set it to 0 in the constructor. Also, add the following code in the
OnInitDialog member function:

CProgressCtrl* pProg =
 (CProgressCtrl*) GetDlgItem(IDC_PROGRESS1);
pProg->SetRange(0, 100);
pProg->SetPos(m_nProgress);

5. Program the "continuous" trackbar control. Add a public integer data member named
m_nTrackbar1 to the CEx06bDialog header, and set it to 0 in the constructor. Next add the
following code in the OnInitDialog member function to set the trackbar's range, to initialize its
position from the data member, and to set the neighboring static control to the tracker's current
value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CString strText1;
CSliderCtrl* pSlide1 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR1);
pSlide1->SetRange(0, 100);
pSlide1->SetPos(m_nTrackbar1);
strText1.Format("%d", pSlide1->GetPos());
SetDlgItemText(IDC_STATIC_TRACK1, strText1);
To keep the static control updated, you need to map the WM_HSCROLL message that the trackbar
sends to the dialog. Here is the code for the handler:

void CEx06bDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 CSliderCtrl* pSlide = (CSliderCtrl*) pScrollBar;
 CString strText;
 strText.Format("%d", pSlide->GetPos());
 SetDlgItemText(IDC_STATIC_TRACK1, strText);
}
Finally, you need to update the trackbar's m_nTrackbar1 data member when the user clicks OK.
Your natural instinct would be to put this code in the OnOK button handler. You would have a
problem, however, if a data exchange validation error occurred involving any other control in the
dialog. Your handler would set m_nTrackbar1 even though the user might choose to cancel the
dialog. To avoid this problem, add your code in the DoDataExchange function as shown below. If
you do your own validation and detect a problem, call the CDataExchange::Fail function, which
alerts the user with a message box.

if (pDX->m_bSaveAndValidate) {
 TRACE("updating trackbar data members\n");
 CSliderCtrl* pSlide1 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR1);
 m_nTrackbar1 = pSlide1->GetPos();
}

6. Program the "discrete" trackbar control. Add a public integer data member named
m_nTrackbar2 to the CEx06bDialog header, and set it to 0 in the constructor. This data member is
a zero-based index into the dValue, the array of numbers (4.0, 5.6, 8.0, 11.0, and 16.0) that the
trackbar can represent. Define dValue as a private static double array member variable in
ex06bDialog.h, and add to ex06bDialog.cpp the following line:

double CEx06bDialog::dValue[5] = {4.0, 5.6, 8.0, 11.0, 16.0};
Next add code in the OnInitDialog member function to set the trackbar's range and initial position.

CString strText2;
CSliderCtrl* pSlide2 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR2);
pSlide2->SetRange(0, 4);
pSlide2->SetPos(m_nTrackbar2);
strText2.Format("%3.1f", dValue[pSlide2->GetPos()]);
SetDlgItemText(IDC_STATIC_TRACK2, strText2);
If you had only one trackbar, the WM_HSCROLL handler in step 5 would work. But because you
have two trackbars that send WM_HSCROLL messages, the handler must differentiate. Here is the
new code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06bDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 CSliderCtrl* pSlide = (CSliderCtrl*) pScrollBar;
 CString strText;

 // Two trackbars are sending
 // HSCROLL messages (different processing)
 switch(pScrollBar->GetDlgCtrlID()) {
 case IDC_TRACKBAR1:
 strText.Format("%d", pSlide->GetPos());
 SetDlgItemText(IDC_STATIC_TRACK1, strText);
 break;
 case IDC_TRACKBAR2:
 strText.Format("%3.1f", dValue[pSlide->GetPos()]);
 SetDlgItemText(IDC_STATIC_TRACK2, strText);
 break;
 }
}
This trackbar needs tick marks, so you must check the control's Tick Marks and Auto Ticks
properties back in the dialog editor. With Auto Ticks set, the trackbar will place a tick at every
increment. The same data exchange considerations applied to the previous trackbar apply to this
trackbar. Add the following code in the dialog class DoDataExchange member function inside the
block for the if statement you added in the previous step:

CSliderCtrl* pSlide2 =
 (CSliderCtrl*) GetDlgItem(IDC_TRACKBAR2);
m_nTrackbar2 = pSlide2->GetPos();
Use the dialog editor to set the Point property of both trackbars to Bottom/Right. Select Right for
the Align Text property of both the IDC_STATIC_TRACK1 and IDC_STATIC_TRACK2 static controls.

7. Program the spin button control. The spin control depends on its buddy edit control, located
immediately before it in the tab order. Use ClassWizard to add a double-precision data member
called m_dSpin for the IDC_BUDDY_SPIN1 edit control. We're using a double instead of an int
because the int would require almost no programming, and that would be too easy. We want the
edit control range to be 0.0 to 10.0, but the spin control itself needs an integer range. Add the
following code to OnInitDialog to set the spin control range to 0 to 100 and to set its initial value to
m_dSpin * 10.0:

CSpinButtonCtrl* pSpin =
 (CSpinButtonCtrl*) GetDlgItem(IDC_SPIN1);
pSpin->SetRange(0, 100);
pSpin->SetPos((int) (m_dSpin * 10.0));
To display the current value in the buddy edit control, you need to map the WM_VSCROLL message
that the spin control sends to the dialog. Here's the code:

void CEx06bDialog::OnVScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 if (nSBCode == SB_ENDSCROLL) {
 return; // Reject spurious messages
 }
 // Process scroll messages from IDC_SPIN1 only
 if (pScrollBar->GetDlgCtrlID() == IDC_SPIN1) {
 CString strValue;
 strValue.Format("%3.1f", (double) nPos / 10.0);
 ((CSpinButtonCtrl*) pScrollBar)->GetBuddy()
 ->SetWindowText(strValue);
 }
}
There's no need for you to add code in OnOK or in DoDataExchange because the dialog data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There's no need for you to add code in OnOK or in DoDataExchange because the dialog data
exchange code processes the contents of the edit control. In the dialog editor, select the spin
control's Auto Buddy property and the buddy's Read-only property.

8. Set up an image list. Both the list control and the tree control need an image list, and the image
list needs icons.

First use the graphics editor to add icons to the project's RC file. On the companion CD-ROM, these
icons are circles with black outlines and different-colored interiors. Use fancier icons if you have
them. You can import an icon by choosing Resource from the Insert menu and then clicking the
Import button. For this example, the icon resource IDs are as follows.

Resource ID Icon File

IDI_BLACK Icon1

IDI_BLUE Icon3

IDI_CYAN Icon5

IDI_GREEN Icon7

IDI_PURPLE Icon6

IDI_RED Icon2

IDI_WHITE Icon0

IDI_YELLOW Icon4

Next add a private CImageList data member called m_imageList in the CEx06bDialog class header,
and then add the following code to OnInitDialog:

HICON hIcon[8];
int n;
m_imageList.Create(16, 16, 0, 8, 8); // 32, 32 for large icons
hIcon[0] = AfxGetApp()->LoadIcon(IDI_WHITE);
hIcon[1] = AfxGetApp()->LoadIcon(IDI_BLACK);
hIcon[2] = AfxGetApp()->LoadIcon(IDI_RED);
hIcon[3] = AfxGetApp()->LoadIcon(IDI_BLUE);
hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);
hIcon[5] = AfxGetApp()->LoadIcon(IDI_CYAN);
hIcon[6] = AfxGetApp()->LoadIcon(IDI_PURPLE);
hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);
for (n = 0; n < 8; n++) {
 m_imageList.Add(hIcon[n]);
}

About Icons

You probably know that a bitmap is an array of bits that represent pixels on the
display. (You'll learn more about bitmaps in Chapter 11.) In Windows, an icon is
a "bundle" of bitmaps. First of all, an icon has different bitmaps for different
sizes. Typically, small icons are 16-by-16 pixels and large icons are 32-by-32
pixels. Within each size are two separate bitmaps: one 4-bit-per-pixel bitmap for
the color image and one monochrome (1-bit-per-pixel) bitmap for the "mask." If
a mask bit is 0, the corresponding image pixel represents an opaque color. If the
mask bit is 1, an image color of black (0) means that the pixel is transparent and
an image color of white (0xF) means that the background color is inverted at the
pixel location. Windows 95 and Windows NT seem to process inverted colors a
little differently than Windows 3.x does—the inverted pixels show up transparent
against the desktop, black against a Windows Explorer window background, and
white against list and tree control backgrounds. Don't ask me why.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

white against list and tree control backgrounds. Don't ask me why.

Small icons were new with Windows 95. They're used in the task bar, in
Windows Explorer, and in your list and tree controls, if you want them there. If
an icon doesn't have a 16-by-16-pixel bitmap, Windows manufactures a small
icon out of the 32-by-32-pixel bitmap, but it won't be as neat as one you draw
yourself.

The graphics editor lets you create and edit icons. Look at the color palette
shown here.

The top square in the upper-left portion shows you the main color for brushes,
shape interiors, and so on, and the square under it shows the border color for
shape outlines. You select a main color by left-clicking on a color, and you select
a border color by right-clicking on a color. Now look at the top center portion of
the color palette. You click on the upper "monitor" to paint transparent pixels,
which are drawn in dark cyan. You click on the lower monitor to paint inverted
pixels, which are drawn in red.

9. Program the list control. In the dialog editor, set the list control's style attributes as shown in the
next illustration.

Make sure the Border style on the More Styles page is set. Next add the following code to
OnInitDialog:

static char* color[] = {"white", "black", "red",
 "blue", "yellow", "cyan",
 "purple", "green"};
CListCtrl* pList =
 (CListCtrl*) GetDlgItem(IDC_LISTVIEW1);
pList->SetImageList(&m_imageList, LVSIL_SMALL);
for (n = 0; n < 8; n++) {
 pList->InsertItem(n, color[n], n);
}
pList->SetBkColor(RGB(0, 255, 255)); // UGLY!
pList->SetTextBkColor(RGB(0, 255, 255));
As the last two lines illustrate, you don't use the WM_CTLCOLOR message with common controls;
you just call a function to set the background color. As you'll see when you run the program,
however, the icons' inverse-color pixels look shabby.

If you use ClassWizard to map the list control's LVN_ITEMCHANGED notification message, you'll be
able to track the user's selection of items. The code in the following handler displays the selected
item's text in a static control:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

item's text in a static control:

void CEx06bDialog::OnItemchangedListview1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 NM_LISTVIEW* pNMListView = (NM_LISTVIEW*)pNMHDR;
 CListCtrl* pList =
 (CListCtrl*) GetDlgItem(IDC_LISTVIEW1);
 int nSelected = pNMListView->iItem;
 if (nSelected >= 0) {
 CString strItem = pList->GetItemText(nSelected, 0);
 SetDlgItemText(IDC_STATIC_LISTVIEW1, strItem);
 }
 *pResult = 0;
}
The NM_LISTVIEW structure has a data member called iItem that contains the index of the selected
item.

10. Program the tree control. In the dialog editor, set the tree control's style attributes as shown
here.

Next, add the following lines to OnInitDialog:

CTreeCtrl* pTree = (CTreeCtrl*) GetDlgItem(IDC_TREEVIEW1);
pTree->SetImageList(&m_imageList, TVSIL_NORMAL);
// tree structure common values
TV_INSERTSTRUCT tvinsert;
tvinsert.hParent = NULL;
tvinsert.hInsertAfter = TVI_LAST;
tvinsert.item.mask = TVIF_IMAGE | TVIF_SELECTEDIMAGE |
 TVIF_TEXT;
tvinsert.item.hItem = NULL;
tvinsert.item.state = 0;
tvinsert.item.stateMask = 0;
tvinsert.item.cchTextMax = 6;
tvinsert.item.iSelectedImage = 1;
tvinsert.item.cChildren = 0;
tvinsert.item.lParam = 0;
// top level
tvinsert.item.pszText = "Homer";
tvinsert.item.iImage = 2;
HTREEITEM hDad = pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Marge";
HTREEITEM hMom = pTree->InsertItem(&tvinsert);
// second level
tvinsert.hParent = hDad;
tvinsert.item.pszText = "Bart";
tvinsert.item.iImage = 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tvinsert.item.iImage = 3;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Lisa";
pTree->InsertItem(&tvinsert);
// second level
tvinsert.hParent = hMom;
tvinsert.item.pszText = "Bart";
tvinsert.item.iImage = 4;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Lisa";
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Dilbert";
HTREEITEM hOther = pTree->InsertItem(&tvinsert);
// third level
tvinsert.hParent = hOther;
tvinsert.item.pszText = "Dogbert";
tvinsert.item.iImage = 7;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Ratbert";
pTree->InsertItem(&tvinsert);
As you can see, this code sets TV_INSERTSTRUCT text and image indexes and calls InsertItem to
add nodes to the tree.

Finally, use ClassWizard to map the TVN_SELCHANGED notification for the tree control. Here is the
handler code to display the selected text in a static control:

void CEx06bDialog::OnSelchangedTreeview1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)pNMHDR;
 CTreeCtrl* pTree = (CTreeCtrl*) GetDlgItem(IDC_TREEVIEW1);
 HTREEITEM hSelected = pNMTreeView->itemNew.hItem;
 if (hSelected != NULL) {
 char text[31];
 TV_ITEM item;
 item.mask = TVIF_HANDLE | TVIF_TEXT;
 item.hItem = hSelected;
 item.pszText = text;
 item.cchTextMax = 30;
 VERIFY(pTree->GetItem(&item));
 SetDlgItemText(IDC_STATIC_TREEVIEW1, text);
 }
 *pResult = 0;
}
The NM_TREEVIEW structure has a data member called itemNew that contains information about
the selected node; itemNew.hItem is the handle of that node. The GetItem function retrieves the
node's data, storing the text using a pointer supplied in the TV_ITEM structure. The mask variable
tells Windows that the hItem handle is valid going in and that text output is desired.

11. Add code to the virtual OnDraw function in file ex06bView.cpp. The following boldface code
replaces the previous code:

void CEx06bView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

12. Use ClassWizard to add the OnLButtonDown member function. Edit the AppWizard-
generated code as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx06bDialog dlg;
 dlg.m_nTrackbar1 = 20;
 dlg.m_nTrackbar2 = 2; // index for 8.0
 dlg.m_nProgress = 70; // write-only
 dlg.m_dSpin = 3.2;
 dlg.DoModal();
}
Add a statement to include ex06bDialog.h in file ex06bView.cpp.

13. Compile and run the program. Experiment with the controls to see how they work. We haven't
added code to make the progress indicator functional; we'll cover that in Chapter 12.

Other Windows Common Controls

You've seen most of the common controls that appear on the dialog editor control palette. We've skipped
the animation control because this book doesn't cover multimedia, and we've skipped the hot key control
because it isn't very interesting. The tab control is interesting, but you seldom use it inside another dialog.
Chapter 13 shows you how to construct a tabbed dialog, sometimes known as a property sheet. In Chapter
13, you'll also see an application that is built around the CRichEditView class, which incorporates the
Windows rich edit control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7
The Modeless Dialog and Windows Common Dialogs
In Chapter 6, you saw the ordinary modal dialog and most of the controls for Microsoft Windows. Now
you'll move on to the modeless dialog and to the common dialogs for Microsoft Windows 95 and Microsoft
Windows NT versions 4.0 and later. Modeless dialogs, as you'll remember, allow the user to work
elsewhere in the application while the dialog is active. The common dialog classes are the C++
programming interface to the group of Windows utility dialogs that include File Open, Page Setup, Color,
and so forth and that are supported by the dynamic link library COMDLG32.DLL.

In this chapter's first example, you'll build a simple modeless dialog that is controlled from a view. In the
second example, you'll derive from the COMDLG32 CFileDialog class a class that allows file deletion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modeless Dialogs
In the Microsoft Foundation Class (MFC) Library version 6.0, modal and modeless dialogs share the same
base class, CDialog, and they both use a dialog resource that you can build with the dialog editor. If you're
using a modeless dialog with a view, you'll need to know some specialized programming techniques.

Creating Modeless Dialogs

For modal dialogs, you've already learned that you construct a dialog object using a CDialog constructor
that takes a resource template ID as a parameter, and then you display the modal dialog window by calling
the DoModal member function. The window ceases to exist as soon as DoModal returns. Thus, you can
construct a modal dialog object on the stack, knowing that the dialog window has been destroyed by the
time the C++ dialog object goes out of scope.

Modeless dialogs are more complicated. You start by invoking the CDialog default constructor to construct
the dialog object, but then to create the dialog window you need to call the CDialog::Create member
function instead of DoModal. Create takes the resource ID as a parameter and returns immediately with
the dialog window still on the screen. You must worry about exactly when to construct the dialog object,
when to create the dialog window, when to destroy the dialog, and when to process user-entered data.

Here's a summary of the differences between creating a modal dialog and a modeless dialog.

 Modal Dialog Modeless Dialog

Constructor used Constructor with resource ID
param

Default constructor (no
params)

Function used to create
window

DoModal Create with resource ID
param

User-Defined Messages

Suppose you want the modeless dialog window to be destroyed when the user clicks the dialog's OK
button. This presents a problem. How does the view know that the user has clicked the OK button? The
dialog could call a view class member function directly, but that would "marry" the dialog to a particular
view class. A better solution is for the dialog to send the view a user-defined message as the result of a
call to the OK button message-handling function. When the view gets the message, it can destroy the
dialog window (but not the object). This sets the stage for the creation of a new dialog.

You have two options for sending Windows messages: the CWnd::SendMessage function or the
PostMessage function. The former causes an immediate call to the message-handling function, and the
latter posts a message in the Windows message queue. Because there's a slight delay with the
PostMessage option, it's reasonable to expect that the handler function has returned by the time the view
gets the message.

Dialog Ownership

Now suppose you've accepted the dialog default pop-up style, which means that the dialog isn't confined to
the view's client area. As far as Windows is concerned, the dialog's "owner" is the application's main frame
window (introduced in Chapter 13), not the view. You need to know the dialog's view to send the view a
message. Therefore, your dialog class must track its own view through a data member that the constructor
sets. The CDialog constructor's pParent parameter doesn't have any effect here, so don't bother using it.

A Modeless Dialog Example—EX07A

We could convert the Chapter 6 monster dialog to a modeless dialog, but starting from scratch with a
simpler dialog is easier. Example EX07A uses a dialog with one edit control, an OK button, and a Cancel
button. As in the Chapter 6 example, pressing the left mouse button while the mouse cursor is inside the
view window brings up the dialog, but now we have the option of destroying it in response to another
event—pressing the right mouse button when the mouse cursor is inside the view window. We'll allow only
one open dialog at a time, so we must be sure that a second left button press doesn't bring up a duplicate
dialog.

To summarize the upcoming steps, the EX07A view class has a single associated dialog object that is
constructed on the heap when the view is constructed. The dialog window is created and destroyed in
response to user actions, but the dialog object is not destroyed until the application terminates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

response to user actions, but the dialog object is not destroyed until the application terminates.

Here are the steps to create the EX07A example:

1. Run AppWizard to produce \vcpp32\ex07a\ex07a. Accept all the defaults but two: select
Single Document and deselect Printing And Print Preview. The options and the default class names
are shown here.

2. Use the dialog editor to create a dialog resource. Choose Resource from Visual C++'s Insert
menu, and then select Dialog. The dialog editor assigns the ID IDD_DIALOG1 to the new dialog.
Change the dialog caption to Modeless Dialog. Accept the default OK and Cancel buttons with IDs
IDOK and IDCANCEL, and then add a static text control and an edit control with the default ID
IDC_EDIT1. Change the static text control's caption to Edit 1. Here is the completed dialog.

Be sure to select the dialog's Visible property.

3. Use ClassWizard to create the CEx07aDialog class. Choose ClassWizard from Microsoft Visual
C++'s View menu. Fill in the New Class dialog as shown here, and then click the OK button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++'s View menu. Fill in the New Class dialog as shown here, and then click the OK button.

Add the message-handling functions shown next. To add a message-handling function, click on an
object ID, click on a message, and then click the Add Function button. The Add Member Function
dialog box appears. Edit the function name if necessary, and click the OK button.

Object ID Message Member Function

IDCANCEL BN_CLICKED OnCancel

IDOK BN_CLICKED OnOK

4. Add a variable to the CEx07aDialog class. While in ClassWizard, click on the Member Variables
tab, choose the IDC_EDIT1 control, and then click the Add Variable button to add the CString
variable m_strEdit1.

5. Edit ex07aDialog.h to add a view pointer and function prototypes. Type in the following
boldface code in the CEx07aDialog class declaration:

private:
 CView* m_pView;
Also, add the function prototypes as follows:

public:
 CEx07aDialog(CView* pView);
 BOOL Create();

Using the CView class rather than the CEx07aView class allows the dialog class to be
used with any view class.

6. Edit ex07aDialog.h to define the WM_GOODBYE message ID. Add the following line of code:

#define WM_GOODBYE WM_USER + 5
The Windows constant WM_USER is the first message ID available for user-defined messages. The
application framework uses a few of these messages, so we'll skip over the first five messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application framework uses a few of these messages, so we'll skip over the first five messages.

Visual C++ maintains a list of symbol definitions in your project's resource.h file, but
the resource editor does not understand constants based on other constants. Don't
manually add WM_GOODBYE to resource.h because Visual C++ might delete it.

7. Add the modeless constructor in the file ex07aDialog.cpp. You could modify the existing
CEx07aDialog constructor, but if you add a separate one, the dialog class can serve for both modal
and modeless dialogs. Add the lines shown below.

CEx07aDialog::CEx07aDialog(CView* pView) // modeless constructor
{
 m_pView = pView;
}
You should also add the following line to the AppWizard-generated modal constructor:

m_pView = NULL;
The C++ compiler is clever enough to distinguish between the modeless constructor
CEx07aDialog(CView*) and the modal constructor CEx07aDialog(CWnd*). If the compiler sees an
argument of class CView or a derived CView class, it generates a call to the modeless constructor. If
it sees an argument of class CWnd or another derived CWnd class, it generates a call to the modal
constructor.

8. Add the Create function in ex07aDialog.cpp. This derived dialog class Create function calls the
base class function with the dialog resource ID as a parameter. Add the following lines:

BOOL CEx07aDialog::Create()
{
 return CDialog::Create(CEx07aDialog::IDD);
}

Create is not a virtual function. You could have chosen a different name if you had
wanted to.

9. Edit the OnOK and OnCancel functions in ex07aDialog.cpp. These virtual functions generated
by ClassWizard are called in response to dialog button clicks. Add the following boldface code:

void CEx07aDialog::OnCancel() // not really a message handler
{
 if (m_pView != NULL) {
 // modeless case -- do not call base class OnCancel
 m_pView->PostMessage(WM_GOODBYE, IDCANCEL);
 }
 else {
 CDialog::OnCancel(); // modal case
 }
}

void CEx07aDialog::OnOK() // not really a message handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx07aDialog::OnOK() // not really a message handler
{
 if (m_pView != NULL) {
 // modeless case -- do not call base class OnOK
 UpdateData(TRUE);
 m_pView->PostMessage(WM_GOODBYE, IDOK);
 }
 else {
 CDialog::OnOK(); // modal case
 }
}
If the dialog is being used as a modeless dialog, it sends the user-defined message WM_GOODBYE
to the view. We'll worry about handling the message later.

For a modeless dialog, be sure you do not call the CDialog::OnOK or
CDialog::OnCancel function. This means you must override these virtual functions in
your derived class; otherwise, using the Esc key, the Enter key, or a button click would
result in a call to the base class functions, which call the Windows EndDialog function.
EndDialog is appropriate only for modal dialogs. In a modeless dialog, you must call
DestroyWindow instead, and if necessary, you must call UpdateData to transfer data
from the dialog controls to the class data members.

10. Edit the ex07aView.h header file. You need a data member to hold the dialog pointer:

private:
 CEx07aDialog* m_pDlg;
If you add the forward declaration

class CEx07aDialog;
at the beginning of ex07aView.h, you won't have to include ex07aDialog.h in every module that
includes ex07aView.h.

11. Modify the CEx07aView constructor and destructor in the file ex07aView.cpp. The
CEx07aView class has a data member m_pDlg that points to the view's CEx07aDialog object. The
view constructor constructs the dialog object on the heap, and the view destructor deletes it. Add
the following boldface code:

CEx07aView::CEx07aView()
{
 m_pDlg = new CEx07aDialog(this);
}

CEx07aView::~CEx07aView()
{
 delete m_pDlg; // destroys window if not already destroyed
}

12. Add code to the virtual OnDraw function in the ex07aView.cpp file. The CEx07aView OnDraw
function (whose skeleton was generated by AppWizard) should be coded as follows in order to
prompt the user to press the mouse button:

void CEx07aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

13. Use ClassWizard to add CEx07aView mouse message handlers. Add handlers for the
WM_LBUTTONDOWN and WM_RBUTTONDOWN messages. Now edit the code in file ex07aView.cpp
as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx07aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // creates the dialog if not created already
 if (m_pDlg->GetSafeHwnd() == 0) {
 m_pDlg->Create(); // displays the dialog window
 }
}

void CEx07aView::OnRButtonDown(UINT nFlags, CPoint point)
{
 m_pDlg->DestroyWindow();
 // no problem if window was already destroyed
}
For most window types except main frame windows, the DestroyWindow function does not destroy
the C++ object. We want this behavior because we'll take care of the dialog object's destruction in
the view destructor.

14. Add the dialog header include statement to file ex07aView.cpp. While you're in
ex07aView.cpp, add the following dialog header include statement after the view header include
statement:

#include "ex07aView.h"
#include "ex07aDialog.h"

15. Add your own message code for the WM_GOODBYE message. Because ClassWizard does not
support user-defined messages, you must write the code yourself. This task makes you appreciate
the work ClassWizard does for the other messages.

In ex07aView.cpp, add the following line after the BEGIN_MESSAGE_MAP statement but
outside the AFX_MSG_MAP brackets:

ON_MESSAGE(WM_GOODBYE, OnGoodbye)
Also in ex07aView.cpp, add the message handler function itself:

LRESULT CEx07aView::OnGoodbye(WPARAM wParam, LPARAM lParam)
{
 // message received in response to modeless dialog OK
 // and Cancel buttons
 TRACE("CEx07aView::OnGoodbye %x, %lx\n", wParam, lParam);
 TRACE("Dialog edit1 contents = %s\n",
 (const char*) m_pDlg->m_strEdit1);
 m_pDlg->DestroyWindow();
 return 0L;
}
In ex07aView.h, add the following function prototype before the DECLARE_MESSAGE_MAP()
statement but outside the AFX_ MSG brackets:

afx_msg LRESULT OnGoodbye(WPARAM wParam, LPARAM lParam);
With Win32, the wParam and lParam parameters are the usual means of passing message data. In
a mouse button down message, for example, the mouse x and y coordinates are packed into the
lParam value. With the MFC library, message data is passed in more meaningful parameters. The
mouse position is passed as a CPoint object. User-defined messages must use wParam and lParam,
so you can use these two variables however you want. In this example, we've put the button ID in
wParam.

16. Build and test the application. Build and run EX07A. Press the left mouse button, and then press
the right button. (Be sure the mouse cursor is outside the dialog window when you press the right
mouse button.) Press the left mouse button again and enter some data, and then click the dialog's
OK button. Does the view's TRACE statement correctly list the edit control's contents?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you use the EX07A view and dialog classes in an MDI application, each MDI child
window can have one modeless dialog. When the user closes an MDI child window, the
child's modeless dialog is destroyed because the view's destructor calls the dialog
destructor, which, in turn, destroys the dialog window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFormView Class—A Modeless Dialog Alternative
If you need an application based on a single modeless dialog, the CFormView class will save you a lot of
work. You'll have to wait until Chapter 16, however, because the CFormView class is most useful when
coupled with the CDocument class, and we haven't progressed that far in our exploration of the application
framework.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Common Dialogs
Windows provides a group of standard user interface dialogs, and these are supported by the MFC library
classes. You are probably familiar with all or most of these dialogs because so many Windows-based
applications, including Visual C++, already use them. All the common dialog classes are derived from a
common base class, CCommonDialog. A list of the COMDLG32 classes is shown in the following table.

Class Purpose

CColorDialog Allows the user to select or create a color

CFileDialog Allows the user to open or save a file

CFindReplaceDialog Allows the user to substitute one string for another

CPageSetupDialog Allows the user to input page measurement parameters

CFontDialog Allows the user to select a font from a list of available fonts

CPrintDialog Allows the user to set up the printer and print a document

Here's one characteristic that all common dialogs share: they gather information from the user, but they
don't do anything with it. The file dialog can help the user select a file to open, but it really just provides
your program with the pathname—your program must make the call that opens the file. Similarly, a font
dialog fills in a structure that describes a font, but it doesn't create the font.

Using the CFileDialog Class Directly

Using the CFileDialog class to open a file is easy. The following code opens a file that the user has selected
through the dialog:

CFileDialog dlg(TRUE, "bmp", "*.bmp");
if (dlg.DoModal() == IDOK) {
 CFile file;
 VERIFY(file.Open(dlg.GetPathName(), CFile::modeRead));
}
The first constructor parameter (TRUE) specifies that this object is a "File Open" dialog instead of a "File
Save" dialog. The default file extension is bmp, and *.bmp appears first in the filename edit box. The
CFileDialog::GetPathName function returns a CString object that contains the full pathname of the selected
file.

Deriving from the Common Dialog Classes

Most of the time, you can use the common dialog classes directly. If you derive your own classes, you can
add functionality without duplicating code. Each COMDLG32 dialog works a little differently, however. The
next example is specific to the file dialog, but it should give you some ideas for customizing the other
common dialogs.

In the early editions of this book, the EX07B example dynamically created controls
inside the standard file dialog. That technique doesn't work in Win32, but the nested
dialog method described here has the same effect.

Nested Dialogs

Win32 provides a way to "nest" one dialog inside another so that multiple dialogs appear as one seamless
whole. You must first create a dialog resource template with a "hole" in it—typically a group box control—
with the specific child window ID stc32 (=0x045f). Your program sets some parameters that tell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the specific child window ID stc32 (=0x045f). Your program sets some parameters that tell
COMDLG32 to use your template. In addition, your program must hook into the COMDLG32 message loop
so that it gets first crack at selected notifications. When you're done with all of this, you'll notice that you
have created a dialog window that is a child of the COMDLG32 dialog window, even though your template
wraps COMDLG32's template.

This sounds difficult, and it is unless you use MFC. With MFC, you build the dialog resource template as
described above, derive a class from one of the common dialog base classes, add the class-specific
connection code in OnInitDialog, and then happily use ClassWizard to map the messages that originate
from your template's new controls.

Windows NT 3.51 uses an earlier version of the common dialogs DLL that does not
support the new Windows namespace feature. The nested dialog technique illustrated
in the EX07B example won't work with the Windows NT 3.51 version of the file dialog.

A CFileDialog Example—EX07B

In this example, you will derive a class CEx07bDialog that adds a working Delete All Matching Files button
to the standard file dialog. It also changes the dialog's title and changes the Open button's caption to
Delete (to delete a single file). The example illustrates how you can use nested dialogs to add new controls
to standard common dialogs. The new file dialog is activated as in the previous examples—by pressing the
left mouse button when the mouse cursor is in the view window. Because you should be gaining skill with
Visual C++, the following steps won't be as detailed as those for the earlier examples. Figure 7-1 shows
what the dialog looks like.

Figure 7-1. The Delete File dialog in action.

Follow these steps to build the EX07B application:

1. Run AppWizard to produce \vcpp32\ex07b\ex07b. Accept all the defaults but two: select
Single Document and deselect Printing And Print Preview. The options and the default class names
are shown in the next graphic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the dialog editor to create a dialog resource. Make the dialog box about 3-by-5 inches,
and use the ID IDD_FILESPECIAL. Set the dialog's Style property to Child, its Border property to
None, and select its Clip Siblings and Visible properties. Create the template with a button with ID
IDC_DELETE and a group box with ID stc32=0x045f, as shown here.

Check your work by choosing Resource Symbols from the Visual C++ View menu. You should see a
symbol list like the one shown in the graphic below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Use ClassWizard to create the CSpecialFileDialog class. Fill in the New Class dialog, as shown
here, and then click the Change button.

Change the names to SpecFileDlg.h and SpecFileDlg.cpp. Unfortunately, we cannot use the Base
Class drop-down list to change the base class to CFileDialog, as that would decouple our class from
the IDD_FILESPECIAL template. We have to change the base class by hand.

4. Edit the file SpecFileDlg.h. Change the line

class CSpecialFileDialog : public CDialog
to

class CSpecialFileDialog : public CFileDialog
Add the following two public data members:

CString m_strFilename;
BOOL m_bDeleteAll;
Finally, edit the constructor declaration:

CSpecialFileDialog(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt = NULL,
 LPCTSTR lpszFileName = NULL,
 DWORD dwFlags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
 LPCTSTR lpszFilter = NULL,
 CWnd* pParentWnd = NULL
);

5. Replace CDialog with CFileDialog in SpecFileDlg.h. Choose Replace from Visual C++'s Edit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Replace CDialog with CFileDialog in SpecFileDlg.h. Choose Replace from Visual C++'s Edit
menu, and replace this name globally.

6. Edit the CSpecialFileDialog constructor in SpecFileDlg.cpp. The derived class destructor must
invoke the base class constructor and initialize the m_bDeleteAll data member. In addition, it must
set some members of the CFileDialog base class data member m_ofn, which is an instance of the
Win32 OPENFILENAME structure. The Flags and lpTemplateName members control the coupling to
your IDD_FILESPECIAL template, and the lpstrTitle member changes the main dialog box title. Edit
the constructor as follows:

CSpecialFileDialog::CSpecialFileDialog(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt, LPCTSTR lpszFileName, DWORD dwFlags,
 LPCTSTR lpszFilter, CWnd* pParentWnd)
 : CFileDialog(bOpenFileDialog, lpszDefExt, lpszFileName,
 dwFlags, lpszFilter, pParentWnd)
{
 //{{AFX_DATA_INIT(CSpecialFileDialog)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 m_ofn.Flags |= OFN_ENABLETEMPLATE;
 m_ofn.lpTemplateName = MAKEINTRESOURCE(IDD_FILESPECIAL);
 m_ofn.lpstrTitle = "Delete File";
 m_bDeleteAll = FALSE;
}

7. Map the WM_INITDIALOG message in the CSpecialDialog class. The OnInitDialog member
function needs to change the common dialog's Open button caption to Delete. The child window ID
is IDOK.

BOOL bRet = CFileDialog::OnInitDialog();
if (bRet == TRUE) {
 GetParent()->GetDlgItem(IDOK)->SetWindowText("Delete");
}
return bRet;

8. Map the new IDC_DELETE button (Delete All Matching Files) in the CSpecialDialog class.
The OnDelete member function sets the m_bDeleteAll flag and then forces the main dialog to exit
as if the Cancel button had been clicked. The client program (in this case, the view) gets the
IDCANCEL return from DoModal and reads the flag to see whether it should delete all files. Here is
the function:

 void CSpecialFileDialog::OnDelete()
{
 m_bDeleteAll = TRUE;
 // 0x480 is the child window ID of the File Name edit control
 // (as determined by SPYXX)
 GetParent()->GetDlgItem(0x480)->GetWindowText(m_strFilename);
 GetParent()->SendMessage(WM_COMMAND, IDCANCEL);
}

9. Add code to the virtual OnDraw function in file ex07bView.cpp. The CEx07bView OnDraw
function (whose skeleton was generated by AppWizard) should be coded as follows to prompt the
user to press the mouse button:

void CEx07bView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

10. Add the OnLButtonDown message handler to the CEx07bView class. Use ClassWizard to
create the message handler for WM_LBUTTON-DOWN, and then edit the code as follows:

void CEx07bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CSpecialFileDialog dlgFile(TRUE, NULL, "*.obj");
 CString strMessage;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CString strMessage;
 int nModal = dlgFile.DoModal();
 if ((nModal == IDCANCEL) && (dlgFile.m_bDeleteAll)) {
 strMessage.Format(
 "Are you sure you want to delete all %s files?",
 dlgFile.m_strFilename);
 if (AfxMessageBox(strMessage, MB_YESNO) == IDYES) {
 HANDLE h;
 WIN32_FIND_DATA fData;
 while((h = ::FindFirstFile(dlgFile.m_strFilename, &fData))
 != (HANDLE) 0xFFFFFFFF) { // no MFC equivalent
 if (::DeleteFile(fData.cFileName) == FALSE) {
 strMessage.Format("Unable to delete file %s\n",
 fData.cFileName);
 AfxMessageBox(strMessage);
 break;
 }
 }
 }
 }
 else if (nModal == IDOK) {
 CString strSingleFilename = dlgFile.GetPathName();
 strMessage.Format(
 "Are you sure you want to delete %s?", strSingleFilename);
 if (AfxMessageBox(strMessage, MB_YESNO) == IDYES) {
 CFile::Remove(strSingleFilename);
 }
 }
}
Remember that common dialogs just gather data. Since the view is the client of the dialog, the view
must call DoModal for the file dialog object and then figure out what to do with the information
returned. In this case, the view has the return value from DoModal (either IDOK or IDCANCEL) and
the value of the public m_bDeleteAll data member, and it can call various CFileDialog member
functions such as GetPathName. If DoModal returns IDCANCEL and the flag is TRUE, the function
makes the Win32 file system calls necessary to delete all the matching files. If DoModal returns
IDOK, the function can use the MFC CFile functions to delete an individual file.

Using the global AfxMessageBox function is a convenient way to pop up a simple dialog that
displays some text and then queries the user for a Yes/No answer. The Microsoft Foundation
Classes And Templates section in the online help describes all of the message box variations and
options.

Of course, you'll need to include the statement

#include "SpecFileDlg.h"
after the line

#include "ex07bView.h"
11. Build and test the application.Build and run EX07B. Pressing the left mouse button should bring

up the Delete File dialog, and you should be able to use it to navigate through the disk directory
and to delete files. Be careful not to delete your important source files!

Other Customization for CFileDialog

In the EX07B example, you added a pushbutton to the dialog. It's easy to add other controls too. Just put
them in the resource template, and if they are standard Windows controls such as edit controls or list
boxes, you can use ClassWizard to add data members and DDX/DDV code to your derived class. The client
program can set the data members before calling DoModal, and it can retrieve the updated values after
DoModal returns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even if you don't use nested dialogs, two windows are still associated with a CFileDialog
object. Suppose you have overridden OnInitDialog in a derived class and you want to
assign an icon to the file dialog. You must call CWnd::GetParent to get the top-level
window, just as you did in the EX07B example. Here's the code:

HICON hIcon = AfxGetApp()->LoadIcon(ID_MYICON);
GetParent()->SetIcon(hIcon, TRUE); // Set big icon
GetParent()->SetIcon(hIcon, FALSE); // Set small icon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8
Using ActiveX Controls
Microsoft Visual Basic (VB) was introduced in 1991 and has proven to be a wildly popular and successful
application development system for Microsoft Windows. Part of its success is attributable to its open-ended
nature. The 16-bit versions of VB (versions 1 through 3) supported Visual Basic controls (VBXs), ready-to-
run software components that VB developers could buy or write themselves. VBXs became the center of a
whole industry, and pretty soon there were hundreds of them. At Microsoft, the Microsoft Foundation Class
(MFC) team figured out a way for Microsoft Visual C++ programmers to use VBXs in their programs, too.

The VBX standard, which was highly dependent on the 16-bit segment architecture, did not make it to the
32-bit world. Now ActiveX Controls (formerly known as OLE controls, or OCXs) are the industrial-strength
replacement for VBXs based on Microsoft COM technology. ActiveX controls can be used by application
developers in both VB and Visual C++ 6.0. While VBXs were written mostly in plain C, ActiveX controls can
be written in C++ with the help of the MFC library or with the help of the ActiveX Template Library (ATL).

This chapter is not about writing ActiveX controls; it's about using them in a Visual C++ application. The
premise here is that you can learn to use ActiveX controls without knowing much about the Component
Object Model (COM) on which they're based. After all, Microsoft doesn't require that VB programmers be
COM experts. To effectively write ActiveX controls, however, you need to know a bit more, starting with
the fundamentals of COM. Consider picking up a copy of Adam Denning's ActiveX Controls Inside Out
(Microsoft Press, 1997) if you're serious about creating ActiveX controls. Of course, knowing more ActiveX
Control theory won't hurt when you're using the controls in your programs. Chapter 24, Chapter 25, and
Chapter 30 of this book are a good place to start.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls vs. Ordinary Windows Controls
An ActiveX control is a software module that plugs into your C++ program the same way a Windows
control does. At least that's the way it seems at first. It's worthwhile here to analyze the similarities and
differences between ActiveX controls and the controls you already know.

Ordinary Controls—A Frame of Reference

In Chapter 6, you used ordinary Windows controls such as the edit control and the list box, and you saw
the Windows common controls that work in much the same way. These controls are all child windows that
you use most often in dialogs, and they are represented by MFC classes such as CEdit and CTreeCtrl. The
client program is always responsible for the creation of the control's child window.

Ordinary controls send notification command messages (standard Windows messages), such as
BN_CLICKED, to the dialog. If you want to perform an action on the control, you call a C++ control class
member function, which sends a Windows message to the control. The controls are all windows in their
own right. All the MFC control classes are derived from CWnd, so if you want to get the text from an edit
control, you call CWnd::GetWindowText. But even that function works by sending a message to the
control.

Windows controls are an integral part of Windows, even though the Windows common controls are in a
separate DLL. Another species of ordinary control, the so-called custom control, is a programmer-created
control that acts as an ordinary control in that it sends WM_COMMAND notifications to its parent window
and receives user-defined messages. You'll see one of these in Chapter 22.

How ActiveX Controls Are Similar to Ordinary Controls

You can consider an ActiveX control to be a child window, just as an ordinary control is. If you want to
include an ActiveX control in a dialog, you use the dialog editor to place it there, and the identifier for the
control turns up in the resource template. If you're creating an ActiveX control on the fly, you call a Create
member function for a class that represents the control, usually in the WM_CREATE handler for the parent
window. When you want to manipulate an ActiveX control, you call a C++ member function, just as you do
for a Windows control. The window that contains a control is called a container.

How ActiveX Controls Are Different from Ordinary Controls—Properties and
Methods

The most prominent ActiveX Controls features are properties and methods. Those C++ member functions
that you call to manipulate a control instance all revolve around properties and methods. Properties have
symbolic names that are matched to integer indexes. For each property, the control designer assigns a
property name, such as BackColor or GridCellEffect, and a property type, such as string, integer, or
double. There's even a picture type for bitmaps and icons. The client program can set an individual ActiveX
control property by specifying the property's integer index and its value. The client can get a property by
specifying the index and accepting the appropriate return value. In certain cases, ClassWizard lets you
define data members in your client window class that are associated with the properties of the controls the
client class contains. The generated Dialog Data Exchange (DDX) code exchanges data between the control
properties and the client class data members.

ActiveX Controls methods are like functions. A method has a symbolic name, a set of parameters, and a
return value. You call a method by calling a C++ member function of the class that represents the control.
A control designer can define any needed methods, such as PreviousYear, LowerControlRods, and so forth.

An ActiveX control doesn't send WM_ notification messages to its container the way ordinary controls do;
instead, it "fires events." An event has a symbolic name and can have an arbitrary sequence of parameters
—it's really a container function that the control calls. Like ordinary control notification messages, events
don't return a value to the ActiveX control. Examples of events are Click, KeyDown, and NewMonth. Events
are mapped in your client class just as control notification messages are.

In the MFC world, ActiveX controls act just like child windows, but there's a significant layer of code
between the container window and the control window. In fact, the control might not even have a window.
When you call Create, the control's window isn't created directly; instead, the control code is loaded and
given the command for "in-place activation." The ActiveX control then creates its own window, which MFC
lets you access through a CWnd pointer. It's not a good idea for the client to use the control's hWnd
directly, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directly, however.

A DLL is used to store one or more ActiveX controls, but the DLL often has an OCX filename extension
instead of a DLL extension. Your container program loads the DLLs when it needs them, using
sophisticated COM techniques that rely on the Windows Registry. For the time being, simply accept the fact
that once you specify an ActiveX control at design time, it will be loaded for you at runtime. Obviously,
when you ship a program that requires special ActiveX controls, you'll have to include the OCX files and an
appropriate setup program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing ActiveX Controls
Let's assume you've found a nifty ActiveX control that you want to use in your project. Your first step is to
copy the control's DLL to your hard disk. You could put it anywhere, but it's easier to track your ActiveX
controls if you put them in one place, such as in the system directory (typically \Windows\System for
Microsoft Windows 95 or \Winnt\System32 for Microsoft Windows NT). Copy associated files such as help
(HLP) or license (LIC) files to the same directory.

Your next step is to register the control in the Windows Registry. Actually, the ActiveX control registers
itself when a client program calls a special exported function. The Windows utility Regsvr32 is a client that
accepts the control name on the command line. Regsvr32 is suitable for installation scripts, but another
program, RegComp, in the project REGCOMP on the companion CD-ROM for this book, lets you find your
control by browsing the disk. Some controls have licensing requirements, which might involve extra entries
to the Registry. (See Chapter 15, Chapter 17, Chapter 24, and Chapter 25 for information about how the
Windows Registry works.) Licensed controls usually come with setup programs that take care of those
details.

After you register your ActiveX control, you must install it in each project that uses it. That doesn't mean
that the OCX file gets copied. It means that ClassWizard generates a copy of a C++ class that's specific to
the control, and it means that the control shows up in the dialog editor control palette for that project.

To install an ActiveX control in a project, choose Add To Project from the Project menu and then choose
Components And Controls. Select Registered ActiveX Controls, as shown in the following illustration.

This gets you the list of all the ActiveX controls currently registered on your system. A typical list is shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Calendar Control
The MSCal.ocx control is a popular Microsoft ActiveX Calendar control that's probably already installed and
registered on your computer. If it isn't there, don't worry. It's on the CD-ROM that comes with this book.

Figure 8-1 shows the Calendar control inside a modal dialog.

Figure 8-1. The Calendar control in use.

The Calendar control comes with a help file that lists the control's properties, methods, and events shown
here.

Properties Methods Events

BackColor AboutBox AfterUpdate

Day NextDay BeforeUpdate

DayFont NextMonth Click

DayFontColor NextWeek DblClick

DayLength NextYear KeyDown

FirstDay PreviousDay KeyPress

GridCellEffect PreviousMonth KeyUp

GridFont PreviousWeek NewMonth

GridFontColor PreviousYear NewYear

GridLinesColor Refresh

Month Today

MonthLength

ShowDateSelectors

ShowDays

ShowHorizontalGridlines

ShowTitle

ShowVerticalGridlines

TitleFont

TitleFontColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Value

ValueIsNull

Year

You'll be using the BackColor, Day, Month, Year, and Value properties in the EX08A example later in this
chapter. BackColor is an unsigned long, but it is used as an OLE_COLOR, which is almost the same as a
COLORREF. Day, Month, and Year are short integers. Value's type is the special type VARIANT, which is
described in Chapter 25. It holds the entire date as a 64-bit value.

Each of the properties, methods, and events listed above has a corresponding integer identifier.
Information about the names, types, parameter sequences, and integer IDs is stored inside the control and
is accessible to ClassWizard at container design time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Control Container Programming
MFC and ClassWizard support ActiveX controls both in dialogs and as "child windows." To use ActiveX
controls, you must understand how a control grants access to properties, and you must understand the
interactions between your DDX code and those property values.

Property Access

The ActiveX control developer designates certain properties for access at design time. Those properties are
specified in the property pages that the control displays in the dialog editor when you right-click on a
control and choose Properties. The Calendar control's main property page looks like the one shown next.

When you click on the All tab, you will see a list of all the design- time-accessible properties, which might
include a few properties not found on the Control tab. The Calendar control's All page looks like this.

All the control's properties, including the design-time properties, are accessible at runtime. Some
properties, however, might be designated as read-only.

ClassWizard's C++ Wrapper Classes for ActiveX Controls

When you insert an ActiveX control into a project, ClassWizard generates a C++ wrapper class, derived
from CWnd, that is tailored to your control's methods and properties. The class has member functions for
all properties and methods, and it has constructors that you can use to dynamically create an instance of
the control. (ClassWizard also generates wrapper classes for objects used by the control.) Following are a
few typical member functions from the file Calendar.cpp that ClassWizard generates for the Calendar
control:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsigned long CCalendar::GetBackColor()
{
 unsigned long result;
 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYGET,
 VT_I4, (void*)&result, NULL);
 return result;
}

void CCalendar::SetBackColor(unsigned long newValue)
{
 static BYTE parms[] =
 VTS_I4;
 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYPUT,
 VT_EMPTY, NULL, parms, newValue);
}

short CCalendar::GetDay()
{
 short result;
 InvokeHelper(0x11, DISPATCH_PROPERTYGET, VT_I2,
 (void*)&result, NULL);
 return result;
}

void CCalendar::SetDay(short nNewValue)
{
 static BYTE parms[] =
 VTS_I2;
 InvokeHelper(0x11, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, nNewValue);
}

COleFont CCalendar::GetDayFont()
{
 LPDISPATCH pDispatch;
 InvokeHelper(0x1, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&pDispatch, NULL);
 return COleFont(pDispatch);
}

void CCalendar::SetDayFont(LPDISPATCH newValue)
{
 static BYTE parms[] =
 VTS_DISPATCH;
 InvokeHelper(0x1, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, newValue);
}

VARIANT CCalendar::GetValue()
{
 VARIANT result;
 InvokeHelper(0xc, DISPATCH_PROPERTYGET, VT_VARIANT,
 (void*)&result, NULL);
 return result;
}

void CCalendar::SetValue(const VARIANT& newValue)
{
 static BYTE parms[] =
 VTS_VARIANT;
 InvokeHelper(0xc, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, &newValue);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULL, parms, &newValue);
}

void CCalendar::NextDay()
{
 InvokeHelper(0x16, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CCalendar::NextMonth()
{
 InvokeHelper(0x17, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}
You don't have to concern yourself too much with the code inside these functions, but you can match up
the first parameter of each InvokeHelper function with the dispatch ID for the corresponding property or
method in the Calendar control property list. As you can see, properties always have separate Set and Get
functions. To call a method, you simply call the corresponding function. For example, to call the NextDay
method from a dialog class function, you write code such as this:

m_calendar.NextDay();
In this case, m_calendar is an object of class CCalendar, the wrapper class for the Calendar control.

AppWizard Support for ActiveX Controls

When the AppWizard ActiveX Controls option is checked (the default), AppWizard inserts the following line
in your application class InitInstance member function:

AfxEnableControlContainer();
It also inserts the following line in the project's StdAfx.h file:

#include <afxdisp.h>
If you decide to add ActiveX controls to an existing project that doesn't include the two lines above, you
can simply add the lines.

ClassWizard and the Container Dialog

Once you've used the dialog editor to generate a dialog template, you already know that you can use
ClassWizard to generate a C++ class for the dialog window. If your template contains one or more ActiveX
controls, you can use ClassWizard to add data members and event handler functions.

Dialog Class Data Members vs. Wrapper Class Usage

What kind of data members can you add to the dialog for an ActiveX control? If you want to set a control
property before you call DoModal for the dialog, you can add a dialog data member for that property. If
you want to change properties inside the dialog member functions, you must take another approach: you
add a data member that is an object of the wrapper class for the ActiveX control.

Now is a good time to review the MFC DDX logic. Look back at the Cincinnati dialog in Chapter 6. The
CDialog::OnInitDialog function calls CWnd::UpdateData(FALSE) to read the dialog class data members,
and the CDialog::OnOK function calls UpdateData(TRUE) to write the members. Suppose you added a data
member for each ActiveX control property and you needed to get the Value property value in a button
handler. If you called UpdateData(FALSE) in the button handler, it would read all the property values from
all the dialog's controls—clearly a waste of time. It's more effective to avoid using a data member and to
call the wrapper class Get function instead. To call that function, you must first tell ClassWizard to add a
wrapper class object data member.

Suppose you have a Calendar wrapper class CCalendar and you have an m_calendar data member in your
dialog class. If you want to get the Value property, you do it like this:

COleVariant var = m_calendar.GetValue();

The VARIANT type and COleVariant class are described in Chapter 25.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now consider another case: you want to set the day to the 5th of the month before the control is
displayed. To do this by hand, add a dialog class data member m_sCalDay that corresponds to the
control's short integer Day property. Then add the following line to the DoDataExchange function:

DDX_OCShort(pDX, ID_CALENDAR1, 0x11, m_sCalDay);
The third parameter is the Day property's integer index (its DispID), which you can find in the GetDay and
SetDay functions generated by ClassWizard for the control. Here's how you construct and display the
dialog:

CMyDialog dlg;
dlg.m_sCalDay = 5;
dlg.DoModal();
The DDX code takes care of setting the property value from the data member before the control is
displayed. No other programming is needed. As you would expect, the DDX code sets the data member
from the property value when the user clicks the OK button.

Even when ClassWizard correctly detects a control's properties, it can't always generate
data members for all of them. In particular, no DDX functions exist for VARIANT
properties like the Calendar's Value property. You'll have to use the wrapper class for
these properties.

Mapping ActiveX Control Events

ClassWizard lets you map ActiveX control events the same way you map Windows messages and command
messages from controls. If a dialog class contains one or more ActiveX controls, ClassWizard adds and
maintains an event sink map that connects mapped events to their handler functions. It works something
like a message map. You can see the code in Figure 8-2.

ActiveX controls have the annoying habit of firing events before your program is ready
for them. If your event handler uses windows or pointers to C++ objects, it should
verify the validity of those entities prior to using them.

Locking ActiveX Controls in Memory

Normally, an ActiveX control remains mapped in your process as long as its parent dialog is active. That
means it must be reloaded each time the user opens a modal dialog. The reloads are usually quicker than
the initial load because of disk caching, but you can lock the control into memory for better performance.
To do so, add the following line in the overridden OnInitDialog function after the base class call:

AfxOleLockControl(m_calendar.GetClsid());
The ActiveX control remains mapped until your program exits or until you call the AfxOleUnlockControl
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX08A Example—An ActiveX Control Dialog Container
Now it's time to build an application that uses a Calendar control in a dialog. Here are the steps to create
the EX08A example:

1. Verify that the Calendar control is registered. If the control does not appear in the Visual C++
Gallery's Registered ActiveX Controls page, copy the files MSCal.ocx, MSCal.hlp, and MSCal.cnt to
your system directory and register the control by running the REGCOMP program.

2. Run AppWizard to produce \vcpp32\ex08a\ex08a. Accept all of the default settings but two:
select Single Document and deselect Printing And Print Preview. In the AppWizard Step 3 dialog,
make sure the ActiveX Controls option is selected, as shown below.

3. Install the Calendar control in the EX08A project. Choose Add To Project from Visual C++'s
Project menu, and then choose Components And Controls. Choose Registered ActiveX Controls, and
then choose Calendar Control 8.0. ClassWizard generates two classes in the EX08A directory, as
shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Edit the Calendar control class to handle help messages. Add Calendar.cpp to the following
message map code:

BEGIN_MESSAGE_MAP(CCalendar, CWnd)
 ON_WM_HELPINFO()
END_MESSAGE_MAP()
In the same file, add the OnHelpInfo function:

BOOL CCalendar::OnHelpInfo(HELPINFO* pHelpInfo)
{
 // Edit the following string for your system
 ::WinHelp(GetSafeHwnd(), "c:\\winnt\\system32\\mscal.hlp",
 HELP_FINDER, 0);
 return FALSE;
}
In Calendar.h, add the function prototype and declare the message map:

protected:
 afx_msg BOOL OnHelpInfo(HELPINFO* pHelpInfo);
 DECLARE_MESSAGE_MAP()
The OnHelpInfo function is called if the user presses the F1 key when the Calendar control has the
input focus. We have to add the message map code by hand because ClassWizard doesn't modify
generated ActiveX classes.

The ON_WM_HELPINFO macro maps the WM_HELP message, which is new to
Microsoft Windows 95 and Microsoft Windows NT 4.0. You can use
ON_WM_HELPINFO in any view or dialog class and then code the handler to
activate any help system. Chapter 21 describes the MFC context-sensitive help
system, some of which predates the WM_HELP message.

5. Use the dialog editor to create a new dialog resource. Choose Resource from Visual C++'s
Insert menu, and then choose Dialog. The dialog editor assigns the ID IDD_DIALOG1 to the new
dialog. Next change the ID to IDD_ACTIVEXDIALOG, change the dialog caption to ActiveX Dialog,
and set the dialog's Context Help property (on the More Styles page). Accept the default OK and
Cancel buttons with the IDs IDOK and IDCANCEL, and then add the other controls as shown in
Figure 8-1. Make the Select Date button the default button. Drag the Calendar control from the
control palette. Then set an appropriate tab order. Assign control IDs as shown in the following
table.

Control ID

Calendar control IDC_CALENDAR1

Select Date button IDC_SELECTDATE

Edit control IDC_DAY

Edit control IDC_MONTH

Edit control IDC_YEAR

Next Week button IDC_NEXTWEEK

6. Use ClassWizard to create the CActiveXDialog class. If you run ClassWizard directly from the
dialog editor window, it will know that you want to create a CDialog-derived class based on the
IDD_ACTIVEXDIALOG template. Simply accept the default options, and name the class
CActiveXDialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CActiveXDialog.

Click on the ClassWizard Message Maps tab, and then add the message handler functions shown in
the table below. To add a message handler function, click on an object ID, click on a message, and
click the Add Function button. If the Add Member Function dialog box appears, type the function
name and click the OK button.

Object ID Message Member Function

CActiveXDialog WM_INITDIALOG OnInitDialog (virtual function)

IDC_CALENDAR1 NewMonth (event) OnNewMonthCalendar1

IDC_SELECTDATE BN_CLICKED OnSelectDate

IDC_NEXTWEEK BN_CLICKED OnNextWeek

IDOK BN_CLICKED OnOK (virtual function)

7. Use ClassWizard to add data members to the CActiveXDialog class. Click on the Member
Variables tab, and then add the data members as shown in the illustration below.

You might think that the ClassWizard ActiveX Events tab is for mapping ActiveX
control events in a container. That's not true: it's for ActiveX control developers
who are defining events for a control.

8. Edit the CActiveXDialog class. Add the m_varValue and m_BackColor data members, and then
edit the code for the five handler functions OnInitDialog, OnNewMonthCalendar1, OnSelectDate,
OnNextWeek, and OnOK. Figure 8-2 shows all the code for the dialog class, with new code in
boldface.

ACTIVEXDIALOG.H

//{{AFX_INCLUDES()
#include "calendar.h"
//}}AFX_INCLUDES
#if !defined(AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_)
#define AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

// ActiveXDialog.h : header file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ActiveXDialog.h : header file
//

//
// CActiveXDialog dialog
class CActiveXDialog : public CDialog

{
// Construction
public:
 CActiveXDialog(CWnd* pParent = NULL); // standard constructor

// Dialog Data
 //{{AFX_DATA(CActiveXDialog)
 enum { IDD = IDD_ACTIVEXDIALOG };
 CCalendar m_calendar;
 short m_sDay;
 short m_sMonth;
 short m_sYear;
 //}}AFX_DATA
 COleVariant m_varValue;
 unsigned long m_BackColor;
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CActiveXDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL

// Implementation
protected:

 // Generated message map functions
 //{{AFX_MSG(CActiveXDialog)
 virtual BOOL OnInitDialog();
 afx_msg void OnNewMonthCalendar1();
 afx_msg void OnSelectDate();
 afx_msg void OnNextWeek();
 virtual void OnOK();
 DECLARE_EVENTSINK_MAP()
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional
// declarations immediately before the previous line.

#endif // !defined(AFX_ACTIVEXDIALOG_H__1917789D_6F24_11D0_8FD9_00C04FC2A0C2__INCLUDED_)
ACTIVEXDIALOG.CPP

// ActiveXDialog.cpp : implementation file
//

#include "stdafx.h"
#include "ex08a.h"
#include "ActiveXDialog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static char THIS_FILE[] = __FILE__;
#endif

//
// CActiveXDialog dialog

CActiveXDialog::CActiveXDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CActiveXDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CActiveXDialog)
 m_sDay = 0;
 m_sMonth = 0;
 m_sYear = 0;
 //}}AFX_DATA_INIT
 m_BackColor = 0x8000000F;
}

void CActiveXDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CActiveXDialog)
 DDX_Control(pDX, IDC_CALENDAR1, m_calendar);
 DDX_Text(pDX, IDC_DAY, m_sDay);
 DDX_Text(pDX, IDC_MONTH, m_sMonth);
 DDX_Text(pDX, IDC_YEAR, m_sYear);
 //}}AFX_DATA_MAP
 DDX_OCColor(pDX, IDC_CALENDAR1, DISPID_BACKCOLOR, m_BackColor);
}

BEGIN_MESSAGE_MAP(CActiveXDialog, CDialog)
 //{{AFX_MSG_MAP(CActiveXDialog)
 ON_BN_CLICKED(IDC_SELECTDATE, OnSelectDate)
 ON_BN_CLICKED(IDC_NEXTWEEK, OnNextWeek)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CActiveXDialog message handlers

BEGIN_EVENTSINK_MAP(CActiveXDialog, CDialog)
 //{{AFX_EVENTSINK_MAP(CActiveXDialog)
 ON_EVENT(CActiveXDialog, IDC_CALENDAR1, 3 /* NewMonth */, OnNewMonthCalendar1, VTS_NONE)
 //}}AFX_EVENTSINK_MAP
END_EVENTSINK_MAP()

BOOL CActiveXDialog::OnInitDialog()
{
 CDialog::OnInitDialog();
 m_calendar.SetValue(m_varValue); // no DDX for VARIANTs
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE

}
void CActiveXDialog::OnNewMonthCalendar1()
{
 AfxMessageBox("EVENT: CActiveXDialog::OnNewMonthCalendar1");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxMessageBox("EVENT: CActiveXDialog::OnNewMonthCalendar1");
}

void CActiveXDialog::OnSelectDate()
{
 CDataExchange dx(this, TRUE);
 DDX_Text(&dx, IDC_DAY, m_sDay);
 DDX_Text(&dx, IDC_MONTH, m_sMonth);
 DDX_Text(&dx, IDC_YEAR, m_sYear);
 m_calendar.SetDay(m_sDay);
 m_calendar.SetMonth(m_sMonth);
 m_calendar.SetYear(m_sYear);
}

void CActiveXDialog::OnNextWeek()
{
 m_calendar.NextWeek();
}

void CActiveXDialog::OnOK()
{
 CDialog::OnOK();
 m_varValue = m_calendar.GetValue(); // no DDX for VARIANTs
}

Figure 8-2. Code for the CActiveXDialog class.

The OnSelectDate function is called when the user clicks the Select Date button. The function gets
the day, month, and year values from the three edit controls and transfers them to the control's
properties. ClassWizard can't add DDX code for the BackColor property, so you must add it by hand.
In addition, there's no DDX code for VARIANT types, so you must add code to the OnInitDialog and
OnOK functions to set and retrieve the date with the control's Value property.

9. Connect the dialog to the view. Use ClassWizard to map the WM_LBUTTONDOWN message, and
then edit the handler function as follows:

void CEx08aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CActiveXDialog dlg;
 dlg.m_BackColor = RGB(255, 251, 240); // light yellow
 COleDateTime today = COleDateTime::GetCurrentTime();
 dlg.m_varValue = COleDateTime(today.GetYear(), today.GetMonth(),
 today.GetDay(), 0, 0, 0);
 if (dlg.DoModal() == IDOK) {
 COleDateTime date(dlg.m_varValue);
 AfxMessageBox(date.Format("%B %d, %Y"));
 }
}
The code sets the background color to light yellow and the date to today's date, displays the modal
dialog, and reports the date returned by the Calendar control. You'll need to include ActiveXDialog.h
in ex08aView.cpp.

10. Edit the virtual OnDraw function in the file ex08aView.cpp. To prompt the user to press the
left mouse button, replace the code in the view class OnDraw function with this single line:

pDC->TextOut(0, 0, "Press the left mouse button here.");
11. Build and test the EX08A application. Open the dialog, enter a date in the three edit controls,

and then click the Select Date button. Click the Next Week button. Try moving the selected date
directly to a new month, and observe the message box that is triggered by the NewMonth event.
Watch for the final date in another message box when you click OK. Press the F1 key for help on
the Calendar control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Win32 Programmers

If you use a text editor to look inside the ex08a.rc file, you might be quite mystified.
Here's the entry for the Calendar control in the ActiveX Dialog template:

CONTROL "",IDC_CALENDAR1,
 "{8E27C92B-1264-101C-8A2F-040224009C02}",
 WS_TABSTOP,7,7,217,113
There's a 32-digit number sequence where the window class name should be. What's
going on? Actually, the resource template isn't the one that Windows sees. The
CDialog::DoModal function "preprocesses" the resource template before passing it on
to the dialog box procedure within Windows. It strips out all the ActiveX controls and
creates the dialog window without them. Then it loads the controls (based on their 32-
digit identification numbers, called CLSIDs) and activates them in place, causing them
to create their own windows in the correct places. The initial values for the properties
you set in the dialog editor are stored in binary form inside the project's custom
DLGINIT resource.

When the modal dialog runs, the MFC code coordinates the messages sent to the dialog
window both by the ordinary controls and by the ActiveX controls. This allows the user
to tab between all the controls in the dialog, even though the ActiveX controls are not
part of the actual dialog template.

When you call the member functions for the control object, you might think you're
calling functions for a child window. The control window is quite far removed, but MFC
steps in to make it seem as if you're communicating with a real child window. In
ActiveX terminology, the container owns a site, which is not a window. You call
functions for the site, and ActiveX and MFC make the connection to the underlying
window in the ActiveX control.

The container window is an object of a class derived from CWnd. The control site is also
an object of a class derived from CWnd—the ActiveX control wrapper class. That means
that the CWnd class has built-in support for both containers and sites.

What you're seeing here is MFC ActiveX control support grafted onto regular Windows.
Maybe some future Windows version will have more direct support for ActiveX Controls.
As a matter of fact, ActiveX versions of the Windows common controls already exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls in HTML Files
You've seen the ActiveX Calendar control in an MFC modal dialog. You can use the same control in a Web
page. The following HTML code will work (assuming the person reading the page has the Calendar control
installed and registered on his or her machine):

<OBJECT
 CLASSID="clsid:8E27C92B-1264-101C-8A2F-040224009C02"
 WIDTH=300 HEIGHT=200 BORDER=1 HSPACE=5 ID=calendar>
<PARAM NAME="Day" VALUE=7>
<PARAM NAME="Month" VALUE=11>
<PARAM NAME="Year" VALUE=1998>
</OBJECT>
The CLASSID attribute (the same number that was in the EX08A dialog resource) identifies the Calendar
control in the Registry. A browser can download an ActiveX control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating ActiveX Controls at Runtime
You've seen how to use the dialog editor to insert ActiveX controls at design time. If you need to create an
ActiveX control at runtime without a resource template entry, here are the programming steps:

1. Insert the component into your project. ClassWizard will create the files for a wrapper class.

2. Add an embedded ActiveX control wrapper class data member to your dialog class or other C++
window class. An embedded C++ object is then constructed and destroyed along with the window
object.

3. Choose Resource Symbols from Visual C++'s View menu. Add an ID constant for the new control.

4. If the parent window is a dialog, use ClassWizard to map the dialog's WM_INITDIALOG message,
thus overriding CDialog-::OnInitDialog. For other windows, use ClassWizard to map the
WM_CREATE message. The new function should call the embedded control class's Create member
function. This call indirectly displays the new control in the dialog. The control will be properly
destroyed when the parent window is destroyed.

5. In the parent window class, manually add the necessary event message handlers and prototypes for
your new control. Don't forget to add the event sink map macros.

ClassWizard doesn't help you with event sink maps when you add a dynamic ActiveX
control to a project. Consider inserting the target control in a dialog in another
temporary project. After you're finished mapping events, simply copy the event sink
map code to the parent window class in your main project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX08B Example—The Web Browser ActiveX Control
Microsoft Internet Explorer 4.x has become a leading Web browser. I was surprised to find out that most of
its functionality is contained in one big ActiveX control, Shdocvw.dll. When you run Internet Explorer, you
launch a small shell program that loads this Web Browser control in its main window.

You can find complete documentation for the Web Browser control's properties,
methods, and events in the Internet SDK, downloadable from
http://www.microsoft.com. This documentation is in HTML form, of course.

Because of this modular architecture, you can write your own custom browser program with very little
effort. EX08B creates a two-window browser that displays a search engine page side-by-side with the
target page, as shown here.

This view window contains two Web Browser controls that are sized to occupy the entire client area. When
the user clicks an item in the search (right-hand) control, the program intercepts the command and routes
it to the target (left-hand) control.

Here are the steps for building the example:

1. Make sure the Web Browser control is registered. You undoubtedly have Microsoft Internet
Explorer 4.x installed, since Visual C++ 6.0 requires it, so the Web Browser control should be
registered. You can download Internet Explorer from http://www.microsoft.com if necessary.

2. Run AppWizard to produce \vcpp32\ex08b\ex08b. Accept all the default settings but two:
except select Single Document and deselect Printing And Print Preview. Make sure the ActiveX
Controls option is checked as in EX08A.

3. Install the Web Browser control in the EX08B project. Choose Add To Project from Visual
C++'s Project menu, and choose Components And Controls from the submenu. Select Registered
ActiveX Controls, and then choose Microsoft Web Browser. Visual C++ will generate the wrapper
class CWebBrowser and add the files to your project.

4. Add two CWebBrowser data members to the CEx08bView class. Click on the ClassView tab in
the Workspace window, and then right-click the CEx08bView class. Choose Add Member Variable,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Workspace window, and then right-click the CEx08bView class. Choose Add Member Variable,
and fill in the dialog as shown here.

Repeat for m_target. ClassWizard adds an #include statement for the webbrowser.h file.

5. Add the child window ID constants for the two controls. Select Resource Symbols from Visual
C++'s View menu, and then add the symbols ID_BROWSER_SEARCH and ID_BROWSER_TARGET.

6. Add a static character array data member for the AltaVista URL. Add the following static data
member to the class declaration in ex08bView.h:

private:
 static const char s_engineAltavista[];
Then add the following definition in ex08bView.cpp, outside any function:

const char CEx08bView::s_engineAltavista[] =
 "http://altavista.digital.com/";

7. Use ClassWizard to map the view's WM_CREATE and WM_SIZE messages. Edit the handler
code in ex08bView.cpp as follows:

int CEx08bView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 DWORD dwStyle = WS_VISIBLE | WS_CHILD;
 if (m_search.Create(NULL, dwStyle, CRect(0, 0, 100, 100),
 this, ID_BROWSER_SEARCH) == 0) {
 AfxMessageBox("Unable to create search control!\n");
 return -1;
 }
 m_search.Navigate(s_engineAltavista, NULL, NULL, NULL, NULL);
 if (m_target.Create(NULL, dwStyle, CRect(0, 0, 100, 100),
 this, ID_BROWSER_TARGET) == 0) {
 AfxMessageBox("Unable to create target control!\n");
 return -1;
 }
 m_target.GoHome(); // as defined in Internet Explorer 4 options
 return 0;
}

void CEx08bView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 CRect rectClient;
 GetClientRect(rectClient);
 CRect rectBrowse(rectClient);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect rectBrowse(rectClient);
 rectBrowse.right = rectClient.right / 2;
 CRect rectSearch(rectClient);
 rectSearch.left = rectClient.right / 2;
 m_target.SetWidth(rectBrowse.right - rectBrowse.left);
 m_target.SetHeight(rectBrowse.bottom - rectBrowse.top);
 m_target.UpdateWindow();
 m_search.SetLeft(rectSearch.left);
 m_search.SetWidth(rectSearch.right - rectSearch.left);
 m_search.SetHeight(rectSearch.bottom - rectSearch.top);
 m_search.UpdateWindow();
}
The OnCreate function creates two browser windows inside the view window. The right-hand
browser displays the top-level AltaVista page, and the left-hand browser displays the "home" page
as defined through the Internet icon in the Control Panel. The OnSize function, called whenever the
view window changes size, ensures that the browser windows completely cover the view window.
The CWebBrowser member functions SetWidth and SetHeight set the browser's Width and Height
properties.

8. Add the event sink macros in the CEx08bView files. ClassWizard can't map events from a
dynamic ActiveX control, so you must do it manually. Add the following lines inside the class
declaration in the file ex08bView.h:

protected:
 afx_msg void OnBeforeNavigateExplorer1(LPCTSTR URL, long Flags, LPCTSTR TargetFrameName, VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel);
 afx_msg void OnTitleChangeExplorer2(LPCTSTR Text);
 DECLARE_EVENTSINK_MAP()
Then add the following code in ex08bView.cpp:

BEGIN_EVENTSINK_MAP(CEx08bView, CView)
 ON_EVENT(CEx08bView, ID_BROWSER_SEARCH, 100, OnBeforeNavigateExplorer1, VTS_BSTR VTS_I4 VTS_BSTR VTS_PVARIANT VTS_BSTR VTS_PBOOL)
 ON_EVENT(CEx08bView, ID_BROWSER_TARGET, 113, OnTitleChangeExplorer2, VTS_BSTR)
END_EVENTSINK_MAP()

9. Add two event handler functions. Add the following member functions in ex08bView.cpp:

void CEx08bView::OnBeforeNavigateExplorer1(LPCTSTR URL,
 long Flags, LPCTSTR TargetFrameName,
 VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel)
{
 TRACE("CEx08bView::OnBeforeNavigateExplorer1 -- URL = %s\n", URL);
 if (!strnicmp(URL, s_engineAltavista, strlen(s_engineAltavista))) {
 return;
 }
 m_target.Navigate(URL, NULL, NULL, PostData, NULL);
 *Cancel = TRUE;
}
void CEx08bView::OnTitleChangeExplorer2(LPCTSTR Text)
{
 // Careful! Event could fire before we're ready.
 CWnd* pWnd = AfxGetApp()->m_pMainWnd;
 if (pWnd != NULL) {
 if (::IsWindow(pWnd->m_hWnd)) {
 pWnd->SetWindowText(Text);
 }
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The OnBeforeNavigateExplorer1 handler is called when the user clicks on a link in the search page.
The function compares the clicked URL (in the URL string parameter) with the search engine URL. If
they match, the navigation proceeds in the search window; otherwise, the navigation is cancelled
and the Navigate method is called for the target window. The OnTitleChangeExplorer2 handler
updates the EX08B window title to match the title on the target page.

10. Build and test the EX08B application. Search for something on the AltaVista page, and then
watch the information appear in the target page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX08C Example—A Complete Dual-Window Web Browser
I deliberately kept the EX08B example simple to clearly illustrate the use of the Web Browser control.
However, I couldn't resist upgrading the program so that I could use it as my primary Internet browser.
The result is EX08C, which uses MFC features described in later chapters of this book—in particular the
features below.

A splitter window with moveable vertical bar browser windows
Use of the Registry to "remember" the search and target pages
Printing of both search and target pages
Support for multiple search engines
Toolbar buttons for navigation, printing, and search engine selection
Status bar display of activity and the selected URL

If EX08B runs, \vcpp32\Debug\ex08c should run also. I'm sure you'll have your own ideas for further
customization. Once you've studied the rest of the book, you'll be able to take control of this project from
the CD-ROM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Picture Properties
Some ActiveX controls support picture properties, which can accommodate bitmaps, metafiles, and icons.
If an ActiveX control has at least one picture property, ClassWizard generates a CPicture class in your
project during the control's installation. You don't need to use this CPicture class, but you must use the
MFC class CPictureHolder. To access the CPictureHolder class declaration and code, you need the following
line in StdAfx.h:

#include <afxctl.h>
Suppose you have an ActiveX control with a picture property named Picture. Here's how you set the
Picture property to a bitmap in your program's resources:

CPictureHolder pict;
pict.CreateFromBitmap(IDB_MYBITMAP); // from project's resources
m_control.SetPicture(pict.GetPictureDispatch());

If you include the AfxCtl.h file, you can't statically link your program with the MFC
library. If you need a stand-alone program that supports picture properties, you'll have
to borrow code from the CPictureHolder class, located in the \Program Files\Microsoft
Visual Studio\VC98\mfc\src\ctlpict.cpp file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bindable Properties—Change Notifications
If an ActiveX control has a property designated as bindable, the control will send an OnChanged
notification to its container when the value of the property changes inside the control. In addition, the
control can send an OnRequestEdit notification for a property whose value is about to change but has not
yet changed. If the container returns FALSE from its OnRequestEdit handler, the control should not change
the property value.

MFC fully supports property change notifications in ActiveX control containers, but as of Visual C++ version
6.0, no ClassWizard support was available. That means you must manually add entries to your container
class's event sink map.

Suppose you have an ActiveX control with a bindable property named Note with a dispatch ID of 4. You
add an ON_PROPNOTIFY macro to the EVENTSINK macros in this way:

BEGIN_EVENTSINK_MAP(CAboutDlg, CDialog)
 //{{AFX_EVENTSINK_MAP(CAboutDlg)
 // ClassWizard places other event notification macros here
 //}}AFX_EVENTSINK_MAP
 ON_PROPNOTIFY(CAboutDlg, IDC_MYCTRL1, 4, OnNoteRequestEdit, OnNoteChanged)
END_EVENTSINK_MAP()
You must then code the OnNoteRequestEdit and OnNoteChanged functions with return types and
parameter types exactly as shown here:

BOOL CMyDlg::OnNoteRequestEdit(BOOL* pb)
{
 TRACE("CMyDlg::OnNoteRequestEdit\n");
 *pb = TRUE; // TRUE means change request granted
 return TRUE;
}

BOOL CMyDlg::OnNoteChanged()
{
 TRACE("CMyDlg::OnNoteChanged\n");
 return TRUE;
}
You'll also need corresponding prototypes in the class header, as shown here:

afx_msg BOOL OnNoteRequestEdit(BOOL* pb);
afx_msg BOOL OnNoteChanged();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other ActiveX Controls
You'll probably notice that your disk fills up with ActiveX controls, especially if you accept controls from
Web sites. Most of these controls are difficult to use unless you have the documentation on hand, but you
can have fun experimenting. Try the Marquee.ocx control that is distributed with Visual C++ 6.0. It works
fine in both MFC programs and HTML files. The trick is to set the szURL property to the name of another
HTML file that contains the text to display in the scrolling marquee window.

Many ActiveX controls were designed for use by Visual Basic programmers. The SysInfo.ocx control that
comes with Visual C++, for example, lets you retrieve system parameters as property values. This isn't of
much use to a C++ programmer, however, because you can make the equivalent Win32 calls anytime.
Unlike the many objects provided by MFC, ActiveX controls are binary objects that are not extensible. For
example, you cannot add a property or event to an ActiveX control. Nor can you use many C++ object-
oriented techniques like polymorphism with ActiveX controls. Another downside of ActiveX controls is they
are not compatible with many advanced MFC concepts such as the document/view architecture, which we
will cover later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9
Internet Explorer 4 Common Controls
When Microsoft developers released Internet Explorer 4 (IE4), they included a new and improved version
of the COMCTL32.DLL, which houses Microsoft Windows Common Controls. Since this update to the
common controls was not part of an operating system release, Microsoft calls the update Internet Explorer
4 Common Controls. IE4 Common Controls updates all of the existing controls and adds a variety of
advanced new controls. Microsoft Visual C++ 6.0 and Microsoft Foundation Class (MFC) 6.0 have added a
great deal of support for these new controls. In this chapter, we'll look at the new controls and show
examples of how to use each one. If you haven't worked with Windows controls or Windows Common
Controls, be sure you read Chapter 6 before proceeding with IE4 Common Controls.

While Microsoft Windows 95 and Microsoft Windows NT 4.0 do not include the new
COMCTL32.DLL, future versions of Windows will. To be safe, you will need to
redistribute the COMCTL32.DLL for these existing operating systems as part of your
installation. Currently you must ship a "developer's edition" of Internet Explorer to be
able to redistribute these controls. However, this might change once a version of
Windows ships with the updated controls. Be sure you check www.microsoft.com/msdn
for the latest news on this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Introduction to the New Internet Explorer 4 Common Controls
Example EX09A uses each of the new IE4 common controls. Figure 9-1 shows the dialog from that
example. Refer to it when you read the control descriptions that follow.

Figure 9-1. The new Internet Explorer 4 Common Controls dialog.

The Date and Time Picker

A common field on a dialog is a place for the user to enter a date and time. Before IE4 controls provided
the date and time picker, developers had to either use a third-party control or subclass an MFC edit control
to do significant data validation to ensure that the entered date was valid. Fortunately, the new date and
time picker control is provided as an advanced control that prompts the user for a date or time while
offering the developer a wide variety of styles and options. For example, dates can be displayed in short
formats (8/14/68) or long formats (August 14, 1968). A time mode lets the user enter a time using a
familiar hours/minutes/seconds AM/PM format.

The control also lets you decide if you want the user to select the date via in-place editing, a pull-down
calendar, or a spin button. Several selection options are available including single and multiple select (for a
range of dates) and the ability to turn on and off the "circling" in red ink of the current date. The control
even has a mode that lets the user select "no date" via a check box. In Figure 9-1, the first four controls
on the left illustrate the variety of configurations available with the date and time picker control.

The new MFC 6.0 class CDateTimeCtrl provides the MFC interface to the IE4 date and time picker common
control. This class provides a variety of notifications that enhance the programmability of the control.
CDateTimeCtrl provides member functions for dealing with either CTime or COleDateTime time structures.

You set the date and time in a CDateTimeCtrl using the SetTime member function. You can retrieve the
date and time via the GetTime function. You can create custom formats using the SetFormat member
function and change a variety of other configurations using the CDateTimeCtrl interface.

CTime vs. COleDateTime

Most "longtime" MFC developers are accustomed to using the CTime class. However,
since CTime's valid dates are limited to dates between January 1, 1970, and January
18, 2038, many developers are looking for an alternative. One popular alternative is
COleDateTime, which is provided for OLE automation support and handles dates from 1
January 100 through 31 December 9999. Both classes have various pros and cons. For
example, CTime handles all the issues of daylight savings time, while COleDateTime
does not.

With the Year 2000 crisis looming ahead, many developers choose COleDateTime
because of its much larger range. Any application that uses CTime will need to be
reworked in approximately 40 years, since the maximum value is the year 2038. To see
this limitation in action, select a date outside the CTime range in EX09A. The class you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this limitation in action, select a date outside the CTime range in EX09A. The class you
decide to use will depend on your particular needs and the potential longevity of your
application.

The Month Calendar

The large display at the bottom left of Figure 9-1 is a Month Calendar. Like the date and time picker
control, the month calendar control lets the user choose a date. However, the month calendar control can
also be used to implement a small Personal Information Manager (PIM) in your applications. You can show
as many months as room provides—from one month to a year's worth of months, if you want. EX09A uses
the month calendar control to show only two months.

The month calendar control supports single or multiple selection and allows you to display a variety of
different options such as numbered months and a circled "today's date." Notifications for the control let the
developer specify which dates are in boldface. It is entirely up to the developer to decide what boldface
dates might represent. For example, you could use the bold feature to indicate holidays, appointments, or
unusable dates. The MFC 6.0 class CMonthCalCtrl implements this control.

To initialize the CMonthCalCtrl class, you can call the SetToday() member function. CMonthCalCtrl provides
members that deal with both CTime and COleDateTime, including SetToday().

The Internet Protocol Address Control

If you write an application that uses any form of Internet or TCP/IP functionality, you might need to
prompt the user for an Internet Protocol (IP) Address. The IE4 common controls include an IP address edit
control as shown in the top right of Figure 9-1. In addition to letting the user enter a 4-byte IP address,
this control performs an automatic validation of the entered IP address. CIPAddressCtrl provides MFC
support for the IP address control.

An IP address consists of four "fields" as shown in Figure 9-2. The fields are numbered from left to right.

Figure 9-2. The fields of an IP address control.

To initialize an IP address control, you call the SetAddress member function in your OnInitDialog function.
SetAddress takes a DWORD, with each BYTE in the DWORD representing one of the fields. In your
message handlers, you can call the GetAddress member function to retrieve a DWORD or a series of BYTES
to retrieve the various values of the four IP address fields.

The Extended Combo Box

The "old-fashioned" combo box was developed in the early days of Windows. Its age and inflexible design
have been the source of a great deal of developer confusion. With the IE4 controls, Microsoft has decided
to release a much more flexible version of the combo box called the extended combo box.

The extended combo box gives the developer much easier access to and control over the edit-control
portion of the combo box. In addition, the extended combo box lets you attach an image list to the items
in the combo box. You can display graphics in the extended combo box easily, especially when compared
with the old days of using owner-drawn combo boxes. Each item in the extended combo box can be
associated with three images: a selected image, an unselected image, and an overlay image. These three
images can be used to provide a variety of graphical displays in the combo box, as we'll see in the EX09A
sample. The bottom two combo boxes in Figure 9-1 are both extended combo boxes. The MFC
CComboBoxEx class provides comprehensive extended combo box support.

Like the list control introduced in Chapter 6, CComboBoxEx can be attached to a CImageList that will
automatically display graphics next to the text in the extended combo box. If you are already familiar with
CComboBox, CComboBoxEx might cause some confusion: instead of containing strings, the extended
combo box contains items of type COMBOBOXEXITEM, a structure that consists of the following fields:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

combo box contains items of type COMBOBOXEXITEM, a structure that consists of the following fields:

UINT mask—A set of bit flags that specify which operations are to be performed using the
structure. For example, set the CBEIF_IMAGE flag if the image field is to be set or retrieved in an
operation.

int iItem—The extended combo box item number. Like the older style of combo box, the extended
combo box uses zero-based indexing.

LPSTR pszText—The text of the item.

int cchTextMax—The length of the buffer available in pszText.

int iImage—Zero-based index into an associated image list.

int iSelectedImage—Index of the image in the image list to be used to represent the "selected"
state.

int iOverlay—Index of the image in the image list to be used to overlay the current image.

int iIndent—Number of 10-pixel indentation spaces.

LPARAM lParam—32-bit parameter for the item.

You will see first-hand how to use this structure in the EX09A example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX09A Example
To illustrate how to take advantage of the new Internet Explorer 4 Common Controls, we'll build a dialog
that demonstrates how to create and program each control type. The steps required to create the dialog
are shown below.

1. Run AppWizard to generate the EX09A project. Choose New from the Visual C++ File menu,
and then select Microsoft AppWizard (exe) from the Projects page. Accept all the defaults but one:
choose Single Document Interface (SDI). The options and the default class names are shown here.

2. Create a new dialog resource with ID IDD_DIALOG1. Place the controls as shown in Figure 9-
1.

You can drag the controls from the control palette, shown in Chapter 6. Remember that IE4
Common Controls are at the bottom of the palette. The following table lists the control types and
their IDs.

Tab Sequence Control Type Child Window ID

1 Group Box IDC_STATIC

2 Static IDC_STATIC

3 Date Time Picker IDC_DATETIMEPICKER1

4 Static IDC_STATIC1

5 Static IDC_STATIC

6 Date Time Picker IDC_DATETIMEPICKER2

7 Static IDC_STATIC2

8 Static IDC_STATIC

9 Date Time Picker IDC_DATETIMEPICKER3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10 Static IDC_STATIC3

11 Static IDC_STATIC

12 Date Time Picker IDC_DATETIMEPICKER4

13 Static IDC_STATIC4

14 Static IDC_STATIC

15 Month Calendar IDC_MONTHCALENDAR

16 Static IDC_STATIC5

17 Group Box IDC_STATIC

18 Static IDC_STATIC

19 IP Address IDC_IPADDRESS1

20 Static IDC_STATIC6

21 Group Box IDC_STATIC

22 Static IDC_STATIC

23 Extended Combo Box IDC_COMBOBOXEX1

24 Static IDC_STATIC7

25 Static IDC_STATIC

26 Extended Combo Box IDC_COMBOBOXEX2

27 Static IDC_STATIC8

28 Pushbutton IDOK

29 Pushbutton IDCANCEL

The following figure shows each control and its appropriate tab order.

Until we set some properties, your dialog will not look exactly like the one in Figure 9-1.

3. Use ClassWizard to create a new class, CDialog1, derived from CDialog. ClassWizard will
automatically prompt you to create this class because it knows that the IDD_DIALOG1 resource
exists without an associated C++ class. Go ahead and create a message handler for the
WM_INITDIALOG message.

4. Set the properties for the dialog's controls. To demonstrate the full range of controls, we will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Set the properties for the dialog's controls. To demonstrate the full range of controls, we will
need to set a variety of properties on each of the IE4 common controls in the example. Here is a
brief overview of each property you will need to set:

The Short Date and Time Picker. To set up the first date and time picker control to use
the short format, select the properties for IDC_DATETIMEPICKER1, as shown in the following
figure.

The Long Date and Time Picker. Now configure the second date and time picker control
(IDC_DATETIMEPICKER2) to use the long format as shown below.

The Short and NULL Date and Time Picker. This is the third date and time picker control,
IDC_DATETIMEPICKER3. Configure this third date and time picker to use the short format
and the styles shown here.

The Time Picker. The fourth date and time picker control, IDC_DATETIMEPICKER4, is
configured to let the user choose time. To configure this control, select Time from the
Format combo box on the Styles tab as shown.

The Month View. To configure the month view, you will need to set a variety of styles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Month View. To configure the month view, you will need to set a variety of styles.
First, from the Styles tab, choose Day States, as shown here.

If we leave the default styles, the month view does not look like a control on the dialog.
There are no borders drawn at all. To make the control fit in with the other controls on the
dialog, select Client Edge and Static Edge from the Extended Styles tab, as shown below.

The IP Address.This control (IDC_IPADDRESS1) does not require any special properties.

The First Extended Combo Box.Make sure that you enter some items, as shown here, and
also make sure the list is tall enough to display several items.

The Second Extended Combo Box.Enter three items: Tweety, Mack, and Jaws. Later in
the example, we will use these items to show one of the ways to draw graphics in an
extended combo box.

5. Add the CDialog1 variables. Start ClassWizard and click on the Member Variables tab to view the
Member Variables page. Enter the following member variables for each control listed.

Control ID Data Member Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control ID Data Member Type

IDC_DATETIMEPICKER1 m_MonthCal1 CDateTimeCtrl

IDC_DATETIMEPICKER2 m_MonthCal2 CDateTimeCtrl

IDC_DATETIMEPICKER3 m_MonthCal3 CDateTimeCtrl

IDC_DATETIMEPICKER4 m_MonthCal4 CDateTimeCtrl

vIDC_IPADDRESS1 m_ptrIPCtrl CIPAddressCtrl

IDC_MONTHCALENDAR1 m_MonthCal5 CMonthCalCtrl

IDC_STATIC1 m_strDate1 CString

IDC_STATIC2 m_strDate2 CString

IDC_STATIC3 m_strDate3 CString

IDC_STATIC4 m_strDate4 CString

IDC_STATIC5 m_strDate5 CString

IDC_STATIC6 m_strIPValue CString

IDC_STATIC7 m_strComboEx1 CString

IDC_STATIC8 m_strComboEx2 CString

6. Program the short date time picker. In this example, we don't mind if the first date time picker
starts with the current date, so we don't have any OnInitDialog handling for this control. However,
if we wanted to change the date, we would make a call to SetTime for the control in OnInitDialog.
At runtime, when the user selects a new date in the first date and time picker, the companion static
control should be automatically updated. To achieve this, we need to use ClassWizard to add a
handler for the DTN_DATETIMECHANGE message. Start ClassWizard (CTRL-W) and choose
IDC_DATETIMEPICKER1 from the Object IDs list and DTN_DATETIMECHANGE from the Messages
list. Accept the default message name and click OK. Repeat this step for each of the other three
IDC_DATETIMEPICKER IDs. Your ClassWizard should look like the illustration here.

Next add the following code to the handler for Datetimepicker1 created by ClassWizard:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CDialog1::OnDatetimechangeDatetimepicker1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal1.GetTime(ct);
 m_strDate1.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}
This code uses the m_MonthCal1 data member that maps to the first date time picker to retrieve
the time into the CTime object variable ct. It then calls the CString::Format member function to set
the companion static string. Finally the call to UpdateData(FALSE) triggers MFC's DDX and causes
the static to be automatically updated to m_strDate1.

7. Program the long date time picker. Now we need to provide a similar handler for the second
date time picker.

void CDialog1::OnDatetimechangeDatetimepicker2(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal2.GetTime(ct);
 m_strDate2.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

8. Program the third date time picker. The third date time picker needs a similar handler, but since
we set the Show None style in the dialog properties, it is possible for the user to specify a NULL
date by checking the inline check box. Instead of blindly calling GetTime, we have to check the
return value. If the return value of the GetTime call is nonzero, the user has selected a NULL date.
If the return value is zero, a valid date has been selected. As in the previous two handlers, when a
CTime object is returned, it is converted into a string and automatically displayed in the companion
static control.

void CDialog1::OnDatetimechangeDatetimepicker3(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 //NOTE: this one can be null!
 CTime ct;
 int nRetVal = m_MonthCal3.GetTime(ct);
 if (nRetVal) //If not zero, it's null; and if it is,
 // do the right thing.
 {
 m_strDate3 = "NO DATE SPECIFIED!!";
 }
 else
 {
 m_strDate3.Format(_T("%02d/%02d/%2d"),ct.GetMonth(),
 ct.GetDay(),ct.GetYear());
 }
 UpdateData(FALSE);
 *pResult = 0;
}

9. Program the time picker. The time picker needs a similar handler, but this time the format
displays hours/minutes/seconds instead of months/days/years:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CDialog1::OnDatetimechangeDatetimepicker4(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal4.GetTime(ct);
 m_strDate4.Format(_T("%02d:%02d:%2d"),
 ct.GetHour(),ct.GetMinute(),ct.GetSecond());
 UpdateData(FALSE);
 *pResult = 0;
}

10. Program the Month Selector. You might think that the month selector handler is similar to the
date time picker's handler, but they are actually somewhat different. First of all, the message you
need to handle for detecting when the user has selected a new date is the MCN_SELCHANGE
message. Select this message in the ClassWizard, as shown here.

In addition to the different message handler, this control uses GetCurSel as the date time picker
instead of GetTime. The code below shows the MCN_SELCHANGE handler for the month calendar
control.

void CDialog1::OnSelchangeMonthcalendar1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 CTime ct;
 m_MonthCal5.GetCurSel(ct);
 m_strDate5.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

11. Program the IP control. First we need to make sure the control is initialized. In this example, we
initialize the control to 0 by giving it a 0 DWORD value. If you do not initialize the control, each
segment will be blank. To initialize the control, add this call to the CDialog1::OnInitDialog function:

m_ptrIPCtrl.SetAddress(0L);
Now we need to add a handler to update the companion static control whenever the IP address
control changes. First we need to add a handler for the IPN_FIELDCHANGED notification message
using ClassWizard, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using ClassWizard, as shown here.

Next we need to implement the handler as follows:

void CDialog1::OnFieldchangedIpaddress1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 DWORD dwIPAddress;
 m_ptrIPCtrl.GetAddress(dwIPAddress);

 m_strIPValue.Format("%d.%d.%d.%d %x.%x.%x.%x",
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),
 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)),
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),
 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)));
 UpdateData(FALSE);
 *pResult = 0;
}
The first call to CIPAddressCtrl::GetAddress retrieves the current IP address into the local
dwIPAddress DWORD variable. Next we make a fairly complex call to CString::Format to
deconstruct the DWORD into the various fields. This call uses the LOWORD macro to first get to the
bottom word of the DWORD and the HIBYTE/LOBYTE macros to further deconstruct the fields in
order from field 0 to field 3.

12. Add a handler for the first extended combo box. No special initialization is required for the
extended combo box, but we do need to handle the CBN_SELCHANGE message. The following code
shows the extended combo box handler. Can you spot the ways that this differs from a "normal"
combo box control?

void CDialog1::OnSelchangeComboboxex1()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX1);
 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC7,str);
 return;
}
The first thing you probably noticed is the use of the COMBOBOXEXITEM structure for the extended
combo box instead of the plain integers used for items in an older combo box. Once the handler
retrieves the item, it extracts the string and calls SetDlgItemText to update the companion static
control.

13. Add Images to the Items in the second extended combo box. The first extended combo box
does not need any special programming. It is used to demonstrate how to implement a simple
extended combo box very similar to the older, nonextended combo box. The second combo box
requires a good bit of programming. First we created six bitmaps and eight icons that we need to
add to the resources for the project, as shown in the following illustration.

Of course, you are free to grab these images from the companion CD instead of recreating them all
by hand, or you can choose to use any bitmaps and icons.

There are two ways to add our graphics to an extended combo box. The first method is to attach
images to existing combo box items. (Remember that we used the dialog editor to add the Tweety,
Mack, and Jaws items to the combo box.) The second method is to add new items and specify their
corresponding images at the time of addition.

Before we start adding graphics to the extended combo box, let's create a public CImageList data
member in the CDialog1 class named m_imageList. Be sure you add the data member to the
header file (Dialog1.h) for the class.

Now we can add some of the bitmap images to the image list and then "attach" the images to the
three items already in the extended combo box. Add the following code to your CDialog1's
OnInitDialog method to achieve this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //Initialize the IDC_COMBOBOXEX2
 CComboBoxEx* pCombo =
 (CComboBoxEx*) GetDlgItem(IDC_COMBOBOXEX2);
 //First let's add images to the items there.
 //We have six images in bitmaps to match to our strings:
 //CImageList * pImageList = new CImageList();
 m_imageList.Create(32,16,ILC_MASK,12,4);
 CBitmap bitmap;
 bitmap.LoadBitmap(IDB_BMBIRD);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();
 bitmap.LoadBitmap(IDB_BMBIRDSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMDOG);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMDOGSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMFISH);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();

 bitmap.LoadBitmap(IDB_BMFISHSELECTED);
 m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
 bitmap.DeleteObject();
 //Set the imagelist
 pCombo->SetImageList(&m_imageList);
 //Now attach the images to the items in the list.
 COMBOBOXEXITEM cbi;
 cbi.mask = CBEIF_IMAGE|CBEIF_SELECTEDIMAGE|CBEIF_INDENT;
 CString strTemp;
 int nBitmapCount = 0;
 for (int nCount = 0;nCount < 3;nCount++)
 {
 cbi.iItem = nCount;
 cbi.pszText = (LPTSTR)(LPCTSTR)strTemp;
 cbi.cchTextMax = 256;
 pCombo->GetItem(&cbi);
 cbi.iImage = nBitmapCount++;
 cbi.iSelectedImage = nBitmapCount++;
 cbi.iIndent = (nCount & 0x03);
 pCombo->SetItem(&cbi);
 }
First the extended combo box initialization code creates a pointer to the control using GetDlgItem.
Next it calls Create to create memory for the images to be added and to initialize the image list. The
next series of calls loads each bitmap, adds them to the image list, and then deletes the resource
allocated in the load.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allocated in the load.

CComboBoxEx::SetImageList is called to associate the m_imageList with the extended combo box.
Next a COMBOBOXEXITEM structure is initialized with a mask, and then the for loop iterates from 0
through 2, setting the selected and unselected images with each pass through the loop. The
variable nBitmapCount increments through the image list to ensure that the correct image ID is put
into the COMBOBOXEXITEM structure. The for loop makes a call to CComboBoxEx::GetItem to
retrieve the COMBOBOXEXITEM structure for each item in the extended combo box. Then the loop
sets up the images for the list item and finally calls CComboBoxEx::SetItem to put the modified
COMBOBOXEXITEM structure back into the extended combo box and complete the association of
images with the existing items in the list.

14. Add Items to the Extended Combobox. The other technique available for putting images into an
extended combo box is to add them dynamically, as shown in the code added to OnInitDialog
below:

 HICON hIcon[8];
 int n;
//Now let's insert some color icons
 hIcon[0] = AfxGetApp()->LoadIcon(IDI_WHITE);
 hIcon[1] = AfxGetApp()->LoadIcon(IDI_BLACK);
 hIcon[2] = AfxGetApp()->LoadIcon(IDI_RED);
 hIcon[3] = AfxGetApp()->LoadIcon(IDI_BLUE);
 hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);
 hIcon[5] = AfxGetApp()->LoadIcon(IDI_CYAN);
 hIcon[6] = AfxGetApp()->LoadIcon(IDI_PURPLE);
 hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);
 for (n = 0; n < 8; n++) {
 m_imageList.Add(hIcon[n]);
 }
 static char* color[] = {"white", "black", "red",
 "blue", "yellow", "cyan",
 "purple", "green"};
 cbi.mask = CBEIF_IMAGE|CBEIF_TEXT|CBEIF_OVERLAY|
 CBEIF_SELECTEDIMAGE;
 for (n = 0; n < 8; n++) {
 cbi.iItem = n;
 cbi.pszText = color[n];
 cbi.iImage = n+6; //6 is the offset into the image list from
 cbi.iSelectedImage = n+6; // the first six items we added...
 cbi.iOverlay = n+6;
 int nItem = pCombo->InsertItem(&cbi);
 ASSERT(nItem == n);
 }
The addition of the icons above is similar to the EX06B list control example in Chapter 6. The for
loop fills out the COMBOBOXEXITEM structure and then calls CComboBoxEx::InsertItem with each
item to add it to the list.

15. Add a handler for the second extended combo box. The second extended combo box handler
is essentially the same as the first:

void CDialog1::OnSelchangeComboboxex2()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX2);
 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC8,str);
 return;
}

16. Connect the view and the dialog. Add code to the virtual OnDraw function in ex09aView.cpp.
The following boldface code replaces the previous code:

void CEx09aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

17. Use ClassWizard to add the OnLButtonDown member function to the CEx09aView class.
Edit the AppWizard-generated code as follows:

void CEx09aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CDialog1 dlg;
 dlg.DoModal();
}
Add a statement to include Dialog1.h in file ex09aView.cpp.

18. Compile and run the program. Now you can experiment with the various IE4 common controls to
see how they work and how you can apply them in your own applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10
Win32 Memory Management
Forget everything you ever knew about Win16 memory management. Some of the Win16 memory
management functions, such as GlobalAlloc, were carried forward into Win32, but this was done to enable
developers to port source code quickly. Underneath, the original functions work very differently, and many
new ones have been added.

This chapter starts out with a dose of Win32 memory management theory, which includes coverage of the
fundamental heap management functions. Then you'll see how the C++ new and delete operators connect
with the underlying heap functions. Finally, you'll learn how to use the memory-mapped file functions, and
you'll get some practical tips on managing dynamic memory. In no way is this chapter intended to be a
definitive description of Win32 memory management. For that, you'll have to read Jeffrey Richter's
Advanced Windows (Microsoft Press, 1997). (Be sure you have the latest edition—a new version may be in
the works that covers Microsoft Windows 98/NT 5.0.)

At the time this edition was written, both Windows 98 and Windows NT 5.0 were in
beta and not released. Our examination of these betas indicates that the memory
management has not changed significantly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Processes and Memory Space
Before you learn how Microsoft Windows manages memory, you must first understand what a process is. If
you already know what a program is, you're on your way. A program is an EXE file that you can launch in
various ways in Windows. Once a program is running, it's called a process. A process owns its memory, file
handles, and other system resources. If you launch the same program twice in a row, you have two
separate processes running simultaneously. Both the Microsoft Windows NT Task Manager (right-click the
taskbar) and the Microsoft Windows 95 PVIEW95 program give you a detailed list of processes that are
currently running, and they allow you to kill processes that are not responding. The SPYXX program shows
the relationships among processes, tasks, and windows.

The Windows taskbar shows main windows, not processes. A single process (such as
Windows Explorer) might have several main windows, each supported by its own
thread, and some processes don't have windows at all. (See Chapter 12 for a
discussion of threads.)

The important thing to know about a process is that it has its own "private" 4-gigabyte (GB) virtual
address space (which I'll describe in detail in the next section). For now, pretend that your computer has
hundreds of gigabytes of RAM and that each process gets 4 GB. Your program can access any byte of this
space with a single 32-bit linear address. Each process's memory space contains a variety of items,
including the following:

Your program's EXE image

Any nonsystem DLLs that your program loads, including the MFC DLLs

Your program's global data (read-only as well as read/write)

Your program's stack

Dynamically allocated memory, including Windows and C runtime library (CRT) heaps

Memory-mapped files

Interprocess shared memory blocks

Memory local to specific executing threads

All sorts of special system memory blocks, including virtual memory tables

The Windows kernel and executive, plus DLLs that are part of Windows

The Windows 95 Process Address Space

In Windows 95, only the bottom 2 GB (0 to 0x7FFFFFFF) of address space is truly private, and the bottom
4 MB of that is off-limits. The stack, heaps, and read/write global memory are mapped in the bottom 2 GB
along with application EXE and DLL files.

The top 2 GB of space is the same for all processes and is shared by all processes. The Windows 95 kernel,
executive, virtual device drivers (VxDs), and file system code, along with important tables such as page
tables, are mapped to the top 1 GB (0xC0000000 to 0xFFFFFFFF) of address space. Windows DLLs and
memory-mapped files are located in the range 0x80000000 to 0xBFFFFFFF. Figure 10-1 shows a memory
map of two processes using the same program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-1. A typical Windows 95 virtual memory map for two processes linked to the same EXE file.

How safe is all this? It's next to impossible for one process to overwrite another process's stack, global, or
heap memory because this memory, located in the bottom 2 GB of virtual address space, is assigned only
to that specific process. All EXE and DLL code is flagged as read-only, so there's no problem if the code is
mapped in several processes.

However, because important Windows read/write data is mapped there, the top 1 GB of address space is
vulnerable. An errant program could wipe out important system tables located in this region. In addition,
one process could mess up another process's memory-mapped files in the range 0x80000000 through
0xBFFFFFFF because this region is shared by all processes.

The Windows NT Process Address Space

A process in Windows NT can access only the bottom 2 GB of its address space, and the lowest and highest
64 KB of that is inaccessible. The EXE, the application's DLLs and Windows DLLs, and memory-mapped
files all reside in this space between 0x00010000 and 0x7FFEFFFF. The Windows NT kernel, executive, and
device drivers all reside in the upper 2 GB, where they are completely protected from any tampering by an
errant program. Memory-mapped files are safer, too. One process cannot access another's memory-
mapped file without knowing the file's name and explicitly mapping a view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How Virtual Memory Works
You know that your computer doesn't really have hundreds of gigabytes of RAM. And it doesn't have
hundreds of gigabytes of disk space either. Windows uses some smoke and mirrors here.

First of all, a process's 4-GB address space is going to be used sparsely. Various programs and data
elements will be scattered throughout the 4-GB address space in 4-KB units starting on 4-KB boundaries.
Each 4-KB unit, called a page, can hold either code or data. When a page is being used, it occupies
physical memory, but you never see its physical memory address. The Intel microprocessor chip efficiently
maps a 32-bit virtual address to both a physical page and an offset within the page, using two levels of 4-
KB page tables, as shown in Figure 10-2. Note that individual pages can be flagged as either read-only or
read/write. Also note that each process has its own set of page tables. The chip's CR3 register holds a
pointer to the directory page, so when Windows switches from one process to another, it simply updates
CR3.

Figure 10-2. Win32 virtual memory management (Intel).

So now our process is down from 4 GB to maybe 5 MB—a definite improvement. But if we're running
several programs, along with Windows itself, we'll still run out of RAM. If you look at Figure 10-2 again,
you'll notice that the page table entry has a "present" bit that indicates whether the 4-KB page is currently
in RAM. If we try to access a page that's not in RAM, an interrupt fires and Windows analyzes the situation
by checking its internal tables. If the memory reference was bogus, we'll get the dreaded "page fault"
message and the program will exit. Otherwise, Windows reads the page from a disk file into RAM and
updates the page table by loading the physical address and setting the present bit. This is the essence of
Win32 virtual memory.

The Windows virtual memory manager figures out how to read and write 4-KB pages so that it optimizes
performance. If one process hasn't used a page for a while and another process needs memory, the first
page is swapped out or discarded and the RAM is used for the new process's page. Your program isn't
normally aware that this is going on. The more disk I/O that happens, however, the worse your program's
performance will be, so it stands to reason that more RAM is better.

I mentioned the word "disk," but I haven't talked about files yet. All processes share a big systemwide
swap file that's used for all read/write data and some read-only data. (Windows NT supports multiple swap
files.) Windows determines the swap file size based on available RAM and free disk space, but there are
ways to fine-tune the swap file's size and specify its physical location on disk.

The swap file isn't the only file used by the virtual memory manager, however. It wouldn't make sense to
write code pages back to the swap file, so instead of using the swap file, Windows maps EXE and DLL files
directly to their files on disk. Because the code pages are marked read-only, there's never a need to write
them back to disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them back to disk.

If two processes use the same EXE file, that file is mapped into each process's address space. The code
and constants never change during program execution, so the same physical memory can be mapped for
each process. The two processes cannot share global data, however, and Windows 95 and Windows NT
handle this situation differently. Windows 95 maps separate copies of the global data to each process. In
Windows NT, both processes use the same copy of each page of global data until one process attempts to
write to that page. At that point the page is copied; as a result, each process has its own private copy
stored at the same virtual address.

A dynamic link library can be mapped directly to its DLL file only if the DLL can be
loaded at its designated base address. If a DLL were statically linked to load at, say,
0x10000000 but that address range is already occupied by another DLL, Windows must
"fix up" the addresses within the DLL code. Windows NT copies the altered pages to the
swap file when the DLL is first loaded, but Windows 95 can do the fixup "on the fly"
when the pages are brought into RAM. Needless to say, it's important to build your
DLLs with nonoverlapping address ranges. If you're using the MFC DLLs, set the base
address of your own DLLs outside the range 0x5F400000 through 0x5FFFFFFF. Chapter
22 provides more details on writing DLLs.

Memory-mapped files, which I'll talk about later, are also mapped directly. These can be flagged as
read/write and made available for sharing among processes.

For Win32 Programmers: Segment Registers in Win32

If you've experimented with the debugger in Win32, you may have noticed the
segment registers, particularly CS, DS, and SS. These 16-bit relics haven't gone away,
but you can mostly ignore them. In 32-bit mode, the Intel microprocessor still uses
segment registers, which are 16 bits long, to translate addresses prior to sending them
through the virtual memory system. A table in RAM, called the descriptor table, has
entries that contain the virtual memory base address and block size for code, data, and
stack segments. In 32-bit mode, these segments can be up to 4 GB in size and can be
flagged as read-only or read/write. For every memory reference, the chip uses the
selector, the contents of a segment register, to look up the descriptor table entry for
the purpose of translating the address.

Under Win32, each process has two segments—one for code and one for data and the
stack. You can assume that both have a base value of 0 and a size of 4 GB, so they
overlap. The net result is no translation at all, but Windows uses some tricks that
exclude the bottom 16 KB from the data segment. If you try to access memory down
there, you get a protection fault instead of a page fault, which is useful for debugging
null pointers.

Some future operating system might someday use segments to get around that
annoying 4-GB size limitation, but by then we'll have Win64 to worry about!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VirtualAlloc Function—Committed and Reserved Memory
If your program needs dynamic memory, sooner or later the Win32 VirtualAlloc function will be called.
Chances are that your program will never call VirtualAlloc; instead you'll rely on the Windows heap or the
CRT heap functions to call it directly. Knowing how VirtualAlloc works, however, will help you better
understand the functions that call it.

First you must know the meanings of reserved and committed memory. When memory is reserved, a
contiguous virtual address range is set aside. If, for example, you know that your program is going to use
a single 5-MB memory block (known as a region) but you don't need to use it all right away, you call
VirtualAlloc with a MEM_RESERVE allocation type parameter and a 5-MB size parameter. Windows rounds
the start address of the region to a 64-KB boundary and prevents your process from reserving other
memory in the same range. You can specify a start address for your region, but more often you'll let
Windows assign it for you. Nothing else happens. No RAM is allocated, and no swap file space is set aside.

When you get more serious about needing memory, you call VirtualAlloc again to commit the reserved
memory, using a MEM_COMMIT allocation type parameter. Now the start and end addresses of the region
are rounded to 4-KB boundaries, and corresponding swap file pages are set aside together with the
required page table. The block is designated either read-only or read/write. Still no RAM is allocated,
however; RAM allocation occurs only when you try to access the memory. If the memory was not
previously reserved, no problem. If the memory was previously committed, still no problem. The rule is
that memory must be committed before you can use it.

You call the VirtualFree function to "decommit" committed memory, thereby returning the designated
pages back to reserved status. VirtualFree can also free a reserved region of memory, but you have to
specify the base address you got from a previous VirtualAlloc reservation call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Heap and the GlobalAlloc Function Family
A heap is a memory pool for a specific process. When your program needs a block of memory, it calls a
heap allocation function, and it calls a companion function to free the memory. There's no assumption
about 4-KB page boundaries; the heap manager uses space in existing pages or calls VirtualAlloc to get
more pages. First we'll look at Windows heaps. Next we'll consider heaps managed by the CRT library for
functions like malloc and new.

Windows provides each process with a default heap, and the process can create any number of additional
Windows heaps. The HeapAlloc function allocates memory in a Windows heap, and HeapFree releases it.

You might never need to call HeapAlloc yourself, but it will be called for you by the GlobalAlloc function
that's left over from Win16. In the ideal 32-bit world, you wouldn't have to use GlobalAlloc, but in this real
world, we're stuck with a lot of code ported from Win16 that uses "memory handle" (HGLOBAL)
parameters instead of 32-bit memory addresses.

GlobalAlloc uses the default Windows heap. It does two different things, depending on its attribute
parameter. If you specify GMEM_FIXED, GlobalAlloc simply calls HeapAlloc and returns the address cast as
a 32-bit HGLOBAL value. If you specify GMEM_MOVEABLE, the returned HGLOBAL value is a pointer to a
handle table entry in your process. That entry contains a pointer to the actual memory, which is allocated
with HeapAlloc.

Why bother with "moveable" memory if it adds an extra level of indirection? You're looking at an artifact
from Win16, in which, once upon a time, the operating system actually moved memory blocks around. In
Win32, moveable blocks exist only to support the GlobalReAlloc function, which allocates a new memory
block, copies bytes from the old block to the new, frees the old block, and assigns the new block address
to the existing handle table entry. If nobody called GlobalReAlloc, we could always use HeapAlloc instead of
GlobalAlloc.

Unfortunately, many library functions use HGLOBAL return values and parameters instead of memory
addresses. If such a function returns an HGLOBAL value, you should assume that memory was allocated
with the GMEM_MOVEABLE attribute, and that means you must call the GlobalLock function to get the
memory address. (If the memory was fixed, the GlobalLock call just returns the handle as an address.)
Call GlobalUnlock when you're finished accessing the memory. If you're required to supply an HGLOBAL
parameter, to be absolutely safe you should generate it with a GlobalAlloc(GMEM_MOVEABLE, …) call in
case the called function decides to call GlobalReAlloc and expects the handle value to be unchanged.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Small-Block Heap, the C++ new and delete Operators, and
_heapmin
You can use the Windows HeapAlloc function in your programs, but you're more likely to use the malloc
and free functions supplied by the CRT. If you write C++ code, you won't call these functions directly;
instead, you'll use the new and delete operators, which map directly to malloc and free. If you use new to
allocate a block larger than a certain threshold (480 bytes is the default), the CRT passes the call straight
through to HeapAlloc to allocate memory from a Windows heap created for the CRT. For blocks smaller
than the threshold, the CRT manages a small-block heap, calling VirtualAlloc and VirtualFree as necessary.
Here is the algorithm:

1. Memory is reserved in 4-MB regions.

2. Memory is committed in 64-KB blocks (16 pages).

3. Memory is decommitted 64 KB at a time. As 128 KB becomes free, the last 64 KB is decommitted.

4. A 4-MB region is released when every page in that region has been decommitted.

As you can see, this small-block heap takes care of its own cleanup. The CRT's Windows heap doesn't
automatically decommit and unreserve pages, however. To clean up the larger blocks, you must call the
CRT _heapmin function, which calls the windows HeapCompact function. (Unfortunately, the Windows 95
version of HeapCompact doesn't do anything—all the more reason to use Windows NT.) Once pages are
decommitted, other programs can reuse the corresponding swap file space.

In previous versions of the CRT, the free list pointers were stored inside the heap
pages. This strategy required the malloc function to "touch" (read from the swap file)
many pages to find free space, and this degraded performance. The current system,
which stores the free list in a separate area of memory, is faster and minimizes the
need for third-party heap management software.

If you want to change or access the block size threshold, use the CRT functions _set_sbh_threshold and
_get_sbh_threshold.

A special debug version of malloc, _malloc_dbg, adds debugging information inside allocated memory
blocks. The new operator calls _malloc_dbg when you build an MFC project with _DEBUG defined. Your
program can then detect memory blocks that you forgot to free or that you inadvertently overwrote.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory-Mapped Files
In case you think you don't have enough memory management options already, I'll toss you another one.
Suppose your program needs to read a DIB (device-independent bitmap) file. Your instinct would be to
allocate a buffer of the correct size, open the file, and then call a read function to copy the whole disk file
into the buffer. The Windows memory-mapped file is a more elegant tool for handling this problem,
however. You simply map an address range directly to the file. When the process accesses a memory
page, Windows allocates RAM and reads the data from disk. Here's what the code looks like:

HANDLE hFile = ::CreateFile(strPathname, GENERIC_READ,
 FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
ASSERT(hFile != NULL);
HANDLE hMap = ::CreateFileMapping(hFile, NULL, PAGE_READONLY,
 0, 0, NULL);
ASSERT(hMap != NULL);
LPVOID lpvFile = ::MapViewOfFile(hMap, FILE_MAP_READ,
 0, 0, 0); // Map whole file
DWORD dwFileSize = ::GetFileSize(hFile, NULL); // useful info
// Use the file
::UnmapViewOfFile(lpvFile);
::CloseHandle(hMap);
::CloseHandle(hFile);
Here you're using virtual memory backed by the DIB file. Windows determines the file size, reserves a
corresponding address range, and commits the file's storage as the physical storage for this range. In this
case, lpvFile is the start address. The hMap variable contains the handle for the file mapping object, which
can be shared among processes if desired.

The DIB in the example above is a small file that you could read entirely into a buffer. Imagine a larger file
for which you would normally issue seek commands. A memory-mapped file works for such a file, too,
because of the underlying virtual memory system. RAM is allocated and pages are read when you access
them, and not before.

By default, the entire file is committed when you map it, although it's possible to map
only part of a file.

If two processes share a file mapping object (such as hMap in the sample code above), the file itself is, in
effect, shared memory, but the virtual addresses returned by MapViewOfFile might be different. Indeed,
this is the preferred Win32 method of sharing memory. (Calling the GlobalAlloc function with the
GMEM_SHARE flag doesn't create shared memory as it did in Win16.) If memory sharing is all you want to
do and you don't need a permanent disk file, you can omit the call to CreateFile and pass 0xFFFFFFFF as
the CreateFileMapping hFile parameter. Now the shared memory will be backed by pages in the swap file.
Consult Richter for details on memory-mapped files. The EX35B and EX35C sample programs in Chapter
35 illustrate sharing of memory-mapped files.

If you intend to access only a few random pages of a file mapping object that is backed
by the swap file, you can use a technique that Jeffrey Richter describes in Advanced
Windows under the heading "Sparsely Committed Memory-Mapped Files." In this case,
you call CreateFileMapping with a special flag and then you commit specific address
ranges later with the VirtualAlloc function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might want to look carefully at the Windows message WM_COPYDATA. This
message lets you transfer data between processes in shared memory without having to
deal with the file mapping API. You must send this message rather than post it, which
means the sending process has to wait while the receiving process copies and
processes the data.

Unfortunately, there's no direct support for memory-mapped files or shared memory in MFC. The
CSharedFile class supports only clipboard memory transfers using HGLOBAL handles, so the class isn't as
useful as its name implies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Accessing Resources
Resources are contained inside EXEs and DLLs and thus occupy virtual address space that doesn't change
during the life of the process. This fact makes it easy to read a resource directly. If you need to access a
bitmap, for example, you can get the DIB address with code like this:

LPVOID lpvResource = (LPVOID) ::LoadResource(NULL,
 ::FindResource(NULL, MAKEINTRESOURCE(IDB_REDBLOCKS),
 RT_BITMAP));
The LoadResource function returns an HGLOBAL value, but you can safely cast it to a pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some Tips for Managing Dynamic Memory
The more you use the heap, the more fragmented it gets and the more slowly your program runs. If your
program is supposed to run for hours or days at a time, you have to be careful. It's better to allocate all
the memory you need when your program starts and then free it when the program exits, but that's not
always possible. The CString class is a nuisance because it's constantly allocating and freeing little bits of
memory. Fortunately, MFC developers have recently made some improvements.

Don't forget to call _heapmin every once in a while if your program allocates blocks larger than the small-
block heap threshold. And be careful to remember where heap memory comes from. You'd have a big
problem, for instance, if you called HeapFree on a small-block pointer you got from new.

Be aware that your stack can be as big as it needs to be. Because you no longer have a 64-KB size limit,
you can put large objects on the stack, thereby reducing the need for heap allocations.

As in Win16, your program doesn't run at full speed and then suddenly throw an exception when Windows
runs out of swap space. Your program just slowly grinds to a halt, making your customer unhappy. And
there's not much you can do except try to figure out which program is eating memory and why. Because
the Windows 95 USER and GDI modules still have 16-bit components, there is some possibility of
exhausting the 64-KB heaps that hold GDI objects and window structures. This possibility is pretty remote,
however, and if it happens, it probably indicates a bug in your program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Optimizing Storage for Constant Data
Remember that the code in your program is backed not by the swap file but directly by its EXE and DLL
files. If several instances of your program are running, the same EXE and DLL files will be mapped to each
process's virtual address space. What about constant data? You would want that data to be part of the
program rather than have it copied to another block of address space that's backed by the swap file.

You've got to work a little bit to ensure that constant data gets stored with the program. First consider
string constants, which often permeate your programs. You would think that these would be read-only
data, but guess again. Because you're allowed to write code like this:

char* pch = "test";
*pch = `x';
"test" can't possibly be constant data, and it isn't.

If you want "test" to be a constant, you must declare it as an initialized const static or global variable.
Here's the global definition:

const char g_pch[] = "test";
Now g_pch is stored with the code, but where, specifically? To answer that, you must understand the "data
sections" that the Visual C++ linker generates. If you set the link options to generate a map file, you'll see
a long list of the sections (memory blocks) in your program. Individual sections can be designated for code
or data, and they can be read-only or read/write. The important sections and their characteristics are listed
here.

Name Type Access Contents

.text Code Read-only Program code

.rdata Data Read-only Constant initialized data

.data Data Read/write Nonconstant initialized data

.bss Data Read/write Nonconstant uninitialized data

The .rdata section is part of the EXE file, and that's where the linker puts the g_pch variable. The more
stuff you put in the .rdata section, the better. The use of the const modifier does the trick.

You can put built-in types and even structures in the .rdata section, but you can't put C++ objects there if
they have constructors. If you write a statement like the following one:

const CRect g_rect(0, 0, 100, 100);
the linker puts the object into the .bss section, and it will be backed separately to the swap file for each
process. If you think about it, this makes sense because the compiler must invoke the constructor function
after the program is loaded.

Now suppose you wanted to do the worst possible thing. You'd declare a CString global variable (or static
class data member) like this:

const CString g_str("this is the worst thing I can do");
Now you've got the CString object (which is quite small) in the .bss section, and you've also got a
character array in the .data section, neither of which can be backed by the EXE file. To make matters
worse, when the program starts, the CString class must allocate heap memory for a copy of the
characters. You would be much better off using a const character array instead of a CString object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11
Bitmaps
Without graphics images, Microsoft Windows-based applications would be pretty dull. Some applications
depend on images for their usefulness, but any application can be spruced up with the addition of
decorative clip art from a variety of sources. Windows bitmaps are arrays of bits mapped to display pixels.
That might sound simple, but you have to learn a lot about bitmaps before you can use them to create
professional applications for Windows.

This chapter starts with the "old" way of programming bitmaps—creating the device-dependent GDI
bitmaps that work with a memory device context. You need to know these techniques because many
programmers are still using them and you'll also need to use them on occasion.

Next you'll graduate to the modern way of programming bitmaps—creating device-independent bitmaps
(DIBs). If you use DIBs, you'll have an easier time with colors and with the printer. In some cases you'll
get better performance. The Win32 function CreateDIBSection gives you the benefits of DIBs combined
with all the features of GDI bitmaps.

Finally, you'll learn how to use the MFC CBitmapButton class to put bitmaps on pushbuttons. (Using
CBitmapButton to put bitmaps on pushbuttons has nothing to do with DIBs, but it's a useful technique that
would be difficult to master without an example.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GDI Bitmaps and Device-Independent Bitmaps
There are two kinds of Windows bitmaps: GDI bitmaps and DIBs. GDI bitmap objects are represented by
the Microsoft Foundation Class (MFC) Library version 6.0 CBitmap class. The GDI bitmap object has an
associated Windows data structure, maintained inside the Windows GDI module, that is device-dependent.
Your program can get a copy of the bitmap data, but the bit arrangement depends on the display
hardware. GDI bitmaps can be freely transferred among programs on a single computer, but because of
their device dependency, transferring bitmaps by disk or modem doesn't make sense.

In Win32, you're allowed to put a GDI bitmap handle on the clipboard for transfer to
another process, but behind the scenes Windows converts the device-dependent
bitmap to a DIB and copies the DIB to shared memory. That's a good reason to
consider using DIBs from the start.

DIBs offer many programming advantages over GDI bitmaps. Because a DIB carries its own color
information, color palette management is easier. DIBs also make it easy to control gray shades when
printing. Any computer running Windows can process DIBs, which are usually stored in BMP disk files or as
a resource in your program's EXE or DLL file. The wallpaper background on your monitor is read from a
BMP file when you start Windows. The primary storage format for Microsoft Paint is the BMP file, and Visual
C++ uses BMP files for toolbar buttons and other images. Other graphic interchange formats are available,
such as TIFF, GIF, and JPEG, but only the DIB format is directly supported by the Win32 API.

Color Bitmaps and Monochrome Bitmaps

Now might be a good time to reread the "Windows Color Mapping" section in Chapter 5. As you'll see in
this chapter, Windows deals with color bitmaps a little differently from the way it deals with brush colors.

Many color bitmaps are 16-color. A standard VGA board has four contiguous color planes, with 1
corresponding bit from each plane combining to represent a pixel. The 4-bit color values are set when the
bitmap is created. With a standard VGA board, bitmap colors are limited to the standard 16 colors.
Windows does not use dithered colors in bitmaps.

A monochrome bitmap has only one plane. Each pixel is represented by a single bit that is either off (0) or
on (1). The CDC::SetTextColor function sets the "off" display color, and SetBkColor sets the "on" color.
You can specify these pure colors individually with the Windows RGB macro.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using GDI Bitmaps
A GDI bitmap is simply another GDI object, such as a pen or a font. You must somehow create a bitmap,
and then you must select it into a device context. When you're finished with the object, you must deselect
it and delete it. You know the drill.

There's a catch, though, because the "bitmap" of the display or printer device is effectively the display
surface or the printed page itself. Therefore, you can't select a bitmap into a display device context or a
printer device context. You have to create a special memory device context for your bitmaps, using the
CDC::CreateCompatibleDC function. You must then use the CDC member function StretchBlt or BitBlt to
copy the bits from the memory device context to the "real" device context. These "bit-blitting" functions
are generally called in your view class's OnDraw function. Of course, you mustn't forget to clean up the
memory device context when you're finished.

Loading a GDI Bitmap from a Resource

The easiest way to use a bitmap is to load it from a resource. If you look in ResourceView in the
Workspace window, you'll find a list of the project's bitmap resources. If you select a bitmap and examine
its properties, you'll see a filename.

Here's an example entry in an RC (resource script) file, when viewed by a text editor:

IDB_REDBLOCKS BITMAP DISCARDABLE "res\\Red Blocks.bmp"
IDB_REDBLOCKS is the resource ID, and the file is Red Blocks.bmp in the project's \res subdirectory. (This
is one of the Microsoft Windows 95 wallpaper bitmaps, normally located in the \WINDOWS directory.) The
resource compiler reads the DIB from disk and stores it in the project's RES file. The linker copies the DIB
into the program's EXE file. You know that the Red Blocks bitmap must be in device-independent format
because the EXE can be run with any display board that Windows supports.

The CDC::LoadBitmap function converts a resource-based DIB to a GDI bitmap. Below is the simplest
possible self-contained OnDraw function that displays the Red Blocks bitmap:

CMyView::OnDraw(CDC* pDC)
{
 CBitmap bitmap; // Sequence is important
 CDC dcMemory;
 bitmap.LoadBitmap(IDB_REDBLOCKS);
 dcMemory.CreateCompatibleDC(pDC);
 dcMemory.SelectObject(&bitmap);
 pDC->BitBlt(100, 100, 54, 96, &dcMemory, 0, 0, SRCCOPY);
 // CDC destructor deletes dcMemory; bitmap is deselected
 // CBitmap destructor deletes bitmap
}
The BitBlt function copies the Red Blocks pixels from the memory device context to the display (or printer)
device context. The bitmap is 54 bits wide by 96 bits high, and on a VGA display it occupies a rectangle of
54-by-96 logical units, offset 100 units down and to the right of the upper-left corner of the window's client
area.

The code above works fine for the display. As you'll see in Chapter 19, the application
framework calls the OnDraw function for printing, in which case pDC points to a printer
device context. The bitmap here, unfortunately, is configured specifically for the display
and thus cannot be selected into the printer-compatible memory device context. If you
want to print a bitmap, you should look at the CDib class described later in this
chapter.

The Effect of the Display Mapping Mode

If the display mapping mode in the Red Blocks example is MM_TEXT, each bitmap pixel maps to a display
pixel and the bitmap fits perfectly. If the mapping mode is MM_LOENGLISH, the bitmap size is 0.54-by-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pixel and the bitmap fits perfectly. If the mapping mode is MM_LOENGLISH, the bitmap size is 0.54-by-
0.96 inch, or 52-by-92 pixels for Windows 95, and the GDI must do some bit crunching to make the
bitmap fit. Consequently, the bitmap might not look as good with the MM_LOENGLISH mapping mode.
Calling CDC::SetStretchBltMode with a parameter value of COLORONCOLOR will make shrunken bitmaps
look nicer.

Stretching the Bits

What if we want Red Blocks to occupy a rectangle of exactly 54-by-96 pixels, even though the mapping
mode is not MM_TEXT? The StretchBlt function is the solution. If we replace the BitBlt call with the
following three statements, Red Blocks is displayed cleanly, whatever the mapping mode:

CSize size(54, 96);
pDC->DPtoLP(&size);
pDC->StretchBlt(0, 0, size.cx, -size.cy,
 &dcMemory, 0, 0, 54, 96, SRCCOPY);
With either BitBlt or StretchBlt, the display update is slow if the GDI has to actually stretch or compress
bits. If, as in the case above, the GDI determines that no conversion is necessary, the update is fast.

The EX11A Example

The EX11A example displays a resource-based bitmap in a scrolling view with mapping mode set to
MM_LOENGLISH. The program uses the StretchBlt logic described above, except that the memory device
context and the bitmap are created in the view's OnInitialUpdate member function and last for the life of
the program. Also, the program reads the bitmap size through a call to the CGdiObject member function
GetObject, so it's not using hard-coded values as in the preceding examples.

Here are the steps for building the example:

1. Run AppWizard to produce \vcpp32\ex11a\ex11a. Accept all the default settings but two:
select Single Document, and select the CScrollView view base class, as shown in Chapter 4, for
CEx11aView. The options and the default class names are shown here.

2. Import the Gold Weave bitmap. Choose Resource from Visual C++'s Insert menu. Import the
bitmap Gold Weave.bmp from the \WINDOWS directory. (If your version of Windows doesn't have
this bitmap, load it from this book's companion CD-ROM.) Visual C++ will copy this bitmap file into
your project's \res subdirectory. Assign the ID IDB_GOLDWEAVE, and save the changes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Add the following private data members to the class CEx11aView. Edit the file ex11aView.h
or use ClassView. The bitmap and the memory device context last for the life of the view. The CSize
objects are the source (bitmap) dimensions and the destination (display) dimensions.

CDC* m_pdcMemory;
CBitmap* m_pBitmap;
CSize m_sizeSource, m_sizeDest;

4. Edit the following member functions in the class CEx11aView. Edit the file ex11aView.cpp.
The constructor and destructor do C++ housekeeping for the embedded objects. You want to keep
the constructor as simple as possible because failing constructors cause problems. The
OnInitialUpdate function sets up the memory device context and the bitmap, and it computes
output dimensions that map each bit to a pixel. The OnDraw function calls StretchBlt twice—once by
using the special computed dimensions and once by mapping each bit to a 0.01-by-0.01-inch
square. Add the following boldface code:

CEx11aView::CEx11aView()
{
 m_pdcMemory = new CDC;
 m_pBitmap = new CBitmap;
}

CEx11aView::~CEx11aView()
{
 // cleans up the memory device context and the bitmap
 delete m_pdcMemory; // deselects bitmap
 delete m_pBitmap;
}
void CEx11aView::OnDraw(CDC* pDC)
{
 pDC->SetStretchBltMode(COLORONCOLOR);
 pDC->StretchBlt(20, -20, m_sizeDest.cx, -m_sizeDest.cy,
 m_pdcMemory, 0, 0,
 m_sizeSource.cx, m_sizeSource.cy, SRCCOPY);
 pDC->StretchBlt(350, -20, m_sizeSource.cx, -m_sizeSource.cy,
 m_pdcMemory, 0, 0,
 m_sizeSource.cx, m_sizeSource.cy, SRCCOPY);
}

void CEx11aView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizeLine = CSize(sizeTotal.cx / 100, sizeTotal.cy / 100);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizeTotal, sizeLine);
 BITMAP bm; // Windows BITMAP data structure; see Win32 help
 if (m_pdcMemory->GetSafeHdc() == NULL) {
 CClientDC dc(this);
 OnPrepareDC(&dc); // necessary
 m_pBitmap->LoadBitmap(IDB_GOLDWEAVE);
 m_pdcMemory->CreateCompatibleDC(&dc);
 m_pdcMemory->SelectObject(m_pBitmap);
 m_pBitmap->GetObject(sizeof(bm), &bm);
 m_sizeSource.cx = bm.bmWidth;
 m_sizeSource.cy = bm.bmHeight;
 m_sizeDest = m_sizeSource;
 dc.DPtoLP(&m_sizeDest);
 }
}

5. Build and test the EX11A application. Your screen should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Build and test the EX11A application. Your screen should look like this.

6. Try the Print Preview and Print features. The bitmap prints to scale because the application
framework applies the MM_LOENGLISH mapping mode to the printer device context just as it does
to the display device context. The output looks great in Print Preview mode, but (depending on your
print drivers) the printed output will probably be either blank or microscopic! We'll fix that soon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Bitmaps to Improve the Screen Display
You've seen an example program that displays a bitmap that originated outside the program. Now you'll
see an example program that generates its own bitmap to support smooth motion on the screen. The
principle is simple: you draw on a memory device context with a bitmap selected, and then you zap the
bitmap onto the screen.

The EX11B Example

In the EX05C example in Chapter 5, the user dragged a circle with the mouse. As the circle moved, the
display flickered because the circle was erased and redrawn on every mouse-move message. EX11B uses a
GDI bitmap to correct this problem. The EX05C custom code for mouse message processing carries over
almost intact; most of the new code is in the OnPaint and OnInitialUpdate functions.

In summary, the EX11B OnInitialUpdate function creates a memory device context and a bitmap that are
compatible with the display. The OnPaint function prepares the memory device context for drawing, passes
OnDraw a handle to the memory device context, and copies the resulting bitmap from the memory device
context to the display.

Here are the steps to build EX11B from scratch:

1. Run AppWizard to produce \vcpp32\ex11b\ex11b. Accept all the default settings but two:
select Single Document and select CScrollView view as the base class for CEx11bView. The options
and the default class names are shown here.

2. Use ClassWizard to add CEx11bView message handlers. Add message handlers for the
following messages:

WM_LBUTTONDOWN

WM_LBUTTONUP

WM_MOUSEMOVE

WM_PAINT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Edit the ex11bView.h header file. Add the private data members shown here to the CEx11bView
class:

private:
 const CSize m_sizeEllipse;
 CPoint m_pointTopLeft;
 BOOL m_bCaptured;
 CSize m_sizeOffset;
 CDC* m_pdcMemory;
 CBitmap* m_pBitmap;

4. Code the CEx11bView constructor and destructor in ex11bView.cpp. You need a memory
device context object and a bitmap GDI object. These are constructed in the view's constructor and
destroyed in the view's destructor. Add the following boldface code:

CEx11bView::CEx11bView() : m_sizeEllipse(100, -100),
 m_pointTopLeft(10, -10),
 m_sizeOffset(0, 0)
{
 m_bCaptured = FALSE;
 m_pdcMemory = new CDC;
 m_pBitmap = new CBitmap;
}

CEx11bView::~CEx11bView()
{
 delete m_pBitmap; // already deselected
 delete m_pdcMemory;
}

5. Add code for the OnInitialUpdate function in ex11bView.cpp. The C++ memory device
context and bitmap objects are already constructed. This function creates the corresponding
Windows objects. Both the device context and the bitmap are compatible with the display context
dc, but you must explicitly set the memory device context's mapping mode to match the display
context. You could create the bitmap in the OnPaint function, but the program runs faster if you
create it once here. Add the boldface code shown here:

void CEx11bView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage, sizeLine);
 // creates the memory device context and the bitmap
 if (m_pdcMemory->GetSafeHdc() == NULL) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectMax(0, 0, sizeTotal.cx, -sizeTotal.cy);
 dc.LPtoDP(rectMax);
 m_pdcMemory->CreateCompatibleDC(&dc);
 // makes bitmap same size as display window
 m_pBitmap->CreateCompatibleBitmap(&dc, rectMax.right,
 rectMax.bottom);
 m_pdcMemory->SetMapMode(MM_LOENGLISH);
 }
}

6. Add code for the OnPaint function in ex11bView.cpp. Normally it isn't necessary to map the
WM_PAINT message in your derived view class. The CView version of OnPaint contains the following
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CPaintDC dc(this);
OnPrepareDC(&dc);
OnDraw(&dc);
In this example, you will be using the OnPaint function to reduce screen flicker through the use of a
memory device context. OnDraw is passed this memory device context for the display, and it is
passed the printer device context for printing. Thus, OnDraw can perform tasks common to the
display and to the printer. You don't need to use the bitmap with the printer because the printer
has no speed constraint.

The OnPaint function must perform, in order, the following three steps to prepare the memory
device context for drawing:

Select the bitmap into the memory device context.

Transfer the invalid rectangle (as calculated by OnMouseMove) from the display context to
the memory device context. There is no SetClipRect function, but the CDC::IntersectClipRect
function, when called after the CDC::SelectClipRgn function (with a NULL parameter), has
the same effect. If you don't set the clipping rectangle to the minimum size, the program
runs more slowly.

Initialize the bitmap to the current window background color. The CDC::PatBlt function fills
the specified rectangle with a pattern. In this case, the pattern is the brush pattern for the
current window background. That brush must first be constructed and selected into the
memory device context.

After the memory device context is prepared, OnPaint can call OnDraw with a memory device
context parameter. Then the CDC::BitBlt function copies the updated rectangle from the memory
device context to the display device context. Add the following boldface code:

void CEx11bView::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 OnPrepareDC(&dc);
 CRect rectUpdate;
 dc.GetClipBox(&rectUpdate);
 CBitmap* pOldBitmap = m_pdcMemory->SelectObject(m_pBitmap);
 m_pdcMemory->SelectClipRgn(NULL);
 m_pdcMemory->IntersectClipRect(&rectUpdate);
 CBrush backgroundBrush((COLORREF) ::GetSysColor(COLOR_WINDOW));
 CBrush* pOldBrush = m_pdcMemory->SelectObject(&backgroundBrush);
 m_pdcMemory->PatBlt(rectUpdate.left, rectUpdate.top,
 rectUpdate.Width(), rectUpdate.Height(),
 PATCOPY);
 OnDraw(m_pdcMemory);
 dc.BitBlt(rectUpdate.left, rectUpdate.top,
 rectUpdate.Width(), rectUpdate.Height(),
 m_pdcMemory, rectUpdate.left, rectUpdate.top,
 SRCCOPY);
 m_pdcMemory->SelectObject(pOldBitmap);
 m_pdcMemory->SelectObject(pOldBrush);
}

7. Code the OnDraw function in ex11bView.cpp. Copy the code from ex05cView.cpp. In EX11B,
OnDraw is passed a pointer to a memory device context by the OnPaint function. For printing,
OnDraw is passed a pointer to the printer device context.

8. Copy the mouse message-handling code from ex05cView.cpp. Copy the functions shown
below from ex05cView.cpp to ex11bView.cpp. Be sure to change the functions' class names from
CEx05cView to CEx11bView.

OnLButtonDown

OnLButtonUp

OnMouseMove

9. Change two lines in the OnMouseMove function in ex11bView.cpp. Change the following two

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. Change two lines in the OnMouseMove function in ex11bView.cpp. Change the following two
lines:

InvalidateRect(rectOld, TRUE);
InvalidateRect(rectNew, TRUE);
to

InvalidateRect(rectOld, FALSE);
InvalidateRect(rectNew, FALSE);
If the second CWnd::InvalidateRect parameter is TRUE (the default), Windows erases the
background before repainting the invalid rectangle. That's what you needed in EX05C, but the
background erasure is what causes the flicker. Because the entire invalid rectangle is being copied
from the bitmap, you no longer need to erase the background. The FALSE parameter prevents this
erasure.

10. Build and run the application. Here is the EX11B program output.

Is the circle's movement smoother now? The problem is that the bitmap is only 8-by-10.5 inches,
and if the scrolling window is big enough, the circle goes off the edge. One solution to this problem
is to make the bitmap as big as the largest display.

Windows Animation

EX11B is a crude attempt at Windows animation. What if you wanted to move an angelfish instead of a
circle? Win32 doesn't have an Angelfish function (yet), so you'd have to keep your angelfish in its own
bitmap and use the StretchBlt mask ROP codes to merge the angelfish with the background. You'd
probably keep the background in its own bitmap, too. These techniques are outside the scope of this book.
If you are interested in learning more about Windows Animation, run out and get Nigel Thompson's
Animation Techniques in Win32 (Microsoft Press, 1995). After you read it, you can get rich writing video
games for Windows!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DIBs and the CDib Class
There's an MFC class for GDI bitmaps (CBitmap), but there's no MFC class for DIBs. Don't worry—I'm
giving you one here. It's a complete rewrite of the CDib class from the early editions of this book (prior to
the fourth edition), and it takes advantage of Win32 features such as memory-mapped files, improved
memory management, and DIB sections. It also includes palette support. Before you examine the CDib
class, however, you need a little background on DIBs.

A Few Words About Palette Programming

Windows palette programming is quite complex, but you've got to deal with it if you expect your users to
run their displays in the 8-bpp (bits per pixel) mode—and many users will if they have video cards with 1
MB or less of memory.

Suppose you're displaying a single DIB in a window. First you must create a logical palette, a GDI object
that contains the colors in the DIB. Then you must "realize" this logical palette into the hardware system
palette, a table of the 256 colors the video card can display at that instant. If your program is the
foreground program, the realization process tries to copy all your colors into the system palette, but it
doesn't touch the 20 standard Windows colors. For the most part, your DIB looks just like you want it to
look.

But what if another program is the foreground program, and what if that program has a forest scene DIB
with 236 shades of green? Your program still realizes its palette, but something different happens this
time. Now the system palette won't change, but Windows sets up a new mapping between your logical
palette and the system palette. If your DIB contains a neon pink color, for example, Windows maps it to
the standard red color. If your program forgot to realize its palette, your neon pink stuff would turn green
when the other program went active.

The forest scene example is extreme because we assumed that the other program grabbed 236 colors. If
instead the other program realized a logical palette with only 200 colors, Windows would let your program
load 36 of its own colors, including, one hopes, neon pink.

So when is a program supposed to realize its palette? The Windows message WM_PALETTECHANGED is
sent to your program's main window whenever a program, including yours, realizes its palette. Another
message, WM_QUERYNEWPALETTE, is sent whenever one of the windows in your program gets the input
focus. Your program should realize its palette in response to both these messages (unless your program
generated the message). These palette messages are not sent to your view window, however. You must
map them in your application's main frame window and then notify the view. Chapter 13 discusses the
relationship between the frame window and the view, and Chapter 26 contains a complete palette-aware
MDI application (EX26A).

You call the Win32 RealizePalette function to perform the realization, but first you must call SelectPalette
to select your DIB's logical palette into the device context. SelectPalette has a flag parameter that you
normally set to FALSE in your WM_PALETTECHANGED and WM_QUERYNEWPALETTE handlers. This flag
ensures that your palette is realized as a foreground palette if your application is indeed running in the
foreground. If you use a TRUE flag parameter here, you can force Windows to realize the palette as though
the application were in the background.

You must also call SelectPalette for each DIB that you display in your OnDraw function. This time you call it
with a TRUE flag parameter. Things do get complicated if you're displaying several DIBs, each with its own
palette. Basically, you've got to choose a palette for one of the DIBs and realize it (by selecting it with the
FALSE parameter) in the palette message handlers. The chosen DIB will end up looking better than the
other DIBs. There are ways of merging palettes, but it might be easier to go out and buy more video
memory.

DIBs, Pixels, and Color Tables

A DIB contains a two-dimensional array of elements called pixels. In many cases, each DIB pixel will be
mapped to a display pixel, but the DIB pixel might be mapped to some logical area on the display,
depending on the mapping mode and the display function stretch parameters.

A pixel consists of 1, 4, 8, 16, 24, or 32 contiguous bits, depending on the color resolution of the DIB. For
16-bpp, 24-bpp, and 32-bpp DIBs, each pixel represents an RGB color. A pixel in a 16-bpp DIB typically
contains 5 bits each for red, green, and blue values; a pixel in a 24-bpp DIB has 8 bits for each color
value. The 16-bpp and 24-bpp DIBs are optimized for video cards that can display 65,536 or 16.7 million
simultaneous colors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

simultaneous colors.

A 1-bpp DIB is a monochrome DIB, but these DIBs don't have to be black and white—they can contain any
two colors chosen from the color table that is built into each DIB. A monochrome bitmap has two 32-bit
color table entries, each containing 8 bits for red, green, and blue values plus another 8 bits for flags. Zero
(0) pixels use the first entry, and one (1) pixel uses the second. Whether you have a 65,536-color video
card or a 16.7-million-color card, Windows can display the two colors directly. (Windows truncates 8-bits-
per-color values to 5 bits for 65,536-color displays.) If your video card is running in 256-color palettized
mode, your program can adjust the system palette to load the two specified colors.

Eight-bpp DIBs are quite common. Like a monochrome DIB, an 8-bpp DIB has a color table, but the color
table has 256 (or fewer) 32-bit entries. Each pixel is an index into this color table. If you have a palettized
video card, your program can create a logical palette from the 256 entries. If another program (running in
the foreground) has control of the system palette, Windows does its best to match your logical palette
colors to the system palette.

What if you're trying to display a 24-bpp DIB with a 256-color palettized video card? If the DIB author was
nice, he or she included a color table containing the most important colors in the DIB. Your program can
build a logical palette from that table, and the DIB will look fine. If the DIB has no color table, use the
palette returned by the Win32 CreateHalftonePalette function; it's better than the 20 standard colors you'd
get with no palette at all. Another option is to analyze the DIB to identify the most important colors, but
you can buy a utility to do that.

The Structure of a DIB Within a BMP File

You know that the DIB is the standard Windows bitmap format and that a BMP file contains a DIB. So let's
look inside a BMP file to see what's there. Figure 11-1 shows a layout for a BMP file.

Figure 11-1. The layout for a BMP file.

The BITMAPFILEHEADER structure contains the offset to the image bits, which you can use to compute the
combined size of the BITMAPINFOHEADER structure and the color table that follows. The
BITMAPFILEHEADER structure contains a file size member, but you can't depend on it because you don't
know whether the size is measured in bytes, words, or double words.

The BITMAPINFOHEADER structure contains the bitmap dimensions, the bits per pixel, compression
information for both 4-bpp and 8-bpp bitmaps, and the number of color table entries. If the DIB is
compressed, this header contains the size of the pixel array; otherwise, you can compute the size from the
dimensions and the bits per pixel. Immediately following the header is the color table (if the DIB has a
color table). The DIB image comes after that. The DIB image consists of pixels arranged by column within
rows, starting with the bottom row. Each row is padded to a 4-byte boundary.

The only place you'll find a BITMAPFILEHEADER structure, however, is in a BMP file. If you get a DIB from
the clipboard, for example, there will not be a file header. You can always count on the color table to follow
the BITMAPINFOHEADER structure, but you can't count on the image to follow the color table. If you're

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the BITMAPINFOHEADER structure, but you can't count on the image to follow the color table. If you're
using the CreateDIBSection function, for example, you must allocate the bitmap info header and color
table and then let Windows allocate the image somewhere else.

This chapter and all the associated code are specific to Windows DIBs. There's also a
well-documented variation of the DIB format for OS/2. If you need to process these
OS/2 DIBs, you'll have to modify the CDib class.

DIB Access Functions

Windows supplies some important DIB access functions. None of these functions is wrapped by MFC, so
you'll need to refer to the online Win32 documentation for details. Here's a summary:

SetDIBitsToDevice—This function displays a DIB directly on the display or printer. No scaling
occurs; one bitmap bit corresponds to one display pixel or one printer dot. This scaling restriction
limits the function's usefulness. The function doesn't work like BitBlt because BitBlt uses logical
coordinates.

StretchDIBits—This function displays a DIB directly on the display or printer in a manner similar to
that of StretchBlt.

GetDIBits—This function constructs a DIB from a GDI bitmap, using memory that you allocate. You
have some control over the format of the DIB because you can specify the number of color bits per
pixel and the compression. If you are using compression, you have to call GetDIBits twice—once to
calculate the memory needed and again to generate the DIB data.

CreateDIBitmap—This function creates a GDI bitmap from a DIB. As for all these DIB functions,
you must supply a device context pointer as a parameter. A display device context will do; you
don't need a memory device context.

CreateDIBSection—This Win32 function creates a special kind of DIB known as a DIB section. It
then returns a GDI bitmap handle. This function gives you the best features of DIBs and GDI
bitmaps. You have direct access to the DIB's memory, and with the bitmap handle and a memory
device context, you can call GDI functions to draw into the DIB.

The CDib Class

If DIBs look intimidating, don't worry. The CDib class makes DIB programming easy. The best way to get
to know the CDib class is to look at the public member functions and data members. Figure 11-2 shows the
CDib header file. Consult the ex11c folder on the companion CD-ROM to see the implementation code.

CDIB.H

#ifndef _INSIDE_VISUAL_CPP_CDIB
#define _INSIDE_VISUAL_CPP_CDIB

class CDib : public CObject
{
 enum Alloc {noAlloc, crtAlloc,
 heapAlloc}; // applies to BITMAPINFOHEADER
 DECLARE_SERIAL(CDib)
public:
 LPVOID m_lpvColorTable;
 HBITMAP m_hBitmap;
 LPBYTE m_lpImage; // starting address of DIB bits
 LPBITMAPINFOHEADER m_lpBMIH; // buffer containing the
 // BITMAPINFOHEADER
private:
 HGLOBAL m_hGlobal; // for external windows we need to free;
 // could be allocated by this class or
 // allocated externally
 Alloc m_nBmihAlloc;
 Alloc m_nImageAlloc;
 DWORD m_dwSizeImage; // of bits—not BITMAPINFOHEADER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DWORD m_dwSizeImage; // of bits—not BITMAPINFOHEADER
 // or BITMAPFILEHEADER
 int m_nColorTableEntries;

 HANDLE m_hFile;
 HANDLE m_hMap;
 LPVOID m_lpvFile;
 HPALETTE m_hPalette;
public:
 CDib();
 CDib(CSize size, int nBitCount); // builds BITMAPINFOHEADER
 ~CDib();
 int GetSizeImage() {return m_dwSizeImage;}
 int GetSizeHeader()
 {return sizeof(BITMAPINFOHEADER) +
 sizeof(RGBQUAD) * m_nColorTableEntries;}
 CSize GetDimensions();
 BOOL AttachMapFile(const char* strPathname, BOOL bShare = FALSE);
 BOOL CopyToMapFile(const char* strPathname);
 BOOL AttachMemory(LPVOID lpvMem, BOOL bMustDelete = FALSE,
 HGLOBAL hGlobal = NULL);
 BOOL Draw(CDC* pDC, CPoint origin,
 CSize size); // until we implement CreateDibSection
 HBITMAP CreateSection(CDC* pDC = NULL);
 UINT UsePalette(CDC* pDC, BOOL bBackground = FALSE);
 BOOL MakePalette();
 BOOL SetSystemPalette(CDC* pDC);
 BOOL Compress(CDC* pDC,
 BOOL bCompress = TRUE); // FALSE means decompress
 HBITMAP CreateBitmap(CDC* pDC);
 BOOL Read(CFile* pFile);
 BOOL ReadSection(CFile* pFile, CDC* pDC = NULL);
 BOOL Write(CFile* pFile);
 void Serialize(CArchive& ar);
 void Empty();
private:
 void DetachMapFile();
 void ComputePaletteSize(int nBitCount);
 void ComputeMetrics();
};
#endif // _INSIDE_VISUAL_CPP_CDIB

Figure 11-2. The CDib class declaration.

Here's a rundown of the CDib member functions, starting with the constructors and the destructor:

Default constructor—You'll use the default constructor in preparation for loading a DIB from a file
or for attaching to a DIB in memory. The default constructor creates an empty DIB object.

DIB section constructor—If you need a DIB section that is created by the CreateDIBSection
function, use this constructor. Its parameters determine DIB size and number of colors. The
constructor allocates info header memory but not image memory. You can also use this constructor
if you need to allocate your own image memory.

Parameter Description

size CSize object that contains the width and height of the DIB

nBitCount Bits per pixel; should be 1, 4, 8, 16, 24, or 32

Destructor—The CDib destructor frees all allocated DIB memory.

AttachMapFile—This function opens a memory-mapped file in read mode and attaches it to the
CDib object. The return is immediate because the file isn't actually read into memory until it is
used. When you access the DIB, however, a delay might occur as the file is paged in. The
AttachMapFile function releases existing allocated memory and closes any previously attached
memory-mapped file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

memory-mapped file.

Parameter Description

strPathname Pathname of the file to be mapped

bShare Flag that is TRUE if the file is to be opened in share mode; the default value is
FALSE

Return
value

TRUE if successful

AttachMemory—This function associates an existing CDib object with a DIB in memory. This
memory could be in the program's resources, or it could be clipboard or OLE data object memory.
Memory might have been allocated from the CRT heap with the new operator, or it might have been
allocated from the Windows heap with GlobalAlloc.

Parameter Description

lpvMem Address of the memory to be attached

bMustDelete Flag that is TRUE if the CDib class is responsible for deleting this memory; the
default value is FALSE

hGlobal If memory was obtained with a call to the Win32 GlobalAlloc function, the CDib
object needs to keep the handle in order to free it later, assuming that bMustDelete
was set to TRUE

Return
value

TRUE if successful

Compress—This function regenerates the DIB as a compressed or an uncompressed DIB.
Internally, it converts the existing DIB to a GDI bitmap and then makes a new compressed or an
uncompressed DIB. Compression is supported only for 4-bpp and 8-bpp DIBs. You can't compress a
DIB section.

Parameter Description

pDC Pointer to the display device context

bCompress TRUE (default) to compress the DIB; FALSE to uncompress it

Return value TRUE if successful

CopyToMapFile—This function creates a new memory-mapped file and copies the existing CDib
data to the file's memory, releasing any previously allocated memory and closing any existing
memory-mapped file. The data isn't actually written to disk until the new file is closed, but that
happens when the CDib object is reused or destroyed.

Parameter Description

strPathname Pathname of the file to be mapped

Return value TRUE if successful

CreateBitmap—This function creates a GDI bitmap from an existing DIB and is called by the
Compress function. Don't confuse this function with CreateSection, which generates a DIB and
stores the handle.

Parameter Description

pDC Pointer to the display or printer device context

Return value Handle to a GDI bitmap—NULL if unsuccessful. This handle is not stored as a public

data member.

CreateSection—This function creates a DIB section by calling the Win32 CreateDIBSection
function. The image memory will be uninitialized.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function. The image memory will be uninitialized.

Parameter Description

pDC Pointer to the display or printer device context

Return
value

Handle to a GDI bitmap—NULL if unsuccessful. This handle is also stored as a public
data member.

Draw—This function outputs the CDib object to the display (or to the printer) with a call to the
Win32 StretchDIBits function. The bitmap will be stretched as necessary to fit the specified
rectangle.

Parameter Description

pDC Pointer to the display or printer device context that will receive the DIB image

origin CPoint object that holds the logical coordinates at which the DIB will be displayed

size CSize object that represents the display rectangle's width and height in logical units

Return value TRUE if successful

Empty—This function empties the DIB, freeing allocated memory and closing the map file if
necessary.
GetDimensions—This function returns the width and height of a DIB in pixels.

Parameter Description

Return value CSize object

GetSizeHeader—This function returns the number of bytes in the info header and color table
combined.

Parameter Description

Return value 32-bit integer

GetSizeImage—This function returns the number of bytes in the DIB image (excluding the info
header and the color table).

Parameter Description

Return value 32-bit integer

MakePalette—If the color table exists, this function reads it and creates a Windows palette. The
HPALETTE handle is stored in a data member.

Parameter Description

Return value TRUE if successful

Read—This function reads a DIB from a file into the CDib object. The file must have been
successfully opened. If the file is a BMP file, reading starts from the beginning of the file. If the file
is a document, reading starts from the current file pointer.

Parameter Description

pFile Pointer to a CFile object; the corresponding disk file contains the DIB

Return value TRUE if successful

ReadSection—This function reads the info header from a BMP file, calls CreateDIBSection to
allocate image memory, and then reads the image bits from the file into that memory. Use this
function if you want to read a DIB from disk and then edit it by calling GDI functions. You can write
the DIB back to disk with Write or CopyToMapFile.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the DIB back to disk with Write or CopyToMapFile.

Parameter Description

pFile Pointer to a CFile object; the corresponding disk file contains the DIB

pDC Pointer to the display or printer device context

Return value TRUE if successful

Serialize—Serialization is covered in Chapter 17. The CDib::Serialize function, which overrides the
MFC CObject::Serialize function, calls the Read and Write member functions. See the Microsoft
Foundation Classes and Templates section of the online help for a description of the parameters.
SetSystemPalette—If you have a 16-bpp, 24-bpp, or 32-bpp DIB that doesn't have a color table,
you can call this function to create for your CDib object a logical palette that matches the palette
returned by the CreateHalftonePalette function. If your program is running on a 256-color palettized
display and you don't call SetSystemPalette, you'll have no palette at all, and only the 20 standard
Windows colors will appear in your DIB.

Parameter Description

pDC Pointer to the display context

Return value TRUE if successful

UsePalette—This function selects the CDib object's logical palette into the device context and then
realizes the palette. The Draw member function calls UsePalette prior to painting the DIB.

Parameter Description

pDC Pointer to the display device context for realization

bBackground If this flag is FALSE (the default value) and the application is running in the
foreground, Windows realizes the palette as the foreground palette (copies as many
colors as possible into the system palette). If this flag is TRUE, Windows realizes the
palette as a background palette (maps the logical palette to the system palette as
best it can).

Return value Number of entries in the logical palette mapped to the

system palette. If the function fails, the return value is GDI_ERROR.

Write—This function writes a DIB from the CDib object to a file. The file must have been
successfully opened or created.

Parameter Description

pFile Pointer to a CFile object; the DIB will be

written to the corresponding disk file.

Return value TRUE if successful

For your convenience, four public data members give you access to the DIB memory and to the DIB
section handle. These members should give you a clue about the structure of a CDib object. A CDib is just
a bunch of pointers to heap memory. That memory might be owned by the DIB or by someone else.
Additional private data members determine whether the CDib class frees the memory.

DIB Display Performance

Optimized DIB processing is now a major feature of Windows. Modern video cards have frame buffers that
conform to the standard DIB image format. If you have one of these cards, your programs can take
advantage of the new Windows DIB engine, which speeds up the process of drawing directly from DIBs. If
you're still running in VGA mode, however, you're out of luck; your programs will still work, but not as fast.

If you're running Windows in 256-color mode, your 8-bpp bitmaps will be drawn very quickly, either with
StretchBlt or with StretchDIBits. If, however, you are displaying 16-bpp or 24-bpp bitmaps, those drawing
functions will be too slow. Your bitmaps will appear more quickly in this situation if you create a separate
8-bbp GDI bitmap and then call StretchBlt. Of course, you must be careful to realize the correct palette
prior to creating the bitmap and prior to drawing it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prior to creating the bitmap and prior to drawing it.

Here's some code that you might insert just after loading your CDib object from a BMP file:

// m_hBitmap is a data member of type HBITMAP
// m_dcMem is a memory device context object of class CDC
m_pDib->UsePalette(&dc);
m_hBitmap = m_pDib->CreateBitmap(&dc); // could be slow
::SelectObject(m_dcMem.GetSafeHdc(), m_hBitmap);
Here is the code that you use in place of CDib::Draw in your view's OnDraw member function:

m_pDib->UsePalette(pDC); // could be in palette msg handler

CSize sizeDib = m_pDib->GetDimensions();

pDC->StretchBlt(0, 0, sizeDib.cx, sizeDib.cy, &m_dcMem,
 0, 0, sizeToDraw.cx, sizeToDraw.cy, SRCCOPY);

Don't forget to call DeleteObject for m_hBitmap when you're done with it.

The EX11C Example

Now you'll put the CDib class to work in an application. The EX11C program displays two DIBs, one from a
resource and the other loaded from a BMP file that you select at runtime. The program manages the
system palette and displays the DIBs correctly on the printer. Compare the EX11C code with the GDI
bitmap code in EX11A. Notice that you're not dealing with a memory device context and all the GDI
selection rules!

Following are the steps to build EX11C. It's a good idea to type in the view class code, but you'll want to
use the cdib.h and cdib.cpp files from the companion CD-ROM.

1. Run AppWizard to produce \vcpp32\ex11c\ex11c. Accept all the defaults but two: select
Single Document and select the CScrollView view base class for CEx11cView. The options and the
default class names are shown here.

2. Import the Red Blocks bitmap. Choose Resource from Visual C++'s Insert menu. Import Red

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Import the Red Blocks bitmap. Choose Resource from Visual C++'s Insert menu. Import Red
Blocks.bmp from the \WINDOWS directory. (If your version of Windows doesn't include this bitmap,
load it from the companion CD-ROM.) Visual C++ will copy this bitmap file into your project's \res
subdirectory. Assign IDB_REDBLOCKS as the ID, and save the changes.

3. Integrate the CDib class with this project. If you've created this project from scratch, copy the
cdib.h and cdib.cpp files from \vcpp32\ex11c on the companion CD-ROM. Simply copying the files
to disk isn't enough; you must also add the CDib files to the project. Choose Add To Project from
Visual C++'s Project menu, and then choose Files. Select cdib.h and cdib.cpp, and click the OK
button. If you now switch to ClassView in the Workspace window, you will see the class CDib and all
of its member variables and functions.

4. Add two private CDib data members to the class CEx11cView. In the ClassView window,
right-click the CEx11cView class. Choose Add Member Variable from the resulting pop-up menu,
and then add the m_dibResource member as shown in the following illustration.

Add m_dibFile in the same way. The result should be two data members at the bottom of the
header file:

CDib m_dibFile;
CDib m_dibResource;
ClassView also adds this statement at the top of the ex11cView.h file:

#include "cdib.h" // Added by ClassView
5. Edit the OnInitialUpdate member function in ex11cView.cpp. This function sets the mapping

mode to MM_HIMETRIC and loads the m_dibResource object directly from the IDB_REDBLOCKS
resource. Note that we're not calling LoadBitmap to load a GDI bitmap as we did in EX11A. The
CDib::AttachMemory function connects the object to the resource in your EXE file. Add the following
boldface code:

void CEx11cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(30000, 40000); // 30-by-40 cm
 CSize sizeLine = CSize(sizeTotal.cx / 100, sizeTotal.cy / 100);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizeTotal, sizeLine);
 LPVOID lpvResource = (LPVOID) ::LoadResource(NULL,
 ::FindResource(NULL, MAKEINTRESOURCE(IDB_REDBLOCKS),
 RT_BITMAP));
 m_dibResource.AttachMemory(lpvResource); // no need for
 // ::LockResource
 CClientDC dc(this);
 TRACE("bits per pixel = %d\n", dc.GetDeviceCaps(BITSPIXEL));
}

6. Edit the OnDraw member function in the file ex11cView.cpp. This code calls CDib::Draw for
each of the DIBs. The UsePalette calls should really be made by message handlers for the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages. These messages are hard to deal
with because they don't go to the view directly, so we'll take a shortcut. Add the following boldface
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx11cView::OnDraw(CDC* pDC)
{
 BeginWaitCursor();
 m_dibResource.UsePalette(pDC); // should be in palette
 m_dibFile.UsePalette(pDC); // message handlers, not here
 pDC->TextOut(0, 0,
 "Press the left mouse button here to load a file.");
 CSize sizeResourceDib = m_dibResource.GetDimensions();
 sizeResourceDib.cx *= 30;
 sizeResourceDib.cy *= -30;
 m_dibResource.Draw(pDC, CPoint(0, -800), sizeResourceDib);
 CSize sizeFileDib = m_dibFile.GetDimensions();
 sizeFileDib.cx *= 30;
 sizeFileDib.cy *= -30;
 m_dibFile.Draw(pDC, CPoint(1800, -800), sizeFileDib);
 EndWaitCursor();
}

7. Map the WM_LBUTTONDOWN message in the CEx11cView class. Edit the file ex11cView.cpp.
OnLButtonDown contains code to read a DIB in two different ways. If you leave the
MEMORY_MAPPED_FILES definition intact, the AttachMapFile code is activated to read a memory-
mapped file. If you comment out the first line, the Read call is activated. The SetSystemPalette call
is there for DIBs that don't have a color table. Add the following boldface code:

#define MEMORY_MAPPED_FILES
void CEx11cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CFileDialog dlg(TRUE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) {
 return;
 }
#ifdef MEMORY_MAPPED_FILES
 if (m_dibFile.AttachMapFile(dlg.GetPathName(),
 TRUE) == TRUE) { // share
 Invalidate();
 }
 #else
 CFile file;
 file.Open(dlg.GetPathName(), CFile::modeRead);
 if (m_dibFile.Read(&file) == TRUE) {
 Invalidate();
 }
#endif // MEMORY_MAPPED_FILES
 CClientDC dc(this);
 m_dibFile.SetSystemPalette(&dc);
}

8. Build and run the application. The bitmaps directory on the companion CD-ROM contains several
interesting bitmaps. The Chicago.bmp file is an 8-bpp DIB with 256-color table entries; the
forest.bmp and clouds.bmp files are also 8-bpp, but they have smaller color tables. The
balloons.bmp is a 24-bpp DIB with no color table. Try some other BMP files if you have them. Note
that Red Blocks is a 16-color DIB that uses standard colors, which are always included in the
system palette.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with DIBs
Each new version of Windows offers more DIB programming choices. Both Windows 95 and Microsoft
Windows NT 4.0 provide the LoadImage and DrawDibDraw functions, which are useful alternatives to the
DIB functions already described. Experiment with these functions to see if they work well in your
applications.

The LoadImage Function

The LoadImage function can read a bitmap directly from a disk file, returning a DIB section handle. It can
even process OS/2 format DIBs. Suppose you wanted to add an ImageLoad member function to CDib that
would work like ReadSection. This is the code you would add to cdib.cpp:

BOOL CDib::ImageLoad(const char* lpszPathName, CDC* pDC)
{
 Empty();
 m_hBitmap = (HBITMAP) ::LoadImage(NULL, lpszPathName,
 IMAGE_BITMAP, 0, 0,
 LR_LOADFROMFILE | LR_CREATEDIBSECTION | LR_DEFAULTSIZE);
 DIBSECTION ds;
 VERIFY(::GetObject(m_hBitmap, sizeof(ds), &ds) == sizeof(ds));
 // Allocate memory for BITMAPINFOHEADER
 // and biggest possible color table
 m_lpBMIH = (LPBITMAPINFOHEADER) new
 char[sizeof(BITMAPINFOHEADER) + 256 * sizeof(RGBQUAD)];
 memcpy(m_lpBMIH, &ds.dsBmih, sizeof(BITMAPINFOHEADER));
 TRACE("CDib::LoadImage, biClrUsed = %d, biClrImportant = %d\n",
 m_lpBMIH->biClrUsed, m_lpBMIH->biClrImportant);
 ComputeMetrics(); // sets m_lpvColorTable
 m_nBmihAlloc = crtAlloc;
 m_lpImage = (LPBYTE) ds.dsBm.bmBits;
 m_nImageAlloc = noAlloc;
 // Retrieve the DIB section's color table
 // and make a palette from it
 CDC memdc;
 memdc.CreateCompatibleDC(pDC);
 ::SelectObject(memdc.GetSafeHdc(), m_hBitmap);
 UINT nColors = ::GetDIBColorTable(memdc.GetSafeHdc(), 0, 256,
 (RGBQUAD*) m_lpvColorTable);
 if (nColors != 0) {
 ComputePaletteSize(m_lpBMIH->biBitCount);
 MakePalette();
 }
 // memdc deleted and bitmap deselected
 return TRUE;
}
Note that this function extracts and copies the BITMAPINFOHEADER structure and sets the values of the
CDib pointer data members. You must do some work to extract the palette from the DIB section, but the
Win32 GetDIBColorTable function gets you started. It's interesting that GetDIBColorTable can't tell you
how many palette entries a particular DIB uses. If the DIB uses only 60 entries, for example,
GetDIBColorTable generates a 256-entry color table with the last 196 entries set to 0.

The DrawDibDraw Function

Windows includes the Video for Windows (VFW) component, which is supported by Visual C++. The VFW
DrawDibDraw function is an alternative to StretchDIBits. One advantage of DrawDibDraw is its ability to
use dithered colors. Another is its increased speed in drawing a DIB with a bpp value that does not match
the current video mode. The main disadvantage is the need to link the VFW code into your process at
runtime.

Shown below is a DrawDib member function for the CDib class that calls DrawDibDraw:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CDib::DrawDib(CDC* pDC, CPoint origin, CSize size)
{
 if (m_lpBMIH == NULL) return FALSE;
 if (m_hPalette != NULL) {
 ::SelectPalette(pDC->GetSafeHdc(), m_hPalette, TRUE);
 }
 HDRAWDIB hdd = ::DrawDibOpen();
 CRect rect(origin, size);
 pDC->LPtoDP(rect); // Convert DIB's rectangle
 // to MM_TEXT coordinates
 rect -= pDC->GetViewportOrg();
 int nMapModeOld = pDC->SetMapMode(MM_TEXT);
 ::DrawDibDraw(hdd, pDC->GetSafeHdc(), rect.left, rect.top,
 rect.Width(), rect.Height(), m_lpBMIH, m_lpImage, 0, 0,
 m_lpBMIH->biWidth, m_lpBMIH->biHeight, 0);
 pDC->SetMapMode(nMapModeOld);
 VERIFY(::DrawDibClose(hdd));
 return TRUE;
}
Note that DrawDibDraw needs MM_TEXT coordinates and the MM_TEXT mapping mode. Thus, logical
coordinates must be converted not to device coordinates but to pixels with the origin at the top left of the
scrolling window.

To use DrawDibDraw, your program needs an #include<vfw.h> statement, and you must add vfw32.lib to
the list of linker input files. DrawDibDraw might assume the bitmap it draws is in read/write memory, a
fact to keep in mind if you map the memory to the BMP file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Putting Bitmaps on Pushbuttons
The MFC library makes it easy to display a bitmap (instead of text) on a pushbutton. If you were to
program this from scratch, you would set the Owner Draw property for your button and then write a
message handler in your dialog class that would paint a bitmap on the button control's window. If you use
the MFC CBitmapButton class instead, you end up doing a lot less work, but you have to follow a kind of
"cookbook" procedure. Don't worry too much about how it all works (but be glad that you don't have to
write much code!).

There's also another way to put bitmaps on buttons. See Chapter 36, for a description
of the CButton::SetBitmap function, which associates a single bitmap with a button.

To make a long story short, you lay out your dialog resource as usual with unique text captions for the
buttons you designate for bitmaps. Next you add some bitmap resources to your project, and you identify
those resources by name rather than by numeric ID. Finally you add some CBitmapButton data members
to your dialog class, and you call the AutoLoad member function for each one, which matches a bitmap
name to a button caption. If the button caption is "Copy", you add two bitmaps: "COPYU" for the up state
and "COPYD" for the down state. By the way, you must still set the button's Owner Draw property. (This
will all make more sense when you write a program).

If you look at the MFC source code for the CBitmapButton class, you'll see that the
bitmap is an ordinary GDI bitmap painted with a BitBlt call. Thus, you can't expect any
palette support. That's not often a problem because bitmaps for buttons are usually 16-
color bitmaps that depend on standard VGA colors.

The EX11D Example

Here are the steps for building EX11D:

1. Run AppWizard to produce \vcpp32\ex11d\ex11d. Accept all the defaults but three: select
Single Document, deselect Printing And Print Preview, and select Context-Sensitive Help. The
options and the default class names are shown in the illustration below.

The Context-Sensitive Help option was selected for one reason only: it causes AppWizard to copy
some bitmap files into your project's \hlp subdirectory. These bitmaps are supposed to be bound
into your project's help file, but we won't study help files until Chapter 21.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Modify the project's IDD_ABOUTBOX dialog resource. It's too much hassle to create a new
dialog resource for a few buttons, so we'll use the About dialog that AppWizard generates for every
project. Add three pushbuttons with captions, as shown below, accepting the default IDs
IDC_BUTTON1, IDC_BUTTON2, and IDC_BUTTON3. The size of the buttons isn't important because
the framework adjusts the button size at runtime to match the bitmap size.

Select the Owner Draw property for all three buttons.

3. Import three bitmaps from the project's \hlp subdirectory. Choose Resource from Visual
C++'s Insert menu, and then click the Import button. Start with EditCopy.bmp, as shown below.

Assign the name "COPYU" as shown.

Be sure to use quotes around the name in order to identify the resource by name rather than by ID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure to use quotes around the name in order to identify the resource by name rather than by ID.
This is now the bitmap for the button's up state. Close the bitmap window and, from the
ResourceView window, use the clipboard (or drag and drop) to make a copy of the bitmap. Rename
the copy "COPYD" (down state), and then edit this bitmap. Choose Invert Colors from the Image
menu. There are other ways of making a variation of the up image, but inversion is the quickest.

Repeat the steps listed above for the EditCut and EditPast bitmaps. When you're finished, you
should have the following bitmap resources in your project.

Resource Name Original File Invert Colors

"COPYU" EditCopy.bmp no

"COPYD" EditCopy.bmp yes

"CUTU" EditCut.bmp no

"CUTD" EditCut.bmp yes

"PASTEU" EditPast.bmp no

"PASTED" EditPast.bmp yes

4. Edit the code for the CAboutDlg class. Both the declaration and the implementation for this
class are contained in the ex11d.cpp file. First add the three private data members shown here in
the class declaration:

CBitmapButton m_editCopy;
CBitmapButton m_editCut;
CBitmapButton m_editPaste;
Then you use ClassWizard to map the WM_INITDIALOG message in the dialog class. (Be sure that
the CAboutDlg class is selected.) The message handler (actually a virtual function) is coded as
follows:

BOOL CAboutDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 VERIFY(m_editCopy.AutoLoad(IDC_BUTTON1, this));
 VERIFY(m_editCut.AutoLoad(IDC_BUTTON2, this));
 VERIFY(m_editPaste.AutoLoad(IDC_BUTTON3, this));
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}
The AutoLoad function connects each button with the two matching resources. The VERIFY macro is
an MFC diagnostic aid that displays a message box if you didn't code the bitmap names correctly.

5. Edit the OnDraw function in ex11dView.cpp. Replace the AppWizard-generated code with the
following line:

pDC->TextOut(0, 0, "Choose About from the Help menu.");
6. Build and test the application. When the program starts, choose About from the Help menu and

observe the button behavior. The image below shows the CUT button in the down state.

Note that bitmap buttons send BN_CLICKED notification messages just as ordinary buttons do.
ClassWizard can, of course, map those messages in your dialog class.

Going Further with Bitmap Buttons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with Bitmap Buttons

You've seen bitmaps for the buttons' up and down states. The CBitmapButton class also supports bitmaps
for the focused and disabled states. For the Copy button, the focused bitmap name would be "COPYF", and
the disabled bitmap name would be "COPYX". If you want to test the disabled option, make a "COPYX"
bitmap, possibly with a red line through it, and then add the following line to your program:

m_editCopy.EnableWindow(FALSE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12
Windows Message Processing and Multithreaded Programming
With its multitasking and multithreading API, Win32 revolutionized programming for Microsoft Windows. If
you've seen magazine articles and advanced programming books on these subjects, you might have been
intimidated by the complexity of using multiple threads. You could stick with single-threaded programming
for a long time and still write useful Win32 applications. If you learn the fundamentals of threads, however,
you'll be able to write more efficient and capable programs. You'll also be on your way to a better
understanding of the Win32 programming model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Message Processing
To understand threads, you must first understand how 32-bit Windows processes messages. The best
starting point is a single-threaded program that shows the importance of the message translation and
dispatch process. You'll improve that program by adding a second thread, which you'll control with a global
variable and a simple message. Then you'll experiment with events and critical sections. For heavy-duty
multithreading elements such as mutexes and semaphores, however, you'll need to refer to another book,
such as Jeffrey Richter's Advanced Windows, 3d Ed. (Microsoft Press, 1997).

How a Single-Threaded Program Processes Messages

All the programs so far in this book have been single-threaded, which means that your code has only one
path of execution. With ClassWizard's help, you've written handler functions for various Windows messages
and you've written OnDraw code that is called in response to the WM_PAINT message. It might seem as
though Windows magically calls your handler when the message floats in, but it doesn't work that way.
Deep inside the MFC code (which is linked to your program) are instructions that look something like this:

MSG message;
while (::GetMessage(&message, NULL, 0, 0)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
}
Windows determines which messages belong to your program, and the GetMessage function returns when
a message needs to be processed. If no messages are posted, your program is suspended and other
programs can run. When a message eventually arrives, your program "wakes up." The TranslateMessage
function translates WM_KEYDOWN messages into WM_CHAR messages containing ASCII characters, and
the DispatchMessage function passes control (via the window class) to the MFC message pump, which calls
your function via the message map. When your handler is finished, it returns to the MFC code, which
eventually causes DispatchMessage to return.

Yielding Control

What would happen if one of your handler functions was a pig and chewed up 10 seconds of CPU time?
Back in the 16-bit days, that would have hung up the whole computer for the duration. Only cursor
tracking and a few other interrupt-based tasks would have run. With Win32, multitasking got a whole lot
better. Other applications can run because of preemptive multitasking—Windows simply interrupts your pig
function when it needs to. However, even in Win32, your program would be locked out for 10 seconds. It
couldn't process any messages because DispatchMessage doesn't return until the pig returns.

There is a way around this problem, however, which works with both Win16 and Win32. You simply train
your pig function to be polite and yield control once in a while by inserting the following instructions inside
the pig's main loop:

MSG message;
if (::PeekMessage(&message, NULL, 0, 0, PM_REMOVE)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
}
The PeekMessage function works like GetMessage, except that it returns immediately even if no message
has arrived for your program. In that case, the pig keeps on chewing. If there is a message, however, the
pig pauses, the handler is called, and the pig starts up again after the handler exits.

Timers

A Windows timer is a useful programming element that sometimes makes multithreaded programming
unnecessary. If you need to read a communication buffer, for example, you can set up a timer to retrieve
the accumulated characters every 100 milliseconds. You can also use a timer to control animation because
the timer is independent of CPU clock speed.

Timers are easy to use. You simply call the CWnd member function SetTimer with an interval parameter,
and then you provide, with the help of ClassWizard, a message handler function for the resulting
WM_TIMER messages. Once you start the timer with a specified interval in milliseconds, WM_TIMER
messages will be sent continuously to your window until you call CWnd::KillTimer or until the timer's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages will be sent continuously to your window until you call CWnd::KillTimer or until the timer's
window is destroyed. If you want to, you can use multiple timers, each identified by an integer. Because
Windows isn't a real-time operating system, the interval between timer events becomes imprecise if you
specify an interval much less than 100 milliseconds.

Like any other Windows messages, timer messages can be blocked by other handler functions in your
program. Fortunately, timer messages don't stack up. Windows won't put a timer message in the queue if
a message for that timer is already present.

The EX12A Program

We're going to write a single-threaded program that contains a CPU-intensive computation loop. We want
to let the program process messages after the user starts the computation; otherwise, the user couldn't
cancel the job. Also, we'd like to display the percent-complete status by using a progress indicator control,
as shown in Figure 12-1. The EX12A program allows message processing by yielding control in the
compute loop. A timer handler updates the progress control based on compute parameters. The
WM_TIMER messages could not be processed if the compute process didn't yield control.

Figure 12-1. The Compute dialog box.

Here are the steps for building the EX12A application:

1. Run AppWizard to generate \vcpp32\ex12a\ex12a. Accept all the default settings but two:
select Single Document and deselect Printing And Print Preview. The options and the default class
names are shown here.

2. Use the dialog editor to create the dialog resource IDD_COMPUTE. Use the resource shown

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the dialog editor to create the dialog resource IDD_COMPUTE. Use the resource shown
here as a guide.

Keep the default control ID for the Cancel button, but use IDC_START for the Start button. For the
progress indicator, accept the default ID IDC_PROGRESS1.

3. Use ClassWizard to create the CComputeDlg class. ClassWizard connects the new class to the
IDD_COMPUTE resource you just created.

After the class is generated, add a WM_TIMER message handler function. Also add BN_CLICKED
message handlers for IDC_START and IDCANCEL. Accept the default names OnStart and OnCancel.

4. Add three data members to the CComputeDlg class. Edit the file ComputeDlg.h. Add the
following private data members:

int m_nTimer;
int m_nCount;
enum { nMaxCount = 10000 };
The m_nCount data member of class CComputeDlg is incremented during the compute process. It
serves as a percent complete measurement when divided by the "constant" nMaxCount.

5. Add initialization code to the CComputeDlg constructor in the ComputeDlg.cpp file. Add
the following line to the constructor to ensure that the Cancel button will work if the compute
process has not been started:

m_nCount = 0;
Be sure to add the line outside the //{{AFX_DATA_INIT comments generated by ClassWizard.

6. Code the OnStart function in ComputeDlg.cpp. This code is executed when the user clicks the
Start button. Add the following boldface code:

void CComputeDlg::OnStart()
{
 MSG message;
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 volatile int nTemp;
 for (m_nCount = 0; m_nCount < nMaxCount; m_nCount++) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // uses up CPU cycles
 }
 if (::PeekMessage(&message, NULL, 0, 0, PM_REMOVE)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
 }
 }
 CDialog::OnOK();
}
The main for loop is controlled by the value of m_nCount. At the end of each pass through the outer
loop, PeekMessage allows other messages, including WM_TIMER, to be processed. The
EnableWindow(FALSE) call disables the Start button during the computation. If we didn't take this
precaution, the OnStart function could be reentered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Code the OnTimer function in ComputeDlg.cpp. When the timer fires, the progress indicator's
position is set according to the value of m_nCount. Add the following boldface code:

void CComputeDlg::OnTimer(UINT nIDEvent)
{
 CProgressCtrl* pBar = (CProgressCtrl*) GetDlgItem(IDC_PROGRESS1);
 pBar->SetPos(m_nCount * 100 / nMaxCount);
}

8. Update the OnCancel function in ComputeDlg.cpp. When the user clicks the Cancel button
during computation, we don't destroy the dialog; instead, we set m_nCount to its maximum value,
which causes OnStart to exit the dialog. If the computation hasn't started, it's okay to exit directly.
Add the following boldface code:

void CControlDlg::OnCancel()
{
 TRACE("entering CComputeDlg::OnCancel\n");
 if (m_nCount == 0) { // prior to Start button
 CDialog::OnCancel();
 }
 else { // computation in progress
 m_nCount = nMaxCount; // Force exit from OnStart
 }
}

9. Edit the CEx12aView class in ex12aView.cpp. First edit the virtual OnDraw function to display a
message, as shown here:

void CEx12aView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

Then use ClassWizard to add the OnLButtonDown function to handle WM_LBUTTONDOWN
messages, and add the following boldface code:

void CEx12aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CComputeDlg dlg;
 dlg.DoModal();
}
This code displays the modal dialog whenever the user presses the left mouse button while the
mouse cursor is in the view window.

While you're in ex12aView.cpp, add the following #include statement:

#include "ComputeDlg.h"
10. Build and run the application. Press the left mouse button while the mouse cursor is inside the

view window to display the dialog. Click the Start button, and then click Cancel. The progress
indicator should show the status of the computation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On-Idle Processing
Before multithreaded programming came along, Windows developers used on-idle processing for
"background" tasks such as pagination. On-idle processing is no longer as important, but it's still useful.
The application framework calls a virtual member function OnIdle of class CWinApp, and you can override
this function to do background processing. OnIdle is called from the framework's message processing loop,
which is actually a little more complicated than the simple GetMessage/TranslateMessage/DispatchMessage
sequence you've seen. Generally, once the OnIdle function completes its work, it is not called again until
the next time the application's message queue has been emptied. If you override this function, your code
will be called, but it won't be called continuously unless there is a constant stream of messages. The base
class OnIdle updates the toolbar buttons and status indicators, and it cleans up various temporary object
pointers. It makes sense for you to override OnIdle to update the user interface. The fact that your code
won't be executed when no messages are coming is not important because the user interface shouldn't be
changing.

If you do override CWinApp::OnIdle, don't forget to call the base class OnIdle.
Otherwise, your toolbar buttons won't be updated and temporary objects won't be
deleted.

OnIdle isn't called at all if the user is working in a modal dialog or is using a menu. If you need to use
background processing for modal dialogs and menus, you'll have to add a message handler function for the
WM_ENTERIDLE message, but you must add it to the frame class rather than to the view class. That's
because pop-up dialogs are always "owned" by the application's main frame window, not by the view
window. Chapter 15 explores the relationship between the frame window and the view window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multithreaded Programming
As you'll recall from Chapter 10, a process is a running program that owns its own memory, file handles,
and other system resources. An individual process can contain separate execution paths, called threads.
Don't look for separate code for separate threads, however, because a single function can be called from
many threads. For the most part, all of a process's code and data space is available to all of the threads in
the process. Two threads, for example, can access the same global variables. Threads are managed by the
operating system, and each thread has its own stack.

Windows offers two kinds of threads, worker threads and user interface threads. The Microsoft Foundation
Class (MFC) Library supports both. A user interface thread has windows, and therefore it has its own
message loop. A worker thread doesn't have windows, so it doesn't need to process messages. Worker
threads are easier to program and are generally more useful. The remaining examples in this chapter
illustrate worker threads. At the end of the chapter, however, an application for a user interface thread is
described.

Don't forget that even a single-threaded application has one thread—the main thread. In the MFC
hierarchy, CWinApp is derived from CWinThread. Back in Chapter 2, I told you that InitInstance and
m_pMainWnd are members of CWinApp. Well, I lied. The members are declared in CWinThread, but of
course they're inherited by CWinApp. The important thing to remember here is that an application is a
thread.

Writing the Worker Thread Function and Starting the Thread

If you haven't guessed already, using a worker thread for a long computation is more efficient than using a
message handler that contains a PeekMessage call. Before you start a worker thread, however, you must
write a global function for your thread's main program. This global function should return a UINT, and it
should take a single 32-bit value (declared LPVOID) as a parameter. You can use the parameter to pass
anything at all to your thread when you start it. The thread does its computation, and when the global
function returns, the thread terminates. The thread would also be terminated if the process terminated,
but it's preferable to ensure that the worker thread terminates first, which will guarantee that you'll have
no memory leaks.

To start the thread (with function name ComputeThreadProc), your program makes the following call:

CWinThread* pThread =
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);
The compute thread code looks like this:

UINT ComputeThreadProc(LPVOID pParam)
{
 // Do thread processing
 return 0;
}

The AfxBeginThread function returns immediately; the return value is a pointer to the newly created
thread object. You can use that pointer to suspend and resume the thread (CWinThread::SuspendThread
and ResumeThread), but the thread object has no member function to terminate the thread. The second
parameter is the 32-bit value that gets passed to the global function, and the third parameter is the
thread's priority code. Once the worker thread starts, both threads run independently. Windows divides the
time between the two threads (and among the threads that belong to other processes) according to their
priority. If the main thread is waiting for a message, the compute thread can still run.

How the Main Thread Talks to a Worker Thread

The main thread (your application program) can communicate with the subsidiary worker thread in many
different ways. One option that will not work, however, is a Windows message; the worker thread doesn't
have a message loop. The simplest means of communication is a global variable because all the threads in
the process have access to all the globals. Suppose the worker thread increments and tests a global
integer as it computes and then exits when the value reaches 100. The main thread could force the worker
thread to terminate by setting the global variable to 100 or higher.

The code below looks as though it should work, and when you test it, it probably will:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UINT ComputeThreadProc(LPVOID pParam)
{
 g_nCount = 0;
 while (g_nCount++ < 100) {
 // Do some computation here
 }
 return 0;
}
There's a problem, however, that you could detect only by looking at the generated assembly code. The
value of g_nCount gets loaded into a register, the register is incremented, and then the register value is
stored back in g_nCount. Suppose g_nCount is 40 and Windows interrupts the worker thread just after the
worker thread loads 40 into the register. Now the main thread gets control and sets g_nCount to 100.
When the worker thread resumes, it increments the register value and stores 41 back into g_nCount,
obliterating the previous value of 100. The thread loop doesn't terminate!

If you turn on the compiler's optimization switch, you'll have an additional problem. The compiler uses a
register for g_nCount, and the register stays loaded for the duration of the loop. If the main thread
changes the value of g_nCount in memory, it will have no effect on the worker thread's compute loop.
(You can ensure that the counter isn't stored in a register, however, by declaring g_nCount as volatile.)

But suppose you rewrite the thread procedure as shown here:

UINT ComputeThreadProc(LPVOID pParam)
{
 g_nCount = 0;
 while (g_nCount < 100) {
 // Do some computation here
 ::InterlockedIncrement((long*) &g_nCount);
 }
 return 0;
}
The InterlockedIncrement function blocks other threads from accessing the variable while it is being
incremented. The main thread can safely stop the worker thread.

Now you've seen some of the pitfalls of using global variables for communication. Using global variables is
sometimes appropriate, as the next example illustrates, but there are alternative methods that are more
flexible, as you'll see later in this chapter.

How the Worker Thread Talks to the Main Thread

It makes sense for the worker thread to check a global variable in a loop, but what if the main thread did
that? Remember the pig function? You definitely don't want your main thread to enter a loop because that
would waste CPU cycles and stop your program's message processing. A Windows message is the
preferred way for a worker thread to communicate with the main thread because the main thread always
has a message loop. This implies, however, that the main thread has a window (visible or invisible) and
that the worker thread has a handle to that window.

How does the worker thread get the handle? That's what the 32-bit thread function parameter is for. You
pass the handle in the AfxBeginThread call. Why not pass the C++ window pointer instead? Doing so
would be dangerous because you can't depend on the continued existence of the object and you're not
allowed to share objects of MFC classes among threads. (This rule does not apply to objects derived
directly from CObject or to simple classes such as CRect and CString.)

Do you send the message or post it? Better to post it, because sending it could cause reentry of the main
thread's MFC message pump code, and that would create problems in modal dialogs. What kind of
message do you post? Any user-defined message will do.

The EX12B Program

The EX12B program looks exactly like the EX12A program when you run it. When you look at the code,
however, you'll see some differences. The computation is done in a worker thread instead of in the main
thread. The count value is stored in a global variable g_nCount, which is set to the maximum value in the
dialog window's Cancel button handler. When the thread exits, it posts a message to the dialog, which
causes DoModal to exit.

The document, view, frame, and application classes are the same except for their names, and the dialog
resource is the same. The modal dialog class is still named CComputeDlg, but the code inside is quite

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource is the same. The modal dialog class is still named CComputeDlg, but the code inside is quite
different. The constructor, timer handler, and data exchange functions are pretty much the same. The
following code fragment shows the global variable definition and the global thread function as given in the
\ex12b\ComputeDlg.cpp file on the companion CD-ROM. Note that the function exits (and the thread
terminates) when g_nCount is greater than a constant maximum value. Before it exits, however, the
function posts a user-defined message to the dialog window.

int g_nCount = 0;
UINT ComputeThreadProc(LPVOID pParam)
{
 volatile int nTemp; // volatile else compiler optimizes too much
 for (g_nCount = 0; g_nCount < CComputeDlg::nMaxCount;
 ::InterlockedIncrement((long*) &g_nCount)) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // uses up CPU cycles
 }
 }
 // WM_THREADFINISHED is user-defined message
 ::PostMessage((HWND) pParam, WM_THREADFINISHED, 0, 0);
 g_nCount = 0;
 return 0; // ends the thread
}
The OnStart handler below is mapped to the dialog's Start button. Its job is to start the timer and the
worker thread. You can change the worker thread's priority by changing the third parameter of
AfxBeginThread—for example, the computation runs a little more slowly if you set the priority to
THREAD_PRIORITY_LOWEST.

void CComputeDlg::OnStart()
{
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);
}
The OnCancel handler below is mapped to the dialog's Cancel button. It sets the g_nCount variable to the
maximum value, causing the thread to terminate.

void CComputeDlg::OnCancel()
{
 if (g_nCount == 0) { // prior to Start button
 CDialog::OnCancel();
 }
 else { // computation in progress
 g_nCount = nMaxCount; // Force thread to exit
 }
}
The OnThreadFinished handler below is mapped to the dialog's WM_THREADFINISHED user-defined
message. It causes the dialog's DoModal function to exit.

LRESULT CComputeDlg::OnThreadFinished(WPARAM wParam, LPARAM lParam)
{
 CDialog::OnOK();
 return 0;
}
Using Events for Thread Synchronization

The global variable is a crude but effective means of interthread communication. Now let's try something
more sophisticated. We want to think in terms of thread synchronization instead of simple communication.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

more sophisticated. We want to think in terms of thread synchronization instead of simple communication.
Our threads must carefully synchronize their interactions with one another.

An event is one type of kernel object (processes and threads are also kernel objects) that Windows
provides for thread synchronization. An event is identified by a unique 32-bit handle within a process. It
can be identified by name, or its handle can be duplicated for sharing among processes. An event can be
either in the signaled (or true) state or in the unsignaled (or false) state. Events come in two types:
manual reset and autoreset. We'll be looking at autoreset events here because they're ideal for the
synchronization of two processes.

Let's go back to our worker thread example. We want the main (user interface) thread to "signal" the
worker thread to make it start or stop, so we'll need a "start" event and a "kill" event. MFC provides a
handy CEvent class that's derived from CSyncObject. By default, the constructor creates a Win32 autoreset
event object in the unsignaled state. If you declare your events as global objects, any thread can easily
access them. When the main thread wants to start or terminate the worker thread, it sets the appropriate
event to the signaled state by calling CEvent::SetEvent.

Now the worker thread must monitor the two events and respond when one of them is signaled. MFC
provides the CSingleLock class for this purpose, but it's easier to use the Win32 WaitForSingleObject
function. This function suspends the thread until the specified object becomes signaled. When the thread is
suspended, it's not using any CPU cycles—which is good. The first WaitForSingleObject parameter is the
event handle. You can use a CEvent object for this parameter; the object inherits from CSyncObject an
operator HANDLE that returns the event handle it has stored as a public data member. The second
parameter is the time-out interval. If you set this parameter to INFINITE, the function waits forever until
the event becomes signaled. If you set the time-out to 0, WaitForSingleObject returns immediately, with a
return value of WAIT_OBJECT_0 if the event was signaled.

The EX12C Program

The EX12C program uses two events to synchronize the worker thread with the main thread. Most of the
EX12C code is the same as EX12B, but the CComputeDlg class is quite different. The StdAfx.h file contains
the following line for the CEvent class:

#include <afxmt.h>
There are two global event objects, as shown below. Note that the constructors create the Windows events
prior to the execution of the main program.

CEvent g_eventStart; // creates autoreset events
CEvent g_eventKill;
It's best to look at the worker thread global function first. The function increments g_nCount just as it did
in EX12B. The worker thread is started by the OnInitDialog function instead of by the Start button handler.
The first WaitForSingleObject call waits for the start event, which is signaled by the Start button handler.
The INFINITE parameter means that the thread waits as long as necessary. The second
WaitForSingleObject call is different—it has a 0 time-out value. It's located in the main compute loop and
simply makes a quick test to see whether the kill event was signaled by the Cancel button handler. If the
event was signaled, the thread terminates.

UINT ComputeThreadProc(LPVOID pParam)
{
 volatile int nTemp;
 ::WaitForSingleObject(g_eventStart, INFINITE);
 TRACE("starting computation\n");
 for (g_nCount = 0; g_nCount < CComputeDlg::nMaxCount;
 g_nCount++) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // Simulate computation
 }
 if (::WaitForSingleObject(g_eventKill, 0) == WAIT_OBJECT_0) {
 break;
 }
 }
 // Tell owner window we're finished
 ::PostMessage((HWND) pParam, WM_THREADFINISHED, 0, 0);
 g_nCount = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 g_nCount = 0;
 return 0; // ends the thread
}
Here is the OnInitDialog function that's called when the dialog is initialized. Note that it starts the worker
thread, which doesn't do anything until the start event is signaled.

BOOL CComputeDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd());
 return TRUE; // Return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}
The following Start button handler sets the start event to the signaled state, thereby starting the worker
thread's compute loop:

void CComputeDlg::OnStart()
{
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 g_eventStart.SetEvent();
}
The following Cancel button handler sets the kill event to the signaled state, causing the worker thread's
compute loop to terminate:

void CComputeDlg::OnCancel()
{
 if (g_nCount == 0) { // prior to Start button
 // Must start it before we can kill it
 g_eventStart.SetEvent();
 }
 g_eventKill.SetEvent();
}
Note the awkward use of the start event when the user cancels without starting the compute process. It
might be neater to define a new cancel event and then replace the first WaitForSingleObject call with a
WaitForMultipleObjects call in the ComputeThreadProc function. If WaitForMultipleObjects detected a
cancel event, it could cause an immediate thread termination.

Thread Blocking

The first WaitForSingleObject call in the ComputeThreadProc function above is an example of thread
blocking. The thread simply stops executing until an event becomes signaled. A thread could be blocked in
many other ways. You could call the Win32 Sleep function, for example, to put your thread to "sleep" for
500 milliseconds. Many functions block threads, particularly those functions that access hardware devices
or Internet hosts. Back in the Win16 days, those functions took over the CPU until they were finished. In
Win32, they allow other processes and threads to run.

You should avoid putting blocking calls in your main user interface thread. Remember that if your main
thread is blocked, it can't process its messages, and that makes the program appear sluggish. If you have
a task that requires heavy file I/O, put the code in a worker thread and synchronize it with your main
thread.

Be careful of calls in your worker thread that could block indefinitely. Check the online documentation to
determine whether you have the option of setting a time-out value for a particular I/O operation. If a call
does block forever, the thread will be terminated when the main process exits, but then you'll have some
memory leaks. You could call the Win32 TerminateThread function from your main thread, but you'd still
have the memory-leak problem.

Critical Sections

Remember the problems with access to the g_nCount global variable? If you want to share global data
among threads and you need more flexibility than simple instructions like InterlockedIncrement can
provide, critical sections might be the synchronization tools for you. Events are good for signaling, but

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

provide, critical sections might be the synchronization tools for you. Events are good for signaling, but
critical sections (sections of code that require exclusive access to shared data) are good for controlling
access to data.

MFC provides the CCriticalSection class that wraps the Windows critical section handle. The constructor
calls the Win32 InitializeCriticalSection function, the Lock and Unlock member functions call
EnterCriticalSection and LeaveCriticalSection, and the destructor calls DeleteCriticalSection. Here's how
you use the class to protect global data:

CCriticalSection g_cs; // global variables accessible from all threads
int g_nCount;
void func()
{
 g_cs.Lock();
 g_nCount++;
 g_cs.Unlock();
}
Suppose your program tracks time values as hours, minutes, and seconds, each stored in a separate
integer, and suppose two threads are sharing time values. Thread A is changing a time value but is
interrupted by thread B after it has updated hours but before it has updated minutes and seconds. Thread
B will have an invalid time value.

If you write a C++ class for your time format, it's easy to control data access by making the data members
private and providing public member functions. The CHMS class, shown in Figure 12-2, does exactly that.
Notice that the class has a data member of type CCriticalSection. Thus, a critical section object is
associated with each CHMS object.

Notice that the other member functions call the Lock and Unlock member functions. If thread A is
executing in the middle of SetTime, thread B will be blocked by the Lock call in GetTotalSecs until thread A
calls Unlock. The IncrementSecs function calls SetTime, resulting in nested locks on the critical section.
That's okay because Windows keeps track of the nesting level.

The CHMS class works well if you use it to construct global objects. If you share pointers to objects on the
heap, you have another set of problems. Each thread must determine whether another thread has deleted
the object, and that means you must synchronize access to the pointers.

HMS.H

#include "StdAfx.h"

class CHMS
{
private:
 int m_nHr, m_nMn, m_nSc;
 CCriticalSection m_cs;
public:
 CHMS() : m_nHr(0), m_nMn(0), m_nSc(0) {}

 ~CHMS() {}

 void SetTime(int nSecs)
 {
 m_cs.Lock();
 m_nSc = nSecs % 60;
 m_nMn = (nSecs / 60) % 60;
 m_nHr = nSecs / 3600;
 m_cs.Unlock();
 }

 int GetTotalSecs()
 {
 int nTotalSecs;
 m_cs.Lock();
 nTotalSecs = m_nHr * 3600 + m_nMn * 60 + m_nSc;
 m_cs.Unlock();
 return nTotalSecs;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return nTotalSecs;
 }

 void IncrementSecs()
 {
 m_cs.Lock();
 SetTime(GetTotalSecs() + 1);
 m_cs.Unlock();
 }
};

Figure 12-2. The CHMS class listing.

No sample program is provided that uses the CHMS class, but the file hms.h is included in the
\vcpp32\ex12c subdirectory on the companion CD-ROM. If you write a multithreaded program, you can
share global objects of the class. You don't need any other calls to the thread-related functions.

Mutexes and Semaphores

As I mentioned, I'm leaving these synchronization objects to Jeffrey Richter's Advanced Windows. You
might need a mutex or a semaphore if you're controlling access to data across different processes because
a critical section is accessible only within a single process. Mutexes and semaphores (along with events)
are shareable by name.

User Interface Threads

The MFC library provides good support for UI threads. You derive a class from CWinThread, and you use an
overloaded version of AfxBeginThread to start the thread. Your derived CWinThread class has its own
InitInstance function, and most important, it has its own message loop. You can construct windows and
map messages as required.

Why might you want a user interface thread? If you want multiple top-level windows, you can create and
manage them from your main thread. Suppose you allow the user to run multiple instances of your
application, but you want all instances to share memory. You can configure a single process to run multiple
UI threads such that users think they are running separate processes. That's exactly what Windows
Explorer does. Check it out with SPY++.

Starting the second and subsequent threads is a little tricky because the user actually launches a new
process for each copy of Windows Explorer. When the second process starts, it signals the first process to
start a new thread, and then it exits. The second process can locate the first process either by calling the
Win32 FindWindow function or by declaring a shared data section. Shared data sections are explained in
detail in Jeffrey Richter's book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13
Menus, Keyboard Accelerators, the Rich Edit Control, and Property
Sheets
In all the book's examples to this point, mouse clicks have triggered most program activity. Even though
menu selections might have been more appropriate, you've used mouse clicks because mouse-click
messages are handled simply and directly within the Microsoft Foundation Class (MFC) Library version 6.0
view window. If you want program activity to be triggered when the user chooses a command from a
menu, you must first become familiar with the other application framework elements.

This chapter concentrates on menus and the command routing architecture. Along the way, we introduce
frames and documents, explaining the relationships between these new application framework elements
and the already familiar view element. You'll use the menu editor to lay out a menu visually, and you'll use
ClassWizard to link document and view member functions to menu items. You'll learn how to use special
update command user interface (UI) member functions to check and disable menu items, and you'll see
how to use keyboard accelerators as menu shortcut keys.

Because you're probably tired of circles and dialogs, next you'll examine two new MFC building blocks. The
rich edit common control can add powerful text editing features to your application. Property sheets are
ideal for setting edit options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Main Frame Window and Document Classes
Up to now, you've been using a view window as if it were the application's only window. In an SDI
application, the view window sits inside another window—the application's main frame window. The main
frame window has the title bar and the menu bar. Various child windows, including the toolbar window, the
view window, and the status bar window, occupy the main frame window's client area, as shown in Figure
13-1. The application framework controls the interaction between the frame and the view by routing
messages from the frame to the view.

Figure 13-1. The child windows within an SDI main frame window.

Look again at any project files generated by AppWizard. The MainFrm.h and MainFrm.cpp files contain the
code for the application's main frame window class, derived from the class CFrameWnd. Other files, with
names such as ex13aDoc.h and ex13aDoc.cpp, contain code for the application's document class, which is
derived from CDocument. In this chapter you'll begin working with the MFC document class. You'll start by
learning that each view object has exactly one document object attached and that the view's inherited
GetDocument member function returns a pointer to that object. In Chapter 15 you'll examine frame
windows, and in Chapter 16 you'll learn much more about document-view interactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Menus
A Microsoft Windows menu is a familiar application element that consists of a top-level horizontal list of
items with associated pop-up menus that appear when the user selects a top-level item. Most of the time,
you define for a frame window a default menu resource that loads when the window is created. You can
also define a menu resource independent of a frame window. In that case, your program must call the
functions necessary to load and activate the menu.

A menu resource completely defines the initial appearance of a menu. Menu items can be grayed or have
check marks, and bars can separate groups of menu items. Multiple levels of pop-up menus are possible. If
a first-level menu item is associated with a subsidiary pop-up menu, the menu item carries a right-pointing
arrow symbol, as shown next to the Start Debug menu item in Figure 13-2.

Figure 13-2. Multilevel pop-up menus (from Microsoft Visual C++).

Visual C++ includes an easy-to-use menu-resource editing tool. This tool lets you edit menus in a wysiwyg
environment. Each menu item has a properties dialog that defines all the characteristics of that item. The
resulting resource definition is stored in the application's resource script (RC) file. Each menu item is
associated with an ID, such as ID_FILE_OPEN, that is defined in the resource.h file.

The MFC library extends the functionality of the standard menus for Windows. Each menu item can have a
prompt string that appears in the frame's status bar when the item is highlighted. These prompts are really
Windows string resource elements linked to the menu item by a common ID. From the point of view of the
menu editor and your program, the prompts appear to be part of the menu item definition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keyboard Accelerators
You've probably noticed that most menu items contain an underlined letter. In Visual C++ (and most other
applications), pressing Alt-F followed by S activates the File Save menu item. This shortcut system is the
standard Windows method of using the keyboard to choose commands from menus. If you look at an
application's menu resource script (or the menu editor's properties dialog), you will see an ampersand (&)
preceding the character that is underlined in each of the application's menu items.

Windows offers an alternative way of linking keystrokes to menu items. The keyboard accelerator resource
consists of a table of key combinations with associated command IDs. The Edit Copy menu item (with
command ID ID_EDIT_COPY), for example, might be linked to the Ctrl-C key combination through a
keyboard accelerator entry. A keyboard accelerator entry does not have to be associated with a menu
item. If no Edit Copy menu item were present, the Ctrl-C key combination would nevertheless activate the
ID_EDIT_COPY command.

If a keyboard accelerator is associated with a menu item or toolbar button, the
accelerator key is disabled when the menu item or button is disabled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command Processing
As you saw in Chapter 2, the application framework provides a sophisticated routing system for command
messages. These messages originate from menu selections, keyboard accelerators, and toolbar and dialog
button clicks. Command messages can also be sent by calls to the CWnd::SendMessage or PostMessage
function. Each message is identified by a #define constant that is often assigned by a resource editor. The
application framework has its own set of internal command message IDs, such as ID_FILE_PRINT and
ID_FILE_OPEN. Your project's resource.h file contains IDs that are unique to your application.

Most command messages originate in the application's frame window, and without the application
framework in the picture, that's where you would put the message handlers. With command routing,
however, you can handle a message almost anywhere. When the application framework sees a frame
window command message, it starts looking for message handlers in one of the sequences listed here.

SDI Application MDI Application

View View

Document Document

SDI main frame window MDI child frame window

Application MDI main frame window
Application

Most applications have a particular command handler in only one class, but suppose your one-view
application has an identical handler in both the view class and the document class. Because the view is
higher in the command route, only the view's command handler function will be called.

What is needed to install a command handler function? The installation requirements are similar to those of
the window message handlers you've already seen. You need the function itself, a corresponding message
map entry, and the function prototype. Suppose you have a menu item named Zoom (with IDM_ZOOM as
the associated ID) that you want your view class to handle. First you add the following code to your view
implementation file:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND(IDM_ZOOM, OnZoom)
END_MESSAGE_MAP()

void CMyView::OnZoom()
{
 // command message processing code
}
Now add the following function prototype to the CMyView class header file (before the
DECLARE_MESSAGE_MAP macro):

afx_msg void OnZoom();
Of course, ClassWizard automates the process of inserting command message handlers the same way it
facilitates the insertion of window message handlers. You'll learn how this works in the next example,
EX13A.

Command Message Handling in Derived Classes

The command routing system is one dimension of command message handling. The class hierarchy is a
second dimension. If you look at the source code for the MFC library classes, you'll see lots of
ON_COMMAND message map entries. When you derive a class from one of these base classes—for
example, CView—the derived class inherits all the CView message map functions, including the command
message functions. To override one of the base class message map functions, you must add both a
function and a message map entry to your derived class.

Update Command User Interface Handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Update Command User Interface Handlers

You often need to change the appearance of a menu item to match the internal state of your application. If
your application's Edit menu includes a Clear All item, for example, you might want to disable that item if
there's nothing to clear. You've undoubtedly seen such grayed menu items in Windows-based applications,
and you've probably also seen check marks next to menu items.

With Win32 programming, it's difficult to keep menu items synchronized with the application's state. Every
piece of code that changes the internal state must contain statements to update the menu. The MFC library
takes a different approach by calling a special update command user interface (UI) handler function
whenever a pop-up menu is first displayed. The handler function's argument is a CCmdUI object, which
contains a pointer to the corresponding menu item. The handler function can then use this pointer to
modify the menu item's appearance. Update command UI handlers apply only to items on pop-up menus,
not to top-level menu items that are permanently displayed. You can't use an update command UI handler
to disable a File menu item, for example.

The update command UI coding requirements are similar to those for commands. You need the function
itself, a special message map entry, and of course the prototype. The associated ID—in this case,
IDM_ZOOM—is the same constant used for the command. Here is an example of the necessary additions to
the view class code file:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_UPDATE_COMMAND_UI(IDM_ZOOM, OnUpdateZoom)
END_MESSAGE_MAP()

void CMyView::OnUpdateZoom(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck(m_bZoomed); // m_bZoomed is a class data member
}
Here is the function prototype that you must add to the class header (before the DECLARE_MESSAGE_MAP
macro):

afx_msg void OnUpdateZoom(CCmdUI* pCmdUI);
Needless to say, ClassWizard automates the process of inserting update command UI handlers.

Commands That Originate in Dialogs

Suppose you have a pop-up dialog with buttons, and you want a particular button to send a command
message. Command IDs must be in the range 0x8000 to 0xDFFF, the same ID range that the resource
editor uses for your menu items. If you assign an ID in this range to a dialog button, the button will
generate a routable command. The application framework first routes this command to the main frame
window because the frame window owns all pop-up dialogs. The command routing then proceeds
normally; if your view has a handler for the button's command, that's where it will be handled. To ensure
that the ID is in the range 0x8000 to 0xDFFF, you must use Visual C++'s symbol editor to enter the ID
prior to assigning the ID to a button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Framework's Built-In Menu Items
You don't have to start each frame menu from scratch—the MFC library defines some useful menu items
for you, along with all the command handler functions, as shown in Figure 13-3.

Figure 13-3. The standard SDI frame menus.

The menu items and command message handlers that you get depend on the options you choose in
AppWizard. If you deselect Printing and Print Preview, for example, the Print and Print Preview menu items
don't appear. Because printing is optional, the message map entries are not defined in the CView class but
are generated in your derived view class. That's why entries such as the following are defined in the
CMyView class instead of in the CView class:

ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

Enabling/Disabling Menu Items

The application framework can disable a menu item if it does not find a command message handler in the
current command route. This feature saves you the trouble of having to write ON_UPDATE_COMMAND_UI
handlers. You can disable the feature if you set the CFrameWnd data member m_bAutoMenuEnable to
FALSE.

Suppose you have two views for one document, but only the first view class has a message handler for the
IDM_ZOOM command. The Zoom item on the frame menu will be enabled only when the first view is
active. Or consider the application framework-supplied Edit Cut, Copy, and Paste menu items. These will
be disabled if you have not provided message handlers in your derived view or document class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Text Editing Options
Windows itself supplies two text editing tools: edit control and Windows rich edit common control. Both can
be used as controls within dialogs, but both can also be made to look like view windows. The MFC library
supports this versatility with the CEditView and CRichEditView classes.

The CEditView Class

This class is based on the Windows edit control, so it inherits all the edit control's limitations. Text size is
limited to 64 KB, and you can't mix fonts. AppWizard gives you the option of making CEditView the base
class of your view class. When the framework gives you an edit view object, it has all the functionality of
both CView and CEdit. There's no multiple inheritance here, just some magic that involves window
subclassing. The CEditView class implements and maps the clipboard cut, copy, and paste functions, so
they appear active on the Edit menu.

The CRichEditView Class

This class uses the rich edit control, so it supports mixed formats and large quantities of text. The
CRichEditView class is designed to be used with the CRichEditDoc and CRichEditCntrItem classes to
implement a complete ActiveX container application.

The CRichEditCtrl Class

This class wraps the rich edit control, and you can use it to make a fairly decent text editor. That's exactly
what we'll do in the EX13A example. We'll use an ordinary view class derived from CView, and we'll cover
the view's client area with a big rich edit control that resizes itself when the view size changes. The
CRichEditCtrl class has dozens of useful member functions, and it picks up other functions from its CWnd
base class. The functions we'll use in this chapter are as follows.

Function Description

Create Creates the rich edit control window (called from the parent's
WM_CREATE handler)

SetWindowPos Sets the size and position of the edit window (sizes the control to cover
the view's client area)

GetWindowText Retrieves plain text from the control (other functions available to retrieve
the text with rich text formatting codes)

SetWindowText Stores plain text in the control

GetModify Gets a flag that is TRUE if the text has been modified (text modified if
the user types in the control or if the program calls SetModify(TRUE))

SetModify Sets the modify flag to TRUE or FALSE

GetSel Gets a flag that indicates whether the user has selected text

SetDefaultCharFormat Sets the control's default format characteristics

SetSelectionCharFormat Sets the format characteristics of the selected text

If you use the dialog editor to add a rich edit control to a dialog resource, your
application class InitInstance member function must call the function AfxInitRichEdit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX13A Example
This example illustrates the routing of menu and keyboard accelerator commands to both documents and
views. The application's view class is derived from CView and contains a rich edit control. View-directed
menu commands, originating from a new pop-up menu named Transfer, move data between the view
object and the document object, and a Clear Document menu item erases the document's contents. On the
Transfer menu, the Store Data In Document item is grayed when the view hasn't been modified since the
last time the data was transferred. The Clear Document item, located on the Edit menu, is grayed when
the document is empty. Figure 13-4 shows the first version of the EX13A program in use.

Figure 13-4. The EX13A program in use.

If we exploited the document-view architecture fully, we would tell the rich edit control to keep its text
inside the document, but that's rather difficult to do. Instead, we'll define a document CString data
member named m_strText, the contents of which the user can transfer to and from the control. The initial
value of m_strText is a Hello message; choosing Clear Document from the Edit menu sets it to empty. By
running this example, you'll start to understand the separation of the document and the view.

The first part of the EX13A example exercises Visual C++'s wysiwyg menu editor and keyboard accelerator
editor together with ClassWizard. You'll need to do very little C++ coding. Simply follow these steps:

1. Run AppWizard to generate \vcpp32\ex13a\ex13a. Accept all the default settings but two:
select Single Document and deselect Printing and Print Preview.

2. Use the resource editor to edit the application's main menu. Click on the ResourceView tab in
the Workspace window. Edit the IDR_MAINFRAME menu resource to add a separator and a Clear
Document item to the Edit menu, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The resource editor's menu resource editor is intuitive, but you might need some
help the first time you insert an item in the middle of a menu. A blank item is
present at the bottom of each menu. Using the mouse, drag the blank item to
the insertion position to define a new item. A new blank item will appear at the
bottom when you're finished.

Now add a Transfer menu, and then define the underlying items.

Use the following command IDs for your new menu items.

Menu Caption Command ID

Edit Clear &Document ID_EDIT_CLEAR_ALL

Transfer &Get Data From Document\tF2 ID_TRANSFER_GETDATA

Transfer &Store Data In Document\tF3 ID_TRANSFER_STOREDATA

The MFC library has defined the first item, ID_EDIT_CLEAR_ALL. (Note: \t is a tab character—but
type \t; don't press the Tab key.)

When you add the menu items, type appropriate prompt strings in the Menu Item Properties dialog.
These prompts will appear in the application's status bar window when the menu item is
highlighted.

3. Use the resource editor to add keyboard accelerators. Open the IDR_MAINFRAME accelerator
table, and then use the insert key to add the following items.

Accelerator ID Key

ID_TRANSFER_GETDATA VK_F2

ID_TRANSFER_STOREDATA VK_F3

Be sure to turn off the Ctrl, Alt, and Shift modifiers. The Accelerator edit screen and Accel
Properties dialog are shown in the illustration below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Use ClassWizard to add the view class command and update command UI message
handlers. Select the CEx13aView class, and then add the following member functions.

Object ID Message Member Function

ID_TRANSFER_GETDATA COMMAND OnTransferGetData

ID_TRANSFER_STOREDATA COMMAND OnTransferStoreData

ID_TRANSFER_STOREDATA UPDATE_COMMAND_UI OnUpdateTransferStoreData

5. Use ClassWizard to add the document class command and update command UI message
handlers. Select the CEx13aDoc class, and then add the following member functions.

Object ID Message Member Function

ID_EDIT_CLEAR_ALL COMMAND OnEditClearDocument

ID_EDIT_CLEAR_ALL UPDATE_COMMAND_UI OnUpdateEditClearDocument

6. Add a CString data member to the CEx13aDoc class. Edit the file ex13aDoc.h or use
ClassView.

public:
 CString m_strText;

7. Edit the document class member functions in ex13aDoc.cpp. The OnNewDocument function
was generated by ClassWizard. As you'll see in Chapter 16, the framework calls this function after it
first constructs the document and when the user chooses New from the File menu. Your version
sets some text in the string data member. Add the following boldface code:

BOOL CEx13aDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;
 m_strText = "Hello (from CEx13aDoc::OnNewDocument)";
 return TRUE;
}
The Edit Clear Document message handler sets m_strText to empty, and the update command UI
handler grays the menu item if the string is already empty. Remember that the framework calls
OnUpdateEditClearDocument when the Edit menu pops up. Add the following boldface code:

void CEx13aDoc::OnEditClearDocument()
{
 m_strText.Empty();
}

void CEx13aDoc::OnUpdateEditClearDocument(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_strText.IsEmpty());
}

8. Add a CRichEditCtrl data member to the CEx13aView class. Edit the file ex13aView.h or use
ClassView.

public:
 CRichEditCtrl m_rich;

9. Use ClassWizard to map the WM_CREATE and WM_SIZE messages in the CEx13aView
class. The OnCreate function creates the rich edit control. The control's size is 0 here because the
view window doesn't have a size yet. The code for the two handlers is shown below.

int CEx13aView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 CRect rect(0, 0, 0, 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CRect rect(0, 0, 0, 0);
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;
 m_rich.Create(ES_AUTOVSCROLL | ES_MULTILINE | ES_WANTRETURN |
 WS_CHILD | WS_VISIBLE | WS_VSCROLL, rect, this, 1);
 return 0;
}
Windows sends the WM_SIZE message to the view as soon as the view's initial size is determined
and again each time the user changes the frame size. This handler simply adjusts the rich edit
control's size to fill the view client area. Add the following boldface code:

void CEx13aView::OnSize(UINT nType, int cx, int cy)
{
 CRect rect;
 CView::OnSize(nType, cx, cy);
 GetClientRect(rect);
 m_rich.SetWindowPos(&wndTop, 0, 0, rect.right - rect.left,
 rect.bottom - rect.top, SWP_SHOWWINDOW);
}

10. Edit the menu command handler functions in ex13aView.cpp. ClassWizard generated these
skeleton functions when you mapped the menu commands in step 4. The OnTransferGetData
function gets the text from the document data member and puts it in the rich edit control. The
function then clears the control's modified flag. There is no update command UI handler. Add the
following boldface code:

void CEx13aView::OnTransferGetData()
{
 CEx13aDoc* pDoc = GetDocument();
 m_rich.SetWindowText(pDoc->m_strText);
 m_rich.SetModify(FALSE);
}
The OnTransferStoreData function copies the text from the view's rich edit control to the document
string and resets the control's modified flag. The corresponding update command UI handler grays
the menu item if the control has not been changed since it was last copied to or from the document.
Add the following boldface code:

void CEx13aView::OnTransferStoreData()
{
 CEx13aDoc* pDoc = GetDocument();
 m_rich.GetWindowText(pDoc->m_strText);
 m_rich.SetModify(FALSE);
}

void CEx13aView::OnUpdateTransferStoreData(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_rich.GetModify());
}

11. Build and test the EX13A application. When the application starts, the Clear Document item on
the Edit menu should be enabled. Choose Get Data From Document from the Transfer menu. Some
text should appear. Edit the text, and then choose Store Data In Document. That menu item should
now appear gray. Try choosing the Clear Document command, and then choose Get Data From
Document again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Sheets
You've already seen property sheets in Visual C++ and in many other modern Windows-based programs. A
property sheet is a nice UI element that allows you to cram lots of categorized information into a small
dialog. The user selects pages by clicking on their tabs. Windows offers a tab control that you can insert in
a dialog, but it's more likely that you'll want to put dialogs inside the tab control. The MFC library supports
this, and the result is called a property sheet. The individual dialogs are called property pages.

Building a Property Sheet

Follow these general steps to build a property sheet using the Visual C++ tools:

1. Use the resource editor to create a series of dialog templates that are all approximately the same
size. The captions are the strings that you want to display on the tabs.

2. Use ClassWizard to generate a class for each template. Select CPropertyPage as the base class. Add
data members for the controls.

3. Use ClassWizard to generate a single class derived from CPropertySheet.

4. To the sheet class, add one data member for each page class.

5. In the sheet class constructor, call the AddPage member function for each page, specifying the
address of the embedded page object.

6. In your application, construct an object of the derived CPropertySheet class, and then call DoModal.
You must specify a caption in the constructor call, but you can change the caption later by calling
CPropertySheet::SetTitle.

7. Take care of programming for the Apply button.

Property Sheet Data Exchange

The framework puts three buttons on a property sheet. (See, for example, Figure 13-5.) Be aware that the
framework calls the Dialog Data Exchange (DDX) code for a property page each time the user switches to
and from that page. As you would expect, the framework calls the DDX code for a page when the user
clicks OK, thus updating that page's data members. From these statements, you can conclude that all data
members for all pages are updated when the user clicks OK to exit the sheet. All this with no C++
programming on your part!

With a normal modal dialog, if the user clicks the Cancel button, the changes are
discarded and the dialog class data members remain unchanged. With a property
sheet, however, the data members are updated if the user changes one page and then
moves to another, even if the user exits by clicking the Cancel button.

What does the Apply button do? Nothing at all if you don't write some code. It won't even be enabled. To
enable it for a given page, you must set the page's modified flag by calling SetModified(TRUE) when you
detect that the user has made changes on the page.

If you've enabled the Apply button, you can write a handler function for it in your page class by overriding
the virtual CPropertyPage::OnApply function. Don't try to understand property page message processing in
the context of normal modal dialogs; it's quite different. The framework gets a WM_NOTIFY message for all
button clicks. It calls the DDX code for the page if the OK or Apply button was clicked. It then calls the
virtual OnApply functions for all the pages, and it resets the modified flag, which disables the Apply button.
Don't forget that the DDX code has already been called to update the data members in all pages, so you
need to override OnApply in only one page class.

What you put in your OnApply function is your business, but one option is to send a user-defined message
to the object that created the property sheet. The message handler can get the property page data
members and process them. Meanwhile, the property sheet stays on the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX13A Example Revisited
Now we'll add a property sheet to EX13A that allows the user to change the rich edit control's font
characteristics. Of course, we could have used the standard MFC CFontDialog function, but then you
wouldn't have learned how to create property sheets. Figure 13-5 shows the property sheet that you'll
build as you continue with EX13A.

Figure 13-5. The property sheet from EX13A.

If you haven't built EX13A, follow the instructions that begin under the EX13A Example to build it. If you
already have EX13A working with the Transfer menu commands, just continue on with these steps:

1. Use the resource editor to edit the application's main menu. Click on the ResourceView tab in
the Workspace window. Edit the IDR_MAINFRAME menu resource to add a Format menu that looks
like this.

Use the following command IDs for the new Format menu items.

Caption Command ID

&Default ID_FORMAT_DEFAULT

&Selection ID_FORMAT_SELECTION

Add appropriate prompt strings for the two menu items.

2. Use ClassWizard to add the view class command and update command UI message
handlers. Select the CEx13aView class, and then add the following member functions.

Object ID Message Member Function

ID_FORMAT_DEFAULT COMMAND OnFormatDefault

ID_FORMAT_SELECTION COMMAND OnFormatSelection

ID_FORMAT_SELECTION UPDATE_COMMAND_UI OnUpdateFormatSelection

3. Use the resource editor to add four property page dialog templates. The templates are
shown here with their associated IDs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the IDs in the table below for the controls in the dialogs. Set the Auto Buddy and the Set Buddy
Integer properties for the spin button control, and set the Group property for the IDC_FONT and
IDC_COLOR radio buttons. Set the minimum value of IDC_FONTSIZE to 8 and its maximum value
to 24.

Use ClassWizard to create the classes CPage1, CPage2, CPage3, and CPage4. In each case, select
CPropertyPage as the base class. Click the Change button in ClassWizard's New Class dialog to
generate the code for all these classes in the files Property.h and Property.cpp. Then add the data
members shown here.

Dialog Control ID Type Data Member

IDD_PAGE1 First radio button IDC_FONT int m_nFont

IDD_PAGE2 Bold check box IDC_BOLD BOOL m_bBold

IDD_PAGE2 Italic check box IDC_ITALIC BOOL m_bItalic

IDD_PAGE2 Underline check box IDC_UNDERLINE BOOL m_bUnderline

IDD_PAGE3 First radio button IDC_COLOR int m_nColor

IDD_PAGE4 Edit control IDC_FONTSIZE int m_nFontSize

IDD_PAGE4 Spin button control IDC_SPIN1

Finally, use ClassWizard to add an OnInitDialog message handler function for CPage4.

4. Use ClassWizard to create a class derived from CPropertySheet. Choose the name
CFontSheet. Generate the code in the files Property.h and Property.cpp, the same files you used for
the property page classes. Figure 13-6 shows these files with the added code in boldface.

PROPERTY.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#if !defined(AFX_PROPERTY_H__CD702F99_7495_11D0_8FDC_00C04FC2A0C2__INCLUDED_)
#define AFX_PROPERTY_H_ _CD702F99_7495_11D0_8FDC_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// Property.h : header file
//

#define WM_USERAPPLY WM_USER + 5
extern CView* g_pView;
//
// CPage1 dialog

class CPage1 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage1)

// Construction
public:
 CPage1();
 ~CPage1();

// Dialog Data
 //{{AFX_DATA(CPage1)
 enum { IDD = IDD_PAGE1 };
 int m_nFont;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage1)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnApply();
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage1)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CPage2 dialog

class CPage2 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage2)

// Construction
public:
 CPage2();
 ~CPage2();

// Dialog Data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Dialog Data
 //{{AFX_DATA(CPage2)
 enum { IDD = IDD_PAGE2 };
 BOOL m_bBold;
 BOOL m_bItalic;
 BOOL m_bUnderline;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage2)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage2)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CPage3 dialog

class CPage3 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage3)

// Construction
public:
 CPage3();
 ~CPage3();

// Dialog Data
 //{{AFX_DATA(CPage3)
 enum { IDD = IDD_PAGE3 };
 int m_nColor;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage3)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage3)
 // NOTE: the ClassWizard will add member functions here
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CPage4 dialog

class CPage4 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage4)

// Construction
public:
 CPage4();
 ~CPage4();

// Dialog Data
 //{{AFX_DATA(CPage4)
 enum { IDD = IDD_PAGE4 };
 int m_nFontSize;
 //}}AFX_DATA

// Overrides
 // ClassWizard generate virtual function overrides
 //{{AFX_VIRTUAL(CPage4)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CPage4)
 virtual BOOL OnInitDialog();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()

};

//
// CFontSheet

class CFontSheet : public CPropertySheet
{
 DECLARE_DYNAMIC(CFontSheet)

public:
 CPage1 m_page1;
 CPage2 m_page2;
 CPage3 m_page3;
 CPage4 m_page4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CPage4 m_page4;
// Construction
public:
 CFontSheet(UINT nIDCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);
 CFontSheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);

// Attributes
public:

// Operations
public:
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CFontSheet)
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CFontSheet();

 // Generated message map functions
protected:
 //{{AFX_MSG(CFontSheet)
 // NOTE - the ClassWizard will add and remove member functions here.
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_PROPERTY_H_ _CD702F99_7495_11D0_8FDC_00C04FC2A0C2__INCLUDED_)
PROPERTY.CPP

// Property.cpp : implementation file
//

#include "stdafx.h"
#include "ex13a.h"
#include "Property.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

CView* g_pView;
//
// CPage1 property page

IMPLEMENT_DYNCREATE(CPage1, CPropertyPage)

CPage1::CPage1() : CPropertyPage(CPage1::IDD)
{
 //{{AFX_DATA_INIT(CPage1)
 m_nFont = -1;
 //}}AFX_DATA_INIT
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

CPage1::~CPage1()
{
}

BOOL CPage1::OnApply()
{
 TRACE("CPage1::OnApply\n");
 g_pView->SendMessage(WM_USERAPPLY);
 return TRUE;
}
BOOL CPage1::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage1::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage1::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage1)
 DDX_Radio(pDX, IDC_FONT, m_nFont);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage1, CPropertyPage)
 //{{AFX_MSG_MAP(CPage1)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CPage1 message handlers

//
// CPage2 property page

IMPLEMENT_DYNCREATE(CPage2, CPropertyPage)

CPage2::CPage2() : CPropertyPage(CPage2::IDD)
{
 //{{AFX_DATA_INIT(CPage2)
 m_bBold = FALSE;
 m_bItalic = FALSE;
 m_bUnderline = FALSE;
 //}}AFX_DATA_INIT
}

CPage2::~CPage2()
{
}

BOOL CPage2::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
void CPage2::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage2::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage2)
 DDX_Check(pDX, IDC_BOLD, m_bBold);
 DDX_Check(pDX, IDC_ITALIC, m_bItalic);
 DDX_Check(pDX, IDC_UNDERLINE, m_bUnderline);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage2, CPropertyPage)
 //{{AFX_MSG_MAP(CPage2)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CPage2 message handlers

//
// CPage3 property page

IMPLEMENT_DYNCREATE(CPage3, CPropertyPage)

CPage3::CPage3() : CPropertyPage(CPage3::IDD)
{
 //{{AFX_DATA_INIT(CPage3)
 m_nColor = -1;
 //}}AFX_DATA_INIT
}

CPage3::~CPage3()
{
}

BOOL CPage3::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage3::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage3::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage3)
 DDX_Radio(pDX, IDC_COLOR, m_nColor);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage3, CPropertyPage)
 //{{AFX_MSG_MAP(CPage3)
 // NOTE: the ClassWizard will add message map macros here
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//
// CPage3 message handlers

//
// CPage4 property page

IMPLEMENT_DYNCREATE(CPage4, CPropertyPage)

CPage4::CPage4() : CPropertyPage(CPage4::IDD)
{
 //{{AFX_DATA_INIT(CPage4)
 m_nFontSize = 0;
 //}}AFX_DATA_INIT
}

CPage4::~CPage4()
{
}

BOOL CPage4::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage4::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage4::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CPage4)
 DDX_Text(pDX, IDC_FONTSIZE, m_nFontSize);
 DDV_MinMaxInt(pDX, m_nFontSize, 8, 24);
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CPage4, CPropertyPage)
 //{{AFX_MSG_MAP(CPage4)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CPage4 message handlers

BOOL CPage4::OnInitDialog()
{
 CPropertyPage::OnInitDialog();
 ((CSpinButtonCtrl*) GetDlgItem(IDC_SPIN1))->SetRange(8, 24);
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

//
// CFontSheet

IMPLEMENT_DYNAMIC(CFontSheet, CPropertySheet)

CFontSheet::CFontSheet(UINT nIDCaption, CWnd* pParentWnd,
 UINT iSelectPage)
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage)
{
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CFontSheet::CFontSheet(LPCTSTR pszCaption, CWnd* pParentWnd,
 UINT iSelectPage)
 :CPropertySheet(pszCaption, pParentWnd, iSelectPage)
{
 AddPage(&m_page1);
 AddPage(&m_page2);
 AddPage(&m_page3);
 AddPage(&m_page4);
}

CFontSheet::~CFontSheet()
{
}

BEGIN_MESSAGE_MAP(CFontSheet, CPropertySheet)
 //{{AFX_MSG_MAP(CFontSheet)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CFontSheet message handlers

Figure 13-6. The EX13A Header and implementation file listings for the property page and
property sheet classes.

5. Add two data members and two prototypes to the CEx13aView class. If you use ClassView
for the data members, the #include for Property.h will be added automatically.

private:
 CFontSheet m_sh;
 BOOL m_bDefault; // TRUE default format, FALSE selection
Now add the prototype for the private function Format:

void Format(CHARFORMAT &cf);
Insert the prototype for the protected function OnUserApply before the DECLARE_MESSAGE_MAP
macro.

afx_msg LRESULT OnUserApply(WPARAM wParam, LPARAM lParam);
6. Edit and add code in the file ex13aView.cpp. Map the user-defined WM_USERAPPLY message,

as shown here:

ON_MESSAGE(WM_USERAPPLY, OnUserApply)
Add the following lines to the OnCreate function, just before the return 0 statement:

CHARFORMAT cf;
Format(cf);
m_rich.SetDefaultCharFormat(cf);
Edit the view constructor to set default values for the property sheet data members, as follows:

CEx13aView::CEx13aView() : m_sh("")
{
 m_sh.m_page1.m_nFont = 0;
 m_sh.m_page2.m_bBold = FALSE;
 m_sh.m_page2.m_bItalic = FALSE;
 m_sh.m_page2.m_bUnderline = FALSE;
 m_sh.m_page3.m_nColor = 0;
 m_sh.m_page4.m_nFontSize = 12;
 g_pView = this;
 m_bDefault = TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_bDefault = TRUE;
}
Edit the format command handlers, as shown here:

void CEx13aView::OnFormatDefault()
{
 m_sh.SetTitle("Default Format");
 m_bDefault = TRUE;
 m_sh.DoModal();
}

void CEx13aView::OnFormatSelection()
{
 m_sh.SetTitle("Selection Format");
 m_bDefault = FALSE;
 m_sh.DoModal();
}

void CEx13aView::OnUpdateFormatSelection(CCmdUI* pCmdUI)
{
 long nStart, nEnd;
 m_rich.GetSel(nStart, nEnd);
 pCmdUI->Enable(nStart != nEnd);
}
Add the following handler for the user-defined WM_USERAPPLY message:

LRESULT CEx13aView::OnUserApply(WPARAM wParam, LPARAM lParam)
{
 TRACE("CEx13aView::OnUserApply -- wParam = %x\n", wParam);
 CHARFORMAT cf;
 Format(cf);
 if (m_bDefault) {
 m_rich.SetDefaultCharFormat(cf);
 }
 else {
 m_rich.SetSelectionCharFormat(cf);
 }
 return 0;
}
Add the Format helper function, as shown below, to set a CHARFORMAT structure based on the
values of the property sheet data members.

void CEx13aView::Format(CHARFORMAT& cf)
{
 cf.cbSize = sizeof(CHARFORMAT);
 cf.dwMask = CFM_BOLD | CFM_COLOR | CFM_FACE |
 CFM_ITALIC | CFM_SIZE | CFM_UNDERLINE;
 cf.dwEffects = (m_sh.m_page2.m_bBold ? CFE_BOLD : 0) |
 (m_sh.m_page2.m_bItalic ? CFE_ITALIC : 0) |
 (m_sh.m_page2.m_bUnderline ? CFE_UNDERLINE : 0);
 cf.yHeight = m_sh.m_page4.m_nFontSize * 20;
 switch(m_sh.m_page3.m_nColor) {
 case -1:
 case 0:
 cf.crTextColor = RGB(0, 0, 0);
 break;
 case 1:
 cf.crTextColor = RGB(255, 0, 0);
 break;
 case 2:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case 2:
 cf.crTextColor = RGB(0, 255, 0);
 break;
 }
 switch(m_sh.m_page1.m_nFont) {
 case -1:
 case 0:
 strcpy(cf.szFaceName, "Times New Roman");
 break;
 case 1:
 strcpy(cf.szFaceName, "Arial");
 break;
 case 2:
 strcpy(cf.szFaceName, "Courier New");
 break;
 }
 cf.bCharSet = 0;
 cf.bPitchAndFamily = 0;
}

7. Build and test the enhanced EX13A application. Type some text, and then choose Default from
the Format menu. Observe the TRACE messages in the Debug window as you click on property
sheet tabs and click the Apply button. Try highlighting some text and then formatting the selection.

Apply Button Processing

You might be curious about the way the property sheet classes process the Apply button. In all the
page classes, the overridden OnCommand functions enable the Apply button whenever a control
sends a message to the page. This works fine for pages 1 through 3 in EX13A, but for page 4,
OnCommand is called during the initial conversation between the spin button control and its buddy.

The OnApply virtual override in the CPage1 class sends a user-defined message to the view. The
function finds the view in an expedient way—by using a global variable set by the view class. A
better approach would be to pass the view pointer to the sheet constructor and then to the page
constructor.

The view class calls the property sheet's DoModal function for both default formatting and selection
formatting. It sets the m_bDefault flag to indicate the mode. We don't need to check the return
from DoModal because the user-defined message is sent for both the OK button and the Apply
button. If the user clicks Cancel, no message is sent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CMenu Class
Up to this point, the application framework and the menu editor have shielded you from the menu class,
CMenu. A CMenu object can represent each Windows menu, including the top-level menu items and
associated pop-up menus. Most of the time, the menu's resource is directly attached to a frame window
when the window's Create or LoadFrame function is called, and a CMenu object is never explicitly
constructed. The CWnd member function GetMenu returns a temporary CMenu pointer. Once you have this
pointer, you can freely access and update the menu object.

Suppose you want to switch menus after the application starts. IDR_MAINFRAME always identifies the
initial menu in the resource script. If you want a second menu, you use the menu editor to create a menu
resource with your own ID. Then, in your program, you construct a CMenu object, use the
CMenu::LoadMenu function to load the menu from the resource, and call the CWnd::SetMenu function to
attach the new menu to the frame window. Then you call the Detach member function to separate the
object's HMENU handle so that the menu is not destroyed when the CMenu object goes out of scope.

You can use a resource to define a menu, and then your program can modify the menu items at runtime.
If necessary, however, you can build the whole menu at runtime, without benefit of a resource. In either
case, you can use CMenu member functions such as ModifyMenu, InsertMenu, and DeleteMenu. Each of
these functions operates on an individual menu item identified by ID or by a relative position index.

A menu object is actually composed of a nested structure of submenus. You can use the GetSubMenu
member function to get a CMenu pointer to a pop-up menu contained in the main CMenu object. The
CMenu::GetMenuString function returns the menu item string corresponding to either a zero-based index
or a command ID. If you use the command ID option, the menu is searched, together with any submenus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Floating Pop-Up Menus
Floating pop-up menus are one of the latest trends in user interface design. The user presses the right
mouse button and a floating menu offers choices that relate to the current selection. It's easy to create
these menus using the resource editor and the MFC library CMenu::TrackPopupMenu function. Just follow
these steps:

1. Use the menu editor to insert a new, empty menu in your project's resource file.

2. Type some characters in the left top-level item, and then add your menu items in the resulting pop-
up menu.

3. Use ClassWizard to add a WM_CONTEXTMENU message handler in your view class or in some other
window class that receives mouse-click messages. Code the handler as shown below.

void CMyView::OnContextMenu(CWnd *pWnd, CPoint point)
{
 CMenu menu;
 menu.LoadMenu(IDR_MYFLOATINGMENU);
 menu.GetSubMenu(0)
 ->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON,
 point.x, point.y, this);
}
You can use ClassWizard to map the floating menu's command IDs the same way you would map
the frame menu's command IDs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extended Command Processing
In addition to the ON_COMMAND message map macro, the MFC library provides an extended variation,
ON_COMMAND_EX. The extended command message map macro provides two features not supplied by
the regular command message—a command ID function parameter and the ability to reject a command at
runtime, sending it to the next object in the command route. If the extended command handler returns
TRUE, the command goes no further; if it returns FALSE, the application framework looks for another
command handler.

The command ID parameter is useful when you want one function to handle several related command
messages. You might invent some of your own uses for the rejection feature.

ClassWizard can't help you with extended command handlers, so you'll have to do the coding yourself,
outside the AFX_MSG_MAP brackets. Assume that IDM_ZOOM_1 and IDM_ZOOM_2 are related command
IDs defined in resource.h. Here's the class code you'll need to process both messages with one function,
OnZoom:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND_EX(IDM_ZOOM_1, OnZoom)
 ON_COMMAND_EX(IDM_ZOOM_2, OnZoom)
END_MESSAGE_MAP()

BOOL CMyView::OnZoom(UINT nID)
{
 if (nID == IDM_ZOOM_1) {
 // code specific to first zoom command
 }
 else {
 // code specific to second zoom command
 }
 // code common to both commands
 return TRUE; // Command goes no further
}
Here's the function prototype:

afx_msg BOOL OnZoom(UINT nID);
Other MFC message map macros are helpful for processing ranges of commands, as you might see in
dynamic menu applications. These macros include

ON_COMMAND_RANGE

ON_COMMAND_EX_RANGE

ON_UPDATE_COMMAND_UI_RANGE

If the values of IDM_ZOOM_1 and IDM_ZOOM_2 were consecutive, you could rewrite the CMyView
message map as follows:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND_EX_RANGE(IDM_ZOOM_1, IDM_ZOOM_2, OnZoom)
END_MESSAGE_MAP()
Now OnZoom is called for both menu choices, and the handler can determine the choice from the integer
parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14
Toolbars and Status Bars
All the Microsoft Visual C++ examples up to this point have included toolbars and status bars. AppWizard
generated the code that initialized these application framework elements as long as you accepted the
AppWizard default options Docking Toolbar and Initial Status Bar. The default toolbar provides graphics
equivalents for many of the standard application framework menu selections, and the default status bar
displays menu prompts together with the keyboard state indicators CAP, NUM, and SCRL.

This chapter shows you how to customize the toolbar and the status bar for your application. You'll be able
to add your own toolbar graphical buttons and control their appearance. You'll also learn how to disable the
status bar's normal display of menu prompts and keyboard indicators. This allows your application to take
over the status bar for its own use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Bars and the Application Framework
The toolbar is an object of class CToolBar, and the status bar is an object of class CStatusBar. Both these
classes are derived from class CControlBar, which is itself derived from CWnd. The CControlBar class
supports control bar windows that are positioned inside frame windows. These control bar windows resize
and reposition themselves as the parent frame moves and changes size. The application framework takes
care of the construction, window creation, and destruction of the control bar objects. AppWizard generates
control bar code for its derived frame class located in the files MainFrm.cpp and MainFrm.h.

In a typical SDI application, a CToolBar object occupies the top portion of the CMainFrame client area and
a CStatusBar object occupies the bottom portion. The view occupies the remaining (middle) part of the
frame.

Beginning with Microsoft Foundation Class (MFC) Library version 4.0, the toolbar has been built around the
toolbar common control that first became available with Microsoft Windows 95. Thus the toolbar is fully
dockable. The programming interface is much the same as it was in earlier versions of the MFC library,
however. The button images are easy to work with because a special resource type is supported by the
resource editor. The old global buttons array is gone.

Assuming that AppWizard has generated the control bar code for your application, the user can enable and
disable the toolbar and the status bar individually by choosing commands from the application's View
menu. When a control bar is disabled, it disappears and the view size is recalculated. Apart from the
common behavior just described, toolbar and status bar objects operate independently of each other and
have rather different characteristics.

In Visual C++ 6.0, a new MFC toolbar was introduced called the rebar. The rebar is based on the controls
that come as part of Microsoft Internet Explorer 4.0 and provides a Microsoft Internet Explorer-style
"sliding" toolbar. We will cover this later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Toolbar
A toolbar consists of a number of horizontally (or vertically) arranged graphical buttons that might be
clustered in groups. The programming interface determines the grouping. The graphical images for the
buttons are stored in a single bitmap that is attached to the application's resource file. When a button is
clicked, it sends a command message, as do menus and keyboard accelerators. An update command UI
message handler is used to update the button's state, which in turn is used by the application framework
to modify the button's graphical image.

The Toolbar Bitmap

Each button on a toolbar appears to have its own bitmap, but actually a single bitmap serves the entire
toolbar. The toolbar bitmap has a tile, 15 pixels high and 16 pixels wide, for each button. The application
framework supplies the button borders, and it modifies those borders, together with the button's bitmap
tile color, to reflect the current button state. Figure 14-1 shows the relationship between the toolbar
bitmap and the corresponding toolbar.

Figure 14-1. A toolbar bitmap and an actual toolbar.

The toolbar bitmap is stored in the file Toolbar.bmp in the application's \res subdirectory. The bitmap is
identified in the resource script (RC) file as IDR_MAINFRAME. You don't edit the toolbar bitmap directly;
instead you use Visual C++'s special toolbar-editing facility.

Button States

Each button can assume the following states.

State Meaning

0 Normal, unpressed state.

TBSTATE_CHECKED Checked (down) state.

TBSTATE_ENABLED Available for use. Button is grayed and unavailable if this state is not
set.

TBSTATE_HIDDEN Not visible.

TBSTATE_INDETERMINATE Grayed.

TBSTATE_PRESSED Currently selected (pressed) with the mouse.

TBSTATE_WRAP Line break follows the button.

A button can behave in either of two ways: it can be a pushbutton, which is down only when currently
selected by the mouse, or it can be a check box button, which can be toggled up and down with mouse
clicks. All buttons in the standard application framework toolbar are pushbuttons.

The Toolbar and Command Messages

When the user clicks a toolbar button with the mouse, a command message is generated. This message is
routed like the menu command messages you saw in Chapter 13. Most of the time, a toolbar button
matches a menu option. In the standard application framework toolbar, for example, the Disk button is
equivalent to the File Save menu option because both generate the ID_FILE_SAVE command. The object
receiving the command message doesn't need to know whether the message was produced by a click on
the toolbar or by a selection from the menu.

A toolbar button doesn't have to mirror a menu item. If you don't provide the equivalent menu item,
however, you are advised to define a keyboard accelerator for the button so that the user can activate the
command with the keyboard or with a keyboard macro product for Microsoft Windows. You can use
ClassWizard to define command and update command UI message handlers for toolbar buttons, whether
or not they have corresponding menu items.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

or not they have corresponding menu items.

A toolbar has an associated bitmap resource and, in the RC file, a companion TOOLBAR resource that
defines the menu commands associated with the buttons. Both the bitmap and the TOOLBAR resource
have the same ID, typically IDR_MAINFRAME. The text of the AppWizard-generated TOOLBAR resource is
shown below:

IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15
BEGIN
 BUTTON ID_FILE_NEW
 BUTTON ID_FILE_OPEN
 BUTTON ID_FILE_SAVE
 SEPARATOR
 BUTTON ID_EDIT_CUT
 BUTTON ID_EDIT_COPY
 BUTTON ID_EDIT_PASTE
 SEPARATOR
 BUTTON ID_FILE_PRINT
 BUTTON ID_APP_ABOUT
END
The SEPARATOR constants serve to group the buttons by inserting corresponding spaces on the toolbar. If
the number of toolbar bitmap panes exceeds the number of resource elements (excluding separators), the
extra buttons are not displayed.

When you edit the toolbar with the resource editor, you're editing both the bitmap resource and the
TOOLBAR resource. You select a button image, and then you double-click on the left panel to edit the
properties, including the button's ID.

Toolbar Update Command UI Message Handlers

Remember from Chapter 13 that update command UI message handlers are used to disable or add check
marks to menu items. These same message handlers apply to toolbar buttons. If your update command UI
message handler calls the CCmdUI::Enable member function with a FALSE parameter, the corresponding
button is set to the disabled (grayed) state and no longer responds to mouse clicks.

On a menu item, the CCmdUI::SetCheck member function displays a check mark. For the toolbar, the
SetCheck function implements check box buttons. If the update command UI message handler calls
SetCheck with a parameter value of 1, the button is toggled to the down (checked) state; if the parameter
is 0, the button is toggled up (unchecked).

If the SetCheck parameter value is 2, the button is set to the indeterminate state. This
state looks like the disabled state, but the button is still active and its color is a bit
brighter.

The update command UI message handlers for a pop-up menu are called only when the menu is painted.
The toolbar is displayed all the time, so when are its update command UI message handlers called?
They're called during the application's idle processing, so the buttons can be updated continuously. If the
same handler covers a menu item and a toolbar button, it is called both during idle processing and when
the pop-up menu is displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolTips
You've seen ToolTips in various Windows applications, including Visual C++. When the user positions the
mouse on a toolbar button for a certain interval, text is displayed in a little ToolTip box next to the button.
In Chapter 13, you learned that menu items can have associated prompt strings, which are string resource
elements with matching IDs. To create a ToolTip, you simply add the tip text to the end of the menu
prompt, preceded by a newline (\n) character. The resource editor lets you edit the prompt string while
you are editing the toolbar images. Just double-click in the left panel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Locating the Main Frame Window
The toolbar and status bar objects you'll be working with are attached to the application's main frame
window, not to the view window. How does your view find its main frame window? In an SDI application,
you can use the CWnd::GetParentFrame function. Unfortunately, this function won't work in an MDI
application because the view's parent frame is the MDI child frame, not the MDI frame window.

If you want your view class to work in both SDI and MDI applications, you must find the main frame
window through the application object. The AfxGetApp global function returns a pointer to the application
object. You can use that pointer to get the CWinApp data member m_pMainWnd. In an MDI application,
AppWizard generates code that sets m_pMainWnd, but in an SDI application, the framework sets
m_pMainWnd during the view creation process. Once m_pMainWnd is set, you can use it in a view class to
get the frame's toolbar with statements such as this:

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
CToolBar* pToolBar = &pFrame->m_wndToolBar;

You'll need to cast m_pMainWnd from CFrameWnd* to CMainFrame* because
m_wndToolBar is a member of that derived class. You'll also have to make
m_wndToolBar public or make your class a friend of CMainFrame.

You can use similar logic to locate menu objects, status bar objects, and dialog objects.

In an SDI application, the value of m_pMainWnd is not set when the view's OnCreate
message handler is called. If you need to access the main frame window in your
OnCreate function, you must use the GetParentFrame function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX14A Toolbar Example
In this example, you will replace the standard application framework Edit Cut, Copy, and Paste toolbar
buttons with three special-purpose buttons that control drawing in the view window. You will also construct
a Draw menu with three corresponding menu items, as follows.

Menu Item Function

Circle Draws a circle in the view window

Square Draws a square in the view window

Pattern Toggles a diagonal line fill pattern for new squares and circles

The menu and toolbar options force the user to alternate between drawing circles and squares. After the
user draws a circle, the Circle menu item and toolbar button are disabled; after the user draws a square,
the Square menu item and toolbar button are disabled.

On the application's Draw menu, the Pattern menu item gets a check mark when pattern fill is active. On
the toolbar, the corresponding button is a check box button that is down when pattern fill is active and up
when it is not active.

Figure 14-2 shows the application in action. The user has just drawn a square with pattern fill. Notice the
states of the three drawing buttons.

Figure 14-2. The EX14A program in action.

The EX14A example introduces the resource editor for toolbars. You'll need to do very little C++ coding.
Simply follow these steps:

1. Run AppWizard to generate \vcpp32\ex14a\ex14a. Accept all default settings but two: select
Single Document and deselect Printing and Print Preview. The options and the default class names
are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the resource editor to edit the application's main menu. In ResourceView, double-click
on IDR_MAINFRAME under Menu. Edit the IDR_MAINFRAME menu resource to create a menu that
looks like this (which means you'll need to change the Edit menu).

Use the following command IDs for your new menu items.

Menu Caption Command ID

Draw Circle ID_DRAW_CIRCLE

Draw Square ID_DRAW_SQUARE

Draw Pattern ID_DRAW_PATTERN

When you're in the Menu Item Properties dialog, add some appropriate prompt strings and ToolTips
(following a newline character). The string for ID_DRAW_CIRCLE might be "Draw a circle\nCircle."

3. Use the resource editor to update the application's toolbar. Edit the IDR_MAINFRAME toolbar
resource to create a bitmap that looks like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll be erasing the Edit Cut, Copy, and Paste tiles (fourth, fifth, and sixth from the left) and
replacing them with new tiles. The toolbar editor is fairly intuitive. You simply move the buttons
around with the mouse. The Delete key erases a button's pixels. If you want to eliminate a button
entirely, just drag it off the toolbar. Use the rectangle and ellipse tools from the graphics toolbar.
Experiment with different line widths. Save the resource file when you're done—just in case.

Assign the IDs ID_DRAW_CIRCLE, ID_DRAW_SQUARE, and ID_DRAW_PATTERN to the three new
buttons.

4. Use ClassWizard to add CEx14aView view class message handlers. Add message handlers
for the following command and update command UI messages, and accept the default function
names shown in the following table.

Object ID Message Member Function

ID_DRAW_CIRCLE COMMAND OnDrawCircle

ID_DRAW_CIRCLE UPDATE_COMMAND_UI OnUpdateDrawCircle

ID_DRAW_PATTERN COMMAND OnDrawPattern

ID_DRAW_PATTERN UPDATE_COMMAND_UI OnUpdateDrawPattern

ID_DRAW_SQUARE COMMAND OnDrawSquare

ID_DRAW_SQUARE UPDATE_COMMAND_UI OnUpdateDrawSquare

5. Add three data members to the CEx14aView class. Edit the file ex14aView.h, or use
ClassView.

private:
 CRect m_rect;
 BOOL m_bCircle;
 BOOL m_bPattern;

6. Edit the ex14aView.cpp file. The CEx14aView constructor simply initializes the class data
members. Add the following boldface code:

CEx14aView::CEx14aView() : m_rect(0, 0, 100, 100)
{
 m_bCircle = TRUE;
 m_bPattern = FALSE;
}
The OnDraw function draws an ellipse or a rectangle, depending on the value of the m_bCircle flag.
The brush is plain white or a diagonal pattern, depending on the value of m_bPattern.

void CEx14aView::OnDraw(CDC* pDC)
{
 CBrush brush(HS_BDIAGONAL, 0L); // brush with diagonal pattern
 if (m_bPattern) {
 pDC->SelectObject(&brush);
 }
 else {
 pDC->SelectStockObject(WHITE_BRUSH);
 }
 if (m_bCircle) {
 pDC->Ellipse(m_rect);
 }
 else {
 pDC->Rectangle(m_rect);
 }
 pDC->SelectStockObject(WHITE_BRUSH); // Deselects brush
 // if selected
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The OnDrawCircle function handles the ID_DRAW_CIRCLE command message, and the
OnDrawSquare function handles the ID_DRAW_SQUARE command message. These two functions
move the drawing rectangle down and to the right, and then they invalidate the rectangle, causing
the OnDraw function to redraw it. The effect of this invalidation strategy is a diagonal cascading of
alternating squares and circles. Also, the display is not buffered, so when the window is hidden or
minimized, previously drawn items are not redisplayed.

void CEx14aView::OnDrawCircle()
{
 m_bCircle = TRUE;
 m_rect += CPoint(25, 25);
 InvalidateRect(m_rect);
}

void CEx14aView::OnDrawSquare()
{
 m_bCircle = FALSE;
 m_rect += CPoint(25, 25);
 InvalidateRect(m_rect);
}
The following two update command UI functions alternately enable and disable the Circle and
Square buttons and corresponding menu items. Only one item can be enabled at a time.

void CEx14aView::OnUpdateDrawCircle(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_bCircle);
}

void CEx14aView::OnUpdateDrawSquare(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bCircle);
}
The OnDrawPattern function toggles the state of the m_bPattern flag.

void CEx14aView::OnDrawPattern()
{
 m_bPattern ^= 1;
}
The OnUpdateDrawPattern function updates the Pattern button and menu item according to the
state of the m_bPattern flag. The toolbar button appears to move in and out, and the menu item
check mark appears and disappears.

void CEx14aView::OnUpdateDrawPattern(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck(m_bPattern);
}

7. Build and test the EX14A application. Notice the behavior of the toolbar buttons. Try the
corresponding menu items, and notice that they too are enabled, disabled, and checked as the
application's state changes. Observe the ToolTip when you stop the mouse pointer on one of the
new toolbar buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Status Bar
The status bar window neither accepts user input nor generates command messages. Its job is simply to
display text in panes under program control. The status bar supports two types of text panes—message
line panes and status indicator panes. To use the status bar for application-specific data, you must first
disable the standard status bar that displays the menu prompt and key-board status.

The Status Bar Definition

The static indicators array that AppWizard generates in the MainFrm.cpp file defines the panes for the
application's status bar. The constant ID_SEPARATOR identifies a message line pane; the other constants
are string resource IDs that identify indicator panes. Figure 14-3 shows the indicators array and its
relationship to the standard framework status bar.

Figure 14-3. The status bar and the indicators array.

The CStatusBar::SetIndicators member function, called in the application's derived frame class, configures
the status bar according to the contents of the indicators array.

The Message Line

A message line pane displays a string that the program supplies dynamically. To set the value of the
message line, you must first get access to the status bar object and then you must call the
CStatusBar::SetPaneText member function with a zero-based index parameter. Pane 0 is the leftmost
pane, 1 is the next pane to the right, and so forth.

The following code fragment is part of a view class member function. Note that you must navigate up to
the application object and then back down to the main frame window.

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
CStatusBar* pStatus = &pFrame->m_wndStatusBar;
pStatus->SetPaneText(0, "message line for first pane");
Normally, the length of a message line pane is exactly one-fourth the width of the display. If, however, the
message line is the first (index 0) pane, it is a stretchy pane without a beveled border. Its minimum length
is one-fourth the display width, and it expands if room is available in the status bar.

The Status Indicator

A status indicator pane is linked to a single resource-supplied string that is displayed or hidden by logic in
an associated update command UI message handler function. An indicator is identified by a string resource
ID, and that same ID is used to route update command UI messages. The Caps Lock indicator is handled in
the frame class by a message map entry and a handler function equivalent to those shown below. The
Enable function turns on the indicator if the Caps Lock mode is set.

ON_UPDATE_COMMAND_UI(ID_INDICATOR_CAPS, OnUpdateKeyCapsLock)

void CMainFrame::OnUpdateKeyCapsLock(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_CAPITAL) & 1);
}
The status bar update command UI functions are called during idle processing so that the status bar is
updated whenever your application receives messages.

The length of a status indicator pane is the exact length of the corresponding resource string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The length of a status indicator pane is the exact length of the corresponding resource string.

Taking Control of the Status Bar

In the standard application framework implementation, the status bar has the child window ID
AFX_IDW_STATUS_BAR. The application framework looks for this ID when it wants to display a menu
prompt. The update command UI handlers for the keyboard state indicators, embedded in the frame
window base class, are linked to the following string IDs: ID_INDICATOR_CAPS, ID_INDICATOR_NUM, and
ID_INDICATOR_SCRL. To take control of the status bar, you must use a different child window ID and you
must use different indicator ID constants.

The only reason to change the status bar's child window ID is to prevent the framework
from writing menu prompts in pane 0. If you like the menu prompts, you can disregard
the following instructions.

The status bar window ID is assigned in the CStatusBar::Create function called by the derived frame class
OnCreate member function. That function is contained in the MainFrm.cpp file that AppWizard generates.
The window ID is the third Create parameter, and it defaults to AFX_IDW_STATUS_BAR.

To assign your own ID, you must replace this call

m_wndStatusBar.Create(this);
with this call

m_wndStatusBar.Create(this, WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,
 ID_MY_STATUS_BAR);
You must also, of course, define the ID_MY_STATUS_BAR constant in the resource.h file (using Visual
C++'s resource symbol editor).

We forgot one thing. The standard application framework's View menu allows the user to turn the status
bar on and off. That logic is pegged to the AFX_IDW_STATUS_BAR window ID, so you'll have to change the
menu logic, too. In your derived frame class, you must write message map entries and handlers for the
ID_VIEW_STATUS_BAR command and update command UI messages. ID_VIEW_STATUS_BAR is the ID of
the Status Bar menu item. The derived class handlers override the standard handlers in the CFrameWnd
base class. See the EX14B example for code details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX14B Status Bar Example
The EX14B example replaces the standard application framework status bar with a new status bar that has
the following text panes.

Pane Index String ID Type Description

0 ID_SEPARATOR (0) Message line x cursor coordinate

1 ID_SEPARATOR (0) Message line y cursor coordinate

2 ID_INDICATOR_LEFT Status indicator Left mouse button status

3 ID_INDICATOR_RIGHT Status indicator Right mouse button status

The resulting status bar is shown in Figure 14-4. Notice that the leftmost pane stretches past its normal
1/20-screen length as the displayed frame window expands.

Figure 14-4. The status bar of the EX14B example.

Follow these steps to produce the EX14B example:

1. Run AppWizard to generate \vcpp32\ex14b\ex14b. Accept all default settings but two: select
Single Document and deselect Printing and Print Preview. The options and the default class names
are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the string editor to edit the application's string table resource. The application has a
single string table resource with artificial "segment" divisions left over from the 16-bit era. Double-
click on the String Table icon in the String Table folder on the ResourceView page to bring up the
string editor. Then double-click on the empty entry at the end of the list. A dialog allows you to
assign the ID and the string value as shown below.

Add two strings as follows.

String ID String Caption

ID_INDICATOR_LEFT LEFT

ID_INDICATOR_RIGHT RIGHT

3. Use Visual C++ to edit the application's symbols. Choose Resource Symbols from the View
menu. Add the new status bar identifier, ID_MY_STATUS_BAR, and accept the default value.

4. Use ClassWizard to add View menu command handlers in the class CMainFrame. Add the
following command message handlers.

Object ID Message Member Function

ID_VIEW_STATUS_BAR COMMAND OnViewStatusBar

ID_VIEW_STATUS_BAR UPDATE_COMMAND_UI OnUpdateViewStatusBar

5. Add the following function prototypes to MainFrm.h. You must add these CMainFrame
message handler prototypes manually because ClassWizard doesn't recognize the associated
command message IDs.

afx_msg void OnUpdateLeft(CCmdUI* pCmdUI);
afx_msg void OnUpdateRight(CCmdUI* pCmdUI);
Add the message handler statements inside the AFX_MSG brackets so that ClassWizard will let you
access and edit the code later. While MainFrm.h is open, make m_wndStatusBar public rather than
protected.

6. Edit the MainFrm.cpp file. Replace the original indicators array with the following boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Edit the MainFrm.cpp file. Replace the original indicators array with the following boldface code:

static UINT indicators[] =
{
 ID_SEPARATOR, // first message line pane
 ID_SEPARATOR, // second message line pane
 ID_INDICATOR_LEFT,
 ID_INDICATOR_RIGHT,
};
Next edit the OnCreate member function. Replace the following statement

if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
{
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
}
with the statement shown here:

if (!m_wndStatusBar.Create(this,
 WS_CHILD | WS_VISIBLE | CBRS_BOTTOM, ID_MY_STATUS_BAR) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
{
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
}
The modified call to Create uses our own status bar ID, ID_MY_STATUS_BAR, instead of
AFX_IDW_STATUS_BAR (the application framework's status bar object).

Now add the following message map entries for the class CMainFrame. ClassWizard can't add these
for you because it doesn't recognize the string table IDs as object IDs.

ON_UPDATE_COMMAND_UI(ID_INDICATOR_LEFT, OnUpdateLeft)
ON_UPDATE_COMMAND_UI(ID_INDICATOR_RIGHT, OnUpdateRight)
Next add the following CMainFrame member functions that update the two status indicators:

void CMainFrame::OnUpdateLeft(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_LBUTTON) < 0);
}
void CMainFrame::OnUpdateRight(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_RBUTTON) < 0);
}
Note that the left and right mouse buttons have virtual key codes like keys on the keyboard have.
You don't have to depend on mouse-click messages to determine the button status.

Finally, edit the following View menu functions that ClassWizard originally generated in
MainFrm.cpp:

void CMainFrame::OnViewStatusBar()
{
 m_wndStatusBar.ShowWindow((m_wndStatusBar.GetStyle() &
 WS_VISIBLE) == 0);
 RecalcLayout();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RecalcLayout();
}
void CMainFrame::OnUpdateViewStatusBar(CCmdUI* pCmdUI)
{
 pCmdUI-
>SetCheck((m_wndStatusBar.GetStyle() & WS_VISIBLE) != 0);
}
These functions ensure that the View menu Status Bar command is properly linked to the new
status bar.

7. Edit the OnDraw function in Ex14bView.cpp. The OnDraw function displays a message in the
view window. Add the following boldface code:

void CEx14bView::OnDraw(CDC* pDC)
{
 pDC->TextOut(0, 0,
 "Watch the status bar while you move and click the mouse.");
}

8. Add a WM_MOUSEMOVE handler in the CEx14bView class. Use ClassWizard to map the
message to OnMouseMove, and then edit the function as shown below. This function gets a pointer
to the status bar object and then calls the SetPaneText function to update the first and second
message line panes.

void CEx14bView::OnMouseMove(UINT nFlags, CPoint point)
{
 CString str;
 CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
 CStatusBar* pStatus = &pFrame->m_wndStatusBar;
 if (pStatus) {
 str.Format("x = %d", point.x);
 pStatus->SetPaneText(0, str);
 str.Format("y = %d", point.y);
 pStatus->SetPaneText(1, str);
 }
}
Finally, add the statement

#include "MainFrm.h"
near the top of the file ex14bView.cpp.

9. Build and test the EX14B application. Move the mouse, and observe that the left two status bar
panes accurately reflect the mouse cursor's position. Try the left and right mouse buttons. Can you
toggle the status bar on and off from the View menu?

If you want the first (index 0) status bar pane to have a beveled border like the other
panes and you want the status bar to grow and resize to fit their contents, include the
following two lines in the CMainFrame::OnCreate function, following the call to the
status bar Create function.

m_wndStatusBar.SetPaneInfo(0, 0, 0, 50);
m_wndStatusBar.SetPaneInfo(1, 0, SBPS_STRETCH, 50);
These statements change the width of the first two panes (from their default of one-
fourth the display size) and make the second pane (index 1) the stretchy one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Internet Explorer Rebar Toolbar
As we learned in Chapter 9, Visual C++ 6.0 contains many features that are part of Internet Explorer 4.0:
the Internet Explorer Common Controls. One of the new controls in the IE Common Controls is a new kind
of toolbar called a rebar.

You're probably already familiar with the rebar if you have ever used Internet Explorer 4.0. The rebar
differs from the default MFC toolbar in that it provides grippers and allows the user to "slide" its horizontal
and vertical positions, whereas the MFC toolbar's position is changed via drag-and-drop docking. Rebars
also allow the developer to provide many more internal control types—such as drop-down menus—than
are available in CToolBar.

Anatomy of a Rebar

Figure 14-5 shows the various terminology used on a rebar. Each internal toolbar in a rebar is called a
band. The raised edge where the user slides the band is called a gripper. Each band can also have a label.

Figure 14-5. Rebar terminology.

MFC provides two classes that facilitate working with rebars:

CReBar—A high-level abstraction class that provides members for adding CToolBar and CDialogBar
classes to rebars as bands. CReBar also handles communication (such as message notifications)
between the underlying control and the MFC framework.
CReBarCtrl—A low-level wrapper class that wraps the IE ReBar control. This class provides
numerous members for creating and manipulating rebars but does not provide the niceties that are
found in CReBar.

Most MFC applications use CReBar and call the member function GetReBarCtrl, which returns a CReBarCtrl
pointer to gain access to the lower-level control if needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX14C Rebar Example
Let's get familiar with the rebar by jumping into an example. This example creates an SDI application that
has a rebar with two bands: a familiar toolbar band and a dialog bar band. Figure 14-6 shows the example
in action.

Figure 14-6. EX14C rebar example.

Here are the steps required to create the EX14C example:

1. Run AppWizard to generate \vcpp32\ex14c\ex14c. Select Single Document. In Step 4, be
sure you select Internet Explorer ReBars under the How Do You Want Your Toolbars To Look option.
Figure 14-7 below shows the correct settings. Accept all other default settings.

2. Compile and run the application. When you run the application, you will see that AppWizard has
automatically created a rebar with two bands. One band contains a conventional toolbar and the
other contains the text "TODO: layout dialog bar" in the band. Figure 14-8 below shows the initial
rebar control.

At this point, you can open the MainFrm.h header file and see the code below, which declares the
CReBar data member m_ndReBar.

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;
 CReBar m_wndReBar;
 CDialogBar m_wndDlgBar;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-7. AppWizard Step 4 settings for the rebar control.

Figure 14-8. Initial windows for EX14C example with the default rebar controls.

In the MainFrm.cpp file, you can see the code that adds the toolbar and the dialog bar to the
CReBar object:

 if (!m_wndReBar.Create(this) ||
 !m_wndReBar.AddBar(&m_wndToolBar) ||
 !m_wndReBar.AddBar(&m_wndDlgBar))
 {
 TRACE0("Failed to create rebar\n");
 return -1; // fail to create
 }

3. Lay out the Dialog Bar. Open the Visual C++ resource editor. Under the Dialog heading you'll find
a dialog resource for the dialog bar with the ID IDR_MAINFRAME. Open IDR_MAINFRAME and you'll
see the dialog bar with the text "TODO: layout dialog bar". Let's follow AppWizard's friendly
suggestion and put some real controls into the dialog bar. First delete the static control with the
"TODO" text in it. Next place a combo box in the dialog bar and enter some default data items: one,
two, buckle, my, shoe! Now place a button on the dialog bar and change the button's text to
Increment. Next place a progress bar with the default properties on the dialog bar. Finally place
another button with the text Decrement on the dialog bar. When you are done laying out the dialog
bar, it should look similar to Figure 14-9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-9. Edited IDR_MAINFRAME dialog bar.

4. Associate the dialog bar with the CMainFrame class. Before we can program the handlers for
the Increment and Decrement buttons, we need to attach the dialog bar to a class using
ClassWizard. While in the resource editor, bring up ClassWizard by double-clicking on the Increment
button. You will now see this dialog.

Choose Select An Existing Class. We choose this option because we want our dialog resource to be
a band in the toolbar, not a separate dialog class. Click OK and you will see these choices.

Choose CMainFrame from the list and click Select.

ClassWizard will prompt you with one last dialog.

Click Yes and then exit ClassWizard. You have successfully associated the IDR_MAINFRAME dialog
bar with the CMainFrame class.

5. Program the dialog bar. To program the dialog bar, bring up the IDR_MAINFRAME dialog
resource in the resource editor again and double-click on the Increment button. ClassWizard will
automatically create an ONBUTTON1 handler for you—accept the default name for this function.
Enter the following boldface code in the OnButton1 function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CMainFrame::OnButton1()
{
 CProgressCtrl * pProgress =
 (CProgressCtrl*)m_wndDlgBar.GetDlgItem(IDC_PROGRESS1);
 pProgress->StepIt();
}
The OnButton1 handler first gets a pointer to the progress control and then calls StepIt to
increment the progress control.

Now we need to add similar code to the decrement handler. Double-click on the Decrement button
in the resource editor and ClassWizard will automatically create an OnButton2 handler. Add the
following boldface code to the OnButton2 member function:

void CMainFrame::OnButton2()
{
 CProgressCtrl * pProgress =
 (CProgressCtrl*)m_wndDlgBar.GetDlgItem(IDC_PROGRESS1);
 int nCurrentPos = pProgress->GetPos();
 pProgress->SetPos(nCurrentPos-10);
}

6. Compile and test. Now you can compile and run EX14C to see your custom rebar in action. The
Increment button increases the progress bar and the Decrement button decreases it.

In this chapter, we learned how to use MFC's toolbar, status bar, and the new rebar control. In the next
chapter, we'll look at how to extend MFC to implement a frame window that remembers its position.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15
A Reusable Frame Window Base Class
C++ promises programmers the ability to produce "software Lego blocks" that can be taken "off the shelf"
and fitted easily into an application. The Microsoft Foundation Class (MFC) Library version 6.0 classes are a
good example of this kind of reusable software. This chapter shows you how to build your own reusable
base class by taking advantage of what the MFC library already provides.

In the process of building the reusable class, you'll learn a few more things about Microsoft Windows and
the MFC library. In particular, you'll see how the application framework allows access to the Windows
Registry, you'll learn more about the mechanics of the CFrameWnd class, and you'll get more exposure to
static class variables and the CString class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Reusable Base Classes Are Difficult to Write
In a normal application, you write code for software components that solve particular problems. It's usually
a simple matter of meeting the project specification. With reusable base classes, however, you must
anticipate future programming needs, both your own and those of others. You have to write a class that is
general and complete yet efficient and easy to use.

This chapter's example showed me the difficulty in building reusable software. I started out intending to
write a frame class that would "remember" its window size and position. When I got into the job, I
discovered that existing Windows-based programs remember whether they have been minimized to the
taskbar or whether they have been maximized to full screen. Then there was the oddball case of a window
that was both minimized and maximized. After that, I had to worry about the toolbar and the status bar,
plus the class had to work in a dynamic link library (DLL). In short, it was surprisingly difficult to write a
frame class that would do everything that a programmer might expect.

In a production programming environment, reusable base classes might fall out of the normal software
development cycle. A class written for one project might be extracted and further generalized for another
project. There's always the temptation, though, to cut and paste existing classes without asking, "What
can I factor out into a base class?" If you're in the software business for the long term, it's beneficial to
start building your library of truly reusable components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CPersistentFrame Class
In this chapter, you'll be using a class named CPersistentFrame that is derived from the CFrameWnd class.
This CPersistentFrame class supports a persistent SDI (Single Document Interface) frame window that
remembers the following characteristics.

Window size

Window position

Maximized status

Minimized status

Toolbar and status bar enablement and position

When you terminate an application that's built with the CPersistentFrame class, the above information is
saved on disk in the Windows Registry. When the application starts again, it reads the Registry and
restores the frame to its state at the previous exit.

You can use the persistent view class in any SDI application, including the examples in this book. All you
have to do is substitute CPersistentFrame for CFrameWnd in your application's derived frame class files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFrameWnd Class and the ActivateFrame Member Function
Why choose CFrameWnd as the base class for a persistent window? Why not have a persistent view class
instead? In an MFC SDI application, the main frame window is always the parent of the view window. This
frame window is created first, and then the control bars and the view are created as child windows. The
application framework ensures that the child windows shrink and expand appropriately as the user changes
the size of the frame window. It wouldn't make sense to change the view size after the frame was created.

The key to controlling the frame's size is the CFrameWnd::ActivateFrame member function. The application
framework calls this virtual function (declared in CFrameWnd) during the SDI main frame window creation
process (and in response to the File New and File Open commands). The framework's job is to call the
CWnd::ShowWindow function with the parameter nCmdShow. ShowWindow makes the frame window
visible along with its menu, view window, and control bars. The nCmdShow parameter determines whether
the window is maximized or minimized or both.

If you override ActivateFrame in your derived frame class, you can change the value of nCmdShow before
passing it to the CFrameWnd::ActivateFrame function. You can also call the CWnd::SetWindowPlacement
function, which sets the size and position of the frame window, and you can set the visible status of the
control bars. Because all changes are made before the frame window becomes visible, no annoying flash
occurs on the screen.

You must be careful not to reset the frame window's position and size after every File New or File Open
command. A first-time flag data member ensures that your CPersistentFrame::ActivateFrame function
operates only when the application starts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PreCreateWindow Member Function
PreCreateWindow, declared at the CWnd level, is another virtual function that you can override to change
the characteristics of your window before it is displayed. The framework calls this function before it calls
ActivateFrame. AppWizard always generates an overridden PreCreateWindow function in your project's
view and frame window classes.

This function has a CREATESTRUCT structure as a parameter, and two of the data members in this
structure are style and dwExStyle. You can change these data members before passing the structure on to
the base class PreCreateWindow function. The style flag determines whether the window has a border,
scroll bars, a minimize box, and so on. The dwExStyle flag controls other characteristics, such as always-
on-top status. See the online documentation for Window Styles and Extended Window Styles for details.

The CREATESTRUCT member lpszClass is also useful to change the window's background brush, cursor, or
icon. It makes no sense to change the brush or cursor in a frame window because the view window covers
the client area. If you want an ugly red view window with a special cursor, for example, you can override
your view's PreCreateWindow function like this:

BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CView::PreCreateWindow(cs)) {
 return FALSE;
 }
 cs.lpszClass =
 AfxRegisterWndClass(CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW,
 AfxGetApp()->LoadCursor(IDC_MYCURSOR),
 ::CreateSolidBrush(RGB(255, 0, 0)));
 if (cs.lpszClass != NULL) {
 return TRUE;
 }
 else {
 return FALSE;
 }
}
If you override the PreCreateWindow function in your persistent frame class, windows of all derived classes
will share the characteristics you programmed in the base class. Of course, derived classes can have their
own overridden PreCreateWindow functions, but then you'll have to be careful about the interaction
between the base class and derived class functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Registry
If you've used Win16-based applications, you've probably seen INI files. You can still use INI files in
Win32-based applications, but Microsoft recommends that you use the Windows Registry instead. The
Registry is a set of system files, managed by Windows, in which Windows and individual applications can
store and access permanent information. The Registry is organized as a kind of hierarchical database in
which string and integer data is accessed by a multipart key.

For example, a text processing application, TEXTPROC, might need to store the most recent font and point
size in the Registry. Suppose that the program name forms the root of the key (a simplification) and that
the application maintains two hierarchy levels below the name. The structure looks something like this.

TEXTPROC

 Text formatting

 Font = Times Roman

 Points = 10

Unicode

European languages use characters that can be encoded in 8 bits—even characters with
diacritics. Most Asian languages require 16 bits for their characters. Many programs use
the double-byte character set (DBCS) standard: some characters use 8 bits and others
16 bits, depending on the value of the first 8 bits. DBCS is being replaced by Unicode,
in which all characters are 16-bit "wide" characters. No specific Unicode character
ranges are set aside for individual languages: if a character is used in both the Chinese
and the Japanese languages, for example, that character appears only once in the
Unicode character set.

When you look at MFC source code and the code that AppWizard generates, you'll see
the types TCHAR, LPTSTR, and LPCTSTR and you'll see literal strings like _T("string").
You are looking at Unicode macros. If you build your project without defining
_UNICODE, the compiler generates code for ordinary 8-bit ANSI characters (CHAR) and
pointers to 8-bit character arrays (LPSTR, LPCSTR). If you do define _UNICODE, the
compiler generates code for 16-bit Unicode characters (WCHAR), pointers (LPWSTR,
LPCWSTR), and literals (L"wide string").

The _UNICODE preprocessor symbol also determines which Windows functions your
program calls. Many Win32 functions have two versions. When your program calls
CreateWindowEx, for example, the compiler generates code to call either
CreateWindowExA (with ANSI parameters) or CreateWindowExW (with Unicode
parameters). In Microsoft Windows NT, which uses Unicode internally,
CreateWindowExW passes all parameters straight through, but CreateWindowExA
converts ANSI string and character parameters to Unicode. In Microsoft Windows 95,
which uses ANSI internally, CreateWindowExW is a stub that returns an error and
CreateWindowExA passes the parameters straight through.

If you want to create a Unicode application, you should target it for Windows NT and
use the macros throughout. You can write Unicode applications for Windows 95, but
you'll do extra work to call the "A" versions of the Win32 functions. As shown in
Chapter 24, Chapter 25, Chapter 26, Chapter 27, Chapter 28, Chapter 29, and Chapter
30, COM calls (except DAO) always use wide characters. Although Win32 functions are
available for converting between ANSI and Unicode, if you're using the CString class
you can rely on a wide character constructor and the AllocSysString member function
to do the conversions.

For simplicity, this book's example programs use ANSI only. The code AppWizard
generated uses Unicode macros, but the code I wrote uses 8-bit literal strings and the
char, char*, and const char* types.

The MFC library provides four CWinApp member functions, holdovers from the days of INI files, for
accessing the Registry. Starting with Visual C++ version 5.0, AppWizard generates a call to
CWinApp::SetRegistryKey in your application's InitInstance function as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CWinApp::SetRegistryKey in your application's InitInstance function as shown here.

SetRegistryKey(_T("Local AppWizard-Generated Applications"));
If you remove this call, your application will not use the Registry but will create and use an INI file in the
Windows directory. The SetRegistryKey function's string parameter establishes the top of the hierarchy,
and the following Registry functions define the bottom two levels: called heading name and entry name.

GetProfileInt

WriteProfileInt

GetProfileString

WriteProfileString

These functions treat Registry data as either CString objects or unsigned integers. If you need floating-
point values as entries, you must use the string functions and do the conversion yourself. All the functions
take a heading name and an entry name as parameters. In the example shown above, the heading name
is Text Formatting and the entry names are Font and Points.

To use the Registry access functions, you need a pointer to the application object. The global function
AfxGetApp does the job. With the previous sample Registry, the Font and Points entries were set with the
following code:

AfxGetApp()->WriteProfileString("Text formatting", "Font",
 "Times Roman");
AfxGetApp()->WriteProfileInt("Text formatting", "Points", 10);
You'll see a real Registry example in EX15A, and you'll learn to use the Windows Regedit program to
examine and edit the Registry.

The application framework stores a list of most recently used files in the Registry under
the heading Recent File List.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the CString Class
The MFC CString class is a significant de facto extension to the C++ language. As the Microsoft Foundation
Classes and Templates section of the online help points out, the CString class has many useful operators
and member functions, but perhaps its most important feature is its dynamic memory allocation. You
never have to worry about the size of a CString object. The statements here represent typical uses of
CString objects.

CString strFirstName("Elvis");
CString strLastName("Presley");
CString strTruth = strFirstName + " " + strLastName; // concatenation
strTruth += " is alive";
ASSERT(strTruth == "Elvis Presley is alive");
ASSERT(strTruth.Left(5) == strFirstName);
ASSERT(strTruth[2] == `v'); // subscript operator
In a perfect world, C++ programs would use all CString objects and never use ordinary zero-terminated
character arrays. Unfortunately, many runtime library functions still use character arrays, so programs
must always mix and match their string representations. Fortunately, the CString class provides a const
char*() operator that converts a CString object to a character pointer. Many of the MFC library functions
have const char* parameters. Take the global AfxMessageBox function, for example. Here is one of the
function's prototypes:

int AFXAPI AfxMessageBox(LPCTSTR lpszText, UINT nType = MB_OK,
 UINT nIDHelp = 0);
(Note: LPCTSTR is not a pointer to a CString object but rather is a Unicode-enabled replacement for const
char*.)

You can call AfxMessageBox this way:

char szMessageText[] = "Unknown error";
AfxMessageBox(szMessageText);
or you can call it this way:

CString strMessageText("Unknown ;error");
AfxMessageBox(strMessageText);
Now suppose you want to generate a formatted string. CString::Format does the job, as shown here:

int nError = 23;
CString strMessageText;
strMessageText.Format("Error number %d", nError);
AfxMessageBox(strMessageText);

Suppose you want direct write access to the characters in a CString object. If you write
code like this:

CString strTest("test");
strncpy(strTest, "T", 1);
you'll get a compile error because the first parameter of strncpy is declared char*, not
const char*. The CString::GetBuffer function "locks down" the buffer with a specified
size and returns a char*. You must call the ReleaseBuffer member function later to
make the string dynamic again. The correct way to capitalize the T is shown here.

CString strTest("test");
strncpy(strTest.GetBuffer(5), "T", 1);
strTest.ReleaseBuffer();
ASSERT(strTest == "Test");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The const char* operator takes care of converting a CString object to a constant character pointer; but
what about conversion in the other direction? It so happens that the CString class has a constructor that
converts a constant character pointer to a CString object, and it has a set of overloaded operators for
these pointers. That's why statements such as the following work.

strTruth += " is alive";
The special constructor works with functions that take a CString reference parameter, such as
CDC::TextOut. In the following statement, a temporary CString object is created on the calling program's
stack and then the object's address is passed to TextOut:

pDC->TextOut(0, 0, "Hello, world!");
It's more efficient to use the other overloaded version of CDC::TextOut if you're willing to count the
characters:

pDC->TextOut(0, 0, "Hello, world!", 13);
If you're writing a function that takes a string parameter, you've got some design choices. Here are some
programming rules.

If the function doesn't change the contents of the string and you're willing to use C runtime
functions such as strcpy, use a const char* parameter.

If the function doesn't change the contents of the string but you want to use CString member
functions inside the function, use a const CString& parameter.

If the function changes the contents of the string, use a CString& parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Position of a Maximized Window
As a Windows user, you know that you can maximize a window from the system menu or by clicking a
button at the top right corner of the window. You can return a maximized window to its original size in a
similar fashion. It's obvious that a maximized window remembers its original size and position.

The CWnd function GetWindowRect retrieves the screen coordinates of a window. If a window is
maximized, GetWindowRect returns the coordinates of the screen rather than the window's unmaximized
coordinates. If a persistent frame class is to work for maximized windows, it has to know the window's
unmaximized coordinates. CWnd::GetWindowPlacement retrieves the unmaxi-mized coordinates together
with some flags that indicate whether the window is currently minimized or maximized or both.

The companion SetWindowPlacement function lets you set the maximized and minimized status and the
size and position of the window. To calculate the position of the top left corner of a maximized window, you
need to account for the window's border size, obtainable from the Win32 GetSystemMetrics function. See
Figure 15-1 for the CPersistentFrame::ActivateFrame code for an example of how SetWindowPlacement is
used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Bar Status and the Registry
The MFC library provides two CFrameWnd member functions, SaveBarState and LoadBarState, for saving
and loading control bar status to and from the Registry. These functions process the size and position of
the status bar and docked toolbars. They don't process the position of floating toolbars, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Static Data Members
The CPersistentFrame class stores its Registry key names in static const char array data members. What
were the other storage choices? String resource entries won't work because the strings need to be defined
with the class itself. (String resources make sense if CPersistentFrame is made into a DLL, however.)
Global variables are generally not recommended because they defeat encapsulation. Static CString objects
don't make sense because the characters must be copied to the heap when the program starts.

An obvious choice would have been regular data members. But static data members are better because, as
constants, they are segregated into the program's read-only data section and can be mapped to multiple
instances of the same program. If the CPersistentFrame class is part of a DLL, all processes that are using
the DLL can map the character arrays. Static data members are really global variables, but they are
scoped to their class so there's no chance of name collisions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Default Window Rectangle
You're used to defining rectangles with device or logical coordinates. A CRect object constructed with the
statement

CRect rect(CW_USEDEFAULT, CW_USEDEFAULT, 0, 0);
has a special meaning. When Windows creates a new window with this special rectangle, it positions the
window in a cascade pattern with the top left corner below and to the right of the window most recently
created. The right and bottom edges of the window are always within the display's boundaries.

The CFrameWnd class's static rectDefault data member is constructed using CW_USEDEFAULT this way, so
it contains the special rectangle. The CPersistentFrame class declares its own rectDefault default window
rectangle with a fixed size and position as a static data member, thus hiding the base class member.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX15A Example
The EX15A program illustrates the use of a persistent frame window class, CPersistentFrame. Figure 15-1
shows the contents of the files Persist.h and Persist.cpp, which are included in the EX15A project on the
companion CD-ROM. In this example, you'll insert the new frame class into an AppWizard-generated SDI
application. EX15A is a "do-nothing" application, but you can insert the persistent frame class into any of
your own SDI "do-something" applications.

PERSIST.H

// Persist.h

#ifndef _INSIDE_VISUAL_CPP_PERSISTENT_FRAME
#define _INSIDE_VISUAL_CPP_PERSISTENT_FRAME

class CPersistentFrame : public CFrameWnd
{ // remembers where it was on the desktop
 DECLARE_DYNAMIC(CPersistentFrame)
private:
 static const CRect s_rectDefault;
 static const char s_profileHeading[];
 static const char s_profileRect[];
 static const char s_profileIcon[];
 static const char s_profileMax[];
 static const char s_profileTool[];
 static const char s_profileStatus[];
 BOOL m_bFirstTime;
protected: // Create from serialization only
 CPersistentFrame();
 ~CPersistentFrame();
//{{AFX_VIRTUAL(CPersistentFrame)
 public:
 virtual void ActivateFrame(int nCmdShow = -1);
 protected:
 //}}AFX_VIRTUAL

 //{{AFX_MSG(CPersistentFrame)
 afx_msg void OnDestroy();
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

#endif // _INSIDE_VISUAL_CPP_PERSISTENT_FRAME
PERSIST.CPP

// Persist.cpp Persistent frame class for SDI apps

#include "stdafx.h"
#include "persist.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif
///
// CPersistentFrame

const CRect CPersistentFrame::s_rectDefault(10, 10,
 500, 400); // static
const char CPersistentFrame::s_profileHeading[] = "Window size";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const char CPersistentFrame::s_profileHeading[] = "Window size";
const char CPersistentFrame::s_profileRect[] = "Rect";
const char CPersistentFrame::s_profileIcon[] = "icon";
const char CPersistentFrame::s_profileMax[] = "max";
const char CPersistentFrame::s_profileTool[] = "tool";
const char CPersistentFrame::s_profileStatus[] = "status";
IMPLEMENT_DYNAMIC(CPersistentFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CPersistentFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CPersistentFrame)
 ON_WM_DESTROY()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
CPersistentFrame::CPersistentFrame(){
 m_bFirstTime = TRUE;
}

///
CPersistentFrame::~CPersistentFrame()
{
}

///
void CPersistentFrame::OnDestroy()
{
 CString strText;
 BOOL bIconic, bMaximized;

 WINDOWPLACEMENT wndpl;
 wndpl.length = sizeof(WINDOWPLACEMENT);
 // gets current window position and
 // iconized/maximized status
 BOOL bRet = GetWindowPlacement(&wndpl);
 if (wndpl.showCmd == SW_SHOWNORMAL) {
 bIconic = FALSE;
 bMaximized = FALSE;
 }
 else if (wndpl.showCmd == SW_SHOWMAXIMIZED) {
 bIconic = FALSE;
 bMaximized = TRUE;
 }
 else if (wndpl.showCmd == SW_SHOWMINIMIZED) {
 bIconic = TRUE;
 if (wndpl.flags) {
 bMaximized = TRUE;
 }
 else {
 bMaximized = FALSE;
 }
 }
 strText.Format("%04d %04d %04d %04d",
 wndpl.rcNormalPosition.left,
 wndpl.rcNormalPosition.top,
 wndpl.rcNormalPosition.right,
 wndpl.rcNormalPosition.bottom);
 AfxGetApp()->WriteProfileString(s_profileHeading,
 s_profileRect, strText);
 AfxGetApp()->WriteProfileInt(s_profileHeading,
 s_profileIcon, bIconic);
 AfxGetApp()->WriteProfileInt(s_profileHeading,
 s_profileMax, bMaximized);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s_profileMax, bMaximized);
 SaveBarState(AfxGetApp()->m_pszProfileName);
 CFrameWnd::OnDestroy();
}

///
void CPersistentFrame::ActivateFrame(int nCmdShow)
{
 CString strText;
 BOOL bIconic, bMaximized;
 UINT flags;
 WINDOWPLACEMENT wndpl;
 CRect rect;

 if (m_bFirstTime) {
 m_bFirstTime = FALSE;
 strText = AfxGetApp()->GetProfileString(s_profileHeading,
 s_profileRect);
 if (!strText.IsEmpty()) {
 rect.left = atoi((const char*) strText);
 rect.top = atoi((const char*) strText + 5);
 rect.right = atoi((const char*) strText + 10);
 rect.bottom = atoi((const char*) strText + 15);
 }
 else {
 rect = s_rectDefault;
 }
 bIconic = AfxGetApp()->GetProfileInt(s_profileHeading,
 s_profileIcon, 0);
 bMaximized = AfxGetApp()->GetProfileInt(s_profileHeading,
 s_profileMax, 0);
 if (bIconic) {
 nCmdShow = SW_SHOWMINNOACTIVE;
 if (bMaximized) {
 flags = WPF_RESTORETOMAXIMIZED;
 }
 else {
 flags = WPF_SETMINPOSITION;
 }
 }
 else {
 if (bMaximized) {
 nCmdShow = SW_SHOWMAXIMIZED;
 flags = WPF_RESTORETOMAXIMIZED;
 }
 else {
 nCmdShow = SW_NORMAL;
 flags = WPF_SETMINPOSITION;
 }
 }
 wndpl.length = sizeof(WINDOWPLACEMENT);
 wndpl.showCmd = nCmdShow;
 wndpl.flags = flags;
 wndpl.ptMinPosition = CPoint(0, 0);
 wndpl.ptMaxPosition =
 CPoint(-::GetSystemMetrics(SM_CXBORDER),
 -::GetSystemMetrics(SM_CYBORDER));
 wndpl.rcNormalPosition = rect;
 LoadBarState(AfxGetApp()->m_pszProfileName);
 // sets window's position and minimized/maximized status
 BOOL bRet = SetWindowPlacement(&wndpl);
 }
 CFrameWnd::ActivateFrame(nCmdShow);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-1. The CPersistentView class listing.

Here are the steps for building the EX15A example program.

1. Run AppWizard to generate \vcpp32\ex15a\ex15a. Accept all default settings but two: select
Single Document and deselect Printing and Print Preview. The options and the default class names
are shown in the following illustration.

2. Modify MainFrm.h. You must change the base class of CMainFrame. To do this, simply change the
line

class CMainFrame : public CFrameWnd
to

class CMainFrame : public CPersistentFrame
Also, add the line

#include "persist.h"
3. Modify MainFrm.cpp. Globally replace all occurrences of CFrameWnd with CPersistentFrame.

4. Modify ex15a.cpp. Replace the line

SetRegistryKey(_T("Local AppWizard-Generated Applications"));
with the line

SetRegistryKey("Programming Visual C++");
5. Add the Persist.cpp file to the project. You can type in the Persist.h and Persist.cpp files from

Figure 15-1, or you can copy the files from the companion CD-ROM. Having the files in the
\vcpp32\ex15a directory is not sufficient. You must add the names of the files to the project's
project (DSP) file. Choose Add To Project from Visual C++'s Project menu, and choose Files from
the submenu. Select Persist.h and Persist.cpp from the list.

6. Rebuild the ClassWizard file to include the new CPersistentFrame class. Use Windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Rebuild the ClassWizard file to include the new CPersistentFrame class. Use Windows
Explorer to delete the ClassWizard file ex15a.clw. Back in Visual C++, choose ClassWizard from the
View menu. Follow Visual C++'s instructions if it asks you to close any files. Click Yes when asked if
you would like to rebuild the CLW file. The Select Source Files dialog box will appear. Make sure all
of the header and source files are listed in the Files In Project box, as shown in the following
illustration.

Then click OK to regenerate the CLW file. Notice that CPersistentFrame is now integrated into
ClassWizard. You'll now be able to map messages and override virtual functions in the
CPersistentFrame class.

7. Build and test the EX15A application. Size and move the application's frame window, and then
close the application. When you restart the application, does its window open at the same location
at which it was closed? Experiment with maximizing and minimizing, and then change the status
and position of the control bars. Does the persistent frame remember its settings?

8. Save the CPersistentFrame class as a Gallery component for future use. In the ClassView
window, right-click on CPersistentFrame and select Add To Gallery. Bring up the Components And
Controls Gallery by choosing Add To Project from the Project menu and then choosing Components
And Controls. Notice that Visual C++ created the file Persistent Frame.ogx in a folder named
\ex15a. Change this folder's name to Persistent Frame. Now you can add the CPersistentFrame
class to any project by simply adding Persistent Frame.ogx. We will add CPersistentFrame to EX22A
this way.

9. Examine the Windows Registry. Run the Windows regedit.exe program. Navigate to the
HKEY_CURRENT_USER\Software\Programming Visual C++\ex15a key. You should see data values
similar to those shown in the following illustration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice the relationship between the Registry key and the SetRegistryKey function parameter,
"Programming Visual C++." If you supply an empty string as the SetRegistryKey parameter, the
program name (ex15a, in this case) is positioned directly below the Software key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Persistent Frames in MDI Applications
You won't get to Multiple Document Interface (MDI) applications until Chapter 18, but if you're using this
book as a reference, you might want to apply the persistent frame technique to MDI applications.

The CPersistentFrame class, as presented in this chapter, won't work in an MDI application because the
MDI main frame window's ShowWindow function is called, not by a virtual ActivateFrame function, but
directly by the application class's InitInstance member function. If you need to control the characteristics
of an MDI main frame window, add the necessary code to InitInstance.

The ActivateFrame function is called, however, for CMDIChildWnd objects. This means your MDI application
could remember the sizes and positions of its child windows. You could store the information in the
Registry, but you would have to accommodate multiple windows. You would have to modify the
CPersistentFrame class for this purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16
Separating the Document from Its View
Now you're finally going to see the interaction between documents and views. Chapter 13 gave you a
preview of this interaction when it showed the routing of command messages to both view objects and
document objects. In this chapter, you'll see how the document maintains the application's data and how
the view presents the data to the user. You'll also learn how the document and view objects talk to each
other while the application executes.

The two examples in this chapter both use the CFormView class as the base class for their views. The first
example is as simple as possible, with the document holding only one simple object of class CStudent,
which represents a single student record. The view shows the student's name and grade and allows
editing. With the CStudent class, you'll get some practice writing classes to represent real-world entities.
You'll also get to use the Microsoft Foundation Class (MFC) Library version 6.0 diagnostic dump functions.

The second example goes further by introducing pointer collection classes—the CObList and CTypedPtrList
classes in particular. Now the document holds a collection of student records, and the view allows the
sequencing, insertion, and deletion of individual records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document-View Interaction Functions
You already know that the document object holds the data and that the view object displays the data and
allows editing. An SDI application has a document class derived from CDocument, and it has one or more
view classes, each ultimately derived from CView. A complex handshaking process takes place among the
document, the view, and the rest of the application framework. To understand this process, you need to
know about five important member functions in the document and view classes. Two are nonvirtual base
class functions that you call in your derived classes; three are virtual functions that you often override in
your derived classes. Let's look at these functions one at a time.

The CView::GetDocument Function

A view object has one and only one associated document object. The GetDocument function allows an
application to navigate from a view to its document. Suppose a view object gets a message that the user
has entered new data into an edit control. The view must tell the document object to update its internal
data accordingly. The GetDocument function provides the document pointer that can be used to access
document class member functions or public data embers.

The CDocument::GetNextView function navigates from the document to the view, but
because a document can have more than one view, it's necessary to call this member
function once for each view, inside a loop. You'll seldom call GetNextView because the
application framework provides a better method of iterating through a document's
views.

When AppWizard generates a derived CView class, it creates a special type-safe version of the
GetDocument function that returns not a CDocument pointer but a pointer to an object of your derived
class. This function is an inline function, and it looks something like this:

CMyDoc* GetDocument()
{
 return (CMyDoc*)
m_pDocument;
}
When the compiler sees a call to GetDocument in your view class code, it uses the derived class version
instead of the CDocument version, so you do not have to cast the returned pointer to your derived
document class. Because the CView::GetDocument function is not a virtual function, a statement such as

pView->GetDocument(); // pView is declared CView*
calls the base class GetDocument function and thus returns a pointer to a CDocument object.

The CDocument::UpdateAllViews Function

If the document data changes for any reason, all views must be notified so that they can update their
representations of that data. If UpdateAllViews is called from a member function of a derived document
class, its first parameter, pSender, is NULL. If UpdateAllViews is called from a member function of a
derived view class, set the pSender parameter to the current view, like this:

GetDocument()->UpdateAllViews(this);
The non-null parameter prevents the application framework from notifying the current view. The
assumption here is that the current view has already updated itself.

The function has optional hint parameters that can be used to give view-specific and application-dependent
information about which parts of the view to update. This is an advanced use of the function.

How exactly is a view notified when UpdateAllViews gets called? Take a look at the next function,
OnUpdate.

The CView::OnUpdate Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CView::OnUpdate Function

This virtual function is called by the application framework in response to your application's call to the
CDocument::UpdateAllViews function. You can, of course, call it directly within your derived CView class.
Typically, your derived view class's OnUpdate function accesses the document, gets the document's data,
and then updates the view's data members or controls to reflect the changes. Alternatively, OnUpdate can
invalidate a portion of the view, causing the view's OnDraw function to use document data to draw in the
window. The OnUpdate function might look something like this:

void CMyView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{
 CMyDocument* pMyDoc = GetDocument();
 CString lastName = pMyDoc->GetLastName();
 m_pNameStatic->SetWindowText(lastName); // m_pNameStatic is
 // a CMyView data member
}
The hint information is passed through directly from the call to UpdateAllViews. The default OnUpdate
implementation invalidates the entire window rectangle. In your overridden version, you can choose to
define a smaller invalid rectangle as specified by the hint information.

If the CDocument function UpdateAllViews is called with the pSender parameter pointing to a specific view
object, OnUpdate is called for all the document's views except the specified view.

The CView::OnInitialUpdate Function

This virtual CView function is called when the application starts, when the user chooses New from the File
menu, and when the user chooses Open from the File menu. The CView base class version of
OnInitialUpdate does nothing but call OnUpdate. If you override OnInitialUpdate in your derived view class,
be sure that the view class calls the base class's OnInitialUpdate function or the derived class's OnUpdate
function.

You can use your derived class's OnInitialUpdate function to initialize your view object. When the
application starts, the application framework calls OnInitialUpdate immediately after OnCreate (if you've
mapped OnCreate in your view class). OnCreate is called once, but OnInitialUpdate can be called many
times.

The CDocument::OnNewDocument Function

The framework calls this virtual function after a document object is first constructed and when the user
chooses New from the File menu in an SDI application. This is a good place to set the initial values of your
document's data members. AppWizard generates an overridden OnNewDocument function in your derived
document class. Be sure to retain the call to the base class function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Simplest Document-View Application
Suppose you don't need multiple views of your document but you plan to take advantage of the application
framework's file support. In this case, you can forget about the UpdateAllViews and OnUpdate functions.
Simply follow these steps when you develop the application:

1. In your derived document class header file (generated by AppWizard), declare your document's
data members. These data members are the primary data storage for your application. You can
make these data members public, or you can declare the derived view class a friend of the
document class.

2. In your derived view class, override the OnInitialUpdate virtual member function. The application
framework calls this function after the document data has been initialized or read from disk.
(Chapter 17 discusses disk file I/O.) OnInitialUpdate should update the view to reflect the current
document data.

3. In your derived view class, let your window message handlers, command message handlers and
your OnDraw function read and update the document data members directly, using GetDocument to
access the document object.

The sequence of events for this simplified document-view environment is as follows.

Application starts CMyDocument object constructed

CMyView object constructed

View window created

CMyView::OnCreate called (if mapped)

CMyDocument::OnNewDocument called

CMyView::OnInitialUpdate called

View object initialized

View window invalidated

CMyView::OnDraw called

User edits data CMyView functions update CMyDocument data members

User exits application CMyView object destroyed

CMyDocument object destroyed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFormView Class
The CFormView class is a useful view class that has many of the characteristics of a modeless dialog
window. Like a class derived from CDialog, a derived CFormView class is associated with a dialog resource
that defines the frame characteristics and enumerates the controls. The CFormView class supports the
same dialog data exchange and validation (DDX and DDV) functions that you saw in the CDialog examples
in Chapter 6.

If AppWizard generates a Form View dialog, the properties are set correctly, but if you
use the dialog editor to make a dialog for a form view, you must specify the following
items in the Dialog Properties dialog:

Style = Child

Border = None

Visible = unchecked

A CFormView object receives notification messages directly from its controls, and it receives command
messages from the application framework. This application framework command-processing ability clearly
separates CFormView from CDialog, and it makes controlling the view from the frame's main menu or
toolbar easy.

The CFormView class is derived from CView (actually, from CScrollView) and not from CDialog. You can't,
therefore, assume that CDialog member functions are supported. CFormView does not have virtual
OnInitDialog, OnOK, and OnCancel functions. CFormView member functions do not call UpdateData and
the DDX functions. You have to call UpdateData yourself at the appropriate times, usually in response to
control notification messages or command messages.

Even though the CFormView class is not derived from the CDialog class, it is built around the Microsoft
Windows dialog. For this reason, you can use many of the CDialog class member functions such as
GotoDlgCtrl and NextDlgCtrl. All you have to do is cast your CFormView pointer to a CDialog pointer. The
following statement, extracted from a member function of a class derived from CFormView, sets the focus
to a specified control. GetDlgItem is a CWnd function and is thus inherited by the derived CFormView class.

((CDialog*) this)->GotoDlgCtrl(GetDlgItem(IDC_NAME));
AppWizard gives you the option of using CFormView as the base class for your view. When you select
CFormView, AppWizard generates an empty dialog with the correct style properties set. The next step is to
use ClassWizard to add control notification message handlers, command message handlers, and update
command UI handlers. (The example steps starting after Figure 16-2 show you what to do.) You can also
define data members and validation criteria.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObject Class
If you study the MFC library hierarchy, you'll notice that the CObject class is at the top. Most other classes
are derived from the CObject root class. When a class is derived from CObject, it inherits a number of
important characteristics. The many benefits of CObject derivation will become clear as you read the
chapters that follow.

In this chapter, you'll see how CObject derivation allows objects to participate in the diagnostic dumping
scheme and allows objects to be elements in the collection classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Diagnostic Dumping
The MFC library gives you some useful tools for diagnostic dumping. You enable these tools when you
select the Debug target. When you select the Win32 Release target, diagnostic dumping is disabled and
the diagnostic code is not linked to your program. All diagnostic output goes to the Debug view in the
debugger's Output window.

To clear diagnostic output from the debugger's Output window, position the cursor in
the Output window and click the right mouse button. Then choose Clear from the pop-
up menu.

The TRACE Macro

You've seen the TRACE macro used throughout the preceding examples in this book. TRACE statements
are active whenever the constant _DEBUG is defined (when you select the Debug target and when the
afxTraceEnabled variable is set to TRUE). TRACE statements work like C language printf statements, but
they're completely disabled in the release version of the program. Here's a typical TRACE statement:

int nCount = 9;
CString strDesc("total");
TRACE("Count = %d, Description = %s\n", nCount, strDesc);

The TRACE macro takes a variable number of parameters and is thus easy to use. If
you look at the MFC source code, you won't see TRACE macros but rather TRACE0,
TRACE1, TRACE2, and TRACE3 macros. These macros take 0, 1, 2, and 3 parameters,
respectively, and are leftovers from the 16-bit environment, where it was necessary to
conserve space in the data segment.

The afxDump Object

An alternative to the TRACE statement is more compatible with the C++ language. The MFC afxDump
object accepts program variables with a syntax similar to that of cout, the C++ output stream object. You
don't need complex formatting strings; instead, overloaded operators control the output format. The
afxDump output goes to the same destination as the TRACE output, but the afxDump object is defined only
in the Debug version of the MFC library. Here is a typical stream-oriented diagnostic statement that
produces the same output as the TRACE statement above:

int nCount = 9;
CString strDesc("total");
#ifdef _DEBUG
 afxDump << "Count = " << nCount
 << ", Description = " << strDesc << "\n";
#endif // _DEBUG
Although both afxDump and cout use the same insertion operator (<<), they don't share any code. The
cout object is part of the Microsoft Visual C++ iostream library, and afxDump is part of the MFC library.
Don't assume that any of the cout formatting capability is available through afxDump.

Classes that aren't derived from CObject, such as CString, CTime, and CRect, contain their own overloaded
insertion operators for CDumpContext objects. The CDumpContext class, of which afxDump is an instance,
includes the overloaded insertion operators for the native C++ data types (int, double, char*, and so on).
The CDumpContext class also contains insertion operators for CObject references and pointers, and that's
where things get interesting.

The Dump Context and the CObject Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Dump Context and the CObject Class

If the CDumpContext insertion operator accepts CObject pointers and references, it must also accept
pointers and references to derived classes. Consider a trivial class, CAction, that is derived from CObject,
as shown here:

class CAction : public CObject
{
public:
 int m_nTime;
};
What happens when the following statement executes?

#ifdef _DEBUG
 afxDump << action; // action is an object of class CAction
#endif // _DEBUG
The virtual CObject::Dump function gets called. If you haven't overridden Dump for CAction, you don't get
much except for the address of the object. If you have overridden Dump, however, you can get the
internal state of your object. Here's a CAction::Dump function:

#ifdef _DEBUG
void CAction::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc); // Always call base class function
 dc << "time = " <<
m_nTime << "\n";
}
#endif // _DEBUG
The base class (CObject) Dump function prints a line such as this:

a CObject at $4115D4
If you have called the DECLARE_DYNAMIC macro in your CAction class definition and the
IMPLEMENT_DYNAMIC macro in your CAction declaration, you will see the name of the class in your dump

a CAction at $4115D4
even if your dump statement looks like this:

#ifdef _DEBUG
 afxDump << (CObject&) action;
#endif // _DEBUG
The two macros work together to include the MFC library runtime class code in your derived CObject class.
With this code in place, your program can determine an object's class name at runtime (for the dump, for
example) and it can obtain class hierarchy information.

The (DECLARE_SERIAL, IMPLEMENT_SERIAL) and (DECLARE_DYNCREATE,
IMPLEMENT_DYNCREATE) macro pairs provide the same runtime class features as
those provided by the (DECLARE_DYNAMIC, IMPLEMENT_DYNAMIC) macro pair.

Automatic Dump of Undeleted Objects

With the Debug target selected, the application framework dumps all objects that are undeleted when your
program exits. This dump is a useful diagnostic aid, but if you want it to be really useful, you must be sure
to delete all your objects, even the ones that would normally disappear after the exit. This object cleanup
is good programming discipline.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code that adds debug information to allocated memory blocks is now in the Debug
version of the CRT (C runtime) library rather than in the MFC library. If you choose to
dynamically link MFC, the MSVCRTD DLL is loaded along with the necessary MFC DLLs.
When you add the line

#define new DEBUG_NEW
at the top of a CPP file, the CRT library lists the filename and line number at which the
allocations were made. AppWizard puts this line at the top of all the CPP files it
generates.

Window Subclassing for Enhanced Data-Entry Control

What if you want an edit control (in a dialog or a form view) that accepts only numeric
characters? That's easy. You just set the Number style in the control's property sheet.
If, however, you want to exclude numeric characters or change the case of alphabetic
characters, you must do some programming.

The MFC library provides a convenient way to change the behavior of any standard
control, including the edit control. Actually, there are several ways. You can derive your
own classes from CEdit, CListBox, and so forth (with their own message handler
functions) and then create control objects at runtime. Or you can register a special
window class, as a Win32 programmer would do, and integrate it into the project's
resource file with a text editor. Neither of these methods, however, allows you to use
the dialog editor to position controls in the dialog resource.

The easy way to modify a control's behavior is to use the MFC library's window
subclassing feature. You use the dialog editor to position a normal control in a dialog
resource, and then you write a new C++ class that contains message handlers for the
events that you want to handle yourself. Here are the steps for subclassing an edit
control:

1. With the dialog editor, position an edit control in your dialog resource. Assume
that it has the child window ID IDC_EDIT1.

2. Write a new class—for example, CNonNumericEdit—derived from CEdit. Map the
WM_CHAR message and write a handler like this:

void CNonNumericEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 if (!isdigit(nChar)) {
 CEdit::OnChar(nChar, nRepCnt, nFlags);
 }
}

3. In your derived dialog or form view class header, declare a data member of
class CNonNumericEdit in this way:

private:
 CNonNumericEdit m_nonNumericEdit;

4. If you're working with a dialog class, add the following line to your OnInitDialog
override function:

m_nonNumericEdit.SubclassDlgItem(IDC_EDIT1, this);
5. If you're working with a form view class, add the following code to your

OnInitialUpdate override function:

if (m_nonNumericEdit.m_hWnd == NULL) {
 m_nonNumericEdit.SubclassDlgItem(IDC_EDIT1, this);
}

The CWnd::SubclassDlgItem member function ensures that all messages are routed
through the application framework's message dispatch system before being sent to the
control's built-in window procedure. This technique is called dynamic subclassing and is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

control's built-in window procedure. This technique is called dynamic subclassing and is
explained in more detail in Technical Note #14 in the online documentation.

The code in the preceding steps only accepts or rejects a character. If you want to
change the value of a character, your handler must call CWnd::DefWindowProc, which
bypasses some MFC logic that stores parameter values in thread object data members.
Here's a sample handler that converts lowercase characters to uppercase:

void CUpperEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 if (islower(nChar)) {
 nChar = toupper(nChar);
 }
 DefWindowProc(WM_CHAR, (WPARAM) nChar,
 (LPARAM) (nRepCnt | (nFlags << 16)));
}
You can also use window subclassing to handle reflected messages, which were
mentioned in Chapter 6. If an MFC window class doesn't map a message from one of its
child controls, the framework reflects the message back to the control. Technical Note
#62 in the online documentation explains the details.

If you need an edit control with a yellow background, for example, you can derive a
class CYellowEdit from CEdit and use ClassWizard to map the =WM_CTLCOLOR
message in CYellowEdit. (ClassWizard lists the message name with an equal sign in
front to indicate that it is reflected.) The handler code, shown below, is substantially
the same as the nonreflected WM_CTLCOLOR handler. (Member variable
m_hYellowBrush is defined in the control class's constructor.)

HBRUSH CYellowEdit::CtlColor(CDC* pDC, UINT nCtlColor)
{
 pDC->SetBkColor(RGB(255, 255, 0)); // yellow
 return m_hYellowBrush;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX16A Example
The first of this chapter's two examples shows a very simple document-view interaction. The CEx16aDoc
document class, derived from CDocument, allows for a single embedded CStudent object. The CStudent
class represents a student record composed of a CString name and an integer grade. The CEx16aView
view class is derived from CFormView. It is a visual representation of a student record that has edit
controls for the name and grade. The default Enter pushbutton updates the document with data from the
edit controls. Figure 16-1 shows the EX16A program window.

Figure 16-1. The EX16A program in action.

Figure 16-2 shows the code for the CStudent class. Most of the class's features serve EX16A, but a few
items carry forward to EX16B and the programs discussed in Chapter 17. For now, take note of the two
data members, the default constructor, the operators, and the Dump function declaration. The
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros ensure that the class name is available for the
diagnostic dump.

STUDENT.H

// student.h

#ifndef _INSIDE_VISUAL_CPP_STUDENT
#define _INSIDE_VISUAL_CPP_STUDENT
class CStudent : public CObject
{
 DECLARE_DYNAMIC(CStudent)
public:
 CString m_strName;
 int m_nGrade;

 CStudent()
 {
 m_nGrade = 0;
 }

 CStudent(const char* szName, int nGrade) : m_strName(szName)
 {
 m_nGrade = nGrade;
 }

 CStudent(const CStudent& s) : m_strName(s.m_strName)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CStudent(const CStudent& s) : m_strName(s.m_strName)
 {
 // copy constructor
 m_nGrade = s.m_nGrade;
 }

 const CStudent& operator =(const CStudent& s)
 {
 m_strName = s.m_strName;
 m_nGrade = s.m_nGrade;
 return *this;
 }

 BOOL operator ==(const CStudent& s) const
 {
 if ((m_strName == s.m_strName) && (m_nGrade == s.m_nGrade)) {
 return TRUE;
 }
 else {
 return FALSE;
 }
 }

 BOOL operator !=(const CStudent& s) const
 {
 // Let's make use of the operator we just defined!
 return !(*this == s);
 }
#ifdef _DEBUG
 void Dump(CDumpContext& dc) const;
#endif // _DEBUG
};

#endif // _INSIDE_VISUAL_CPP_STUDENT
Figure 16-2. The CPersistentView class listing.

STUDENT.CPP

#include "stdafx.h"
#include "student.h"

IMPLEMENT_DYNAMIC(CStudent, CObject)

#ifdef _DEBUG
void CStudent::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc);
 dc << "m_strName = " << m_strName << "\nm_nGrade = " <<m_nGrade;
}
#endif // _DEBUG

Follow these steps to build the EX16A example:

1. Run AppWizard to generate \vcpp32\ex16a\ex16a. In the Step 6 page, change the view's
base class to CFormView, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

base class to CFormView, as shown here.

The options and the default class names are shown here.

2. Use the menu editor to replace the Edit menu options. Delete the current Edit menu items
and replace them with a Clear All option, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the default constant ID_EDIT_CLEAR_ALL, which is assigned by the application framework. A
menu prompt automatically appears.

3. Use the dialog editor to modify the IDD_EX16A_FORM dialog. Open the AppWizard-
generated dialog IDD_EX16A_FORM, and add controls as shown below.

Be sure that the Styles properties are set exactly as shown in the Dialog Properties dialog (Style =
Child; Border = None) and that Visible is unchecked.

Use the following IDs for the controls.

Control ID

Name edit control IDC_NAME

Grade edit control IDC_GRADE

Enter pushbutton IDC_ENTER

4. Use ClassWizard to add message handlers for CEx16aView. Select the CEx16aView class, and
then add handlers for the following messages. Accept the default function names.

Object ID Message Member Function

IDC_ENTER BN_CLICKED OnEnter

ID_EDIT_CLEAR_ALL COMMAND OnEditClearAll

ID_EDIT_CLEAR_ALL UPDATE_COMMAND_UI OnUpdateEditClearAll

5. Use ClassWizard to add variables for CEx16aView. Click on the Member Variables tab in the
MFC ClassWizard dialog, and then add the following variables.

Control ID Member Variable Category Variable Type

IDC_GRADE m_nGrade Value int

IDC_NAME m_strName Value CString

For m_nGrade, enter a minimum value of 0 and a maximum value of 100. Notice that ClassWizard
generates the code necessary to validate data entered by the user.

6. Add a prototype for the helper function UpdateControlsFromDoc.In the ClassView window,
right-click on CEx16aView and choose Add Member Function. Fill out the dialog box to add the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

right-click on CEx16aView and choose Add Member Function. Fill out the dialog box to add the
following function:

private:
 void UpdateControlsFromDoc();

7. Edit the file Ex16aView.cpp. AppWizard generated the skeleton OnInitialUpdate function, and
ClassView generated the skeleton UpdateControlsFromDoc function. UpdateControlsFromDoc is a
private helper member function that transfers data from the document to the CEx16aView data
members and then to the dialog edit controls. Edit the code as shown here:

void CEx16aView::OnInitialUpdate()
{ // called on startup
 UpdateControlsFromDoc();
}
void CEx16aView::UpdateControlsFromDoc()
{ // called from OnInitialUpdate and OnEditClearAll
 CEx16aDoc* pDoc = GetDocument();
 m_nGrade = pDoc->m_student.m_nGrade;
 m_strName = pDoc->m_student.m_strName;
 UpdateData(FALSE); // calls DDX
}
The OnEnter function replaces the OnOK function you'd expect to see in a dialog class. The function
transfers data from the edit controls to the view's data members and then to the document. Add
the boldface code shown here:

void CEx16aView::OnEnter()
{
 CEx16aDoc* pDoc = GetDocument();
 UpdateData(TRUE);
 pDoc->m_student.m_nGrade = m_nGrade;
 pDoc->m_student.m_strName = m_strName;
}
In a complex multiview application, the Edit Clear All command would be routed directly to the
document. In this simple example, it's routed to the view. The update command UI handler disables
the menu item if the document's student object is already blank. Add the following boldface code:

void CEx16aView::OnEditClearAll()
{
 GetDocument()->m_student = CStudent(); // "blank" student object
 UpdateControlsFromDoc();
}
void CEx16aView::OnUpdateEditClearAll(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(GetDocument()->m_student != CStudent()); // blank?
}

8. Edit the EX16A project to add the files for CStudent. Choose Add To Project from the Project
menu, choose Files from the submenu, and select the Student.h header and the Student.cpp source
code files. Visual C++ will add the files' names to the project's DSP file so that they will be compiled
when you build the project.

9. Add a CStudent data member to the CEx16aDoc class. Use ClassView to add the following data
member, and the #include will be added automatically.

public:
 CStudent m_student;
The CStudent constructor is called when the document object is constructed, and the CStudent
destructor is called when the document object is destroyed.

10. Edit the Ex16aDoc.cpp file. Use the CEx16aDoc constructor to initialize the student object, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CEx16aDoc::CEx16aDoc() : m_student("default value", 0)
{
 TRACE("Document object constructed\n");
}
We can't tell whether the EX16A program works properly unless we dump the document when the
program exits. We'll use the destructor to call the document's Dump function, which calls the
CStudent::Dump function shown here:

CEx16aDoc::~CEx16aDoc()
{
#ifdef _DEBUG
 Dump(afxDump);
#endif // _DEBUG
}

void CEx16aDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
 dc << "\n" << m_student << "\n";
}

11. Build and test the EX16A application. Type a name and a grade, and then click Enter. Now exit
the application. Does the Debug window show messages similar to those shown here?

a CEx16aDoc at $411580
m_strTitle = Untitled
m_strPathName =
m_bModified = 0
m_pDocTemplate = $4113A0

a CStudent at $4115D4
m_strName = Sullivan, Walter
m_nGrade = 78

To see these messages, you must compile the application with the Win32 Debug target
selected and you must run the program from the debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A More Advanced Document-View Interaction
If you're laying the groundwork for a multiview application, the document-view interaction must be more
complex than the simple interaction in example EX16A. The fundamental problem is this: the user edits in
view #1, so view #2 (and any other views) must be updated to reflect the changes. Now you need the
UpdateAllViews and OnUpdate functions because the document is going to act as the clearinghouse for all
view updates. The development steps are shown here:

1. In your derived document class header file (generated by AppWizard), declare your document's
data members. If you want to, you can make these data members private and you can define
member functions to access them or declare the view class as a friend of the document class.

2. In your derived view class, use ClassWizard to override the OnUpdate virtual member function. The
application framework calls this function whenever the document data has changed for any reason.
OnUpdate should update the view with the current document data.

3. Evaluate all your command messages. Determine whether each one is document-specific or view-
specific. (A good example of a document-specific command is the Clear All command on the Edit
menu.) Now map the commands to the appropriate classes.

4. In your derived view class, allow the appropriate command message handlers to update the
document data. Be sure these message handlers call the CDocument::UpdateAllViews function
before they exit. Use the type-safe version of the CView::GetDocument member function to access
the view's document.

5. In your derived document class, allow the appropriate command message handlers to update the
document data. Be sure that these message handlers call the CDocument::UpdateAllViews function
before they exit.

The sequence of events for the complex document-view interaction is shown here.

Application starts CMyDocument object constructed
 CMyView object constructed
 Other view objects constructed
 View windows created
 CMyView::OnCreate called (if mapped)
 CDocument::OnNewDocument called
 CView::OnInitialUpdate called
 Calls CMyView::OnUpdate
 Initializes the view
User executes CMyView functions update CMyDocument
view command data members
 Call CDocument::UpdateAllViews
 Other views' OnUpdate functions called
User executes CMyDocument functions update data
document command members
 Call CDocument::UpdateAllViews
 CMyView::OnUpdate called
 Other views' OnUpdate functions called
User exits application View objects destroyed
 CMyDocument object destroyed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CDocument::DeleteContents Function
At some point, you'll need a function to delete the contents of your document. You could write your own
private member function, but it happens that the application framework declares a virtual DeleteContents
function for the CDocument class. The application framework calls your overridden DeleteContents function
when the document is closed and as you'll see in the next chapter, at other times as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObList Collection Class
Once you get to know the collection classes, you'll wonder how you ever got along without them. The
CObList class is a useful representative of the collection class family. If you're familiar with this class, it's
easy to learn the other list classes, the array classes, and the map classes.

You might think that collections are something new, but the C programming language has always
supported one kind of collection—the array. C arrays must be fixed in size, and they do not support
insertion of elements. Many C programmers have written function libraries for other collections, including
linked lists, dynamic arrays, and indexed dictionaries. For implementing collections, the C++ class is an
obvious and better alternative than a C function library. A list object, for example, neatly encapsulates the
list's internal data structures.

The CObList class supports ordered lists of pointers to objects of classes derived from CObject. Another
MFC collection class, CPtrList, stores void pointers instead of CObject pointers. Why not use CPtrList
instead? The CObList class offers advantages for diagnostic dumping, which you'll see in this chapter, and
for serialization, which you'll see in the next chapter. One important feature of CObList is that it can
contain mixed pointers. In other words, a CObList collection can hold pointers to both CStudent objects
and CTeacher objects, assuming that both CStudent and CTeacher were derived from CObject.

Using the CObList Class for a First-In, First-Out List

One of the easiest ways to use a CObList object is to add new elements to the tail, or bottom, of the list
and to remove elements from the head, or top, of the list. The first element added to the list will always be
the first element removed from the head of the list. Suppose you're working with element objects of class
CAction, which is your own custom class derived from CObject. A command-line program that puts five
elements into a list and then retrieves them in the same sequence is shown here:

#include <afx.h>
#include <afxcoll.h>

class CAction : public CObject
{
private:
 int m_nTime;
public:
 CAction(int nTime) { m_nTime = nTime; } // Constructor stores
 // integer time value
 void PrintTime() { TRACE("time = %d\n", m_nTime); }
};

int main()
{
 CAction* pAction;
 CObList actionList; // action list constructed on stack
 int i;

 // inserts action objects in sequence {0, 1, 2, 3, 4}
 for (i = 0; i < 5; i++) {
 pAction = new CAction(i);
 actionList.AddTail(pAction); // no cast necessary for pAction
 }

 // retrieves and removes action objects in sequence {0, 1, 2, 3, 4}
 while (!actionList.IsEmpty()) {
 pAction = // cast required for
 (CAction*) actionList.RemoveHead(); // return value
 pAction->PrintTime();
 delete pAction;
 }

 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Here's what's going on in the program. First a CObList object, actionList, is constructed. Then the
CObList::AddTail member function inserts pointers to newly constructed CAction objects. No casting is
necessary for pAction because AddTail takes a CObject pointer parameter and pAction is a pointer to a
derived class.

Next the CAction object pointers are removed from the list of the objects deleted. A cast is necessary for
the returned value of RemoveHead because RemoveHead returns a CObject pointer that is higher in the
class hierarchy than CAction.

When you remove an object pointer from a collection, the object is not automatically deleted. The delete
statement is necessary for deleting the CAction objects.

CObList Iteration—The POSITION Variable

Suppose you want to iterate through the elements in a list. The CObList class provides a GetNext member
function that returns a pointer to the "next" list element, but using it is a little tricky. GetNext takes a
parameter of type POSITION, which is a 32-bit variable. The POSITION variable is an internal
representation of the retrieved element's position in the list. Because the POSITION parameter is declared
as a reference (&), the function can change its value.

GetNext does the following:

1. It returns a pointer to the "current" object in the list, identified by the incoming value of the
POSITION parameter.

2. It increments the value of the POSITION parameter to the next list element.

Here's what a GetNext loop looks like, assuming you're using the list generated in the previous example:

CAction* pAction;
POSITION pos = actionList.GetHeadPosition();
while (pos != NULL) {
 pAction = (CAction*) actionList.GetNext(pos);
 pAction->PrintTime();
}
Now suppose you have an interactive Windows-based application that uses toolbar buttons to sequence
forward and backward through the list one element at a time. You can't use GetNext to retrieve the entry
because GetNext always increments the POSITION variable and you don't know in advance whether the
user is going to want the next element or the previous element. Here's a sample view class command
message handler function that gets the next list entry. In the CMyView class, m_actionList is an embedded
CObList object and the m_position data member is a POSITION variable that holds the current list position.

CMyView::OnCommandNext()
{
 POSITION pos;
 CAction* pAction;

 if ((pos = m_position) != NULL) {
 m_actionList.GetNext(pos);
 if (pos != NULL) { // pos is NULL at end of list
 pAction = (CAction*) m_actionList.GetAt(pos);
 pAction->PrintTime();
 m_position = pos;
 }
 else {
 AfxMessageBox("End of list reached");
 }
 }
}
GetNext is now called first to increment the list position, and the CObList::GetAt member function is called
to retrieve the entry. The m_position variable is updated only when we're sure we're not at the tail of the
list.

The CTypedPtrList Template Collection Class

The CObList class works fine if you want a collection to contain mixed pointers. If, on the other hand, you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObList class works fine if you want a collection to contain mixed pointers. If, on the other hand, you
want a type-safe collection that contains only one type of object pointer, you should look at the MFC library
template pointer collection classes. CTypedPtrList is a good example. Templates are a relatively new C++
language element, introduced by Microsoft Visual C++ version 2.0. CTypedPtrList is a template class that
you can use to create a list of any pointers to objects of any specified class. To make a long story short,
you use the template to create a custom derived list class, using either CPtrList or CObList as a base class.

To declare an object for CAction pointers, you write the following line of code:

CTypedPtrList<CObList, CAction*> m_actionList;
The first parameter is the base class for the collection, and the second parameter is the type for
parameters and return values. Only CPtrList and CObList are permitted for the base class because those
are the only two MFC library pointer list classes. If you are storing objects of classes derived from CObject,
you should use CObList as your base class; otherwise, use CPtrList.

By using the template as shown above, the compiler ensures that all list member functions return a
CAction pointer. Thus, you can write the following code:

pAction = m_actionList.GetAt(pos); // no cast required
If you want to clean up the notation a little, use a typedef statement to generate what looks like a class, as
shown here:

typedef CTypedPtrList<CObList, CAction*> CActionList;
Now you can declare m_actionList as follows:

CActionList m_actionList;

The Dump Context and Collection Classes

The Dump function for CObList and the other collection classes has a useful property. If you call Dump for
a collection object, you can get a display of each object in the collection. If the element objects use the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros, the dump will show the class name for each
object.

The default behavior of the collection Dump functions is to display only class names and addresses of
element objects. If you want the collection Dump functions to call the Dump function for each element
object, you must, somewhere at the start of your program, make the following call:

#ifdef _DEBUG
 afxDump.SetDepth(1);
#endif
Now the statement

#ifdef _DEBUG
 afxDump << actionList;
#endif
produces output such as this:

a CObList at $411832
with 4 elements
 a CAction at $412CD6
time = 0
 a CAction at $412632
time = 1
 a CAction at $41268E
time = 2
 a CAction at $4126EA
time = 3
If the collection contains mixed pointers, the virtual Dump function is called for the object's class and the
appropriate class name is printed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX16B Example
This second SDI example improves on EX16A in the following ways:

Instead of a single embedded CStudent object, the document now contains a list of CStudent
objects. (Now you see the reason for using the CStudent class instead of making m_strName and
m_nGrade data members of the document.)

Toolbar buttons allow the user to sequence through the list.

The application is structured to allow the addition of extra views. The Edit Clear All command is now
routed to the document object, so the document's UpdateAllViews function and the view's
OnUpdate function are brought into play.

The student-specific view code is isolated so that the CEx16bView class can later be transformed
into a base class that contains only general-purpose code. Derived classes can override selected
functions to accommodate lists of application-specific objects.

The EX16B window, shown in Figure 16-3, looks a little different from the EX16A window shown in Figure
16-1. The toolbar buttons are enabled only when appropriate. The Next (arrow-down graphic) button, for
example, is disabled when we're positioned at the bottom of the list.

Figure 16-3. The EX16B program in action.

The toolbar buttons function as follows.

Button Function

Retrieves the first student record

Retrieves the last student record

Retrieves the previous student record

Retrieves the next student record

Deletes the current student record

Inserts a new student record

The Clear button in the view window clears the contents of the Name and Grade edit controls. The Clear All
command on the Edit menu deletes all the student records in the list and clears the view's edit controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command on the Edit menu deletes all the student records in the list and clears the view's edit controls.

This example deviates from the step-by-step format in the previous examples. Because there's now more
code, we'll simply list selected code and the resource requirements. In the listing figures, boldface code
indicates additional code or other changes that you enter in the output from AppWizard and ClassWizard.
The frequent use of TRACE statements lets you follow the program's execution in the debugging window.

Resource Requirements

The file ex16b.rc defines the application's resources as follows.

Toolbar

The toolbar (visible in Figure 16-3) was created by erasing the Edit Cut, Copy, and Paste tiles (fourth, fifth,
and sixth from the left) and replacing them with six new patterns. The Flip Vertical command (on the
Image menu) was used to duplicate some of the tiles. The ex16b.rc file defines the linkage between the
command IDs and the toolbar buttons.

Student Menu

Having menu options that correspond to the new toolbar buttons isn't absolutely necessary. (ClassWizard
allows you to map toolbar button commands just as easily as menu commands.) However, most
applications for Microsoft Windows have menu options for all commands, so users generally expect them.

Edit Menu

On the Edit menu, the clipboard menu items are replaced by the Clear All menu item. See step 2 for an
illustration of the Edit menu.

The IDD_STUDENT Dialog Template

The IDD_STUDENT dialog template, shown here, is similar to the EX16A dialog shown in Figure 16-1
except that the Enter pushbutton has been replaced by the Clear pushbutton.

The following IDs identify the controls.

Control ID

Name edit control IDC_NAME

Grade edit control IDC_GRADE

Clear pushbutton IDC_CLEAR

The controls' styles are the same as for the EX16A program.

Code Requirements

Here's a list of the files and classes in the EX16B example.

Header
File

Source Code
File Classes Description

ex16b.h ex16b.cpp CEx16bApp Application class (from AppWizard)

 CAboutDlg About dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MainFrm.h MainFrm.cpp CMainFrame SDI main frame

StuDoc.h StuDoc.cpp CStudentDoc Student document

StuView.h StuView.cpp CStudentView Student form view (derived from
CFormView)

Student.h Student.cpp CStudent Student record (similar to EX16A)

StdAfx.h StdAfx.cpp Includes the standard
precompiled headers

CEx16bApp

The files ex16b.cpp and ex16b.h are standard AppWizard output.

CMainFrame

The code for the CMainFrame class in MainFrm.cpp is standard AppWizard output.

CStudent

This is the code from EX16A, except for the following line added at the end of Student.h:

typedef CTypedPtrList<CObList, CStudent*> CStudentList;

Use of the MFC template collection classes requires the following statement in StdAfx.h:

#include <afxtempl.h>

CStudentDoc

AppWizard originally generated the CStudentDoc class. Figure 16-4 shows the code used in the EX16B
example.

STUDOC.H

// StuDoc.h : interface of the CStudentDoc class
//
//

#if !defined(AFX_STUDOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
#define AFX_STUDOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "student.h"
class CStudentDoc : public CDocument
{
protected: // create from serialization only
 CStudentDoc();
 DECLARE_DYNCREATE(CStudentDoc)

// Attributes
public:
 CStudentList* GetList() {
 return &m_studentList;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CStudentDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void DeleteContents();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CStudentDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CStudentDoc)
 afx_msg void OnEditClearAll();
 afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 CStudentList m_studentList;
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_STUDOC_H__4D011047_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
STUDOC.CPP

// StuDoc.cpp : implementation of the CStudentDoc class
//

#include "stdafx.h"
#include "ex16b.h"

#include "StuDoc.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CStudentDoc

IMPLEMENT_DYNCREATE(CStudentDoc, CDocument)

BEGIN_MESSAGE_MAP(CStudentDoc, CDocument)
 //{{AFX_MSG_MAP(CStudentDoc)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //{{AFX_MSG_MAP(CStudentDoc)
 ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL, OnUpdateEditClearAll)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CStudentDoc construction/destruction

CStudentDoc::CStudentDoc()
{
 TRACE("Entering CStudentDoc constructor\n");
#ifdef _DEBUG
 afxDump.SetDepth(1); // Ensure dump of list elements
#endif // _DEBUG
}

CStudentDoc::~CStudentDoc()
{
}

BOOL CStudentDoc::OnNewDocument()
{
 TRACE("Entering CStudentDoc::OnNewDocument\n");
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add reinitialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}
//
// CStudentDoc serialization

void CStudentDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

//
// CStudentDoc diagnostics

#ifdef _DEBUG
void CStudentDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CStudentDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
 dc << "\n" << m_studentList << "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dc << "\n" << m_studentList << "\n";
}
#endif //_DEBUG

//
// CStudentDoc commands

void CStudentDoc::DeleteContents()
{
#ifdef _DEBUG
 Dump(afxDump);
#endif
 while (m_studentList.GetHeadPosition()) {
 delete m_studentList.RemoveHead();
 }
}
void CStudentDoc::OnEditClearAll()
{
 DeleteContents();
 UpdateAllViews(NULL);
}

void CStudentDoc::OnUpdateEditClearAll(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_studentList.IsEmpty());
}

Figure 16-4. The CStudentDoc class listing.

ClassWizard and CStudentDoc

The Edit Clear All command is handled in the document class. The following message handlers were added
through ClassWizard.

Object ID Message Member Function

ID_EDIT_CLEAR_ALL COMMAND OnEditClearAll

ID_EDIT_CLEAR_ALL ON_UPDATE_COMMAND_UI OnUpdateEditClearAll

Data Members

The document class provides for an embedded CStudentList object, the m_studentList data member, which
holds pointers to CStudent objects. The list object is constructed when the CStudentDoc object is
constructed, and it is destroyed at program exit. CStudentList is a typedef for a CTypedPtrList for CStudent
pointers.

Constructor

The document constructor sets the depth of the dump context so that a dump of the list causes dumps of
the individual list elements.

GetList

The inline GetList function helps isolate the view from the document. The document class must be specific
to the type of object in the list—in this case, objects of the class CStudent. A generic list view base class,
however, can use a member function to get a pointer to the list without knowing the name of the list
object.

DeleteContents

The DeleteContents function is a virtual override function that is called by other document functions and by
the application framework. Its job is to remove all student object pointers from the document's list and to
delete those student objects. An important point to remember here is that SDI document objects are
reused after they are closed. DeleteContents also dumps the student list.

Dump

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dump

AppWizard generates the Dump function skeleton between the lines #ifdef _DEBUG and #endif. Because
the afxDump depth was set to 1 in the document constructor, all the CStudent objects contained in the list
are dumped.

CStudentView

Figure 16-5 shows the code for the CStudentView class. This code will be carried over into the next two
chapters.

STUVIEW.H

// StuView.h : interface of the CStudentView class
//
//

#if !defined(AFX_STUVIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
#define AFX_STUVIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CStudentView : public CFormView
{
protected:
 POSITION m_position; // current position in document list
 CStudentList* m_pList; // copied from document
protected: // create from serialization only
 CStudentView();
 DECLARE_DYNCREATE(CStudentView)

public:
 //{{AFX_DATA(CStudentView)
 enum { IDD = IDD_STUDENT };
 int m_nGrade;
 CString m_strName;
 //}}AFX_DATA

// Attributes
public:
 CStudentDoc* GetDocument();

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CStudentView)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate(); // called first time after construct
 virtual void OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CStudentView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

protected:
 virtual void ClearEntry();
 virtual void InsertEntry(POSITION position);
 virtual void GetEntry(POSITION position);
// Generated message map functions
protected:
 //{{AFX_MSG(CStudentView)
 afx_msg void OnClear();
 afx_msg void OnStudentHome();
 afx_msg void OnStudentEnd();
 afx_msg void OnStudentPrev();
 afx_msg void OnStudentNext();
 afx_msg void OnStudentIns();
 afx_msg void OnStudentDel();
 afx_msg void OnUpdateStudentHome(CCmdUI* pCmdUI);
 afx_msg void OnUpdateStudentEnd(CCmdUI* pCmdUI);
 afx_msg void OnUpdateStudentDel(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in StuView.cpp
inline CStudentDoc* CStudentView::GetDocument()
 { return (CStudentDoc*)m_pDocument; }
#endif

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_STUVIEW_H__4D011049_7E1C_11D0_8FE0_00C04FC2A0C2__INCLUDED_)
STUVIEW.CPP

// StuView.cpp : implementation of the CStudentView class
//

#include "stdafx.h"
#include "ex16b.h"

#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__ ;
#endif

//
// CStudentView

IMPLEMENT_DYNCREATE(CStudentView, CFormView)
BEGIN_MESSAGE_MAP(CStudentView, CFormView)
 //{{AFX_MSG_MAP(CStudentView)
 ON_BN_CLICKED(IDC_CLEAR, OnClear)
 ON_COMMAND(ID_STUDENT_HOME, OnStudentHome)
 ON_COMMAND(ID_STUDENT_END, OnStudentEnd)
 ON_COMMAND(ID_STUDENT_PREV, OnStudentPrev)
 ON_COMMAND(ID_STUDENT_NEXT, OnStudentNext)
 ON_COMMAND(ID_STUDENT_INS, OnStudentIns)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ON_COMMAND(ID_STUDENT_INS, OnStudentIns)
 ON_COMMAND(ID_STUDENT_DEL, OnStudentDel)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_HOME, OnUpdateStudentHome)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_END, OnUpdateStudentEnd)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_PREV, OnUpdateStudentHome)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_NEXT, OnUpdateStudentEnd)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_DEL, OnUpdateStudentDel)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CStudentView construction/destruction

CStudentView::CStudentView()
 : CFormView(CStudentView::IDD)
{
 TRACE("Entering CStudentView constructor\n");
 //{{AFX_DATA_INIT(CStudentView)
 m_nGrade = 0;
 m_strName = _T("");
 //}}AFX_DATA_INIT
 m_position = NULL;
}

CStudentView::~CStudentView()
{
}

void CStudentView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CStudentView)
 DDX_Text(pDX, IDC_GRADE, m_nGrade);
 DDV_MinMaxInt(pDX, m_nGrade, 0, 100);
 DDX_Text(pDX, IDC_NAME, m_strName);
 DDV_MaxChars(pDX, m_strName, 20);
 //}}AFX_DATA_MAP
}
BOOL CStudentView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 return CFormView::PreCreateWindow(cs);
}

void CStudentView::OnInitialUpdate()
{
 TRACE("Entering CStudentView::OnInitialUpdate\n");
 m_pList = GetDocument()->GetList();
 CFormView::OnInitialUpdate();
}

//
// CStudentView diagnostics

#ifdef _DEBUG
void CStudentView::AssertValid() const
{
 CFormView::AssertValid();
}

void CStudentView::Dump(CDumpContext& dc) const
{
 CFormView::Dump(dc);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CFormView::Dump(dc);
}

CStudentDoc* CStudentView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CStudentDoc)));
 return (CStudentDoc*)m_pDocument;
}
#endif //_DEBUG

//
// CStudentView message handlers

void CStudentView::OnClear()
{
 TRACE("Entering CStudentView::OnClear\n");
 ClearEntry();
}

void CStudentView::OnUpdate(CView* pSender, LPARAM lHint,
 CObject* pHint)
{
 // called by OnInitialUpdate and by UpdateAllViews
 TRACE("Entering CStudentView::OnUpdate\n");
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position); // initial data for view
}

void CStudentView::OnStudentHome()
{
 TRACE("Entering CStudentView::OnStudentHome\n");
 // need to deal with list empty condition
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position);
 }
}

void CStudentView::OnStudentEnd()
{
 TRACE("Entering CStudentView::OnStudentEnd\n");
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetTailPosition();
 GetEntry(m_position);
 }
}

void CStudentView::OnStudentPrev()
{
 POSITION pos;
 TRACE("Entering CStudentView::OnStudentPrev\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetPrev(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void CStudentView::OnStudentNext()
{
 POSITION pos;
 TRACE("Entering CStudentView::OnStudentNext\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }
}
void CStudentView::OnStudentIns()
{
 TRACE("Entering CStudentView::OnStudentIns\n");
 InsertEntry(m_position);
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
}

void CStudentView::OnStudentDel()
{
 // deletes current entry and positions to next one or head
 POSITION pos;
 TRACE("Entering CStudentView::OnStudentDel\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos == NULL) {
 pos = m_pList->GetHeadPosition();
 TRACE("GetHeadPos = %ld\n", pos);
 if (pos == m_position) {
 pos = NULL;
 }
 }
 GetEntry(pos);
 CStudent* ps = m_pList->GetAt(m_position);
 m_pList->RemoveAt(m_position);
 delete ps;
 m_position = pos;
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
 }
}

void CStudentView::OnUpdateStudentHome(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 POSITION pos;
 // enables button if list not empty and not at home already
 pos = m_pList->GetHeadPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CStudentView::OnUpdateStudentEnd(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 POSITION pos;
 // enables button if list not empty and not at end already
 pos = m_pList->GetTailPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CStudentView::OnUpdateStudentDel(CCmdUI* pCmdUI)
{
 // called during idle processing and when Student menu drops down
 pCmdUI->Enable(m_position != NULL);
}

void CStudentView::GetEntry(POSITION position)
{
 if (position) {
 CStudent* pStudent = m_pList->GetAt(position);
 m_strName = pStudent->m_strName;
 m_nGrade = pStudent->m_nGrade;
 }
 else {
 ClearEntry();
 }
 UpdateData(FALSE);
}
void CStudentView::InsertEntry(POSITION position)
{
 if (UpdateData(TRUE)) {
 // UpdateData returns FALSE if it detects a user error
 CStudent* pStudent = new CStudent;
 pStudent->m_strName = m_strName;
 pStudent->m_nGrade = m_nGrade;
 m_position = m_pList->InsertAfter(m_position, pStudent);
 }
}
void CStudentView::ClearEntry()
{
 m_strName = "";
 m_nGrade = 0;
 UpdateData(FALSE);
 ((CDialog*) this)->GotoDlgCtrl(GetDlgItem(IDC_NAME));
}

Figure 16-5. The CStudentView class listing.

ClassWizard and CStudentView

ClassWizard was used to map the CStudentView Clear pushbutton notification message as follows.

Object ID Message Member Function

IDC_CLEAR BN_CLICKED OnClear

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because CStudentView is derived from CFormView, ClassWizard supports the definition of dialog data
members. The variables shown here were added with the Add Variables button.

Control ID Member Variable Category Variable Type

IDC_GRADE m_nGrade Value int

IDC_NAME m_strName Value CString

The minimum value of the m_nGrade data member was set to 0, and its maximum value was set to 100.
The maximum length of the m_strName data member was set to 20 characters.

ClassWizard maps toolbar button commands to their handlers. Here are the commands and the handler
functions to which they were mapped.

Object ID Message Member Function

ID_STUDENT_HOME COMMAND OnStudentHome

ID_STUDENT_END COMMAND OnStudentEnd

ID_STUDENT_PREV COMMAND OnStudentPrev

ID_STUDENT_NEXT COMMAND OnStudentNext

ID_STUDENT_INS COMMAND OnStudentIns

ID_STUDENT_DEL COMMAND OnStudentDel

Each command handler has built-in error checking.

The following update command UI message handlers are called during idle processing to update the state
of the toolbar buttons and, when the Student menu is painted, to update the menu items.

Object ID Message Member Function

ID_STUDENT_HOME UPDATE_COMMAND_UI OnUpdateStudentHome

ID_STUDENT_END UPDATE_COMMAND_UI OnUpdateStudentEnd

ID_STUDENT_PREV UPDATE_COMMAND_UI OnUpdateStudentHome

ID_STUDENT_NEXT UPDATE_COMMAND_UI OnUpdateStudentEnd

ID_STUDENT_DEL UPDATE_COMMAND_UI OnUpdateCommandDel

For example, this button,

which retrieves the first student record, is disabled when the list is empty and when the m_position
variable is already set to the head of the list. The Previous button is disabled under the same
circumstances, so it uses the same update command UI handler. The End and the Next buttons share a
handler for similar reasons. Because a delay sometimes occurs in calling the update command UI
functions, the command message handlers must look for error conditions.

Data Members

The m_position data member is a kind of cursor for the document's collection. It contains the position of
the CStudent object that is currently displayed. The m_pList variable provides a quick way to get at the
student list in the document.

OnInitialUpdate

The virtual OnInitialUpdate function is called when you start the application. It sets the view's m_pList data
member for subsequent access to the document's list object.

OnUpdate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnUpdate

The virtual OnUpdate function is called both by the OnInitialUpdate function and by the
CDocument::UpdateAllViews function. It resets the list position to the head of the list, and it displays the
head entry. In this example, the UpdateAllViews function is called only in response to the Edit Clear All
command. In a multiview application, you might need a different strategy for setting the CStudentView
m_position variable in response to document updates from another view.

Protected Virtual Functions

The following three functions are protected virtual functions that deal specifically with CStudent objects:

GetEntry

InsertEntry

ClearEntry

You can transfer these functions to a derived class if you want to isolate the general-purpose list-handling
features in a base class.

Testing the EX16B Application

Fill in the student name and grade fields, and then click this button

to insert the entry into the list. Repeat this action several times, using the Clear pushbutton to erase the
data from the previous entry. When you exit the application, the debug output should look similar to this:

a CStudentDoc at $4116D0
m_strTitle = Untitled
m_strPathName =
m_bModified = 1
m_pDocTemplate = $4113F1

a CObList at $411624
with 4 elements
 a CStudent at $412770
m_strName = Fisher, Lon
m_nGrade = 67
 a CStudent at $412E80
m_strName = Meyers, Lisa
m_nGrade = 80
 a CStudent at $412880
m_strName = Seghers, John
m_nGrade = 92
 a CStudent at $4128F0
m_strName = Anderson, Bob
m_nGrade = 87

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two Exercises for the Reader
You might have noticed the absence of a Modify button on the toolbar. Without such a button, you can't
modify an existing student record. Can you add the necessary toolbar button and message handlers? The
most difficult task might be designing a graphic for the button's tile.

Recall that the CStudentView class is just about ready to be a general-purpose base class. Try separating
the CStudent-specific virtual functions into a derived class. After that, make another derived class that
uses a new element class other than CStudent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17
Reading and Writing Documents—SDI Applications
As you've probably noticed, every AppWizard-generated program has a File menu that contains the
familiar New, Open, Save, and Save As commands. In this chapter, you'll learn how to make your
application respond to read and write documents.

Here we'll stick with the Single Document Interface (SDI) application because it's familiar territory. Chapter
18 introduces the Multiple Document Interface (MDI) application, which is more flexible in its handling of
documents and files. In both chapters, you'll get a heavy but necessary dose of application-framework
theory; you'll learn a lot about the various helper classes that have been concealed up to this point. The
going will be rough, but believe me, you must know the details to get the most out of the application
framework.

This chapter's example, EX17A, is an SDI application based on the EX16B example from the previous
chapter. It uses the student list document with a CFormView-derived view class. Now the student list can
be written to and read from disk through a process called serialization. Chapter 18 shows you how to use
the same view and document classes to make an MDI application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serialization—What Is It?
The term "serialization" might be new to you, but it's already seen some use in the world of object-
oriented programming. The idea is that objects can be persistent, which means they can be saved on disk
when a program exits and then can be restored when the program is restarted. This process of saving and
restoring objects is called serialization. In the Microsoft Foundation Class (MFC) library, designated classes
have a member function named Serialize. When the application framework calls Serialize for a particular
object—for example, an object of class CStudent—the data for the student is either saved on disk or read
from disk.

In the MFC library, serialization is not a substitute for a database management system. All the objects
associated with a document are sequentially read from or written to a single disk file. It's not possible to
access individual objects at random disk file addresses. If you need database capability in your application,
consider using the Microsoft Open Database Connectivity (ODBC) software or Data Access Objects (DAO).
Chapter 31 and Chapter 32 show you how to use ODBC and DAO with the MFC application framework.

There's a storage option that fits between sequential files and a database: structured
storage, described in Chapter 27. The MFC framework already uses structured storage
for container programs that support embedded objects.

Disk Files and Archives

How do you know whether Serialize should read or write data? How is Serialize connected to a disk file?
With the MFC library, objects of class CFile represent disk files. A CFile object encapsulates the binary file
handle that you get through the Win32 function CreateFile. This is not the buffered FILE pointer that you'd
get with a call to the C runtime fopen function; rather, it's a handle to a binary file. The application
framework uses this file handle for Win32 ReadFile, WriteFile, and SetFilePointer calls.

If your application does no direct disk I/O but instead relies on the serialization process, you can avoid
direct use of CFile objects. Between the Serialize function and the CFile object is an archive object (of class
CArchive), as shown in Figure 17-1.

The CArchive object buffers data for the CFile object, and it maintains an internal flag that indicates
whether the archive is storing (writing to disk) or loading (reading from disk). Only one active archive is
associated with a file at any one time. The application framework takes care of constructing the CFile and
CArchive objects, opening the disk file for the CFile object and associating the archive object with the file.
All you have to do (in your Serialize function) is load data from or store data in the archive object. The
application framework calls the document's Serialize function during the File Open and File Save processes.

Figure 17-1. The serialization process.

Making a Class Serializable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Making a Class Serializable

A serializable class must be derived directly or indirectly from CObject. In addition (with some exceptions),
the class declaration must contain the DECLARE_SERIAL macro call, and the class implementation file must
con- tain the IMPLEMENT_SERIAL macro call. (See the Microsoft Foundation Class Reference for a
description of these macros.) This chapter's CStudent class example is modified from the class in Chapter
16 to include these macros.

Writing a Serialize Function

In Chapter 16, you saw a CStudent class, derived from CObject, with these data members:

public:
 CString m_strName;
 int m_nGrade;
Now your job is to write a Serialize member function for CStudent. Because Serialize is a virtual member
function of class CObject, you must be sure that the return value and parameter types match the CObject
declaration. The Serialize function for the CStudent class is below.

void CStudent::Serialize(CArchive& ar)
{
 TRACE("Entering CStudent::Serialize\n");
 if (ar.IsStoring()) {
 ar << m_strName << m_nGrade;
 }
 else {
 ar >> m_strName >> m_nGrade;
 }
}
Most serialization functions call the Serialize functions of their base classes. If CStudent were derived from
CPerson, for example, the first line of the Serialize function would be

CPerson::Serialize(ar);
The Serialize function for CObject (and for CDocument, which doesn't override it) doesn't do anything
useful, so there's no need to call it.

Notice that ar is a CArchive reference parameter that identifies the application's archive object. The
CArchive::IsStoring member function tells us whether the archive is currently being used for storing or
loading. The CArchive class has overloaded insertion operators (<<) and extraction operators (>>) for
many of the C++ built-in types, as shown in the following table.

Type Description

BYTE 8 bits, unsigned

WORD 16 bits, unsigned

LONG 32 bits, signed

DWORD 32 bits, unsigned

float 32 bits

double 64 bits, IEEE standard

int 32 bits, signed

short 16 bits, signed

char 8 bits, unsigned

unsigned 32 bits, unsigned

The insertion operators are overloaded for values; the extraction operators are overloaded for references.
Sometimes you must use a cast to satisfy the compiler. Suppose you have a data member m_nType that is
an enumerated type. Here's the code you would use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ar << (int) m_nType;
ar >> (int&) m_nType;
MFC classes that are not derived from CObject, such as CString and CRect, have their own overloaded
insertion and extraction operators for CArchive.

Loading from an Archive—Embedded Objects vs. Pointers

Now suppose your CStudent object has other objects embedded in it, and these objects are not instances
of standard classes such as CString, CSize, and CRect. Let's add a new data member to the CStudent
class:

public:
 CTranscript m_transcript;
Assume that CTranscript is a custom class, derived from CObject, with its own Serialize member function.
There's no overloaded << or >> operator for CObject, so the CStudent::Serialize function now becomes

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring()) {
 ar << m_strName << m_nGrade;
 }
 else {
 ar >> m_strName >> m_nGrade;
 }
 m_transcript.Serialize(ar);
}
Before the CStudent::Serialize function can be called to load a student record from the archive, a CStudent
object must exist somewhere. The embedded CTranscript object m_transcript is constructed along with the
CStudent object before the call to the CTranscript::Serialize function. When the virtual
CTranscript::Serialize function does get called, it can load the archived transcript data into the embedded
m_transcript object. If you're looking for a rule, here it is: always make a direct call to Serialize for
embedded objects of classes derived from CObject.

Suppose that, instead of an embedded object, your CStudent object contained a CTranscript pointer data
member such as this:

public:
 CTranscript* m_pTranscript;
You could use the Serialize function, as shown below, but as you can see, you must construct a new
CTranscript object yourself.

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade;
 else {
 m_pTranscript = new CTranscript;
 ar >> m_strName >> m_nGrade;
 }
 m_pTranscript->Serialize(ar);
}
Because the CArchive insertion and extraction operators are indeed overloaded for CObject pointers, you
could write Serialize this way instead:

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade << m_pTranscript;
 else
 ar >> m_strName >> m_nGrade >> m_pTranscript;
}
But how is the CTranscript object constructed when the data is loaded from the archive? That's where the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But how is the CTranscript object constructed when the data is loaded from the archive? That's where the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros in the CTranscript class come in.

When the CTranscript object is written to the archive, the macros ensure that the class name is written
along with the data. When the archive is read, the class name is read in and an object of the correct class
is dynamically constructed, under the control of code generated by the macros. Once the CTranscript
object has been constructed, the overridden Serialize function for CTranscript can be called to do the work
of reading the student data from the disk file. Finally the CTranscript pointer is stored in the m_pTranscript
data member. To avoid a memory leak, you must be sure that m_pTranscript does not already contain a
pointer to a CTranscript object. If the CStudent object was just constructed and thus was not previously
loaded from the archive, the transcript pointer will be null.

The insertion and extraction operators do not work with embedded objects of classes derived from
CObject, as shown here:

ar >> m_strName >> m_nGrade >> &m_transcript; // Don't try this

Serializing Collections

Because all collection classes are derived from the CObject class and the collection class declarations
contain the DECLARE_SERIAL macro call, you can conveniently serialize collections with a call to the
collection class's Serialize member function. If you call Serialize for a CObList collection of CStudent
objects, for example, the Serialize function for each CStudent object will be called in turn. You should,
however, remember the following specifics about loading collections from an archive:

If a collection contains pointers to objects of mixed classes (all derived from CObject), the individual
class names are stored in the archive so that the objects can be properly constructed with the
appropriate class constructor.

If a container object, such as a document, contains an embedded collection, loaded data is
appended to the existing collection. You might need to empty the collection before loading from the
archive. This is usually done in the document's virtual DeleteContents function, which is called by
the application framework.

When a collection of CObject pointers is loaded from an archive, the following processing steps take
place for each object in the collection:

1. The object's class is identified.

2. Heap storage is allocated for the object.

3. The object's data is loaded into the newly allocated storage.

4. A pointer to the new object is stored in the collection.

The EX17A example shows serialization of an embedded collection of CStudent records.

The Serialize Function and the Application Framework

OK, so you know how to write Serialize functions, and you know that these function calls can be nested.
But do you know when the first Serialize function gets called to start the serialization process? With the
application framework, everything is keyed to the document (the object of a class derived from
CDocument). When you choose Save or Open from the File menu, the application framework creates a
CArchive object (and an underlying CFile object) and then calls your document class's Serialize function,
passing a reference to the CArchive object. Your derived document class Serialize function then serializes
each of its nontemporary data members.

If you take a close look at any AppWizard-generated document class, you'll notice that
the class includes the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros
rather than the DECLARE_SERIAL and IMPLEMENT_SERIAL macros. The SERIAL macros
are unneeded because document objects are never used in conjunction with the
CArchive extraction operator or included in collections; the application framework calls
the document's Serialize member function directly. You should include the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros in all other serializable classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SDI Application
You've seen many SDI applications that have one document class and one view class. We'll stick to a single
view class in this chapter, but we'll explore the interrelationships among the application object, the main
frame window, the document, the view, the document template object, and the associated string and
menu resources.

The Windows Application Object

For each of your applications, AppWizard has been quietly generating a class derived from CWinApp. It has
also been generating a statement such as this:

CMyApp theApp;
What you're seeing here is the mechanism that starts an MFC application. The class CMyApp is derived
from the class CWinApp, and theApp is a globally declared instance of the class. This global object is called
the Windows application object.

Here's a summary of the startup steps in a Microsoft Windows MFC library application:

1. Windows loads your program into memory.

2. The global object theApp is constructed. (All globally declared objects are constructed immediately
when the program is loaded.)

3. Windows calls the global function WinMain, which is part of the MFC library. (WinMain is equivalent
to the non-Windows main function—each is a main program entry point.)

4. WinMain searches for the one and only instance of a class derived from CWinApp.

5. WinMain calls the InitInstance member function for theApp, which is overridden in your derived
application class.

6. Your overridden InitInstance function starts the process of loading a document and displaying the
main frame and view windows.

7. WinMain calls the Run member function for theApp, which starts the processes of dispatching
window messages and command messages.

You can override another important CWinApp member function. The ExitInstance function is called when
the application terminates, after all its windows are closed.

Windows allows multiple instances of programs to run. The InitInstance function is
called each time a program instance starts up. In Win32, each instance runs as an
independent process. It's only incidental that the same code is mapped to the virtual
memory address space of each process. If you want to locate other running instances
of your program, you must either call the Win32 FindWindow function or set up a
shared data section or memory-mapped file for communication.

The Document Template Class

If you look at the InitInstance function that AppWizard generates for your derived application class, you'll
see that the following statements are featured:

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CStudentView));
AddDocTemplate(pDocTemplate);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddDocTemplate(pDocTemplate);
Unless you start doing fancy things with splitter windows and multiple views, this is the only time you'll
actually see a document template object. In this case, it's an object of class CSingleDocTemplate, which is
derived from CDocTemplate. The CSingleDocTemplate class applies only to SDI applications because SDI
applications are limited to one document object. AddDocTemplate is a member function of class CWinApp.

The AddDocTemplate call, together with the document template constructor call, establishes the
relationships among classes—the application class, the document class, the view window class, and the
main frame window class. The application object exists, of course, before template construction, but the
document, view, and frame objects are not constructed at this time. The application framework later
dynamically constructs these objects when they are needed.

This dynamic construction is a sophisticated use of the C++ language. The DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE macros in a class declaration and implementation enable the MFC library to
construct objects of the specified class dynamically. If this dynamic construction capability weren't present,
more relationships among your application's classes would have to be hard-coded. Your derived application
class, for example, would need code for constructing document, view, and frame objects of your specific
derived classes. This would compromise the object-oriented nature of your program.

With the template system, all that's required in your application class is use of the RUNTIME_CLASS
macro. Notice that the target class's declaration must be included for this macro to work.

Figure 17-2 illustrates the relationships among the various classes, and Figure 17-3 illustrates the object
relationships. An SDI application can have only one template (and associated class groups), and when the
SDI program is running, there can be only one document object and only one main frame window object.

Figure 17-2. Class relationships.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-3. Object relationships.

The MFC library dynamic construction capability was designed before the runtime type
identification (RTTI) feature was added to the C++ language. The original MFC
implementation goes beyond RTTI, and the MFC library continues to use it for dynamic
object construction. See Appendix B for a description of MFC library dynamic
construction.

The Document Template Resource

The first AddDocTemplate parameter is IDR_MAINFRAME, the identifier for a string table resource. Here is
the corresponding string that AppWizard generates for EX17A in the application's RC file:

IDR_MAINFRAME
 "ex17a\n" // application window caption
 "\n" // root for default document name
 // ("Untitled" used if none provided)
 "Ex17a\n" // document type name
 "Ex17a Files (*.17a)\n" // document type description and filter
 ".17a\n" // extension for documents of this type
 "Ex17a.Document\n" // Registry file type ID
 "Ex17a Document" // Registry file type description

The resource compiler won't accept the string concatenations as shown above. If you
examine the ex17a.rc file, you'll see the substrings combined in one long string.

IDR_MAINFRAME specifies one string that is separated into substrings by newline characters (\n). The
substrings show up in various places when the application executes. The string 17A is the default
document file extension specified to AppWizard.

The IDR_MAINFRAME ID, in addition to specifying the application's strings, identifies the application's icon,
toolbar resources, and menu. AppWizard generates these resources, and you can maintain them with the
resource editors.

So now you've seen how the AddDocTemplate call ties all the application elements together. Be aware,
though, that no windows have been created yet and therefore nothing appears on the screen.

Multiple Views of an SDI Document

Providing multiple views of an SDI document is a little more complicated. You could provide a menu item
that allows the user to choose a view, or you could allow multiple views in a splitter window. Chapter 20
shows you how to implement both techniques.

Creating an Empty Document—The CWinApp::OnFileNew Function

After your application class's InitInstance function calls the AddDocTemplate member function, it calls
OnFileNew (indirectly through CWinApp::ProcessShellCommand), another important CWinApp member
function. OnFileNew sorts through the web of interconnected class names and does the following:

1. Constructs the document object but does not attempt to read data from disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Constructs the main frame object (of class CMainFrame); also creates the main frame window but
does not show it. The main frame window includes the IDR_MAINFRAME menu, the toolbar, and the
status bar.

3. Constructs the view object; also creates the view window but doesn't show it.

4. Establishes connections among the document, main frame, and view objects. Do not confuse these
object connections with the class connections established by the call to AddDocTemplate.

5. Calls the virtual CDocument::OnNewDocument member function for the document object, which
calls the virtual DeleteContents function.

6. Calls the virtual CView::OnInitialUpdate member function for the view object.

7. Calls the virtual CFrameWnd::ActivateFrame for the frame object to show the main frame window
together with the menus, view window, and control bars.

Some of the functions listed above are not called directly by OnFileNew but are called
indirectly through the application framework.

In an SDI application, the document, main frame, and view objects are created only once, and they last for
the life of the program. The CWinApp::OnFileNew function is called by InitInstance. It's also called in
response to the user choosing the File New menu item. In this case, OnFileNew must behave a little
differently. It can't construct the document, frame, and view objects because they're already constructed.
Instead, it reuses the existing document object and performs steps 5, 6, and 7 above. Notice that
OnFileNew always calls DeleteContents (indirectly) to empty the document.

The Document Class's OnNewDocument Function

You've seen the view class OnInitialUpdate member function and the document class OnNewDocument
member function in Chapter 16. If an SDI application didn't reuse the same document object, you wouldn't
need OnNewDocument because you could perform all document initialization in your document class
constructor. Now you must override OnNewDocument to initialize your document object each time the user
chooses File New or File Open. AppWizard helps you by providing a skeleton function in the derived
document class it generates.

It's a good idea to minimize the work you do in constructor functions. The fewer things
you do, the less chance there is for the constructor to fail—and constructor failures are
messy. Functions such as CDocument::OnNewDocument and CView::OnInitialUpdate
are excellent places to do initial housekeeping. If anything fails at creation time, you
can pop up a message box, and in the case of OnNewDocument, you can return FALSE.
Be advised that both functions can be called more than once for the same object. If you
need certain instructions executed only once, declare a "first time" flag data member
and then test/set it appropriately.

Connecting File Open to Your Serialization Code—The OnFileOpen Function

When AppWizard generates an application, it maps the File Open menu item to the CWinApp::OnFileOpen
member function. When called, this function invokes a sequence of functions to accomplish these steps:

1. Prompts the user to select a file.

2. Calls the virtual function CDocument::OnOpenDocument for the already existing document object.
This function opens the file, calls CDocument::DeleteContents, and constructs a CArchive object set
for loading. It then calls the document's Serialize function, which loads data from the archive.

3. Calls the view's OnInitialUpdate function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Calls the view's OnInitialUpdate function.

The Most Recently Used (MRU) file list is a handy alternative to the File Open menu item. The application
framework tracks the four most recently used files and displays their names on the File menu. These
filenames are stored in the Windows Registry between program executions.

You can change the number of recent files tracked by supplying a parameter to the
LoadStdProfileSetting function in the application class InitInstance function.

The Document Class's DeleteContents Function

When you load an existing SDI document object from a disk file, you must somehow erase the existing
contents of the document object. The best way to do this is to override the CDocument::DeleteContents
virtual function in your derived document class. The overridden function, as you've seen in Chapter 16 ,
does whatever is necessary to clean up your document class's data members. In response to both the File
New and File Open menu items, the CDocument functions OnNewDocument and OnOpenDocument both
call the DeleteContents function, which means DeleteContents is called immediately after the document
object is first constructed. It's called again when you close a document.

If you want your document classes to work in SDI applications, plan on emptying the document's contents
in the DeleteContents member function rather than in the destructor. Use the destructor only to clean up
items that last for the life of the object.

Connecting File Save and File Save As to Your Serialization Code

When AppWizard generates an application, it maps the File Save menu item to the OnFileSave member
function of the CDocument class. OnFileSave calls the CDocument function OnSaveDocument, which in
turn calls your document's Serialize function with an archive object set for storing. The File Save As menu
item is handled in a similar manner: it is mapped to the CDocument function OnFileSaveAs, which calls
OnSaveDocument. Here the application framework does all the file management necessary to save a
document on disk.

Yes, it is true that the File New and File Open menu options are mapped to application
class member functions, but File Save and File Save As are mapped to document class
member functions. File New is mapped to OnFileNew. The SDI version of InitInstance
also calls OnFileNew (indirectly). No document object exists when the application
framework calls InitInstance, so OnFileNew can't possibly be a member function of
CDocument. When a document is saved, however, a document object certainly exists.

The Document's "Dirty" Flag

Many document-oriented applications for Windows track the user's modifications of a document. If the user
tries to close a document or exit the program, a message box asks whether the user wants to save the
document. The MFC application framework directly supports this behavior with the CDocument data
member m_bModified. This Boolean variable is TRUE if the document has been modified (has become
"dirty"); otherwise, it is FALSE.

The protected m_bModified flag is accessed through the CDocument member functions SetModifiedFlag
and IsModified. The framework sets the document object's flag to FALSE when the document is created or
read from disk and when it is saved on disk. You, the programmer, must use the SetModifiedFlag function
to set the flag to TRUE when the document data changes. The virtual function CDocument::SaveModified,
which the framework calls when the user closes the document, displays a message box if the m_bModified
flag is set to TRUE. You can override this function if you need to do something else.

In the EX17A example, you'll see how a one-line update command UI function can use IsModified to
control the state of the disk button and the corresponding menu item. When the user modifies the file, the
disk button is enabled; when the user saves the file, the button changes to gray.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

disk button is enabled; when the user saves the file, the button changes to gray.

In one respect, MFC SDI applications behave a little differently from other Windows SDI
applications such as Notepad. Here's a typical sequence of events:

1. The user creates a document and saves it on disk under the name (for example)
test.dat.

2. The user modifies the document.

3. The user chooses File Open and then specifies test.dat.

When the user chooses File Open, Notepad asks whether the user wants to save the
changes made to the document (in Step 2 above). If the user answers no, the program
rereads the document from disk. An MFC application, on the other hand, assumes that
the changes are permanent and does not reread the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX17A Example—SDI with Serialization
The EX17A example is similar to example EX16B. The student dialog and the toolbar are the same, and the
view class is the same. Serialization has been added, together with an update command UI function for File
Save. The header and implementation files for the view and document classes will be reused in example
EX18A in the next chapter.

All the new code (code that is different from EX16B) is listed, with additions and changes to the
AppWizard-generated code and the ClassWizard code in boldface. A list of the files and classes in the
EX17A example is shown in the following table.

Header File Source Code File Class Description

ex17a.h ex17a.cpp CEx17aApp Application class (from AppWizard)

 CAboutDlg About dialog

MainFrm.h MainFrm.cpp CMainFrame SDI main frame

StuDoc.h StuDoc.cpp CStudentDoc Student document

StuView.h StuView.cpp CStudentView Student form view (from EX16B)

Student.h Student.cpp CStudent Student record

StdAfx.h StdAfx.cpp Precompiled headers (with afxtempl.h included)

CStudent

The EX17A Student.h file is almost the same as the file in the EX16A project. (See Figure 16-2.) The
header contains the macro

DECLARE_SERIAL(CStudent)
instead of

DECLARE_DYNAMIC(CStudent)
and the implementation file contains the macro

IMPLEMENT_SERIAL(CStudent, CObject, 0)
instead of

IMPLEMENT_DYNAMIC(CStudent, Cobject)
The virtual Serialize function has also been added.

CEx17aApp

The application class files, shown in Figure 17-4, contain only code generated by AppWizard. The
application was generated with a default file extension and with the Microsoft Windows Explorer launch and
drag-and-drop capabilities. These features are described later in this chapter.

To generate additional code, you must do the following when you first run AppWizard: in the AppWizard
Step 4 page, click the Advanced button. When the Advanced Options dialog appears, you must enter the
filename extension in the upper-left control, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This ensures that the document template resource string contains the correct default extension and that
the correct Explorer-related code is inserted into your application class InitInstance member function. You
can change some of the other resource substrings if you want.

The generated calls to Enable3dControls and Enable3dControlsStatic in
CEx17aApp::InitInstance are not necessary with Microsoft Windows 95, Microsoft
Windows 98, or Microsoft Windows NT 4.0. These two functions support an older DLL
that is shipped with Microsoft Windows 3.51.

EX17A.H

// ex17a.h : main header file for the EX17A application
//

#if !defined(AFX_EX17A_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
#define AFX_EX17A_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CEx17aApp:
// See ex17a.cpp for the implementation of this class
//

class CEx17aApp : public CWinApp
{
public:
 CEx17aApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx17aApp)
 public:
 virtual BOOL InitInstance();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL InitInstance();
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CEx17aApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///
//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX17A_H__1A036EA3_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
EX17A.CPP

// ex17a.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "ex17a.h"

#include "MainFrm.h"
#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CEx17aApp

BEGIN_MESSAGE_MAP(CEx17aApp, CWinApp)
 //{{AFX_MSG_MAP(CEx17aApp)

 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CEx17aApp construction

CEx17aApp::CEx17aApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Place all significant initialization in InitInstance
}

///
// The one and only CEx17aApp object

CEx17aApp theApp;
///
// CEx17aApp initialization

BOOL CEx17aApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 // Change the registry key under which our settings are stored.
 // You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file options
 // (including MRU)

 // Register the application's document templates.
 // Document templates serve as the connection between
 // documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CStudentView));
 AddDocTemplate(pDocTemplate);

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);
 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized,
 // so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)

 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CEx17aApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CEx17aApp commands

Figure 17-4. The CEx17aApp class listing.

CMainFrame

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CMainFrame

The main frame window class code, shown in Figure 17-5, is almost unchanged from the code that
AppWizard generated. The overridden ActivateFrame function and the WM_DROPFILES handler exist solely
for trace purposes.

MAINFRM.H

// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
#define AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_
#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CMainFrame : public CFrameWnd
{
protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void ActivateFrame(int nCmdShow = -1);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnDropFiles(HDROP hDropInfo);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#endif // !defined(AFX_MAINFRM_H__1A036EA7_821A_11D0_8FE2_00C04FC2A0C2__INCLUDED_)
MAINFRM.CPP

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "ex17a.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_CREATE()
 ON_WM_DROPFILES()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};
///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here

}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.Create(this) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 // TODO: Remove this if you don't want tool tips
 // or a resizeable toolbar
 m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

 // TODO: Delete these three lines if you don't want the toolbar to
 // be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);

DockControlBar(&m_wndToolBar);
 return 0;
}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CFrameWnd::PreCreateWindow(cs);
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers
void CMainFrame::ActivateFrame(int nCmdShow)
{
 TRACE("Entering CMainFrame::ActivateFrame\n");
 CFrameWnd::ActivateFrame(nCmdShow);
}

void CMainFrame::OnDropFiles(HDROP hDropInfo)
{
 TRACE("Entering CMainFrame::OnDropFiles\n");
 CFrameWnd::OnDropFiles(hDropInfo);
}

Figure 17-5. The CMainFrame class listing.

CStudentDoc

The CStudentDoc class is the same as the CStudentDoc class from the previous chapter (shown in Figure
16-4) except for four functions: Serialize, DeleteContents, OnOpenDocument, and OnUpdateFileSave.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serialize

One line has been added to the AppWizard-generated function to serialize the document's student list, as
shown here:

///
// CStudentDoc serialization

void CStudentDoc::Serialize(CArchive& ar)
{
 TRACE("Entering CStudentDoc::Serialize\n");
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
 m_studentList.Serialize(ar);
}

DeleteContents

The Dump statement is replaced by a simple TRACE statement. Here is the modified code:

void CStudentDoc::DeleteContents()
{
 TRACE("Entering CStudentDoc::DeleteContents\n");
 while (m_studentList.GetHeadPosition()) {
 delete m_studentList.RemoveHead();
 }
}

OnOpenDocument

This virtual function is overridden only for the purpose of displaying a TRACE message, as shown below.

BOOL CStudentDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 TRACE("Entering CStudentDoc::OnOpenDocument\n");
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 // TODO: Add your specialized creation code here

 return TRUE;
}

OnUpdateFileSave

This message map function grays the File Save toolbar button when the document is in the unmodified
state. The view controls this state by calling the document's SetModifiedFlag function, as shown here:

void CStudentDoc::OnUpdateFileSave(CCmdUI* pCmdUI)
{
 // Disable disk toolbar button if file is not modified
 pCmdUI->Enable(IsModified());
}

CStudentView

The code for the CStudentView class comes from the previous chapter. Figure 16-5 shows the code.

Testing the EX17A Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Testing the EX17A Application

Build the program and start it from the debugger, and then test it by typing some data and saving it on
disk with the filename Test.17a. (You don't need to type the .17a.)

Exit the program, and then restart it and open the file you saved. Did the data you typed come back? Take
a look at the Debug window and observe the sequence of function calls. Is the following sequence
produced when you start the application and open the file?

Entering CStudentDoc constructor
Entering CStudentView constructor
Entering CStudentDoc::OnNewDocument
Entering CStudentDoc::DeleteContents
Entering CStudentView::OnInitialUpdate
Entering CStudentView::OnUpdate
Entering CMainFrame::ActivateFrame
Entering CStudentDoc::OnOpenDocument
Entering CStudentDoc::DeleteContents
Entering CStudentDoc::Serialize
Entering CStudent::Serialize
Entering CStudent::Serialize
Entering CStudent::Serialize
Entering CStudentView::OnInitialUpdate
Entering CStudentView::OnUpdate
Entering CMainFrame::ActivateFrame

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer Launch and Drag and Drop
In the past, PC users were accustomed to starting up a program and then selecting a disk file (sometimes
called a document) that contained data the program understood. Many MS-DOS-based programs worked
this way. The old Windows Program Manager improved things by allowing the user to double-click on a
program icon instead of typing a program name. Meanwhile, Apple Macintosh users were double-clicking
on a document icon; the Macintosh operating system figured out which program to run.

While Windows Explorer still lets users double-click on a program, it also lets users double-click on a
document icon to run the document's program. But how does Explorer know which program to run?
Explorer uses the Windows Registry to make the connection between document and program. The link
starts with the filename extension that you typed into AppWizard, but as you'll see, there's more to it than
that. Once the association is made, users can launch your program by double-clicking on its document icon
or by dragging the icon from Explorer to a running instance of your program. In addition, users can drag
the icon to a printer, and your program will print it.

Program Registration

In Chapter 15, you saw how MFC applications store data in the Windows Registry by calling SetRegistryKey
from the InitInstance function. Independent of this SetRegistryKey call, your program can write file
association information in a different part of the Registry on startup. To activate this feature, you must
type in the filename extension when you create the application with AppWizard. (Use the Advanced button
in AppWizard Step 4.) After you do that, AppWizard adds the extension as a substring in your template
string and adds the following line in your InitInstance function:

RegisterShellFileTypes(TRUE);
Now your program adds two items to the Registry. Under the HKEY_CLASSES_ROOT top-level key, it adds
a subkey and a data string as shown here (for the EX17A example):

.17A = Ex17a.Document
The data item is the file type ID that AppWizard has chosen for you. Ex17a.Document, in turn, is the key
for finding the program itself. The Registry entries for Ex17a.Document, also beneath
HKEY_CLASSES_ROOT, are shown here.

Notice that the Registry contains the full pathname of the EX17A program. Now Explorer can use the
Registry to navigate from the extension to the file type ID to the actual program itself. After the extension
is registered, Explorer finds the document's icon and displays it next to the filename, as shown here.

Double-Clicking on a Document

When the user double-clicks on a document icon, Explorer executes the associated SDI program, passing
in the selected filename on the command line. You might notice that AppWizard generates a call to
EnableShellOpen in the application class InitInstance function. This supports execution via DDE message,
the technique used by the File Manager in Windows NT 3.51. Explorer can launch your SDI application
without this call.

Enabling Drag and Drop

If you want your already-running program to open files dragged from Explorer, you must call the CWnd
function DragAcceptFiles for the application's main frame window. The application object's public data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function DragAcceptFiles for the application's main frame window. The application object's public data
member m_pMainWnd points to the CFrameWnd (or CMDIFrameWnd) object. When the user drops a file
anywhere inside the frame window, the window receives a WM_DROPFILES message, which triggers a call
to FrameWnd::OnDropFiles. The following line in InitInstance, generated by AppWizard, enables drag and
drop:

m_pMainWnd->DragAcceptFiles();

Program Startup Parameters

When you choose Run from the Start menu, or when you double-click the program directly in Explorer,
there is no command-line parameter. The InitInstance function processes the command line with calls to
ParseCommandLine and ProcessShellCommand. If the command line contains something that looks like a
filename, the program immediately loads that file. Thus, you create a Windows shortcut that can run your
program with a specific document file.

Experimenting with Explorer Launch and Drag and Drop

Once you have built EX17A, you can try running it from Explorer. You must execute the program directly,
however, in order to write the initial entries in the Registry. Be sure that you've saved at least one 17A file
to disk, and then exit EX17A. Start Explorer, and then open the \vcpp32\ex17a directory. Double-click on
one of the 17A files in the panel on the right. Your program should start with the selected file loaded. Now,
with both EX17A and Explorer open on the desktop, try dragging another file from Explorer to the EX17A
window. The program should open the new file just as if you had chosen File Open from the EX17A menu.

You might also want to look at the EX17A entries in the Registry. Run the Regedit program (possibly
named Regedt32 in Windows NT), and expand the HKEY_CLASSES_ROOT key. Look under ".17A" and
"Ex17a.Document." Also expand the HKEY_CURRENT_USER (or HKEY_USERS\.DEFAULT) key, and look
under "Software." You should see a Recent File List under the subkey ex17a. The EX17A program calls
SetRegistryKey with the string "Local AppWizard-Generated Applications", so the program name goes
beneath the ex17a subkey.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18
Reading and Writing Documents—MDI Applications
This chapter introduces the Microsoft Foundation Class (MFC) Library version 6.0 Multiple Document
Interface (MDI) application and demonstrates how it reads and writes its document files. The MDI
application appears to be the preferred MFC library program style. It's the AppWizard default, and most of
the sample programs that come with Microsoft Visual C++ are MDI applications.

In this chapter, you'll learn the similarities and differences between Single Document Interface (SDI) and
MDI applications, and you'll learn how to convert an SDI application to an MDI application. Be sure you
thoroughly understand the SDI application described in Chapter 17 before you attack the MDI application
in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MDI Application
Before you look at the MFC library code for MDI applications, you should be familiar with the operation of
Microsoft Windows MDI programs. Take a close look at Visual C++ now. It's an MDI application whose
"multiple documents" are program source code files. Visual C++ is not the most typical MDI application,
however, because it collects its documents into projects. It's better to examine Microsoft Word or, better
yet, a real MFC library MDI application—the kind that AppWizard generates.

A Typical MDI Application, MFC Style

This chapter's example, EX18A, is an MDI version of EX17A. Run the EX17A example to see an illustration
of the SDI version after the user has selected a file. Now look at the MDI equivalent, as shown in Figure
18-1.

Figure 18-1. The EX18A application with two files open and the Window menu shown.

The user has two separate document files open, each in a separate MDI child window, but only one child
window is active—the lower window, which lies on top of the other child window. The application has only
one menu and one toolbar, and all commands are routed to the active child window. The main window's
title bar reflects the name of the active child window's document file.

The child window's minimize box allows the user to reduce the child window to an icon in the main window.
The application's Window menu (shown in Figure 18-1) lets the user control the presentation through the
following items.

Menu Item Action

New Window Opens as an additional child window for the selected document

Cascade Arranges the existing windows in an overlapped pattern

Tile Arranges the existing windows in a nonoverlapped, tiled pattern

Arrange Icons Arranges minimized windows in the frame window

(document names) Selects the corresponding child window and brings it to the top

If the user closes both child windows (and opens the File menu), the application looks like Figure 18-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the user closes both child windows (and opens the File menu), the application looks like Figure 18-2.

Figure 18-2. EX18A with no child windows.

The File menu is different, most toolbar buttons are disabled, and the window caption does not show a
filename. The only choices the user has are to start a new document or to open an existing document from
disk.

Figure 18-3 shows the application when it first starts up and a new document is created. The single child
window has been maximized.

Figure 18-3. EX18A with initial child window.

The single, empty child window has the default document name Ex18a1. This name is based on the Doc
Type Name (Ex18a) that you selected in the Advanced Options dialog after clicking the Advanced button in
Step 4 of AppWizard. The first new file is Ex18a1, the second is Ex18a2, and so forth. The user normally
chooses a different name when saving the document.

An MFC library MDI application, like many commercial MDI applications, starts up with a new, empty
document. (Visual C++ is an exception.) If you want your application to start up with a blank frame, you
can modify the argument to the ProcessShellCommand call in the application class file, as shown in
example EX18A.

For Win32 Programmers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Win32 Programmers

Starting with version 3.0, Windows directly supports MDI applications. The MFC library
builds on this Windows support to create an MDI environment that parallels the SDI
environment. In a Win32 MDI application, a main application frame window contains
the menu and a single client window. The client window manages various child windows
that correspond to documents. The MDI client window has its own preregistered
window class (not to be confused with a C++ class) with a procedure that handles
special messages such as WM_MDICASCADE and WM_MDITILE. An MDI child window
procedure is similar to the window procedure for an SDI main window.

In the MFC library, the CMDIFrameWnd class encapsulates the functions of both the
main frame window and the MDI client window. This class has message handlers for all
the Windows MDI messages and thus can manage its child windows, which are
represented by objects of class CMDIChildWnd.

The MDI Application Object

You're probably wondering how an MDI application works and what code makes it different from an SDI
application. Actually, the startup sequences are pretty much the same. An application object of a class
derived from class CWinApp has an overridden InitInstance member function. This InitInstance function is
somewhat different from the SDI InitInstance function, starting with the call to AddDocTemplate.

The MDI Document Template Class

The MDI template construction call in InitInstance looks like this:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(
 IDR_EX18ATYPE,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CStudentView));
AddDocTemplate(pDocTemplate);
Unlike the SDI application you saw in Chapter 17, an MDI application can use multiple document types and
allows the simultaneous existence of more than one document object. This is the essence of the MDI
application.

The single AddDocTemplate call shown above permits the MDI application to support multiple child
windows, each connected to a document object and a view object. It's also possible to have several child
windows (and corresponding view objects) connected to the same document object. In this chapter, we'll
start with only one view class and one document class. You'll see multiple view classes and multiple
document classes in Chapter 20.

When your application is running, the document template object maintains a list of
active document objects that were created from the template. The CMultiDocTemplate
member functions GetFirstDocPosition and GetNextDoc allow you to iterate through the
list. Use CDocument::GetDocTemplate to navigate from a document to its template.

The MDI Frame Window and the MDI Child Window

The SDI examples had only one frame window class and only one frame window object. For SDI
applications, AppWizard generated a class named CMainFrame, which was derived from the class
CFrameWnd. An MDI application has two frame window classes and many frame objects, as shown in the
table below. The MDI frame-view window relationship is shown in Figure 18-4.

Base Class AppWizard-
Generated
Class

Number
of
Objects

Menu and
Control
Bars

Contains
a View

Object Constructed

CMDIFrameWnd CMainFrame 1 only Yes No In application class's
InitInstance function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CMDIChildWnd CChildFrame 1 per
child
window

No Yes By application framework
when a new child window is
opened

Figure 18-4. The MDI frame-view window relationship.

In an SDI application, the CMainFrame object frames the application and contains the view object. In an
MDI application, the two roles are separated. Now the CMainFrame object is explicitly constructed in
InitInstance, and the CChildFrame object contains the view. AppWizard generates the following code:

CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
m_pMainWnd = pMainFrame;
(code calls ProcessShellCommand to create child frame)

pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();
The application framework can create the CChildFrame objects dynamically because the CChildFrame
runtime class pointer is passed to the CMultiDocTemplate constructor.

The MDI InitInstance function sets the CWinApp data member m_pMainWnd to point to
the application's main frame window. This means you can access m_pMainWnd through
the global AfxGetApp function anytime you need to get your application's main frame
window.

The Main Frame and Document Template Resources

An MDI application (EX18A, as described later in this chapter) has two separate string and menu
resources, identified by the IDR_MAINFRAME and IDR_EX18ATYPE constants. The first resource set goes
with the empty main frame window; the second set goes with the occupied main frame window. Here are
the two string resources with substrings broken out:

IDR_MAINFRAME
 "ex18a" // application window caption

IDR_EX18ATYPE
 "\n" // (not used)
 "Ex18a\n" // root for default document name
 "Ex18a\n" // document type name
 "Ex18a Files (*.18a)\n" // document type description and filter
 ".18a\n" // extension for documents of this type
 "Ex18a.Document\n" // Registry file type ID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Ex18a.Document\n" // Registry file type ID
 "Ex18a Document" // Registry file type description

The resource compiler won't accept the string concatenations as shown above. If you
examine the ex18a.rc file, you'll see the substrings combined in one long string.

The application window caption comes from the IDR_MAINFRAME string. When a document is open, the
document filename is appended. The last two substrings in the IDR_EX18ATYPE string support embedded
launch and drag and drop.

Creating an Empty Document—The CWinApp::OnFileNew Function

The MDI InitInstance function calls OnFileNew (through ProcessShellCommand), as did the SDI
InitInstance function. This time, however, the main frame window has already been created. OnFileNew,
through a call to the CMultiDocTemplate function OpenDocumentFile, now does the following:

1. Constructs a document object but does not attempt to read data from disk.

2. Constructs a child frame window object (of class CChildFrame). Also creates the child frame window
but does not show it. In the main frame window, the IDR_EX18ATYPE menu replaces the
IDR_MAINFRAME menu. IDR_EX18ATYPE also identifies an icon resource that is used when the child
window is minimized within the frame.

3. Constructs a view object. Also creates the view window but does not show it.

4. Establishes connections among the document, the main frame, and view objects. Do not confuse
these object connections with the class associations established by the call to AddDocTemplate.

5. Calls the virtual OnNewDocument member function for the document object.

6. Calls the virtual OnInitialUpdate member function for the view object.

7. Calls the virtual ActivateFrame member function for the child frame object to show the frame
window and the view window.

The OnFileNew function is also called in response to the File New menu command. In an MDI application,
OnFileNew performs exactly the same steps as it does when called from InitInstance.

Some functions listed above are not called directly by OpenDocumentFile but are called
indirectly through the application framework.

Creating an Additional View for an Existing Document

If you choose the New Window command from the Window menu, the application framework opens a new
child window that is linked to the currently selected document. The associated CMDIFrameWnd function,
OnWindowNew, does the following:

1. Constructs a child frame object (of class CChildFrame). Also creates the child frame window but
does not show it.

2. Constructs a view object. Also creates the view window but does not show it.

3. Establishes connections between the new view object and the existing document and main frame
objects.

4. Calls the virtual OnInitialUpdate member function for the view object.

5. Calls the virtual ActivateFrame member function for the child frame object to show the frame
window and the view window.

Loading and Storing Documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Loading and Storing Documents

In MDI applications, documents are loaded and stored the same way as in SDI applications but with two
important differences: a new document object is constructed each time a document file is loaded from
disk, and the document object is destroyed when the child window is closed. Don't worry about clearing a
document's contents before loading—but override the CDocument::DeleteContents function anyway to
make the class portable to the SDI environment.

Multiple Document Templates

An MDI application can support multiple document templates through multiple calls to the AddDocTemplate
function. Each template can specify a different combination of document, view, and MDI child frame
classes. When the user chooses New from the File menu of an application with multiple templates, the
application framework displays a list box that allows the user to select a template by name as specified in
the string resource (document type substring). Multiple AddDocTemplate calls are not supported in SDI
applications because the document, view, and frame objects are constructed once for the life of the
application.

When your application is running, the application object keeps a list of active document
template objects. The CWinApp member functions GetFirstDocTemplatePosition and
GetNextDocTemplate allow you to iterate through the list of templates. These
functions, together with the CDocTemplate member functions GetFirstDocPosition and
GetNextDoc, allow you to access all of the application's document objects.

If you don't want the template list box, you can edit the File menu to add a New menu item for each
document type. Code the command message handlers as shown below, using the document type substring
from each template.

void CMyApp::OnFileNewStudent()
{
 OpenNewDocument("Studnt");
}
void CMyApp::OnFileNewTeacher()
{
 OpenNewDocument("Teachr");
}
Then add the OpenNewDocument helper function as follows:

BOOL CMyApp::OpenNewDocument(const CString& strTarget)
{
 CString strDocName;
 CDocTemplate* pSelectedTemplate;
 POSITION pos = GetFirstDocTemplatePosition();
 while (pos != NULL) {
 pSelectedTemplate = (CDocTemplate*) GetNextDocTemplate(pos);
 ASSERT(pSelectedTemplate != NULL);
 ASSERT(pSelectedTemplate->IsKindOf(
 RUNTIME_CLASS(CDocTemplate)));
 pSelectedTemplate->GetDocString(strDocName,
 CDocTemplate::docName);
 if (strDocName == strTarget) { // from template's
 // string resource
 pSelectedTemplate->OpenDocumentFile(NULL);
 return TRUE;
 }
 }
 return FALSE;
}

Explorer Launch and Drag and Drop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Explorer Launch and Drag and Drop

When you double-click on a document icon for an MDI application in Windows Explorer, the application
launches only if it was not running already; otherwise, a new child window opens in the running application
for the document you selected. The EnableShellOpen call in the application class InitInstance function is
necessary for this to work. Drag and drop works much the same way in an MDI application as it does in an
SDI application. If you drag a file from Windows Explorer to your MDI main frame window, the program
opens a new child frame (with associated document and view) just as if you'd chosen the File Open
command. As with SDI applications, you must use the AppWizard Step 4 Advanced button to specify the
filename extension.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX18A Example
This example is the MDI version of the EX17A example from the previous chapter. It uses the same
document and view class code and the same resources (except the program name). The application code
and main frame class code are different, however. All the new code is listed here, including the code that
AppWizard generates. A list of the files and classes in the EX18A example are shown in the table below.

Header File Source Code File Class Description

ex18a.h ex18a.cpp CEx18aApp Application class (from AppWizard)

 CAboutDlg About dialog

MainFrm.h MainFrm.cpp CMainFrame MDI main frame

ChildFrm.h ChildFrm.cpp CChildFrame MDI child frame

StuDoc.h StuDoc.cpp CStudentDoc Student document (from EX17A)

StuView.h StuView.cpp CStudentView Student form view (from EX16B)

Student.h Student.cpp CStudent Student record (from EX17A)

StdAfx.h StdAfx.h Precompiled headers (with afxtempl.h included)

CEx18aApp

In the CEx18aApp source code listing, the OpenDocumentFile member function is overridden only for the
purpose of inserting a TRACE statement. Also, a few lines have been added before the
ProcessShellCommand call in InitInstance. They check the argument to ProcessShellCommand and change
it if necessary to prevent the creation of any empty document window on startup. Figure 18-5 shows the
source code.

EX18A.H

// ex18a.h : main header file for the EX18A application
//

#if !defined(AFX_EX18A_H__7B5FE267_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
#define AFX_EX18A_H__7B5FE267_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef __AFXWIN_H__
 #error include `stdafx.h' before including this file for PCH
#endif
#include "resource.h" // main symbols

//
// CEx18aApp:
// See ex18a.cpp for the implementation of this class
//

class CEx18aApp : public CWinApp
{
public:
 CEx18aApp();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx18aApp)
 public:
 virtual BOOL InitInstance();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL InitInstance();
 virtual CDocument* OpenDocumentFile(LPCTSTR lpszFileName);
 //}}AFX_VIRTUAL

// Implementation

 //{{AFX_MSG(CEx18aApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_EX18A_H__7B5FE267_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
EX18A.CPP

// ex18a.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "ex18a.h"

#include "MainFrm.h"
#include "ChildFrm.h"
#include "StuDoc.h"
#include "StuView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CEx18aApp

BEGIN_MESSAGE_MAP(CEx18aApp, CWinApp)
 //{{AFX_MSG_MAP(CEx18aApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

//
// CEx18aApp construction

CEx18aApp::CEx18aApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

//

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//
// The one and only CEx18aApp object

CEx18aApp theApp;

//
// CEx18aApp initialization

BOOL CEx18aApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC
 // statically
#endif

 // Change the registry key under which our settings are stored.
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));
 LoadStdProfileSettings(); // Load standard INI file options
 // (including MRU)
 // Register the application's document templates. Document
 // templates serve as the connection between documents, frame
 // windows and views.

 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(
 IDR_EX18ATYPE,
 RUNTIME_CLASS(CStudentDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CStudentView));
 AddDocTemplate(pDocTemplate);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();

 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // no empty document window on startup
 if (cmdInfo.m_nShellCommand == CCommandLineInfo::FileNew) {
 cmdInfo.m_nShellCommand = CCommandLineInfo::FileNothing;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The main window has been initialized, so show and update it.
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}
//
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CEx18aApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}
//

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//
// CEx18aApp message handlers

CDocument* CEx18aApp::OpenDocumentFile(LPCTSTR lpszFileName)
{
 TRACE("CEx18aApp::OpenDocumentFile\n");
 return CWinApp::OpenDocumentFile(lpszFileName);
}

Figure 18-5. The CEx18aApp source code listing.

CMainFrame

This main frame class, listed in Figure 18-6, is almost identical to the SDI version, except that it's derived
from CMDIFrameWnd instead of CFrameWnd.

MAINFRM.H

// MainFrm.h : interface of the CMainFrame class
//
//

#if !defined(AFX_MAINFRM_H__7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
#define AFX_MAINFRM_H__7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame : public CMDIFrameWnd
{
 DECLARE_DYNAMIC(CMainFrame)
public:
 CMainFrame();

// Attributes
public:
// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_MAINFRM_H__7B5FE26B_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
MAINFRM.CPP

// MainFrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "ex18a.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)
BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code !
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

//
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}
CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD
 | WS_VISIBLE | CBRS_TOP | CBRS_GRIPPER | CBRS_TOOLTIPS
 | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }
 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 // TODO: Delete these three lines if you don't want the toolbar to
 // be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_wndToolBar);

 return 0;
}
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CMDIFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return TRUE;
}
//
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CMDIFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CMDIFrameWnd::Dump(dc);
}

#endif //_DEBUG

//
// CMainFrame message handlers

Figure 18-6. The CMainFrame class listing.

CChildFrame

This child frame class, listed in Figure 18-7, lets you conveniently control the child frame window's
characteristics by adding code in the PreCreateWindow function. You can also map messages and override
other virtual functions.

CHILDFRM.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ChildFrm.h : interface of the CChildFrame class
//
//

#if !defined(AFX_CHILDFRM_H__7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
#define AFX_CHILDFRM_H__7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CChildFrame : public CMDIChildWnd
{
 DECLARE_DYNCREATE(CChildFrame)
public:
 CChildFrame();

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CChildFrame)
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void ActivateFrame(int nCmdShow = -1);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CChildFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 //{{AFX_MSG(CChildFrame)
 // NOTE - the ClassWizard will add and remove member functions here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // !defined(AFX_CHILDFRM_H__7B5FE26D_85E9_11D0_8FE3_00C04FC2A0C2__INCLUDED_)
CHILDFRM.CPP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ChildFrm.cpp : implementation of the CChildFrame class
//

#include "stdafx.h"
#include "ex18a.h"

#include "ChildFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

//
// CChildFrame

IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd)

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
 //{{AFX_MSG_MAP(CChildFrame)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code !
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CChildFrame construction/destruction

CChildFrame::CChildFrame()
{
 // TODO: add member initialization code here

}

CChildFrame::~CChildFrame()
{
}

BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 if (!CMDIChildWnd::PreCreateWindow(cs))
 return FALSE;

 return TRUE;
}

//
// CChildFrame diagnostics

#ifdef _DEBUG
void CChildFrame::AssertValid() const
{
 CMDIChildWnd::AssertValid();
}

void CChildFrame::Dump(CDumpContext& dc) const
{
 CMDIChildWnd::Dump(dc);
}

#endif //_DEBUG

//
// CChildFrame message handlers

void CChildFrame::ActivateFrame(int nCmdShow)
{
 TRACE("Entering CChildFrame::ActivateFrame\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("Entering CChildFrame::ActivateFrame\n");
 CMDIChildWnd::ActivateFrame(nCmdShow);
}

Figure 18-7. The CChildFrame class listing.

Testing the EX18A Application

Do the build, run the program from Visual C++, and then make several documents. Try saving the
documents on disk, closing them, and reloading them. Also, choose New Window from the Window menu.
Notice that you now have two views (and child frames) attached to the same document. Now exit the
program and start Windows Explorer. The files you created should show up with document icons. Double-
click on a document icon and see whether the EX18A program starts up. Now, with both Windows Explorer
and EX18A on the desktop, drag a document from Windows Explorer to EX18A. Was the file opened?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19
Printing and Print Preview
If you're depending on the Win32 API alone, printing is one of the tougher programming jobs you'll have.
If you don't believe me, just skim through the 60-page chapter "Using the Printer" in Charles Petzold's
Programming Windows 95 (Microsoft Press, 1996). Other books about Microsoft Windows ignore the
subject completely. The Microsoft Foundation Class (MFC) Library version 6.0 application framework goes a
long way toward making printing easy. As a bonus, it adds a print preview capability that behaves like the
print preview functions in commercial Windows-based programs such as Microsoft Word and Microsoft
Excel.

In this chapter, you'll learn how to use the MFC library Print and Print Preview features. In the process,
you'll get a feeling for what's involved in Windows printing and how it's different from printing in MS-DOS.
First you'll do some wysiwyg printing, in which the printer output matches the screen display. This option
requires careful use of mapping modes. Later you'll print a paginated data processing-style report that
doesn't reflect the screen display at all. In that example, you will use a template array to structure your
document so that the program can print any specified range of pages on demand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Printing
In the old days, programmers had to worry about configuring their applications for dozens of printers. Now
Windows makes life easy because it provides all of the printer drivers you'll ever need. It also supplies a
consistent user interface for printing.

Standard Printer Dialogs

When the user chooses Print from the File menu of a Windows-based application, the standard Print dialog
appears, as shown in Figure 19-1.

Figure 19-1. The standard Print dialog.

If the user chooses Print Setup from the File menu, the standard Print Setup dialog appears, as shown in
Figure 19-2.

Figure 19-2. The standard Print Setup dialog.

During the printing process, the application displays a standard printer status dialog, as shown in Figure
19-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19-3.

Figure 19-3. The standard printer status dialog.

Interactive Print Page Selection

If you've worked in the data processing field, you might be used to batch-mode printing. A program reads
a record and then formats and prints selected information as a line in a report. Let's say, for example, that
every time 50 lines have been printed the program ejects the paper and prints a new page heading. The
programmer assumes that the whole report will be printed at one time and makes no allowance for
interactively printing selected pages.

As Figure 19-1 shows, page numbers are important in Windows-based printing. A program must respond
to a user's page selection by calculating which information to print and then printing the selected pages. If
you're aware of this page selection requirement, you can design your application's data structures
accordingly.

Remember the student list from Chapter 17? What if the list included 1000 students' names and the user
wanted to print page 5 of a student report? If you assumed that each student record required one print
line and that a page held 50 lines, page 5 would include records 201 through 250. With an MFC list
collection class, you're stuck iterating through the first 200 list elements before you can start printing.
Maybe the list isn't the ideal data structure. How about an array collection instead? With the CObArray
class (or with one of the template array classes), you can directly access the 201st student record.

Not every application has elements that map to a fixed number of print lines. Suppose the student record
contained a multi-line text biography field. Because you wouldn't know how many biography lines each
record included, you'd have to search through the whole file to determine the page breaks. If your
program could remember those page breaks as it calculated them, its efficiency would increase.

Display Pages vs. Printed Pages

In many cases, you'll want a printed page to correspond to a display page. As you learned in Chapter 5,
you cannot guarantee that objects will be printed exactly as they are displayed on screen. With TrueType
fonts, however, your printed page will be pretty close. If you're working with full-size paper and you want
the corresponding display to be readable, you'll certainly want a display window that is larger than the
screen. Thus, a scrolling view such as the one that the CScrollView class provides is ideal for your printable
views.

Sometimes, however, you might not care about display pages. Perhaps your view holds its data in a list
box, or maybe you don't need to display the data at all. In these cases, your program can contain stand-
alone print logic that simply extracts data from the document and sends it to the printer. Of course, the
program must properly respond to a user's page-range request. If you query the printer to determine the
paper size and orientation (portrait or landscape), you can adjust the pagination accordingly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Print Preview
The MFC library Print Preview feature shows you on screen the exact page and line breaks you'll get when
you print your document on a selected printer. The fonts might look a little funny, especially in the smaller
sizes, but that's not a problem. Look now at the print preview window that appears in "The EX19A Example
—A Wysiwyg Print Program".

Print Preview is an MFC library feature, not a Windows feature. Don't underestimate how much effort went
into programming Print Preview. The Print Preview program examines each character individually,
determining its position based on the printer's device context. After selecting an approximating font, the
program displays the character in the print preview window at the proper location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming for the Printer
The application framework does most of the work for printing and print preview. To use the printer
effectively, you must understand the sequence of function calls and know which functions to override.

The Printer Device Context and the CView::OnDraw Function

When your program prints on the printer, it uses a device context object of class CDC. Don't worry about
where the object comes from; the application framework constructs it and passes it as a parameter to your
view's OnDraw function. If your application uses the printer to duplicate the display, the OnDraw function
can do double duty. If you're displaying, the OnPaint function calls OnDraw and the device context is the
display context. If you're printing, OnDraw is called by another CView virtual function, OnPrint, with a
printer device context as a parameter. The OnPrint function is called once to print an entire page.

In print preview mode, the OnDraw parameter is actually a pointer to a CPreviewDC object. Your OnPrint
and OnDraw functions work the same regardless of whether you're printing or previewing.

The CView::OnPrint Function

You've seen that the base class OnPrint function calls OnDraw and that OnDraw can use both a display
device context and a printer device context. The mapping mode should be set before OnPrint is called. You
can override OnPrint to print items that you don't need on the display, such as a title page, headers, and
footers. The OnPrint parameters are as follows:

A pointer to the device context

A pointer to a print information object (CPrintInfo) that includes page dimensions, the current page
number, and the maximum page number

In your overridden OnPrint function, you can elect not to call OnDraw at all to support print logic that is
totally independent of the display logic. The application framework calls the OnPrint function once for each
page to be printed, with the current page number in the CPrintInfo structure. You'll soon find out how the
application framework determines the page number.

Preparing the Device Context—The CView::OnPrepareDC Function

If you need a display mapping mode other than MM_TEXT (and you often do), that mode is usually set in
the view's OnPrepareDC function. You override this function yourself if your view class is derived directly
from CView, but it's already overridden if your view is derived from CScrollView. The OnPrepareDC function
is called in OnPaint immediately before the call to OnDraw. If you're printing, the same OnPrepareDC
function is called, this time immediately before the application framework calls OnPrint. Thus, the mapping
mode is set before both the painting of the view and the printing of a page.

The second parameter of the OnPrepareDC function is a pointer to a CPrintInfo structure. This pointer is
valid only if OnPrepareDC is being called prior to printing. You can test for this condition by calling the CDC
member function IsPrinting. The IsPrinting function is particularly handy if you're using OnPrepareDC to set
different mapping modes for the display and the printer.

If you do not know in advance how many pages your print job requires, your overridden OnPrepareDC
function can detect the end of the document and reset the m_bContinuePrinting flag in the CPrintInfo
structure. When this flag is FALSE, the OnPrint function won't be called again and control will pass to the
end of the print loop.

The Start and End of a Print Job

When a print job starts, the application framework calls two CView functions, OnPreparePrinting and
OnBeginPrinting. (AppWizard generates the OnPreparePrinting, OnBeginPrinting, and OnEndPrinting
functions for you if you select the Printing And Print Preview option.) The first function, OnPreparePrinting,
is called before the display of the Print dialog. If you know the first and last page numbers, call
CPrintInfo::SetMinPage and CPrintInfo::SetMaxPage in OnPreparePrinting. The page numbers you pass to
these functions will appear in the Print dialog for the user to override.

The second function, OnBeginPrinting, is called after the Print dialog exits. Override this function to create
Graphics Device Interface (GDI) objects, such as fonts, that you need for the entire print job. A program
runs faster if you create a font once instead of re-creating it for each page.

The CView function OnEndPrinting is called at the end of the print job, after the last page has been printed.
Override this function to get rid of GDI objects created in OnBeginPrinting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Override this function to get rid of GDI objects created in OnBeginPrinting.

The following table summarizes the important overridable CView print loop functions.

Function Common Override Behavior

OnPreparePrinting Sets first and last page numbers

OnBeginPrinting Creates GDI objects

OnPrepareDC (for each page) Sets mapping mode and optionally detects end of print job

OnPrint Does print-specific output and then calls OnDraw (for each page)

OnEndPrinting Deletes GDI objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX19A Example—A Wysiwyg Print Program
This example displays and prints a single page of text stored in a document. The printed image should
match the displayed image. The MM_TWIPS mapping mode is used for both printer and display. First we'll
use a fixed drawing rectangle; later we'll base the drawing rectangle on the printable area rectangle
supplied by the printer driver.

Here are the steps for building the example:

1. Run AppWizard to generate \vcpp32\ex19a\ex19a. Accept the default options, and then
rename the document and view classes and files as shown here.

Note that this is an MDI application.

2. Add a CStringArray data member to the CPoemDoc class.Edit the PoemDoc.h header file or
use ClassView.

public:
 CStringArray m_stringArray;
The document data is stored in a string array. The MFC library CStringArray class holds an array of
CString objects, accessible by a zero-based subscript. You need not set a maximum dimension in
the declaration because the array is dynamic.

3. Add a CRect data member to the CStringView class. Edit the StringView.h header file or use
ClassView:

private:
 CRect m_rectPrint;

4. Edit three CPoemDoc member functions in the file PoemDoc.cpp. AppWizard generated
skeleton OnNewDocument and Serialize functions, but we'll have to use ClassWizard to override the
DeleteContents function. We'll initialize the poem document in the overridden OnNewDocument
function. DeleteContents is called in CDocument::OnNewDocument, so by calling the base class
function first we're sure the poem won't be deleted. (The text, by the way, is an excerpt from the
twentieth poem in Lawrence Ferlinghetti's book A Coney Island of the Mind.) Type 10 lines of your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

twentieth poem in Lawrence Ferlinghetti's book A Coney Island of the Mind.) Type 10 lines of your
choice. You can substitute another poem or maybe your favorite Win32 function description. Add
the following boldface code:

BOOL CPoemDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_stringArray.SetSize(10);
 m_stringArray[0] = "The pennycandystore beyond the El";
 m_stringArray[1] = "is where I first";
 m_stringArray[2] = " fell in love";
 m_stringArray[3] = " with unreality";
 m_stringArray[4] = "Jellybeans glowed in the semi-gloom";
 m_stringArray[5] = "of that september afternoon";
 m_stringArray[6] = "A cat upon the counter moved among";
 m_stringArray[7] = " the licorice sticks";
 m_stringArray[8] = " and tootsie rolls";
 m_stringArray[9] = " and Oh Boy Gum";
 return TRUE;
}

The CStringArray class supports dynamic arrays, but here we're using the
m_stringArray object as though it were a static array of 10 elements.

The application framework calls the document's virtual DeleteContents function when it closes the
document; this action deletes the strings in the array. A CStringArray contains actual objects, and a
CObArray contains pointers to objects. This distinction is important when it's time to delete the
array elements. Here the RemoveAll function actually deletes the string objects:

void CPoemDoc::DeleteContents()
{
 // called before OnNewDocument and when document is closed
 m_stringArray.RemoveAll();
}
Serialization isn't important in this example, but the following function illustrates how easy it is to
serialize strings. The application framework calls the DeleteContents function before loading from
the archive, so you don't have to worry about emptying the array. Add the following boldface code:

void CPoemDoc::Serialize(CArchive& ar)
{
 m_stringArray.Serialize(ar);
}

5. Edit the OnInitialUpdate function in StringView.cpp. You must override the function for all
classes derived from CScrollView. This function's job is to set the logical window size and the
mapping mode. Add the following boldface code:

void CStringView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
 CSize sizePage(sizeTotal.cx / 2,
 sizeTotal.cy / 2); // page scroll
 CSize sizeLine(sizeTotal.cx / 100,
 sizeTotal.cy / 100); // line scroll
 SetScrollSizes(MM_TWIPS, sizeTotal, sizePage, sizeLine);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
6. Edit the OnDraw function in StringView.cpp. The OnDraw function of class CStringView draws

on both the display and the printer. In addition to displaying the poem text lines in 10-point roman
font, it draws a border around the printable area and a crude ruler along the top and left margins.
OnDraw assumes the MM_TWIPS mapping mode, in which 1 inch = 1440 units. Add the boldface
code shown below.

void CStringView::OnDraw(CDC* pDC)
{
 int i, j, nHeight;
 CString str;
 CFont font;
 TEXTMETRIC tm;
 CPoemDoc* pDoc = GetDocument();
 // Draw a border — slightly smaller to avoid truncation
 pDC->Rectangle(m_rectPrint + CRect(0, 0, -20, 20));
 // Draw horizontal and vertical rulers
 j = m_rectPrint.Width() / 1440;
 for (i = 0; i <= j; i++) {
 str.Format("%02d", i);
 pDC->TextOut(i * 1440, 0, str);
 }
 j = -(m_rectPrint.Height() / 1440);
 for (i = 0; i <= j; i++) {
 str.Format("%02d", i);
 pDC->TextOut(0, -i * 1440, str);
 }
 // Print the poem 0.5 inch down and over;
 // use 10-point roman font
 font.CreateFont(-200, 0, 0, 0, 400, FALSE, FALSE, 0, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH | FF_ROMAN,
 "Times New Roman");
 CFont* pOldFont = (CFont*) pDC->SelectObject(&font);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;
 TRACE("font height = %d, internal leading = %d\n",
 nHeight, tm.tmInternalLeading);
 j = pDoc->m_stringArray.GetSize();
 for (i = 0; i < j; i++) {
 pDC->TextOut(720, -i * nHeight - 720, pDoc->m_stringArray[i]);
 }
 pDC->SelectObject(pOldFont);
 TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",
 pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
 TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
 pDC->GetDeviceCaps(HORZSIZE),
 pDC->GetDeviceCaps(VERTSIZE));
}

7. Edit the OnPreparePrinting function in StringView.cpp. This function sets the maximum
number of pages in the print job. This example has only one page. It's absolutely necessary to call
the base class DoPreparePrinting function in your overridden OnPreparePrinting function. Add the
following boldface code:

BOOL CStringView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
8. Edit the constructor in StringView.cpp. The initial value of the print rectangle should be 8-by-15

inches, expressed in twips (1 inch = 1440 twips). Add the following boldface code:

CStringView::CStringView() : m_rectPrint(0, 0, 11520, -15120)
{
}

9. Build and test the application. If you run the EX19A application under Microsoft Windows NT
with the lowest screen resolution, your MDI child window will look like the one shown below. (The
text will be larger under higher resolutions and under Windows 95 and Windows 98.)

The window text is too small, isn't it? Go ahead and choose Print Preview from the File menu, and
then click twice with the magnifying glass to enlarge the image. The print preview output is
illustrated here.

Remember "logical twips" from Chapter 5? We're going to use logical twips now to enlarge type on
the display while keeping the printed text the same size. This requires some extra work because the
CScrollView class wasn't designed for nonstandard mapping modes. You will be changing the view's
base class from CScrollView to CLogScrollView, which is a class that I created by copying and
modifying the MFC code in ViewScrl.cpp. The files LogScrollView.h and LogScrollView.cpp are in the
\vcpp32\ex19a directory on the companion CD-ROM.

10. Insert the CScrollView class into the project. Copy the files LogScrollView.h and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10. Insert the CScrollView class into the project. Copy the files LogScrollView.h and
LogScrollView.cpp from the companion CD-ROM if you have not done so already. Choose Add To
Project from the Project menu, and then choose Files from the submenu. Select the two new files
and click OK to insert them into the project.

11. Edit the StringView.h header file. Add the following line at the top of the file:

#include "LogScrollView.h"
Then change the line

class CStringView : public CScrollView
to

class CStringView : public CLogScrollView
12. Edit the StringView.cpp file. Globally replace all occurrences of CScrollView with CLogScrollView.

Then edit the OnInitialUpdate function. Here is the edited code, which is much shorter:

void CStringView::OnInitialUpdate()
{
 CLogScrollView::OnInitialUpdate();
 CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
 SetLogScrollSizes(sizeTotal);
}

13. Build and test the application again. Now the screen should look like this.

Reading the Printer Rectangle

The EX19A program prints in a fixed-size rectangle that's appropriate for a laser printer set to portrait
mode with 8.5-by-11-inch (letter-size) paper. But what if you load European-size paper or you switch to
landscape mode? The program should be able to adjust accordingly.

It's relatively easy to read the printer rectangle. Remember the CPrintInfo pointer that's passed to
OnPrint? That structure has a data member m_rectDraw that contains the rectangle in logical coordinates.
Your overridden OnPrint function simply stuffs the rectangle in a view data member, and OnDraw uses it.
There's only one problem: you can't get the rectangle until you start printing, so the constructor still needs
to set a default value for OnDraw to use before printing begins.

If you want the EX19A program to read the printer rectangle and adjust the size of the scroll view, use
ClassWizard to override OnPrint and then code the function as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CStringView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 m_rectPrint = pInfo->
m_rectDraw;
 SetLogScrollSizes(CSize(m_rectPrint.Width(),
 -
m_rectPrint.Height()));
 CLogScrollView::OnPrint(pDC, pInfo);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Template Collection Classes Revisited—The CArray Class
In EX16B in Chapter 16, you saw the MFC library CTypedPtrList template collection class, which was used
to store a list of pointers to CStudent objects. Another collection class, CArray, is appropriate for the next
example, EX19B. This class is different from CTypedPtrList in two ways. First, it's an array, with elements
accessible by index, just like CStringArray in EX19A. Second, the array holds actual objects, not pointers to
objects. In EX19B, the elements are CRect objects. The elements' class does not have to be derived from
CObject, and indeed, CRect is not.

As in EX16B, a typedef makes the template collection easier to use. We use the statement

typedef CArray<CRect, CRect&> CRectArray;
to define an array class that holds CRect objects and whose functions take CRect reference parameters.
(It's cheaper to pass a 32-bit pointer than to copy a 128bit object.) To use the template array, you declare
an instance of CRectArray and then you call CArray member functions such as SetSize. You can also use
the CArray subscript operator to get and set elements.

The template classes CArray, CList, and CMap are easy to use if the element class is sufficiently simple.
The CRect class fits that description because it contains no pointer data members. Each template class
uses a global function, SerializeElements, to serialize all the elements in the collection. The default
SerializeElements function does a bitwise copy of each element to and from the archive.

If your element class contains pointers or is otherwise complex, you'll need to write your own
SerializeElements function. If you wrote this function for the rectangle array (not required), your code
would look like this:

void AFXAPI SerializeElements(CArchive& ar, CRect* pNewRects,
 int nCount)
{
 for (int i = 0; i < nCount; i++, pNewRects++) {
 if (ar.IsStoring()) {
 ar << *pNewRects;
 }
 else {
 ar >> *pNewRects;
 }
 }
}
When the compiler sees this function, it uses the function to replace the SerializeElements function inside
the template. This only works, however, if the compiler sees the SerializeElements prototype before it sees
the template class declaration.

The template classes depend on two other global functions, ConstructElements and
DestructElements. Starting with Visual C++ version 4.0, these functions call the
element class constructor and destructor for each object. Therefore, there's no real
need to replace them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX19B Example—A Multipage Print Program
In this example, the document contains an array of 50 CRect objects that define circles. The circles are
randomly positioned in a 6-by-6-inch area and have random diameters of as much as 0.5 inch. The circles,
when drawn on the display, look like two-dimensional simulations of soap bubbles. Instead of drawing the
circles on the printer, the application prints the corresponding CRect coordinates in numeric form, 12 to a
page, with headers and footers.

1. Run AppWizard to generate \vcpp32\ex19b\ex19b. Select Single Document, and accept the
defaults for all the other settings. The options and the default class names are shown here.

2. Edit the StdAfx.h header file. You'll need to bring in the declarations for the MFC template
collection classes. Add the following statement:

#include <afxtempl.h>
3. Edit the ex19bDoc.h header file. In the EX19A example, the document data consists of strings

stored in a CStringArray collection. Because we're using a template collection for ellipse rectangles,
we'll need a typedef statement outside the class declaration, as shown here:

typedef CArray<CRect, CRect&> CRectArray;
Next add the following public data members to the ex19bDoc.h header file:

public:
 enum { nLinesPerPage = 12 };
 enum { nMaxEllipses = 50 };
 CRectArray m_ellipseArray;
The two enumerations are object-oriented replacements for #defines.

4. Edit the ex19bDoc.cpp implementation file. The overridden OnNew Document function
initializes the ellipse array with some random values, and the Serialize function reads and writes the
whole array. AppWizard generated the skeletons for both functions. You don't need a
DeleteContents function because the CArray subscript operator writes a new CRect object on top of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DeleteContents function because the CArray subscript operator writes a new CRect object on top of
any existing one. Add the following boldface code:

BOOL CEx19bDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 int n1, n2, n3;
 // Make 50 random circles
 srand((unsigned) time(NULL));
 m_ellipseArray.SetSize(nMaxEllipses);
 for (int i = 0; i < nMaxEllipses; i++) {
 n1 = rand() * 600 / RAND_MAX;
 n2 = rand() * 600 / RAND_MAX;
 n3 = rand() * 50 / RAND_MAX;
 m_ellipseArray[i] = CRect(n1, -n2, n1 + n3, -(n2 + n3));
 }
 return TRUE;
}

void CEx19bDoc::Serialize(CArchive& ar)
{
 m_ellipseArray.Serialize(ar);
}

5. Edit the ex19bView.h header file. Use ClassView to add the member variable and two function
prototypes listed below. ClassView will also generate skeletons for the functions in ex19bView.cpp.

public:
 int m_nPage;
private:
 void PrintPageHeader(CDC *pDC);
 void PrintPageFooter(CDC *pDC);
The m_nPage data member holds the document's current page number for printing. The private
functions are for the header and footer subroutines.

6. Edit the OnDraw function in ex19bView.cpp. The overridden OnDraw function simply draws the
bubbles in the view window. Add the boldface code shown here:

void CEx19bView::OnDraw(CDC* pDC)
{
 int i, j;
 CEx19bDoc* pDoc = GetDocument();
 j = pDoc->m_ellipseArray.GetUpperBound();
 for (i = 0; i < j; i++) {
 pDC->Ellipse(pDoc->m_ellipseArray[i]);
 }
}

7. Insert the OnPrepareDC function in ex19bView.cpp. The view class is not a scrolling view, so
the mapping mode must be set in this function. Use ClassWizard to override the OnPrepareDC
function, and then add the following boldface code:

void CEx19bView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_LOENGLISH);
}

8. Insert the OnPrint function in ex19bView.cpp. The CView default OnPrint function calls
OnDraw. In this example, we want the printed output to be entirely different from the displayed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnDraw. In this example, we want the printed output to be entirely different from the displayed
output, so the OnPrint function must take care of the print output without calling OnDraw. OnPrint
first sets the mapping mode to MM_TWIPS, and then it creates a fixed-pitch font. After printing the
numeric contents of 12 m_ellipseArray elements, OnPrint deselects the font. You could have created
the font once in OnBeginPrinting, but you wouldn't have noticed the increased efficiency. Use
ClassWizard to override the OnPrint function, and then add the following boldface code:

void CEx19bView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 int i, nStart, nEnd, nHeight;
 CString str;
 CPoint point(720, -1440);
 CFont font;
 TEXTMETRIC tm;
 pDC->SetMapMode(MM_TWIPS);
 CEx19bDoc* pDoc = GetDocument();
 m_nPage = pInfo->m_nCurPage; // for PrintPageFooter's benefit
 nStart = (m_nPage - 1) * CEx19bDoc::nLinesPerPage;
 nEnd = nStart + CEx19bDoc::nLinesPerPage;
 // 14-point fixed-pitch font
 font.CreateFont(-280, 0, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_MODERN, "Courier New");
 // Courier New is a TrueType font
 CFont* pOldFont = (CFont*) (pDC->SelectObject(&font));
 PrintPageHeader(pDC);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;
 for (i = nStart; i < nEnd; i++) {
 if (i > pDoc->m_ellipseArray.GetUpperBound()) {
 break;
 }
 str.Format("%6d %6d %6d %6d %6d", i + 1,
 pDoc->m_ellipseArray[i].left,
 pDoc->m_ellipseArray[i].top,
 pDoc->m_ellipseArray[i].right,
 pDoc->m_ellipseArray[i].bottom);
 point.y -= nHeight;
 pDC->TextOut(point.x, point.y, str);
 }
 PrintPageFooter(pDC);
 pDC->SelectObject(pOldFont);
}

9. Edit the OnPreparePrinting function in ex19bView.cpp. The OnPreparePrinting function
(whose skeleton is generated by AppWizard) computes the number of pages in the document and
then communicates that value to the application framework through the SetMaxPage function. Add
the following boldface code:

BOOL CEx19bView::OnPreparePrinting(CPrintInfo* pInfo)
{
 CEx19bDoc* pDoc = GetDocument();
 pInfo->SetMaxPage(pDoc->m_ellipseArray.GetUpperBound() /
 CEx19bDoc::nLinesPerPage + 1);
 return DoPreparePrinting(pInfo);
}

10. Insert the page header and footer functions in ex19bView.cpp. These private functions,
called from OnPrint, print the page headers and the page footers. The page footer includes the page
number, stored by OnPrint in the view class data member m_nPage. The CDC::GetTextExtent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number, stored by OnPrint in the view class data member m_nPage. The CDC::GetTextExtent
function provides the width of the page number so that it can be right-justified. Add the boldface
code shown here:

void CEx19bView::PrintPageHeader(CDC* pDC)
{
 CString str;
 CPoint point(0, 0);
 pDC->TextOut(point.x, point.y, "Bubble Report");
 point += CSize(720, -720);
 str.Format("%6.6s %6.6s %6.6s %6.6s %6.6s",
 "Index", "Left", "Top", "Right", "Bottom");
 pDC->TextOut(point.x, point.y, str);
}

void CEx19bView::PrintPageFooter(CDC* pDC)
{
 CString str;
 CPoint point(0, -14400); // Move 10 inches down
 CEx19bDoc* pDoc = GetDocument();
 str.Format("Document %s", (LPCSTR) pDoc->GetTitle());
 pDC->TextOut(point.x, point.y, str);
 str.Format("Page %d", m_nPage);
 CSize size = pDC->GetTextExtent(str);
 point.x += 11520 - size.cx;
 pDC->TextOut(point.x, point.y, str); // right-justified
}

11. Build and test the application. For one set of random numbers, the bubble view window looks
like this.

Each time you choose New from the File menu, you should see a different picture. In Print Preview,
the first page of the output should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the first page of the output should look like this.

With the Print dialog, you can specify any range of pages to print.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20
Splitter Windows and Multiple Views
Except for the EX18A example, each program you've seen so far in this book has had only one view
attached to a document. If you've used a Microsoft Windows-based word processor, you know that it's
convenient to have two windows open simultaneously on various parts of a document. Both windows might
contain normal views, or one window might contain a page layout view and another might contain an
outline view.

With the application framework, you can use a splitter window or multiple MDI child windows to display
multiple views. You'll learn about both presentation options here, and you'll see that it's easy to make
multiple view objects of the same view class (the normal view) in both cases. It's slightly more difficult,
however, to use two or more view classes in the same application (say, the outline view and the page
layout view).

This chapter emphasizes the selection and presentation of multiple views. The examples depend on a
document with data initialized in the OnNewDocument function. Look back now to Chapter 16 for a review
of document-view communication.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Splitter Window
A splitter window appears as a special type of frame window that holds several views in panes. The
application can split the window on creation, or the user can split the window by choosing a menu
command or by dragging a splitter box on the window's scroll bar. After the window has been split, the
user can move the splitter bars with the mouse to adjust the relative sizes of the panes. Splitter windows
can be used in both SDI and MDI applications. You can see examples of splitter windows in this chapter.

An object of class CSplitterWnd represents the splitter window. As far as Windows is concerned, a
CSplitterWnd object is an actual window that fully occupies the frame window (CFrameWnd or
CMDIChildWnd) client area. The view windows occupy the splitter window pane areas. The splitter window
does not take part in the command dispatch mechanism. The active view window (in a splitter pane) is
connected directly to its frame window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

View Options
When you combine multiview presentation methods with application models, you get a number of
permutations. Here are some of them:

SDI application with splitter window, single view class This chapter's first example, EX20A,
covers this case. Each splitter window pane can be scrolled to a different part of the document. The
programmer determines the maximum number of horizontal and vertical panes; the user makes the
split at runtime.

SDI application with splitter window, multiple view classes The EX20B example illustrates
this case. The programmer determines the number of panes and the sequence of views; the user
can change the pane size at runtime.

SDI application with no splitter windows, multiple view classes The EX20C example
illustrates this case. The user switches view classes by making a selection from a menu.

MDI application with no splitter windows, single view class This is the standard MDI
application you've seen already in Chapter 18. The New Window menu item lets the user open a
new child window for a document that's open already.

MDI application with no splitter windows, multiple view classes A small change to the
standard MDI application allows the use of multiple views. As example EX20D shows, all that's
necessary is to add a menu item and a handler function for each additional view class available.

MDI application with splitter child windows This case is covered thoroughly in the online
documentation. The SCRIBBLE example illustrates the splitting of an MDI child window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic and Static Splitter Windows
A dynamic splitter window allows the user to split the window at any time by choosing a menu item or by
dragging a splitter box located on the scroll bar. The panes in a dynamic splitter window generally use the
same view class. The top left pane is initialized to a particular view when the splitter window is created. In
a dynamic splitter window, scroll bars are shared among the views. In a window with a single horizontal
split, for example, the bottom scroll bar controls both views. A dynamic splitter application starts with a
single view object. When the user splits the frame, other view objects are constructed. When the user
unsplits the frame, view objects are destroyed.

The panes of a static splitter window are defined when the window is first created and they cannot be
changed. The user can move the bars but cannot unsplit or resplit the window. Static splitter windows can
accommodate multiple view classes, with the configuration set at creation time. In a static splitter window,
each pane has separate scroll bars. In a static splitter window application, all view objects are constructed
when the frame is constructed and they are all destroyed when the frame is destroyed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20A Example— A Single View Class SDI Dynamic Splitter
In this example, the user can dynamically split the view into four panes with four separate view objects, all
managed by a single view class. We'll use the document and the view code from EX19A. AppWizard lets
you add a dynamic splitter window to a new application. Create an SDI project. Click the Advanced button
in the AppWizard Step 4 dialog. Click on the Window Styles tab, and select Use Split Window as shown
here.

When you check the Use Split Window check box, AppWizard adds code to your CMainFrame class. Of
course, you could add the same code to the CMainFrame class of an existing application to add splitter
capability.

Resources for Splitting

When AppWizard generates an application with a splitter frame, it includes a Split option in the project's
View menu. The ID_WINDOW_SPLIT command ID is mapped in the CView class within the MFC library.

CMainFrame

The application's main frame window class needs a splitter window data member and a prototype for an
overridden OnCreateClient function. Here are the additions that AppWizard makes to the MainFrm.h file:

protected:
 CSplitterWnd m_wndSplitter;
public:
 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext* pContext);
The application framework calls the CFrameWnd::OnCreateClient virtual member function when the frame
object is created. The base class version creates a single view window as specified by the document
template. The AppWizard-generated OnCreateClient override shown here (in MainFrm.cpp) creates a
splitter window instead, and the splitter window creates the first view:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 return m_wndSplitter.Create(this,
 2, 2, // TODO: adjust the number of rows, columns
 CSize(10, 10), // TODO: adjust the minimum pane size
 pContext);
}
The CSplitterWnd Create member function creates a dynamic splitter window, and the CSplitterWnd object
knows the view class because its name is embedded in the CCreateContext structure that's passed as a
parameter to Create.

The second and third Create parameters (2, 2) specify that the window can be split into a maximum of two
rows and two columns. If you changed the parameters to (2, 1), you would allow only a single horizontal
split. The parameters (1, 2) allow only a single vertical split. The CSize parameter specifies the minimum
pane size.

Testing the EX20A Application

When the application starts, you can split the window by choosing Split from the View menu or by dragging
the splitter boxes at the left and top of the scroll bars. Figure 20-1 shows a typical single view window with
a four-way split. Multiple views share the scroll bars.

Figure 20-1. A single view window with a four-way split.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20B Example—A Double View Class SDI Static Splitter
In EX20B, we'll extend EX20A by defining a second view class and allowing a static splitter window to show
the two views. (The H and CPP files are cloned from the original view class.) This time the splitter window
works a little differently. Instead of starting off as a single pane, the splitter is initialized with two panes.
The user can move the bar between the panes by dragging it with the mouse or by choosing the Window
Split menu item.

The easiest way to generate a static splitter application is to let AppWizard generate a dynamic splitter
application and then edit the generated CMainFrame::OnCreateClient function.

CHexView

The CHexView class was written to allow programmers to appreciate poetry. It is essentially the same code
used for CStringView except for the OnDraw member function:

void CHexView::OnDraw(CDC* pDC)
{
 // hex dump of document strings
 int i, j, k, l, n, nHeight;
 CString outputLine, str;
 CFont font;
 TEXTMETRIC tm;

 CPoemDoc* pDoc = GetDocument();
 font.CreateFont(-160, 80, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pOldFont = pDC->SelectObject(&font);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;

 j = pDoc->m_stringArray.GetSize();
 for (i = 0; i < j; i++) {
 outputLine.Format("%02x ", i);
 l = pDoc->m_stringArray[i].GetLength();
 for (k = 0; k < l; k++) {
 n = pDoc->m_stringArray[i][k] & 0x00ff;
 str.Format("%02x ", n);
 outputLine += str;
 }
 pDC->TextOut(720, -i * nHeight - 720, outputLine);
 }
 pDC->SelectObject(pOldFont);
}
This function displays a hexadecimal dump of all strings in the document's m_stringArray collection. Notice
the use of the subscript operator to access individual characters in a CString object.

CMainFrame

As in EX20A, the EX20B application's main frame window class needs a splitter window data member and a
prototype for an overridden OnCreateClient function. You can let AppWizard generate the code by
specifying Use Split Window, as in EX20A. You won't have to modify the MainFrm.h file.

The implementation file, MainFrm.cpp, needs both view class headers (and the prerequisite document
header), as shown here:

#include "PoemDoc.h"
#include "StringView.h"
#include "HexView.h"
AppWizard generates dynamic splitter code in the OnCreateClient function, so you'll have to do some

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWizard generates dynamic splitter code in the OnCreateClient function, so you'll have to do some
editing if you want a static splitter. Instead of calling CSplitterWnd::Create, you'll call the
CSplitterWnd::CreateStatic function, which is tailored for multiple view classes. The following calls to
CSplitterWnd::CreateView attach the two view classes. As the second and third CreateStatic parameters
(2, 1) dictate, this splitter window contains only two panes. The horizontal split is initially 100 device units
from the top of the window. The top pane is the string view; the bottom pane is the hex dump view. The
user can change the splitter bar position but the view configuration cannot be changed.

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 VERIFY(m_wndSplitter.CreateStatic(this, 2, 1));
 VERIFY(m_wndSplitter.CreateView(0, 0, RUNTIME_CLASS(CStringView),
 CSize(100, 100), pContext));
 VERIFY(m_wndSplitter.CreateView(1, 0, RUNTIME_CLASS(CHexView),
 CSize(100, 100), pContext));
 return TRUE;
}

Testing the EX20B Application

When you start the EX20B application, the window should look like the one shown below. Notice the
separate horizontal scroll bars for the two views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20C Example—Switching View Classes Without a Splitter
Sometimes you just want to switch view classes under program control and you don't want to be bothered
with a splitter window. The EX20C example is an SDI application that switches between CStringView and
CHexView in response to selections on the View menu. Starting with what AppWizard generates, all you
need to do is add two new menu commands and then add some code to the CMainFrame class. You also
need to change the CStringView and CHexView constructors from protected to public.

Resource Requirements

The following two items have been added to the View menu in the IDR_MAINFRAME menu resource.

Caption Command ID CMainFrame Function

St&ring View ID_VIEW_STRINGVIEW OnViewStringView

&Hex View ID_VIEW_HEXVIEW OnViewHexView

ClassWizard was used to add the command-handling functions (and corresponding update command UI
handlers) to the CMainFrame class.

CMainFrame

The CMainFrame class gets a new private helper function, SwitchToView, which is called from the two
menu command handlers. The enum parameter tells the function which view to switch to. Here are the two
added items in the MainFrm.h header file:

private:
 enum eView { STRING = 1, HEX = 2 };
 void SwitchToView(eView nView);
The SwitchToView function (in MainFrm.cpp) makes some low-level MFC calls to locate the requested view
and to activate it. Don't worry about how it works. Just adapt it to your own applications when you want
the view- switching feature. Add the following code:

void CMainFrame::SwitchToView(eView nView)
{
 CView* pOldActiveView = GetActiveView();
 CView* pNewActiveView = (CView*) GetDlgItem(nView);
 if (pNewActiveView == NULL) {
 switch (nView) {
 case STRING:
 pNewActiveView = (CView*) new CStringView;
 break;
 case HEX:
 pNewActiveView = (CView*) new CHexView;
 break;
 }
 CCreateContext context;
 context.m_pCurrentDoc = pOldActiveView->GetDocument();
 pNewActiveView->Create(NULL, NULL, WS_BORDER,
 CFrameWnd::rectDefault, this, nView, &context);
 pNewActiveView->OnInitialUpdate();
 }
 SetActiveView(pNewActiveView);
 pNewActiveView->ShowWindow(SW_SHOW);
 pOldActiveView->ShowWindow(SW_HIDE);
 pOldActiveView->SetDlgCtrlID(
 pOldActiveView->GetRuntimeClass() ==
 RUNTIME_CLASS(CStringView) ? STRING : HEX);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RUNTIME_CLASS(CStringView) ? STRING : HEX);
 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
 RecalcLayout();
}
Finally, here are the menu command handlers and update command UI handlers that ClassWizard initially
generated (along with message map entries and prototypes). The update command UI handlers test the
current view's class.

void CMainFrame::OnViewStringView()
{
 SwitchToView(STRING);
}

void CMainFrame::OnUpdateViewStringView(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(
 !GetActiveView()->IsKindOf(RUNTIME_CLASS(CStringView)));
}

void CMainFrame::OnViewHexView()
{
 SwitchToView(HEX);
}

void CMainFrame::OnUpdateViewHexView(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(
 !GetActiveView()->IsKindOf(RUNTIME_CLASS(CHexView)));
}

Testing the EX20C Application

The EX20C application initially displays the CStringView view of the document. You can toggle between the
CStringView and CHexView views by choosing the appropriate command from the View menu. Both views
of the document are shown side by side in Figure 20-2.

Figure 20-2. The CStringView view and the CHexView view of the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX20D Example—A Multiple View Class MDI Application
The final example, EX20D, uses the previous document and view classes to create a multiple view class
MDI application without a splitter window. The logic is different from the logic in the other multiple view
class applications. This time the action takes place in the application class in addition to the main frame
class. As you study EX20D, you'll gain more insight into the use of CDocTemplate objects.

This example was generated with the AppWizard Context-Sensitive Help option. In Chapter 21, you'll
activate the context-sensitive help capability.

If you're starting from scratch, use AppWizard to generate an ordinary MDI application with one of the
view classes. Then add the second view class to the project and modify the application class files and main
frame class files as described in the following sections.

Resource Requirements

The two items below have been added to the Window menu in the IDR_EX20DTYPE menu resource.

Caption Command ID CMainFrame Function

New &String Window (replaces
New Window item)

ID_WINDOW_NEW_STRING CMDIFrameWnd::OnWindowNew

New &Hex Window ID_WINDOW_NEW_HEX OnWindowNewHex

ClassWizard was used to add the command-handling function OnWindowNewHex to the CMainFrame class.

CEx20dApp

In the application class header file, ex20d.h, the following data member and function prototype have been
added:

public:
 CMultiDocTemplate* m_pTemplateHex;
The implementation file, ex20d.cpp, contains the #include statements shown here:

#include "PoemDoc.h"
#include "StringView.h"
#include "HexView.h"
The CEx20dApp InitInstance member function has the code shown below inserted immediately after the
AddDocTemplate function call.

m_pTemplateHex = new CMultiDocTemplate(
 IDR_EX20DTYPE,
 RUNTIME_CLASS(CPoemDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CHexView));
The AddDocTemplate call generated by AppWizard established the primary document/frame/view
combination for the application that is effective when the program starts. The template object above is a
secondary template that can be activated in response to the New Hex Window menu item.

Now all you need is an ExitInstance member function that cleans up the secondary template:

int CEx20dApp::ExitInstance()
{
 delete m_pTemplateHex;
 return CWinApp::ExitInstance(); // saves profile settings
}

CMainFrame

The main frame class implementation file, MainFrm.cpp, has the CHexView class header (and the
prerequisite document header) included:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prerequisite document header) included:

#include "PoemDoc.h"
#include "HexView.h"
The base frame window class, CMDIFrameWnd, has an OnWindowNew function that is normally connected
to the standard New Window menu item on the Window menu. The New String Window menu item is
mapped to this function in EX20D. The New Hex Window menu item is mapped to the command handler
function below to create new hex child windows. The function is a clone of OnWindowNew, adapted for the
hex view-specific template defined in InitInstance.

void CMainFrame::OnWindowNewHex()
{
 CMDIChildWnd* pActiveChild = MDIGetActive();
 CDocument* pDocument;
 if (pActiveChild == NULL ||
 (pDocument = pActiveChild->GetActiveDocument()) == NULL) {
 TRACE("Warning: No active document for WindowNew command\n");
 AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
 return; // Command failed
 }
 // Otherwise, we have a new frame!
 CDocTemplate* pTemplate =
 ((CEx20dApp*) AfxGetApp())->m_pTemplateHex;
 ASSERT_VALID(pTemplate);
 CFrameWnd* pFrame =
 pTemplate->CreateNewFrame(pDocument, pActiveChild);
 if (pFrame == NULL) {
 TRACE("Warning: failed to create new frame\n");
 AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
 return; // Command failed
 }
 pTemplate->InitialUpdateFrame(pFrame, pDocument);
}

The function cloning above is a useful MFC programming technique. You must first find
a base class function that does almost what you want, and then copy it from the
\VC98\mfc\src subdirectory into your derived class, changing it as required. The only
danger of cloning is that subsequent versions of the MFC library might implement the
original function differently.

Testing the EX20D Application

When you start the EX20D application, a text view child window appears. Choose New Hex Window from
the Window menu. The application should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21
Context-Sensitive Help
Help technology is in a transition phase at the moment. The Hypertext Markup Language (HTML) format
seems to be replacing rich text format (RTF). You can see this in the new Visual C++ online documentation
via the MSDN viewer, which uses a new HTML-based help system called HTML Help. Microsoft is developing
tools for compiling and indexing HTML files that are not shipped with Visual C++ 6.0. In the meantime,
Microsoft Foundation Class (MFC) Library version 6.0 application framework programs are set up to use the
WinHelp help engine included with Microsoft Windows. That means you'll be writing RTF files and your
programs will be using compiled HLP files.

This chapter first shows you how to construct and process a simple stand-alone help file that has a table of
contents and lets the user jump between topics. Next you'll see how your MFC library program activates
WinHelp with help context IDs derived from window and command IDs keyed to an AppWizard-generated
help file. Finally you'll learn how to use the MFC library help message routing system to customize the help
capability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows WinHelp Program
If you've used commercial Windows-based applications, you've probably marveled at their sophisticated
help screens: graphics, hyperlinks, and popups abound. At some software firms, including Microsoft, help
authoring has been elevated to a profession in its own right. This section won't turn you into a help expert,
but you can get started by learning to prepare a simple no-frills help file.

Rich Text Format

The original Windows SDK documentation showed you how to format help files with the ASCII file format
called rich text format. We'll be using rich text format too, but we'll be working in wysiwyg mode, thereby
avoiding the direct use of awkward escape sequences. You'll write with the same fonts, sizes, and styles
that your user sees on the help screens. You'll definitely need a word processor that handles RTF. I've used
Microsoft Word for this book, but many other word processors accommodate the RTF format.

Several commercial Windows help tools are available, including RoboHELP from Blue
Sky Software and ForeHelp from the Forefront Corporation. RoboHELP is a set of
templates and macros for Microsoft Word, and ForeHelp is a stand-alone package that
simulates WinHelp, giving you immediate feedback as you write the help system.

Writing a Simple Help File

We're going to write a simple help file with a table of contents and three topics. This help file is designed to
be run directly from WinHelp and started from Windows. No C++ programming is involved. Here are the
steps:

1. Create a \vcpp32\ex21a subdirectory.

2. Write the main help text file. Use Microsoft Word (or another RTF-compatible word processor) to
type text as shown here.

 Be sure to apply the
double-underline and hidden text formatting correctly and to insert the page break at the correct
place.

To see hidden text, you must turn on your word processor's hidden text viewing
mode. In Word, choose Options from the Tools menu, click on the View tab, and
select All in the Nonprinting Characters section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

select All in the Nonprinting Characters section.

3. Insert footnotes for the Table Of Contents screen. The Table Of Contents screen is the first
topic screen in this help system. Using the specified custom footnote marks, insert the following
footnotes at the beginning of the topic title.

Footnote Mark Text Description

HID_CONTENTS Help context ID

$ SIMPLE Help Contents Topic title

When you're finished with this step, the document should look like this.

4. Insert footnotes for the Help Topic 1 screen. The Help Topic 1 screen is the second topic
screen in the help system. Using the specified custom footnote marks, insert the footnotes shown
here.

Footnote Mark Text Description

HID_TOPIC1 Help context ID

$ SIMPLE Help Topic 1 Topic title

K SIMPLE Topics Keyword text

5. Clone the Help Topic 1 screen. Copy the entire Help Topic 1 section of the document—including
the page break—to the clipboard, and then paste two copies of the text into the document. The
footnotes are copied along with the text. In the first copy, change all occurrences of 1 to 2. In the
second copy, change all occurrences of 1 to 3. Don't forget to change the footnotes. With Word,
seeing which footnote goes with which topic can be a little difficult—be careful. When you're finished
with this step, the document text (including footnotes) should look like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Save the document. Save the document as \vcpp32\ex21a\Simple.rtf. Specify Rich Text Format
as the file type.

7. Write a help project file. Using Visual C++ or another text editor, create the file
\vcpp32\ex21a\Simple.hpj, as follows:

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
COMPRESS=true
WARNING=2
[FILES]
Simple.rtf
This file specifies the context ID of the Table Of Contents screen and the name of the RTF file that
contains the help text. Be sure to save the file in text (ASCII) format.

8. Build the help file. From Windows, run the Microsoft Help Workshop (HCRTF) utility (located by
default in Program Files\Microsoft Visual Studio\Common\Tools). Open the file
\vcpp32\ex21a\Simple.hpj, and then click the Save And Compile button.

This step runs the Windows Help Compiler with the project file Simple.hpj. The output is the help
file Simple.hlp in the same directory.

If you use Word 97 to create or edit RTF files, make sure you use version 4.02
(or later) of the HCRTF utility. Earlier versions of the HCRTF cannot process the
rich text flags generated by Word 97.

9. Run WinHelp with the new help file. From Windows Explorer, double-click the file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. Run WinHelp with the new help file. From Windows Explorer, double-click the file
\vcpp32\ex21a\Simple.hlp. The Table Of Contents screen should look like this.

Now move the mouse cursor to Topic 1. Notice that the cursor changes from an arrow to a pointing
hand. When you press the left mouse button, the Help Topic 1 screen should appear, as shown
here.

The HID_TOPIC1 text in the Table Of Contents screen links to the corresponding context ID (the #
footnote) in the topic page. This link is known as a jump.

The link to Help Topic 2 is coded as a pop-up jump. When you click on Topic 2, here's what you see.

10. Click the WinHelp Contents pushbutton. Clicking this button should take you to the Table Of
Contents screen, as shown at the beginning of step 9. WinHelp knows the ID of the Table Of
Contents window because you specified it in the HPJ file.

11. Click the WinHelp Index pushbutton. When you click the Index button, WinHelp opens its Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11. Click the WinHelp Index pushbutton. When you click the Index button, WinHelp opens its Index
dialog, which displays the help file's list of keywords. In Simple.hlp, all topics (excluding the table of
contents) have the same keyword (the K footnotes): SIMPLE Topics. When you double-click on this
keyword, you see all associated topic titles (the $ footnotes), as shown here.

What you have here is a two-level help search hierarchy. The user can type the first few letters of
the keyword and then select a topic from a list box. The more carefully you select your keywords
and topic titles, the more effective your help system will be.

An Improved Table of Contents

You've been looking at the "old-style" help table of contents. The latest Win32 version of WinHelp
can give you a modern tree-view table of contents. All you need is a text file with a CNT extension.
Add a new file, Simple.cnt, in the \vcpp32\ex21a directory, containing this text:

:Base Simple.hlp
1 Help topics
2 Topic 1=HID_TOPIC1
2 Topic 2=HID_TOPIC2
2 Topic 3=HID_TOPIC3
Notice the context IDs that match the help file. The next time you run WinHelp with the Simple.hlp
file, you'll see a new contents screen similar to the one shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use HCRTF to edit CNT files. The CNT file is independent of the HPJ file and the RTF
files. If you update your RTF files, you must make corresponding changes in your CNT file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Framework and WinHelp
You've seen WinHelp running as a stand-alone program. The application framework and WinHelp cooperate
to give you context-sensitive help. Here are some of the main elements:

1. You select the Context-Sensitive Help option when you run AppWizard.

2. AppWizard generates a Help Topics item on your application's Help menu, and it creates one or
more generic RTF files together with an HPJ file and a batch file that runs the Help Compiler.

3. AppWizard inserts a keyboard accelerator for the F1 key, and it maps the F1 key and the Help
Topics menu item to member functions in the main frame window object.

4. When your program runs, it calls WinHelp when the user presses F1 or chooses the Help Topics
menu item, passing a context ID that determines which help topic is displayed.

You now need to understand how WinHelp is called from another application and how your application
generates context IDs for WinHelp.

Calling WinHelp

The CWinApp member function WinHelp activates WinHelp from within your application. If you look up
WinHelp in the online documentation, you'll see a long list of actions that the optional second parameter
controls. Ignore the second parameter and pretend that WinHelp has only one unsigned long integer
parameter, dwData. This parameter corresponds to a help topic. Suppose that the SIMPLE help file is
available and that your program contains the statement

AfxGetApp()->WinHelp(HID_TOPIC1);
When the statement is executed in response to the F1 key or some other event the Help Topic 1 screen
appears, as it would if the user had clicked on Topic 1 in the Help Table Of Contents screen.

"Wait a minute," you say. "How does WinHelp know which help file to use?" The name of the help file
matches the application name. If the executable program name is Simple.exe, the help file is named
Simple.hlp.

You can force WinHelp to use a different help file by setting the CWinApp data member
m_pszHelpFilePath.

"And how does WinHelp match the program constant HID_TOPIC1 to the help file's context ID?" you ask.
The help project file must contain a MAP section that maps context IDs to numbers. If your application's
resource.h file defines HID_TOPIC1 as 101, the Simple.hpj MAP section looks like this:

[MAP]
HID_TOPIC1 101
The program's #define constant name doesn't have to match the help context ID; only the numbers must
match. Making the names correspond, however, is good practice.

Using Search Strings

For a text-based application, you might need help based on a keyword rather than a numeric context ID.
In that case, use the WinHelp HELP_KEY or HELP_PARTIALKEY option as follows:

CString string("find this string");
AfxGetApp()->WinHelp((DWORD) (LPCSTR) string, HELP_KEY);
The double cast for string is necessary because the first WinHelp parameter is multipurpose; its meaning
depends on the value of the second parameter.

Calling WinHelp from the Application's Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calling WinHelp from the Application's Menu

AppWizard generates a Help Topics option on the Help menu, and it maps that option to
CWnd::OnHelpFinder in the main frame window, which calls WinHelp this way:

AfxGetApp()->WinHelp(0L, HELP_FINDER);
With this call, WinHelp displays the Help Table Of Contents screen, and the user can navigate the help file
through jumps and searches.

If you want the old-style table of contents, call WinHelp this way instead:

AfxGetApp()->WinHelp(0L, HELP_INDEX);
And if you want a "help on help" item, make this call:

AfxGetApp()->WinHelp(0L, HELP_HELPONHELP);

Help Context Aliases

The ALIAS section of the HPJ file allows you to equate one context ID with another. Suppose your HPJ file
contained the following statements:

[ALIAS]
HID_TOPIC1 = HID_GETTING_STARTED

[MAP]
HID_TOPIC1 101
Your RTF files could use HID_TOPIC1 and HID_GETTING_STARTED interchangeably. Both would be
mapped to the help context 101 as generated by your application.

Determining the Help Context

You now have enough information to add a simple context-sensitive help system to an MFC program. You
define F1 (the standard MFC library Help key) as a keyboard accelerator, and then you write a command
handler that maps the program's help context to a WinHelp parameter. You could invent your own method
for mapping the program state to a context ID, but why not take advantage of the system that's already
built into the application framework?

The application framework determines the help context based on the ID of the active program element.
These identified program elements include menu commands, frame windows, dialog windows, message
boxes, and control bars. For example, a menu item might be identified as ID_EDIT_CLEAR_ALL. The main
frame window usually has the IDR_MAINFRAME identifier. You might expect these identifiers to map
directly to help context IDs. IDR_MAINFRAME, for example, would map to a help context ID of the same
name. But what if a frame ID and a command ID had the same numeric value? Obviously, you need a way
to prevent these overlaps.

The application framework solves the overlap problem by defining a new set of help #define constants that
are derived from program element IDs. These help constants are the sum of the element ID and a base
value, as shown in the following table.

Program Element Element ID
Prefix

Help Context ID
Prefix

Base
(Hexadecimal)

Menu Item or toolbar
button

ID_, IDM_ HID_, HIDM_ 10000

Frame or dialog IDR_, IDD_ HIDR_, HIDD 20000

Error message box IDP_ HIDP_ 30000

Nonclient area H… 40000

Control bar IDW_ HIDW_ 50000

Dispatch error messages 60000

HID_EDIT_CLEAR_ALL (0x1E121) corresponds to ID_EDIT_CLEAR_ALL (0xE121), and HIDR_MAINFRAME
(0x20080) corresponds to IDR_MAINFRAME (0x80).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

F1 Help

Two separate context-sensitive help access methods are built into an MFC application and are available if
you have selected the AppWizard Context-Sensitive Help option. The first is standard F1 help. The user
presses F1; the program makes its best guess about the help context and then calls WinHelp. In this
mode, it is possible to determine the currently selected menu item or the currently selected window
(frame, view, dialog, or message box).

Shift-F1 Help

The second context-sensitive help mode is more powerful than the F1 mode. With Shift-F1 help, the
program can identify the following help contexts:

A menu item selected with the mouse cursor

A toolbar button

A frame window

A view window

A specific graphics element within a view window

The status bar

Various nonclient elements such as the system menu control

Shift-F1 help doesn't work with modal dialogs or message boxes.

The user activates Shift-F1 help by pressing Shift-F1 or by clicking the Context Help toolbar button, shown
here.

In either case, the mouse cursor changes to

On the next mouse click, the help topic appears, with the position of the mouse cursor determining the
context.

Message Box Help—The AfxMessageBox Function

The global function AfxMessageBox displays application framework error messages. This function is similar
to the CWnd::MessageBox member function except that it has a help context ID as a parameter. The
application framework maps this ID to a WinHelp context ID and then calls WinHelp when the user presses
F1. If you can use the AfxMessageBox help context parameter, be sure to use prompt IDs that begin with
IDP_. In your RTF file, use help context IDs that begin with HIDP_.

There are two versions of AfxMessageBox. In the first version, the prompt string is specified by a
character-array pointer parameter. In the second version, the prompt ID parameter specifies a string
resource. If you use the second version, your executable program will be more efficient. Both
AfxMessageBox versions take a style parameter that makes the message box display an exclamation point,
a question mark, or another graphics symbol.

Generic Help

When context-sensitive help is enabled, AppWizard assembles a series of default help topics that are
associated with standard MFC library program elements. Following are some of the standard topics:

Menu and toolbar commands (File, Edit, and so forth)

Nonclient window elements (maximize box, title bar, and so forth)

Status bar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error message boxes

These topics are contained in the files AfxCore.rtf and AfxPrint.rtf, which are copied, along with the
associated bitmap files, to the application's \hlp subdirectory. Your job is to customize the generic help
files.

AppWizard generates AfxPrint.rtf only if you specify the Printing And Print Preview
option.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Help Example—No Programming Required
If you followed the instructions for EX20D in Chapter 20, you selected the AppWizard Context-Sensitive
Help option. We'll now return to that example and explore the application framework's built-in help
capability. You'll see how easy it is to link help topics to menu command IDs and frame window resource
IDs. You edit RTF files, not CPP files.

Here are the steps for customizing the help for EX20D:

1. Verify that the help file was built correctly. If you have built the EX20D project already,
chances are that the help file was created correctly as part of the build process. Check this by
running the application and then pressing the F1 key. You should see the generic Application Help
screen with the title "Modifying the Document," as shown below.

If you do not see this screen, the MAKEHELP batch file did not run correctly. First check the last two
lines of the ex20d.hpj file in the \hlp subdirectory. Are the paths correct for your Visual C++
installation? Next choose Options from the Tools menu, and click on the Directories tab. Make sure
that the \VC98\bin subdirectory of your Visual C++ directory is one of the search directories for
Executable Files.

To generate the help file, highlight the ex20d.hpj file in the Workspace FileView window, and then
choose Compile Ex20d.hpj from the Build menu. This runs the MAKEHELP batch file that is in your
project directory. (You can also run it directly from an MS-DOS prompt.) You should observe some
"file(s) copied" messages but no error messages. Rerun the EX20D program, and press F1 again.

The Visual C++ make processor doesn't always detect all the dependencies in
your help system. Sometimes you must run the MAKEHELP batch file yourself to
rebuild the HLP file after making changes.

2. Test the generic help file. Try the following experiments:
Close the Help dialog, press Alt-F and then press F1. This should open the help topic for the
File New command. You can also press F1 while holding down the mouse button on the File
New menu item to see the same help topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Close the Help dialog, click the Context Help toolbar button (shown in "Shift-F1 Help"), and
then choose Save from the File menu. Do you get the appropriate help topic?

Click the Context Help toolbar button again, and then select the frame window's title bar.
You should get an explanation of a Windows title bar.

Close all child windows and then press F1. You should see a main index page that is also an
old-style table of contents.

3. Change the application title. The file AfxCore.rtf, in the \vcpp32\ex20d\hlp directory, contains
the string <<YourApp>> throughout. Replace it globally with EX20D.

4. Change the Modifying The Document Help screen. The file AfxCore.rtf in the
\vcpp32\ex20d\hlp directory contains text for the generic Application Help screen. Search for
Modifying the Document, and then change the text to something appropriate for the application.
This topic has the help context ID HIDR_DOC1TYPE. The generated ex20d.hpj file provides the alias
HIDR_EX20DTYPE.

5. Add a topic for the Window New String Window menu item. The New String Window menu
item was added to EX20D and thus didn't have associated help text. Add a topic to AfxCore.rtf, as
shown here.

Notice the # footnote that links the topic to the context ID HID_WINDOW_NEW_STRING as defined
in hlp\ex20d.hm. The program's command ID for the New String Window menu item is, of course,
ID_WINDOW_NEW_STRING.

6. Rebuild the help file and test the application. Run the MAKEHELP batch file again, and then
rerun the EX20D program. Try the two new help links.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MAKEHELP Process
The process of building the application's HLP file is complex. Part of the complexity results from the Help
Compiler's nonacceptance of statements such as

HID_MAINFRAME = ID_MAINFRAME + 0x20000
Because of the Help Compiler's nonacceptance, a special preprocessing program named makehm.exe must
read the resource.h file to produce a help map file that defines the help context ID values. Below is a
diagram of the entire MAKEHELP process.

AppWizard generates the application's help project file (HPJ) and the help contents file (CNT). In the
project file, the [FILES] section brings in RTF files and the [MAP] section contains #include statements for
the generic and the application-specific help map (HM) files. The Help Workshop (HCRTF) processes the
project file to produce the help file that WinHelp reads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Help Command Processing
You've seen the components of a help file, and you've seen the effects of F1 and Shift-F1. You know how
the application element IDs are linked to help context IDs. What you haven't seen is the application
framework's internal processing of the help requests. Why should you be concerned? Suppose you want to
provide help on a specific view window instead of a frame window. What if you need help topics linked to
specific graphics items in a view window? These and other needs can be met by mapping the appropriate
help messages in the view class.

Help command processing depends on whether the help request was an F1 request or a Shift-F1 request.
The processing of each help request will be described separately.

F1 Processing

The F1 key is normally handled by a keyboard accelerator entry that AppWizard inserts in the RC file. The
accelerator associates the F1 key with an ID_HELP command that is sent to the OnHelp member function
in the CFrameWnd class.

In an active modal dialog or a menu selection in progress, the F1 key is processed by a
Windows hook that causes the same OnHelp function to be called. The F1 accelerator
key would otherwise be disabled.

The CFrameWnd::OnHelp function sends an MFC-defined WM_COMMANDHELP message to the innermost
window, which is usually the view. If your view class does not map this message or if the handler returns
FALSE, the framework routes the message to the next outer window, which is either the MDI child frame or
the main frame. If you have not mapped WM_COMMANDHELP in your derived frame window classes, the
message is processed in the MFC CFrameWnd class, which displays help for the symbol that AppWizard
generates for your application or document type.

If you map the WM_COMMANDHELP message in a derived class, your handler must call CWinApp::WinHelp
with the proper context ID as a parameter.

For any application, AppWizard adds the symbol IDR_MAINFRAME to your project and the HM file defines
the help context ID HIDR_MAINFRAME, which is aliased to main_index in the HPJ file. The standard
AfxCore.rtf file associates the main index with this context ID.

For an MDI application named SAMPLE, for example, AppWizard also adds the symbol IDR_SAMPLETYPE to
your project and the HM file defines the help context ID HIDR_SAMPLETYPE, which is aliased to
HIDR_DOC1TYPE in the HPJ file. The standard AfxCore.rtf file associates the topic "Modifying the
Document" with this context ID.

Shift-F1 Processing

When the user presses Shift-F1 or clicks the Context Help toolbar button, a command message is sent to
the CFrameWnd function OnContextHelp. When the user presses the mouse button again after positioning
the mouse cursor, an MFC-defined WM_HELPHITTEST message is sent to the innermost window where the
mouse click is detected. From that point on, the routing of this message is identical to that for the
WM_COMMANDHELP message, described previously in "F1 Processing".

The lParam parameter of OnHelpHitTest contains the mouse coordinates in device units, relative to the
upper-left corner of the window's client area. The y value is in the high-order half; the x value is in the
low-order half. You can use these coordinates to set the help context ID specifically for an item in the view.
Your OnHelpHitTest handler should return the correct context ID; the framework will call WinHelp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Help Command Processing Example—EX21B
EX21B is based on example EX20D from Chapter 20. It's a two-view MDI application with view-specific
help added. Each of the two view classes has an OnCommandHelp message handler to process F1 help
requests and an OnHelpHitTest message handler to process Shift-F1 help requests.

Header Requirements

The compiler recognizes help-specific identifiers only if the following #include statement is present:

#include <afxpriv.h>
In EX21B, the statement is in the StdAfx.h file.

CStringView

The modified string view in StringView.h needs message map function prototypes for both F1 help and
Shift-F1 help, as shown here:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);
Here are the message map entries in StringView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)
The OnCommandHelp message handler member function in StringView.cpp processes F1 help requests. It
responds to the message sent from the MDI main frame and displays the help topic for the string view
window, as shown here:

LRESULT CStringView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{
 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_STRINGVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}
Finally the OnHelpHitTest member function handles Shift-F1 help, as shown here:

LRESULT CStringView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)
{
 return HID_BASE_RESOURCE + IDR_STRINGVIEW;
}
In a more complex application, you might want OnHelpHitTest to set the help context ID based on the
mouse cursor position.

CHexView

The CHexView class processes help requests the same way as the CStringView class does. Following is the
necessary header code in HexView.h:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);
Here are the message map entries in HexView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)
And here is the implementation code in HexView.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LRESULT CHexView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{
 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_HEXVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}
LRESULT CHexView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)
{
 return HID_BASE_RESOURCE + IDR_HEXVIEW;
}
Resource Requirements

Two new symbols were added to the project's Resource.h file. Their values and corresponding help context
IDs are shown here.

Symbol Value Help Context ID Value

IDR_STRINGVIEW 101 HIDR_STRINGVIEW 0x20065

IDR_HEXVIEW 102 HIDR_HEXVIEW 0x20066

Help File Requirements

Two topics were added to the AfxCore.rtf file with the help context IDs HIDR_STRINGVIEW and
HIDR_HEXVIEW, as shown here.

The generated ex21b.hm file, in the project's \hlp subdirectory, should look like this:

// MAKEHELP.BAT generated Help Map file. Used by EX21B.HPJ.

// Commands (ID_* and IDM_*)
HID_WINDOW_NEW_STRING 0x18003
HID_WINDOW_NEW_HEX 0x18005

// Prompts (IDP_*)

// Resources (IDR_*)
HIDR_STRINGVIEW 0x20065
HIDR_HEXVIEW 0x20066
HIDR_MAINFRAME 0x20080

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HIDR_MAINFRAME 0x20080
HIDR_EX21BTYPE 0x20081

// Dialogs (IDD_*)
HIDD_ABOUTBOX 0x20064

// Frame Controls (IDW_*)

Testing the EX21B Application

Open a string child window and a hexadecimal child window. Test the action of F1 help and Shift-F1 help
within those windows. If the help file didn't compile correctly, follow the instructions in step 1 of the help
example in "A Help Example—No Programming Required."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22
Dynamic Link Libraries
If you want to write modular software, you'll be very interested in dynamic link libraries (DLLs). You're
probably thinking that you've been writing modular software all along because C++ classes are modular.
But classes are build-time modular, and DLLs are runtime modular. Instead of programming giant EXEs
that you must rebuild and test each time you make a change, you can build smaller DLL modules and test
them individually. You can, for example, put a C++ class in a DLL, which might be as small as 12 KB after
compiling and linking. Client programs can load and link your DLL very quickly when they run. Microsoft
Windows itself uses DLLs for its major functions.

DLLs are getting easier to write. Win32 has greatly simplified the programming model, and there's more
and better support from AppWizard and the Microsoft Foundation Class (MFC) library. This chapter shows
you how to write DLLs in C++ and how to write client programs that use DLLs. You'll explore how Win32
maps DLLs into your processes, and you'll learn the differences between MFC library regular DLLs and MFC
library extension DLLs. You'll see examples of simple DLLs of each type as well as a more complex DLL
example that implements a custom control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fundamental DLL Theory
Before you look at the application framework's support for DLLs, you must understand how Win32
integrates DLLs into your process. You might want to review Chapter 10 to refresh your knowledge of
processes and virtual memory. Remember that a process is a running instance of a program and that the
program starts out as an EXE file on disk.

Basically, a DLL is a file on disk (usually with a DLL extension) consisting of global data, compiled
functions, and resources, that becomes part of your process. It is compiled to load at a preferred base
address, and if there's no conflict with other DLLs, the file gets mapped to the same virtual address in your
process. The DLL has various exported functions, and the client program (the program that loaded the DLL
in the first place) imports those functions. Windows matches up the imports and exports when it loads the
DLL.

Win32 DLLs allow exported global variables as well as functions.

In Win32, each process gets its own copy of the DLL's read/write global variables. If you want to share
memory among processes, you must either use a memory-mapped file or declare a shared data section as
described in Jeffrey Richter's Advanced Windows (Microsoft Press, 1997). Whenever your DLL requests
heap memory, that memory is allocated from the client process's heap.

How Imports Are Matched to Exports

A DLL contains a table of exported functions. These functions are identified to the outside world by their
symbolic names and (optionally) by integers called ordinal numbers. The function table also contains the
addresses of the functions within the DLL. When the client program first loads the DLL, it doesn't know the
addresses of the functions it needs to call, but it does know the symbols or ordinals. The dynamic linking
process then builds a table that connects the client's calls to the function addresses in the DLL. If you edit
and rebuild the DLL, you don't need to rebuild your client program unless you have changed function
names or parameter sequences.

In a simple world, you'd have one EXE file that imports functions from one or more
DLLs. In the real world, many DLLs call functions inside other DLLs. Thus, a particular
DLL can have both exports and imports. This is not a problem because the dynamic
linkage process can handle cross-dependencies.

In the DLL code, you must explicitly declare your exported functions like this:

__declspec(dllexport) int MyFunction(int n);
(The alternative is to list your exported functions in a module-definition [DEF] file, but that's usually more
troublesome.) On the client side, you need to declare the corresponding imports like this:

__declspec(dllimport) int MyFunction(int n);
If you're using C++, the compiler generates a decorated name for MyFunction that other languages can't
use. These decorated names are the long names the compiler invents based on class name, function
name, and parameter types. They are listed in the project's MAP file. If you want to use the plain name
MyFunction, you have to write the declarations this way:

extern "C" __declspec(dllexport) int MyFunction(int n);
extern "C" __declspec(dllimport) int MyFunction(int n);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By default, the compiler uses the __cdecl argument passing convention, which means
that the calling program pops the parameters off the stack. Some client languages
might require the __stdcall convention, which replaces the Pascal calling convention,
and which means that the called function pops the stack. Therefore, you might have to
use the __stdcall modifier in your DLL export declaration.

Just having import declarations isn't enough to make a client link to a DLL. The client's project must
specify the import library (LIB) to the linker, and the client program must actually contain a call to at least
one of the DLL's imported functions. That call statement must be in an executable path in the program.

Implicit Linkage vs. Explicit Linkage

The preceding section primarily describes implicit linking, which is what you as a C++ programmer will
probably be using for your DLLs. When you build a DLL, the linker produces a companion import LIB file,
which contains every DLL's exported symbols and (optionally) ordinals, but no code. The LIB file is a
surrogate for the DLL that is added to the client program's project. When you build (statically link) the
client, the imported symbols are matched to the exported symbols in the LIB file, and those symbols (or
ordinals) are bound into the EXE file. The LIB file also contains the DLL filename (but not its full
pathname), which gets stored inside the EXE file. When the client is loaded, Windows finds and loads the
DLL and then dynamically links it by symbol or by ordinal.

Explicit linking is more appropriate for interpreted languages such as Microsoft Visual Basic, but you can
use it from C++ if you need to. With explicit linking, you don't use an import file; instead, you call the
Win32 LoadLibrary function, specifying the DLL's pathname as a parameter. LoadLibrary returns an
HINSTANCE parameter that you can use in a call to GetProcAddress, which converts a symbol (or an
ordinal) to an address inside the DLL. Suppose you have a DLL that exports a function such as this:

extern "C" __declspec(dllexport) double SquareRoot(double d);
Here's an example of a client's explicit linkage to the function:

typedef double (SQRTPROC)(double);
HINSTANCE hInstance;
SQRTPROC* pFunction;
VERIFY(hInstance = ::LoadLibrary("c:\\winnt\\system32\\mydll.dll"));
VERIFY(pFunction = (SQRTPROC*)::GetProcAddress(hInstance, "SquareRoot"));
double d = (*pFunction)(81.0); // Call the DLL function
With implicit linkage, all DLLs are loaded when the client is loaded, but with explicit linkage, you can
determine when DLLs are loaded and unloaded. Explicit linkage allows you to determine at runtime which
DLLs to load. You could, for example, have one DLL with string resources in English and another with string
resources in Spanish. Your application would load the appropriate DLL after the user chose a language.

Symbolic Linkage vs. Ordinal Linkage

In Win16, the more efficient ordinal linkage was the preferred linkage option. In Win32, the symbolic
linkage efficiency was improved. Microsoft now recommends symbolic over ordinal linkage. The DLL
version of the MFC library, however, uses ordinal linkage. A typical MFC program might link to hundreds of
functions in the MFC DLL. Ordinal linkage permits that program's EXE file to be smaller because it does not
have to contain the long symbolic names of its imports. If you build your own DLL with ordinal linkage, you
must specify the ordinals in the project's DEF file, which doesn't have too many other uses in the Win32
environment. If your exports are C++ functions, you must use decorated names in the DEF file (or declare
your functions with extern "C"). Here's a short extract from one of the MFC library DEF files:

?ReadList@CRecentFileList@@UAEXXZ @ 5458 NONAME
?ReadNameDictFromStream@CPropertySection@@QAEHPAUIStream@@@Z @ 5459 NONAME
?ReadObject@CArchive@@QAEPAVCObject@@PBUCRuntimeClass@@@Z @ 5460 NONAME
?ReadString@CArchive@@QAEHAAVCString@@@Z @ 5461 NONAME
?ReadString@CArchive@@QAEPADPADI@Z @ 5462 NONAME
?ReadString@CInternetFile@@UAEHAAVCString@@@Z @ 5463 NONAME
?ReadString@CInternetFile@@UAEPADPADI@Z @ 5464 NONAME
The numbers after the at (@) symbols are the ordinals. (Kind of makes you want to use symbolic linkage
instead, doesn't it?)

The DLL Entry Point—DllMain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DLL Entry Point—DllMain

By default, the linker assigns the main entry point _DllMainCRTStartup to your DLL. When Windows loads
the DLL, it calls this function, which first calls the constructors for global objects and then calls the global
function DllMain, which you're supposed to write. DllMain is called not only when the DLL is attached to the
process but also when it is detached (and at other times as well). Here is a skeleton DllMain function:

HINSTANCE g_hInstance;
extern "C" int APIENTRY
 DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("EX22A.DLL Initializing!\n");
 // Do initialization here
 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 TRACE0("EX22A.DLL Terminating!\n");
 // Do cleanup here
 }
 return 1; // ok
}
If you don't write a DllMain function for your DLL, a do-nothing version is brought in from the runtime
library.

The DllMain function is also called when individual threads are started and terminated, as indicated by the
dwReason parameter. Richter's book tells you all you need to know about this complex subject.

Instance Handles—Loading Resources

Each DLL in a process is identified by a unique 32-bit HINSTANCE value. In addition, the process itself has
an HINSTANCE value. All these instance handles are valid only within a particular process, and they
represent the starting virtual address of the DLL or EXE. In Win32, the HINSTANCE and HMODULE values
are the same and the types can be used interchangeably. The process (EXE) instance handle is almost
always 0x400000, and the handle for a DLL loaded at the default base address is 0x10000000. If your
program uses several DLLs, each will have a different HINSTANCE value, either because the DLLs had
different base addresses specified at build time or because the loader copied and relocated the DLL code.

Instance handles are particularly important for loading resources. The Win32 FindResource function takes
an HINSTANCE parameter. EXEs and DLLs can each have their own resources. If you want a resource from
the DLL, you specify the DLL's instance handle. If you want a resource from the EXE file, you specify the
EXE's instance handle.

How do you get an instance handle? If you want the EXE's handle, you call the Win32 GetModuleHandle
function with a NULL parameter. If you want the DLL's handle, you call the Win32 GetModuleHandle
function with the DLL name as a parameter. Later you'll see that the MFC library has its own method of
loading resources by searching various modules in sequence.

How the Client Program Finds a DLL

If you link explicitly with LoadLibrary, you can specify the DLL's full pathname. If you don't specify the
pathname, or if you link implicitly, Windows follows this search sequence to locate your DLL:

1. The directory containing the EXE file

2. The process's current directory

3. The Windows system directory

4. The Windows directory

5. The directories listed in the Path environment variable

Here's a trap you can easily fall into. You build a DLL as one project, copy the DLL file to the system
directory, and then run the DLL from a client program. So far, so good. Next you rebuild the DLL with
some changes, but you forget to copy the DLL file to the system directory. The next time you run the client
program, it loads the old version of the DLL. Be careful!

Debugging a DLL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debugging a DLL

Visual C++ makes debugging a DLL easy. Just run the debugger from the DLL project. The first time you
do this, the debugger asks for the pathname of the client EXE file. Every time you "run" the DLL from the
debugger after this, the debugger loads the EXE, but the EXE uses the search sequence to find the DLL.
This means that you must either set the Path environment variable to point to the DLL or copy the DLL to a
directory in the search sequence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC DLLs—Extension vs. Regular
We've been looking at Win32 DLLs that have a DllMain function and some exported functions. Now we'll
move into the world of the MFC application framework, which adds its own support layer on top of the
Win32 basics. AppWizard lets you build two kinds of DLLs with MFC library support: extension DLLs and
regular DLLs. You must understand the differences between these two types before you decide which one
is best for your needs.

Of course, Visual C++ lets you build a pure Win32 DLL without the MFC library, just as
it lets you build a Windows program without the MFC library. This is an MFC-oriented
book, however, so we'll ignore the Win32 option here.

An extension DLL supports a C++ interface. In other words, the DLL can export whole classes and the
client can construct objects of those classes or derive classes from them. An extension DLL dynamically
links to the code in the DLL version of the MFC library. Therefore, an extension DLL requires that your
client program be dynamically linked to the MFC library (the AppWizard default) and that both the client
program and the extension DLL be synchronized to the same version of the MFC DLLs (mfc42.dll,
mfc42d.dll, and so on). Extension DLLs are quite small; you can build a simple extension DLL with a size of
10 KB, which loads quickly.

If you need a DLL that can be loaded by any Win32 programming environment (including Visual Basic
version 6.0), you should use a regular DLL. A big restriction here is that the regular DLL can export only C-
style functions. It can't export C++ classes, member functions, or overloaded functions because every
C++ compiler has its own method of decorating names. You can, however, use C++ classes (and MFC
library classes, in particular) inside your regular DLL.

When you build an MFC regular DLL, you can choose to statically link or dynamically link to the MFC library.
If you choose static linking, your DLL will include a copy of all the MFC library code it needs and will thus
be self-contained. A typical Release-build statically linked regular DLL is about 144 KB in size. If you
choose dynamic linking, the size drops to about 17 KB but you'll have to ensure that the proper MFC DLLs
are present on the target machine. That's no problem if the client program is already dynamically linked to
the same version of the MFC library.

When you tell AppWizard what kind of DLL or EXE you want, compiler #define constants are set as shown
in the following table.

Dynamically Linked to Shared MFC
Library

Statically Linked* to MFC
Library

Regular DLL _AFXDLL, _USRDLL _USRDLL

Extension
DLL

_AFXEXT, _AFXDLL unsupported option

Client EXE _AFXDLL no constants defined

* Visual C++ Learning Edition does not support the static linking option.

If you look inside the MFC source code and header files, you'll see a ton of #ifdef statements for these
constants. This means that the library code is compiled quite differently depending on the kind of project
you're producing.

The Shared MFC DLLs and the Windows DLLs

If you build a Windows Debug target with the shared MFC DLL option, your program is dynamically linked
to one or more of these (ANSI) MFC DLLs:

mfc42d.dll Core MFC classes

mfco42d.dll ActiveX (OLE) classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mfcd42d.dll Database classes (ODBC and DAO)

mfcn42d.dll Winsock, WinInet classes

When you build a Release target, your program is dynamically linked to mfc42.dll only. Linkage to these
MFC DLLs is implicit via import libraries. You might assume implicit linkage to the ActiveX and ODBC DLLs
in Windows, in which case you would expect all these DLLs to be linked to your Release-build client when it
loads, regardless of whether it uses ActiveX or ODBC features. However, this is not what happens. Through
some creative thunking, MFC loads the ActiveX and ODBC DLLs explicitly (by calling LoadLibrary) when one
of their functions is first called. Your client application thus loads only the DLLs it needs.

MFC Extension DLLs—Exporting Classes

If your extension DLL contains only exported C++ classes, you'll have an easy time building and using it.
The steps for building the EX22A example show you how to tell AppWizard that you're building an
extension DLL skeleton. That skeleton has only the DllMain function. You simply add your own C++ classes
to the project. There's only one special thing you must do. You must add the macro AFX_EXT_CLASS to
the class declaration, as shown here:

class AFX_EXT_CLASS CStudent : public CObject
This modification goes into the H file that's part of the DLL project, and it also goes into the H file that
client programs use. In other words, the H files are exactly the same for both client and DLL. The macro
generates different code depending on the situation—it exports the class in the DLL and imports the class
in the client.

The MFC Extension DLL Resource Search Sequence

If you build a dynamically linked MFC client application, many of the MFC library's standard resources
(error message strings, print preview dialog templates, and so on) are stored in the MFC DLLs (mfc42.dll,
mfco42.dll, and so on), but your application has its own resources too. When you call an MFC function such
as CString::LoadString or CBitmap::LoadBitmap, the framework steps in and searches first the EXE file's
resources and then the MFC DLL's resources.

If your program includes an extension DLL and your EXE needs a resource, the search sequence is first the
EXE file, then the extension DLL, and then the MFC DLLs. If you have a string resource ID, for example,
that is unique among all resources, the MFC library will find it. If you have duplicate string IDs in your EXE
file and your extension DLL file, the MFC library loads the string in the EXE file.

If the extension DLL loads a resource, the sequence is first the extension DLL, then the MFC DLLs, and
then the EXE.

You can change the search sequence if you need to. Suppose you want your EXE code to search the
extension DLL's resources first. Use code such as this:

HINSTANCE hInstResourceClient = AfxGetResourceHandle();
// Use DLL's instance handle
AfxSetResourceHandle(::GetModuleHandle("mydllname.dll"));
CString strRes;
strRes.LoadString(IDS_MYSTRING);
// Restore client's instance handle
AfxSetResourceHandle(hInstResourceClient);
You can't use AfxGetInstanceHandle instead of ::GetModuleHandle. In an extension DLL,
AfxGetInstanceHandle returns the EXE's instance handle, not the DLL's handle.

The EX22A Example—An MFC Extension DLL

This example makes an extension DLL out of the CPersistentFrame class you saw in Chapter 15. First you'll
build the ex22a.dll file, and then you'll use it in a test client program, EX22B.

Here are the steps for building the EX22A example:

1. Run AppWizard to produce \vcpp32\ex22a\ex22a. Choose New from Visual C++'s File menu,
and then click on the Projects tab as usual. Instead of selecting MFC AppWizard (exe), choose MFC
AppWizard (dll), as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWizard (dll), as shown here.

In this example, only one AppWizard screen appears. Choose MFC Extension DLL, as shown here.

2. Examine the ex22a.cpp file. AppWizard generates the following code, which includes the DllMain
function:

// ex22a.cpp : Defines the initialization routines for the DLL.
//

#include "stdafx.h"
#include <afxdllx.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _ _FILE_ _;
#endif

static AFX_EXTENSION_MODULE Ex22aDLL = { NULL, NULL };

extern "C" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 // Remove this if you use lpReserved
 UNREFERENCED_PARAMETER(lpReserved);

 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("EX22A.DLL Initializing!\n");

 // Extension DLL one-time initialization
 if (!AfxInitExtensionModule(Ex22aDLL, hInstance))
 return 0;

 // Insert this DLL into the resource chain

 (generated comment lines deleted)

 new CDynLinkLibrary(Ex22aDLL);
 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 TRACE0("EX22A.DLL Terminating!\n");
 // Terminate the library before destructors are called
 AfxTermExtensionModule(Ex22aDLL);
 }
 return 1; // ok
}

3. Insert the CPersistentFrame class into the project. Choose Add To Project from the Project
menu, and then choose Components And Controls from the submenu. Locate the file Persistent
Frame.ogx that you created in Chapter 15 (or locate the copy on the companion CD-ROM). Click the
Insert button to insert the class into the current project.

If you don't want to use the OGX component, you can copy the files Persist.h and
Persist.cpp into your project directory and add them to the project by choosing Add To
Project from the Visual C++ Project menu.

4. Edit the persist.h file. Modify the line

class CPersistentFrame : public CFrameWnd
to read

class AFX_EXT_CLASS CPersistentFrame : public CFrameWnd
5. Build the project and copy the DLL file. Copy the file ex22a.dll from the \vcpp32\ex22a\Debug

directory to your system directory (\Windows\System or \Winnt\System32).

The EX22B Example—A DLL Test Client Program

This example starts off as a client for ex22a.dll. It imports the CPersistentFrame class from the DLL and
uses it as a base class for the SDI frame window. Later you'll add code to load and test the other sample
DLLs in this chapter.

Here are the steps for building the EX22B example:

1. Run AppWizard to produce \vcpp32\ex22b\ex22b. This is an ordinary MFC EXE program.
Select Single Document. Otherwise, accept the default settings. Be absolutely sure that in Step 5
you accept the As A Shared DLL option.

2. Copy the file persist.h from the \vcpp32\ex22a directory. Note that you're copying the
header file, not the CPP file.

3. Change the CMainFrame base class to CPersistentFrame as you did in EX15A. Replace all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Change the CMainFrame base class to CPersistentFrame as you did in EX15A. Replace all
occurrences of CFrameWnd with CPersistentFrame in both MainFrm.h and MainFrm.cpp. Also insert
the following line into MainFrm.h:

#include "persist.h"

4. Add the ex22a import library to the linker's input library list. Choose Settings from Visual
C++'s Project menu. Select All Configurations in the Settings For drop-down list. Then fill in the
Object/Library Modules control on the Link page as shown below.

You must specify the full pathname for the ex22a.lib file unless you have a copy of that file in your
project directory.

5. Build and test the EX22B program. If you run the program from the debugger and Windows
can't find the EX22A DLL, Windows displays a message box when EX22B starts. If all goes well, you
should have a persistent frame application that works exactly like the one in EX15A. The only
difference is that the CPersistentFrame code is in an extension DLL.

MFC Regular DLLs—The CWinApp Derived Class

When AppWizard generates a regular DLL, the DllMain function is inside the framework and you end up
with a class derived from CWinApp (and a global object of that class), just as you would with an EXE
program. You can get control by overriding CWinApp::InitInstance and CWinApp::ExitInstance. Most of the
time, you don't bother overriding those functions, though. You simply write the C functions and then
export them with the __declspec(dllexport) modifier (or with entries in the project's DEF file).

Using the AFX_MANAGE_STATE Macro

When mfc42.dll is loaded as part of a process, it stores data in some truly global variables. If you call MFC
functions from an MFC program or extension DLL, mfc42.dll knows how to set these global variables on
behalf of the calling process. If you call into mfc42.dll from a regular MFC DLL, however, the global
variables are not synchronized and the effects will be unpredictable. To solve this problem, insert the line

AFX_MANAGE_STATE(AfxGetStaticModuleState());
at the start of all exported functions in your regular DLL. If the MFC code is statically linked, the macro will
have no effect.

The MFC Regular DLL Resource Search Sequence

When an EXE links to a regular DLL, resource loading functions inside the EXE will load the EXE's own
resources. Resource loading functions inside the regular DLL will load the DLL's own resources.

If you want your EXE code to load resources from the DLL, you can use AfxSetResourceHandle to
temporarily change the resource handle. The code will be nearly the same as that shown in "The MFC
Extension DLL Resource Search Sequence." If you're writing an application that needs to be localized, you
can put language-specific strings, dialogs, menus, and so forth in an MFC regular DLL. You might, for
example, include the modules English.dll, German.dll, and French.dll. Your client program would explicitly
load the correct DLL and use code such as that in "The MFC Extension DLL Resource Search Sequence" to
load the resources, which would have the same IDs in all the DLLs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX22C Example—An MFC Regular DLL

This example creates a regular DLL that exports a single square root function. First you'll build the
ex22c.dll file, and then you'll modify the test client program, EX22B, to test the new DLL.

Here are the steps for building the EX22C example:

1. Run AppWizard to produce \vcpp32\ex22c\ex22c. Proceed as you did for EX22A, but accept
Regular DLL Using Shared MFC DLL (instead of choosing MFC Extension DLL) from the one and only
AppWizard page.

2. Examine the ex22c.cpp file. AppWizard generates the following code, which includes a derived
CWinApp class:

// ex22c.cpp : Defines the initialization routines for the DLL.
//

#include "stdafx.h"
#include "ex22c.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _ _FILE_ _;
#endif

(generated comment lines omitted)

//
// CEx22cApp

BEGIN_MESSAGE_MAP(CEx22cApp, CWinApp)
 //{{AFX_MSG_MAP(CEx22cApp)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CEx22cApp construction

CEx22cApp::CEx22cApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

//
// The one and only CEx22cApp object

CEx22cApp theApp;
3. Add the code for the exported Ex22cSquareRoot function. It's okay to add this code in the

ex22c.cpp file, although you can use a new file if you want to:

extern "C" __declspec(dllexport) double Ex22cSquareRoot(double d)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 TRACE("Entering Ex22cSquareRoot\n");
 if (d >= 0.0) {
 return sqrt(d);
 }
 AfxMessageBox("Can't take square root of a negative number.");
 return 0.0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
You can see that there's no problem with the DLL displaying a message box or another modal
dialog. You'll need to include math.h in the file containing this code.

4. Build the project and copy the DLL file. Copy the file ex22c.dll from the \vcpp32\ex22c\Debug
directory to your system directory.

Updating the EX22B Example—Adding Code to Test ex22c.dll

When you first built the EX22B program, it linked dynamically to the EX22A MFC extension DLL. Now you'll
update the project to implicitly link to the EX22C MFC regular DLL and to call the DLL's square root
function.

Following are the steps for updating the EX22B example.

1. Add a new dialog resource and class to \vcpp32\ex22b\ex22b. Use the dialog editor to
create the IDD_EX22C template, as shown here.

Then use ClassWizard to generate a class CTest22cDialog, derived from CDialog. The controls, data
members, and message map function are shown in the following table.

Control ID Type Data Member Message Map Function

IDC_INPUT edit m_dInput (double)

IDC_OUTPUT edit m_dOutput (double)

IDC_COMPUTE button OnCompute

2. Code the OnCompute function to call the DLL's exported function. Edit the ClassWizard-
generated function in Test22cDialog.cpp as shown here:

void CTest22cDialog::OnCompute()
{
 UpdateData(TRUE);
 m_dOutput = Ex22cSquareRoot(m_dInput);
 UpdateData(FALSE);
}
You'll have to declare the Ex22cSquareRoot function as an imported function. Add the following line
to the Test22cDialog.h file:

extern "C" __declspec(dllimport) double Ex22cSquareRoot(double d);
3. Integrate the CTest22cDialog class into the EX22B application. You'll need to add a top-level

menu, Test, and an Ex22c DLL option with the ID ID_TEST_EX22CDLL. Use ClassWizard to map this
option to a member function in the CEx22bView class, and then code the handler in Ex22bView.cpp
as follows:

void CEx22bView::OnTestEx22cdll()
{
 CTest22cDialog dlg;
 dlg.DoModal();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Of course, you'll have to add this line to the Ex22bView.cpp file:

#include "Test22cDialog.h"
4. Add the EX22C import library to the linker's input library list. Choose Settings from Visual

C++'s Project menu, and then add \vcpp32\ex22c\Debug\ex22c.lib to the Object/Library Modules
control on the Link page. (Use a space to separate the new entry from the existing entry.) Now the
program should implicitly link to both the EX22A DLL and the EX22C DLL. As you can see, the client
doesn't care whether the DLL is a regular DLL or an extension DLL. You just specify the LIB name to
the linker.

5. Build and test the updated EX22B application. Choose Ex22c DLL from the Test menu. Type a
number in the Input edit control, and then click the Compute Sqrt button. The result should appear
in the Output control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Custom Control DLL
Programmers have been using DLLs for custom controls since the early days of Windows because custom
controls are neatly self-contained. The original custom controls were written in pure C and configured as
stand-alone DLLs. Today you can use the features of the MFC library in your custom controls, and you can
use the wizards to make coding easier. A regular DLL is the best choice for a custom control because the
control doesn't need a C++ interface and because it can be used by any development system that accepts
custom controls (such as the Borland C++ compiler). You'll probably want to use the MFC dynamic linking
option because the resulting DLL will be small and quick to load.

What Is a Custom Control?

You've seen ordinary controls and Microsoft Windows common controls in Chapter 6, and you've seen
ActiveX controls in Chapter 8. The custom control acts like an ordinary control, such as the edit control, in
that it sends WM_COMMAND notification messages to its parent window and receives user-defined
messages. The dialog editor lets you position custom controls in dialog templates. That's what the "head"
control palette item, shown here, is for.

You have a lot of freedom in designing your custom control. You can paint anything you want in its window
(which is managed by the client application) and you can define any notification and inbound messages
you need. You can use ClassWizard to map normal Windows messages in the control
(WM_LBUTTONDOWN, for example), but you must manually map the user-defined messages and manually
map the notification messages in the parent window class.

A Custom Control's Window Class

A dialog resource template specifies its custom controls by their symbolic window class names. Don't
confuse the Win32 window class with the C++ class; the only similarity is the name. A window class is
defined by a structure that contains the following:

The name of the class

A pointer to the WndProc function that receives messages sent to windows of the class

Miscellaneous attributes, such as the background brush

The Win32 RegisterClass function copies the structure into process memory so that any function in the
process can use the class to create a window. When the dialog window is initialized, Windows creates the
custom control child windows from the window class names stored in the template.

Suppose now that the control's WndProc function is inside a DLL. When the DLL is initialized (by a call to
DllMain), it can call RegisterClass for the control. Because the DLL is part of the process, the client
program can create child windows of the custom control class. To summarize, the client knows the name
string of a control window class and it uses that class name to construct the child window. All the code for
the control, including the WndProc function, is inside the DLL. All that's necessary is that the client load the
DLL prior to creating the child window.

The MFC Library and the WndProc Function

Okay, so Windows calls the control's WndProc function for each message sent to that window. But you
really don't want to write an old-fashioned switch-case statement—you want to map those messages to
C++ member functions, as you've been doing all along. Now, in the DLL, you must rig up a C++ class that
corresponds to the control's window class. Once you've done that, you can happily use ClassWizard to map
messages.

The obvious part is the writing of the C++ class for the control. You simply use ClassWizard to create a
new class derived from CWnd. The tricky part is wiring the C++ class to the WndProc function and to the
application framework's message pump. You'll see a real WndProc in the EX22D example, but here's the
pseudocode for a typical control WndProc function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LRESULT MyControlWndProc(HWND hWnd, UINT message
 WPARAM wParam, LPARAM lParam)
{
 if (this is the first message for this window) {
 CWnd* pWnd = new CMyControlWindowClass();
 attach pWnd to hWnd
 }
 return AfxCallWndProc(pWnd, hWnd, message, WParam, lParam);
}
The MFC AfxCallWndProc function passes messages to the framework, which dispatches them to the
member functions mapped in CMyControlWindowClass.

Custom Control Notification Messages

The control communicates with its parent window by sending it special WM_COMMAND notification
messages with parameters, as shown here.

Parameter Usage

(HIWORD) wParam Notification code

(LOWORD) wParam Child window ID

lParam Child window handle

The meaning of the notification code is arbitrary and depends on the control. The parent window must
interpret the code based on its knowledge of the control. For example, the code 77 might mean that the
user typed a character while positioned on the control.

The control might send a notification message such as this:

GetParent()->SendMessage(WM_COMMAND,

 GetDlgCtrlID() | ID_NOTIFYCODE << 16, (LONG) GetSafeHwnd());

On the client side, you map the message with the MFC ON_CONTROL macro like this:

ON_CONTROL(ID_NOTIFYCODE, IDC_MYCONTROL, OnClickedMyControl)
Then you declare the handler function like this:

afx_msg void OnClickedMyControl();

User-Defined Messages Sent to the Control

You have already seen user-defined messages in Chapter 7. This is the means by which the client program
communicates with the control. Because a standard message returns a 32-bit value if it is sent rather than
posted, the client can obtain information from the control.

The EX22D Example—A Custom Control

The EX22D program is an MFC regular DLL that implements a traffic light control indicating off, red, yellow,
and green states. When clicked with the left mouse button, the DLL sends a clicked notification message to
its parent and responds to two user-defined messages, RYG_SETSTATE and RYG_GETSTATE. The state is
an integer that represents the color. Credit goes to Richard Wilton, who included the original C-language
version of this control in his book Windows 3 Developer's Workshop (Microsoft Press, 1991).

The EX22D project was originally generated using AppWizard, with linkage to the shared MFC DLL, just like
EX22C. Figure 22-1 shows the code for the primary source file, with the added code in the InitInstance
function in boldface. The dummy exported Ex22dEntry function exists solely to allow the DLL to be
implicitly linked. The client program must include a call to this function. That call must be in an executable
path in the program or the compiler will eliminate the call. As an alternative, the client program could call
the Win32 LoadLibrary function in its InitInstance function to explicitly link the DLL.

EX22D.CPP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ex22d.cpp : Defines the initialization routines for the DLL.
//

#include "stdafx.h"
#include "ex22d.h"
#include "RygWnd.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

extern "C" __declspec(dllexport) void Ex22dEntry() {} // dummy function
(generated comment lines omitted)

///
// CEx22dApp

BEGIN_MESSAGE_MAP(CEx22dApp, CWinApp)
 //{{AFX_MSG_MAP(CEx22dApp)
 // NOTE - the ClassWizard will add and remove mapping macros here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CEx22dApp construction

CEx22dApp::CEx22dApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CEx22dApp object

CEx22dApp theApp;

BOOL CEx22dApp::InitInstance()
{
 CRygWnd::RegisterWndClass(AfxGetInstanceHandle());
 return CWinApp::InitInstance();
}

Figure 22-1. The EX22D primary source listing.

Figure 22-2 shows the code for the CRygWnd class, including the global RygWndProc function. (Click the
Add Class button in ClassWizard to create this class.) The code that paints the traffic light isn't very
interesting, so we'll concentrate on the functions that are common to most custom controls. The static
RegisterWndClass member function actually registers the RYG window class and must be called as soon as
the DLL is loaded. The OnLButtonDown handler is called when the user presses the left mouse button
inside the control window. It sends the clicked notification message to the parent window. The overridden
PostNcDestroy function is important because it deletes the CRygWnd object when the client program
destroys the control window. The OnGetState and OnSetState functions are called in response to user-
defined messages sent by the client. Remember to copy the DLL to your system directory.

RYGWND.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#if !defined(AFX_RYGWND_H__1AA889D5_9788_11D0_BED2_00C04FC2A0C2
__INCLUDED_)
#define AFX_RYGWND_H__1AA889D5_9788_11D0_BED2_00C04FC2A0C2
__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// RygWnd.h : header file
//

///
// CRygWnd window

#define RYG_SETSTATE WM_USER + 0
#define RYG_GETSTATE WM_USER + 1
LRESULT CALLBACK AFX_EXPORT
 RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam);
class CRygWnd : public CWnd
{
private:
 int m_nState; // 0=off, 1=red, 2=yellow, 3=green
 static CRect s_rect;
 static CPoint s_point;
 static CRect s_rColor[3];
 static CBrush s_bColor[4];
// Construction
public:
 CRygWnd();
public:
 static BOOL RegisterWndClass(HINSTANCE hInstance);
// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CRygWnd)
 protected:
 virtual void PostNcDestroy();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CRygWnd();

 // Generated message map functions
private:
 void SetMapping(CDC* pDC);
 void UpdateColor(CDC* pDC, int n);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void UpdateColor(CDC* pDC, int n);
protected:
 //{{AFX_MSG(CRygWnd)
 afx_msg void OnPaint();
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 afx_msg LRESULT OnSetState(WPARAM wParam, LPARAM lParam);
 afx_msg LRESULT OnGetState(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

///
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.
#endif // !defined(AFX_RYGWND_H__1AA889D5_9788_11D0_BED2_00C04FC2A0C2__INCLUDED_)
RYGWND.CPP

// RygWnd.cpp : implementation file
//

#include "stdafx.h"
#include "ex22d.h"
#include "RygWnd.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

LRESULT CALLBACK AFX_EXPORT
 RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 CWnd* pWnd;
 pWnd = CWnd::FromHandlePermanent(hWnd);
 if (pWnd == NULL) {
 // Assume that client created a CRygWnd window
 pWnd = new CRygWnd();
 pWnd->Attach(hWnd);
 }
 ASSERT(pWnd->m_hWnd == hWnd);
 ASSERT(pWnd == CWnd::FromHandlePermanent(hWnd));
 LRESULT lResult = AfxCallWndProc(pWnd, hWnd, message,
 wParam, lParam);
 return lResult;
}
///
// CRygWnd

// static data members
CRect CRygWnd::s_rect(-500, 1000, 500, -1000); // outer rectangle
CPoint CRygWnd::s_point(300, 300); // rounded corners
CRect CRygWnd::s_rColor[] = {CRect(-250, 800, 250, 300),
 CRect(-250, 250, 250, -250),
 CRect(-250, -300, 250, -800)};
CBrush CRygWnd::s_bColor[] = {RGB(192, 192, 192),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CBrush CRygWnd::s_bColor[] = {RGB(192, 192, 192),
 RGB(0xFF, 0x00, 0x00),
 RGB(0xFF, 0xFF, 0x00),
 RGB(0x00, 0xFF, 0x00)};
BOOL CRygWnd::RegisterWndClass(HINSTANCE hInstance) // static member
 // function
{
 WNDCLASS wc;
 wc.lpszClassName = "RYG"; // matches class name in client
 wc.hInstance = hInstance;
 wc.lpfnWndProc = RygWndProc;
 wc.hCursor = ::LoadCursor(NULL, IDC_ARROW);
 wc.hIcon = 0;
 wc.lpszMenuName = NULL;
 wc.hbrBackground = (HBRUSH) ::GetStockObject(LTGRAY_BRUSH);
 wc.style = CS_GLOBALCLASS;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 return (::RegisterClass(&wc) != 0);
}
///
CRygWnd::CRygWnd()
{
 m_nState = 0;
 TRACE("CRygWnd constructor\n");
}

CRygWnd::~CRygWnd()
{
 TRACE("CRygWnd destructor\n");
}

BEGIN_MESSAGE_MAP(CRygWnd, CWnd)
 //{{AFX_MSG_MAP(CRygWnd)
 ON_WM_PAINT()
 ON_WM_LBUTTONDOWN()
 //}}AFX_MSG_MAP
 ON_MESSAGE(RYG_SETSTATE, OnSetState)
 ON_MESSAGE(RYG_GETSTATE, OnGetState)
END_MESSAGE_MAP()
void CRygWnd::SetMapping(CDC* pDC)
{
 CRect clientRect;
 GetClientRect(clientRect);
 pDC->SetMapMode(MM_ISOTROPIC);
 pDC->SetWindowExt(1000, 2000);
 pDC->SetViewportExt(clientRect.right, -clientRect.bottom);
 pDC->SetViewportOrg(clientRect.right / 2, clientRect.bottom / 2);
}
void CRygWnd::UpdateColor(CDC* pDC, int n)
{
 if (m_nState == n + 1) {
 pDC->SelectObject(&s_bColor[n+1]);
 }
 else {
 pDC->SelectObject(&s_bColor[0]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDC->SelectObject(&s_bColor[0]);
 }
 pDC->Ellipse(s_rColor[n]);
}
///
// CRygWnd message handlers

void CRygWnd::OnPaint()
{
 int i;
 CPaintDC dc(this); // device context for painting
 SetMapping(&dc);
 dc.SelectStockObject(DKGRAY_BRUSH);
 dc.RoundRect(s_rect, s_point);
 for (i = 0; i < 3; i++) {
 UpdateColor(&dc, i);
 }
}

void CRygWnd::OnLButtonDown(UINT nFlags, CPoint point)
{
 // Notification code is HIWORD of wParam, 0 in this case
 GetParent()->SendMessage(WM_COMMAND, GetDlgCtrlID(),
 (LONG) GetSafeHwnd()); // 0
}
void CRygWnd::PostNcDestroy()
{
 TRACE("CRygWnd::PostNcDestroy\n");
 delete this; // CWnd::PostNcDestroy does nothing
}

LRESULT CRygWnd::OnSetState(WPARAM wParam, LPARAM lParam)
{
 TRACE("CRygWnd::SetState, wParam = %d\n", wParam);
 m_nState = (int) wParam;
 Invalidate(FALSE);
 return 0L;
}
LRESULT CRygWnd::OnGetState(WPARAM wParam, LPARAM lParam)
{
 TRACE("CRygWnd::GetState\n");
 return m_nState;
}

Figure 22-2. The CRygWnd class listing.

Revising the Updated EX22B Example—Adding Code to Test ex22d.dll

The EX22B program already links to the EX22A and EX22C DLLs. Now you'll revise the project to implicitly
link to the EX22D custom control.

Here are the steps for updating the EX22B example:

1. Add a new dialog resource and class to \vcpp32\ex22b\ex22b.Use the dialog editor to
create the IDD_EX22D template with a custom control with child window ID IDC_RYG, as shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

here.

Specify RYG as the window class name of the custom control, as shown.

Then use ClassWizard to generate a class CTest22dDialog, derived from CDialog.

2. Edit the Test22dDialog.h file. Add the following private data member:

enum { OFF, RED, YELLOW, GREEN } m_nState;
Also add the following import and user-defined message IDs:

extern "C" __declspec(dllimport) void Ex22dEntry(); // dummy function
#define RYG_SETSTATE WM_USER + 0
#define RYG_GETSTATE WM_USER + 1

3. Edit the constructor in Test22dDialog.cpp to initialize the state data member. Add the
following boldface code:

CTest22dDialog::CTest22dDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CTest22dDialog::IDD, pParent)
{
 //{{AFX_DATA_INIT(CTest22dDialog)
 // NOTE: the ClassWizard will add member initialization here
 //}}AFX_DATA_INIT
 m_nState = OFF;
 Ex22dEntry(); // Make sure DLL gets loaded
}

4. Map the control's clicked notification message. You can't use ClassWizard here, so you must
add the message map entry and handler function in the Test22dDialog.cpp file, as shown here:

ON_CONTROL(0, IDC_RYG, OnClickedRyg) // Notification code is 0

void CTest22dDialog::OnClickedRyg()
{
 switch(m_nState) {
 case OFF:
 m_nState = RED;
 break;
 case RED:
 m_nState = YELLOW;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_nState = YELLOW;
 break;
 case YELLOW:
 m_nState = GREEN;
 break;
 case GREEN:
 m_nState = OFF;
 break;
 }
 GetDlgItem(IDC_RYG)->SendMessage(RYG_SETSTATE, m_nState);
 return;
}
When the dialog gets the clicked notification message, it sends the RYG_SETSTATE message back
to the control in order to change the color. Don't forget to add this prototype in the Test22dDialog.h
file:

afx_msg void OnClickedRyg();
5. Integrate the CTest22dDialog class into the EX22B application. You'll need to add a second

item on the Test menu, an Ex22d DLL option with ID ID_TEST_EX22DDLL. Use ClassWizard to map
this option to a member function in the CEx22bView class, and then code the handler in
Ex22bView.cpp as follows:

void CEx22bView::OnTestEx22ddll()
{
 CTest22dDialog dlg;
 dlg.DoModal();
}
Of course, you'll have to add the following line to Ex22bView.cpp:

#include "Test22dDialog.h"
6. Add the EX22D import library to the linker's input library list. Choose Settings from Visual

C++'s Project menu, and then add \vcpp32\ex22d\Debug\ex22d.lib to the Object/Library Modules
control on the Link page. With this addition, the program should implicitly link to all three DLLs.

7. Build and test the updated EX22B application. Choose Ex22d DLL from the Test menu. Try
clicking the traffic light with the left mouse button. The traffic-light color should change. The result
of clicking the traffic light several times is shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23
MFC Programs Without Document or View Classes
The document-view architecture is useful for many applications, but sometimes a simpler program
structure is sufficient. This chapter illustrates three applications: a dialog-based program, a Single
Document Interface (SDI) program, and a Multiple Document Interface (MDI) program. None of these
programs uses document, view, or document-template classes, but they all use command routing and
some other Microsoft Foundation Class (MFC) library features. In Visual C++ 6.0, you can create all three
types of applications using AppWizard.

In each example, we'll look at how AppWizard generates code that doesn't rely on the document-view
architecture and show you how to add your own code to each example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX23A Example—A Dialog-Based Application
For many applications, a dialog provides a sufficient user interface. The dialog window immediately
appears when the user starts the application. The user can minimize the dialog window, and as long as the
dialog is not system modal, the user can freely switch to other applications.

In this example, the dialog functions as a simple calculator, as shown in Figure 23-1. ClassWizard takes
charge of defining the class data members and generating the DDX (Dialog Data Exchange) function calls—
everything but the coding of the compute function. The application's resource script, ex23a.rc, defines an
icon as well as the dialog.

Figure 23-1. The EX23A Calculator dialog.

AppWizard gives you the option of generating a dialog-based application. Here are the steps for building
the EX23A example:

1. Run AppWizard to produce \vcpp32\ex23a\ex23a. Select the Dialog Based option in the
AppWizard Step 1 dialog, as shown here.

In the next dialog, enter EX23A Calculator as the dialog title.

2. Edit the IDD_EX23A_DIALOG resource. Refer to Figure 23-1 as a guide. Use the dialog editor to
assign IDs to the controls shown in the table below.

Open the Properties dialog box and click on the Styles tab. Select the System Menu and Minimize
Box options.

Control ID

Left operand edit control IDC_LEFT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Right operand edit control IDC_RIGHT

Result edit control IDC_RESULT

First radio button (group property set) IDC_OPERATION

Compute pushbutton IDC_COMPUTE

3. Use ClassWizard to add member variables and a command handler. AppWizard has already
generated a class CEx23aDlg. Add the following data members.

Control ID Member Variable Type

IDC_LEFT m_dLeft double

IDC_RIGHT m_dRight double

IDC_RESULT m_dResult double

IDC_OPERATION m_nOperation int

Add the message handler OnCompute for the IDC_COMPUTE button.

4. Code the OnCompute member function in the ex23aDlg.cpp file. Add the following boldface
code:

void CEx23aDlg::OnCompute()
{
 UpdateData(TRUE);
 switch (m_nOperation) {
 case 0: // add
 m_Result = m_dLeft + m_dRight;
 break;
 case 1: // subtract
 m_dResult = m_dLeft - m_dRight;
 break;
 case 2: // multiply
 m_dResult = m_dLeft * m_dRight;
 break;
 case 3: // divide
 if (m_dRight != 0.0) {
 m_dResult = m_dLeft / m_dRight;
 }
 else {
 AfxMessageBox("Divide by zero");
 m_dResult = 0.0;
 }
 break;
 default:
 TRACE("default; m_nOperation = %d\n", m_nOperation);
 }
 UpdateData(FALSE);
}

5. Build and test the EX23A application. Notice that the program's icon appears in the Microsoft
Windows taskbar. Verify that you can minimize the dialog window.

The Application Class InitInstance Function

The critical element of the EX23A application is the CEx23aApp::InitInstance function generated by
AppWizard. A normal InitInstance function creates a main frame window and returns TRUE, allowing the
program's message loop to run. The EX23A version constructs a modal dialog object, calls DoModal, and
then returns FALSE. This means that the application exits after the user exits the dialog. The DoModal
function lets the Windows dialog procedure get and dispatch messages, as it always does. Note that
AppWizard does not generate a call to CWinApp::SetRegistryKey.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AppWizard does not generate a call to CWinApp::SetRegistryKey.

Here is the generated InitInstance code from ex23a.cpp:

BOOL CEx23aApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 CEx23aDlg dlg;
 m_pMainWnd = &dlg;
 int nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with Cancel
 }

 // Since the dialog has been closed, return FALSE so that we
 // exit the application, rather than start the application's
 // message pump.
 return FALSE;
}

The Dialog Class and the Program Icon

The generated CEx23aDlg class contains these two message map entries:

ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
The associated handler functions take care of displaying the application's icon when the user minimizes the
program. This code applies only to Microsoft Windows NT version 3.51, in which the icon is displayed on
the desktop. You don't need the three handlers for Windows 95, Windows 98, or Windows NT 4.0 because
those versions of Windows display the program's icon directly on the taskbar.

There is some icon code that you do need. It's in the dialog's handler for WM_INITDIALOG, which is
generated by AppWizard. Notice the two SetIcon calls in the OnInitDialog function code below. If you
checked the About box option, AppWizard generates code to add an About box to the System menu. The
variable m_hIcon is a data member of the dialog class that is initialized in the constructor.

BOOL CEx23aDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
 ASSERT(IDM_ABOUTBOX < 0xF000);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);
 if (pSysMenu != NULL)
 {
 CString strAboutMenu;
 strAboutMenu.LoadString(IDS_ABOUTBOX);
 if (!strAboutMenu.IsEmpty())
 {
 pSysMenu->AppendMenu(MF_SEPARATOR);
 pSysMenu->AppendMenu(MF_STRING,
 IDM_ABOUTBOX, strAboutMenu);
 }
 }

 // Set the icon for this dialog. The framework does this
 // automatically when the application's main window
 // is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 return TRUE; // return TRUE unless you set the focus to a control
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX23B Example—An SDI Application
This SDI "Hello, world!" example builds on the code you saw way back in Chapter 2. The application has
only one window, an object of a class derived from CFrameWnd. All drawing occurs inside the frame
window and all messages are handled there.

1. Run AppWizard to produce \vcpp32\ex23b\ex23b. Select the Single Document option in the
AppWizard Step 1 dialog and uncheck the Document/View Architecture Support? option, as shown
here.

2. Add code to paint in the dialog. Add the following boldface code to the CChildView::OnPaint
function in the ChildView.cpp source code file:

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 dc.TextOut(0, 0, "Hello, world!");
 // Do not call CWnd::OnPaint() for painting messages
}

3. Compile and run. You now have a complete SDI application that has no dependencies on the
document-view architecture.

AppWizard automatically takes out dependencies on the document-view architecture and generates an
application for you with the following elements:

A main menu—You can have a Windows-based application without a menu—you don't even need a
resource script. But EX23B has both. The application framework routes menu commands to
message handlers in the frame class.
An icon—An icon is useful if the program is to be activated from Microsoft Windows Explorer. It's
also useful when the application's main frame window is minimized. The icon is stored in the
resource, along with the menu.
Window close message command handler—Many an application needs to do special processing
when its main window is closed. If you were using documents, you could override the
CDocument::SaveModified function. Here, to take control of the close process, AppWizard creates
message handlers to process close messages sent as a result of user actions and by Windows itself
when it shuts down.
Toolbar and status bar—AppWizard automatically generates a default toolbar and status bar for
you and sets up the routing even though there are no document-view classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you and sets up the routing even though there are no document-view classes.

There are several interesting features in the SDI application that have no document-view support,
including:

CChildView class—Contrary to its name, this class is actually a CWnd derivative that is declared in
ChildView.h and implemented in ChildView.cpp. CChildView implements only a virtual OnPaint
member function, which contains any code that you want to draw in the frame window (as
illustrated in step 2 of the EX23B sample).

CMainFrame class—This class contains a data member, m_wndView, that is created and initialized
in the CMainFrame::OnCreate member function.

CMainFrame::OnSetFocus function—This function makes sure the focus is translated to the
CChildView:

void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}
CMainFrame::OnCmdMsg function—This function gives the view a chance to handle any
command messages first:
BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX23C Example—An MDI Application
Now let's create an MDI application that doesn't use the document-view architecture.

1. Run AppWizard to produce \vcpp32\ex23c\ex23c. Select the Multiple Documents option in
the AppWizard Step 1 dialog and uncheck the Document/View Architecture Support? option, as
shown here.

2. Add code to paint in the dialog. Add the following boldface code to the CChildView::OnPaint
function in the ChildView.cpp source code file:

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 dc.TextOut(0, 0, "Hello, world!");
 // Do not call CWnd::OnPaint() for painting messages
}

3. Compile and run. You now have a complete MDI application without dependencies on the
document-view architecture.

As in EX23B, this example automatically creates a CChildView class. The main difference between
EX23B and EX23C is the fact that in EX23C the CChildView class is created in the
CChildFrame::OnCreate function instead of in the CMainFrame class.

In this chapter you've learned how to create three kinds of applications that do not depend on the
document-view architecture. Examining how these applications are generated is also a great way to learn
how MFC works. We recommend that you compare the generated results to similar applications with
document-view architecture support to get a complete picture of how the document-view classes work with
the rest of MFC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24
The Component Object Model
The Component Object Model (COM) is the foundation of much of the new Microsoft ActiveX technology,
and after five years it's become an integral part of Microsoft Windows. So COM is now an integral part of
Programming Visual C++. Soon, most Windows programming will involve COM, so you'd better start
learning it now. But where do you begin? You could start with the Microsoft Foundation Class classes for
ActiveX Controls, Automation, and OLE, but as useful as those classes are, they obscure the real COM
architecture. You've got to start with fundamental theory, and that includes COM and something called an
interface.

This is the first of seven chapters that make up Part IV of this book. Here you'll get the theory you need for
the next six chapters. You'll learn about interfaces and how the MFC library implements interfaces through
its macros and interface maps.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Technology Background
The terminology is changing as fast as the technology, and not all groups within Microsoft can agree on
how to use the terms ActiveX and OLE. Think of ActiveX as something that was created when the "old" OLE
collided with the Internet. ActiveX includes not only those Windows features built on COM (which you'll
study in this part of the book) but also the Microsoft Internet Information Server family and the WinInet
programming interface (covered in Part VI).

Yes, OLE is still here, but once again it stands for Object Linking and Embedding, just as it did in the days
of OLE 1. It's just another subset of ActiveX technology that includes odds and ends such as drag and
drop. Unfortunately (or fortunately, if you have existing code), the MFC source code and the Windows API
have not kept current with the naming conventions. As a result, you'll see lots of occurrences of "OLE" and
"Ole" in class names and in function names, even though some of those classes and functions go beyond
linking and embedding. In this part of the book, you might notice references to the "server" in the code
generated by AppWizard. Microsoft has now reserved this term for database servers and Internet servers;
"component" is the new term for OLE servers.

Bookstore computer sections are now full of books on OLE, COM, and ActiveX. We don't claim to offer that
level of detail here, but you should come away with a pretty good understanding of COM theory. We've
included a closer connection to the MFC library classes than you might see in other books, with the
exception of MFC Internals (Addison-Wesley, 1996) by George Shepherd and Scot Wingo. The net result
should be good preparation for the really heavy-duty ActiveX/COM books, including Kraig Brockschmidt's
Inside OLE, 2nd ed. (Microsoft Press, 1995) and Don Box's Essential COM (Addison-Wesley, 1998). A good
mid-level book is Dale Rogerson's Inside COM (Microsoft Press, 1997).

One more thing: don't expect this stuff to be easy. Kraig Brockschmidt reported "six months of mental fog"
before he started understanding these concepts. A thorough knowledge of the C++ language is the
minimum prerequisite. Don't be afraid to dig in and write code. Make sure you can do the easy things
before getting into advanced areas like multithreaded COM, custom marshaling, and distributed COM
(DCOM).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Component Object Model
COM is an "industry-standard" software architecture supported by Microsoft, Digital Equipment
Corporation, and many other companies. It's by no means the only standard. Indeed, it competes directly
against other standards, such as Corba from the Open Software Foundation (OSF). Some people are
working to establish interoperability between COM and other architectures, but my guess is that COM will
become the leading standard.

The Problem That COM Solves

The "problem" is that there's no standard way for Windows program modules to communicate with one
another. "But," you say "what about the DLL with its exported functions, Dynamic Data Exchange (DDE),
the Windows Clipboard, and the Windows API itself, not to mention legacy standards such as VBX and OLE
1? Aren't they good enough?" Well, no. You can't build an object-oriented operating system for the future
out of these ad hoc, unrelated standards. With the Component Object Model, however, you can, and that's
precisely what Microsoft is doing.

The Essence of COM

What's wrong with the old standards? A lot. The Windows API has too large a programming "surface
area"—more than 350 separate functions. VBXs don't work in the 32-bit world. DDE comes with a
complicated system of applications, topics, and items. How you call a DLL is totally application-specific.
COM provides a unified, expandable, object-oriented communications protocol for Windows that already
supports the following features:

A standard, language-independent way for a Win32 client EXE to load and call a Win32 DLL

A general-purpose way for one EXE to control another EXE on the same computer (the DDE
replacement)

A replacement for the VBX control, called an ActiveX control

A powerful new way for application programs to interact with the operating system

Expansion to accommodate new protocols such as Microsoft's OLE DB database interface

The distributed COM (DCOM) that allows one EXE to communicate with another EXE residing on a
different computer, even if the computers use different microprocessor-chip families

So what is COM? That's an easier question to ask than to answer. At DevelopMentor (a training facility for
software developers), the party line is that "COM is love." That is, COM is a powerful integrating technology
that allows you to mix all sorts of disparate software parts together at runtime. COM allows developers to
write software that runs together regardless of issues such as thread-awareness and language choice.

COM is a protocol that connects one software module with another and then drops out of the picture. After
the connection is made, the two modules can communicate through a mechanism called an interface.
Interfaces require no statically or dynamically linked entry points or hard-coded addresses other than the
few general-purpose COM functions that start the communication process. An interface (more precisely, a
COM interface) is a term that you'll be seeing a lot of.

What Is a COM Interface?

Before digging into the topic of interfaces, let's re-examine the nature of inheritance and polymorphism in
normal C++. We'll use a planetary-motion simulation (suitable for NASA or Nintendo) to illustrate C++
inheritance and polymorphism. Imagine a spaceship that travels through our solar system under the
influence of the sun's gravity. In ordinary C++, you could declare a CSpaceship class and write a
constructor that sets the spaceship's initial position and acceleration. Then you could write a nonvirtual
member function named Fly that implemented Kepler's laws to model the movement of the spaceship from
one position to the next—say, over a period of 0.1 second. You could also write a Display function that
painted an image of the spaceship in a window. The most interesting feature of the CSpaceship class is
that the interface of the C++ class (the way the client talks to the class) and the implementation are
tightly bound. One of the main goals of COM is to separate a class's interface from its implementation.

If we think of this example within the context of COM, the spaceship code could exist as a separate EXE or
DLL (the component), which is a COM module. In COM the simulation manager (the client program) can't
call Fly or any CSpaceship constructor directly: COM provides only a standard global function to gain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

call Fly or any CSpaceship constructor directly: COM provides only a standard global function to gain
access to the spaceship object, and then the client and the object use interfaces to talk to one another.
Before we tackle real COM, let's build a COM simulation in which both the component and the client code
are statically linked in the same EXE file. For our standard global function, we'll invent a function named
GetClassObject.

If you want to map this process back to the way MFC works, you can look at
CRuntimeClass, which serves as a class object for CObject-based classes. A class object
is a meta-class (either in concept or in form).

In this COM simulation, clients will use this global single abstract function (GetClassObject) for objects of a
particular class. In real COM, clients would get a class object first and then ask the class object to
manufacture the real object in much the same way MFC does dynamic creation. GetClassObject has the
following three parameters:

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj);
The first GetClassObject parameter, nClsid, is a 32-bit integer that uniquely identifies the CSpaceship
class. The second parameter, nIid, is the unique identifier of the interface that we want. The third
parameter is a pointer to an interface to the object. Remember that we're going to be dealing with
interfaces now, (which are different from classes). As it turns out, a class can have several interfaces, so
the last two parameters exist to manage interface selection. The function returns TRUE if the call is
successful.

Now let's back up to the design of CSpaceship. We haven't really explained spaceship interfaces yet. A
COM interface is a C++ base class (actually, a C++ struct) that declares a group of pure virtual functions.
These functions completely control some aspect of derived class behavior. For CSpaceship, let's write an
interface named IMotion, which controls the spaceship object's position. For simplicity's sake, we'll declare
just two functions, Fly and GetPosition, and we'll keep things uncomplicated by making the position value
an integer. The Fly function calculates the position of the spaceship, and the GetPosition function returns a
reference to the current position. Here are the declarations:

struct IMotion
{
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};

class CSpaceship : public IMotion
{
protected:
 int m_nPosition;
public:
 CSpaceship() { m_nPosition = 0; }
 void Fly();
 int& GetPosition() { return m_nPosition; }
};
The actual code for the spaceship-related functions—including GetClassObject—is located in the component
part of the program. The client part calls the GetClassObject function to construct the spaceship and to
obtain an IMotion pointer. Both parts have access to the IMotion declaration at compile time. Here's how
the client calls GetClassObject:

IMotion* pMot;
GetClassObject(CLSID_CSpaceship, IID_IMotion, (void**) &pMot);
Assume for the moment that COM can use the unique integer identifiers CLSID_CSpaceship and
IID_IMotion to construct a spaceship object instead of some other kind of object. If the call is successful,
pMot points to a CSpaceship object that GetClassObject somehow constructs. As you can see, the
CSpaceship class implements the Fly and GetPosition functions, and our main program can call them for
the one particular spaceship object, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int nPos = 50;
pMot->GetPosition() = nPos;
pMot->Fly();
nPos = pMot->GetPosition();
TRACE("new position = %d\n", nPos);
Now the spaceship is off and flying. We're controlling it entirely through the pMot pointer. Notice that pMot
is technically not a pointer to a CSpaceship object. However, in this case, a CSpaceship pointer and an
IMotion pointer are the same because CSpaceship is derived from IMotion. You can see how the virtual
functions work here: it's classic C++ polymorphism.

Let's make things a little more complex by adding a second interface, IVisual, which handles the
spaceship's visual representation. One function is enough—Display. Here's the whole base class:

struct IVisual
{
 virtual void Display() = 0;
};
Are you getting the idea that COM wants you to associate functions in groups? You're not imagining it. But
why? Well, in your space simulation, you probably want to include other kinds of objects in addition to
spaceships. Imagine that the IMotion and IVisual interfaces are being used for other classes. Perhaps a
CSun class has an implementation of IVisual but does not have an implementation of IMotion, and perhaps
a CSpaceStation class has other interfaces as well. If you "published" your IMotion and IVisual interfaces,
perhaps other space simulation software companies would adopt them.

Think of an interface as a contract between two software modules. The idea is that interface declarations
never change. If you want to upgrade your spaceship code, you don't change the IMotion or the IVisual
interface; rather, you add a new interface, such as ICrew. The existing spaceship clients can continue to
run with the old interfaces, and new client programs can use the new ICrew interface as well. These client
programs can find out at runtime which interfaces a particular spaceship software version supports.

Consider the GetClassObject function as a more powerful alternative to the C++ constructor. With the
ordinary constructor, you obtain one object with one batch of member functions. With the GetClassObject
function, you obtain the object plus your choice of interfaces. As you'll see later, you start with one
interface and then use that interface to get other interfaces to the same object.

So how do you program two interfaces for CSpaceship? You could use C++ multiple inheritance, but that
wouldn't work if two interfaces had the same member function name. The MFC library uses nested classes
instead, so that's what we'll use to illustrate multiple interfaces on the CSpaceship class. Not all C++
programmers are familiar with nested classes, so I'll offer a little help. Here's a first cut at nesting
interfaces within the CSpaceship class:

class CSpaceship
{
protected:
 int m_nPosition;
 int m_nAcceleration;
 int m_nColor;
public:
 CSpaceship()
 { m_nPosition = m_nAcceleration = m_nColor = 0; }
 class XMotion : public IMotion
 {
 public:
 XMotion() { }
 virtual void Fly();
 virtual int& GetPosition();
 } m_xMotion;

 class XVisual : public IVisual
 {
 public:
 XVisual() { }
 virtual void Display();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual void Display();
 } m_xVisual;

 friend class XVisual;
 friend class XMotion;
};

It might make sense to make m_nAcceleration a data member of XMotion and
m_nColor a data member of XVisual. We'll make them data members of CSpaceship
because that strategy is more compatible with the MFC macros, as you'll see later.

Notice that the implementations of IMotion and IVisual are contained within the "parent" CSpaceship class.
In COM, this parent class is known as the class with object identity. Be aware that m_xMotion and
m_xVisual are actually embedded data members of CSpaceship. Indeed, you could have implemented
CSpaceship strictly with embedding. Nesting, however, brings to the party two advantages : 1) nested
class member functions can access parent class data members without the need for CSpaceship pointer
data members, and 2) the nested classes are neatly packaged along with the parent while remaining
invisible outside the parent. Look at the code below for the GetPosition member function.

int& CSpaceship::XMotion::GetPosition()
{
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->m_nPosition;
}
Notice also the double scope resolution operators, which are necessary for nested class member functions.
METHOD_PROLOGUE is a one-line MFC macro that uses the C offsetof operator to retrieve the offset used
in generating a this pointer to the parent class, pThis. The compiler always knows the offset from the
beginning of parent class data to the beginning of nested class data. GetPosition can thus access the
CSpaceship data member m_nPosition.

Now suppose you have two interface pointers, pMot and pVis, for a particular CSpaceship object. (Don't
worry yet about how you got these pointers.) You can call interface member functions in the following
manner:

pMot->Fly();
pVis->Display();
What's happening under the hood? In C++, each class (at least, each class that has virtual functions and is
not an abstract base class) has a virtual function table, which is otherwise known as a vtable. In this
example, that means there are vtables for CSpaceship::XMotion and CSpaceship::XVisual. For each object,
there's a pointer to the object's data, the first element of which is a pointer to the class's vtable. The
pointer relationships are shown here.

Theoretically, it's possible to program COM in C. If you look at the Windows header
files, you'll see code such as this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#ifdef __cplusplus
 // C++-specific headers
#else
 /* C-specific headers */
#endif
In C++, interfaces are declared as C++ structs, often with inheritance; in C, they're
declared as C typedef structs with no inheritance. In C++, the compiler generates
vtables for your derived classes; in C, you must "roll your own" vtables, and that gets
tedious. It's important to realize, however, that in neither language do the interface
declarations have data members, constructors, or destructors. Therefore, you can't rely
on the interface having a virtual destructor—but that's not a problem because you
never invoke a destructor for an interface.

The IUnknown Interface and the QueryInterface Member Function

Let's get back to the problem of how to obtain your interface pointers in the first place. COM declares a
special interface named IUnknown for this purpose. As a matter of fact, all interfaces are derived from
IUnknown, which has a pure virtual member function, QueryInterface, that returns an interface pointer
based on the interface ID you feed it.

Once the interface mechanisms are hooked up, the client needs to get an IUnknown interface pointer (at
the very least) or a pointer to one of the derived interfaces. Here is the new interface hierarchy, with
IUnknown at the top:

struct IUnknown
{
 virtual BOOL QueryInterface(int nIid, void** ppvObj) = 0;
};

struct IMotion : public IUnknown
{
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};

struct IVisual : public IUnknown
{
 virtual void Display() = 0;
};
To satisfy the compiler, we must now add QueryInterface implementations in both CSpaceship::XMotion
and CSpaceship::XVisual. What do the vtables look like after this is done? For each derived class, the
compiler builds a vtable with the base class function pointers on top, as shown here.

GetClassObject can get the interface pointer for a given CSpaceship object by getting the address of the
corresponding embedded object. Here's the code for the QueryInterface function in XMotion:

BOOL CSpaceship::XMotion::QueryInterface(int nIid,
 void** ppvObj)
{
 METHOD_PROLOGUE(CSpaceship, Motion)
 switch (nIid) {
 case IID_IUnknown:
 case IID_IMotion:
 *ppvObj = &pThis->m_xMotion;
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case IID_IVisual:
 *ppvObj = &pThis->m_xVisual;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 return TRUE;
}
Because IMotion is derived from IUnknown, an IMotion pointer is a valid pointer if the caller asks for an
IUnknown pointer.

The COM standard demands that QueryInterface return exactly the same IUnknown
pointer value for IID_IUnknown, no matter which interface pointer you start with. Thus,
if two IUnknown pointers match, you can assume that they refer to the same object.
IUnknown is sometimes known as the "void*" of COM because it represents the
object's identity.

Below is a GetClassObject function that uses the address of m_xMotion to obtain the first interface pointer
for the newly constructed CSpaceship object:

BOOL GetClassObject(int& nClsid, int& nIid,
 void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 CSpaceship* pObj = new CSpaceship();
 IUnknown* pUnk = &pObj->m_xMotion;
 return pUnk->QueryInterface(nIid, ppvObj);
}
Now your client program can call QueryInterface to obtain an IVisual pointer, as shown here:

IMotion* pMot;
IVisual* pVis;
GetClassObject(CLSID_CSpaceship, IID_IMotion, (void**) &pMot);
pMot->Fly();
pMot->QueryInterface(IID_IVisual, (void**) &pVis);
pVis->Display();
Notice that the client uses a CSpaceship object, but it never has an actual CSpaceship pointer. Thus, the
client cannot directly access CSpaceship data members even if they're public. Notice also that we haven't
tried to delete the spaceship object yet—that will come shortly.

There's a special graphical representation for interfaces and COM classes. Interfaces are shown as small
circles (or jacks) with lines attached to their class. The IUnknown interface, which every COM class
supports, is at the top, and the others are on the left. The CSpaceship class can be represented like this.

Reference Counting: The AddRef and Release Functions

COM interfaces don't have virtual destructors, so it isn't cool to write code like the following:

delete pMot; // pMot is an IMotion pointer; don't do this
COM has a strict protocol for deleting objects; the two other IUnknown virtual functions, AddRef and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM has a strict protocol for deleting objects; the two other IUnknown virtual functions, AddRef and
Release, are the key. Each COM class has a data member—m_dwRef, in the MFC library—that keeps track
of how many "users" an object has. Each time the component program returns a new interface pointer (as
in QueryInterface), the program calls AddRef, which increments m_dwRef. When the client program is
finished with the pointer, it calls Release. When m_dwRef goes to 0, the object destroys itself. Here's an
example of a Release function for the CSpaceship::XMotion class:

DWORD CSpaceship::XMotion::Release()
{
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 if (pThis->m_dwRef == 0)
 return 0;
 if (--pThis->m_dwRef == 0) {
 delete pThis; // the spaceship object
 return 0;
 }
 return pThis->m_dwRef;
}
In MFC COM-based programs, the object's constructor sets m_dwRef to 1. This means that it isn't
necessary to call AddRef after the object is first constructed. A client program should call AddRef, however,
if it makes a copy of an interface pointer.

Class Factories

Object-oriented terminology can get a little fuzzy sometimes. Smalltalk programmers, for example, talk
about "objects" the way C++ programmers talk about "classes." The COM literature often uses the term
"component object" to refer to the object plus the code associated with it. COM carries with it the notion of
a "class object," which is sometimes referred to as a "class factory." To be more accurate, it should
probably be called an "object factory." A COM class object represents the global static area of a specific
COM class. Its analog in MFC is the CRuntimeClass. A class object is sometimes called a class factory
because it often implements a special COM interface named IClassFactory. This interface, like all interfaces,
is derived from IUnknown. IClassFactory's principal member function is CreateInstance, which in our COM
simulation is declared like this:

virtual BOOL CreateInstance(int& nIid, void** ppvObj) = 0;
Why use a class factory? We've already seen that we can't call the target class constructor directly; we
have to let the component module decide how to construct objects. The component provides the class
factory for this purpose and thus encapsulates the creation step, as it should. Locating and launching
component modules—and thus establishing the class factory—is expensive, but constructing objects with
CreateInstance is cheap. We can therefore allow a single class factory to create multiple objects.

What does all this mean? It means that we screwed up when we let GetClassObject construct the
CSpaceship object directly. We were supposed to construct a class factory object first and then call
CreateInstance to cause the class factory (object factory) to construct the actual spaceship object.

Let's properly construct the spaceship simulation. First we declare a new class, CSpaceshipFactory. To
avoid complication, we'll derive the class from IClassFactory so that we don't have to deal with nested
classes. In addition, we'll add the code that tracks references:

struct IClassFactory : public IUnknown
{
 virtual BOOL CreateInstance(int& nIid, void** ppvObj) = 0;
};

class CSpaceshipFactory : public IClassFactory
{
private:
 DWORD m_dwRef;
public:
 CSpaceshipFactory() { m_dwRef = 1; }
 // IUnknown functions
 virtual BOOL QueryInterface(int& nIid,
 void** ppvObj);
 virtual DWORD AddRef();
 virtual DWORD Release();
 // IClassFactory function
 virtual BOOL CreateInstance(int& nIid,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual BOOL CreateInstance(int& nIid,
 void** ppvObj);
};
Next we'll write the CreateInstance member function:

BOOL CSpaceshipFactory::CreateInstance(int& nIid, void** ppvObj)
{
 CSpaceship* pObj = new CSpaceship();
 IUnknown* pUnk = &pObj->m_xMotion;
 return pUnk->QueryInterface(nIid, ppvObj);
}
Finally, here is the new GetClassObject function, which constructs a class factory object and returns an
IClassFactory interface pointer.

BOOL GetClassObject(int& nClsid, int& nIid,
 void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 ASSERT((nIid == IID_IUnknown) || (nIid == IID_IClassFactory));
 CSpaceshipFactory* pObj = new CSpaceshipFactory();
 ppObj = pObj; // IUnknown = IClassFactory* = CSpaceship*
}
The CSpaceship and CSpaceshipFactory classes work together and share the same class ID. Now the client
code looks like this (without error-checking logic):

IMotion* pMot;
IVisual* pVis;
IClassFactory* pFac;
GetClassObject(CLSID_CSpaceship, IID_IClassFactory, (void**) &pFac);
pFac->CreateInstance(IID_IMotion, &pMot);
pMot->QueryInterface(IID_IVisual, (void**) &pVis);
pMot->Fly();
pVis->Display();
Notice that the CSpaceshipFactory class implements the AddRef and Release functions. It must do this
because AddRef and Release are pure virtual functions in the IUnknown base class. We'll start using these
functions in the next iteration of the program.

The CCmdTarget Class

We're still a long way from real MFC COM-based code, but we can take one more step in the COM
simulation before we switch to the real thing. As you might guess, some code and data can be "factored
out" of our spaceship COM classes into a base class. That's exactly what the MFC library does. The base
class is CCmdTarget, the standard base class for document and window classes. CCmdTarget, in turn, is
derived from CObject. We'll use CSimulatedCmdTarget instead, and we won't put too much in it—only the
reference-counting logic and the m_dwRef data member. The CSimulatedCmdTarget functions
ExternalAddRef and ExternalRelease can be called in derived COM classes. Because we're using
CSimulatedCmdTarget, we'll bring CSpaceshipFactory in line with CSpaceship, and we'll use a nested class
for the IClassFactory interface.

We can also do some factoring out inside our CSpaceship class. The QueryInterface function can be
"delegated" from the nested classes to the outer class helper function ExternalQueryInterface, which calls
ExternalAddRef. Thus, each QueryInterface function increments the reference count, but CreateInstance
calls ExternalQueryInterface, followed by a call to ExternalRelease. When the first interface pointer is
returned by CreateInstance, the spaceship object has a reference count of 1. A subsequent QueryInterface
call increments the count to 2, and in this case, the client must call Release twice to destroy the spaceship
object.

One last thing—we'll make the class factory object a global object. That way we won't have to call its
constructor. When the client calls Release, there isn't a problem because the class factory's reference
count is 2 by the time the client receives it. (The CSpaceshipFactory constructor sets the reference count
to 1, and ExternalQueryInterface, called by GetClassObject, sets the count to 2.)

The EX24A Example—A Simulated COM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX24A Example—A Simulated COM

Figures 24-1, 24-2, 24-3, and 24-4 show code for a working "simulated COM" program, EX24A. This is a
Win32 Console Application (without the MFC library) that uses a class factory to construct an object of
class CSpaceship, calls its interface functions, and then releases the spaceship. The Interface.h header file,
shown in Figure 24-1, contains the CSimulatedCmdTarget base class and the interface declarations that
are used by both the client and component programs. The Spaceship.h header file shown in Figure 24-2
contains the spaceship-specific class declarations that are used in the component program. Spaceship.cpp,
shown in Figure 24-3, is the component that implements GetClassObject; Client.cpp, shown in Figure 24-4,
is the client that calls GetClassObject. What's phony here is that both client and component code are linked
within the same ex24a.exe program. Thus, our simulated COM is not required to make the connection at
runtime. (You'll see how that's done later in this chapter.)

INTERFACE.H

// definitions that make our code look like MFC code
#define BOOL int
#define DWORD unsigned int
#define TRUE 1
#define FALSE 0
#define TRACE printf
#define ASSERT assert
//----------definitions and macros-----------------------------------
#define CLSID_CSpaceship 10
#define IID_IUnknown 0
#define IID_IClassFactory 1
#define IID_IMotion 2
#define IID_IVisual 3
// this macro for 16-bit Windows only
#define METHOD_PROLOGUE(theClass, localClass) \
 theClass* pThis = ((theClass*)((char*)(this) - \
 offsetof(theClass, m_x##localClass))); \

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj);

//----------interface declarations-----------------------------------
struct IUnknown
{
 IUnknown() { TRACE("Entering IUnknown ctor %p\n", this); }
 virtual BOOL QueryInterface(int nIid, void** ppvObj) = 0;
 virtual DWORD Release() = 0;
 virtual DWORD AddRef() = 0;
};

struct IClassFactory : public IUnknown
{
 IClassFactory()
 { TRACE("Entering IClassFactory ctor %p\n", this); }
 virtual BOOL CreateInstance(int nIid, void** ppvObj) = 0;
};

struct IMotion : public IUnknown
{
 IMotion() { TRACE("Entering IMotion ctor %p\n", this); }
 virtual void Fly() = 0; // pure
 virtual int& GetPosition() = 0;
};
struct IVisual : public IUnknown
{
 IVisual() { TRACE("Entering IVisual ctor %p\n", this); }
 virtual void Display() = 0;
};

class CSimulatedCmdTarget // `simulated' CSimulatedCmdTarget

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class CSimulatedCmdTarget // `simulated' CSimulatedCmdTarget
{
public:
 DWORD m_dwRef;

protected:
 CSimulatedCmdTarget() {
 TRACE("Entering CSimulatedCmdTarget ctor %p\n", this);
 m_dwRef = 1; // implied first AddRef
 }
 virtual ~CSimulatedCmdTarget()
 { TRACE("Entering CSimulatedCmdTarget dtor %p\n", this); }
 DWORD ExternalRelease() {
 TRACE("Entering CSimulatedCmdTarget::ExternalRelease--RefCount = \
 %ld\n", m_dwRef);
 if (m_dwRef == 0)
 return 0;
 if(--m_dwRef == 0L) {
 TRACE("deleting\n");
 delete this;
 return 0;
 }
 return m_dwRef;
 }
 DWORD ExternalAddRef() { return ++m_dwRef; }
};

Figure 24-1. The Interface.h file.

SPACESHIP.H

class CSpaceship;

//----------class declarations---
class CSpaceshipFactory : public CSimulatedCmdTarget
{
public:
 CSpaceshipFactory()
 { TRACE("Entering CSpaceshipFactory ctor %p\n", this); }
 ~CSpaceshipFactory()
 { TRACE("Entering CSpaceshipFactory dtor %p\n", this); }
 BOOL ExternalQueryInterface(int lRid, void** ppvObj);
 class XClassFactory : public IClassFactory
 {
 public:
 XClassFactory()
 { TRACE("Entering XClassFactory ctor %p\n", this); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual BOOL CreateInstance(int lRid, void** ppvObj);
 } m_xClassFactory;
 friend class XClassFactory;
};
class CSpaceship : public CSimulatedCmdTarget
{
private:
 int m_nPosition; // We can access these from
 // all the interfaces
 int m_nAcceleration;
 int m_nColor;
public:
 CSpaceship() {
 TRACE("Entering CSpaceship ctor %p\n", this);
 m_nPosition = 100;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_nPosition = 100;
 m_nAcceleration = 101;
 m_nColor = 102;
 }
 ~CSpaceship()
 { TRACE("Entering CSpaceship dtor %p\n", this); }
 BOOL ExternalQueryInterface(int lRid, void** ppvObj);
 class XMotion : public IMotion
 {
 public:
 XMotion()
 { TRACE("Entering XMotion ctor %p\n", this); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual void Fly();
 virtual int& GetPosition();
 } m_xMotion;

class XVisual : public IVisual
 {
 public:
 XVisual() { TRACE("Entering XVisual ctor\n"); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual void Display();
 } m_xVisual;

 friend class XVisual; // These must be at the bottom!
 friend class XMotion;
 friend class CSpaceshipFactory::XClassFactory;
};

Figure 24-2. The Spaceship.h file.

SPACESHIP.CPP

#include <stdio.h>
#include <stddef.h> // for offsetof in METHOD_PROLOGUE
#include <ASSERT.h>
#include "Interface.h"
#include "Spaceship.h"

CSpaceshipFactory g_factory;

//----------member functions---
BOOL CSpaceshipFactory::ExternalQueryInterface(int nIid,
 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::ExternalQueryInterface--nIid = \
 %d\n", nIid);
 switch (nIid) {
 case IID_IUnknown:
 case IID_IClassFactory:
 *ppvObj = &m_xClassFactory;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 ExternalAddRef();
 return TRUE;
}
BOOL CSpaceshipFactory::XClassFactory::QueryInterface(int nIid,
 void** ppvObj) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::XClassFactory::\
 QueryInterface--nIid = %d\n", nIid);
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->
 ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceshipFactory
}

BOOL CSpaceshipFactory::XClassFactory::CreateInstance(int nIid,
 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::XClassFactory::CreateInstance\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 CSpaceship* pObj = new CSpaceship();
 if (pObj->ExternalQueryInterface(nIid, ppvObj)) {
 pObj->ExternalRelease(); // balance reference count
 return TRUE;
 }
 return FALSE;
}

DWORD CSpaceshipFactory::XClassFactory::Release() {
 TRACE("Entering CSpaceshipFactory::XClassFactory::Release\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}

DWORD CSpaceshipFactory::XClassFactory::AddRef() {
 TRACE("Entering CSpaceshipFactory::XClassFactory::AddRef\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}

BOOL CSpaceship::ExternalQueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::ExternalQueryInterface--nIid =
 %d\n", nIid);
 switch (nIid) {
 case IID_IUnknown:
 case IID_IMotion:
 *ppvObj = &m_xMotion; // Both IMotion and IVisual are derived
 break; // from IUnknown, so either pointer will do
 case IID_IVisual:
 *ppvObj = &m_xVisual;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 ExternalAddRef();
 return TRUE;
}

BOOL CSpaceship::XMotion::QueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::XMotion::QueryInterface--nIid = \
 %d\n", nIid);
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceship
}

DWORD CSpaceship::XMotion::Release() {
 TRACE("Entering CSpaceship::XMotion::Release\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}

DWORD CSpaceship::XMotion::AddRef() {
 TRACE("Entering CSpaceship::XMotion::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}

void CSpaceship::XMotion::Fly() {
 TRACE("Entering CSpaceship::XMotion::Fly\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
}

int& CSpaceship::XMotion::GetPosition() {
 TRACE("Entering CSpaceship::XMotion::GetPosition\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return pThis->m_nPosition;
}

BOOL CSpaceship::XVisual::QueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::XVisual::QueryInterface--nIid = \
 %d\n", nIid);
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceship
}

DWORD CSpaceship::XVisual::Release() {
 TRACE("Entering CSpaceship::XVisual::Release\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}

DWORD CSpaceship::XVisual::AddRef() {
 TRACE("Entering CSpaceship::XVisual::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}

void CSpaceship::XVisual::Display() {
 TRACE("Entering CSpaceship::XVisual::Display\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nColor = %d\n", pThis->m_nColor);
}

//----------simulates COM component -----------------------------------
// In real COM, this would be DllGetClassObject, which would be called
// whenever a client called CoGetClassObject

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 ASSERT((nIid == IID_IUnknown) || (nIid == IID_IClassFactory));
 return g_factory.ExternalQueryInterface(nIid, ppvObj);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return g_factory.ExternalQueryInterface(nIid, ppvObj);
 // Refcount is 2, which prevents accidental deletion
}

Figure 24-3. The Spaceship.cpp file.

CLIENT.CPP

#include <stdio.h>
#include <stddef.h> // for offsetof in METHOD_PROLOGUE
#include <assert.h>
#include "interface.h"

//----------main program---
int main() // simulates OLE client program
{
 TRACE("Entering client main\n");
 IUnknown* pUnk; // If you declare these void*, you lose type-safety
 IMotion* pMot;
 IVisual* pVis;
 IClassFactory* pClf;

 GetClassObject(CLSID_CSpaceship, IID_IClassFactory,
 (void**) &pClf);

 pClf->CreateInstance(IID_IUnknown, (void**) &pUnk);
 pUnk->QueryInterface(IID_IMotion, (void**) &pMot); // All three
 pMot->QueryInterface(IID_IVisual, (void**) &pVis); // pointers
 // should work

 TRACE("main: pUnk = %p, pMot = %p, pDis = %p\n", pUnk, pMot, pVis);

 // Test all the interface virtual functions
 pMot->Fly();
 int nPos = pMot->GetPosition();
 TRACE("nPos = %d\n", nPos);
 pVis->Display();

 pClf->Release();
 pUnk->Release();
 pMot->Release();
 pVis->Release();
 return 0;
}

Figure 24-4. The Client.cpp file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Real COM with the MFC Library
So much for simulations. Now we'll get ready to convert the spaceship example to genuine COM. You need
to acquire a little more knowledge before we start, though. First you must learn about the
CoGetClassObject function, then you must learn how COM uses the Windows Registry to load the
component, and then you have to understand the difference between an in-process component (a DLL)
and an out-of-process component (an EXE or a DLL running as a surrogate). Finally, you must become
familiar with the MFC macros that support nested classes.

The net result will be an MFC regular DLL component that contains all the CSpaceship code with the
IMotion and IVisual interfaces. A regular MFC library Windows application acts as the client. It loads and
runs the component when the user selects a menu item.

The COM CoGetClassObject Function

In our simulation, we used a phony function named GetClassObject. In real COM, we use the global
CoGetClassObject function. (Co stands for "component object.") Compare the following prototype to the
GetClassObject function you've seen already:

STDAPI CoGetClassObject(REFCLSID rclsid, DWORD dwClsContext,
 COSERVERINFO* pServerInfo, REFIID riid, LPVOID* ppvObj)
The interface pointer goes in the ppvObj parameter, and pServerInfo is a pointer to a machine on which
the class object is instantiated (NULL if the machine is local). The types REFCLSID and REFIID are
references to 128-bit GUIDs (globally unique identifiers for COM classes and interfaces). STDAPI indicates
that the function returns a 32-bit value of type HRESULT.

The standard GUIDs (for example, those GUIDs naming interfaces that Microsoft has already created) are
defined in the Windows libraries that are dynamically linked to your program. GUIDs for custom classes
and interfaces, such as those for spaceship objects, must be defined in your program in this way:

// {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IMotion =
 {0x692d03a4, 0xc689, 0x11ce, {0xb3, 0x37, 0x88, 0xea, 0x36,
 0xde, 0x9e, 0x4e}};
If the dwClsContext parameter is CLSCTX_INPROC_SERVER, the COM subsytem looks for a DLL. If the
parameter is CLSCTX_LOCAL_SERVER, COM looks for an EXE. The two codes can be combined to select
either a DLL or an EXE—selected in order of performance. For example, inproc servers are fastest because
everybody shares the same address space. Communication EXE servers are considerably slower because
the interprocess calls involve data copying as well as many thread context switches. The return value is an
HRESULT value, which is 0 (NOERROR) if no error occurs.

Another COM function, CoCreateInstance, combines the functionality of
CoGetClassObject and IClassFactory::CreateInstance.

COM and the Windows Registry

In the EX24A example, the component was statically linked to the client, a clearly bogus circumstance. In
real COM, the component is either a DLL or a separate EXE. When the client calls the CoGetClassObject
function, COM steps in and finds the correct component, which is located somewhere on disk. How does
COM make the connection? It looks up the class's unique 128-bit class ID number in the Windows Registry.
Thus, the class must be registered permanently on your computer.

If you run the Windows Regedit program (Regedt32 in Microsoft Windows NT 3.51), you'll see a screen
similar to the one shown in Figure 24-5. This figure shows subfolders for four class IDs, three of which are
class IDs associated with DLLs (InprocServer32) and one of which is a class ID associated with an EXE
(LocalServer32). The CoGetClassObject function looks up the class ID in the Registry and then loads the
DLL or EXE as required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DLL or EXE as required.

What if you don't want to track those ugly class ID numbers in your client program? No problem. COM
supports another type of registration database entry that translates a human-readable program ID into the
corresponding class ID. Figure 24-6 shows the Registry entries. The COM function CLSIDFromProgID reads
the database and performs the translation.

Figure 24-5. Subfolders of four class IDs in the Registry.

Figure 24-6. Human-readable program IDs in the Registry.

The first CLSIDFromProgID parameter is a string that holds the program ID, but it's not
an ordinary string. This is your first exposure to double-byte characters in COM. All
string parameters of COM functions (except Data Access Objects [DAOs]) are Unicode
character string pointers of type OLECHAR*. Your life is going to be made miserable
because of the constant need to convert between double-byte strings and ordinary
strings. If you need a double-byte literal string, prefix the string with an L character,

like this:

CLSIDFromProgID(L"Spaceship", &clsid);
You'll begin learning about the MFC library's Unicode string conversion capabilities in
Chapter 25.

How does the registration information get into the Registry? You can program your component application
to call Windows functions that directly update the Registry. The MFC library conveniently wraps these
functions with the function COleObjectFactory::UpdateRegistryAll, which finds all your program's global
class factory objects and registers their names and class IDs.

Runtime Object Registration

You've just seen how the Windows Registry registers COM classes on disk. Class factory objects also must

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You've just seen how the Windows Registry registers COM classes on disk. Class factory objects also must
be registered. It's unfortunate that the word "register" is used in both contexts. Objects in out-of-process
component modules are registered at runtime with a call to the COM CoRegisterClassObject function, and
the registration information is maintained in memory by the Windows DLLs. If the factory is registered in a
mode that permits a single instance of the component module to create multiple COM objects, COM can
use an existing process when a client calls CoGetClassObject.

How a COM Client Calls an In-Process Component

We're beginning with a DLL component instead of an EXE component because the program interactions are
simpler. I'll show pseudocode here because you're going to be using the MFC library classes, which hide
much of the detail.

Client

CLSID clsid;
IClassFactory* pClf;
IUnknown* pUnk;
CoInitialize(NULL); // Initialize COM
CLSIDFromProgID("componentname", &clsid);

COM

COM uses the Registry to look up the class ID from "componentname"

Client

CoGetClassObject(clsid, CLSCTX_INPROC_SERVER, NULL,
 IID_IClassFactory, (void**) &pClf);

COM

COM uses the class ID to look for a component in memory
if (component DLL is not loaded already) {
 COM gets DLL filename from the Registry
 COM loads the component DLL into process memory
}

DLL Component

if (component just loaded) {
 Global factory objects are constructed
 DLL's InitInstance called (MFC only)
}

COM

COM calls DLL's global exported DllGetClassObject with the CLSID
 value that was passed to CoGetClassObject

DLL Component

DllGetClassObject returns IClassFactory*

COM

COM returns IClassFactory* to client

Client

pClf->CreateInstance (NULL, IID_IUnknown, (void**) &pUnk);

DLL Component

Class factory's CreateInstance function called (called directly—through
 component's vtable)
Constructs object of "componentname" class
Returns requested interface pointer

Client

pClf->Release();
pUnk->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DLL Component

"componentname" Release is called through vtable
 if (refcount == 0) {
 Object destroys itself
}

Client

CoFreeUnusedLibraries();

COM

COM calls DLL's global exported DllCanUnloadNow

DLL Component

DllCanUnloadNow called if (all DLL's objects destroyed) {
 return TRUE
}

Client

CoUninitialize(); // COM frees the DLL if DllCanUnloadNow returns
 TRUE just prior to exit

COM

COM releases resources

Client

Client exits

DLL Component

Windows unloads the DLL if it is still loaded and no other programs are using it

Some important points to note: first, the DLL's exported DllGetClassObject function is called in response to
the client's CoGetClassObject call. Second, the class factory interface address returned is the actual
physical address of the class factory vtable pointer in the DLL. Third, when the client calls CreateInstance,
or any other interface function, the call is direct (through the component's vtable).

The COM linkage between a client EXE and a component DLL is quite efficient—as efficient as the linkage to
any C++ virtual function in the same process, plus the full C++ parameter and return type-checking at
compile time. The only penalty for using ordinary DLL linkage is the extra step of looking up the class ID in
the Registry when the DLL is first loaded.

How a COM Client Calls an Out-of-Process Component

The COM linkage to a separate EXE component is more complicated than the linkage to a DLL component.
The EXE component is in a different process, or possibly on a different computer. Don't worry, though.
Write your programs as if a direct connection existed. COM takes care of the details through its remoting
architecture, which usually involves Remote Procedure Calls (RPCs).

In an RPC, the client makes calls to a special DLL called a proxy. The proxy sends a stream of data to a
stub, which is inside a DLL in the component's process. When the client calls a component function, the
proxy alerts the stub by sending a message to the component program, which is processed by a hidden
window. The mechanism of converting parameters to and from data streams is called marshaling.

If you use standard interfaces (those interfaces defined by Microsoft) such as IClassFactory and IPersist
(an interface we haven't seen yet but will appear when we examine COM persistence), the proxy and stub
code, which implements marshaling, is provided by the Windows OLE32 DLL. If you invent your own
interfaces, such as IMotion and IVisual, you need to write the proxies and stubs yourself. Fortunately,
creating proxy and stub classes only involves defining your interfaces in Interface Definition Language
(IDL) and compiling the code produced by the Microsoft Interface Definition Language (MIDL) compiler.

Here's the pseudocode interaction between an EXE client and an EXE component. Compare it to the DLL
version found above. Notice that the client-side calls are exactly the same.

Client

CLSID clsid;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLSID clsid;
IClassFactory* pClf;
IUnknown* pUnk;
CoInitialize(NULL); // Initialize COM
CLSIDFromProgID("componentname", &clsid);

COM

COM uses the Registry to look up the class ID from "componentname"

Client

CoGetClassObject(clsid, CLSCTX_LOCAL_SERVER, NULL,
 IID_IClassFactory, (void**) &pClf);

COM

COM uses the class ID to look for a component in memory
 if (component EXE is not loaded already, or
 if we need another instance) {
 COM gets EXE filename from the Registry
 COM loads the component EXE
}

EXE Component

if (just loaded) {
 Global factory objects are constructed
 InitInstance called (MFC only)
 CoInitialize(NULL);
 for each factory object {
 CoRegisterClassObject(...);
 Returns IClassFactory* to COM
 }
 }

COM

COM returns the requested interface pointer to the client
 (client's pointer is not the same as the component's interface pointer)

Client

pClf->CreateInstance(NULL, IID_IUnknown, (void**) &pUnk);

EXE Component

Class factory's CreateInstance function called
 (called indirectly through marshaling)
 Constructs object of "componentname" class
 Returns requested interface pointer indirectly

Client

pClf->Release();
pUnk->Release();

EXE Component

"componentname" Release is called indirectly
if (refcount == 0) {
 Object destroys itself
}
if (all objects released) {
 Component exits gracefully
}

Client

CoUninitialize(); // just prior to exit

COM

COM calls Release for any objects this client has failed to release

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM calls Release for any objects this client has failed to release

EXE Component

Component exits

COM

COM releases resources

Client

Client exits

As you can see, COM plays an important role in the communication between the client and the component.
COM keeps an in-memory list of class factories that are in active EXE components, but it does not keep
track of individual COM objects such as the CSpaceship object. Individual COM objects are responsible for
updating the reference count and for destroying themselves through the AddRef/Release mechanism. COM
does step in when a client exits. If that client is using an out-of-process component, COM "listens in" on
the communication and keeps track of the reference count on each object. COM disconnects from
component objects when the client exits. Under certain circumstances, this causes those objects to be
released. Don't depend on this behavior, however. Be sure that your client program releases all its
interface pointers prior to exiting.

The MFC Interface Macros

In EX24A, you saw nested classes used for interface implementation. The MFC library has a set of macros
that automate this process. For the CSpaceship class, derived from the real MFC CCmdTarget class, you
use the macros shown here inside the declaration.

BEGIN_INTERFACE_PART(Motion, IMotion)
 STDMETHOD_(void, Fly) ();
 STDMETHOD_(int&, GetPosition) ();
END_INTERFACE_PART(Motion)

BEGIN_INTERFACE_PART(Visual, IVisual)
 STDMETHOD_(void, Display) ();
END_INTERFACE_PART(Visual)

DECLARE_INTERFACE_MAP()
The INTERFACE_PART macros generate the nested classes, adding X to the first parameter to form the
class name and adding m_x to form the embedded object name. The macros generate prototypes for the
specified interface functions plus prototypes for QueryInterface, AddRef, and Release.

The DECLARE_INTERFACE_MAP macro generates the declarations for a table that holds the IDs of all the
class's interfaces. The CCmdTarget::ExternalQueryInterface function uses the table to retrieve the
interface pointers.

In the CSpaceship implementation file, use the following macros:

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
 INTERFACE_PART(CSpaceship, IID_IMotion, Motion)
 INTERFACE_PART(CSpaceship, IID_IVisual, Visual)
END_INTERFACE_MAP()
These macros build the interface table used by CCmdTarget::ExternalQueryInterface. A typical interface
member function looks like this:

STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
{
 METHOD_PROLOGUE(CSpaceship, Motion)
 pThis->m_nPosition += 10;
 return;
}
Don't forget that you must implement all the functions for each interface, including QueryInterface,
AddRef, and Release. Those three functions can delegate to functions in CCmdTarget.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The STDMETHOD_ and STDMETHODIMP_ macros declare and implement functions with
the __stdcall parameter passing convention, as required by COM. These macros allow
you to specify the return value as the first parameter. Two other macros, STDMETHOD
and STDMETHODIMP, assume an HRESULT return value.

The MFC COleObjectFactory Class

In the simulated COM example, you saw a CSpaceshipFactory class that was hard-coded to generate
CSpaceship objects. The MFC library applies its dynamic creation technology to the problem. Thus, a single
class, aptly named COleObjectFactory, can create objects of any class specified at runtime. All you need to
do is use macros like these in the class declaration:

DECLARE_DYNCREATE(CSpaceship)
DECLARE_OLECREATE(CSpaceship)
And use macros like these in the implementation file:

IMPLEMENT_DYNCREATE(CSpaceship, CCmdTarget)
// {692D03A3-C689-11CE-B337-88EA36DE9E4E}
IMPLEMENT_OLECREATE(CSpaceship, "Spaceship", 0x692d03a3, 0xc689, 0x11ce,
 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e)
The DYNCREATE macros set up the standard dynamic creation mechanism as described in Appendix B. The
OLECREATE macros declare and define a global object of class COleObjectFactory with the specified unique
CLSID. In a DLL component, the exported DllGetClassObject function finds the specified class factory
object and returns a pointer to it based on global variables set by the OLECREATE macros. In an EXE
component, initialization code calls the static COleObjectFactory::RegisterAll, which finds all factory objects
and registers each one by calling CoRegisterClassObject. The RegisterAll function is called also when a DLL
is initialized. In that case, it merely sets a flag in the factory object(s).

We've really just scratched the surface of MFC's COM support. If you need more details, be sure to refer to
Shepherd and Wingo's MFC Internals (Addison-Wesley, 1996).

AppWizard/ClassWizard Support for COM In-Process Components

AppWizard isn't optimized for creating COM DLL components, but you can fool it by requesting a regular
DLL with Automation support. The following functions in the project's main source file are of interest:

BOOL CEx24bApp::InitInstance()
{
 COleObjectFactory::RegisterAll();
 return TRUE;
}

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllGetClassObject(rclsid, riid, ppv);
}

STDAPI DllCanUnloadNow(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModule_State());
 return AfxDllCanUnloadNow();
}

STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 COleObjectFactory::UpdateRegistryAll();
 return S_OK;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The three global functions are exported in the project's DEF file. By calling MFC functions, the global
functions do everything you need in a COM in-process component. The DllRegisterServer function can be
called by a utility program to update the system Registry.

Once you've created the skeleton project, your next step is to use ClassWizard to add one or more COM-
creatable classes to the project. Just fill in the New Class dialog box, as shown here.

In your generated class, you end up with some Automation elements such as dispatch maps, but you can
safely remove those. You can also remove the following two lines from StdAfx.h:

#include <afxodlgs.h>
#include <afxdisp.h>

MFC COM Client Programs

Writing an MFC COM client program is a no-brainer. You just use AppWizard to generate a normal
application. Add the following line in StdAfx.h:

#include <afxole.h>
Then add the following line at the beginning of the application class InitInstance member function:

AfxOleInit();
You're now ready to add code that calls CoGetClassObject.

The EX24B Example—An MFC COM In-Process Component

The EX24B example is an MFC regular DLL that incorporates a true COM version of the CSpaceship class
you saw in EX24A. AppWizard generated the ex24b.cpp and ex24b.h files, as described previously. Figure
24-7 shows the Interface.h file, which declares the IMotion and IVisual interfaces. Figures 24-8 and 24-9
show the code for the CSpaceship class. Compare the code to the code in EX24A. Do you see how the use
of the MFC macros reduces code size? Note that the MFC CCmdTarget class takes care of the reference
counting and QueryInterface logic.

INTERFACE.H

struct IMotion : public IUnknown
{
 STDMETHOD_(void, Fly) () = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STDMETHOD_(void, Fly) () = 0;
 STDMETHOD_(int&, GetPosition) () = 0;
};

struct IVisual : public IUnknown
{
 STDMETHOD_(void, Display) () = 0;
};

Figure 24-7. The Interface.h file. ,

SPACESHIP.H

void ITrace(REFIID iid, const char* str);

//
// CSpaceship command target

class CSpaceship : public CCmdTarget
{
 DECLARE_DYNCREATE(CSpaceship)

private:
 int m_nPosition; // We can access this from all the interfaces
 int m_nAcceleration;
 int m_nColor;
protected:
 CSpaceship(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CSpaceship)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CSpaceship();

 // Generated message map functions
 //{{AFX_MSG(CSpaceship)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CSpaceship)
 BEGIN_INTERFACE_PART(Motion, IMotion)
 STDMETHOD_(void, Fly) ();

 STDMETHOD_(int&, GetPosition) ();
 END_INTERFACE_PART(Motion)

 BEGIN_INTERFACE_PART(Visual, IVisual)
 STDMETHOD_(void, Display) ();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STDMETHOD_(void, Display) ();
 END_INTERFACE_PART(Visual)

 DECLARE_INTERFACE_MAP()
};
//

Figure 24-8. The Spaceship.h file.

SPACESHIP.CPP

#include "stdAfx.h"
#include "ex24b.h"
#include "Interface.h"
#include "Spaceship.h"

#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif
//
// CSpaceship

// {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IMotion =
{ 0x692d03a4, 0xc689, 0x11ce,
 { 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e } };

// {692D03A5-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IVisual =
{ 0x692d03a5, 0xc689, 0x11ce,
 { 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e } };

IMPLEMENT_DYNCREATE(CSpaceship, CCmdTarget)
CSpaceship::CSpaceship()
{
 TRACE("CSpaceship ctor\n");
 m_nPosition = 100;
 m_nAcceleration = 101;
 m_nColor = 102;
 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 AfxOleLockApp();
}

CSpaceship::~CSpaceship()
{
 TRACE("CSpaceship dtor\n");
 // To terminate the application when all objects created with
 // OLE automation, the destructor calls AfxOleUnlockApp.

 AfxOleUnlockApp();
}
void CSpaceship::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. This implementation deletes the
 // object. Add additional cleanup required for your object before
 // deleting it from memory.

 delete this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delete this;
}
BEGIN_MESSAGE_MAP(CSpaceship, CCmdTarget)
 //{{AFX_MSG_MAP(CSpaceship)
 // NOTE - ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
 INTERFACE_PART(CSpaceship, IID_IMotion, Motion)
 INTERFACE_PART(CSpaceship, IID_IVisual, Visual)
END_INTERFACE_MAP()

// {692D03A3-C689-11CE-B337-88EA36DE9E4E}
IMPLEMENT_OLECREATE(CSpaceship, "Spaceship", 0x692d03a3, 0xc689,
 0x11ce, 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde,
 0x9e, 0x4e)
STDMETHODIMP_(ULONG) CSpaceship::XMotion::AddRef()
{
 TRACE("CSpaceship::XMotion::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CSpaceship::XMotion::Release()
{
 TRACE("CSpaceship::XMotion::Release\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalRelease();
}

STDMETHODIMP CSpaceship::XMotion::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CSpaceship::XMotion::QueryInterface");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}
STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
{
 TRACE("CSpaceship::XMotion::Fly\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return;
}

STDMETHODIMP_(int&) CSpaceship::XMotion::GetPosition()
{
 TRACE("CSpaceship::XMotion::GetPosition\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return pThis->m_nPosition;
}

//
STDMETHODIMP_(ULONG) CSpaceship::XVisual::AddRef()
{
 TRACE("CSpaceship::XVisual::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Visual)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CSpaceship::XVisual::Release()
{
 TRACE("CSpaceship::XVisual::Release\n");
 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalRelease();
}

STDMETHODIMP CSpaceship::XVisual::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CSpaceship::XVisual::QueryInterface");

 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}
STDMETHODIMP_(void) CSpaceship::XVisual::Display()
{
 TRACE("CSpaceship::XVisual::Display\n");
 METHOD_PROLOGUE(CSpaceship, Visual)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nColor = %d\n", pThis->m_nColor);
}

//
void ITrace(REFIID iid, const char* str)
{
 OLECHAR* lpszIID;
 ::StringFromIID(iid, &lpszIID);
 CString strTemp = (LPCWSTR) lpszIID;
 TRACE("%s - %s\n", (const char*) strTemp, (const char*) str);
 AfxFreeTaskMem(lpszIID);
}

//
// CSpaceship message handlers

Figure 24-9. The Spaceship.cpp file.

The EX24C Example—An MFC COM Client

The EX24C example is an MFC program that incorporates a true COM version of the client code you saw in
EX24A. This is a generic AppWizard MFC Single Document Interface (SDI) EXE program with an added
#include statement for the MFC COM headers and a call to AfxOleInit, which initializes the DLL. A
Spaceship option on an added Test menu is mapped to the view class handler function shown in Figure 24-
10. The project also contains a copy of the EX24B component's Interface.h file, shown in Figure 24-7. You
can see an #include statement for this file at the top of ex24cView.cpp.

void CEx24cView::OnTestSpaceship()
{
 CLSID clsid;
 LPCLASSFACTORY pClf;
 LPUNKNOWN pUnk;
 IMotion* pMot;
 IVisual* pVis;

 HRESULT hr;
 if ((hr = ::CLSIDFromProgID(L"Spaceship", &clsid)) != NOERROR) {
 TRACE("unable to find Program ID -- error = %x\n", hr);
 return;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 if ((hr = ::CoGetClassObject(clsid, CLSCTX_INPROC_SERVER,
 NULL, IID_IClassFactory, (void **) &pClf)) != NOERROR) {;
 TRACE("unable to find CLSID -- error = %x\n", hr);
 return;
 }

 pClf->CreateInstance(NULL, IID_IUnknown, (void**) &pUnk);
 pUnk->QueryInterface(IID_IMotion, (void**) &pMot); // All three
 pMot->QueryInterface(IID_IVisual, (void**) &pVis); // pointers
 // should work
 TRACE("main: pUnk = %p, pMot = %p, pDis = %p\n", pUnk, pMot, pVis);

 // Test all the interface virtual functions
 pMot->Fly();
 int nPos = pMot->GetPosition();
 TRACE("nPos = %d\n", nPos);
 pVis->Display();

 pClf->Release();
 pUnk->Release();
 pMot->Release();
 pVis->Release();
 AfxMessageBox("Test succeeded. See Debug window for output.");
}

Figure 24-10. The client's command handler that loads and tests the CSpaceship component.

To test the client and the component, you must first run the component to update the Registry. Several
utilities can be used to do this, but you might want to try the REGCOMP program in the \vcpp32\RegComp
project on the companion CD-ROM. This program prompts you to select a DLL or an OCX file, and then it
calls the exported DllRegisterServer function.

Both client and component show their progress through TRACE calls, so you need the debugger. You can
run either the client or the component from the debugger. If you try to run the component, you'll be
prompted for the client pathname. In either case, you don't have to copy the DLL because Windows finds it
through the Registry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Containment and Aggregation vs. Inheritance
In normal C++ programming, you frequently use inheritance to factor out common behavior into a
reusable base class. The CPersistentFrame class (discussed in Chapter 15) is an example of reusability
through inheritance.

COM uses containment and aggregation instead of inheritance. Let's start with containment. Suppose you
extended the spaceship simulation to include planets in addition to spaceships. Using C++ by itself, you
would probably write a COrbiter base class that encapsulated the laws of planetary motion. With COM, you
would have "outer" CSpaceship and CPlanet classes plus an "inner" COrbiter class. The outer classes would
implement the IVisual interface directly, but those outer classes would delegate their IMotion interfaces to
the inner class. The result would look something like this.

Note that the COrbiter object doesn't know that it's inside a CSpaceship or CPlanet object, but the outer
object certainly knows that it has a COrbiter object embedded inside. The outer class needs to implement
all its interface functions, but the IMotion functions, including QueryInterface, simply call the same IMotion
functions of the inner class.

A more complex alternative to containment is aggregation. With aggregation, the client can have direct
access to the inner object's interfaces. Shown here is the aggregation version of the space simulation.

The orbiter is embedded in the spaceship and planet, just as it was in the containment case. Suppose the
client obtains an IVisual pointer for a spaceship and then calls QueryInterface for an IMotion pointer. Using
the outer IUnknown pointer will draw a blank because the CSpaceship class doesn't support IMotion. The
CSpaceship class keeps track of the inner IUnknown pointer (of its embedded COrbiter object), so the class
uses that pointer to obtain the IMotion pointer for the COrbiter object.

Now suppose the client obtains an IMotion pointer and then calls QueryInterface for IVisual. The inner
object must be able to navigate to the outer object, but how? Take a close look at the CreateInstance call
back in Figure 24-10. The first parameter is set to NULL in that case. If you are creating an aggregated
(inner) object, you use that parameter to pass an IUnknown pointer for the outer object that you have
already created. This pointer is called the controlling unknown. The COrbiter class saves this pointer in a
data member and then uses it to call QueryInterface for interfaces that the class itself doesn't support.

The MFC library supports aggregation. The CCmdTarget class has a public data member
m_pOuterUnknown that holds the outer object's IUnknown pointer (if the object is aggregated). The
CCmdTarget member functions ExternalQueryInterface, ExternalAddRef, and ExternalRelease delegate to
the outer IUnknown if it exists. Member functions InternalQueryInterface, InternalAddRef, and
InternalRelease do not delegate. See Technical Note #38 in the online documentation for a description of
the MFC macros that support aggregation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 25
Automation
After reading Chapter 24, you should know what an interface is; you've already seen two standard COM
interfaces, IUnknown and IClassFactory. Now you're ready for "applied" COM, or at least one aspect of it—
Automation (formerly known as OLE Automation). You'll learn about the COM IDispatch interface, which
enables C++ programs to communicate with Microsoft Visual Basic for Applications (VBA) programs and
with programs written in other scripting languages. In addition, IDispatch is the key to getting your COM
object onto a Web page. You'll use the MFC library implementation of IDispatch to write C++ Automation
component and client programs. Both out-of-process components and in-process components are
explored.

But before jumping into C++ Automation programming, you need to know how the rest of the world writes
programs. In this chapter, you'll get some exposure to VBA as it is implemented in Microsoft Excel. You'll
run your C++ components from Excel, and you'll run Excel from a C++ client program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Connecting C++ with Visual Basic for Applications
Not all programmers for Microsoft Windows-based applications are going to be C++ programmers,
especially if they have to learn the intricacies of COM theory. If you've been paying attention over the last
few years, you've probably noticed a trend in which C++ programmers produce reusable modules.
Programmers using higher-level languages (Visual Basic, VBA, and Web scripting languages, for example)
consume those modules by integrating them into applications. You can participate in this programming
model by learning how to make your software Script-friendly. Automation is one tool available now that is
supported by the Microsoft Foundation Class library. ActiveX Controls are another tool for C++/VBA
integration and are very much a superset of Automation because both tools use the IDispatch interface.
Using ActiveX Controls, however, might be overkill in many situations. Many applications, including
Microsoft Excel 97, can support both Automation components and ActiveX controls. You'll be able to apply
all that you learn about Automation when you write and use ActiveX controls.

Two factors are responsible for Automation's success. First, VBA (or VB Script) is now the programming
standard in most Microsoft applications, including Microsoft Word, Microsoft Access, and Excel, not to
mention Microsoft Visual Basic itself. All these applications support Automation, which means they can be
linked to other Automation-compatible components, including those written in C++ and VBA. For example,
you can write a C++ program that uses the text-processing capability of Word, or you can write a C++
matrix inversion component that can be called from a VBA macro in an Excel worksheet.

The second factor connected to Automation's success is that dozens of software companies provide
Automation programming interfaces for their applications, mostly for the benefit of VBA programmers.
With a little effort, you can run these applications from C++. You can, for example, write an MFC program
that controls Shapeware's Visio drawing program.

Automation isn't just for C++ and VBA programmers. Software-tool companies are already announcing
Automation-compatible, Basic-like languages that you can license for your own programmable applications.
One version of Smalltalk even supports Automation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Clients and Automation Components
A clearly defined "master-slave" relationship is always present in an Automation communication dialog. The
master is the Automation client and the slave is the Automation component (server). The client initiates
the interaction by constructing a component object (it might have to load the component program) or by
attaching to an existing object in a component program that is already running. The client then calls
interface functions in the component and releases those interfaces when it's finished.

Here are some interaction scenarios:

A C++ Automation client uses a Microsoft or third-party application as a component. The interaction
could trigger the execution of VBA code in the component application.

A C++ Automation component is used from inside a Microsoft application (or a Visual Basic
application), which acts as the Automation client. Thus, VBA code can construct and use C++
objects.

A C++ Automation client uses a C++ Automation component.

A Visual Basic program uses an Automation-aware application such as Excel. In this case, Visual
Basic is the client and Excel is the component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft Excel—A Better Visual Basic than Visual Basic
At the time that the first three editions of this book were written, Visual Basic worked as an Automation
client, but you couldn't use it to create an Automation component. Since version 5.0, Visual Basic lets you
write components too, even ActiveX controls. We originally used Excel instead of VB because Excel was the
first Microsoft application to support VBA syntax and it could serve as both a client and a component. We
decided to stick with Excel because C++ programmers who look down their noses at Visual Basic might be
inclined to buy Excel (if only to track their software royalties).

We strongly recommend that you get a copy of Excel 97 (or a later version). This is a true 32-bit
application and a part of the Microsoft Office suite. With this version of Excel, you can write VBA code in a
separate location that accesses worksheet cells in an object-oriented manner. Adding visual programming
elements—such as pushbuttons—is easy. Forget all you ever knew about the old spreadsheet programs
that forced you to wedge macro code inside cells.

This chapter isn't meant to be an Excel tutorial, but we've included a simple Excel workbook. (A workbook
is a file that can contain multiple worksheets plus separate VBA code.) This workbook demonstrates a VBA
macro that executes from a pushbutton. You can use Excel to load Demo.xls from the \vcpp32\ex25a
subdirectory, or you can key in the example from scratch. Figure 25-1 shows the actual spreadsheet with
the button and sample data.

In this spreadsheet, you highlight cells A4 through A9 and click the Process Col button. A VBA program
iterates down the column and draws a hatched pattern on cells with numeric values greater than 10.

Figure 25-2 shows the macro code itself, which is "behind" the worksheet. In Excel 97, choose Macro from
the Tools menu, and then choose Visual Basic Editor. (Alt-F11 is the shortcut.) As you can see, you're
working in the standard VBA 5.0 environment at this point.

Figure 25-1. An Excel spreadsheet that uses VBA code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-2. The VBA code for the Excel spreadsheet.

If you want to create the example yourself, follow these steps:

1. Start Excel with a new workbook, press Alt-F11, and then double-click Sheet1 in the top left
window.

2. Type in the macro code shown in Figure 25-2.

3. Return to the Excel window by choosing Close And Return To Microsoft Excel from the File menu.
Choose Toolbars from the View menu. Check Forms to display the Forms toolbar. (You can also
access the list of toolbars by right-clicking on any existing toolbar.)

4. Click the Button control, and then create the pushbutton by dragging the mouse in the upper-left
corner of the worksheet. Assign the button to the Sheet1.ProcessColumn macro.

5. Size the pushbutton, and type the caption Process Col, as shown in Figure 25-1.

6. Type some numbers in the column starting at cell A4. Select the cells containing these numbers,
and then click the button to test the program.

Pretty easy, isn't it?

Let's analyze an Excel VBA statement from the macro above:

Selection.Offset(1, 0).Range("A1").Select
The first element, Selection, is a property of an implied object, the Excel application. The Selection
property in this case is assumed to be a Range object that represents a rectangular array of cells. The
second element, Offset, is a property of the Range object that returns another Range object based on the
two parameters. In this case, the returned Range object is the one-cell range that begins one row down
from the original range. The third element, Range, is a property of the Range object that returns yet
another range. This time it's the upper-left cell in the second range. Finally, the Select method causes
Excel to highlight the selected cell and makes it the new Selection property of the application.

As the program iterates through the loop, the preceding statement moves the selected cell down the
worksheet one row at a time. This style of programming takes some getting used to, but you can't afford
to ignore it. The real value here is that you now have all the capabilities of the Excel spreadsheet and
graphics engine available to you in a seamless programming environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties, Methods, and Collections
The distinction between a property and a method is somewhat artificial. Basically, a property is a value
that can be both set and retrieved. You can, for example, set and get the Selection property for an Excel
application. Another example is Excel's Width property, which applies to many object types. Some Excel
properties are read-only; most are read/write.

Properties don't officially have parameters, but some properties are indexed. The property index acts a lot
like a parameter. It doesn't have to be an integer, and it can have more than one element (row and
column, for example). You'll find many indexed properties in Excel's object model, and Excel VBA can
handle indexed properties in Automation components.

Methods are more flexible than properties. They can have zero or many parameters, and they can either
set or retrieve object data. Most frequently they perform some action, such as showing a window. Excel's
Select method is an example of an action method.

The Excel object model supports collection objects. If you use the Worksheets property of the Application
object, you get back a Sheets collection object, which represents all the worksheets in the active
workbook. You can use the Item property (with an integer index) to get a specific Worksheet object from a
Sheets collection, or you can use an integer index directly on the collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Problem That Automation Solves
You've already learned that a COM interface is the ideal way for Windows programs to communicate with
one another, but you've also learned that designing your own COM interfaces is mostly impractical.
Automation's general-purpose interface, IDispatch, serves the needs of both C++ and VBA programmers.
As you might guess from your glimpse of Excel VBA, this interface involves objects, methods, and
properties.

You can write COM interfaces that include functions with any parameter types and return values you
specify. IMotion and IVisual, created in Chapter 24, are some examples. If you're going to let VBA
programmers in, however, you can't be fast and loose anymore. You can solve the communication problem
with one interface that has a member function smart enough to accommodate methods and properties as
defined by VBA. Needless to say, IDispatch has such a function: Invoke. You use IDispatch::Invoke for
COM objects that can be constructed and used in either C++ or VBA programs.

Now you're beginning to see what Automation does. It funnels all intermodule communication through the
IDispatch::Invoke function. How does a client first connect to its component? Because IDispatch is merely
another COM interface, all the registration logic supported by COM comes into play. Automation
components can be DLLs or EXEs, and they can be accessed over a network using distributed COM
(DCOM).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IDispatch Interface
IDispatch is the heart of Automation. It's fully supported by COM marshaling (that is, Microsoft has already
marshaled it for you), as are all the other standard COM interfaces, and it's supported well by the MFC
library. At the component end, you need a COM class with an IDispatch interface (plus the prerequisite
class factory, of course). At the client end, you use standard COM techniques to obtain an IDispatch
pointer. (As you'll see, the MFC library and the wizards take care of a lot of these details for you.)

Remember that Invoke is the principal member function of IDispatch. If you looked up IDispatch::Invoke
in the Visual C++ online documentation, you'd see a really ugly set of parameters. Don't worry about
those now. The MFC library steps in on both sides of the Invoke call, using a data-driven scheme to call
component functions based on dispatch map parameters that you define with macros.

Invoke isn't the only IDispatch member function. Another function your controller might call is
GetIDsOfNames. From the VBA programmer's point of view, properties and methods have symbolic names,
but C++ programmers prefer more efficient integer indexes. Invoke uses integers to specify properties and
methods, so GetIDsOfNames is useful at the start of a program for converting each name to a number if
you don't know the index numbers at compile time. You've already seen that IDispatch supports symbolic
names for methods. In addition, the interface supports symbolic names for a method's parameters. The
GetIDsOfNames function returns those parameter names along with the method name. Unfortunately, the
MFC IDispatch implementation doesn't support named parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Programming Choices
Suppose you're writing an Automation component in C++. You've got some choices to make. Do you want
an in-process component or an out-of-process component? What kind of user interface do you want? Does
the component need a user interface at all? Can users run your EXE component as a stand-alone
application? If the component is an EXE, will it be SDI or MDI? Can the user shut down the component
program directly?

If your component is a DLL, COM linkage will be more efficient than it would be with an EXE component
because no marshaling is required. Most of the time, your in-process Automation components won't have
their own user interfaces, except for modal dialog boxes. If you need a component that manages its own
child window, you should use an ActiveX control, and if you want to use a main frame window, use an out-
of-process component. As with any 32-bit DLL, an Automation DLL is mapped into the client's process
memory. If two client programs happen to request the same DLL, Windows loads and links the DLL twice.
Each client is unaware that the other is using the same component.

With an EXE component, however, you must be careful to distinguish between a component program and a
component object. When a client calls IClassFactory::CreateInstance to construct a component object, the
component's class factory constructs the object, but COM might or might not need to start the component
program.

Here are some scenarios:

1. The component's COM-creatable class is programmed to require a new process for each object
constructed. In this case, COM starts a new process in response to the second and subsequent
CreateInstance calls, each of which returns an IDispatch pointer.

2. Here's a special case of scenario 1 above, specific to MFC applications. The component class is an
MFC document class in an SDI application. Each time a client calls CreateInstance, a new
component process starts, complete with a document object, a view object, and an SDI main frame
window.

3. The component class is programmed to allow multiple objects in a single process. Each time a client
calls CreateInstance, a new component object is constructed. There is only one component process,
however.

4. Here's a special case of scenario 3 above, specific to MFC applications. The component class is an
MFC document class in an MDI application. There is a single component process with one MDI main
frame window. Each time a client calls CreateInstance, a new document object is constructed, along
with a view object and an MDI child frame window.

There's one more interesting case. Suppose a component EXE is running before the client needs it, and
then the client decides to access a component object that already exists. You'll see this case with Excel.
The user might have Excel running but minimized on the desktop, and the client needs access to Excel's
one and only Application object. Here the client calls the COM function GetActiveObject, which provides an
interface pointer for an existing component object. If the call fails, the client can create the object with
CoCreateInstance.

For component object deletion, normal COM rules apply. Automation objects have reference counts, and
they delete themselves when the client calls Release and the reference count goes to 0. In an MDI
component, if the Automation object is an MFC document, its destruction causes the corresponding MDI
child window to close. In an SDI component, the destruction of the document object causes the component
process to exit. The client is responsible for calling Release for each IDispatch interface before the client
exits. For EXE components, COM will intervene if the client exits without releasing an interface, thus
allowing the component process to exit. You can't always depend on this intervention, however, so be sure
that your client cleans up its interfaces!

With generic COM, a client application often obtains multiple interface pointers for a single component
object. Look back at the spaceship example in Chapter 24, in which the simulated COM component class
had both an IMotion pointer and an IVisual pointer. With Automation, however, there's usually only a
single (IDispatch) pointer per object. As in all COM programming, you must be careful to release all your
interface pointers. In Excel, for example, many properties return an IDispatch pointer to new or existing
objects. If you fail to release a pointer to an in-process COM component, the Debug version of the MFC
library alerts you with a memory-leak dump when the client program exits.

The MFC IDispatch Implementation

The component program can implement its IDispatch interface in several ways. The most common of these

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The component program can implement its IDispatch interface in several ways. The most common of these
pass off much of the work to the Windows COM DLLs by calling the COM function CreateStdDispatch or by
delegating the Invoke call to the ITypeInfo interface, which involves the component's type library. A type
library is a table, locatable through the Registry, which allows a client to query the component for the
symbolic names of objects, methods, and properties. A client could, for example, contain a browser that
allows the user to explore the component's capabilities.

The MFC library supports type libraries, but it doesn't use them in its implementation of IDispatch, which is
instead driven by a dispatch map. MFC programs don't call CreateStdDispatch at all, nor do they use a type
library to implement IDispatch::GetIDsOfNames. This means that you can't use the MFC library if you
implement a multilingual Automation component—one that supports English and German property and
method names, for example. (CreateStdDispatch doesn't support multilingual components either.)

Later in this chapter you'll learn how a client can use a type library, and you'll see how AppWizard and
ClassWizard create and maintain type libraries for you. Once your component has a type library, a client
can use it for browsing, independent of the IDispatch implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MFC Automation Component
Let's look at what happens in an MFC Automation component—in this case, a simplified version of the
EX25C alarm clock program that is discussed later in this chapter. In the MFC library, the IDispatch
implementation is part of the CCmdTarget base class, so you don't need INTERFACE_MAP macros. You
write an Automation component class—CClock, for example—derived from CCmdTarget. This class's CPP
file contains DISPATCH_MAP macros:

BEGIN_DISPATCH_MAP(CClock, CCmdTarget)
 DISP_PROPERTY(CClock, "Time", m_time, VT_DATE)
 DISP_PROPERTY_PARAM(CClock, "Figure", GetFigure,
 SetFigure, VT_VARIANT, VTS_I2)
 DISP_FUNCTION(CClock, "RefreshWin", Refresh, VT_EMPTY, VTS_NONE)
 DISP_FUNCTION(CClock, "ShowWin", ShowWin, VT_BOOL, VTS_I2)
END_DISPATCH_MAP()
Looks a little like an MFC message map, doesn't it? The CClock class header file contains related code,
shown here:

public:
 DATE m_time;
 afx_msg VARIANT GetFigure(short n);
 afx_msg void SetFigure(short n, const VARIANT& vaNew);
 afx_msg void Refresh();
 afx_msg BOOL ShowWin(short n);
 DECLARE_DISPATCH_MAP()
What does all this stuff mean? It means that the CClock class has the following properties and methods.

Name Type Description

Time Property Linked directly to class data member m_time

Figure Property Indexed property, accessed through member functions GetFigure and
SetFigure: first parameter is the index; second (for SetFigure) is the string
value (The figures are the "XII," "III," "VI," and "IX" that appear on the
clock face.)

RefreshWin Method Linked to class member function Refresh—no parameters or return value

ShowWin Method Linked to class member function ShowWin—short integer parameter,
Boolean return value

How does the MFC dispatch map relate to IDispatch and the Invoke member function? The dispatch-map
macros generate static data tables that the MFC library's Invoke implementation can read. A controller gets
an IDispatch pointer for CClock (connected through the CCmdTarget base class), and it calls Invoke with
an array of pointers as a parameter. The MFC library's implementation of Invoke, buried somewhere inside
CCmdTarget, uses the CClock dispatch map to decode the supplied pointers and either calls one of your
member functions or accesses m_time directly.

As you'll see in the examples, ClassWizard can generate the Automation component class for you and help
you code the dispatch map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MFC Automation Client Program
Let's move on to the client's end of the Automation conversation. How does an MFC Automation client
program call Invoke? The MFC library provides a base class COleDispatchDriver for this purpose. This class
has a data member, m_lpDispatch, which contains the corresponding component's IDispatch pointer. To
shield you from the complexities of the Invoke parameter sequence, COleDispatchDriver has several
member functions, including InvokeHelper, GetProperty, and SetProperty. These three functions call
Invoke for an IDispatch pointer that links to the component. The COleDispatchDriver object incorporates
the IDispatch pointer.

Let's suppose our client program has a class CClockDriver, derived from COleDispatchDriver, that drives
CClock objects in an Automation component. The functions that get and set the Time property are shown
here.

DATE CClockDriver::GetTime()
{
 DATE result;
 GetProperty(1, VT_DATE, (void*)&result);
 return result;
}

void CClockDriver::SetTime(DATE propVal)
{
 SetProperty(1, VT_DATE, propVal);
}
Here are the functions for the indexed Figure property:

VARIANT CClockDriver::GetFigure(short i)
{
 VARIANT result;
 static BYTE parms[] = VTS_I2;
 InvokeHelper(2, DISPATCH_PROPERTYGET, VT_VARIANT,
 (void*)&result, parms, i);
 return result;
}

void CClockDriver::SetFigure(short i, const VARIANT& propVal)
{
 static BYTE parms[] = VTS_I2 VTS_VARIANT;
 InvokeHelper(2, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL,
 parms, i, &propVal);
}
And finally, here are the functions that access the component's methods:

void CClockDriver::RefreshWin()
{
 InvokeHelper(3, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

BOOL CClockDriver::ShowWin(short i)
{
 BOOL result;
 static BYTE parms[] = VTS_I2;
 InvokeHelper(4, DISPATCH_METHOD, VT_BOOL,
 (void*)&result, parms, i);
 return result;
}
The function parameters identify the property or method, its return value, and its parameters. You'll learn
about dispatch function parameters later, but for now take special note of the first parameter for the
InvokeHelper, GetProperty, and SetProperty functions. This is the unique integer index, or dispatch ID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

InvokeHelper, GetProperty, and SetProperty functions. This is the unique integer index, or dispatch ID
(DISPID), for the property or method. Because you're using compiled C++, you can establish these IDs at
compile time. If you're using an MFC Automation component with a dispatch map, the indexes are
determined by the map sequence, beginning with 1. If you don't know a component's dispatch indexes,
you can call the IDispatch member function GetIDsOfNames to convert the symbolic property or method
names to integers.

The following illustration shows the interactions between the client (or controller) and the component.

The solid lines show the actual connections through the MFC base classes and the Invoke function. The
dotted lines represent the resulting logical connections between client class members and component class
members.

Most Automation components have a binary type library file with a TLB extension. ClassWizard can access
this type library file to generate a class derived from COleDispatchDriver. This generated controller class
contains member functions for all the component's methods and properties with hard-coded dispatch IDs.
Sometimes you need to do some surgery on this generated code, but that's better than writing the
functions from scratch.

After you have generated your driver class, you embed an object of this class in your client application's
view class (or in another class) like this:

CClockDriver m_clock;
Then you ask COM to create a clock component object with this statement:

m_clock.CreateDispatch("Ex25c.Document");
Now you're ready to call the dispatch driver functions:

m_clock.SetTime(COleDateTime::GetCurrentTime());
m_clock.RefreshWin();
When the m_clock object goes out of scope, its destructor releases the IDispatch pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Automation Client Program Using the Compiler's #import
Directive
Now there's an entirely new way of writing Automation client programs. Instead of using ClassWizard to
generate a class derived from COleDispatchDriver, you use the compiler to generate header and
implementation files directly from a component's type library. For the clock component, your client
program contains the following statement:

#import"..\ex25c\debug\ex25c.tlb" rename_namespace("ClockDriv") using namespace ClockDriv;
The compiler then generates (and processes) two files, ex25c.tlh and ex25c.tli, in the project's Debug or
Release subdirectory. The TLH file contains the IEx25c clock driver class declaration plus this smart pointer
declaration:

_COM_SMARTPTR_TYPEDEF(IEx25c, __uuidof(IDispatch));
The _COM_SMARTPTR_TYPEDEF macro generates the IEx25cPtr pointer type, which encapsulates the
component's IDispatch pointer. The TLI file contains inline implementations of member functions, some of
which are shown in the following code:

inline HRESULT IEx25c::RefreshWin () {
 return _com_dispatch_method(this, 0x4, DISPATCH_METHOD,
 VT_EMPTY, NULL, NULL);
}

inline DATE IEx25c::GetTime () {
 DATE _result;
 _com_dispatch_propget(this, 0x1, VT_DATE, (void*)&_result);
 return _result;
}

inline void IEx25c::PutTime (DATE _val) {
 _com_dispatch_propput(this, 0x1, VT_DATE, _val);
}
Note the similarity between these functions and the COleDispatchDriver member functions you've already
seen. The functions _com_dispatch_method, _com_dispatch_propget, and _com_dispatch_propput are in
the runtime library.

In your Automation client program, you declare an embedded smart pointer member in your view class (or
in another class) like this:

IEx25cPtr m_clock;
Then you create a clock component object with this statement:

m_clock.CreateInstance(__uuidof(Document));
Now you're ready to use the IEx25cPtr class's overloaded -> operator to call the member functions defined
in the TLI file:

m_clock->PutTime(COleDateTime::GetCurrentTime());
m_clock->RefreshWin();
When the m_clock smart pointer object goes out of scope, its destructor calls the COM Release function.

The #import directive is the future of COM programming. With each new version of Visual C++, you'll see
COM features moving into the compiler, along with the document_view architecture itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VARIANT Type
No doubt you've noticed the VARIANT type used in both Automation client and component functions in the
previous example. VARIANT is an all-purpose data type that IDispatch::Invoke uses to transmit
parameters and return values. The VARIANT type is the natural type to use when exchanging data with
VBA. Let's look at a simplified version of the VARIANT definition in the Windows header files.

struct tagVARIANT {
 VARTYPE vt; // unsigned short integer type code
 WORD wReserved1, wReserved2, wReserved3;
 union {
 short iVal; // VT_I2 short integer
 long lVal; // VT_I4 long integer
 float fltVal; // VT_R4 4-byte float
 double dblVal; // VT_R8 8-byte IEEE float
 DATE date; // VT_DATE stored as dbl
 // date.time
 CY vtCY // VT_CY 64-bit integer
 BSTR bstrVal; // VT_BSTR
 IUnknown* punkVal; // VT_UNKNOWN
 IDispatch* pdispVal; // VT_DISPATCH
 short* piVal; // VT_BYREF | VT_I2
 long* plVal; // VT_BYREF | VT_I4
 float* pfltVal; // VT_BYREF | VT_R4
 double* pdblVal; // VT_BYREF | VT_R8
 DATE* pdate; // VT_BYREF | VT_DATE
 CY* pvtCY; // VT_BYREF | VT_CY
 BSTR* pbstrVal; // VT_BYREF | VT_BSTR
 }
};

typedef struct tagVARIANT VARIANT;
As you can see, the VARIANT type is a C structure that contains a type code vt, some reserved bytes, and
a big union of types that you already know about. If vt is VT_I2, for example, you would read the
VARIANT's value from iVal, which contains a 2-byte integer. If vt is VT_R8, you would read this value from
dblVal, which contains an 8-byte real value.

A VARIANT object can contain actual data or a pointer to data. If vt has the VT_BYREF bit set, you must
access a pointer in piVal, plVal, and so on. Note that a VARIANT object can contain an IUnknown pointer or
an IDispatch pointer. This means that you can pass a complete COM object using an Automation call, but if
you want VBA to process that object, its class should have an IDispatch interface.

Strings are special. The BSTR type is yet another way to represent character strings. A BSTR variable is a
pointer to a zero-terminated character array with a character count in front. A BSTR variable could,
therefore, contain binary characters, including zeros. If you had a VARIANT object with vt = VT_BSTR,
memory would look like this.

Because the string has a terminating 0, you can use bstrVal as though it were an ordinary char pointer, but
you have to be very, very careful about memory cleanup. You can't simply delete the string pointer,
because the allocated memory begins with the character count. Windows provides the SysAllocString and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because the allocated memory begins with the character count. Windows provides the SysAllocString and
SysFreeString functions for allocating and deleting BSTR objects.

SysAllocString is another COM function that takes a wide string pointer as a parameter.
This means that all BSTRs contain wide characters, even if you haven't defined
_UNICODE. Be careful.

Windows supplies some useful functions for VARIANTs, including those shown in the following table. If a
VARIANT contains a BSTR, these functions ensure that memory is allocated and cleared properly. The
VariantInit and VariantClear functions set vt to VT_EMPTY. All the variant functions are global functions
and take a VARIANT* parameter.

Function Description

VariantInit Initializes a VARIANT

VariantClear Clears a VARIANT

VariantCopy Frees memory associated with the destination VARIANT and copies the source
VARIANT

VariantCopyInd Frees the destination VARIANT and performs any indirection necessary to
copy the source VARIANT

VariantChangeType Changes the type of the VARIANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COleVariant Class
Writing a C++ class to wrap the VARIANT structure makes a lot of sense. Constructors can call VariantInit,
and the destructor can call VariantClear. The class can have a constructor for each standard type, and it
can have copy constructors and assignment operators that call VariantCopy. When a variant object goes
out of scope, its destructor is called and memory is cleaned up automatically.

Well, the MFC team created just such a class, mostly for use in the Data Access Objects (DAO) subsystem,
described in Chapter 32. It works well in Automation clients and components, however. A simplified
declaration is shown here.

class COleVariant : public tagVARIANT
{
// Constructors
public:
 COleVariant();

 COleVariant(const VARIANT& varSrc);
 COleVariant(const COleVariant& varSrc);

 COleVariant(LPCTSTR lpszSrc);
 COleVariant(CString& strSrc);

 COleVariant(BYTE nSrc);
 COleVariant(short nSrc, VARTYPE vtSrc = VT_I2);
 COleVariant(long lSrc, VARTYPE vtSrc = VT_I4);

 COleVariant(float fltSrc);
 COleVariant(double dblSrc);
 COleVariant(const COleDateTime& dateSrc);
// Destructor
 ~COleVariant(); // deallocates BSTR
// Operations
public:
 void Clear(); // deallocates BSTR
 VARIANT Detach(); // more later
 void ChangeType(VARTYPE vartype, LPVARIANT pSrc = NULL);
};
In addition, the CArchive and CDumpContext classes have comparison operators, assignment operators,
conversion operators, and friend insertion/extraction operators. See the online documentation for a
complete description of this useful MFC COleVariant class.

Now let's see how the COleVariant class helps us write the component's GetFigure function that you
previously saw referenced in the sample dispatch map. Assume that the component stores strings for four
figures in a class data member:

private:
 CString m_strFigure[4];
Here's what we'd have to do if we used the VARIANT structure directly:

VARIANT CClock::GetFigure(short n)
{
 VARIANT vaResult;
 ::VariantInit(&vaResult);
 vaResult.vt = VT_BSTR;
 // CString::AllocSysString creates a BSTR
 vaResult.bstrVal =
m_strFigure[n].AllocSysString();
 return vaResult; // Copies vaResult without copying BSTR
 // BSTR still must be freed later
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Here's the equivalent, with a COleVariant return value:

VARIANT CClock::GetFigure(short n)
{
 return COleVariant(m_strFigure[n]).Detach();
}
Calling the COleVariant::Detach function is critical here. The GetFigure function is constructing a temporary
object that contains a pointer to a BSTR. That object gets bitwise-copied to the return value. If you didn't
call Detach, the COleVariant destructor would free the BSTR memory and the calling program would get a
VARIANT that contained a pointer to nothing.

A component's variant dispatch function parameters are declared as const VARIANT&. You can always cast
a VARIANT pointer to a COleVariant pointer inside the function. Here's the SetFigure function:

void CClock::SetFigure(short n, const VARIANT& vaNew)
{
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &vaNew);
 m_strFigure[n] = vaTemp.bstrVal;
}

Remember that all BSTRs contain wide characters. The CString class has a constructor
and an assignment operator for the LPCWSTR (wide-character pointer) type. Thus, the
m_strFigure string will contain single-byte characters, even though bstrVal points to a
wide-character array.

Client dispatch function variant parameters are also typed as const VARIANT&. You can call those functions
with either a VARIANT or a COleVariant object. Here's an example of a call to the CClockDriver::SetFigure
function:

pClockDriver->SetFigure(0, COleVariant("XII"));

Visual C++ 5.0 added two new classes for BSTRs and VARIANTs. These classes are
independent of the MFC library:_bstr_t and _variant_t. The _bstr_t class encapsulates
the BSTR data type; the _variant_t class encapsulates the VARIANT type. Both classes
manage resource allocation and deallocation. For more information on these classes,
see the online documentation.

Parameter and Return Type Conversions for Invoke

All IDispatch::Invoke parameters and return values are processed internally as VARIANTs. Remember that!
The MFC library implementation of Invoke is smart enough to convert between a VARIANT and whatever
type you supply (where possible), so you have some flexibility in declaring parameter and return types.
Suppose, for example, that your controller's GetFigure function specifies the return type BSTR. If a
component returns an int or a long, all is well: COM and the MFC library convert the number to a string.
Suppose your component declares a long parameter and the controller supplies an int. Again, no problem.

An MFC library Automation client specifies the expected return type as a VT_ parameter
to the COleDispatchDriver functions GetProperty, SetProperty, and InvokeHelper. An
MFC library Automation component specifies the expected parameter types as VTS_
parameters in the DISP_PROPERTY and DISP_FUNCTION macros.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike C++, VBA is not a strongly typed language. VBA variables are often stored internally as VARIANTs.
Take an Excel spreadsheet cell value, for example. A spreadsheet user can type a text string, an integer, a
floating-point number, or a date/time in a cell. VBA treats the cell value as a VARIANT and returns a
VARIANT object to an Automation client. If your client function declares a VARIANT return value, it can test
vt and process the data accordingly.

VBA uses a date/time format that is distinct from the MFC library CTime class. Variables of type DATE hold
both the date and the time in one double value. The fractional part represents time (.25 is 6:00 AM), and
the whole part represents the date (number of days since December 30, 1899). The MFC library provides a
COleDateTime class that makes dates easy to deal with. You could construct a date this way:

COleDateTime date(1998, 10, 1, 18, 0, 0);
The above declaration initializes the date to October 1, 1998, at 6:00 PM.

The COleVariant class has an assignment operator for COleDateTime, and the COleDateTime class has
member functions for extracting date/time components. Here's how you print the time:

TRACE("time = %d:%d:%d\n",
 date.GetHour(),date.GetMinute(),date.GetSecond());
If you have a variant that contains a DATE, you use the COleVariant::ChangeType function to convert a
date to a string, as shown here:

COleVariant vaTimeDate = date;
COleVariant vaTemp;
vaTemp.ChangeType(VT_BSTR, &vaTimeDate);
CString str = vaTemp.bstrVal;
TRACE("date = %s\n", str);
One last item concerning Invoke parameters: a dispatch function can have optional parameters. If the
component declares trailing parameters as VARIANTs, the client doesn't have to supply them. If the client
calls the function without supplying an optional parameter, the VARIANT object's vt value on the
component end is VT_ERROR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Examples
The remainder of this chapter presents five sample programs. The first three programs are Automation
components—an EXE component with no user interface, a DLL component, and a multi-instance SDI EXE
component. Each of these component programs comes with a Microsoft Excel driver workbook file. The
fourth sample program is an MFC Automation client program that drives the three components and also
runs Excel using the COleDispatchDriver class. The last sample is a client program that uses the C++
#import directive instead of the MFC COleDispatchDriver class.

The EX25A Automation Component
EXE Example—No User Interface

The Visual C++ Autoclik example is a good demonstration of an MDI framework application with the
document object as the Automation component. (To find the Autoclik example, look in the online
documentation under Visual C++ Documentation/Samples/MFC Samples/Tutorial Samples.) The EX25A
example is different from the Autoclik example because EX25A has no user interface. There is one
Automation-aware class, and in the first version of the program, a single process supports the construction
of multiple Automation component objects. In the second version, a new process starts up each time an
Automation client creates an object.

The EX25A example represents a typical use of Automation. A C++ component implements financial
transactions. VBA programmers can write User-interface-intensive applications that rely on the audit rules
imposed by the Automation component. A production component program would probably use a database,
but EX25A is simpler. It implements a bank account with two methods, Deposit and Withdrawal, and one
read-only property, Balance. Obviously, Withdrawal can't permit withdrawals that make the balance
negative. You can use Excel to control the component, as shown in Figure 25-3.

Figure 25-3. This Excel workbook is controlling the EX25A component.

Here are the steps for creating the program from scratch:

1. Run AppWizard to create the EX25A project in the \vcpp32\ex25a directory. Select the
Dialog Based option (Step 1). Deselect all options in Step 2, and accept the remaining default
settings. This is the simplest application that AppWizard can generate.

2. Eliminate the dialog class from the project. Using Windows Explorer or the command-line
prompt, delete the files ex25aDlg.cpp and ex25aDlg.h. Remove ex25aDlg.cpp and ex25aDlg.h from
the project by deleting them from the project's Workspace window (FileView). Edit ex25a.cpp.
Remove the dialog #include, and remove all dialog-related code from the InitInstance function. In
ResourceView, delete the IDD_EX25A_DIALOG dialog resource template.

3. Add code to enable Automation. Add this line in StdAfx.h:

#include <afxdisp.h>
Edit the InitInstance function (in Ex25a.cpp) to look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CEx25aApp::InitInstance()
{
 AfxOleInit();
 if(RunEmbedded() || RunAutomated()) {
 // component started by COM
 COleTemplateServer::RegisterAll();
 return TRUE;
 }
 // Component is being run directly by the user
 COleObjectFactory::UpdateRegistryAll();
 AfxMessageBox("Bank server is registered");
 return FALSE;
}

4. Use ClassWizard to add a new class, CBank, as shown here.

Be sure to select the Createable By Type ID option.

5. Use ClassWizard to add two methods and a property. Click on the Automation tab, and then
add a Withdrawal method, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dAmount parameter is the amount to be withdrawn, and the return value is the actual amount
withdrawn. If you try to withdraw $100 from an account that contains $60, the amount withdrawn
is $60.

Add a similar Deposit method that returns void, and then add the Balance property, as shown here.

We could have chosen direct access to a component data member, but then we wouldn't have read-
only access. We choose Get/Set Methods so that we can code the SetBalance function to do
nothing.

6. Add a public m_dBalance data member of type double to the CBank class. Because we've
chosen the Get/Set Methods option for the Balance property, ClassWizard doesn't generate a data
member for us. You should declare m_dBalance in the Bank.h file and initialize m_dBalance to 0.0
in the CBank constructor located in the bank.cpp file.

7. Edit the generated method and property functions. Add the following boldface code:

double CBank::Withdrawal(double dAmount)
{
 if (dAmount < 0.0) {
 return 0.0;
 }
 if (dAmount <= m_dBalance) {
 m_dBalance -= dAmount;
 return dAmount
 }
 double dTemp = m_dBalance;
 m_dBalance = 0.0;
 return dTemp;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return dTemp;
}

void CBank::Deposit(double dAmount)
{
 if (dAmount < 0.0) {
 return;
 }
 m_dBalance += dAmount;
}

double CBank::GetBalance()
{
 return m_dBalance;
}

void CBank::SetBalance(double newValue)
{
 TRACE("Sorry, Dave, I can't do that!\n");
}

8. Build the EX25A program; run it once to register the component.

9. Set up five Excel macros in a new workbook file, ex25a.xls. Add the following code:

Dim Bank As Object
Sub LoadBank()
 Set Bank = CreateObject("Ex25a.Bank")
End Sub

Sub UnloadBank()
 Set Bank = Nothing
End Sub

Sub DoDeposit()
 Range("D4").Select
 Bank.Deposit (ActiveCell.Value)
End Sub

Sub DoWithdrawal()
 Range("E4").Select
 Dim Amt
 Amt = Bank.Withdrawal(ActiveCell.Value)
 Range("E5").Select
 ActiveCell.Value = Amt
End Sub

Sub DoInquiry()
 Dim Amt
 Amt = Bank.Balance()
 Range("G4").Select
 ActiveCell.Value = Amt
End Sub

10. Arrange an Excel worksheet as shown in Figure 25-3. Attach the macros to the pushbuttons
(by right-clicking the pushbuttons).

11. Test the EX25A bank component. Click the Load Bank Program button, and then enter a deposit
value in cell D4 and click the Deposit button. Click the Balance Inquiry button, and watch the
balance appear in cell G4. Enter a withdrawal value in cell E4, and click the Withdrawal button. To
see the balance, click the Balance Inquiry button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes you need to click the buttons twice. The first click switches the focus to the
worksheet, and the second click runs the macro. The hourglass pointer tells you the
macro is working.

What's happening in this program? Look closely at the CEx25aApp::InitInstance function. When you run
the program directly from Windows, it displays a message box and then quits, but not before it updates
the Registry. The COleObjectFactory::UpdateRegistryAll function hunts for global class factory objects, and
the CBank class's IMPLEMENT_OLECREATE macro invocation defines such an object. (The
IMPLEMENT_OLECREATE line was generated because you checked ClassWizard's Createable By Type ID
check box when you added the CBank class.) The unique class ID and the program ID, EX25A.BANK, are
added to the Registry.

When Excel now calls CreateObject, COM loads the EX25A program, which contains the global factory for
CBank objects; COM then calls the factory object's CreateInstance function to construct the CBank object
and return an IDispatch pointer. Here's the CBank class declaration that ClassWizard generated in the
bank.h file, with unnecessary detail (and the method and property functions you've already seen) omitted:

class CBank : public CCmdTarget
{
 DECLARE_DYNCREATE(CBank)
public:
 double m_dBalance;
 CBank(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CBank)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CBank();

 // Generated message map functions
 //{{AFX_MSG(CBank)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CBank)

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CBank)
 afx_msg double GetBalance();
 afx_msg void SetBalance(double newValue);
 afx_msg double Withdrawal(double dAmount);
 afx_msg void Deposit(double dAmount);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};
Here is the code automatically generated by ClassWizard in bank.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IMPLEMENT_DYNCREATE(CBank, CCmdTarget)

CBank::CBank()
{
 EnableAutomation();

 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 AfxOleLockApp();
}

CBank::~CBank()
{
 // To terminate the application when all objects created with
 // OLE automation, the destructor calls AfxOleUnlockApp.

 AfxOleUnlockApp();
}

void CBank::OnFinalRelease()
{
 // When the last reference for an automation object is released,
 // OnFinalRelease is called. This implementation deletes the
 // object. Add additional cleanup required for your object
 // before deleting it from memory.

 CCmdTarget::OnFinalRelease
}

BEGIN_MESSAGE_MAP(CBank, CCmdTarget)
 //{{AFX_MSG_MAP(CBank)
 // NOTE - the ClassWizard will add and remove
 // mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CBank, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CBank)
 DISP_PROPERTY_EX(CBank, "Balance", GetBalance, SetBalance, VT_R8)
 DISP_FUNCTION(CBank, "Withdrawal", Withdrawal, VT_R8, VTS_R8)
 DISP_FUNCTION(CBank, "Deposit", Deposit, VT_EMPTY, VTS_R8)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IBank to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .ODL file.

// {A9515AB6-5B85-11D0-848F-00400526305B}
static const IID IID_IBank =
{ 0xa9515ab6, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26,
 0x30, 0x5b } };

BEGIN_INTERFACE_MAP(CBank, CCmdTarget)
 INTERFACE_PART(CBank, IID_IBank, Dispatch)
END_INTERFACE_MAP()

// {632B1E4C-F287-11CE-B5E3-00AA005B1574}
IMPLEMENT_OLECREATE2(CBank, "EX25A.BANK", 0x632b1e4c, 0xf287,
 0x11ce, 0xb5, 0xe3, 0x0, 0xaa, 0x0, 0x5b, 0x15, 0x74)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 0x11ce, 0xb5, 0xe3, 0x0, 0xaa, 0x0, 0x5b, 0x15, 0x74)
This first version of the EX25A program runs in single-process mode, as does the Autoclik program. If a
second Automation client asks for a new CBank object, COM calls the class factory CreateInstance function
again and the existing process constructs another CBank object on the heap. You can verify this by making
a copy of the ex25a.xls workbook (under a different name) and loading both the original and the copy.
Click the Load Bank Program button in each workbook, and watch the Debug window. InitInstance should
be called only once.

A small change in the EX25A program makes it behave differently. To have a new EX25A process start up
each time a new component object is requested, follow these steps.

1. Add the following macro in bank.h:

#define IMPLEMENT_OLECREATE2(class_name, external_name, \
 l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
 AFX_DATADEF COleObjectFactory class_name::factory(class_name::guid, \
 RUNTIME_CLASS(class_name), TRUE, _T(external_name)); \
 const AFX_DATADEF GUID class_name::guid = \
 { l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } };
This macro is the same as the standard MFC IMPLEMENT_OLECREATE macro except that the
original FALSE parameter (after the RUNTIME_CLASS parameter) has been changed to TRUE.

2. In bank.cpp, change the IMPLEMENT_OLECREATE macro invocation to
IMPLEMENT_OLECREATE2.

3. Build the program and test it using Excel. Start two Excel processes and then load the bank
program from each. Use the Microsoft Windows NT Task Manager or PVIEW95 to verify that two
EX25A processes are running.

The EX25A program on the companion CD-ROM uses the
IMPLEMENT_OLECREATE2 macro.

Debugging an EXE Component Program

When an Automation client launches an EXE component program, it sets the /Embedding
command-line parameter. If you want to debug your component, you must do the same.
Choose Settings from the Visual C++ Project menu, and then enter /Embedding in the
Program Arguments box on the Debug page, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you click the Go button on the Debug toolbar, your program will start and then wait
for a client to activate it. At this point, you should start the client program from Windows (if
it is not already running) and then use it to create a component object. Your component
program in the debugger should then construct its object. It might be a good idea to include
a TRACE statement in the component object's constructor.

Don't forget that your component program must be registered before the client can find it.
That means you have to run it once without the /Embedding flag. Many clients don't
synchronize with Registry changes. If your client is running when you register the
component, you may have to restart the client.

The EX25B Automation Component DLL Example

You could easily convert EX25A from an EXE to a DLL. The CBank class would be exactly the same, and the
Excel driver would be similar. It's more interesting, though, to write a new application—this time with a
minimal user interface (UI). We'll use a modal dialog box because it's the most complex UI we can
conveniently use in an Automation DLL.

Parameters Passed by Reference

So far, you've seen VBA parameters passed by value. VBA has pretty strange rules for calling
methods. If the method has one parameter, you can use parentheses; if it has more than one, you
can't (unless you're using the function's return value, in which case you must use parentheses).
Here is some sample VBA code that passes the string parameter by value:

Object.Method1 parm1, "text"
Object.Method2("text")
Dim s as String
s = "text"
Object.Method2(s)
Sometimes, though, VBA passes the address of a parameter (a reference). In this example, the
string is passed by reference:

Dim s as String
s = "text"
Object.Method1 parm1, s
You can override VBA's default behavior by prefixing a parameter with ByVal or ByRef. Your
component can't predict if it's getting a value or a reference—it must prepare for both. The trick is
to test vt to see whether its VT_BYREF bit is set. Here's a sample method implementation that
accepts a string (in a VARIANT) passed either by reference or value:

void CMyComponent::Method(long nParm1, const VARIANT& vaParm2)
{
 CString str;
 if ((vaParm2.vt & 0x7f) == VT_BSTR) {
 if ((vaParm2.vt & VT_BYREF) != 0)
 str = *(vaParm2.pbstrVal); // byref
 else
 str = vaParm2.bstrVal; // byval
 }
 AfxMessageBox(str);
}
If you declare a BSTR parameter, the MFC library does the conversion for you. Suppose your client
program passed a BSTR reference to an out-of-process component and the component program
changed the value. Because the component can't access the memory of the client process, COM
must copy the string to the component and then copy it back to the client after the function
returns. So before you declare reference parameters, remember that passing references through
IDispatch is not like passing references in C++.

The EX25B program is fairly simple. An Automation component class, identified by the registered name
Ex25b.Auto, has the following properties and method:

LongData Long integer property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TextData VARIANT property

DisplayDialog Method—no parameters, BOOL return

DisplayDialog displays the EX25B data gathering dialog box shown in Figure 25-4. An Excel macro passes
two cell values to the DLL and then updates the same cells with the updated values.

Figure 25-4. The EX25B DLL dialog in action.

The example was first generated as an MFC AppWizard DLL with the Regular DLL Using Shared MFC DLL
option and the Automation option selected. Here are the steps for building and testing the EX25B
component DLL from the code installed from the companion CD-ROM:

1. From Visual C++, open the \vcpp32\ex25b\ex25b.dsw workspace. Build the project.

2. Register the DLL with the RegComp utility. You can use the RegComp program in the
\vcpp32\RegComp\Release directory on the companion CD-ROM; a file dialog makes it easy to
select the DLL file.

3. Start Excel, and then load the \vcpp32\ex25b\ex25b.xls workbook file. Type an integer in
cell C3, and type some text in cell D3.

Debugging a DLL Component

To debug a DLL, you must tell the debugger which EXE file to load. Choose Settings from
Visual C++'s Project menu, and then enter the controller's full pathname (including the EXE
extension) in the Executable For Debug Session box on the Debug page.

When you click the Go button on the Debug toolbar, your controller will start (loading the
DLL as part of its process) and then wait for you to activate the component.

When you activate the component, your DLL in the debugger should then construct its
component object. It might be a good idea to include a TRACE statement in the component
object's constructor. Don't forget that your DLL must be registered before the client can load
it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

it.

Here's another option. If you have the source code for the client program, you can start the
client program in the debugger. When the client loads the component DLL, you can see the
output from the component program's TRACE statements.

Click the Load DLL button, and then click the Gather Data button. Edit the data, click OK, and watch
the new values appear in the spreadsheet.

4. Click the Unload DLL button.If you've started the DLL (and Excel) from the debugger, you can
watch the Debug window to be sure the DLL's ExitInstance function is called.

Now let's look at the EX25B code. Like an MFC EXE, an MFC regular DLL has an application class (derived
from CWinApp) and a global application object. The overridden InitInstance member function in ex25b.cpp
looks like this:

BOOL CEx25bApp::InitInstance()
{
 TRACE("CEx25bApp::InitInstance\n");
 // Register all OLE server (factories) as running. This
 // enables the OLE libraries to create objects from other
 // applications.
 COleObjectFactory::RegisterAll();

 return TRUE;
}
There's also an ExitInstance function for diagnostic purposes only, as well as the following code for the
three standard COM DLL exported functions:

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllGetClassObject(rclsid, riid, ppv);
}

STDAPI DllCanUnloadNow(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllCanUnloadNow();
}

STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 COleObjectFactory::UpdateRegistryAll();
 VERIFY(AfxOleRegisterTypeLib(AfxGetInstanceHandle(),
 theTypeLibGUID, "ex25b.tlb"));
 return S_OK;
}
The PromptDl.cpp file contains code for the CPromptDlg class, but that class is a standard class derived
from CDialog. The file PromptDl.h contains the CPromptDlg class header.

The CEx25bAuto class, the Automation component class initially generated by ClassWizard (with the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CEx25bAuto class, the Automation component class initially generated by ClassWizard (with the
Createable By Type ID option), is more interesting. This class is exposed to COM under the program ID
ex25b.Auto. Figure 25-5 below shows the header file ex25bAuto.h.

EX25BAUTO.H

class CEx25bAuto : public CCmdTarget
{
 DECLARE_DYNCREATE(CEx25bAuto)

 CEx25bAuto(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx25bAuto)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CEx25bAuto();

 // Generated message map functions
 //{{AFX_MSG(CEx25bAuto)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CEx25bAuto)

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CEx25bAuto)
 long m_lData;
 afx_msg void OnLongDataChanged();
 VARIANT m_vaTextData;
 afx_msg void OnTextDataChanged();
 afx_msg BOOL DisplayDialog();
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};

Figure 25-5. Excerpt from the ex25bAuto.h header file.

Figure 25-6 shows the implementation file ex25bAuto.cpp.

EX25BAUTO.CPP

#include "stdafx.h"
#include "ex25b.h"
#include "Ex25bAuto.h"
#include "PromptDl.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#endif

//
// CEx25bAuto

IMPLEMENT_DYNCREATE(CEx25bAuto, CCmdTarget)

CEx25bAuto::CEx25bAuto()
{
 EnableAutomation();

 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 ::VariantInit(&m_vaTextData); // necessary initialization
 m_lData = 0;

 AfxOleLockApp();
}

CEx25bAuto::~CEx25bAuto()
{
 // To terminate the application when all objects created with
 // with OLE automation, the destructor calls AfxOleUnlockApp.

 AfxOleUnlockApp();
}

void CEx25bAuto::OnFinalRelease()
{
 // When the last reference for an automation object is released,
 // OnFinalRelease is called. The base class will automatically
 // delete the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CEx25bAuto, CCmdTarget)
 //{{AFX_MSG_MAP(CEx25bAuto)
 // NOTE - the ClassWizard will add and remove mapping
 // macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CEx25bAuto, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CEx25bAuto)
 DISP_PROPERTY_NOTIFY(CEx25bAuto, "LongData",
m_lData,
 OnLongDataChanged, VT_I4)
 DISP_PROPERTY_NOTIFY(CEx25bAuto, "TextData",
m_vaTextData,
Figure 25-6.continued
 OnTextDataChanged, VT_VARIANT)
 DISP_FUNCTION(CEx25bAuto, "DisplayDialog", DisplayDialog,
 VT_BOOL, VTS_NONE)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IEx25bAuto to support typesafe
// binding from VBA. This IID must match the GUID that is attached
// to the dispinterface in the .ODL file.

// {A9515AD7-5B85-11D0-848F-00400526305B}
static const IID IID_IEx25bAuto =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static const IID IID_IEx25bAuto =
{ 0xa9515ad7, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26,
 0x30, 0x5b } };

BEGIN_INTERFACE_MAP(CEx25bAuto, CCmdTarget)
 INTERFACE_PART(CEx25bAuto, IID_IEx25bAuto, Dispatch)
END_INTERFACE_MAP()

// {A9515AD8-5B85-11D0-848F-00400526305B}
IMPLEMENT_OLECREATE(CEx25bAuto, "ex25b.Auto", 0xa9515ad8, 0x5b85,
 0x11d0, 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26, 0x30, 0x5b)

//
// CEx25bAuto message handlers

void CEx25bAuto::OnLongDataChanged()
{
 TRACE("CEx25bAuto::OnLongDataChanged\n");
}
void CEx25bAuto::OnTextDataChanged()
{
 TRACE("CEx25bAuto::OnTextDataChanged\n");
}

BOOL CEx25bAuto::DisplayDialog()
{
 TRACE("Entering CEx25bAuto::DisplayDialog %p\n", this);
 BOOL bRet = TRUE;
 AfxLockTempMaps(); // See MFC Tech Note #3
 CWnd* pTopWnd = CWnd::FromHandle(::GetTopWindow(NULL));
 try {
 CPromptDlg dlg /*(pTopWnd)*/;
 if (
m_vaTextData.vt == VT_BSTR){
 dlg.
m_strData = m_vaTextData.bstrVal; // converts
 //
 double-byte
 // character to
 // single-byte
 // character
 }
 dlg.
m_lData = m_lData;
 if (dlg.DoModal() == IDOK) {

m_vaTextData = COleVariant(dlg.m_strData).Detach();

m_lData = dlg.m_lData;
 bRet = TRUE;
 }
 else {
 bRet = FALSE;
 }
 }
 catch (CException* pe) {
 TRACE("Exception: failure to display dialog\n");
 bRet = FALSE;
 pe->Delete();
 }
 AfxUnlockTempMaps();
 return bRet;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-6. The ex25bAuto.cpp implementation file.

The two properties, LongData and TextData, are represented by class data members m_lData and
m_vaTextData, both initialized in the constructor. When the LongData property was added in ClassWizard,
a notification function, OnLongDataChanged, was specified. This function is called whenever the controller
changes the property value. Notification functions apply only to properties that are represented by data
members. Don't confuse this notification with the notifications that ActiveX controls give their container
when a bound property changes.

The DisplayDialog member function, which is the DisplayDialog method, is ordinary except that the
AfxLockTempMaps and AfxUnlockTempMaps functions are necessary for cleaning up temporary object
pointers that would normally be deleted in an EXE program's idle loop.

What about the Excel VBA code? Here are the three macros and the global declarations:

Dim Dllcomp As Object
Private Declare Sub CoFreeUnusedLibraries Lib "OLE32" ()

Sub LoadDllComp()
 Set Dllcomp = CreateObject("Ex25b.Auto")
 Range("C3").Select
 Dllcomp.LongData = Selection.Value
 Range("D3").Select
 Dllcomp.TextData = Selection.Value
End Sub

Sub RefreshDllComp() `Gather Data button
 Range("C3").Select
 Dllcomp.LongData = Selection.Value
 Range("D3").Select
 Dllcomp.TextData = Selection.Value
 Dllcomp.DisplayDialog
 Range("C3").Select
 Selection.Value = Dllcomp.LongData
 Range("D3").Select
 Selection.Value = Dllcomp.TextData
End Sub

Sub UnloadDllComp()
 Set Dllcomp = Nothing
 Call CoFreeUnusedLibraries
End Sub
The first line in LoadDllComp creates a component object as identified by the registered name Ex25b.Auto.
The RefreshDllComp macro accesses the component object's LongData and TextData properties. The first
time you run LoadDllComp, it loads the DLL and constructs an Ex25b.Auto object. The second time you run
LoadDllComp, something curious happens: a second object is constructed, and the original object is
destroyed. If you run LoadDllComp from another copy of the workbook, you get two separate Ex25b.Auto
objects. Of course, there's only one mapping of ex25b.dll in memory at any time unless you're running
more than one Excel process.

Look closely at the UnloadDllComp macro. When the "Set Dllcomp = Nothing" statement is executed, the
DLL is disconnected, but it's not unmapped from Excel's address space, which means the component's
ExitInstance function is not called. The CoFreeUnusedLibraries function calls the exported
DllCanUnloadNow function for each component DLL and, if that function returns TRUE,
CoFreeUnusedLibraries frees the DLL. MFC programs call CoFreeUnusedLibraries in the idle loop (after a
one-minute delay), but Excel doesn't. That's why UnloadDllComp must call CoFreeUnusedLibraries after
disconnecting the component.

The CoFreeUnusedLibraries function doesn't do anything in Windows NT 3.51 unless
you have Service Pack 2 (SP2) installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX25C SDI Automation Component

EXE Example—with User Interface

This Automation component example illustrates the use of a document component class in an SDI
application in which a new process is started for each object. This component program demonstrates an
indexed property plus a method that constructs a new COM object.

The first Automation component example you saw, EX25A, didn't have a user interface. The global class
factory constructed a CBank object that did the component's work. What if you want your EXE component
to have a window? If you've bought into the MFC document_view architecture, you'll want the document,
view, and frame, with all the benefits they provide.

Suppose you created a regular MFC application and then added a COM-creatable class such as CBank. How
do you attach the CBank object to the document and view? From a CBank class member function, you
could navigate through the application object and main frame to the current document or view, but you'd
have a tough time in an MDI application if you encountered several component objects and several
documents. There is a better way. You make the document class the creatable class, and you have the full
support of AppWizard for this task. This is true for both MDI and SDI applications.

The MDI Autoclik example demonstrates how COM triggers the construction of new document, view, and
child frame objects each time an Automation client creates a new component object. Because the EX25C
example is an SDI program, Windows starts a new process each time the client creates an object.
Immediately after the program starts, COM, with the help of the MFC application framework, constructs
not only the Automation-aware document but also the view and the main frame window.

Now is a good time to experiment with the EX25C application, which was first generated by AppWizard
with the Automation option checked. It's a Windows-based alarm clock program designed to be
manipulated from an Automation client such as Excel. EX25C has the following properties and methods.

Name Description

Time DATE property that holds a COM DATE (m_vaTime)

Figure Indexed VARIANT property for the four figures on the clockface (m_strFigure[])

RefreshWin Method that invalidates the view window and brings the main frame window to the
top (Refresh)

ShowWin Method that displays the application's main window (ShowWin)

CreateAlarm Method that creates a CAlarm object and returns its IDispatch pointer (CreateAlarm)

Here are the steps for building and running EX25C from the companion CD-ROM:

1. From Visual C++, open the workspace \vcpp32\ex25c\ex25c.dsw. Build the project to
produce the ex25c.exe file in the project's Debug subdirectory.

2. Run the program once to register it. The program is designed to be executed either as a stand-
alone application or as an Automation component. When you run it from Windows or from Visual
C++, it updates the Registry and displays the face of a clock with the characters XII, III, VI, and IX
at the 12, 3, 6, and 9 o'clock positions. Exit the program.

3. Load the Excel workbook file \vcpp32\ex25c\ex25c.xls.The worksheet should look like the
one shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Load Clock button, and then double-click the Set Alarm button. (There could be a long
delay after you click the Load Clock button, depending on your system.) The clock should appear as
shown below, with the letter A indicating the alarm setting.

If you've started the component program from the debugger, you can watch the Debug window to
see when InitInstance is called and when the document object is constructed.

If you're wondering why there's no menu, it's because of the following statement in the
CMainFrame::PreCreateWindow function:

cs.hMenu = NULL;
4. Close the Clock program and then click the Unload Clock button. If you've started the

component program from the debugger, you can watch the Debug window for a message box that
indicates that the ExitInstance function is called.

AppWizard did most of the work of setting up the document as an Automation component. In the derived
application class CEx25cApp, it generated a data member for the component, as shown here:

public:
 COleTemplateServer m_server;
The MFC COleTemplateServer class is derived from COleObjectFactory. It is designed to create a COM
document object when a client calls IClassFactory::CreateInstance. The class ID comes from the global
clsid variable defined in ex25c.cpp. The human-readable program ID (Ex25c.Document) comes from the
IDR_MAINFRAME string resource.

In the InitInstance function (in ex25c.cpp), AppWizard generated the code below, which connects the
component object (the document) to the application's document template.

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CEx25cDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CEx25cView));
AddDocTemplate(pDocTemplate);
.
.
.
m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);
Now all the plumbing is in place for COM and the framework to construct the document, together with the
view and frame. When the objects are constructed, however, the main window is not made visible. That's
your job. You must write a method that shows the window.

The following UpdateRegistry call from the InitInstance function updates the Windows Registry with the
contents of the project's IDR_MAINFRAME string resource:

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);
The following dispatch map in the ex25cDoc.cpp file shows the properties and methods for the CEx25cDoc
class. Note that the Figure property is an indexed property that ClassWizard can generate if you specify a
parameter. Later you'll see the code you have to write for the GetFigure and SetFigure functions.

BEGIN_DISPATCH_MAP(CEx25cDoc, CDocument)
 //{{AFX_DISPATCH_MAP(CEx25cDoc)
 DISP_PROPERTY_NOTIFY(CEx25cDoc, "Time",
m_time, OnTimeChanged,
 VT_DATE)
 DISP_FUNCTION(CEx25cDoc, "ShowWin", ShowWin, VT_EMPTY, VTS_NONE)
 DISP_FUNCTION(CEx25cDoc, "CreateAlarm", CreateAlarm,
 VT_DISPATCH, VTS_DATE)
 DISP_FUNCTION(CEx25cDoc, "RefreshWin", Refresh, VT_EMPTY,
 VTS_NONE)
 DISP_PROPERTY_PARAM(CEx25cDoc, "Figure", GetFigure, SetFigure,
 VT_VARIANT, VTS_I2)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()
The ShowWin and RefreshWin member functions aren't very interesting, but the CreateAlarm method is
worth a close look. Here's the corresponding CreateAlarm member function:

LPDISPATCH CEx25cDoc::CreateAlarm(DATE time)
{
 TRACE("Entering CEx25cDoc::CreateAlarm, time = %f\n", time);
 // OLE deletes any prior CAlarm object
 m_pAlarm = new CAlarm(time);
 return m_pAlarm->GetIDispatch(FALSE); // no AddRef here
}
We've chosen to have the component create an alarm object when a controller calls CreateAlarm. CAlarm
is an Automation component class that we've generated with ClassWizard. It is not COM-creatable, which
means there's no IMPLEMENT_OLECREATE macro and no class factory. The CreateAlarm function
constructs a CAlarm object and returns an IDispatch pointer. (The FALSE parameter for
CCmdTarget::GetIDispatch means that the reference count is not incremented; the CAlarm object already
has a reference count of 1 when it is constructed.)

The CAlarm class is declared in alarm.h as follows:

class CAlarm : public CCmdTarget
{
 DECLARE_DYNAMIC(CAlarm)
public:
 CAlarm(DATE time);

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAlarm)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CAlarm();

 // Generated message map functions
 //{{AFX_MSG(CAlarm)
 // NOTE - the ClassWizard will add and remove member
 // functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 // Generated OLE dispatch map functions
public:
 //{{AFX_DISPATCH(CAlarm)
 DATE m_time;
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
};
Notice the absence of the DECLARE_DYNCREATE macro.

Alarm.cpp contains a dispatch map, as follows:

BEGIN_DISPATCH_MAP(CAlarm, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CAlarm)
 DISP_PROPERTY(CAlarm, "Time",
m_time, VT_DATE)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()
Why do we have a CAlarm class? We could have added an AlarmTime property in the CEx25cDoc class
instead, but then we would have needed another property or method to turn the alarm on and off. By
using the CAlarm class, what we're really doing is setting ourselves up to support multiple alarms—a
collection of alarms.

To implement an Automation collection, we would write another class, CAlarms, that would contain the
methods Add, Remove, and Item. Add and Remove are self-explanatory; Item returns an IDispatch pointer
for a collection element identified by an index, numeric, or some other key. We would also implement a
read-only Count property that returned the number of elements. The document class (which owns the
collection) would have an Alarms method with an optional VARIANT parameter. If the parameter were
omitted, the method would return the IDispatch pointer for the collection. If the parameter specified an
index, the method would return an IDispatch pointer for the selected alarm.

If we wanted our collection to support the VBA "For Each" syntax, we'd have some
more work to do. We'd add an IEnum VARIANT interface to the CAlarms class to
enumerate the collection of variants and implement the Next member function of this
interface to step through the collection. Then we'd add a CAlarms method named
_NewEnum that returned an IEnumVARIANT interface pointer. If we wanted the
collection to be general, we'd allow separate enumerator objects (with an IEnum
VARIANT interface) and we'd implement the other IEnumVARIANT functions—Skip,
Reset, and Clone.

The Figure property is an indexed property, which makes it interesting. The Figure property represents the
four figures on the clock face—XII, III, VI, and IX. It's a CString array, so we can use Roman numerals.
Here's the declaration in ex25cDoc.h:

public:
 CString m_strFigure[4];
And here are the GetFigure and SetFigure functions in ex25cDoc.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VARIANT CEx25cDoc::GetFigure(short n)
{
 TRACE("Entering CEx25cDoc::GetFigure -
- n = %d
m_strFigure[n] = %s\n",
 n,
m_strFigure[n]);
 return COleVariant(m_strFigure[n]).Detach();
}

void CEx25cDoc::SetFigure(short n, const VARIANT FAR& newValue)
{
 TRACE("Entering CEx25cDoc::SetFigure -- n = %d, vt = %d\n", n,
 newValue.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &newValue);
 m_strFigure[n] = vaTemp.bstrVal; // converts double-to-single
}
These functions tie back to the DISP_PROPERTY_PARAM macro in the CEx25cDoc dispatch map. The first
parameter is the index number, specified as a short integer by the last macro parameter. Property indexes
don't have to be integers, and the index can have several components (row and column numbers, for
example). The ChangeType call in SetFigure is necessary because the controller might otherwise pass
numbers instead of strings.

You've just seen collection properties and indexed properties. What's the difference? A controller can't add
or delete elements of an indexed property, but it can add elements to a collection and it can delete
elements from a collection.

What draws the clock face? As you might expect, it's the OnDraw member function of the view class. This
function uses GetDocument to get a pointer to the document object, and then it accesses the document's
property data members and method member functions.

The Excel macro code appears below.

Dim Clock As Object
Dim Alarm As Object

Sub LoadClock()
 Set Clock = CreateObject("ex25c.Document")
 Range("A3").Select
 n = 0
 Do Until n = 4
 Clock.figure(n) = Selection.Value
 Selection.Offset(0, 1).Range("A1").Select
 n = n + 1
 Loop
 RefreshClock
 Clock.ShowWin
End Sub

Sub RefreshClock()
 Clock.Time = Now()
 Clock.RefreshWin
End Sub

Sub CreateAlarm()
 Range("E3").Select
 Set Alarm = Clock.CreateAlarm(Selection.Value)
 RefreshClock
End Sub

Sub UnloadClock()
 Set Clock = Nothing
End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub
Notice the Set Alarm statement in the CreateAlarm macro. It calls the CreateAlarm method to return an
IDispatch pointer, which is stored in an object variable. If the macro is run a second time, a new alarm is
created, but the original one is destroyed because its reference count goes to 0.

You've seen a modal dialog in a DLL (EX25B) and you've seen a main frame window in
an EXE (EX25C). Be careful with modal dialogs in EXEs. It's fine to have an About
dialog that is invoked directly by the component program, but it isn't a good idea to
invoke a modal dialog in an out-of-process component method function. The problem is
that once the modal dialog is on the screen, the user can switch back to the client
program. MFC clients handle this situation with a special "Server Busy" message box,
which appears right away. Excel does something similar, but it waits 30 seconds, and
this could confuse the user.

The EX25D Automation Client Example

So far, you've seen C++ Automation component programs. Now you'll see a C++ Automation client
program that runs all the previous components and also controls Microsoft Excel 97. The EX25D program
was originally generated by AppWizard, but without any COM options. It was easier to add the COM code
than it would have been to rip out the component-specific code. If you do use AppWizard to build such an
Automation controller, add the following line at the end of StdAfx.h:

#include <afxdisp.h>
Then add this call at the beginning of the application's InitInstance function:

AfxOleInit();
To prepare EX25D, open the \vcpp32\ex25d\ex25d project and do the build. Run the application from the
debugger, and you'll see a standard SDI application with a menu structure similar to that shown in Figure
25-7.

If you have built and registered all the components, you can test them from EX25D. Notice that the DLL
doesn't have to be copied to the \Winnt\System32 directory because Windows finds it through the
Registry. For some components, you'll have to watch the Debug window to verify that the test results are
correct. The program is reasonably modular. Menu commands and update command UI events are mapped
to the view class. Each component object has its own C++ controller class and an embedded data member
in ex25dView.h. We'll look at each part separately after we delve into type libraries.

Figure 25-7. A sample menu structure for a standard SDI application.

Type Libraries and ODL Files

We've told you that type libraries aren't necessary for the MFC IDispatch implementation, but Visual C++
has been quietly generating and updating type libraries for all your components. What good are these type
libraries? VBA can use a type library to browse your component's methods and properties, and it can use
the type library for improved access to properties and methods, a process called early binding described
later in this chapter. But we're building a C++ client program here, not a VBA program. It so happens that
ClassWizard can read a component's type library and use the information to generate C++ code for the
client to use to "drive" an Automation component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

client to use to "drive" an Automation component.

AppWizard initializes a project's Object Description Language (ODL) file when you first
create it. ClassWizard edits this file each time you generate a new Automation
component class or add properties and methods to an existing class. Unlike it does with
the ClassWizard (CLW) file, ClassWizard can't rebuild an ODL file from the contents of
your source files. If you mess up your ODL file, you'll have to re-create it manually.

When you were adding properties and methods to your component classes, ClassWizard was updating the
project's ODL file. This file is a text file that describes the component in an ODL. (Your GUID will be
different if you used AppWizard to generate this project.) Here's the ODL file for the bank component:

// ex25a.odl : type library source for ex25a.exe

// This file will be processed by the MIDL compiler to produce the
// type library (ex25a.tlb).

[uuid(85D56DE4-789D-11D0-92E1-D74D1B9CCD32), version(1.0)]
library Ex25a
{
 importlib("stdole32.tlb");

 // Primary dispatch interface for CBank

 [uuid(99EA95E1-78A1-11D0-92E1-D74D1B9CCD32)]
 dispinterface IBank
 {
 properties:
 // NOTE - ClassWizard will maintain property information
 // here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CBank)
 [id(1)] double Balance;
 //}}AFX_ODL_PROP

 methods:
 // NOTE - ClassWizard will maintain method information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_METHOD(CBank)
 [id(2)] double Withdrawal(double dAmount);
 [id(3)] void Deposit(double dAmount);
 //}}AFX_ODL_METHOD

 };

 // Class information for CBank

 [uuid(99EA95E2-78A1-11D0-92E1-D74D1B9CCD32)]
 coclass Bank
 {
 [default] dispinterface IBank;
 };

 // {{AFX_APPEND_ODL}}
};
The ODL file has a unique GUID type library identifier, 85D56DE4-789D-11D0-92E1-D74D1B9CCD32, and
it completely describes the bank component's properties and methods under a dispinterface named IBank.
In addition, it specifies the dispinterface GUID, 99EA95E1-78A1-11D0-92E1-D74D1B9CCD32, which is the
same GUID that's in the interface map of the CBank class. You'll see the significance of this GUID when

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

same GUID that's in the interface map of the CBank class. You'll see the significance of this GUID when
you read the "VBA Early Binding" section near the end of this chapter. The CLSID, 99EA95E2-78A1-11D0-
92E1-D74D1B9CCD32, is what a VBA browser can actually use to load your component.

Anyway, when you build your component project, Visual C++ invokes the MIDL utility, which reads the
ODL file and generates a binary TLB file in your project's debug or release subdirectory. Now when you
develop a C++ client program, you can ask ClassWizard to generate a driver class from the component
project's TLB file.

The MIDL utility generates the type library in a stand-alone TLB file, and that's what
Automation controllers such as Excel look for. ActiveX controls have their type libraries
bound into their resources.

To actually do this, you click the ClassWizard Add Class button and then select From A Type Library from
the drop-down list. You navigate to the component project's TLB file, and then ClassWizard shows you a
dialog similar to the illustration below.

IBank is the dispinterface specified in the ODL file. You can keep this name for the class if you want, and
you can specify the H and CPP filenames. If a type library contains several interfaces you can make
multiple selections. You'll see the generated controller classes in the sections that follow.

The Controller Class for ex25a.exe

ClassWizard generated the IBank class (derived from COleDispatchDriver) listed in Figure 25-8. Look
closely at the member function implementations. Note the first parameters of the GetProperty,
SetProperty, and InvokeHelper function calls. These are hard-coded DISPIDs for the component's
properties and methods, as determined by the component's dispatch map sequence.

If you use ClassWizard to delete a property and then add the property back, you'll
probably change the component's dispatch IDs. That means that you'll have to
regenerate or edit the controller class so that the IDs match.

BANKDRIVER.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BANKDRIVER.H

class IBank : public COleDispatchDriver
{
public:
 IBank() {} // calls COleDispatchDriver default constructor
 IBank(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IBank(const IBank& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 double GetBalance();
 void SetBalance(double);

// Operations
public:
 double Withdrawal(double dAmount);
 void Deposit(double dAmount);
};
BANKDRIVER.CPP

#include "StdAfx.h"
#include "BankDriver.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

//
// IBank properties

double IBank::GetBalance()
{
 double result;
 GetProperty(0x1, VT_R8, (void*)&result);
 return result;
}
void IBank::SetBalance(double propVal)
{
 SetProperty(0x1, VT_R8, propVal);
}

//
// IBank operations

double IBank::Withdrawal(double dAmount)
{
 double result;
 static BYTE parms[] =
 VTS_R8;
 InvokeHelper(0x2, DISPATCH_METHOD, VT_R8, (void*)&result, parms,
 dAmount);
 return result;
}

void IBank::Deposit(double dAmount)
{
 static BYTE parms[] =
 VTS_R8;
 InvokeHelper(0x3, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 dAmount);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dAmount);
}

Figure 25-8. The IBank class listing.

The CEx25dView class has a data member m_bank of class IBank. The CEx25dView member functions for
the Ex25a.Bank component are listed below. They are hooked up to options on the EX25D main menu. Of
particular interest is the OnBankoleLoad function. The COleDispatchDriver::CreateDispatch function loads
the component program (by calling CoGetClassObject and IClassFactory::CreateInstance) and then calls
QueryInterface to get an IDispatch pointer, which it stores in the object's m_lpDispatch data member. The
COleDispatchDriver::ReleaseDispatch function, called in OnBankoleUnload, calls Release on the pointer.

void CEx25dView::OnBankoleLoad()
{
 if(!m_bank.CreateDispatch("Ex25a.Bank")) {
 AfxMessageBox("Ex25a.Bank component not found");
 return;
 }
}

void CEx25dView::OnUpdateBankoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch == NULL);
}

void CEx25dView::OnBankoleTest()
{
 m_bank.Deposit(20.0);
 m_bank.Withdrawal(15.0);
 TRACE("new balance = %f\n",
m_bank.GetBalance());
}

void CEx25dView::OnUpdateBankoleTest(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch != NULL);
}

void CEx25dView::OnBankoleUnload()
{
 m_bank.ReleaseDispatch();
}

void CEx25dView::OnUpdateBankoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch != NULL);
}
The Controller Class for ex25b.dll

Figure 25-9 shows the class header file generated by ClassWizard.

AUTODRIVER.H

class IEx25bAuto : public COleDispatchDriver
{
public:
 IEx25bAuto() {} // calls COleDispatchDriver default constructor
 IEx25bAuto(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IEx25bAuto(const IEx25bAuto& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 long GetLongData();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 long GetLongData();
 void SetLongData(long);
 VARIANT GetTextData();
 void SetTextData(const VARIANT&);

// Operations
public:
 BOOL DisplayDialog();
};

Figure 25-9. The Ex25bAuto class header file.

Notice that each property requires separate Get and Set functions in the client class, even though a data
member in the component represents the property.

The view class header has a data member m_auto of class IEx25bAuto. Here are some DLL-related
command handler member functions from ex25dView.cpp:

void CEx25dView::OnDlloleGetdata()
{
 m_auto.DisplayDialog();
 COleVariant vaData =
m_auto.GetTextData();
 ASSERT(vaData.vt == VT_BSTR);
 CString strTextData = vaData.bstrVal;
 long lData =
m_auto.GetLongData();
 TRACE("CEx25dView::OnDlloleGetdata — long = %ld, text = %s\n",
 lData, strTextData);
}

void CEx25dView::OnUpdateDlloleGetdata(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch != NULL);
}

void CEx25dView::OnDlloleLoad()
{
 if(!m_auto.CreateDispatch("Ex25b.Auto")) {
 AfxMessageBox("Ex25b.Auto component not found");
 return;
 }
 m_auto.SetTextData(COleVariant("test")); // testing
 m_auto.SetLongData(79); // testing
 // verify dispatch interface
 // {A9515AD7-5B85-11D0-848F-00400526305B}
 static const IID IID_IEx25bAuto =
 { 0xa9515ad7, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5,
 0x26, 0x30, 0x5b } };
 LPDISPATCH p;
 HRESULT hr =
m_auto.m_lpDispatch->QueryInterface(IID_IEx25bAuto,
 (void**) &p);
 TRACE("OnDlloleLoad — QueryInterface result = %x\n", hr);
 p->Release();
}

void CEx25dView::OnUpdateDlloleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch == NULL);
}

void CEx25dView::OnDlloleUnload()
{
 m_auto.ReleaseDispatch();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_auto.ReleaseDispatch();
}

void CEx25dView::OnUpdateDlloleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch != NULL);
}
The Controller Class for ex25c.exe

Figure 25-10 shows the headers for the IEx25c and IAlarm classes, which drive the EX25C Automation
component.

CLOCKDRIVER.H

class IEx25c : public COleDispatchDriver
{
public:
 IEx25c() {} // calls COleDispatchDriver default constructor
 IEx25c(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IEx25c(const IEx25c& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 DATE GetTime();
 void SetTime(DATE);

// Operations
public:
 void ShowWin();
 LPDISPATCH CreateAlarm(DATE time);
 void RefreshWin();
 void SetFigure(short n, const VARIANT& newValue);
 VARIANT GetFigure(short n);
};

class IAlarm : public COleDispatchDriver
{
public:
 IAlarm() {} // calls COleDispatchDriver default constructor
 IAlarm(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 IAlarm(const IAlarm& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

// Attributes
public:
 DATE GetTime();
 void SetTime(DATE);

// Operations
public:
};

Figure 25-10. The IEx25c and IAlarm class header files.

Of particular interest is the IEx25c::CreateAlarm member function in ClockDriver.cpp:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LPDISPATCH IEx25c::CreateAlarm(DATE time)
{
 LPDISPATCH result;
 static BYTE parms[] =
 VTS_DATE;
 InvokeHelper(0x3, DISPATCH_METHOD, VT_DISPATCH, (void*)&result,
 parms, time);
 return result;
}
This function can be called only after the clock object (document) has been constructed. It causes the
EX25C component to construct an alarm object and return an IDispatch pointer with a reference count of
1. The COleDispatchDriver::AttachDispatch function connects that pointer to the client's m_alarm object,
but if that object already has a dispatch pointer, the old pointer is released. That's why, if you watch the
Debug window, you'll see that the old EX25C instance exits immediately after you ask for a new instance.
You'll have to test this behavior with the Excel driver because EX25D disables the Load menu option when
the clock is running.

The view class has the data members m_clock and m_alarm. Here are the view class command handlers:

void CEx25dView::OnClockoleCreatealarm()
{
 CAlarmDialog dlg;
 if (dlg.DoModal() == IDOK) {
 COleDateTime dt(1995, 12, 23, dlg.
m_nHours, dlg.m_nMinutes,
 dlg.
m_nSeconds);
 LPDISPATCH pAlarm =
m_clock.CreateAlarm(dt);
 m_alarm.AttachDispatch(pAlarm); // releases prior object!
 m_clock.RefreshWin();
 }
}
void CEx25dView::OnUpdateClockoleCreatealarm(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m
_lpDispatch != NULL);
}

void CEx25dView::OnClockoleLoad()
{
 if(!m_clock.CreateDispatch("Ex25c.Document")) {
 AfxMessageBox("Ex25c.Document component not found");
 return;
 }
 m_clock.SetFigure(0, COleVariant("XII"));
 m_clock.SetFigure(1, COleVariant("III"));
 m_clock.SetFigure(2, COleVariant("VI"));
 m_clock.SetFigure(3, COleVariant("IX"));
 OnClockoleRefreshtime();
 m_clock.ShowWin();
}

void CEx25dView::OnUpdateClockoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m
_lpDispatch == NULL);
}

void CEx25dView::OnClockoleRefreshtime()
{
 COleDateTime now = COleDateTime::GetCurrentTime();
 m_clock.SetTime(now);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_clock.SetTime(now);
 m_clock.RefreshWin();
}

void CEx25dView::OnUpdateClockoleRefreshtime(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m_lpDispatch != NULL);
}

void CEx25dView::OnClockoleUnload()
{
 m_clock.ReleaseDispatch();
}

void CEx25dView::OnUpdateClockoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.m
_lpDispatch != NULL);
}
Controlling Microsoft Excel

The EX25D program contains code that loads Excel, creates a workbook, and reads from and writes to cells
from the active worksheet. Controlling Excel is exactly like controlling an MFC Automation component, but
you need to know about a few Excel peculiarities.

If you study Excel VBA, you'll notice that you can use more than 100 "objects" in your programs. All of
these objects are accessible through Automation, but if you write an MFC Automation client program, you'll
need to know about the objects' properties and methods. Ideally, you'd like a C++ class for each object,
with member functions coded to the proper dispatch IDs.

Excel has its own type library, found in the file Excel8.olb, usually in the \Program Files\Microsoft
Office\Office directory. ClassWizard can read this file—exactly as it reads TLB files—to create C++ driver
classes for individual Excel objects. It makes sense to select the objects you need and then combine the
classes into a single pair of files, as shown in Figure 25-11.

Figure 25-11. ClassWizard can create C++ classes for the Excel objects listed in Excel8.olb.

You might need to edit the generated code to suit your needs. Let's look at an example. If you use
ClassWizard to generate a driver class for the Worksheet object, you get a GetRange member function, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LPDISPATCH _Worksheet::GetRange(const VARIANT& Cell1,
 const VARIANT& Cell2)
{
 LPDISPATCH result;
 static BYTE parms[] = VTS_VARIANT VTS_VARIANT;
 InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&result, parms, &Cell1, &Cell2);
 return result;
}
You know (from the Excel VBA documentation) that you can call the method with either a single cell (one
parameter) or a rectangular area specified by two cells (two parameters). Remember: you can omit
optional parameters in a call to InvokeHelper. Now it makes sense to add a second overloaded GetRange
function with a single cell parameter like this:

LPDISPATCH _Worksheet::GetRange(const VARIANT& Cell1) // added
{
 LPDISPATCH result;
 static BYTE parms[] = VTS_VARIANT;
 InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&result, parms, &Cell1);
 return result;
}
How do you know which functions to fix up? They're the functions you decide to use in your program. You'll
have to read the Excel VBA reference manual to figure out the required parameters and return values.
Perhaps someday soon someone will write a set of C++ Excel controller classes.

The EX25D program uses the Excel objects and contains the corresponding classes shown in the table
below. All the code for these objects is contained in the files excel8.h and excel8.cpp.

Object/Class View Class Data Member

_Application m_app

Range m_range[5]

_Worksheet m_worksheet

Workbooks m_workbooks

Worksheets m_worksheets

The following view member function, OnExceloleLoad, handles the Excel Comp Load menu command. This
function must work if the user already has Excel running on the desktop. The COM GetActiveObject
function tries to return an IUnknown pointer for Excel. GetActiveObject requires a class ID, so we must
first call CLSIDFromProgID. If GetActiveObject is successful, we call QueryInterface to get an IDispatch
pointer and we attach it to the view's m_app controller object of class _Application. If GetActiveObject is
unsuccessful, we call COleDispatchDriver::CreateDispatch, as we did for the other components.

void CEx25dView::OnExceloleLoad()
{ // If Excel is already running, attach to it; otherwise, start it
 LPDISPATCH pDisp;
 LPUNKNOWN pUnk;
 CLSID clsid;
 TRACE("Entering CEx25dView::OnExcelLoad\n");
 BeginWaitCursor();
 ::CLSIDFromProgID(L"Excel.Application.8", &clsid); // from Registry
 if(::GetActiveObject(clsid, NULL, &pUnk) == S_OK) {
 VERIFY(pUnk->QueryInterface(IID_IDispatch,
 (void**) &pDisp) == S_OK);
 m_app.AttachDispatch(pDisp);
 pUnk->Release();
 TRACE(" attach complete\n");
 }
 else {
 if(!m_app.CreateDispatch("Excel.Application.8")) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(!m_app.CreateDispatch("Excel.Application.8")) {
 AfxMessageBox("Excel 97 program not found");
 }
 TRACE(" create complete\n");
 }
 EndWaitCursor();
}
OnExceloleExecute is the command handler for the Execute item in the Excel Comp menu. Its first task is
to find the Excel main window and bring it to the top. We must write some Windows code here because a
method for this purpose couldn't be found. We must also create a workbook if no workbook is currently
open.

We have to watch our method return values closely. The Workbooks Add method, for example, returns an
IDispatch pointer for a Workbook object and, of course, increments the reference count. If we generated a
class for Workbook, we could call COleDispatchDriver::AttachDispatch so that Release would be called
when the Workbook object was destroyed. Because we don't need a Workbook class, we'll simply release
the pointer at the end of the function. If we don't properly clean up our pointers, we might get memory-
leak messages from the Debug version of MFC.

The rest of the OnExceloleExecute function accesses the cells in the worksheet. It's easy to get and set
numbers, dates, strings, and formulas. The C++code is similar to the VBA code you would write to do the
same job.

void CEx25dView::OnExceloleExecute()
{
 LPDISPATCH pRange, pWorkbooks;

 CWnd* pWnd = CWnd::FindWindow("XLMAIN", NULL);
 if (pWnd != NULL) {
 TRACE("Excel window found\n");
 pWnd->ShowWindow(SW_SHOWNORMAL);
 pWnd->UpdateWindow();
 pWnd->BringWindowToTop();
 }

 m_app.SetSheetsInNewWorkbook(1);

 VERIFY(pWorkbooks = m_app.GetWorkbooks());
 m_workbooks.AttachDispatch(pWorkbooks);

 LPDISPATCH pWorkbook = NULL;
 if (m_workbooks.GetCount() == 0) {
 // Add returns a Workbook pointer, but we
 // don't have a Workbook class
 pWorkbook =
m_workbooks.Add(); // Save the pointer for
 // later release
 }
 LPDISPATCH pWorksheets =
m_app.GetWorksheets();
 ASSERT(pWorksheets != NULL);
 m_worksheets.AttachDispatch(pWorksheets);
 LPDISPATCH pWorksheet =
m_worksheets.GetItem(COleVariant((short) 1));

 m_worksheet.AttachDispatch(pWorksheet);
 m_worksheet.Select();

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A1")));
 m_range[0].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A2")));
 m_range[1].AttachDispatch(pRange);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_range[1].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A3")));
 m_range[2].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A3"),
 COleVariant("C5")));
 m_range[3].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.GetRange(COleVariant("A6")));
 m_range[4].AttachDispatch(pRange);

 m_range[4].SetValue(COleVariant(COleDateTime
 (1998, 4, 24, 15, 47, 8)));
 // Retrieve the stored date and print it as a string
 COleVariant vaTimeDate =
m_range[4].GetValue();
 TRACE("returned date type = %d\n", vaTimeDate.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, &vaTimeDate);
 CString str = vaTemp.bstrVal;
 TRACE("date = %s\n", (const char*) str);

 m_range[0].SetValue(COleVariant("test string"));

 COleVariant vaResult0 =
m_range[0].GetValue();
 if (vaResult0.vt == VT_BSTR) {
 CString str = vaResult0.bstrVal;
 TRACE("vaResult0 = %s\n", (const char*) str);
 }

 m_range[1].SetValue(COleVariant(3.14159));

 COleVariant vaResult1 =
m_range[1].GetValue();
 if (vaResult1.vt == VT_R8) {
 TRACE("vaResult1 = %f\n", vaResult1.dblVal);
 }

 m_range[2].SetFormula(COleVariant("=$A2*2.0"));

 COleVariant vaResult2 =
m_range[2].GetValue();
 if (vaResult2.vt == VT_R8) {
 TRACE("vaResult2 = %f\n", vaResult2.dblVal);
 }

 COleVariant vaResult2a =
m_range[2].GetFormula();
 if (vaResult2a.vt == VT_BSTR) {
 CString str = vaResult2a.bstrVal;
 TRACE("vaResult2a = %s\n", (const char*) str);
 }

 m_range[3].FillRight();
 m_range[3].FillDown();

 // cleanup
 if (pWorkbook != NULL) {
 pWorkbook->Release();
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX25E Automation Client Example

This program uses the new #import directive to generate smart pointers. It behaves just like EX25D
except that it doesn't run Excel. The #import statements are in the StdAfx.h file to minimize the number of
times the compiler has to generate the driver classes. Here is the added code:

#include <afxdisp.h>

#import "..\ex25a\debug\ex25a.tlb" rename_namespace("BankDriv")
using namespace BankDriv;

#import "..\ex25b\debug\ex25b.tlb" rename_namespace("Ex25bDriv")
using namespace Ex25bDriv;

#import "..\ex25c\debug\ex25c.tlb" rename_namespace("ClockDriv")
using namespace ClockDriv;
And of course you'll need to call AfxOleInit in your application class InitInstance member function.

The view class header contains embedded smart pointers as shown:

IEx25bAutoPtr m_auto;
IBankPtr m_bank;
IEx25cPtr m_clock;
IAlarmPtr m_alarm;
Here is the code for the view class menu command handlers:

void CEx25eView::OnBankoleLoad()
{
 if(m_bank.CreateInstance(__uuidof(Bank)) != S_OK) {
 AfxMessageBox("Bank component not found");
 return;
 }
}

void CEx25eView::OnUpdateBankoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() == NULL);
}

void CEx25eView::OnBankoleTest()
{
 try {
 m_bank->Deposit(20.0);
 m_bank->Withdrawal(15.0);
 TRACE("new balance = %f\n",
m_bank->GetBalance());
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateBankoleTest(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() != NULL);
}

void CEx25eView::OnBankoleUnload()
{
 m_bank.Release();
}

void CEx25eView::OnUpdateBankoleUnload(CCmdUI* pCmdUI)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx25eView::OnUpdateBankoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() != NULL);
}

void CEx25eView::OnClockoleCreatealarm()
{
 CAlarmDialog dlg;
 try {
 if (dlg.DoModal()
== IDOK) {
 COleDateTime dt(1995, 12, 23, dlg.
m_nHours, dlg.m_nMinutes,
 dlg.
m_nSeconds);
 LPDISPATCH pAlarm = m_clock->CreateAlarm(dt);

m_alarm.Attach((IAlarm*) pAlarm); // releases prior object!

m_clock->RefreshWin();
 }
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateClockoleCreatealarm(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}

void CEx25eView::OnClockoleLoad()
{
 if(m_clock.CreateInstance(_
_uuidof(Document)) != S_OK) {
 AfxMessageBox("Clock component not found");
 return;
 }
 try {
 m_clock->PutFigure(0, COleVariant("XII"));
 m_clock->PutFigure(1, COleVariant("III"));
 m_clock->PutFigure(2, COleVariant("VI"));
 m_clock->PutFigure(3, COleVariant("IX"));
 OnClockoleRefreshtime();
 m_clock->ShowWin();
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateClockoleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() == NULL);
}

void CEx25eView::OnClockoleRefreshtime()
{
 COleDateTime now = COleDateTime::GetCurrentTime();
 try {
 m_clock->PutTime(now);
 m_clock->RefreshWin();
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateClockoleRefreshtime(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}

void CEx25eView::OnClockoleUnload()
{
 m_clock.Release();
}

void CEx25eView::OnUpdateClockoleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}

void CEx25eView::OnDlloleGetdata()
{
 try {
 m_auto->DisplayDialog();
 COleVariant vaData =
m_auto->GetTextData();
 ASSERT(vaData.vt == VT_BSTR);
 CString strTextData = vaData.bstrVal;
 long lData =
m_auto->GetLongData();
 TRACE("CEx25dView::OnDlloleGetdata—long = %ld, text = %s\n",
 lData, strTextData);
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}

void CEx25eView::OnUpdateDlloleGetdata(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() != NULL);
}

void CEx25eView::OnDlloleLoad()
{
 if(m_auto.CreateInstance(__uuidof(Ex25bAuto)) != S_OK) {
 AfxMessageBox("Ex25bAuto component not found");
 return;
 }
}

void CEx25eView::OnUpdateDlloleLoad(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() == NULL);
}

void CEx25eView::OnDlloleUnload()
{
 m_auto.Release();
}

void CEx25eView::OnUpdateDlloleUnload(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() != NULL);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
Note the use of the try/catch blocks in the functions that manipulate the components. These are
particularly necessary for processing errors that occur when a component program stops running. In the
previous example, EX25D, the MFC COleDispatchDriver class took care of this detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA Early Binding
When you ran the EX25A, EX25B, and EX25C components from Excel VBA, you used something called late
binding. Normally, each time VBA accesses a property or a method, it calls IDispatch::GetIDsOfNames to
look up the dispatch ID from the symbolic name. Not only is this inefficient, VBA can't do type-checking
until it actually accesses a property or a method. Suppose, for example, that a VBA program tried to get a
property value that it assumed was a number, but the component provided a string instead. VBA would
give you a runtime error when it executed the Property Get statement.

With early binding, VBA can preprocess the Visual Basic code, converting property and method symbols to
DISPIDs before it runs the component program. In so doing, it can check property types, method return
types, and method parameters, giving you compile-time error messages. Where can VBA get the advance
information it needs? From the component's type library, of course. It can use that same type library to
allow the VBA programmer to browse the component's properties and methods. VBA reads the type library
before it even loads the component program.

Registering a Type Library

You've already seen that Visual C++ generates a TLB file for each component. For VBA to locate that type
library, its location must be specified in the Windows Registry. The simplest way of doing this is to write a
text REG file that the Windows Regedit program can import. Here's the ex25b.reg file for the EX25B DLL
component:

REGEDIT4

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}]

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0]
@="Ex25b"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\0]

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\0\win32]
@="C:\\vcpp32\\ex25b\\Debug\\ex25b.tlb"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\FLAGS]
@="0"

[HKEY_CLASSES_ROOT\TypeLib\{A9515ACA-5B85-11D0-848F-00400526305B}\1.0\HELPDIR]
@="C:\\vcpp32\\ex25b\\Debug"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}]
@="IEx25bAuto"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}\ProxyStubClsid]
@="{00020420-0000-0000-C000-000000000046}"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}\ProxyStubClsid32]
@="{00020420-0000-0000-C000-000000000046}"

[HKEY_CLASSES_ROOT\Interface\{A9515AD7-5B85-11D0-848F-00400526305B}\TypeLib]
@="{A9515ACA-5B85-11D0-848F-00400526305B}"
"Version"="1.0"
Notice that this file generates subtrees under the Registry's TypeLib and Interface keys. The third entry
specifies the path for the version 1.0 TLB file. The 0 subkey stands for "neutral language." If you had a
multilingual application, you would have separate entries for English, French, and so forth. Browsers use
the TypeLib entries, and the Interface entries are used for runtime type-checking and, for an EXE
component, marshaling the dispinterface.

How a Component Can Register Its Own Type Library

When an EXE component is run stand-alone, it can call the MFC AfxRegisterTypeLib function to make the
necessary Registry entries, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VERIFY(AfxOleRegisterTypeLib(AfxGetInstanceHandle(), theTypeLibGUID,
 "ex25b.tlb"));
Shown here is theTypeLibGUID, a static variable of type GUID:

// {A9515ACA-5B85-11D0-848F-00400526305B}
static const GUID theTypeLibGUID =
{ 0xa9515aca, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x00, 0x40, 0x05, 0x26,
 0x30, 0x5b } };
The AfxRegisterTypeLib function is declared in the afxwin.h header, which requires _AFXDLL to be defined.
That means you can't use it in a regular DLL unless you copy the code from the MFC source files.

The ODL File

Now is a good time to look at the ODL file for the same project.

// ex25b.odl : type library source for ex25b.dll

// This file will be processed by the MIDL compiler to produce the
// type library (ex25b.tlb)

[uuid(A9515ACA-5B85-11D0-848F-00400526305B), version(1.0)]

// GUID for the type library—matches TypeLib Registry key and
// AfxOleRegisterTypeLib parameter
library Ex25b
{
 // library name for Excel's object borrower

 importlib("stdole32.tlb");
 // primary dispatch interface for CEx25bAuto

 [uuid(A9515AD7-5B85-11D0-848F-00400526305B)]

 // GUID from component's interface map—matches Registry Interface
 // entry

 dispinterface IEx25bAuto
 {
 // name used in VBA Dim statement and Object list
 properties:
 // NOTE - ClassWizard will maintain property
 // information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CEx25bAuto)
 [id(1)] long LongData;
 [id(2)] VARIANT TextData;
 //}}AFX_ODL_PROP

 methods:
 // NOTE - ClassWizard will maintain method
 // information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_METHOD(CEx25bAuto)
 [id(3)] boolean DisplayDialog();
 //}}AFX_ODL_METHOD
 };

 [uuid(A9515AD8-5B85-11D0-848F-00400526305B)]

// component's CLSID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// component's CLSID

 coclass Ex25bAuto
 {
 [default] dispinterface IEx25bAuto;
 };

 //{{AFX_APPEND_ODL}}
};
As you can see, numerous connections exist among the Registry, the type library, the component, and the
VBA client.

A useful Visual C++ utility, OLEVIEW, lets you examine registered components and
their type libraries.

How Excel Uses a Type Library

Let's examine the sequence of steps Excel uses to utilize your type library:

1. When Excel starts up, it reads the TypeLib section of the Registry to compile a list of all type
libraries. It loads the type libraries for VBA and for the Excel object library.

2. After starting Excel, loading a workbook, and switching to the Visual Basic Editor, the user (or
workbook author) chooses References from the Tools menu and checks the EX25B LIB line.

When the workbook is saved, this reference information is saved with it.

3. Now the Excel user will be able to browse through the EX25B properties and methods by choosing
Object Browser from the Visual Basic Editor's View menu to view the Object Browser dialog.

4. To make use of the type library in your VBA program, you simply replace the line

Dim DllComp as Object
with

Dim DllComp as IEx25bAuto
The VBA program will exit immediately if it can't find IEx25bAuto in its list of references.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Immediately after VBA executes the CreateObject statement and loads the component program, it
calls QueryInterface for IID_IEx25bAuto, which is defined in the Registry, the type library, and the
component class's interface map. (IEx25bAuto is really an IDispatch interface.) This is a sort of
security check. If the component can't deliver this interface, the VBA program exits. Theoretically,
Excel could use the CLSID in the type library to load the component program, but it uses the CLSID
from the Registry instead, just as it did in late binding mode.

Why Use Early Binding?

You might think that early binding would make your Automation component run faster. You probably won't
notice any speed increase, though, because the IDispatch::Invoke calls are the limiting factor. A typical
MFC Invoke call from a compiled C++ client to a compiled C++ component requires about 0.5 millisecond,
which is pretty gross.

The browse capability that the type library provides is probably more valuable than the compiled linkage. If
you are writing a C++ controller, for example, you can load the type library through various COM
functions, including LoadTypeLib, and then you can access it through the ITypeLib and ITypeInfo
interfaces. Plan to spend some time on that project, however, because the type library interfaces are
tricky.

Faster Client-Component Connections

Microsoft has recognized the limitations of the IDispatch interface. It's naturally slow because all data must
be funneled through VARIANTs and possibly converted on both ends. There's a new variation called a dual
interface. (A discussion of dual interfaces is beyond the scope of this book. See Kraig Brockschmidt's Inside
OLE, 2d ed. [Microsoft Press, 1995], for more information.) In a dual interface, you define your own
custom interface, derived from IDispatch. The Invoke and GetIDsOfNames functions are included, but so
are other functions. If the client is smart enough, it can bypass the inefficient Invoke calls and use the
specialized functions instead. Dual interfaces can support only standard Automation types, or they can
support arbitrary types.

There is no direct MFC support for dual interfaces in Visual C++ 6.0, but the ACDUAL Visual C++ sample
should get you started.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 26
Uniform Data Transfer—Clipboard Transfer and OLE Drag and Drop
ActiveX technology includes a powerful mechanism for transferring data within and among Microsoft
Windows-based applications. The COM IDataObject interface is the key element of what is known as
Uniform Data Transfer. As you'll see, Uniform Data Transfer (UDT) gives you all sorts of options for the
formatting and storage of your transferred data, going well beyond standard clipboard transfers.

Microsoft Foundation Class support is available for Uniform Data Transfer, but MFC's support for UDT is not
so high-level as to obscure what's going on at the COM interface level. One of the useful applications of
UDT is OLE Drag and Drop. Many developers want to use drag-and-drop capabilities in their applications,
and drag-and-drop support means that programs now have a standard for information interchange. The
MFC library supports drag-and-drop operations, and that, together with clipboard transfer, is the main
focus of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IDataObject Interface
The IDataObject interface is used for clipboard transfers and drag-and-drop operations, but it's also used
in compound documents, ActiveX Controls, and custom OLE features. In his book Inside OLE, 2d ed.
(Microsoft Press, 1995) Kraig Brockschmidt says, "Think of objects as little piles of stuff." The IDataObject
interface helps you move those piles around, no matter what kind of stuff they contain.

If you were programming at the Win32 level, you would write C++ code that supported the IDataObject
interface. Your program would then construct data objects of this class, and you would manipulate those
objects with the IDataObject member functions. In this chapter you'll see how to accomplish the same
results by using MFC's implementation of IDataObject. Let's start by taking a quick look at why the OLE
clipboard is an improvement on the regular Windows clipboard.

How IDataObject Improves on Standard Clipboard Support

There has never been much MFC support for the Windows Clipboard. If you've written programs for the
clipboard already, you've used Win32 clipboard functions such as OpenClipboard, CloseClipboard,
GetClipboardData, and SetClipboardData. One program copies a single data element of a specified format
to the clipboard, and another program selects the data by format code and pastes it. Standard clipboard
formats include global memory (specified by an HGLOBAL variable) and various GDI objects, such as
bitmaps and metafiles (specified by their handles). Global memory can contain text as well as custom
formats.

The IDataObject interface picks up where the Windows Clipboard leaves off. To make a long story short,
you transfer a single IDataObject pointer to or from the clipboard instead of transferring a series of
discrete formats. The underlying data object can contain a whole array of formats. Those formats can carry
information about target devices, such as printer characteristics, and they can specify the data's aspect or
view. The standard aspect is content. Other aspects include an icon for the data and a thumbnail picture.

Note that the IDataObject interface specifies the storage medium of a data object format. Conventional
clipboard transfer relies exclusively on global memory. The IDataObject interface permits the transmission
of a disk filename or a structured storage pointer instead. Thus, if you want to transfer a very large block
of data that's already in a disk file, you don't have to waste time copying it to and from a memory block.

In case you were wondering, IDataObject pointers are compatible with programs that use existing
clipboard transfer methods. The format codes are the same. Windows takes care of the conversion to and
from the data object. Of course, if an OLE-aware program puts an IStorage pointer in a data object and
puts the object on the clipboard, older, non-OLE-aware programs are unable to read that format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FORMATETC and STGMEDIUM Structures
Before you're ready for the IDataObject member functions, you need to examine two important COM
structures that are used as parameter types: the FORMATETC structure and the STGMEDIUM structure.

FORMATETC

The FORMATETC structure is often used instead of a clipboard format to represent data format information.
However, unlike the clipboard format, the FORMATETC structure includes information about a target
device, the aspect or view of the data, and a storage medium indicator. Here are the members of the
FORMATETC structure.

Type Name Description

CLIPFORMAT cfFormat Structure that contains clipboard formats, such as standard
interchange formats (for example, CF_TEXT, which is a text
format, and CF_DIB, which is an image compression format),
custom formats (such as rich text format), and OLE formats used
to create linked or embedded objects

DVTARGETDEVICE* ptd Structure that contains information about the target device for
the data, including the device driver name (can be NULL)

DWORD dwAspect A DVASPECT enumeration constant (DVASPECT_CONTENT,
DVASPECT _THUMBNAIL, and so on)

LONG lindex Usually -1

DWORD tymed Specifies type of media used to transfer the object's data
(TYMED_HGLOBAL, TYMED_FILE, TYMED_ISTORAGE, and so on)

An individual data object accommodates a collection of FORMATETC elements, and the IDataObject
interface provides a way to enumerate them. A useful macro for filling in a FORMATETC structure appears
below.

#define SETFORMATETC(fe, cf, asp, td, med, li) \
 ((fe).cfFormat=cf, \
 (fe).dwAspect=asp, \
 (fe).ptd=td, \
 (fe).tymed=med, \
 (fe).lindex=li)

STGMEDIUM

The other important structure for IDataObject members is the STGMEDIUM structure. The STGMEDIUM
structure is a global memory handle used for operations involving data transfer. Here are the members.

Type Name Description

DWORD tymed Storage medium value used in marshaling and unmarshaling
routines

HBITMAP hBitmap Bitmap handle*

HMETAFILEPICT hMetaFilePict Metafile handle*

HENHMETAFILE hEnhMetaFile Enhanced metafile handle*

HGLOBAL hGlobal Global memory handle*

LPOLESTR lpszFileName Disk filename (double-byte)*

ISTREAM* pstm IStream interface pointer*

ISTORAGE* pstg IStorage interface pointer*

IUNKNOWN pUnkForRelease Used by clients to call Release for formats with interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IUNKNOWN pUnkForRelease Used by clients to call Release for formats with interface
pointers

* This member is part of a union, including handles, strings, and interface pointers used by the receiving
process to access the transferred data.

As you can see, the STGMEDIUM structure specifies where data is stored. The tymed variable determines
which union member is valid.

The IDataObject Interface Member Functions

This interface has nine member functions. Both Brockschmidt and the online documentation do a good job
of describing all of these functions. Following are the functions that are important for this chapter.

HRESULT EnumFormatEtc(DWORD dwDirection, IEnumFORMATETC ppEnum);

If you have an IDataObject pointer for a data object, you can use EnumFormatEtc to enumerate all the
formats that it supports. This is an ugly API that the MFC library insulates you from. You'll learn how this
happens when you examine the COleDataObject class.

HRESULT GetData(FORMATETC* pFEIn, STGMEDIUM* pSTM);

GetData is the most important function in the interface. Somewhere, up in the sky, is a data object, and
you have an IDataObject pointer to it. You specify, in a FORMATETC variable, the exact format you want to
use when you retrieve the data, and you prepare an empty STGMEDIUM variable to accept the results. If
the data object has the format you want, GetData fills in the STGMEDIUM structure. Otherwise, you get an
error return value.

HRESULT QueryGetData(FORMATETC* pFE);

You call QueryGetData if you're not sure whether the data object can deliver data in the format specified in
the FORMATETC structure. The return value says, "Yes, I can" (S_OK) or "No, I can't" (an error code).
Calling this function is definitely more efficient than allocating a STGMEDIUM variable and calling GetData.

HRESULT SetData(FORMATETC* pFEIn, STGMEDIUM* pSTM, BOOL fRelease);

Data objects rarely support SetData. Data objects are normally loaded with formats in their own server
module; clients retrieve data by calling GetData. With SetData, you'd be transferring data in the other
direction—like pumping water from your house back to the water company.

Other IDataObject Member Functions—Advisory Connections

The interface contains other important functions that let you implement an advisory connection. When the
program using a data object needs to be notified whether the object's data changes, the program can pass
an IAdviseSink pointer to the object by calling the IDataObject::DAdvise function. The object then calls
various IAdviseSink member functions, which the client program implements. You won't need advisory
connections for drag-and-drop operations, but you will need them when you get to embedding in Chapter
28.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Uniform Data Transfer Support
The MFC library does a lot to make data object programming easier. As you study the MFC data object
classes, you'll start to see a pattern in MFC COM support. At the component end, the MFC library provides
a base class that implements one or more OLE interfaces. The interface member functions call virtual
functions that you override in your derived class. At the client end, the MFC library provides a class that
wraps an interface pointer. You call simple member functions that use the interface pointer to make COM
calls.

The terminology needs some clarification here. The data object that's been described is the actual C++
object that you construct, and that's the way Brockschmidt uses the term. In the MFC documentation, a
data object is what the client program sees through an IDataObject pointer. A data source is the object
you construct in a component program.

The COleDataSource Class

When you want to use a data source, you construct an object of class COleDataSource, which implements
the IDataObject interface (without advisory connection support). This class builds and manages a collection
of data formats stored in a cache in memory. A data source is a regular COM object that keeps a reference
count. Usually, you construct and fill a data source, and then you pass it to the clipboard or drag and drop
it in another location, never to worry about it again. If you decide not to pass off a data source, you can
invoke the destructor, which cleans up all its formats.

Following are some of the more useful member functions of the COleDataSource class.

void CacheData(CLIPFORMAT cfFormat, STGMEDIUM* lpStgMedium, FORMATETC*
lpFormatEtc = NULL);

This function inserts an element in the data object's cache for data transfer. The lpStgMedium parameter
points to the data, and the lpFormatEtc parameter describes the data. If, for example, the STGMEDIUM
structure specifies a disk filename, that filename gets stored inside the data object. If lpFormatEtc is set to
NULL, the function fills in a FORMATETC structure with default values. It's safer, though, if you create your
FORMATETC variable with the tymed member set.

void CacheGlobalData(CLIPFORMAT cfFormat, HGLOBAL hGlobal, FORMATETC*
lpFormatEtc = NULL);

You call this specialized version of CacheData to pass data in global memory (identified by an HGLOBAL
variable). The data source object is considered the owner of that global memory block, so you should not
free it after you cache it. You can usually omit the lpFormatEtc parameter. The CacheGlobalData function
does not make a copy of the data.

DROPEFFECT DoDragDrop(DWORD dwEffects =
DROPEFFECT_COPY|DROPEFFECT_MOVE| DROPEFFECT_LINK, LPCRECT
lpRectStartDrag = NULL, COleDropSource* pDropSource = NULL);

You call this function for drag-and-drop operations on a data source. You'll see it used in the EX26B
example.

void SetClipboard(void);

The SetClipboard function, which you'll see in the EX26A example, calls the OleSetClipboard function to put
a data source on the Windows Clipboard. The clipboard is responsible for deleting the data source and thus
for freeing the global memory associated with the formats in the cache. When you construct a
COleDataSource object and call SetClipboard, COM calls AddRef on the object.

The COleDataObject Class

This class is on the destination side of a data object transfer. Its base class is CCmdTarget, and it has a
public member m_lpDataObject that holds an IDataObject pointer. That member must be set before you
can effectively use the object. The class destructor only calls Release on the IDataObject pointer.

Following are a few of the more useful COleDataObject member functions.

BOOL AttachClipboard(void);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL AttachClipboard(void);

As Brockschmidt points out, OLE clipboard processing is internally complex. From your point of view,
however, it's straightforward—as long as you use the COleDataObject member functions. You first
construct an "empty" COleDataObject object, and then you call AttachClipboard, which calls the global
OleGetClipboard function. Now the m_lpDataObject data member points back to the source data object (or
so it appears), and you can access its formats.

If you call the GetData member function to get a format, you must remember that the clipboard owns the
format and you cannot alter its contents. If the format consists of an HGLOBAL pointer, you must not free
that memory and you cannot hang on to the pointer. If you need to have long-term access to the data in
global memory, consider calling GetGlobalData instead.

If a non-COM-aware program copies data onto the clipboard, the AttachClipboard function still works
because COM invents a data object that contains formats corresponding to the regular Windows data on
the clipboard.

void BeginEnumFormats(void); BOOL GetNextFormat(FORMATETC* lpFormatEtc);

These two functions allow you to iterate through the formats that the data object contains. You call
BeginEnumFormats first, and then you call GetNextFormat in a loop until it returns FALSE.

BOOL GetData(CLIPFORMAT cfFormat, STGMEDIUM* lpStgMedium FORMATETC*
lpFormatEtc = NULL);

This function calls IDataObject::GetData and not much more. The function returns TRUE if the data source
contains the format you asked for. You generally need to supply the lpFormatEtc parameter.

HGLOBAL GetGlobalData(CLIPFORMAT cfFormat, FORMATETC* lpFormatEtc = NULL);

Use the GetGlobalData function if you know your requested format is compatible with global memory. This
function makes a copy of the selected format's memory block, and it gives you an HGLOBAL handle that
you must free later. You can often omit the lpFormatEtc parameter.

BOOL IsDataAvailable(CLIPFORMAT cfFormat, FORMATETC* lpFormatEtc = NULL);

The IsDataAvailable function tests whether the data object contains a given format.

MFC Data Object Clipboard Transfer

Now that you've seen the COleDataObject and COleDataSource classes, you'll have an easy time doing
clipboard data object transfers. But why not just do clipboard transfers the old way with GetClipboardData
and SetClipboardData? You could for most common formats, but if you write functions that process data
objects, you can use those same functions for drag and drop.

Figure 26-1 shows the relationship between the clipboard and the COleDataSource and COleDataObject
classes. You construct a COleDataSource object

Figure 26-1. MFC OLE clipboard processing.

on the copy side, and then you fill its cache with formats. When you call SetClipboard, the formats are
copied to the clipboard. On the paste side, you call AttachClipboard to attach an IDataObject pointer to a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copied to the clipboard. On the paste side, you call AttachClipboard to attach an IDataObject pointer to a
COleDataObject object, after which you can retrieve individual formats.

Suppose you have a document-view application whose document has a CString data member m_strText.
You want to use view class command handler functions that copy to and paste from the clipboard. Before
you write those functions, write two helper functions. The first, SaveText, creates a data source object
from the contents of m_strText. The function constructs a COleDataSource object, and then it copies the
string contents to global memory. Last it calls CacheGlobalData to store the HGLOBAL handle in the data
source object. Here is the SaveText code:

COleDataSource* CMyView::SaveText()

{
 CEx26fDoc* pDoc = GetDocument();
 if (!pDoc->m_strtext.IsEmpty()) {
 COleDataSource* pSource = new COleDataSource();
 int nTextSize = GetDocument()->
m_strText.GetLength() + 1;
 HGLOBAL hText = ::GlobalAlloc(GMEM_SHARE, nTextSize);
 LPSTR pText = (LPSTR) ::GlobalLock(hText);
 ASSERT(pText);
 strcpy(pText, GetDocument()->
m_strText);
 ::GlobalUnlock(hText);
 pSource->CacheGlobalData(CF_TEXT, hText);
 return pSource;
 }
 return NULL;
}
The second helper function, DoPasteText, fills in m_strText from a data object specified as a parameter.
We're using COleDataObject::GetData here instead of GetGlobalData because GetGlobalData makes a copy
of the global memory block. That extra copy operation is unnecessary because we're copying the text to
the CString object. We don't free the original memory block because the data object owns it. Here is the
DoPasteText code:

// Memory is MOVEABLE, so we must use GlobalLock!
 SETFORMATETC(fmt, CF_TEXT, DVASPECT_CONTENT, NULL, TYMED_HGLOBAL, -1);
 VERIFY(pDataObject->GetData(CF_TEXT, &stg, &fmt));
 HGLOBAL hText = stg.hGlobal;
 GetDocument()->m_strText = (LPSTR) ::GlobalLock(hText);
 ::GlobalUnlock(hText);
 return TRUE;
}
Here are the two command handler functions:

void CMyView::OnEditCopy()
{
 COleDataSource* pSource = SaveText();
 if (pSource) {
 pSource->SetClipboard();
 }
}
void CMyView::OnEditPaste()
{
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 DoPasteText(&dataObject);
 // dataObject released
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRectTracker Class
The CRectTracker class is useful in both OLE and non-OLE programs. It allows the user to move and resize
a rectangular object in a view window. There are two important data members: the m_nStyle member
determines the border, resize handle, and other characteristics; and the m_rect member holds the device
coordinates for the rectangle.

The important member functions follow.

void Draw(CDC* pDC) const;

The Draw function draws the tracker, including border and resize handles, but it does not draw anything
inside the rectangle. That's your job.

BOOL Track(CWnd* pWnd, CPoint point, BOOL bAllowInvert = FALSE, CWnd*
pWndClipTo = NULL);

You call this function in a WM_LBUTTONDOWN handler. If the cursor is on the rectangle border, the user
can resize the tracker by holding down the mouse button; if the cursor is inside the rectangle, the user can
move the tracker. If the cursor is outside the rectangle, Track returns FALSE immediately; otherwise,
Track returns TRUE only when the user releases the mouse button. That means Track works a little like
CDialog::DoModal. It contains its own message dispatch logic.

int HitTest(CPoint point) const;

Call HitTest if you need to distinguish between mouse button hits inside and on the tracker rectangle. The
function returns immediately with the hit status in the return value.

BOOL SetCursor(CWnd* pWnd, UINT nHitTest) const;

Call this function in your view's WM_SETCURSOR handler to ensure that the cursor changes during
tracking. If SetCursor returns FALSE, call the base class OnSetCursor function; if SetCursor returns TRUE,
you return TRUE.

CRectTracker Rectangle Coordinate Conversion

You must deal with the fact that the CRectTracker::m_rect member stores device coordinates. If you are
using a scrolling view or have otherwise changed the mapping mode or viewport origin, you must do
coordinate conversion. Here's a strategy:

1. Define a CRectTracker data member in your view class. Use the name m_tracker.

2. Define a separate data member in your view class to hold the rectangle in logical coordinates. Use
the name m_rectTracker.

3. In your view's OnDraw function, set m_rect to the updated device coordinates, and then draw the
tracker. This adjusts for any scrolling since the last OnDraw. Some sample code appears below.

m_tracker.m_rect = m_rectTracker;
pDC->LPtoDP(m_tracker.m_rect); // tracker requires device
 // coordinates
m_tracker.Draw(pDC);

4. In your mouse button down message handler, call Track, set m_rectTracker to the updated logical
coordinates, and call Invalidate, as shown here:

if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker);
 Invalidate();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX26A Example—A Data Object Clipboard
This example uses the CDib class from EX11C. Here you'll be able to move and resize the DIB image with a
tracker rectangle, and you'll be able to copy and paste the DIB to and from the clipboard using a COM data
object. The example also includes functions for reading DIBs from and writing DIBs to BMP files.

If you create such an example from scratch, use AppWizard without any ActiveX or Automation options and
then add the following line in your StdAfx.h file:

#include <afxole.h>
Add the following call at the start of the application's InitInstance function:

AfxOleInit();
To prepare EX26A, open the \vcpp32\ex26a\ex26a.dsw workspace and then build the project. Run the
application, and paste a bitmap into the rectangle by choosing Paste From on the Edit menu. You'll see an
MDI application similar to the one shown in Figure 26-2.

Figure 26-2. The EX26A program in operation.

The CMainFrame Class

This class contains the handlers OnQueryNewPalette and OnPaletteChanged for the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages, respectively. These handlers send a user-
defined WM_VIEWPALETTECHANGED message to all the views, and then the handler calls CDib::UsePalette
to realize the palette. The value of wParam tells the view whether it should realize the palette in
background or foreground mode.

The CEx26aDoc Class

This class is pretty straightforward. It contains an embedded CDib object, m_dib, plus a Clear All command
handler. The overridden DeleteContents member function calls the CDib::Empty function.

The CEx26aView Class

This class contains the clipboard function command handlers, the tracking code, the DIB drawing code, and
the palette message handler. Figure 26-3 shows the header and implementation files with manually
entered code in boldface.

EX26AVIEW.H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EX26AVIEW.H
#if !defined(AFX_EX26AVIEW_H__4F329B0F_5DF1_11D0_848F_00400526305B
_ _INCLUDED_)
#define AFX_EX26AVIEW_H__4F329B0F_5DF1_11D0_848F_00400526305B
_ _INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif// _MSC_VER > 1000

#define WM_VIEWPALETTECHANGED WM_USER + 5

class CEx26aView : public CScrollView
{
 // for tracking
 CRectTracker m_tracker;
 CRect m_rectTracker; // logical coordinates
 CSize m_sizeTotal; // document size
protected: // create from serialization only
 CEx26aView();
 DECLARE_DYNCREATE(CEx26aView)

// Attributes
public:
 CEx26aDoc* GetDocument();
// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx26aView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NULL);
 virtual void OnInitialUpdate();
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx26aView();

#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// generated message map functions
protected:
 //{{AFX_MSG(CEx26aView)
 afx_msg void OnEditCopy();
 afx_msg void OnUpdateEditCopy(CCmdUI* pCmdUI);]
 afx_msg void OnEditCopyto();
 afx_msg void OnEditCut();
 afx_msg void OnEditPaste();
 afx_msg void OnUpdateEditPaste(CCmdUI* pCmdUI);
 afx_msg void OnEditPastefrom();
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message);
 afx_msg LONG OnViewPaletteChanged(UINT wParam, LONG lParam);
 afx_msg void OnSetFocus(CWnd* pOldWnd);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
private:
 BOOL DoPasteDib(COleDataObject* pDataObject);
 COleDataSource* SaveDib();
};

#ifndef _DEBUG // debug version in Ex26aView.cpp
inline CEx26aDoc* CEx26aView::GetDocument()
 { return (CEx26aDoc*)
m_pDocument; }
#endif

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line

#endif
// !defined(AFX_EX26AVIEW_H__4F329B0F_5DF1_11D0_848F_00400526305B
__INCLUDED_)

EX26AVIEW.CPP
#include "stdafx.h"
#include "ex26a.h"

#include "cdib.h"
#include "ex26aDoc.h"
#include "ex26aView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

///
// CEx26aView

IMPLEMENT_DYNCREATE(CEx26aView, CScrollView)

BEGIN_MESSAGE_MAP(CEx26aView, CScrollView)
 //{{AFX_MSG_MAP(CEx26aView)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_COPYTO, OnEditCopyto)
 ON_COMMAND(ID_EDIT_CUT, OnEditCut)
 ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ON_COMMAND(ID_EDIT_PASTEFROM, OnEditPastefrom)
 ON_WM_LBUTTONDOWN()
 ON_WM_SETCURSOR()
 ON_MESSAGE(WM_VIEWPALETTECHANGED, OnViewPaletteChanged)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPYTO, OnUpdateEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, OnUpdateEditCopy)
 ON_WM_SETFOCUS()
 //}}AFX_MSG_MAP
 // standard printing commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CScrollView::OnFilePrintPreview)
END_MESSAGE_MAP()

//
// CEx26aView construction/destruction

CEx26aView::CEx26aView() : m_sizeTotal(800, 1050), // 8-by-10.5 inches
 // when printed
 m_rectTracker(50, 50, 250, 250)
{
}

CEx26aView::~CEx26aView()
{
}

BOOL CEx26aView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CScrollView::PreCreateWindow(cs);
}

//
// CEx26aView drawing

void CEx26aView::OnDraw(CDC* pDC)
{
 CDib& dib = GetDocument()->m_dib;
 m_tracker.m_rect = m_rectTracker;
 pDC->LPtoDP(m_tracker.m_rect); // tracker wants device coordinates
 m_tracker.Draw(pDC);
 dib.Draw(pDC, m_rectTracker.TopLeft(),
m_rectTracker.Size());
}

//
// CEx26aView printing

BOOL CEx26aView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}

void CEx26aView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEx26aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

//
// CEx26aView diagnostics

#ifdef _DEBUG
void CEx26aView::AssertValid() const

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx26aView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CEx26aView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CEx26aDoc* CEx26aView::GetDocument() // nondebug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx26aDoc)));
 return (CEx26aDoc*)m_pDocument;
}
#endif //_DEBUG

//
// helper functions used for clipboard and drag-drop
BOOL CEx26aView::DoPasteDib(COleDataObject* pDataObject)
{
 // update command user interface should keep us out of
 // here if not CF_DIB
 if (!pDataObject->IsDataAvailable(CF_DIB)) {
 TRACE("CF_DIB format is unavailable\n");
 return FALSE;
 }
 CEx26aDoc* pDoc = GetDocument();
 // Seems to be MOVEABLE memory, so we must use GlobalLock!
 // (hDib != lpDib) GetGlobalData copies the memory, so we can
 // hang onto it until we delete the CDib.
 HGLOBAL hDib = pDataObject->GetGlobalData(CF_DIB);
 ASSERT(hDib != NULL);
 LPVOID lpDib = ::GlobalLock(hDib);
 ASSERT(lpDib != NULL);
 pDoc->m_dib.AttachMemory(lpDib, TRUE, hDib);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
 return TRUE;
}
COleDataSource* CEx26aView::SaveDib()
{
 CDib& dib = GetDocument()->m_dib;
 if (dib.GetSizeImage() > 0) {
 COleDataSource* pSource = new COleDataSource();
 int nHeaderSize = dib.GetSizeHeader();
 int nImageSize = dib.GetSizeImage();
 HGLOBAL hHeader = ::GlobalAlloc(GMEM_SHARE,
 nHeaderSize + nImageSize);
 LPVOID pHeader = ::GlobalLock(hHeader);
 ASSERT(pHeader != NULL);
 LPVOID pImage = (LPBYTE) pHeader + nHeaderSize;
 memcpy(pHeader, dib.m_lpBMIH, nHeaderSize);
 memcpy(pImage, dib.m_lpImage, nImageSize);
 // Receiver is supposed to free the global memory
 ::GlobalUnlock(hHeader);
 pSource->CacheGlobalData(CF_DIB, hHeader);
 return pSource;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return pSource;
 }
 return NULL;
}

//
// CEx26aView message handlers

void CEx26aView::OnEditCopy()
{
 COleDataSource* pSource = SaveDib();
 if (pSource) {
 pSource->SetClipboard(); // OLE deletes data source
 }
}

void CEx26aView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{
 // serves Copy, Cut, and Copy To
 CDib& dib = GetDocument()->m_dib;
 pCmdUI->Enable(dib.GetSizeImage() > 0L);
}

void CEx26aView::OnEditCopyto()
{
 CDib& dib = GetDocument()->m_dib;
 CFileDialog dlg(FALSE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) return;
 BeginWaitCursor();
 dib.CopyToMapFile(dlg.GetPathName());
 EndWaitCursor();
}

void CEx26aView::OnEditCut()
{
 OnEditCopy();
 GetDocument()->OnEditClearAll();
}
void CEx26aView::OnEditPaste()
{
 CEx26aDoc* pDoc = GetDocument();
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 DoPasteDib(&dataObject);
 CClientDC dc(this);
 pDoc->m_dib.UsePalette(&dc);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
}

void CEx26aView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{
 COleDataObject dataObject;
 BOOL bAvail = dataObject.AttachClipboard() &&
 dataObject.IsDataAvailable(CF_DIB);
 pCmdUI->Enable(bAvail);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pCmdUI->Enable(bAvail);
}

void CEx26aView::OnEditPastefrom()
{
 CEx26aDoc* pDoc = GetDocument();
 CFileDialog dlg(TRUE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) return;
 if (pDoc->m_dib.AttachMapFile(dlg.GetPathName(), TRUE)) { // share
 CClientDC dc(this);
 pDoc->m_dib.SetSystemPalette(&dc);
 pDoc->m_dib.UsePalette(&dc);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
 }
}

void CEx26aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 // custom MM_LOENGLISH; positive y is down
 if (pDC->IsPrinting()) {
 int nHsize = pDC->GetDeviceCaps(HORZSIZE) * 1000 / 254;
 int nVsize = pDC->GetDeviceCaps(VERTSIZE) * 1000 / 254;
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(nHsize, nVsize);
 pDC->SetViewportExt(pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));
 }
 else {
 CScrollView::OnPrepareDC(pDC, pInfo);
 }
}
void CEx26aView::OnInitialUpdate()
{
 SetScrollSizes(MM_TEXT, m_sizeTotal);
 m_tracker.m_nStyle = CRectTracker::solidLine |
 CRectTracker::resizeOutside;
 CScrollView::OnInitialUpdate();
}

void CEx26aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker); // Update logical coordinates
 Invalidate();
 }
}

BOOL CEx26aView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{
 if (m_tracker.SetCursor(pWnd, nHitTest)) {
 return TRUE;
 }
 else {
 return CScrollView::OnSetCursor(pWnd, nHitTest, message);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

LONG CEx26aView::OnViewPaletteChanged(UINT wParam, LONG lParam)
{
 TRACE("CEx26aView::OnViewPaletteChanged, HWND = %x, \
 code = %d\n", GetSafeHwnd(), wParam);
 CClientDC dc(this);
 GetDocument()->m_dib.UsePalette(&dc, wParam);
 Invalidate();
 return 0;
}

void CEx26aView::OnSetFocus(CWnd* pOldWnd)
{
 CScrollView::OnSetFocus(pOldWnd);
 AfxGetApp()->m_pMainWnd->SendMessage(WM_PALETTECHANGED,
 (UINT) GetSafeHwnd());
}

Figure 26-3. The CEx26aView class listing.

Several interesting things happen in the view class. In the DoPasteDib helper, we can call GetGlobalData
because we can attach the returned HGLOBAL variable to the document's CDib object. If we called
GetData, we would have to copy the memory block ourselves. The Paste From and Copy To command
handlers rely on the memory-mapped file support in the CDib class. The OnPrepareDC function creates a
special printer-mapping mode that is just like MM_LOENGLISH except that positive y is down. One pixel on
the display corresponds to 0.01 inch on the printer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Drag and Drop
Drag and drop was the ultimate justification for the data object code you've been looking at. OLE supports
this feature with its IDropSource and IDropTarget interfaces plus some library code that manages the
drag-and-drop process. The MFC library offers good drag-and-drop support at the view level, so we'll use
it. Be aware that drag-and-drop transfers are immediate and independent of the clipboard. If the user
cancels the operation, there's no "memory" of the object being dragged.

Drag-and-drop transfers should work consistently between applications, between windows of the same
application, and within a window. When the user starts the operation, the cursor should change to an
arrow_rectangle combination. If the user holds down the Ctrl key, the cursor turns into a plus sign (+),
which indicates that the object is being copied rather than moved.

MFC also supports drag-and-drop operations for items in compound documents. This is the next level up in
MFC OLE support, and it's not covered in this chapter. Look up the OCLIENT example in the online
documentation under Visual C++ Samples.

The Source Side of the Transfer

When your source program starts a drag-and-drop operation for a data object, it calls
COleDataSource::DoDragDrop. This function internally creates an object of MFC class COleDropSource,
which implements the IOleDropSource interface. DoDragDrop is one of those functions that don't return for
a while. It returns when the user drops the object or cancels the operation or when a specified number of
milliseconds have elapsed.

If you're programming drag-and-drop operations to work with a CRectTracker object, you should call
DoDragDrop only when the user clicks inside the tracking rectangle, not on its border.
CRectTracker::HitTest gives you that information. When you call DoDragDrop, you need to set a flag that
tells you whether the user is dropping the object into the same view (or document) that it was dragged
from.

The Destination Side of the Transfer

If you want to use the MFC library's view class drag-and-drop support, you must add a data member of
class COleDropTarget to your derived view class. This class implements the IDropTarget interface, and it
holds an IDropSource pointer that links back to the COleDropSource object. In your view's OnInitialUpdate
function, you call the Register member function for the embedded COleDropTarget object.

After you have made your view a drop target, you must override four CView virtual functions, which the
framework calls during the drag-and-drop operation. Here's a summary of what they should do, assuming
that you're using a tracker.

OnDragEnter Adjusts the focus rectangle and then calls OnDragOver

OnDragOver Moves the dotted focus rectangle and sets the drop effect (determines cursor
shape)

OnDragLeave Cancels the transfer operation; returns the rectangle to its original position and size

OnDrop Adjusts the focus rectangle and then calls the DoPaste helper function to get
formats from the data object

The Drag-and-Drop Sequence

Figure 26-4 illustrates the MFC drag-and-drop process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-4. MFC OLE drag-and-drop processing.

Here's a summary of what's going on:

1. User presses the left mouse button in the source view window.

2. Mouse button handler calls CRectTracker::HitTest and finds out that the cursor was inside the
tracker rectangle.

3. Handler stores formats in a COleDataSource object.

4. Handler calls COleDataSource::DoDragDrop for the data source.

5. User moves the cursor to the view window of the target application.

6. OLE calls IDropTarget::OnDragEnter and OnDragOver for the COleDropTarget object, which calls
the corresponding virtual functions in the target's view. The OnDragOver function is passed a
COleDataObject pointer for the source object, which the target tests for a format it can understand.

7. OnDragOver returns a drop effect code, which OLE uses to set the cursor.

8. OLE calls IDataSource::QueryContinueDrag on the source side to find out whether the drag
operation is still in progress. The MFC COleDataSource class responds appropriately.

9. User releases the mouse button to drop the object in the target view window.

10. OLE calls IDropTarget::OnDrop, which calls OnDrop for the target's view. Because OnDrop is passed
a COleDataObject pointer, it can retrieve the desired format from that object.

11. When OnDrop returns in the target program, DoDragDrop can return in the source program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX26B Example—OLE Drag and Drop
This example picks up where the EX26A example leaves off. It adds drag-and-drop support, using the
existing SaveDib and DoPasteDib helper functions. All of the clipboard code is the same. You should be
able to adapt EX26B to other applications that require drag and drop for data objects.

To prepare EX26B, open the \vcpp32\ex26b\ex26b.dsw workspace and build the project. Run the
application, and test drag and drop between child windows and between instances of the program.

The CEx26bDoc Class

This class is just like the EX26A version except for an added flag data member, m_bDragHere. This flag is
TRUE when a drag-and-drop operation is in progress for this document. The flag is in the document and
not in the view because it is possible to have multiple views attached to the same document. It doesn't
make sense to drag a DIB from one view to another when both views reflect the document's m_dib
member.

The CEx26bView Class

To start with, this class has three additional data members and a constructor that initializes all the data
members, as shown here:

CRect m_rectTrackerEnter; // original logical coordinates
COleDropTarget m_dropTarget;
CSize m_dragOffset; // device coordinates

CEx26bView::CEx26bView() : m_sizeTotal(800, 1050), // 8-by-10.5 inches
 // when printed
 m_rectTracker(50, 50, 250, 250),
 m_dragOffset(0, 0),
 m_rectTrackerEnter(50, 50, 250, 250)
{
}
The OnInitialUpdate function needs one additional line to register the drop target:

m_dropTarget.Register(this);
Following are the drag-and-drop virtual override functions. Note that OnDrop replaces the DIB only if the
document's m_bDragHere flag is TRUE, so if the user drops the DIB in the same window or in another
window connected to the same document, nothing happens.

DROPEFFECT CEx26bView::OnDragEnter(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 TRACE("Entering CEx26bView::OnDragEnter, point = (%d, %d)\n",
 point.x, point.y);
 m_rectTrackerEnter = m_rectTracker; // save original coordinates
 // for cursor leaving
 // rectangle
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker); // will be erased in OnDragOver
 return OnDragOver(pDataObject, dwKeyState, point);
}

DROPEFFECT CEx26bView::OnDragOver(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 if (!pDataObject->IsDataAvailable(CF_DIB)) {
 return DROPEFFECT_NONE;
 }
 MoveTrackRect(point);
 if ((dwKeyState & MK_CONTROL) == MK_CONTROL) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if ((dwKeyState & MK_CONTROL) == MK_CONTROL) {
 return DROPEFFECT_COPY;
 }
 // Check for force move
 if ((dwKeyState & MK_ALT) == MK_ALT) {
 return DROPEFFECT_MOVE;
 }
 // default -- recommended action is move
 return DROPEFFECT_MOVE;
}

void CEx26bView::OnDragLeave()
{
 TRACE("Entering CEx26bView::OnDragLeave\n");
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker);
 m_rectTracker = m_rectTrackerEnter; // Forget it ever happened
}

BOOL CEx26bView::OnDrop(COleDataObject* pDataObject,
 DROPEFFECT dropEffect, CPoint point)
{
 TRACE("Entering CEx26bView::OnDrop --
 dropEffect = %d\n", dropEffect);
 BOOL bRet;
 CEx26bDoc* pDoc = GetDocument();
 MoveTrackRect(point);
 if (pDoc->m_bDragHere) {
 pDoc->m_bDragHere = FALSE;
 bRet = TRUE;
 }
 else {
 bRet = DoPasteDib(pDataObject);
 }
 return bRet;
}
The handler for the WM_LBUTTONDOWN message needs substantial overhaul. It must call DoDragDrop if
the cursor is inside the rectangle and Track if it is on the rectangle border. The revised code is shown here:

void CEx26bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx26bDoc* pDoc = GetDocument();
 if (m_tracker.HitTest(point) == CRectTracker::hitMiddle) {
 COleDataSource* pSource = SaveDib();
 if (pSource) {
 // DoDragDrop returns only after drop is complete
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CPoint topleft = m_rectTracker.TopLeft();
 dc.LPtoDP(&topleft);
 // `point' here is not the same as the point parameter in
 // OnDragEnter, so we use this one to compute the offset
 m_dragOffset = point - topleft; // device coordinates
 pDoc->m_bDragHere = TRUE;
 DROPEFFECT dropEffect = pSource->DoDragDrop(
 DROPEFFECT_MOVE | DROPEFFECT_COPY, CRect(0, 0, 0, 0));
 TRACE("after DoDragDrop -- dropEffect = %ld\n", dropEffect);
 if (dropEffect == DROPEFFECT_MOVE && pDoc->m_bDragHere) {
 pDoc>OnEditClearAll();
 }
 pDoc->m_bDragHere = FALSE;
 delete pSource;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 else {
 if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 // should have some way to prevent it going out of bounds
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker); // update logical coordinates
 }
 }
 Invalidate();
}
Finally, the new MoveTrackRect helper function, shown here, moves the tracker's focus rectangle each
time the OnDragOver function is called. This job was done by CRectTracker::Track in the EX26A example.

void CEx26bView::MoveTrackRect(CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker);
 dc.LPtoDP(m_rectTracker);
 CSize sizeTrack = m_rectTracker.Size();
 CPoint newTopleft = point - m_dragOffset; // still device
 m_rectTracker = CRect(newTopleft, sizeTrack);
 m_tracker.m_rect = m_rectTracker;
 dc.DPtoLP(m_rectTracker);
 dc.DrawFocusRect(m_rectTracker);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Applications and Drag and Drop—Dobjview
I tested EX26B with the Microsoft Office 97 suite. I tried both drag-and-drop and clipboard transfers, with
the results shown in the following table.

EX26B Word Excel PowerPoint

Sends clipboard data to x x (no palettes) x

Accepts clipboard data from

Sends drag-drop data to x x

Accepts drag-drop data from

When I started to investigate why these programs were so uncooperative, I discovered a useful OLE utility
called Dobjview (IDataObject viewer). I could use Dobjview to examine a data object on the clipboard, and
I could drag objects to the Dobjview window. Here's what I got when I dragged a picture from Microsoft
Excel.

No CF_DIB format is present. If you want pictures from Excel, you must enhance EX26B to process
metafiles. Another alternative is to rewrite the program with compound document support as described in
Chapter 28. The OLE libraries contain code to display bitmaps and metafiles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
As you can see, MFC makes clipboard and drag-and-drop data transfer pretty easy. While you can always
write all the code necessary to implement the interfaces (IDataObject, IDropTarget, and IDropSource),
using MFC's implementations is much more convenient. While we've looked only at clipboard and drag and
drop transfers through IDataObject in this chapter, everything you learn about the IDataObject interface
will carry forward to your study of compound documents in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 27
Structured Storage
Like Automation and Uniform Data Transfer, structured storage is one of those COM features that you can
use effectively by itself. Of course, it's also behind much of the ActiveX technology, particularly compound
documents.

In this chapter, you'll learn to write and read compound files with the IStorage and IStream interfaces. The
IStorage interface is used to create and manage structured storage objects. IStream is used to manipulate
the data contained by the storage object. The IStorage and IStream interfaces, like all COM interfaces, are
simply virtual function declarations. Compound files, on the other hand, are implemented by code in the
Microsoft Windows OLE32 DLL. Compound files represent a Microsoft file I/O standard that you can think of
as "a file system inside a file."

When you're familiar with IStorage and IStream, you'll move on to the IPersistStorage and IPersistStream
interfaces. With the IPersistStorage and IPersistStream interfaces, you can program a class to save and
load objects to and from a compound file. You say to an object, "Save yourself," and it knows how.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compound Files
This book discusses four options for file I/O. You can read and write whole sequential files (like the MFC
archive files you saw first in Chapter 17). You can use a database management system (as described in
Chapter 31 and Chapter 32). You can write your own code for random file access. Finally, you can use
compound files.

Think of a compound file as a whole file system within a file. Figure 27-1 shows a traditional disk directory
as supported by early MS-DOS systems and by Microsoft Windows. This directory is composed of files and
subdirectories, with a root directory at the top. Now imagine the same structure inside a single disk file.
The files are called streams, and the directories are called storages. Each is identified by a name of up to
32 wide characters in length. A stream is a logically sequential array of bytes, and a storage is a collection
of streams and substorages.

Figure 27-1. A disk directory with files and subdirectories.

(A storage can contain other storages, just as a directory can contain subdirectories.) In a disk file, the
bytes aren't necessarily stored in contiguous clusters. Similarly, the bytes in a stream aren't necessarily
contiguous in their compound file. They just appear that way.

Storage and stream names cannot contain the characters /, \, :, or !. If the first
character has an ASCII value of less than 32, the element is marked as managed by
some agent other than the owner.

You can probably think of many applications for a compound file. The classic example is a large document
composed of chapters and paragraphs within chapters. The document is so large that you don't want to
read the whole thing into memory when your program starts, and you want to be able to insert and delete
portions of the document. You could design a compound file with a root storage that contains substorages
for chapters. The chapter substorages would contain streams for the paragraphs. Other streams could be
for index information.

One useful feature of compound files is transactioning. When you start a transaction for a compound file,
all changes are written to a temporary file. The changes are made to your file only when you commit the
transaction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Storages and the IStorage Interface
If you have a storage object, you can manipulate it through the IStorage interface. Pay attention to these
functions because Microsoft Foundation Class offers no support for storage access. Following are some of
the important member functions and their significant parameters.

HRESULT Commit(…);

Commits all the changes to this storage and to all elements below it.

HRESULT CopyTo(…, IStorage**
pStgDest);

Copies a storage, with its name and all its substorages and streams (recursively), to another existing
storage. Elements are merged into the target storage, replacing elements with matching names.

HRESULT CreateStorage(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Creates a new substorage under this storage object.

HRESULT CreateStream(const WCHAR*
pName, …, DWORD mode, …, IStream** ppStream);

Creates a new stream under this storage object.

HRESULT DestroyElement(const WCHAR* pName);

Destroys the named storage or stream that is under this storage object. A storage cannot destroy itself.

HRESULT EnumElements(…, IEnumSTATSTG** ppEnumStatstg);

Iterates through all the storages and streams under this storage object. The IEnumSTATSTG interface has
Next, Skip, and Clone member functions, as do other COM enumerator interfaces.

HRESULT MoveElementTo(const WCHAR* pName,
IStorage* pStgDest, const LPWSTR* pNewName, DWORD flags);

Moves an element from this storage object to another storage object.

HRESULT OpenStream(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Opens an existing stream object, designated by name, under this storage object.

HRESULT OpenStorage(const WCHAR*
pName, …, DWORD mode, …, IStorage** ppStg);

Opens an existing substorage object, designated by name, under this storage object.

DWORD Release(void);

Decrements the reference count. If the storage is a root storage representing a disk file, Release closes the
file when the reference count goes to 0.

HRESULT RenameElement(const
WCHAR* pOldName, const WCHAR* pNewName);

Assigns a new name to an existing storage or stream under this storage object.

HRESULT Revert(void);

Abandons a transaction, leaving the compound file unchanged.

HRESULT SetClass(CLSID& clsid);

Inserts a 128-bit class identifier into this storage object. This ID can then be retrieved with the Stat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inserts a 128-bit class identifier into this storage object. This ID can then be retrieved with the Stat
function.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);

Fills in a STATSTG structure with useful information about the storage object, including its name and class
ID.

Getting an IStorage Pointer

Where do you get the first IStorage pointer? COM gives you the global function StgCreateDocfile to create
a new structured storage file on disk and the function StgOpenStorage to open an existing file. Both of
these set a pointer to the file's root storage. Here's some code that opens an existing storage file named
MyStore.stg and then creates a new substorage:

IStorage* pStgRoot;
IStorage* pSubStg;

if (::StgCreateDocfile(L"MyStore.stg",
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK) {
 if (pStgRoot->CreateStorage(L"MySubstorageName",
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, 0, &pSubStg) == S_OK) {
 // Do something with pSubStg
 pSubStg->Release();
 }
 pStgRoot->Release();
}

Freeing STATSTG Memory

When you call IStorage::Stat with a STATFLAG_DEFAULT value for the flag parameter, COM allocates
memory for the element name. You must free this memory in a manner compatible with its allocation.
COM has its own allocation system that uses an allocator object with an IMalloc interface. You must get an
IMalloc pointer from COM, call IMalloc::Free for the string, and then release the allocator. The code below
illustrates this.

If you want just the element size and type and not the name, you can call Stat with the
STATFLAG_NONAME flag. In that case, no memory is allocated and you don't have to free it. This seems
like an irritating detail, but if you don't follow the recipe, you'll have a memory leak.

Enumerating the Elements in a Storage Object

Following is some code that iterates through all the elements under a storage object, differentiating
between substorages and streams. The elements are retrieved in a seemingly random sequence,
independent of the sequence in which they were created; however, I've found that streams are always
retrieved first. The IEnumSTATSTG::Next element fills in a STATSTG structure that tells you whether the
element is a stream or a storage object.

IEnumSTATSTG* pEnum;
IMalloc* pMalloc;
STATSTG statstg;
extern IStorage* pStg; // maybe from OpenStorage
::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit called
VERIFY(pStg->EnumElements(0, NULL, 0, &pEnum) == S_OK)
while (pEnum->Next(1, &statstg, NULL) == NOERROR) {
 if (statstg.type == STGTY_STORAGE) {
 if (pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK) {
 // Do something with the substorage
 }
 else if (statstg.type == STGTY_STREAM) {
 // Process the stream
 }
 pMalloc->Free(statstg.pwcsName); // avoids memory leaks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pMalloc->Free(statstg.pwcsName); // avoids memory leaks
 }
 pMalloc->Release();
}

Sharing Storages Among Processes

If you pass an IStorage pointer to another process, the marshaling code ensures that the other process
can access the corresponding storage element and everything below it. This is a convenient way of sharing
part of a file. One of the standard data object media types of the TYMED enumeration is
TYMED_ISTORAGE, and this means you can pass an IStorage pointer on the clipboard or through a drag-
and-drop operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Streams and the IStream Interface
If you have a stream object, you can manipulate it through the IStream interface. Streams are always
located under a root storage or a substorage object. Streams grow automatically (in 512-byte increments)
as you write to them. An MFC class for streams, COleStreamFile, makes a stream look like a CFile object.
That class won't be of much use to us in this chapter, however.

Once you have a pointer to IStream, a number of functions are available to you for manipulating the
stream. Here is a list of all the IStream functions:

HRESULT CopyTo(IStream** pStm, ULARGE_INTEGER cb, …);

Copies cb bytes from this stream to the named stream. ULARGE_INTEGER is a structure with two 32-bit
members—HighPart and LowPart.

HRESULT Clone(IStream** ppStm);

Creates a new stream object with its own seek pointer that references the bytes in this stream. The bytes
are not copied, so changes in one stream are visible in the other.

HRESULT Commit(…);

Transactions are not currently implemented for streams.

HRESULT Read(void const* pv, ULONG cb, ULONG* pcbRead);

Tries to read cb bytes from this stream into the buffer pointed to by pv. The variable pcbRead indicates
how many bytes were actually read.

DWORD Release(void);

Closes this stream.

HRESULT Revert(void);

Has no effect for streams.

HRESULT Seek(LARGE_INTEGER dlibMove,
DWORD dwOrigin, ULARGE_INTEGER* NewPosition);

Seeks to the specified position in this stream. The dwOrigin parameter specifies the origin of the offset
defined in the NewPosition parameter.

HRESULT SetSize(ULARGE_INTEGER libNewSize);

Extends or truncates a stream. Streams grow automatically as they are written, but calling SetSize can
optimize performance.

HRESULT Stat(STATSTG* pStatstg, DWORD flag);

Fills in the STATSTG structure with useful information about the stream, including the stream name and
size. The size is useful if you need to allocate memory for a read.

HRESULT Write(void const* pv, ULONG cb, ULONG* pcbWritten);

Tries to write cb bytes to this stream from the buffer pointed to by pv. The variable pcbWritten indicates
how many bytes were actually written.

IStream Programming

Here is some sample code that creates a stream under a given storage object and writes some bytes from
m_buffer to the stream:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extern IStorage* pStg;
IStream* pStream;
ULONG nBytesWritten;

if (pStg->CreateStream(L"MyStreamName",
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK) {
 ASSERT(pStream != NULL);
 pStream->Write(m_buffer, m_nLength, &nBytesWritten);
 pStream->Release();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ILockBytes Interface
As already mentioned, the compound file system you've been looking at is implemented in the OLE32 DLL.
The structured storage interfaces are flexible enough, however, to permit you to change the underlying
implementation. The key to this flexibility is the ILockBytes interface. The StgCreateDocfile and
StgOpenStorage global functions use the default Windows file system. You can write your own file access
code that implements the ILockBytes interface and then call StgCreateDocfileOnILockBytes or
StgOpenStorageOnILockBytes to create or open the file, instead of calling the other global functions.

Rather than implement your own ILockBytes interface, you can call CreateILockBytesOnHGlobal to create a
compound file in RAM. If you wanted to put compound files inside a database, you would implement an
ILockBytes interface that used the database's blobs (binary large objects).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX27A Example—Structured Storage
When you choose the Storage Write option in the EX27A example, the program walks through your entire
disk directory looking for TXT files. As it looks, it writes a compound file (\direct.stg) on the top level of
your directory structure. This file contains storages that match your subdirectories. For each TXT file that
the program finds in a subdirectory, it copies the first line of text to a stream in the corresponding storage.
When you choose the Storage Read option, the program reads the direct.stg compound file and prints the
contents of this file in the Debug window.

If you create such an example from scratch, use AppWizard without any ActiveX or Automation options and
then add the following lines in your StdAfx.h file:

#include <afxole.h>
#include <afxpriv.h> // for wide-character conversion
Then delete the following line:

#define VC_EXTRALEAN
To prepare EX27A, open the \vcpp32\ex27a\ex27a.dsw workspace and build the project. Run the program
from the debugger. First choose Write from the Storage menu and wait for a "Write complete" message
box. Then choose Read. Observe the output in the Debug window.

The Menu

The EX27A example has an added top-level Storage menu with Write and Read options.

The CEx27aView Class

This class maps the new Storage Read and Write menu commands listed above to start worker threads.
The handlers are shown here:

void CEx27aView::OnStorageRead()
{
 CWinThread* pThread = AfxBeginThread(ReadThreadProc, GetSafeHwnd());
}

void CEx27aView::OnStorageWrite()
{
 CWinThread* pThread = AfxBeginThread(WriteThreadProc, GetSafeHwnd());
}

The Worker Threads

Figure 27-2 lists the code for the Storage Write and Storage Read worker threads.

THREAD.H

extern int g_nIndent;
extern const char* g_szBlanks;
extern const char* g_szRootStorageName;

UINT WriteThreadProc(LPVOID pParam);
UINT ReadThreadProc(LPVOID pParam);
void ReadDirectory(const char* szPath, LPSTORAGE pStg);
void ReadStorage(LPSTORAGE pStg);
WRITETHREAD.CPP

#include "StdAfx.h"
#include "Thread.h"

int g_nIndent = 0;
const char* g_szBlanks = " ";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const char* g_szBlanks = " ";
const char* g_szRootStorageName = "\\direct.stg";

UINT WriteThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 g_nIndent = 0;
 VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName),
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK);
 ReadDirectory("\\", pStgRoot);
 pStgRoot->Release();
 AfxMessageBox("Write complete");
 return 0;
}

void ReadDirectory(const char* szPath, LPSTORAGE pStg)
{
 // recursive function
 USES_CONVERSION;
 WIN32_FIND_DATA fData;
 HANDLE h;
 char szNewPath[MAX_PATH];
 char szStorageName[100];
 char szStreamName[100];
 char szData[81];
 char* pch = NULL;
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;

 g_nIndent++;
 strcpy(szNewPath, szPath);
 strcat(szNewPath, "*.*");
 h = ::FindFirstFile(szNewPath, &fData);
 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory
 do {
 if (!strcmp(fData.cFileName, "..") ||
 !strcmp(fData.cFileName, ".")) continue;
 while((pch = strchr(fData.cFileName, `!')) != NULL) {
 *pch = `|';
 }
 if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 // It's a directory, so make a storage
 strcpy(szNewPath, szPath);
 strcat(szNewPath, fData.cFileName);
 strcat(szNewPath, "\\");

 strcpy(szStorageName, fData.cFileName);
 szStorageName[31] = `\0'; // limit imposed by OLE
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szStorageName);
 VERIFY(pStg->CreateStorage(T2COLE(szStorageName),
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadDirectory(szNewPath, pSubStg);
 pSubStg->Release();
 }
 else {
 if ((pch = strrchr(fData.cFileName, `.')) != NULL) {
 if (!stricmp(pch, ".TXT")) {
 // It's a text file, so make a stream
 strcpy(szStreamName, fData.cFileName);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 strcpy(szStreamName, fData.cFileName);
 strcpy(szNewPath, szPath);
 strcat(szNewPath, szStreamName);
 szStreamName[32] = `\0'; // OLE max length
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szNewPath);
 CStdioFile file(szNewPath, CFile::modeRead);
 // Ignore zero-length files
 if(file.ReadString(szData, 80)) {
 TRACE("%s\n", szData);
 VERIFY(pStg->CreateStream(T2COLE(szStreamName),
 STGM_CREATE | STGM_READWRITE |
 STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 // Include the null terminator in the stream
 pStream->Write(szData, strlen(szData) + 1, NULL);
 pStream->Release();
 }
 }
 }
 }
 } while (::FindNextFile(h, &fData));
 g_nIndent—;
}
READTHREAD.CPP

#include "StdAfx.h"
#include "Thread.h"

UINT ReadThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 // doesn't work without STGM_SHARE_EXCLUSIVE
 g_nIndent = 0;
 if (::StgOpenStorage(T2COLE(g_szRootStorageName), NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK) {
 ASSERT(pStgRoot!= NULL);
 ReadStorage(pStgRoot);
 pStgRoot->Release();
 }
 else {
 AfxMessageBox("Storage file not available or not readable.");
 }
 AfxMessageBox("Read complete");
 return 0;
}

void ReadStorage(LPSTORAGE pStg)
// reads one storage — recursive calls for substorages
{
 USES_CONVERSION;
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPENUMSTATSTG pEnum = NULL;
 LPMALLOC pMalloc = NULL; // for freeing statstg
 STATSTG statstg;
 ULONG nLength;
 BYTE buffer[101];

 g_nIndent++;
 ::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ::CoGetMalloc(MEMCTX_TASK, &pMalloc); // assumes AfxOleInit
 // was called
 VERIFY(pStg->EnumElements(0, NULL, 0, &pEnum) == S_OK);
 while (pEnum->Next(1, &statstg, NULL) == S_OK) {
 if (statstg.type == STGTY_STORAGE) {
 VERIFY(pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, OLE2CT(statstg.pwcsName));
 ReadStorage(pSubStg);
 pSubStg->Release();
 }
 else if (statstg.type == STGTY_STREAM) {
 VERIFY(pStg->OpenStream(statstg.pwcsName, NULL,
 STGM_READ | STGM_SHARE_EXCLUSIVE,
 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, OLE2CT(statstg.pwcsName));
 pStream->Read(buffer, 100, &nLength);
 buffer[nLength] = `\0';
 TRACE("%s\n", buffer);
 pStream->Release();
 }
 else {
 ASSERT(FALSE); // LockBytes?
 }
 pMalloc->Free(statstg.pwcsName); // avoids memory leaks
 }
 pMalloc->Release();
 pEnum->Release();
 g_nIndent—;
}

Figure 27-2. The Storage menu worker threads.

To keep the program simple, there's no synchronization between the main thread and the two worker
threads. You could run both threads at the same time if you used two separate compound files.

From your study of the Win32 threading model, you might expect that closing the main window would
cause the read thread or write thread to terminate "midstream," possibly causing memory leaks. But this
does not happen because MFC senses that the worker threads are using COM objects. Even though the
window closes immediately, the program does not exit until all threads exit.

Both threads use recursive functions. The ReadStorage function reads a storage and calls itself to read the
substorages. The ReadDirectory function reads a directory and calls itself to read the subdirectories. This
function calls the Win32 functions FindFirstFile and FindNextFile to iterate through the elements in a
directory. The dwFileAttributes member of the WIN32_FIND_DATA structure indicates whether the element
is a file or a subdirectory. ReadDirectory uses the MFC CStdioFile class because the class is ideal for
reading text.

The USES_CONVERSION macro is necessary to support the wide-character conversion macros OLE2CT and
T2COLE. These macros are used here because the example doesn't use the CString class, which has built-
in conversion logic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structured Storage and Persistent COM Objects
The EX27A program explicitly called member functions of IStorage and IStream to write and read a
compound file. In the object-oriented world, objects should know how to save and load themselves to and
from a compound file. That's what the IPersistStorage and IPersistStream interfaces are for. If a COM
component implements these interfaces, a container program can "connect" the object to a compound file
by passing the file's IStorage pointer as a parameter to the Save and Load member functions of the
IPersistStorage interface. Such objects are said to be persistent. Figure 27-3 shows the process of calling
the IPersistStorage::Save function.

A COM component is more likely to work with an IStorage interface than an IStream interface. If the COM
object is associated with a particular storage, the COM component can manage substorages and streams
under that storage once it gets the IStorage pointer. A COM component uses the IStream interface only if
it stores all its data in an array of bytes. ActiveX controls implement the IStream interface for storing and
loading property values.

Figure 27-3. Calling IPersistStorage::Save.

The IPersistStorage Interface

Both the IPersistStorage and IPersistStream interfaces are derived from IPersist, which contributes the
GetClassID member function. Here's a summary of the IPersistStorage member functions:

HRESULT GetClassID(CLSID* pClsid);

Returns the COM component's 128-bit class identifier.

HRESULT InitNew(IStorage* pStg);

Initializes a newly created object. The component might need to use the storage for temporary data, so
the container must provide an IStorage pointer that's valid for the life of the object. The component should
call AddRef if it intends to use the storage. The component should not use this IStorage pointer for saving
and loading; it should wait for Save and Load calls and then use the passed-in IStorage pointer to call
IStorage::Write and Read.

HRESULT IsDirty(void);

Returns S_OK if the object has changed since it was last saved; otherwise, returns S_FALSE.

HRESULT Load(IStorage* pStg);

Loads the COM object's data from the designated storage.

HRESULT Save(IStorage* pStg, BOOL fSameAsLoad);

Saves the COM object's data in the designated storage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IPersistStream Interface

Here's a summary of the IPersistStream member functions:

HRESULT GetClassID(CLSID* pClsid);

Returns the COM component's 128-bit class identifier.

HRESULT GetMaxSize(ULARGE_INTEGER* pcbSize);

Returns the number of bytes needed to save the object.

HRESULT IsDirty(void);

Returns S_OK if the object has changed since it was last saved; otherwise, returns S_FALSE.

HRESULT Load(IStream* pStm);

Loads the COM object's data from the designated stream.

HRESULT Save(IStream* pStm, BOOL fClearDirty);

Saves the COM object's data to the designated stream. If the fClearDirty parameter is TRUE, Save clears
the object's dirty flag.

IPersistStream Programming

The following container program code fragment creates a stream and saves a COM object's data in it. Both
the IPersistStream pointer for the COM object and the IStorage pointer are set elsewhere.

extern IStorage* pStg;
extern IPersistStream* pPersistStream;
IStream* pStream;
if (pStg->CreateStream(L"MyStreamName",
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK) {
 ASSERT(pStream != NULL);
 pPersistStream->Save(pStream, TRUE);
 pStream->Release();
}
If you program your own COM class for use in a container, you'll need to use the MFC interface macros to
add the IPersistStream interface. Too bad there's not an "interface wizard" to do the job.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX27B Example—A Persistent DLL Component
The EX27B program, which is used by EX27C, is a COM DLL that contains the CText component. This is a
simple COM class that implements the IDispatch and IPersistStream interfaces. The IDispatch interface
allows access to the component's one and only property, Text, and the IPersistStream interface allows an
object to save and load that Text property to and from a structured storage file.

To prepare EX27B, open the \vcpp32\ex27b\ex27b.dsw workspace and build the project. Use regsvr32 or
REGCOMP to register the DLL.

Figure 27-4 lists the code for the CText class in Text.h and Text.cpp.

TEXT.H

#ifndef __TEXT_H__
#define __TEXT_H__
// CText command target
class CText : public CCmdTarget
{
private:
 char* m_pchText;

 DECLARE_DYNCREATE(CText)

 CText(); // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CText)
 public:
 virtual void OnFinalRelease();
 //}}AFX_VIRTUAL

// Implementation
protected:
 virtual ~CText();
// Generated message map functions

 //{{AFX_MSG(CText)
 // NOTE the ClassWizard will add and remove member functions here.
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CText)

 // Generated OLE dispatch map functions
 //{{AFX_DISPATCH(CText)
 afx_msg VARIANT GetText();
 afx_msg void SetText(const VARIANT FAR& newValue);
 //}}AFX_DISPATCH
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()

 BEGIN_INTERFACE_PART(PersistStream, IPersistStream)
 STDMETHOD(GetClassID)(LPCLSID);
 STDMETHOD(IsDirty)();
 STDMETHOD(Load)(LPSTREAM);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STDMETHOD(Load)(LPSTREAM);
 STDMETHOD(Save)(LPSTREAM, BOOL);
 STDMETHOD(GetSizeMax)(ULARGE_INTEGER FAR*);
 END_INTERFACE_PART(PersistStream)
};

//
//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif // __TEXT_H__
TEXT.CPP

#include "stdafx.h"
#include "ex27b.h"
#include "Text.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] =__FILE__;
#endif
//
// CText

IMPLEMENT_DYNCREATE(CText, CCmdTarget)

CText::CText()
{
 EnableAutomation();

 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 AfxOleLockApp();
 m_pchText = NULL;
}

CText::~CText()
{
 // To terminate the application when all objects created
 // with OLE automation, the destructor calls AfxOleUnlockApp.

 if(m_pchText != NULL) {
 delete [] m_pchText;
 }
 AfxOleUnlockApp();
}

void CText::OnFinalRelease()
{
 // When the last reference for an automation object is released,
 // OnFinalRelease is called. The base class will automatically
 // delete the object. Add additional cleanup required for your
 // object before calling the base class.

 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CText, CCmdTarget)
 //{{AFX_MSG_MAP(CText)
 // NOTE - ClassWizard will add and remove mapping macros here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // NOTE - ClassWizard will add and remove mapping macros here.
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()
BEGIN_DISPATCH_MAP(CText, CCmdTarget)
 //{{AFX_DISPATCH_MAP(CText)
 DISP_PROPERTY_EX(CText, "Text", GetText, SetText, VT_VARIANT)
 //}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_IText to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the ODL file.

// {4EBFDD71-5F7D-11D0-848F-00400526305B}
static const IID IID_IText =
{ 0x4ebfdd71, 0x5f7d, 0x11d0, { 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26,
 0x30, 0x5b } };

BEGIN_INTERFACE_MAP(CText, CCmdTarget)
 INTERFACE_PART(CText, IID_IPersistStream, PersistStream)
 INTERFACE_PART(CText, IID_IText, Dispatch)
END_INTERFACE_MAP()

// {4EBFDD72-5F7D-11D0-848F-00400526305B}
IMPLEMENT_OLECREATE(CText, "Ex27b.Text", 0x4ebfdd72, 0x5f7d,
 0x11d0, 0x84, 0x8f, 0x0, 0x40, 0x5, 0x26, 0x30, 0x5b)

//
// CText message handlers

VARIANT CText::GetText()
{
 return COleVariant(m_pchText).Detach();
}

void CText::SetText(const VARIANT FAR& newValue)
{
 CString strTemp;
 ASSERT(newValue.vt == VT_BSTR);
 if(m_pchText != NULL) {
 delete [] m_pchText;
 }
 strTemp = newValue.bstrVal; // converts to narrow chars
 m_pchText = new char[strTemp.GetLength() + 1];
 strcpy(m_pchText, strTemp);
}
//

STDMETHODIMP_(ULONG) CText::XPersistStream::AddRef()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CText::XPersistStream::Release()
{
 METHOD_PROLOGUE(CText, PersistStream)
 return (ULONG) pThis->ExternalRelease();
}

STDMETHODIMP CText::XPersistStream::QueryInterface(REFIID iid,
 void FAR* FAR* ppvObj)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void FAR* FAR* ppvObj)
{
 METHOD_PROLOGUE(CText, PersistStream)
 // ExternalQueryInterface looks up IID in the macro-generated tables
 return (HRESULT) pThis->ExternalQueryInterface(&iid, ppvObj);
}
//

STDMETHODIMP CText::XPersistStream::GetClassID(LPCLSID lpClassID)
{
 TRACE("Entering CText::XPersistStream::GetClassID\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 *lpClassID = CText::guid;
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::IsDirty()
{
 TRACE("Entering CText::XPersistStream::IsDirty\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);

 return NOERROR;
}
STDMETHODIMP CText::XPersistStream::Load(LPSTREAM pStm)
{
 ULONG nLength;
 STATSTG statstg;
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 if(pThis->m_pchText != NULL) {
 delete [] pThis->m_pchText;
 }
 // don't need to free statstg.pwcsName because of NONAME flag
 VERIFY(pStm->Stat(&statstg, STATFLAG_NONAME) == NOERROR);
 int nSize = statstg.cbSize.LowPart; // assume < 4 GB
 if(nSize > 0) {
 pThis->m_pchText = new char[nSize];
 pStm->Read(pThis->m_pchText, nSize, &nLength);
 }
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::Save(LPSTREAM pStm, BOOL fClearDirty)
{
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 int nSize = strlen(pThis->m_pchText) + 1;
 pStm->Write(pThis->m_pchText, nSize, NULL);
 return NOERROR;
}

STDMETHODIMP CText::XPersistStream::GetSizeMax(ULARGE_INTEGER FAR* pcbSize)
{
 TRACE("Entering CText::XPersistStream::GetSizeMax\n");
 METHOD_PROLOGUE(CText, PersistStream)
 ASSERT_VALID(pThis);
 pcbSize->LowPart = strlen(pThis->m_pchText) + 1;
 pcbSize->HighPart = 0; // assume < 4 GB
 return NOERROR;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 27-4. The code listing for the CText class in Text.h and Text.cpp.

ClassWizard generated the CText class as an ordinary Automation component. The IPersistStream interface
was added manually. Look carefully at the XPersistStream::Load and XPersistStream::Save functions. The
Load function allocates heap memory and then calls IStream::Read to load the contents of the stream. The
Save function copies the object's data to the stream by calling IStream::Write.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX27C Example—A Persistent Storage Client Program
This program is similar to EX27A in function—indeed, the storage files are compatible. Internally, however,
both worker threads use the persistent COM class CText (EX27B) for loading and storing text.

To prepare EX27C, open the \vcpp32\ex27c\ex27c.dsw workspace and build the project. Run the program
from the debugger, first choosing Write from the Storage menu and then choosing Read. Observe the
output in the Debug window.

The menu, the view class, and the application class are the same as the EX27A versions. Only the thread
code is different.

Figure 27-5 lists the code for both the WriteThread.cpp and the ReadThread.cpp files. ,

WRITETHREAD.CPP

#include "StdAfx.h"
#include "Thread.h"
#include "itext.h"

CLSID g_clsid; // for the Text server
int g_nIndent = 0;
const char* g_szBlanks = " ";
const char* g_szRootStorageName = "\\direct.stg";

UINT WriteThreadProc(LPVOID pParam)
{
 USES_CONVERSION;
 LPSTORAGE pStgRoot = NULL;
 g_nIndent = 0;
 ::CoInitialize(NULL);
 ::CLSIDFromProgID(L"EX27B.TEXT", &g_clsid);
 VERIFY(::StgCreateDocfile(T2COLE(g_szRootStorageName),
 STGM_READWRITE | STGM_SHARE_EXCLUSIVE | STGM_CREATE,
 0, &pStgRoot) == S_OK);
 ReadDirectory("\\", pStgRoot);
 pStgRoot->Release();
 AfxMessageBox("Write complete");
 return 0;
}
void ReadDirectory(const char* szPath, LPSTORAGE pStg)
{
 // recursive function
 USES_CONVERSION;
 WIN32_FIND_DATA fData;
 HANDLE h;
 char szNewPath[MAX_PATH];
 char szStorageName[100];
 char szStreamName[100];
 char szData[81];
 char* pch = NULL;

 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPPERSISTSTREAM pPersistStream = NULL;

 g_nIndent++;
 strcpy(szNewPath, szPath);
 strcat(szNewPath, "*.*");
 h = ::FindFirstFile(szNewPath, &fData);

 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (h == (HANDLE) 0xFFFFFFFF) return; // can't find directory
 do {
 if (!strcmp(fData.cFileName, "..") ||
 !strcmp(fData.cFileName, ".")) continue;
 while((pch = strchr(fData.cFileName, `!')) != NULL) {
 *pch = `|';
 }
 if (fData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
 // It's a directory, so make a storage
 strcpy(szNewPath, szPath);
 strcat(szNewPath,fData.cFileName);
 strcat(szNewPath, "\\");

 strcpy(szStorageName, fData.cFileName);
 szStorageName[31] = `\0'; // limit imposed by OLE
 TRACE("%0.*sStorage = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szStorageName);
 VERIFY(pStg->CreateStorage(T2COLE(szStorageName),
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadDirectory(szNewPath, pSubStg);
 pSubStg->Release();
 }
 else {
 if ((pch = strrchr(fData.cFileName, `.')) != NULL) {
 if (!stricmp(pch, ".TXT")) {
 // It's a text file, so make a stream
 strcpy(szStreamName, fData.cFileName);
 strcpy(szNewPath, szPath);
 strcat(szNewPath, szStreamName);
 szStreamName[32] = `\0'; // OLE max length
 TRACE("%0.*sStream = %s\n", (g_nIndent - 1) * 4,
 g_szBlanks, szNewPath);
 CStdioFile file(szNewPath, CFile::modeRead);
 // Ignore zero-length files
 if(file.ReadString(szData, 80)) {
 TRACE("%s\n", szData);
 VERIFY(pStg->CreateStream(T2COLE(szStreamName),
 STGM_CREATE | STGM_READWRITE |
 STGM_SHARE_EXCLUSIVE,
 0, 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 // Include the null terminator in the stream
 IText text;
 VERIFY(text.CreateDispatch(g_clsid));
 text.m_lpDispatch->QueryInterface
 (IID_IPersistStream,
 (void**) &pPersistStream);
 ASSERT(pPersistStream != NULL);
 text.SetText(COleVariant(szData));
 pPersistStream->Save(pStream, TRUE);
 pPersistStream->Release();
 pStream->Release();
 }
 }
 }
 }
 } while (::FindNextFile(h, &fData));
 g_nIndent—;
}
READTHREAD.CPP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "StdAfx.h"
#include "Thread.h"
#include "itext.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif

UINT ReadThreadProc(LPVOID pParam)
{
 g_nIndent = 0;
 ::CoInitialize(NULL);
 ::CLSIDFromProgID(L"EX27B.TEXT", &g_clsid);
 LPSTORAGE pStgRoot = NULL;
 if(::StgOpenStorage(L"\\DIRECT.STG", NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK) {
 ASSERT(pStgRoot!= NULL);
 ReadStorage(pStgRoot);
 pStgRoot->Release();
 }
 else {
 AfxMessageBox("Storage file not available or not readable.");
 }
 AfxMessageBox("Read complete");
 return 0;
}

void ReadStorage(LPSTORAGE pStg)
// reads one storage — recursive calls for substorages
{
 LPSTORAGE pSubStg = NULL;
 LPSTREAM pStream = NULL;
 LPENUMSTATSTG pEnum = NULL;
 STATSTG statstg;
 LPPERSISTSTREAM pPersistStream = NULL;

 g_nIndent++;
 if(pStg->EnumElements(0, NULL, 0, &pEnum) != NOERROR) {
 ASSERT(FALSE);
 return;
 }
 while(pEnum->Next(1, &statstg, NULL) == NOERROR) {
 if(statstg.type == STGTY_STORAGE) {
 VERIFY(pStg->OpenStorage(statstg.pwcsName, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pSubStg) == S_OK);
 ASSERT(pSubStg != NULL);
 ReadStorage(pSubStg);
 pSubStg->Release();
 }
 else if(statstg.type == STGTY_STREAM) {
 VERIFY(pStg->OpenStream(statstg.pwcsName, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 0, &pStream) == S_OK);
 ASSERT(pStream != NULL);
 IText text;
 VERIFY(text.CreateDispatch(g_clsid));
 text.m_lpDispatch->QueryInterface(IID_IPersistStream,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 text.m_lpDispatch->QueryInterface(IID_IPersistStream,
 (void**) &pPersistStream);
 ASSERT(pPersistStream != NULL);
 pPersistStream->Load(pStream);
 pPersistStream->Release();
 COleVariant va = text.GetText();
 ASSERT(va.vt == VT_BSTR);
 CString str = va.bstrVal;
 TRACE("%s\n", str);
 pStream->Release();
 }
 else {
 ASSERT(FALSE); // LockBytes?
 }
 ::CoTaskMemFree(statstg.pwcsName);
 }
 pEnum->Release();
 g_nIndent—;
}

Figure 27-5. The code listing for the two worker threads in EX27C.

Look at the second half of the ReadDirectory function in the WriteThread.cpp file in Figure 27-5. For each
TXT file, the program constructs a CText object by constructing an IText driver object and then calling
CreateDispatch. Then it calls the SetText member function to write the first line of the file to the object.
After that, the program calls IPersistStream::Save to write the object to the compound file. The CText
object is deleted after the IPersistStream pointer is released and after the IText object is deleted, releasing
the object's IDispatch pointer.

Now look at the second half of the ReadStorage function in the ReadThread.cpp file. Like ReadDirectory, it
constructs an IText driver object and calls CreateDispatch. Then it calls QueryInterface to get the object's
IPersistStream pointer, which it uses to call Load. Finally, the program calls GetText to retrieve the line of
text for tracing.

As you've learned already, a COM component usually implements IPersistStorage, not IPersistStream. The
CText class could have worked this way, but then the compound file would have been more complex
because each TXT file would have needed both a storage element (to support the interface) and a
subsidiary stream element (to hold the text).

Now get ready to take a giant leap. Suppose you have a true creatable-by-CLSID COM component that
supports the IPersistStorage interface. Recall the IStorage functions for class IDs. If a storage element
contains a class ID, together with all the data an object needs, COM can load the server, use the class
factory to construct the object, get an IPersistStorage pointer, and call Load to load the data from a
compound file. This is a preview of compound documents, which you'll see in Chapter 28.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compound File Fragmentation
Structured storage has a dark side. Like the disk drive itself, compound files can become fragmented with
frequent use. If a disk drive becomes fragmented, however, you still have the same amount of free space.
With a compound file, space from deleted elements isn't always recovered. This means that compound files
can keep growing even if you delete data.

Fortunately, there is a way to recover unused space in a compound file. You simply create a new file and
copy the contents. The IStorage::CopyTo function can do the whole job in one call if you use it to copy the
root storage. You can either write a stand-alone utility or build a file regeneration capability into your
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Compound File Advantages
You've seen how compound files add a kind of random access capability to your programs, and you can
appreciate the value of transactioning. Now consider the brave new world in which every program can read
any other program's documents. We're not there yet, but we have a start. Compound files from Microsoft
applications have a stream under the root storage named \005SummaryInformation. This stream is
formatted as a property set, as defined for ActiveX controls. If you can decode the format for this stream,
you can open any conforming file and read the summary.

Visual C++ comes with a compound file viewing utility named DocFile Viewer (Dfview.exe), which uses a
tree view to display the file's storages and streams. Here is the DocFile Viewer output for the structured
storage file generated by EX27A.

As a matter of fact, you can use DFVIEW to view the structure of any compound file. Are you starting to
see the potential of this "universal file format?"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 28
OLE Embedded Components and Containers
In this chapter, you'll get familiar with the core of Object Linking and Embedding (OLE). You'll learn how an
embedded component talks to its container. This is knowledge you'll need to use ActiveX controls, in-place
activation (Visual Editing), and linking, all of which are described in Adam Denning's ActiveX Controls
Inside Out (Microsoft Press, 1997), Kraig Brockschmidt's Inside OLE, 2d ed. (Microsoft Press, 1995), and
other books.

You'll get started with a Microsoft Foundation Class mini-server, an out-of-process OLE component
program that supports in-place activation but can't run as a stand-alone program. Running this component
will give you a good idea of what OLE looks like to the user, in case you don't know already. You'll also see
the extensive MFC support for this kind of application. If you work at only the top MFC level, however, you
won't appreciate or understand the underlying OLE mechanisms. For that, you'll have to dig deeper.
Shepherd and Wingo's MFC Internals (Addison-Wesley, 1996) provides extensive coverage of the internal
workings of MFC's OLE Document support.

Next you'll build a container program that uses the familiar parts of the MFC library but supports
embedded OLE objects that can be edited in their own windows. This container can, of course, run your
MFC mini-server, but you'll really start to learn OLE when you build a mini-server from scratch and watch
the interactions between it and the container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Embedding vs. In-Place Activation (Visual Editing)
Visual Editing is Microsoft's name for in-place activation. A component that supports in-place activation
also supports embedding. Both in-place activation and embedding store their data in a container's
document, and the container can activate both. An in-place-capable component can run inside the
container application's main window, taking over the container's menu and toolbar, and it can run in its
own top-level window if necessary. An embedded component can run only in its own window, and that
window has a special menu that does not include file commands. Figure 28-1 shows a Microsoft Excel
spreadsheet in-place activated inside a Microsoft Word document. Notice the Excel menus and toolbars.

Some container applications support only embedded components; others support both in-place and
embedded components. Usually, an in-place container program allows the user to activate in-place
components either in place or in their own windows. You should be getting the idea that embedding is a
subset of in-place activation. This is true not only at the user level but also at the OLE implementation
level. Embedding relies on two key interfaces, IOleObject and IOleClientSite, which are used for in-place
activation as well.

Figure 28-1. An Excel spreadsheet activated inside a Word document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mini-Servers vs. Full Servers (Components)—Linking
A mini-server can't be run as a stand-alone program; it depends on a container application to launch it. It
can't do its own file I/O but depends on the container's files. A full server, on the other hand, can be run
both as a stand-alone program and from a container. When it's running as a stand-alone program, it can
read and write its own files, which means that it supports OLE linking. With embedding, the container
document contains all the data that the component needs; with linking, the container contains only the
name of a file that the component must open.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Dark Side of Visual Editing
We're really enthusiastic about the COM architecture, and we truly believe that ActiveX Controls will take
over the programming world. We're not so sure about Visual Editing, though, and we aren't alone. From
our cumulative experience meeting developers around the world, we've learned that few developers are
writing applications that fit the "objects embedded in a document" model. From our programming
experiences, we've learned that it is tricky for containers and components to coordinate the size and scale
of embedded objects. From our "user" experience, we've learned that in-place activation can be slow and
awkward, although the situation is improving with faster computers.

If you don't believe us, try embedding an Excel worksheet in a Word document, as shown in Figure 28-1.
Resize the worksheet in both the active mode and the nonactive mode. Notice that the two sizes don't
track and that processing is slow.

Consider the need for drawing graphics. Older versions of Microsoft PowerPoint used an in-place
component named Microsoft Draw. The idea was that other applications could use this component for all
their graphics needs. Well, it didn't work out that way, and PowerPoint now has its own built-in drawing
code. If you have old PowerPoint files with Microsoft Draw objects, you'll have a hard time converting
them.

Now consider printing. Let's say you receive a Word document over the Internet from Singapore, and that
document contains the metafiles for some embedded objects. You don't have the objects' component
programs, however. You print the document on your trusty 1200-dpi color laser printer, and the metafiles
print with it. Embedded object metafiles can be rendered for a specific printer, but it's doubtful that the
person in Singapore used your printer driver when creating the document. The result is less-than-optimal
output with incorrect line breaks.

We do believe, however, that the OLE embedding technology has a lot of potential. Playing sounds and
movies is cool, and storing objects in a database is interesting. What you learn in this chapter will help you
think of new uses for this technology.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Metafiles and Embedded Objects
You're going to need a little more Windows theory before you can understand how in-place and embedded
components draw in their clients' windows. We've avoided metafiles up to this point because we haven't
needed them, but they've always been an integral part of Windows. Think of a metafile as a cassette tape
for GDI instructions. To use a cassette, you need a player/recorder, and that's what the metafile device
context (DC) is. If you specify a filename when you create the metafile DC, your metafile will be saved on
disk; otherwise, it's saved in memory and you get a handle.

In the world of OLE embedding, components create metafiles and containers play them. Here's some
component code that creates a metafile containing some text and a rectangle:

CMetaFileDC dcm; // MFC class for metafile DC
VERIFY(dcm.Create());
dcm.SetMapMode(MM_ANISOTROPIC);
dcm.SetWindowOrg(0,0);
dcm.SetWindowExt(5000, -5000);
// drawing code
dcm.Rectangle(CRect(500, -1000, 1500, -2000));
dcm.TextOut(0, 0, m_strText);
HMETAFILE hMF = dcm.Close();
ASSERT(hMF != NULL);
It's possible to create a metafile that uses a fixed mapping mode such as MM_LOENGLISH, but with OLE
we'll always use the MM_ANISOTROPIC mode, which is not fixed. The metafile contains a SetWindowExt
call to set the x and y extents of the window, and the program that plays the metafile calls SetViewportExt
to set the extents of the viewport. Here's some code that you might put inside your container view's
OnDraw function:

pDC->SetMapMode(MM_HIMETRIC);
pDC->SetViewportExt(5000, 5000);
pDC->PlayMetafile(hMF);
What's supposed to show up on the screen is a rectangle 1-by-1-cm square because the component
assumes the MM_HIMETRIC mapping mode. It will be 1-by-1 cm as long as the viewport extent matches
the window extent. If the container sets the viewport extent to (5000, 10000) instead, the rectangle will
be stretched vertically but the text will be the same size because it's drawn with the nonscalable system
font. If the container decided to use a mapping mode other than MM_HIMETRIC, it could adjust the
viewport extent to retain the 1-by-1-cm size.

To reiterate, the component sets the window extent to the assumed size of the viewable area and draws
inside that box. If the component uses a negative y extent, the drawing code works just as it does in
MM_HIMETRIC mapping mode. The container somehow gets the component's extent size and attempts to
draw the metafile in an area with those HIMETRIC dimensions.

Why are we bothering with metafiles? Because the container needs to draw something in the component's
rectangle, even if the component program isn't running. The component creates the metafile and hands it
off in a data object to the in-process OLE handler module on the container side of the Remote Procedure
Call (RPC) link. The handler then caches the metafile and plays it on demand and also transfers it to and
from the container's storage. When a component is in-place active, however, its view code is drawing
directly in a window that's managed by the container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC OLE Architecture for Component Programs
We're not going into too many details here—just enough to allow you to understand the new files in the
next example. You need to know about three new MFC base classes—COleIPFrameWnd, COleServerDoc,
and COleServerItem.

When you use AppWizard to generate an OLE component, AppWizard generates a class derived from each
of the base classes, in addition to an application class, a main frame class, and a view class. The
COleIPFrameWnd class is rather like CFrameWnd. It's your application's main frame window, which
contains the view. It has a menu associated with it, IDR_SRVR_INPLACE, which will be merged into the
container program's menu. When your component program is running in place, it's using the in-place
frame, and when it's running stand-alone or embedded, it's using the regular frame, which is an object of
a class derived from CFrameWnd. The embedded menu is IDR_SRVR_EMBEDDED, and the stand-alone
menu is IDR_MAINFRAME.

The COleServerDoc class is a replacement for CDocument. It contains added features that support OLE
connections to the container. The COleServerItem class works with the COleServerDoc class. If
components never supported OLE linking, the functionality of the two classes could be combined into one
class. Because stand-alone component programs do support linking, the MFC architecture dictates that
both classes be present in all components. You'll see in the EX28C example that we can make our own
simple mini-server without this division.

Together, the COleServerItem class and the COleServerDoc class implement a whole series of OLE
interfaces, including IOleObject, IDataObject, IPersistStorage, and IOleInPlaceActiveObject. These classes
make calls to the container, using interface pointers that the container passes to them. The important
things to know, however, are that your derived CView class draws in the component's in-place-active
window and that the derived COleServerItem class draws in the metafile on command from the container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX28A Example—An MFC In-Place-Activated Mini-Server
You don't need much OLE theory to build an MFC mini-server. This example is a good place to start,
though, because you'll get an idea of how containers and components interact. This component isn't too
sophisticated. It simply draws some text and graphics in a window. The text is stored in the document, and
there's a dialog for updating it.

Here are the steps for creating the program from scratch:

1. Run AppWizard to create the EX28A project in the \vcpp32\ex28a directory. Select Single
Document interface. Click the Mini-Server option in the AppWizard Step 3 dialog shown here.

2. Examine the generated files. You've got the familiar application, document, main frame, and
view files, but you've got two new files too.

Header Implementation Class MFC Base Class

SrvrItem.h SrvrItem.cpp CEx28aSrvrItem COleServerItem

IpFrame.h IpFrame.cpp CInPlaceFrame COleIPFrameWnd

3. Add a text member to the document class. Add the following public data member in the class
declaration in ex28aDoc.h:

CString m_strText;
Set the string's initial value to Initial default text in the document's OnNewDocument member
function.

4. Add a dialog to modify the text. Insert a new dialog template with an edit control, and then use
ClassWizard to generate a CTextDialog class derived from CDialog. Don't forget to include the dialog
class header in ex28aDoc.cpp. Also, use ClassWizard to add a CString member variable named
m_strText for the edit control.

5. Add a new menu command in both the embedded and in-place menus. Add a Modify menu
command in both the IDR_SRVR_EMBEDDED and IDR_SRVR_INPLACE menus. To insert this menu
command on the IDR_SRVR_EMBEDDED menu, use the resource editor to add an EX28A-EMBED
menu item on the top level, and then add a Modify option on the submenu for this item. Next add
an EX28A-INPLACE menu item on the top level of the IDR_SRVR_INPLACE menu and add a Modify
option on the EX28A-INPLACE submenu.

To associate both Modify options with one OnModify function, use ID_MODIFY as the ID for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To associate both Modify options with one OnModify function, use ID_MODIFY as the ID for the
Modify option of both the IDR_SRVR_EMBEDDED and IDR_SRVR_INPLACE menus. Then use
ClassWizard to map both Modify options to the OnModify function in the document class. Code the
Modify command handler as shown here:

void CEx28aDoc::OnModify()
{
 CTextDialog dlg;
 dlg.m_strText = m_strText;
 if (dlg.DoModal() == IDOK) {
 m_strText = dlg.m_strText;
 UpdateAllViews(NULL); // Trigger CEx28aView::OnDraw
 UpdateAllItems(NULL); // Trigger CEx28aSrvrItem::OnDraw
 SetModifiedFlag();
 }
}

6. Override the view's OnPrepareDC function. Use ClassWizard to generate the function, and then
replace any existing code with the following line:

pDC->SetMapMode(MM_HIMETRIC);
7. Edit the view's OnDraw function. The following code in ex28aView.cpp draws a 2-cm circle

centered in the client rectangle, with the text wordwrapped in the window:

void CEx28aView::OnDraw(CDC* pDC)
{
 CEx28aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 CFont font;
 font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pFont = pDC->SelectObject(&font);
 CRect rectClient;
 GetClientRect(rectClient);
 CSize sizeClient = rectClient.Size();
 pDC->DPtoHIMETRIC(&sizeClient);
 CRect rectEllipse(sizeClient.cx / 2 - 1000,
 -sizeClient.cy / 2 + 1000,
 sizeClient.cx / 2 + 1000,
 -sizeClient.cy / 2 - 1000);
 pDC->Ellipse(rectEllipse);
 pDC->TextOut(0, 0, pDoc->m_strText);
 pDC->SelectObject(pFont);
}

8. Edit the server item's OnDraw function. The following code in the SrvrItem.cpp file tries to
draw the same circle drawn in the view's OnDraw function. You'll learn what a server item is
shortly.

BOOL CEx28aSrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{
 // Remove this if you use rSize
 UNREFERENCED_PARAMETER(rSize);

 CEx28aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: set mapping mode and extent
 // (The extent is usually the same as the size returned from
 // OnGetExtent)
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowOrg(0,0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDC->SetWindowOrg(0,0);
 pDC->SetWindowExt(3000, -3000);
 CFont font;
 font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pFont = pDC->SelectObject(&font);
 CRect rectEllipse(CRect(500, -500, 2500, -2500));
 pDC->Ellipse(rectEllipse);
 pDC->TextOut(0, 0, pDoc->m_strText);
 pDC->SelectObject(pFont);
 return TRUE;
}

9. Edit the document's Serialize function. The framework takes care of loading and saving the
document's data from and to an OLE stream named Contents that is attached to the object's main
storage. You simply write normal serialization code, as shown here:

void CEx28aDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << m_strText;
 }
 else
 {
 ar >> m_strText;
 }
}
There is also a CEx28aSrvrItem::Serialize function that delegates to the document Serialize
function.

10. Build and register the EX28A application. You must run the application directly once to update
the Registry.

11. Test the EX28A application. You need a container program that supports in-place activation. Use
Microsoft Excel 97 or a later version if you have it, or build the project in the MFC DRAWCLI sample.
Choose the container's Insert Object menu item. If this option does not appear on the Insert menu,
it might appear on the Edit menu instead. Then select Ex28a Document from the list.

You debug an embedded component the same way you debug an Automation EXE
component. See the sidebar, "Debugging an EXE Component Program", for more
information.

When you first insert the EX28A object, you'll see a hatched border, which indicates that the object is in-
place active. The bounding rectangle is 3-by-3-cm square, with a 2-cm circle in the center, as illustrated
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you click elsewhere in the container's window, the object becomes inactive, and it's shown like this.

In the first case, you saw the output of the view's OnDraw function; in the second case, you saw the
output of the server item's OnDraw function. The circles are the same, but the text is formatted differently
because the server (component) item code is drawing on a metafile device context.

If you use the resize handles to extend the height of the object (click once on the object to see the resize
handles; don't double-click), you'll stretch the circle and the font will get bigger, as shown below in the
figure on the left. If you reactivate the object by double-clicking on it, it's reformatted as shown in the
figure on the right.

Click elsewhere in the container's window, single-click on the object, and then choose Ex28a Object from
the bottom of the Edit menu. Choose Open from the submenu. This starts the component program in
embedded mode rather than in in-place mode, as shown here.

Notice that the component's IDR_SRVR_EMBEDDED menu is visible.

An MDI Embedded Component?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MDI Embedded Component?

The EX28A example is an SDI mini-server. Each time a controller creates an EX28A object, a new EX28A
process is started. You might expect an MDI mini-server process to support multiple component objects,
each with its own document, but this is not the case. When you ask AppWizard to generate an MDI mini-
server, it generates an SDI program, as in EX28A. It's theoretically possible to have a single process
support multiple embedded objects in different windows, but you can't easily create such a program with
the MFC library.

In-Place Component Sizing Strategy

If you look at the EX28A output, you'll observe that the metafile image does not always match the image
in the in-place frame window. We had hoped to create another example in which the two images matched.
We were unsuccessful, however, when we tried to use the Microsoft Office 97 applications as containers.
Each one did something a little different and unpredictable. A complicating factor is the containers'
different zooming abilities.

When AppWizard generates a component program, it gives you an overridden OnGetExtent function in
your server item class. This function returns a hard-coded size of (3000, 3000). You can certainly change
this value to suit your needs, but be careful if you change it dynamically. We tried maintaining our own
document data member for the component's extent, but that messed us up when the container's zoom
factor changed. We thought containers would make more use of another component item virtual function,
OnSetExtent, but they don't.

You'll be safest if you simply make your component extents fixed and assume that the container will do the
right thing. Keep in mind that when the container application prints its document, it prints the component
metafiles. The metafiles are more important than the in-place views.

If you control both container and component programs, however, you have more flexibility. You can build
up a modular document processing system with its own sizing protocol. You can even use other OLE
interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Container-Component Interactions
Analyzing the component and the container separately won't help you to understand fully how they work.
You must watch them working together to understand their interactions. Let's reveal the complexity one
step at a time. Consider first that you have a container EXE and a component EXE, and the container must
manage the component by means of OLE interfaces.

Look back to the space simulation example in Chapter 24. The client program called CoGetClassObject and
IClassFactory::CreateInstance to load the spaceship component and to create a spaceship object, and then
it called QueryInterface to get IMotion and IVisual pointers. An embedding container program works the
same way that the space simulation client works. It starts the component program based on the
component's class ID, and the component program constructs an object. Only the interfaces are different.

Figure 28-2 shows a container program looking at a component. You've already seen all the interfaces
except one—IOleObject.

Figure 28-2. A container program's view of the component.

Using the Component's IOleObject Interface

Loading a component is not the same as activating it. Loading merely starts a process, which then sits
waiting for further instructions. If the container gets an IOleObject pointer to the component object, it can
call the DoVerb member function with a verb parameter such as OLEIVERB_SHOW. The component should
then show its main window and act like a Windows-based program. If you look at the IOleObject::DoVerb
description, you'll see an IOleClientSite* parameter. We'll consider client sites shortly, but for now you can
simply set the parameter to NULL and most components will work okay.

Another important IOleObject function, Close, is useful at this stage. As you might expect, the container
calls Close when it wants to terminate the component program. If the component process is currently
servicing one embedded object (as is the case with MFC components), the process exits.

Loading and Saving the Component's Native Data—Compound Documents

Figure 28-2 demonstrates that the container manages a storage through an IStorage pointer and that the
component implements IPersistStorage. That means that the component can load and save its native data
when the container calls the Load and Save functions of IPersistStorage. You've seen the IStorage and
IPersistStorage interfaces used in Chapter 27, but this time the container is going to save the component's
class ID in the storage. The container can read the class ID from the storage and use it to start the
component program prior to calling IPersistStorage::Load.

Actually, the storage is very important to the embedded object. Just as a virus needs to live in a cell, an
embedded object needs to live in a storage. The storage must always be available because the object is
constantly loading and saving itself and reading and writing temporary data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constantly loading and saving itself and reading and writing temporary data.

A compound document appears at the bottom of Figure 28-2. The container manages the whole file, but
the embedded components are responsible for the storages inside it. There's one main storage for each
embedded object, and the container doesn't know or care what's inside those storages.

Clipboard Data Transfers

If you've run any OLE container programs, including Microsoft Excel, you've noticed that you can copy and
paste whole embedded objects. There's a special data object format, CF_EMBEDDEDOBJECT, for
embedded objects. If you put an IDataObject pointer on the clipboard and that data object contains the
CF_EMBEDDEDOBJECT format (and the companion CF_OBJECTDESCRIPTOR format), another program can
load the proper component program and reconstruct the object.

There's actually less here than meets the eye. The only thing inside the CF_EMBEDDEDOBJECT format is
an IStorage pointer. The clipboard copy program verifies that IPersistStorage::Save has been called to
save the embedded object's data in the storage, and then it passes off the IStorage pointer in a data
object. The clipboard paste program gets the class ID from the source storage, loads the component
program, and then calls IPersistStorage::Load to load the data from the source storage.

The data objects for the clipboard are generated as needed by the container program. The component's
IDataObject interface isn't used for transferring the objects' native data.

Getting the Component's Metafile

You already know that a component program is supposed to draw in a metafile and that a container is
supposed to play it. But how does the component deliver the metafile? That's what the IDataObject
interface, shown in Figure 28-2, is for. The container calls IDataObject::GetData, asking for a
CF_METAFILEPICT format. But wait a minute. The container is supposed to get the metafile even if the
component program isn't running. So now you're ready for the next complexity level.

The Role of the In-Process Handler

If the component program is running, it's in a separate process. Sometimes it's not running at all. In either
case, the OLE32 DLL is linked into the container's process. This DLL is known as the object handler.

It's possible for an EXE component to have its own custom handler DLL, but most
components use the "default" OLE32 DLL.

Figure 28-3 shows the new picture. The handler communicates with the component over the RPC link,
marshaling all interface function calls. But the handler does more than act as the component's proxy for
marshaling; it maintains a cache that contains the component object's metafile. The handler saves and
loads the cache to and from storage, and it can fill the cache by calling the component's
IDataObject::GetData function.

When the container wants to draw the metafile, it doesn't do the drawing itself; instead, it asks the
handler to draw the metafile by calling the handler's IViewObject2::Draw function. The handler tries to
satisfy as many container requests as it can without bothering the component program. If the handler
needs to call a component function, it takes care of loading the component program if it is not already
loaded.

The IViewObject2 interface is an example of OLE's design evolution. Someone decided
to add a new function—in this case, GetExtent—to the IViewObject interface.
IViewObject2 is derived from IViewObject and contains the new function. All new
components should implement the new interface and should return an IViewObject2
pointer when QueryInterface is called for either IID_IViewObject or IID_IViewObject2.
This is easy with the MFC library because you write two interface map entries that link
to the same nested class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-3. The in-process handler and the component.

Figure 28-3 shows both object data and metafile data in the object's storage. When the container calls the
handler's IPersistStorage::Save function, the handler writes the cache (containing the metafile) to the
storage and then calls the component's IPersistStorage::Save function, which writes the object's native
data to the same storage. The reverse happens when the object is loaded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Component States
Now that you know what a handler is, you're ready for a description of the four states that an embedded
object can assume.

State Description

Passive The object exists only in a storage.

Loaded The object handler is running and has a metafile in its cache, but the EXE component
program is not running.

Running The EXE component program is loaded and running, but the window is not visible to the
user.

Active The EXE component's window is visible to the user.

The Container Interfaces

Now for the container side of the conversation. Look at Figure 28-4. The container consists of a document
and one or more sites. The IOleContainer interface has functions for iterating over the sites, but we won't
worry about iterating over the client sites here. The important interface is IOleClientSite. Each site is an
object that the component accesses through an IOleClientSite pointer. When the container creates an
embedded object, it calls IOleObject::SetClientSite to establish one of the two connections from
component to container. The site maintains an IOleObject pointer to its component object.

One important IOleClientSite function is SaveObject. When the component decides it's time to save itself to
its storage, it doesn't do so directly; instead, it asks the site to do the job by calling
IOleClientSite::SaveObject. "Why the indirection?" you ask. The handler needs to save the metafile to the
storage, that's why. The SaveObject function calls IPersistStorage::Save at the handler level, so the
handler can do its job before calling the component's Save function.

Another important IOleClientSite function is OnShowWindow. The component program calls this function
when it starts running and when it stops running. The client is supposed to display a hatched pattern in the
embedded object's rectangle when the component program is running or active.

Figure 28-4. The interaction between the container and the component.

The Advisory Connection

Figure 28-4 shows another interface attached to the site—IAdviseSink. This is the container's end of the
second component connection. Why have another connection? The IOleClientSite connection goes directly
from the component to the container, but the IAdviseSink connection is routed through the handler. After
the site has created the embedded object, it calls IViewObject2::SetAdvise, passing its IAdviseSink
pointer. Meanwhile, the handler has gone ahead and established two advisory connections to the
component. When the embedded object is created, the handler calls IOleObject::Advise and then calls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

component. When the embedded object is created, the handler calls IOleObject::Advise and then calls
IDataObject::DAdvise to notify the advise sink of changes in the data object. When the component's data
changes, it notifies the handler through the IDataObject advisory connection. When the user saves the
component's data or closes the program, the component notifies the handler through the IOleObject
advisory connection. Figure 28-5 shows these connections.

When the handler gets the notification that the component's data has changed (the component calls
IAdviseSink::OnDataChange), it can notify the container by calling IAdviseSink::OnViewChange. The
container responds by calling IViewObject2::Draw in the handler. If the component program is not
running, the handler draws its metafile from the cache. If the component program is running, the handler
calls the component's IDataObject::GetData function to get the latest metafile, which it draws. The
OnClose and OnSave notifications are passed in a similar manner.

Figure 28-5. Advisory connection details.

A Metafile for the Clipboard

As you've just learned, the container doesn't deal with the metafile directly when it wants to draw the
embedded object; instead, it calls IViewObject2::Draw. In one case, however, the container needs direct
access to the metafile. When the container copies an embedded object to the clipboard, it must copy a
metafile in addition to the embedded object and the object descriptor. That's what the handler's
IDataObject interface is for. The container calls IDataObject::GetData, requesting a metafile format, and it
copies that format into the clipboard's data object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Interface Summary
Following is a summary of the important OLE interfaces we'll be using in the remaining examples in this
chapter. The function lists are by no means complete, nor are the parameter lists. See MSDN Online Help
or Brockschmidt's book for the complete specifications.

The IOleObject Interface

Embedded components implement this interface. The client site maintains an IOleObject pointer to an
embedded object.

HRESULT Advise(IAdviseSink* AdvSink, DWORD* pdwConnection);

The handler calls this function to establish one of the two advisory connections from the component to the
handler. The component usually implements Advise with an OLE advise holder object, which can manage
multiple advisory connections.

HRESULT Close(DWORD dwSaveOption);

The container calls Close to terminate the component application but to leave the object in the loaded
state. Containers call this function when the user clicks outside an in-place-active component's window.
Components that support in-place activation should clean up and terminate.

HRESULT DoVerb(LONG iVerb, …, IOleClientSite* pActiveSite, …);

Components support numeric verbs as defined in the Registry. A sound component might support a "Play"
verb, for example. Embedded components should support the OLEIVERB_SHOW verb, which instructs the
object to show itself for editing or viewing. If the component supports in-place activation, this verb starts
the Visual Editing process; otherwise, it starts the component program in a window separate from that of
its container. The OLEIVERB_OPEN verb causes an in-place-activation-capable component to start in a
separate window.

HRESULT GetExtent(DWORD dwDrawAspect, SIZEL* pSizel);

The component returns the object extent in HIMETRIC dimensions. The container uses these dimensions to
size the rectangle for the component's metafile. Sometimes the container uses the extents that are
included in the component's metafile picture.

HRESULT SetClientSite(IOleClientSite* pClientSite);

The container calls SetClientSite to enable the component to store a pointer back to the site in the
container.

HRESULT SetExtent(DWORD dwDrawAspect, SIZEL* pSizel);

Some containers call this function to impose extents on the component.

HRESULT SetHostNames(LPCOLESTR szContainerApp, PCOLESTR szContainerObj);

The container calls SetHostNames so that the component can display the container program's name in its
window caption.

HRESULT Unadvise(DWORD* dwConnection);

This function terminates the advisory connection set up by Advise.

The IViewObject2 Interface

Embedded component handlers implement this interface. Handlers are a type of COM component for
dealing with certain client-side aspects of linking and embedding. The default handler (the one provided by
Microsoft) lives in a DLL named "OLE32.DLL." The container calls its functions, but the component program
itself doesn't implement them. An IViewObject2 interface cannot be marshaled across a process boundary
because it's associated with a device context.

HRESULT Draw(DWORD dwAspect, …, const LPRECTL lprcBounds, …);

The container calls this function to draw the component's metafile in a specified rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HRESULT SetAdvise(DWORD dwAspect, …, IAdviseSink* pAdvSink);

The container calls SetAdvise to set up the advisory connection to the handler, which in turn sets up the
advisory connection to the component.

The IOleClientSite Interface

Containers implement this interface. There is one client site object per component object.

HRESULT GetContainer(IOleContainer** ppContainer);

The GetContainer function retrieves a pointer to the container object (document), which can be used to
enumerate the container's sites.

HRESULT OnShowWindow(BOOL fShow);

The component program calls this function when it switches between the running and the loaded (or
active) state. When the object is in the loaded state, the container should display a hatched pattern on the
embedded object's rectangle.

HRESULT SaveObject(void);

The component program calls SaveObject when it wants to be saved to its storage. The container calls
IPersistStorage::Save.

The IAdviseSink Interface

Containers implement this interface. Embedded object handlers call its functions in response to component
notifications.

void OnClose(void);

Component programs call this function when they are being terminated.

void OnViewChange(DWORD dwAspect, …);

The handler calls OnViewChange when the metafile has changed. Because the component program must
have been running for this notification to have been sent, the handler can call the component's
IDataObject::GetData function to get the latest metafile for its cache. The container can then draw this
metafile by calling IViewObject2::Draw.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OLE Helper Functions
A number of global OLE functions encapsulate a sequence of OLE interface calls. Following are some that
we'll use in the EX28B example:

HRESULT OleCreate(REFCLSID rclsid, REFIID riid, …, IOleClientSite* pClientSite,
IStorage* pStg, void** ppvObj);

The OleCreate function first executes the COM creation sequence using the specified class ID. This loads
the component program. Then the function calls QueryInterface for an IPersistStorage pointer, which it
uses to call InitNew, passing the pStg parameter. It also calls QueryInterface to get an IOleObject pointer,
which it uses to call SetClientSite using the pClientSite parameter. Finally it calls QueryInterface for the
interface specified by riid, which is usually IID_IOleObject.

HRESULT OleCreateFromData(IDataObject* pSrcDataObj, REFIID riid, …,
IOleClientSite* pClientSite, IStorage* pStg, void** ppvObj);

The OleCreateFromData function creates an embedded object from a data object. In the EX28B example,
the incoming data object has the CF_EMBEDDEDOBJECT format with an IStorage pointer. The function
then loads the component program based on the class ID in the storage, and then it calls
IPersistStorage::Load to make the component load the object's native data. Along the way, it calls
IOleObject::SetClientSite.

HRESULT OleDraw(IUnknown* pUnk, DWORD dwAspect, HDC hdcDraw, LPCRECT
lprcBounds);

This function calls QueryInterface on pUnk to get an IViewObject pointer, and then it calls
IViewObject::Draw, passing the lprcBounds parameter.

HRESULT OleLoad(IStorage* pStg, REFIID riid, IOleClientSite* pClientSite, void**
ppvObj);

The OleLoad function first executes the COM creation sequence by using the class ID in the specified
storage. Then it calls IOleObject::SetClientSite and IPersistStorage::Load. Finally, it calls QueryInterface
for the interface specified by riid, which is usually IID_IOleObject.

HRESULT OleSave(IPersistStorage* pPS, IStorage* pStg, …);

This function calls IPersistStorage::GetClassID to get the object's class ID, and then it writes that class ID
in the storage specified by pStg. Finally it calls IPersistStorage::Save.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An OLE Embedding Container Application
Now that we've got a working mini-server that supports embedding (EX28A), we'll write a container
program to run it. We're not going to use the MFC container support, however, because you need to see
what's happening at the OLE interface level. We will use the MFC document-view architecture and the MFC
interface maps, and we'll also use the MFC data object classes.

MFC Support for OLE Containers

If you did use AppWizard to build an MFC OLE container application, you'd get a class derived from
COleDocument and a class derived from COleClientItem. These MFC base classes implement a number of
important OLE container interfaces for embedding and in-place activation. The idea is that you have one
COleClientItem object for each embedded object in a single container document. Each COleClientItem
object defines a site, which is where the component object lives in the window.

The COleDocument class maintains a list of client items, but it's up to you to specify how to select an item
and how to synchronize the metafile's position with the in-place frame position. AppWizard generates a
basic container application with no support for linking, clipboard processing, or drag and drop. If you want
those features, you might be better off looking at the MFC DRAWCLI and OCLIENT samples.

We will use one MFC OLE class in the container—COleInsertDialog. This class wraps the OleUIInsertObject
function, which invokes the standard Insert Object dialog box. This Insert Object dialog enables the user to
select from a list of registered component programs.

Some Container Limitations

Because our container application is designed for learning, we'll make some simplifications to reduce the
bulk of the code. First of all, this container won't support in-place activation—it allows the user to edit
embedded objects only in a separate window. Also, the container supports only one embedded item per
document, and that means there's no linking support. The container uses a structured storage file to hold
the document's embedded item, but it handles the storage directly, bypassing the framework's serialization
system. Clipboard support is provided; drag-and-drop support is not. Outside these limitations, however,
it's a pretty good container!

Container Features

So, what does the container actually do? Here's a list of features:

As an MFC MDI application, it handles multiple documents.

Displays the component's metafile in a sizeable, moveable tracker rectangle in the view window.

Maintains a temporary storage for each embedded object.

Implements the Insert Object menu option, which allows the user to select a registered component.
The selected component program starts in its own window.

Allows embedded objects to be copied (and cut) to the clipboard and pasted. These objects can be
transferred to and from other containers such as Microsoft Word and Microsoft Excel.

Allows an embedded object to be deleted.

Tracks the component program's loaded-running transitions and hatches the tracker rectangle when
the component is running or active.

Redraws the embedded object's metafile on receipt of component change notifications.

Saves the object in its temporary storage when the component updates the object or exits.

Copies the embedded object's temporary storage to and from named storage files in response to
Copy To and Paste From commands on the Edit menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX28B Example—An Embedding Container
Now we can move on to the working program. It's a good time to open the \vcpp32\ex28b\ex28b.dsw
workspace and build the EX28B project. If you choose Insert Object from the Edit menu and select Ex28a
Document, the EX28A component will start. If you change the component's data, the container and the
component will look like this.

The CEx28bView Class

You can best understand the program by first concentrating on the view class. Look at the code in Figure
28-6, but ignore all IOleClientSite pointers. The container program will actually work if you pass NULL in
every IOleClientSite pointer parameter. It just won't get notifications when the metafile or the native data
changes. Also, components will appear displaying their stand-alone menus instead of the special embedded
menus.

EX28BVIEW.H

#if !defined(AFX_EX28BVIEW_H__1EAAB6E1_6011_11D0_848F_00400526305B__INCLUDED_)
#define AFX_EX28BVIEW_H__1EAAB6E1_6011_11D0_848F_00400526305B__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#define CF_OBJECTDESCRIPTOR "Object Descriptor"
#define CF_EMBEDDEDOBJECT "Embedded Object"
#define SETFORMATETC(fe, cf, asp, td, med, li) \
 ((fe).cfFormat=cf, \
 (fe).dwAspect=asp, \
 (fe).ptd=td, \
 (fe).tymed=med, \
 (fe).lindex=li)
//
class CEx28bView : public CScrollView
{
public:
 CLIPFORMAT m_cfObjDesc;
 CLIPFORMAT m_cfEmbedded;
 CSize m_sizeTotal; // document size
 CRectTracker m_tracker;
 CRect m_rectTracker; // logical coords
protected: // create from serialization only
 CEx28bView();
 DECLARE_DYNCREATE(CEx28bView)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DECLARE_DYNCREATE(CEx28bView)

// Attributes
public:
 CEx28bDoc* GetDocument();

private:
 void GetSize();
 void SetNames();
 void SetViewAdvise();
 BOOL MakeMetafilePict(COleDataSource* pSource);
 COleDataSource* SaveObject();
 BOOL DoPasteObject(COleDataObject* pDataObject);
 BOOL DoPasteObjectDescriptor(COleDataObject* pDataObject);

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx28bView)
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void OnInitialUpdate();
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx28bView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CEx28bView)
 afx_msg void OnEditCopy();
 afx_msg void OnUpdateEditCopy(CCmdUI* pCmdUI);
 afx_msg void OnEditCopyto();
 afx_msg void OnEditCut();
 afx_msg void OnEditPaste();
 afx_msg void OnUpdateEditPaste(CCmdUI* pCmdUI);
 afx_msg void OnEditPastefrom();
 afx_msg void OnEditInsertobject();
 afx_msg void OnUpdateEditInsertobject(CCmdUI* pCmdUI);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point);
 afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest,
 UINT message);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in ex28bView.cpp
inline CEx28bDoc* CEx28bView::GetDocument()
 { return (CEx28bDoc*)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { return (CEx28bDoc*)
m_pDocument; }
#endif

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
//!defined(AFX_EX28BVIEW_H__1EAAB6E1_6011_11D0_848F_00400526305B__INCLUDED_)
EX28BVIEW.CPP

#include "stdafx.h"
#include "ex28b.h"

#include "ex28bDoc.h"
#include "ex28bView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

//
// CEx28bView

IMPLEMENT_DYNCREATE(CEx28bView, CScrollView)

BEGIN_MESSAGE_MAP(CEx28bView, CScrollView)
 //{{AFX_MSG_MAP(CEx28bView)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_COPYTO, OnEditCopyto)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPYTO, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_CUT, OnEditCut)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ON_COMMAND(ID_EDIT_PASTEFROM, OnEditPastefrom)
 ON_COMMAND(ID_EDIT_INSERTOBJECT, OnEditInsertobject)
 ON_UPDATE_COMMAND_UI(ID_EDIT_INSERTOBJECT,
 OnUpdateEditInsertobject)
 ON_WM_LBUTTONDOWN()
 ON_WM_LBUTTONDBLCLK()
 ON_WM_SETCURSOR()
 //}}AFX_MSG_MAP
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW,
 CScrollView::OnFilePrintPreview)
END_MESSAGE_MAP()

//
// CEx28bView construction/destruction

CEx28bView::CEx28bView() : m_sizeTotal(20000, 25000),
 // 20 x 25 cm when printed
 m_rectTracker(0, 0, 0, 0)
{
 m_cfObjDesc = ::RegisterClipboardFormat(CF_OBJECTDESCRIPTOR);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_cfObjDesc = ::RegisterClipboardFormat(CF_OBJECTDESCRIPTOR);
 m_cfEmbedded = ::RegisterClipboardFormat(CF_EMBEDDEDOBJECT);
}

CEx28bView::~CEx28bView()
{
}

BOOL CEx28bView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CScrollView::PreCreateWindow(cs);
}

//
// CEx28bView drawing

void CEx28bView::OnDraw(CDC* pDC)
{
 CEx28bDoc* pDoc = GetDocument();

 if(pDoc->m_lpOleObj != NULL) {
 VERIFY(::OleDraw(pDoc->
m_lpOleObj, DVASPECT_CONTENT,
 pDC->GetSafeHdc(),
m_rectTracker) == S_OK);
 }

 m_tracker.m_rect =
m_rectTracker;
 pDC->LPtoDP(m_tracker.m_rect); // device
 if(pDoc->m_bHatch) {
 m_tracker.
m_nStyle |= CRectTracker::hatchInside;
 }
 else {
 m_tracker.
m_nStyle &= ~CRectTracker::hatchInside;
 }
 m_tracker.Draw(pDC);
}

//
// CEx28bView printing

BOOL CEx28bView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}

void CEx28bView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEx28bView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx28bView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

//
// CEx28bView diagnostics

#ifdef _DEBUG
void CEx28bView::AssertValid() const
{
 CScrollView::AssertValid();
}

void CEx28bView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}

CEx28bDoc* CEx28bView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx28bDoc)));
 return (CEx28bDoc*)m_pDocument;
}
#endif //_DEBUG

//
// CEx28bView message handlers

void CEx28bView::OnInitialUpdate()
{
 TRACE("CEx28bView::OnInitialUpdate\n");
 m_rectTracker = CRect(1000, -1000, 5000, -5000);
 m_tracker.m_nStyle = CRectTracker::solidLine |
 CRectTracker::resizeOutside;
 SetScrollSizes(MM_HIMETRIC,
m_sizeTotal);
 CScrollView::OnInitialUpdate();
}

void CEx28bView::OnEditCopy()
{
 COleDataSource* pSource = SaveObject();
 if(pSource) {
 pSource->SetClipboard(); // OLE deletes data source
 }
}

void CEx28bView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{
 // serves Copy, Cut, and Copy To
 pCmdUI->Enable(GetDocument()->
m_lpOleObj != NULL);
}

void CEx28bView::OnEditCopyto()
{
 // Copy text to an STG file (nothing special about STG ext)
 CFileDialog dlg(FALSE, "stg", "*.stg");
 if (dlg.DoModal() != IDOK) {
 return;
 }
 CEx28bDoc* pDoc = GetDocument();
 // Create a structured storage home for the object (pStgSub).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Create a structured storage home for the object (pStgSub).
 // Create a root storage file, then a substorage named "sub".
 LPSTORAGE pStgRoot;
 VERIFY(::StgCreateDocfile(dlg.GetPathName().AllocSysString(),
 STGM_READWRITE|STGM_SHARE_EXCLUSIVE|STGM_CREATE,
 0, &pStgRoot) == S_OK);
 ASSERT(pStgRoot != NULL);

 LPSTORAGE pStgSub;
 VERIFY(pStgRoot->CreateStorage(CEx28bDoc::s_szSub,
 STGM_CREATE|STGM_READWRITE|STGM_SHARE_EXCLUSIVE,
 0, 0, &pStgSub) == S_OK);
 ASSERT(pStgSub != NULL);

 // Get the IPersistStorage* for the object
 LPPERSISTSTORAGE pPS = NULL;
 VERIFY(pDoc->m_lpOleObj->QueryInterface(IID_IPersistStorage,
 (void**) &pPS) == S_OK);

 // Finally, save the object in its new home in the user's file
 VERIFY(::OleSave(pPS, pStgSub, FALSE) == S_OK);
 // FALSE means different stg
 pPS->SaveCompleted(NULL); // What does this do?
 pPS->Release();

 pStgSub->Release();
 pStgRoot->Release();
}

void CEx28bView::OnEditCut()
{
 OnEditCopy();
 GetDocument()->OnEditClearAll();
}
void CEx28bView::OnEditPaste()
{
 CEx28bDoc* pDoc = GetDocument();
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 pDoc->DeleteContents();
 DoPasteObjectDescriptor(&dataObject);
 DoPasteObject(&dataObject);
 SetViewAdvise();
 GetSize();
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
}

void CEx28bView::OnUpdateEditPaste(CCmdUI* pCmdUI)
{
 // Make sure that object data is available
 COleDataObject dataObject;
 if (dataObject.AttachClipboard() &&
 dataObject.IsDataAvailable(
m_cfEmbedded)) {
 pCmdUI->Enable(TRUE);
 } else {
 pCmdUI->Enable(FALSE);
 }
}

void CEx28bView::OnEditPastefrom()
{
 CEx28bDoc* pDoc = GetDocument();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CEx28bDoc* pDoc = GetDocument();
 // Paste from an STG file
 CFileDialog dlg(TRUE, "stg", "*.stg");
 if (dlg.DoModal() != IDOK) {
 return;
 }
 // Open the storage and substorage
 LPSTORAGE pStgRoot;
 VERIFY(::StgOpenStorage(dlg.GetPathName().AllocSysString(),
 NULL, STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgRoot) == S_OK);
 ASSERT(pStgRoot != NULL);

 LPSTORAGE pStgSub;
 VERIFY(pStgRoot->OpenStorage(CEx28bDoc::s_szSub, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, 0, &pStgSub) == S_OK);
 ASSERT(pStgSub != NULL);

 // Copy the object data from the user storage to the temporary
 // storage
 VERIFY(pStgSub->CopyTo(NULL, NULL, NULL,
 pDoc->
m_pTempStgSub) == S_OK);
 // Finally, load the object -- pClientSite not necessary
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE) pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 pDoc->DeleteContents();
 VERIFY(::OleLoad(pDoc->m
_pTempStgSub, IID_IOleObject,
 pClientSite, (void**) &pDoc->
m_lpOleObj) == S_OK);
 SetViewAdvise();
 pStgSub->Release();
 pStgRoot->Release();
 GetSize();
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
}

void CEx28bView::OnEditInsertobject()
{
 CEx28bDoc* pDoc = GetDocument();
 COleInsertDialog dlg;
 if(dlg.DoModal() == IDCANCEL) return;
 // no addrefs done for GetInterface
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE) pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 pDoc->DeleteContents();
 VERIFY(::OleCreate(dlg.GetClassID(), IID_IOleObject,
 OLERENDER_DRAW, NULL, pClientSite, pDoc->m_pTempStgSub,
 (void**) &pDoc->
m_lpOleObj) == S_OK);
 SetViewAdvise();

 pDoc->m_lpOleObj->DoVerb(OLEIVERB_SHOW, NULL, pClientSite, 0,
 NULL, NULL); // OleRun doesn't show it
 SetNames();
 GetDocument()->SetModifiedFlag();
 GetSize();
 pDoc->UpdateAllViews(NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDoc->UpdateAllViews(NULL);
}

void CEx28bView::OnUpdateEditInsertobject(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(GetDocument()->m_lpOleObj == NULL);
}

void CEx28bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 TRACE("**Entering CEx28bView::OnLButtonDown -- point = "
 "(%d, %d)\n", point.x, point.y);
 if(m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker =
m_tracker.m_rect;
 dc.DPtoLP(
m_rectTracker); // Update logical coords
 GetDocument()->UpdateAllViews(NULL);
 }
 TRACE("**Leaving CEx28bView::OnLButtonDown\n");
}

void CEx28bView::OnLButtonDblClk(UINT nFlags, CPoint point)
{
 if(m_tracker.HitTest(point) == CRectTracker::hitNothing) return;
 // Activate the object
 CEx28bDoc* pDoc = GetDocument();
 if(pDoc->m_lpOleObj != NULL) {
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE)
 pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 VERIFY(pDoc->
m_lpOleObj->DoVerb(OLEIVERB_OPEN, NULL,
 pClientSite, 0,GetSafeHwnd(), CRect(0, 0, 0, 0))
 == S_OK);
 SetNames();
 GetDocument()->SetModifiedFlag();
 }
}

BOOL CEx28bView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{
 if(m_tracker.SetCursor(pWnd, nHitTest)) {
 return TRUE;
 }
 else {
 return CScrollView::OnSetCursor(pWnd, nHitTest, message);
 }
}

//

void CEx28bView::SetViewAdvise()
{
 CEx28bDoc* pDoc = GetDocument();
 if(pDoc->m_lpOleObj != NULL) {
 LPVIEWOBJECT2 pViewObj;
 pDoc->
m_lpOleObj->QueryInterface(IID_IViewObject2,
 (void**) &pViewObj);
 LPADVISESINK pAdviseSink =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LPADVISESINK pAdviseSink =
 (LPADVISESINK) pDoc->GetInterface(&IID_IAdviseSink);
 VERIFY(pViewObj->SetAdvise(DVASPECT_CONTENT, 0, pAdviseSink)
 == S_OK);
 pViewObj->Release();
 }
}

void CEx28bView::SetNames() // sets host names
{
 CEx28bDoc* pDoc = GetDocument();
 CString strApp = AfxGetApp()->
m_pszAppName;
 if(pDoc->m_lpOleObj != NULL) {
 pDoc->
m_lpOleObj->SetHostNames(strApp.AllocSysString(),
 NULL);
 }
}

void CEx28bView::GetSize()
{
 CEx28bDoc* pDoc = GetDocument();
 if(pDoc->m_lpOleObj != NULL) {
 SIZEL size; // Ask the component for its size
 pDoc->
m_lpOleObj->GetExtent(DVASPECT_CONTENT, &size);
 m_rectTracker.right = m_rectTracker.left + size.cx;
 m_rectTracker.bottom = m_rectTracker.top - size.cy;
 }
}

BOOL CEx28bView::DoPasteObject(COleDataObject* pDataObject)
{
 TRACE("Entering CEx28bView::DoPasteObject\n");
 // Update command UI should keep us out of here if not
 // CF_EMBEDDEDOBJECT
 if (!pDataObject->IsDataAvailable(m_cfEmbedded)) {
 TRACE("CF_EMBEDDEDOBJECT format is unavailable\n");
 return FALSE;
 }
 CEx28bDoc* pDoc = GetDocument();
 // Now create the object from the IDataObject*.
 // OleCreateFromData will use CF_EMBEDDEDOBJECT format if
 // available.
 LPOLECLIENTSITE pClientSite =
 (LPOLECLIENTSITE) pDoc->GetInterface(&IID_IOleClientSite);
 ASSERT(pClientSite != NULL);
 VERIFY(::OleCreateFromData(pDataObject->m_lpDataObject,
 IID_IOleObject, OLERENDER_DRAW, NULL, pClientSite,
 pDoc->
m_pTempStgSub, (void**) &pDoc->m_lpOleObj) == S_OK);
 return TRUE;
}

BOOL CEx28bView::DoPasteObjectDescriptor(COleDataObject* pDataObject)
{
 TRACE("Entering CEx28bView::DoPasteObjectDescriptor\n");
 STGMEDIUM stg;

 FORMATETC fmt;
 CEx28bDoc* pDoc = GetDocument();
 if (!pDataObject->IsDataAvailable(m_cfObjDesc)) {
 TRACE("OBJECTDESCRIPTOR format is unavailable\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("OBJECTDESCRIPTOR format is unavailable\n");
 return FALSE;
 }
 SETFORMATETC(fmt, m_cfObjDesc, DVASPECT_CONTENT, NULL,
 TYMED_HGLOBAL, -1);
 VERIFY(pDataObject->GetDatam_cfObjDesc, &stg, &fmt));

 return TRUE;
}

// helper function used for clipboard and drag-drop
COleDataSource* CEx28bView::SaveObject()
{
 TRACE("Entering CEx28bView::SaveObject\n");
 CEx28bDoc* pDoc = GetDocument();
 if (pDoc->m_lpOleObj != NULL) {
 COleDataSource* pSource = new COleDataSource();

 // CODE FOR OBJECT DATA
 FORMATETC fmte;
 SETFORMATETC(fmte, m_cfEmbedded, DVASPECT_CONTENT, NULL,
 TYMED_ISTORAGE, -1);
 STGMEDIUM stgm;
 stgm.tymed = TYMED_ISTORAGE;
 stgm.pstg = pDoc->m_pTempStgSub;
 stgm.pUnkForRelease = NULL;
 pDoc->m_pTempStgSub->AddRef(); // must do both!
 pDoc->m_pTempStgRoot->AddRef();
 pSource->CacheData(m_cfEmbedded, &stgm, &fmte);

 // metafile needed too
 MakeMetafilePict(pSource);

 // CODE FOR OBJECT DESCRIPTION DATA
 HGLOBAL hObjDesc = ::GlobalAlloc(GMEM_SHARE,
 sizeof(OBJECTDESCRIPTOR));
 LPOBJECTDESCRIPTOR pObjDesc =
 (LPOBJECTDESCRIPTOR) ::GlobalLock(hObjDesc);
 pObjDesc->cbSize = sizeof(OBJECTDESCRIPTOR);
 pObjDesc->clsid = CLSID_NULL;
 pObjDesc->dwDrawAspect = 0;
 pObjDesc->dwStatus = 0;
 pObjDesc->dwFullUserTypeName = 0;
 pObjDesc->dwSrcOfCopy = 0;
 pObjDesc->sizel.cx = 0;
 pObjDesc->sizel.cy = 0;
 pObjDesc->pointl.x = 0;
 pObjDesc->pointl.y = 0;
 ::GlobalUnlock(hObjDesc);
 pSource->CacheGlobalData(
m_cfObjDesc, hObjDesc);
 return pSource;
 }
 return NULL;
}

BOOL CEx28bView::MakeMetafilePict(COleDataSource* pSource)
{
 CEx28bDoc* pDoc = GetDocument();
 COleDataObject dataObject;
 LPDATAOBJECT pDataObj; // OLE object's IDataObject interface
 VERIFY(pDoc->m_lpOleObj->QueryInterface(IID_IDataObject,
 (void**) &pDataObj) == S_OK);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void**) &pDataObj) == S_OK);
 dataObject.Attach(pDataObj);
 FORMATETC fmtem;
 SETFORMATETC(fmtem, CF_METAFILEPICT, DVASPECT_CONTENT, NULL,
 TYMED_MFPICT, -1);
 if (!dataObject.IsDataAvailable(CF_METAFILEPICT, &fmtem)) {
 TRACE("CF_METAFILEPICT format is unavailable\n");
 return FALSE;
 }
 // Just copy the metafile handle from the OLE object
 // to the clipboard data object
 STGMEDIUM stgmm;
 VERIFY(dataObject.GetData(CF_METAFILEPICT, &stgmm, &fmtem));
 pSource->CacheData(CF_METAFILEPICT, &stgmm, &fmtem);
 return TRUE;
}

Figure 28-6. The container's CEx28bView class listing.

Study the message map and the associated command handlers. They're all relatively short, and they
mostly call the OLE functions described earlier. A few private helper functions need some explanation,
however.

You'll see many calls to a GetInterface function. This is a member of class CCmdTarget
and returns the specified OLE interface pointer for a class in your project. It's used
mostly to get the IOleClientSite interface pointer for your document. It's more efficient
than calling ExternalQueryInterface, but it doesn't increment the object's reference
count.

GetSize

This function calls IOleObject::GetSize to get the embedded object's extents, which it converts to a
rectangle for storage in the tracker.

SetNames

The SetNames function calls IOleObject::SetHostNames to send the container application's name to the
component.

SetViewAdvise

This function calls the embedded object's IViewObject2::SetAdvise function to set up the advisory
connection from the component object to the container document.

MakeMetafilePict

The MakeMetafilePict function calls the embedded object's IDataObject::GetData function to get a metafile
picture to copy to the clipboard data object. (A metafile picture, by the way, is a Windows METAFILEPICT
structure instance, which contains a pointer to the metafile plus extent information.)

SaveObject

This function acts like the SaveDib function in the EX25A example. It creates a COleDataSource object with
three formats: embedded object, metafile, and object descriptor.

DoPasteObjectDescriptor

The DoPasteObjectDescriptor function pastes an object descriptor from the clipboard but doesn't do
anything with it. This function must be called prior to calling DoPasteObject.

DoPasteObject

This function calls OleCreateFromData to create an embedded object from an embedded object format on
the clipboard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the clipboard.

The CEx28bDoc Class

This class implements the IOleClientSite and IAdviseSink interfaces. Because of our one-embedded-item-
per-document simplification, we don't need to track separate site objects. The document is the site. We're
using the standard MFC interface macros, and, as always, we must provide at least a skeleton function for
all interface members.

Look carefully at the functions XOleClientSite::SaveObject, XOleClientSite::OnShowWindow, and
XAdviseSink::OnViewChange in Figure 28-7. They're the important ones. The other ones are less
important, but they contain TRACE statements as well, so you can watch the functions as they're called by
the handler. Look also at the OnNewDocument, OnCloseDocument, and DeleteContents functions of the
CEx28bView class. Notice how the document is managing a temporary storage. The document's
m_pTempStgSub data member holds the storage pointer for the embedded object, and the m_lpOleObj
data member holds the embedded object's IOleObject pointer.

EX28BDOC.H

#if !defined(AFX_EX28BDOC_H__1EAAB6DF_6011_11D0_848F_00400526305B__INCLUDED_)
#define AFX_EX28BDOC_H__1EAAB6DF_6011_11D0_848F_00400526305B__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif //_MSC_VER > 1000

void ITrace(REFIID iid, const char* str);

class CEx28bDoc : public CDocument
{
protected: // create from serialization only
 CEx28bDoc();
 DECLARE_DYNCREATE(CEx28bDoc)
 BEGIN_INTERFACE_PART(OleClientSite, IOleClientSite)
 STDMETHOD(SaveObject)();
 STDMETHOD(GetMoniker)(DWORD, DWORD, LPMONIKER*);
 STDMETHOD(GetContainer)(LPOLECONTAINER*);
 STDMETHOD(ShowObject)();
 STDMETHOD(OnShowWindow)(BOOL);
 STDMETHOD(RequestNewObjectLayout)();
 END_INTERFACE_PART(OleClientSite)

 BEGIN_INTERFACE_PART(AdviseSink, IAdviseSink)
 STDMETHOD_(void,OnDataChange)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD_(void,OnViewChange)(DWORD, LONG);
 STDMETHOD_(void,OnRename)(LPMONIKER);
 STDMETHOD_(void,OnSave)();
 STDMETHOD_(void,OnClose)();
 END_INTERFACE_PART(AdviseSink)

 DECLARE_INTERFACE_MAP()

friend class CEx28bView;
private:
 LPOLEOBJECT m_lpOleObj;
 LPSTORAGE m_pTempStgRoot;
 LPSTORAGE m_pTempStgSub;
 BOOL m_bHatch;
 static const OLECHAR* s_szSub;
// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx28bDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void OnCloseDocument();
 virtual void DeleteContents();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual void DeleteContents();
 protected:
 virtual BOOL SaveModified();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx28bDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 //{{AFX_MSG(CEx28bDoc)
 afx_msg void OnEditClearAll();
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations
// immediately before the previous line.

#endif
// !defined(AFX_EX28BDOC_H__1EAAB6DF_6011_11D0_848F_00400526305B__INCLUDED_)
EX28BDOC.CPP
#include "stdafx.h"
#include "ex28b.h"

#include "ex28bDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE
__;
#endif
const OLECHAR* CEx28bDoc::s_szSub = L"sub"; // static

//
// CEx28bDoc

IMPLEMENT_DYNCREATE(CEx28bDoc, CDocument)

BEGIN_MESSAGE_MAP(CEx28bDoc, CDocument)
 //{{AFX_MSG_MAP(CEx28bDoc)
 ON_COMMAND(ID_EDIT_CLEAR_ALL, OnEditClearAll)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_INTERFACE_MAP(CEx28bDoc, CDocument)
 INTERFACE_PART(CEx28bDoc, IID_IOleClientSite, OleClientSite)
 INTERFACE_PART(CEx28bDoc, IID_IAdviseSink, AdviseSink)
END_INTERFACE_MAP()

//
// implementation of IOleClientSite

STDMETHODIMP_(ULONG) CEx28bDoc::XOleClientSite::AddRef()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STDMETHODIMP_(ULONG) CEx28bDoc::XOleClientSite::AddRef()
{
 TRACE("CEx28bDoc::XOleClientSite::AddRef\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 return pThis->InternalAddRef();
}

STDMETHODIMP_(ULONG) CEx28bDoc::XOleClientSite::Release()
{
 TRACE("CEx28bDoc::XOleClientSite::Release\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 return pThis->InternalRelease();
}

STDMETHODIMP CEx28bDoc::XOleClientSite::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CEx28bDoc::XOleClientSite::QueryInterface");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 return pThis->InternalQueryInterface(&iid, ppvObj);
}

STDMETHODIMP CEx28bDoc::XOleClientSite::SaveObject()
{
 TRACE("CEx28bDoc::XOleClientSite::SaveObject\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 ASSERT_VALID(pThis);

 LPPERSISTSTORAGE lpPersistStorage;
 pThis->m_pOleObj->QueryInterface(IID_IPersistStorage,
 (void**) &lpPersistStorage);
 ASSERT(lpPersistStorage != NULL);
 HRESULT hr = NOERROR;
 if (lpPersistStorage->IsDirty() == NOERROR)
 {
 // NOERROR == S_OK != S_FALSE, therefore object is dirty!
 hr = ::OleSave(lpPersistStorage, pThis->
m_pTempStgSub,
 TRUE);
 if (hr != NOERROR)
 hr = lpPersistStorage->SaveCompleted(NULL);

 // Mark the document as dirty if save successful
 pThis->SetModifiedFlag();
 }
 lpPersistStorage->Release();
 pThis->UpdateAllViews(NULL);
 return hr;
}

STDMETHODIMP CEx28bDoc::XOleClientSite::GetMoniker(
 DWORD dwAssign, DWORD dwWhichMoniker, LPMONIKER* ppMoniker)
{
 TRACE("CEx28bDoc::XOleClientSite::GetMoniker\n");
 return E_NOTIMPL;
}

STDMETHODIMP CEx28bDoc::XOleClientSite::GetContainer(
 LPOLECONTAINER* ppContainer)
{
 TRACE("CEx28bDoc::XOleClientSite::GetContainer\n");
 return E_NOTIMPL;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STDMETHODIMP CEx28bDoc::XOleClientSite::ShowObject()
{
 TRACE("CEx28bDoc::XOleClientSite::ShowObject\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 ASSERT_VALID(pThis);
 pThis->UpdateAllViews(NULL);
 return NOERROR;
}

STDMETHODIMP CEx28bDoc::XOleClientSite::OnShowWindow(BOOL fShow)
{
 TRACE("CEx28bDoc::XOleClientSite::OnShowWindow\n");
 METHOD_PROLOGUE(CEx28bDoc, OleClientSite)
 ASSERT_VALID(pThis);
 pThis->m_bHatch = fShow;
 pThis->UpdateAllViews(NULL);
 return NOERROR;
}
STDMETHODIMP CEx28bDoc::XOleClientSite::RequestNewObjectLayout()
{
 TRACE("CEx28bDoc::XOleClientSite::RequestNewObjectLayout\n");
 return E_NOTIMPL;
}

//
// implementation of IAdviseSink

STDMETHODIMP_(ULONG) CEx28bDoc::XAdviseSink::AddRef()
{
 TRACE("CEx28bDoc::XAdviseSink::AddRef\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 return pThis->InternalAddRef();
}

STDMETHODIMP_(ULONG) CEx28bDoc::XAdviseSink::Release()
{
 TRACE("CEx28bDoc::XAdviseSink::Release\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 return pThis->InternalRelease();
}
STDMETHODIMP CEx28bDoc::XAdviseSink::QueryInterface(
 REFIID iid, LPVOID* ppvObj)

{
 ITrace(iid, "CEx28bDoc::XAdviseSink::QueryInterface");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 return pThis->InternalQueryInterface(&iid, ppvObj);
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnDataChange(
 LPFORMATETC lpFormatEtc, LPSTGMEDIUM lpStgMedium)
{
 TRACE("CEx28bDoc::XAdviseSink::OnDataChange\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 // Interesting only for advanced containers. Forward it such
 // that containers do not have to implement the entire
 // interface.
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnViewChange(
 DWORD aspects, LONG /*lindex*/)
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 TRACE("CEx28bDoc::XAdviseSink::OnViewChange\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 pThis->UpdateAllViews(NULL); // the really important one
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnRename(
 LPMONIKER /*lpMoniker*/)
{
 TRACE("CEx28bDoc::XAdviseSink::OnRename\n");
 // Interesting only to the OLE link object. Containers ignore
 // this.
}

STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnSave()
{
 TRACE("CEx28bDoc::XAdviseSink::OnSave\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 pThis->UpdateAllViews(NULL);
}
STDMETHODIMP_(void) CEx28bDoc::XAdviseSink::OnClose()
{
 TRACE("CEx28bDoc::XAdviseSink::OnClose\n");
 METHOD_PROLOGUE(CEx28bDoc, AdviseSink)
 ASSERT_VALID(pThis);

 pThis->UpdateAllViews(NULL);
}

//
// CEx28bDoc construction/destruction

CEx28bDoc::CEx28bDoc()
{
 m_lpOleObj = NULL;
 m_pTempStgRoot = NULL;
 m_pTempStgSub = NULL;
 m_bHatch = FALSE;
}

CEx28bDoc::~CEx28bDoc()
{
}

BOOL CEx28bDoc::OnNewDocument()
{
 TRACE("Entering CEx28bDoc::OnNewDocument\n");
 // Create a structured storage home for the object
 // (m_pTempStgSub). This is a temporary file -- random name
 // supplied by OLE.
 VERIFY(::StgCreateDocfile(NULL,
 STGM_READWRITE|STGM_SHARE_EXCLUSIVE|STGM_CREATE|
 STGM_DELETEONRELEASE,
 0, &m_pTempStgRoot) == S_OK);
 ASSERT(m_pTempStgRoot != NULL);

 VERIFY(m_pTempStgRoot->CreateStorage(OLESTR("sub"),
 STGM_CREATE|STGM_READWRITE|STGM_SHARE_EXCLUSIVE,
 0, 0, &m_pTempStgSub) == S_OK);
 ASSERT(m_pTempStgSub != NULL);
 return CDocument::OnNewDocument();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return CDocument::OnNewDocument();
}

//
// CEx28bDoc serialization

void CEx28bDoc::Serialize(CArchive& ar)
{
 // no hookup to MFC serialization
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

//
// CEx28bDoc diagnostics

#ifdef _DEBUG
void CEx28bDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CEx28bDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
}
#endif //_DEBUG

//
// CEx28bDoc commands

void CEx28bDoc::OnCloseDocument()
{
 m_pTempStgSub->Release(); // must release BEFORE calling
 // base class
 m_pTempStgRoot->Release();
 CDocument::OnCloseDocument();
}

void CEx28bDoc::DeleteContents()
{
 if(m_lpOleObj != NULL) {
 // If object is running, close it, which releases our
 // IOleClientSite
 m_lpOleObj->Close(OLECLOSE_NOSAVE);
 m_lpOleObj->Release(); // should be final release
 // (or else...)
 m_lpOleObj = NULL;
 }
}

void CEx28bDoc::OnEditClearAll()
{
 DeleteContents();
 UpdateAllViews(NULL);
 SetModifiedFlag();
 m_bHatch = FALSE;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

BOOL CEx28bDoc::SaveModified()
{
 // Eliminate "save to file" message
 return TRUE;
}

void ITrace(REFIID iid, const char* str)
{
 OLECHAR* lpszIID;
 ::StringFromIID(iid, &lpszIID);
 CString strIID = lpszIID;
 TRACE("%s - %s\n", (const char*) strIID, (const char*) str);
 AfxFreeTaskMem(lpszIID);
}

Figure 28-7. The container's CEx28bDoc class listing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX28C Example—An OLE Embedded Component
You've already seen an MFC embedded component with in-place-activation capability (EX28A). Now you'll
see a bare-bones component program that activates an embedded object in a separate window. It doesn't
do much except display text and graphics in the window, but you'll learn a lot if you study the code. The
application started as an SDI AppWizard Automation component with the document as the creatable
object. The document's IDispatch interface was ripped out and replaced with IOleObject, IDataObject, and
IPersistStorage interfaces. All the template server code carries through, so the document, view, and main
frame objects are created when the container starts the component.

Open and build the EX28C project now. Run the application to register it, and then try it with the EX28B
container or any other container program.

The CEx28cView Class

This class is straightforward. The only member functions of interest are the OnDraw function and the
OnPrepareDC function, shown here:

void CEx28cView::OnDraw(CDC* pDC)
{
 CEx28cDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->Rectangle(CRect(500, -1000, 1500, -2000));
 pDC->TextOut(0, 0, pDoc->m_strText);
}

void CEx28cView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_HIMETRIC);
}

The CEx28cDoc Class

This class does most of the component's work and is too big to list here. Figure 28-8 lists the header file,
but you'll have to go to the companion CD-ROM for the implementation code. A few of the important
functions are listed here, however.

EX28CDOC.H

#if !defined(AFX_EX28CDOC_H__1EAAB6F5_6011_11D0_848F_00400526305B __INCLUDED_)
#define AFX_EX28CDOC_H__1EAAB6F5_6011_11D0_848F_00400526305B __INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

extern const CLSID clsid; // defined in ex28c.cpp
void ITrace(REFIID iid, const char* str);

#define SETFORMATETC(fe, cf, asp, td, med, li) \
 ((fe).cfFormat=cf, \
 (fe).dwAspect=asp, \
 (fe).ptd=td, \

 (fe).tymed=med, \
 (fe).lindex=li)

class CEx28cDoc : public CDocument
{
friend class CEx28cView;
private:
 CString m_strText;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CString m_strText;
 LPOLECLIENTSITE m_lpClientSite;
 LPOLEADVISEHOLDER m_lpOleAdviseHolder;
 LPDATAADVISEHOLDER m_lpDataAdviseHolder;
 CString m_strContainerApp;
 CString m_strContainerObj;
 HGLOBAL MakeMetaFile();

 BEGIN_INTERFACE_PART(OleObject, IOleObject)
 STDMETHOD(SetClientSite)(LPOLECLIENTSITE);
 STDMETHOD(GetClientSite)(LPOLECLIENTSITE*);
 STDMETHOD(SetHostNames)(LPCOLESTR, LPCOLESTR);
 STDMETHOD(Close)(DWORD);
 STDMETHOD(SetMoniker)(DWORD, LPMONIKER);
 STDMETHOD(GetMoniker)(DWORD, DWORD, LPMONIKER*);
 STDMETHOD(InitFromData)(LPDATAOBJECT, BOOL, DWORD);
 STDMETHOD(GetClipboardData)(DWORD, LPDATAOBJECT*);
 STDMETHOD(DoVerb)(LONG, LPMSG, LPOLECLIENTSITE, LONG,
 HWND, LPCRECT);
 STDMETHOD(EnumVerbs)(LPENUMOLEVERB*);
 STDMETHOD(Update)();
 STDMETHOD(IsUpToDate)();
 STDMETHOD(GetUserClassID)(LPCLSID);
 STDMETHOD(GetUserType)(DWORD, LPOLESTR*);
 STDMETHOD(SetExtent)(DWORD, LPSIZEL);
 STDMETHOD(GetExtent)(DWORD, LPSIZEL);
 STDMETHOD(Advise)(LPADVISESINK, LPDWORD);
 STDMETHOD(Unadvise)(DWORD);
 STDMETHOD(EnumAdvise)(LPENUMSTATDATA*);
 STDMETHOD(GetMiscStatus)(DWORD, LPDWORD);
 STDMETHOD(SetColorScheme)(LPLOGPALETTE);
 END_INTERFACE_PART(OleObject)

 BEGIN_INTERFACE_PART(DataObject, IDataObject)
 STDMETHOD(GetData)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD(GetDataHere)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD(QueryGetData)(LPFORMATETC);
 STDMETHOD(GetCanonicalFormatEtc)(LPFORMATETC, LPFORMATETC);
 STDMETHOD(SetData)(LPFORMATETC, LPSTGMEDIUM, BOOL);

 STDMETHOD(EnumFormatEtc)(DWORD, LPENUMFORMATETC*);
 STDMETHOD(DAdvise)(LPFORMATETC, DWORD, LPADVISESINK, LPDWORD);
 STDMETHOD(DUnadvise)(DWORD);
 STDMETHOD(EnumDAdvise)(LPENUMSTATDATA*);
 END_INTERFACE_PART(DataObject)

 BEGIN_INTERFACE_PART(PersistStorage, IPersistStorage)
 STDMETHOD(GetClassID)(LPCLSID);
 STDMETHOD(IsDirty)();
 STDMETHOD(InitNew)(LPSTORAGE);
 STDMETHOD(Load)(LPSTORAGE);
 STDMETHOD(Save)(LPSTORAGE, BOOL);
 STDMETHOD(SaveCompleted)(LPSTORAGE);
 STDMETHOD(HandsOffStorage)();
 END_INTERFACE_PART(PersistStorage)

 DECLARE_INTERFACE_MAP()

protected: // Create from serialization only
 CEx28cDoc();
 DECLARE_DYNCREATE(CEx28cDoc)

// Overrides
 // ClassWizard generated virtual function overrides

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CEx28cDoc)
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);
 virtual void OnFinalRelease();
 virtual void OnCloseDocument();
 protected:
 virtual BOOL SaveModified();
 //}}AFX_VIRTUAL

// Implementation
public:
 virtual ~CEx28cDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
public:
 //{{AFX_MSG(CEx28cDoc)
 afx_msg void OnModify();
 afx_msg void OnFileUpdate();
 afx_msg void OnUpdateFileUpdate(CCmdUI* pCmdUI);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
//

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional
// declarations immediately before the previous line

#endif
// !defined(AFX_EX28CDOC_H__1EAAB6F5_6011_11D0_848F_00400526305B __INCLUDED_)

Figure 28-8. The component's CEx28cDoc class handler file listing.

Here's a list of the important interface functions in ex28cDoc.cpp:

XOleObject::SetClientSite
XOleObject::DoVerb
XOleObject::Advise
XDataObject::GetData
XDataObject::QueryGetData
XDataObject::DAdvise
XPersistStorage::GetClassID
XPersistStorage::InitNew
XPersistStorage::Load
XPersistStorage::Save

You've seen the container code that draws a metafile. Here's the component code that creates it. The
object handler calls the component's XDataObject::GetData function when it needs a metafile. This
GetData implementation calls a helper function, MakeMetaFile, which creates the metafile picture. Compare
the drawing code with the drawing code in CEx28cView::OnDraw.

STDMETHODIMP CEx28cDoc::XDataObject::GetData(
 LPFORMATETC lpFormatEtc, LPSTGMEDIUM lpStgMedium)
{
 TRACE("CEx28cDoc::XDataObject::GetData -- %d\n",
 lpFormatEtc->cfFormat);
 METHOD_PROLOGUE(CEx28cDoc, DataObject)
 ASSERT_VALID(pThis);

 if (lpFormatEtc->cfFormat != CF_METAFILEPICT) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (lpFormatEtc->cfFormat != CF_METAFILEPICT) {
 return S_FALSE;
 }
 HGLOBAL hPict = pThis->MakeMetaFile();
 lpStgMedium->tymed = TYMED_MFPICT;
 lpStgMedium->hMetaFilePict = hPict;
 lpStgMedium->pUnkForRelease = NULL;
 return S_OK;
}

HGLOBAL CEx28cDoc::MakeMetaFile
{
 HGLOBAL hPict;
 CMetaFileDC dcm;
 VERIFY(dcm.Create());
 CSize size(5000, 5000); // initial size of object in Excel & Word
 dcm.SetMapMode(MM_ANISOTROPIC);
 dcm.SetWindowOrg(0,0);
 dcm.SetWindowExt(size.cx, -size.cy);
 // drawing code
 dcm.Rectangle(CRect(500, -1000, 1500, -2000));
 CFont font;
 font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH | FF_SWISS, "Arial");
 CFont* pFont = dcm.SelectObject(&font);
 dcm.TextOut(0, 0, m_strText);
 dcm.SelectObject(pFont);

 HMETAFILE hMF = dcm.Close();
 ASSERT(hMF != NULL);
 hPict = ::GlobalAlloc(GMEM_SHARE|GMEM_MOVEABLE,
 sizeof(METAFILEPICT));
 ASSERT(hPict != NULL);
 LPMETAFILEPICT lpPict;
 lpPict = (LPMETAFILEPICT) ::GlobalLock(hPict);
 ASSERT(lpPict != NULL);
 lpPict->mm = MM_ANISOTROPIC;
 lpPict->hMF = hMF;
 lpPict->xExt = size.cx;
 lpPict->yExt = size.cy; // HIMETRIC height
 ::GlobalUnlock(hPict);
 return hPict;
}
The XOleObject::Advise and the XDataObject::DAdvise functions are similar. Both functions call global OLE
functions to set up OLE advise holder objects that can manage multiple advise sinks. (In this program,
there is only one advise sink per OLE advise holder object.) The XOleObject::Advise function, listed below,
establishes an OLE advise holder object with the IOleAdviseHolder interface. Other document functions call
IOleAdviseHolder::SendOnClose and SendOnSave, which in turn call IAdviseSink::OnClose and OnSave for
each attached sink.

STDMETHODIMP CEx28cDoc::XOleObject::Advise(
 IAdviseSink* pAdvSink, DWORD* pdwConnection)
{
 TRACE("CEx28cDoc::XOleObject::Advise\n");
 METHOD_PROLOGUE(CEx28cDoc, OleObject)
 ASSERT_VALID(pThis);
 *pdwConnection = 0;
 if (pThis->m_lpOleAdviseHolder == NULL &&
 ::CreateOleAdviseHolder(&pThis->m_lpOleAdviseHolder)
 != NOERROR) {
 return E_OUTOFMEMORY;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 ASSERT(pThis->m_lpOleAdviseHolder != NULL);
 return pThis->m_lpOleAdviseHolder->Advise(pAdvSink,
 pdwConnection);
}
The framework calls the OnModify function when the user chooses Modify from the EX28C-MAIN menu.
The user enters a string through a dialog, and the function sends the OnDataChange notification to the
object handler's data advise sink. (Figure 28-5 illustrates the advisory connections.)

Here is the OnModify function code:

void CEx28cDoc::OnModify()
{
 CTextDialog dlg;
 dlg.m_strText = m_strText;
 if (dlg.DoModal() == IDOK) {
 m_strText = dlg.m_strText;
 UpdateAllViews(NULL); // redraw view
 // Notify the client that the metafile has changed.
 // Client must call IViewObject::SetAdvise.
 LPDATAOBJECT lpDataObject =
 (LPDATAOBJECT) GetInterface(&IID_IDataObject);
 HRESULT hr =
 m_lpDataAdviseHolder->SendOnDataChange(lpDataObject,
 0, NULL);
 ASSERT(hr == NOERROR);
 SetModifiedFlag(); // won't update without this
 }
}
The framework calls the OnFileUpdate function when the user chooses Update from the File menu. The
function calls IOleClientSite::SaveObject, which in turn causes the container to save the metafile and the
object's native data in the storage. The function also sends the OnSave notification back to the client's
advise sink. Here is the OnFileUpdate function code:

void CEx28cDoc::OnFileUpdate()
{
 if (m_lpClientSite == NULL) return;
 VERIFY(m_lpClientSite->SaveObject() == NOERROR);
 if (m_lpOleAdviseHolder != NULL)
 m_lpOleAdviseHolder->SendOnSave();
 SetModifiedFlag(FALSE);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 29
Introducing the Active Template Library
In this chapter, you'll take a look at the second framework (MFC being the first) now included within
Microsoft Visual C++—the Active Template Library (ATL). You'll start by quickly revisiting the Component
Object Model (COM) and looking at an alternative method of writing Chapter 24's CSpaceship object,
illustrating that there is more than one way to write a COM class. (This will become important as you
examine ATL's class composition methods.) Next you'll investigate the Active Template Library, focusing
first on C++ templates and raw C++ smart pointers and how they might be useful in COM development.
You'll cover the client side of ATL programming and examine some of ATL's smart pointers. Finally you'll
check out the server side of ATL programming, reimplementing the Chapter 24 spaceship example using
ATL to get a feel for ATL's architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Revisiting COM
The most important concept to understand about COM programming is that it is interface-based. As you
saw in Chapter 24, you don't need real COM or even Microsoft runtime support to use interface-based
programming. All you need is some discipline.

Think back to the spaceship example in Chapter 24. You started out with a single class named CSpaceship
that implemented several functions. Seasoned C++ developers usually sit down at the computer and start
typing a class like this:

class CSpaceship {
 void Fly();
 int& GetPosition();
};
However, the procedure is a little different with interface-based development. Instead of writing the class
directly, interface-based programming involves spelling out an interface before implementing it. In Chapter
24, the Fly and GetPosition functions were moved into an abstract base class named IMotion.

struct IMotion {
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};
Then we inherited the CSpaceship class from the IMotion interface like this:

class CSpaceship : IMotion {
 void Fly();
 int& GetPosition();
};
Notice that at this point the motion interface has been separated from its implementation. When practicing
interface development, the interface comes first. You can work on the interface as you develop it, making
sure it's complete while at the same time not over-bloated. But once the interface has been published (that
is, once a lot of other developers have started coding to it), the interface is frozen and can never change.

This subtle distinction between class-based programming and interface-based programming seems to
introduce some programming overhead. However, it turns out to be one of the key points to understanding
COM. By collecting the Fly and the GetPosition functions in an interface, you've developed a binary
signature. That is, by defining the interface ahead of time and talking to the class through the interface,
client code has a potentially language-neutral way of talking to the class.

Gathering functions together into interfaces is itself quite powerful. Imagine you want to describe
something other than a spaceship—an airplane, for example. It's certainly conceivable that an airplane
would also have Fly and GetPosition functions. Interface programming provides a more advanced form of
polymorphism—polymorphism at the interface level, not only at the single-function level.

Separating interface from implementation is the basis of interface-based development. The Component
Object Model is centered on interface programming. COM enforces the distinction between interface and
implementation. In COM, the only way client code can talk to an object is through an interface. However,
gathering functions together into interfaces isn't quite enough. There's one more ingredient needed—a
mechanism for discovering functionality at runtime.

The Core Interface: IUnknown

The key element that makes COM different from ordinary interface programming is this rule: the first three
functions of every COM interface are the same. The core interface in COM, IUnknown, looks like this:

struct IUnknown {
 virtual HRESULT QueryInterface(REFIID riid, void** ppv) = 0;
 virtual ULONG AddRef() = 0;
 virtual ULONG Release() = 0;
};
Every COM interface derives from this interface (meaning the first three functions of every COM interface
you ever see will be QueryInterface, AddRef, and Release). To turn IMotion into a COM interface, derive it
from IUnknown like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from IUnknown like this:

struct IMotion : IUnknown {
 void Fly();
 int& GetPosition();
};

If you wanted these interfaces to work out-of-process, you'd have to make each
function return an HRESULT. You'll see this when we cover Interface Definition
Language (IDL) later in this chapter.

AddRef and Release deserve some mention because they are part of IUnknown. AddRef and Release allow
an object to control its own lifetime if it chooses to. As a rule, clients are supposed to treat interface
pointers like resources: clients acquire interfaces, use them, and release them when they are done using
them. Objects learn about new references to themselves via AddRef. Objects learn they have been
unreferenced through the Release function. Objects often use this information to control their lifetimes. For
example, many objects self-destruct when their reference count reaches zero.

Here's how some client code might use the spaceship:

void UseSpaceship() {
 IMotion* pMotion = NULL;

 pMotion = GetASpaceship(); // This is a member of the
 // hypothetical Spaceship
 // API. It's presumably an
 // entry point into some DLL.
 // Returns an IMotion* and
 // causes an implicit AddRef.
 If(pMotion) {
 pMotion->Fly();
 int i = pMotion->GetPosition();
 pMotion->Release(); // done with this instance of CSpaceship
 }
}
The other (and more important) function within IUnknown is the first one: QueryInterface. QueryInterface
is the COM mechanism for discovering functionality at runtime. If someone gives you a COM interface
pointer to an object and you don't want to use that pointer, you can use the pointer to ask the object for a
different interface to the same object. This mechanism, along with the fact that interfaces remain constant
once published, are the key ingredients that allow COM-based software to evolve safely over time. The
result is that you can add functionality to your COM software without breaking older versions of the clients
running that software. In addition, clients have a widely recognized means of acquiring that new
functionality once they know about it. For example, you add functionality to the implementation of
CSpaceship by adding a new interface named IVisual. Adding this interface makes sense because you can
have objects in three-dimensional space that move in and out of view. You might also have an invisible
object in three-dimensional space (a black hole, for example). Here's the IVisual interface:

struct IVisual : IUnknown {
 virtual void Display() = 0;
};
A client might use the IVisual interface like this:

void UseSpaceship() {
 IMotion* pMotion = NULL;

 pMotion = GetASpaceship(); // Implicit AddRef
 if(pMotion) {
 pMotion->Fly();
 int i = pMotion->GetPosition();

 IVisual* pVisual = NULL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IVisual* pVisual = NULL;
 PMotion->QueryInterface(IID_IVisual, (void**) &pVisual);
 // Implicit AddRef within QueryInterface

 if(pVisible) {
 pVisual->Display(); // uncloaking now
 pVisual->Release(); // done with this interface
 }
 }
 pMotion->Release(); // done with this instance of IMotion
}
Notice that the preceding code uses interface pointers very carefully: it uses them only if the interface was
acquired properly, and then it releases the interface pointers when it is done using them. This is raw COM
programming at the lowest level—you acquire an interface pointer, you use the interface pointer, and you
release it when you're done with it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing COM Code
As you can see, writing COM client code isn't a whole lot different from writing regular C++ code.
However, the C++ classes that the client talks to are abstract base classes. Instead of calling operator new
as you would in C++, you create COM objects and acquire COM interfaces by explicitly calling some sort of
API function. And instead of deleting the object outright, you simply follow the COM interface rule of
balancing calls to AddRef with calls to Release.

What does it take to get the COM class up and running? You saw how to do it using MFC in Chapter 24.
Here's another example of implementing CSpaceship as a COM class. This example uses the multiple
inheritance approach to writing COM classes. That is, the C++ class inherits from several interfaces and
then implements the union of all the functions (including IUnknown, of course).

struct CSpaceship : IMotion, IDisplay {
 ULONG m_cRef;
 int m_nPosition;

 CSpaceship() : m_cRef(0),
 m_nPosition(0) {
 }

 HRESULT QueryInterface(REFIID riid,
 void** ppv);
 ULONG AddRef() {
 return InterlockedIncrement(&m_cRef);
 }
 ULONG Release() {
 ULONG cRef = InterlockedIncrement(&m_cRef);
 if(cRef == 0){
 delete this;
 return 0;
 } else
 return m_cRef;
 }

 // IMotion functions:
 void Fly() {
 // Do whatever it takes to fly here
 }
 int GetPosition() {
 return m_nPosition;
 }

 // IVisual functions:
 void Display() {
 // Uncloak
 }
};

COM Classes Using Multiple Inheritance

If you're used to seeing plain C++ code, the preceding code might look a little strange to you. This is a
less common form of multiple inheritance called interface inheritance. Most C++ developers are used to an
implementation inheritance in which the derived class inherits everything from the base class—including
the implementation. Interface inheritance simply means the derived class inherits the interfaces of the
base class. The preceding code effectively adds two data members to the CSpaceship class—a vptr for
each implied vtable.

When using the multiple inheritance approach to implementing interfaces, each interface shares
CSpaceship's implementation of IUnknown. This sharing illustrates a rather esoteric yet important concept
known as COM identity. The basic idea of COM identity is that IUnknown is the void* of COM. IUknown is
the one interface guaranteed to be hanging off any object, and you can always get to it. COM identity also
says (in the previous example) the client can call QueryInterface through the CSpaceship IMotion interface
to get the IVisible interface. Conversely, the client can call QueryInterface through the CSpaceship IVisible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to get the IVisible interface. Conversely, the client can call QueryInterface through the CSpaceship IVisible
interface to get the IMotion interface. Finally, the client can call QueryInterface through IUnknown to
acquire the IMotion or the IVisible interface, and the client can call QueryInterface through either IMotion
or IVisual to get a pointer to IUnknown. To learn more about COM identity, see Essential COM by Don Box
(Addison-Wesley, 1997) or Inside COM by Dale Rogerson (Microsoft Press, 1997).

Often you'll see COM classes illustrated with "lollipop" diagrams depicting the interfaces implemented by a
COM class. You can see an example of a lollipop diagram in "The IUnknown Interface and the
QueryInterface Member Function" in Chapter 24.

The multiple inheritance method of implementing CSpaceship automatically fulfills the rules of COM
identity. Note that all calls to QueryInterface, AddRef, and Release land in the same place in the C++
class, regardless of the interface through which they were called.

This is more or less the essence of COM. As a COM developer, your job is to create useful services and
expose them through COM interfaces. At the most basic level, this means wiring up some function tables to
follow COM's identity rules. You've seen two ways to accomplish this so far. (Chapter 24 showed you how
to do it using nested classes and MFC. This chapter just showed you how to write a COM class using
multiple inheritance in C++.) However, in addition to interface programming and writing classes to
implement interfaces, there are several other pieces to the COM puzzle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COM Infrastructure
Once you get your mind around the concept of interface-based programming, quite a few details need
implementation in order to get the class to mix in with the rest of the system. These details often
overshadow the fundamental beauty of COM.

To start off with, COM classes need a place to live, so you must package them in either an EXE or a DLL. In
addition, each COM class you write needs an accompanying class object (often referred to as a class
factory). The way in which a COM server's class object is exposed differs depending upon how you package
the COM class (in a DLL or an EXE). The server lifetime also needs to be considered. The server should
stay in memory for as long as it's needed, and it should go away when it's not needed. To accomplish this,
servers maintain global lock counts indicating the number of objects with extant interface pointers. Finally,
well-behaved servers insert the necessary values in the Windows Registry so that client software can easily
activate them.

You've spent a lot of time looking at MFC while reading this book. As you saw in Chapter 24, MFC takes
care of most of the COM-based details for you. For example, CCmdTarget has an implementation of
IUnknown. MFC has even created C++ classes and macros to implement class objects (such as
COleObjectFactory, COleTemplateServer, DECLARE_OLE_CREATE, and IMPLEMENT_OLE_CREATE) that will
put most of the correct entries into the Registry. MFC has the easiest-to-implement, zippiest version of
IDispatch around—all you need is a CCmdTarget object and ClassWizard. If you decide OLE Documents or
ActiveX Documents are your thing, MFC provides standard implementations of the Object Linking and
Embedding and ActiveX Document protocols. Finally, MFC remains hands-down the easiest way to write
fast, powerful ActiveX controls. (You can write ActiveX controls in Microsoft Visual Basic, but you don't
have quite as much flexibility). These are all great features. However, using MFC has a downside.

To get these features, you need to buy into MFC 100%. Now, that's not necessarily a bad idea. However,
you should be aware of the cost of entry when you decide to use MFC. MFC is big. It has to be—it's a C++
framework with many capabilities.

A New Framework

As you can see from the examples we've looked at so far, implementing COM classes and making them
available to clients involves writing a great deal of code—code that remains the same from one class
implementation to another. IUnknown implementations are generally the same for every COM class you
encounter—the main difference between them is the interfaces exposed by each class.

But just as you no longer need to understand assembly language to get software working these days,
pretty soon you'll no longer need to understand all the nuances of IUnknown and COM's relationship to
C++ to get your COM-based software up and running. You're not quite at that stage, but the Active
Template Library (ATL) from Microsoft is a great first step in that direction. (However, ATL does not
absolve you from learning the important concepts behind COM, such as apartments and remoting.)

Before diving into ATL, let's take a quick peek at where COM and ATL fit into the big picture.

ActiveX, OLE, and COM

COM is simply the plumbing for a series of higher-level application integration technologies consisting of
such items as ActiveX Controls and OLE Documents. These technologies define protocols based on COM
interfaces. For example, for a COM object to qualify as a minimal OLE Document object, that COM object
has to implement at least three interfaces—IPersistStorage, IOleObject, and IDataObject. You might
choose to implement the higher-level features of OLE Documents and controls. However, it makes more
sense to let some sort of application framework do the grunt work. Of course, that's why there's MFC.

For more information about how to implement higher-level features in raw C++, see
Kraig Brockschmidt's Inside OLE, 2d. ed. (Microsoft Press, 1995).

ActiveX, MFC, and COM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX, MFC, and COM

While the pure plumbing of COM is quite interesting by itself (it's simply amazing to see how COM remoting
works), the higher-level features are what sell applications. MFC is a huge framework geared toward
creating entire Windows applications. Inside MFC, you'll find tons of utility classes, a data
management/rendering mechanism (the Document-View architecture), as well as support for OLE
Documents, drag and drop, Automation, and ActiveX Controls. You probably don't want to develop an OLE
Document application from scratch; you're much better off using MFC. However, if you need to create a
small or medium-size COM-based service, you might want to turn away from MFC so you don't have to
include all the baggage MFC maintains for the higher-level features.

You can use raw C++ to create COM components, but doing so forces you to spend a good portion of your
time hacking out the boilerplate code (IUnknown and class objects, for example). Using MFC to write COM-
based applications turns out to be a less painful way of adding the big-ticket items to your application, but
it's difficult to write lightweight COM classes in MFC. ATL sits between pure C++ and MFC as a way to
implement COM-based software without having to type in the boilerplate code or buy into all of MFC's
architecture. ATL is basically a set of C++ templates and other kinds of support for writing COM classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ATL Roadmap
If you look at the source code for ATL, you'll find ATL consists of a collection of header files and C++
source code files. Most of it resides inside ATL's Include directory. Here's a rundown of some of the ATL
files and what's inside each of them.

ATLBASE.H

This file contains:

ATL's function typedefs

Structure and macro definitions

Smart pointers for managing COM interface pointers

Thread synchronization support classes

Definitions for CComBSTR, CComVariant, threading, and apartment support

ATLCOM.H

This file contains:

Template classes for class object/class factory support

IUnknown implementations

Support for tear-off interfaces

Type information management and support

ATL's IDispatch implementation

COM enumerator templates

Connection point support

ATLCONV.CPP and ATLCONV.H

These two source code files include support for Unicode conversions.

ATLCTL.CPP and ATLCTL.H

These two files contain:

The source code for ATL's IDispatch client support and event firing support

CComControlBase

The OLE embedding protocol support for controls

Property page support

ATLIFACE.IDL and ATLIFACE.H

ATLIFACE.IDL (which generates ATLIFACE.H) includes an ATL-specific interface named IRegistrar.

ATLIMPL.CPP

ATLIMPL.CPP implements such classes as CComBSTR, which is declared in ATLBASE.H.

ATLWIN.CPP and ATLWIN.H

These files provide windowing and user-interface support, including:

A message-mapping mechanism

A windowing class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dialog support

STATREG.CPP and STATREG.H

ATL features a COM component named the Registrar that handles putting appropriate entries into the
Registry. The code for implementing this feature is in STATREG.H and STATREG.CPP.

Let's start our excursions into ATL by examining ATL's support for client-side COM development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Client-Side ATL Programming
There are basically two sides to ATL—client-side support and object-side support. By far the largest portion
of support is on the object side because of all the code necessary to implement ActiveX controls. However,
the client-side support provided by ATL turns out to be useful and interesting also. Let's take a look at the
client side of ATL. Because C++ templates are the cornerstone of ATL, we'll take a little detour first to
examine them.

C++ Templates

The key to understanding the Active Template Library is understanding C++ templates. Despite the
intimidating template syntax, the concept of templates is fairly straightforward. C++ templates are
sometimes called compiler-approved macros, which is an appropriate description. Think about what macros
do: when the preprocessor encounters a macro, the preprocessor looks at the macro and expands it into
regular C++ code. But the problem with macros is that they are sometimes error-prone and they are
never type-safe. If you use a macro and pass an incorrect parameter, the compiler won't complain but
your program might very well crash. Templates, however, are like type-safe macros. When the compiler
encounters a template, the compiler expands the template just as it would a macro. But because templates
are type-safe, the compiler catches any type problems before the user encounters them.

Using templates to reuse code is different from what you're used to with conventional C++ development.
Components written using templates reuse code by template substitution rather than by inheriting
functionality from base classes. All the boilerplate code from templates is literally pasted into the project.

The archetypal example of using a template is a dynamic array. Imagine you need an array for holding
integers. Rather than declaring the array with a fixed size, you want the array to grow as necessary. So
you develop the array as a C++ class. Then someone you work with gets wind of your new class and says
that he or she needs the exact same functionality. However, this person wants to use floating point
numbers in the array. Rather than pumping out the exact same code (except for using a different type of
data), you can use a C++ template.

Here's an example of how you might use templates to solve the problem described above. The following is
a dynamic array implemented as a template:

template <class T> class DynArray {
public:
 DynArray();
 ~DynArray(); // clean up and do memory management
 int Add(T Element); // adds an element and does
 // memory management
 void Remove(int nIndex) // remove element and
 // do memory management
 T GetAt(nIndex) const;
 int GetSize();
private:
 T* TArray;
 int m_nArraysize;
};

void UseDynArray() {
 DynArray<int> intArray;
 DynArray<float> floatArray;

 intArray.Add(4);
 floatArray.Add(5.0);

 intArray.Remove(0);
 floatArray.Remove(0);

 int x = intArray.GetAt(0);
 float f = floatArray.GetAt(0);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
As you can imagine, creating templates is useful for implementing boilerplate COM code, and templates are
the mechanism ATL uses for providing COM support. The previous example is just one of the many uses
available for templates. Not only are templates useful for applying type information to a certain kind of
data structure, they're also useful for encapsulating algorithms. You'll see how when you take a closer look
at ATL. Let's take a look at the Active Template Library to see what comes with it.

Smart Pointers

One of the most common uses of templates is for smart pointers. The traditional C++ literature calls C++'s
built-in pointers "dumb" pointers. That's not a very nice name, but normal C++ pointers don't do much
except point. It's often up to the client to perform details such as pointer initialization.

As an example, let's model two types of software developer using C++ classes. You can start by creating
the classes: CVBDeveloper and CCPPDeveloper.

class CVBDeveloper {
public:
 CVBDeveloper() {
 }
 ~CVBDeveloper() {
 AfxMessageBox("I used VB, so I got home early.");
 }
 virtual void DoTheWork() {
 AfxMessageBox("Write them forms");
 }
};

class CCPPDeveloper {
public:
 CCPPDeveloper() {
 }
 ~CCPPDeveloper() {
 AfxMessageBox("Stay at work and fix those pointer problems");
 }
 virtual void DoTheWork() {
 AfxMessageBox("Hacking C++ code");
 }
};
The Visual Basic developer and the C++ developer both have functions for eliciting optimal performance.
Now imagine some client code that looks like this:

//UseDevelopers.CPP

void UseDevelopers() {
 CVBDeveloper* pVBDeveloper;
 .
 .
 .
 // The VB Developer pointer needs
 // to be initialized
 // sometime. But what if
 // you forget to initialize and later
 // on do something like this:
 if(pVBDeveloper) {
 // Get ready for fireworks
 // because pVBDeveloper is
 // NOT NULL, it points
 // to some random data.
 c->DoTheWork();
 }
}
In this case, the client code forgot to initialize the pVBDeveloper pointer to NULL. (Of course, this never
happens in real life!) Because pVBDeveloper contains a non-NULL value (the value is actually whatever

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

happens in real life!) Because pVBDeveloper contains a non-NULL value (the value is actually whatever
happened to be on the stack at the time), the test to make sure the pointer is valid succeeds when in fact
you're expecting it to fail. The client gleefully proceeds, believing all is well. The client crashes, of course,
because the client is "calling into darkness." (Who knows where pVBDeveloper is pointing—probably to
nothing that even resembles a Visual Basic developer.) Naturally, you'd like some mechanism for ensuring
that the pointers are initialized. This is where smart pointers come in handy.

Now imagine a second scenario. Perhaps you'd like to plug a little extra code into your developer-type
classes that performs some sort of operation common to all developers. For example, perhaps you'd like all
the developers to do some design work before they begin coding. Consider the earlier VB developer and
C++ developer examples. When the client calls DoTheWork, the developer gets right to coding without
proper design, and he or she probably leaves the poor clients in a lurch. What you'd like to do is add a very
generic hook to the developer classes so they make sure the design is done before beginning to code.

The C++ solution to coping with these problems is called a smart pointer. Let's find out exactly what a
smart pointer is.

Giving C++ Pointers Some Brains

Remember that a smart pointer is a C++ class for wrapping pointers. By wrapping a pointer in a class (and
specifically, a template), you can make sure certain operations are taken care of automatically instead of
deferring mundane, boilerplate-type operations to the client. One good example of such an operation is to
make sure pointers are initialized correctly so that embarrassing crashes due to randomly assigned
pointers don't occur. Another good example is to make certain that boilerplate code is executed before
function calls are made through a pointer.

Let's invent a smart pointer for the developer model described earlier. Consider a template-based class
named SmartDeveloper:

template<class T>
class SmartDeveloper {
 T* m_pDeveloper;

public:
 SmartDeveloper(T* pDeveloper) {
 ASSERT(pDeveloper != NULL);
 m_pDeveloper = pDeveloper;
 }
 ~SmartDeveloper() {
 AfxMessageBox("I'm smart so I'll get paid.");
 }
 SmartDeveloper &
 operator=(const SmartDeveloper& rDeveloper) {
 return *this;
 }
 T* operator->() const {
 AfxMessageBox("About to de-reference pointer. Make /
 sure everything's okay. ");
 return m_pDeveloper;
 }
};
The SmartDeveloper template listed above wraps a pointer—any pointer. Because the SmartDeveloper
class is based on a template, it can provide generic functionality regardless of the type associated with the
class. Think of templates as compiler-approved macros: declarations of classes (or functions) whose code
can apply to any type of data.

We want the smart pointer to handle all developers, including those using VB, Visual C++, Java, and
Delphi (among others). The template <class T> statement at the top accomplishes this. The
SmartDeveloper template includes a pointer (m_pDeveloper) to the type of developer for which the class
will be defined. The SmartDeveloper constructor takes a pointer to that type as a parameter and assigns it
to m_pDeveloper. Notice that the constructor generates an assertion if the client passes a NULL parameter
to construct SmartDeveloper.

In addition to wrapping a pointer, the SmartDeveloper implements several operators. The most important

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to wrapping a pointer, the SmartDeveloper implements several operators. The most important
one is the "->" operator (the member selection operator). This operator is the workhorse of any smart
pointer class. Overloading the member selection operator is what turns a regular class into a smart
pointer. Normally, using the member selection operator on a regular C++ dumb pointer tells the compiler
to select a member belonging to the class or structure being pointed to. By overriding the member
selection operator, you provide a way for the client to hook in and call some boilerplate code every time
that client calls a method. In the SmartDeveloper example, the smart developer makes sure the work area
is in order before working. (This example is somewhat contrived. In real life, you might want to put in a
debugging hook, for example.)

Adding the -> operator to the class causes the class to behave like C++'s built-in pointer. To behave like
native C++ pointers in other ways, smart pointer classes need to implement the other standard operators
such as the de-referencing and assignment operators.

Using Smart Pointers

Using smart pointers is really no different from using the regular built-in C++ pointers. Let's start by
looking at a client that uses plain vanilla developer classes:

void UseDevelopers() {
 CVBDeveloper VBDeveloper;
 CCPPDeveloper CPPDeveloper;

 VBDeveloper.DoTheWork();
 CPPDeveloper.DoTheWork();
}
No surprises here—executing this code causes the developers simply to come in and do the work.
However, you want to use the smart developers—the ones that make sure the design is done before
actually starting to hack. Here's the code that wraps the VB developer and C++ developer objects in the
smart pointer class:

void UseSmartDevelopers {
 CVBDeveloper VBDeveloper;
 CCPPDeveloper CPPDeveloper;

 SmartDeveloper<CVBDeveloper> smartVBDeveloper(&VBDeveloper);
 SmartDeveloper<CCPPDeveloper> smartCPPDeveloper(&CPPDeveloper);

 smartVBDeveloper->DoTheWork();
 smartCPPDeveloper->DoTheWork();
}
Instead of bringing in any old developer to do the work (as in the previous example), the client asks the
smart developers to do the work. The smart developers will automatically prepare the design before
proceeding with coding.

Smart Pointers and COM

While the last example was fabricated to make an interesting story, smart pointers do have useful
applications in the real world. One of those applications is to make client-side COM programming easier.

Smart pointers are frequently used to implement reference counting. Because reference counting is a very
generic operation, hoisting client-side reference count management up into a smart pointer makes sense.

Because you're now familiar with the Microsoft Component Object Model, you understand that COM objects
expose interfaces. To C++ clients, interfaces are simply pure abstract base classes, and C++ clients treat
interfaces more or less like normal C++ objects. However, as you discovered in previous chapters, COM
objects are a bit different from regular C++ objects. COM objects live at the binary level. As such, they are
created and destroyed using language- independent means. COM objects are created via API functions
calls. Most COM objects use a reference count to know when to delete themselves from memory. Once a
COM object is created, a client object can refer to it in a number of ways by referencing multiple interfaces
belonging to the same COM object. In addition, several different clients can talk to a single COM object. In
these situations, the COM object must stay alive for as long as it is referred to. Most COM objects destroy
themselves when they're no longer referred to by any clients. COM objects use reference counting to
accomplish this self-destruction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

accomplish this self-destruction.

To support this reference-counting scheme, COM defines a couple of rules for managing COM interfaces
from the client side. The first rule is that creating a new copy of a COM interface should result in bumping
the object's reference count up by one. The second rule is that clients should release interface pointers
when they have finished with them. Reference counting is one of the more difficult aspects of COM to get
right—especially from the client side. Keeping track of COM interface reference counting is a perfect use of
smart pointers.

For example, the smart pointer's constructor might take the live interface pointer as an argument and set
an internal pointer to the live interface pointer. Then the destructor might call the interface pointer's
Release function to release the interface so that the interface pointer will be released automatically when
the smart pointer is deleted or falls out of scope. In addition, the smart pointer can help manage COM
interfaces that are copied.

For example, imagine you've created a COM object and you're holding on to the interface. Suppose you
need to make a copy of the interface pointer (perhaps to pass it as an out parameter). At the native COM
level, you'd perform several steps. First you must release the old interface pointer. Next you need to copy
the old pointer to the new pointer. Finally you must call AddRef on the new copy of the interface pointer.
These steps need to occur regardless of the interface being used, making this process ideal for boilerplate
code. To implement this process in the smart pointer class, all you need to do is override the assignment
operator. The client can then assign the old pointer to the new pointer. The smart pointer does all the work
of managing the interface pointer, relieving the client of the burden.

ATL's Smart Pointers

Much of ATL's support for client-side COM development resides in a pair of ATL smart pointers: CComPtr
and CComQIPtr. CComPtr is a basic smart pointer that wraps COM interface pointers. CComQIPtr adds a
little more smarts by associating a GUID (for use as the interface ID) with a smart pointer. Let's start by
looking at CComPtr.

CComPtr

Here's an abbreviated version of CComPtr showing its most important parts:

template <class T>
class CComPtr {
public:
 typedef T _PtrClass;
 CComPtr() {p=NULL;}
 CComPtr(T* lp) {
 if ((p = lp) != NULL) p->AddRef();
 }
 CComPtr(const CComPtr<T>& lp) {
 if ((p = lp.p) != NULL) p->AddRef();
 }
 ~CComPtr() {if (p) p->Release();}
 void Release() {if (p) p->Release(); p=NULL;}
 operator T*() {return (T*)p;}
 T& operator*() {_ASSERTE(p!=NULL); return *p; }
 T** operator&() { _ASSERTE(p==NULL); return &p; }
 T* operator->() { _ASSERTE(p!=NULL); return p; }
 T* operator=(T* lp){return (T*)AtlComPtrAssign(
 (IUnknown**)&p, lp);}
 T* operator=(const CComPtr<T>& lp) {
 return (T*)AtlComPtrAssign((IUnknown**)&p, lp.p);
 }
 T* p;
};
CComPtr is a fairly basic smart pointer. Notice the data member p of type T (the type introduced by the
template parameter). CComPtr's constructor performs an AddRef on the pointer while the destructor
releases the pointer—no surprises here. CComPtr also has all the necessary operators for wrapping a COM
interface. Only the assignment operator deserves special mention. The assignment does a raw pointer re-
assignment. The assignment operator calls a function named AtlComPtrAssign:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ATLAPI_(IUnknown*) AtlComPtrAssign(IUnknown** pp, IUnknown* lp) {
 if (lp != NULL)
 lp->AddRef();
 if (*pp)
 (*pp)->Release();
 *pp = lp;
 return lp;
}
AtlComPtrAssign does a blind pointer assignment, AddRef-ing the assignee before calling Release on the
assignor. You'll soon see a version of this function that calls QueryInterface.

CComPtr's main strength is that it helps you manage the reference count on a pointer to some degree.

Using CComPtr

In addition to helping you manage AddRef and Release operations, CComPtr can help you manage code
layout. Looking at a bit of code will help illustrate the usefulness of CComPtr. Imagine that your client code
needs three interface pointers to get the work done as shown here:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 LPPERSIST pPersist;
 LPDISPATCH pDispatch;
 LPDATAOBJECT pDataObject;
 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&pPersist);
 if(SUCCEEDED(hr)) {
 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *)
 &pDispatch);
 if(SUCCEEDED(hr)) {
 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &pDataObject);
 if(SUCCEEDED(hr)) {
 DoIt(pPersist, pDispatch, pDataObject);
 pDataObject->Release();
 }
 pDispatch->Release();
 }
 pPersist->Release();
 }
}
You could use the controversial goto statement (and risk facing derisive comments from your co-workers)
to try to make your code look cleaner, like this:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 LPPERSIST pPersist; LPDISPATCH pDispatch;
 LPDATAOBJECT pDataObject;

 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&pPersist);
 if(FAILED(hr)) goto cleanup;

 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *) &pDispatch);
 if(FAILED(hr)) goto cleanup;

 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &pDataObject);
 if(FAILED(hr)) goto cleanup;

 DoIt(pPersist, pDispatch, pDataObject);

cleanup:
 if (pDataObject) pDataObject->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (pDataObject) pDataObject->Release();
 if (pDispatch) pDispatch->Release();
 if (pPersist) pPersist->Release();
}
That may not be as elegant a solution as you would like. Using CComPtr makes the same code a lot
prettier and much easier to read, as shown here:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 CComPtr<IUnknown> persist;
 CComPtr<IUnknown> dispatch;
 CComPtr<IUnknown> dataobject;

 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&persist);
 if(FAILED(hr)) return;

 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *) &dispatch);
 if(FAILED(hr)) return;

 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &dataobject);
 if(FAILED(hr)) return;

 DoIt(pPersist, pDispatch, pDataObject);

 // Destructors call release...
}
At this point, you're probably wondering why CComPtr doesn't wrap QueryInterface. After all,
QueryInterface is a hot spot for reference counting. Adding QueryInterface support for the smart pointer
requires some way of associating a GUID with the smart pointer. CComPtr was introduced in the first
version of ATL. Rather than disrupt any existing code base, Microsoft introduced a beefed-up version of
CComPtr named CComQIPtr.

CComQIPtr

Here's part of CComQIPtr's definition:

template <class T, const IID* piid = &__uuidof(T)>
class CComQIPtr {
public:
 typedef T _PtrClass;
 CComQIPtr() {p=NULL;}
 CComQIPtr(T* lp) {
 if ((p = lp) != NULL)
 p->AddRef();
 }
 CComQIPtr(const CComQIPtr<T,piid>& lp) {
 if ((p = lp.p) != NULL)
 p->AddRef();
 }
 CComQIPtr(IUnknown* lp) {
 p=NULL;
 if (lp != NULL)
 lp->QueryInterface(*piid, (void **)&p);
 }
 ~CComQIPtr() {if (p) p->Release();}
 void Release() {if (p) p->Release(); p=NULL;}
 operator T*() {return p;}
 T& operator*() {_ASSERTE(p!=NULL); return *p; }
 T** operator&() { _ASSERTE(p==NULL); return &p; }
 T* operator->() {_ASSERTE(p!=NULL); return p; }
 T* operator=(T* lp){
 return (T*)AtlComPtrAssign((IUnknown**)&p, lp);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return (T*)AtlComPtrAssign((IUnknown**)&p, lp);
 }
 T* operator=(const CComQIPtr<T,piid>& lp) {
 return (T*)AtlComPtrAssign((IUnknown**)&p, lp.p);
 }
 T* operator=(IUnknown* lp) {
 return (T*)AtlComQIPtrAssign((IUnknown**)&p, lp, *piid);
 }
 bool operator!(){return (p == NULL);}
 T* p;
};
What makes CComQIPtr different from CComPtr is the second template parameter, piid—the interfaces's
GUID. This smart pointer has several constructors: a default constructor, a copy constructor, a constructor
that takes a raw interface pointer of unspecified type, and a constructor that accepts an IUnknown
interface as a parameter. Notice in this last constructor that if the developer creates an object of this type
and initializes it with a plain old IUnknown pointer, CComQIPtr calls QueryInterface using the GUID
template parameter. Also notice that the assignment to an IUnknown pointer calls AtlComQIPtrAssign to
make the assignment. As you can imagine, AtlComQIPtrAssign performs a QueryInterface under the hood
using the GUID template parameter.

Using CComQIPtr

Here's how you might use CComQIPtr in some COM client code:

void GetLottaPointers(ISomeInterface* pSomeInterface){
 HRESULT hr;
 CComQIPtr<IPersist, &IID_IPersist> persist;
 CComQIPtr<IDispatch, &IID_IDispatch> dispatch;
 CComPtr<IDataObject, &IID_IDataObject> dataobject;

 dispatch = pSomeInterface; // implicit QI
 persist = pSomeInterface; // implicit QI
 dataobject = pSomeInterface; // implicit QI

 DoIt(persist, dispatch, dataobject); // send to a function
 // that needs IPersist*,
 // IDispatch*, and
 // IDataObject*

 // Destructors call release...
}
The CComQIPtr is useful whenever you want the Java-style or Visual Basic-style type conversions. Notice
that the code listed above didn't require any calls to QueryInterface or Release. Those calls happened
automatically.

ATL Smart Pointer Problems

Smart pointers can be quite convenient in some places (as in the CComPtr example where we eliminated
the goto statement). Unfortunately, C++ smart pointers aren't the panacea that programmers pray for to
solve their reference-counting and pointer-management problems. Smart pointers simply move these
problems to a different level.

One situation in which to be very careful with smart pointers is when converting from code that is not
smart-pointer based to code that uses the ATL smart pointers. The problem is that the ATL smart pointers
don't hide the AddRef and Release calls. This just means you need to take care to understand how the
smart pointer works rather than be careful about how you call AddRef and Release.

For example, imagine taking this code:

void UseAnInterface(){
 IDispatch* pDispatch = NULL;

 HRESULT hr = GetTheObject(&pDispatch);
 if(SUCCEEDED(hr)) {
 DWORD dwTICount;
 pDispatch->GetTypeInfoCount(&dwTICount);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDispatch->GetTypeInfoCount(&dwTICount);
 pDispatch->Release();
 }
}
and capriciously converting the code to use a smart pointer like this:

void UseAnInterface() {
 CComPtr<IDispatch> dispatch = NULL;

 HRESULT hr = GetTheObject(&dispatch);
 if(SUCCEEDED(hr)) {
 DWORD dwTICount;
 dispatch->GetTypeInfoCount(&dwTICount);
 dispatch->Release();
 }
}
Because CComPtr and CComQIPtr do not hide calls to AddRef and Re-lease, this blind conversion causes a
problem when the release is called through the dispatch smart pointer. The IDispatch interface performs
its own release, so the code above calls Release twice—the first time explicitly through the call dispatch-
>Release() and the second time implicitly at the function's closing curly bracket.

In addition, ATL's smart pointers include the implicit cast operator that allows smart pointers to be
assigned to raw pointers. In this case, what's actually happening with the reference count starts to get
confusing.

The bottom line is that while smart pointers make some aspect of client-side COM development more
convenient, they're not foolproof. You still have to have some degree of knowledge about how smart
pointers work if you want to use them safely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Server-Side ATL Programming
We've covered ATL's client-side support. While a fair amount of ATL is devoted to client-side development
aids (such as smart pointers and BSTR wrappers), the bulk of ATL exists to support COM-based servers,
which we'll cover next. First you'll get an overview of ATL in order to understand how the pieces fit
together. Then you'll re-implement the spaceship example in ATL to investigate ATL's Object Wizard and
get a good feel for what it takes to write COM classes using ATL.

ATL and COM Classes

Your job as a COM class developer is to wire up the function tables to their implementations and to make
sure QueryInterface, AddRef, and Release work as advertised. How you get that to happen is your own
business. As far as users are concerned, they couldn't care less what methods you use. You've seen two
basic approaches so far—the raw C++ method using multiple inheritance of interfaces and the MFC
approach using macros and nested classes. The ATL approach to implementing COM classes is somewhat
different from either of these approaches.

Compare the raw C++ approach to MFC's approach. Remember that one way of developing COM classes
using raw C++ involves multiply inheriting a single C++ class from at least one COM interface and then
writing all the code for the C++ class. At that point, you've got to add any extra features (such as
supporting IDispatch or COM aggregation) by hand. The MFC approach to COM classes involves using
macros that define nested classes (with one nested class implementing each interface). MFC supports
IDispatch and COM aggregation—you don't have to do a lot to get those features up and running.
However, it's very difficult to paste any new interfaces onto a COM class without a lot of typing. (As you
saw in Chapter 24, MFC's COM support uses some lengthy macros.)

The ATL approach to composing COM classes requires inheriting a C++ class from several template-based
classes. However, Microsoft has already done the work of implementing IUnknown for you through the
class templates within ATL.

Let's dive right in and create the spaceship example as a COM class. As always, start by selecting New
from the File in Visual C++. This opens the New dialog with the Projects tab activated, as shown in Figure
29-1. Select ATL COM AppWizard from the Projects tab. Give your project a useful name such as
spaceshipsvr, and click OK.

Figure 29-1. Selecting ATL COM AppWizard from the New dialog box.

ATL COM AppWizard Options

In the Step 1 dialog, shown in Figure 29-2, you can choose the server type for your project from a list of
options. The ATL COM AppWizard gives you the choice of creating a Dynamic Link Library (DLL), an
Executable (EXE), or a Service (EXE). If you select the DLL option, the options for attaching the proxy/stub
code to the DLL and for including MFC in your ATL project will be activated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code to the DLL and for including MFC in your ATL project will be activated.

Figure 29-2. Step 1 of the ATL COM AppWizard.

Selecting DLL as the server type produces all the necessary pieces to make your server DLL fit into the
COM milieu. Among these pieces are the following well-known COM functions: DllGetClassObject,
DllCanUnloadNow, DllRegisterServer, and DllUnregisterServer. Also included are the correct server lifetime
mechanisms for a DLL.

If you decide you might want to run your DLL out of process as a surrogate, selecting the Allow Merging Of
Proxy/Stub Code option permits you to package all your components into a single binary file. (Proxy/stub
code has traditionally shipped as a separate DLL.) That way you have to distribute only a single DLL. If you
decide you absolutely must include MFC in your DLL, go ahead and select the Support MFC check box. MFC
support includes AfxWin.h and AfxDisp.h in your StdAfx.h file and links your project to the current version
of MFC's import library. While using MFC can be very convenient and almost addictive at times, beware of
dependencies you're inheriting when you include MFC. You can also select Support MTS to add support for
Microsoft Transaction Server.

If you elect to produce an Executable EXE server, the ATL COM AppWizard produces code that compiles to
an EXE file. The EXE will correctly register the class objects with the operating system by using
CoRegisterClassObject and CoRevokeClassObject. The project will also insert the correct code for managing
the lifetime of the executable server. Finally, if you choose the Service EXE option, the ATL COM
AppWizard adds the necessary service-oriented code.

Using the ATL COM AppWizard to write a lightweight COM server yields several products. First, you get a
project file for compiling your object. The project file ties together all the source code for the project and
maintains the proper build instructions for each of the files. Second, you get some boilerplate Interface
Definition Language (IDL) code. The IDL file is important because as the starting point for genuine COM
development, it's one of the primary files you'll focus on when writing COM classes.

IDL is a purely declarative language for describing COM interfaces. Once a COM interface is described in an
IDL file, a simple pass though the Microsoft Interface Definition Language (MIDL) compiler creates several
more useful products.

These products include:

The pure abstract base classes needed to write COM classes

A type library

Source code for building the proxy stub DLL (necessary for standard COM remoting)

Creating a COM Class

Once you've created a COM server, you're ready to start piling COM classes into the server. Fortunately,
there's an easy way to do that with the ATL Object Wizard, shown in Figure 29-3. Select New ATL Object
from the Insert menu to start the ATL Object Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from the Insert menu to start the ATL Object Wizard.

Using the ATL Object Wizard to generate a new object adds a C++ source file and a header file containing
the new class definition and implementation to your project. In addition, the ATL Object Wizard adds an
interface to the IDL code. Although the ATL Object Wizard takes care of pumping out a skeleton IDL file,
you'll still need to understand IDL to some extent if you want to write effective COM interfaces (as you'll
soon see).

Figure 29-3. Using the ATL Object Wizard to insert a new ATL-based COM class into the project.

After you choose the type of ATL object, click Next to display the ATL Object Wizard Properties dialog.
Depending on which object you choose, the Attributes tab of the ATL Object Wizard Properties dialog
allows you to select the threading model for your COM class, and whether you want a dual (IDispatch-
based) or a custom interface. The dialog also allows you to choose how your class will support aggregation.
In addition, the Object Wizard lets you easily include the ISupportErrorInfo interface and connection points
in your class. Finally, you can aggregate to the Free-Threaded Marshaler if you so choose.

Apartments and Threading

To figure out COM, you have to understand that COM is centered on the notion of abstraction—hiding as
much information as possible from the client. One piece of information that COM hides from the client is
whether COM class is thread-safe. The client should be able to use an object as it sees fit without having to
worry about whether an object properly serializes access to itself—that is, properly protects access to its
internal data. COM defines the notion of an apartment to provide this abstraction.

An apartment defines an execution context, or thread, that houses interface pointers. A thread enters an
apartment by calling a function from the CoInitialize family: CoInitialize, CoInitializeEx, or OleInitialize.
Then COM requires that all method calls to an interface pointer be executed within the apartment that
initialized the pointer (in other words, from the same thread that called CoCreateInstance). COM defines
two kinds of apartments—single-threaded apartments and multithreaded apartments. Single-threaded
apartments can house only one thread while multithreaded apartments can house several threads. While a
process can have only one multithreaded apartment, it can have many single-threaded apartments. An
apartment can house any number of COM objects.

A single-threaded apartment guarantees that COM objects created within it will have method calls
serialized through the remoting layer, while a COM object created within a multithreaded apartment will
not. A helpful way to remember the difference between apartments is to think of it this way: instantiating a
COM object within the multithreaded apartment is like putting a piece of data into the global scope where
multiple threads can get to it. Instantiating a COM object within a single-threaded apartment is like putting
data within the scope of only one thread. The bottom line is that COM classes that want to live in the
multithreaded apartment had better be thread-safe, while COM classes that are satisfied living in their own
apartments need not worry about concurrent access to their data.

A COM object living within a different process space from its client has its method calls serialized
automatically via the remoting layer. However, a COM object living in a DLL might want to provide its own
internal protection (using critical sections, for example) rather than having the remoting layer protect it. A
COM class advertises its thread safety to the world via a Registry setting. This named value lives in the
Registry under the CLSID under HKEY_CLASSES_ROOT like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[HKCR\CLSID\{some GUID …}\InprocServer32]
@="C:\SomeServer.DLL"
ThreadingModel=<thread model>
The ThreadingModel can be one of four values: Single, Both, Free, or Apartment, or it can be blank. ATL
provides support for all current threading models. Here's a rundown of what each value indicates:

Single or blank indicates that the class executes in the main thread only (the first single thread
created by the client).

Both indicates that the class is thread-safe and can execute in both the single-threaded and
multithreaded apartments. This value tells COM to use the same kind of apartment as the client.

Free indicates that the class is thread-safe. This value tells COM to force the object inside the
multithreaded apartment.

Apartment indicates that the class isn't thread-safe and must live in its own single-threaded
apartment.

When you choose a threading model in the ATL Object Wizard, the wizard inserts different code into your
class depending upon your selection. For example, if you select the apartment model, the Object Wizard
derives your class from CComObjectRootEx and includes CComSingleThreadModel as the template
parameter like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
The CComSingleThreadModel template parameter mixes in the more efficient standard increment and
decrement operations for IUnknown (because access to the class is automatically serialized). In addition,
the ATL Object Wizard causes the class to insert the correct threading model value in the Registry. If you
choose the Single option in the ATL Object Wizard, the class uses the CComSingleThreadModel but leaves
the ThreadingModel value blank in the Registry.

Choosing Both or Free causes the class to use the CComMultiThreadModel template parameter, which
employs the thread-safe Win32 increment and decrement operations InterlockedIncrement and
InterlockedDecrement. For example, a free-threaded class definition looks like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx< CComMultiThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
Choosing Both for your threading model inserts Both as the data for the ThreadingModel value, while
choosing Free uses the data value Free for the ThreadingModel value.

Connection Points and ISupportErrorInfo

Adding connection to your COM class is easy. Selecting the Support Connection Points check box causes
the class to derive from IConnectionPointImpl. This option also adds a blank connection map to your class.
Adding connection points (for example, an event set) to your class is simply a matter of performing the
following four steps:

1. Define the callback interface in the IDL file.

2. Use the ATL proxy generator to create a proxy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Use the ATL proxy generator to create a proxy.

3. Add the proxy class to the COM class.

4. Add the connection points to the connection point map.

ATL also includes support for ISupportErrorInfo. The ISupportErrorInfo interface ensures that error
information is propagated up the call chain correctly. OLE Automation objects that use the error-handling
interfaces must implement ISupportErrorInfo. Selecting Support ISupportErrorInfo in the ATL Object
Wizard dialog causes the ATL-based class to derive from ISupportErrorInfoImpl.

The Free-Threaded Marshaler

Selecting the Free Threaded Marshaler option aggregates the COM free-threaded marshaler to your class.
The generated class does this by calling CoCreateFreeThreadedMarshaler in its FinalConstruct function. The
free-threaded marshaler allows thread-safe objects to bypass the standard marshaling that occurs
whenever cross-apartment interface methods are invoked, allowing threads living in one apartment to
access interface methods in another apartment as though they were in the same apartment. This process
speeds up cross-apartment calls tremendously. The free-threaded marshaler does this by implementing
the IMarshal interface. When the client asks the object for an interface, the remoting layer calls
QueryInterface, asking for IMarshal. If the object implements IMarshal (in this case, the object implements
IMarshal because the ATL Object Wizard also adds an entry into the class's interface to handle
QueryInterface requests for IMarshal) and the marshaling request is in process, the free-threaded
marshaler actually copies the pointer into the marshaling packet. That way, the client receives an actual
pointer to the object. The client talks to the object directly without having to go through proxies and stubs.
Of course, if you choose the Free Threaded Marshaler option, all data in your object had better be thread-
safe. Just be very cautious if you check this box.

Implementing the Spaceship Class Using ATL

We'll create the spaceship class using the defaults provided by the ATL Object Wizard in the ATL Object
Wizard Properties dialog. For example, the spaceship class will have a dual interface, so it will be accessible
from environments such as VBScript on a Web page. In addition, the spaceship class will be an apartment
model object, meaning COM will manage most of the concurrency issues. The only information you need to
supply to the ATL Object Wizard is a clever name. Enter a value such as AtlSpaceship in the Short Name
text box on the Names tab.

You don't need to set any of the other options right now. For instance, you don't need to set the Support
Connection Points option because we'll cover connections in the next chapter. You can always add
connection points later by typing them in by hand.

If you tell the ATL Object Wizard to create a Simple Object COM class named ATLSpaceship, here's the
class definition it generates:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
While ATL includes quite a few COM-oriented C++ classes, those listed in the spaceship class's inheritance
list above are enough to get a flavor of how ATL works.

The most generic ATL-based COM objects derive from three base classes: CComObjectRoot, CComCoClass,
and IDispatch. CComObjectRoot implements IUnknown and manages the identity of the class. This means
CComObjectRoot implements AddRef and Release and hooks into ATL's QueryInterface mechanism.
CComCoClass manages the COM class's class object and some general error reporting. In the class
definition above, CComCoClass adds the class object that knows how to create CAtlSpaceship objects.
Finally, the code produced by the ATL Object Wizard includes an implementation of IDispatch based on the
type library produced by compiling the IDL. The default IDispatch is based on a dual interface (which is an
IDispatch interface followed by the functions defined in the IDL).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDispatch interface followed by the functions defined in the IDL).

As you can see, using ATL to implement COM classes is different from using pure C++. The Tao of ATL
differs from what you might be used to when developing normal C++ classes. With ATL, the most
important part of the project is the interfaces, which are described in IDL. By adding functions to the
interfaces in the IDL code, you automatically add functions to the concrete classes implementing the
interfaces. The functions are added automatically because the projects are set up such that compiling the
IDL file yields a C++ header file with those functions. All that's left for you to do after adding the functions
in the interface is to implement those functions in the C++ class. The IDL file also provides a type library
so the COM class can implement IDispatch. However, while ATL is useful for implementing lightweight COM
services and objects, ATL is also a new means by which you can create ActiveX controls, as you'll see in
the next chapter.

Basic ATL Architecture

If you've experimented at all with ATL, you've seen how it simplifies the process of implementing COM
classes. The tool support is quite good—it's almost as easy to develop COM classes using Visual C++ 6.0
as it is to create MFC-based programs. Just use AppWizard to create a new ATL-based class. However,
instead of using ClassWizard (as you would to handle messages and to add dialog box member variables),
use ClassView to add new function definitions to an interface. Then simply fill in the functions within the
C++ code generated by ClassView. The code generated by AppWizard includes all the necessary code for
implementing your class, including an implementation of IUnknown, a server module to house your COM
class, and a class object that implements IClassFactory.

Writing COM objects as we've just described is certainly more convenient than most other methods. But
exactly what happens when you use the AppWizard to generate the code for you? Understanding how ATL
works is important if you want to extend your ATL-based COM classes and servers much beyond what
AppWizard and ClassView provide. For example, ATL provides support for advanced interface techniques
such as tear-off interfaces. Unfortunately, there's no Wizard option for implementing a tear-off interface.
Even though ATL supports it, you've got to do a little work by hand to accomplish the tear-off interface.
Understanding how ATL implements IUnknown is helpful in this situation.

Let's examine the CAtlSpaceship class in a bit more detail. Here's the entire definition:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>
{
public:
 CAtlSpaceship()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_ATLSPACESHIP)

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

// IAtlSpaceship
public:
};
While this is ordinary vanilla C++ source code, it differs from normal everyday C++ source code for
implementing a COM object in several ways. For example, while many COM class implementations derive
strictly from COM interfaces, this COM class derives from several templates. In addition, this C++ class
uses several odd-looking macros. As you examine the code, you'll see ATL's implementation of IUnknown,
as well as a few other interesting topics, such as a technique for managing vtable bloat and an uncommon
use for templates. Let's start by taking a look at the first symbol in the wizard-generated macro code:
ATL_NO_VTABLE.

Managing VTBL Bloat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managing VTBL Bloat

COM interfaces are easily expressed in C++ as pure abstract base classes. Writing COM classes using
multiple inheritance (there are other ways to write COM classes) is merely a matter of adding the COM
interface base classes to your inheritance list and implementing the union of all the functions. Of course,
this means that the memory footprint of your COM server will include a significant amount of vtable
overhead for each interface implemented by your class. That's not a big deal if you have only a few
interfaces and your C++ class hierarchy isn't very deep. However, implementing interfaces this way does
add overhead that tends to accumulate as interfaces are added and hierarchies deepen. ATL provides a
way to cut down on some of the overhead introduced by a lot of virtual functions. ATL defines the following
symbol:

#define ATL_NO_VTABLE __declspec(novtable)
Using ATL_NO_VTABLE prevents an object's vtable (vtable) from being initialized in the constructor,
thereby eliminating from the linker the vtable and all the functions pointed to by the vtable for that class.
This elimination can lower the size of your COM server somewhat, provided the most-derived class does
not use the novtable declspec shown above. You'll notice the size difference in classes with deep derivation
lists. One caveat, however: calling virtual functions from the constructor of any object that uses this
declspec is unsafe because vptr is uninitialized.

The second line in the class declaration previously shown demonstrates that CAtlSpaceship derives from
CComObjectRootEx. This is where you get to ATL's version of IUnknown.

ATL's IUnknown: CComObjectRootEx

While CComObjectRootEx isn't quite at the top of the ATL hierarchy, it's pretty close. The actual base class
for a COM object in ATL is a class named CComObjectRootBase. (Both class definitions are located in
ATLCOM.H.) Looking at CComObjectRootBase reveals the code you might expect for a C++ based COM
class. CComObjectRootBase includes a DWORD member named m_dwRef for reference counting. You'll
also see OuterAddRef, OuterRelease, and OuterQueryInterface to support COM aggregation and tear-off
interfaces. Looking at CComObjectRootEx reveals InternalAddRef, InternalRelease, and
InternalQueryInterface for performing the regular native reference counting, and QueryInterface
mechanisms for class instances with object identity.

Notice that CAtlSpaceship's definition shows that the class is derived from CComObjectRootEx and that
CComObjectRootEx is a parameterized template class. The listing below shows the definition of
CComObjectRootEx.

template <class ThreadModel>
class CComObjectRootEx : public CComObjectRootBase
{
public:
 typedef ThreadModel _ThreadModel;
 typedef _ThreadModel::AutoCriticalSection _CritSec;
 typedef CComObjectLockT<_ThreadModel> ObjectLock;

 ULONG InternalAddRef() {
 ATLASSERT(m_dwRef != -1L);
 return _ThreadModel::Increment(&m_dwRef);
 }
 ULONG InternalRelease() {
 ATLASSERT(m_dwRef > 0);
 return _ThreadModel::Decrement(&m_dwRef);
 }

 void Lock() {m_critsec.Lock();}
 void Unlock() {m_critsec.Unlock();}
private:
 _CritSec m_critsec;
};
CComObjectRootEx is a template class that varies in type based on the kind of threading model class
passed in as the template parameter. In fact, ATL supports several threading models: Single-Threaded
Apartments (STAs), Multi-Threaded Apartments (MTAs), and Free Threading. ATL includes three
preprocessor symbols for selecting the various default threading models for your project:
_ATL_SINGLE_THREADED, _ATL_APARTMENT_THREADED, and _ATL_FREE_THREADED.

Defining the preprocessor symbol _ATL_SINGLE_THREADED in stdafx.h changes the default threading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defining the preprocessor symbol _ATL_SINGLE_THREADED in stdafx.h changes the default threading
model to support only one STA-based thread. This option is useful for out-of-process servers that don't
create any extra threads. Because the server supports only one thread, ATL's global state can remain
unprotected by critical sections and the server is therefore more efficient. The downside is that your server
can support only one thread. Defining _ATL_APARTMENT_THREADED for the preprocessor causes the
default threading model to support multiple STA-based threads. This is useful for apartment model in-
process servers (servers supporting the ThreadingModel=Apartment Registry value). Because a server
employing this threading model can support multiple threads, ATL protects its global state using critical
sections. Finally, defining the _ATL_FREE_THREADED preprocessor symbol creates servers compatible with
any threading environment. That is, ATL protects its global state using critical sections, and each object in
the server will have its own critical sections to maintain data safety.

These preprocessor symbols merely determine which threading class to plug into CComObjectRootEx as a
template parameter. ATL provides three threading model classes. The classes provide support for the most
efficient yet thread-safe behavior for COM classes within each of the three contexts listed above. The three
classes are CComMultiThreadModelNoCS, CComMultiThreadModel, and CComSingleThreadModel. The
following listing shows the three threading model classes within ATL:

class CComMultiThreadModelNoCS
{
public:
 static ULONG WINAPI Increment(LPLONG p)
 {return InterlockedIncrement(p);}
 static ULONG WINAPI Decrement(LPLONG p)
 {return InterlockedDecrement(p);}
 typedef CComFakeCriticalSection AutoCriticalSection;
 typedef CComFakeCriticalSection CriticalSection;
 typedef CComMultiThreadModelNoCS ThreadModelNoCS;
};

class CComMultiThreadModel
{
public:
 static ULONG WINAPI Increment(LPLONG p)
 {return InterlockedIncrement(p);}
 static ULONG WINAPI Decrement(LPLONG p)
 {return InterlockedDecrement(p);}
 typedef CComAutoCriticalSection AutoCriticalSection;
 typedef CComCriticalSection CriticalSection;
 typedef CComMultiThreadModelNoCS ThreadModelNoCS;
};

class CComSingleThreadModel
{
public:
 static ULONG WINAPI Increment(LPLONG p) {return ++(*p);}
 static ULONG WINAPI Decrement(LPLONG p) {return --(*p);}
 typedef CComFakeCriticalSection AutoCriticalSection;
 typedef CComFakeCriticalSection CriticalSection;
 typedef CComSingleThreadModel ThreadModelNoCS;
};
Notice that each of these classes exports two static functions—Increment and Decrement—and various
aliases for critical sections.

CComMultiThreadModel and CComMultiThreadModelNoCS both implement Increment and Decrement using
the thread-safe Win32 InterlockedIncrement and InterlockedDecrement functions.
CComSingleThreadModel implements Increment and Decrement using the more conventional ++ and --
operators.

In addition to implementing incrementing and decrementing differently, the three threading models also
manage critical sections differently. ATL provides wrappers for two critical sections—a CComCriticalSection
(which is a plain wrapper around the Win32 critical section API) and CComAutoCriticalSection (which is the
same as CComCriticalSection with the addition of automatic initialization and cleanup of critical sections).
ATL also defines a "fake" critical section class that has the same binary signature as the other critical
section classes but doesn't do anything. As you can see from the class definitions, CComMultiThreadModel
uses real critical sections while CComMultiThreadModelNoCS and CComSingleThreadModel use the fake no-
op critical sections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

op critical sections.

So now the minimal ATL class definition makes a bit more sense. CComObjectRootEx takes a thread model
class whenever you define it. CAtlSpaceship is defined using the CComSingleThreadModel class, so it uses
the CComSingleThreadModel methods for incrementing and decrementing as well as the fake no-op critical
sections. Thus CAtlSpaceship uses the most efficient behavior since it doesn't need to worry about
protecting data. However, you're not stuck with that model. If you want to make CAtlSpaceship safe for
any threading environment, for example, simply redefine CAtlSpaceship to derive from CComObjectRootEx
using CComMultiThreadModel as the template parameter. AddRef and Release calls are automatically
mapped to the correct Increment and Decrement functions.

ATL and QueryInterface

It looks as though ATL took a cue from MFC for implementing QueryInterface—ATL uses a lookup table just
like MFC's version. Take a look at the middle of CAtlSpaceship's definition—you'll see a construct based on
macros called the interface map. ATL's interface maps constitute its QueryInterface mechanism.

Clients use QueryInterface to arbitrarily widen the connection to an object. That is, when a client needs a
new interface, it calls QueryInterface through an existing interface. The object then looks at the name of
the requested interface and compares that name to all the interfaces implemented by the object. If the
object implements the interface, the object hands the interface back to the client. Otherwise,
QueryInterface returns an error indicating that no interface was found.

Traditional QueryInterface implementations usually consist of long if-then statements. For example, a
standard implementation of QueryInterface for a multiple-inheritance COM class might look like this:

class CAtlSpaceship: public IDispatch,
 IAtlSpaceship {
 HRESULT QueryInterface(RIID riid,
 void** ppv) {
 if(riid == IID_IDispatch)
 ppv = (IDispatch) this;
 else if(riid == IID_IAtlSpaceship ||
 riid == IID_IUnknown)
 *ppv = (IAtlSpaceship *) this;
 else {
 *ppv = 0;
 return E_NOINTERFACE;
 }

 ((IUnknown*)(*ppv))->AddRef();
 return NOERROR;
 }
 // AddRef, Release, and other functions
};
As you'll see in a moment, ATL uses a lookup table instead of this conventional if-then statement.

ATL's lookup table begins with a macro named BEGIN_COM_MAP. The listing below shows the full definition
of BEGIN_COM_MAP.

#define BEGIN_COM_MAP(x) public:
 typedef x _ComMapClass;
 static HRESULT WINAPI _Cache(void* pv,
 REFIID iid,
 void** ppvObject,
 DWORD dw) {
 _ComMapClass* p = (_ComMapClass*)pv;
 p->Lock();
 HRESULT hRes =
 CComObjectRootBase::_Cache(pv,
 iid,
 ppvObject,
 dw);
 p->Unlock();
 return hRes;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 IUnknown* GetRawUnknown() {
 ATLASSERT(_GetEntries()[0].pFunc ==
 _ATL_SIMPLEMAPENTRY);
 return (IUnknown*)((int)this+_GetEntries()->dw);
 }
 _ATL_DECLARE_GET_UNKNOWN(x)
 HRESULT _InternalQueryInterface(REFIID iid,
 void** ppvObject) {
 return InternalQueryInterface(this,
 _GetEntries(),
 iid,
 ppvObject);
 }
 const static _ATL_INTMAP_ENTRY* WINAPI _GetEntries() {
 static const _ATL_INTMAP_ENTRY _entries[] = {
 DEBUG_QI_ENTRY(x)
 .
 .
 .
 #define END_COM_MAP() {NULL, 0, 0}};\
 return _entries;}
Each class that uses ATL for implementing IUnknown specifies an interface map to provide to
InternalQueryInterface. ATL's interface maps consist of structures containing interface ID
(GUID)/DWORD/function pointer tuples. The following listing shows the type named _ATL_INTMAP_ENTRY
that contains these tuples.

struct _ATL_INTMAP_ENTRY {
 const IID* piid;
 DWORD dw;
 _ATL_CREATORARGFUNC* pFunc;
};
The first member is the interface ID (a GUID), and the second member indicates what action to take when
the interface is queried. There are three ways to interpret the third member. If pFunc is equal to the
constant _ATL_SIMPLEMAPENTRY (the value 1), dw is an offset into the object. If pFunc is non-null but not
equal to 1, pFunc indicates a function to be called when the interface is queried. If pFunc is NULL, dw
indicates the end of the QueryInterface lookup table.

Notice that CAtlSpaceship uses COM_INTERFACE_ENTRY. This is the interface map entry for regular
interfaces. Here's the raw macro:

#define offsetofclass(base, derived)
((DWORD)(static_cast<base*>((derived*)8))-8)

#define COM_INTERFACE_ENTRY(x)\
 {&_ATL_IIDOF(x), \
 offsetofclass(x, _ComMapClass), \
 _ATL_SIMPLEMAPENTRY}
COM_INTERFACE_ENTRY fills the _ATL_INTMAP_ENTRY structure with the interface's GUID. In addition,
notice how offsetofclass casts the this pointer to the right kind of interface and fills the dw member with
that value. Finally, COM_INTERFACE_ENTRY fills the last field with _ATL_SIMPLEMAPENTRY to indicate that
dw points to an offset into the class.

For example, the interface map for CAtlSpaceship looks like this after the preprocessor is done with it:

const static _ATL_INTMAP_ENTRY* _
_stdcall _GetEntries() {
 static const _ATL_INTMAP_ENTRY _entries[] = {
 {&IID_IAtlSpaceship,
 ((DWORD)(static_cast< IAtlSpaceship*>((_ComMapClass*)8))-8),
 ((_ATL_CREATORARGFUNC*)1)},
 {&IID_IDispatch,
 ((DWORD)(static_cast<IDispatch*>((_ComMapClass*)8))-8),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ((DWORD)(static_cast<IDispatch*>((_ComMapClass*)8))-8),
 ((_ATL_CREATORARGFUNC*)1)},
 {0, 0, 0}
 };
 return _entries;
}
Right now, the CAtlSpaceship class supports two interfaces—IAtlSpaceship and IDispatch, so there are only
two entries in the map.

CComObjectRootEx's implementation of InternalQueryInterface uses the _GetEntries function as the
second parameter. CComObjectRootEx::InternalQueryInterface uses a global ATL function named
AtlInternalQueryInterface to look up the interface in the map. AtlInternalQueryInterface simply walks
through the map trying to find the interface.

In addition to COM_INTERFACE_ENTRY, ATL includes 16 other macros for implementing composition
techniques ranging from tear-off interfaces to COM aggregation. Now you'll see what it takes to beef up
the IAtlSpaceship interface and add those two other interfaces, IMotion and IVisual. You'll also learn about
the strange COM beast known as a dual interface.

Making the Spaceship Go

Now that you've got some ATL code staring you in the face, what can you do with it? This is COM, so the
place to start is in the IDL file. Again, if you're a seasoned C++ developer, this is a new aspect of software
development you're probably not used to. Remember that these days, software distribution and integration
are becoming very important. You've been able to get away with hacking out C++ classes and throwing
them into a project together because you (as a developer) know the entire picture. However, component
technologies (like COM) change that. You as a developer no longer know the entire picture. Often you have
only a component—you don't have the source code for the component. The only way to know how to talk
to a component is through the interfaces it exposes.

Keep in mind that modern software developers use many different tools—not just C++. You've got Visual
Basic developers, Java developers, Delphi developers, and C developers. COM is all about making the
edges line up so that software pieces created by these various components can all integrate smoothly
when they come together. In addition, distributing software remotely (either out-of-process on the same
machine or even to a different machine) requires some sort of inter-process communication. That's why
there's Interface Definition Language (IDL). Here's the default IDL file created by the ATL wizards with the
new spaceship class:

import "oaidl.idl";
import "ocidl.idl";
 [
 object,
 uuid(A9D750E1-51A1-11D1-8CAA-FD10872CC837),
 dual,
 helpstring("IAtlSpaceship Interface"),
 pointer_default(unique)
]
 interface IAtlSpaceship : IDispatch
 {
 };

[
 uuid(A0736061-50DF-11D1-8CAA-FD10872CC837),
 version(1.0),
 helpstring("spaceshipsvr 1.0 Type Library")
]
library SPACESHIPSVRLib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 [
 uuid(A9D750E2-51A1-11D1-8CAA-FD10872CC837),
 helpstring("AtlSpaceship Class")
]
 coclass AtlSpaceship

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 coclass AtlSpaceship
 {
 [default] interface IAtlSpaceship;
 };
};
The key concept involved here is that IDL is a purely declarative language. This language defines how
other clients will talk to an object. Remember—you'll eventually run this code through the MIDL compiler to
get a pure abstract base class (useful for C++ clients) and a type library (useful for Visual Basic and Java
clients as well as others). If you understand plain C code, you're well on your way to understanding IDL.
You might think of IDL as C with footnotes. The syntax of IDL dictates that attributes will always precede
what they describe. For example, attributes precede items such as interface declarations, library
declarations, and method parameters.

If you look at the IDL file, you'll notice that it begins by importing oaidl.idl and ocidl.idl. Importing these
files is somewhat akin to including windows.h inside one of your C or C++ files. These IDL files include
definitions for all of the basic COM infrastructures (including definitions for IUnknown and IDispatch).

An open square bracket ([) follows the import statement. In IDL, square brackets always enclose
attributes. The first element described in this IDL file is the IAtlSpaceship interface. However, before you
can describe the interface, you need to apply some attributes to it. For example, it needs a name (a
GUID), and you need to tell the MIDL compiler that this interface is COM-oriented rather than being used
for standard RPC and that this is a dual interface (more on dual interfaces shortly). Next comes the actual
interface itself. Notice how it appears very much like a normal C structure.

Once the interfaces are described in IDL, it is often useful to collect this information into a type library,
which is what the next section of the IDL file does. Notice the type library section also begins with an open
square bracket, designating that attributes are to follow. As always, the type library is a discrete "thing" in
COM and as such requires a name (GUID). The library statement tells the MIDL compiler that this library
includes a COM class named AtlSpaceship and that clients of this class can acquire the IAtlSpaceship
interface.

Adding Methods to an Interface

Right now the IAtlSpaceship interface is pretty sparse. It looks like it could use a method or two. Let's add
one. Notice that Visual C++ now extends ClassView to include COM interfaces. (You can tell they're COM
interfaces because of the little lollipop next to the symbol.) Notice also that CAtlSpaceship de- rives from
something named IAtlSpaceship. IAtlSpaceship is, of course, a COM interface. Double-clicking on
IAtlSpaceship in the ClassView brings that specific section of the IDL into the editor window, as shown in
Figure 29-4.

Figure 29-4. Interfaces in ClassView.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-4. Interfaces in ClassView.

At this point, you could begin typing the COM interface into the IDL file. If you add functions and methods
this way (straight into the IDL file), you'll have to touch the AtlSpaceship.h and AtlSpaceship.cpp files and
insert the methods by hand. A more effective way to add functions to the interface is through the
ClassView. To edit the IDL through the ClassView, simply right-click the mouse on the interface within
ClassView. Two items that appear in the context menu are Add Method and Add Property. Let's add a
method named CallStarFleet. Figure 29-5 shows the dialog box that appears when adding a method.

To add a method, simply type the name of the method into the Method Name text box. Then type the
method parameters into the Parameters text box. Here's where it helps to understand a little bit about
IDL.

Figure 29-5. Adding a method to an interface.

Remember that IDL's purpose is to provide completely unambiguous information about how methods can
be invoked. In the standard C++ world, you could often get away with ambiguities like open-ended arrays
because the caller and the callee shared the same stack frame—there was always a lot of wiggle room
available. Now that method calls might eventually go over the wire, it's important to tell the remoting layer
exactly what to expect when it encounters a COM interface. This is done by applying attributes to the
method parameters (more square brackets).

The method call shown in Figure 29-5 (CallStartFleet) has two parameters in its list—a floating point
number indicating the stardate and a BSTR indicating who received the communication. Notice that the
method definition spells out the parameter direction. The stardate is passed into the method call,
designated by the [in] attribute. A BSTR identifying the recipient is passed back as a pointer to a BSTR.
The [out] attribute indicates the direction of the parameter is from the object back to the client. The
[retval] attribute indicates that you can assign the result of this method to a variable in higher languages
supporting this feature.

Dual Interfaces

If you read through Chapter 25, you had a chance to see the IDispatch interface. IDispatch makes it
possible to expose functionality (at the binary level) to environments such as VBScript that don't have a
clue about vtables. For IDispatch to work, the client has to go through a lot of machinations before it can
call Invoke. The client first has to acquire the invocation tokens. Then the client has to set up the VARIANT
arguments. On the object side, the object has to decode all those VARIANT parameters, make sure they're
correct, put them on some sort of stack frame, and then make the function call. As you can imagine, all
this work is complex and time-consuming. If you're writing a COM object and you expect some of your
clients to use scripting languages and other clients to use languages like C++, you've got a dilemma.
You've got to include IDispatch or you lock your scripting language clients out. If you provide only
IDispatch, you make accessing your object from C++ very inconvenient. Of course, you can provide access
through both IDispatch and a custom interface, but that involves a lot of bookkeeping work. Dual
interfaces evolved to handle this problem.

A dual interface is simply IDispatch with functions pasted onto the end. For example, the IMotion interface
described below is a valid dual interface:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface IMotion : public IDispatch {
 virtual HRESULT Fly() = 0;
 virtual HRESULT GetPosition() = 0;
};
Because IMotion derives from IDispatch, the first seven functions of IMotion are those of IDispatch. Clients
who understand only IDispatch (VBScript for instance) look at the interface as just another version of
IDispatch and feed DISPIDs to the Invoke function in the hopes of invoking a function. Clients who
understand vtable-style custom interfaces look at the entire interface, ignore the middle four functions (the
IDispatch functions), and concentrate on the first three functions (IUnknown) and the last three functions
(the ones that represent the interface's core functions). Figure 29-6 shows the vtable layout of IMotion.

Most raw C++ implementations load the type library right away and delegate to ITypeInfo to perform the
nasty task of implementing Invoke and GetIDsOfNames. To get an idea of how this works, see Kraig
Brockschmidt's book Inside OLE, 2d. ed. (Microsoft Press, 1995) or Dale Rogerson's book Inside COM
(Microsoft Press, 1997).

Figure 29-6.

The layout of a dual interface.

ATL and IDispatch

ATL's implementation of IDispatch delegates to the type library. ATL's implementation of IDispatch lives in
the class IDispatchImpl. Objects that want to implement a dual interface include the IDispatchImpl
template in the inheritance list like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IVisual, &IID_IVisual,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
In addition to including the IDispatchImpl template class in the inheritance list, the object includes entries
for the dual interface and for IDispatch in the interface map so that QueryInterface works properly:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END_COM_MAP()
As you can see, the IDispatchImpl template class arguments include the dual interface itself, the GUID for
the interface, and the GUID representing the type library holding all the information about the interface. In
addition to these template arguments, the IDispatchImpl class has some optional parameters not
illustrated in Figure 29-6. The template parameter list also includes room for a major and minor version of
the type library. Finally, the last template parameter is a class for managing the type information. ATL
provides a default class named CComTypeInfoHolder.

In most raw C++ implementations of IDispatch, the class calls LoadTypeLib and
ITypeLib::GetTypeInfoOfGuid in the constructor and holds on to the ITypeInfo pointer for the life of the
class. ATL's implementation does things a little differently by using the CComTypeInfoHolder class to help
manage the ITypeInfo pointer. CComTypeInfoHolder maintains an ITypeInfo pointer as a data member and
wraps the critical IDispatch-related functions GetIDsOfNames and Invoke.

Clients acquire the dual interface by calling QueryInterface for IID_IAtlSpaceship. (The client can also get
this interface by calling QueryInterface for IDispatch.) If the client calls CallStartFleet on the interface, the
client accesses those functions directly (as for any other COM interface).

When a client calls IDispatch::Invoke, the call lands inside IDispatchImpl's Invoke function as you'd
expect. From there, IDispatchImpl::Invoke delegates to the CComTypeInfoHolder class to perform the
invocation, CComTypeInfoHolder's Invoke. The CComTypeInfoHolder class doesn't call LoadTypeLib until
an actual call to Invoke or GetIDsOfNames. CComTypeInfoHolder has a member function named GetTI that
consults the Registry for the type information (using the GUID and any major/minor version numbers
passed in as a template parameter). Then CComTypeInfoHolder calls ITypeLib::GetTypeInfo to get the
information about the interface. At that point, the type information holder delegates to the type
information pointer. IDispatchImpl implements IDispatch::GetIDsOfNames in the same manner.

The IMotion and IVisual Interfaces

To get this COM class up to snuff with the other versions (the raw C++ version and the MFC version
described in Chapter 24), you need to add the IMotion and IVisible interfaces to the project and to the
class. Unfortunately, at the present time the only way to get this to happen is by typing the interfaces in
by hand (the ATL AppWizard gives you only one interface by default). Open the IDL file and position the
cursor near the top (somewhere after the #import statements but before the library statement), and start
typing interface definitions as described in the following paragraph.

Once you get the hang of IDL, your first instinct when describing an interface should be to insert an open
square bracket. Remember that in IDL, distinct items get attributes. One of the most important attributes
for an interface is the name, or the GUID. In addition, at the very least the interface has to have the object
attribute to tell the MIDL compiler you're dealing with COM at this point (as opposed to regular RPC). You
also want these interfaces to be dual interfaces. The keyword "dual" in the interface attributes indicates
this and inserts certain Registry entries to get the universal marshaling working correctly. After the
attributes are closed off with a closing square bracket, the interface keyword kicks in to describe the
interface. You'll make IMotion a dual interface and IVisual a plain custom interface to illustrate how the two
different types of interfaces are attached to the CSpaceship class. Here are the IMotion and IVisible
interfaces described in IDL:

 [
 object,
 uuid(97B5C101-5299-11d1-8CAA-FD10872CC837),
 dual,
 helpstring("IMotion interface")
]
 interface IMotion : IDispatch
 {
 HRESULT Fly();
 HRESULT GetPosition([out,retval]long* nPosition);
 };

 [
 object,
 uuid(56F58464-52A4-11d1-8CAA-FD10872CC837),
 helpstring("IVisual interface")
]
 interface IVisual : IUnknown
 {
 HRESULT Display();
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 };
Once the interfaces are described in IDL, you run the IDL through the MIDL compiler again. The MIDL
compiler spits out a new copy of spaceshipsvr.h with the pure abstract base classes for IMotion and
IVisual.

Now you need to add these interfaces to the CSpaceship class. There are two steps here. The first step is
to create the interface part of the COM class's identity. Let's do the IMotion interface first. Adding the
IMotion interface to CSpaceship is easy. Just use the IDispatchImpl template to provide an implementation
of a dual interface like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>
{
.
.
.
};
The second step involves beefing up the interface map so the client can acquire the IMotion interface.
However, having two dual interfaces in a single COM class brings up an interesting issue. When a client
calls QueryInterface for IMotion, the client should definitely get IMotion. However, when the client calls
QueryInterface for IDispatch, which version of IDispatch should the client get—IAtlSpaceship's dispatch
interface or IMotion's dispatch interface?

Multiple Dual Interfaces

Remember that all dual interfaces begin with the seven functions of IDispatch. A problem occurs whenever
the client calls QueryInterface for IID_IDispatch. As a developer, you need to choose which version of
IDispatch to pass out.

The interface map is where the QueryInterface for IID_IDispatch is specified. ATL has a specific macro for
handling the dual interface situation. First consider the interface map for CAtlSpaceship so far:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()
When the client calls QueryInterface, ATL rips through the table trying to match the requested IID to one
in the table. The interface map above handles two interfaces: IAtlSpaceship and IDispatch. If you want to
add another dual interface to the CAtlSpaceship class, you need a different macro.

The macro handling multiple dispatch interfaces in an ATL-based COM class is named
COM_INTERFACE_ENTRY2. To get QueryInterface working correctly, all you need to do is decide which
version of IDispatch the client should get when asking for IDispatch, like this:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IMotion)
 COM_INTERFACE_ENTRY2(IDispatch, IAtlSpaceship)
END_COM_MAP()
In this case, a client asking for IDispatch gets a pointer to IAtlSpaceship (whose first seven functions
include the IDispatch functions).

Adding a nondual interface to an ATL-based COM class is even easier. Just add the interface to the
inheritance list like this:

class ATL_NO_VTABLE CAtlSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAtlSpaceship, &CLSID_AtlSpaceship>,
 public IDispatchImpl<IAtlSpaceship, &IID_IAtlSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>,
 public IVisual
{
.
.
.
};
Then add an interface map entry like this:

BEGIN_COM_MAP(CAtlSpaceship)
 COM_INTERFACE_ENTRY(IAtlSpaceship)
 COM_INTERFACE_ENTRY(IMotion)
 COM_INTERFACE_ENTRY2(IDispatch, IAtlSpaceship)
 COM_INTERFACE_ENTRY(IVisual)
END_COM_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
There are a couple of key points in this chapter to remember. COM is a binary object model. Clients and
objects agree on a binary layout (the interface). Once both parties agree on the layout, they talk together
via the interface. The client is not at all concerned about how that interface is actually wired up. As long as
the functions work as advertised, the client is happy. There are a number of ways to hook up COM
interfaces, including multiply inheriting a single C++ class from several interfaces, using nested classes, or
using a framework such as ATL.

ATL is Microsoft's framework for assembling small COM classes. ATL has two sides—some smart pointers to
help with client-side coding and a complete framework for implementing COM classes. ATL implements
IUnknown, IDispatch, and IClassFactory in templates provided through the library. In addition, ATL
includes a wizard for helping you get started with a COM server and a wizard for inserting COM classes into
your project.

While ATL does a lot for you, it doesn't completely excuse you from learning the basics of how COM works.
In fact, you'll be able to use ATL a lot more efficiently once you understand COM. In the next chapter, we'll
take a look at how to use ATL to write ActiveX controls effectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 30
ATL and ActiveX Controls
If you've finished reading about COM and ATL and still wonder how COM fits into your day-to-day
programming activities, you're not alone. Figuring out how to use COM in real life isn't always obvious at
first glance. After all, a whole lot of extra code must be typed in just to get a COM object up and running.
However, there's a very real application of COM right under your nose —ActiveX Controls. ActiveX controls
are small gadgets (usually UI-oriented) written around the Component Object Model.

In Chapter 29, you examined COM classes created by using ATL. In this chapter, you'll learn how to write a
certain kind of COM class—an ActiveX control. You had a chance to work with ActiveX Controls from the
client side in Chapter 8. Now it's time to write your own.

There are several steps involved in creating an ActiveX control using ATL, including:

Deciding what to draw

Developing incoming interfaces for the control

Developing outgoing interfaces (events) for the control

Implementing a persistence mechanism for the control

Providing a user interface for manipulating the control's properties

This chapter covers all these steps. Soon you'll be able to use ATL to create ActiveX controls that you (or
other developers) can use within other programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls
Even today, there's some confusion as to what really constitutes an ActiveX control. In 1994, Microsoft
tacked some new interfaces onto its Object Linking and Embedding protocol, packaged them within DLLs,
and called them OLE Controls. Originally, OLE Controls implemented nearly the entire OLE Document
embedding protocol. In addition, OLE Controls supported the following:

Dynamic invocation (Automation)

Property pages (so the user could modify the control's properties)

Outbound callback interfaces (event sets)

Connections (a standard way to for clients and controls to hook up the event callbacks)

When the Internet became a predominant factor in Microsoft's marketing plans, Microsoft announced its
intention to plant ActiveX Controls on Web pages. At that point, the size of these components became an
issue. Microsoft took its OLE Control specification, changed the name from OLE Controls to ActiveX
Controls, and stated that all the features listed above were optional. This means that under the new
ActiveX Control definition, a control's only requirement is that it be based on COM and that it implement
IUnknown. Of course, for a control to be useful it really needs to implement most of the features listed
above. So in the end, ActiveX Controls and OLE Controls refer to more or less the same animal.

Developers have been able to use MFC to create ActiveX controls since mid-1994. However, one of the
downsides of using MFC to create ActiveX controls is that the controls become bound to MFC. Sometimes
you want your controls to be smaller or to work even if the end user doesn't have the MFC DLLs on his or
her system. In addition, using MFC to create ActiveX controls forces you into making certain design
decisions. For example, if you decide to use MFC to write an ActiveX control, you more or less lock yourself
out of using dual interfaces (unless you feel like writing a lot of extra code). Using MFC to create ActiveX
controls also means the control and its property pages need to use IDispatch to communicate between
themselves.

To avoid the problems described so far, developers can now use ATL to create ActiveX controls. ATL now
includes the facilities to create full-fledged ActiveX controls, complete with every feature an ActiveX control
should have. These features include incoming interfaces, persistent properties, property pages, and
connection points. If you've ever written an ActiveX control using MFC, you'll see how much more flexible
using ATL can be.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using ATL to Write a Control
Although creating an ActiveX control using ATL is actually a pretty straightforward process, using ATL ends
up being a bit more burdensome than using MFC. That's because ATL doesn't include all of MFC's
amenities. For example, ATL doesn't include device context wrappers. When you draw on a device context,
you need to use the raw device context handle. In addition, ClassWizard doesn't understand ATL-based
source code, so when you want your control to handle messages, you end up using the "TypingWizard".
(That is, you end up typing the message maps in by hand.)

Despite these issues, creating an ActiveX control using ATL is a whole lot easier than creating one from
scratch. Also, using ATL gives you a certain amount of flexibility you don't get when you use MFC. For
example, while adding dual interfaces to your control is a tedious process with MFC, you get them for free
when you use ATL. The ATL COM Object Wizard also makes adding more COM classes (even noncontrol
classes) to your project very easy, while adding new controls to an MFC-based DLL is a bit more difficult.

For this chapter's example, we'll represent a small pair of dice as an ATL-based ActiveX control. The dice
control will illustrate the most important facets of ActiveX Controls, including control rendering, incoming
interfaces, properties, property pages, and events.

Creating the Control

As always, the easiest way to create a COM server in ATL is to use the ATL COM Object Wizard. To use the
ATL COM Object Wizard, select New from the File menu. Select the Project tab in the New dialog, and
highlight the ATL COM AppWizard item. Name the project something clever like ATLDiceSvr. As you step
through AppWizard, just leave the defaults checked. Doing so will ensure that the server you create is a
DLL.

Once the DLL server has been created, perform the following steps:

1. Select New ATL Object from the Insert menu to insert a new ATL object into the project.

2. In the ATL Object Wizard, select Controls from the Category list and then select Full Control from
the Objects list.

3. Click Next to open the ATL Object Wizard Properties dialog. In the Short Name text box on the
Names tab, give the control some clever name (like ATLDiceOb). The dialog box should look similar
to Figure 30-1.

Figure 30-1. The ATL Object Wizard Properties dialog box.

4. Select the Attributes tab. Here's where you configure the control. For example, you can
Designate the threading model for the control

Decide whether the main interface is a dual or custom interface

Indicate whether your control supports aggregation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Choose whether you want to use COM exceptions and connection points in your control

5. To make your life easier for now, select Support Connection Points. (This will save you some typing
later on.) Leave everything else as the default value. Figure 30-2 shows what the Attributes tab on
the ATL Object Wizard Properties dialog box looks like now.

6. Select the Miscellaneous tab. Here you have the option of applying some miscellaneous traits to
your control. For example, you can give the control behaviors based on regular Microsoft Windows
controls such as buttons and edit controls. You might also select other options for your control, such
as having your control appear invisible at runtime or giving your control an opaque background.
Figure 30-3 shows the available options.

Figure 30-2. The Attributes tab on the ATL Object Wizard Properties dialog box.

Figure 30-3. The Miscellaneous control properties tab on the ATL Object Wizard Properties dialog
box.

7. Finally, select the Stock Properties tab if you want to give your control some stock properties. Stock
properties are those properties that you might expect any control to have, including background
colors, border colors, foreground colors, and a caption. Figure 30-4 shows the Stock Properties tab.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-4. The Stock Properties tab on the ATL Object Wizard Properties dialog box.

8. When you've finished selecting the attributes for the control, click OK.

The ATL Object Wizard adds a header file and a source file defining the new control. In addition, the
ATL Object Wizard sets aside space in the IDL file to hold the control's main interface and assigns a
GUID to the interface. Here's the C++ definition of the control produced by the ATL Object Wizard:

class ATL_NO_VTABLE CATLDiceObjj :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IDispatchImpl<IATLDieceObj,
 &IID_IATLDieceObj,
 &LIBID_ATLDICESVRLib>,
 public CComControl<CATLDiceObj>,
 public IPersistStreamInitImpl<CATLDiceObj>,
 public IOleControlImpl<CATLDiceObj>,
 public IOleObjectImpl<CATLDiceObj>,
 public IOleInPlaceActiveObjectImpl<CATLDiceObj>,
 public IViewObjectExImpl<CATLDiceObj>,
 public IOleInPlaceObjectWindowlessImpl<CATLDiceObj>,
 public IConnectionPointContainerImpl<CATLDiceObj>,
 public IPersistStorageImpl<CATLDiceObj>,
 public ISpecifyPropertyPagesImpl<CATLDiceObj>,
 public IQuickActivateImpl<CATLDiceObj>,
 public IDataObjectImpl<CATLDiceObj>,
 public IProvideClassInfo2Impl<&CLSID_ATLDiceOb,
 &DIID__DDiceEvents,
 &LIBID_ATLDICESVRLib>,
 public IPropertyNotifySinkCP<CATLDiceObj>,
 public CComCoClass<CATLDiceObj, &CLSID_ATLDiceOb>
{
.
.
.
};
That's a pretty long inheritance list. You've already seen the template implementations of IUnknown
and support for class objects. They exist in CComObjectRootEx and CComCoClass. You've also seen
how ATL implements IDispatch within the IDispatchImpl template. However, for a basic control
there are about 11 more interfaces required to make everything work. These in- terfaces can be
categorized into several areas as shown in the following table.

Category Interface

Interfaces for handling self-description IProvideClassInfo2

Interfaces for handling persistence IPersistStreamInit
IPersistStorage

Interfaces for handling activation IQuickActivate (and some of
IOleObject)

Interfaces from the original OLE Control specification IOleControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interfaces from the OLE Document specification IOleObject

Interfaces for rendering IOleInPlaceActiveObject
IViewObject
IOleInPlaceObjectWindowless
IDataObject

Interfaces for helping the container manage property
pages

ISpecifyPropertyPages

Interfaces for handling connections IPropertyNotifySinkCP
IConnectionPointContainer

These are by and large boilerplate interfaces—ones that a COM class must
implement to qualify as an ActiveX control. Most of the implementations are
standard and vary only slightly (if at all) from one control to the next. The
beauty of ATL is that it implements this standard behavior and gives you
programmatic hooks where you can plug in your custom code. That way, you
don't have to burn your eyes out by looking directly at the COM code. You can
live a full and rich life without understanding exactly how these interfaces work.
However, if you want to know more about the internal workings of ActiveX
Controls, be sure to check out these books: Inside OLE by Kraig Brockschmidt
(Microsoft Press, 1995), ActiveX Controls Inside Out by Adam Denning (Microsoft
Press, 1997), and Designing and Using ActiveX Controls by Tom Armstrong (IDG
Books Worldwide, 1997).

ATL's Control Architecture

From the highest level, an ActiveX control has two aspects to it: its external state (what it renders
on the screen) and its internal state (its properties). Once an ActiveX control is hosted by some sort
of container (such as a Microsoft Visual Basic form or an MFC dialog box), it maintains a symbiotic
relationship with that container. The client code talks to the control through incoming COM
interfaces such as IDispatch and OLE Document interfaces like IOleObject and IDataObject.

The control also has the opportunity to talk back to the client. One method of implementing this
two-way communication is for the client to implement an IDispatch interface to represent the
control's event set. The container maintains a set of properties called ambient properties that the
control can use to find out about its host. For instance, a control can camouflage itself within the
container because the container makes the information stored in these properties available through
a specifically named IDispatch interface. The container can implement an interface named
IPropertyNotifySink to find out when the properties within a control might change. Finally, the
container implements IOleClientSite and IOleControlSite as part of the control-embedding protocol.

The interfaces listed allow the client and the object to exhibit the behaviors expected of an ActiveX
control. We'll tackle some of these interfaces as we go along. The best place to begin looking at
ATL-based controls is the CComControl class and its base classes.

CComControl

You can find the definition of CComControl in Microsoft's ATLCTL.H file under ATL's Include
directory. CComControl is a template class that takes a single class parameter:

template <class T>
class ATL_NO_VTABLE CComControl : public CComControlBase,
 public CWindowImpl<T>
{
.
.
.
};
CComControl is a rather lightweight class that does little by itself—it derives functionality from
CComControlBase and CWindowImpl. CComControl expects the template parameter to be an ATL-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CComControlBase and CWindowImpl. CComControl expects the template parameter to be an ATL-
based COM object derived from CComObjectRootEx. CComControl requires the template parameter
for various reasons, the primary reason being that from time to time the control class uses the
template parameter to call back to the control's InternalQueryInterface.

CComControl implements several functions that make it easy for the control to call back to the
client. For example, CComControl implements a function named FireOnRequestEdit to give controls
the ability to tell the client that a specified property is about to change. This function calls back to
the client through the client-implemented interface IPropertyNotifySink. FireOnRequestEdit notifies
all connected IPropertyNotifySink interfaces that the property specified by a certain DISPID is about
to change.

CComControl also implements the FireOnChanged function. FireOnChanged is very much like
FireOnRequestEdit in that it calls back to the client through the IPropertyNotifySink interface. This
function tells the clients of the control (all clients connected to the control through
IPropertyNotifySink) that a property specified by a certain DISPID has already changed.

In addition to mapping the IPropertyNotifySink interface to some more easily understood functions,
CComControl implements a function named ControlQueryInterface, which simply forwards on to the
control's IUnknown interface. (This is how you can get a control's IUnknown interface from inside
the control.) Finally, CComControl implements a function named CreateControlWindow. The default
behavior for this function is to call CWindowImpl::Create. (Notice that CComControl also derives
from CWindowImpl.) If you want to, you can override this function to do something other than
create a single window. For example, you might want to create multiple windows for your control.

Most of the real functionality for CComControl exists within those two other classes
—CComControlBase and CWindowImpl. Let's take a look at those classes now.

CComControlBase

CComControlBase is a much more substantial class than CComControl. To begin with,
CComControlBase maintains all the pointers used by the control to talk back to the client.
CComControlBase uses ATL's CComPtr smart pointer to include member variables that wrap the
following interfaces implemented for calling back to the client:

A wrapper for IOleInPlaceSite(m_spInPlaceSite)

An advise holder for the client's data advise sink (m_spDataAdviseHolder)

An OLE advise holder for the client's OLE advise sink (m_spOleAdviseHolder)

A wrapper for IOleClientSite (m_spClientSite)

A wrapper for IAdviseSink (m_spAdviseSink)

CComControlBase also uses ATL's CComDispatchDriver to wrap the client's dispatch interface for
exposing its ambient properties.

CComControlBase is also where you'll find the member variables that contain the control's sizing
and positioning information: m_sizeNatural, m_sizeExtent, and m_rcPos. The other important data
member within CComControlBase is the control's window handle. Most ActiveX controls are UI
gadgets and as such maintain a window. CWindowImpl and CWindowImplBase handle the
windowing aspects of an ATL-based ActiveX control.

CWindowImpl and CWindowImplBase

CWindowImpl derives from CWindowImplBase, which in turn derives from CWindow and
CMessageMap. As a template class, CWindowImpl takes a single parameter upon instantiation. The
template parameter is the control being created. CWindowImpl needs the control type because
CWindowImpl calls back to the control during window creation. Let's take a closer look at how ATL
handles windowing.

ATL Windowing

Just as CComControl is relatively lightweight (most work happens in CComControlBase),
CWindowImpl is also relatively lightweight. CWindowImpl more or less handles only window
creation. In fact, that's the only function explicitly defined by CWindowImpl. CWindowImpl::Create
creates a new window based on the window class information managed by a class named
_ATLWNDCLASSINFO. There's an ASCII character version and a wide character version.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

struct _ATL_WNDCLASSINFOA
{
 WNDCLASSEXA m_wc;
 LPCSTR m_lpszOrigName;
 WNDPROC pWndProc;
 LPCSTR m_lpszCursorID;
 BOOL m_bSystemCursor;
 ATOM m_atom;
 CHAR m_szAutoName[13];
 ATOM Register(WNDPROC* p)
 {
 return AtlModuleRegisterWndClassInfoA(&_Module, this, p);
 }
};
struct _ATL_WNDCLASSINFOW
{
 WNDCLASSEXW m_wc;
 LPCWSTR m_lpszOrigName;
 WNDPROC pWndProc;
 LPCWSTR m_lpszCursorID;
 BOOL m_bSystemCursor;
 ATOM m_atom;
 WCHAR m_szAutoName[13];
 ATOM Register(WNDPROC* p)
 {
 return AtlModuleRegisterWndClassInfoW(&_Module, this, p);
 }
};
Then ATL uses typedefs to alias this structure to a single class named CWndClassInfo:

typedef _ATL_WNDCLASSINFOA CWndClassInfoA;
typedef _ATL_WNDCLASSINFOW CWndClassInfoW;
#ifdef UNICODE
#define CWndClassInfo CWndClassInfoW
#else
#define CWndClassInfo CWndClassInfoA
#endif
CWindowImpl uses a macro named DECLARE_WND_CLASS to add window class information to a
CWindowImpl-derived class. DECLARE_WND_CLASS also adds a function named GetWndClassInfo.
Here's the DECLARE_WND_CLASS macro:

#define DECLARE_WND_CLASS(WndClassName) \
static CWndClassInfo& GetWndClassInfo() \
{ \
 static CWndClassInfo wc = \
 { \
 { sizeof(WNDCLASSEX), CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS,\
 StartWindowProc, \
 0, 0, NULL, NULL, NULL, (HBRUSH)(COLOR_WINDOW + 1), \
 NULL, WndClassName, NULL }, \
 NULL, NULL, IDC_ARROW, TRUE, 0, _T("") \
 }; \
 return wc; \
}
This macro expands to provide a CWndClassInfo structure for the control class. Because
CWndClassInfo manages the information for a single window class, each window created through a
specific instance of CWindowImpl will be based on the same window class.

CWindowImpl derives from CWindowImplBaseT. CWindowImplBaseT derives from
CWindowImplRoot, which is specialized around the CWindow class and the CControlWinTraits
classes like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

template <class TBase = CWindow,
 class TWinTraits = CControlWinTraits>
class ATL_NO_VTABLE CWindowImplBaseT :
 public CWindowImplRoot< TBase >
{
public:
.
.
.
};
CWindowImplRoot derives from CWindow (by default) and CMessageMap. CWindowImplBaseT
manages the window procedure of a CWindowImpl-derived class. CWindow is a lightweight class
that wraps window handles in the same way (but not as extensively) as MFC's CWnd class.
CMessageMap is a tiny class that defines a single pure virtual function named
ProcessWindowMessage. ATL-based message-mapping machinery assumes this function is
available, so ATL-based classes that want to use message maps need to derive from CMessageMap.
Let's take a quick look at ATL message maps.

ATL Message Maps

The root of ATL's message mapping machinery lies within the CMessageMap class. ATL-based
controls expose message maps by virtue of indirectly deriving from CWindowImplBase. In MFC, by
contrast, deriving from CCmdTarget enables message mapping. However, just as in MFC, it's not
enough to derive from a class that supports message maps. The message maps actually have to be
there—and those message maps are implemented via macros.

To implement a message map in an ATL-based control, use message map macros. First ATL's
BEGIN_MSG_MAP macro goes into the control class's header file. BEGIN_MSG_MAP marks the
beginning of the default message map. CWindowImpl::WindowProc uses this default message map
to process messages sent to the window. The message map directs messages either to the
appropriate handler function or to another message map. ATL defines another macro named
END_MSG_MAP to mark the end of a message map. Between BEGIN_MSG_MAP and
END_MSG_MAP lie some other macros for mapping window messages to member functions in the
control. For example, here's a typical message map you might find in an ATL-based control:

BEGIN_MSG_MAP(CAFullControl)
 CHAIN_MSG_MAP(CComControl<CAFullControl>)
 DEFAULT_REFLECTION_HANDLER()
 MESSAGE_HANDLER(WM_TIMER, OnTimer);
 MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButton);
END_MSG_MAP()
This message map delegates most of the message processing to the control through the
CHAIN_MSG_MAP macro and handles message reflection through the
DEFAULT_REFLECTION_HANDLER macro. The message map also handles two window messages
explicitly: WM_TIMER and WM_LBUTTONDOWN. These are standard window messages that are
mapped using the MESSAGE_HANDLER macro. The macros simply produce a table relating window
messages to member functions in the class. In addition to regular messages, message maps are
capable of handling other sorts of events. Here's a rundown of the kinds of macros that can go in a
message map.

Macro Description

MESSAGE_HANDLER Maps a Windows message to a handler function

MESSAGE_RANGE_HANDLER Maps a contiguous range of Windows messages to a handler
function

COMMAND_HANDLER Maps a WM_COMMAND message to a handler function,
based on the identifier and the notification code of the menu
item, control, or accelerator

COMMAND_ID_HANDLER Maps a WM_COMMAND message to a handler function,
based on the identifier of the menu item, control, or
accelerator

COMMAND_CODE_HANDLER Maps a WM_COMMAND message to a handler function,
based on the notification code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMMAND_RANGE_HANDLER Maps a contiguous range of WM_COMMAND messages to a
handler function, based on the identifier of the menu item,
control, or accelerator

NOTIFY_HANDLER Maps a WM_NOTIFY message to a handler function, based
on the notification code and the control identifier

NOTIFY_ID_HANDLER Maps a WM_NOTIFY message to a handler function, based
on the control identifier

NOTIFY_CODE_HANDLER Maps a WM_NOTIFY message to a handler function, based
on the notification code

NOTIFY_RANGE_HANDLER Maps a contiguous range of WM_NOTIFY messages to a
handler function, based on the control identifier

Handling messages within ATL works much the same as in MFC. ATL includes a single window
procedure through which messages are routed. Technically, you can build your controls effectively
without understanding everything about ATL's control architecture. However, this knowledge is
sometimes helpful as you develop a control, and it's even more useful when debugging a control.

Developing the Control

Once the control is inserted into the server, you need to add some code to make the control do
something. If you were to compile and load ATL's default control into a container, the results
wouldn't be particularly interesting. You'd simply see a blank rectangle with the string "ATL 3.0 :
ATLDiceOb." You'll want to add code to render the control, to represent the internal state of the
control, to respond to events, and to generate events to send back to the container.

Deciding What to Draw

A good place to start working on a control is on its drawing code—you get instant gratification that
way. This is a control that is visually represented by a couple of dice. The easiest way to render to
the dice control is to draw bitmaps representing each of the six possible dice sides and then show
the bitmaps on the screen. This implies that the dice control will maintain some variables to
represent its state. For example, the control needs to manage the bitmaps for representing the dice
as well as two numbers representing the first value shown by each die. Here is the code from
ATLDICEOBJ.H that represents the state of the dice:

 #define MAX_DIEFACES 6

 HBITMAP m_dieBitmaps[MAX_DIEFACES];
 unsigned short m_nFirstDieValue;
 unsigned short m_nSecondDieValue;
Before diving headfirst into the control's drawing code, you need to do a bit of preliminary work—
the bitmaps need to be loaded. Presumably each die rendered by the dice control will show any one
of six dice faces, so the control needs one bitmap for each face. Figure 30-5 shows what one of the
dice bitmaps looks like.

Figure 30-5. A bitmap for the dice control.

If you draw the bitmaps one at a time, they'll have sequential identifiers in the resource.h file.
Giving the bitmaps sequential identifiers will make them easier to load. Otherwise, you might need
to modify the resource.h file, which contains the following identifiers:

#define IDB_DICE1 207
#define IDB_DICE2 208
#define IDB_DICE3 209
#define IDB_DICE4 210
#define IDB_DICE5 211
#define IDB_DICE6 212

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#define IDB_DICE6 212
Loading bitmaps is fairly straightforward. Cycle through the bitmap array, and load the bitmap
resources. When they're stored in an array like this, grabbing the bitmap out of the array and
showing it is much easier than if you didn't use an array. Here is the function that loads the bitmaps
into the array:

BOOL CATLDiceObj::LoadBitmaps() {
 BOOL bSuccess = TRUE;

 for(int i=0; i<MAX_DIEFACES; i++) {
 DeleteObject(m_dieBitmaps[i]);
 m_dieBitmaps[i] = LoadBitmap(_Module.m_hInst,
 MAKEINTRESOURCE(IDB_DICE1+i));
 if(!m_dieBitmaps[i]) {
 ::MessageBox(NULL,
 "Failed to load bitmaps",
 NULL,
 MB_OK);
 bSuccess = FALSE;
 }
 }
 return bSuccess;
}
The best place to call LoadBitmaps is from within the control's constructor, as shown in the
following code. To simulate a random roll of the dice, set the control's state so that the first and
second die values are random numbers between 0 and 5 (these numbers will be used when the dice
control is drawn):

class CATLDiceObj : // big inheritance list {
 CATLDiceObj () {
 LoadBitmaps();
 srand((unsigned)time(NULL));
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 }
Once the bitmaps are loaded, you'll want to render them. The dice control should include a function
for showing each die face based on the current internal state of the dice. Here's where you first
encounter ATL's drawing machinery.

One of the most convenient things about ATL-based controls (and MFC-based controls) is that all
the drawing code happens in one place: within the control's OnDraw function. OnDraw is a virtual
function of COleControlBase. Here's OnDraw's signature:

virtual HRESULT OnDraw(ATL_DRAWINFO& di);

OnDraw takes a single parameter: a pointer to an ATL_DRAWINFO structure. Among other things,
the ATL_DRAWINFO structure contains a device context on which to render your control. Here's the
ATL_DRAWINFO structure:

struct ATL_DRAWINFO {
 UINT cbSize;
 DWORD dwDrawAspect;
 LONG lindex;
 DVTARGETDEVICE* ptd;
 HDC hicTargetDev;
 HDC hdcDraw;
 LPCRECTL prcBounds; //Rectangle in which to draw
 LPCRECTL prcWBounds; //WindowOrg and Ext if metafile
 BOOL bOptimize;
 BOOL bZoomed;
 BOOL bRectInHimetric;
 SIZEL ZoomNum; //ZoomX = ZoomNum.cx/ZoomNum.cy
 SIZEL ZoomDen;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};
As you can see, there's a lot more information here than a simple device context. While you can
count on the framework filling it out correctly for you, it's good to know where the information in
the structure comes from and how it fits into the picture.

ActiveX Controls are interesting because they are drawn in two contexts. The first and most obvious
context is when the control is active and it draws within the actual drawing space of the client. The
other, less-obvious context in which controls are drawn is during design time (as when an ActiveX
control resides in a Visual Basic form in design mode). In the first context, ActiveX Controls render
themselves to a live screen device context. In the second context, ActiveX Controls render
themselves to a metafile device context.

Many (though not all) ATL-based controls are composed of at least one window. So ActiveX Controls
need to render themselves during the WM_PAINT message. Once the control receives the
WM_PAINT message, the message routing architecture passes control to
CComControlBase::OnPaint. (Remember, CComControlBase is one of the control's base classes.)
CComControlBase::OnPaint performs several steps. The function begins by creating a painting
device context (using BeginPaint). Then OnPaint creates an ATL_DRAWINFO structure on the stack
and initializes the fields within the structure. OnPaint sets up ATL_DRAWINFO to show the entire
content (the dwDrawAspect field is set to DVASPECT_CONTENT). OnPaint also sets the lindex field
to _1, sets the drawing device context to the newly created painting device context, and sets up the
bounding rectangle to be the client area of the control's window. Then OnPaint goes on to call
OnDrawAdvanced.

The default OnDrawAdvanced function prepares a normalized device context for drawing. You can
override this method if you want to use the device context passed by the container without
normalizing it. ATL then calls your control class's OnDraw method.

The second context in which the OnDraw function is called is when the control draws on to a
metafile. The control draws itself on to a metafile whenever someone calls IViewObjectEx::Draw.
(IViewObjectEx is one of the interfaces implemented by the ActiveX control.) ATL implements the
IViewObjectEx interface through the template class IViewObjectExImpl. IViewObjectEx- Impl::Draw
is called whenever the control needs to take a snapshot of its presentation space for the container
to store. In this case, the container creates a metafile device context and hands it to the control.
IViewObjectExImpl puts an ATL_DRAWINFO structure on the stack and initializes. The bounding
rectangle, the index, the drawing aspect, and the device contexts are all passed in as parameters
by the client. The rest of the drawing is the same in this case—the control calls OnDrawAdvanced,
which in turn calls your version of OnDraw.

Once you're armed with this knowledge, writing functions to render the bitmaps becomes fairly
straightforward. To show the first die face, create a memory-based device context, select the object
into the device context, and BitBlt the memory device context into the real device context. Here's
the code:

void CATLDiceObj::ShowFirstDieFace(ATL_DRAWINFO& di) {

 BITMAP bmInfo;
 GetObject(m_dieBitmaps[m_nFirstDieValue-1],
 sizeof(bmInfo), &bmInfo);

 SIZE size;

 size.cx = bmInfo.bmWidth;
 size.cy = bmInfo.bmHeight;

 HDC hMemDC;
 hMemDC = CreateCompatibleDC(di.hdcDraw);

 HBITMAP hOldBitmap;
 HBITMAP hbm = m_dieBitmaps[m_nFirstDieValue-1];
 hOldBitmap = (HBITMAP)SelectObject(hMemDC, hbm);

 if (hOldBitmap == NULL)
 return; // destructors will clean up

 BitBlt(di.hdcDraw,
 di.prcBounds->left+1,
 di.prcBounds->top+1,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 di.prcBounds->top+1,
 size.cx,
 size.cy,
 hMemDC, 0,
 0,
 SRCCOPY);

 SelectObject(di.hdcDraw, hOldBitmap);
 DeleteDC(hMemDC);
}
Showing the second die face is more or less the same process—just make sure that the dice are
represented separately. For example, you probably want to change the call to BitBlt so that the two
dice bitmaps are shown side by side.

void CATLDiceObj::ShowSecondDieFace(ATL_DRAWINFO& di) {
 //
 // This code is exactly the same as ShowFirstDieFace
 // except the second die is positioned next to the first die.
 //
 BitBlt(di.hdcDraw,
 di.prcBounds->left+size.cx + 2,
 di.prcBounds->top+1,
 size.cx,
 size.cy,
 hMemDC, 0,
 0, SRCCOPY);
 // The rest is the same as in ShowFirstDieFace
}
The last step is to call these two functions whenever the control is asked to render itself—during the
control's OnDraw function. ShowFirstDieFace and ShowSecondDieFace will show the correct bitmap
based on the state of m_nFirstDieValue and m_nSecondDieValue:

HRESULT CATLDiceObj::OnDraw(ATL_DRAWINFO& di) {
 ShowFirstDieFace(di);
 ShowSecondDieFace(di);
 return S_OK;
}
At this point, if you compile and load this control into some ActiveX Control container (like a Visual
Basic form or an MFC-based dialog), you'll see two die faces staring back at you. Now it's time to
add some code to enliven the control and roll the dice.

Responding to Window Messages

Just looking at two dice faces isn't that much fun. You want to make the dice work. A good way to
get the dice to appear to jiggle is to use a timer to generate events and then respond to the timer
by showing a new pair of dice faces. Setting up a Windows timer in the control means adding a
function to handle the timer message and adding a macro to the control's message map. Start by
using ClassView to add a handler for WM_TIMER. Right-click on the CAtlDiceOb symbol in
ClassView, and select Add Windows Message Handler from the context menu. This adds a prototype
for the OnTimer function and an entry into the message map to handle the WM_TIMER message.
Add some code to the OnTimer function to handle the WM_TIMER message. The OnTimer function
should look like the code shown below.

LRESULT CATLDiceObj::OnTimer(UINT msg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled) {

 if(m_nTimesRolled > 15) {

 m_nTimesRolled = 0;
 KillTimer(1);
 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FireViewChange();
 m_nTimesRolled++;
 }
 bHandled = TRUE;
 return 0;
}
This function responds to the timer message by generating two random numbers, setting up the
control's state to reflect these two new numbers, and then asking the control to refresh itself by
calling FireViewChange. Notice the function kills the timer as soon as the dice have rolled a certain
number of times. Also notice that the message handler tells the framework that it successfully
handled the function by setting the bHandled variable to TRUE.

Notice there's an entry for WM_TIMER in the control's message map. Because WM_TIMER is just a
plain vanilla window message, it's represented with a standard MESSAGE_HANDLER macro as
follows:

BEGIN_MSG_MAP(CATLDiceObj)
 CHAIN_MSG_MAP(CComControl<CATLDiceObj>)
 DEFAULT_REFLECTION_HANDLER()
 MESSAGE_HANDLER(WM_TIMER, OnTimer);
END_MSG_MAP()
As you can tell from this message map, the dice control already handles the gamut of Windows
messages through the CHAIN_MSG_MAP macro. However, now the pair of dice has the ability to
simulate rolling by responding to the timer message. Setting a timer causes the control to repaint
itself with a new pair of dice numbers every quarter of a second or so. Of course, there needs to be
some way to start the dice rolling. Because this is an ActiveX control, it's reasonable to allow client
code to start rolling the dice via a call to a function in one of its incoming interfaces. Use ClassView
to add a RollDice function to the main interface. Do this by right-clicking on the IATLDiceObj
interface appearing in ClassView on the left side of the screen and selecting Add Method from the
pop up menu. Then add a RollDice function. Microsoft Visual C++ adds a function named RollDice to
your control. Implement RollDice by setting the timer for a reasonably short interval and then
returning S_OK. Add the following boldface code:

STDMETHODIMP CATLDiceObj::RollDice()
{
 SetTimer(1, 250);
 return S_OK;
}
If you load the dice into an ActiveX control container, you'll now be able to browse and call the
control's methods and roll the dice.

In addition to using the incoming interface to roll the dice, the user might reasonably expect to roll
the dice by double-clicking the control. To enable this behavior, just add a message handler to trap
the mouse-button-down message by adding a function to handle a left-mouse double click.

LRESULT CATLDiceObj::OnLButtonDblClick(UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 BOOL& bHandled) {
 RollDice();
 bHandled = TRUE;
 return 0;
}
Then be sure you add an entry to the message map to handle the WM_LBUTTONDOWN message:

BEGIN_MSG_MAP(CATLDiceObj)
 // Other message handlers
 MESSAGE_HANDLER(WM_LBUTTONDBLCLK, OnLButtonDblClick)
END_MSG_MAP()
When you load the dice control into a container and double-click on it, you should see the dice roll.
Now that you've added rendering code and given the control the ability to roll, it's time to add some
properties.

Adding Properties and Property Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Properties and Property Pages

You've just seen that ActiveX controls have an external presentation state. (The presentation state
is the state reflected when the control draws itself.) In addition, most ActiveX controls also have an
internal state. The control's internal state is a set of variables exposed to the outside world via
interface functions. These internal variables are also known as properties.

For example, imagine a simple grid implemented as an ActiveX control. The grid has an external
presentation state and a set of internal variables for describing the state of the grid. The properties
of a grid control would probably include the number of rows in the grid, the number of columns in
the grid, the color of the lines composing the grid, the type of font used, and so forth.

As you saw in Chapter 29, adding properties to an ATL-based class means adding member variables
to the class and then using ClassWizard to create get and put functions to access these properties.
For example, two member variables that you might add to the dice control include the dice color
and the number of times the dice are supposed to roll before stopping. Those two properties could
easily be represented as a pair of short integers as shown here:

class ATL_NO_VTABLE CATLDiceObj :
.
.
.
{
 .
 .
 .
 short m_nDiceColor;
 short m_nTimesToRoll;
 .
 .
 .
};
To make these properties accessible to the client, you need to add get and put functions to the
control. Right-clicking on the interface symbol in ClassView brings up a context menu, giving you a
choice to Add Property, which will present you with the option of adding these functions. Adding
DiceColor and TimesToRoll properties to the control using ClassView will add four new functions to
the control: get_DiceColor, put_DiceColor, get_TimesToRoll, and put_TimesToRoll.

The get_DiceColor function should retrieve the state of m_nDiceColor:

STDMETHODIMP CATLDiceObj::get_DiceColor(short * pVal)
{
 *pVal = m_nDiceColor;
 return S_OK;
}
To make the control interesting, put_DiceColor should change the colors of the dice bitmaps and
redraw the control immediately. This example uses red and blue dice as well as the original black
and white dice. To make the control show the new color bitmaps immediately after the client sets
the dice color, the put_DiceColor function should load the new bitmaps according to new color, and
redraw the control:

STDMETHODIMP CATLDiceObj::put_DiceColor(short newVal)
{
 if(newVal < 3 && newVal >= 0)
 m_nDiceColor = newVal;
 LoadBitmaps();
 FireViewChange();
 return S_OK;
}
Of course, this means that LoadBitmaps needs to load the bitmaps based on the state of
m_nDiceColor, so we need to add the following boldface code to our existing LoadBitmaps function:

BOOL CATLDiceObj::LoadBitmaps() {
 int i;
 BOOL bSuccess = TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BOOL bSuccess = TRUE;
 int nID = IDB_DICE1;
 switch(m_nDiceColor) {
 case 0:
 nID = IDB_DICE1;
 break;
 case 1:
 nID = IDB_BLUEDICE1;
 break;
 case 2:
 nID = IDB_REDDICE1;
 break;
 }
 for(i=0; i<MAX_DIEFACES; i++) {
 DeleteObject(m_dieBitmaps[i]);
 m_dieBitmaps[i] = LoadBitmap(_Module.m_hInst,
 MAKEINTRESOURCE(nID+i));
 if(!m_dieBitmaps[i]) {
 ::MessageBox(NULL,
 "Failed to load bitmaps",
 NULL, MB_OK);
 bSuccess = FALSE;
 }
 }
 return bSuccess;
}
Just as the dice color property reflects the color of the dice, the number of times the dice rolls
should be reflected by the state of the TimesToRoll property. The get_TimesToRoll function needs to
read the m_nTimesToRoll member, and the put_TimesToRoll function needs to modify
m_nTimesToRoll. Add boldface code shown below.

STDMETHODIMP CATLDiceObj::get_TimesToRoll(short * pVal)
{
 *pVal = m_nTimesToRoll;
 return S_OK;
}

STDMETHODIMP CATLDiceObj::put_TimesToRoll(short newVal)
{
 m_nTimesToRoll = newVal;
 return S_OK;
}
Finally, instead of hard-coding the number of times the dice rolls, use the m_nTimesToRoll variable
to determine when to kill the timer.

LRESULT CATLDiceObj::OnTimer(UINT msg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled) {

 if(m_nTimesRolled > m_nTimesToRoll) {
 m_nTimesRolled = 0;
 KillTimer(1);
 Fire_DiceRolled(m_nFirstDieValue, m_nSecondDieValue);
 if(m_nFirstDieValue == m_nSecondDieValue)
 Fire_Doubles(m_nFirstDieValue);
 if(m_nFirstDieValue == 1 && m_nSecondDieValue == 1)
 Fire_SnakeEyes();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Fire_SnakeEyes();
 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();
 m_nTimesRolled++;
 }

 bHandled = TRUE;
 return 0;
}
Now these two properties are exposed to the outside world. When the client code changes the color
of the dice, the control loads a new set of bitmaps and redraws the control with the new dice faces.
When the client code changes the number of times to roll, the dice control uses that information to
determine the number of times the dice control should respond to the WM_TIMER message. So the
next question is, "How are these properties accessed by the client code?" One way is through a
control's property pages.

Property Pages

Since ActiveX controls are usually UI gadgets meant to be mixed into much larger applications, they
often find their homes within places such as Visual Basic forms and MFC form views and dialogs.
When a control is instantiated, the client code can usually reach into the control and manipulate its
properties by calling certain functions on the control's incoming interface functions. However, when
an ActiveX control is in design mode, accessing the properties through the interface functions isn't
always practical. It would be unkind to tool developers to force them to go through the interface
functions all the time just to tweak some properties in the control. Why should the tool vendor who
is creating the client have to provide UI for managing control properties? That's what property
pages are for. Property pages are sets of dialogs implemented by the control for manipulating
properties. That way, the tool vendors don't have to keep re-creating dialog boxes for tweaking the
properties of an ActiveX control.

How Property Pages Are Used Property pages are usually used in one of two ways. The first way
is through the control's IOleObject interface. The client can call IOleObject's DoVerb function,
passing in the properties verb identifier (named OLEIVERB_PROPERTIES and defined as the number
-7) to ask the control to show its property pages. The control then displays a dialog, or property
frame, that contains all the control's property pages. For example, Figure 30-6 shows the Property
Pages dialog containing the property pages for the Microsoft FlexGrid 6.0 control.

Figure 30-6. The Microsoft FlexGrid 6.0 control executing the properties verb.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-6. The Microsoft FlexGrid 6.0 control executing the properties verb.

Property pages are a testament to the power of COM. As it turns out, each single property page is a
separate COM object (named using a GUID and registered like all the other COM classes on your
system). When a client asks an ActiveX control to show its property pages via the properties verb,
the control passes its own list of property page GUIDs into a system API function named
OleCreatePropertyFrame. OleCreatePropertyFrame enumerates the property page GUIDs, calling
CoCreateInstance for each property page. The property frame gets a copy of an interface so that
the frame can change the properties within the control. OleCreatePropertyFrame calls back to the
control when the user clicks the OK or Apply button.

The second way clients use property pages is when the client asks the control for a list of property
page GUIDs. Then the client calls CoCreateInstance on each property page and installs each
property page in its own frame. Figure 30-7 shows an example of how Visual C++ uses the
Microsoft FlexGrid property pages in its own property dialog frame.

This second method is by far the most common way for a control's property pages to be used.
Notice that the property sheet in Figure 30-7 contains a General tab in addition to the control's
property pages, and that the General tab shown in Figure 30-6 has been renamed to the Control
tab. The General property page in Figure 30-7 belongs to Visual C++. The Control, Style, Font,
Color, and Picture property pages belong to the control (even though they're being shown within
the context of Visual C++).

Figure 30-7. Microsoft Visual C++ inserting the Microsoft FlexGrid 6.0 property pages into its own
dialog box for editing resource properties.

For a property page to work correctly, the control that the property page is associated with needs to
implement ISpecifyPropertyPages and the property page object needs to implement an interface
named IPropertyPage. With this in mind, let's examine exactly how ATL implements property pages.

Adding a Property Page to Your Control You can use the Visual Studio ATL Object Wizard to
create property pages in your ATL project. To create a property page, perform the following steps:

1. Select New ATL Object from the Visual C++ Insert menu.

2. From the ATL Object Wizard dialog, select Controls from the Category list.

3. Select Property Page from the Objects list.

4. Click Next.

5. Fill in the required information on the ATL Object Wizard Properties dialog, and click OK.

ATL's Object Wizard generates a dialog template and includes it as part of a control's resources. In
the dice control example, the two properties you're concerned with are the color of the dice and the
number of times to roll the dice. The dialog template created by ATL's Object Wizard is blank, so
you'll want to add a couple of controls to represent these properties. In this example, the user will
be able to select the dice color from a combo box and enter the number of times the dice should roll
in an edit control, as shown in Figure 30-8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in an edit control, as shown in Figure 30-8.

Figure 30-8. The property page dialog template.

The ATL Object Wizard also creates a C++ class for you that implements the interface necessary for
the class to behave as a property page. In addition to generating this C++ class, the ATL Object
Wizard makes the class part of the project. The ATL Object Wizard adds the new property page
class to the IDL file within the coclass section. In addition, the ATL Object Wizard appends the
property page to the object map so that DllGetClassObject can find the property page class. Finally,
the ATL Object Wizard adds a new Registry script (so that the DLL makes the correct Registry
entries when the control is registered). Here is the header file created by the ATL Object Wizard for
a property page named DiceMainPropPage:

#include "resource.h" // main symbols

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{
public:
 CDiceMainPropPage()
 {
 m_dwTitleID = IDS_TITLEDiceMainPropPage;
 m_dwHelpFileID = IDS_HELPFILEDiceMainPropPage;
 m_dwDocStringID = IDS_DOCSTRINGDiceMainPropPage;
 }

 enum {IDD = IDD_DICEMAINPROPPAGE};

DECLARE_REGISTRY_RESOURCEID(IDR_DICEMAINPROPPAGE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CDiceMainPropPage)
 COM_INTERFACE_ENTRY(IPropertyPage)
END_COM_MAP()

BEGIN_MSG_MAP(CDiceMainPropPage)
 CHAIN_MSG_MAP(IPropertyPageImpl<CDiceMainPropPage>)
END_MSG_MAP()

STDMETHOD(Apply)(void)
{
 ATLTRACE(_T("CDiceMainPropPage::Apply\n"));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 // Do something interesting here
 // ICircCtl* pCirc;
 // m_ppUnk[i]->QueryInterface(IID_ICircCtl, (void**)&pCirc);
 // pCirc->put_Caption(CComBSTR("something special"));
 // pCirc->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // pCirc->Release();
 }
 m_bDirty = FALSE;
 return S_OK;
}
};
Examining this property page listing reveals that ATL's property page classes are composed of
several ATL templates: CComObjectRootEx (to implement IUnknown), CComCoClass (the class
object for the property page), IPropertyPageImpl (for implementing IPropertyPage), and
CDialogImpl (for implementing the dialog-specific behavior).

As with most other COM classes created by ATL's Object Wizard, most of the code involved in
getting a property page to work is boilerplate code. Notice that besides the constructor and some
various maps, the only other function is one named Apply.

Before getting into the mechanics of implementing a property page, it's helpful to take a moment to
understand how the property page architecture works. The code you need to type in to get the
property pages working will then make more sense.

When the client decides it's time to show some property pages, a modal dialog frame needs to be
constructed. The frame is constructed by either the client or by the control itself. If the property
pages are being shown via the DoVerb function, the control constructs the frame. If the property
pages are being shown within the context of another application—as when Visual C++ shows the
control's property pages within the IDE—the client constructs the dialog frame. The key to the
dialog frame is that it holds property page sites (small objects that implement IPropertyPageSite)
for each property page.

The client code (the modal dialog frame, in this case) then enumerates through a list of GUIDs,
calling CoCreateInstance on each one of them and asking for the IPropertyPage interface. If the
COM object produced by CoCreateInstance is a property page, it implements the IPropertyPage
interface. The dialog frame uses the IPropertyPage interface to talk to the property page. Here's the
declaration of the IPropertyPage interface:

interface IPropertyPage : public IUnknown {
 HRESULT SetPageSite(IPropertyPageSite *pPageSite) = 0;
 HRESULT Activate(HWND hWndParent,
 LPCRECT pRect,
 BOOL bModal) = 0;
 HRESULT Deactivate(void) = 0;
 HRESULT GetPageInfo(PROPPAGEINFO *pPageInfo) = 0;
 HRESULT SetObjects(ULONG cObjects,
 IUnknown **ppUnk) = 0;
 HRESULT Show(UINT nCmdShow) = 0;
 HRESULT Move(LPCRECT pRect) = 0;
 HRESULT IsPageDirty(void) = 0;
 HRESULT Apply(void) = 0;
 HRESULT Help(LPCOLESTR pszHelpDir) = 0;
 HRESULT TranslateAccelerator(MSG *pMsg) = 0;
};
Once a property page has been created, the property page and the client code need some channels
to communicate back and forth with the control. After the property dialog frame successfully calls
QueryInterface for IPropertyPage on the property page objects, the frame calls
IPropertyPage::SetPageSite on each IPropertyPage interface pointer it holds, passing in an
IPropertyPageSite interface pointer. The property page sites within the property frame provide a
way for each property page to call back to the frame. The property page site provides information
to the property page and receives notifications from the page when changes occur. Here's the
IPropertyPageSite interface:

interface IPropertyPageSite : public IUnknown {
 public:
 virtual HRESULT OnStatusChange(DWORD dwFlags) = 0;
 virtual HRESULT GetLocaleID(LCID *pLocaleID) = 0;
 virtual HRESULT GetPageContainer(IUnknown *ppUnk) = 0;
 virtual HRESULT TranslateAccelerator(MSG *pMsg) = 0;
};
In addition to the frame and control connecting to each other through IPropertyPage and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the frame and control connecting to each other through IPropertyPage and
IPropertyPageSite, each property page needs a way to talk back to the control. This is usually done
when the dialog frame calls IPropertyPage::SetObjects, passing in the control's IUnknown. Figure
30-9 illustrates the property page architecture.

Now that you see how ActiveX Control property pages work in general, understanding how they
work within ATL will be a lot easier. You'll see how ATL's property pages work—in cases when the
client code exercises the control's properties verb as well as in cases when environments like Visual
C++ integrate a control's property pages into the IDE.

Figure 30-9. How the property pages, the property frame, and the property page sites
communicate.

ATL and the Properties Verb The first way in which an ActiveX control shows its property pages
is when the client invokes the properties verb by calling IOleObject::DoVerb using the constant
OLEIVERB_PROPERTIES. When the client calls DoVerb in an ATL-based control, the call ends up in
the function CComControlBase::DoVerbProperties, which simply calls OleCreatePropertyFrame,
passing in its own IUnknown pointer and the list of property page GUIDs. OleCreatePropertyFrame
takes the list of GUIDs, calling CoCreateInstance on each one to create the property pages, and
arranges them within the dialog frame. OleCreatePropertyFrame uses each property page's
IPropertyPage interface to manage the property page, as described in "How Property Pages Are
Used"

ATL Property Maps Of course, understanding how OleCreatePropertyFrame works from within the
ATL-based control begs the next question: where does the list of property pages actually come
from? ATL uses macros to generate lists of property pages called property maps. Whenever you add
a new property page to an ATL-based control, you need to set up the list of property pages through
these macros. ATL includes several macros for implementing property maps:
BEGIN_PROPERTY_MAP, PROP_ENTRY, PROP_ENTRY_EX, PROP_PAGE, and END_PROPERTY_MAP.
Here are those macros in the raw:

struct ATL_PROPMAP_ENTRY
{
 LPCOLESTR szDesc;
 DISPID dispid;
 const CLSID* pclsidPropPage;
 const IID* piidDispatch;
 DWORD dwOffsetData;
 DWORD dwSizeData;
 VARTYPE vt;
};

#define BEGIN_PROPERTY_MAP(theClass) \
 typedef _ATL_PROP_NOTIFY_EVENT_CLASS __ATL_PROP_NOTIFY_EVENT_CLASS; \
 typedef theClass _PropMapClass; \
 static ATL_PROPMAP_ENTRY* GetPropertyMap()\

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 static ATL_PROPMAP_ENTRY* GetPropertyMap()\
 {\
 static ATL_PROPMAP_ENTRY pPropMap[] = \
 {

#define PROP_PAGE(clsid) \
 {NULL, NULL, &clsid, &IID_NULL},

#define PROP_ENTRY(szDesc, dispid, clsid) \
 {OLESTR(szDesc), dispid, &clsid, &IID_IDispatch},

#define PROP_ENTRY_EX(szDesc, dispid, clsid, iidDispatch) \
 {OLESTR(szDesc), dispid, &clsid, &iidDispatch},

#define END_PROPERTY_MAP() \
 {NULL, 0, NULL, &IID_NULL} \
 }; \
 return pPropMap; \
}
When you decide to add property pages to a COM class using ATL's property page macros,
according to the ATL documentation you should put these macros into your class's header file. For
example, if you want to add property pages to the dice control, you'd add the following code to the
C++ class:

class ATL_NO_VTABLE CATLDiceObj :
 .
 .
 .
{
 .
 .
 .

 BEGIN_PROP_MAP(CATLDiceObj)
 PROP_ENTRY("Caption goes here…", 2,
 CLSID_MainPropPage)
 PROP_ENTRY_EX("Caption goes here…", 3,
 CLSID_SecondPropPage,
 DIID_SecondDualInterface)
 PROP_PAGE(CLSID_StockColorPage)
 END_PROPERTY_MAP()

};
ATL's property map macros set up the list of GUIDs representing property pages. ATL's property
maps are composed of an array of ATL_PROPMAP_ENTRY structures. The BEGIN_PROPERTY_MAP
macro declares a static variable of this structure. The PROP_PAGE macro inserts a GUID into the list
of property pages. PROP_ENTRY inserts a property page GUID into the list as well as associating a
specific control property with the property page. The final macro, PROP_ENTRY_EX, lets you
associate a certain dual interface to a property page. When client code invokes the control's
properties verb, the control just rips through this list of GUIDs and hands the list over to the
OleCreatePropertyFrame so that the property can create the property pages.

Property Pages and Development Tools Executing the properties verb isn't the only way for an
ActiveX control to show its property pages. As we mentioned before, folks who write tools such as
Visual Basic and Visual C++ might want programmatic access to a control's property pages. For
example, when using MFC to work on a dialog box containing an ActiveX control, right-clicking on
the control to view the properties gives you a dialog frame produced by Visual C++ (as opposed to
the dialog frame produced by OleCreatePropertyFrame).

Visual C++ uses the control's ISpecifyPropertyPages interface to get the list of GUIDs (the list
generated by the property page macros). Here's the ISpecifyPropertyPages interface definition:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface ISpecifyPropertyPages : public IUnknown {
 HRESULT GetPages(CAUUID *pPages);
};

typedef struct tagCAUUID
{
 ULONG cElems;
 GUID FAR* pElems;
} CAUUID;
ATL implements the ISpecifyPropertyPages::GetPages function by cycling through the list of GUIDS
(produced by the property map macros) and returning them within the CAUUID structure.
Environments like Visual C++ use each GUID in a call to CoCreateInstance to create a new property
page. The property page site and the property page exchange interfaces. The property page site
holds on to the property page's IPropertyPage interface, and the property page holds on to the
property site's IPropertyPageSite interface. After the dialog frame constructs the property pages, it
needs to reflect the current state of the ActiveX control through the dialog controls. For that you
need to override the property page's Show method.

Showing the Property Page The property page's Show method is called whenever the property
page is about to be shown. A good thing for a property page to do at this time is fetch the values
from the ActiveX control and populate the property page's controls. Remember that the property
page holds on to an array of unknown pointers (they're held in the IPropertyPageImpl's m_ppUnk
array.) To access the ActiveX control's properties, you need to call QueryInterface on the unknown
pointers and ask for the interface that exposes the properties. In this case, the interface is
IATLDiceObj. Once the property page has the interface, it can use the interface to fetch the
properties and plug the values into the dialog box controls. Here's the overridden Show method:

#include "atldicesrvr.h"

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{
 .
 .
 .
STDMETHOD(Show)(UINT nCmdShow) {
 HRESULT hr;

 USES_CONVERSION;

 if(nCmdShow == SW_SHOW ||
 nCmdShow == SW_SHOWNORMAL) {
 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr< IATLDieceObj,
 &IID_IATLDieceObj > pATLDiceOb(m_ppUnk[i]);
 short nColor = 0;

 if FAILED(pATLDiceOb->get_DiceColor(&nColor))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"), MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 HWND hWndComboBox = GetDlgItem(IDC_COLOR);
 ::SendMessage(hWndComboBox,
 CB_SETCURSEL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CB_SETCURSEL,
 nColor, 0);

 short nTimesToRoll = 0;
 if FAILED(
 pATLDiceOb->get_TimesToRoll(&nTimesToRoll))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"), MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 SetDlgItemInt(IDC_TIMESTOROLL, nTimesToRoll, FALSE);
 }
 }
 m_bDirty = FALSE;
 hr = IPropertyPageImpl<CDiceMainPropPage>::Show(nCmdShow);
 return hr;
 }
};
In addition to adding code to prepare to show the dialog box, you need to add code allowing users
to set the control's properties. Whenever the user changes a property, the property dialog activates
the Apply button, indicating that the user can apply the newly set properties. When the user
presses the Apply button, control jumps to the property page's Apply function so you need to insert
some code in here to make the Apply button work.

Handling the Apply Button After the user finishes manipulating the properties, he or she clicks
either the Apply button or the OK button to save the changes. In response, the client code asks the
property page to apply the new properties to the control. Remember that the ActiveX control and
the property page are separate COM objects, so they need to communicate via interfaces. Here's
how the process works.

When you create a property page using the ATL Object Wizard, ATL overrides the Apply function
from IPropertyPage for you. The property page site uses this function for notifying the property
page of changes that need to be made to the control. When the property page's Apply function is
called, it's time to synch up the state of the property page with the state of the control. Remember,
the control's IUnknown interface was passed into the property page early in the game via a call to
IPropertyPage::SetObjects. (The interface pointers are stored in the property page's m_ppUnk
array.) Most property pages respond to the Apply function by setting the state of the ActiveX
control properties through the interface provided. In the case of our example ATL-based property
page, this means examining the value in the combo box and the edit box and setting the new
values inside the control itself, like this:

#include "atldicesrvr.h"

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{
 .
 .
 .
 STDMETHOD(Apply)(void)
 {
 USES_CONVERSION;
 ATLTRACE(_T("CDiceMainPropPage::Apply\n"));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr<IATLDieceObj,
 &IID_IATLDieceObj> pATLDiceOb(m_ppUnk[i]);
 HWND hWndComboBox = GetDlgItem(IDC_COLOR);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HWND hWndComboBox = GetDlgItem(IDC_COLOR);
 short nColor = (short)::SendMessage(hWndComboBox,
 CB_GETCURSEL,
 0, 0);
 if(nColor >= 0 && nColor <= 2) {
 if FAILED(pATLDiceOb->put_DiceColor(nColor))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"),
 MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 short nTimesToRoll = (short)GetDlgItemInt
 (IDC_TIMESTOROLL);
 if FAILED(pATLDiceOb->put_TimesToRoll(nTimesToRoll))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"),
 MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 m_bDirty = FALSE;
 return S_OK;
 }

Property Persistence

Once you have added properties to the control, it's logical that you might want to have those
properties persist with their container. For example, imagine Hasbro buys your dice control to
include in its new Windows version of Monopoly. The game vendor uses your dice control within one
of the Monopoly dialog boxes and configures the control so that the dice are blue and they roll 23
times before stopping. If the dice control had a sound property, the Mono-poly authors could
configure the dice to emit a beep every time they roll. When someone plays the game and rolls the
dice, that person will see a pair of blue dice that roll 23 times before stopping and they will hear the
dice make a sound while they roll. Remember that these properties are all properties of the control.
If you're using the control in an application, chances are good you'll want these properties to be
saved with the application.

Fortunately, adding persistence support to your control is almost free when you use the ATL
property macros. You've already seen how to add the property pages to the control DLL using the
property map macros. As it turns out, these macros also make the properties persistent.

You can find ATL's code for handling the persistence of a control's properties within the
CComControlBase class. CComControlBase has a member function named IPersistStreamInit_Save
that handles saving a control's properties to a stream provided by the client. Whenever the
container calls IPersistStreamInit::Save, ATL ends up calling IPersistStreamInit_Save to do the
actual work. IPersistStreamInit_Save works by retrieving the control's property map—the list of
properties maintained by the control. (Remember that the BEGIN_PROPERTY_MAP macro adds a
function named GetPropertyMap to the control.) The first item written out by
IPersistStreamInit_Save is the control's extents (its size on the screen). IPersistStreamInit_Save
then cycles through the property map to write the contents of the property map out to the stream.
For each property, the control calls QueryInterface on itself to get its own dispatch interface. As
IPersistStreamInit_Save goes through the list of properties, the control calls IDispatch::Invoke on
itself to get the property based on the DISPID associated with the property. (The property's DISPID
is included as part of the property map structure.) The property comes back from IDispatch::Invoke
as a Variant, and IPersistStreamInit_Save writes the property to the stream provided by the client.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bidirectional Communication (Events)

Now that the dice control has properties and property pages and renders itself to a device context,
the last thing to do is to add some events to the control. Events provide a way for the control to call
back to the client code and inform the client code of certain events as they occur.

For example, the user can roll the dice. Then when the dice stop rolling, the client application can
fish the dice values out of the control. However, another way to implement the control is to set it up
so that the control notifies the client application when the dice have rolled using an event. Here
you'll see how to add some events to the dice control. We'll start by understanding how ActiveX
Control events work.

How Events Work When a control is embedded in a container (such as a Visual Basic form or an
MFC-based dialog box), one of the steps the client code takes is to establish a connection to the
control's event set. That is, the client implements an interface that has been described by the
control and makes that interface available to the control. That way, the control can talk back to the
container.

Part of developing a control involves defining an interface that the control can use to call back to
the client. For example, if you're developing the control using MFC, ClassWizard will define the
interface and produce some functions you can call from within the control to fire events back to the
client. If you're developing the control in ATL, you can accomplish the same result by defining the
event callback interface in the control's IDL and using ClassView to create a set of callback proxy
functions for firing the events to the container. When the callback interface is defined by the
control, the container needs to implement that interface and hand it over to the control. The client
and the control do this through the IConnectionPointContainer and IConnectionPoint interfaces.

IConnectionPointContainer is the interface a COM object implements to indicate that it supports
connections. IConnectionPointContainer represents a collection of connections available to the
client. Within the context of ActiveX Controls, one of these connections is usually the control's main
event set. Here's the IConnectionPointContainer interface:

interface IConnectionPointContainer : IUnknown {
 HRESULT FindConnectionPoint(REFIID riid,
 IConnectionPoint **ppcp) = 0;
 HRESULT EnumConnectionPoints(IEnumConnectionsPoint **ppec) = 0;
};
IConnectionPointContainer represents a collection of IConnectionPoint interfaces. Here's the
IConnectionPoint interface:

interface IConnectionPoint : IUnknown {
 HRESULT GetConnectionInterface(IID *pid) = 0;
 HRESULT GetConnectionPointContainer(
 IConnectionPointContainer **ppcpc) = 0;
 HRESULT Advise(IUnknown *pUnk, DWORD *pdwCookie) = 0;
 HRESULT Unadvise(dwCookie) = 0;
 HRESULT EnumConnections(IEnumConnections **ppec) = 0;
}
The container creates the control by calling CoCreateInstance on the control. As the control and the
container are establishing the interface connections between themselves, one of the interfaces the
container asks for is IConnectionPointContainer (that is, the container calls QueryInterface asking
for IID_IConnectionPointContainer). If the control supports connection points (the control answers
"Yes" when queried for IConnectionPointContainer), the control uses
IConnectionPointContainer::FindConnectionPoint to get the IConnectionPoint interface representing
the main event set. The container knows the GUID representing the main event set by looking at
the control's type information as the control is inserted into the container.

If the container can establish a connection point to the control's main event set (that is,
IConnectionPointContainer::FindConnectionPoint returns an IConnectionPoint interface pointer), the
container uses IConnectionPoint::Advise to subscribe to the callbacks. Of course, to do this the
container needs to implement the callback interface defined by the control (which the container can
learn about by using the control's type library). Once the connection is established, the control can
call back to the container whenever the control fires off an event. Here's what it takes to make
events work within an ATL-based ActiveX control.

Adding Events to the Dice Control There are several steps to adding event sets to your control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Events to the Dice Control There are several steps to adding event sets to your control.
Some of them are hidden by clever wizardry. First, use IDL to describe the events. Second, add a
proxy that encapsulates the connection points and event functions. Finally, fill out the control's
connection map so that the client and the object have a way to connect to each other. Let's
examine each step in detail.

When using ATL to write an ActiveX control, IDL is the place to start adding events to your control.
The event callback interface is described within the IDL so the client knows how to implement the
callback interface correctly. The IDL is compiled into a type library that the client will use to figure
out how to implement the callback interface. For example, if you wanted to add events indicating
the dice were rolled, doubles were rolled, and snake eyes were rolled, you'd describe the callback
interface like this in the control's IDL file:

library ATLDICESRVRLib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 [
 uuid(21C85C43-0BFF-11d1-8CAA-FD10872CC837),
 helpstring("Events created from rolling dice")
]
 dispinterface _IATLDiceObjEvents {
 properties:
 methods:
 [id(1)] void DiceRolled([in]short x, [in] short y);
 [id(2)] void Doubles([in] short x);
 [id(3)] void SnakeEyes();
 }

 [
 uuid(6AED4EBD-0991-11D1-8CAA-FD10872CC837),
 helpstring("ATLDiceOb Class")
]
 coclass ATLDiceOb
 {
 [default] interface IATLDieceObj;
 [default, source] dispinterface _IATLDiceObjEvents;
 };
The control's callback interface is defined as a dispatch interface (note the dispinterface keyword)
because that's the most generic kind of interface available. When it comes to callback interfaces,
most environments understand only IDispatch. The code on the previous page describes a callback
interface to be implemented by the client (if the client decides it wants to receive these callbacks).
We added this dice events interface by hand. The Object Wizard will put one in for you. It might
have a different name than the one we have listed. (For example, the Wizard is likely to put in an
interface named IATLObjEvents.)

Implementing the Connection Point After you've described the callback interface within the IDL
and compiled the control, the control's type information will contain the callback interface
description so that the client will know how to implement the callback interface. However, you don't
yet have a convenient way to fire these events from the control. You could, of course, call back to
the client by setting up calls to IDispatch::Invoke by hand. However, a better way to do this is to
set up a proxy (a set of functions wrapping calls to IDispatch) to handle the hard work for you. To
generate a set of functions that you can call to fire events in the container, use the Implement
Connection Point menu option from ClassView.

In ClassView, click the right mouse button while the cursor is hovering over the CATLDiceOb
symbol. This brings up the context menu for the CATLDiceOb item. Choose Implement Connection
Point from the menu to bring up the Implement Connection Point dialog box. This dialog box asks
you to locate the type information describing the interface you expect to use when calling back to
the container (the _IATLDiceObjEvents interface, in this case). By default, this dialog box looks at
your control's type library. The dialog box reads the type library and shows the interfaces found
within it. Choose _IATLDiceObjEvents and click OK. Doing so creates a C++ class that wraps the
dice events interface. Given the above interface definition, here's the code generated by the
Implement Connection Point dialog box:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

template <class T>
class CProxy_IATLDieceObjEvents :
public IConnectionPointImpl<T,
 &DIID__IATLDieceObjEvents,
 CComDynamicUnkArray>
{
 //Warning this class may be recreated by the wizard.
public:
};

{
 //Warning this class may be recreated by the wizard.
public:
 VOID Fire_Doubles(SHORT x)
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 CComVariant* pvars = new CComVariant[1];
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0;
 nConnectionIndex < nConnections;
 nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch =
 reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 pvars[0].vt = VT_I2;
 pvars[0].iVal= x;
 DISPPARAMS disp = { pvars, NULL, 1, 0 };
 pDispatch->Invoke(0x1, IID_NULL,
 LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &disp,
 NULL, NULL, NULL);
 }
 }
 delete[] pvars;
 }
 VOID Fire_DiceRolled(SHORT x, SHORT y)
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 CComVariant* pvars = new CComVariant[2];
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0;
 nConnectionIndex < nConnections;
 nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch =
 reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 pvars[1].vt = VT_I2;
 pvars[1].iVal= x;
 pvars[0].vt = VT_I2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pvars[0].vt = VT_I2;
 pvars[0].iVal= y;
 DISPPARAMS disp = { pvars, NULL, 2, 0 };
 pDispatch->Invoke(0x2, IID_NULL,
 LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &disp,
 NULL, NULL, NULL);
 }
 }
 delete[] pvars;

 }
 VOID Fire_SnakeEyes()
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0;
 nConnectionIndex < nConnections;
 nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch =
 reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 DISPPARAMS disp = { NULL, NULL, 0, 0 };
 pDispatch->Invoke(0x3, IID_NULL,
 LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, &disp,
 NULL, NULL, NULL);
 }
 }

 }
};
The C++ class generated by the connection point generator serves a dual purpose. First, it acts as
the specific connection point. (Notice that it derives from IConnectionPointImpl.) Second, the class
serves as a proxy to the interface implemented by the container. For example, if you want to call
over to the client and tell the client that doubles were rolled, you'd simply call the proxy's
Fire_Doubles function. Notice how the proxy wraps the IDispatch call so that you don't have to get
your hands messy dealing with variants by yourself.

Establishing the Connection and Firing the Events The final step in setting up the event set is
to add the connection point to the dice control and turn on the IConnectionPointContainer interface.
The connection point dialog box added the CProxy_IATLDiceObjEvents class to the dice control's
inheritance list, which provides the IConnectionPoint implementation inside the control. An ATL
class named IConnectionPointContainerImpl provides the implementation of
IConnectionPointContainer. These two interfaces should be in the dice control's inheritance list like
this:

class CATLDiceObj :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CStockPropImpl<CATLDiceObj, IATLDieceObj,
 &IID_IATLDieceObj,
 &LIBID_ATLDICESRVRLib>,
 public CComControl<CATLDiceObj>,
 public IPersistStreamInitImpl<CATLDiceObj>,
 public IOleControlImpl<CATLDiceObj>,
 public IOleObjectImpl<CATLDiceObj>,
 public IOleInPlaceActiveObjectImpl<CATLDiceObj>,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public IOleInPlaceActiveObjectImpl<CATLDiceObj>,
 public IViewObjectExImpl<CATLDiceObj>,
 public IOleInPlaceObjectWindowlessImpl<CATLDiceObj>,
 public IConnectionPointContainerImpl<CATLDiceObj>,
 public IPersistStorageImpl<CATLDiceObj>,
 public ISpecifyPropertyPagesImpl<CATLDiceObj>,
 public IQuickActivateImpl<CATLDiceObj>,
 public IDataObjectImpl<CATLDiceObj>,
 public IProvideClassInfo2Impl<&CLSID_ATLDiceOb,
 &DIID__IATLDiceObjEvents,
 &LIBID_ATLDICESRVRLib>,
 public IPropertyNotifySinkCP<CATLDiceObj>,
 public CComCoClass<CATLDiceObj, &CLSID_ATLDiceOb>,
 public CProxy_DDiceEvents< CATLDiceObj >
{
.
.
.
};
Having these classes in the inheritance list inserts the machinery in your control that makes
connection points work. Whenever you want to fire an event to the container, all you need to do is
call one of the functions in the proxy. For example, a good time to fire these events is from within
the control's OnTimer method, firing a DiceRolled event whenever the timer stops, firing a
SnakeEyes event whenever both die faces have the value 1, and firing a Doubles event when both
die faces are equal:

CATLDiceObj::OnTimer(UINT msg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled) {

 if(m_nTimesRolled > m_nTimesToRoll) {
 m_nTimesRolled = 0;
 KillTimer(1);
 Fire_DiceRolled(m_nFirstDieValue, m_nSecondDieValue);
 if(m_nFirstDieValue == m_nSecondDieValue)
 Fire_Doubles(m_nFirstDieValue);
 if(m_nFirstDieValue == 1 &&
 m_nSecondDieValue == 1)
 Fire_SnakeEyes();
 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();
 m_nTimesRolled++;
 }
 bHandled = TRUE;
 return 0;
}
Finally, notice the connection map contains entries for the control's connection points:

BEGIN_CONNECTION_POINT_MAP(CATLDiceObj)
 CONNECTION_POINT_ENTRY(DIID__IATLDiceObjEvents)
 CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)
END_CONNECTION_POINT_MAP()
The control uses this map to hand back connection points as the client requests them.

Using the Control

So how do you use the control once you've written it? The beauty of COM is that as long as the
client and the object agree on their shared interfaces, they don't need to know anything else about
each other. All the interfaces implemented within the dice control are well understood by a number
of programming environments. You've already seen how to use ActiveX Controls within an MFC-
based dialog box. The control you just wrote will work fine within an MFC-based dialog box—just
use the Add To Project menu option under the Project menu. Select Registered ActiveX Controls
and insert the ATLDiceOb component into your project. Visual C++ will read the dice control's type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and insert the ATLDiceOb component into your project. Visual C++ will read the dice control's type
information and insert all the necessary COM glue to make the dialog box and the control talk
together. (This includes all the OLE embedding interfaces as well as the connection and event
interfaces.) In addition, you could just as easily use this control from within a Visual Basic form.
When working on a Visual Basic project, select References from the Project menu and insert the
dice control into the Visual Basic project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
ActiveX Controls are one of the most widely used applications of COM in the real world today. To
summarize, ActiveX controls are just COM objects that happen to implement a number of standard
interfaces that environments like Visual C++ and Visual Basic understand how to use. These interfaces
deal with rendering, persistence, and events, allowing you to drop these components into the
aforementioned programming environments and use them right away.

In the past, MFC was the only practical way to implement ActiveX Controls. However, these days ATL
provides a reasonable way of implementing ActiveX Controls, provided you're willing to follow ATL's rules.
For example, if you buy into the ATL architecture for writing controls, you'll have to dip down into Windows
and start working with window handles and device context handles in their raw forms. However, the
tradeoff is often worthwhile, because ATL provides more flexibility when developing ActiveX controls. For
example, dual interfaces are free when using ATL, whereas they're a real pain to implement in MFC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 31
Database Management with Microsoft ODBC
Microcomputers became popular, in part, because businesspeople saw them as a low-cost means of
tracking inventory, processing orders, printing payroll checks, and so forth. Business applications required
fast access to individual records in a large database. One of the first microcomputer database tools was
dBASE II, a single-user product with its own programming language and file format. Today Windows
programmers have a wide choice of programmable database management systems (DBMS's), including
Inprise Paradox, Microsoft Access, Microsoft FoxPro, and Powersoft PowerBuilder. Most of these products
can access both local data and remote data on a central computer. The latter case requires the addition of
database server software such as ORACLE or Microsoft SQL Server.

Microsoft SQL Server is included with the Enterprise Edition of Visual C++.

How do you, as an MFC programmer, fit into the picture? Visual C++ contains all the components you'll
need to write C++ database applications for Microsoft Windows. Indeed, the product contains two separate
client-side database access systems: Open Database Connectivity (ODBC) and Data Access Objects (DAO).
In addition, Visual C++ now contains wrapper templates for interacting with data directly through OLE DB.
This chapter covers the ODBC standard, which consists of an extensible set of dynamic link libraries (DLLs)
that provide a standard database application programming interface. ODBC is based on a standardized
version of Structured Query Language (SQL). With ODBC and SQL, you can write database access code
that is independent of any database product.

Visual C++ includes tools and MFC classes for ODBC, and that's the subject of this chapter. You'll learn the
basics of ODBC, and you'll see four sample programs: one that uses the ODBC rowset with support from
the MFC CRecordset class (EX31A), one that uses the MFC CRecordView class (EX31B), one that uses
multiple recordsets (EX31C), and one that uses the CRecordset class without binding (EX31D).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Advantages of Database Management
The serialization process, introduced in Chapter 17 and Chapter 18, ties a document object to a disk file.
All the document's data must be read into memory when the document is opened, and all the data must
be written back to disk when an updated document is closed. Obviously, you can't serialize a document
that's bigger than the available virtual memory. Even if the document is small enough to fit in memory,
you might not need to read and write all the data every time the program runs.

You could program your own random access disk file, thus inventing your own DBMS, but you probably
have enough work to do already. Besides, using a real DBMS gives you many advantages, including the
following:

Use of standard file formats—Many people think of dBASE/Xbase DBF files when they think of
database formats. This is only one database file format, but it's a popular one. A lot of data is
distributed in DBF files, and many programs can read and write in this format. Lately, the Microsoft
Access MDB format has become popular, too. With the MDB format, all of a database's tables and
indexes can be contained in a single disk file.

Indexed file access—If you need quick access to records by key (a customer name, for example),
you need indexed file access. You could always write your own B-tree file access routines, but that's
a tedious job that's been done already. All DBMS's contain efficient indexed access routines.

Data integrity safeguards—Many professional DBMS products have procedures for protecting
their data. One example is transaction processing. A transaction encompasses a series of related
changes. If the entire transaction can't be processed, it is rolled back so that the database reverts
to its original state before the transaction.

Multiuser access control—If your application doesn't need multiuser access now, it might in the
future. Most DBMS's provide record locking to prevent interference among simultaneous users.
Some multiuser DBMS's use the client-server model, which means that most processing is handled
on a single database server computer; the workstations handle the user interface. Other multiuser
DBMSs handle database processing on the workstations, and they control each workstation's access
to shared files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structured Query Language
You could not have worked in the software field without at least hearing about Structured Query Language
(SQL), a standard database access language with its own grammar. In the SQL world, a database is a
collection of tables that consist of rows and columns. Many DBMS products support SQL, and many
programmers know SQL. The SQL standard is continually evolving, and SQL grammar varies among
products. SQL extensions, such as blob (binary large object) capability, allow storage of pictures, sound,
and complex data structures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ODBC Standard
The Microsoft Open Database Connectivity (ODBC) standard defines not only the rules of SQL grammar but
also the C-language programming interface to any SQL database. It's now possible for a single compiled C
or C++ program to access any DBMS that has an ODBC driver. The ODBC Software Development Kit
(SDK), included with Visual C++, contains 32-bit drivers for DBF files, Microsoft Access MDB databases,
Microsoft Excel XLS files, Microsoft FoxPro files, ASCII text files, and Microsoft SQL Server databases.

Other database companies, including Oracle, Informix, Progress, Ingres, and Centura Software, provide
ODBC drivers for their own DBMS's. If you develop an MFC program with the dBASE/Xbase driver, for
example, you can run the same program with an Access database driver. No recompilation is necessary—
the program simply loads a different DLL.

Not only can C++ programs use ODBC but other DBMS programming environments can also take
advantage of this new standard. You could write a C++ program to update a SQL Server database, and
then you could use an off-the-shelf ODBC-compatible report writer to format and print the data. ODBC
thus separates the user interface from the actual database-management process. You no longer have to
buy your interface tools from the same company that supplies the database engine.

Some people have criticized ODBC because it doesn't let programmers take advantage of the special
features of some particular DBMS's. Well, that's the whole point! Programmers only need to learn one
application programming interface (API), and they can choose their software components based on price,
performance, and support. No longer will developers be locked into buying all their tools from their
database suppliers.

What's the future of ODBC? That's a difficult question. Microsoft is driving the standard, but it isn't actually
"selling" ODBC; it's giving ODBC away for the purpose of promoting other products. Other companies are
selling their own proprietary ODBC libraries. Meanwhile, Microsoft has introduced OLE-based DAO, which
relies on the Jet database engine from Microsoft Access. (Chapter 32 describes DAO and compares its
features with the features of ODBC.) And if that isn't enough, Microsoft is in the process of introducing OLE
DB, an alternative to ODBC based on the Component Object Model (COM). Chapter 33 covers Visual C++'s
new templates for wrapping OLE DB consumer and provider code.

The ODBC Architecture

ODBC's unique DLL-based architecture makes the system fully modular. A small top-level DLL,
ODBC32.DLL, defines the API. ODBC32.DLL loads database-specific DLLs, known as drivers, during
program execution. With the help of the Windows Registry (maintained by the ODBC Administrator module
in the Windows Control Panel), ODBC32.DLL tracks which database-specific DLLs are available and thus
allows a single program to access data in several DBMSs simultaneously. A program could, for example,
keep some local tables in DBF format and use other tables controlled by a database server. Figure 31-1
shows the 32-bit ODBC DLL hierarchy.

Note from this figure that many standard database formats can be accessed through the Microsoft Access
Jet database engine, a redistributable module packaged with Visual C++. If, for example, you access a
DBF file through the Jet engine, you're using the same code that Microsoft Access uses.

ODBC SDK Programming

If you program directly at the ODBC C-language API level, you must know about three important ODBC
elements: the environment, the connection, and the statement. All three are accessed through handles.

First you need an environment that establishes the link between your program and the ODBC system. An
application usually has only one environment handle.

Next you need one or more connections. The connection references a specific driver and data source
combination. You might have several connections to subdirectories that contain DBF files, and you might
have connections to several SQL servers on the same network. A specific ODBC connection can be
hardwired into a program, or the user can be allowed to choose from a list of available drivers and data
sources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sources.

Figure 31-1. 32-bit ODBC architecture.

ODBC32.DLL has a built-in Windows dialog box that lists the connections that are defined in the Registry
(under HKEY_LOCAL_MACHINE-\SOFTWARE\ODBC). Once you have a connection, you need a SQL
statement to execute. The statement might be a query, such as this:

SELECT FNAME, LNAME, CITY FROM AUTHORS
WHERE STATE = 'UT' ORDER BY LNAME

Or the statement could be an update statement, such as this:

UPDATE AUTHORS SET PHONE = '801 232-5780'
WHERE ID = '357-86-4343'

Because query statements need a program loop to process the returned rows, your program might need
several statements active at the same time. Many ODBC drivers allow multiple active statement handles
per connection.

Look again at the SQL statement above. Suppose there were 10 authors in Utah. ODBC lets you define the
query result as a block of data, called a rowset, which is associated with an SQL statement. Through the
ODBC SDK function SQLExtendedFetch, your program can move forward and backward through the 10
selected records by means of an ODBC cursor. This cursor is a programmable pointer into the rowset.

What if, in a multiuser situation, another program modified (or deleted) a Utah author record while your
program was stepping through the rowset? With an ODBC Level 2 driver, the rowset would probably be
dynamic and ODBC could update the rowset whenever the database changed. A dynamic rowset is called a
dynaset. The Jet engine supports ODBC Level 2, and thus it supports dynasets.

Visual C++ includes the ODBC cursor library module ODBCCR32.DLL, which supports static rowsets (called
snapshots) for Level 1 drivers. With a snapshot, a SELECT statement causes ODBC to make what amounts
to a local copy of the 10 author records and build an in-memory list of pointers to those records. These
records are guaranteed not to change once you've scrolled through them; in a multiuser situation, you
might need to requery the database periodically to rebuild the snapshot.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC ODBC Classes—CRecordset and CDatabase
With the MFC classes for Windows, you use C++ objects instead of window handles and device context
handles; with the MFC ODBC classes, you use objects instead of connection handles and statement
handles. The environment handle is stored in a global variable and is not represented by a C++ object.
The two principal ODBC classes are CDatabase and CRecordset. Objects of class CDatabase represent
ODBC connections to data sources, and objects of class CRecordset represent scrollable rowsets. The
Visual C++ documentation uses the term "recordset" instead of "rowset" to be consistent with Microsoft
Visual Basic and Microsoft Access. You seldom derive classes from CDatabase, but you generally derive
classes from CRecordset to match the columns in your database tables.

For the author query in the previous section, you would derive (with the help of ClassWizard) a CAuthorSet
class from CRecordset that had data members for first name, last name, city, state, and zip code. Your
program would construct a CAuthorSet object (typically embedded in the document) and call its inherited
Open member function. Using the values of parameters and data members, CRecordset::Open constructs
and opens a CDatabase object; this function issues an SQL SELECT statement and then moves to the first
record. Your program would then call other CRecordset member functions to position the ODBC cursor and
exchange data between the database fields and the CAuthorSet data members. When the CAuthorSet
object is deleted, the recordset is closed and, under certain conditions, the database is closed and deleted.
Figure 31-2 shows the relationships between the C++ objects and the ODBC components.

Figure 31-2. MFC ODBC class database relationships.

It's important to recognize that the CAuthorSet object contains data members that represent only one row
in a table, the so-called "current record." The CRecordset class, together with the underlying ODBC rowset
code, manages the database dynaset or snapshot.

It's possible to have several active dynasets or snapshots per data source, and you can
use multiple data sources within the same program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use multiple data sources within the same program.

The important CRecordset member functions discussed in this chapter are summarized in the table below.

Function Description

Open Opens the recordset

AddNew Prepares to add a new record to the table

Update Completes an AddNew or Edit operation by saving the new or edited data in
the data source

Delete Deletes the current record from the recordset

Edit Prepares to implement changes on the current record

IsBOF Determines whether the recordset has been positioned before the first record

IsEOF Determines whether the recordset has been positioned after the last record

MoveNext Sets the current record to the next record or to the next rowset

MoveFirst Sets the current record to the first record in the recordset

MoveLast Sets the current record to the last record or to the last rowset

MovePrev Sets the current record to the previous record or to the previous rowset

GetDefaultConnect Gets the default connect string for the data source on which the recordset is
based

GetDefaultSQL Gets the default SQL string

DoFieldExchange Exchanges data between the recordset data fields and the corresponding
record on the data source

GetStatus Gets the index of the current record in the recordset and the final count
status

GetRecordCount Determines the highest-numbered record yet encountered as the user moves
through the records

GetODBCFieldCount Gets the number of fields in the recordset object

GetODBCFieldInfo Gets information about the fields in the recordset

Counting the Rows in a Recordset

It's difficult to know how many records are contained in an ODBC recordset. ODBC doesn't provide an
accurate count of the rows in a recordset until you've read past the end. Until that time, the count
returned from the CRecordset::GetRecordCount member function is a "high-water mark" that returns only
the last row accessed by CRecordset::MoveNext. The CRecordset::GetStatus function returns a
CRecordsetStatus object, which has a member m_bRecordCountFinal that indicates whether the count is
final.

The CRecordset::MoveLast function does not register the record count for you, even for dynasets. If you
want to know how many records are included in a recordset, loop through the whole table with MoveNext
calls. (A faster alternative is to use the COUNT function.) If your program adds or deletes a record or if
another user adds or deletes a record, the record count is not adjusted.

Processing ODBC Exceptions

Many MFC ODBC calls don't return an error code but instead throw a CDBException object, which contains
a string describing the error. Suppose you are trying to delete a record from a table in an Access database.
Access might be enforcing referential integrity rules, which means that you're not allowed to delete that
row because a row in another table depends on it. If you call CRecordset::Delete, you'll see an ODBC error
message box that came from the MFC base classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

message box that came from the MFC base classes.

You certainly appreciate the error message, but now ODBC has "lost its place" in the recordset, and there
is no longer a current record. Your program needs to detect the error so that it won't call functions that
depend on a current record, such as CRecordset::MoveNext. You must handle the exception in this way:

try {
 m_pSet->Delete();
}
catch(CDBException* e) {
 AfxMessageBox(e->m_strError);
 e->Delete();
 m_pSet->MoveFirst(); // lost our place!
 UpdateData(FALSE);
 return;
}
m_pSet->MoveNext();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Student Registration Database
The Visual C++ Enroll tutorial uses a ready-made sample Access database (STDREG32.MDB) that tracks
students, classes, and instructors. (See Tutorial Samples under Visual C++ Documentation\Samples\MFC
Samples\Database Samples in the online documentation.) Figure 31-3 shows the four database tables and
the relationships among them. The boldfaced fields are indexed fields, and the 1-? relationships represent
referential integrity constraints. If there's at least one section for the course MATH101, for example,
Access prevents the user from deleting the MATH101 course record.

Figure 31-3. The Student Registration database schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX31A Recordset Example
You can use AppWizard to generate a complete forms-oriented database application, and that's what the
Enroll tutorial is all about. If customers or users wanted a straightforward business database application
like that, however, they probably wouldn't call in a Visual C++ programmer; instead, they might use a less
technical tool, such as Microsoft Access. Visual C++ and the MFC ODBC classes are more appropriate for a
complex application that might have an incidental need for database access. You can also use the classes
to make your own general-purpose database query tool.

The EX31A program isolates the database access code from user interface code so that you can see how to
add ODBC database capability to any MFC application. You'll be using ClassWizard to generate a
CRecordset class, but you won't be using the CRecordView class that AppWizard generates when you ask
for a database view application.

The EX31A application is fairly simple. It displays the rows from the student database table in a scrolling
view, as shown in the screen at the end of this section. The student table is part of the Student
Registration (Microsoft Access 97) sample database that's included with Visual C++.

Here are the steps for building the EX31A example:

1. Copy the Student Registration database to your hard disk. You can find the file stdreg32.mdb
in the \Samples\VC98\Mfc\Database\Stdreg directory on the Visual C++ MSDN CD-ROM. Copy it to
the new project directory on your hard disk, and make sure the copy does not have its read-only
attribute set.

2. Run the ODBC Data Source Administrator to install the Student Registration data source.
Click the ODBC icon in the Windows Control Panel. The Visual C++ Setup program should have
already installed the required ODBC drivers on your hard disk. If you are running Windows 95, click
the Drivers button to see whether the Microsoft Access driver is available. If you're running
Windows 98, click the Drivers tab to see whether the Microsoft Access driver is available. (If the
Microsoft Access driver is not available, rerun Visual C++ Setup.) Click the Add button (in Windows
98, the Add button is on the User DSN tab), choose Microsoft Access Driver in the Add Data Source
dialog box (in Windows 98, select the Microsoft Access Driver in the Create New Data Source dialog
box and click the Finish button), and fill in the ODBC Microsoft Access 97 Setup dialog box as shown
here.

Set the database to point to stdreg32.mdb using the Select button. Finally, click the OK button.

If you are using Microsoft Windows NT version 4.0, click on the ODBC icon in the
Windows Control Panel and then click on the ODBC Drivers tab to see whether
the Microsoft Access Driver is available. On the User DSN tab, click the Add
button, choose Microsoft Access Driver in the Create New Data Source dialog
box, click the Finish button, and then fill in the dialog box as shown above.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

box, click the Finish button, and then fill in the dialog box as shown above.

3. Run AppWizard to produce \vcpp32\ex31a\. Specify an SDI application (Step 1 dialog box)
with CScrollView as the view's class type (Step 6 dialog box). Select the Header Files Only option
from the AppWizard Step 2 dialog box, as shown here.

4. Use ClassWizard to create the CEx31aSet recordset class. Choose New from the Add Class
menu, and then fill in the New Class dialog box as shown here.

5. Select the Student Registration database's Student table for the CEx31aSet class. When

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Select the Student Registration database's Student table for the CEx31aSet class. When
you click the OK button in the New Class dialog box, ClassWizard displays the Database Options
dialog box. Select the Student Registration data source, and select the Dynaset option as shown
here.

After you select the data source, ClassWizard prompts you to select a table. Select Student, as
shown here.

6. Examine the data members that ClassWizard generates. Click on the Member Variables tab
for the newly generated CEx31aSet class. ClassWizard should have generated data members based
on student column names, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Declare an embedded recordset object in ex31aDoc.h. Add the following public data member
in the CEx31aDoc class declaration:

CEx31aSet m_ex31aSet;
8. Edit the ex31aDoc.cpp file. Add the line

#include "ex31aSet.h"
just before the line

#include "ex31aDoc.h"
9. Declare a recordset pointer in ex31aView.h. Add the following private data member in the

CEx31aView class declaration:

CEx31aSet* m_pSet;
10. Edit the OnDraw and OnInitialUpdate functions in ex31aView.cpp. Add the following

boldface code:

void CEx31aView::OnDraw(CDC* pDC)
{
 TEXTMETRIC tm;
 pDC->GetTextMetrics(&tm);
 int nLineHeight=tm.tmHeight+tm.tmExternalLeading;
 CPoint pText(0,0);
 int y = 0;
 CString str;
 if (m_pSet->IsBOF()) { // detects empty recordset
 return;
 }
 m_pSet->MoveFirst(); // fails if recordset is empty
 while (!m_pSet->IsEOF()) {
 str.Format("%ld", m_pSet->m_StudentID);
 pDC->TextOut(pText.x, pText.y, str);
 pDC->TextOut(pText.x+1000, pText.y, m_pSet->m_Name);
 str.Format("%d", m_pSet->m_GradYear);
 pDC->TextOut(pText.x+4000, pText.y, str);
 m_pSet->MoveNext();
 pText.y -= nLineHeight;
 }
}
void CEx31aView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(8000, 10500);

 SetScrollSizes(MM_HIENGLISH, sizeTotal);
 m_pSet = &GetDocument()->m_ex31aSet;
 // Remember that documents/views are reused in SDI applications!
 if (m_pSet->IsOpen()) {
 m_pSet->Close();
 }
 m_pSet->Open();
}
Also in ex31aView.cpp, add the line

#include "ex31aSet.h"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "ex31aSet.h"
just before the line

#include "ex31aDoc.h"
11. Edit the ex31a.cpp file. Add the line

#include "ex31aSet.h"
just before the line

#include "ex31aDoc.h"
12. Build and test the EX31A application. Does the resulting screen look like the one shown here?

Adding ODBC Capability to an MFC Application

If you need to add ODBC capability to an existing MFC application, make the following
changes to the project:

Add the following line at the end of StdAfx.h:

#include <afxdb.h>
Edit the RC file in text mode. After the line

"#include ""afxprint.rc"" // printing print preview resources\r\n"
add the line

"#include ""afxdb.rc"" // database resources\r\n"
And after the line

#include "afxprint.rc" // printing print preview resources
add the line

#include "afxdb.rc" // database resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX31A Program Elements
Let's take a look at the major elements in the EX31A program.

Connecting the Recordset Class to the Application

When ClassWizard generates the CEx31aSet class, it adds the CPP and H files to the project—and that's all
it does. It's up to you to link the recordset to your view and to your document. By embedding a CEx31aSet
object inside the CEx31aDoc class, you ensure that the recordset object will be constructed when the
application starts.

The view could always get the recordset from the document, but it's more efficient if the view has its own
recordset pointer. Notice how the view's OnInitialUpdate function sets the m_pSet data member.

If you run AppWizard with either of the Database View options, AppWizard generates a
class derived from CRecordset, a class derived from CRecordView (for ODBC), and all
the necessary linkage as just described. We're not using AppWizard in this mode
because we don't want a form-based application.

The CEx31aView Class's OnInitialUpdate Member Function

The job of the CEx31aView::OnInitialUpdate function is to open the recordset that's associated with the
view. The recordset constructor was called with a NULL database pointer parameter, so the
CRecordset::Open function knows it must construct a CDatabase object and link that database one to one
with the recordset. But how does Open know what data source and table to use? It calls two CRecordset
virtual functions, GetDefaultConnect and GetDefaultSQL. ClassWizard generates implementations of these
functions in your derived recordset class, as shown here:

CString CEx31aSet::GetDefaultConnect()
{
 return _T("ODBC;DSN=Student Registration");
}

CString CEx31aSet::GetDefaultSQL()
{
 return _T("[Student]");
}

ClassWizard and AppWizard place brackets around all column and table [names]. These
brackets are necessary only if the names contain embedded blanks.

GetDefaultSQL is a pure virtual function, so the derived class must implement it. GetDefaultConnect, on
the other hand, has a base class implementation that opens an ODBC dialog box, which in turn prompts
the user for the data source name.

Because documents and views are reused in SDI applications, the OnInitialUpdate function must close any
open recordset before it opens a new recordset. The CRecordSet::IsOpen member function is used to test
this.

The CEx31aView Class's OnDraw Member Function

As in any document_view application, the CEx31aView::OnDraw function is called every time the view is
invalidated and once for every printed page. Here OnDraw inefficiently slogs through every row in the
recordset and paints its column values with the CDC::TextOut function. The principal CRecordset member
functions it calls are MoveFirst and MoveNext. MoveFirst will fail if the recordset is empty, so the initial call
to CRecordset::IsBOF is necessary to detect the beginning-of-file condition. The CRecordset::IsEOF call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to CRecordset::IsBOF is necessary to detect the beginning-of-file condition. The CRecordset::IsEOF call
detects the end-of-file condition for the recordset and terminates the row loop.

Remember that ClassWizard generated CEx31aSet class data members for the recordset's columns. This
means that the recordset class and now the view class are both hard-coded for the student record. The
CRecordset member functions call a pure virtual function, DoFieldExchange, that ClassWizard generates
based on the data members m_StudentID, m_Name, and m_GradYear. Here is the code for this example's
derived recordset class:

void CEx31aSet::DoFieldExchange(CFieldExchange* pFX)
{
 //{{AFX_FIELD_MAP(CEx31aSet)
 pFX->SetFieldType(CFieldExchange::outputColumn);
 RFX_Long(pFX, _T("[StudentID]"), m_StudentID);
 RFX_Text(pFX, _T("[Name]"), m_Name);
 RFX_Int(pFX, _T("[GradYear]"), m_GradYear);
 //}}AFX_FIELD_MAP
}
Each SQL data type has a record field exchange (RFX) function. RFX functions are quite complex and are
called many times during database processing. You might think at first that the RFX functions are like the
CDialog DDX functions and thus actually transfer data between the database and the data members. This
is not the case. The primary purpose of the RFX functions is to bind the database columns to the data
members so that the underlying ODBC functions, such as SQLExtendedFetch, can transfer the column
data. To this end, the DoFieldExchange function is called from CRecordSet::Open. DoFieldExchange is also
called by the Move functions for the purpose of reallocating strings and clearing status bits.

Because the DoFieldExchange function is so tightly integrated with MFC database processing, you are
advised not to call this function directly in your programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Filter and Sort Strings
SQL query statements can have an ORDER BY clause and a WHERE clause. The CRecordset class has a
public data member m_strSort that holds the text of the ORDER BY clause (excluding the words "ORDER
BY"). Another public data member, m_strFilter, holds the text of the WHERE clause (excluding the word
"WHERE"). You can set the values of these strings prior to opening the recordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Joining Two Database Tables
Most database programmers know that a join is one big logical table composed of fields from two or more
related tables. In the Student Registration database, you could join the Student table with the Enrollment
table to get a list of students and the classes they are enrolled in.

Joins are easy to do with Visual C++ because ClassWizard lets you add tables to an existing recordset. A
few additional programming tasks are needed, though. Here are the steps for joining the Enrollment table
to the Student table in EX31A.

1. Use ClassWizard to access the CEx31aSet class on the Member Variables tab. Click the Update
Columns button, and then select the Enrollment table from the Student Registration database. If
you get a warning message indicating that the data source does not contain all the columns that the
recordset classes need, click the Yes button to continue. Then click the Bind All button to add the
data members for the Enrollment fields.

2. Edit the CEx31aSet::GetDefaultSQL function, as shown here, to access the Student and Enrollment
tables:

CString CEx31aSet::GetDefaultSQL()
{
 return _T("[Student],[Enrollment]");
}

3. Two StudentID fields are now in the joined table. In the CEx31aSet::DoFieldExchange function, edit
the StudentID line to qualify the field with a table name:

RFX_Long(pFX, _T("[Student].[StudentID]"), m_StudentID);
4. In the CEx31aView::OnInitialUpdate function, set the recordset's m_strFilter string as follows:

m_pSet->m_strFilter = "[Student].[StudentID] =
 [Enrollment].[StudentID]";

5. In the CEx31aView::OnDraw function, add code to display the new Enrollment fields. Here is a
sample:

pDC->TextOut(pText.x+5000, pText.y, m_pSet->m_CourseID);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRecordView Class
The CRecordView class is a form view class that's attached to a recordset. Figure 31-4 illustrates an MFC
record view application. The toolbar buttons enable the user to step forward and backward through a
database table.

Figure 31-4. An MFC application based on the CRecordView class.

Like the CFormView class, the CRecordView class depends on a dialog template resource. The CFormView
class has data members that correspond to the controls in the dialog box, but the CRecordView class
accesses data members in a foreign object, namely the attached CRecordset object. When the user enters
data in the controls, the record view's DDX (Dialog Data Exchange) code moves the data into the
recordset's data members, which are bound to database columns by the recordset's RFX (Record Field
Exchange) code.

When you specify a database view application, AppWizard generates a class derived from CRecordView
together with an empty dialog template. AppWizard also generates a class derived from CRecordset, so it
must ask you for a database table name. At runtime, the record view object and the recordset object are
connected. Your job is to add controls to the dialog template and match the controls to recordset data
members—no C++ programming is required to create a working form-based database application.

AppWizard generates a read-only, view-based database application. If you want to modify, add, and delete
records, you must do some coding. The default behavior of the resulting application matches the behavior
of Visual Basic and Access, which is a little weird. A record is added or modified only when the user moves
out of it. If that's what you want, you can pattern your applications after the ENROLL sample program in
the \ \Samples\VC98\Mfc\Tutorial\Enroll directory on the Visual C++ MSDN CD-ROM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX31B Record View Example
The EX31B example is an "add-change-delete" application that's different from the Access model. The user
must explicitly add, update, and delete records. Even if you prefer the Access-style behavior, you can learn
a lot about the CRecordView class by going through the steps in the EX31B example.

Here are the steps for building the EX31B example:

1. Run AppWizard to produce \vcpp32\ex31b. As you move through the AppWizard steps, select
Single Document Interface (Step 1 dialog box) and Database View Without File Support (Step 2). In
the Step 2 dialog box, also click the Data Source button and choose the ODBC datasource named
Student Registration. Choose Dynaset as the Recordset Type, then select the Instructor table.
Finally, deselect Printing And Print Preview (Step 4). The options and the default class names are
shown below.

2. Add edit controls to the IDD_EX31B_FORM template. Use the IDs IDC_ID, IDC_NAME, and
IDC_ROOM, and position the controls as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Use ClassWizard to link the edit controls to the recordset data members. To add a data
member, click on the Member Variables tab and choose the ID corresponding to the edit box for
each variable. Click the Add Variable button, and click the arrow in the Member Variable Name
combo box to display a list of variables. Select only the appropriate variable, as shown here.

When you're finished adding variable names for each edit box, you'll see a screen like the one
shown here.

4. Build and test the EX31B application.You should have a working read-only database application
that looks like Figure 31-4. Use the toolbar buttons to sequence through the instructor records.

5. Back up your database. Now you're going to include the logic to add, change, and delete records.
It's a good idea to make a copy of the STDREG32.MDB file first. That way you have something to
refer back to after you delete all the records.

6. Add menu commands. Add the following items to the Record pop-up menu in the
IDR_MAINFRAME menu. Also, use ClassWizard to map the commands to the specified CEx31bView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDR_MAINFRAME menu. Also, use ClassWizard to map the commands to the specified CEx31bView
class members.

Menu
Command

Command ID Command
Handler

Update Command UI
Handler

Add Record ID_RECORD_ADD OnRecordAdd

Clear Fields ID_RECORD_CLEARFIELDS OnRecordClearfields

Delete Record ID_RECORD_DELETE OnRecordDelete OnUpdateRecordDelete

Update Record ID_RECORD_UPDATE OnRecordUpdate OnUpdateRecordUpdate

7. Add and override the OnMove function in the CEx31bView class. The CRecordView::OnMove
function does the work of updating the database when the user moves out of a record. Because we
don't want this behavior, we must override the function as follows:

BOOL CEx31bView::OnMove(UINT nIDMoveCommand)
{
 switch (nIDMoveCommand)
 {
 case ID_RECORD_PREV:
 m_pSet->MovePrev();
 if (!m_pSet->IsBOF())
 break;
 case ID_RECORD_FIRST:
 m_pSet->MoveFirst();
 break;
 case ID_RECORD_NEXT:
 m_pSet->MoveNext();
 if (!m_pSet->IsEOF())
 break;
 if (!m_pSet->CanScroll()) {
 // Clear screen since we're sitting on EOF
 m_pSet->SetFieldNull(NULL);
 break;
 }
 case ID_RECORD_LAST:
 m_pSet->MoveLast();
 break;
 default:
 // unexpected case value
 ASSERT(FALSE);
 }
 // Show results of Move operation
 UpdateData(FALSE);
 return TRUE;
}
Also, add the declaration for this overridden function to the ex31bView.h header file.

8. Edit the menu command handlers.The following functions call various CRecordset member
functions to edit the database. To add a record, you must call CRecordset::AddNew, followed by
Update. To modify a record, you must call CRecordset::Edit, followed by Update. When you add a
new record to the database, you should call CRecordset::MoveLast because the new record is
always added to the end of the dynaset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you have a sorted recordset (or if your ODBC driver doesn't put added records
in the recordset), you should call CRecordset::Requery to completely regenerate
the recordset. In that case, there's no convenient way to position the cursor on
the newly added record, and that's a basic problem with SQL.

Add the following boldface code:

void CEx31bView::OnRecordAdd()
{
 m_pSet->AddNew();
 UpdateData(TRUE);
 if (m_pSet->CanUpdate()) {
 m_pSet->Update();
 }
 if (!m_pSet->IsEOF()) {
 m_pSet->MoveLast();
 }
 m_pSet->Requery(); // for sorted sets
 UpdateData(FALSE);
}

void CEx31bView::OnRecordClearfields()
{
 m_pSet->SetFieldNull(NULL);
 UpdateData(FALSE);
}

void CEx31bView::OnRecordDelete()
{
 CRecordsetStatus status;
 try {
 m_pSet->Delete();
 }
 catch(CDBException* e) {
 AfxMessageBox(e->m_strError);
 e->Delete();
 m_pSet->MoveFirst(); // lost our place!
 UpdateData(FALSE);
 return;
 }
 m_pSet->GetStatus(status);
 if (status.m_lCurrentRecord == 0) {
 // We deleted last of 2 records
 m_pSet->MoveFirst();
 }
 else {
 m_pSet->MoveNext();
 }
 UpdateData(FALSE);
}

void CEx31bView::OnUpdateRecordDelete(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_pSet->IsEOF());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pCmdUI->Enable(!m_pSet->IsEOF());
}

void CEx31bView::OnRecordUpdate()
{
 m_pSet->Edit();
 UpdateData(TRUE);
 if (m_pSet->CanUpdate()) {
 m_pSet->Update();
 }
// should requery if key field changed
}

void CEx31bView::OnUpdateRecordUpdate(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_pSet->IsEOF());
}

9. Build and test the EX31B application again. Now you can add, change, and delete records.
Observe what happens if you try to add a record with a duplicate key. You get an error message
that comes from an exception handler inside the framework. You can add try/catch logic in
OnRecordAdd to customize the error processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multiple Recordsets
Both the EX31A and EX31B examples relied on a single recordset. In many cases, you'll need simultaneous
access to multiple recordsets. Suppose you're writing a program that lets the user add Section records, but
you want the user to select a valid CourseID and InstructorID. You'll need auxiliary Course and Instructor
recordsets in addition to the primary Section recordset.

In the previous examples, the view object contained an embedded recordset that was created with the
CRecordset default constructor, which caused the creation of a CDatabase object. The view's
OnInitialUpdate function called CRecordset::Open, which called the virtual CRecordset::GetDefaultConnect
function, opened the database, and then called the virtual CRecordset::GetDefaultSQL function. The
problem with this scenario is that there can be only one recordset per database because the database is
embedded in the recordset.

To get multiple recordsets, you have to do things differently—you must create the CDatabase object first.
Then you can construct as many recordsets as you want, passing a CDatabase pointer as a parameter to
the CRecordset constructor. You start by embedding a CDatabase object in the document in place of the
CRecordset object. You also include a pointer to the primary recordset. Here are the document data
members:

CEx31bSet* m_pEx31bSet;
CDatabase m_database;
In your overridden CDocument::OnNewDocument function, you construct the primary recordset on the
heap, passing the address of the CDatabase object to the recordset constructor. Here's the code you
insert:

if (m_pEx31bSet == NULL) {
 m_pEx31bSet = new CEx31bSet(&m_database);
 CString strConnect = m_pEx31bSet->GetDefaultConnect();
 m_database.Open(NULL, FALSE, FALSE, strConnect, FALSE);
}
The CRecordView::OnInitialUpdate function still opens the recordset, but this time CRecordset::Open does
not open the database. (It's already open.) Now the code for setting the view's m_pSet data member is a
little different:

m_pSet = GetDocument()->m_pEx31bSet;
Figure 31-5 shows the new relationship between the document, the view, and the primary recordset. Also
shown are possible auxiliary recordsets.

Figure 31-5. Object relationships for multiple recordsets.

The EX31C Multiple Recordset Example

The EX31C program is similar to EX31B except that the new database_recordset relationships are
implemented and an auxiliary recordset allows listing of the sections an instructor teaches. The EX31C
window looks like the screen shown below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window looks like the screen shown below.

Build the EX31C project, and test the application. Sequence through the instructor records, and watch the
Sections Taught list change.

As you can see, there's a new list-box control in the form dialog box. Also, there's one short helper
function in the view class, LoadListbox, which loads the list box with the rows in the Section recordset, as
shown here:

void CEx31cView::LoadListbox()
{
 CEx31cDoc* pDoc = GetDocument();
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_SECTIONS);
 CSectionSet sect(&pDoc->m_database); // db passed via constructor

 sect.m_strFilter.Format("InstructorID = `%s'",
 (LPCSTR) m_pSet->m_InstructorID);

 sect.Open();
 pLB->ResetContent();
 while (!sect.IsEOF()) {
 pLB->AddString(sect.m_CourseID + " " + sect.m_SectionNo);
 sect.MoveNext();
 }
 // sect closed by CRecordset destructor
}
Notice that this function sets up a filter string based on the value of the InstructorID field in the primary
recordset. LoadListbox is called from these member functions: OnInitDialog, OnMove, OnUpdate,
OnRecordAdd, and OnRecordDelete.

Parameterized Queries

The EX31C example sets up and executes a new query each time it accesses the auxiliary recordset. It's
more efficient, however, if you set up a single parameterized query, which enables ODBC to bind to a
parameter in your program. You can simply change the value of that parameter and re-execute the query.

Here are the steps for querying the section set for all the sections a selected instructor teaches.

1. Add a parameter data member to the section recordset class:

CString m_InstructorIDParam;
2. Add the following line to the section recordset constructor, which sets the value of the inherited

m_nParams data member to the total number of query parameters, in this case 1:

m_nParams = 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Add the following code to the section recordset DoFieldExchange function:

pFX->SetFieldType(CFieldExchange::param);
RFX_Text(pFX, "Param", m_InstructorIDParam); // Any name will do

4. Add the following code to the view class prior to calling Open for the section recordset:

sect.m_strFilter = "InstructorID = ?";
sect.m_InstructorIDParam = m_pSet->m_InstructorID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ODBC Multithreading
ODBC itself supports multithreaded programming, but not all ODBC drivers do. In particular, the Access
driver you've used for the preceding examples does not support multithreading, but the Microsoft SQL
Server driver does. Even if your ODBC driver does not support multithreading, you can put all your
database access code in a worker thread if you want to. (Multithreaded programming and worker threads
are described in Chapter 12.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bulk Row Fetches
If you're using Microsoft SQL Server or another client_server DBMS, you can speed up your database
access by using the bulk row_fetch feature of ODBC that is now supported by the CRecordset class. As the
name implies, your program fetches multiple records from the data source instead of only one record at a
time. The data source is bound to elements in an array that is attached to an object of a class derived from
CRecordset. Currently, no MFC support exists for adding, changing, or deleting records from a bulk-
fetch_enabled recordset. (See the InfoView article "Recordset: Fetching Records in Bulk (ODBC)" for
details.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Recordsets Without Binding
All three of the examples in this chapter used recordset classes derived from CRecordset. The data
members of those classes were bound to database columns at recordset creation time using the ODBC
binding mechanism. When the programs called CRecordset::Move, the ODBC driver copied data directly
from the data source into the data members.

ODBC has always supported unbound data access through the functions SQLGetData and SQLPutData.
Now the CRecordset class supports read-only unbound data access through its GetFieldValue member
function. One overloaded version of this function retrieves the value of a field specified by name and then
stores it in an object of class CDBVariant. This class is similar to the COleVariant class described in Chapter
25, but it does not use any OLE code and it doesn't have as many overloaded operators and member
functions. The COleVariant class has a data member, m_dwType, followed by a union. If the type code is
DBVT_LONG, for example, you access an integer in the union member m_lVal.

You can use CRecordset::GetFieldValue for circumstances in which you don't know the database schema at
design time. Your "dynamic database" program constructs an object of class CRecordset, and you access
the column values with code like this:

void CEx31dView::DrawDataRow(CDC* pDC, int y)
{
 int x = 0;
 CString strTime, str;
 CEx31dDoc* pDoc = GetDocument();
 for (int i = 0; i < pDoc->m_nFields; i++) {
 CDBVariant var; // must declare this inside the loop
 m_pSet->GetFieldValue(i, var);
 switch (var.m_dwType) {
 case DBVT_STRING:
 str = *var.m_pstring; // narrow characters
 break;
 case DBVT_SHORT:
 str.Format("%d", (int) var.m_iVal);
 break;
 case DBVT_LONG:
 str.Format("%d", var.m_lVal);
 break;
 case DBVT_SINGLE:
 str.Format("%10.2f", (double) var.m_fltVal);
 break;
 case DBVT_DOUBLE:
 str.Format("%10.2f", var.m_dblVal);
 break;
 case DBVT_DATE:
 str.Format("%d/%d/%d", var.m_pdate->month, var.m_pdate->day,
 var.m_pdate->year);
 break;
 case DBVT_BOOL:
 str = (var.m_boolVal == 0) ? "FALSE" : "TRUE";
 break;
 case DBVT_NULL:
 str = "——";
 break;
 default:
 str.Format("Unk type %d\n", var.m_dwType);
 TRACE("Unknown type %d\n", var.m_dwType);
 }
 pDC->TextOut(x, y, str);
 x += pDoc->m_arrayFieldSize[i] * m_nCharWidth;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The code above is excerpted from a sample program EX31D, which is on the CD-ROM included with this
book. That program uses the CRowView code from the DAO example, EX32A, described in the next
chapter. The programs EX31D and EX32A are similar in architecture and function. EX31D uses ODBC, and
EX32A uses DAO.

Although MFC gives you the CRecordset functions GetODBCFieldCount and GetODBCFieldInfo to get field
lengths and types, you must call the ODBC function SQLTables to get a "table of tables." The CTables class
in the EX31D project encapsulates this table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 32
Database Management with Microsoft Data Access Objects
In Chapter 31, you saw database management programming with the Microsoft Foundation Class (MFC)
Library and Microsoft Open Database Connectivity (ODBC). In this chapter, you'll see a completely different
database programming approach—the MFC Data Access Objects (DAO) classes and the underlying DAO
software. Actually, the approach is not so different. Instead of the ODBC classes CDatabase and
CRecordset, you'll be using CDaoDatabase and CDaoRecordset. The ODBC and DAO classes are so similar
(many member function names are the same) that you can convert ODBC applications, such as the
examples in Chapter 31, to DAO applications simply by changing class names and little else. Thus, you can
look at DAO as a sort of replacement for ODBC. But as you'll see, DAO goes far beyond ODBC.

This chapter merely scratches the surface of DAO, highlighting its features and outlining the differences
between DAO and ODBC. Along the way, it explains the relationships between DAO, COM, the Microsoft Jet
database engine, Visual Basic for Applications (VBA), and the MFC library. Finally, it presents a dynamic
database example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO, COM, and the Microsoft Jet Database Engine
One feature of DAO is a set of COM interfaces, which, like all COM interfaces, are nothing more than
specifications—sets of pure virtual function declarations. These interfaces have names such as
DAOWorkspace, DAODatabase, and DAORecordset. (Notice that these interface names don't begin with the
letter I as do most other interface names.)

The other feature of DAO is the implementation of those interfaces. Microsoft supplies the COM module
DAO350.DLL, which connects to the same Jet database engine DLL that serves the Microsoft Access
database product. As a Visual C++ developer, you have royalty-free redistribution rights to these DLLs. At
the moment, the only DAO implementation available with Jet is DAO350.DLL, but nothing prevents other
database software companies from providing their own DAO implementations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO and VBA
In Chapter 25, you learned about Automation. A VBA Automation controller (such as Microsoft Excel or
Microsoft Visual Basic) can load any Automation component and then use it to create objects. Once the
objects are created, the component can get and set properties and can call methods. The components you
created in Chapter 25 all communicated through the COM IDispatch interface. But VBA can use interfaces
other than IDispatch to communicate with a component.

If you look in the Windows Registry under HKEY_CLASSES_ROOT-\TypeLib, you'll find the class ID
{00025E01-0000-0000-C000-000000000046} and the pathname for DAO350.DLL, which contains the DAO
type library. If you select this item as a VBA reference (by pressing Alt-F11 in Excel and then choosing
Object Browser from the Visual Basic View menu, for example), your VBA programs can use the DAO
objects and you can browse the DAO library, as shown here.

Like IDispatch servers, the Microsoft DAO component implements objects that have properties and
methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO and MFC
The MFC library has the following five DAO database classes.

Class Use

CDaoWorkspace An interface for managing a single user's database session

CDaoDatabase An interface for working with a database

CDaoRecordset An interface for working with a set of records (such as table-type recordsets,
dynaset-type recordsets, or snapshot-type recordsets)

CDaoTableDef An interface for manipulating a definition of a base table or an attached table

CDaoQueryDef An interface for querying a database

These classes more or less wrap the COM interfaces with corresponding names. (CDaoRecordset wraps
DAORecordset, for example.) The CDaoWorkspace class actually wraps two interfaces, DAOWorkspace and
DAODBEngine. The MFC wrapping is fairly complete, so you need to make direct COM DAO calls only when
you need access to certain database security features. If you use the MFC library, all reference counting is
taken care of; if you call DAO directly, you must be sure to call Release on your interfaces.

Both AppWizard and ClassWizard fully support DAO. You can use AppWizard to generate a complete form-
based application that works like EX31B in Chapter 31, and you can use ClassWizard to generate a table-
specific class that is derived from CDaoRecordset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Databases Can You Open with DAO?
The following four database options are supported by DAO:

Opening an Access database (MDB file)—An MDB file is a self-contained database that includes
query definitions, security information, indexes, relationships, and of course the actual data tables.
You simply specify the MDB file's pathname.

Opening an ODBC data source directly—There's a significant limitation here. You can't open an
ODBC data source that uses the Jet engine as a driver; you can use only data sources that have
their own ODBC driver DLLs.

Opening an ISAM-type (indexed sequential access method) data source (a group of
dBASE, FoxPro, Paradox, Btrieve, Excel, or text files) through the Jet engine—Even if
you've set up an ODBC data source that uses the Jet engine to access one of these file types, you
must open the file as an ISAM-type data source, not as an ODBC data source.

Attaching external tables to an Access database—This is actually the preferred way of using
DAO to access ODBC data. First you use Access to attach the ODBC tables to an MDB file, and then
you use DAO to open the MDB file as in the first option. You can also use Access to attach ISAM files
to an MDB file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using DAO in ODBC Mode—Snapshots and Dynasets
You've already heard that DAO goes far beyond ODBC, but let's take things one step at a time. We'll start
with DAO snapshots and dynasets, which behave pretty much the same way in DAO as they do in ODBC.
You can use snapshots and dynasets with ODBC data sources, ISAM-type files, and Access tables. You
write programs using the MFC library classes CDaoDatabase and CDaoRecordset, which are very similar to
the ODBC classes CDatabase and CRecordset. There are a few notable differences, however:

The CDaoRecordset::GetRecordCount function works differently from the
CRecordset::GetRecordCount function. For attached tables and ODBC data sources,
CDaoRecordset::GetRecordCount always returns -1. For Access tables and ISAM-type files, it
returns the number of records actually read, which is the final count for the recordset only if you
have moved to the last record. Unfortunately, DAO has no equivalent for the ODBC
CRecordset::GetStatus function, so you can't test a DAO recordset to find out whether the record
count is indeed final.

With DAO, you can get and set the absolute position of the current record in a dynaset or a
snapshot, you can get and set a percent position, you can find a record containing a matching
string, and you can use bookmarks to mark records for later retrieval.

DAO makes it easy to get and set column values without binding. Because values are passed as
VARIANTs, you can build dynamic applications that adjust to the database schema at runtime.

One important thing to remember about snapshot recordsets is that the record count never changes. With
dynasets, the record count changes only if you delete or add records in the dynaset. If another user
deletes a record, that record is marked as deleted in your dynaset; if another user adds a record, you don't
see that record in your dynaset. If you add a record to a dynaset, that record is added at the end of the
dynaset, regardless of the sort order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO Table-Type Recordsets
DAO introduces a new type of recordset unknown in the ODBC universe. A table-type recordset (supported
by the CDaoRecordset class) is a direct view of an entire database table. You can use a table-type
recordset only with a table in an Access database. Table-type recordsets have the following characteristics
that distinguish them from snapshots and dynasets:

The CDaoRecordset::GetRecordCount function returns an approximate record count that reflects
records added or deleted by other users.

You can't use the CDaoRecordset functions that access a record's absolute position or percent
position.

The CDaoRecordset::Seek function lets you position to a record by key value. You first call the
CDaoRecordset::SetCurrentIndex function to select the index.

If you add a record to a table-type recordset, the record is added in its proper place using the sort
order that is determined by the current index.

The table-type recordset is a significant departure from ODBC and SQL. You can now select an individual
record without first issuing a query. You can find a record with one index and then move sequentially using
a different index. It's like dBASE or FoxPro programming!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO QueryDefs and TableDefs
If you're working with an Access database, you can store parameterized queries in the database, using the
MFC CDaoQueryDef class. Also, you can use the CDaoTableDef class to define tables at runtime, which is
more convenient than using a SQL CREATE statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAO Multithreading
The Microsoft Access Jet engine is not multithreaded, and that means that DAO is not multithreaded.
Furthermore, you must confine all DAO calls to your application's main thread.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Displaying Database Rows in a Scrolling Window
You've seen all the general DAO theory you're going to get here. Now you're ready for a practical example.
Before you dig into the code for EX32A, however, you need to study the general problem of displaying
database rows in a scrolling window. If this were an easy problem to solve, there would probably be an
MFC CScrollDatabaseView class. But there isn't, so we'll write our own class. Actually, it's not that difficult
if we make some simplifying assumptions about the database. First, our scrolling row-view class will be
based on a dynaset, and that means that it can accommodate any table, including those in ODBC data
sources and ISAM-type files. Second, we'll specify read-only access, which means that the number of rows
in the dynaset can't change.

Scrolling Alternatives

There are lots of ways to implement scrolling with Visual C++. If you look at the DAOVIEW MFC sample
database program on the Visual C++ CD-ROM, you'll see the use of the MFC CListView class, which
encapsulates the Windows list view common control. The trouble with this approach is that you must copy
all the selected rows into the control, which can be slow, and more significantly, you can't see updates that
other programs are making in the same table. The list view is a de facto snapshot of a database table.

We'll base our scrolling view on the MFC CScrollView class, and our code will be smart enough to retrieve
only those records that are needed for the client area of the window. The only limitation here is the logical
size of the scrolling window. In Microsoft Windows 95, the limits are ±32,767, and that restricts the
number of rows we can display. If the distance between rows is 14 units, we can display only up to 2340
rows.

A Row-View Class

If you've read other books about programming for Windows, you know that authors spend lots of time on
the problem of scrolling lists. This is a tricky programming exercise that must be repeated over and over.
Why not encapsulate a scrolling list in a base class? All the ugly details would be hidden, and you could get
on with the business of writing your application.

The CRowView class, adapted from the class of the identical name in the CHKBOOK MFC advanced sample
program on the Visual C++ CD-ROM, does the job. Through its use of virtual callback functions, it serves
as a model for other derivable base classes. CRowView has some limitations, and it's not built to industrial-
strength specifications, but it works well in the DAO example. Figure 32-1 shows the header file listing.

ROWVIEW.H

// rowview.h : interface of the CRowView class
//
// This class implements the behavior of a scrolling view that presents
// multiple rows of fixed-height data. A row view is similar to an
// owner-draw list box in its visual behavior; but unlike list boxes,
// a row view has all of the benefits of a view (as well as scroll view),
// including perhaps most importantly printing and print preview.
///

class CRowView : public CScrollView
{
DECLARE_DYNAMIC(CRowView)
protected:
// Construction/destruction
 CRowView();
 virtual ~CRowView();

// Attributes
protected:
 int m_nRowWidth; // width of row in logical units
 int m_nRowHeight; // height of row in logical units
 int m_nCharWidth; // avg char width in logical units
 int m_nPrevSelectedRow; // index of the most recently selected row
 int m_nPrevRowCount; // most recent row count, before update
 int m_nRowsPerPrintedPage; // how many rows fit on a printed page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int m_nRowsPerPrintedPage; // how many rows fit on a printed page

// Operations-Attributes
protected:
 virtual void UpdateRow(int nInvalidRow); // called by derived class
 // OnUpdate
 virtual void CalculateRowMetrics(CDC* pDC)
 { GetRowWidthHeight(pDC, m_nRowWidth, m_nRowHeight,
 m_nCharWidth); }
 virtual void UpdateScrollSizes();
 virtual CRect RowToWndRect(CDC* pDC, int nRow);

virtual int RowToYPos(int nRow);
 virtual void RectLPtoRowRange(const CRect& rectLP, int& nFirstRow,
 int& nLastRow, BOOL bIncludePartiallyShownRows);
 virtual int LastViewableRow();

// Overridables
protected:
 virtual void GetRowWidthHeight(CDC* pDC, int& nRowWidth,
 int& nRowHeight, int& nCharWidth) = 0;
 virtual int GetActiveRow() = 0;
 virtual int GetRowCount() = 0;
 virtual void OnDrawRow(CDC* pDC, int nRow, int y, BOOL bSelected) = 0;
 virtual void ChangeSelectionNextRow(BOOL bNext) = 0;
 virtual void ChangeSelectionToRow(int nRow) = 0;

// Implementation
protected:
 // standard overrides of MFC classes
 virtual void OnInitialUpdate();
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NULL);
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnPrint(CDC* pDC, CPrintInfo* pInfo);

// Generated message map functions
protected:
 //{{AFX_MSG(CRowView)
 afx_msg void OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags);
 afx_msg void OnSize(UINT nType, int cx, int cy);
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Figure 32-1. The CRowView header file listing.

Dividing the Work Between Base and Derived Classes

Because the CRowView class (itself derived from CScrollView) is designed to be a base class, it is as
general as possible. CRowView relies on its derived class to access and paint the row's data. The EX32A
example's document class obtains its row data from a scrollable DAO database, but the CHKBOOK example
uses a random access disk file. The CRowView class serves both examples effectively. It supports the
concept of a selected row that is highlighted in the view. Through the CRowView virtual member functions,
the derived class is alerted when the user changes the selected row.

The CRowView Pure Virtual Member Functions

Classes derived from CRowView must implement the following pure virtual member functions:

GetRowWidthHeight—This function returns the character width and height of the currently
selected font and the width of the row, based on average character widths. As the device context
switches between printer and display, the returned font metric values change accordingly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetActiveRow—The base class calls this function frequently, so if another view changes the
selected row, this view can track it.

ChangeSelectionNextRow, ChangeSelectionToRow—These two functions serve to alert the
derived class that the user has changed the selected row. The derived class can then update the
document (and other views) if necessary.

OnDrawRow—The OnDrawRow function is called by the function CRowView::OnDraw to draw a
specific row.

Other CRowView Functions

Three other CRowView functions are available to be called by derived classes and the application
framework:

UpdateRow—This public function triggers a view update when the row selection changes.
Normally, only the newly selected row and the deselected row are invalidated, and this means that
the final invalid rectangle spans both rows. If the total number of rows has changed, UpdateRow
calls UpdateScrollSizes.

UpdateScrollSizes—This is a virtual function, so you can override it if necessary. The CRowView
implementation updates the size of the view, which invalidates the visible portion.
UpdateScrollSizes is called by OnSize and by OnUpdate (after the user executes a new query).

OnPrint—The CRowView class overrides this function to cleverly adjust the viewport origin and
clipping rectangle so that OnDraw can paint on the printed page exactly as it does in the visible
portion of a window.

The MFC Dialog Bar

You haven't seen the CDialogBar class yet because it hasn't made sense to use it. (A
dialog bar is a child of the frame window that is arranged according to a dialog
template resource and that routes commands in a manner similar to that of a toolbar.)
It fits well in the DAO example, however. (See Figure 32-2.) The dialog bar contains an
edit control for the SQL query string, and it has a pushbutton to re-execute the query.
The button sends a command message that can be handled in the view, and it can be
disabled by an update command UI handler. Most dialog bars reside at the top of the
frame window, immediately under the toolbar. It's surprisingly easy to add a dialog bar
to an application. You don't even need a new derived class. Here are the steps:

1. Use the resource editor to lay out the dialog bar. Apply the following styles:

Style = Child

Border = None

Visible = Unchecked

You can choose a horizontally oriented bar for the top or bottom of the frame, or
you can choose a vertically oriented bar for the left or right side of the frame.
Add any controls you need, including buttons and edit controls.

2. Declare an embedded CDialogBar object in your derived main frame class
declaration, as shown here:

CDialogBar m_wndMyBar;
3. Add dialog bar object creation code to your main frame class OnCreate member

function, as shown here:

if (!m_wndMyBar.Create(this, IDD_MY_BAR, CBRS_TOP,
 ID_MY_BAR)) {
 TRACE("Failed to create dialog bar\n");
 return -1;
}

IDD_MY_BAR is the dialog resource ID assigned in the resource editor. The CBRS_TOP
style tells the application framework to place the dialog bar at the top of the frame
window. ID_MY_BAR is the dialog bar's control window ID, which should be within the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window. ID_MY_BAR is the dialog bar's control window ID, which should be within the
range 0xE800 through 0xE820 to ensure that the Print Preview window preempts the
dialog bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming a Dynamic Recordset
If you use AppWizard to create a DAO database application, AppWizard generates a class derived from
CDaoRecordset with a DoFieldExchange function that binds data members to the columns in a specific
database table. For a dyna-mic recordset class, however, you need to determine the column names and
data types at runtime. The EX31A example shows how to do this with ODBC.

With DAO, the procedure is similar. You simply construct a CDaoRecordset object and call the
GetFieldValue member function, which returns a VARIANT representing the column value. Other member
functions tell you the number of columns in the table and the name, type, and width of each column.

If a field VARIANT contains a BSTR, assume the string contains 8-bit characters. This is
an exception to the rule that all BSTRs contain wide characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX32A Example
Now we'll put everything together and build another working program—an MDI application that connects to
any DAO data source. The application dynamically displays tables in scrolling view windows, and it allows
the user to type in the SQL QUERY statement, which is stored in the document along with data source and
table information. AppWizard generates the usual MDI main frame, document, application, and view
classes, and we change the view class base to CRowView and add the DAO-specific code. Figure 32-2
shows the EX32A program in operation.

The document's File menu includes the following commands:

DAO Open MDB

DAO Open ISAM

DAO Open ODBC

The user must choose one of these commands after opening a document. As you will see, the code for
opening the database is different depending on the data source type.

You can learn a lot about this application by looking at the three-view window in Figure 32-2. The two view
windows in the upper part of the main window are tied to the same document, and the lower view window
is tied to another document. The dialog bar shows the SQL statement associated with the active view
window.

Figure 32-2. The EX32A program in operation.

The EX32A example includes source code listings and resource requirements. Here is a table of the files
and classes.

Header File Source Code File Class Description

Ex32a.h Ex32a.cpp CEx32aApp Main application

MainFrm.h MainFrm.cpp CMainFrame MDI main frame

ChildFrm.h ChildFrm.cpp CChildFrame MDI child frame

Ex32aDoc.h Ex32aDoc.cpp CEx32aDoc EX32A document

Ex32aView.h Ex32aView.cpp CEx32aView Scrolling database view class

Rowview.h Rowview.cpp CRowView Row view base class

Tablesel.h Tablesel.cpp CTableSelect Table selection dialog class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IsamSelect.h IsamSelect.cpp CIsamSelect ISAM-type data source selection dialog class

StdAfx.h StdAfx.cpp Precompiled headers

Now we'll go through the application's classes one at a time, excluding CRowView. You'll see the important
data members and the principal member functions.

CEx32aApp

The application class is the unmodified output from AppWizard. Nothing special here.

CMainFrame and CChildFrame

These classes are the standard output from AppWizard except for the addition of the dialog bar created in
the CMainFrame::OnCreate member function.

CEx32aDoc

The document class manages the database connections and recordsets. Each document object can support
one main recordset attached to one data source. A document object can have several views attached. Data
sources (represented by CDaoDatabase objects) are not shared among document objects; each document
has its own.

Data Members

The important CEx32aDoc data members are listed in the following table.

Data Member Description

m_pRecordset Pointer to the document's recordset object

m_database Document's embedded CDaoDatabase object

m_strDatabase Database pathname (MDB file)

m_strConnect ODBC connection string or ISAM connection string

m_strQuery Entire SQL SELECT statement

m_bConnected Flag that is TRUE when the document is connected to a recordset

m_nFields Number of fields (columns) in the recordset

m_nRowCount Number of records (rows) in the recordset

m_nDatabaseType enum {UNK, MDB, ISAM, ODBC}

OnOpenDocument

This overridden CDocument function is called when the user loads a document from disk. The document
contains the name of the database and the query string, so the program can open the database and run
the query upon loading.

BOOL CEx32aDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;
 PutQuery();
 switch (m_nDatabaseType) {
 case UNK:
 break;
 case MDB:
 DaoOpenMdb();
 break;
 case ISAM:
 DaoOpenIsam();
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case ODBC:
 DaoOpenOdbc();
 break;
 }
 return TRUE;
}

OnCloseDocument

This overridden CDocument function closes the database if one is connected:

void CEx32aDoc::OnCloseDocument()
{
 m_strQuery.Empty();
 PutQuery();
 if (m_bConnected) {
 delete m_pRecordset; // Destructor calls Close
 m_database.Close();
 m_bConnected = FALSE;
 m_pRecordset = NULL;
 m_nRowCount = 0;
 }
 CDocument::OnCloseDocument();
}

OnFileDaoOpenOdbc and DaoOpenOdbc

These functions are called in response to the user choosing the DAO Open ODBC command from the File
menu. DaoOpenOdbc, which is also called by OnOpenDocument, calls CDaoDatabase::Open with the
connect parameter string. The string "ODBC;" causes the ODBC data source selection dialog to be
displayed. Notice the use of the try/catch block to detect SQL processing errors.

void CEx32aDoc::OnFileDaoOpenOdbc()
{
 m_strConnect.Empty();
 m_strQuery.Empty();
 DaoOpenOdbc();
}

void CEx32aDoc::DaoOpenOdbc()
{
 // can't open ODBC using Access driver
 if (m_strConnect.IsEmpty()) {
 m_strConnect = "ODBC;";
 }
 BeginWaitCursor();
 try {
 // nonexclusive, read-only
 m_database.Open("", FALSE, TRUE, m_strConnect);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 EndWaitCursor();
 e->Delete();
 return;
 }
 m_strConnect = m_database.GetConnect();
 TRACE("database name = %s, connect = %s\n",
 (const char*) m_strDatabase,
 (const char*) m_strConnect);
 OpenRecordset();
 m_nDatabaseType = ODBC;
 EndWaitCursor();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnFileDaoOpenIsam and DaoOpenIsam

These functions are called in response to the user choosing the DAO Open ISAM command from the File
menu. DaoOpenIsam, which is also called by OnOpenDocument, gets a directory name from the user
(through the CIsamSelect class) and then calls CDaoDatabase::Open with the connect parameter string.
The CIsamSelect::m_strIsam string specifies the type of file. Example strings are "dBASE III", "FoxPro
2.6", and "Excel 8.0".

void CEx32aDoc::OnFileDaoOpenIsam()
{
 m_strConnect.Empty();
 m_strQuery.Empty();
 DaoOpenIsam();
}

void CEx32aDoc::DaoOpenIsam()
{
 BeginWaitCursor();
 if (m_strConnect.IsEmpty()) {
 CIsamSelect isamDlg;
 if (isamDlg.DoModal() != IDOK) {
 return;
 }
 m_strConnect = isamDlg.m_strIsam + ";DATABASE=" +
 isamDlg.m_strDirectory;
 TRACE("m_strConnect = %s\n", (const char*) m_strConnect);
 }
 try {
 // nonexclusive, read-only
 m_database.Open("", FALSE, TRUE, m_strConnect);
 }
 catch(CDaoException* e) {
 ::DaoErrorMsg(e);
 EndWaitCursor();
 e->Delete();
 return;
 }
 m_strConnect = m_database.GetConnect();
 TRACE("database name = %s, connect = %s\n",
 (const char*) m_strDatabase, (const char*) m_strConnect);
 OpenRecordset();
 m_nDatabaseType = ISAM;
 EndWaitCursor();
}

OnFileDaoOpenMdb and DaoOpenMdb

These functions are called in response to the user choosing the DAO Open MDB command from the File
menu. DaoOpenMdb, which is also called by OnOpenDocument, uses the MFC CFileDialog class to get an
MDB file pathname from the user. Compare the CDaoDatabase::Open call with the calls in the two
preceding functions. Notice that the MDB pathname is passed as the first parameter.

void CEx32aDoc::OnFileDaoOpenMdb()
{
 m_strDatabase.Empty();
 m_strQuery.Empty();
 DaoOpenMdb();
}

void CEx32aDoc::DaoOpenMdb()
{
 if (m_strDatabase.IsEmpty()) {
 CFileDialog dlg(TRUE, ".mdb", "*.mdb");
 if (dlg.DoModal() == IDCANCEL) return;
 m_strDatabase = dlg.GetPathName();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_strDatabase = dlg.GetPathName();
 }
 BeginWaitCursor();
 try {
 // nonexclusive, read-only
 m_database.Open(m_strDatabase, FALSE, TRUE);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 EndWaitCursor();
 e->Delete();
 return;
 }
 m_strDatabase = m_database.GetName();
 TRACE("database name = %s, connect = %s\n",
 (const char*) m_strDatabase, (const char*) m_strConnect);
 OpenRecordset();
 m_nDatabaseType = MDB;
 EndWaitCursor();
}

OnFileDaoDisconnect

This function closes the DAO database, enabling the document to be saved.

void CEx32aDoc::OnFileDaoDisconnect()
{
 if (m_bConnected) {
 delete m_pRecordset; // Destructor calls Close
 m_database.Close();
 m_bConnected = FALSE;
 m_pRecordset = NULL;
 m_nRowCount = 0;
 UpdateAllViews(NULL);
 }
}

OpenRecordset

This helper function is called by DaoOpenOdbc, DaoOpenIsam, and DaoOpenMdb. The CTableSelect class
allows the user to select a table name, which is used to construct a SELECT statement. Calls to
CDaoRecordset::MoveLast and CDaoRecordset::GetAbsolutePosition set the record count for ODBC, ISAM,
and MDB data sources.

void CEx32aDoc::OpenRecordset()
{
 GetQuery();
 if (m_strQuery.IsEmpty()) {
 CTableSelect tableDlg(&m_database);
 if (tableDlg.DoModal() != IDOK) {
 m_database.Close(); // escape route
 return;
 }
 m_strQuery.Format("select * from [%s]", tableDlg.m_strSelection);
 PutQuery();
 }

 m_pRecordset = new CDaoRecordset(&m_database);
 try {
 m_pRecordset->Open(dbOpenDynaset, m_strQuery, dbReadOnly);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 UpdateAllViews(NULL);
 m_bConnected = FALSE;
 e->Delete();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e->Delete();
 return;
 }
 if (!m_pRecordset->IsBOF()) {
 // might be expensive for a really big table
 // View adjusts its m_nRowCount if you supply a big value here
 m_pRecordset->MoveLast(); // to validate record count
 }
 m_nRowCount = m_pRecordset->GetAbsolutePosition() + 2;
 TRACE("m_nRowCount = %d\n", m_nRowCount);
 GetFieldSpecs();
 UpdateAllViews(NULL);
 m_bConnected = TRUE;
}

The MFC CDaoRecordset class has m_strFilter and m_strSort data members, as does
the ODBC CRecordset class. You can't use these strings, however, if your recordset
doesn't have bound fields; you must construct the entire SELECT statement as shown
above.

OnRequery

This message handler is called in response to the user clicking the Requery button on the dialog bar. This
message handler reads the query string value and regenerates the recordset. Note that the
CDaoRecordset::Requery function doesn't handle an updated SELECT statement, so we close and reopen
the recordset instead.

void CEx32aDoc::OnRequery()
{
 GetQuery();
 // Requery won't work because we're changing the SQL statement
 BeginWaitCursor();
 if(m_pRecordset->IsOpen()) {
 m_pRecordset->Close();
 }
 try {
 m_pRecordset->Open(dbOpenDynaset, m_strQuery, dbReadOnly);
 }
 catch (CDaoException* e) {
 ::DaoErrorMsg(e);
 m_nRowCount = 0;
 UpdateAllViews(NULL);
 EndWaitCursor();
 e->Delete();
 return;
 }
 if (!m_pRecordset->IsBOF()) {
 m_pRecordset->MoveLast(); // to validate record count
 }
 m_nRowCount = m_pRecordset->GetAbsolutePosition() + 2;
 TRACE("m_nRowCount = %d\n", m_nRowCount);
 GetFieldSpecs();
 UpdateAllViews(NULL);
 EndWaitCursor();
}

PutQuery and GetQuery

These utility functions move the document's query string to and from the edit control on the dialog bar.

Serialize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Serialize

The Serialize function reads and writes the m_strConnect, m_strDatabase, and m_strQuery data members.

CEx32aView

This class is derived from CRowView and implements the virtual functions.

Data Members

The CEx32aView class uses the integer variable m_nSelectedRow to track the currently selected row. The
recordset pointer is held in m_pSet.

OnUpdate

This virtual CView function is called through the application framework when the view is created and when
the document's contents change in response to a database open or requery event. If several views are
active for a given document, all views reflect the current query but each can maintain its own current row
and scroll position. OnUpdate also sets the value of the m_pSet data member. This can't be done in
OnInitialUpdate because the recordset is not open at that point.

GetRowWidthHeight, GetActiveRow,
ChangeSelectionNextRow, and ChangeSelectionToRow

These functions are implementations of the CRowView class pure virtual functions. They take care of
drawing a specified query result row, and they track the current selection.

GetRowCount

This virtual function, which is called from CRowView, simply returns the record count value stored in the
document.

OnDrawRow and DrawDataRow

The OnDrawRow virtual function is called from CRowView member functions to perform the actual work of
drawing a designated row. OnDrawRow reads the recordset's current row and then calls the
CDaoRecordset::Move function to position the cursor and read the data. The try/catch block detects
catastrophic errors resulting from unreadable data. The DrawDataRow helper function steps through the
columns and prints the values. Notice that OnDrawRow displays "**RECORD DELETED**" when it
encounters a record that has been deleted by another user since the dynaset was first created.
OnDrawRow and DrawDataRow are shown here:

void CEx32aView::OnDrawRow(CDC* pDC, int nRow, int y, BOOL bSelected)
{
 int x = 0;
 int i;
 CEx32aDoc* pDoc = GetDocument();

 if (m_pSet == NULL) return;

 if (nRow == 0) { // title row
 for (i = 0; i < pDoc->m_nFields; i++) {
 pDC->TextOut(x, y, pDoc->m_arrayFieldName[i]);
 x += pDoc->m_arrayFieldSize[i] * m_nCharWidth;
 }
 }
 else {
 try {
 m_pSet->SetAbsolutePosition(nRow - 1);
 // adjust for title row
 // SetAbsolutePosition doesn't throw exception until AFTER
 // end of set
 if (m_pSet->GetAbsolutePosition() == (nRow - 1)) {
 DrawDataRow(pDC, y);
 }
 }
 catch (CDaoException* e) {
 // might be a time delay before delete is seen in this program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // might be a time delay before delete is seen in this program
 if (e->m_pErrorInfo->m_lErrorCode == 3167) {
 pDC->TextOut(0, y, "**RECORD DELETED**");
 }
 else {
 m_pSet->MoveLast(); // in case m_nRowCount is too big
 pDoc->m_nRowCount = m_pSet->GetAbsolutePosition() + 2;
 }
 e->Delete();
 }
 }
}

void CEx32aView::DrawDataRow(CDC* pDC, int y)
{
 int x = 0;
 CString strTime;

 COleVariant var;
 CString str;
 CEx32aDoc* pDoc = GetDocument();
 for (int i = 0; i < pDoc->m_nFields; i++) {
 var = m_pSet->GetFieldValue(i);
 switch (var.vt) {
 case VT_BSTR:
 str = (LPCSTR) var.bstrVal; // narrow characters in DAO
 break;

 case VT_I2:
 str.Format("%d", (int) var.iVal);
 break;
 case VT_I4:
 str.Format("%d", var.lVal);
 break;
 case VT_R4:
 str.Format("%10.2f", (double) var.fltVal);
 break;
 case VT_R8:
 str.Format("%10.2f", var.dblVal);
 break;
 case VT_CY:
 str = COleCurrency(var).Format();
 break;
 case VT_DATE:
 str = COleDateTime(var).Format();
 break;
 case VT_BOOL:
 str = (var.boolVal == 0) ? "FALSE" : "TRUE";
 break;
 case VT_NULL:
 str = "----";
 break;
 default:
 str.Format("Unk type %d\n", var.vt);
 TRACE("Unknown type %d\n", var.vt);
 }
 pDC->TextOut(x, y, str);
 x += pDoc->m_arrayFieldSize[i] * m_nCharWidth;
 }
}

OnInitialUpdate and OnTimer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnInitialUpdate and OnTimer

Because we're working with a dynaset, we want to show database changes made by other programs. The
timer handler calls CWnd::Invalidate, which causes all records in the client area to be refreshed, as shown
here:

void CEx32aView::OnInitialUpdate()
{
 CRowView::OnInitialUpdate();
}

void CEx32aView::OnTimer(UINT nIDEvent)
{
 Invalidate(); // Update view from database
}

CTableSelect

This is a ClassWizard-generated dialog class that contains a list box used for selecting the table. For the
student registration database, the dialog looks like the one shown below.

Data Members

The CTableSelect data members are as follows.

Data Member Description

m_pDatabase Pointer to the recordset's CDaoDatabase object

m_strSelection ClassWizard-generated variable that corresponds to the list-box selection

Constructor

The constructor takes a database pointer parameter, which it uses to set the m_pDatabase data member,
as shown here:

CTableSelect::CTableSelect(CDaoDatabase* pDatabase,
 CWnd* pParent /*=NULL*/)
 : CDialog(CTableSelect::IDD, pParent)
{
 //{{AFX_DATA_INIT(CTableSelect)
 m_strSelection = "";
 //}}AFX_DATA_INIT
 m_pDatabase = pDatabase;
}

OnInitDialog

This self-contained function creates, opens, and reads the data source's list of tables and puts the table
name strings in the dialog's list box, as shown here:

BOOL CTableSelect::OnInitDialog()
{
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_LIST1);
 int nTables = m_pDatabase->GetTableDefCount();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int nTables = m_pDatabase->GetTableDefCount();
 TRACE("CTableSelect::OnInitDialog, nTables = %d\n", nTables);
 CDaoTableDefInfo tdi;
 for (int n = 0; n < nTables; n++) {
 m_pDatabase->GetTableDefInfo(n, tdi);
 TRACE("table name = %s\n", (const char*) tdi.m_strName);
 if (tdi.m_strName.Left(4) != "MSys") {
 pLB->AddString(tdi.m_strName);
 }
 }
 return CDialog::OnInitDialog();
}

OnDblclkList1

It's handy for the user to choose a list-box entry with a double click. This function is mapped to the
appropriate list-box notification message, as shown here:

void CTableSelect::OnDblclkList1()
{
 OnOK(); // Double-clicking on list-box item exits dialog
}

CIsamSelect

This ClassWizard-generated dialog class contains a list box and an edit control used for selecting the ISAM-
type data source. The user must type the directory for the files, as shown here.

Data Members

The CIsamSelect class data members are as follows.

Data Member Definition

m_strIsam ClassWizard-generated variable that corresponds to the list-box selection

m_strDirectory ClassWizard-generated variable that corresponds to the edit control contents

OnInitDialog

This function sets the initial values of the list box, which are the options from the "Connect Property" topic
in Books Online, as shown here:

BOOL CIsamSelect::OnInitDialog()
{
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_LIST1);
 pLB->AddString("dBASE III");
 pLB->AddString("dBASE IV");
 pLB->AddString("dBASE 5");
 pLB->AddString("Paradox 3.x");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pLB->AddString("Paradox 3.x");
 pLB->AddString("Paradox 4.x");
 pLB->AddString("Paradox 5.x");
 pLB->AddString("Btrieve");
 pLB->AddString("FoxPro 2.0");
 pLB->AddString("FoxPro 2.5");
 pLB->AddString("FoxPro 2.6");
 pLB->AddString("Excel 3.0");
 pLB->AddString("Excel 4.0");
 pLB->AddString("Excel 5.0");
 pLB->AddString("Excel 7.0");
 pLB->AddString("Text");
 CDialog::OnInitDialog();

 return TRUE; // Return TRUE unless you set the focus to a control.
 // EXCEPTION: OCX Property Pages should return FALSE.
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The EX32A Resource File
This application uses a dialog bar, so you'll need a dialog resource for it. Figure 32-2 shows the dialog bar.
The dialog resource ID is IDD_QUERY_BAR. The controls are listed below.

Control ID

Button IDC_REQUERY

Edit IDC_QUERY

The following styles are set:

Style = Child

Border = None

Visible = Unchecked

There's also a table selection dialog template, IDD_TABLE_SELECT, which has a list-box control with ID
IDC_LIST1 and an ISAM selection dialog template, IDD_ISAM_SELECT. The File menu has the following
four added items.

Menu Item Command ID

DAO Open MDB ID_FILE_DAOOPEN_MDB

DAO Open ISAM ID_FILE_DAOOPEN_ISAM

DAO Open ODBC ID_FILE_DAOOPEN_ODBC

DAO Disconnect ID_FILE_DAODISCONNECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Running the EX32A Program
You can run the EX32A program with any DAO data source, but try the student registration database
(STDREG32.MDB) from the Visual C++ CD-ROM first. To test the multiuser capabilities of the program, run
it simultaneously with EX31B. Use EX31B to change and delete instructor records while displaying the
instructor table in EX32A.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 33
The OLE DB Templates
Chapter 31 and Chapter 32 covered two alternative ways to manage databases using the Microsoft
Foundation Class Library version 6.0 and Microsoft Visual C++ 6.0—using ODBC and using DAO. Microsoft
has defined another way to access data—through a technology called OLE DB. This chapter covers the new
OLE DB templates—Visual C++ 6.0's support for accessing data through OLE DB directly. While ODBC is
designed to provide access primarily to Structured Query Language (SQL) data in a multiplatform
environment, OLE DB is designed to provide access to all types of data within a system. OLE DB uses the
Component Object Model (COM) to accomplish this. OLE DB is fairly flexible: it covers all the SQL
functionality defined in ODBC as well as defining interfaces suitable for gaining access to other-than-SQL
types of data.

This chapter covers the highlights of the new OLE DB templates. OLE DB data access is divided into two
major pieces: consumers and providers. We'll take a look at the basic OLE DB architecture and then
examine how the consumer templates work. Then we'll look at how the provider side templates work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why OLE DB?
OLE DB exists to provide a uniform way to access all sorts of disparate data sources. For example, imagine
all the types of data sources you might find in a typical organization. These might include sources as varied
as production systems, file systems, spreadsheets, personal databases (such as Xbase and Btrieve), and e-
mail. The problem is that each of these sources requires its own protocol: if you want to access data from
a specific source, you need to learn the protocol for managing the data source. (ugh!) OLE DB is the
middle layer that makes accessing data from different sources uniform. With OLE DB, client-side
developers need to concentrate on only a few details to get access to data (instead of needing to know
tons of different database access protocols).

The most important thing to realize about OLE DB is that it is built upon COM. In other words, OLE DB is a
set of ActiveX interfaces for accessing data through COM. The OLE DB interfaces are general enough to
provide a uniform means of accessing data, regardless of the method that is used to store the data. For
example, developers use the same OLE DB interfaces to get to data without being concerned as to whether
data is stored in a DBMS or a non-DBMS information source. At the same time, OLE DB lets developers
continue to take advantage of the benefits of the underlying database technology (like speed and
flexibility) without having to move data around just to access those benefits.

At the highest level, the OLE DB architecture consists of consumers and providers. A consumer is any bit of
system or application code that uses an OLE DB interface. This includes OLE DB components themselves. A
provider is any software component that exposes an OLE DB interface.

There are two types of OLE DB providers: data providers and service providers. The names are pretty self-
explanatory. Data providers own data and expose that data in a tabular form as a rowset. (A rowset is just
an abstraction for exposing data in a tabular form.) Some good examples of data providers include
relational Database Management Systems (DBMS's), storage managers, spreadsheets, and Indexed
Sequential Access Method (ISAM) databases.

A service provider is any OLE DB component that does not own data but encapsulates some service by
massaging data through OLE DB interfaces. In one sense, a service component is both a consumer and a
provider. For example, a heterogeneous query processor is a service component. In one case where a
consumer tries to join data from tables in two different data sources, as a consumer the query processor
retrieves rows from rowsets created over each of the base tables. As a provider, the query processor
creates a rowset from these rows and returns it to the consumer.

To sum up, there are many different kinds of data and numerous ways of accessing that data in the real
world. However, many developers understand how to manipulate data using standard database-
management techniques. OLE DB defines an architecture that "component-izes" data access. As a
component database-management system, OLE DB offers greater efficiency than traditional database-
management systems by separating database functionality into the roles of consumers and producers.
Because data consumers generally require only a portion of the database-management functionality, OLE
DB separates that functionality, thereby reducing client-side resource overhead.

By the same token, OLE DB reduces the burden on the provider side, since providers need to worry only
about providing data (and don't have to concern themselves with any client-side junk). For example, OLE
DB allows a simple tabular data provider to implement functionality native to its data store yet provide a
singular access protocol to get to the data. That way, a minimal implementation of a provider can choose
to use only the interfaces that expose data as tables. This opens up the opportunity for the development of
completely different query-processor components that can consume tabular information from any provider
that exposes its data through OLE DB. In addition, SQL DBMS's can expose their functionality in a more
layered manner by using the OLE DB interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Basic OLE DB Architecture
In addition to defining a basic relationship between consumers and providers, OLE DB defines the following
components that make up the OLE DB architecture (each component is a COM object):

Enumerators Enumerators search for available data sources. Consumers that are not hardwired
for a particular data source employ enumerators to search for a data source to use.

Data source objects Data source objects contain the machinery to connect to a data source, such
as a file or a DBMS. A data source object generates sessions.

Sessions Sessions represent connections to a database. For example, sessions provide a context
for database transactions. A single data source object can create multiple sessions. Sessions
generate transactions, commands, and rowsets.

Transaction objects Transaction objects are used for managing database transactions in order to
maintain database security.

Commands Commands execute text commands, such as a SQL statement. If the text command
specifies a rowset, such as a SQL SELECT statement, the command generates rowsets. A single
session can create multiple commands.

Rowsets Rowsets expose data in a tabular format. A special case of a rowset is an index. Rowsets
can be created from the session or the command.

Errors Errors can be created by any interface on any OLE DB object. They contain additional
information about an error, including an optional custom error object.

Here's an example of how you might apply these components to create an OLE DB consumer. If you aren't
sure where the data source is, you might first use an enumerator to find a data source. Once you've
located a data source, you create a session with it. The session lets you access the data as rowsets as well
as create commands that generate rowsets.

The upside of using the OLE DB architecture is that you get a terrific, homogenous way to access
heterogeneous data sources. The downside is that you have to implement a bunch of COM interfaces to
make that happen. That's why the OLE DB templates exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Basic OLE DB Template Architecture
Now that you understand the basic architecture behind OLE DB, it's time to take a look at a specific
implementation of the OLE DB interfaces (provided by the new OLE DB consumer and provider templates).
Like most other COM-based technologies, OLE DB involves implementing a bunch of interfaces. Of course,
just as with ActiveX Controls, you can choose to implement them by hand (often an inefficient approach—
unless you're just trying to understand the technology inside-out), or you can find someone else to do
most of the dirty work. While OLE DB is a rich and powerful data access technology, getting it up and
running by hand is a somewhat tedious task.

Just as Visual C++ provides a template library (ATL) for implementing ActiveX Controls, Visual C++ also
provides a template library that helps you manage OLE DB. The OLE DB template support provides classes
that implement many of the commonly used OLE DB interfaces. In addition, Visual C++ provides great
wizard support for generating code to apply to common scenarios.

From a high level, you can divide the classes in this template library into the two groups defined by OLE DB
itself: the consumer classes and the provider classes. The consumer classes help you implement database
client (consumer) applications, while the provider classes help you implement database server (provider)
applications. Remember that OLE DB consumers are applications that call the COM interfaces exposed by
OLE DB service providers (or regular providers) to access data. OLE DB providers are COM servers that
provide data and services in a form that a consumer can understand.

OLE DB Consumer Template Architecture

Microsoft has kept the top layer classes in the OLE DB Consumer Templates as close to the OLE DB
specification as possible. That is, OLE DB templates don't define another object model. Their purpose is
simply to wrap the existing OLE DB object model. For each of the consumer-related components listed,
you'll find a corresponding C++ template class. This design philosophy leverages the flexibility of OLE DB
and allows more advanced features—such as multiple accessors on rowsets—to be available through the
OLE DB Templates.

The OLE DB Templates are small and flexible. They are implemented using C++ templates and multiple
inheritance. Because OLE DB templates are close to the metal (they wrap only the existing OLE DB
architecture), each class mirrors an existing OLE DB component. For example, CDataSource corresponds to
the data source object in OLE DB.

The OLE DB Consumer Template architecture can be divided into three parts: the general data source
support classes, classes for supporting data access and rowset operations, and classes for handling tables
and commands. Here's a quick summary of these classes.

General Data Source Support

A data source is the most fundamental concept to remember when talking about data access using OLE
DB. That is, where is the data coming from? Of course, the OLE DB templates have support for data
sources. General data source support comprises three classes as shown in this table.

Class Use

CDataSource This class represents the data source component and manages the connection to a
data source.

CEnumerator
This class provides a way to select a provider by cycling through a list of providers.
Its functionality is equivalent to the SQLBrowseConnect and SQLDriverConnect
functions.

CSession
This class handles transactions. You can use this class to create rowsets,
commands, and many other objects. A CDataSource object creates a CSession
object using the CSession::Open method.

Data Access and Rowset Support

The OLE DB templates provide binding and rowset support through several classes. The accessor classes
talk to the data source while the rowset manages the data in tabular form. The data access and rowset
components are implemented through the CAccessorRowset class. CAccessorRowset is a template class
that's specialized on an accessor and a rowset. This class can handle multiple accessors of different types.

The OLE DB Template library defines the accessors in this table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OLE DB Template library defines the accessors in this table.

Class Use

CAccessor

This class is used when a record is statically bound to a data source
—it contains the pre-existing data buffer and understands the data
format up front. CAccessor is used when you know the structure
and the type of the database ahead of time.

CDynamicAccessor

This class is used for retrieving data from a source whose structure
is not known at design time. This class uses
IColumnsInfo::GetColumnInfo to get the database column
information. CDynamicAccessor creates and manages the data
buffer.

CDynamicParameterAccessor

This class is similar to CDynamicAccessor except that it's used with
commands. When used to prepare commands,
CDynamicParameterAccessor can get parameter information from
the ICommandWithParameters interface, which is especially useful
for handling unknown command types.

CManualAccessor
This class lets you access whatever data types you want as long as
the provider can convert the type. CManualAccessor handles both
result columns and command parameters.

Along with the accessors, the OLE DB templates define three types of rowsets: single fetching, bulk, and
array. These are fairly self-explanatory descriptions. Clients use a function named MoveNext to navigate
through the data. The difference between the single fetching, bulk, and array rowsets lies in the number of
row handles retrieved when MoveNext is called. Single fetching rowsets retrieve a single rowset for each
call to MoveNext while bulk rowsets fetch multiple rows. Array rowsets provide a convenient array syntax
for fetching data. The OLE DB Templates provide the single row-fetching capability by default.

Table and Command Support

The final layer in the OLE DB Template consumer architecture consists of two more classes: table and
command classes (CTable and CCommand). These classes are used to open the rowset, execute
commands, and initiate bindings. Both classes derive from CAccessorRowset

The CTable class is a minimal class implementation that opens a table on a data source (which you can
specify programmatically). Use this class when you need bare-bones access to a source, since CTable is
designed for simple providers that do not support commands.

Other data sources also support commands. For those sources, you'll want to use the OLE DB Templates'
CCommand class. As its name implies, CCommand is used mostly for executing commands. This class has
a function named Open that executes singular commands. This class also has a function named Prepare for
setting up a command to execute multiple times.

When using the CCommand class, you'll specialize it with three template arguments: an accessor, a
rowset, and a third template argument (which defaults to CNoMultipleResults). If you specify
CMultipleResults for this third argu- ment, the CCommand class will support the IMultipleResults interface
for a command that returns multiple rowsets.

OLE DB Provider Template Architecture

Remember that OLE DB is really just a set of interfaces that specify a protocol for managing data. OLE DB
defines several interfaces (some mandatory and others optional) for the following types of objects: data
source, session, rowset, and command. Here's a description of each followed by a code snippet that shows
how the templates bring in the correct functionality for each component.

Data source object A data source object wraps most aspects of data access. For example, a data
source consists of actual data and its associated database management system (DBMS), the
platform on which the DBMS exists, and the network used to access that platform. A data source is
just a COM object that implements a bunch of interfaces, as shown in Table 33-1.

Interface Required? Implemented?

IDBInitialize Mandatory Yes

IDBCreateSession Mandatory Yes

IDBProperties Mandatory Yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDBProperties Mandatory Yes

IPersist Mandatory Yes

IDBDataSourceAdmin Optional No

IDBInfo Optional No

IPersistFile Optional No

ISupportErrorInfo Optional No

Table 33-1. Data source object interface requirements.

Tables in this section were compiled from the Microsoft Visual Studio MSDN Online
Help.

Here's a code snippet showing the code that is inserted by the ATL Object Wizard when you create
a data source for an OLE DB provider:

class ATL_NO_VTABLE CAProviderSource :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAProviderSource, &CLSID_AProvider>,
 public IDBCreateSessionImpl<CAProviderSource, CAProviderSession>,
 public IDBInitializeImpl<CAProviderSource>,
 public IDBPropertiesImpl<CAProviderSource>,
 public IPersistImpl<CAProviderSource>,
 public IInternalConnectionImpl<CAProviderSource> {
};
Notice that this is a normal COM class (with ATL's IUnknown implementation). The OLE DB data
source object brings in implementations of the IDBCreateSession, IDBInitialize, IDBProperties, and
IPersist interfaces through inheritance. Notice how the templates are specialized on the
CAProviderSource and CAProviderSession classes. If you decide to add more functionality to your
class, you can do so by inheriting from one of the OLE DB interface implementation classes.

Command object Providers that support building and executing queries expose a command
object. Command objects specify, prepare, and execute a Database Manipulation Language (DML)
query or Data Definition Language (DDL) definition and its associated properties. For example, the
command object translates a SQL-type command into an operation specific to the data source.
Compared to ODBC, the command corresponds to the general functionality of an ODBC statement
in an unexecuted state. A single session can be associated with multiple commands. Table 33-2
shows the interfaces used in a command object.

Here's a code snippet showing the code inserted by the ATL Object Wizard to implement a
command object when you create an OLE DB provider:

class ATL_NO_VTABLE CAProviderCommand :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IAccessorImpl<CAProviderCommand>,
 public ICommandTextImpl<CAProviderCommand>,
 public ICommandPropertiesImpl<CAProviderCommand>,
 public IObjectWithSiteImpl<CAProviderCommand>,
 public IConvertTypeImpl<CAProviderCommand>,
 public IColumnsInfoImpl<CAProviderCommand> {
};
As with the data source, notice that this is just a regular COM class. This class brings in the required
interfaces through inheritance. (For example, IAccesor comes in through the IAccessorImpl
template.) A command object uses IAccessor to specify parameter bindings. Consumers call
IAccessor::CreateAccessor, passing an array of DBBINDING structures. DBBINDING contains
information on the column bindings (type, length, and so on). The provider receives the structures
and determines how the data should be transferred and whether conversions are necessary.

The ICommandText interface provides a way to specify a text command. The ICommandProperties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ICommandText interface provides a way to specify a text command. The ICommandProperties
interface handles all of the command properties.

The command class is the heart of the data provider. Most of the action happens within this class.

Interface Required? Implemented?

IAccessor Mandatory Yes

IColumnsInfo Mandatory Yes

ICommand Mandatory Yes

ICommandProperties Mandatory Yes

ICommandText Mandatory Yes

IConvertType Mandatory Yes

IColumnsRowset Optional No

ICommandPrepare Optional No

ICommandWithParameters Optional No

ISupportErrorInfo Optional No

Table 33-2. Command object interfaces requirements.

Session object Session objects define the scope of a transaction and generate rowsets from the
data source. Session objects also generate command objects. The command object executes
commands on the rowset. For providers that support commands, the session acts as a command
factory. Compared to ODBC, the session object and the data source object encapsulate the
functionality of the ODBC connection. Calling IDBCreateSession::CreateSession creates a session
from the data source object. A single data source object can be associated with many sessions.
Table 33-3 shows the interfaces found on a session object.

Interface Required? Implemented?

IGetDataSource Mandatory Yes

IOpenRowset Mandatory Yes

ISessionProperties Mandatory Yes

IDBCreateCommand Optional Yes

IDBSchemaRowset Optional Yes

IIndexDefinition Optional No

ISupportErrorInfo Optional No

ITableDefinition Optional No

ITransactionJoin Optional No

ITransactionLocal Optional No

ITransactionObject Optional No

Table 33-3. Session object interfaces requirements.

Here's a code snippet showing the code inserted by the ATL Object Wizard to implement a session
object when you create an OLE DB provider:

class ATL_NO_VTABLE CAProviderSession :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IGetDataSourceImpl<CAProviderSession>,
 public IOpenRowsetImpl<CAProviderSession>,
 public ISessionPropertiesImpl<CAProviderSession>,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public ISessionPropertiesImpl<CAProviderSession>,
 public IObjectWithSiteSessionImpl<CAProviderSession>,
 public IDBSchemaRowsetImpl<CAProviderSession>,
 public IDBCreateCommandImpl<CAProviderSession, CAProviderCommand>
{
};
Rowset object A rowset object represents tabular data. At the raw OLE DB level, rowsets are
generated by calling IOpenRowset::OpenRowset on the session. For providers that support
commands, rowsets are used to represent the results of row-returning queries. In addition to
IOpenRowset::OpenRowset, there are a number of other methods in OLE DB that return rowsets.
For example, the schema functions return rowsets. Compared to ODBC, a rowset encapsulates the
general functionality of an ODBC statement in the executed state. Single sessions can be associated
with multiple rowsets. In addition, single command objects can be associated with multiple rowsets.
Table 33-4 shows the interfaces associated with the rowset object.

Interface Required? Implemented?

IAccessor Mandatory Yes

IColumnsInfo Mandatory Yes

IConvertType Mandatory Yes

IRowset Mandatory Yes

IRowsetInfo Mandatory Yes

IColumnsRowset Optional No

IConnectionPointContainer Optional Yes, through ATL

IRowsetChange Optional No

IRowsetIdentity Required for Level 0 Yes

IRowsetLocate Optional No

IRowsetResynch Optional No

IRowsetScroll Optional No

IRowsetUpdate Optional No

ISupportErrorInfo Optional No

Table 33-4. Rowset object interfaces requirements.

Here's a code snippet showing the code inserted by the ATL Object Wizard to implement a rowset
object when you create an OLE DB provider:

class CAProviderWindowsFile:
 public WIN32_FIND_DATA
{
public:
BEGIN_PROVIDER_COLUMN_MAP(CAProviderWindowsFile)
 PROVIDER_COLUMN_ENTRY("FileAttributes", 1, dwFileAttributes)
 PROVIDER_COLUMN_ENTRY("FileSizeHigh", 2, nFileSizeHigh)
 PROVIDER_COLUMN_ENTRY("FileSizeLow", 3, nFileSizeLow)
 PROVIDER_COLUMN_ENTRY("FileName", 4, cFileName)
 PROVIDER_COLUMN_ENTRY("AltFileName", 5, cAlternateFileName)
END_PROVIDER_COLUMN_MAP()
};

class CAProviderRowset :
public CRowsetImpl<CAProviderRowset,
 CAProviderWindowsFile,
 CAProviderCommand> {
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
The wizard-generated rowset object implements the IAccessor, IRowset, and IRowsetInfo
interfaces, among others. IAccessorImpl binds both output columns. The IRowset interface fetches
rows and data. The IRowsetInfo interface handles the rowset properties. The CWindowsFile class
represents the user record class. The class generated by the Wizard is really just a placeholder. It
doesn't do very much. When you decide on the column format of your data provider, this is the
class you'll modify.

How the Provider Parts Work Together

The use for the first part of the architecture—the data source—should be obvious. Every provider must
include a data source object. When a consumer application needs data, the consumer calls
CoCreateInstance to create the data source object and start the provider. Within the provider, it's the data
source object's job to create a session object using the IDBCreateSession interface. The consumer uses
this interface to connect to the data source object. In comparing this to how ODBC works, the data source
object is equivalent to ODBC's HENV and the session object is the equivalent of ODBC's HDBC.

The command object does most of the work. To make the data provider actually do something, you'll
modify the command class's Execute function.

Like most COM-based protocols, the OLE DB protocol makes sense once you've examined it for a little
while. Also, like most COM-based protocols, the OLE DB protocol involves a good amount of code to get
going—code that could be easily implemented by some sort of framework. That's what the Data Consumer
and Data Provider templates are all about. The rest of the chapter shows you what you need to do to
create Data Consumers and Data Providers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an OLE DB Consumer
Creating an OLE DB consumer is pretty straightforward—most of the support comes through the ATL
Object Wizard. You can see an example of a consumer in the x33a folder on the companion CD. Here are
the steps for creating a consumer using the ATL Object Wizard.

1. Create an application or a control to drive the data consumption. For example, you might want to
create an ActiveX control.

2. While inside the IDE, use the ATL Object Wizard to insert a data consumer. Do this by either
selecting New ATL Object from the Insert menu or by right-clicking on the project icon in ClassView
and selecting New ATL Object from the context menu to start the ATL Object Wizard.

3. From the ATL Object Wizard, select the Data Access category of objects. Then select Consumer and
click Next. This will cause the ATL Object Wizard Properties dialog, shown in Figure 33-1, to appear.
There will be only one page in it, for naming the class and selecting the data source.

Figure 33-1. The ATL Object Wizard Properties.

4. Click Select Datasource to configure the data consumer. Once you've picked out a data source,
choose OK. The ATL Object Wizard will create an OLE DB Consumer template ready for you to use.

As an example, we took the BIBLIO.MDB database (a Microsoft Access database) that comes in the Visual
Studio VB98 directory and made a data consumer out of it. The BIBLIO database includes the titles and the
authors of various programming texts. Using the ATL Object Wizard to create the OLE DB Consumer
template for the authors in the database yielded these classes:

// Authors.H : Declaration of the CAuthors class

#ifndef __AUTHORS_H_
#define __AUTHORS_H_

class CAuthorsAccessor
{
public:
 LONG m_AuID;
 TCHAR m_Author[51];
 SHORT m_YearBorn;

BEGIN_COLUMN_MAP(CAuthorsAccessor)
 COLUMN_ENTRY(1, m_AuID)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 COLUMN_ENTRY(1, m_AuID)
 COLUMN_ENTRY(2, m_Author)
 COLUMN_ENTRY(3, m_YearBorn)
END_COLUMN_MAP()

DEFINE_COMMAND(CAuthorsAccessor, _T("SELECT * FROM Authors"))
};

class CAuthors : public CCommand<CAccessor<CAuthorsAccessor> >
{
public:
 HRESULT Open()
 {
 HRESULT hr;

 hr = OpenDataSource();
 if (FAILED(hr))
 return hr;

 return OpenRowset();
 }
 HRESULT OpenDataSource()
 {
 HRESULT hr;
 CDataSource db;
 CDBPropSet dbinit(DBPROPSET_DBINIT);

 dbinit.AddProperty(DBPROP_AUTH_CACHE_AUTHINFO, true);
 dbinit.AddProperty(DBPROP_AUTH_ENCRYPT_PASSWORD, false);
 dbinit.AddProperty(DBPROP_AUTH_MASK_PASSWORD, false);
 dbinit.AddProperty(DBPROP_AUTH_PASSWORD, OLESTR(""));
 dbinit.AddProperty(DBPROP_AUTH_PERSIST_ENCRYPTED, false);
 dbinit.AddProperty(DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO,
 false);
 dbinit.AddProperty(DBPROP_AUTH_USERID, OLESTR("Admin"));
 dbinit.AddProperty(DBPROP_INIT_DATASOURCE,
 OLESTR("c:\\biblio.mdb"));
 dbinit.AddProperty(DBPROP_INIT_MODE, (long)16);
 dbinit.AddProperty(DBPROP_INIT_PROMPT, (short)4);
 dbinit.AddProperty(DBPROP_INIT_PROVIDERSTRING, OLESTR
 (";COUNTRY=0;CP=1252;LANGID=0x0409"));
 dbinit.AddProperty(DBPROP_INIT_LCID, (long)1033);
 hr = db.Open(_T("Microsoft.Jet.OLEDB.3.51"), &dbinit);
 if (FAILED(hr))
 return hr;

 return m_session.Open(db);
 }
 HRESULT OpenRowset()
 {
 return CCommand<CAccessor<CAuthorsAccessor>
 >::Open(m_session, _T("Authors"));
 }
 Csession m_session;
};

#endif // __AUTHORS_H_
The CAuthorsAccessor class defines the structure of the author record. Notice that the class includes an
author ID field, a name field, and a field indicating when the author was born.

The CAuthors class represents the actual data consumer class that connects to the database. Notice that
it's derived from CCommand. Remember that command objects represent a command (such as a SQL
statement) and generate rowsets. The COLUMN_MAP represents data returned in the rowset. The
PARAM_MAP represents parameter data for a command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PARAM_MAP represents parameter data for a command.

The column maps and the parameter maps represent the user's view of the accessor. As with many data
structures in ATL and MFC, these maps are built up with macros. Here's how the maps work: when running
against a database, the data that comes back is contained in a contiguous block of memory. OLE DB
templates work with this block of memory to extract the data. The data members in the entries represent
offsets into that block of memory. The entries in the maps filter out the data from the database. That way,
you as a developer do not have to worry about doing anything funky like performing pointer arithmetic on
the block to get information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the OLE DB Consumer Code
Using the database consumer class is just about as easy as creating it. Here's how to take advantage of
the database consumer class:

1. Declare an instance of CAuthors wherever you need to use it:

class CUseAuthors : public CDialog {
 CAuthors m_authors;
 .
 .
 .
};

2. Open the Authors database by calling Open on the database consumer object:

CUseAuthors::OnInitDialog() {
 m_authors.Open();
}

3. Use member functions to navigate through and manipulate the database. Here's a short sampling of
some of the things you can do:

CUseAuthors::OnNext() {
 m_authors.MoveNext();
}
CUseAuthors::OnFirst() {
 m_authors.MoveFirst();
}
CUseAuthors::OnLast() {
 m_authors.MoveLast();
}
CUseAuthors::OnInsert() {
 m_authors.Insert();
}

4. As you navigate through the database, the data ends up in the member variables. For example, if
you want to find out the name of the next author in the database, the code would look like this:

m_authors.MoveNext();
m_strAuthorName = m_authors.m_Author;

As you can see, using the templates greatly simplifies getting the data out of the database. All you need to
do is find the database, point the ATL Object Wizard there, and get the Wizard to generate your code.
Then the accessor class has functions useful for moving around the database and fetching the data. The
other half of the OLE DB Template equation is the data provider. Here's a rundown of how to work with
providers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an OLE DB Provider
It's pretty obvious how OLE DB consumers are useful. You just ask a wizard to create a wrapper for you,
and you get a fairly easy way to access the data in a database. However, it might be a bit less obvious why
you'd want to create an OLE DB provider.

Why Write an OLE DB Provider?

Writing an OLE DB allows you to insert a layer between a client of some data and the actual data itself.
Here are just a few reasons you might want to write a provider.

Writing an OLE DB provider means clients don't necessarily touch the data directly. Therefore, you
can add additional capabilities to your data, such as query processing.

In some cases, writing an OLE DB provider gives you the opportunity to increase data access
performance by controlling how the data is manipulated.

Adding an OLE DB provider layer increases the potential audience of your data. For example, if you
have a proprietary data format that can be accessed by only one programming language, you have
a single point of failure. OLE DB providers give you a way to open that proprietary format to a wider
variety of programmers, regardless of the programming language they use.

Writing an OLE DB Provider

Working with the OLE DB Providers is similar to working with the Consumers. The wizards do a lot of the
work for you. You just need to know how to work with the generated classes. The steps for creating an
OLE DB Provider are listed here.

1. The first step is to decide what you want the provider to do. Remember the philosophy behind OLE
DB: it's all about providing a singular way to access multiple data sources. For example, you might
want to write a provider that recursively enumerates the contents of a structured storage file. Or
you might want a provider that sifts through e-mail folders and allows clients database-style access
to your e-mail system. The possibilities are nearly endless.

2. Just as you did when writing a data consumer, use the ATL Object Wizard to create a provider. Just
start the ATL Object Wizard from ClassView or from the Insert menu. Select the Data Access
objects category, and choose Provider. The ATL Object Wizard will ask you to provide a name for
your object and will allow you to modify the default names for the files it will create.

3. After you click OK, the ATL Object Wizard creates the code for a provider, including a data source, a
rowset, and a session. In addition to these objects, a provider supports one or more properties,
which are defined in property maps within the files created by the OLE DB Provider Template
Wizard. When the Wizard creates the files, it inserts maps for the properties belonging to the OLE
DB property group defined for the object or objects included in those files. For example, the header
file containing the data source object also contains the property map for the DataSource properties.
The session header file contains the property map for the Session properties. Finally, the rowset
and command objects reside in a single header file, which includes properties for the command
object.

For example, here's what the ATL Object Wizard produces for an OLE DB provider named AProvider. First
the ATL Object Wizard creates a data source object, which lives in a file named AProviderDS.H:

class ATL_NO_VTABLE CAProviderSource :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAProviderSource, &CLSID_AProvider>,
 public IDBCreateSessionImpl<CAProviderSource, CAProviderSession>,
 public IDBInitializeImpl<CAProviderSource>,
 public IDBPropertiesImpl<CAProviderSource>,
 public IPersistImpl<CAProviderSource>,
 public IInternalConnectionImpl<CAProviderSource>
{
public:
 HRESULT FinalConstruct()
 {
 return FInit();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
DECLARE_REGISTRY_RESOURCEID(IDR_APROVIDER)
BEGIN_PROPSET_MAP(CAProviderSource)
 BEGIN_PROPERTY_SET(DBPROPSET_DATASOURCEINFO)
 PROPERTY_INFO_ENTRY(ACTIVESESSIONS)
 PROPERTY_INFO_ENTRY(DATASOURCEREADONLY)
 PROPERTY_INFO_ENTRY(BYREFACCESSORS)
 PROPERTY_INFO_ENTRY(OUTPUTPARAMETERAVAILABILITY)
 PROPERTY_INFO_ENTRY(PROVIDEROLEDBVER)
 PROPERTY_INFO_ENTRY(DSOTHREADMODEL)
 PROPERTY_INFO_ENTRY(SUPPORTEDTXNISOLEVELS)
 PROPERTY_INFO_ENTRY(USERNAME)
 END_PROPERTY_SET(DBPROPSET_DATASOURCEINFO)
 BEGIN_PROPERTY_SET(DBPROPSET_DBINIT)
 PROPERTY_INFO_ENTRY(AUTH_PASSWORD)
 PROPERTY_INFO_ENTRY(AUTH_PERSIST_SENSITIVE_AUTHINFO)
 PROPERTY_INFO_ENTRY(AUTH_USERID)
 PROPERTY_INFO_ENTRY(INIT_DATASOURCE)
 PROPERTY_INFO_ENTRY(INIT_HWND)
 PROPERTY_INFO_ENTRY(INIT_LCID)
 PROPERTY_INFO_ENTRY(INIT_LOCATION)
 PROPERTY_INFO_ENTRY(INIT_MODE)
 PROPERTY_INFO_ENTRY(INIT_PROMPT)
 PROPERTY_INFO_ENTRY(INIT_PROVIDERSTRING)
 PROPERTY_INFO_ENTRY(INIT_TIMEOUT)
 END_PROPERTY_SET(DBPROPSET_DBINIT)
 CHAIN_PROPERTY_SET(CAProviderCommand)
END_PROPSET_MAP()
BEGIN_COM_MAP(CAProviderSource)
 COM_INTERFACE_ENTRY(IDBCreateSession)
 COM_INTERFACE_ENTRY(IDBInitialize)
 COM_INTERFACE_ENTRY(IDBProperties)
 COM_INTERFACE_ENTRY(IPersist)
 COM_INTERFACE_ENTRY(IInternalConnection)
END_COM_MAP()
public:
};
In addition to the data object, the ATL Object Wizard produces a command object and a rowset that both
live within AProviderRS.H:

class ATL_NO_VTABLE CAProviderCommand :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IAccessorImpl<CAProviderCommand>,
 public ICommandTextImpl<CAProviderCommand>,
 public ICommandPropertiesImpl<CAProviderCommand>,
 public IObjectWithSiteImpl<CAProviderCommand>,
 public IConvertTypeImpl<CAProviderCommand>,
 public IColumnsInfoImpl<CAProviderCommand>
{
public:
BEGIN_COM_MAP(CAProviderCommand)
 COM_INTERFACE_ENTRY(ICommand)
 COM_INTERFACE_ENTRY(IObjectWithSite)
 COM_INTERFACE_ENTRY(IAccessor)
 COM_INTERFACE_ENTRY(ICommandProperties)
 COM_INTERFACE_ENTRY2(ICommandText, ICommand)
 COM_INTERFACE_ENTRY(IColumnsInfo)
 COM_INTERFACE_ENTRY(IConvertType)
END_COM_MAP()
// ICommand
public:
 HRESULT FinalConstruct()
 {
 HRESULT hr = CConvertHelper::FinalConstruct();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HRESULT hr = CConvertHelper::FinalConstruct();
 if (FAILED (hr))
 return hr;
 hr = IAccessorImpl<CAProviderCommand>::FinalConstruct();
 if (FAILED(hr))
 return hr;
 return CUtlProps<CAProviderCommand>::FInit();
 }
 void FinalRelease()
 {
 IAccessorImpl<CAProviderCommand>::FinalRelease();
 }
 HRESULT WINAPI Execute(IUnknown * pUnkOuter,
 REFIID riid, DBPARAMS * pParams,
 LONG * pcRowsAffected,
 IUnknown ** ppRowset);
 static ATLCOLUMNINFO* GetColumnInfo(CAProviderCommand* pv,
 ULONG* pcInfo)
 {
 return CAProviderWindowsFile::GetColumnInfo(pv,pcInfo);
 }
BEGIN_PROPSET_MAP(CAProviderCommand)
 BEGIN_PROPERTY_SET(DBPROPSET_ROWSET)
 PROPERTY_INFO_ENTRY(IAccessor)
 PROPERTY_INFO_ENTRY(IColumnsInfo)
 PROPERTY_INFO_ENTRY(IConvertType)
 PROPERTY_INFO_ENTRY(IRowset)
 PROPERTY_INFO_ENTRY(IRowsetIdentity)
 PROPERTY_INFO_ENTRY(IRowsetInfo)
 PROPERTY_INFO_ENTRY(IRowsetLocate)
 PROPERTY_INFO_ENTRY(BOOKMARKS)
 PROPERTY_INFO_ENTRY(BOOKMARKSKIPPED)
 PROPERTY_INFO_ENTRY(BOOKMARKTYPE)
 PROPERTY_INFO_ENTRY(CANFETCHBACKWARDS)
 PROPERTY_INFO_ENTRY(CANHOLDROWS)
 PROPERTY_INFO_ENTRY(CANSCROLLBACKWARDS)
 PROPERTY_INFO_ENTRY(LITERALBOOKMARKS)
 PROPERTY_INFO_ENTRY(ORDEREDBOOKMARKS)
 END_PROPERTY_SET(DBPROPSET_ROWSET)
END_PROPSET_MAP()
};

class RAProviderRowset : public CRowsetImpl<RAProviderRowset,
 CWindowsFile,
 CAProviderCommand>
{
public:
 HRESULT Execute(DBPARAMS * pParams, LONG* pcRowsAffected)
 {
 USES_CONVERSION;
 BOOL bFound = FALSE;
 HANDLE hFile;
 LPTSTR szDir = (m_strCommandText == _T("")) ? _T("*.*") :
 OLE2T(m_strCommandText);
 CAProviderWindowsFile wf;
 hFile = FindFirstFile(szDir, &wf);
 if (hFile == INVALID_HANDLE_VALUE)
 return DB_E_ERRORSINCOMMAND;
 LONG cFiles = 1;
 BOOL bMoreFiles = TRUE;
 while (bMoreFiles)
 {
 if (!m_rgRowData.Add(wf))
 return E_OUTOFMEMORY;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return E_OUTOFMEMORY;
 bMoreFiles = FindNextFile(hFile, &wf);
 cFiles++;
 }
 FindClose(hFile);
 if (pcRowsAffected != NULL)
 *pcRowsAffected = cFiles;
 return S_OK;
 }
};
The ATL Object Wizard produces a session object in a file named AProviderSess.H as shown in this code:

class ATL_NO_VTABLE CAProviderSession :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IGetDataSourceImpl<CAProviderSession>,
 public IOpenRowsetImpl<CAProviderSession>,
 public ISessionPropertiesImpl<CAProviderSession>,
 public IObjectWithSiteSessionImpl<CAProviderSession>,
 public IDBSchemaRowsetImpl<CAProviderSession>,
 public IDBCreateCommandImpl<CAProviderSession, CAProviderCommand>
{
public:
 CAProviderSession()
 {
 }
 HRESULT FinalConstruct()
 {
 return FInit();
 }
 STDMETHOD(OpenRowset)(IUnknown *pUnk, DBID *pTID,
 DBID *pInID, REFIID riid,
 ULONG cSets, DBPROPSET rgSets[],
 IUnknown **ppRowset)
 {
 CAProviderRowset* pRowset;
 return CreateRowset(pUnk, pTID, pInID, riid,
 cSets, rgSets, ppRowset, pRowset);
 }
BEGIN_PROPSET_MAP(CAProviderSession)
 BEGIN_PROPERTY_SET(DBPROPSET_SESSION)
 PROPERTY_INFO_ENTRY(SESS_AUTOCOMMITISOLEVELS)
 END_PROPERTY_SET(DBPROPSET_SESSION)
END_PROPSET_MAP()
BEGIN_COM_MAP(CAProviderSession)
 COM_INTERFACE_ENTRY(IGetDataSource)
 COM_INTERFACE_ENTRY(IOpenRowset)
 COM_INTERFACE_ENTRY(ISessionProperties)
 COM_INTERFACE_ENTRY(IObjectWithSite)
 COM_INTERFACE_ENTRY(IDBCreateCommand)
 COM_INTERFACE_ENTRY(IDBSchemaRowset)
END_COM_MAP()
BEGIN_SCHEMA_MAP(CAProviderSession)
 SCHEMA_ENTRY(DBSCHEMA_TABLES, CAProviderSessionTRSchemaRowset)
 SCHEMA_ENTRY(DBSCHEMA_COLUMNS, CAProviderSessionColSchemaRowset)
 SCHEMA_ENTRY(DBSCHEMA_PROVIDER_TYPES, CAProviderSessionPTSchemaRowset)
END_SCHEMA_MAP()
};
class CAProviderSessionTRSchemaRowset :
 public CRowsetImpl< CAProviderSessionTRSchemaRowset,
 CTABLESRow, CAProviderSession>
{
public:
 HRESULT Execute(LONG* pcRowsAffected, ULONG, const VARIANT*)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 USES_CONVERSION;
 CAProviderWindowsFile wf;
 CTABLESRow trData;
 lstrcpyW(trData.m_szType, OLESTR("TABLE"));
 lstrcpyW(trData.m_szDesc, OLESTR("The Directory Table"));
 HANDLE hFile = INVALID_HANDLE_VALUE;
 TCHAR szDir[MAX_PATH + 1];
 DWORD cbCurDir = GetCurrentDirectory(MAX_PATH, szDir);
 lstrcat(szDir, _T("*.*"));
 hFile = FindFirstFile(szDir, &wf);
 if (hFile == INVALID_HANDLE_VALUE)
 return E_FAIL; // User doesn't have a c:\ drive
 FindClose(hFile);
 lstrcpynW(trData.m_szTable, T2OLE(szDir),
 SIZEOF_MEMBER(CTABLESRow, m_szTable));
 if (!m_rgRowData.Add(trData))
 return E_OUTOFMEMORY;
 *pcRowsAffected = 1;
 return S_OK;
 }
};
class CAProviderSessionColSchemaRowset :
 public CRowsetImpl< CAProviderSessionColSchemaRowset,
 CCOLUMNSRow, CAProviderSession>
{
public:
 HRESULT Execute(LONG* pcRowsAffected, ULONG, const VARIANT*)
 {
 USES_CONVERSION;
 CAProviderWindowsFile wf;
 HANDLE hFile = INVALID_HANDLE_VALUE;
 TCHAR szDir[MAX_PATH + 1];
 DWORD cbCurDir = GetCurrentDirectory(MAX_PATH, szDir);
 lstrcat(szDir, _T("*.*"));
 hFile = FindFirstFile(szDir, &wf);
 if (hFile == INVALID_HANDLE_VALUE)
 return E_FAIL; // User doesn't have a c:\ drive
 FindClose(hFile);// szDir has got the tablename
 DBID dbid;
 memset(&dbid, 0, sizeof(DBID));
 dbid.uName.pwszName = T2OLE(szDir);
 dbid.eKind = DBKIND_NAME;
 return InitFromRowset <RowsetArrayType> (m_rgRowData,
 &dbid,
 NULL,
 m_spUnkSite,
 pcRowsAffected);
 }
};
class CAProviderSessionPTSchemaRowset :
 public CRowsetImpl<CAProviderSessionPTSchemaRowset,
 CPROVIDER_TYPERow, CAProviderSession>
{
public:
 HRESULT Execute(LONG* pcRowsAffected, ULONG, const VARIANT*)
 {
 return S_OK;
 }
};

Modifying the Provider Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modifying the Provider Code

As with most Wizard-generated code, the OLE DB Provider code generated by the ATL Object Wizard is just
boilerplate code—it doesn't do very much. You need to take several steps to turn this boilerplate code into
a real OLE DB Provider. The two critical pieces that need to be added to a provider are the user record and
code to manage a data set and to set the data up as rows and columns.

The user record The ATL Object Wizard provides a default user record named
CAProviderWindowsFile. You don't really want to use this user record. You'll probably scrap it and
replace it with something useful in your domain. As a simple example, imagine you want to write an
OLE DB Provider that enumerates the compound file. Your user record might look like this:

struct CStgInfo {
BEGIN_PROVIDER_COLUMN_MAP(CStgInfo)
 PROVIDER_COLUMN_ENTRY("StgName", 1, szName)
 PROVIDER_COLUMN_ENTRY("Size", 2, cbSizeLow)
 PROVIDER_COLUMN_ENTRY("Size", 2, cbSizeHigh)

END_PROVIDER_COLUMN_MAP()

 OLECHAR szName[256];
 long cbSizeLow;
 long cbSizeHigh;
};
This structure contains the data fields for the name and size of the substorage. The provider column
map macros map the data into columns. You could actually derive the structure from a STATSTG
structure (used to enumerate structured storages). You just need to add entries to the provider
column map to handle the members.

Code to open the data set The other important addition to the provider is the code necessary to
open the data set. This happens in the rowset's Execute function. There are many different kinds of
functionality that can go on here. For example, if you want to enumerate the top-level substorages
in a compound file, you'd first open the storage and then enumerate the contents as shown in the
following code snippet:

class RStgInfoProviderRowset :
 public CRowsetImpl<RStgInfoProviderRowset,
 CStgInfo,
 CStgInfoProviderCommand>
{
public:
 HRESULT Execute(DBPARAMS * pParams, LONG* pcRowsAffected)
 {
 USES_CONVERSION;
 LPTSTR szFile =
 m_strCommandText == _T("")) ? _T("") :
 OLE2T(m_strCommandText);

 IStorage* pStg = NULL;

 HRESULT hr = StgOpenStorage(szFile, NULL,
 STGM_READ|STGM_SHARE_EXCLUSIVE,
 NULL, NULL, &pStg);

 if(FAILED(hr))
 return DB_E_ERRORSINCOMMAND;

 LONG cStgs = 0;

 IEnumSTATSTG* pEnumSTATSTG;

 hr = pStg->EnumElements(0, 0, 0, &pEnumSTATSTG);

 if(pEnumSTATSTG) {

 STATSTG rgSTATSTG[100];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STATSTG rgSTATSTG[100];
 ULONG nFetched;

 hr = pEnumSTATSTG->Next(100, rgSTATSTG, &nFetched);

 for(ULONG i = 0; i < nFetched; i++) {
 CStgInfo stgInfo;

 stgInfo.cbSizeLow = rgSTATSTG[i].cbSize.LowPart;
 stgInfo.cbSizeHigh = rgSTATSTG[i].cbSize.HighPart;

 wcsncpy(stgInfo.szName,
 rgSTATSTG[i].pwcsName,
 255);

 CoTaskMemFree(rgSTATSTG[i].pwcsName);

 if (!m_rgRowData.Add(stgInfo))
 return E_OUTOFMEMORY;
 cStgs++;
 }
 pEnumSTATSTG->Release();
 }

 if(pStg)
 pStg->Release();

 if (pcRowsAffected != NULL)
 *pcRowsAffected = cStgs;
 return S_OK;
 }
}
When some client code tries to open the OLE DB data provider, the call ends up inside this function.
This function simply opens the structured storage file passed in as the command text and uses the
standard structured storage enumerator to find the top-level substorages. Then the Execute
function stores the name of the substorage and the size of the substorage in an array. The OLE DB
provider uses this array to fulfill requests for the column data.

Enhancing the Provider

Of course, there's a lot you can do to beef up this OLE DB provider. We've barely scratched the surface of
what you can do with a provider. When the ATL Object Wizard pumps out the default provider, it's a read-
only provider. That is, users cannot change the contents of the data. In addition, the OLE DB templates
provide support for locating rowsets and setting bookmarks. In most cases, enhancing the provider is a
matter of tacking on implementations of COM interfaces provided by the OLE DB templates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conclusion
With so many disparate data sources available today, the only way you can hope to manage access to that
data is through some sort of homogeneous mechanism such as OLE DB. The high-level OLE DB
architecture is divided into two parts: consumers and providers. Consumers use the data that is made
available through providers.

As with most other COM-based architectures, OLE DB involves developers in the task of implementing a
good many interfaces—a number of which are boilerplate in nature. The OLE DB Templates available
through Visual C++ make creating OLE DB consumers and providers much easier.

You can create a simple consumer by pointing the ATL Object Wizard at a data source when you generate
a consumer object. The ATL Object Wizard will examine the data source and create the client-side proxy to
the database. From there, you can use the standard navigation functions available through the OLE DB
Consumer Templates.

Writing a provider is somewhat more involved (if you want the provider to do anything useful). While the
wizards give you a good start, they generate only a simple provider that enumerates the files in a
directory. However, the Provider Templates contain a full complement of OLE DB support. With this
support, you can create OLE DB providers that implement rowset location strategies, data reading and
writing, and bookmarking.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 34
TCP/IP, Winsock, and WinInet
As a C++ programmer, you're going to be asked to do more than create Web pages. You'll be the one who
makes the Internet reach its true potential and who creates distributed applications that haven't even been
imagined yet. To be successful, you'll have to understand how the Internet works and how to write
programs that can access other computers on the Internet.

In this section, you'll start with a primer on the Transmission Control Protocol/Internet Protocol (TCP/IP)
that's used throughout the Internet, and then you'll move up one level to see the workings of HyperText
Transport Protocol (HTTP). Then it's time to get something running. You'll assemble your own intranet (a
local version of the Internet) and study an HTTP client-server program based on Winsock, the fundamental
API for TCP/IP. Finally you'll move on to WinInet, which is a higher level API than Winsock and part of
Microsoft's ActiveX technology.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To COM or Not to COM
Surely you've read about ActiveX Controls for the Internet. You've probably encountered concepts such as
composite monikers and anti-monikers, which are part of the Microsoft Component Object Model (COM). If
you were overwhelmed, don't worry—it's possible to program for the Internet without COM, and that's a
good place to start. This chapter and the next chapter are mostly COM-free. In Chapter 36, you'll be
writing a COM-based ActiveX document server, but MFC effectively hides the COM details so you can
concentrate on Winsock and WinInet programming. It's not that ActiveX controls aren't important, but we
can't do them justice in this book. We'll defer to Adam Denning's book on this subject, ActiveX Controls
Inside Out (Microsoft Press, 1997). Your study of this book's COM material and Internet material will
prepare you well for Adam's book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Internet Primer
You can't write a good Winsock program without understanding the concept of a socket, which is used to
send and receive packets of data across the network. To fully understand sockets, you need a thorough
knowledge of the underlying Internet protocols. This section contains a concentrated dose of Internet
theory. It should be enough to get you going, but you might want to refer to one of the TCP/IP textbooks if
you want more theory.

Network Protocols—Layering

All networks use layering for their transmission protocols, and the collection of layers is often called a
stack. The application program talks to the top layer, and the bottom layer talks to the network. Figure 34-
1 shows you the stack for a local area network (LAN) running TCP/IP. Each layer is logically connected to
the corresponding layer at the other end of the communications channel. The server program, as shown at
the right in Figure 34-1, continuously listens on one end of the channel, while the client program, as shown
on the left, periodically connects with the server to exchange data. Think of the server as an HTTP-based
World Wide Web server, and think of the client as a browser program running on your computer.

Figure 34-1. The stack for a LAN running TCP/IP.

The Internet Protocol

The Internet Protocol (IP) layer is the best place to start in your quest to understand TCP/IP. The IP
protocol defines packets called datagrams that are fundamental units of Internet communication. These
packets, typically less than 1000 bytes in length, go bouncing all over the world when you open a Web
page, download a file, or send e-mail. Figure 34-2 shows a simplified layout of an IP datagram.

Notice that the IP datagram contains 32-bit addresses for both the source and destination computers.
These IP addresses uniquely identify computers on the Internet and are used by routers (specialized
computers that act like telephone switches) to direct the individual datagrams to their destinations. The
routers don't care about what's inside the datagrams—they're only interested in that datagram's
destination address and total length. Their job is to resend the datagram as quickly as possible.

The IP layer doesn't tell the sending program whether a datagram has successfully reached its destination.
That's a job for the next layer up the stack. The receiving program can look only at the checksum to
determine whether the IP datagram header was corrupted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-2. A simple IP datagram layout.

The User Datagram Protocol

The TCP/IP protocol should really be called TCP/UDP/IP because it includes the User Datagram Protocol
(UDP), which is a peer of TCP. All IP-based transport protocols store their own headers and data inside the
IP data block. First let's look at the UDP layout in Figure 34-3.

Figure 34-3. A simple UDP layout.

A complete UDP/IP datagram is shown in Figure 34-4.

Figure 34-4. The relationship between the IP datagram and the UDP datagram.

UDP is only a small step up from IP, but applications never use IP directly. Like IP, UDP doesn't tell the
sender when the datagram has arrived. That's up to the application. The sender could, for example,
require that the receiver send a response, and the sender could retransmit the datagram if the response
didn't arrive within, say, 20 seconds. UDP is good for simple one-shot messages and is used by the
Internet Domain Name System (DNS), which is explained later in this chapter. (UDP is used for
transmitting live audio and video, for which some lost or out-of-sequence data is not a big problem.)

Figure 34-3 shows that the UDP header does convey some additional information—namely the source and
destination port numbers. The application programs on each end use these 16-bit numbers. For example, a
client program might send a datagram addressed to port 1700 on the server. The server program is
listening for any datagram that includes 1700 in its destination port number, and when the server finds
one, it can respond by sending another datagram back to the client, which is listening for a datagram that
includes 1701 in its destination port number.

IP Address Format—Network Byte Order

You know that IP addresses are 32-bits long. You might think that 232 (more than 4 billion) uniquely
addressed computers could exist on the Internet, but that's not true. Part of the address identifies the LAN
on which the host computer is located, and part of it identifies the host computer within the network. Most
IP addresses are Class C addresses, which are formatted as shown in Figure 34-5.

Figure 34-5. The layout of a Class C IP address.

This means that slightly more than 2 million networks can exist, and each of those networks can have 28

(256) addressable host computers. The Class A and Class B IP addresses, which allow more host
computers on a network, are all used up.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

computers on a network, are all used up.

The Internet "powers-that-be" have recognized the shortage of IP addresses, so they
have proposed a new standard, the IP Next Generation (IPng) protocol. IPng defines a
new IP datagram format that uses 128-bit addresses instead of 32-bit addresses. With
IPng, you'll be able, for example, to assign a unique Internet address to each light
switch in your house, so you can switch off your bedroom light from your portable
computer from anywhere in the world. IPng implementation doesn't yet have a
schedule.

By convention, IP addresses are written in dotted-decimal format. The four parts of the address refer to
the individual byte values. An example of a Class C IP address is 194.128.198.201. In a computer with an
Intel CPU, the address bytes are stored low-order-to-the-left, in so-called little-endian order. In most other
computers, including the UNIX machines that first supported the Internet, bytes are stored high-order-to-
the-left, in big-endian order. Because the Internet imposes a machine-independent standard for data
interchange, all multibyte numbers must be transmitted in big-endian order. This means that programs
running on Intel-based machines must convert between network byte order (big-endian) and host byte
order (little-endian). This rule applies to 2-byte port numbers as well as to 4-byte IP addresses.

The Transmission Control Protocol

You've learned about the limitations of UDP. What you really need is a protocol that supports error-free
transmission of large blocks of data. Obviously, you want the receiving program to be able to reassemble
the bytes in the exact sequence in which they are transmitted, even though the individual datagrams
might arrive in the wrong sequence. TCP is that protocol, and it's the principal transport protocol for all
Internet applications, including HTTP and File Transfer Protocol (FTP). Figure 34-6 shows the layout of a
TCP segment. (It's not called a datagram.) The TCP segment fits inside an IP datagram, as shown in Figure
34-7.

Figure 34-6. A simple layout of a TCP segment.

Figure 34-7. The relationship between an IP datagram and a TCP segment.

The TCP protocol establishes a full-duplex, point-to-point connection between two computers, and a
program at each end of this connection uses its own port. The combination of an IP address and a port
number is called a socket. The connection is first established with a three-way handshake. The initiating
program sends a segment with the SYN flag set, the responding program sends a segment with both the
SYN and ACK flags set, and then the initiating program sends a segment with the ACK flag set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SYN and ACK flags set, and then the initiating program sends a segment with the ACK flag set.

After the connection is established, each program can send a stream of bytes to the other program. TCP
uses the sequence number fields together with ACK flags to control this flow of bytes. The sending
program doesn't wait for each segment to be acknowledged but instead sends a number of segments
together and then waits for the first acknowledgment. If the receiving program has data to send back to
the sending program, it can piggyback its acknowledgment and outbound data together in the same
segments.

The sending program's sequence numbers are not segment indexes but rather indexes into the byte
stream. The receiving program sends back the sequence numbers (in the acknowledgment number field)
to the sending program, thereby ensuring that all bytes are received and assembled in sequence. The
sending program resends unacknowledged segments.

Each program closes its end of the TCP connection by sending a segment with the FIN flag set, which must
be acknowledged by the program on the other end. A program can no longer receive bytes on a connection
that has been closed by the program on the other end.

Don't worry about the complexity of the TCP protocol. The Winsock and WinInet APIs hide most of the
details, so you don't have to worry about ACK flags and sequence numbers. Your program calls a function
to transmit a block of data, and Windows takes care of splitting the block into segments and stuffing them
inside IP datagrams. Windows also takes care of delivering the bytes on the receiving end, but that gets
tricky, as you'll see later in this chapter.

The Domain Name System

When you surf the Web, you don't use IP addresses. Instead, you use human-friendly names like
microsoft.com or www.cnn.com. A significant portion of Internet resources is consumed when host names
(such as microsoft.com) are translated into IP addresses that TCP/IP can use. A distributed network of
name server (domain server) computers performs this translation by processing DNS queries. The entire
Internet namespace is organized into domains, starting with an unnamed root domain. Under the root is a
series of top-level domains such as com, edu, gov, and org.

Do not confuse Internet domains with Microsoft Windows NT domains. The latter are
logical groups of networked computers that share a common security database.

Servers and Domain Names

Let's look at the server end first. Suppose a company named SlowSoft has two host computers connected
to the Internet, one for World Wide Web (WWW) service and the other for FTP service. By convention,
these host computers are named www.slowsoft.com and ftp.slowsoft.com, respectively, and both are
members of the second-level domain slowsoft, which SlowSoft has registered with an organization called
InterNIC. (See http://www.internic.com/.)

Now SlowSoft must designate two (or more) host computers as its name servers. The name servers for the
com domain each have a database entry for the slowsoft domain, and that entry contains the names and
IP addresses of SlowSoft's two name servers. Each of the two slowsoft name servers has database entries
for both of SlowSoft's host computers. These servers might also have database entries for hosts in other
domains, and they might have entries for name servers in third-level domains. Thus, if a name server can't
provide a host's IP address directly, it can redirect the query to a lower-level name server. Figure 34-8
illustrates SlowSoft's domain configuration.

A top-level name server runs on its own host computer. InterNIC manages (at last
count) nine computers that serve the root domain and top-level domains. Lower-level
name servers could be programs running on host computers anywhere on the Net.
SlowSoft's Internet service provider (ISP), ExpensiveNet, can furnish one of SlowSoft's
name servers. If the ISP is running Windows NT Server, the name server is usually the
DNS program that comes bundled with the operating system. That name server might
be designated ns1.expensivenet.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clients and Domain Names

Now for the client side. A user types http://www.slowsoft.com in the browser. (The http:// prefix tells the
browser to use the HTTP protocol when it eventually finds the host computer.) The browser must then
resolve www.slowsoft.com into an IP address, so it uses TCP/IP to send a DNS query to the default
gateway IP address for which TCP/IP is configured. This default gateway address identifies a local name
server, which might have the needed host IP address in its cache. If not, the local name server relays the
DNS query up to one of the root name servers. The root server looks up slowsoft in its database and sends
the query back down to one of SlowSoft's designated name servers. In the process, the IP address for
www.slowsoft.com will be cached for later use if it was not cached already. If you want to go the other
way, name servers are also capable of converting an IP address to a name.

Figure 34-8. SlowSoft's domain configuration.

HTTP Basics

You're going to be doing some Winsock programming soon, but just sending raw byte streams back and
forth isn't very interesting. You need to use a higher-level protocol in order to be compatible with existing
Internet servers and browsers. HTTP is a good place to start because it's the protocol of the popular World
Wide Web and it's relatively simple.

HTTP is built on TCP, and this is the way it works: First a server program listens on port 80. Then some
client program (typically a browser) connects to the server (www.slowsoft.com, in this case) after receiving
the server's IP address from a name server. Using its own port number, the client sets up a two-way TCP
connection to the server. As soon as the connection is established, the client sends a request to the server,
which might look like this:

GET /customers/newproducts.html HTTP/1.0
The server identifies the request as a GET, the most common type, and it concludes that the client wants a
file named newproducts.html that's located in a server directory known as /customers (which might or
might not be \customers on the server's hard disk). Immediately following are request headers, which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

might not be \customers on the server's hard disk). Immediately following are request headers, which
mostly describe the client's capabilities.

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/x
-jg, */*
Accept-Language: en
UA-pixels: 1024x768
UA-color: color8
UA-OS: Windows NT
UA-CPU: x86
User-Agent: Mozilla/2.0 (compatible; MSIE 3.0; AK; Windows NT)
Host: www.slowsoft.com
Connection: Keep-Alive
If-Modified-Since: Wed, 26 Mar 1997 20:23:04 GMT
(blank line)

The If-Modified-Since header tells the server not to bother to transmit newproducts.html unless the file has
been modified since March 26, 1997. This implies that the browser already has a dated copy of this file
stored in its cache. The blank line at the end of the request is crucial; it provides the only way for the
server to tell that it is time to stop receiving and start transmitting, and that's because the TCP connection
stays open.

Now the server springs into action. It sends newproducts.html, but first it sends an OK response:

HTTP/1.0 200 OK
immediately followed by some response header lines:

Server: Microsoft-IIS/2.0
Date: Thu, 03 Mar 1997 17:33:12 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, Mar 26 1997 20:23:04 GMT
Content-Length: 407
(blank line)

The contents of newproducts.html immediately follow the blank line:

<html>
<head><title>SlowSoft's New Products</title></head>
<body><body background="/images/clouds.jpg">
<h1><center>Welcome to SlowSoft's New Products List
</center></h1><p>
Unfortunately, budget constraints have prevented SlowSoft from
 introducing any new products this year. We suggest you keep
 enjoying the old products.<p>
SlowSoft's Home Page<p>
</body>
</html>
You're looking at elementary HyperText Markup Language (HTML) code here, and the resulting Web page
won't win any prizes. We won't go into details because dozens of HTML books are already available. From
these books, you'll learn that HTML tags are contained in angle brackets and that there's often an "end"
tag (with a / character) for every "start" tag. Some tags, such as <a> (hypertext anchor), have attributes.
In the example above, the line

SlowSoft's Home Page<p>
creates a link to another HTML file. The user clicks on "SlowSoft's Home Page," and the browser requests
default.htm from the original server.

Actually, newproducts.html references two server files, default.htm and /images/clouds.jpg. The clouds.jpg
file is a JPEG file that contains a background picture for the page. The browser downloads each of these
files as a separate transaction, establishing and closing a separate TCP connection each time. The server
just dishes out files to any client that asks for them. In this case, the server doesn't know or care whether
the same client requested newproducts.html and clouds.jpg. To the server, clients are simply IP addresses
and port numbers. In fact, the port number is different for each request from a client. For example, if ten
of your company's programmers are surfing the Web via your company's proxy server (more on proxy
servers later), the server sees the same IP address for each client.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

servers later), the server sees the same IP address for each client.

Web pages use two graphics formats, GIF and JPEG. GIF files are compressed images
that retain all the detail of the original uncompressed image but are usually limited to
256 colors. They support transparent regions and animation. JPEG files are smaller, but
they don't carry all the detail of the original file. GIF files are often used for small
images such as buttons, and JPEG files are often used for photographic images for
which detail is not critical. Visual C++ can read, write, and convert both GIF and JPEG
files, but the Win32 API cannot handle these formats unless you supply a special
compression/decompression module.

The HTTP standard includes a PUT request type that enables a client program to upload a file to the server.
Client programs and server programs seldom implement PUT.

FTP Basics

The File Transfer Protocol handles the uploading and downloading of server files plus directory navigation
and browsing. A Windows command-line program called ftp (it doesn't work through a Web proxy server)
lets you connect to an FTP server using UNIX-like keyboard commands. Browser programs usually support
the FTP protocol (for downloading files only) in a more user-friendly manner. You can protect an FTP
server's directories with a user-name/password combination, but both strings are passed over the Internet
as clear text. FTP is based on TCP. Two separate connections are established between the client and
server, one for control and one for data.

Internet vs. Intranet

Up to now, we've been assuming that client and server computers were connected to the worldwide
Internet. The fact is you can run exactly the same client and server software on a local intranet. An
intranet is often implemented on a company's LAN and is used for distributed applications. Users see the
familiar browser interface at their client computers, and server computers supply simple Web-like pages or
do complex data processing in response to user input.

An intranet offers a lot of flexibility. If, for example, you know that all your computers are Intel-based, you
can use ActiveX controls and ActiveX document servers that provide ActiveX document support. If
necessary, your server and client computers can run custom TCP/IP software that allows communication
beyond HTTP and FTP. To secure your company's data, you can separate your intranet completely from the
Internet or you can connect it through a firewall, which is another name for a proxy server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Build Your Own $99 Intranet
Building a Microsoft Windows-based intranet is easy and cheap. Microsoft Windows 95, Microsoft Windows
98, and Microsoft Windows NT all contain the necessary networking capabilities. If you don't want to spend
the $99, you can build a free intranet within a single computer. All the code in this chapter will run on this
one-computer configuration.

NT File System vs. File Allocation Table

With Windows 95 and Windows 98, you are restricted to one file system, File Allocation Table (FAT—
actually VFAT for long filenames). With Windows NT, you choose between NT File System (NTFS) and FAT
at setup time. Your intranet will be much more secure if you choose NTFS because NTFS allows you to set
user permissions for individual directories and files. Users log on to a Windows server (or to an attached
workstation) supplying a user name and password.

Intranet and Internet clients participate in this operating-system security scheme because the server can
log them on as though they were local users. Thus you can restrict access to any server directory or file to
specific users who must supply passwords. If those user workstations are Windows network clients (as
would be the case with a LAN-based intranet), the user name and password are passed through from the
user's logon.

Network Hardware

You obviously need more than one computer to make a network. While your main development computer
is probably a Pentium, a Pentium Pro, or a Pentium II, chances are you have at least one old computer
hanging around. If it's at least a 486, it makes sense to connect it to your main computer for intranet
testing and file backups.

You will need a network board for each computer, but 10-megabit-per-second Ethernet boards now cost
less than $50 each. Choose a brand that either comes with its own drivers for Windows 95, Windows 98,
and Windows NT, or is already supported by those operating systems. To see a list of supported boards,
click on the Network icon in the Control Panel and then click the Add button to add an Adapter.

Most network boards have connectors for both thin coaxial (coax) and 10BaseT twisted pair. With 10BaseT,
you must buy a hub, which costs several hundred dollars and needs a power supply. Thin coax requires
only coaxial cable (available in precut lengths with connectors) plus terminator plugs. With coax, you
daisy-chain your computers together and put terminators on each end of the chain.

Follow the instructions that come with the network board. In most cases you'll have to run an MS-DOS
program that writes to the electrically erasable/programmable read-only memory (EEPROM) on the board.
Write down the values you select—you'll need them later.

Configuring Windows for Networking

After clicking on the Network icon in the Control Panel, you select protocols, adapters (network boards),
and services. The screens that appear depend on whether you're using Windows 95, Windows 98, or
Windows NT. You must select TCP/IP as one of your protocols if you want to run an intranet. You must also
install the Windows driver for your network board, ensuring that the IRQ and I/O address values match
what you put into the board's EEPROM. You must also assign an IP address to each of your network
boards. If you're not connected directly to the Internet, you can choose any unique address you want.

That's actually enough configuring for an intranet, but you'll probably want to use your network for sharing
files and printers, too. For Windows NT, install Client And Server Services and bind them to TCP/IP. For
Windows 95 and Windows 98, install Client For Microsoft Networks and File And Printer Sharing For
Microsoft Networks. If you have an existing network with another protocol installed (Novell IPX/SPX or
Microsoft NetBEUI, for example), you can continue to use that protocol on the network along with TCP/IP.
In that case, Windows file and print sharing will use the existing protocol and your intranet will use TCP/IP.
If you want one computer to share another computer's resources, you must enable sharing from Microsoft
Windows Explorer (for disk directories) or from the Printers folder (for printers).

Host Names for an Intranet—The HOSTS File

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Host Names for an Intranet—The HOSTS File

Both Internet and intranet users expect their browsers to use host names, not IP addresses. There are
various methods of resolving names to addresses, including your own DNS server, which is an installable
component of Windows NT Server. The easiest way of mapping Internet host names to IP addresses,
however, is to use the HOSTS file. On Windows NT, this is a text file in the \Winnt\System32\DRIVERS\ETC
directory. On Windows 95 and Windows 98, it's in the \WINDOWS directory, in a prototype HOSTS.SAM file
that's already there. Just copy that file to HOSTS, and make the entries with Notepad. Make sure that you
copy the edited HOSTS file to all computers in the network.

Testing Your Intranet—The Ping Program

You can use the Windows Ping program to test your intranet. From the command line, type ping followed
by the IP address (dotted-decimal format) or the host name of another computer on the network. If you
get a positive response, you'll know that TCP/IP is configured correctly. If you get no response or an error
message, proceed no further. Go back and troubleshoot your network connections and configuration.

An Intranet for One Computer—The TCP/IP Loopback Address

The first line in the HOSTS file should be

127.0.0.1 localhost
This is the standard loopback IP address. If you start a server program to listen on this address, client
programs running on the same machine can connect to localhost to get a TCP/IP connection to the server
program. This works whether or not you have network boards installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Winsock
Winsock is the lowest level Windows API for TCP/IP programming. Part of the code is located in wsock32.dll
(the exported functions that your program calls), and part is inside the Windows kernel. You can write both
internet server programs and internet client programs using the Winsock API. This API is based on the
original Berkely Sockets API for UNIX. A new and much more complex version, Winsock 2, is included for
the first time with Windows NT 4.0, but we'll stick with the old version because it's the current standard for
both Windows NT, Windows 95, and Windows 98.

Synchronous vs. Asynchronous Winsock Programming

Winsock was introduced first for Win16, which did not support multithreading. Consequently, most
developers used Winsock in the asynchronous mode. In that mode, all sorts of hidden windows and
PeekMessage calls enabled single-threaded programs to make Winsock send and receive calls without
blocking, thus keeping the user interface (UI) alive. Asynchronous Winsock programs were complex, often
implementing "state machines" that processed callback functions, trying to figure out what to do next
based on what had just happened. Well, we're not in 16-bit land anymore, so we can do modern
multithreaded programming. If this scares you, go back and review Chapter 12. Once you get used to
multithreaded programming, you'll love it.

In this chapter, we will make the most of our Winsock calls from worker threads so that the program's
main thread is able to carry on with the UI. The worker threads contain nice, sequential logic consisting of
blocking Winsock calls.

The MFC Winsock Classes

We try to use MFC classes where it makes sense to use them, but the MFC developers informed us that the
CAsyncSocket and CSocket classes were not appropriate for 32-bit synchronous programming. The Visual
C++ online help says you can use CSocket for synchronous programming, but if you look at the source
code you'll see some ugly message-based code left over from Win16.

The Blocking Socket Classes

Since we couldn't use MFC, we had to write our own Winsock classes. CBlockingSocket is a thin wrapping
of the Winsock API, designed only for synchronous use in a worker thread. The only fancy features are
exception-throwing on errors and time-outs for sending and receiving data. The exceptions help you write
cleaner code because you don't need to have error tests after every Winsock call. The time-outs
(implemented with the Winsock select function) prevent a communication fault from blocking a thread
indefinitely.

CHttpBlockingSocket is derived from CBlockingSocket and provides functions for reading HTTP data.
CSockAddr and CBlockingSocketException are helper classes.

The CSockAddr Helper Class

Many Winsock functions take socket address parameters. As you might remember, a socket address
consists of a 32-bit IP address plus a 16-bit port number. The actual Winsock type is a 16-byte
sockaddr_in structure, which looks like this:

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};
The IP address is stored as type in_addr, which looks like this:

struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
}
These are ugly structures, so we'll derive a programmer-friendly C++ class from sockaddr_in. The file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These are ugly structures, so we'll derive a programmer-friendly C++ class from sockaddr_in. The file
\vcpp32\ex34a\Blocksock.h on the CD-ROM contains the following code for doing this, with inline functions
included:

class CSockAddr : public sockaddr_in {
public:
 // constructors
 CSockAddr()
 {
 sin_family = AF_INET;
 sin_port = 0;
 sin_addr.s_addr = 0;
 } // Default
 CSockAddr(const SOCKADDR& sa) { memcpy(this, &sa,
 sizeof(SOCKADDR)); }
 CSockAddr(const SOCKADDR_IN& sin) { memcpy(this, &sin,
 sizeof(SOCKADDR_IN)); }
 CSockAddr(const ULONG ulAddr, const USHORT ushPort = 0)
 // parms are host byte ordered
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = htonl(ulAddr);
 }
 CSockAddr(const char* pchIP, const USHORT ushPort = 0)
 // dotted IP addr string
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = inet_addr(pchIP);
 } // already network byte ordered
 // Return the address in dotted-decimal format
 CString DottedDecimal()
 { return inet_ntoa(sin_addr); }
 // constructs a new CString object
 // Get port and address (even though they're public)
 USHORT Port() const
 { return ntohs(sin_port); }
 ULONG IPAddr() const
 { return ntohl(sin_addr.s_addr); }
 // operators added for efficiency
 const CSockAddr& operator=(const SOCKADDR& sa)
 {
 memcpy(this, &sa, sizeof(SOCKADDR));
 return *this;
 }
 const CSockAddr& operator=(const SOCKADDR_IN& sin)
 {
 memcpy(this, &sin, sizeof(SOCKADDR_IN));
 return *this;
 }
 operator SOCKADDR()
 { return *((LPSOCKADDR) this); }
 operator LPSOCKADDR()
 { return (LPSOCKADDR) this; }
 operator LPSOCKADDR_IN()
 { return (LPSOCKADDR_IN) this; }
};
As you can see, this class has some useful constructors and conversion operators, which make the
CSockAddr object interchangeable with the type sockaddr_in and the equivalent types SOCKADDR_IN,
sockaddr, and SOCKADDR. There's a constructor and a member function for IP addresses in dotted-
decimal format. The internal socket address is in network byte order, but the member functions all use
host byte order parameters and return values. The Winsock functions htonl, htons, ntohs, and ntohl take
care of the conversions between network and host byte order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

care of the conversions between network and host byte order.

The CBlockingSocketException Class

All the CBlockingSocket functions throw a CBlockingSocketException object when Winsock returns an error.
This class is derived from the MFC CException class and thus overrides the GetErrorMessage function. This
function gives the Winsock error number and a character string that CBlockingSocket provided when it
threw the exception.

The CBlockingSocket Class

Figure 34-9 shows an excerpt from the header file for the CBlockingSocket class.

BLOCKSOCK.H

class CBlockingSocket : public CObject
{
 DECLARE_DYNAMIC(CBlockingSocket)
public:
 SOCKET m_hSocket;
 CBlockingSocket(); { m_hSocket = NULL; }
 void Cleanup();
 void Create(int nType = SOCK_STREAM);
 void Close();
 void Bind(LPCSOCKADDR psa);
 void Listen();
 void Connect(LPCSOCKADDR psa);
 BOOL Accept(CBlockingSocket& s, LPCSOCKADDR psa);
 int Send(const char* pch, const int nSize, const int nSecs);
 int Write(const char* pch, const int nSize, const int nSecs);
 int Receive(char* pch, const int nSize, const int nSecs);
 int SendDatagram(const char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 int ReceiveDatagram(char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 void GetPeerAddr(LPCSOCKADDR psa);
 void GetSockAddr(LPCSOCKADDR psa);
 static CSockAddr GetHostByName(const char* pchName,
 const USHORT ushPort = 0);
 static const char* GetHostByAddr(LPCSOCKADDR psa);
 operator SOCKET();
 { return m_hSocket; }
};

Figure 34-9. Excerpt from the header file for the CBlockingSocketclass.

Following is a list of the CBlockingSocket member functions, starting with the constructor:

Constructor—The CBlockingSocket constructor makes an uninitialized object. You must call the
Create member function to create a Windows socket and connect it to the C++ object.

Create—This function calls the Winsock socket function and then sets the m_hSocket data member
to the returned 32-bit SOCKET handle.

Parameter Description

nType Type of socket; should be SOCK_STREAM (the default value) or SOCK_DGRAM

Close—This function closes an open socket by calling the Winsock closesocket function. The Create
function must have been called previously. The destructor does not call this function because it
would be impossible to catch an exception for a global object. Your server program can call Close
anytime for a socket that is listening.
Bind—This function calls the Winsock bind function to bind a previously created socket to a
specified socket address. Prior to calling Listen, your server program calls Bind with a socket
address containing the listening port number and server's IP address. If you supply INADDR_ANY as
the IP address, Winsock deciphers your computer's IP address.

Parameter Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

Listen—This TCP function calls the Winsock listen function. Your server program calls Listen to
begin listening on the port specified by the previous Bind call. The function returns immediately.
Accept—This TCP function calls the Winsock accept function. Your server program calls Accept
immediately after calling Listen. Accept returns when a client connects to the socket, sending back
a new socket (in a CBlockingSocket object that you provide) that corresponds to the new
connection.

Parameter Description

s A reference to an existing CBlockingSocket object for which Create has not been
called

psa A CSockAddr object or a pointer to a variable of type sockaddr for the connecting
socket's address

Return
value

TRUE if successful

Connect—This TCP function calls the Winsock connect function. Your client program calls Connect
after calling Create. Connect returns when the connection has been made.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

Send—This TCP function calls the Winsock send function after calling select to activate the time-
out. The number of bytes actually transmitted by each Send call depends on how quickly the
program at the other end of the connection can receive the bytes. Send throws an exception if the
program at the other end closes the socket before it reads all the bytes.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

nSecs Time-out value in seconds

Return value The actual number of bytes sent

Write—This TCP function calls Send repeatedly until all the bytes are sent or until the receiver
closes the socket.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

nSecs Time-out value in seconds

Return value The actual number of bytes sent

Receive—This TCP function calls the Winsock recv function after calling select to activate the time-
out. This function returns only the bytes that have been received. For more information, see the
description of the CHttpBlockingSocket class in the next section.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming bytes

nSize The maximum number of bytes to receive

nSecs Time-out value in seconds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return value The actual number of bytes received

SendDatagram—This UDP function calls the Winsock sendto function. The program on the other
end needs to call ReceiveDatagram. There is no need to call Listen, Accept, or Connect for
datagrams. You must have previously called Create with the parameter set to SOCK_DGRAM.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

psa The datagram's destination address; a CSockAddr object or a pointer to a variable of
type sockaddr

nSecs Time-out value in seconds

Return
value

The actual number of bytes sent

ReceiveDatagram—This UDP function calls the Winsock recvfrom function. The function returns
when the program at the other end of the connection calls SendDatagram. You must have
previously called Create with the parameter set to SOCK_DGRAM.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming bytes

nSize The size (in bytes) of the block to send

psa The datagram's destination address; a CSockAddr object or a pointer to a variable of
type sockaddr

nSecs Time-out value in seconds

Return
value

The actual number of bytes received

GetPeerAddr—This function calls the Winsock getpeername function. It returns the port and IP
address of the socket on the other end of the connection. If you are connected to the Internet
through a Web proxy server, the IP address is the proxy server's IP address.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

GetSockAddr—This function calls the Winsock getsockname function. It returns the socket address
that Winsock assigns to this end
of the connection. If the other program is a server on a LAN, the IP address is the address assigned
to this computer's network board. If the other program is a server on the Internet, your service
provider assigns the IP address when you dial in. In both cases, Winsock assigns the port number,
which is different for each connection.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

GetHostByName—This static function calls the Winsock function gethostbyname. It queries a
name server and then returns the socket address corresponding to the host name. The function
times out by itself.

Parameter Description

pchName A pointer to a character array containing the host name to resolve

ushPort The port number (default value 0) that will become part of the returned socket
address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return
value

The socket address containing the IP address from the DNS plus the port number
ushPort

GetHostByAddr—This static function calls the Winsock gethostbyaddr function. It queries a name
server and then returns the host name corresponding to the socket address. The function times out
by itself.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

Return
value

A pointer to a character array containing the host name; the caller should not delete
this memory

Cleanup—This function closes the socket if it is open. It doesn't throw an exception, so you can call
it inside an exception catch block.
operator SOCKET—This overloaded operator lets you use a CBlockingSocket object in place of a
SOCKET parameter.

The CHttpBlockingSocket Class

If you call CBlockingSocket::Receive, you'll have a difficult time knowing when to stop receiving bytes.
Each call returns the bytes that are stacked up at your end of the connection at that instant. If there are
no bytes, the call blocks, but if the sender closed the socket, the call returns zero bytes.

In the HTTP section, you learned that the client sends a request terminated by a blank line. The server is
supposed to send the response headers and data as soon as it detects the blank line, but the client needs
to analyze the response headers before it reads the data. This means that as long as a TCP connection
remains open, the receiving program must process the received data as it comes in. A simple but
inefficient technique would be to call Receive for 1 byte at a time. A better way is to use a buffer.

The CHttpBlockingSocket class adds buffering to CBlockingSocket, and it provides two new member
functions. Here is part of the \vcpp32\ex34A\Blocksock.h file:

class CHttpBlockingSocket : public CBlockingSocket
{
public:
 DECLARE_DYNAMIC(CHttpBlockingSocket)
 enum {nSizeRecv = 1000}; // max receive buffer size (> hdr line
 // length)
 CHttpBlockingSocket();
 ~CHttpBlockingSocket();
 int ReadHttpHeaderLine(char* pch, const int nSize, const int nSecs);
 int ReadHttpResponse(char* pch, const int nSize, const int nSecs);
private:
 char* m_pReadBuf; // read buffer
 int m_nReadBuf; // number of bytes in the read buffer
};
The constructor and destructor take care of allocating and freeing a 1000-character buffer. The two new
member functions are as follows:

ReadHttpHeaderLine—This function returns a single header line, terminated with a <cr><lf>
pair. ReadHttpHeaderLine inserts a terminating zero at the end of the line. If the line buffer is full,
the terminating zero is stored in the last position.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming line (zero-terminated)

nSize The size of the pch buffer

nSecs Time-out value in seconds

Return value The actual number of bytes received, excluding the terminating zero

ReadHttpResponse—This function returns the remainder of the server's response received when

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReadHttpResponse—This function returns the remainder of the server's response received when
the socket is closed or when the buffer is full. Don't assume that the buffer contains a terminating
zero.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming data

nSize The maximum number of bytes to receive

nSecs Time-out value in seconds

Return value The actual number of bytes received

A Simplified HTTP Server Program

Now it's time to use the blocking socket classes to write an HTTP server program. All the frills have been
eliminated, but the code actually works with a browser. This server doesn't do much except return some
hard-coded headers and HTML statements in response to any GET request. (See the EX34A program later
in this chapter for a more complete HTTP server.)

Initializing Winsock

Before making any Winsock calls, the program must initialize the Winsock library. The following statements
in the application's InitInstance member function do the job:

WSADATA wsd;
WSAStartup(0x0101, &wsd);

Starting the Server

The server starts in response to some user action, such as a menu choice. Here's the command handler:

CBlockingSocket g_sListen; // one-and-only global socket for listening
void CSocketView::OnInternetStartServer()
{
 try {
 CSockAddr saServer(INADDR_ANY, 80);
 g_sListen.Create();
 g_sListen.Bind(saServer);
 g_sListen.Listen();
 AfxBeginThread(ServerThreadProc, GetSafeHwnd());
 }
 catch(CBlockingSocketException* e) {
 g_sListen.Cleanup();
 // Do something about the exception
 e->Delete();
 }
}
Pretty simple, really. The handler creates a socket, starts listening on it, and then starts a worker thread
that waits for some client to connect to port 80. If something goes wrong, an exception is thrown. The
global g_sListen object lasts for the life of the program and is capable of accepting multiple simultaneous
connections, each managed by a separate thread.

The Server Thread

Now let's look at the ServerThreadProc function:

UINT ServerThreadProc(LPVOID pParam)
{
 CSockAddr saClient;
 CHttpBlockingSocket sConnect;
 char request[100];
 char headers[] = "HTTP/1.0 200 OK\r\n"
 "Server: Inside Visual C++ SOCK01\r\n"
 "Date: Thu, 05 Sep 1996 17:33:12 GMT\r\n"
 "Content-Type: text/html\r\n"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Content-Type: text/html\r\n"
 "Accept-Ranges: bytes\r\n"
 "Content-Length: 187\r\n"
 "\r\n"; // the important blank line
 char html[] =
 "<html><head><title>Inside Visual C++ Server</title></head>\r\n"
 "<body><body background=\"/samples/images/usa1.jpg\">\r\n"
 "<h1><center>This is a custom home page</center></h1><p>\r\n"
 "</body></html>\r\n\r\n";
 try {
 if(!g_sListen.Accept(sConnect, saClient)) {
 // Handler in view class closed the listening socket
 return 0;
 }
 AfxBeginThread(ServerThreadProc, pParam);
 // read request from client
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the first header
 if(strnicmp(request, "GET", 3) == 0) {
 do { // Process the remaining request headers
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the other headers
 } while(strcmp(request, "\r\n"));
 sConnect.Write(headers, strlen(headers), 10); // response hdrs
 sConnect.Write(html, strlen(html), 10); // HTML code
 }
 else {
 TRACE("SERVER: not a GET\n");
 // don't know what to do
 }
 sConnect.Close(); // Destructor doesn't close it
 }
 catch(CBlockingSocketException* e) {
 // Do something about the exception
 e->Delete();
 }
 return 0;
}
The most important function call is the Accept call. The thread blocks until a client connects to the server's
port 80, and then Accept returns with a new socket, sConnect. The current thread immediately starts
another thread.

In the meantime, the current thread must process the client's request that just came in on sConnect. It
first reads all the request headers by calling ReadHttpHeaderLine until it detects a blank line. Then it calls
Write to send the response headers and the HTML statements. Finally, the current thread calls Close to
close the connection socket. End of story for this connection. The next thread is sitting, blocked at the
Accept call, waiting for the next connection.

Cleaning Up

To avoid a memory leak on exit, the program must ensure that all worker threads have been terminated.
The simplest way to do this is to close the listening socket. This forces any thread's pending Accept to
return FALSE, causing the thread to exit.

try {
 g_sListen.Close();
 Sleep(340); // Wait for thread to exit
 WSACleanup(); // Terminate Winsock
}
catch(CUserException* e) {
 e->Delete();
}
A problem might arise if a thread were in the process of fulfilling a client request. In that case, the main
thread should positively ensure that all threads have terminated before exiting.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Simplified HTTP Client Program

Now for the client side of the story—a simple working program that does a blind GET request. When a
server receives a GET request with a slash, as shown below, it's supposed to deliver its default HTML file:

GET / HTTP/1.0
If you typed http://www.slowsoft.com in a browser, the browser sends the blind GET request.

This client program can use the same CHttpBlockingSocket class you've already seen, and it must initialize
Winsock the same way the server did. A command handler simply starts a client thread with a call like this:

AfxBeginThread(ClientSocketThreadProc, GetSafeHwnd());
Here's the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientSocketThreadProc(LPVOID pParam)
{
 CHttpBlockingSocket sClient;
 char* buffer = new char[MAXBUF];
 int nBytesReceived = 0;
 char request[] = "GET / HTTP/1.0\r\n";
 char headers[] = // Request headers
 "User-Agent: Mozilla/1.22 (Windows; U; 32bit)\r\n"
 "Accept: */*\r\n"
 "Accept: image/gif\r\n"
 "Accept: image/x-xbitmap\r\n"
 "Accept: image/jpeg\r\n"
 "\r\n"; // need this
 CSockAddr saServer, saClient;
 try {
 sClient.Create();
 saServer = CBlockingSocket::GetHostByName(g_strServerName, 80);
 sClient.Connect(saServer);
 sClient.Write(request, strlen(request), 10);
 sClient.Write(headers, strlen(headers), 10);
 do { // Read all the server's response headers
 nBytesReceived = sClient.ReadHttpHeaderLine(buffer, 100, 10);
 } while(strcmp(buffer, "\r\n")); // through the first blank line
 nBytesReceived = sClient.ReadHttpResponse(buffer, 100, 10);
 if(nBytesReceived == 0) {
 AfxMessageBox("No response received");
 }
 else {
 buffer[nBytesReceived] = `\0';
 AfxMessageBox(buffer);
 }
 }
 catch(CBlockingSocketException* e) {
 // Log the exception
 e->Delete();
 }
 sClient.Close();
 delete [] buffer;
 return 0; // The thread exits
}
This thread first calls CBlockingSocket::GetHostByName to get the server computer's IP address. Then it
creates a socket and calls Connect on that socket. Now there's a two-way communication channel to the
server. The thread sends its GET request followed by some request headers, reads the server's response
headers, and then reads the response file itself, which it assumes is a text file. After the thread displays
the text in a message box, it exits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Server with CHttpBlockingSocket
If you need a Web server, your best bet is to buy one or to use the Microsoft Internet Information Server
(IIS) that comes bundled with Windows NT Server. Of course, you'll learn more if you build your own
server and you'll also have a useful diagnostic tool. And what if you need features that IIS can't deliver?
Suppose you want to add Web server capability to an existing Windows application, or suppose you have a
custom ActiveX control that sets up its own non-HTTP TCP connection with the server. Take a good look at
the server code in EX34A, which works under Windows NT, Windows 95, and Windows 98. It might work
as a foundation for your next custom server application.

EX34A Server Limitations

The server part of the EX34A program honors GET requests for files, and it has logic for processing POST
requests. (POST requests are described in Chapter 35.) These are the two most common HTTP request
types. EX34A will not, however, launch Common Gateway Interface (CGI) scripts or load Internet Server
Application Programming Interface (ISAPI) DLLs. (You'll learn more about ISAPI in Chapter 35.) EX34A
makes no provision for security, and it doesn't have FTP capabilities. Other than that, it's a great server! If
you want the missing features, just write the code for them yourself.

EX34A Server Architecture

You'll soon see that EX34A combines an HTTP server, a Winsock HTTP client, and two WinInet HTTP clients.
All three clients can talk to the built-in server or to any other server on the Internet. Any client program,
including the Telnet utility and standard browsers such as Microsoft Internet Explorer 4.0, can
communicate with the EX34A server. You'll examine the client sections a little later in this chapter.

EX34A is a standard MFC SDI document-view application with a view class derived from CEditView. The
main menu includes Start Server and Stop Server menu choices as well as a Configuration command that
brings up a tabbed dialog for setting the home directory, the default file for blind GETs, and the listening
port number (usually 80).

The Start Server command handler starts a global socket listening and then launches a thread, as in the
simplified HTTP server described previously. Look at the ServerThreadProc function included in the file
\vcpp32\ex34a\ServerThread.cpp of the EX34A project on the companion CD-ROM. Each time a server
thread processes a request, it logs the request by sending a message to the CEditView window. It also
sends messages for exceptions, such as bind errors.

The primary job of the server is to deliver files. It first opens a file, storing a CFile pointer in pFile, and
then it reads 5 KB (SERVERMAXBUF) blocks and writes them to the socket sConnect, as shown in the code
below:

char* buffer = new char[SERVERMAXBUF];
DWORD dwLength = pFile->GetLength();
nBytesSent = 0;
DWORD dwBytesRead = 0;
UINT uBytesToRead;
while(dwBytesRead < dwLength) {
 uBytesToRead = min(SERVERMAXBUF, dwLength - dwBytesRead);
 VERIFY(pFile->Read(buffer, uBytesToRead) == uBytesToRead);
 nBytesSent += sConnect.Write(buffer, uBytesToRead, 10);
 dwBytesRead += uBytesToRead;
}
The server is programmed to respond to a GET request for a phony file named Custom. It generates some
HTML code that displays the client's IP address, port number, and a sequential connection number. This is
one possibility for server customization.

The server normally listens on a socket bound to address INADDR_ANY. This is the server's default IP
address determined by the Ethernet board or assigned during your connection to your ISP. If your server
computer has several IP addresses, you can force the server to listen to one of them by filling in the Server
IP Address in the Advanced Configuration page. You can also change the server's listening port number on
the Server page. If you choose port 90, for example, browser users would connect to http://localhost:90.

The leftmost status bar indicator pane displays "Listening" when the server is running.

Using the Win32 TransmitFile Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the Win32 TransmitFile Function

If you have Windows NT 4.0, you can make your server more efficient by using the Win32 TransmitFile
function in place of the CFile::Read loop in the code excerpt shown. TransmitFile sends bytes from an open
file directly to a socket and is highly optimized. The EX34A ServerThreadProc function contains the
following line:

if (::TransmitFile(sConnect, (HANDLE) pFile >m_hFile, dwLength, 0,
 NULL, NULL, TF_DISCONNECT))
If you have Windows NT, uncomment the line

#define USE_TRANSMITFILE
at the top of ServerThread.cpp to activate the TransmitFile logic.

Building and Testing EX34A

Open the \vcpp32\ex34a project in Visual C++, and then build the project. A directory under EX34A, called
Website, contains some HTML files and is set up as the EX34A server's home directory, which appears to
clients as the server's root directory.

If you have another HTTP server running on your computer, stop it now. If you have
installed IIS along with Windows NT Server, it is probably running now, so you must
run the Internet Service Manager program from the Microsoft Internet Server menu.
Select the WWW Service line, and then click the stop button (the one with the square).
EX34A reports a bind error (10048) if another server is already listening on port 80.

Run the program from the debugger, and then choose Start Server from the Internet menu. Now go to
your Web browser and type localhost. You should see the Welcome To The Inside Visual C++ Home Page
complete with all graphics. The EX34A window should look like this.

Look at the Visual C++ debug window for a listing of the client's request headers.

If you click the browser's Refresh button, you might notice EX34A error messages like this:

WINSOCK ERROR--SERVER: Send error #10054 -- 10/05/96 04:34:10 GMT
This tells you that the browser read the file's modified date from the server's response header and figured
out that it didn't need the data because it already had the file in its cache. The browser then closed the
socket, and the server detected an error. If the EX34A server were smarter, it would have checked the
client's If-Modified-Since request header before sending the file.

Of course, you can test the server on your $99 intranet. Start the server on one computer, and then run
the browser from another, typing in the server's host name as it appears in the HOSTS file.

Using Telnet

The Telnet utility is included with Windows 95, Windows 98, and Windows NT. It's useful for testing server
programs such as EX34A. With Telnet, you're sending one character at a time, which means that the
server's CBlockingSocket::Receive function is receiving one character at a time. The Telnet window is
shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shown here.

The first time you run Telnet, choose Preferences from the Terminal menu and turn on Local Echo. Each
time thereafter, choose Remote System from the Connect menu and then type your server name and port
number 80. You can type a GET request (followed by a double carriage return), but you'd better type fast
because the EX34A server's Receive calls are set to time-out after 10 seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Client with CHttpBlockingSocket
If you had written your own Internet browser program a few years ago, you could have made a billion
dollars by now. But these days, you can download browsers for free, so it doesn't make sense to write one.
It does make sense, however, to add Internet access features to your Windows applications. Winsock is
not the best tool if you need HTTP or FTP access only, but it's a good learning tool.

The EX34A Winsock Client

The EX34A program implements a Winsock client in the file \vcpp32\ex34a\ClientSockThread.cpp on the
CD-ROM. The code is similar to the code for the simplified HTTP client. The client thread uses global
variables set by the Configuration property sheet, including server filename, server host name, server IP
address and port, and client IP address. The client IP address is necessary only if your computer supports
multiple IP addresses. When you run the client, it connects to the specified server and issues a GET
request for the file that you specified. The Winsock client logs error messages in the EX34A main window.

EX34A Support for Proxy Servers

If your computer is connected to a LAN at work, chances are it's not exposed directly to the Internet but
rather connected through a proxy server, sometimes called a firewall. There are two kinds of proxy
servers: Web and Winsock. Web proxy servers, sometimes called CERN proxies, support only the HTTP,
FTP, and gopher protocols. (The gopher protocol, which predates HTTP, allows character-mode terminals to
access Internet files.) A Winsock client program must be specially adapted to use a Web proxy server. A
Winsock proxy server is more flexible and thus can support protocols such as RealAudio. Instead of
modifying your client program source code, you link to a special Remote Winsock DLL that can
communicate with a Winsock proxy server.

The EX34A client code can communicate through a Web proxy if you check the Use Proxy check box in the
Client Configuration page. In that case, you must know and enter the name of your proxy server. From
that point on, the client code connects to the proxy server instead of to the real server. All GET and POST
requests must then specify the full Uniform Resource Locator (URL) for the file.

If you were connected directly to SlowSoft's server, for example, your GET request might look like this:

GET /customers/newproducts.html HTTP/1.0
But if you were connected through a Web proxy server, the GET would look like this:

GET http://slowsoft.com/customers/newproducts.html HTTP/1.0

Testing the EX34A Winsock Client

The easiest way to test the Winsock client is by using the built-in Winsock server. Just start the server as
before, and then choose Request (Winsock) from the Internet menu. You should see some HTML code in a
message box. You can also test the client against IIS, the server running in another EX34A process on the
same computer, the EX34A server running on another computer on the Net, and an Internet server.
Ignore the "Address" URL on the dialog bar for the time being; it's for one of the WinInet clients. You must
enter the server name and filename in the Client page of the Configuration dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WinInet
WinInet is a higher-level API than Winsock, but it works only for HTTP, FTP, and gopher client programs in
both asynchronous and synchronous modes. You can't use it to build servers. The WININET DLL is
independent of the WINSOCK32 DLL. Microsoft Internet Explorer 3.0 (IE3) uses WinInet, and so do ActiveX
controls.

WinInet's Advantages over Winsock

WinInet far surpasses Winsock in the support it gives to a professional-level client program. Following are
just some of the WinInet benefits:

Caching—Just like IE3, your WinInet client program caches HTML files and other Internet files. You
don't have to do a thing. The second time your client requests a particular file, it's loaded from a
local disk instead of from the Internet.

Security—WinInet supports basic authentication, Windows NT challenge/response authentication,
and the Secure Sockets Layer (SSL). Authentication is described in Chapter 35.

Web proxy access—You enter proxy server information through the Control Panel (click on the
Internet icon), and it's stored in the Registry. WinInet reads the Registry and uses the proxy server
when required.

Buffered I/O—WinInet's read function doesn't return until it can deliver the number of bytes you
asked for. (It returns immediately, of course, if the server closes the socket.) Also, you can read
individual text lines if you need to.

Easy API—Status callback functions are available for UI update and cancellation. One function,
CInternetSession::OpenURL, finds the server's IP address, opens a connection, and makes the file
ready for reading, all in one call. Some functions even copy Internet files directly to and from disk.

User friendly—WinInet parses and formats headers for you. If a server has moved a file to a new
location, it sends back the new URL in an HTTP Location header. WinInet seamlessly accesses the
new server for you. In addition, WinInet puts a file's modified date in the request header for you.

The MFC WinInet Classes

WinInet is a modern API available only for Win32. The MFC wrapping is quite good, which means we didn't
have to write our own WinInet class library. Yes, MFC WinInet supports blocking calls in multithreaded
programs, and by now you know that makes us happy.

The MFC classes closely mirror the underlying WinInet architecture, and they add exception processing.
These classes are summarized in the sections on the following pages.

CInternetSession

You need only one CInternetSession object for each thread that accesses the Internet. After you have your
CInternetSession object, you can establish HTTP, FTP, or gopher connections or you can open remote files
directly by calling the OpenURL member function. You can use the CInternetSession class directly, or you
can derive a class from it in order to support status callback functions.

The CInternetSession constructor calls the WinInet InternetOpen function, which returns an HINTERNET
session handle that is stored inside the CInternetSession object. This function initializes your application's
use of the Win- Inet library, and the session handle is used internally as a parameter for other WinInet
calls.

CHttpConnection

An object of class CHttpConnection represents a "permanent" HTTP connection to a particular host. You
know already that HTTP doesn't support permanent connections and that FTP doesn't either. (The
connections last only for the duration of a file transfer.) WinInet gives the appearance of a permanent
connection because it remembers the host name.

After you have your CInternetSession object, you call the GetHttpConnection member function, which
returns a pointer to a CHttpConnection object. (Don't forget to delete this object when you are finished
with it.)

The GetHttpConnection member function calls the WinInet InternetConnect function, which returns an
HINTERNET connection handle that is stored inside the CHttpConnection object and used for subsequent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HINTERNET connection handle that is stored inside the CHttpConnection object and used for subsequent
WinInet calls.

CFtpConnection, CGopherConnection

These classes are similar to CHttpConnection, but they use the FTP and gopher protocols. The
CFtpConnection member functions GetFile and PutFile allow you to transfer files directly to and from your
disk.

CInternetFile

With HTTP, FTP, or gopher, your client program reads and writes byte streams. The MFC WinInet classes
make these byte streams look like ordinary files. If you look at the class hierarchy, you'll see that
CInternetFile is derived from CStdioFile, which is derived from CFile. Therefore, CInternetFile and its
derived classes override familiar CFile functions such as Read and Write. For FTP files, you use
CInternetFile objects directly, but for HTTP and gopher files, you use objects of the derived classes
CHttpFile and CGopherFile. You don't construct a CInternetFile object directly, but you call
CFtpConnection::OpenFile to get a CInternetFile pointer.

If you have an ordinary CFile object, it has a 32-bit HANDLE data member that represents the underlying
disk file. A CInternetFile object uses the same m_hFile data member, but that data member holds a 32-bit
Internet file handle of type HINTERNET, which is not interchangeable with a HANDLE. The CInternetFile
overridden member functions use this handle to call WinInet functions such as InternetReadFile and
InternetWriteFile.

CHttpFile

This Internet file class has member functions that are unique to HTTP files, such as AddRequestHeaders,
SendRequest, and GetFileURL. You don't construct a CHttpFile object directly, but you call the
CHttpConnection::OpenRequest function, which calls the WinInet function HttpOpenRequest and returns a
CHttpFile pointer. You can specify a GET or POST request for this call.

Once you have your CHttpFile pointer, you call the CHttpFile::SendRequest member function, which
actually sends the request to the server. Then you call Read.

CFtpFileFind, CGopherFileFind

These classes let your client program explore FTP and gopher directories.

CInternetException

The MFC WinInet classes throw CInternetException objects that your program can process with try/catch
logic.

Internet Session Status Callbacks

WinInet and MFC provide callback notifications as a WinInet operation progresses, and these status
callbacks are available in both synchronous (blocking) and asynchronous modes. In synchronous mode
(which we're using exclusively here), your WinInet calls block even though you have status callbacks
enabled.

Callbacks are easy in C++. You simply derive a class and override selected virtual functions. The base class
for WinInet is CInternetSession. Now let's derive a class named CCallbackInternetSession:

class CCallbackInternetSession : public CInternetSession
{
public:
 CCallbackInternetSession(LPCTSTR pstrAgent = NULL, DWORD dwContext = 1,
 DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS,
 LPCTSTR pstrProxyName = NULL, LPCTSTR pstrProxyBypass = NULL,
 DWORD dwFlags = 0) { EnableStatusCallback() }
protected:
 virtual void OnStatusCallback(DWORD dwContext, DWORD dwInternalStatus,
 LPVOID lpvStatusInformation, DWORD dwStatusInformationLength);
};
The only coding that's necessary is a constructor and a single overridden function, OnStatusCallback. The
constructor calls CInternetSession::EnableStatusCallback to enable the status callback feature. Your
WinInet client program makes its various Internet blocking calls, and when the status changes,
OnStatusCallback is called. Your overridden function quickly updates the UI and returns, and then the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnStatusCallback is called. Your overridden function quickly updates the UI and returns, and then the
Internet operation continues. For HTTP, most of the callbacks originate in the CHttpFile::SendRequest
function.

What kind of events trigger callbacks? A list of the codes passed in the dwInternalStatus parameter is
shown here.

Code Passed Action Taken

INTERNET_STATUS_RESOLVING_NAME Looking up the IP address of the supplied name.
The name is now in lpvStatusInformation.

INTERNET_STATUS_NAME_RESOLVED Successfully found the IP address. The IP address
is now in lpvStatusInformation.

INTERNET_STATUS_CONNECTING_TO_SERVER Connecting to the socket.

INTERNET_STATUS_CONNECTED_TO_SERVER Successfully connected to the socket.

INTERNET_STATUS_SENDING_REQUEST Send the information request to the server.

INTERNET_STATUS_REQUEST_SENT Successfully sent the information request to the
server.

INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to respond to a request.

INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a response from the server.

INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to the server.

INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the connection to the server.

INTERNET_STATUS_HANDLE_CREATED Program can now close the handle.

INTERNET_STATUS_HANDLE_CLOSING Successfully terminated this handle value.

INTERNET_STATUS_REQUEST_COMPLETE Successfully completed the asynchronous
operation.

You can use your status callback function to interrupt a WinInet operation. You could, for example, test for
an event set by the main thread when the user cancels the operation.

A Simplified WinInet Client Program

And now for the WinInet equivalent of our Winsock client program that implements a blind GET request.
Because you're using WinInet in blocking mode, you must put the code in a worker thread. That thread is
started from a command handler in the main thread:

AfxBeginThread(ClientWinInetThreadProc, GetSafeHwnd());
Here's the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientWinInetThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 try {
 pConnection = session.GetHttpConnection(g_strServerName, 80);
 pFile1 = pConnection->OpenRequest(1, "/"); // blind GET
 pFile1->SendRequest();
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = `\0'; // necessary for message box
 char temp[10];
 if(pFile1->Read(temp, 10) != 0) {
 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxMessageBox("File overran buffer — not cached");
 }
 AfxMessageBox(buffer);
 }
 catch(CInternetException* e) {
 // Log the exception
 e->Delete();
 }
 if(pFile1) delete pFile1;
 if(pConnection) delete pConnection;
 delete [] buffer;
 return 0;
}
The second Read call needs some explanation. It has two purposes. If the first Read doesn't read the
whole file, that means that it was longer than MAXBUF -1. The second Read will get some bytes, and that
lets you detect the overflow problem. If the first Read reads the whole file, you still need the second Read
to force WinInet to cache the file on your hard disk. Remember that WinInet tries to read all the bytes you
ask it to—through the end of the file. Even so, you need to read 0 bytes after that.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Client with the MFC WinInet Classes
There are two ways to build a Web client with WinInet. The first method, using the CHttpConnection class,
is similar to the simplified WinInet client on the preceding page. The second method, using
CInternetSession::OpenURL, is even easier. We'll start with the CHttpConnection version.

The EX34A WinInet Client #1—Using CHttpConnection

The EX34A program implements a WinInet client in the file \vcpp32\ex34a\ClientInetThread.cpp on the
CD-ROM. Besides allowing the use of an IP address as well as a host name, the program uses a status
callback function. That function, CCallbackInternetSession::OnStatusCallback in the file
\vcpp32\ex34a\utility.cpp, puts a text string in a global variable g_pchStatus, using a critical section for
synchronization. The function then posts a user-defined message to the application's main window. The
message triggers an Update Command UI handler (called by CWinApp::OnIdle), which displays the text in
the second status bar text pane.

Testing the WinInet Client #1

To test the WinInet client #1, you can follow the same procedure you used to test the Winsock client. Note
the status bar messages as the connection is made. Note that the file appears more quickly the second
time you request it.

The EX34A WinInet Client #2—Using OpenURL

The EX34A program implements a different WinInet client in the file ClientUrlThread.cpp on the companion
CD-ROM. This client uses the "Address" URL (that you type to access the Internet site). Here's the actual
code:

CString g_strURL = "http:// ";

UINT ClientUrlThreadProc(LPVOID pParam)
{
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;

 CInternetSession session; // can't get status callbacks for OpenURL
 CStdioFile* pFile1 = NULL; // could call ReadString to get 1 line
 try {
 pFile1 = session.OpenURL(g_strURL, 0, INTERNET_FLAG_TRANSFER_BINARY
 |INTERNET_FLAG_KEEP_CONNECTION);
 // If OpenURL fails, we won't get past here
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = `\0'; // necessary for message box
 char temp[100];
 if(pFile1->Read(temp, 100) != 0) {
 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");
 }
 ::MessageBox(::GetTopWindow(::GetDesktopWindow()), buffer,
 "URL CLIENT", MB_OK);
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1) delete pFile1;
 delete [] buffer;
 return 0;
}
Note that OpenURL returns a pointer to a CStdioFile object. You can use that pointer to call Read as
shown, or you can call ReadString to get a single line. The file class does all the buffering. As in the
previous WinInet client, it's necessary to call Read a second time to cache the file. The OpenURL
INTERNET_FLAG_KEEP_CONNECTION parameter is necessary for Windows NT challenge/response

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INTERNET_FLAG_KEEP_CONNECTION parameter is necessary for Windows NT challenge/response
authentication, which is described in Chapter 35. If you added the flag INTERNET_FLAG_RELOAD, the
program would bypass the cache just as the browser does when you click the Refresh button.

Testing the WinInet Client #2

You can test the WinInet client #2 against any HTTP server. You run this client by typing in the URL
address, not by using the menu. You must include the protocol (http:// or ftp://) in the URL address. Type
http://localhost. You should see the same HTML code in a message box. No status messages appear here
because the status callback doesn't work with OpenURL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asynchronous Moniker Files
Just when you thought you knew all the ways to download a file from the Internet, you're going to learn
about another one. With asynchronous moniker files, you'll be doing all your programming in your
application's main thread without blocking the user interface. Sounds like magic, doesn't it? The magic is
inside the Windows URLMON DLL, which depends on WinInet and is used by Microsoft Internet Explorer.
The MFC CAsyncMonikerFile class makes the programming easy, but you should know a little theory first.

Monikers

A moniker is a "surrogate" COM object that holds the name (URL) of the "real" object, which could be an
embedded component but more often is just an Internet file (HTML, JPEG, GIF, and so on). Monikers
implement the IMoniker interface, which has two important member functions: BindToObject and
BindToStorage. The BindToObject function puts an object into the running state, and the BindToStorage
function provides an IStream or an IStorage pointer from which the object's data can be read. A moniker
has an associated IBindStatusCallback interface with member functions such as OnStartBinding and
OnDataAvailable, which are called during the process of reading data from a URL.

The callback functions are called in the thread that created the moniker. This means that the URLMON DLL
must set up an invisible window in the calling thread and send the calling thread messages from another
thread, which uses WinInet functions to read the URL. The window's message handlers call the callback
functions.

The MFC CAsyncMonikerFile Class

Fortunately, MFC can shield you from the COM interfaces described above. The CAsyncMonikerFile class is
derived from CFile, so it acts like a regular file. Instead of opening a disk file, the class's Open member
function gets an IMoniker pointer and encapsulates the IStream interface returned from a call to
BindToStorage. Furthermore, the class has virtual functions that are tied to the member functions of
IBindStatusCallback. Using this class is a breeze; you construct an object or a derived class and call the
Open member function, which returns immediately. Then you wait for calls to overridden virtual functions
such as OnProgress and OnDataAvailable, named, not coincidentally, after their IBindStatusCallback
equivalents.

Using the CAsyncMonikerFile Class in a Program

Suppose your application downloads data from a dozen URLs but has only one class derived from
CAsyncMonikerFile. The overridden callback functions must figure out where to put the data. That means
you must associate each derived class object with some UI element in your program. The steps listed
below illustrate one of many ways to do this. Suppose you want to list the text of an HTML file in an edit
control that's part of a form view. This is what you can do:

1. Use ClassWizard to derive a class from CAsyncMonikerFile.

2. Add a character pointer data member m_buffer. Invoke new for this pointer in the constructor;
invoke delete in the destructor.

3. Add a public data member m_edit of class CEdit.

4. Override the OnDataAvailable function thus:

void CMyMonikerFile::OnDataAvailable(DWORD dwSize, DWORD bscfFlag)
{
 try {
 UINT nBytesRead = Read(m_buffer, MAXBUF - 1);
 TRACE("nBytesRead = %d\n", nBytesRead);
 m_buffer[nBytesRead] = `\0'; // necessary for edit control
 // The following two lines add text to the edit control
 m_edit.SendMessage(EM_SETSEL, (WPARAM) 999999, 1000000);
 m_edit.SendMessage(EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) m_buffer);
 }
 catch(CFileException* pe) {
 TRACE("File exception %d\n, pe->m_cause");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("File exception %d\n, pe->m_cause");
 pe->Delete();
 }
}

5. Embed an object of your new moniker file class in your view class.

6. In you view's OnInitialUpdate function, attach the CEdit member to the edit control like this:

m_myEmbeddedMonikerFile.m_edit.SubClassDlgItem(ID_MYEDIT, this);
7. In your view class, open the moniker file like this:

m_myEmbeddedMonikerFile.Open("http://host/filename");
For a large file, OnDataAvailable will be called several times, each time adding text to the edit
control. If you override OnProgress or OnStopBinding in your derived moniker file class, your
program can be alerted when the transfer is finished. You can also check the value of bscfFlag in
OnDataAvailable to determine whether the transfer is completed. Note that everything here is in
your main thread and—most important—the moniker file object must exist for as long as the
transfer is in progress. That's why it's a data member of the view class.

Asynchronous Moniker Files vs. WinInet Programming

In the WinInet examples earlier in this chapter, you started a worker thread that made blocking calls and
sent a message to the main thread when it was finished. With asynchronous moniker files, the same thing
happens—the transfer takes place in another thread, which sends messages to the main thread. You just
don't see the other thread. There is one very important difference, however, between asynchronous
moniker files and WinInet programming: with blocking WinInet calls, you need a separate thread for each
transfer; with asynchronous moniker files, only one extra thread handles all transfers together. For
example, if you're writing a browser that must download 50 bitmaps simultaneously, using asynchronous
moniker files saves 49 threads, which makes the program much more efficient.

Of course, you have some extra control with WinInet, and it's easier to get information from the response
headers, such as total file length. Your choice of programming tools, then, depends on your application.
The more you know about your options, the better your choice will be.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 35
Programming the Microsoft Internet Information Server
In Chapter 34, you used a "homemade" Web based on the Winsock APIs. In this chapter, you'll learn how
to use and extend Microsoft Internet Information Server (IIS) 4.0, which is bundled with Microsoft
Windows NT Server 4.0. IIS is actually three separate servers—one for HTTP (for the World Wide Web),
one for FTP, and one for gopher. This chapter tells you how to write HTTP server extensions using the
Microsoft IIS application programming interface (ISAPI) that is part of Microsoft ActiveX technology. You'll
examine two kinds of extensions: an ISAPI server extension and an ISAPI filter, both of which are DLLs. An
ISAPI server extension can perform Internet business transactions such as order entry. An ISAPI filter
intercepts data traveling to and from the server and thus can perform specialized logging and other tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IIS Alternatives
The exercises in this chapter assume that you have Windows NT Server 4.0 and IIS. If you are running
Windows NT Workstation, you can use Peer Web Services, which supports fewer connections and doesn't
allow virtual servers. If you are running Microsoft Windows 95 or Windows 98, you can use Personal Web
Server, which is packaged with Microsoft FrontPage. Internet Information Server, Peer Web Services, and
Personal Web Server can all use ISAPI extension DLLs. See your server's documentation for operating
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft IIS
Microsoft IIS is a high-performance Internet/intranet server that takes advantage of Windows NT features
such as I/O completion ports, the Win32 function TransmitFile, file-handle caching, and CPU scaling for
threads.

Installing and Controlling IIS

When you install Windows NT Server 4.0, you are given the option of installing IIS. If you selected IIS at
setup, the server will be running whenever Windows NT is running. IIS is a special kind of Win32 program
called a service (actually three services—WWW, HTTP, and gopher—in one program called inetinfo.exe),
which won't appear in the taskbar. You can control IIS from the Services icon in the Control Panel, but
you'll probably want to use the Internet Service Manager program instead.

Running Internet Service Manager

You can run Internet Service Manager from the Microsoft Internet Server menu that's accessible on the
Start menu.

You can also run an HTML-based version of Internet Service Manager remotely from a
browser. That version allows you to change service parameters, but it won't let you
turn services on and off.

Figure 35-1 shows the Microsoft Internet Service Manager screen with the World Wide Web (WWW)
running and FTP services stopped.

You can select a service by clicking on its icon at the left. The triangle and square buttons on the toolbar of
the screen allow you to turn the selected service on or off.

Figure 35-1. The Microsoft Internet Service Manager screen.

IIS Security

After you double-click on the WWW service icon of the Microsoft Internet Service Manager screen, you'll
see a property sheet. The Service page lets you configure IIS security. When a client browser requests a
file, the server impersonates a local user for the duration of the request and that user name determines
which files the client can access. Which local user does the server impersonate? Most often, it's the one
you see in the Username field, shown in Figure 35-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-2. The WWW Service Properties screen.

Most Web page visitors don't supply a user name and password, so they are considered anonymous users.
Those users have the same rights they would have if they had logged on to your server locally as
IUSR_MYMACHINENAME. That means that IUSR_MYMACHINENAME must appear in the list of users that is
displayed when you run User Manager or User Manager For Domains (from the Administrative Tools
menu), and the passwords must match. The IIS Setup program normally defines this anonymous user for
you. You can define your own WWW anonymous user name, but you must be sure that the entry on the
Service page matches the entry in the computer's (or Windows NT domain's) user list.

Note also the Password Authentication options. For the time being, stick to the Allow Anonymous option
only, which means that all Web users are logged on as IUSR_MYMACHINENAME. Later in this chapter, we'll
explain Windows NT Challenge/Response.

IIS Directories

Remember SlowSoft's Web site from Chapter 34? If you requested the URL
http://slowsoft.com/newproducts.html, the newproducts.html file would be displayed from the
slowsoft.com home directory. Each server needs a home directory, even if that directory contains only
subdirectories. The home directory does not need to be the server computer's root directory, however. As
shown in Figure 35-3, the WWW home directory is really \WebHome, so clients read the disk file
\WebHome\newproducts.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-3. The \WebHome WWW home directory screen.

Your server could get by with a home directory only, but the IIS virtual directory feature might be useful.
Suppose SlowSoft wanted to allow Web access to the directory \BF on the D drive. The screen above
shows a virtual /BugsFixed directory that maps to D:\BF. Clients would access files with a URL similar to
this: http://slowsoft.com/BugsFixed/file1.html.

If your computer was configured for multiple IP addresses (see the Control Panel
Network icon), IIS would allow you to define virtual Web servers. Each virtual server
would have its own home directory (and virtual directories) attached to a specified IP
address, making it appear as though you had several server computers. Unfortunately,
the IIS Web server listens on all the computer's IP addresses, so you can't run IIS
simultaneously with the EX34A server with both listening on port 80.

As described in Chapter 34, browsers can issue a blind request. As Figure 35-3 shows, Internet Service
Manager lets you specify the file that a blind request selects, usually Default.htm. If you select the
Directory Browsing Allowed option of the Directories page on the service property screen, browser clients
can see a hypertext list of files in the server's directory instead.

IIS Logging

IIS is capable of making log entries for all connections. You control logging from the Internet Service
Manager's Logging property page. You can specify text log files, or you can specify logging to an
SQL/ODBC database. Log entries consist of date, time, client IP address, file requested, query string, and
so forth.

Testing IIS

It's easy to test IIS with a browser or with any of the EX35A clients. Just make sure that IIS is running and
that the EX35A server is not running. The default IIS home directory is
\Winnt\System32\inetsrv\wwwroot, and some HTML files are installed there. If you're running a single
machine, you can use the localhost host name. For a network, use a name from the Hosts file. If you can't
access the server from a remote machine, run ping to make sure the network is configured correctly. Don't
try to build and run ISAPI DLLs until you have successfully tested IIS on your computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISAPI Server Extensions
An ISAPI server extension is a program (implemented as a DLL loaded by IIS) that runs in response to a
GET or POST request from a client program (browser). The browser can pass parameters to the program,
which are often values that the browser user types into edit controls, selects from list boxes, and so forth.
The ISAPI server extension typically sends back HTML code based on those parameter values. You'll better
understand this process when you see an example.

Common Gateway Interface and ISAPI

Internet server programs were first developed for UNIX computers, so the standards were in place long
before Microsoft introduced IIS. The Common Gateway Interface (CGI) standard, actually part of HTTP,
evolved as a way for browser programs to interact with scripts or separate executable programs running
on the server. Without altering the HTTP/CGI specifications, Microsoft designed IIS to allow any browser to
load and run a server DLL. DLLs are part of the IIS process and thus are faster than scripts that might
need to load separate executable programs. Because of your experience, you'll probably find it easier to
write an ISAPI DLL in C++ than to write a script in PERL, the standard Web scripting language for servers.

CGI shifts the programming burden to the server. Using CGI parameters, the browser sends small
amounts of information to the server computer, and the server can do absolutely anything with this
information, including access a database, generate images, and control peripheral devices. The server
sends a file (HTML or otherwise) back to the browser. The file can be read from the server's disk, or it can
be generated by the program. No ActiveX controls or Java applets are necessary, and the browser can be
running on any type of computer.

A Simple ISAPI Server Extension GET Request

Suppose an HTML file contains the following tag:

Idaho Weather Map<p>
When the user clicks on Idaho Weather Map, the browser sends the server a CGI GET request like this:

GET scripts/maps.dll?State=Idaho HTTP/1.0
IIS then loads maps.dll from its scripts (virtual) directory, calls a default function (often named Default),
and passes it the State parameter Idaho. The DLL then goes to work generating a JPG file containing the
up-to-the-minute satellite weather map for Idaho and sends it to the client.

If maps.dll had more than one function, the tag could specify the function name like this:

<a href="scripts/maps.dll?GetMap?State=Idah
o&Res=5">Idaho Weather Map<p>
In this case, the function GetMap is called with two parameters, State and Res.

You'll soon learn how to write an ISAPI server similar to maps.dll, but first you'll need to understand HTML
forms, because you don't often see CGI GET requests by themselves.

HTML Forms—GET vs. POST

In the HTML code for the simple CGI GET request above, the state name was hard-coded in the tag. Why
not let the user select the state from a drop-down list? For that, you need a form, and here's a simple one
that can do the job.

<html>
<head><title>Weathermap HTML Form</title>
</head>
<body>
<h1><center>Welcome to the Satellite Weathermap Service</center></h1>
<form action="scripts/maps.dll?GetMap" method=GET>
 <p>Select your state:
 <select name="State">
 <option> Alabama
 <option> Alaska
 <option> Idaho
 <option> Washington

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <option> Washington
 </select>
<p><input type="submit"><input type="reset">
</form>
</body></html>
If you looked at this HTML file with a browser, you would see the form shown in Figure 35-4.

Figure 35-4. The Weathermap HTML Form window.

The select tag provides the state name from a list of four states, and the all-important "submit" input tag
displays the pushbutton that sends the form data to the server in the form of a CGI GET request that looks
like this:

GET scripts/maps.dll?GetMap?State=Idaho HTTP/1.0
(various request headers)
(blank line)

Unfortunately, some early versions of the Netscape browser omit the function name in form-originated GET
requests, giving you two choices: provide only a default function in your ISAPI DLL, and use the POST
method inside a form instead of the GET method.

If you want to use the POST option, change one HTML line in the form above to the following:

<form action="scripts/maps.dll?GetMap" method=POST>
Now here's what the browser sends to the server:

POST scripts/maps.dll?GetMap
(various request headers)
(blank line)

State=Idaho
Note that the parameter value is in the last line instead of in the request line.

ISAPI DLLs are usually stored in a separate virtual directory on the server because
these DLLs must have execute permission but do not need read permission. Clicking
the Edit Properties button shown in Figure 35-3 will allow you to access these
permissions from the Internet Service Manager, or you can double-click on a directory
to change its properties.

Writing an ISAPI Server Extension DLL

Visual C++ gives you a quick start for writing ISAPI server extensions. Just select ISAPI Extension Wizard
from the Projects list. After you click the OK button, your first screen looks like Figure 35-5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from the Projects list. After you click the OK button, your first screen looks like Figure 35-5.

Figure 35-5. The Step 1 page of the ISAPI Extension Wizard.

Check the Generate A Server Extension Object box, and you've got a do-nothing DLL project with a class
derived from the MFC CHttpServer class and a Default member function. Now it's time for a little
programming.

You must write your ISAPI functions as members of the derived CHttpServer class, and you must write
parse map macros to link them to IIS. There's no "parse map wizard," so you have to do some coding. It's
okay to use the Default function, but you need a GetMap function too. First insert these lines into the
wizard-generated parse map:

ON_PARSE_COMMAND(GetMap, CWeatherExtension, ITS_PSTR)
ON_PARSE_COMMAND_PARAMS("State")
Then write the GetMap function:

void CWeatherExtension::GetMap(CHttpServerContext* pCtxt, LPCTSTR pstrState)
{
 StartContent(pCtxt);
 WriteTitle(pCtxt);
 *pCtxt << "Visualize a weather map for the state of ";
 *pCtxt << pstrState;
 EndContent(pCtxt);
}
This function doesn't actually generate the weather map (what did you expect?), but it does display the
selected state name in a custom HTML file. The CHttpServer::StartContent and CHttpServer::EndContent
functions write the HTML boilerplate, and CHttpServer::WriteTitle calls the virtual CHttpServer::GetTitle
function, which you need to override:

LPCTSTR CWeatherExtension::GetTitle() const
{
 return "Your custom weather map"; // for browser's title window
}
The MFC CHttpServerContext class has an overloaded << operator, which you use to put text in the HTML
file you're building. Behind the scenes, an attached object of the MFC class CHtmlStream represents the
output to the server's socket.

The MFC ISAPI Server Extension Classes

Now is a good time to review the three MFC classes that are used to create an MFC ISAPI server extension.
Remember that these classes are for ISAPI server extensions only. Don't even think of using them in
ordinary Winsock or WinInet applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ordinary Winsock or WinInet applications.

CHttpServer

With the help of the ISAPI Extension Wizard, you derive a class from CHttpServer for each ISAPI server
extension DLL that you create. You need one member function for each extension function (including the
default function), and you need an overridden GetTitle function. The framework calls your extension
functions in response to client requests, using the connections established in the parse map. The ISAPI
Extension Wizard provides an overridden GetExtensionVersion function, which you seldom edit unless you
need initialization code to be executed when the DLL is loaded.

One of the CHttpServer member functions that you're likely to call is AddHeader, which adds special
response headers, such as Set-Cookie, before the response is sent to the server. (More on cookies later.)

CHttpServerContext

There's one CHttpServer object per DLL, but there is one CHttpServerContext object for each server
transaction request. Your extension functions each provide a pointer to one of these objects. You don't
derive from CHttpServerContext, so you can't easily have variables for individual transactions. Because
different IIS threads can manage transactions, you have to be careful to perform synchronization for any
data members of your CHttpServer class or global variables.

You've already seen the use of the StartContent, EndContent, and WriteTitle functions of the CHttpServer
class plus the overloaded >> operator. You might also need to call the
CHttpServerContext::GetServerVariable function to read information sent by the client in the request
headers.

CHtmlStream

Most of the time, you don't use the CHtmlStream class directly. The CHttpServerContext class has a
CHtmlStream data member, m_pStream, that's hooked up to the >> operator and serves as the output for
HTML data. You could access the CHtmlStream object and call its Write member function if you needed to
send binary data to the client. Because objects of the CHtmlStream class accumulate bytes in memory
before sending them to the client, you need an alternative approach if your DLL relays large files directly
from disk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Practical ISAPI Server Extension—ex35a.dll
The weather map server isn't interesting enough to make into a real project. You'll probably find the
EX35A example more to your taste. It's a real Internet commerce application—a pizza-ordering program.
Imagine a computer-controlled pizza oven and a robot arm that selects frozen pizzas. (Microsoft Internet
Explorer 17.0 is supposed to be able to deliver the hot pizzas directly from your clients' monitors, but in
the meantime, you'll have to hire some delivery drivers.)

The First Step—Getting the Order

Junior sales trainees are constantly admonished to "get the order." That's certainly necessary in any form
of commerce, including the Internet. When the hungry customer hyperlinks to your site (by clicking on a
picture of a pizza, of course), he or she simply downloads an HTML file that looks like this:

<html>
<head><title>Inside Visual C++ HTML Form 1</title>
</head>
<body>
<h1><center>Welcome to CyberPizza</center></h1>
<p> Enter your order.
<form action="scripts/ex35a.dll?ProcessPizzaForm" method=POST>
 <p> Your Name: <input type="text" name="name" value="">
 <p> Your Address: <input type="text" name="address" value="">
 <p> Number of Pies: <input type="text" name="quantity" value=1>
 <p>Pizza Size:
 <menu>
 <input type="radio" name="size" value=8>8-inch
 <input type="radio" name="size" value=10>10-inch
 <input type="radio" name="size" value=12 checked>12-inch
 <input type="radio" name="size" value=14>14-inch
 </menu>
 <p> Toppings:
 <p>
 <input type="checkbox" name="top1" value="Pepperoni" checked>
 Pepperoni
 <input type="checkbox" name="top2" value="Onions"> Onions
 <input type="checkbox" name="top3" value="Mushrooms"> Mushrooms
 <input type="checkbox" name="top4" value="Sausage"> Sausage
 <p>
 (you can select multiple toppings)
 <p><input type="submit" value="Submit Order Now"><input type="reset">
</form>
</body></html>
Figure 35-6 shows how the order form appears in the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-6. The CyberPizza order form.

So far, no ISAPI DLL is involved. When the customer clicks the Submit Order Now button, the action
begins. Here's what the server sees:

POST scripts/ex35a.dll?ProcessPizzaForm HTTP/1.0
(request headers)
(blank line)
name=Walter+Sullivan&address=Redmond%2C+WA&quantity=2&size=12&top1=Pepperoni
 &top3=Mushrooms
Looks like Walter Sullivan has ordered two 12-inch pepperoni and mushroom pizzas. The browser inserts a
+ sign in place of a space, the %2C is a comma, and the & is the parameter separator. Now let's look at
the parse map entries in ex35a.cpp:

ON_PARSE_COMMAND(ProcessPizzaForm, CEx35aExtension,
 ITS_PSTR ITS_PSTR ITS_I4 ITS_PSTR ITS_PSTR ITS_PSTR ITS_PSTR ITS_PSTR)
ON_PARSE_COMMAND_PARAMS("name address quantity size top1=~ top2=~ top3=~ top4=~")

Optional Parameters

When you write your parse map statements, you must understand the browser's rules
for sending parameter values from a form. In the EX35A pizza form, the browser
always sends parameters for text fields, even if the user enters no data. If the user left
the Name field blank, for example, the browser would send name=&. For check box
fields, however, it's a different story. The browser sends the check box parameter
value only if the user checks the box. The parameters associated with check boxes are
thus defined as optional parameters.

If your parse macro for parameters looked like this

ON_PARSE_COMMAND_PARAMS("name address quantity size top1 top2 top3 top4")
there would be trouble if the customer didn't check all the toppings. The HTTP request
would simply fail, and the customer would have to search for another pizza site. The
=~ symbols in the ex35a.cpp code designate the last four parameters as optional, with
default values ~. If the Toppings option is checked, the form transmits the value;
otherwise, it transmits a ~ character, which the DLL can test for. Optional parameters
must be listed last.

The DLL's ProcessPizzaForm function reads the parameter values and produces an HTML confirmation
form, which it sends to the customer. Here is part of the function's code:

 *pCtxt << "<form action=\"ex35a.dll?ConfirmOrder\" method=POST>";
 *pCtxt << "<p><input type=\"hidden\" name=\"name\" value=\"";
 *pCtxt << pstrName << "\">"; // xref to original order
 *pCtxt << "<p><input type=\"submit\" value=\"Confirm and charge my credit card\">";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 *pCtxt << "<p><input type=\"submit\" value=\"Confirm and charge my credit card\">";
 *pCtxt << "</form>";
 // Store this order in a disk file or database, referenced by name
 }
 else {
 *pCtxt << "You forgot to enter name or address. Back up and try again. ";
 }
 EndContent(pCtxt);
The resulting browser screen is shown in Figure 35-7.

Figure 35-7. The pizza confirmation browser screen.

As you can see, we took a shortcut computing the price. To accept, the customer clicks the submit button
named Confirm And Charge My Credit Card.

The Second Step—Processing the Confirmation

When the user clicks the Confirm And Charge My Credit Card button, the browser sends a second POST
request to the server, specifying that the CEx35aExtension::ConfirmOrder function be called. But now you
have to solve a big problem. Each HTTP connection (request/response) is independent of all others. How
are you going to link the confirmation request with the original order? Although there are different ways to
do this, the most common approach is to send some text back with the confirmation in a hidden input tag.
When the confirmation parameter values come back, the server uses the hidden text to match the
confirmation to the original order, which it has stored somewhere on its hard disk.

In the EX35A example, the customer's name is used in the hidden field, although it might be safer to use
some combination of the name, date, and time. Here's the HTML code that
CEx35aExtension::ProcessPizzaForm sends to the customer as part of the confirmation form:

<input type="hidden" name="name" value="Walter Sullivan">
Here's the code for the CEx35aExtension::ConfirmOrder function:

void CEx35aExtension::ConfirmOrder(CHttpServerContext* pCtxt,
 LPCTSTR pstrName)
{
 StartContent(pCtxt);
 WriteTitle(pCtxt);
 *pCtxt << "<p>Our courteous delivery person will arrive within 30 minutes.
 *pCtxt << "<p>Thank you, " << pstrName << ", for using CyberPizza. ";
 // Now retrieve the order from disk by name, and then make the pizza.
 // Be prepared to delete the order after a while if the customer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Be prepared to delete the order after a while if the customer
 // doesn't confirm.
 m_cs.Lock(); // gotta be threadsafe
 long int nTotal = ++m_nTotalPizzaOrders;
 m_cs.Unlock();
 *pCtxt << "<p>Total pizza orders = " << nTotal;
 EndContent(pCtxt);
}
The customer's name comes back in the pstrName parameter, and that's what you use to retrieve the
original order from disk. The function also keeps track of the total number of orders, using a critical section
(m_cs) to ensure thread synchronization.

Building and Testing ex35a.dll

If you have copied the code from the companion CD-ROM, your project is located in \vcpp32\ex35a.
Building the project adds a DLL to the Debug subdirectory. You must copy this DLL to a directory that the
server can find and copy PizzaForm.html also. You can use the scripts and wwwroot subdirec- tories
already under \Winnt\System32\inetsrv, or you can set up new virtual directories.

If you make changes to the EX35A DLL in the Visual C++ project, be sure to use
Internet Service Manager (Figure 35-1) to turn off the WWW service (because the old
DLL stays loaded), copy the new DLL to the scripts directory, and then turn the WWW
service on again. The revised DLL will be loaded as soon as the first client requests it.

If everything has been installed correctly, you should be able to load PizzaForm.html from the browser and
then order some pizza. Enjoy!

Debugging the EX35A DLL

The fact that IIS is a Windows NT service complicates debugging ISAPI DLLs. Services normally run as part
of the operating system, controlled by the service manager database. They have their own window station,
and they run on their own invisible desktop. This involves some of the murkier parts of Windows NT, and
not much published information is available.

However, you can use these steps to debug your EX35A DLL (or any ISAPI DLL):

1. Use the Internet Service Manager to stop all IIS services.

2. Choose Settings from the EX35A project Build menu, and in the Project Settings dialog, type in the
data as shown.

3. Start User Manager or User Manager For Domains (Administrative Tools menu). Choose User Rights
from the Policies menu, check Show Advanced User Rights, select the right Act As Part Of The
Operating System, and add your user group as shown on the facing page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Operating System, and add your user group as shown on the facing page.

4. Repeat step 3 to set the right for Generate Security Audits.

5. Log back on to Windows NT to activate the new permission. (Don't forget this step.)

6. Make sure that the current EX35A DLL file has been copied into the scripts directory.

7. Start debugging. You can set breakpoints, step through code, and see the output of TRACE
messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISAPI Database Access
Your ISAPI server extension could use ODBC to access an SQL database. Before you write pages of ODBC
code, however, check out the Internet Database Connector described in the IIS documentation. The
Internet Database Connector is a ready-to-run DLL, Httpodbc.dll, that collects SQL query parameters and
formats the output. You control the process by writing an IDC file that describes the data source and an
HTX file that is a template for the resulting HTML file. No C++ programming is necessary.

The Internet Database Connector is for queries only. If you want to update a database, you must write
your own ISAPI server extension with ODBC calls. Make sure your ODBC driver is multithreaded, as is the
latest SQL server driver.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using HTTP Cookies to Link Transactions
Now that you've wolfed down the pizza, it's time for some dessert. However, the cookies that we'll be
digesting in this section are not made with chocolate chips. Cookies are used to store information on our
customers' hard disks. In the EX35A example, the server stores the customer name in a hidden field of the
confirmation form. That works fine for linking the confirmation to the order, but it doesn't help you track
how many pizzas Walter ordered this year. If you notice that Walter consistently orders pepperoni pizzas,
you might want to send him some e-mail when you have a surplus of pepperoni.

How Cookies Work

With cookies, you assign Walter a customer ID number with his first order and make him keep track of that
number on his computer. The server assigns the number by sending a response header such as this one:

Set-Cookie: customer_id=12345; path=/; expires=Monday,
 02-Sep-99 00:00:00 GMT
The string customer_id is the arbitrary cookie name you have assigned, the / value for path means that
the browser sends the cookie value for any request to your site (named CyberPizza.com), and the
expiration date is necessary for the browser to store the cookie value.

When the browser sees the Set-Cookie response header, it creates (or replaces) an entry in its cookies.txt
file as follows:

customer_id
12345
cyberpizza.com/
0
2096697344
0
2093550622
35
*
Thereafter, when the browser requests anything from CyberPizza.com, the browser sends a request
header like this:

Cookie: customer_id=12345

How an ISAPI Server Extension Processes Cookies

Your ISAPI server extension function makes a call like this one to store the cookie at the browser:

AddHeader(pCtxt, "Set-Cookie: session_id=12345; path=/;"
 " expires=Monday, " 02-Sep-99 00:00:00 GMT\r\n");
To retrieve the cookie, another function uses code like this:

char strCookies[200];
DWORD dwLength = 200;
pCtxt->GetServerVariable("HTTP_COOKIE", strCookies, &dwLength);
The strCookies variable should now contain the text customer_id=12345.

Problems with Cookies

There was an uproar some time ago when Internet users first discovered that companies were storing data
on the users' PCs. New browser versions now ask permission before storing a cookie from a Web site.
Customers could thus refuse to accept your cookie, they could erase their cookies.txt file, or this file could
become full. If you decide to use cookies at your Web site, you'll just have to deal with those possibilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WWW Authentication
Up to now, your IIS has been set to allow anonymous logons, which means that anyone in the world can
access your server without supplying a user name or password. All users are logged on as
IUSR_MYMACHINENAME and can access any files for which that user name has permissions.

As stated in Chapter 34, you should be using NTFS on your server for maximum
security.

Basic Authentication

The simplest way to limit server access is to enable basic authentication. Then, if a client makes an
anonymous request, the server sends back the response

HTTP/1.0 401 Unauthorized
together with a response header like this:

WWW-Authenticate: Basic realm="xxxx"
The client prompts the user for a user name and password, and then it resends the request with a request
header something like this:

Authorization: Basic 2rc234ldfd8kdr
The string that follows Basic is a pseudoencrypted version of the user name and password, which the
server decodes and uses to impersonate the client.

The trouble with basic authentication is that intruders can pick up the user name and password and use it
to gain access to your server. IIS and most browsers support basic authentication, but it's not very
effective.

Windows NT Challenge/Response Authentication

Windows NT challenge/response authentication is often used for intranets running on Microsoft networks,
but you can use it on the Internet as well. IIS supports it (see Figure 35-2), but not all browsers do.

If the server has challenge/response activated, a client making an ordinary request gets this response
header:

WWW-Authenticate: NTLM
Authorization: NTLM T1RMTVNTUAABAAAAA5IAA ...
The string after NTLM is the well-encoded user name—the password is never sent over the network. The
server issues a challenge, with a response header like this:

WWW-Authenticate: NTLM RPTUFJTgAAAAAA ...
The client, which knows the password, does some math on the challenge code and the password and then
sends back a response in a request header like this:

Authorization: NTLM AgACAAgAAAAAAAAAA ...
The server, which has looked up the client's password from the user name, runs the same math on the
password and challenge code. It then compares the client's response code against its own result. If the
client's and the server's results match, the server honors the client's request by impersonating the client's
user name and sending the requested data.

When the client resends the request, the challenge/response dialog is performed over a single-socket
connection with keep-alive capability as specified in the Connection request header.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection with keep-alive capability as specified in the Connection request header.

WinInet fully supports Windows NT challenge/response authentication. Thus, Internet Explorer 4.0 and the
EX34A WinInet clients support it. If the client computer is logged on to a Windows NT domain, the user
name and password are passed through. If the client is on the Internet, WinInet prompts for the user
name and password. If you're writing WinInet code, you must use the
INTERNET_FLAG_KEEP_CONNECTION flag in all CHttpConnection::OpenRequest and
CInternetSession::OpenURL calls, as EX34A illustrates.

The Secure Sockets Layer

Windows NT challenge/response authentication controls only who logs on to a server. Anyone snooping on
the Net can read the contents of the TCP/IP segments. The secure sockets layer (SSL) goes one step
further and encodes the actual requests and responses (with a performance hit, of course). Both IIS and
WinInet support SSL. (The secure sockets layer is described in the IIS documentation.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISAPI Filters
An ISAPI server extension DLL is loaded the first time a client references it in a GET or POST request. An
ISAPI filter DLL is loaded (based on a Registry entry) when the WWW service is started. The filter is then in
the loop for all HTTP requests, so you can read and/or change any data that enters or leaves the server.

Writing an ISAPI Filter DLL

The ISAPI Extension Wizard makes writing filters as easy as writing server extensions. Choose Generate A
Filter Object, and Step 2 looks like this.

The list of options under Which Notifications Will Your Filter Process? refers to seven places where your
filter can get control during the processing of an HTTP request. You check the boxes, and the wizard
generates the code.

The MFC ISAPI Filter Classes

There are two MFC classes for ISAPI filters, CHttpFilter and CHttpFilterContext.

CHttpFilter

With the help of the ISAPI Extension Wizard, you derive a class from CHttpFilter for each ISAPI filter you
create. There's just one object of this class. The class has virtual functions for each of seven notifications.
The list of filters in the order in which IIS calls them is below.

virtual DWORD OnReadRawData(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_RAW_DATA pRawData);
virtual DWORD OnPreprocHeaders(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_PREPROC_HEADERS pHeaderInfo);
virtual DWORD OnUrlMap(CHttpFilterContext* pCtxt,

 PHTTP_FILTER_URL_MAP pMapInfo);
virtual DWORD OnAuthentication(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_AUTHENT pAuthent);
virtual DWORD OnSendRawData(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_RAW_DATA pRawData);
virtual DWORD OnLog(CHttpFilterContext* pfc, PHTTP_FILTER_LOG pLog);
virtual DWORD OnEndOfNetSession(CHttpFilterContext* pCtxt);
If you override a function, you get control. It would be inefficient, however, if IIS made virtual function
calls for every notification for each transaction. Another virtual function, GetFilterVersion, is called once

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

calls for every notification for each transaction. Another virtual function, GetFilterVersion, is called once
when the filter is loaded. The ISAPI Extension Wizard always overrides this function for you, and it sets
flags in the function's pVer parameter, depending on which notifications you want. Here's a simplified
sample with all the flags set:

BOOL CMyFilter::GetFilterVersion(PHTTP_FILTER_VERSION pVer)
{
 CHttpFilter::GetFilterVersion(pVer);
 pVer->dwFlags |= SF_NOTIFY_ORDER_LOW | SF_NOTIFY_NONSECURE_PORT |
 SF_NOTIFY_LOG | SF_NOTIFY_AUTHENTICATION |
 SF_NOTIFY_PREPROC_HEADERS | SF_NOTIFY_READ_RAW_DATA |
 SF_NOTIFY_SEND_RAW_DATA | SF_NOTIFY_URL_MAP |
 SF_NOTIFY_END_OF_NET_SESSION;
 return TRUE;
}
If you had specified URL mapping requests only, the wizard would have set only the SF_NOTIFY_URL_MAP
flag and it would have overridden only OnUrlMap. IIS would not call the other virtual functions, even if they
were overridden in your derived class.

CHttpFilterContext

An object of this second MFC class exists for each server transaction, and each of the notification functions
gives you a pointer to that object. The CHttpFilterContext member functions you might call are
GetServerVariable, AddResponseHeaders, and WriteClient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Sample ISAPI Filter—ex35b.dll, ex35c.exe
It was hard to come up with a cute application for ISAPI filters. The one we thought up, ex35b.dll, is a
useful visual logging utility. IIS, of course, logs all transactions to a file (or database), but you must stop
the server before you can see the log file entries. With this example, you have a real-time transaction
viewer that you can customize.

Choosing the Notification

Start by looking at the list of CHttpFilter virtual member functions on page 1050. Observe the calling
sequence and the parameters. For the EX35B logging application, we chose OnReadRawData because it
allowed full access to the incoming request and header text (from pRawData) and to the source and
destination IP addresses (from pCtxt->GetServerVariable).

Sending Transaction Data to the Display Program

The ISAPI filter DLL can't display the transactions directly because it runs (as part of the IIS service
process) on an invisible desktop. You need a separate program that displays text in a window, and you
need a way to send data from the DLL to the display program. There are various ways to send the data
across the process boundary. A conversation with Jeff Richter, the Windows guru who wrote Advanced
Windows (Microsoft Press, 1997), led to the data being put in shared memory. Then a user-defined
message, WM_SENDTEXT, is posted to the display program. These messages can queue up, so IIS can
keep going independently of the display program.

We declared two handle data members in CEx35bFilter::m_hProcessDest and CEx35bFilter::m_hWndDest.
We added code at the end of the GetFilterVersion function to set these data members to the display
program's process ID and main window handle. The code finds the display program's main window by its
title, ex35b, and then it gets the display program's process ID.

m_hProcessDest = NULL;
if((m_hWndDest = ::FindWindow(NULL, "ex35b")) != NULL) {
 DWORD dwProcessId;
 GetWindowThreadProcessId(m_hWndDest, &dwProcessId);
 m_hProcessDest = OpenProcess(PROCESS_DUP_HANDLE, FALSE, dwProcessId);
 SendTextToWindow("EX35B filter started\r\n");
}
Below is a helper function, SendTextToWindow, which sends the WM_SENDTEXT message to the display
program.

void CEx35bFilter::SendTextToWindow(char* pchData)
{
 if(m_hProcessDest != NULL) {
 int nSize = strlen(pchData) + 1;

 HANDLE hMMFReceiver;
 HANDLE hMMF = ::CreateFileMapping((HANDLE) 0xFFFFFFFF, NULL,
 PAGE_READWRITE, 0, nSize, NULL);
 ASSERT(hMMF != NULL);
 LPVOID lpvFile = ::MapViewOfFile(hMMF, FILE_MAP_WRITE, 0, 0, nSize);
 ASSERT(lpvFile != NULL);
 memcpy((char*) lpvFile, pchData, nSize);
 ::DuplicateHandle(::GetCurrentProcess(), hMMF, m_hProcessDest,
 &hMMFReceiver, 0, FALSE, DUPLICATE_SAME_ACCESS |
 DUPLICATE_CLOSE_SOURCE);
 ::PostMessage(m_hWndDest, WM_SENDTEXT, (WPARAM) 0,
 (LPARAM) hMMFReceiver);
 ::UnmapViewOfFile(lpvFile);
 }
}
The DuplicateHandle function makes a copy of EX35B's map handle, which it sends to the EX35C program
in a message parameter. The EX35C process ID, determined in GetFilterVersion, is necessary for the
DuplicateHandle call. Here is the filter's OnReadRawData function, which calls SendTextToWindow:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DWORD CEx35bFilter::OnReadRawData(CHttpFilterContext* pCtxt,
 PHTTP_FILTER_RAW_DATA pRawData)
{
 TRACE ("CEx35bFilter::OnReadRawData\n");
 // sends time/date, from IP, to IP, request data to a window
 char pchVar[50] = "";
 char pchOut[2000];
 DWORD dwSize = 50;
 BOOL bRet;
 CString strGmt = CTime::GetCurrentTime().FormatGmt("%m/%d/%y %H:%M:%SGMT");
 strcpy(pchOut, strGmt);
 bRet = pCtxt->GetServerVariable("REMOTE_ADDR", pchVar, &dwSize);
 if(bRet && dwSize > 1) {
 strcat(pchOut, ", From ");
 strcat(pchOut, pchVar);
 }
 bRet = pCtxt->GetServerVariable("SERVER_NAME", pchVar, &dwSize);
 if(bRet && dwSize > 1) {
 strcat(pchOut, ", To ");
 strcat(pchOut, pchVar);
 }
 strcat(pchOut, "\r\n");
 int nLength = strlen(pchOut);
 // Raw data is not zero-terminated
 strncat(pchOut, (const char*) pRawData->pvInData, pRawData->cbInData);
 nLength += pRawData->cbInData;
 pchOut[nLength] = `\0';
 SendTextToWindow(pchOut);
 return SF_STATUS_REQ_NEXT_NOTIFICATION;
}

The Display Program

The display program, ex35c.exe, isn't very interesting. It's a standard AppWizard CRichEditView program
with a WM_SENDTEXT handler in the main frame class:

LONG CMainFrame::OnSendText(UINT wParam, LONG lParam)
{
 TRACE("CMainFrame::OnSendText\n");
 LPVOID lpvFile = ::MapViewOfFile((HANDLE) lParam, FILE_MAP_READ, 0, 0,
 0);
 GetActiveView()->SendMessage(EM_SETSEL, (WPARAM) 999999, 1000000);
 GetActiveView()->SendMessage(EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) lpvFile);
 ::UnmapViewOfFile(lpvFile);
 ::CloseHandle((HANDLE) lParam);

 return 0;
}
This function just relays the text to the view.

The EX35C CMainFrame class overrides OnUpdateFrameTitle to eliminate the document name from the
main window's title. This ensures that the DLL can find the EX35C window by name.

The view class maps the WM_RBUTTONDOWN message to implement a context menu for erasing the view
text. Apparently rich edit view windows don't support the WM_CONTEXTMENU message.

Building and Testing the EX35B ISAPI Filter

Build both the EX35B and EX35C projects, and then start the EX35C program. To specify loading of your
new filter DLL, you must manually update the Registry. Run the Regedit application, and then double-click
on Filter DLLs in \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters. Add
the full pathname of the DLL separated from other DLL names with a comma.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the full pathname of the DLL separated from other DLL names with a comma.

There's one more thing to do. You must change the IIS mode to allow the service to interact with the
EX35C display program. To do this, click on the Services icon in the Control Panel, double-click on World
Wide Web Publishing Service, and then check Allow Service To Interact With Desktop. Finally, use Internet
Service Manager to stop and restart the WWW service to load the filter DLL. When you use the browser to
retrieve pages from the server, you should see output like this.

You can use the same steps for debugging an ISAPI filter that you used for an ISAPI server extension.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 36
ActiveX Document Servers and the Internet
An ActiveX document is a special file that you can download from a Web server. When the browser sees an
ActiveX document file, it automatically loads the corresponding ActiveX document server program from
your hard disk, and that program takes over the whole browser window to display the contents of the
document. The Microsoft Internet Explorer browser is not the only ActiveX document container program.
The Microsoft Office Binder program also runs ActiveX document server programs, storing the several
ActiveX documents in a single disk file.

In the COM world, an ActiveX document server program is called a server because it
implements a COM component. The container program (Internet Explorer or Office
Binder) creates and controls that COM component. In the Internet world, the same
program looks like a client because it can request information from a remote host
(Microsoft Internet Information Server).

In this chapter, you'll learn about ActiveX document servers and ActiveX documents and you'll build two
ActiveX document servers that work over the Internet in conjunction with Internet Explorer. Pay attention
to this technology now because you'll be seeing a lot more of it as Microsoft Windows evolves.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Document Theory
It's helpful to put ActiveX documents within the context of COM and OLE, which you already understand if
you've read the other chapters in this book. You can, however, get started with ActiveX document servers
without fully understanding all the COM concepts covered in Part VI.

ActiveX Document Servers vs. OLE Embedded Servers

As you saw in Chapter 28, an OLE embedded server program runs in a child window of an OLE container
application and occupies a rectangular area in a page of the container's document (see Figure 28-1).
Unless an embedded server program is classified as a mini-server, it can run stand-alone also. In
embedded mode, the server program's data is held in a storage inside the container application's file. The
embedded server program takes over the container program's menu and toolbar when the user activates it
by double-clicking on its rectangle.

In contrast to an embedded server, an ActiveX document server takes over a whole frame window in its
container application, and the document is always active. An ActiveX server application, running inside a
container's frame window, runs pretty much the same way it would in stand-alone mode. You can see this
for yourself if you have Microsoft Office 97. Office includes an ActiveX container program called Binder
(accessible from the Office shortcut bar), and the Office applications (Microsoft Word, Microsoft Excel, and
so on) have ActiveX server capability. Figure 36-1 shows a Word document and an Excel chart inside the
same binder.

Figure 36-1. A Word document and an Excel chart inside a Microsoft Office Binder window.

Like an embedded server, the ActiveX document server saves its data in a storage inside the ActiveX
container's file. When the Office user saves the Binder program from the File menu, Binder writes a single
OBD file to disk; the file contains one storage for the Word document and another for the Excel
spreadsheet. You can see this file structure yourself with the DFVIEW utility, as shown in Figure 36-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 36-2. A file structure displayed by the DocFile Viewer.

Running an ActiveX Document Server from Internet Explorer

Running an ActiveX document server from Internet Explorer is more fun than running one from Microsoft
Office Binder (Internet Explorer refers to Internet Explorer 3.0 or greater). Rather than load a storage only
from an OBD file, the server program can load its storage from the other side of the world. You just type in
a URL, such as http://www.DaliLama.in/SecretsOfTheUniverse.doc, and a Microsoft Word document opens
inside your Browse window, taking over the browser's menu and toolbar. That's assuming, of course, that
you have installed the Microsoft Word program. If not, a Word document viewer is available, but it must be
on your hard disk before you download the file.

An ActiveX document server won't let you save your changes back to the Internet host, but it will let you
save them on your own hard disk. In other words, File Save is disabled but File Save As is enabled.

If you have Microsoft Office, try running Word or Excel in Internet Explorer now. The EX34A server is quite
capable of delivering documents or worksheets to your browser, assuming that they are accessible from its
home directory. Note that Internet Explorer recognizes documents and worksheets not by their file
extensions but by the CLSID inside the files. You can prove this for yourself by renaming a file prior to
accessing it.

ActiveX Document Servers vs. ActiveX Controls

Both ActiveX document servers and ActiveX controls can run with and without the Internet. Both are
compiled programs that can run inside a browser. The following table lists some of the differences between
the two.

 ActiveX Document
Server

ActiveX
Control

Module type EXE Most often a
DLL

Can run stand-alone Yes No

Code automatically downloaded and registered by a
WWW browser

No Yes

Can be embedded in an HTML file No Yes

Occupies the entire browser window Yes Sometimes

Can be several pages Yes Not usually

Can read/write disk files Yes Not usually

OLE Interfaces for ActiveX Document Servers and Containers

ActiveX document servers implement the same interfaces as OLE embedded servers, including IOleObject,
IOleInPlaceObject, and IOleInPlaceActiveObject. ActiveX document containers implement IOleClientSite,
IOleInPlaceFrame, and IOleInPlaceSite. The menu negotiation works the same as it does for Visual Editing.

Some additional interfaces are implemented, however. ActiveX document servers implement
IOleDocument, IOleDocumentView, IOleCommandTarget, and IPrint. ActiveX document containers
implement IOleDocumentSite. The architecture allows for multiple views of the same document—sort of
like the MFC document-view architecture—but most ActiveX document servers implement only one view
per document.

The critical function in an OLE embedded server is IOleObject::DoVerb, which is called by the container
when the user double-clicks on an embedded object or activates it through the menu. For an ActiveX
document server, however, the critical function is IOleDocumentView::UIActivate. (Before calling this
function, the container calls IOleDocument::CreateView, but generally the server just returns an interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function, the container calls IOleDocument::CreateView, but generally the server just returns an interface
pointer to the single document-view object.) UIActivate finds the container site and frame window, sets
that window as the server's parent, sets the server's window to cover the container's frame window, and
then activates the server's window.

It's important to realize that the COM interaction takes place between the container
program (Internet Explorer or Binder) and the ActiveX document server (your
program), which are both running on the client computer. We know of no cases in
which remote procedure calls (RPCs) are made over the Internet. That means that the
remote host (the server computer) does not use COM interfaces to communicate with
clients, but it can deliver data in the form of storages.

MFC Support for ActiveX Document Servers

MFC allows you to create your own ActiveX document server programs. In addition, Visual C++ 6.0 now
allows you to write ActiveX document containers. To get a server program, create a new MFC AppWizard
EXE project and then check the Active Document Server check box, as shown in Figure 36-3. To create a
container program, just make sure the Active Document Container check box is marked.

Figure 36-3. Step 3 of the MFC AppWizard.

Here's a rundown of the classes involved in MFC's ActiveX Document Server Architecture.

COleServerDoc

As it is for any COM component, your ActiveX document server's document class is derived from
COleServerDoc, which implements IPersistStorage, IOleObject, IDataObject, IOleInPlaceObject, and
IOleInPlaceActiveObject.

The COM interfaces and MFC classes discussed here were named before Microsoft
introduced ActiveX technology. An ActiveX document server was formerly known as a
document object server or a doc object server, so those are the names you'll see in the
source code and in some online documentation.

CDocObjectServerItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDocObjectServerItem

This class is derived from the COleServerItem class used in embedded servers. Your ActiveX document
server program has a class derived from CDocObjectServerItem, but that class isn't used when the
program is running in ActiveX document mode.

CDocObjectServer

This class implements the new ActiveX server interfaces. Your application creates an object of class
CDocObjectServer and attaches it to the COleServerDoc object. If you look at
COleServerDoc::GetDocObjectServer in your derived document class, you'll see the construction code.
Thereafter, the document object and attached CDocObjectServer object work together to provide ActiveX
document server functionality. This class implements both IOleDocument and IOleDocumentView, which
means that you can have only one view per document in an MFC ActiveX document server. You generally
don't derive classes from CDocObjectServer.

COleDocIPFrameWnd

This class is derived from COleIPFrameWnd. Your application has a frame window class derived from
COleDocIPFrameWnd. The framework constructs an object of that class when the application starts in
embedded server mode or in ActiveX document server mode. In ActiveX document server mode, the
server's window completely covers the container's frame window and has its own menu resource attached,
with the identifier IDR_SRVR_INPLACE (for an SDI application).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Document Server Example EX36A
You could construct the EX36A example in two phases. The first phase is a plain ActiveX document server
that loads a file from its container. The view base class is CRichEditView, which means the program loads,
edits, and stores text plus embedded objects. In the second phase, the application is enhanced to
download a separate text file from the Internet one line at a time, demonstrating that ActiveX document
servers can make arbitrary WinInet calls.

EX36A Phase 1—A Simple Server

The EX36A example on the book's CD-ROM is complete with the text download feature from Phase 2. You
can exercise its Phase 1 capabilities by building it, or you can create a new application with AppWizard. If
you do use AppWizard, you should refer to Figure 36-3 to see the AppWizard EXE project dialog and select
the appropriate options. All other options are the default options, except those for selecting SDI (Step 1),
setting the project's filename extension to 36a using the Advanced button in Step 4, and changing the
view's base class (CRichEditView—on the wizard's last page). You don't have to write any C++ code at all.

Be sure to run the program once in stand-alone mode to register it. While the program is running in stand-
alone mode, type some text (and insert some OLE embedded objects) and then save the document as
test.36a in your Internet server's home directory (\scripts or \wwwroot directory). Try loading test.36a
from Internet Explorer and from Office Binder. Use Binder's Section menu for loading and storing EX36A
documents to and from disk files.

You should customize the document icons for your ActiveX document servers because those icons show up
on the right side of an Office Binder window.

Debugging an ActiveX Document Server

If you want to debug your program in ActiveX document server mode, click on the Debug tab in the Build
Settings dialog. Set Program Arguments to /Embedding, and then start the program. Now start the
container program and use it to "start" the server, which has in fact already started in the debugger and is
waiting for the container.

EX36A Phase 2—Adding WinInet Calls

The EX36A example on the CD-ROM includes two dialog bar objects, one for the main frame window and
another for the in-place frame window. Both are attached to the same resource template,
IDD_DIALOGBAR, which contains an edit control that accepts a text file URL plus start and stop buttons
that display green and red bitmaps. If you click the green button (handled by the OnStart member function
of the CEx36aView class), you'll start a thread that reads the text file one line at a time. The thread code
from the file UrlThread.cpp is shown here:

CString g_strURL = "http:// ";
volatile BOOL g_bThreadStarted = FALSE;
CEvent g_eKill;

UINT UrlThreadProc(LPVOID pParam)
{
 g_bThreadStarted = TRUE;
 CString strLine;
 CInternetSession session;
 CStdioFile* pFile1 = NULL;

 try {
 pFile1 = session.OpenURL(g_strURL, 0, INTERNET_FLAG_TRANSFER_BINARY
 | INTERNET_FLAG_KEEP_CONNECTION); // needed for Windows NT
 // c/r authentication
 // Keep displaying text from the URL until the Kill event is
 // received
 while(::WaitForSingleObject(g_eKill.m_hObject, 0) != WAIT_OBJECT_0) {
 // one line at a time
 if(pFile1->ReadString(strLine) == FALSE) break;
 strLine += `\n';
 ::SendMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999,
 1000000);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1000000);
 ::SendMessage((HWND) pParam, EM_REPLACESEL, (WPARAM) 0,
 (LPARAM) (const char*) strLine);
 Sleep(250); // Deliberately slow down the transfer
 }
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1 != NULL) delete pFile1; // closes the file—prints a warning
 g_bThreadStarted = FALSE;
 // Post any message to update the toolbar buttons
 ::PostMessage((HWND) pParam, EM_SETSEL, (WPARAM) 999999, 1000000);
 TRACE("Post thread exiting normally\n");
 return 0;
}
This code uses the CStdioFile pointer to pFile1 returned from OpenURL. The ReadString member function
reads one line at a time, and each line is sent to the rich edit view window. When the main thread sets the
"kill" event (the red button), the URL thread exits.

Before you test EX36A, make sure that the server (EX34A or IIS) is running and that you have a text file in
the server's home directory. Test the EX36A program first in stand-alone mode by entering the text file
URL in the dialog bar. Next try running the program in server mode from Internet Explorer. Enter test.36a
(the document you created when you ran EX36A in stand-alone mode) in Internet Explorer's Address field
to load the server.

We considered using the CAsyncMonikerFile class (see Asynchronous Moniker Files)
instead of the MFC WinInet classes to read the text file. We stuck with WinInet,
however, because the program could use the CStdioFile class ReadString member
function to "pull" individual text lines from the server when it wanted them. The
CAsyncMonikerFile class would have "pushed" arbitrary blocks of characters into the
program (by calling the overridden OnDataAvailable function) as soon as the characters
had been received.

Displaying Bitmaps on Buttons

Chapter 11 describes the CBitmapButton class for associating a group of bitmaps with a
pushbutton. Microsoft Windows 95, Microsoft Windows 98, and Microsoft Windows NT
4.0 support an alternative technique that associates a single bitmap with a button. First
you apply the Bitmap style (on the button's property sheet) to the button, and then
you declare a variable of class CBitmap that will last at least as long as the button is
enabled. Then you make sure that the CButton::SetBitmap function is called just after
the button is created.

Here is the code for associating a bitmap with a button, from the EX36A MainFrm.cpp
and IpFrame.cpp files:

m_bitmapGreen.LoadBitmap(IDB_GREEN);
HBITMAP hBitmap = (HBITMAP) m_bitmapGreen.GetSafeHandle();
((CButton*) m_wndDialogBar.GetDlgItem(IDC_START))
->SetBitmap(hBitmap);
If your button was in a dialog, you could put similar code in the OnInitDialog member
function and declare a CBitmap member in the class derived from CDialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Document Server Example EX36B
Look at the pizza form example from Chapter 35 (EX35A). Note that the server (the ISAPI DLL) processes
the order only when the customer clicks the Submit Order Now button. This is okay for ordering pizzas
because you're probably happy to accept money from anyone, no matter what kind of browser is used.

For a form-based intranet application, however, you can be more selective. You can dictate what browser
your clients have, and you can distribute your own client software on the net. In that environment, you
can make data entry more sophisticated, allowing, for example, the client computer to validate each entry
as the user types it. That's exactly what's happening in EX36B, which is another ActiveX document server,
of course. EX36B is a form-based employee time-sheet entry program that works inside Internet Explorer
(as shown in Figure 36-4) or works as a stand-alone application. Looks like a regular HTML form, doesn't
it? It's actually an MFC form view, but the average user probably won't know the difference. The Name
field is a drop-down combo box, however—which is different from the select field you would see in an
HTML form—because the user can type in a value if necessary. The Job Number field has a spin button
control that helps the user select the value. These aren't necessarily the ideal controls for time-sheet
entry, but the point here is that you can use any Windows controls you want, including tree controls, list
controls, trackbars, and ActiveX controls, and you can make them interact any way you want.

Figure 36-4. Employee time-sheet entry form.

Field Validation in an MFC Form View

Problem: MFC's standard validation scheme validates data only when
CWnd::UpdateData(TRUE) is called, usually when the user exits the dialog. Applications
often need to validate data the moment the user leaves a field (edit control, list box,
and so on). The problem is complex because Windows permits the user to freely jump
between fields in any sequence by using the mouse. Ideally, standard MFC DDX- /DDV
(data exchange/validation) code should be used for field validation, and the standard
DoDataExchange function should be called when the user finishes the transaction.

Solution: Derive your field validation form view classes from the class CValidForm,
derived from CFormView, with this header:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// valform.h
#ifndef _VALIDFORM
#define _VALIDFORM

#define WM_VALIDATE WM_USER + 5

class CValidForm : public CFormView
{
DECLARE_DYNAMIC(CValidForm)
private:
 BOOL m_bValidationOn;
public:
 CValidForm(UINT ID);
 // override in derived dlg to perform validation
 virtual void ValidateDlgItem(CDataExchange* pDX, UINT ID);
 //{{AFX_VIRTUAL(CValidForm)
 protected:
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 //}}AFX_VIRTUAL

 //{{AFX_MSG(CValidForm)
 afx_msg LONG OnValidate(UINT wParam, LONG lParam);
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};
#endif // _VALIDFORM
This class has one virtual function, ValidateDlgItem, which accepts the control ID as the
second parameter. The derived form view class implements this function to call the
DDX/DDV functions for the appropriate field. Here is a sample ValidateDlgItem
implementation for a form view that has two numeric edit controls:

void CMyForm::ValidateDlgItem(CDataExchange* pDX, UINT uID)
{
 switch (uID) {
 case IDC_EDIT1:
 DDX_Text(pDX, IDC_EDIT1, m_nEdit1);
 DDV_MinMaxInt(pDX, m_nEdit1, 0, 10);
 break;
 case IDC_EDIT2:
 DDX_Text(pDX, IDC_EDIT2, m_nEdit2);
 DDV_MinMaxInt(pDX, m_nEdit2, 20, 30);
 break;
 default:
 break;
 }
}
Notice the similarity to the wizard-generated DoDataExchange function:

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 //{{AFX_DATA_MAP(CMyForm)
 DDX_Text(pDX, IDC_EDIT1, m_nEdit1);
 DDV_MinMaxInt(pDX, m_nEdit1, 0, 10);
 DDX_Text(pDX, IDC_EDIT2, m_nEdit2);
 DDV_MinMaxInt(pDX, m_nEdit2, 20, 30);
 //}}AFX_DATA_MAP
}
How does it work? The CValidForm class traps the user's attempt to move away from a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How does it work? The CValidForm class traps the user's attempt to move away from a
control. When the user presses the Tab key or clicks on another control, the original
control sends a killfocus command message (a control notification message) to the
parent window, the exact format depending on the kind of control. An edit control, for
example, sends an EN_KILLFOCUS command. When the form window receives this
killfocus message, it invokes the DDX/DDV code that is necessary for that field, and if
there's an error, the focus is set back to that field.

There are some complications, however. First, we want to allow the user to freely
switch the focus to another application—we're not interested in trapping the killfocus
message in that case. Next, we must be careful how we set the focus back to the
control that produced the error. We can't just call SetFocus in direct response to the
killfocus message; instead we must allow the killfocus process to complete. We can
achieve this by posting a user-defined WM_VALIDATE message back to the form
window. The WM_VALIDATE handler calls our ValidateDlgItem virtual function after the
focus has been moved to the next field. Also, we must ignore the killfocus message
that results when we switch back from the control that the user tried to select, and we
must allow the IDCANCEL button to abort the transaction without validation.

Most of the work here is done in the view's virtual OnCommand handler, which is called
for all control notification messages. We could, of course, individually map each
control's killfocus message in our derived form view class, but that would be too much
work. Here is the OnCommand handler:

BOOL CValidForm::OnCommand(WPARAM wParam, LPARAM lParam)
{
 // specific for WIN32 — wParam/lParam processing different for
 // WIN16
 TRACE("CValidForm::OnCommand, wParam = %x, lParam = %x\n",
 wParam, lParam);
 TRACE("m_bValidationOn = %d\n", m_bValidationOn);
 if(m_bValidationOn) { // might be a killfocus
 UINT notificationCode = (UINT) HIWORD(wParam);
 if((notificationCode == EN_KILLFOCUS) ||
 (notificationCode == LBN_KILLFOCUS) ||
 (notificationCode == CBN_KILLFOCUS)) {
 CWnd* pFocus = CWnd::GetFocus(); // static function call
 // if we're changing focus to another control in the
 // same form
 if(pFocus && (pFocus->GetParent() == this)) {
 if(pFocus->GetDlgCtrlID() != IDCANCEL) {
 // and focus not in Cancel button
 // validate AFTER drawing finished
 BOOL rtn = PostMessage(WM_VALIDATE, wParam);
 TRACE("posted message, rtn = %d\n", rtn);
 }
 }
 }
 }
 return CFormView::OnCommand(wParam, lParam); // pass it on
}
Note that m_bValidationOn is a Boolean data member in CValidForm.

Finally, here is the OnValidate message handler, mapped to the user-defined
WM_VALIDATE message:

LONG CValidForm::OnValidate(UINT wParam, LONG lParam)
{
 TRACE("Entering CValidForm::OnValidate\n");
 CDataExchange dx(this, TRUE);
 m_bValidationOn = FALSE; // temporarily off
 UINT controlID = (UINT) LOWORD(wParam);
 try {
 ValidateDlgItem(&dx, controlID);
 }
 catch(CUserException* pUE) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catch(CUserException* pUE) {
 pUE->Delete();
 TRACE("CValidForm caught the exception\n");
 // fall through — user already alerted via message box
 }
 m_bValidationOn = TRUE;
 return 0; // goes no further
}
Instructions for use:

1. Add valform.h and valform.cpp to your project.

2. Insert the following statement in your view class header file:

#include "valform.h"
3. Change your view class base class from CFormView to CValidForm.

4. Override ValidateDlgItem for your form's controls as shown above.

That's all.

For dialogs, follow the same steps, but use valid.h and valid.cpp. Derive your dialog
class from CValidDialog instead of from CDialog.

Generating POST Requests Under Program Control

The heart of the EX36B program is a worker thread that generates a POST request and sends it to a
remote server. The server doesn't care whether the POST request came from an HTML form or from your
program. It could process the POST request with an ISAPI DLL, with a PERL script, or with a Common
Gateway Interface (CGI) executable program.

Here's what the server receives when the user clicks the EX36B Submit button:

POST scripts/ex35a.dll?ProcessTimesheet HTTP/1.0
(request headers)
(blank line)
Period=12&Name=Dunkel&Hours=6.5&Job=5
And here's the thread code from PostThread.cpp:
// PostThread.cpp (uses MFC WinInet calls)

#include <stdafx.h>
#include "PostThread.h"

#define MAXBUF 50000

CString g_strFile = "/scripts/ex35a.dll";
CString g_strServerName = "localhost";
CString g_strParameters;

UINT PostThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 DWORD dwStatusCode;
 BOOL bOkStatus = FALSE;
 try {
 pConnection = session.GetHttpConnection(g_strServerName,
 (INTERNET_PORT) 80);
 pFile1 = pConnection->OpenRequest(0, g_strFile +
 "?ProcessTimesheet", // POST request
 NULL, 1, NULL, NULL, INTERNET_FLAG_KEEP_CONNECTION |
 INTERNET_FLAG_RELOAD); // no cache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTERNET_FLAG_RELOAD); // no cache
 pFile1->SendRequest(NULL, 0,
 (LPVOID) (const char*) g_strParameters,
 g_strParameters.GetLength());
 pFile1->QueryInfoStatusCode(dwStatusCode);
 if(dwStatusCode == 200) { // OK status
 // doesn't matter what came back from server — we're looking
 // for OK status
 bOkStatus = TRUE;
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = `\0'; // necessary for TRACE
 TRACE(buffer);
 TRACE("\n");
 }
 }
 catch(CInternetException* pe) {
 char text[100];
 pe->GetErrorMessage(text, 99);
 TRACE("WinInet exception %s\n", text);
 pe->Delete();
 }
 if(pFile1) delete pFile1; // does the close — prints a warning
 if(pConnection) delete pConnection; // Why does it print a warning?
 delete [] buffer;
 ::PostMessage((HWND) pParam, WM_POSTCOMPLETE, (WPARAM) bOkStatus, 0);
 return 0;
}
The main thread assembles the g_strParameters string based on what the user typed, and the worker
thread sends the POST request using the CHttpFile::SendRequest call. The tQueryInfoStatusCode to find
out if the server sent back an OK response. Before exiting, the thread posts a message to the main thread,
using the bOkStatus value in wParam to indicate success or failure.

The EX36B View Class

The CEx36bView class is derived from CValidForm, as described in "Field Validation in an MFC Form View".
CEx36bView collects user data and starts the post thread when the user clicks the Submit button after all
fields have been successfully validated. Field validation is independent of the internet application. You
could use CValidForm in any MFC form view application.

Here is the code for the overridden or the overridden ValidateDlgItem member function, which is called
whenever the user moves from one control to another:

void CEx36bView::ValidateDlgItem(CDataExchange* pDX, UINT uID)
{
 ASSERT(this);
 TRACE("CEx36bView::ValidateDlgItem\n");
 switch (uID) {
 case IDC_EMPLOYEE:
 DDX_CBString(pDX, IDC_EMPLOYEE, m_strEmployee);
 // need custom DDV for empty string
 DDV_MaxChars(pDX, m_strEmployee, 10);
 if(m_strEmployee.IsEmpty()) {
 AfxMessageBox("Must supply an employee name");
 pDX->Fail();
 }
 break;
 case IDC_HOURS:
 DDX_Text(pDX, IDC_HOURS, m_dHours);
 DDV_MinMaxDouble(pDX, m_dHours, 0.1, 100.);
 break;
 case IDC_JOB:
 DDX_Text(pDX, IDC_JOB, m_nJob);
 DDV_MinMaxInt(pDX, m_nJob, 1, 20);
 break;
 default:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 default:
 break;
 }
 return;
}
The OnSubmit member function is called when the user clicks the Submit button. CWnd::UpdateData
returns TRUE only when all the fields have been successfully validated. At that point, the function disables
the Submit button, formats g_strParameters, and starts the post thread.

void CEx36bView::OnSubmit()
{
 if(UpdateData(TRUE) == TRUE) {
 GetDlgItem(IDC_SUBMIT)->EnableWindow(FALSE);
 CString strHours, strJob, strPeriod;
 strPeriod.Format("%d", m_nPeriod);
 strHours.Format("%3.2f", m_dHours);
 strJob.Format("%d", m_nJob);
 g_strParameters = "Period=" + strPeriod + "&Employee=" +
 m_strEmployee + "&Hours=" +strHours + "&Job=" +
 strJob + "\r\n";
 TRACE("parameter string = %s", g_strParameters);
 AfxBeginThread(PostThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);
 }
}
The OnCancel member function is called when the user clicks the Reset button. The CValidForm logic
requires that the button's control ID be IDCANCEL.

void CEx36bView::OnCancel()
{
 CEx36bDoc* pDoc = GetDocument();
 m_dHours = 0;
 m_strEmployee = "" ;
 m_nJob = 0;
 m_nPeriod = pDoc->m_nPeriod;
 UpdateData(FALSE);
}
The OnPostComplete handler is called in response to the user-defined WM_POSTCOMPLETE message sent
by the post thread:

LONG CEx36bView::OnPostComplete(UINT wParam, LONG lParam)
{
 TRACE("CEx36bView::OnPostComplete - %d\n", wParam);
 if(wParam == 0) {
 AfxMessageBox("Server did not accept the transaction");
 }
 else
 OnCancel();
 GetDlgItem(IDC_SUBMIT)->EnableWindow(TRUE);
 return 0;
}
This function displays a message box if the server didn't send an OK response. It then enables the Submit
button, allowing the user to post another time-sheet entry.

Building and Testing EX36B

Build the /vcpp36/ex36b project, and then run it once in stand-alone mode to register it and to write a
document file called test.36b in your WWW root directory. Make sure the EX35A DLL is available in the
scripts directory (with execute permission) because that DLL contains an ISAPI function,
ProcessTimesheet, which handles the server end of the POST request. Be sure that you have IIS or some
other ISAPI-capable server running.

Now run Internet Explorer and load test.36b from your server. The EX36B program should be running in
the Browse window, and you should be able to enter time-sheet transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Browse window, and you should be able to enter time-sheet transactions.

ActiveX Document Servers vs. VB Script

It's possible to insert VB Script (or JavaScript) code into an HTML file. We're not experts on VB Script, but
we've seen some sample code. You could probably duplicate the EX36B time-sheet application with VB
Script, but you would be limited to the standard HTML input elements. It would be interesting to see how a
VB Script programmer would solve the problem. (In any case, you're a C++ programmer, not a Visual
Basic programmer, so you might as well stick to what you know.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with ActiveX Document Servers
EX36A used a worker thread to read a text file from an Internet server. It used the MFC WinInet classes,
and it assumed that a standard HTTP server was available. An ActiveX document server could just as easily
make Winsock calls using the CBlockingSocket class from Chapter 34. That would imply that you were
going beyond the HTTP and FTP protocols. You could, for example, write a custom internet server program
that listened on port 81. (That server could run concurrently with IIS if necessary.) Your ActiveX document
server could use a custom TCP/IP protocol to get binary data from an open socket. The server could use
this data to update its window in real-time, or it could send the data to another device, such as a sound
board.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 37
Introducing Dynamic HTML
Dynamic HyperText Markup Language (DHTML) is a new and exciting technology—introduced as part of
Microsoft Internet Explorer 4.0 (IE4)—that provides serious benefits to Webmasters and developers.
DHTML could ultimately change the way we think about developing Windows applications. Why the buzz
about DHTML?

It began with the IE4 "HTML display engine"—sometimes called Trident in Microsoft literature. As part of
the design of Internet Explorer 4, Microsoft made Trident a COM component that exposes many of its
internal objects that are used for displaying HTML pages in Internet Explorer 4. This feature allows you to
traverse the portions of an HTML page in script or code, as if the HTML page were a data structure. Gone
are the days of having to parse HTML or write grotesque Common Gateway Interface (CGI) scripts to get
to data in a form. The real power of DHTML, however, is not this ability to access the HTML objects but the
ability to actually change and manipulate the HTML page on the fly—thus the name Dynamic HTML.

Once you grasp the concept of DHTML, a million possible applications come to mind. For Webmasters,
DHTML means that much of the logic that manipulates a Web page can live in scripts that are downloaded
to the client. C++ developers can embed DHTML in their applications and use it as an embedded Web
client or as a super-flexible, dynamic "form" that their application changes on the fly. Microsoft Visual J++
developers (who use Windows Foundation Classes [WFC]) can actually program DHTML on the server while
an Internet Explorer client responds to the commands—an excellent alternative to CGI and potentially
more powerful than Active Server Pages (ASP) server-side scripting.

Unfortunately, DHTML is so powerful and extensive that it requires a separate book to fill you in on all of
the copious details. For example, to really leverage DHTML you need to understand all of the possible
elements of an HTML page: forms, lists, style sheets, and so on. Inside Dynamic HTML by Scott Isaacs
(Microsoft Press, 1997) is a great resource for learning the details of DHTML.

Instead of covering all aspects of DHTML, we will briefly introduce you to the DHTML object model, show
you how to work with the model from the scripting angle (as a reference), and then show you how to work
with the model from both the Microsoft Foundation Class Library version 4.21 (MFC) and the Active
Template Library (ATL). These features are all made possible by the excellent DHTML support introduced in
Visual C++ 6.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DHTML Object Model
If you've been heads down on a Visual C++ project and haven't yet had time to take a peek at HTML, the
first thing you should know is that HTML is an ASCII markup language format. Here is the code for a very
basic HTML page:

<html>
<head>
<title>
This is an example very basic HTML page!
</title>
</head>
<body>
<h1>This is some text with H1!
</h1>
<h3>
This is some text with H3!
</h3>
</body>
</html>
This basic HTML "document" is composed of the following elements:

A head (or header) In this example, the header contains a title: "This is an example very basic
HTML page!"

The body of the document The body in this example contains two text elements. The first has the
heading 1 (h1) style and reads, "This is some text with H1!" The second text element has the
heading 3 (h3) style and reads, "This is some text with H3!"

The end result is an HTML page that—when displayed in Internet Explorer 4—looks like Figure 37-1.

When Internet Explorer 4 loads this sample HTML page, it creates an internal representation that you can
traverse, read, and manipulate through the DHTML object model. Figure 37-2 shows the basic hierarchy of
the DHTML object model.

Figure 37-1. A very basic HTML page, as seen in Internet Explorer 4.

At the root of the object model is the window object. This object can be used from a script to perform
some action, such as popping up a dialog box. Here's an example of some JScript that accesses the
window object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<SCRIPT LANGUAGE="JScript">
function about()
{
 window.showModalDialog("about.htm","",
 "dialogWidth:25em;dialogHeight13em")
}
</SCRIPT>
When the about script function is called, it will call the showModalDialog function in the window DHTML
object to display a dialog. This example also illustrates how scripts access the object model—through
globally accessible objects that map directly to the corresponding object in the DTHML object model.

The window object has several "subobjects" that allow you to further manipulate portions of Internet
Explorer 4. The document object is what we will spend most of our time on in this chapter because it gives
us programmatic access to the various elements of the currently loaded HTML document. Below, some
JScript shows how to create basic dynamic content that changes the document object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 37-2. Basic hierarchy of the DHTML object model.

<HTML>
<HEAD>
<TITLE>Welcome!</TITLE>
<SCRIPT LANGUAGE="JScript">
function changeMe() {
 document.all.MyHeading.outerHTML =
 "<H1 ID=MyHeading>Dynamic HTML is magic!</H1>";
 document.all.MyHeading.style.color = "green";
 document.all.MyText.innerText = "Presto Change-o! ";
 document.all.MyText.align = "center";
 document.body.insertAdjacentHTML("BeforeEnd",
 "<P ALIGN=\"center\">Open Sesame!</P>");
}
</SCRIPT>
<BODY onclick="changeMe()">
<H3 ID=MyHeading> Dynamic HTML demo!</H3>
<P ID=MyText>Click anywhere to see the power of DHTML!</P>
</BODY>
</HTML>
This script changes the MyHeading and MyText objects in the HTML documents on the fly. Not only does it
change the text, it also changes attributes of the elements such as color and alignment. If you want to see
this script in action, you can find it in the ex37_1.html file on the companion CD.

Before we further deconstruct the DHTML object model, let's examine the DHTML concept of a collection.
Collections in DHTML are logically equivalent to C++ data structures such as linked lists. In fact, access to
the DHTML object model is performed largely by iterating through collections searching for a particular
HTML element and then potentially iterating through another subcollection to get to yet another element.
Elements contain several methods, such as contains and length, that you use to traverse the elements.

For example, one of the subelements of the document object is a collection named all that contains all of
the document's elements. In fact, most of the subobjects of the document object are collections. The
following script (ex37_2.html) shows how to iterate through the all collection and list the various items of a
document.

<HTML>
<HEAD><TITLE>Iterating through the all collection.</TITLE>
<SCRIPT LANGUAGE="JScript">
function listAllElements() {
 var tag_names = "";
 for (i=0; i<document.all.length; i++)
 tag_names = tag_names + document.all(i).tagName + " ";
 alert("This document contains: " + tag_names);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 alert("This document contains: " + tag_names);
}
</SCRIPT>
</HEAD>
<BODY onload="listAllElements()">
<H1>DHTML Rocks!</H1>
<P>This document is very short.
</BODY>
</HTML>
Notice how easy it is to retrieve items with script. (The syntax calls for parentheses, similar to accessing an
array in C++.) Also notice that each element in an HTML document has properties such as tagName that
allow you to programmatically "search" for various elements. For example, if you wanted to write a script
that filtered out all bold items, you would scan the all collection for an element with tagName equal to B.

Now you have the basics of the DHTML object model down and you understand how to access them
through scripts from the Webmaster's perspective. Let's look at how Visual C++ lets us work with DHTML
from an application developer's perspective.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual C++ and DHTML
Visual C++ 6.0 supports DHTML through both MFC and ATL. Both MFC and ATL give you complete access
to the DHTML object model. Unfortunately, access to the object model from languages like C++ is done
through OLE Automation (IDispatch) and in many cases isn't as cut-and-dried as some of the scripts we
looked at earlier.

The DHTML object model is exposed to C++ developers through a set of COM objects with the prefix
IHTML (IHTMLDocument, IHTMLWindow, IHTMLElement, IHTMLBodyElement, and so on). In C++, once
you obtain the document interface, you can use any of the IHTMLDocument2 interface methods to obtain
or to modify the document's properties.

You can access the all collection by calling the IHTMLDocument2::get_all method. This method returns an
IHTMLElementCollection collection interface that contains all the elements in the document. You can then
iterate through the collection using the IHTMLElementCollection::item method (similar to the parentheses
in the script above). The IHTMLElementCollection::item method supplies you with an IDispatch pointer that
you can call QueryInterface on, requesting the IID_IHTMLElement interface. This call to QueryInterface will
give you an IHTMLElement interface pointer that you can use to get or set information for the HTML
element.

Most elements also provide a specific interface for working with that particular element type. These
element-specific interface names take the format of IHTMLXXXXElement, where XXXX is the name of the
element (IHTMLBodyElement, for example). You must call QueryInterface on the IHTMLElement object to
request the element-specific interface you need. This might sound confusing (because it can be!). But
don't worry—the MFC and ATL sections in this chapter contain plenty of samples that demonstrate how it
all ties together. You'll be writing DHTML code in no time.

MFC and DHTML

MFC's support for DHTML starts with a new CView derivative, CHtmlView. CHtmlView allows you to embed
an HTML view inside frame windows or splitter windows, where with some DHTML work it can act as a
dynamic form. Example EX37A demonstrates how to use the new CHtmlView class in a vanilla MDI
application.

Follow these steps to create the EX37A example:

1. Run AppWizard and create \vcpp32\ex37a\ex37a. Choose New from Visual C++'s File menu.
Then click the Projects tab, and select MFC AppWizard (exe). Accept all defaults, except in Step 6
choose CHtmlView as the Base Class, as shown here.

2. Edit the URL to be loaded. In the CEx37aView::OnInitialUpdate function, you will see this line:

Navigate2(_T("http://www.microsoft.com/visualc/"),NULL,NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Navigate2(_T("http://www.microsoft.com/visualc/"),NULL,NULL);
You can edit this line to have the application load a local page or a URL other than the Visual C++
page.

3. Compile and run. Figure 37-3 shows the application running with the default Web page.

Figure 37-3. The EX37A example.

Now let's create a sample that really shows how to use DHTML with MFC. EX37B creates a
CHtmlView object and a CListView object separated by a splitter. The example then uses DHTML to
enumerate the HTML elements in the CHtmlView object and displays the results in the CListView
object. The end result will be a DHTML explorer that you can use to view the DHTML object model of
any HTML file.

Here are the steps to create EX37B:

4. Run AppWizard and create \vcpp32\ex37b\ex37b. Choose New from Visual C++'s File menu.
Then click the Projects tab, and select MFC AppWizard (exe). Accept all the defaults but three:
select Single Document, select Windows Explorer in Step 5, and select CHtmlView as the Base Class
in Step 6. The options that you should see after finishing the wizard are shown in the graphic below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Change the CLeftView to be a CListView derivative. By default, AppWizard makes the
CLeftView of the splitter window a CTreeView derivative. Open the LeftView.h file, and do a global
search for CTreeView and replace it with CListView. Open LeftView.cpp and do the same find and
replace (Hint: Use Edit/Replace/Replace All.)

6. Edit the URL to be loaded. In the CEx37bView::OnInitialUpdate function, change the URL to
res://ie4tour.dll/welcome.htm.

7. Add a DoDHTMLExplore function to CMainFrame. First add the fol-lowing declaration to the
MainFrm.h file:

 virtual void DoDHTMLExplore(void);
Now add the implementation for DoHTMLExplore to MainFrm.cpp.

void CMainFrame::DoDHTMLExplore(void)
{

 CLeftView *pListView =
 (CLeftView *)m_wndSplitter.GetPane(0,0);

 CEx37bView * pDHTMLView =
 (CEx37bView *)m_wndSplitter.GetPane(0,1);

 //Clear the listview
 pListView->GetListCtrl().DeleteAllItems();
 IDispatch* pDisp = pDHTMLView->GetHtmlDocument();

 if (pDisp != NULL)
 {
 IHTMLDocument2* pHTMLDocument2;
 HRESULT hr;

 hr = pDisp->QueryInterface(IID_IHTMLDocument2,
 (void**)&pHTMLDocument2);
 if (hr == S_OK)
 {
 IHTMLElementCollection* pColl = NULL;

 hr = pHTMLDocument2->get_all(&pColl);
 if (hr == S_OK && pColl != NULL)
 {
 LONG celem;
 hr = pColl->get_length(&celem);

 if (hr == S_OK)
 {
 for (int i=0; i< celem; i++)
 {
 VARIANT varIndex;
 varIndex.vt = VT_UINT;
 varIndex.lVal = i;
 VARIANT var2;
 VariantInit(&var2);
 IDispatch* pDisp;

 hr = pColl->item(varIndex, var2, &pDisp);
 if (hr == S_OK)
 {
 IHTMLElement* pElem;

 hr = pDisp->QueryInterface(

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 hr = pDisp->QueryInterface(
 IID_IHTMLElement,
 (void **)&pElem);
 if (hr == S_OK)
 {
 BSTR bstr;
 hr = pElem->get_tagName(&bstr);
 CString strTag = bstr;
 IHTMLImgElement* pImgElem;

 //Is it an image element?
 hr = pDisp->QueryInterface(
 IID_IHTMLImgElement,
 (void **)&pImgElem);
 if (hr == S_OK)
 {
 pImgElem->get_href(&bstr);
 strTag += " - ";
 strTag += bstr;
 pImgElem->Release();
 }
 else
 {
 IHTMLAnchorElement* pAnchElem;

 //Is it an anchor?
 hr = pDisp->QueryInterface(
 IID_IHTMLAnchorElement,
 (void **)&pAnchElem);
 if (hr == S_OK)
 {
 pAnchElem->get_href(&bstr);
 strTag += " - ";
 strTag += bstr;
 pAnchElem->Release();
 }
 }//end of else

 pListView->GetListCtrl().InsertItem(
 pListView->GetListCtrl()
 .GetItemCount(), strTag);
 pElem->Release();
 }
 pDisp->Release();
 }
 }
 }
 pColl->Release();
 }
 pHTMLDocument2->Release();
 }
 pDisp->Release();
 }
}
Here are the steps that this function takes to "explore" the HTML document using DHTMLs:

First DoHTMLExplore gets pointers to the CListView and CHtmlView views in the splitter
window.

Then it makes a call to GetHtmlDocument to get an IDispatch pointer to the DHTML
document object.

Next DoHTMLExplore gets the IHTMLDocument2 interface.

With the IHTMLDocument2 interface, DoHTMLExplore retrieves the all collection and iterates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With the IHTMLDocument2 interface, DoHTMLExplore retrieves the all collection and iterates
through it. In each iteration, DoHTMLExplore checks the element type.If the element is an
image or an anchor, DoHTMLExplore retrieves additional information such as the link for the
image. The all collection loop then places the textual description of the HTML element in the
CListView object.

8. Make sure that Mainfrm.cpp includes mshtml.h. Add the following line to the top of
Mainfrm.cpp so that the DoHTMLExplore code will compile.

#include <mshtml.h>
9. Add a call to DoHTMLExplore. For this example, we will change the CEx37bApp::OnAppAbout

function to call the DoDHTMLExplore function in the ex37b.cpp file. Replace the existing code with
the following boldface code:

void CEx37bApp::OnAppAbout()
{
 CMainFrame * pFrame = (CMainFrame*)AfxGetMainWnd();
 pFrame->DoDHTMLExplore();
}

10. Customize the list view. In the CLeftView::PreCreateWindow function (LeftView.cpp), add this
line:

cs.style |= LVS_LIST;
11. Compile and run. Compile and run the sample. Press the "?" toolbar item, or choose Help/About to

invoke the explore function.

Figure 37-4 shows the EX37B example in action.

Figure 37-4. The EX37B example in action.

Now that you've seen how to use DHTML and MFC, let's look at how ATL implements DHMTL support.

ATL and DHTML

ATL's support for DHTML comes in the form of an HTML object that can be embedded in any ATL ActiveX
control. EX37C creates an ATL control that illustrates DHTML support.

To create the example, follow these steps:

1. Run the ATL COM AppWizard and create \vcpp32\ex37c\ex37c. Choose New from Visual
C++'s File menu. Then click the Projects tab, and select ATL COM AppWizard. Choose Executable as
the server type.

2. Insert an HTML control. In ClassView, right-click on the ex37c classes item and select New ATL
Object. Select Controls and HTML Control as shown in the graphic below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Click Next and fill in the C++ Short Name as shown here.

If you look at the IDHTMLUI object, you will see this stock implementation of the
OnClick handler:

 STDMETHOD(OnClick)(IDispatch* pdispBody, VARIANT varColor)
 {
 CComQIPtr<IHTMLBodyElement> spBody(pdispBody);
 if (spBody != NULL)
 spBody->put_bgColor(varColor);
 return S_OK;
 }
The default OnClick handler uses QueryInterface on the IDispatch pointer to get
the IHTMLBodyElement object. The handler then calls the put_bgColor method
to change the background color.

4. Compile, load, and run the control to see the ATL DHTML code in action. After you build the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Compile, load, and run the control to see the ATL DHTML code in action. After you build the
project, select ActiveX Control Test Container from the Tools menu. In the test container, select
Insert New Control from the Edit menu and choose CDHTML Class from the list box. Figure 37-5
shows the resulting ActiveX control that uses DHTML to change the background when the user clicks
the button.

Figure 37-5. EX37C ActiveX control.

For More Information…

We hope this introduction to DHTML has you thinking of some ways to use this exciting new technology in
your Visual C++ applications. The possibilities are endless: completely dynamic applications, applications
that update from the Internet, client/server ActiveX controls, and many more.

If you would like to learn more about DHTML, we suggest the following resources:

Inside Dynamic HTML by Scott Isaacs (Microsoft Press, 1997)

Dynamic HTML in Action by William J. Pardi and Eric M. Schurman (Microsoft Press, 1998)

The Internet SDK (an excellent resource on DHTML and other Microsoft technologies)

www.microsoft.com (several areas discuss DHTML)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 38
Visual C++ for Windows CE
In early 1997, Microsoft released a new version of the Windows family of operating systems named
Windows CE. Original equipment managers (OEMs) are the target audience for Windows CE. OEMs create
small, portable devices—such as hand-held computers—and embedded systems. A myriad of different
operating systems, a lack of strong development tools, and a maze of user interfaces have plagued both
the portable-device and embedded system markets. In the past, these problems limited the use of these
systems and restricted the availability of inexpensive software applications.

At the time of this writing, Windows CE support for Visual C++ 6.0 was not available.
All screen shots and samples programs in this chapter were created using Visual C++
for Windows CE 5.0.

Microsoft hopes that Windows CE can do for the embedded and handheld markets what Windows did for
the desktop PC industry. Based on the target audience, you can probably guess that Windows CE has
different design goals than Windows 98 and Windows NT. One goal was modularity: if an OEM is using
Windows CE in an embedded device for a refrigerator, the keyboard and graphics output modules are not
required. The OEM does not pay a penalty for modules not used by the application of Windows CE.

To date, there have been two major releases of Windows CE. The first release was primarily for Handheld
PCs (H/PCs) and was limited to noncolor applications. Windows CE 1.0 lacked many advanced Win32
features such as COM and ActiveX, large chunks of GDI, and many Windows controls. Win- dows CE 2.0
was released in late 1997 and added support for a variety of new device types, color, COM and ActiveX
technology, and also a Java virtual machine.

Before we look at the details of the Win32 support in Windows CE, let's examine some of the existing
device types to get a feel for possible Windows CE applications.

Windows CE devices

Currently the best known Windows CE devices are the H/PCs such as those available from HP, Sharp, Casio
and a variety of vendors. Figure 38-1 shows a typical H/PC machine.

Figure 38-1. A typical Handheld PC.

H/PCs currently have display resolutions anywhere from 480 by 240 pixels to as large as 640by 240 pixels.
They typically have a keyboard, infrared port, serial port, and microphone. The standard software on these
devices includes: Pocket Word, Pocket Excel, Internet Explorer, Outlook Express, and other scaled-down
Microsoft productivity applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft productivity applications.

A smaller device called a Palm-size PC (P/PC) shown in Figure 38-2 is completely pen-based and does not
have a keyboard. Screen sizes are also smaller (240 by 320 pixels) and only gray-scale displays are
currently available for P/PCs.

Figure 38-2. A Palm-size PC.

Note: At the time of this book's publication, MFC is not supported on the Palm-size PC
platform. The SDK for Palm-size PCs and embedded development is also not included
with the Visual C++ for Windows CE product. These SDKs must be downloaded from
the Microsoft website http://www.microsoft.com.

Perhaps the most exciting Windows CE devices now reaching the market are embedded applications. For
example, the CD player from Clarion shown in Figure 38-3 features a GUI, voice recognition, cellular phone
support, and a variety of other features that are changing the way we think about electronic devices and
appliances. Unlike Windows 95, which only supports Intel processors, and Windows NT, which only
supports the Intel and Alpha processors, Windows CE supports a myriad of embeddable 32-bit processors
such as the MIPS chip, Hitachi chips, and a variety of other chip sets. This flexibility dramatically increases
the potential reach of Windows CE in the embedded market.

Figure 38-3. An automotive CD player powered by Window CE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-3. An automotive CD player powered by Window CE.

Because all of these devices are based on Windows CE, you can write applications for them using a subset
of the familiar Win32 APIs that you have learned throughout this book. Before we investigate Visual C++
programming for Windows CE, let's take a look at the subset of Win32 implemented by Windows CE.

Windows CE vs. Windows 98 and Windows NT

Each Windows CE platform (H/PC, Palm-size PC and embedded) supports various subsets of the Win32 API
based on which Windows CE modules are loaded. The "core" functionality is fairly static among devices—
GDI, windows, and controls and so on, but some user input functions are different. (On a Palm-size PC, for
example, it doesn't make sense to have keyboard functions.)

The Win32 support in Windows CE matches the primary design goal of Windows CE: keep everything as
small as possible. Whenever a duplicate Win32 call exists, Windows CE provides only the most general API
function. For example, instead of implementing both TextOut and ExtTextOut, Windows CE supports only
the more flexible ExtTextOut, because in this single API you have the functionality of both.

Another interesting aspect of the Win32 Windows CE implementation is that only Unicode functions and
strings are supported. You need to be sure to wrap your Windows CE MFC strings with the _T macro.

At the GDI layer, Windows CE supports a relatively small subset of the implementations found in Windows
95, Windows 98, and Windows NT. The key groups of GDI Win32 API functions not implemented in
Windows CE are mapping modes, arcs, chords, metafiles, and Bézier curves. When you draw lines, you
must use PolyLine because MoveTo and LineTo are not supported. Cursor and mouse handling in Windows
CE can also be different from what you are accustomed to on larger systems.

Version 2.0 of Windows CE adds many key features that allow for parity with its big brothers, such as color
support, TrueType font support, printing, and memory DCs. Many other nuances of the various GDI
implementations are well documented in the Windows CE SDK, which is shipped as part of the Visual C++
for Windows CE product.

Windows CE also has some major differences in windowing. Perhaps the largest difference is the fact that
only SDI applications are supported. Thus, porting existing MDI applications to Windows CE is relatively
difficult. Another interesting windowing fact is that Windows CE windows are not resizable. Since there are
a wide variety of screen resolutions, you should programmatically size windows based on the resolution of
the display, instead of using static layouts.

Most of the standard Windows 95, Windows 98, and Internet Explorer 4.0 common controls are available
on Windows CE, except for the following: the rich edit control, the IP control, ComboBoxEx controls, and
the hot key control. Windows CE actually introduces a new common control—the command bar. Command
bars implement a hybrid menu bar and toolbar that occupies considerably less space than the standard
menu bar and toolbar configuration found in most desktop applications. Figure 38-4 shows an example of a
Windows CE command bar.

Figure 38-4. A Windows CE command bar.

ActiveX and COM are supported in Windows CE 2.0, but only for in-process COM objects such as ActiveX
controls. Multithreading, memory management, exception handling, and most other areas of Win32 are
fully supported —with a few caveats—by Windows CE.

Now that you're familiar with the basics of Windows CE, let's take a look at the Visual C++ development
environment for this new operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual C++ for Windows CE
Visual C++ for Windows CE is an add-on to Visual C++. When you install C++ for Windows CE, it extends
the Visual C++ environment by adding several Windows CE-specific features:

An Intel-based Windows CE emulation environment

New targets for each of the Windows CE supported processors (MIPS/SH and the emulation
environment)

New AppWizards for Windows CE applications

A Windows CE compatible port of MFC

A Windows CE compatible port of ATL

Tools for remote execution and debugging of Windows CE applications on actual devices

One interesting aspect of Visual C++ for Windows CE is the fact that it also supports the older 1.0 and
1.01 versions of Windows CE. Figure 38-5 shows the Windows CE operating system and processor
configuration bars that have been added to Visual C++.

While the environment lets you remotely run and debug your applications on a connected Windows CE
device, it also includes a very powerful Windows CE emulation environment. The Windows CE emulator
(WCE) is an Intel-based software-only version of Windows CE that runs on your desktop and gives you the
convenience of being able to run and test your applications on your development machine. Of course, to
ensure that your applications work correctly, you still need to test on real devices, but the emulator takes
much of the pain out of the early compile and debug stages of Windows CE development. Figure 38-6
shows the emulation environment in action.

There are four Windows-CE-specific AppWizards that ship with Visual C++ for WCE:

WCE ATL COM AppWizard—An ATL-based COM object project

WCE MFC ActiveX ControlWizard—An MFC ActiveX control project

WCE MFC AppWizard (dll)—An MFC DLL project

WCE MFC AppWizard (exe)—An MFC executable project

Figure 38-5. Visual C++ for the Windows CE environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-5. Visual C++ for the Windows CE environment.

Figure 38-6. The Windows CE emulator.

The WCE AppWizards are basically the same as their big brother Win32 counterparts, except that they
have different features that take advantage of the Windows CE operating system, such as the Windows CE
help environment. Figure 38-7 shows the first three steps of the Windows CE MFC executable AppWizard.
Notice that there are only two project types: SDI and dialog-based. Notice also the variety of Windows-CE-
specific options that you can choose from.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-7. The Windows CE MFC AppWizard.

MFC for Windows CE

Visual C++ for Windows CE ships with a smaller version of MFC named Mini MFC. To get a feel for which
MFC classes are and are not supported, see Figure 38-8—the MFC for Windows CE hierarchy chart. The
grayed out classes are not supported on Windows CE.

Several classes have been added to Mini MFC, including classes for command bars, object store, and
socket classes. Windows CE functions provide the command bars in the Mini MFC CFrameWnd class.

Instead of implementing a file metaphor, Windows CE provides an object store. Several new MFC classes
were added to give the Windows CE developer access to the object store:

CCeDBDatabase—Encapsulates a database in the object store

CCeDBEnum—Enumerates the databases in the object store

CCeDBProp—Encapsulates a database property (Database properties are data items consisting of
an application-defined property identifier, a data-type identifier, and the data value.)

CCeDBRecord—Provides access to a record in the database

In addition to these data store classes, a new class CCeSocket is provided. CCeSocket implements an
asynchronous CSocket derivative.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-8. MFC for Windows CE hierarchy chart.

Using Mini MFC

Let's look at a couple of examples to get a feel for the Mini version of MFC. In example EX38A, we will
create a basic SDI application that draws some text in the view and displays a dialog when the user
presses the left mouse button (or taps the screen on a Windows CE machine). EX38A is similar to the
EX06A example, so you can compare the steps in creating a similar application for Windows 98, Windows
NT, and Windows CE. For this example, you will create a simulated expense-tracking application for
Windows CE—a perfect candidate for portable computing. For demonstration purposes, we will focus on
creating a dialog that allows the user to enter expense information. Figure 38-9 shows the application
running in the emulation environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

running in the emulation environment.

Figure 38-9. The EX38A expense-tracking application.

Here are the steps to create the EX38A example:

1. Run the MFC Executable for Windows CE AppWizard to produce \vcpp32\ex38a\ex38a.
Select the WCE MFC AppWizard project type and accept all the defaults. The options and the default
class names are shown here.

2. Select the WCE x86em Debug configuration. Choose the Set Active Configuration command
from the Set menu and then select Ex38a-Win32 (WCE x86em) Debug from the list. Click OK. This
configuration will allow you to work with the desktop emulator instead of working remotely with a
connected Windows CE device. (If you have a connected Windows CE device you can select its
configuration instead. For example, select Ex38a—Win32 [WCE SH] Debug if you have a connected
HP 620LX.)

3. Use the dialog editor to create a dialog resource. Choose Resource from the Insert menu,
select Dialog, and then click New. The dialog editor assigns the ID IDD_DIALOG1 to the new dialog.
Change the dialog caption to The Dialog that Ate Windows CE! You can resize the dialog to be wider
but not much taller. (Windows CE displays are much wider than they are tall.)

4. Remove the OK and CANCEL buttons and add an OK caption button. Since screen real estate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Remove the OK and CANCEL buttons and add an OK caption button. Since screen real estate
is at a premium in Windows CE, we can save a good deal of space in our dialog by deleting the OK
and CANCEL buttons. For Cancel functionality, users can use the close button that is part of the
dialog caption. Windows CE also supports an OK caption button that you can create by setting the
dialog's property bar. To set the property, open the properties editor for the dialog, click the
Extended Styles tab, and then check the Caption Bar OK (WCE Only) option as shown here.

(You might also need to set the dialog's Visible property on the More Styles tab.)

5. Add the dialog's controls. Add the following controls shown in Figure 38-9 and accept the default
names:

A static control and an edit control for a name

A static control and an edit control for an amount

A static control and a drop-down combo box with for an expense type

A City group box with three radio buttons labeled Atlanta, Detroit, and Chicago

A Payment Option group box with three check boxes labeled Check, Credit Card, and Cash.

6. Add the CEx38aDialog class. After adding the controls, double-click on the dialog. ClassWizard
detects that you have created a dialog resource and asks whether you want to create a class for the
dialog. Click OK and accept the defaults to create the CEx06aDialog class.

7. Program the controls. Use ClassWizard to create the following member variables in the dialog
class:

m_pComboBox—a member variable used to configure the expense type combo box

m_pProgressCtrl—A member variable for the progress control

If you need a refresher on how to program modal dialogs, please refer to
Chapter 6.

Next, add the following code to the CEx38aDialog::OnInitDialog handler to initialize the controls:

BOOL CWindowsCEDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 m_pComboBox.AddString(_T("Travel"));
 m_pComboBox.AddString(_T("Meal"));
 m_pComboBox.AddString(_T("Cab Fare"));
 m_pComboBox.AddString(_T("Entertainment"));
 m_pComboBox.AddString(_T("Other"));
 m_pProgressCtrl.SetPos(50);
 return TRUE;
}
Notice that you must use the _T macro whenever you have inline strings.

8. Connect the dialog to the View. In ClassWizard, select the CEx38aView class and use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. Connect the dialog to the View. In ClassWizard, select the CEx38aView class and use
ClassWizard to add the OnLButtonDown member function.

9. Write the code for the OnLButtonDown handler. Add the boldface code below:

void CEx38aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CWindowsCEDlg dlg;
 dlg.DoModal();
 CView::OnLButtonDown(nFlags, point);
}

10. Add code to the virtual OnDraw function in file ex38aView.cpp. The CDC::TextOut function
used in previous examples is not supported on Windows CE, so we need to use the CDC::DrawText
function as shown here:

void CEx38aView::OnDraw(CDC* pDC)
{
 CRect rect;
 GetClientRect(rect);
 pDC->SetTextColor(::GetSysColor(COLOR_WINDOWTEXT));
 pDC->SetBkMode(TRANSPARENT);
 pDC->DrawText(_T("Press the left mouse button here."),
 rect, DT_SINGLELINE);
}

11. Add the ex38aDialog.h header file to ex38aView.cpp. Insert the include statement

#include "ex38aDialog.h"
at the top of the ex38aView.cpp source file, after the statement

#include "ex38aView.h"

12. Build and run the application. The EX38A application should appear as shown in Figure 38-10. If
everything works satisfactorily, you can change the configuration for a real Windows CE device.
Then you can run (or debug) the application remotely on the device to ensure it works in a real-
world situation.

Figure 38-10. The EX 38A application running in the Windows CE emulator.

As you can tell from the EX38A application, programming for Windows CE is very similar to programming
for Windows 98 and Windows.

Many Windows CE developers are interested in porting existing applications to the Windows CE
environment. The next section shows you how to tackle this problem.

Porting an Existing MFC Application to Windows CE

In example EX38B we will port an existing application (EX06B from Chapter 6) from Windows 98 and
Windows NT to Windows CE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows NT to Windows CE.

We chose the EX06B sample because it is an SDI application. If you are porting an MDI
application to Windows CE, we recommend that you first convert it into an SDI
application (or a series of SDI applications, if you have several views) and then port it
to Windows CE.

Here are the steps for converting EX06B:

1. Run the MFC AppWizard to produce \vcpp32\ex38b\ex38b. Select the WCE MFC AppWizard
project type and accept all defaults. (You might have thought that we could copy the EX06B
workspace and then add a Windows CE configuration. However, it is actually easier to start with a
WCE MFC AppWizard project instead because there are many complicated build settings that the
wizard automatically sets up for you.)

2. Using Windows Explorer, copy the EX06B files to the EX38B directory. Be sure to copy the
following files: Ex06bDialog.h, Ex06bDialog.cpp, Ex06bDoc.h, Ex06bDoc.cpp, ex06bView.h, and
ex06bView.cpp.

3. Insert the new files into the project. Choose the Add To Project/Files command from the Project
menu and insert the files from step 2 into the project.

4. Copy the dialog and Icon resources from EX06B. Choose Open from the File menu and select
\vcpp32\ex06b\ex06b\ex06b.rc. Drag and drop IDD_DIALOG1 from ex06b.rc into the EX38B
project. Next, drag and drop the color icon resources (IDI_BLACK, IDI_BLUE, and so on) from the
ex06b.rc file into the EX38B project.

5. Build the application and repair any compiler errors or warnings. Now that you have moved
the key files that you need (the document, view, and dialog classes) from the EX06B application to
the Windows CE EX38B application, try to build the project. You should see a number of errors that
can be fixed with the following steps:

Change all references to the file ex06b.h to ex38b.h

Make sure that all inline strings use the _T macro. For example, in Ex06bDialog.cpp the line

TRACE("updating trackbar data members\n");
should be changed to use the _T macro as follows:

TRACE(_T("updating trackbar data members\n"));
Convert any other non-Unicode strings to Unicode. (This is the most frequently encountered
porting problem.)

Ex06bView::OnDraw uses the unsupported CDC::TextOut member function. Change it to use
DrawText as follows:

 CRect rect;
 GetClientRect(rect);
 pDC->SetTextColor(::GetSysColor(COLOR_WINDOWTEXT));
 pDC->SetBkMode(TRANSPARENT);
 pDC->DrawText(_T("Press the left mouse button here."),
 rect, DT_SINGLELINE);

6. Replace the wizard-generated view with the real view. Open the ex38b.cpp file and do a
global search and replace:

Change CEx38bDoc to CEx06bDoc

Change CEx38bView to CEx06bView

Also, make sure that ex38b.cpp #includes both the ex06bView.h and ex06bDoc.h header files.

7. Using the dialog editor, adjust the dialog's layout for Windows CE. As it stands, the dialog is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Using the dialog editor, adjust the dialog's layout for Windows CE. As it stands, the dialog is
far too tall for Windows CE. You can rearrange it by following these steps:

Remove the OK and CANCEL buttons and use the OK window button (see step 4 in the
EX38A example).

Move the progress bar controls, sliders, and spinners closer together at the top of the dialog.

Move the list control and tree control closer together. To save vertical space, move the
current selection static controls to the left of both the tree and list control.

Size the dialog to fit on a smaller screen.

8. Clean up the project. Now you can remove the document and view classes created by the MFC
AppWizard by selecting the files in FileView and pressing the Delete key.

9. Build and test. In eight easy steps, you have converted a small MFC application from Windows 98
and Windows NT to Windows CE.

Figure 38-11 shows EX38B running in emulation mode for Window CE.

Figure 38-11. The EX38B application running in the Windows CE emulator.

ATL and Windows CE

In addition to Mini MFC, Visual C++ for Windows CE also provides a Windows CE-friendly version of ATL.
ATL is already a lightweight framework, so Microsoft didn't need to reduce the feature set for size
constraints. However, there are some areas of COM not covered by Windows CE 2.0 that impact the
feature set of ATL for Windows CE.

Windows CE doesn't support the apartment-threading model, so ATL for Windows CE doesn't implement
the CComApartment, CComAutoThreadModule, CComClassFactoryAutoThread, or
CComSimpleThreadAllocator classes.

Windows CE also doesn't support asynchronous monikers, so ATL for Windows CE doesn't implement the
IBindStatusCallbackImpl or CBindStatusCallback classes. A variety of other ATL class member functions
that behave differently on Windows CE are documented in the Visual C++ for Windows CE documentation.

In addition to ATL, a Windows CE version of the ATL Wizard is provided. Figure 38-12 shows the wizard
that has only one option: to use MFC or not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-12. The WCE ATL COM AppWizard.

When you write ActiveX controls for Windows CE, remember that they are binary objects and therefore
processor-dependent. Depending on the devices you plan to support, you might have to provide several
versions of the control (MIPS or SH, for example).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For More Information on Windows CE…
Windows CE is an exciting new environment for Windows developers to explore. The ability to leverage
your knowledge of Windows, Win32, and Visual C++ makes Windows CE an extremely appealing and easy-
to-work-with environment. Programming Windows CE by Doug Boling (Microsoft Press, 1998) is an
excellent resource for learning the details of Windows CE.

Microsoft is developing Windows CE and related technologies at an incredible pace. To stay up to date, we
recommend using the Web. Keep an eye on these sites:

http://www.microsoft.com/windowsce. This site provides news and information about the Windows
CE operating system, devices and development tools. You can sign up for a useful newsletter here.

http://www.microsoft.com/msdn. The Microsoft Developer Network (MSDN) has tons of Windows
CE articles. They are all online and searchable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A

Message Map Functions in the Microsoft Foundation Class Library
HANDLERS FOR WM_COMMAND MESSAGES

Map Entry Function Prototype

ON_COMMAND(<id>, <memberFxn>) afx_msg void memberFxn();

ON_COMMAND_EX(<id>, <memberFxn>) afx_msg BOOL
memberFxn(UINT);

ON_COMMAND_EX_RANGE(<id>, <idLast>, <memberFxn>) afx_msg BOOL
memberFxn(UINT);

ON_COMMAND_RANGE(<id>, <idLast>, <memberFxn>) afx_msg void memberFxn(UINT);

ON_UPDATE_COMMAND_UI(<id>, <memberFxn>) afx_msg void
memberFxn(CCmdUI*);

ON_UPDATE_COMMAND_UI_RANGE (<id>, <idLast>,
<memberFxn>)

afx_msg void
memberFxn(CCmdUI*);

ON_UPDATE_COMMAND_UI_REFLECT (<memberFxn>) afx_msg void
memberFxn(CCmdUI*);

HANDLERS FOR CHILD WINDOW NOTIFICATION MESSAGES

Map Entry Function Prototype

Generic Control Notification Codes

ON_CONTROL(<wNotifyCode>, <id>, <memberFxn>) afx_msg void memberFxn();

ON_CONTROL_RANGE(<wNotifyCode>, <id>
<idLast>, <memberFxn>)

afx_msg void memberFxn(UINT);

ON_CONTROL_REFLECT(<wNotifyCode>,
<memberFxn>)

afx_msg void memberFxn();

ON_CONTROL_REFLECT_EX(<wNotifyCode>,
<memberFxn>)

afx_msg BOOL memberFxn();

ON_NOTIFY(<wNotifyCode>, <id>, <memberFxn>) afx_msg void memberFxn(NMHDR*,
LRESULT*);

ON_NOTIFY_EX(<wNotifyCode>, <id>,
<memberFxn>)

afx_msg BOOL memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_EX_RANGE(<wNotifyCode>, <id>,
<idLast>, <memberFxn>)

afx_msg BOOL memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_RANGE(<wNotifyCode>, <id>, <idLast>,
<memberFxn>)

afx_msg void memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_REFLECT(<wNotifyCode>,
<memberFxn>)

afx_msg void memberFxn(NMHDR*,
LRESULT*);

ON_NOTIFY_REFLECT_EX(<wNotifyCode>,
<memberFxn>)

afx_msg BOOL memberFxn(NMHDR*,
LRESULT*);

User Button Notification Codes

ON_BN_CLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_DOUBLECLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_BN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Combo Box Notification Codes

ON_CBN_CLOSEUP(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_DROPDOWN(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITUPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELENDCANCEL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELENDOK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Check List Box Notification Codes

ON_CLBN_CHKCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

Edit Control Notification Codes

ON_EN_CHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_HSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_MAXTEXT(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_UPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_VSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

List Box Notification Codes

ON_LBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SELCANCEL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Static Control Notification Codes

ON_STN_CLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_STN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_STN_DISABLE(<id>, <memberFxn>) afx_msg void memberFxn();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_STN_ENABLE(<id>, <memberFxn>) afx_msg void memberFxn();

HANDLERS FOR WINDOW NOTIFICATION MESSAGES

Map Entry Function Prototype

ON_WM_ACTIVATE() afx_msg void OnActivate(UINT, CWnd*, BOOL);

ON_WM_ACTIVATEAPP() afx_msg void OnActivateApp(BOOL, HTASK);

ON_WM_ASKCBFORMATNAME() afx_msg void OnAskCbFormatName(UINT, LPTSTR);

ON_WM_CANCELMODE() afx_msg void OnCancelMode();

ON_WM_CAPTURECHANGED() afx_msg void OnCaptureChanged(CWnd*);

ON_WM_CHANGECBCHAIN() afx_msg void OnChangeCbChain(HWND, HWND);

ON_WM_CHAR() afx_msg void OnChar(UINT, UINT, UINT);

ON_WM_CHARTOITEM() afx_msg int OnCharToItem(UINT, CListBox*, UINT);

ON_WM_CHARTOITEM_REFLECT() afx_msg int CharToItem(UINT, UINT);

ON_WM_CHILDACTIVATE() afx_msg void OnChildActivate();

ON_WM_CLOSE() afx_msg void OnClose();

ON_WM_COMPACTING() afx_msg void OnCompacting(UINT);

ON_WM_COMPAREITEM() afx_msg int OnCompareItem(int, LPCOMPAREITEMSTRUCT);

ON_WM_COMPAREITEM_REFLECT() afx_msg int CompareItem (LPCOMPAREITEMSTRUCT);

ON_WM_CONTEXTMENU() afx_msg void OnContextMenu(CWnd*, CPoint);

ON_WM_COPYDATA() afx_msg BOOL OnCopyData(CWnd*, COPYDATASTRUCT*);

ON_WM_CREATE() afx_msg int OnCreate(LPCREATESTRUCT);

ON_WM_CTLCOLOR() afx_msg HBRUSH OnCtlColor(CDC*, CWnd*, UINT);

ON_WM_CTLCOLOR_REFLECT() afx_msg HBRUSH CtlColor(CDC*, UINT);

ON_WM_DEADCHAR() afx_msg void OnDeadChar(UINT, UINT, UINT);

ON_WM_DELETEITEM() afx_msg void OnDeleteItem(int, LPDELETEITEMSTRUCT);

ON_WM_DELETEITEM_REFLECT() afx_msg void DeleteItem (LPDELETEITEMSTRUCT)

ON_WM_DESTROY() afx_msg void OnDestroy();

ON_WM_DESTROYCLIPBOARD() afx_msg void OnDestroyClipboard();

ON_WM_DEVICECHANGE() afx_msg BOOL OnDeviceChange(UINT, DWORD);

ON_WM_DEVMODECHANGE() afx_msg void OnDevModeChange(LPTSTR);

ON_WM_DRAWCLIPBOARD() afx_msg void OnDrawClipboard();

ON_WM_DRAWITEM() afx_msg void OnDrawItem(int, LPDRAWITEMSTRUCT);

ON_WM_DRAWITEM_REFLECT() afx_msg void DrawItem (LPDRAWITEMSTRUCT);

ON_WM_DROPFILES() afx_msg void OnDropFiles(HDROP);

ON_WM_ENABLE() afx_msg void OnEnable(BOOL);

ON_WM_ENDSESSION() afx_msg void OnEndSession(BOOL);

ON_WM_ENTERIDLE() afx_msg void OnEnterIdle(UINT, CWnd*);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_ENTERMENULOOP() afx_msg void OnEnterMenuLoop(BOOL);

ON_WM_ERASEBKGND() afx_msg BOOL OnEraseBkgnd(CDC*);

ON_WM_EXITMENULOOP() afx_msg void OnExitMenuLoop(BOOL);

ON_WM_FONTCHANGE() afx_msg void OnFontChange();

ON_WM_GETDLGCODE() afx_msg UINT OnGetDlgCode();

ON_WM_GETMINMAXINFO() afx_msg void OnGetMinMaxInfo (MINMAXINFO*);

ON_WM_HELPINFO() afx_msg BOOL OnHelpInfo(HELPINFO*);

ON_WM_HSCROLL() afx_msg void OnHScroll(UINT, UINT, CScrollBar*);

ON_WM_HSCROLL_REFLECT() afx_msg void HScroll(UINT, UINT);

ON_WM_HSCROLLCLIPBOARD() afx_msg void OnHScrollClipboard(CWnd*, UINT, UINT);

ON_WM_ICONERASEBKGND() afx_msg void OnIconEraseBkgnd(CDC*);

ON_WM_INITMENU() afx_msg void OnInitMenu(CMenu*);

ON_WM_INITMENUPOPUP() afx_msg void OnInitMenuPopup(CMenu*, UINT, BOOL);

ON_WM_KEYDOWN() afx_msg void OnKeyDown(UINT, UINT, UINT);

ON_WM_KEYUP() afx_msg void OnKeyUp(UINT, UINT, UINT);

ON_WM_KILLFOCUS() afx_msg void OnKillFocus(CWnd*);

ON_WM_LBUTTONDBLCLK() afx_msg void OnLButtonDblClk(UINT, CPoint);

ON_WM_LBUTTONDOWN() afx_msg void OnLButtonDown(UINT, CPoint);

ON_WM_LBUTTONUP() afx_msg void OnLButtonUp(UINT, CPoint);

ON_WM_MBUTTONDBLCLK() afx_msg void OnMButtonDblClk(UINT, CPoint);

ON_WM_MBUTTONDOWN() afx_msg void OnMButtonDown(UINT, CPoint);

ON_WM_MBUTTONUP() afx_msg void OnMButtonUp(UINT, CPoint);

ON_WM_MDIACTIVATE() afx_msg void OnMDIActivate(BOOL, CWnd*, CWnd*);

ON_WM_MEASUREITEM() afx_msg void OnMeasureItem(int,
LPMEASUREITEMSTRUCT);

ON_WM_MEASUREITEM_REFLECT() afx_msg void MeasureItem (LPMEASUREITEMSTRUCT);

ON_WM_MENUCHAR() afx_msg LRESULT OnMenuChar(UINT, UINT, CMenu*);

ON_WM_MENUSELECT() afx_msg void OnMenuSelect(UINT, UINT, HMENU);

ON_WM_MOUSEACTIVATE() afx_msg int OnMouseActivate(CWnd*, UINT, UINT);

ON_WM_MOUSEMOVE() afx_msg void OnMouseMove(UINT, CPoint);

ON_WM_MOUSEWHEEL() afx_msg BOOL OnMouseWheel(UINT, short, CPoint);

ON_WM_MOVE() afx_msg void OnMove(int, int);

ON_WM_MOVING() afx_msg void OnMoving(UINT, LPRECT);

ON_WM_NCACTIVATE() afx_msg BOOL OnNcActivate(BOOL);

ON_WM_NCCALCSIZE() afx_msg void OnNcCalcSize(BOOL, NCCALCSIZE_PARAMS*);

ON_WM_NCCREATE() afx_msg BOOL OnNcCreate (LPCREATESTRUCT);

ON_WM_NCDESTROY() afx_msg void OnNcDestroy();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_NCHITTEST() afx_msg UINT OnNcHitTest(CPoint);

ON_WM_NCLBUTTONDBLCLK() afx_msg void OnNcLButtonDblClk(UINT, CPoint);

ON_WM_NCLBUTTONDOWN() afx_msg void OnNcLButtonDown(UINT, CPoint);

ON_WM_NCLBUTTONUP() afx_msg void OnNcLButtonUp(UINT, CPoint);

ON_WM_NCMBUTTONDBLCLK() afx_msg void OnNcMButtonDblClk(UINT, CPoint);

ON_WM_NCMBUTTONDOWN() afx_msg void OnNcMButtonDown(UINT, CPoint);

ON_WM_NCMBUTTONUP() afx_msg void OnNcMButtonUp(UINT, CPoint);

ON_WM_NCMOUSEMOVE() afx_msg void OnNcMouseMove(UINT, CPoint);

ON_WM_NCPAINT() afx_msg void OnNcPaint();

ON_WM_NCRBUTTONDBLCLK() afx_msg void OnNcRButtonDblClk(UINT, CPoint);

ON_WM_NCRBUTTONDOWN() afx_msg void OnNcRButtonDown(UINT, CPoint);

ON_WM_NCRBUTTONUP() afx_msg void OnNcRButtonUp(UINT, CPoint);

ON_WM_PAINT() afx_msg void OnPaint();

ON_WM_PAINTCLIPBOARD() afx_msg void OnPaintClipboard(CWnd*, HGLOBAL);

ON_WM_PALETTECHANGED() afx_msg void OnPaletteChanged(CWnd*);

ON_WM_PALETTEISCHANGING() afx_msg void OnPaletteIsChanging(CWnd*);

ON_WM_PARENTNOTIFY() afx_msg void OnParentNotify(UINT, LPARAM);

ON_WM_PARENTNOTIFY_REFLECT() afx_msg void ParentNotify(UINT, LPARAM);

ON_WM_QUERYDRAGICON() afx_msg HCURSOR OnQueryDragIcon();

ON_WM_QUERYENDSESSION() afx_msg BOOL OnQueryEndSession();

ON_WM_QUERYNEWPALETTE() afx_msg BOOL OnQueryNewPalette();

ON_WM_QUERYOPEN() afx_msg BOOL OnQueryOpen();

ON_WM_RBUTTONDBLCLK() afx_msg void OnRButtonDblClk(UINT, CPoint);

ON_WM_RBUTTONDOWN() afx_msg void OnRButtonDown(UINT, CPoint);

ON_WM_RBUTTONUP() afx_msg void OnRButtonUp(UINT, CPoint);

ON_WM_RENDERALLFORMATS() afx_msg void OnRenderAllFormats();

ON_WM_RENDERFORMAT() afx_msg void OnRenderFormat(UINT);

ON_WM_SETCURSOR() afx_msg BOOL OnSetCursor(CWnd*, UINT, UINT);

ON_WM_SETFOCUS() afx_msg void OnSetFocus(CWnd*);

ON_WM_SETTINGCHANGE() afx_msg void OnSettingChange(UINT, LPCTSTR);

ON_WM_SHOWWINDOW() afx_msg void OnShowWindow(BOOL, UINT);

ON_WM_SIZE() afx_msg void OnSize(UINT, int, int);

ON_WM_SIZECLIPBOARD() afx_msg void OnSizeClipboard(CWnd*, HGLOBAL);

ON_WM_SIZING() afx_msg void OnSizing(UINT, LPRECT);

ON_WM_SPOOLERSTATUS() afx_msg void OnSpoolerStatus(UINT, UINT);

ON_WM_STYLECHANGED() afx_msg void OnStyleChanged(int, LPSTYLESTRUCT);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_STYLECHANGING() afx_msg void OnStyleChanging(int, LPSTYLESTRUCT);

ON_WM_SYSCHAR() afx_msg void OnSysChar(UINT, UINT, UINT);

ON_WM_SYSCOLORCHANGE() afx_msg void OnSysColorChange();

ON_WM_SYSCOMMAND() afx_msg void OnSysCommand(UINT, LPARAM);

ON_WM_SYSDEADCHAR() afx_msg void OnSysDeadChar(UINT, UINT, UINT);

ON_WM_SYSKEYDOWN() afx_msg void OnSysKeyDown(UINT, UINT, UINT);

ON_WM_SYSKEYUP() afx_msg void OnSysKeyUp(UINT, UINT, UINT);

ON_WM_TCARD() afx_msg void OnTCard(UINT, DWORD);

ON_WM_TIMECHANGE() afx_msg void OnTimeChange();

ON_WM_TIMER() afx_msg void OnTimer(UINT);

ON_WM_VKEYTOITEM() afx_msg int OnVKeyToItem(UINT, CListBox*, UINT);

ON_WM_VKEYTOITEM_REFLECT() afx_msg int VKeyToItem(UINT, UINT);

ON_WM_VSCROLL() afx_msg void OnVScroll(UINT, UINT, CScrollBar*);

ON_WM_VSCROLL_REFLECT() afx_msg void VScroll(UINT, UINT);

ON_WM_VSCROLLCLIPBOARD() afx_msg void OnVScrollClipboard(CWnd*, UINT, UINT);

ON_WM_WINDOWPOSCHANGED() afx_msg void OnWindowPosChanged (WINDOWPOS*);

ON_WM_WINDOWPOSCHANGING() afx_msg void OnWindowPosChanging (WINDOWPOS*);

ON_WM_WININICHANGE() afx_msg void OnWinIniChange(LPCTSTR);

USER-DEFINED MESSAGE CODES

Map Entry Function Prototype

ON_MESSAGE(<message>, <memberFxn>) afx_msg LRESULT
memberFxn(WPARAM, LPARAM);

ON_REGISTERED_MESSAGE (<nMessageVariable>,
<memberFxn>)

afx_msg LRESULT
memberFxn(WPARAM, LPARAM);

ON_REGISTERED_THREADMESSAGE(<nMessageVariable>,
<memberFxn>)

afx_msg void memberFxn(WPARAM,
LPARAM);

ON_THREAD_MESSAGE (<message>, <memberFxn>) afx_msg void memberFxn(WPARAM,
LPARAM);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B

MFC Library Runtime Class Identification and Dynamic Object
Creation
Long before runtime type information (RTTI) was added to the C++ language specification, the MFC library
designers realized that they needed runtime access to an object's class name and to the position of the
class in the hierarchy. Also, the document-view architecture (and, later, COM class factories) demanded
that objects be constructed from a class specified at runtime. So the MFC team created an integrated
macro-based class identification and dynamic creation system that depends on the universal CObject base
class. And in spite of the fact that the Visual C++ version 6.0 compiler supports the ANSI RTTI syntax, the
MFC library continues to use the original system, which actually has more features.

This appendix explains how the MFC library implements the class identification and dynamic creation
features. You'll see how the DECLARE_DYNAMIC, DECLARE_DYNCREATE, and associated macros work, and
you'll learn about the RUNTIME_CLASS macro and the CRuntimeClass structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting an Object's Class Name at Runtime
If you wanted only an object's class name, you'd have an easy time, assuming that all your classes were
derived from a common base class, CObject. Here's how you'd get the class name:

class CObject
{
public:
 virtual char* GetClassName() const { return NULL; }
};

class CMyClass : public CObject
{
public:
 static char s_lpszClassName[];
 virtual char* GetClassName() const { return s_lpszClassName; }
};
char CMyClass::s_szClassName[] = "CMyClass";
Each derived class would override the virtual GetClassName function, which would return a static string.
You would get an object's actual class name even if you used a CObject pointer to call GetClassName. If
you needed the class name feature in many classes, you could save yourself some work by writing macros.
A DECLARE_CLASSNAME macro might insert the static data member and the GetClassName function in the
class declaration, and an IMPLEMENT_CLASSNAME macro might define the class name string in the
implementation file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRuntimeClass Structure and the RUNTIME_CLASS Macro
In a real MFC program, an instance of the CRuntimeClass structure replaces the static s_lpszClassName
data member shown above. This structure has data members for the class name and the object size; it
also contains a pointer to a special static function, CreateObject, that's supposed to be implemented in the
target class. Here's a simplified version of CRuntimeClass:

struct CRuntimeClass
{
 char m_lpszClassName[21];
 int m_nObjectSize; // used for memory validation
 CObject* (*m_pfnCreateObject)();
 CObject* CreateObject();
};

The real MFC CRuntimeClass structure has additional data members and functions that
navigate through the class's hierarchy. This navigation feature is not supported by the
official C++ RTTI implementation.

This structure supports not only class name retrieval but also dynamic creation. Each class you derive from
CObject has a static CRuntimeClass data member, provided that you use the MFC DECLARE_DYNAMIC,
DECLARE_DYNCREATE, or DECLARE_SERIAL macro in the declaration and the corresponding IMPLEMENT
macro in the implementation file. The name of the static data member is, by convention,
class<class_name>. If your class were named CMyClass, the CRuntimeClass data member would be
named classCMyClass.

If you want a pointer to a class's static CRuntimeClass object, you use the MFC RUNTIME_CLASS macro,
defined as follows:

#define RUNTIME_CLASS(class_name) (&class_name::class##class_name)
Here's how you use the macro to get the name string from a class name:

ASSERT(RUNTIME_CLASS(CMyClass)->m_lpszClassName == "CMyClass");
If you want the class name string from an object, you call the virtual CObject::GetRuntimeClass function.
The function simply returns a pointer to the class's static CRuntimeClass object, just as earlier the
GetClassName function returned the name string. Here's the function you'd write for CMyClass:

virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCMyClass; }
And here's how you'd call it:

ASSERT(pMyObject->GetRuntimeClass()->m_lpszClassName == "CMyClass");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic Creation
You've already learned that the DECLARE and IMPLEMENT macros add a static CRuntimeClass object to a
class. If you use the DECLARE_DYNCREATE or DECLARE_SERIAL macro (and the corresponding
IMPLEMENT macro), you get an additional static member function CreateObject (distinct from
CRuntimeClass::CreateObject) in your class. Here's an example:

CObject* CMyClass::CreateObject()
{
 return new CMyClass;
}
Obviously, CMyClass needs a default constructor. This constructor is declared protected in wizard-
generated classes that support dynamic creation.

Now look at the code for the CRuntimeClass::CreateObject function:

CObject* CRuntimeClass::CreateObject()
{
 return (*m_pfnCreateObject)();
}
This function makes an indirect call to the CreateObject function in the target class. Here's how you would
dynamically construct an object of class CMyClass:

CRuntimeClass* pRTC = RUNTIME_CLASS(CMyObject);
CMyClass* pMyObject = (CMyClass*)pRTC->CreateObject();
Now you know how document templates work. A document template object has three CRuntimeClass*
data members initialized at construction to point to the static CRuntimeClass data members for the
document, frame, and view classes. When CWinApp::OnFileNew is called, the framework calls the
CreateObject functions for the three stored pointers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Sample Program
Here is the code for a command-line program that dynamically constructs objects of two classes. Note that
this isn't real MFC code—the CObject class is a simplified version of the MFC library CObject class. You can
find this code in the dyncreat.cpp file in the \vcpp32\appendb folder.

#include <stdio.h>

#define RUNTIME_CLASS(class_name) (&class_name::class##class_name)

class CObject;

struct CRuntimeClass
{
 char m_lpszClassName[21];
 int m_nObjectSize;
 CObject* (*m_pfnCreateObject)();
 CObject* CreateObject();
};

// not a true abstract class because there are no pure
// virtual functions, but user can't create CObject objects
// because of the protected constructor
class CObject
{
public:
 // not pure because derived classes don't necessarily
 // implement it
 virtual CRuntimeClass* GetRuntimeClass() const { return NULL; }

 // We never construct objects of class CObject, but in MFC we
 // use this to get class hierarchy information
 static CRuntimeClass classCObject; // DYNAMIC
 virtual ~CObject() {}; // gotta have it
protected:
 CObject() { printf("CObject constructor\n"); }
};

CRuntimeClass CObject::classCObject = { "CObject",
 sizeof(CObject), NULL };

CObject* CRuntimeClass::CreateObject()
{
 return (*m_pfnCreateObject)(); // indirect function call
}

class CAlpha : public CObject
{
public:
 virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCAlpha; }
 static CRuntimeClass classCAlpha; // DYNAMIC
 static CObject* CreateObject(); // DYNCREATE
protected:
 CAlpha() { printf("CAlpha constructor\n"); }
};

CRuntimeClass CAlpha::classCAlpha = { "CAlpha",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CRuntimeClass CAlpha::classCAlpha = { "CAlpha",
 sizeof(CAlpha), CAlpha::CreateObject };

CObject* CAlpha::CreateObject() // static function
{
 return new CAlpha;
}

class CBeta : public CObject
{
public:
 virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCBeta; }
 static CRuntimeClass classCBeta; // DYNAMIC
 static CObject* CreateObject(); // DYNCREATE
protected:
 CBeta() { printf("CBeta constructor\n"); }
};

CRuntimeClass CBeta::classCBeta = { "CBeta",
 sizeof(CBeta), CBeta::CreateObject };

CObject* CBeta::CreateObject() // static function
{
 return new CBeta;
}

int main()
{
 printf("Entering dyncreate main\n");

 CRuntimeClass* pRTCAlpha = RUNTIME_CLASS(CAlpha);
 CObject* pObj1 = pRTCAlpha->CreateObject();
 printf("class of pObj1 = %s\n",
 pObj1->GetRuntimeClass()->m_lpszClassName);

 CRuntimeClass* pRTCBeta = RUNTIME_CLASS(CBeta);
 CObject* pObj2 = pRTCBeta->CreateObject();
 printf("class of pObj2 = %s\n",
 pObj2->GetRuntimeClass()->m_lpszClassName);

 delete pObj1;
 delete pObj2;
 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-1. The Visual C++ application build process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-2. Visual C++ 6.0 windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. The Visual C++ debugger window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-1. The document-view relationship.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-2. A square drawn after the origin has been moved to (100, 100).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-3. A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4. A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-1. Font height measurements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-1. The finished dialog in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. The Windows Common Controls Dialog example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-1. The Delete File dialog in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-1. The Calendar control in use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-1. The new Internet Explorer 4 Common Controls dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-1. A typical Windows 95 virtual memory map for two processes linked to the same EXE file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. Win32 virtual memory management (Intel).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-1. The layout for a BMP file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-1. The child windows within an SDI main frame window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-2. Multilevel pop-up menus (from Microsoft Visual C++).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-3. The standard SDI frame menus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-2. The EX14A program in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-3. The status bar and the indicators array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-4. The status bar of the EX14B example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-5. Rebar terminology.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-6. EX14C rebar example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-7. AppWizard Step 4 settings for the rebar control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-8. Initial windows for EX14C example with the default rebar controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-9. Edited IDR_MAINFRAME dialog bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-1. The EX16A program in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-3. The EX16B program in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-1. The serialization process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-3. Object relationships.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-4. The MDI frame-view window relationship.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-1. The EX18A application with two files open and the Window menu shown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-2. EX18A with no child windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-3. EX18A with initial child window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-1. The standard Print dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 19-2. The standard Print Setup dialog.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20-1. A single view window with a four-way split.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 20-2. The CStringView view and the CHexView view of the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24-5. Subfolders of four class IDs in the Registry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24-6. Human-readable program IDs in the Registry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-1. An Excel spreadsheet that uses VBA code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-2. The VBA code for the Excel spreadsheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-3. This Excel workbook is controlling the EX25A component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-1. MFC OLE clipboard processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-2. The EX26A program in operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-4. MFC OLE drag-and-drop processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 27-1. A disk directory with files and subdirectories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 27-3. Calling IPersistStorage::Save.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-1. An Excel spreadsheet activated inside a Word document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-2. A container program's view of the component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-3. The in-process handler and the component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-4. The interaction between the container and the component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-5. Advisory connection details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-1. Selecting ATL COM AppWizard from the New dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-2. Step 1 of the ATL COM AppWizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-4. Interfaces in ClassView.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-1. 32-bit ODBC architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-2. MFC ODBC class database relationships.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-3. The Student Registration database schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-5. Object relationships for multiple recordsets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 32-2. The EX32A program in operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-1. The stack for a LAN running TCP/IP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-2. A simple IP datagram layout.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-3. A simple UDP layout.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-4. The relationship between the IP datagram and the UDP datagram.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-6. A simple layout of a TCP segment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-7. The relationship between an IP datagram and a TCP segment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-8. SlowSoft's domain configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-1. The Microsoft Internet Service Manager screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-2. The WWW Service Properties screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-3. The \WebHome WWW home directory screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-4. The Weathermap HTML Form window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-5. The Step 1 page of the ISAPI Extension Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 35-6. The CyberPizza order form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 36-1. A Word document and an Excel chart inside a Microsoft Office Binder window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 36-3. Step 3 of the MFC AppWizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 37-1. A very basic HTML page, as seen in Internet Explorer 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 37-3. The EX37A example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 37-4. The EX37B example in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-8. MFC for Windows CE hierarchy chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-8. MFC for Windows CE hierarchy chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-4. A Windows CE command bar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-5. Visual C++ for the Windows CE environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-6. The Windows CE emulator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-7. The Windows CE MFC AppWizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-7. The Windows CE MFC AppWizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-7. The Windows CE MFC AppWizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-8. MFC for Windows CE hierarchy chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-8. MFC for Windows CE hierarchy chart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-9. The EX38A expense-tracking application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-10. The EX 38A application running in the Windows CE emulator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-11. The EX38B application running in the Windows CE emulator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 38-12. The WCE ATL COM AppWizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The 6.0 release of Visual C++ shows Microsoft's continued focus on Internet technologies and COM, which
are key components of the new Windows Distributed interNet Application Architecture (DNA). In addition
to supporting these platform initiatives, Visual C++ 6.0 also adds an amazing number of productivity-
boosting features such as Edit And Continue, IntelliSense, AutoComplete, and code tips. These features
take Visual C++ to a new level. We have tried to make sure that this book keeps you up to speed on the
latest technologies being introduced into Visual C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC, ATL, and WFC—Is MFC Dead?
Ever since Microsoft released the Active Template Library (ATL) as part of Visual C++, Windows developers
have speculated that the Microsoft Foundation Class Library (MFC) was no longer "en vogue" at Microsoft
and that future efforts would focus on newer libraries such as ATL. Recently, Microsoft released another
class library, Windows Foundation Classes (WFC), for Java Windows developers, which has unfortunately
helped to fan the rumors that "MFC is dead."

The rumors of MFC's demise are definitely premature. Visual C++ 6.0 has added significant functionality to
MFC and ATL in parallel, which indicates that both libraries will receive equal attention moving forward.
Part of the problem is that the design goals of each library are sometimes not clearly stated and therefore
are not clearly understood by the Visual C++ developer. MFC is designed to be a great class library for
creating graphically rich, sophisticated Windows applications. ATL is designed to make it easy to create
extremely lightweight COM objects and ActiveX controls. Each of these design goals has resulted in a
different library to empower the developer.

Another common misconception is that MFC and ATL are mutually exclusive. This is definitely not the case!
In fact, it is very easy to create ATL-based COM objects that use MFC. The only issue is that since many
developers choose ATL for its lightweight nature, using MFC, which is feature-rich and "heavy," seems to
contradict the reason for choosing ATL. While this might be the case for some developers, it doesn't make
ATL and MFC mutually exclusive.

While ATL does not replace MFC, we do think it is an important part of Visual C++, so in this edition of
Programming Microsoft Visual C++ we have added two chapters that cover the ATL class libraries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++ vs. Java
In the last couple of years, there has been a great deal of interest in the Java programming language. Why
should you choose C++ over Java? In the first place, a compiled program will always be faster than an
interpreted program. Think about a high-performance spreadsheet program with cell formulas and macros.
Now imagine the Java virtual machine interpreting the code that, in turn, interprets the formulas and
macros. Not pretty, is it? With just-in-time compilation, it's necessary to compile the program every time
you load it. Will that code be as good as the optimized output from a C++ compiler?

Execution speed is one factor; access to the operating system is another. For security reasons, Java
applets can't perform such tasks as writing to disk and accessing serial ports. In order to be platform-
independent, Java application programs are limited to the "lowest common denominator" of operating
system features. A C++ program for Microsoft Windows is more flexible because it can call any Win32
function at any time.

Java will be an important language, but we believe it's just another language, not a revolution. If you need
an Internet applet or a truly platform-independent application, choose Java. If you need efficiency and
flexibility, choose C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Who Can Use This Book
The product name "Visual C++" misleads some people. They think they've bought a pure visual
programming system similar to Microsoft Visual Basic, and for the first few days the illusion persists.
However, people soon learn that they must actually read and write C++ code. The Visual C++ wizards
save time and improve accuracy, but programmers must understand the code that the wizards generate
and, ultimately, the structure of the MFC library and the inner workings of the Windows operating system.

Visual C++, with its sophisticated application framework, is for professional programmers, and so is this
book. We assume that you're proficient in the C language—you can write an if statement without
consulting the manual. And we assume that you've been exposed to the C++ language—you've at least
taken a course or read a book, but maybe you haven't written much code. Compare learning C++ to
learning the French language. You can study French in school, but you won't be able to speak fluently
unless you go to France and start talking to people. Reading this book is like taking your trip to France!

We won't assume, however, that you already know Windows programming. We're sure that proficient C
programmers can learn Windows the MFC way. It's more important to know C++ than it is to know the
Win32 application programming interface (API). You should, however, know how to run Windows and
Windows-based applications.

What if you're already experienced with the Win32 API or with the MFC library? There's something in this
book for you too. First you'll get some help making the transition to Win32 programming. Then you'll learn
about new features such as Data Access Objects (DAO), ActiveX control container support, and the
controls introduced with Windows 95. If you haven't already figured out the Component Object Model
(COM), this book presents some important theory that will get you started on understanding ActiveX
Controls. You'll also learn about the ATL class library, the new Microsoft Internet Explorer 4.0 common
controls, and OLE/DB database programming. Finally, you'll learn C++ programming for the Internet
(including the hot new topic Dynamic HTML). We've even included coverage on how to make your Visual
C++ programs work on the new Windows CE operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's Not Covered
It's not possible to cover every aspect of Windows-based programming in a single book. We exclude topics
that depend on special-purpose hardware and software, such as MAPI, TAPI, and communications port
access. We do cover using ActiveX controls in an application, but we'll defer the subject of writing ActiveX
controls to Adam Denning and his ActiveX Controls Inside Out (Microsoft Press, 1997). We get you started
with 32-bit memory management, DLL theory, and multithreaded programming techniques, but you need
to get the third edition of Jeffrey Richter's Advanced Windows (Microsoft Press, 1997) if you're serious
about these subjects. Another useful book is MFC Internals by George Shepherd and Scot Wingo (Addison-
Wesley, 1996).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How to Use This Book
When you're starting with Visual C++, you can use this book as a tutorial by going through it sequentially.
Later you can use it as a reference by looking up topics in the table of contents or in the index. Because of
the tight interrelationships among many application framework elements, it wasn't possible to cleanly
isolate each concept in its own chapter, so the book really isn't an encyclopedia. When you use this book,
you'll definitely want to keep the online help available for looking up classes and member functions.

If you're experienced with the Win16 version of Visual C++, scan Part I for an overview of new features.
Then skip the first three chapters of Part II, but read Chapters 6 through 12, which cover elements specific
to Win32.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Organization of This Book
As the table of contents shows, this book has six parts and an appendix section.

Part I: Windows, Visual C++, and Application Framework Fundamentals

In this part, we try to strike a balance between abstract theory and practical application. After a quick
review of Win32 and the Visual C++ components, you'll be introduced, in a gentle way, to the MFC
application framework and the document-view architecture. You'll look at a simple "Hello, world!" program,
built with the MFC library classes, that requires only 30 lines of code.

Part II: The MFC Library View Class

The MFC library documentation presents all the application framework elements in quick succession, with
the assumption that you know the original Windows API. In Part II, you're confined to one major
application framework component—the view, which is really a window. You'll learn here what experienced
Windows programmers know already, but in the context of C++ and the MFC library classes. You'll use the
Visual C++ tools that eliminate much of the coding drudgery that early Windows programmers had to
endure.

Part II covers a lot of territory, including graphics programming with bitmaps, dialog data exchange,
ActiveX control usage, 32-bit memory management, and multithreaded programming. The exercises will
help you to write reasonably sophisticated Windows-based programs, but those programs won't take
advantage of the advanced application framework features.

Part III: The Document-View Architecture

This part introduces the real core of application framework programming—the document-view architecture.
You'll learn what a document is (something much more general than a word processing document), and
you'll see how to connect the document to the view that you studied in Part II. You'll be amazed, once you
have written a document class, at how the MFC library simplifies file I/O and printing.

Along the way, you'll learn about command message processing, toolbars and status bars, splitter frames,
and context-sensitive help. You'll also be introduced to the Multiple Document Interface (MDI), the current
standard for Windows-based applications.

Part III also contains a discussion of dynamic link libraries (DLLs) written with the MFC library. You'll learn
the distinction between an extension DLL and a regular DLL. If you're used to Win16 DLLs, you'll notice
some changes in the move to Win32.

Part IV: ActiveX: COM, Automation, and OLE

COM by itself deserves more than one book. Part IV will get you started in learning fundamental COM
theory from the MFC point of view. You'll progress to Automation, which is the link between C++ and
Visual Basic for Applications (VBA). You'll also become familiar with uniform data transfer and structured
storage, and you'll learn the basics of compound documents and embedded objects.

Part V: Database Management

Windows-based programs often need access to information in large databases. Visual C++ now supports
two separate database management options: Open Database Connectivity (ODBC) and Data Access
Objects (DAO). Part V offers a chapter on each option. You'll learn about the extensive MFC and wizard
support for both options, and you'll see the differences between and similarities of ODBC and DAO. We'll
also cover a new data access technology, OLE/DB, which is supported by ATL OLE/DB consumer and
providers.

Part VI: Programming for the Internet

This part starts with a technical Internet tutorial that covers the TCP/IP protocol plus the Winsock and
WinInet APIs. You'll learn how to write C++ server and client programs for the Internet and the intranet,
you'll learn how to write ISAPI DLLs that extend the Microsoft Internet Information Server, and you'll learn
how to program for Dynamic HTML. We've also included coverage on Windows CE in this section.

Appendixes

Appendix A contains a list of message map macros and their corresponding handler function prototypes.
ClassWizard usually generates this code for you, but sometimes you must make manual entries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ClassWizard usually generates this code for you, but sometimes you must make manual entries.

Appendix B offers a description of the MFC application framework's runtime class information and dynamic
creation system. This is independent of the RTTI (runtime type information) feature that is now a part of
ANSI C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 vs. Win16
Lots of old computers out there are still running Windows 3.1. However, there's not much point in
spending money writing new programs for obsolete technology. This edition of Programming Microsoft
Visual C++ is about 32-bit programming for Microsoft Windows 95, Microsoft Windows 98, and Microsoft
Windows NT using the Win32 API. If you really need to do 16-bit programming, find an old copy of the
second edition of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows 95 and Windows 98 vs. Windows NT
Visual C++ version 6.0 requires either Windows 95, Windows 98, or Windows NT version 4.0 or later, all of
which have the same user interface. We recommend that you use Windows NT as your development
platform because of its stability—you can often go for months without rebooting your computer. If you use
only the MFC programming interface, your compiled programs will run under Windows 95, Windows 98,
and Windows NT, but a program can include Win32 calls that use specific Windows 98 or Windows NT
features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with Windows:
The "For Win32 Programmers" Sidebars
This book can't offer the kind of detail, tricks, and hidden features found in the newer, specialized books on
Win32. Most of those books are written from the point of view of a C-language programmer: in order to
use them, you'll have to understand the underlying Win32 API and its relationship to the MFC library. In
addition, you'll need to know about the Windows message dispatch mechanism and the role of window
classes.

This book's "For Win32 Programmers" sidebars, scattered throughout the text, help you make the
connection to low-level programming for Windows. These specially formatted boxes help experienced C
programmers relate new MFC library concepts to principles they're already familiar with. If you're
unfamiliar with low-level programming, you should skip these notes the first time through, but you should
read them on your second pass through the book. Even though you may never write a low-level Windows-
based program with a WinMain function, for example, you eventually need to know how the Windows
operating system interacts with your program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the Companion CD-ROM
The companion CD-ROM bound inside the back cover of this book contains the source code files for all the
sample programs. The executable program files are included, so you won't have to build the samples that
you're interested in. To install the companion CD-ROM's files, insert the disc in your CD-ROM drive and run
the Setup program. Follow the on-screen instructions.

The Setup program copies about 30 MB of files to your hard disk. If you prefer, you can
manually install only the files for individual projects. Simply tree-copy the
corresponding subdirectories from the CD-ROM to c:\vcpp32. Because each project is
self-contained, no additional files from other projects are needed. (You'll need to
remove the read-only attribute from these files if you copy them using Windows
Explorer or File Manager.)

Many of the files on the companion CD-ROM have long filenames. If you use Windows
95 and your CD-ROM drive uses a real-mode driver, you'll see truncated names for
these files and you might not see all of the files or directories. The Setup program will
still work correctly, however, by copying files from a special \SETUP directory on the
CD-ROM and renaming them with their proper long filenames. You can then browse the
files on your hard disk. Alternatively, you can browse the files using the 8.3 aliases in
the \SETUP directory on the CD-ROM.

With a conventional C-language program using the Windows API, the source code files tell the whole story.
With the MFC library application framework, things are not so simple. AppWizard generates much of the
C++ code, and the resources originate in the resource editors. The examples in the early chapters of this
book include step-by-step instructions for using the tools to generate and customize the source code files.
You'd be well advised to walk through those instructions for the first few examples; there's very little code
to type. For the middle chapters, use the code from the companion CD-ROM but read through the steps in
order to appreciate the role of the resource editors and the wizards. For the final chapters, not all the
source code is listed. You'll need to examine the companion CD-ROM's files for those examples.

For Win32 Programmers: Unicode

Until recently, Windows-based programs have used only the ANSI character set, which
consists of 256 single-byte characters. Developers targeting the Asian software market
are moving to the Unicode character set, which consists of 65,536 characters, each 2
bytes (wide). A third option, the double-byte character set (DBCS), includes both 1-
byte characters and 2-byte characters, but DBCS is falling out of favor.

The MFC library and the runtime library both support Unicode applications. If you define
the constant _UNICODE and follow the steps described in the online documentation, all
your character variables and constant strings will be wide and the compiler will
generate calls to the wide-character versions of the Win32 functions. This assumes that
you use certain macros when you declare character pointers and arrays—for example,
TCHAR and _T.

You'll hit a snag, though, if you try to run your MFC Unicode applications under
Windows 95 or Windows 98, because they don't support Unicode internally. Even
though Windows 95 and Windows 98 have wide-character versions of Win32 functions,
those functions return a failure code. Windows NT, on the other hand, uses Unicode
internally and has two versions of the Win32 functions that deal with characters. If you
call a single-byte version, Windows NT makes the necessary conversions to and from
wide characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wide characters.

None of the sample programs in this book are configured for Unicode. All the programs
use single-byte types such as char and single-byte string constants, and they do not
define _UNICODE. If you run the samples under Windows NT, the operating system will
do the necessary single-to-wide conversions; if you run them under Windows 95 or
Windows 98, the interface is pure single-byte.

One area in which you're forced to deal with wide characters is COM. All non-MFC COM
functions (except DAO functions) that have string and character parameters require
wide (OLECHAR) characters. If you write a non-Unicode program, you must do the
conversions yourself with the help of the MFC CString class and various MFC macros.

If you want to write Unicode applications, read the Unicode chapter in Jeffrey Richter's
Advanced Windows. You should also read the Unicode material in the Visual C++ online
documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Technical Notes and Sample Programs
The MSDN Library for Visual Studio 6.0 contains technical notes and sample programs that are referenced
in this book. The technical notes, identified by number, are available from the Contents tab under the
heading:

MSDN Library Visual Studio 6.0

 Visual C++ Documentation Reference

 Microsoft Foundation Class Library and Templates

 Microsoft Foundation Class Library

 MFC Technical Notes

The MSDN CD-ROM also contains a number of MFC sample programs also referenced in the book and
identified by name. These sample programs are documented under the heading:

MSDN Library Visual Studio 6.0

 Visual C++ Documentation

 Samples

 MFC Samples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Support
Every effort has been made to ensure the accuracy of this book and the contents of the companion disc.
Microsoft Press provides corrections for books through the Web at:
http://mspress.microsoft.com/mspress/support/

If you have comments, questions, or ideas regarding this book or the companion disc, please send them to
Microsoft Press using postal mail or e-mail:

Microsoft Press

Attn: Programming Microsoft Visual C++ Editor

One Microsoft Way

Redmond, WA 98052-6399

MSPINPUT@MICROSOFT.COM

Please note that product support is not offered through the above mail addresses. For support information
regarding Microsoft Visual C++, you can call the technical support line at (425) 635-7007 weekdays
between 6 a.m. and 6 p.m. Pacific time. Microsoft also provides information about Visual C++ at
http://www.microsoft.com/visualc/ and about the Microsoft Developer Network at
http://www.microsoft.com/MSDN/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

