

Programming the Perl DBI

Alligator Descartes & Tim Bunce

First Edition February 2000
ISBN: 1-56592-699-4, 350 pages

The primary interface for database programming in Perl is DBI.

Programming the Perl DBI is coauthored by Alligator Descartes, one of
the most active members of the DBI community, and by Tim Bunce, the

inventor of DBI.

The book explains the architecture of DBI, shows you how to write DBI-
based programs and explains both DBI's nuances and the peculiarities

of each individual DBD.

This is the definitive book for database programming in Perl.

Table of Contents

Preface 1

1. Introduction 5
 From Mainframes to Workstations
 Perl
 DBI in the Real World
 A Historical Interlude and Standing Stones

2. Basic Non-DBI Databases 9
 Storage Managers and Layers
 Query Languages and Data Functions
 Standing Stones and the Sample Database
 Flat-File Databases
 Putting Complex Data into Flat Files
 Concurrent Database Access and Locking
 DBM Files and the Berkeley Database Manager
 The MLDBM Module
 Summary

3. SQL and Relational Databases 41
 The Relational Database Methodology
 Datatypes and NULL Values
 Querying Data
 Modifying Data Within Tables
 Creating and Destroying Tables

4. Programming with the DBI 57
 DBI Architecture
 Handles
 Data Source Names
 Connection and Disconnection
 Error Handling
 Utility Methods and Functions

5. Interacting with the Database 76
 Issuing Simple Queries
 Executing Non-SELECT Statements
 Binding Parameters to Statements
 Binding Output Columns
 do() Versus prepare()
 Atomic and Batch Fetching

6. Advanced DBI 97
 Handle Attributes and Metadata
 Handling LONG/LOB Data
 Transactions, Locking, and Isolation

Table of Contents (cont...)

7. ODBC and the DBI 116
 ODBC-Embraced and Extended
 DBI-Thrashed and Mutated
 The Nuts and Bolts of ODBC
 ODBC from Perl
 The Marriage of DBI and ODBC
 Questions and Choices
 Moving Between Win32::ODBC and the DBI
 And What About ADO?

8. DBI Shell and Database Proxying 122
 dbish-The DBI Shell
 Database Proxying

A. DBI Specification 131

B. Driver and Database Characteristics 171

C. ASLaN Sacred Site Charter 249

Colophon 250

Author Interview 251

Description
One of the greatest strengths of the Perl programming language is its ability to manipulate large
amounts of data. Database programming is therefore a natural fit for Perl, not only for business
applications but also for CGI-based web and intranet applications.

The primary interface for database programming in Perl is DBI. DBI is a database-independent
package that provides a consistent set of routines regardless of what database product you use -
Oracle, Sybase, Ingres, Informix, you name it. The design of DBI is to separate the actual database
drivers (DBDs) from the programmer's API, so any DBI program can work with any database, or even
with multiple databases by different vendors simultaneously.

Programming the Perl DBI is coauthored by Alligator Descartes, one of the most active members of
the DBI community, and by Tim Bunce, the inventor of DBI. For the uninitiated, the book explains the
architecture of DBI and shows you how to write DBI-based programs. For the experienced DBI
dabbler, this book reveals DBI's nuances and the peculiarities of each individual DBD.

The book includes:

• An introduction to DBI and its design

• How to construct queries and bind parameters

• Working with database, driver, and statement handles

• Debugging techniques

• Coverage of each existing DBD

• A complete reference to DBI

This is the definitive book for database programming in Perl.

Programming the Perl DBI

 page 1

Preface
The DBI is the standard database interface for the Perl programming language. The DBI is database-
independent, which means that it can work with just about any database, such as Oracle, Sybase,
Informix, Access, MySQL, etc.

While we assume that readers of this book have some experience with Perl, we don't assume much
familiarity with databases themselves. The book starts out slowly, describing different types of
databases and introducing the reader to common terminology.

This book is not solely about the DBI - it also concerns the more general subject of storing data in and
retrieving data from databases of various forms. As such, this book is split into two related, but
standalone, parts. The first part covers techniques for storing and retrieving data without the DBI,
and the second, much larger part, covers the use of the DBI and related technologies.

Throughout the book, we assume that you have a basic grounding in programming with Perl and can
put together simple scripts without instruction. If you don't have this level of Perl awareness, we
suggest that you read some of the Perl books listed in Section P.1.

Once you're ready to read this book, there are some shortcuts that you can take depending on what
you're most interested in reading about. If you are interested solely in the DBI, you can skip Chapter 2
without too much of a problem. On the other hand, if you're a wizard with SQL, then you should
probably skip Chapter 3 to avoid the pain of us glossing over many fine details. Chapter 7 is a
comparison between the DBI and ODBC and is mainly of interest to database geeks, design
aficionados, and those people who have Win32::ODBC applications and are desperately trying to port
them to DBI.

Here's a rundown of the book, chapter by chapter:

Chapter 1

This introduction sets up the general feel for the book.

Chapter 2

This chapter covers the basics of storing and retrieving data either with core Perl functions
through the use of delimited or fixed-width flat-file databases, or via non-DBI modules such
as AnyDBM_File, Storable, Data::Dumper and friends. Although the DBI isn't used in this
chapter, the way the Storable and Data::Dumper modules are used to pack Perl data
structures into strings can easily be applied to the DBI.

Chapter 3

This chapter is a basic overview of SQL and relational databases and how you can write simple
but powerful SQL statements to query and manipulate your database. If you already know
some SQL, you can skip this chapter. If you don't know SQL, we advise you to read this
chapter since the later chapters assume you have a basic knowledge of SQL and relational
databases.

Chapter 4

This chapter introduces the DBI to you by discussing the architecture of the DBI and basic
DBI operations such as connecting to databases and handling errors. This chapter is essential
reading and describes the framework that the DBI provides to let you write simple, powerful,
and robust programs.

Chapter 5

This chapter is the meat of the DBI topic and discusses manipulating the data within your
database - that is, retrieving data already stored in your database, inserting new data, and
deleting and updating existing data. We discuss the various ways in which you can perform
these operations from the simple "get it working" stage to more advanced and optimized
techniques for manipulating data.

Programming the Perl DBI

 page 2

Chapter 6

This chapter covers more advanced topics within the sphere of the DBI such as specifying
attributes to fine-tune the operation of DBI within your applications, working with
LONG/LOB datatypes, statement and database metadata, and finally transaction handling.

Chapter 7

This chapter discusses the differences in design between DBI and ODBC, the other portable
database API. And, of course, this chapter highlights why DBI is easier to program with.

Chapter 8

This chapter covers two topics that aren't exactly part of the core DBI, per se, but are
extremely useful to know about. First, we discuss the DBI shell, a command-line tool that
allows you to connect to databases and issue arbitrary queries. Second, we discuss the proxy
architecture that the DBI can use, which, among other things, allows you to connect scripts on
one machine to databases on another machine without needing to install any database
networking software. For example, you can connect a script running on a Unix box to a
Microsoft Access database running on a Microsoft Windows box.

Appendix A

This appendix contains the DBI specification, which is distributed with DBI.pm.

Appendix B

This appendix contains useful extra information on each of the commonly used DBDs and
their corresponding databases.

Appendix C

This appendix contains the charter for the Ancient Sacred Landscape Network, which focuses
on preserving sites such as the megalithic sites used for examples in this book.

Resources

To help you navigate some of the topics in this book, here are some resources that you might want to
check out before, during, and after reading this book:

http://www.symbolstone.org/technology/perl/DBI

The DBI home page. This site contains lots of useful information about DBI and where to get
the various modules from. It also has links to the very active dbi-users mailing list and
archives.

http://www.perl.com/CPAN

This site includes the Comprehensive Perl Archive Network multiplexer, upon which you find
a whole host of useful modules including the DBI.

An Introduction to Database Systems, by C. J. Date

This book is the standard textbook on database systems and is highly recommended reading.

A Guide to the SQL Standard, by C. J. Date and Hugh Darwen

An excellent book that's detailed but small and very readable.

http://w3.one.net/~jhoffman/sqltut.htm
http://www.jcc.com/SQLPages/jccs_sql.htm
http://www.contrib.andrew.cmu.edu/~shadow/sql.html

These web sites contain information, specifications, and links on the SQL query language, of
which we present a primer in Chapter 3. Further information can be found by entering "SQL
tutorial" or similar expressions into your favorite web search engine.

Learning Perl, by Randal Schwartz and Tom Christiansen

A hands-on tutorial designed to get you writing useful Perl scripts as quickly as possible.
Exercises (with complete solutions) accompany each chapter. A lengthy new chapter
introduces you to CGI programming, while touching also on the use of library modules,
references, and Perl's object-oriented constructs.

http://www.symbolstone.org/technology/perl/DBI
http://www.perl.com/CPAN
http://w3.one.net/~jhoffman/sqltut.htm
http://www.jcc.com/SQLPages/jccs_sql.htm
http://www.contrib.andrew.cmu.edu/~shadow/sql.html

Programming the Perl DBI

 page 3

Programming Perl, by Larry Wall, Tom Christiansen, and Randal Schwartz

The authoritative guide to Perl version 5, the scripting utility that has established itself as the
programming tool of choice for the World Wide Web, Unix system administration, and a vast
range of other applications. Version 5 of Perl includes object-oriented programming facilities.
The book is coauthored by Larry Wall, the creator of Perl.

The Perl Cookbook, by Tom Christiansen and Nathan Torkington

A comprehensive collection of problems, solutions, and practical examples for anyone
programming in Perl. Topics range from beginner questions to techniques that even the most
experienced of Perl programmers will learn from. More than just a collection of tips and
tricks, The Perl Cookbook is the long-awaited companion volume to Programming Perl, filled
with previously unpublished Perl arcana.

Writing Apache Modules with Perl and C, by Lincoln Stein and Doug MacEachern

This book teaches you how to extend the capabilities of your Apache web server regardless of
whether you use Perl or C as your programming language. The book explains the design of
Apache, mod_perl, and the Apache API. From a DBI perspective, it discusses the
Apache::DBI module, which provides advanced DBI functionality in relation to web services
such as persistent connection pooling optimized for serving databases over the Web.

Boutell FAQ (http://www.boutell.com/faq/) and others

These links are invaluable to you if you want to deploy DBI-driven web sites. They explain the
dos and don'ts of CGI programming in general.

MySQL & mSQL, by Randy Jay Yarger, George Reese, and Tim King

For users of the MySQL and mSQL databases, this is a very useful book. It covers not only the
databases themselves but also the DBI drivers and other useful topics like CGI programming.

Typographical Conventions

The following font conventions are used in this book:

Constant Width

is used for method names, function names, variables, and attributes. It is also used for code
examples.

Italic

is used for filenames, URLs, hostnames, and emphasis.

Code Examples

You are invited to copy the code in the book and adapt it for your own needs. Rather than copying by
hand, however, we encourage you to download the code from
http://www.oreilly.com/catalog/perldbi/.

http://www.boutell.com/faq/
http://www.oreilly.com/catalog/perldbi/

Programming the Perl DBI

 page 4

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you may
find that features have changed or that we have let errors slip through the production of the book.
Please let us know of any errors that you find, as well as suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris St.
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog, send
email to:

info@oreilly.com

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions.
You can access this page at:

http://www.oreilly.com/catalog/perldbi/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgments

Alligator would like to thank his wife, Carolyn, for putting up with his authorial melodramatics and
flouncing during the writing of this book. Martin McCarthy should also get his name in lights for
proofreading far too many of the early drafts of the book. Phil Kizer also deserves a credit for running
the servers that the DBI web site has sat on between 1995 and early 1999. Karin and John Attwood,
Andy Burnham, Andy Norfolk, Chris Tweed, and many others on the stones mailing list deserve
thanks (and beer) for aiding the preservation and presentation of many of the megalithic sites around
the UK. Further thanks to the people behind ASLaN for volunteering to do a difficult job, and doing it
well.

Tim would like to thank his wife, Máire, for being his wife; Larry Wall for giving the world Perl; Ted
Lemon for having the idea that was, many years later, to become the DBI, and for running the mailing
list for many of those years. Thanks also to Tim O'Reilly for nagging me to write a DBI book, to
Alligator for actually starting to do it and then letting me jump on board (and putting up with my
pedantic tendencies), and to Linda Mui for being a great editor.

The DBI has a long history[1] and countless people have contributed to the discussions and
development over the years. First, we'd like to thank the early pioneeers including Kevin Stock, Buzz
Moschetti, Kurt Andersen, William Hails, Garth Kennedy, Michael Peppler, Neil Briscoe, David
Hughes, Jeff Stander, and Forrest D. Whitcher.

[1] It all started on September 29, 1992.

Then, of course, there are the poor souls who have struggled through untold and undocumented
obstacles to actually implement DBI drivers. Among their ranks are Jochen Wiedmann, Jonathan
Leffler, Jeff Urlwin, Michael Peppler, Henrik Tougaard, Edwin Pratomo, Davide Migliavacca, Jan
Pazdziora, Peter Haworth, Edmund Mergl, Steve Williams, Thomas Lowery, and Phlip Plumlee.
Without them, the DBI would not be the practical reality it is today.

We would both like to thank the many reviewers to gave us valuable feedback. Special thanks to
Matthew Persico, Nathan Torkington, Jeff Rowe, Denis Goddard, Honza Pazdziora, Rich Miller,
Niamh Kennedy, Randal Schwartz, and Jeffrey Baker.

http://www.oreilly.com/catalog/perldbi/
http://www.oreilly.com

Programming the Perl DBI

 page 5

Chapter 1. Introduction
The subject of databases is a large and complex one, spanning many different concepts of structure,
form, and expected use. There are also a multitude of different ways to access and manipulate the
data stored within these databases.

This book describes and explains an interface called the Perl Database Interface, or DBI, which
provides a unified interface for accessing data stored within many of these diverse database systems.
The DBI allows you to write Perl code that accesses data without needing to worry about database- or
platform-specific issues or proprietary interfaces.

We also take a look at non-DBI ways of storing, retrieving, and manipulating data with Perl, as there
are occasions when the use of a database might be considered overkill but some form of structured
data storage is required.

To begin, we shall discuss some of the more common uses of database systems in business today and
the place that Perl and DBI takes within these frameworks.

1.1 From Mainframes to Workstations

In today's computing climate, databases are everywhere. In previous years, they tended to be used
almost exclusively in the realm of mainframe-processing environments. Nowadays, with pizza-box
sized machines more powerful than room-sized machines of ten years ago, high-performance database
processing is available to anyone.

In addition to cheaper and more powerful computer hardware, smaller database packages have
become available, such as Microsoft Access and mSQL. These packages give all computer users the
ability to use powerful database technology in their everyday lives.

The corporate workplace has also seen a dramatic decentralization in database resources, with radical
downsizing operations in some companies leading to their centralized mainframe database systems
being replaced with a mixture of smaller databases distributed across workstations and PCs. The
result is that developers and users are often responsible for the administration and maintenance of
their own databases and datasets.

This trend towards mixing and matching database technology has some important downsides. Having
replaced a centralized database with a cluster of workstations and multiple database types, companies
are now faced with hiring skilled administration staff or training their existing administration staff for
new skills. In addition, administrators now need to learn how to glue different databases together.

It is in this climate that a new order of software engineering has evolved, namely database-
independent programming interfaces. If you thought administration staff had problems with
downsizing database technology, developers may have been hit even harder.

A centralized mainframe environment implies that database software is written in a standard
language, perhaps COBOL or C, and runs only on one machine. However, a distributed environment
may support multiple databases on different operating systems and processors, with each
development team choosing their preferred development environment (such as Visual Basic,
PowerBuilder, Oracle Pro*C, Informix E/SQL, C++ code with ODBC - the list is almost endless).
Therefore, the task of coordinating and porting software has rapidly gone from being relatively
straightforward to extremely difficult.

Database-independent programming interfaces help these poor, beleagured developers by giving them
a single, unified interface with which they can program. This shields the developer from having to
know which database type they are working with, and allows software written for one database type to
be ported far more easily to another database. For example, software originally written for a
mainframe database will often run with little modification on Oracle databases. Software written for
Informix will generally work on Oracle with little modification. And software written for Microsoft
Access will usually run with little modification on Sybase databases.

Programming the Perl DBI

 page 6

If you couple this database-independent programming interface with a programming language such as
Perl, which is operating-system neutral, you are faced with the prospect of having a single code-base
once again. This is just like in the old days, but with one major difference - you are now fully
harnessing the power of the distributed database environment.

Database-independent programming interfaces help not only development staff. Administrators can
also use them to write database-monitoring and administration software quickly and portably,
increasing their own efficiency and the efficiency of the systems and databases they are responsible for
monitoring. This process can only result in better-tuned systems with higher availability, freeing up
the administration staff to proactively maintain the systems they are responsible for.

Another aspect of today's corporate database lifestyle revolves around the idea of data warehousing ,
that is, creating and building vast repositories of archived information that can be scanned, or mined,
for information separately from online databases. Powerful high-level languages with database-
independent programming interfaces (such as Perl) are becoming more prominent in the construction
and maintenance of data warehouses. This is due not only to their ability to transfer data from
database to database seamlessly, but also to their ability to scan, order, convert, and process this
information efficiently.

In summary, databases are becoming more and more prominent in the corporate landscape, and
powerful interfaces are required to stop these resources from flying apart and becoming disparate
fragments of localized data. This glueing process can be aided by the use of database-independent
programming interfaces, such as the DBI, especially when used in conjunction with efficient high-level
data-processing languages such as Perl.

1.2 Perl

Perl is a very high-level programming language originally developed in the 1980s by Larry Wall. Perl
is now being developed by a group of individuals known as the Perl5-Porters under the watchful eye of
Larry. One of Perl's many strengths is its ability to process arbitrary chunks of textual data, known as
strings , in many powerful ways, including regular-expression string manipulation. This capability
makes Perl an excellent choice for database programming, since the majority of information stored
within databases is textual in nature. Perl takes the pain of manipulating strings out of programming,
unlike C, which is not well-suited for that task. Perl scripts tend to be far smaller than equivalent C
programs and are generally portable to other operating systems that run Perl with little or no
modification.

Perl also now features the ability to dynamically load external modules , which are pieces of software
that can be slotted into Perl to extend and enhance its functionality. There are literally hundreds of
these modules available now, ranging from mathematical modules to three-dimensional graphics-
rendering modules to modules that allow you to interact with networks and network software. The
DBI is a set of modules for Perl that allows you to interact with databases.

In recent years, Perl has become a standard within many companies by just being immensely useful
for many different applications, the "Swiss army knife of programming languages." It has been heavily
used by system administrators who like its flexibility and usefulness for almost any job they can think
of. When used in conjunction with DBI, Perl makes loading and dumping databases very
straightforward, and its excellent data-manipulation capabilities allow developers to create and
manipulate data easily.

Furthermore, Perl has been tacitly accepted as being the de facto language on the World Wide Web for
writing CGI programs. What's this got to do with databases? Using Perl and DBI, you can quickly
deploy powerful CGI scripts that generate dynamic web pages from the data contained within your
databases. For example, online shopping catalogs can be stored within a database and presented to
shoppers as a series of dynamically created web pages. The sample code for this book revolves around
a database of archaeological sites that you can deploy on the Web.

Bolstered by this proof of concept, and the emergence of new and powerful modules such as the DBI
and the rapid GUI development toolkit Tk, major corporations are now looking towards Perl to
provide rapid development capabilities for building fast, robust, and portable applications to be
deployed within corporate intranets and on the Internet.

Programming the Perl DBI

 page 7

1.3 DBI in the Real World

DBI is being used in many companies across the world today, including large-scale, mission-critical
environments such as NASA and Motorola. Consider the following testimonials by avid DBI users
from around the world:

We developed and support a large scale telephone call logging and analysis system for
a major client of ours. The system collects ~1 GB of call data per day from over
1,200,000 monitored phone numbers. ~424 GB has been processed so far (over
6,200,000,000 calls). Data is processed and loaded into Oracle using DBI and
DBD::Oracle. The database holds rolling data for around 20 million calls. The system
generates over 44,000 PostScript very high quality reports per month (~five pages
with eleven color graphs and five tables) generated by using Perl to manipulate
FrameMaker templates. [Values correct as of July 1999, and rising steadily.]

The whole system runs on three dual processor Sun SPARC Ultra 2 machines - one for
data acquisition and processing, one for Oracle and the third does most of the report
production (which is also distributed across the other two machines). Almost the
entire system is implemented in Perl.

There is only one non-Perl program and that's only because it existed already and
isn't specific to this system. The other non-Perl code is a few small libraries linked
into Perl using the XS interface.

A quote from a project summary by a senior manager: "Less than a year later the
service went live. This was subsequently celebrated as one of the fastest projects of its
size and complexity to go from conception to launch."

Designed, developed, implemented, installed, and supported by the Paul Ingram
Group, who received a "Rising to the Challenge" award for their part in the project.
Without Perl, the system could not have been developed fast enough to meet the
demanding go-live date. And without Perl, the system could not be so easily
maintained or so quickly extended to meet changing requirements.

...Tim Bunce, Paul Ingram Group

In 1997 I built a system for NASA's Langley Research Center in Virginia that puts a
searchable web front end on a database of about 100,000 NASA-owned equipment
items. I used Apache, DBI, Informix, WDB, and mod_perl on a Sparc 20. Ran like a
charm. They liked it so much they used it to give demos at meetings on reorganizing
the wind tunnels! Thing was, every time they showed it to people, I ended up
extending the system to add something new, like tracking equipment that was in for
repairs, or displaying GIFs of technical equipment so when they lost the spec sheet,
they could look it up online. When it works, success feeds on itself.

...Jeff Rowe

I'm working on a system implemented using Perl, DBI, Apache (mod_perl), hosted
using RedHat Linux 5.1 and using a lightweight SQL RDBMS called MySQL. The
system is for a major multinational holding company, which owns approximately 50
other companies. They have 30,000 employees world-wide who needed a secure
system for getting to web-based resources. This first iteration of the Intranet is
specified to handle up to forty requests for web objects per second (approximately
200 concurrent users), and runs on a single processor Intel Pentium-Pro with 512
megs of RAM. We develop in Perl using Object-Oriented techniques everywhere.
Over the past couple years, we have developed a large reusable library of Perl code.
One of our most useful modules builds an Object-Relational wrapper around DBI to
allow our application developers to talk to the database using O-O methods to access
or change properties of the record. We have saved countless hours and dollars by
building on Perl instead of a more proprietary system.

...Jesse Erlbam

Programming the Perl DBI

 page 8

Motorola Commercial Government and Industrial Systems is using Perl with DBI and
DBD-Oracle as part of web-based reporting for significant portions of the
manufacturing and distribution organizations. The use of DBI/DBD-Oracle is part of
a movement away from Oracle Forms based reporting to a pure web-based reporting
platform. Several moderate-sized applications based on DBI are in use, ranging from
simple notification distribution applications, dynamic routing of approvals, and
significant business applications. While you need a bit more "patience" to develop the
web-based applications, to develop user interfaces that look "good", my experience
has been that the time to implement DBI-based applications is somewhat shorter
than the alternatives. The time to "repair" the DBI/DBD based programs also seems
to be shorter. The software quality of the DBI/DBD approach has been better, but
that may be due to differences in software development methodology.

...Garth Kennedy, Motorola

1.4 A Historical Interlude andStanding Stones

Throughout this book, we intersperse examples on relevant topics under discussion. In order to
ensure that the examples do not confuse you any more than you may already be confused, let's discuss
in advance the data we'll be storing and manipulating in the examples.

Primarily within the UK, but also within other countries around the world, there are many sites of
standing stones or megaliths.[1] The stones are arranged into rings, rows, or single or paired stones.
No one is exactly sure what the purpose or purposes of these monuments are, but there are certainly a
plethora of theories ranging from the noncommittal ''ritual'' use to the more definitive alien landing-
pad theory. The most famous and visited of these monuments is Stonehenge, located on Salisbury
Plain in the south of England. However, Stonehenge is a unique and atypical megalithic monument.

[1] From the Greek, meaning ''big stone.'' This can be a misnomer in the case of many sites as the stones
comprising the circle might be no larger than one or two feet tall. However, in many extreme cases, such as
Stonehenge and Avebury, the "mega" prefix is more than justified.

Part of the lack of understanding about megaliths stems from the fact that these monuments can be up
to 5,000 years old. There are simply no records available to us that describe the monuments'
purposes or the ritual or rationale behind their erection. However, there are lots of web sites that
explore various theories.

The example code shown within this book, and the sample web application we'll also be providing,
uses a database containing information on these sites.

Programming the Perl DBI

 page 9

Chapter 2. Basic Non-DBI Databases
There are several ways in which databases organize the data contained within them. The most
common of these is the relational database methodology. Databases that use a relational model are
called Relational Database Management Systems , or RDBMSs. The most popular database systems
nowadays (such as Oracle, Informix, and Sybase) are all relational in design.

But what does "relational" actually mean? A relational database is a database that is perceived by the
user as a collection of tables, where a table is an unordered collection of rows. (Loosely speaking, a
relation is a just a mathematical term for such a table.) Each row has a fixed number of fields, and
each field can store a predefined type of data value, such as an integer, date, or string.

Another type of methodology that is growing in popularity is the object-oriented methodology, or
OODBMS. With an object-oriented model, everything within the database is treated as an object of a
certain class that has rules defined within itself for manipulating the data it encapsulates. This
methodology closely follows that of object-oriented programming languages such as Smalltalk, C++,
and Java. However, the DBI does not support any real OODBMS, so for the moment this
methodology will not be discussed further.

Finally, there are several simplistic database packages that exist on various operating systems. These
simple database packages generally do not feature the more sophisticated functionality that ''real''
database engines provide. They are, to all intents, only slightly sophisticated file-handling routines,
not actually database packages. However, in their defense, they can be extremely fast, and in certain
situations the sophisticated functionality that a ''real'' database system provides is simply an
unnecessary overhead.[1]

[1] A useful list of a wide range of free databases is available from ftp://ftp.idiom.com/pub/free-databases.

In this chapter, we'll be exploring some non-DBI databases, ranging from the very simplest of ASCII
data files through to disk-based hash files supporting duplicate keys. Along the way, we'll consider
concurrent access and locking issues, and some applications for the rather useful Storable and
Data::Dumper modules. (While none of this is strictly about the DBI, we think it'll be useful for many
people, and even DBI veterans may pick up a few handy tricks.)

All of these database technologies, from the most complex to the simplest, share two basic attributes.
The first is the very definition of the term: a database is a collection of data stored on a computer with
varying layers of abstraction sitting on top of it. Each layer of abstraction generally makes the data
stored within easier to both organize and access, by separating the request for particular data from the
mechanics of getting that data.

The second basic attribute common to all database systems is that they all use Application
Programming Interfaces (APIs) to provide access to the data stored within the database. In the case
of the simplest databases, the API is simply the file read/write calls provided by the operating system,
accessed via your favorite programming language.

An API allows programmers to interact with a more complex piece of software through access paths
defined by the original software creators. A good example of this is the Berkeley Database Manager
API. In addition to simply accessing the data, the API allows you to alter the structure of the database
and the data stored within the database. The benefit of this higher level of access to a database is that
you don't need to worry about how the Berkeley Database Manager is managing the data. You are
manipulating an abstracted view via the API.

In higher-level layers such as those implemented by an RDBMS, the data access and manipulation API
is completely divorced from the structure of the database. This separation of logical model from
physical representation allows you to write standard database code (e.g., SQL) that is independent of
the database engine that you are using.

ftp://ftp.idiom.com/pub/free-databases

Programming the Perl DBI

 page 10

2.1 Storage Managers and Layers

Modern databases, no matter which methodology they implement, are generally composed of multiple
layers of software. Each layer implements a higher level of functionality using the interfaces and
services defined by the lower-level layers.

For example, flat-file databases are composed of pools of data with very few layers of abstraction.
Databases of this type allow you to manipulate the data stored within the database by directly altering
the way in which the data is stored within the data files themselves. This feature gives you a lot of
power and flexibility at the expense of being difficult to use, minimal in terms of functionality, and
nerve-destroying since you have no safety nets. All manipulation of the data files uses the standard
Perl file operations, which in turn use the underlying operating system APIs.

DBM file libraries, like Berkeley DB, are an example of a storage manager layer that sits on top of the
raw data files and allows you to manipulate the data stored within the database through a clearly
defined API. This storage manager translates your API calls into manipulations of the data files on
your behalf, preventing you from directly altering the structure of the data in such a manner that it
becomes corrupt or unreadable. Manipulating a database via this storage manager is far easier and
safer than doing it yourself.

You could potentially implement a more powerful database system on top of DBM files. This new
layer would use the DBM API to implement more powerful features and add another layer of
abstraction between you and the actual physical data files containing the data.

There are many benefits to using higher-level storage managers. The levels of abstraction between
your code and the underlying database allow the database vendors to transparently add optimizations,
alter the structure of the database files, or port the database engine to other platforms without you
having to alter a single line of code.

2.2 Query Languages and Data Functions

Database operations can be split into those manipulating the database itself (that is, the logical and
physical structure of the files comprising the database) and those manipulating the data stored within
these files. The former topic is generally database-specific and can be implemented in various ways,
but the latter is typically carried out by using a query language.[2]

[2] We use the term "query language" very loosely. We stretch it from verb-based command languages, like SQL,
all the way down to hard-coded logic written in a programming language like Perl.

All query languages, from the lowest level of using Perl's string and numerical handling functions to a
high-level query language such as SQL, implement four main operations with which you can
manipulate the data. These operations are:

Fetching

The most commonly used database operation is that of retrieving data stored within a
database. This operation is known as fetching, and returns the appropriate data in a form
understood by the API host language being used to query the database. For example, if you
were to use Perl to query an Oracle database for data, the data would be requested by using
the SQL query language, and the rows returned would be in the form of Perl strings and
numerics. This operation is also known as selecting data, from the SQL SELECT keyword used
to fetch data from a database.

Storing

The corollary operation to fetching data is storing data for later retrieval. The storage
manager layers translate values from the programming language into values understood by
the database. The storage managers then store that value within the data files. This operation
is also known as inserting data.

Programming the Perl DBI

 page 11

Updating

Once data is stored within a database, it is not necessarily immutable. It can be changed if
required. For example, in a database storing information on products that can be purchased,
the pricing information for each product may change over time. The operation of changing a
value of existing data within the database is known as updating. It is important to note that
this operation doesn't add items to or remove items from the database; rather, it just changes
existing items.[3]

[3] Logically, that is. Physically, the updates may be implemented as deletes and inserts.

Deleting

The final core operation that you generally want to perform on data is to delete any old or
redundant data from your database. This operation will completely remove the items from
the database, again using the storage managers to excise the data from the data files. Once
data has been deleted, it cannot be recovered or replaced except by reinserting the data into
the database.[4]

[4] Unless you are using transactions to control your data. More about that in Chapter 6.

These operations are quite often referred to by the acronym C.R.U.D. (Create, Read, Update, Delete).
This book discusses these topics in a slightly different order primarily because we feel that most
readers, at least initially, will be extracting data from existing databases rather than creating new
databases in which to store data.

2.3 Standing Stones and the Sample Database

Our small example databases throughout this chapter will contain information on megalithic sites
within the UK. A more complex version of this database is used in the following chapters.

The main pieces of information that we wish to store about megaliths[5] are the name of the site, the
location of the site within the UK, a unique map reference for the site, the type of megalithic setting
the site is (e.g., a stone circle or standing stone), and a description of what the site looks like.

[5] Storing anything on a megalith is in direct violation of the principles set forth in Appendix C. In case you
missed it, we introduced megaliths in Chapter 1.

For example, we might wish to store the following information about Stonehenge in our database:

Name:

Stonehenge

Location:

Wiltshire, England

Map Reference:

SU 123 400

Type:

Stone Circle and Henge

Description:

The most famous megalithic site in the world, comprised of an earthen bank, or henge, and
several concentric rings of massive standing stones formed into trilithons.

With this simple database, we can retrieve all sorts of different pieces of information, such as, ''tell me
of all the megalithic sites in Wiltshire,'' or ''tell me about all the standing stones in Orkney,'' and so on.

Now let's discuss the simplest form of database that you might wish to use: the flat-file database.

Programming the Perl DBI

 page 12

2.4 Flat-File Databases

The simplest type of database that we can create and manipulate is the old standby, the flat-file
database. This database is essentially a file, or group of files, that contains data in a known and
standard format that a program scans for the requested information. Modifications to the data are
usually done by updating an in-memory copy of the data held in the file, or files, then writing the
entire set of data back out to disk. Flat-file databases are typically ASCII text files containing one
record of information per line. The line termination serves as the record delimiter.

In this section we'll be examining the two main types of flat-file database: files that separate fields
with a delimiter character, and files that allocate a fixed length to each field. We'll discuss the pros
and cons of each type of data file and give you some example code for manipulating them.

The most common format used for flat-file databases is probably the delimited file in which each field
is separated by a delimiting character. And possibly the most common of these delimited formats is
the comma-separated values (CSV) file, in which fields are separated from one another by commas.
This format is understood by many common programs, such as Microsoft Access and spreadsheet
programs. As such, it is an excellent base-level and portable format useful for sharing data between
applications.[6]

[6] More excitingly, a DBI driver called DBD::CSV exists that allows you to write SQL code to manipulate a flat
file containing CSV data.

Other popular delimiting characters are the colon (:), the tab, and the pipe symbol (|). The Unix
/etc/passwd file is a good example of a delimited file with each record being separated by a colon.
Figure 2.1 shows a single record from an /etc/passwd file.

Figure 2.1, The /etc/passwd file record format

2.4.1 Querying Data

Since delimited files are a very low-level form of storage manager, any manipulations that we wish to
perform on the data must be done using operating system functions and low-level query logic, such as
basic string comparisons. The following program illustrates how we can open a data file containing
colon-separated records of megalith data, search for a given site, and return the data if found:

#!/usr/bin/perl -w

ch02/scanmegadata/scanmegadata: Scans the given megalith data file for
a given site. Uses colon-separated data.

Check the user has supplied an argument for
1) The name of the file containing the data
2) The name of the site to search for
die "Usage: scanmegadata <data file> <site name>\n"
 unless @ARGV == 2;

my $megalithFile = $ARGV[0];
my $siteName = $ARGV[1];

Open the data file for reading, and die upon failure
open MEGADATA, "<$megalithFile"
 or die "Can't open $megalithFile: $!\n";

Declare our row field variables
my ($name, $location, $mapref, $type, $description);

Declare our 'record found' flag
my $found;

Programming the Perl DBI

 page 13

Scan through all the entries for the desired site
while (<MEGADATA>) {

 ### Remove the newline that acts as a record delimiter
 chop;

 ### Break up the record data into separate fields
 ($name, $location, $mapref, $type, $description) =
 split(/:/, $_);

 ### Test the sitename against the record's name
 if ($name eq $siteName) {
 $found = $.; # $. holds current line number in file
 last;
 }
}

If we did find the site we wanted, print it out
if ($found) {
 print "Located site: $name on line $found\n\n";
 print "Information on $name ($type)\n";
 print "===============",
 ("=" x (length($name) + length($type) + 5)), "\n";
 print "Location: $location\n";
 print "Map Reference: $mapref\n";
 print "Description: $description\n";
}

Close the megalith data file
close MEGADATA;

exit;

For example, running that program with a file containing a record in the following format:[7]

[7] In this example, and some others that follow, the single line has been split over two lines just to fit on the
printed page.

Stonehenge:Wiltshire:SU 123 400:Stone Circle and Henge:The most famous stone circle

and a search term of Stonehenge would return the following information:

Located site: Stonehenge on line 1

Information on Stonehenge (Stone Circle and Henge)
==
Location: Wiltshire
Map Reference: SU 123 400
Description: The most famous stone circle

indicating that our brute-force scan and test for the correct site has worked. As you can clearly see
from the example program, we have used Perl's own native file I/O functions for reading in the data
file, and Perl's own string handling functions to break up the delimited data and test it for the correct
record.

The downside to delimited file formats is that if any piece of data contains the delimiting character,
you need to be especially careful not to break up the records in the wrong place. Using the Perl
split() function with a simple regular expression, as used above, does not take this into account and
could produce wrong results. For example, a record containing the following information would cause
the split() to happen in the wrong place:

Stonehenge:Wiltshire:SU 123 400:Stone Circle and Henge:Stonehenge: The most famous
stone circle

The easiest quick-fix technique is to translate any delimiter characters in the string into some other
character that you're sure won't appear in your data. Don't forget to do the reverse translation when
you fetch the records back.

Programming the Perl DBI

 page 14

Another common way of storing data within flat files is to use fixed-length records in which to store
the data. That is, each piece of data fits into an exactly sized space in the data file. In this form of
database, no delimiting character is needed between the fields. There's also no need to delimit each
record, but we'll continue to use ASCII line termination as a record delimiter in our examples because
Perl makes it very easy to work with files line by line.

Using fixed-width fields is similar to the way in which data is organized in more powerful database
systems such as an RDBMS. The pre-allocation of space for record data allows the storage manager to
make assumptions about the layout of the data on disk and to optimize accordingly. For our
megalithic data purposes, we could settle on the data sizes of:[8]

[8] The fact that these data sizes are all powers of two has no significance other than to indicate that the authors
are old enough to remember when powers of two were significant and useful sometimes. They generally aren't
anymore.

Field Required Bytes
----- --------------
Name 64
Location 64
Map Reference 16
Type 32
Description 256

Storing the data in this format requires slightly different storage manager logic to be used, although
the standard Perl file I/O functions are still applicable. To test this data for the correct record, we
need to implement a different way of extracting the fields from within each record. For a fixed-length
data file, the Perl function unpack() is perfect. The following code shows how the unpack() function
replaces the split() used above:

Break up the record data into separate fields
using the data sizes listed above
($name, $location, $mapref, $type, $description) =
 unpack("A64 A64 A16 A32 A256", $_);

Although fixed-length fields are always the same length, the data that is being put into a particular
field may not be as long as the field. In this case, the extra space will be filled with a character not
normally encountered in the data or one that can be ignored. Usually, this is a space character (ASCII
32) or a nul (ASCII 0).

In the code above, we know that the data is space-packed, and so we remove any trailing space from
the name record so as not to confuse the search. This can be simply done by using the uppercase A
format with unpack().

If you need to choose between delimited fields and fixed-length fields, here are a few guidelines:

The main limitations

The main limitation with delimited fields is the need to add special handling to ensure that
neither the field delimiter or the record delimiter characters get added into a field value.

The main limitation with fixed-length fields is simply the fixed length. You need to check for
field values being too long to fit (or just let them be silently truncated). If you need to increase
a field width, then you'll have to write a special utility to rewrite your file in the new format
and remember to track down and update every script that manipulates the file directly.

Space

A delimited-field file often uses less space than a fixed-length record file to store the same
data, sometimes very much less space. It depends on the number and size of any empty or
partially filled fields. For example, some field values, like web URLs, are potentially very long
but typically very short. Storing them in a long fixed-length field would waste a lot of space.

While delimited-field files often use less space, they do "waste" space due to all the field
delimiter characters. If you're storing a large number of very small fields then that might tip
the balance in favor of fixed-length records.

Programming the Perl DBI

 page 15

Speed

These days, computing power is rising faster than hard disk data transfer rates. In other
words, it's often worth using more space-efficient storage even if that means spending more
processor time to use it.

Generally, delimited-field files are better for sequential access than fixed-length record files
because the reduced size more than makes up for the increase in processing to extract the
fields and handle any escaped or translated delimiter characters.

However, fixed-length record files do have a trick up their sleeve: direct access. If you want to
fetch record 42,927 of a delimited-field file, you have to read the whole file and count records
until you get to the one you want. With a fixed-length record file, you can just multiply 42,927
by the total record width and jump directly to the record using seek().

Furthermore, once it's located, the record can be updated in-place by overwriting it with new
data. Because the new record is the same length as the old, there's no danger of corrupting
the following record.

2.4.2 Inserting Data

Inserting data into a flat-file database is very straightforward and usually amounts to simply tacking
the new data onto the end of the data file. For example, inserting a new megalith record into a colon-
delimited file can be expressed as simply as:

#!/usr/bin/perl -w

ch02/insertmegadata/insertmegadata: Inserts a new record into the
given megalith data file as
colon-separated data

Check the user has supplied an argument to scan for
1) The name of the file containing the data
2) The name of the site to insert the data for
3) The location of the site
4) The map reference of the site
5) The type of site
6) The description of the site
die "Usage: insertmegadata"
 ." <data file> <site name> <location> <map reference> <type> <description>\n"
 unless @ARGV == 6;

my $megalithFile = $ARGV[0];
my $siteName = $ARGV[1];
my $siteLocation = $ARGV[2];
my $siteMapRef = $ARGV[3];
my $siteType = $ARGV[4];
my $siteDescription = $ARGV[5];

Open the data file for concatenation, and die upon failure
open MEGADATA, ">>$megalithFile"
 or die "Can't open $megalithFile for appending: $!\n";

Create a new record
my $record = join(":", $siteName, $siteLocation, $siteMapRef,
 $siteType, $siteDescription);

Insert the new record into the file
print MEGADATA "$record\n"
 or die "Error writing to $megalithFile: $!\n";

Close the megalith data file
close MEGADATA
 or die "Error closing $megalithFile: $!";

print "Inserted record for $siteName\n";

exit;

Programming the Perl DBI

 page 16

This example simply opens the data file in append mode and writes the new record to the open file.
Simple as this process is, there is a potential drawback. This flat-file database does not detect the
insertion of multiple items of data with the same search key. That is, if we wanted to insert a new
record about Stonehenge into our megalith database, then the software would happily do so, even
though a record for Stonehenge already exists.

This may be a problem from a data integrity point of view. A more sophisticated test prior to
appending the data might be worth implementing to ensure that duplicate records do not exist.
Combining the insert program with the query program above is a straightforward approach.

Another potential (and more important) drawback is that this system will not safely handle occasions
in which more than one user attempts to add new data into the database. Since this subject also
affects updating and deleting data from the database, we'll cover it more thoroughly in a later section
of this chapter.

Inserting new records into a fixed-length data file is also simple. Instead of printing each field to the
Perl filehandle separated by the delimiting character, we can use the pack() function to create a fixed-
length record out of the data.

2.4.3 Updating Data

Updating data within a flat-file database is where things begin to get a little more tricky. When
querying records from the database, we simply scanned sequentially through the database until we
found the correct record. Similarly, when inserting data, we simply attached the new data without
really knowing what was already stored within the database.

The main problem with updating data is that we need to be able to read in data from the data file,
temporarily mess about with it, and write the database back out to the file without losing any records.

One approach is to slurp the entire database into memory, make any updates to the in-memory copy,
and dump it all back out again. A second approach is to read the database in record by record, make
any alterations to each individual record, and write the record immediately back out to a temporary
file. Once all the records have been processed, the temporary file can replace the original data file.
Both techniques are viable, but we prefer the latter for performance reasons. Slurping entire large
databases into memory can be very resource-hungry.

The following short program implements the latter of these strategies to update the map reference in
the database of delimited records:

#!/usr/bin/perl -w

ch02/updatemegadata/updatemegadata: Updates the given megalith data file
for a given site. Uses colon-separated
data and updates the map reference field.

Check the user has supplied an argument to scan for
1) The name of the file containing the data
2) The name of the site to search for
3) The new map reference
die "Usage: updatemegadata <data file> <site name> <new map reference>\n"
 unless @ARGV == 3;

my $megalithFile = $ARGV[0];
my $siteName = $ARGV[1];
my $siteMapRef = $ARGV[2];
my $tempFile = "tmp.$$";

Open the data file for reading, and die upon failure
open MEGADATA, "<$megalithFile"
 or die "Can't open $megalithFile: $!\n";

Open the temporary megalith data file for writing
open TMPMEGADATA, ">$tempFile"
 or die "Can't open temporary file $tempFile: $!\n";

Programming the Perl DBI

 page 17

Scan through all the records looking for the desired site
while (<MEGADATA>) {

 ### Quick pre-check for maximum performance:
 ### Skip the record if the site name doesn't appear as a field
 next unless m/^\Q$siteName:/;

 ### Break up the record data into separate fields
 ### (we let $description carry the newline for us)
 my ($name, $location, $mapref, $type, $description) =
 split(/:/, $_);

 ### Skip the record if the site name doesn't match. (Redundant after the
 ### reliable pre-check above but kept for consistency with other examples.)
 next unless $siteName eq $name;

 ### We've found the record to update, so update the map ref value
 $mapref = $siteMapRef;

 ### Construct an updated record
 $_ = join(":", $name, $location, $mapref, $type, $description);

}
continue {

 ### Write the record out to the temporary file
 print TMPMEGADATA $_
 or die "Error writing $tempFile: $!\n";
}

Close the megalith input data file
close MEGADATA;

Close the temporary megalith output data file
close TMPMEGADATA
 or die "Error closing $tempFile: $!\n";

We now "commit" the changes by deleting the old file...
unlink $megalithFile
 or die "Can't delete old $megalithFile: $!\n";

and renaming the new file to replace the old one.
rename $tempFile, $megalithFile
 or die "Can't rename '$tempFile' to '$megalithFile': $!\n";

exit 0;

You can see we've flexed our Perl muscles on this example, using a while ... continue loop to simplify
the logic and adding a pretest for increased speed.

An equivalent program that can be applied to a fixed-length file is very similar, except that we use a
faster in-place update to change the contents of the field. This principle is similar to the in-place
query described previously: we don't need to unpack and repack all the fields stored within each
record, but can simply update the appropriate chunk of each record. For example:

Scan through all the records looking for the desired site
while (<MEGADATA>) {

 ### Quick pre-check for maximum performance:
 ### Skip the record if the site name doesn't appear at the start
 next unless m/^\Q$siteName/;

 ### Skip the record if the extracted site name field doesn't match
 next unless unpack("A64", $_) eq $siteName;

 ### Perform in-place substitution to upate map reference field
 substr($_, 64+64, 16) = pack("A16", $siteMapRef));

}

This technique is faster than packing and unpacking each record stored within the file, since it carries
out the minimum amount of work needed to change the appropriate field values.

You may notice that the pretest in this example isn't 100% reliable, but it doesn't have to be. It just
needs to catch most of the cases that won't match in order to pay its way by reducing the number of
times the more expensive unpack and field test gets executed. Okay, this might not be a very
convincing application of the idea, but we'll revisit it more seriously later in this chapter.

Programming the Perl DBI

 page 18

2.4.4 Deleting Data

The final form of data manipulation that you can apply to flat-file databases is the removal, or
deletion, of records from the database. We shall process the file a record at a time by passing the data
through a temporary file, just as we did for updating, rather than slurping all the data into memory
and dumping it at the end.

With this technique, the action of removing a record from the database is more an act of omission
than any actual deletion. Each record is read in from the file, tested, and written out to the file. When
the record to be deleted is encountered, it is simply not written to the temporary file. This effectively
removes all trace of it from the database, albeit in a rather unsophisticated way.

The following program can be used to remove the relevant record from the delimited megalithic
database when given an argument of the name of the site to delete:

#!/usr/bin/perl -w

ch02/deletemegadata/deletemegadata: Deletes the record for the given
megalithic site. Uses
colon-separated data

Check the user has supplied an argument to scan for
1) The name of the file containing the data
2) The name of the site to delete
die "Usage: deletemegadata <data file> <site name>\n"
 unless @ARGV == 2;

my $megalithFile = $ARGV[0];
my $siteName = $ARGV[1];
my $tempFile = "tmp.$$";

Open the data file for reading, and die upon failure
open MEGADATA, "<$megalithFile"
 or die "Can't open $megalithFile: $!\n";

Open the temporary megalith data file for writing
open TMPMEGADATA, ">$tempFile"
 or die "Can't open temporary file $tempFile: $!\n";

Scan through all the entries for the desired site
while (<MEGADATA>) {

 ### Extract the site name (the first field) from the record
 my ($name) = split(/:/, $_);

 ### Test the sitename against the record's name
 if ($siteName eq $name) {

 ### We've found the record to delete, so skip it and move to next record
 next;
 }

 ### Write the original record out to the temporary file
 print TMPMEGADATA $_
 or die "Error writing $tempFile: $!\n";
 }

Close the megalith input data file
close MEGADATA;

Close the temporary megalith output data file
close TMPMEGADATA
 or die "Error closing $tempFile: $!\n";

We now "commit" the changes by deleting the old file ...
unlink $megalithFile
 or die "Can't delete old $megalithFile: $!\n";

and renaming the new file to replace the old one.
rename $tempFile, $megalithFile
 or die "Can't rename '$tempFile' to '$megalithFile': $!\n";

exit 0;

Programming the Perl DBI

 page 19

The code to remove records from a fixed-length data file is almost identical. The only change is in the
code to extract the field value, as you'd expect:

Extract the site name (the first field) from the record
my ($name) = unpack("A64", $_);

Like updating, deleting data may cause problems if multiple users are attempting to make
simultaneous changes to the data. We'll look at how to deal with this problem a little later in this
chapter.

2.5 Putting Complex Data into Flat Files

In our discussions of so-called "flat files" we've so far been storing, retrieving, and manipulating only
that most basic of datatypes: the humble string. What can you do if you want to store more complex
data, such as lists, hashes, or deeply nested data structures using references?

The answer is to convert whatever it is you want to store into a string. Technically that's known as
marshalling or serializing the data. The Perl Module List[9] has a section that lists several Perl
modules that implement data marshalling.

[9] The Perl Module List can be found at http://www.perl.com/CPAN/.

We're going to take a look at two of the most popular modules, Data::Dumper and Storable, and see
how we can use them to put some fizz into our flat files. These techniques are also applicable to
storing complex Perl data structures in relational databases using the DBI, so pay attention.

2.5.1 The Perl Data::Dumper Module

The Data::Dumper module takes a list of Perl variables and writes their values out in the form of Perl
code, which will recreate the original values, no matter how complex, when executed.

This module allows you to dump the state of a Perl program in a readable form quickly and easily. It
also allows you to restore the program state by simply executing the dumped code using eval() or
do().

The easiest way to describe what happens is to show you a quick example:

#!/usr/bin/perl -w

ch02/marshal/datadumpertest: Creates some Perl variables and dumps them out.
Then, we reset the values of the variables and
eval the dumped ones ...

use Data::Dumper;

Customise Data::Dumper's output style
Refer to Data::Dumper documentation for full details
if ($ARGV[0] eq 'flat') {
 $Data::Dumper::Indent = 0;
 $Data::Dumper::Useqq = 1;
}
$Data::Dumper::Purity = 1;

Create some Perl variables
my $megalith = 'Stonehenge';
my $districts = ['Wiltshire', 'Orkney', 'Dorset'];
Print them out
print "Initial Values: \$megalith = " . $megalith . "\n" .
 " \$districts = [". join(", ", @$districts) . "]\n\n";

Create a new Data::Dumper object from the database
my $dumper = Data::Dumper->new([$megalith, $districts],
 [qw(megalith districts)]);

Dump the Perl values out into a variable
my $dumpedValues = $dumper->Dump();

http://www.perl.com/CPAN/

Programming the Perl DBI

 page 20

Show what Data::Dumper has made of the variables!
print "Perl code produced by Data::Dumper:\n";
print $dumpedValues . "\n";

Reset the variables to rubbish values
$megalith = 'Blah! Blah!';
$districts = ['Alderaan', 'Mordor', 'The Moon'];

Print out the rubbish values
print "Rubbish Values: \$megalith = " . $megalith . "\n" .
 " \$districts = [". join(", ", @$districts) . "]\n\n";

Eval the file to load up the Perl variables
eval $dumpedValues;
die if $@;

Display the re-loaded values
print "Re-loaded Values: \$megalith = " . $megalith . "\n" .
 " \$districts = [". join(", ", @$districts) . "]\n\n";

exit;

This example simply initializes two Perl variables and prints their values. It then creates a
Data::Dumper object with those values, changes the original values, and prints the new ones just to
prove we aren't cheating. Finally, it evals the results of $dumper->Dump(), which stuffs the original
stored values back into the variables. Again, we print it all out just to doubly convince you there's no
sleight-of-hand going on:

Initial Values: $megalith = Stonehenge
 $districts = [Wiltshire, Orkney, Dorset]

Perl code produced by Data::Dumper:
$megalith = 'Stonehenge';
$districts = [
 'Wiltshire',
 'Orkney',
 'Dorset'
];

Rubbish Values: $megalith = Blah! Blah!
 $districts = [Alderaan, Mordor, The Moon]
Re-loaded Values: $megalith = Stonehenge
 $districts = [Wiltshire, Orkney, Dorset]

So how do we use Data::Dumper to add fizz to our flat files? Well, first of all we have to ask
Data::Dumper to produce flat output, that is, output with no newlines. We do that by setting two
package global variables:

$Data::Dumper::Indent = 0; # don't use newlines to layout the output
$Data::Dumper::Useqq = 1; # use double quoted strings with "\n" escapes

In our test program, we can do that by running the program with flat as an argument. Here's the
relevant part of the output when we do that:

$megalith = "Stonehenge";$districts = ["Wiltshire","Orkney","Dorset"];

Now we can modify our previous scan (select), insert, update, and delete scripts to use Data::Dumper
to format the records instead of the join() or pack() functions we used before. Instead of split()
or unpack() , we now use eval to unpack the records.

Here's just the main loop of the update script we used earlier (the rest of the script is unchanged
except for the addition of a use Data::Dumper; line at the top and setting the Data::Dumper
variables as described above):

Scan through all the entries for the desired site
while (<MEGADATA>) {

 ### Quick pre-check for maximum performance:
 ### Skip the record if the site name doesn't appear
 next unless m/\Q$siteName/;

 ### Evaluate perl record string to set $fields array reference
 my $fields;
 eval $_;
 die if $@;

 ### Break up the record data into separate fields
 my ($name, $location, $mapref, $type, $description) = @$fields;

Programming the Perl DBI

 page 21

 ### Skip the record if the extracted site name field doesn't match
 next unless $siteName eq $name;

 ### We've found the record to update
 ### Create a new fields array with new map ref value
 $fields = [$name, $location, $siteMapRef, $type, $description];

 ### Convert it into a line of perl code encoding our record string
 $_ = Data::Dumper->new([$fields], ['fields'])->Dump();
 $_ .= "\n";

}

So, what have we gained by doing this? We avoid the tedious need to explicitly escape field delimiter
characters. Data::Dumper does that for us, and there are no fixed-width field length restrictions
either.

The big win, though, is the ability to store practically any complex data structure, even object
references. There are also some smaller benefits that may be of use to you: undefined (null) field
values can be saved and restored, and there's no need for every record to have every field defined
(variant records).

The downside? There's always a downside. In this case, it's mainly the extra processing time required
both to dump the record data into the strings and for Perl to eval them back again. There is a version
of the Data::Dumper module written in C that's much faster, but sadly it doesn't support the $Useqq
variable yet. To save time processing each record, the example code has a quick precheck that skips
any rows that don't at least have the desired site name somewhere in them.

There's also the question of security. Because we're using eval to evaluate the Perl code embedded in
our data file, it's possible that someone could edit the data file and add code that does something else,
possibly harmful. Fortunately, there's a simple fix for this. The Perl ops pragma can be used to
restrict the eval to compiling code that contains only simple declarations. For more information on
this, see the ops documentation installed with Perl:

perldoc ops

2.5.2 The Storable Module

In addition to Data::Dumper, there are other data marshalling modules available that you might wish
to investigate, including the fast and efficient Storable.

The following code takes the same approach as the example we listed for Data::Dumper to show the
basic store and retrieve cycle:

#!/usr/bin/perl -w

ch02/marshal/storabletest: Create a Perl hash and store it externally. Then,
we reset the hash and reload the saved one.

use Storable qw(freeze thaw);

Create some values in a hash
my $megalith = {
 'name' => 'Stonehenge',
 'mapref' => 'SU 123 400',
 'location' => 'Wiltshire',
};

Print them out
print "Initial Values: megalith = $megalith->{name}\n" .
 " mapref = $megalith->{mapref}\n" .
 " location = $megalith->{location}\n\n";

Store the values to a string
my $storedValues = freeze($megalith);

Reset the variables to rubbish values
$megalith = {
 'name' => 'Flibble Flabble',
 'mapref' => 'XX 000 000',
 'location' => 'Saturn',
};

Programming the Perl DBI

 page 22

Print out the rubbish values
print "Rubbish Values: megalith = $megalith->{name}\n" .
 " mapref = $megalith->{mapref}\n" .
 " location = $megalith->{location}\n\n";

Retrieve the values from the string
$megalith = thaw($storedValues);

Display the re-loaded values
print "Re-loaded Values: megalith = $megalith->{name}\n" .
 " mapref = $megalith->{mapref}\n" .
 " location = $megalith->{location}\n\n";

exit;

This program generates the following output, which illustrates that we are storing data persistently
then retrieving it:

Initial Values: megalith = Stonehenge
 mapref = SU 123 400
 location = Wiltshire

Rubbish Values: megalith = Flibble Flabble
 mapref = XX 000 000
 location = Saturn

Re-loaded Values: megalith = Stonehenge
 mapref = SU 123 400
 location = Wiltshire

Storable also has functions to write and read your data structures directly to and from disk files. It
can also be used to write to a file cumulatively instead of writing all records in one atomic operation.

So far, all this sounds very similar to Data::Dumper, so what's the difference? In a word, speed.
Storable is fast, very fast - both for saving data and for getting it back again. It achieves its speed
partly by being implemented in C and hooked directly into the Perl internals, and partly by writing the
data in its own very compact binary format.

Here's our update program reimplemented yet again, this time to use Storable:

#!/usr/bin/perl -w

ch02/marshal/update_storable: Updates the given megalith data file
for a given site. Uses Storable data
and updates the map reference field.

use Storable qw(nfreeze thaw);

Check the user has supplied an argument to scan for
1) The name of the file containing the data
2) The name of the site to search for
3) The new map reference
die "Usage: updatemegadata <data file> <site name> <new map reference>\n"
 unless @ARGV == 3;

my $megalithFile = $ARGV[0];
my $siteName = $ARGV[1];
my $siteMapRef = $ARGV[2];
my $tempFile = "tmp.$$";

Open the data file for reading, and die upon failure
open MEGADATA, "<$megalithFile"
 or die "Can't open $megalithFile: $!\n";

Open the temporary megalith data file for writing
open TMPMEGADATA, ">$tempFile"
 or die "Can't open temporary file $tempFile: $!\n";

Programming the Perl DBI

 page 23

Scan through all the entries for the desired site
while (<MEGADATA>) {

 ### Convert the ASCII encoded string back to binary
 ### (pack ignores the trailing newline record delimiter)
 my $frozen = pack "H*", $_;

 ### Thaw the frozen data structure
 my $fields = thaw($frozen);

 ### Break up the record data into separate fields
 my ($name, $location, $mapref, $type, $description) = @$fields;

 ### Skip the record if the extracted site name field doesn't match
 next unless $siteName eq $name;

 ### We've found the record to update
 ### Create a new fields array with new map ref value
 $fields = [$name, $location, $siteMapRef, $type, $description];

 ### Freeze the data structure into a binary string
 $frozen = nfreeze($fields);

 ### Encode the binary string as readable ASCII and append a newline
 $_ = unpack("H*", $frozen) . "\n";

}
continue {

 ### Write the record out to the temporary file
 print TMPMEGADATA $_
 or die "Error writing $tempFile: $!\n";
}

Close the megalith input data file
close MEGADATA;

Close the temporary megalith output data file
close TMPMEGADATA
 or die "Error closing $tempFile: $!\n";

We now "commit" the changes by deleting the old file...
unlink $megalithFile
 or die "Can't delete old $megalithFile: $!\n";

and renaming the new file to replace the old one.
rename $tempFile, $megalithFile
 or die "Can't rename '$tempFile' to '$megalithFile': $!\n";

exit 0;

Since the Storable format is binary, we couldn't simply write it directly to our flat file. It would be
possible for our record-delimiter character ("\n") to appear within the binary data, thus corrupting
the file. We get around this by encoding the binary data as a string of pairs of hexadecimal digits.

You may have noticed that we've used nfreeze() instead of freeze() . By default, Storable writes
numeric data in the fastest, simplest native format. The problem is that some computer systems store
numbers in a different way from others. Using nfreeze() instead of freeze() ensures that numbers
are written in a form that's portable to all systems.

You may also be wondering what one of these records looks like. We'll here's the record for the
Castlerigg megalithic site:

0302000000050a0a436173746c6572696767580a0743756d62726961580a0a4e59203239312032
3336580a0c53746f6e6520436972636c65580aa34f6e65206f6620746865206c6f76656c696573
742073746f6e6520636972636c65732072656d61696e696e6720746f6461792e20546869732073
69746520697320636f6d707269736564206f66206c6172676520726f756e64656420626f756c64
657273207365742077697468696e2061206e61747572616c20616d706869746865617472652066
6f726d656420627920737572726f756e64696e672068696c6c732e5858

That's all on one line in the data file; we've just split it up here to fit on the page. It doesn't make for
thrilling reading. It also doesn't let us do the kind of quick precheck shortcut that we used with
Data::Dumper and the previous flat-file update examples. We could apply the pre-check after
converting the hex string back to binary, but there's no guarantee that strings appear literally in the
Storable output. They happen to now, but there's always a risk that this will change.

Programming the Perl DBI

 page 24

Although we've been talking about Storable in the context of flat files, this technique is also very
useful for storing arbitrary chunks of Perl data into a relational database, or any other kind of
database for that matter. Storable and Data::Dumper are great tools to carry in your mental toolkit.

2.5.3 Summary of Flat-File Databases

The main benefit of using flat-file databases for data storage is that they can be fast to implement and
fast to use on small and straightforward datasets, such as our megalithic database or a Unix password
file.

The code to query, insert, delete, and update information in the database is also extremely simple,
with the parsing code potentially shared among the operations. You have total control over the data
file formats, so that there are no situations outside your control in which the file format or access API
changes. The files are also easy to read in standard text editors (although in the case of the Storable
example, they won't make very interesting reading).

The downsides of these databases are quite apparent. As we've mentioned already, the lack of
concurrent access limits the power of such systems in a multi-user environment. They also suffer
from scalability problems due to the sequential nature of the search mechanism. These limitations
can be coded around (the concurrent access problem especially so), but there comes a point where you
should seriously consider the use of a higher-level storage manager such as DBM files. DBM files also
give you access to indexed data and allow nonsequential querying.

Before we discuss DBM files in detail, the following sections give you examples of more sophisticated
management tools and techniques, as well as a method of handling concurrent users.

2.6 Concurrent Database Access and Locking

Before we start looking at DBM file storage management, we should discuss the issues that were
flagged earlier regarding concurrent access to flat-file databases, as these problems affect all relatively
low-level storage managers.

The basic problem is that concurrent access to files can result in undefined, and generally wrong, data
being stored within the data files of a database. For example, if two users each decided to delete a row
from the megalith database using the program shown in the previous section, then during the deletion
phase, both users would be operating on the original copy of the database. However, whichever user's
deletion finished first would be overwritten as the second user's deletion copied their version of the
database over the first user's deletion. The first user's deletion would appear to have been magically
restored. This problem is known as a race condition and can be very tricky to detect as the conditions
that cause the problem are difficult to reproduce.

To avoid problems of multiple simultaneous changes, we need to somehow enforce exclusive access to
the database for potentially destructive operations such as the insertion, updating, and deletion of
records. If every program accessing a database were simply read-only, this problem would not appear,
since no data would be changed. However, if any script were to alter data, the consistency of all other
processes accessing the data for reading or writing could not be guaranteed.

One way in which we can solve this problem is to use the operating system's file-locking mechanism,
accessed by the Perl flock() function. flock() implements a cooperative system of locking that
must be used by all programs attempting to access a given file if it is to be effective. This includes
read-only scripts, such as the query script listed previously, which can use flock() to test whether or
not it is safe to attempt a read on the database.

The symbolic constants used in the following programs are located within the Fcntl package and can
be imported into your scripts for use with flock() with the following line:

use Fcntl ':flock';

Programming the Perl DBI

 page 25

flock() allows locking in two modes: exclusive and shared (also known as non-exclusive). When a
script has an exclusive lock, only that script can access the files of the database. Any other script
wishing access to the database will have to wait until the exclusive lock is released before its lock
request is granted. A shared lock, on the other hand, allows any number of scripts to simultaneously
access the locked files, but any attempts to acquire an exclusive lock will block.[10]

[10] Users of Perl on Windows 95 may not be surprised to know that the flock() function isn't supported on
that system. Sorry. You may be able to use a module like LockFile::Simple instead.

For example, the querying script listed in the previous section could be enhanced to use flock() to
request a shared lock on the database files, in order to avoid any read-consistency problems if the
database was being updated, in the following way:

Open the data file for reading, and die upon failure
open MEGADATA, $ARGV[0] or die "Can't open $ARGV[0]: $!\n";

print "Acquiring a shared lock...";
flock(MEGADATA, LOCK_SH)
 or die "Unable to acquire shared lock: $!. Aborting";
print "Acquired lock. Ready to read database!\n\n";

This call to flock() will block the script until any exclusive locks have been relinquished on the
requested file. When that occurs, the querying script will acquire a shared lock and continue on with
its query. The lock will automatically be released when the file is closed.

Similarly, the data insertion script could be enhanced with flock() to request an exclusive lock on the
data file prior to operating on that file. We also need to alter the mode in which the file is to be
opened. This is because we must open the file for writing prior to acquiring an exclusive lock.

Therefore, the insert script can be altered to read:

Open the data file for appending, and die upon failure
open MEGADATA, "+>>$ARGV[0]"
 or die "Can't open $ARGV[0] for appending: $!\n";

print "Acquiring an exclusive lock...";
flock(MEGADATA, LOCK_EX)
 or die "Unable to acquire exclusive lock: $!. Aborting";
print "Acquired lock. Ready to update database!\n\n";

which ensures that no data alteration operations will take place until an exclusive lock has been
acquired on the data file. Similar enhancements should be added to the deletion and update scripts to
ensure that no scripts will ''cheat'' and ignore the locking routines.

This locking system is effective on all storage management systems that require some manipulation of
the underlying database files and have no explicit locking mechanism of their own. We will be
returning to locking during our discussion of the Berkeley Database Manager system, as it requires a
slightly more involved strategy to get a filehandle on which to use flock().

As a caveat, flock() might not be available on your particular operating system. For example, it
works on Windows NT/2000 systems, but not on Windows 95/98. Most, if not all, Unix systems
support flock() without any problems.

2.7 DBM Files and the BerkeleyDatabase Manager

DBM files are a storage management layer that allows programmers to store information in files as
pairs of strings, a key, and a value. DBM files are binary files and the key and value strings can also
hold binary data.

There are several forms of DBM files, each with its own strengths and weaknesses. Perl supports the
ndbm , db , gdbm , sdbm , and odbm managers via the NDBM_File , DB_File , GDBM_File ,
SDBM_File, and ODBM_File extensions. There's also an AnyDBM_File module that will simply use the
best available DBM. The documentation for the AnyDBM_File module includes a useful table
comparing the different DBMs.

Programming the Perl DBI

 page 26

These extensions all associate a DBM file on disk with a Perl hash variable (or associative array) in
memory.[11] The simple look like a hash programming interface lets programmers store data in
operating system files without having to consider how it's done. It just works.

[11] DBM files are implemented by library code that's linked into the Perl extensions. There's no separate server
process involved.

Programmers store and fetch values into and out of the hash, and the underlying DBM storage
management layer will look after getting them on and off the disk.

In this section, we shall discuss the most popular and sophisticated of these storage managers, the
Berkeley Database Manager, also known as the Berkeley DB. This software is accessed from Perl via
the DB_File and Berkeley DB extensions. On Windows systems, it can be installed via the Perl
package manager, ppm. On Unix systems, it is built by default when Perl is built only if the Berkeley
DB library has already been installed on your system. That's generally the case on Linux, but on most
other systems you may need to fetch and build the Berkeley DB library first.[12]

[12] Version 1 of Berkeley DB is available from http://www.perl.com/CPAN/src/misc/db.1.86.tar.gz. The much
improved Version 2 (e.g., db.2.14.tar.gz) is also available, but isn't needed for our examples and is only
supported by recent Perl versions. Version 3 is due out soon. See www.sleepycat.com.

In addition to the standard DBM file features, Berkeley DB and the DB_File module also provide
support for several different storage and retrieval algorithms that can be used in subtly different
situations. In newer versions of the software, concurrent access to databases and locking are also
supported.

2.7.1 Creating a New Database

Prior to manipulating data within a Berkeley database, either a new database must be created or an
existing database must be opened for reading. This can be done by using one of the following function
calls:

tie %hash, 'DB_File', $filename, $flags, $mode, $DB_HASH;
tie %hash, 'DB_File', $filename, $flags, $mode, $DB_BTREE;
tie @array, 'DB_File', $filename, $flags, $mode, $DB_RECNO;

The final parameter of this call is the interesting one, as it dictates the way in which the Berkeley DB
will store the data in the database file. The behavior of these parameters is as follows:

• DB_HASH is the default behavior for Berkeley DB databases. It stores the data according to a
hash value computed from the string specified as the key itself. Hashtables are generally
extremely fast, in that by simply applying the hash function to any given key value, the data
associated with that key can be located in a single operation. This is much faster than
sequential scanning. However, hashtables provide no useful ordering of the data by default,
and hashtable performance can begin to degrade when several keys have identical hash key
values. This results in several items of data being attached to the same hash key value, which
results in slower access times.

• With the DB_BTREE format, Berkeley DB files are stored in the form of a balanced binary tree.
The B-tree storage technique will sort the keys that you insert into the Berkeley DB, the
default being to sort them in lexical order. If you desire, you can override this behavior with
your own sorting algorithms.

• The DB_RECNO format allows you to store key/value pairs in both fixed-length and variable-
length textual flat files. The key values in this case consist of a line number, i.e., the number
of the record within the database.

When initializing a new or existing Berkeley DB database for use with Perl, use the tie mechanism
defined within Perl to associate the actual Berkeley DB with either a hash or a standard scalar array.
By doing this, we can simply manipulate the Perl variables, which will automatically perform the
appropriate operations on the Berkeley DB files instead of us having to manually program the
Berkeley DB API ourselves.

http://www.perl.com/CPAN/src/misc/db.1.86.tar.gz

Programming the Perl DBI

 page 27

For example, to create a simple Berkeley DB, we could use the following Perl script:

#!/usr/bin/perl -w

ch02/DBM/createdb: Creates a Berkeley DB

use strict;

use DB_File;

my %database;
tie %database, 'DB_File', "createdb.dat"
 or die "Can't initialize database: $!\n";

untie %database;

exit;

If you now look in the directory in which you ran this script, you should hopefully find a new file called
createdb.dat. This is the disk image of your Berkeley database, i.e., your data stored in the format
implemented by the Berkeley DB storage manager. These files are commonly referred to as DBM files.

In the example above, we simply specified the name of the file in which the database is to be stored
and then ignored the other arguments. This is a perfectly acceptable thing to do if the defaults are
satisfactory. The additional arguments default to the values listed in Table 2.1.

Table 2.1, The Default Argument Values of DB_File

Argument Default Value

$filename undef [13]

$flags O_CREAT | O_RDWR

$mode 0666

$storage_type $DB_HASH

[13] If the filename argument is specified as undef, the database will be created in-memory only. It still behaves
as if written to file, although once the program exits, the database will no longer exist.

The $flags argument takes the values that are associated with the standard Perl sysopen() function,
and the $mode argument takes the form of the octal value of the file permissions that you wish the
DBM file to be created with. In the case of the default value, 0666, the corresponding Unix
permissions will be:

-rw-rw-rw-

That is, the file is user, group, and world readable and writeable.[14] You may wish to specify more strict
permissions on your DBM files to be sure that unauthorized users won't tamper with them.

[14] We are ignoring any modifications to the permissions that umask may make.

Other platforms such as Win32 differ, and do not necessarily use a permission system. On these
platforms, the permission mode is simply ignored.

Given that creating a new database is a fairly major operation, it might be worthwhile to implement an
exclusive locking mechanism that protects the database files while the database is initially created and
loaded. As with flat-file databases, the Perl flock() call should be used to perform file-level locking,
but there are some differences between locking standard files and DBM files.

2.7.2 Locking Strategies

The issues of safe access to databases that plagued flat-file databases still apply to Berkeley databases.
Therefore, it is a good idea to implement a locking strategy that allows safe multi-user access to the
databases, if this is required by your applications.

The way in which flock() is used regarding DBM files is slightly different than that of locking
standard Perl filehandles, as there is no direct reference to the underlying filehandle when we create a
DBM file within a Perl script.

Programming the Perl DBI

 page 28

Fortunately, the DB_File module defines a method that can be used to locate the underlying file
descriptor for a DBM file, allowing us to use flock() on it. This can be achieved by invoking the fd()
method on the object reference returned from the database initialization by tie(). For example:

Create the new database ...
$db = tie %database, 'DB_File', "megaliths.dat"
 or die "Can't initialize database: $!\n";

Acquire the file descriptor for the DBM file
my $fd = $db->fd();

Do a careful open() of that descriptor to get a Perl filehandle
open DATAFILE, "+<&=$fd" or die "Can't safely open file: $!\n";

And lock it before we start loading data ...
print "Acquiring an exclusive lock...";
flock(DATAFILE, LOCK_EX)
 or die "Unable to acquire exclusive lock: $!. Aborting";
print "Acquired lock. Ready to update database!\n\n";

This code looks a bit gruesome, especially with the additional call to open(). It is written in such a
way that the original file descriptor being currently used by the DBM file when the database was
created is not invalidated. What actually occurs is that the file descriptor is associated with the Perl
filehandle in a nondestructive way. This then allows us to flock() the filehandle as per usual.

However,after having written this description and all the examples using this standard documented
way to lock Berkeley DBM files, it has been discovered that there is a small risk of data corruption
during concurrent access. To make a long story short, the DBM code reads some of the file when it
first opens it, before you get a chance to lock it. That's the problem.

There is a quick fix if your system supports the O_EXLOCK flag, as FreeBSD does and probably most
Linux versions do. Just add the O_EXLOCK flag to the tie :

use Fcntl; # import O_EXLOCK, if available
$db = tie %database, 'DB_File', "megaliths.dat", O_EXLOCK;

For more information, and a more general workaround, see:

http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/1999-09/msg00954.html

and the thread of messages that follows it.

2.7.3 Inserting and Retrieving Values

Inserting data into a Berkeley DB using the Perl DB_File module is extremely simple as a result of
using a tied hash or tied array . The association of a DBM file and a Perl data structure is created
when the database is opened. This allows us to manipulate the contents of the database simply by
altering the contents of the Perl data structures.

This system makes it very easy to store data within a DBM file and also abstracts the actual file-related
operations for data manipulation away from our scripts. Thus, the Berkeley DB is a higher-level
storage manager than the simple flat-file databases discussed earlier in this chapter.

The following script demonstrates the insertion and retrieval of data from a DBM file using a tied
hash. This hash has the Perl characteristic of being a key/value pair. That is, values are stored within
the hash table against a unique key. This affords extremely fast retrieval and an element of indexed
data access as opposed to sequential access.

http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/1999-09/msg00954.html

Programming the Perl DBI

 page 29

For example:

#!/usr/bin/perl -w

ch02/DBM/simpleinsert: Creates a Berkeley DB, inserts some test data
and dumps it out again

use DB_File;
use Fcntl ':flock';

Initialize the Berkeley DB
my %database;
my $db = tie %database, 'DB_File', "simpleinsert.dat",
 O_CREAT | O_RDWR, 0666
 or die "Can't initialize database: $!\n";

my $fd = $db->fd();
open DATAFILE, "+<&=$fd"
 or die "Can't safely open file: $!\n";
print "Acquiring exclusive lock...";
flock(DATAFILE, LOCK_EX)
 or die "Unable to acquire lock: $!. Aborting";
print "Acquired lock. Ready to update database!\n\n";

Insert some data rows
$database{'Callanish I'} =
 "This site, commonly known as the "Stonehenge of the North" is in the
form of a buckled Celtic cross.";

$database{'Avebury'} =
 "Avebury is a vast, sprawling site that features, amongst other marvels,
the largest stone circle in Britain. The henge itself is so large,
it almost completely surrounds the village of Avebury.";
$database{'Lundin Links'} =
 "Lundin Links is a megalithic curiosity, featuring 3 gnarled and
immensely tall monoliths arranged possibly in a 4-poster design.
Each monolith is over 5m tall.";

Untie the database
undef $db;
untie %database;

Close the file descriptor to release the lock
close DATAFILE;

Retie the database to ensure we're reading the stored data
$db = tie %database, 'DB_File', "simpleinsert.dat", O_RDWR, 0444
 or die "Can't initialize database: $!\n";

Only need to lock in shared mode this time because we're not updating ...
$fd = $db->fd();
open DATAFILE, "+<&=$fd" or die "Can't safely open file: $!\n";
print "Acquiring shared lock...";
flock(DATAFILE, LOCK_SH)
 or die "Unable to acquire lock: $!. Aborting";
print "Acquired lock. Ready to read database!\n\n";

Dump the database
foreach my $key (keys %database) {
 print "$key\n", ("=" x (length($key) + 1)), "\n\n";
 print "$database{$key}\n\n";
}

Close the Berkeley DB
undef $db;
untie %database;

Close the file descriptor to release the lock
close DATAFILE;

exit;

Programming the Perl DBI

 page 30

When run, this script will generate the following output, indicating that it is indeed retrieving values
from a database:

Acquiring exclusive lock...Acquired lock. Ready to update database!

Acquiring shared lock...Acquired lock. Ready to read database!

Callanish I
============

This site, commonly known as the "Stonehenge of the North" is in the
form of a buckled Celtic cross.

Avebury
========

Avebury is a vast, sprawling site that features, amongst other marvels,
the largest stone circle in Britain. The henge itself is so large,
it almost completely surrounds the village of Avebury.

Lundin Links
=============

Lundin Links is a megalithic curiosity, featuring 3 gnarled and
immensely tall monoliths arranged possibly in a 4-poster design.
Each monolith is over 5m tall.

You may have noticed that we cheated a little bit in the previous example. We stored only the
descriptions of the sites instead of all the information such as the map reference and location. This is
the inherent problem with key/value pair databases: you can store only a single value against a given
key. You can circumvent this by simply concatenating values into a string and storing that string
instead, just like we did using join(), pack(), Data::Dumper, and Storable earlier in this chapter.

This particular form of storage jiggery-pokery can be accomplished in at least two ways.[15] One is to
hand-concatenate the data into a string and hand-split it when required. The other is slightly more
sophisticated and uses a Perl object encapsulating a megalith to handle, and hide, the packing and
unpacking.

[15] As with all Perl things, There's More Than One Way To Do It (a phrase so common with Perl you'll often see it
written as TMTOWTDI). We're outlining these ideas here because they dawned on us first. You might come up
with something far more outlandish and obscure, or painfully obvious. Such is Perl.

2.7.3.1 Localized storage and retrieval

The first technique - application handling of string joins and splits - is certainly the most self-
contained. This leads us into a small digression.

Self-containment can be beneficial, as it tends to concentrate the logic of a script internally, making
things slightly more simple to understand. Unfortunately, this localization can also be a real pain.
Take our megalithic database as a good example. In the previous section, we wrote four different Perl
scripts to handle the four main data manipulation operations. With localized logic, you're essentially
implementing the same storing and extraction code in four different places.

Furthermore, if you decide to change the format of the data, you need to keep four different scripts in
sync. Given that it's also likely that you'll add more scripts to perform more specific functions (such as
generating web pages) with the appropriate megalithic data from the database, that gives your
database more points of potential failure and inevitable corruption.

Getting back to the point, we can fairly simply store complex data in a DBM file by using either join(
) , to create a delimited string, or pack() , to make a fixed-length record. join() can be used in the
following way to produce the desired effect:

Insert some data rows
$database{'Callanish I'} =
 join(':', 'Callanish I', 'Callanish, Western Isles', 'NB 213 330',
 'Stone Circle', 'Description of Callanish I');
$database{'Avebury'} =
 join(':', 'Avebury', 'Wiltshire', 'SU 103 700',
 'Stone Circle and Henge',
 'Description of Avebury');

Programming the Perl DBI

 page 31

$database{'Lundin Links'} =
 join(':', 'Lundin Links', 'Fife', 'NO 404 027', 'Standing Stones',
 'Description of Lundin Links');
Dump the database
foreach my $key (keys %database) {
 my ($name, $location, $mapref, $type, $description) =
 split(/:/, $database{$key});
 print "$name\n", ("=" x length($name)), "\n\n";
 print "Location: $location\n";
 print "Map Reference: $mapref\n";
 print "Description: $description\n\n";
}

The storage of fixed-length records is equally straightforward, but does gobble up space within the
database rather quickly. Furthermore, the main rationale for using fixed-length records is often
access speed, but when stored within a DBM file, in-place queries and updates simply do not provide
any major speed increase.

The code to insert and dump megalithic data using fixed-length records is shown in the following code
segment:

The pack and unpack template.
$PACKFORMAT = 'A64 A64 A16 A32 A256';

Insert some data rows
$database{'Callanish I'} =
 pack($PACKFORMAT, 'Callanish I', 'Callanish, Western Isles',
 'NB 213 330', 'Stone Circle',
 'Description of Callanish I');

$database{'Avebury'} =
 pack($PACKFORMAT, 'Avebury', 'Wiltshire', 'SU 103 700',
 'Stone Circle and Henge', 'Description of Avebury');

$database{'Lundin Links'} =
 pack($PACKFORMAT, 'Lundin Links', 'Fife', 'NO 404 027',
 'Standing Stones',
 'Description of Lundin Links');

Dump the database
foreach my $key (keys %database) {
 my ($name, $location, $mapref, $type, $description) =
 unpack($PACKFORMAT, $database{$key});
 print "$name\n", ("=" x length($name)), "\n\n";
 print "Location: $location\n";
 print "Map Reference: $mapref\n";
 print "Description: $description\n\n";
}

The actual code to express the storage and retrieval mechanism isn't really much more horrible than
the delimited record version, but it does introduce a lot of gibberish in the form of the pack()
template, which could easily be miskeyed or forgotten about. This also doesn't really solve the
problem of localized program logic, and turns maintenance into the aforementioned nightmare.

How can we improve on this?

2.7.3.2 Packing in Perl objects

One solution to both the localized code problem and the problem of storing multiple data values
within a single hash key/value pair is to use a Perl object to encapsulate and hide some of the nasty
bits.[16]

[16] This is where people tend to get a little confused about Perl. The use of objects, accessor methods, and data
hiding are all very object-oriented. By this design, we get to mix the convenience of non-OO programming with
the neat bits of OO programming. Traditional OO programmers have been known to make spluttering noises
when Perl programmers discuss this sort of thing in public.

Programming the Perl DBI

 page 32

The following Perl code defines an object of class Megalith. We can then reuse this packaged object
module in all of our programs without having to rewrite any of them, if we change the way the module
works:

#!/usr/bin/perl -w
 # ch02/DBM/Megalith.pm: A perl class encapsulating a megalith

 package Megalith;

 use strict;
 use Carp;

 ### Creates a new megalith object and initializes the member fields.
 sub new {
 my $class = shift;
 my ($name, $location, $mapref, $type, $description) = @_;
 my $self = {};
 bless $self => $class;

 ### If we only have one argument, assume we have a string
 ### containing all the field values in $name and unpack it
 if (@_ == 1) {
 $self->unpack($name);
 }
 else {
 $self->{name} = $name;
 $self->{location} = $location;
 $self->{mapref} = $mapref;
 $self->{type} = $type;
 $self->{description} = $description;
 }
 return $self;
 }

 ### Packs the current field values into a colon delimited record
 ### and returns it
 sub pack {
 my ($self) = @_;

 my $record = join(':', $self->{name}, $self->{location},
 $self->{mapref}, $self->{type},
 $self->{description});

 ### Simple check that fields don't contain any colons
 croak "Record field contains ':' delimiter character"
 if $record =~ tr/:/:/ != 4;

 return $record;
 }

 ### Unpacks the given string into the member fields
 sub unpack {
 my ($self, $packedString) = @_;

 ### Naive split...Assumes no inter-field delimiters
 my ($name, $location, $mapref, $type, $description) =
 split(':', $packedString, 5);

 $self->{name} = $name;
 $self->{location} = $location;
 $self->{mapref} = $mapref;
 $self->{type} = $type;
 $self->{description} = $description;
 }

 ### Displays the megalith data
 sub dump {
 my ($self) = @_;

 print "$self->{name} ($self->{type})\n",
 "=" x (length($self->{name}) +
 length($self->{type}) + 5), "\n";
 print "Location: $self->{location}\n";
 print "Map Reference: $self->{mapref}\n";
 print "Description: $self->{description}\n\n";
 }

 1;

Programming the Perl DBI

 page 33

The record format defined by the module contains the items of data pertaining to each megalithic site
that can be queried and manipulated by programs. A new Megalith object can be created from Perl
via the new operator, for example:

Create a new object encapsulating Stonehenge
$stonehenge =
 new Megalith('Stonehenge', 'Description of Stonehenge',
 'Wiltshire', 'SU 123 400');

Display the name of the site stored within the object ...
print "Name: $stonehenge->{name}\n";

It would be extremely nice if these Megalith objects could be stored directly into a DBM file. Let's try
a simple piece of code that simply stuffs the object into the hash:

Create a new object encapsulating Stonehenge
$stonehenge =
 new Megalith('Stonehenge', 'Description of Stonehenge',
 'Wiltshire', 'SU 123 400');

Store the object within the database hash
$database{'Stonehenge'} = $stonehenge;

Have a look at the entry within the database
print "Key: $database{'Stonehenge'}\n";

This generates some slightly odd results, to say the least:

Key: Megalith=HASH(0x80e9aec)

What appears to have happened is that the string describing the reference to the Perl object has been
inserted in the Berkeley DB instead of the object itself!

This result is perhaps not surprising, given that the DBM systems are really designed for storing single
string values, and there is no innate understanding of how to compact complex objects into a single
value. It simply converts all keys and values into strings.

Fortunately, the problem of storing a Perl object can be routed around by packing , or marshalling, all
the values of all the Megalith object's fields into a single string, and then inserting that string into the
database. Similarly, upon extracting the string from the database, a new Megalith can be allocated
and populated by unpacking the string into the appropriate fields.

By using our conveniently defined Megalith class, we can write the following code to do this (note the
calling of the pack() method):

$database{'Callanish I'} =
 new Megalith('Callanish I',
 'Western Isles',
 'NB 213 330',
 'Stone Circle',
 'Description of Callanish I')->pack();

Dump the database
foreach $key (keys %database) {

 ### Unpack the record into a new megalith object
 my $megalith = new Megalith($database{$key});

 ### And display the record
 $megalith->dump();
}

The Megalith object has two methods declared within it called pack() and unpack() . These
simply pack all the fields into a single delimited string, and unpack a single string into the appropriate
fields of the object as needed. If a Megalith object is created with one of these strings as the sole
argument, unpack() is called internally, shielding the programmer from the internal details of
storage management.

Similarly, the actual way in which the data is packed and unpacked is hidden from the module user.
This means that if any database structural changes need to be made, they can be made internally
without any maintenance on the database manipulation scripts themselves.

If you read the section on putting complex data into flat files earlier in the chapter, then you'll know
that there's more than one way to do it.

Programming the Perl DBI

 page 34

So although it's a little more work at the outset, it is actually quite straightforward to store Perl objects
(and other complex forms of data) within DBM files.

2.7.3.3 Object accessor methods

A final gloss on the Megalith class would be to add accessor methods to allow controlled access to the
values stored within each object. That is, the example code listed above contains code that explicitly
accesses member variables within the object:

print "Megalith Name: $megalith->{name}\n";

This may cause problems if the internal structure of the Megalith object alters in some way. Also, if
you write $megalith->{nme} by mistake, no errors or warnings will be generated. Defining an
accessor method called getName(), such as:

Returns the name of the megalith
sub getName {
 my ($self) = @_;
 return $self->{name};
}

makes the code arguably more readable:

print "Megalith Name: " . $megalith->getName() . "\n";

and also ensures the correctness of the application code, since the actual logic is migrated, once again,
into the object.

2.7.3.4 Querying limitations of DBM files and hashtables

Even with the functionality of being able to insert complex data into the Berkeley DB file (albeit in a
slightly roundabout way), there is still a fundamental limitation of this database software: you can
retrieve values via only one key. That is, if you wanted to search our megalithic database, the name,
not the map reference or the location, must be used as the search term.

This might be a pretty big problem, given that you might wish to issue a query such as, ''tell me about
all the sites in Wiltshire,'' without specifying an exact name. In this case, every record would be tested
to see if any fit the bill. This would use a sequential search instead of the indexed access you have
when querying against the key.

A solution to this problem is to create secondary referential hashes that have key values for the
different fields you might wish to query on. The value stored for each key is actually a reference to the
original hash and not to a separate value. This allows you to update the value in the original hash, and
the new value is automatically mirrored within the reference hashes. The following snippet shows
some code that could be used to create and dump out a referential hash keyed on the location of a
megalithic site:

Build a referential hash based on the location of each monument
$locationDatabase{'Wiltshire'} = \$database{'Avebury'};
$locationDatabase{'Western Isles'} = \$database{'Callanish I'};
$locationDatabase{'Fife'} = \$database{'Lundin Links'};

Dump the location database
foreach $key (keys %locationDatabase) {

 ### Unpack the record into a new megalith object
 my $megalith = new Megalith(${ $locationDatabase{$key} });

 ### And display the record
 $megalith->dump();
}

There are, of course, a few drawbacks to this particular solution. The most apparent is that any data
deletion or insertion would require a mirror operation to be performed on each secondary reference
hash.

The biggest problem with this approach is that your data might not have unique keys. If we wished to
store records for Stonehenge and Avebury, both of those sites have a location of Wiltshire. In this
case, the latest inserted record would always overwrite the earlier records inserted into the hash. To
solve this general problem, we can use a feature of Berkeley DB files that allows value chaining.

Programming the Perl DBI

 page 35

2.7.3.5 Chaining multiple values into a hash

One of the bigger problems when using a DBM file with the storage mechanism of DB_HASH is that the
keys against which the data is stored must be unique. For example, if we stored two different values
with the key of ''Wiltshire,'' say for Stonehenge and Avebury, generally the last value inserted into the
hash would get stored in the database. This is a bit problematic, to say the least.

In a good database design, the primary key of any data structure generally should be unique in order
to speed up searches. But quick and dirty databases, badly designed ones, or databases with a
suboptimal data quality may not be able to enforce this uniqueness. Similarly, using referential
hashtables to provide nonprimary key searching of the database also triggers this problem.

A Perl solution to this problem is to push the multiple values onto an array that is stored within the
hash element. This technique works fine while the program is running, because the array references
are still valid, but when the database is written out and reloaded, the data is invalid.

Therefore, to solve this problem, we need to look at using the different Berkeley DB storage
management method of DB_BTREE , which orders its keys prior to insertion. With this mechanism, it
is possible to have duplicate keys, because the underlying DBM file is in the form of an array rather
than a hashtable. Fortunately, you still reference the DBM file via a Perl hashtable, so DB_BTREE is not
any harder to use. The main downside to DB_BTREE storage is a penalty in performance, since a B-
Tree is generally slightly slower than a hashtable for data retrieval.

The following short program creates a Berkeley DB using the DB_BTREE storage mechanism and also
specifies a flag to indicate that duplicate keys are allowed. A number of rows are inserted with
duplicate keys, and finally the database is dumped to show that the keys have been stored:

#!/usr/bin/perl -w
 #
 # ch02/DBM/dupkey1: Creates a Berkeley DB with the DB_BTREE mechanism and
 # allows for duplicate keys. We then insert some test
 # object data with duplicate keys and dump the final
 # database.

 use DB_File;
 use Fcntl ':flock';
 use Megalith;

 ### Set Berkeley DB BTree mode to handle duplicate keys
 $DB_BTREE->{'flags'} = R_DUP;

 ### Remove any existing database files
 unlink 'dupkey2.dat';

 ### Open the database up
 my %database;
 my $db = tie %database, 'DB_File', "dupkey2.dat",
 O_CREAT | O_RDWR, 0666, $DB_BTREE
 or die "Can't initialize database: $!\n";

 ### Exclusively lock the database to ensure no one accesses it
 my $fd = $db->fd();
 open DATAFILE, "+<&=$fd"
 or die "Can't safely open file: $!\n";
 print "Acquiring exclusive lock...";
 flock(DATAFILE, LOCK_EX)
 or die "Unable to acquire lock: $!. Aborting";
 print "Acquired lock. Ready to update database!\n\n";

 ### Create, pack and insert some rows with duplicate keys
 $database{'Wiltshire'} =
 new Megalith('Avebury',
 'Wiltshire',
 'SU 103 700',
 'Stone Circle and Henge',
 'Largest stone circle in Britain')->pack();

Programming the Perl DBI

 page 36

 $database{'Wiltshire'} =
 new Megalith('Stonehenge',
 'Wiltshire',
 'SU 123 400',
 'Stone Circle and Henge',
 'The most popularly known stone circle in the world')->pack();

 $database{'Wiltshire'} =
 new Megalith('The Sanctuary',
 'Wiltshire',
 'SU 118 680',
 'Stone Circle (destroyed)',
 'No description available')->pack();

 ### Dump the database
 foreach my $key (keys %database) {

 ### Unpack the record into a new megalith object
 my $megalith = new Megalith($database{$key});

 ### And display the record
 $megalith->dump();
 }

 ### Close the database
 undef $db;
 untie %database;

 ### Close the filehandle to release the lock
 close DATAFILE;

 exit;

The output you get from running this program is not exactly what we'd hoped for:

Acquiring exclusive lock...Acquired lock. Ready to update database!

 The Sanctuary (Stone Circle (destroyed))
 ==
 Location: Wiltshire
 Map Reference: SU 118 680
 Description: No description available

 The Sanctuary (Stone Circle (destroyed))
 ==
 Location: Wiltshire
 Map Reference: SU 118 680
 Description: No description available

 The Sanctuary (Stone Circle (destroyed))
 ==
 Location: Wiltshire
 Map Reference: SU 118 680
 Description: No description available

It seems that we've managed to successfully store three copies of the same record instead of three
different records!

Fortunately, this isn't actually the case. We have correctly stored the three different records with the
same key in the DBM file. The problem lies in the way we've tried to read these records back out of the
DBM file. A basic dereference using the hash key obviously doesn't work, since Perl stores only a
single value for each key, as we already know.

To get around this limitation, we can use the seq() method declared within the DB_File module,
which is used to traverse chained records stored within a single hash element. Figure 2.2 illustrates
the principle of chained record traversal within a hash element.

Programming the Perl DBI

 page 37

Figure 2.2, Chained record traversal

The corrected record dumping chunk is rewritten to use seq() in this way:

Dump the database
my ($key, $value, $status) = ('', '', 0);
for ($status = $db->seq($key, $value, R_FIRST) ;
 $status == 0 ;
 $status = $db->seq($key, $value, R_NEXT)) {

 ### Unpack the record into a new megalith object
 my $megalith = new Megalith($value);

 ### And display the record
 $megalith->dump();
}

Running this corrected version produces the output we expected, i.e., records for three different
megalithic sites.

The seq() method is quite simple to use and understand, and it works well when used in conjunction
with a for loop, as shown above. The method takes three arguments: the hash key, the hash value,
and a flag signifying which element within the chain should be returned. The first two arguments are
actually populated with the hash key and the correct hash value, respectively, when seq() is called.
Exactly which hash value is returned depends on the value of the third argument:

• R_FIRST returns the first record within the chain of records.

• R_LAST returns the last record stored within the chain of records.

• R_NEXT returns the next record within the chain of records. This is used for forward
sequential traversals of the chain.

• R_PREV returns the previous record within the chain of records. This is used for backward
sequential traversals of the chain.

• R_CURSOR returns a record in which a partial match for the key has been located. This allows
a certain element of "fuzzy matching" of keys. This feature is not necessarily accurate and
may return the closest match to the desired key rather than an exact match. For example, if
you searched for all sites within Wiltshire and asked for a partial match against ''wilt'', but no
exact records matched, you may be returned the entries for the ''Western Isles,'' as these are
the closest to the search term.

In the database dumping example shown above, we are simply starting at the beginning of the record
chain and traversing through it in a forward direction. We could have performed a backward search
by writing:

for ($status = $db->seq($key, $value, R_LAST) ;
 $status == 0 ;
 $status = $db->seq($key, $value, R_PREV)) {
 ...
}

Programming the Perl DBI

 page 38

A quicker and easier utility method for querying duplicate values also exists: get_dup() . This
method returns either the number of records with the given key or an array or hash containing the
appropriate records. For example, given that we have three records in our database with the key of
Wiltshire, we could verify that fact by writing:

Displays the number of records inserted against
the "Wiltshire" key
my $numRecords = $db->get_dup('Wiltshire');
print "Number of Wiltshire records: $numRecords\n";

2.7.4 Deleting Values

Deleting values is the final operation that can be performed on DBM files. Updating is as simple as
assigning different values to the appropriate key within the database, and deleting is equally simple.
This operation is performed by using the standard Perl delete function on the appropriate key within
the database. delete removes it from the hash that represents the database, and because the hash
has been tied to the DBM file, it is purged from that also.

The following program inserts three records into a Berkeley DB, and then dumps the database to show
that the records are there. Following that process, a single record is deleted and the database is
redumped to illustrate the deletion. Here's the program:

#!/usr/bin/perl -w

ch02/DBM/delete: Creates a Berkeley DB, inserts some test data then
deletes some of it

use strict;

use DB_File;

Initialize the Berkeley DB
my %database;
tie %database, 'DB_File', "delete.dat"
 or die "Can't initialize database: $!\n";

Insert some data rows
$database{'Callanish I'} = "Western Isles";
$database{'Avebury'} = "Wiltshire";
$database{'Lundin Links'} = "Fife";

Dump the database
print "Dumping the entire database...\n";
foreach my $key (keys %database) {
 printf "%15s - %s\n", $key, $database{$key};
}
print "\n";

Delete a row
delete $database{'Avebury'};

Re-dump the database
print "Dumping the database after deletions...\n";
foreach my $key (keys %database) {
 printf "%15s - %s\n", $key, $database{$key};
}

Close the Berkeley DB
untie %database;

exit;

The output of this program is as expected:

Dumping the entire database...
 Callanish I - Western Isles
 Avebury - Wiltshire
 Lundin Links - Fife

Dumping the database after deletions...
 Callanish I - Western Isles
 Lundin Links - Fife

That is, the specified row has been permanently removed from the database by deleting the related
hash entry.

Programming the Perl DBI

 page 39

2.8 The MLDBM Module

The MLDBM module is very useful for quickly writing complex Perl data structures to DBM files for
persistent storage. The ML in MLDBM stands for multilevel and refers to its ability to store complex
multilevel data structures. That's something that ordinary hashes, even hashes tied to DBM files, can't
do.

The MLDBM module is an excellent example of a layered storage manager. It acts as a thin layer over
another DBM module, but intercepts reads and writes to automatically serialize (or deserialize) the
data using another module.[17]

[17] We discussed serialization and the Data::Dumper and Storable modules earlier in this chapter.

The module works by automatically serializing the Perl data structures that you wish to store into a
single string, which is then stored within a DBM file. The data is recovered by deserializing the data
from the stored string back into a valid Perl object. The actual interface for referencing the stored and
retrieved data is identical to the API for DBM files. That makes it very easy to "drop in" use of MLDBM
instead of your existing DBM module.

The following example shows how we could use DB_File for storage and Data::Dumper for displaying
the restored data:

#!/usr/bin/perl -w

ch02/mldbmtest: Demonstrates storing complex data structures in a DBM
file using the MLDBM module.

use MLDBM qw(DB_File Data::Dumper);
use Fcntl;

Remove the test file in case it exists already ...
unlink 'mldbmtest.dat';

tie my %database1, 'MLDBM', 'mldbmtest.dat', O_CREAT | O_RDWR, 0666
 or die "Can't initialize MLDBM file: $!\n";

Create some megalith records in the database
%database1 = (
 'Avebury' => {
 name => 'Avebury',
 mapref => 'SU 103 700',
 location => 'Wiltshire'
 },
 'Ring of Brodgar' => {
 name => 'Ring of Brodgar',
 mapref => 'HY 294 133',
 location => 'Orkney'
 }
);

Untie and retie to show data is stored in the file
untie %database1;

tie my %database2, 'MLDBM', 'mldbmtest.dat', O_RDWR, 0666
 or die "Can't initialize MLDBM file: $!\n";

Dump out via Data::Dumper what's been stored ...
print Data::Dumper->Dump([\%database2]);

untie %database2;

exit;

Programming the Perl DBI

 page 40

The results of running this program are:

$VAR1 = {
 'Avebury' => {
 'name' => 'Avebury',
 'location' => 'Wiltshire',
 'mapref' => 'SU 103 700'
 },
 'Ring of Brodgar' => {
 'name' => 'Ring of Brodgar',
 'location' => 'Orkney',
 'mapref' => 'HY 294 133'
 }
 };

This shows that the nested data within the original hash has been restored intact.

2.9 Summary

This has been a long chapter, both for you to read and for us to write. We've covered a lot of topics
and, hopefully, given you some useful insights into database fundamentals and some new techniques
for your mental toolbox.

We're almost ready to discuss the DBI itself, but before we do, we want to introduce you to the joys of
SQL.

Programming the Perl DBI

 page 41

Chapter 3. SQL and Relational Databases
The Structured Query Language, or SQL,[1] is a language designed for the purpose of manipulating
data within databases.

[1] Officially pronounced ''ess-que-ell,'' although ''sequel'' is also popular. We have also heard the term ''squeal,''
but that's usually only heard when people first see the syntax or when they've just deleted all their data!

In 1970, E. F. Codd, working for IBM, published a now classic paper, "A Relational Model of Data for
Large Shared Data Banks," in which he laid down a set of abstract principles for data management
that became known as the relational model. The entire field of relational database technology has its
roots in that paper.

One of the many research projects sparked by that paper was the design and implementation of a
language that could make interacting with relational databases simple. And it didn't make the
programmer write horrendously complex sections of code to interact with the database.[2]

[2] Chapter 2 shows many examples of how long-winded and inflexible database interaction can be!

This chapter serves to give the complete database neophyte a very limited overview of what SQL is and
how you can do some simple tasks with it. Many of the more complex details of SQL's design and
operation have been omitted or greatly simplified to allow the neophyte to learn enough to use the
DBI in a simple, but effective, way. Section P.1 in the Preface lists other books and web sites dedicated
to SQL and relational database technologies.

3.1 The Relational Database Methodology

The relational database model revolves around data storage units called tables, which have a number
of attributes associated with them, called columns. For example, we might wish to store the name of
the megalithic site, its location, what sort of site it is, and where it can be found on the map in our
megaliths table. Each of these items of data would be a separate column.

In most large database systems, tables are created within containing structures known as schemas . A
schema is a collection of logical data structures, or schema objects, such as tables and views. In some
databases, a schema corresponds to a user created within the database. In others, it's a more general
way of grouping related tables. For example, in our megalithic database, using Oracle, we have
created a user called stones. Within the stones user's schema, the various tables that compose the
megalithic database have been created.

Data is stored within a table in the form of rows . That is, the data for one site is stored within one
row that contains the appropriate values for each column. This sort of data layout corresponds exactly
to the row-column metaphor used by spreadsheets, ledgers, or even plain old tabulated lists you might
scribble in a notepad.

An example of such a list containing megalithic data is:

Site Location Type Map Reference
---- -------- ---- -------------
Callanish I Western Isles Stone Circle and Rows NB 213 330
Stonehenge Wiltshire Stone Circle and Henge SU 123 422
Avebury Wiltshire Stone Circle and Henge SU 103 700
Sunhoney Aberdeenshire Recumbent Stone Circle NJ 716 058
Lundin Links Fife Four Poster NO 404 027

This system lends itself quite well to a generalized query such as ''Give me the names of all the
megaliths'' or ''Give me the map locations of all the megaliths in Wiltshire.'' To perform these queries,
we simply specify the columns we wish to see and the conditions each column in each row must meet
to be returned as a valid result.

Similarly, data manipulation operations are easily specified using a similar syntax, such as "Insert a
new row into the megaliths table with the following values..." or "Delete all the rows containing
megaliths in Fife."

Programming the Perl DBI

 page 42

The sheer simplicity of SQL belies the fact that it is an extraordinarily powerful syntax for
manipulating data stored within databases, and helps enforce a logical structure for your data.

The main thrust of the relational database design is that related information should be stored either in
the same place or in a separate place that is related to the original in some meaningful way. It also is
designed around the principle that data should not be duplicated within the database.

Using our megalithic database as an example, we have decided to store all information directly related
to each megalithic site within the megaliths table and all the multimedia clips in a separate table.
This is a good example of a relational database, albeit a small one, because if we stored the multimedia
clip information in the megaliths table, we would duplicate the megalith information many times
over - once per clip for that site, in fact. This leads to redundancy of data, which is one problem the
relational database model is designed to avoid.

We have also split the categorization of a site into a separate table called site_types to avoid further
redundancy of data.

The process of rationalizing your data into tables to avoid data redundancy is known as
normalization. The corollary operation is known as denormalization and can be desirable in certain
situations.

Data stored across multiple normalized tables can be retrieved by making joins between the tables
that allow queries to retrieve columns from all the tables included in the join. Joins would allow us to
fetch the name of the megalithic site and the URL of multimedia clips from the same query, for
example. This is an efficient way of storing data and stores exactly enough data necessary to retrieve
the desired information.

On the downside, creating multi-table joins on a regular basis can perform badly on databases with
large data quantities. Extra disk accesses are required to relate the rows of one table to another, and it
can be difficult for the database to work out how best to do it.

This is a major problem in the discipline known as data warehousing , in which massive quantities of
information are stored to allow users to produce reports and analyses of that data. The typical
solution for these situations is to create new wide, denormalized tables that contain much information
duplicated from other tables. This greatly increases performance at the expense of storage space and,
since the information contained within the data warehouses is generally read-only, you don't have to
worry about keeping data changes synchronized.

For the purposes of these chapters, a small database containing three tables will be used to
demonstrate the various ways in which SQL can be used to query and manipulate data. These tables
are named megaliths, media, and site_types. Figure 3.1 illustrates the structure of these three
tables.

Figure 3.1, Megalith database

Programming the Perl DBI

 page 43

These tables are designed to contain information on megalithic sites and multi-media clips associated
with those sites respectively. In essence, each megalithic site will have zero or more multimedia clips
associated with it and will be categorized as exactly one type of site. This small database will form the
basis of our examples throughout the remainder of the book.

3.2 Datatypes and NULL Values

One of the most important aspects of the structures defined within a database, such as tables and
views, is the datatype of each of the columns. Perl is a loosely typed language, whereas SQL is
strongly typed. Thus, each field or value is of a given datatype that determines how values and fields
are compared. For example, the mapref field within the megaliths table would not be much use if it
could hold only dates!

Therefore, it is important to assign an appropriate datatype to each column. This avoids any potential
confusion as to how the values stored within each column are to be interpreted, and also establishes
how these values can be compared in query condition clauses.

There are several common datatypes. The most widely used of these can be grouped as follows:

Numeric datatypes

The grouping of numeric datatypes includes types such as integer and floating point (or real)
numbers. These types, depending on your database, may include FLOAT , REAL , INTEGER , and
NUMBER . Numeric datatypes are compared in the obvious way; that is, the actual values are
tested.

Character datatypes

Character datatypes are used to store and manipulate textual data. Any characters
whatsoever - digits or letters - can be stored within a character datatype.

However, if digits are stored within a character datatype, they will be treated as being a string
of characters as opposed to a number. For example, they'll be sorted and ordered as strings
and not numbers, so "10" will be less than "9".

Depending on your database system, there can be many different types of character datatypes
such as CHAR , VARCHAR , VARCHAR2 , and so on. Most databases support at least the most basic
of these, CHAR.

When being compared, character datatypes usually apply lexical ordering according to the
character set being used by the database.

Date datatypes

Most database systems implement at least one datatype that contains date information, as
opposed to a character datatype containing a string representation of a date. This allows you
to perform arbitrary arithmetic on date values very easily. For example, you might wish to
select rows where the date field corresponds to a Monday.

When comparing dates, a later date is regarded as being greater than an earlier date.
datatypes for storing times and timestamps (date plus time) are also common.

Binary object datatypes

Binary object datatypes are a relatively recent addition to database systems and allow you to
store massive unstructured chunks of data - typically images, video, or audio clips - within a
database. The actual binary object datatypes tend to differ between databases, but usually
tend to be called LOBs (large objects) if they do exist. For example, the BLOB datatype stores
binary data and CLOB stores large quantities of ASCII character data. Generally, LOB types
cannot be compared to one another.

Programming the Perl DBI

 page 44

The NULL value

NULL is a special kind of value that actually has no value. It can be contained within columns
and signifies that no value is contained within that column for a given row. NULL values are
used where the actual value is either not known or not meaningful.

When a table is created, each column can declare to either allow or disallow NULL values,
regardless of the datatype of the column.

NULL values should not be confused with the numeric value of zero. They are not the same
thing. Zero means zero, whereas NULL means there is no value at all.[3]

[3] Though some databases do treat empty strings as NULL values when inserting data.

If you attempt to evaluate an expression containing a NULL value, other than with various
special NULL handling functions, it will always evaluate to NULL. Comparing values to
NULL should always use IS NULL and IS NOT NULL instead.[4] Be careful!

[4] A few databases, such as mSQL, do use = NULL.

The NULL value plays a part in what are called " three-valued logic" tables that are used when
evaluating condition clause truth tables, as discussed later in this chapter. This allows SQL
conditional expressions to either be true, false, or NULL.

3.3 Querying Data

The first (and possibly most immediately useful) operation that SQL allows you to perform on data is
to select and return rows of data from tables stored within the database. This activity forms the core
of exactly what a database represents, a large repository of searchable information.

All SQL queries, no matter how simple or complex, use the SELECT keyword to specify the columns to
fetch, the tables to fetch them from, and any conditions that must be met for the rows to be retrieved.
SELECT falls into the group of commands known as Data Manipulation Language , or DML,
commands.

The full syntax for SELECT can be intimidating to the new user, primarily because it sports a multitude
of different ways in which the query can be customized. For example, you might wish to return only
unique data rows, group certain rows together, or even specify how the returned rows should be
sorted.

For the moment, we'll just look at the simplest cases.

In our example, we've tended to use capital letters for SQL commands and other reserved words, and
lowercase letters for database object names (tables, columns, etc.). In most databases, the SQL
commands are not case-sensitive, but the actual database object names may or may not be.

3.3.1 Simple Queries

The simplest SQL query is to ask for certain columns in all rows of a table. The SELECT syntax for this
form of query can be expressed as simply as:

SELECT column, column, ..., column
FROM table

or:

SELECT *
FROM table

which will query and fetch back all the columns within the specified table.

Therefore, to select some of the rows from some columns in the megaliths table, the following SQL
statement can be used:

SELECT name, location, mapref
FROM megaliths

Programming the Perl DBI

 page 45

which would return the following information:

+---+
| name | location | mapref |
+---+
Callanish I	Callanish, Isle of Lewis	NB 213 330
Lundin Links	Lundin Links, Fife, Scotland	NO 404 027
Stonehenge	Near Amesbury, Wiltshire, England	SU 123 400
Avebury	Avebury, Wiltshire, England	SU 103 700
Sunhoney	Near Insch, Aberdeenshire	NJ 716 058
+---+

So even with the simplest SQL imaginable, the inherent flexibility of the syntax allows us to easily
specify exactly which information we want from the database without having to write lots of
excruciating lines of code to get it.

Another aspect of the relational database methodology is now visible, in that even though the database
contains information on all the columns within a particular table, only a subset of the available
columns needs to be retrieved. Therefore, we can extract exactly the data we need for a particular
query and no more. This is an extremely powerful feature and separates the actual data stored within
the database from our desired view of that data.

3.3.2 Queries and Condition Clauses

The previous example relied on retrieving all the rows within a table, whereas the more ordinary,
everyday database operations will usually require more accurate targeting of specific rows. For
example, "Tell me the names of all the stone circles in Wiltshire" is a more specific query than "Tell me
about all the stone circles in the database." To achieve this task, SQL provides the ability to specify
conditions that must be met before a row is returned to the user.

SQL's syntax regarding condition clauses is just as straightforward and obvious as that for specifying
which columns are of interest. The condition clauses that narrow the query are specified after the list
of tables from which data is being retrieved, i.e., after the FROM clause and table list.

Therefore, a query that retrieves the name and location columns from rows that contain the string
''Wiltshire'' in the location column, can be written as:

SELECT name, location
FROM megaliths
WHERE location LIKE '%Wiltshire%'

The information returned from this query would be:

+--+
| name | location |
+--+
| Stonehenge | Near Amesbury, Wiltshire, England |
| Avebury | Avebury, Wiltshire, England |
+--+

The returned information shows just the columns specified for the sites that have a location value
containing the string, ''Wiltshire.'' The WHERE keyword is the one that specifies the beginning of the list
of conditions that must be met for each row to be returned. That is, the condition states that the
location column value must contain the desired string ''Wiltshire.''[5]

[5] The % character, in this case, is used as the standard SQL wildcard character to match any number of
characters. A few databases use * instead.

Programming the Perl DBI

 page 46

The following table lists all of the comparison operators used by SQL for testing condition clauses.
These conditions are generally Perl-like and should be familiar.

Operator Purpose

= This operator tests exact equality between columns and/or literal values. For
example, the query:

SELECT name, location
FROM megaliths
WHERE location = 'Fife'

will return all rows where the location column is equal to the value "Fife".

<> This operator tests for inequality between columns and/or literal values. For
example, the query:

SELECT name, location
FROM megaliths
WHERE location <> 'Fife'

will return all rows where the location column is not equal to the value "Fife".
Some databases alternatively use the !=, ^=, or ~= operators instead of <>.

> and < These two operators represent ''greater than'' and ''less than'' tests between
columns and/or literal values. For example, the query:

SELECT name, location
FROM megaliths
WHERE id < 10
AND id > 5

will return the name and location of all megalithic sites whose id value is less
than 10 and greater than 5. The type of comparison used depends on the
datatype of the values involved. So numeric values are compared as numbers,
string values are compared as strings, and date values are compared as dates.

On a related note, there also exists the <= and >= operators that perform ''less
than or equal to'' and ''greater than or equal to'' tests, respectively.

IN This keyword tests equality of a column and/or literal value within a specified
set of values. For example, the query:

SELECT name, location
FROM megaliths
WHERE location IN ('Western Isles', 'Fife')

will compare each member of the set using the equality operator against the
specified column. Therefore, in this example, rows with a location column
value of either ''Western Isles'' or ''Fife'' will be returned.

LIKE The LIKE operator allows limited wildcard matching of strings against columns
and/or literal values. For example, the query:

SELECT name, description
FROM megaliths
WHERE description LIKE '%Largest%'

will return the name and description columns where the description column
contains the string ''Largest'' at any position in the string.

Wildcard matches for characters in the string may be specified by using either
the percent (%) character for multiple-character wildcarding or an underscore
(_) for single-character matching.[6]

[6] Some databases use other names instead of LIKE, such as MATCHES or CONTAINS, and may use different
wildcard characters such as * or ?.

Programming the Perl DBI

 page 47

Over time, the megalithic database might expand and contain information on thousands of sites in the
country. Therefore, to quickly locate records, we might need to narrow the search criteria by
specifying other condition clauses that must be met for a record to be returned. For example, if you
wished to find information on all stone circles in Wiltshire, doing a query simply for all sites in
''Wiltshire'' could return hundreds of records, which you would have to wade through by hand. We
can narrow this search by specifying as an extra condition that the mapref column must also begin
with the string SU 123:

SELECT name, location
FROM megaliths
WHERE location LIKE '%Wiltshire%'
AND mapref LIKE 'SU 123%'

In this example, the second condition is simply added to the end of the list of conditions that must be
met. The two conditions are joined together by a logical operator, AND. This statement now reads
"Give me the name and location of all megalithic sites with a location of Wiltshire that are in the map
region SU 123," which would return the name and location fields for the "Stonehenge" row, but reject
the "Avebury" row.

Thus, conditions can be joined together into multiple condition lists, linked by logical boolean
operators that control how the truth of the condition is evaluated.

The following table describes the boolean (or logical) operators defined by SQL that can be used to
chain your condition clauses together.

Operator Function

Returns the logical AND of the two clauses on either side of the keyword. The
following truth table can be used to evaluate whether the combined clause is
true or not.

 TRUE FALSE NULL

TRUE true false null

FALSE false false false

AND

NULL null false null

Returns the logical OR of the two clauses on either side of the keyword. The
following truth table can be used to evaluate whether the combined clause is
true or not.

 TRUE FALSE NULL

TRUE true true true

FALSE true false null

OR

NULL true null null

Negates the logical value of the following expression. The following truth table
illustrates this in operation.

TRUE FALSE NULL

NOT

false true null

The truth of the overall condition is determined by combining the truth of each element separately
using the AND, OR, and NOT operators.

Programming the Perl DBI

 page 48

It is now possible to calculate the effects of multiple condition clauses in a statement. For example,
the following condition clauses:

WHERE location LIKE '%Wiltshire%'
AND mapref LIKE 'SU 123%'

evaluate in the following way for this row:

+--+
| name | mapref | location |
+--+
| Avebury | SU 103 700 | Avebury, Wiltshire, England |
+--+

location LIKE '%Wiltshire%' => TRUE
mapref LIKE 'SU 123%' => FALSE

TRUE AND FALSE => FALSE

thereby returning a false value for that row, causing it to be rejected by the query. However, the
following row:

+---+
| name | mapref | location |
+---+
| Stonehenge | SU 123 400 | Near Amesbury, Wiltshire, England |
+---+

evaluates as:

location LIKE '%Wiltshire%' => TRUE
mapref LIKE 'SU 123%' => TRUE

TRUE AND TRUE => TRUE

which ensures that the row is returned by the query.

When combining different logical operators, it is important to consider their precedence . The
precedence (or priority) of the operators determines which gets combined first. The SQL standard
specifies that NOT has the highest precedence, followed by AND, and then OR. Parentheses can be used
around groups of operators to change their precedence.

For example, you might wish to select all the megalithic sites in either ''Wiltshire'' or ''Fife'' for which
the description of the site contains the word ''awe-inspiring.''

This query could be wrongly expressed as:

SELECT name, location
FROM megaliths
WHERE location LIKE '%Wiltshire%' OR location LIKE '%Fife%'
AND description LIKE '%awe-inspiring%'

While this query looks correct at first, it does not take into account the order in which the condition
clauses are combined. It would, in fact, select the awe-inspiring sites in Fife, but it would also select
all the sites in Wiltshire regardless of their type.

This happens because the AND operator has a higher precedence than the OR operator and so is
evaluated first. Therefore, our SQL statement evaluates by AND combining location LIKE %Fife% and
description LIKE %awe-inspiring%. It then OR combines the result of the AND operation with
location LIKE %Wiltshire%. This isn't quite what we had in mind.

This query can be more correctly written by using parentheses to logically group operators within the
statement.

For example:

SELECT name, location
FROM megaliths
WHERE (location LIKE '%Wiltshire%' OR location LIKE '%Fife%')
AND description LIKE '%awe-inspiring%'

This changes the way in which the condition clauses are evaluated by evaluating the grouped clauses
into a single truth value for the entire group. This is then used instead of truth values for each
individual clause within the group.

Programming the Perl DBI

 page 49

Finally, there is another even more complex way of specifying condition clauses that is used quite
frequently. This technique is to supply the values with which we are doing a comparison from a
subquery.[7] For example:

[7] Support for this functionality is not necessarily present in all database systems supported by the DBI and its
drivers.

SELECT name, description
FROM megaliths
WHERE name IN
 (SELECT tourist_sitename
 FROM wiltshire_tourist_sites)

If we knew in advance that the subquery would return only a single row of information, then the =
operator could be used instead of IN.

3.3.3 Queries over Multiple Tables

The previous section covered the structure of SQL statements in general, and how SQL may be used to
query data from single tables in the database. However, from the discussion on relational database
theory earlier in this chapter, you should remember that the power and flexibility of relational
database design lies in the ability to join tables together - that is, to link disparate records of data that
are held in separate tables to reduce data duplication. This linking of records is a key part of working
with relational databases.

To illustrate this concept, it is time to reintroduce the other tables we shall be using in our examples,
namely the media table and site_types table.

The media table contains information on where multimedia clips for given sites can be located,
allowing an external application to view or listen to these clips while the user is reading the textual
information on the site stored in the megaliths table.

Similarly, the site_types table contains a lookup table of the different categorizations of megalithic
sites described within the database.

To specify a SELECT statement from two or more tables in the database, we simply add the table
names after the FROM keyword. Therefore, a sample query to fetch all the rows in two of the tables
should theoretically look something like:

SELECT name, description, location, url, content_type
FROM megaliths, media

However, the output from this query will look somewhat scrambled. For each and every row in the
first table, all the rows in the second table will be selected![8] This means that the media records for
''Lundin Links'' may be returned at the same time as the site information for ''Avebury.''

[8] This is known as a " Cartesian Product." If there were 100 rows in each, you'd get 10,000 rows returned. If
there were 1,000,000 rows in each, you'd get 1,000,000,000,000 rows returned. To avoid this, you should
ensure that if you have n tables, you have at least n-1 join conditions.

How do you make sure that the values in the fields from the second table related to the values from the
first - that is, that the media clips for ''Stonehenge'' are only returned with the ''Stonehenge'' site
information?

In our megaliths table, we have already defined a column called id that contains a unique identifier
for each and every row stored within the table. Similarly, the media table has a column called id that
performs the same purpose. Furthermore, the media table also contains a column called
megaliths_id. When a row is inserted into the megaliths or media tables, a unique identifier is
inserted into the id columns. Also, when a row is inserted into the media table, the megaliths_id
column is populated with the unique identifier of the megalithic site to which the media clip relates.

This relationship of a link field is generally termed a primary key and foreign key relationship. The
primary key is the unique value stored within the ''master'' table. The foreign key is that same value
stored within multiple rows of the other ''detail'' table.

Programming the Perl DBI

 page 50

We can now write a query to fetch the appropriate information back from the database by joining the
two tables on their related fields. This ensures that the media clips are associated with the correct
site:

SELECT name, description, url, content_type
FROM megaliths, media
WHERE megaliths.id = megaliths_id

This illustrates another aspect of SQL conditions: instead of testing arbitrary values against columns
in a table, it is possible to test against the value of another column. In the above case, we test to see if
the primary and foreign keys of the two tables match, and, if so, the aggregated row created from the
columns of both tables is returned.

Also note how we qualified the id field name in the condition clause by prepending it with the table
name and a dot. Without that, the database would not have known if we were referring to the id field
in the megaliths table or the media table and would fail with an error.

Similarly, if we wished to select the id fields of both tables, the following statement would simply
confuse the database, and we'd get another error:

SELECT id, id, megaliths_id
FROM megaliths, media
WHERE id = megaliths_id

Therefore, it is good practice to explicitly specify the table name that the field belongs to, in cases
where it may be ambiguous. For example:

SELECT megaliths.name, megaliths.description,
 media.url, media.content_type
FROM megaliths, media
WHERE megaliths.id = media.megaliths_id

Of course, the downside to this process is that it takes forever to type. A saner alternative is to alias
the table names. To do this, simply add the alias after its name in the FROM clause. For example:

SELECT mega.name, mega.description, med.url, med.content_type
FROM megaliths mega, media med
WHERE mega.id = med.megaliths_id

It is more common just to use the initial character of the table name provided the aliases are unique.

This theory of table joins is extensible to any number of tables.[9] In fact, it is not uncommon for some
tables within a database to contain nothing but columns containing foreign keys that can be used to
make multi-table joins more effective. The main point to remember here is that all tables involved in
the query must be joined to another table on some column. Otherwise, a large quantity of very strange
results may be returned from the database!

[9] In practice, databases that support joins often have some upper limit on the number of tables.

For example, fetching both the media associated with a site and the site type information can be
expressed with the following query:

SELECT mega.name, mega.description, st.site_type,
 med.url, med.description
FROM megaliths mega, media med, site_types st
WHERE mega.id = med.megaliths_id
AND mega.site_type_id = st.id

Another type of join also possible with SQL is the outer join . In addition to the results returned by a
simple join, an outer join also returns the rows from one table for which no rows from the other table
satisfy the join condition. This is achieved by returning NULL values for all rows in the second table
that have no matching values in the first table.

For example, we might wish to retrieve information on all of the sites located within Wiltshire and, if
any exist, the URLs of any multimedia clips associated with them. Using a simple join such as:

SELECT mega.name, mega.location, med.url
FROM megaliths mega, media med
WHERE mega.id = med.megaliths_id
AND mega.location LIKE '%Wiltshire%'

would return only those sites in Wiltshire that had media clips associated with them. It would exclude
those sites that had no media clips. An outer join is the way to solve this problem.

Programming the Perl DBI

 page 51

The official standard way to express an outer join is by using the phrase LEFT OUTER JOIN or RIGHT
OUTER JOIN between the tables to be joined, instead of a comma, and adding an ON
condition_expression clause.[10]

[10] Many database systems either don't fully support outer joins or use different syntax for it. Oracle 7 outer
joins, for example, look just like inner joins but have the three characters (+) appended to one side of the join
condition.

For example, the standard query to retrieve the information we desired can be written as:

SELECT mega.name, mega.location, med.url
FROM megaliths mega
 LEFT OUTER JOIN media med ON mega.id = med.megaliths_id
WHERE mega.location LIKE '%Wiltshire%'

In this example, we have made a left outer join on the id and megaliths_id columns because for any
sites without media clips, there are no corresponding records in the media table. The left outer join
will ensure that even if no media clip records exist, at least the name and location of each and every
site in Wiltshire will be returned. A right outer join in this query would have returned the values
where no entries in the megaliths table existed.

Finally, it is worth mentioning some ways to make efficient table joins. In our examples, we added
additional columns to our tables to make a join between them. We could have simply added a column
to the media table that contained the name of the megalithic site.

There are a few good reasons why we didn't do that:

1. If the name of the megalithic site was updated for some reason - for example, if a spelling
mistake needed correcting - the name contained within the media table would be out of date
and incorrect. This would break the join between the two tables for that particular row.

2. Integer keys use much less space than strings when building indexes on a table. Less space
means more index entries per block of disk space, and therefore fewer disk reads. The smaller
index and fewer disk reads make up for the slightly increased size of the master data table,
and usually give you both speed and space gains.

3. It is slower to test strings than to test numbers, especially integers. As such, in a well-
designed database, integers are often used for primary and foreign keys because they are
faster to test against with comparison operators. A string, on the other hand, requires testing
of every character within each string, which can be time-consuming.

Therefore, to help maximize speed on queries, you can design your database to perform joins using
integer columns. It is also often worth building an index on the foreign key columns of the ''detail''
tables, if your database supports such functionality.

3.3.4 Grouping and Ordering Data

Often you'll desire a little more control over how your selected data is retrieved. The two most
common ways of organizing your data are to order the retrieved rows by one or more columns, or to
group the retrieved rows and apply functions to the groups instead of to individual rows.

Perl is well-suited to these tasks within your program, but performing ordering and grouping via SQL
will offload the task onto the database server and also will save you writing, or using, potentially
suboptimal techniques for organizing the data. Therefore, generally, use SQL rather than your own
application-level code.

3.3.4.1 Ordering data

Ordering the data retrieved by a SELECT statement is easy and can be achieved simply by an ORDER BY
clause. This clause is always found at the end of your queries, after all the join conditions have been
specified.

Programming the Perl DBI

 page 52

The ORDER BY clause is specified as a comma-separated list of columns that should be used to order the
data. For example, an ORDER BY clause of:

ORDER BY name, location

would order the rows by name and, if the names of the sites are identical, the location column would
be used as a secondary ordering. You can change the direction of the ordering from the default
''ascending'' order (which goes from A to Z) to a ''descending'' order by appending the DESC keyword to
any field names in the ORDER BY clause.

3.3.4.2 Grouping data

The ability to group items of data is very useful when attempting to make summarized reports. SQL
features a clause called GROUP BY that allows you to group rows that share a common set of values and
apply group functions to them.

A good example of this operation is where you want to total the values contained within a column in a
table. In this instance, you would use the sum() grouping function in the following way to calculate
the total value of orders taken on a given date:

SELECT order_date, sum(net), sum(vat), sum(total)
FROM sales
GROUP BY order_date

As with ORDER BY, groupings can be chained together in a comma-separated list to create complex
subgroupings of columns.

3.4 Modifying Data Within Tables

Read-only databases (that is, databases that only allow you to SELECT data from them) are very useful.
Data warehouses are typically massive read-only databases populated with archived data mangled
into a form suitable for reporting. However, in the cut-and-thrust world of transaction-processing
databases, the ability to modify data within the database quickly and efficiently is of paramount
importance.

There are several core operations that comprise the broader definition of data modification, namely:

• Inserting new data into the database

• Deleting data from the database

• Updating, or modifying, existing data within the database

Each of these operations falls into the grouping of Data Manipulation Language commands, or
DMLs, alongside SELECT.

We shall discuss each of these tasks in turn and apply the theory to our example database.

3.4.1 Inserting Data

Before a database can be really of any use, data must be inserted into it by some means, either by
manual data entry or with an automated batch loading program. The action of inserting data only
applies to cases in which you wish to load a completely new record of information into the database. If
the record already exists and merely requires modification of a column value, the update operation
should be used instead.

Data inserts in the relational database model are done on a row-by-row basis: each record or item of
information that you load into the database corresponds to a brand-new row within a given existing
table. As each inserted record corresponds to a new row in one table, multitable inserts are not
possible.[11]

[11] Well, this is not strictly true these days, as database servers get smarter. Oracle, for example, allows inserts
into equi-join views and also supports "INSTEAD OF" triggers that make just about anything possible.

Programming the Perl DBI

 page 53

The SQL INSERT keyword provides a simple mechanism for inserting new rows of data into the
database. For example, assuming the megaliths table is already present in the database and and
contains the six columns shown earlier in Figure 3.1, a single row of data can be inserted into it using
the following SQL statement:

INSERT INTO megaliths VALUES (0, 'Callanish I',
 '"Stonehenge of the North"',
 'Western Isles',
 'NB 213 330', 1)

If you then SELECT back all the rows in the table, you should be able to see the row that has just been
inserted.

Just as the SELECT statement could specify which columns from a table should be returned in the
query, it is also possible (and good practice) to specify into which columns of the table the values
should be inserted. The unspecified columns will take the default value, typically NULL. For example,
if you wished to specify only the id and name columns of the table, allowing description and
location to be NULL, the SQL statement would be:

INSERT INTO megaliths (id, name) VALUES (0, 'Callanish I')

There must be an exact mapping between the number of columns and column values specified in the
SQL statement. It is also essential to make sure that the datatypes of the supplied values and the
corresponding columns match.

3.4.1.1 Using INSERT for data transfers

One of the more sneaky uses for the INSERT keyword is to transfer data from one table or column to
another in one easy operation. This seems to fly in the face of our previous assertion that only one row
can be inserted with each INSERT statement, but in fact, follows the rules correctly (in an underhand
manner).

For example, if we wanted to make a quick copy of the megaliths table into a new table called
megaliths_copy, the following SQL statement can be used:

INSERT INTO megaliths_copy
 SELECT *
 FROM megaliths

This process inserts each row returned from the SELECT statement into the new table, row by row,
until an exact copy is created. This feature of INSERT is extremely useful for making quick copies of
tables if you need to do some destructive maintenance work on the original, such as pruning
redundant data. For this SQL to work, the original table and destination table must have an identical
structure.

You can further refine this operation by specifying conditions that the rows to be transferred must
meet before being inserted. For example, to copy across only the rows of data for megaliths located in
Wiltshire:

INSERT INTO megaliths_copy
 SELECT *
 FROM megaliths
 WHERE location LIKE '%Wiltshire%'

Furthermore, you can make extracts of data from tables into new tables by explicitly specifying the
targeted columns in the new table. This is useful when building large denormalized tables for use
within a data warehouse. Therefore, if we had a table called megalocations that contained two
columns called name and location, we could populate this new table from the megaliths table in the
following way:

INSERT INTO megalocations
 SELECT name, location
 FROM megaliths

Or, we can even select data from multiple tables for inserting. A denormalized table containing the
rows coalesced from the megaliths and media tables might contain two columns, name and url.
Populating this table with an INSERT statement is easy:

INSERT INTO megamedia
 SELECT name, url
 FROM megaliths, media
 WHERE megaliths.id = media.megaliths_id

Programming the Perl DBI

 page 54

However, in general, table population via INSERT statements is usually performed by batch-loading
programs that generate suitable SQL statements and execute them within the database, such as
Oracle's SQL*Loader. Of course, Perl is a good example of a programming language that makes
loading data from a file remarkably easy via the DBI.

3.4.2 Deleting Data

Now that you have spent copious amounts of time loading data into your tables to play with, the next
thing you'll want to do is tidy it up and remove redundant or unwanted data.

The DELETE keyword defined within SQL is exactly what you are looking for, providing a simple syntax
for permanently removing rows of data from tables. As with the INSERT statement, deleting rows
applies only to a single table at a time; therefore, if you want to remove rows that are referred to by
records in other tables, you should first delete those associated foreign key records from the
secondary tables. This preserves the referential integrity of your database and is known as delete
cascading.[12] Some databases support cascading delete mechanisms that automate these extra deletes.

[12] An analogy for this process is removing a file on a Unix system that has several symbolic links associated
with it. It is good housekeeping to remove the stale symbolic links when the target file has been removed. This
also applies to Windows and Macintosh systems with shortcuts to documents.

For example, a cascading delete applied to rows in the megaliths table would also need to remove the
appropriate rows in the media table where the following join condition is true:

megaliths.id = media.megaliths_id

However, DELETE statements do not have the same "single row at a time" restriction that INSERT
statements suffer from. DELETE can purge a table entirely in one statement. For example, to remove
all the rows within the megaliths table, we could simply write:

DELETE FROM megaliths

Of course, we may not wish to remove all the rows from a table, but only certain rows. This can be
done in a familiar manner by specifying a list of conditions that the data within a row must meet for it
to be removed. Therefore, if we wanted to delete all the rows of data within the megaliths table that
contain sites located in ''Wiltshire,'' then the following statement would work nicely:

DELETE FROM megaliths
WHERE location LIKE '%Wiltshire%'

To remove all the rows relating to stone circles, we could narrow the criterion that a row must meet by
saying that the type of the site must be equal to ''Stone Circle.'' The tighter query would read:

DELETE FROM megaliths
WHERE location LIKE '%Wiltshire%'
AND site_type_id IN (SELECT id FROM site_types
 WHERE site_type = 'Stone Circle')

It should be noted that deleting all the rows from a table does not actually remove the table from the
database. The table will be left in place, but it will have no rows in it.[13]

[13] Some databases feature a faster and more efficient way of removing all the rows from a table with the
TRUNCATE TABLE keyword. But beware! In some databases, that keyword removes all indices as well.

A more powerful way to determine which rows of data to delete can be expressed by using a subquery
to return the target rows. A good example of this sort of behavior is deleting the foreign keys from a
table when the primary keys are being deleted. This can be broken up into two separate DELETE
statements, the first removing the foreign key rows, the second removing the primary key rows. The
following examples remove the rows relating to megalithic sites in ''Wiltshire'' from both the media
and megaliths tables:

DELETE FROM media
WHERE megaliths_id IN (
 SELECT id
 FROM megaliths
 WHERE location LIKE '%Wiltshire%'
)

DELETE FROM megaliths
WHERE location LIKE '%Wiltshire%'

Programming the Perl DBI

 page 55

To sum up, removing data from tables is made extremely simple (perhaps too simple!) by use of the
DELETE keyword. Later in this chapter, we'll discuss the database's perspective of the deletion process
in more detail, including the all-important possibility of undoing deletions that go wrong.

3.4.3 Updating Data

The final way in which modifications can be performed on data stored within tables in a database is to
make in-place modifications of existing data by updating the values of particular columns in particular
rows. With an UPDATE statement, rows are neither inserted nor deleted, and the structure of the table
itself is not altered.

UPDATE statements are extremely powerful, in that it is possible to update multiple rows of data in one
statement. If desired, the new values may be supplied by the returned values from a SELECT
statement following the syntax of the INSERT command.

The most simple and useful UPDATE is to update a column of a single row within a table to a new value.
For example, if you wanted to update the location of the "Avebury" row within the megaliths table,
the following SQL statement would work:

UPDATE megaliths
SET location = 'Near Devizes, Wiltshire'
WHERE name = 'Avebury'

You should notice the condition clause specified in this statement. If the statement did not check for
the exact name of the site, every row within the table would have had the UPDATE statement
performed against it, causing a potentially disastrous data corruption. Condition clauses may be
specified in exactly the same way as used in other SQL commands such as DELETE and SELECT.

UPDATE statements may also update more than one column in a single statement, by simply listing the
columns we wish to update in a comma-separated list. For example, to update both the name and
description fields within the megaliths table, you can write the following SQL statement:

UPDATE megaliths
SET location = 'Callanish, Isle of Lewis',
 description = 'Complex site shaped as a buckled Celtic cross'
WHERE name = 'Callanish I'

In some database systems, it is also possible to update multiple columns simultaneously by using a
subquery to return a list of values from another table. Those values are then used as the new values
for the specified columns. For example, if we wanted to synchronize our megalithic database with the
Wiltshire Tourist Board Database to use the same names and locations, we could use the following
SQL statement:

UPDATE megaliths
SET (name, location) =
 (SELECT tourist_site_name, tourist_site_location
 FROM tourist_sites
 WHERE tourist_site_name LIKE '%Avebury%'
 AND tourist_site_type = 'Stone Circle')
WHERE name = 'Avebury'

This statement would update the name and location fields within the megaliths table with values
returned by a query running against another table. An important note about this technique is that the
subquery must return only a single row of data, otherwise the UPDATE will fail with an error.

3.4.4 Committing and Rolling Back Modifications

So, what happens if you make a horrible mistake when you are modifying the data within your
database? Is the only course of action to resign? Fear not! Some database engines have a capability
known as transaction rollback that will save not only your neck, but your data as well.

The principle of rollback is quite a simple one. For each modification to rows of data within the
database, a copy of the row prior to modification is written into a log that records all the modifications
made. Once you have decided that these changes are indeed correct, you can opt to commit the
changes to the database. If the committed changes are actually wrong, then you're in trouble: you can
clear out your desk and dust off your resume.

Programming the Perl DBI

 page 56

However, if by some sheer luck you check the modified rows and see that they are wrong before you
commit the changes, you can rollback the modifications you have made, returning the rows to the
values they held before you started modifying them. Your job is safe.

Even better, the changes you made within the transaction were not visible to anyone else looking at
the database at that time. So no one need know of your mistake, and your reputation is safe.

Most databases automatically commit data upon disconnection from the database unless a rollback is
explicitly issued. Therefore, if the software that is being run is not performing suitable error checking
on the modifications it is making, it may disconnect and inadvertently commit wrong data to the
database. There is a moral in this - always check for errors!

Some database systems don't have a feature as sophisticated as rollback or undo. In these cases, it is
even more important that before unleashing dramatic data manipulation SQL on your database, you
make a backup. Backups are always a good idea, even in databases that do support transactions.

3.5 Creating and Destroying Tables

The previous section discusses the operations SQL can perform to manipulate data stored as rows
within tables in the database. However, there is a separate set of statements that covers the
manipulation of the tables (and other objects) within the database themselves. These statements are
known as Data Definition Language commands, or DDLs.

The operations that can be performed on tables are fairly basic, since they are quite far-reaching in
their consequences. The two simplest operations available are:

Creating a new table

This is done via the CREATE TABLE command, the syntax of which varies depending on the
database platform being used. However, this statement generally specifies the name of the
table to be created and the definition of all the columns of the table (both names and
datatypes).

For example, the SQL we used to create the megaliths table within our database was:

CREATE TABLE megaliths (
 id INTEGER NOT NULL,
 name VARCHAR(64),
 location VARCHAR(64),
 description VARCHAR(256),
 site_type_id INTEGER,
 mapref VARCHAR(16)
)

CREATE TABLE will create a brand-new table with the given definition, which will be
completely empty until you insert rows into it.

Deleting, or dropping, an existing table

This action is as drastic as data modification can get. The actual table structure within the
database is completely removed, as are any rows of data currently stored within that table.
This operation cannot usually be rolled back from. Once the fatal statement is typed, the
specified table has gone forever (unless you have made a backup).

The syntax for dropping tables is fairly standard across databases and is extremely
straightforward.[14] To completely get rid of our megaliths table, we can issue the SQL
statement of:

[14] Something so deadly should have a far more complicated syntax!
DROP TABLE megaliths

There are other ways in which table definitions can be manipulated, and also other database
structures that can be created (such as views and indexes). But these are beyond the scope of
this book. You should consult your database documentation for more information.

Programming the Perl DBI

 page 57

Chapter 4. Programming with the DBI
In this chapter, we'll discuss in detail the actual programming interface defined by the DBI module.
We'll start with the very architecture of DBI, continue with explaining how to use the handles that DBI
provides to interact with databases, then cover simple tasks such as connecting and disconnecting
from databases. Finally, we'll discuss the important topic of error handling and describe some of the
DBI's utility methods and functions. Future chapters will discuss how to manipulate data within your
databases, as well as other advanced functionality.

4.1 DBI Architecture

The DBI architecture is split into two main groups of software: the DBI itself, and the drivers. The
DBI defines the actual DBI programming interface, routes method calls to the appropriate drivers,
and provides various support services to them. Specific drivers are implemented for each different
type of database and actually perform the operations on the databases. Figure 4.1 illustrates this
architecture.

Figure 4.1, The DBI architecture

Therefore, if you are authoring software using the DBI programming interface, the method you use is
defined within the DBI module. From there, the DBI module works out which driver should handle
the execution of the method and passes the method to the appropriate driver for actual execution.
This is more obvious when you recognize that the DBI module does not perform any database work
itself, nor does it even know about any types of databases whatsoever. Figure 4.2 shows the flow of
data from a Perl script through to the database.

Figure 4.2, Data flow through DBI

Programming the Perl DBI

 page 58

Under this architecture, it is relatively straightforward to implement a driver for any type of database.
All that is required is to implement the methods defined in the DBI specification,[1] as supported by the
DBI module, in a way that is meaningful for that database. The data returned from this module is
passed back into the DBI module, and from there it is returned to the Perl program. All the
information that passes between the DBI and its drivers is standard Perl datatypes, thereby preserving
the isolation of the DBI module from any knowledge of databases.

[1] Few methods actually need to be implemented since the DBI provides suitable defaults for most of them. The
DBI::DBD module contains documentation for any intrepid driver writers.

The separation of the drivers from the DBI itself makes the DBI a powerful programming interface
that can be extended to support almost any database available today. Drivers currently exist for many
popular databases including Oracle, Informix, mSQL, MySQL, Ingres, Sybase, DB2, Empress,
SearchServer, and PostgreSQL. There are even drivers for XBase and CSV files.

These drivers can be used interchangeably with little modification to your programs. Couple this
database-level portability with the portability of Perl scripts across multiple operating systems, and
you truly have a rapid application development tool worthy of notice.

Drivers are also called database drivers, or DBDs, after the namespace in which they are declared. For
example, Oracle uses DBD::Oracle, Informix uses DBD::Informix, and so on. A useful tip in
remembering the DBI architecture is that DBI can stand for DataBase Independent and DBD can
stand for DataBase Dependent.

Because DBI uses Perl's object-orientation features, it is extremely simple to initialize DBI for use
within your programs. This can be achieved by adding the line:

use DBI;

to the top of your programs. This line locates and loads the core DBI module. Individual database
driver modules are loaded as required, and should generally not be explicitly loaded.

4.2 Handles

The DBI defines three main types of objects that you may use to interact with databases. These
objects are known as handles. There are handles for drivers, which the DBI uses to create handles for
database connections, which, in turn, can be used to create handles for individual database
commands, known as statements. Figure 4.3 illustrates the overall structure of the way in which
handles are related, and their meanings are described in the following sections.

Figure 4.3, DBI handles

Programming the Perl DBI

 page 59

4.2.1 Driver Handles

Driver handles represent loaded drivers and are created when the driver is loaded and initialized by
the DBI. There is exactly one driver handle per loaded driver. Initially, the driver handle is the only
contact the DBI has with the driver, and at this stage, no contact has been made with any database
through that driver.

The only two significant methods available through the driver handle are data_sources() , to
enumerate what can be connected to, and connect() , to actually make a connection. These methods
are more commonly invoked as DBI class methods, however, which we will discuss in more detail later
in this chapter.

Since a driver handle completely encapsulates a driver, there's no reason why multiple drivers can't be
simultaneously loaded. This is part of what makes the DBI such a powerful interface.

For example, if a programmer is tasked with the job of transferring data from an Oracle database to an
Informix database, it is possible to write a single DBI program that connects simultaneously to both
databases and simply passes the data backwards and forwards as needed. In this case, two driver
handles would be created, one for Oracle and one for Informix. No problems arise from this situation,
since each driver handle is a completely separate Perl object.

Within the DBI specification, a driver handle is usually referred to as $drh .

Driver handles should not normally be referenced within your programs. The actual instantiation of
driver handles happens ''under the hood'' of DBI, typically when DBI->connect() is called.

4.2.2 Database Handles

Database handles are the first step towards actually doing work with the database, in that they
encapsulate a single connection to a particular database. Prior to executing SQL statements within a
database, we must actually connect to the database. This is usually achieved through the DBI's
connect() method:

$dbh = DBI->connect($data_source, ...);

The majority of databases nowadays tend to operate in a multiuser mode, allowing many
simultaneous connections, and database handles are designed accordingly. An example might be if
you wanted to write a stock-monitoring program that simultaneously monitored data in tables within
different user accounts in the database. A DBI script could make multiple connections to the
database, one for each user account, and execute SQL statements on each. Database handles are
completely encapsulated objects, meaning that transactions from one database handle cannot ''cross-
over'' or ''leak'' into another.

Database handles are children of their corresponding driver handle, which supports the notion that
we could also make multiple simultaneous connections to multiple database types, as well as multiple
simultaneous connections to databases of the same type. For example, a more complicated DBI script
could make two connections to each of an Oracle and an Informix database to perform the above-
mentioned monitoring. Figure 4.3, shown earlier, illustrates the capability of having multiple
database handles connecting through a driver handle to an Oracle database.

Keep in mind that had the monitoring program been written in C, two copies of code would be
required, one for Oracle's programming interface and one for Informix's. DBI levels the playing field.

Within the DBI specification and sample code, database handles are usually referred to as $dbh.

4.2.3 Statement Handles

Statement handles are the final type of object that DBI defines for database interaction and
manipulation. These handles actually encapsulate individual SQL statements to be executed within
the database.

Statement handles are children of their corresponding database handle. Since statement handles are
objects in their own right, data within one statement is protected from tampering or modification by
other statement handles.

Programming the Perl DBI

 page 60

For a given database handle, there is no practical limit to the number of statement handles that can be
created and executed.[2] Multiple statements can be created and executed within one script, and the
data can be processed as it returns. A good example of this might be a data-mining robot that
connects to a database, then executes a large number of queries that return all sorts of different types
of information. Instead of attempting to write convoluted SQL to correlate the information within the
database, the Perl script fetches all the data being returned from the many statements and performs
analysis there, using the fully featured text and data manipulation routines that Perl has to offer.

[2] In reality, the number of concurrent statement handles is dependent on the underlying database. For
information on how many concurrent statement handles your database can support, see Appendix B.

Within the DBI specification and sample code, statement handles are generally referred to as $sth.

4.3 Data Source Names

When connecting to a database via the DBI, you need to tell the DBI where to find the database to
connect to. For example, the database driver might require a database name, or a physical machine
name upon which the database resides. This information is termed a data source name, and of all the
aspects of DBI, this is possibly the most difficult to standardize due to the sheer number and diversity
of connection syntaxes.

The DBI requires the data source name to start with the characters dbi:, much like a URL begins with
http:, and then the name of the driver, followed by another colon - for example, dbi:Oracle:. Any
text that follows is passed to the driver's own connect() method to interpret as it sees fit. Most
drivers expect either a simple database name or, more often, a set of one or more name/value pairs
separated with semicolons. Some common examples are listed later in this section.

For example, mSQL requires the hostname, database name, and potentially, the TCP/IP port number
for connecting to the database server. However, Oracle may require only a single word that is an alias
to a more complicated connection identifier that is stored in separate Oracle configuration files.

DBI offers two useful methods for querying which data sources are available to you for each driver you
have installed on your system.

Firstly, you can get a list of all the available drivers installed on your machine by using the DBI-
>available_drivers() method. This returns a list with each element containing the data source
prefix of an installed driver,[3] such as dbi:Informix:.

[3] The actual definition of ''installed driver'' is a little loose. The DBI simply searches the directories in @INC
looking for any DBD subdirectories that contain .pm files. Those are assumed to be drivers. It does not verify
that the modules are completely and correctly installed. In practice, this process is fast and works well.

Secondly, you can invoke the DBI->data_sources() method against one or more of the drivers
returned by the DBI->available_drivers() method to enumerate which data sources are known to
the driver.[4] Calling the data_sources() method will actually load the specified driver and validate
that it is completely and correctly installed. Because DBI dies if it can't load and initialize a driver,
this method should be called inside an eval{} block if you need to catch that error.

[4] Note that not necessarily every data source that is reachable via the driver is returned. Similarly, the
inclusion of a data source does not imply that it is actually currently available for connection.

The following script lists all the drivers and data sources for each driver on your system:

#!/usr/bin/perl -w

ch04/listdsns: Enumerates all data sources and all installed drivers

use DBI;

Probe DBI for the installed drivers
my @drivers = DBI->available_drivers();

die "No drivers found!\n" unless @drivers; # should never happen

Programming the Perl DBI

 page 61

Iterate through the drivers and list the data sources for each one
foreach my $driver (@drivers) {
 print "Driver: $driver\n";
 my @dataSources = DBI->data_sources($driver);
 foreach my $dataSource (@dataSources) {
 print "\tData Source is $dataSource\n";
 }
 print "\n";
}

exit;

The output from this script on my machine looks like:

Driver: ADO

Driver: CSV
 Data source is DBI:CSV:f_dir=megaliths
 Data source is DBI:CSV:f_dir=pictish_stones

Driver: ExampleP
 Data Source is dbi:ExampleP:dir=.

Driver: File
 Data Source is DBI:File:f_dir=megaliths
 Data Source is DBI:File:f_dir=pictish_stones

Driver: ODBC

Driver: Proxy

Driver: XBase
 Data Source is dbi:XBase:.

which tells us that we have the standard drivers DBD::Proxy, DBD::ADO, DBD::File, and
DBD::ExampleP installed, as well as DBD::ODBC, DBD::XBase, and DBD::CSV.

While this may be interesting in theory, in practice you rarely need to use these methods. Most
applications are written to use one data source name, either hardcoded into the application or passed
in as a parameter in some way.

When specifying a data source name for a database, the text following the driver prefix should be of
the form that is appropriate for the particular database that you wish to connect to. This is very
database-specific, but the following table shows some examples.[5]

[5] An excellent example of an application that figures out data source names at runtime is dbish, discussed more
fully in Chapter 8.

Database Example Connection Syntax

mSQL
dbi:mSQL:hostname:database:port_number

For example, to connect to a database called archaeo located on a machine called
fowliswester.arcana.co.uk running on port number 1114, the following $data_source
argument would be used:

dbi:mSQL:fowliswester.arcana.co.uk:archaeo:1114

Oracle
dbi:Oracle:connection_descriptor

Oracle has a slightly less cut-and-dried way of specifying connection identifiers due to
the many different ways in which the Oracle database software can actually handle
connections.

To break this nightmarish topic down into bite-sized chunks, Oracle may use two
different types of connection. For local connections, Oracle uses a single item of
information as the connection descriptor, either the name of the database or an alias to
the database as specified in the Oracle configuration files. For a network-based
connection, Oracle usually needs to know the alias of the connection descriptor as
specified in the Oracle configuration files, or, if you are feeling suitably masochistic, you
can specify the whole connection descriptor ... but, believe me, it isn't pretty.

For example, a simple Oracle $data_source value might be:

dbi:Oracle:archaeo

Programming the Perl DBI

 page 62

CSV
dbi:CSV:f_dir=/datafiles

The DBD::CSV module treats a group of comma-separated value files in a common
directory as a database. The data source for this driver can contain a parameter f_dir
that specifies the directory in which the files are located.

In the case of the $data_source argument, an empty or undefined value will result in the
environment variable DBI_DSN being checked for a valid value. If this environment variable is not
defined, or does not contain a valid value, the DBI will call die().

4.4 Connection and Disconnection

The main activity in database programming usually involves the execution of SQL statements within a
database. However, to accomplish this task, a connection to a database must be established first.
Furthermore, after all the work has been done, it is good manners to disconnect from the database to
free up both your local machine resources and, more importantly, valuable database resources.

4.4.1 Connection

In the case of simple databases, such as flat-file or Berkeley DB files, ''connecting'' is usually as simple
as opening the files for reading or using the tie mechanism. However, in larger database systems,
connecting may be considerably more complicated.

A relatively simple RDBMS is mSQL, which has a simple method of connection: to connect, a program
connects to a TCP/IP port on the computer running the database. This establishes a live connection
within the database. However, more complex systems, such as Oracle, have a lot more internal
security and housekeeping work that must be performed at connection time. They also have more
data that needs to be specified by the program, such as the username and password that you wish to
connect with.

By looking at a broad spectrum of database systems, the information required to connect can be boiled
down to:

1. The data source name, a string containing information specifying the driver to use, what
database you wish to connect to, and possibly its whereabouts. This argument takes the
format discussed in the previous section and is highly database-specific.

2. The username that you wish to connect to the database as. To elaborate on the concept of
usernames a little further, some databases partition the database into separate areas, called
schemas, in which different users may create tables and manipulate data. Users cannot affect
tables and data created by other users. This setup is similar to accounts on a multiuser
computer system, in that users may create their own files, which can be manipulated by them,
but not necessarily by other users. In fact, users may decide to disallow all access to their
files, or tables, from all other users, or allow access to a select group or all users.[6]

[6] In general, this is true. However, some database systems, such as MySQL, support different users
but only one schema.

Most major database systems enforce a similar security policy, usually with an administrator
having access to an account that allows them to read, modify, and delete any user's tables and
data. All other users must connect as themselves. On these systems, your database username
may be the same as your system login username, but it doesn't have to be.

More minimal database systems may not have any concept of username-based authentication,
but you still need to supply the username and password arguments, typically as empty strings.

3. The password associated with the supplied username.

Programming the Perl DBI

 page 63

In light of these common arguments, the syntax for connecting to databases using DBI is to use the
connect() call, defined as follows:

$dbh = DBI->connect($data_source, $username, $password, \%attr);

The final argument, \%attr, is optional and may be omitted. \%attr is a reference to a hash that
contains handle attributes to be applied to this connection. One of the most important items of the
information supplied in this hash is whether or not automatic error handling should be supplied by
DBI. We will discuss this in further detail in the following section, but the two common attributes are
called RaiseError and PrintError , which cause the DBI to die or print a warning automatically
when a database error is detected.

This method, when invoked, returns a database handle if the connection has been successfully made
to the database. Upon failure, the value undef is returned.

To illustrate the DBI->connect() method, assume that we have an Oracle database called archaeo.
To connect to this database, we might use the following code:

#!/usr/bin/perl -w

ch04/connect/ex1: Connects to an Oracle database.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password")
 or die "Can't connect to Oracle database: $DBI::errstr\n";

exit;

This simple example illustrates the use of the DBI->connect() method to make one connection to the
database. We also perform error checking on the call to ensure that the connection occurs; upon
failure, the error message will be printed along with the database-specific reason for the failure, which
will be contained within the variable $DBI::errstr.[7]

[7] Actually, the error message will be displayed twice for reasons that will be explained in Section 4.5 later in
this chapter.

A more complicated example might be to connect twice to the same database from within the one
script:

#!/usr/bin/perl -w

ch04/connect/ex2: Connects to two Oracle databases simultaneously
with identical arguments. This is to illustrate
that all database handles, even if identical
argument-wise, are completely separate from
one another.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh1 = DBI->connect("dbi:Oracle:archaeo", "username", "password")
 or die "Can't make 1st database connect: $DBI::errstr\n";

my $dbh2 = DBI->connect("dbi:Oracle:archaeo", "username", "password")
 or die "Can't make 2nd database connect: $DBI::errstr\n";

exit;

or to connect simultaneously to two different databases. For example:

#!/usr/bin/perl -w

ch04/connect/ex3: Connects to two Oracle databases simultaneously.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh1 = DBI->connect("dbi:Oracle:archaeo", "username", "password")
 or die "Can't connect to 1st Oracle database: $DBI::errstr\n";

my $dbh2 = DBI->connect("dbi:Oracle:seconddb", "username", "password")
 or die "Can't connect to 2nd Oracle database: $DBI::errstr\n";

exit;

Programming the Perl DBI

 page 64

This former example is quite interesting, because even though we have used identical arguments to
DBI->connect(), the two database handles created are completely separate and do not share any
information.

A final example of using DBI->connect() is to connect to two different databases (one Oracle, one
mSQL) within the same script. In this case, DBI's automatic error reporting mechanism will be
disabled in the mSQL database by passing an attribute hash to the connect() call, as shown here:

#!/usr/bin/perl -w

ch04/connect/ex4: Connects to two database, one Oracle, one mSQL
simultaneously. The mSQL database handle has
auto-error-reporting disabled.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh1 = DBI->connect("dbi:Oracle:archaeo", "username", "password")
 or die "Can't connect to Oracle database: $DBI::errstr\n";

my $dbh2 = DBI->connect("dbi:mSQL:seconddb", "username", "password" , {
 PrintError => 0
 })
 or die "Can't connect to mSQL database: $DBI::errstr\n";

exit;

The $username and $password arguments should be specified but may be empty ('') if not required.
As discussed previously, the $data_source argument can also be undefined and the value of the
environment variable DBI_DSN will be used instead, if it has been set.

4.4.2 Disconnection

Explicit disconnection from the database is not strictly necessary if you are exiting from your program
after you have performed all the work, but it is a good idea. We strongly recommend that you get into
the habit of disconnecting explicitly.

DBI provides a method through which programmers may disconnect a given database handle from its
database. This is good practice, especially in programs in which you have performed multiple
connections or will be carrying out multiple sequential connections.

The method for performing disconnections is:

$rc = $dbh->disconnect();

According to this definition, disconnect() is invoked against a specific database handle. This
preserves the notion that database handles are completely discrete. With multiple database handles
active at any given time, each one must explictly be disconnected.

An example of using disconnect() might look like:

#!/usr/bin/perl -w

ch04/disconnect/ex1: Connects to an Oracle database
with auto-error-reporting disabled
then performs an explicit disconnection.

use DBI; # Load the DBI module

Perform the connection using the Oracle driver
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 PrintError => 0
 })
 or die "Can't connect to Oracle database: $DBI::errstr\n";

Now, disconnect from the database
$dbh->disconnect
 or warn "Disconnection failed: $DBI::errstr\n";

exit;

Upon successful disconnection, the return value will be true. Otherwise, it will be false. In practice,
failure to disconnect usually means that the connection has already been lost for some reason. After
disconnecting the database handle can't be used for anything worthwhile.

Programming the Perl DBI

 page 65

What happens if you don't explicitly disconnect? Since DBI handles are references to Perl objects,
Perl's own garbage collector will move in and sweep up any object trash you leave lying around. It
does that by calling the object's DESTROY method when there are no longer any references to the object
held by your script, or when Perl is exiting.

The DESTROY method for a database handle will call disconnect() for you, if you've left the handle
connected, in order to disconnect cleanly from the database. But it will complain about having to do
so by issuing a warning:

Database handle destroyed without explicit disconnect.

A major caveat with the disconnect() method regards its behavior towards automatically
committing transactions at disconnection. For example, if a program has updated data but has not
called commit() or rollback() before calling disconnect(), the action taken by different database
systems varies. Oracle will automatically commit the modifications, whereas Informix may not. To
deal with this, the DESTROY method has to call rollback() before disconnect() if AutoCommit is not
enabled. In Chapter 6, we'll discuss the effect of disconnect() and DESTROY on transactions in more
detail.

4.5 Error Handling

The handling of errors within programs, or the lack thereof, is one of the more common causes of
questions concerning programming with DBI. Someone will ask "Why doesn't my program work?"
and the answer generally runs along the lines of "Why aren't you performing error checking?" Sure
enough, nine out of ten times when error checking is added, the exact error message appears and the
cause for error is obvious.

4.5.1 Automatic Versus Manual Error Checking

Early versions of the DBI required programmers to perform their own error checking, in a traditional
way similar to the examples listed earlier for connecting to a database. Each method that returned
some sort of status indicator as to its success or failure should have been followed by an error
condition checking statement. This is an excellent, slightly C-esque way of programming, but it
quickly gets to be tiresome, and the temptation to skip the error checking grows.

The DBI now has a far more straightforward error-handling capability in the style of exception s. That
is, when DBI internally detects that an error has occurred after a DBI method call, it can automatically
either warn() or die() with an appropriate message. This shifts the onus of error checking away
from the programmer and onto DBI itself, which does the job in the reliable and tireless way that
you'd expect.

Manual error checking still has a place in some applications where failures are expected and common.
For example, should a database connection attempt fail, your program can detect the error, sleep for
five minutes, and automatically re-attempt a connection. With automatic error checking, your
program will exit, telling you only that the connection attempt failed.

DBI allows mixing and matching of error-checking styles by allowing you to selectively enable and
disable automatic error checking on a per-handle basis.

4.5.1.1 Manual error checking

Of course, the DBI still allows you to manually error check your programs and the execution of DBI
methods. This form of error checking is more akin to classic C and Perl programming, where each
important statement is checked to ensure that it has executed successfully, allowing the program to
take evasive action upon failure.

DBI, by default, performs basic automatic error reporting for you by enabling the PrintError
attribute. To disable this feature, simply set the value to 0 either via the handle itself after
instantiation, or, in the case of database handles, via the attribute hash of the connect() method.

Programming the Perl DBI

 page 66

For example:

Attributes to pass to DBI->connect()
%attr = (
 PrintError => 0,
 RaiseError => 0
);

Connect...
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , \%attr);

Re-enable warning-level automatic error reporting...
$dbh->{PrintError} = 1;

Most DBI methods will return a false status value, usually undef, when execution fails. This is easily
tested by Perl in the following way:

Try connecting to a database
my $dbh = DBI->connect(...)
 or die "Can't connect to database: $DBI::errstr!\";

The following program disables automatic error handling, with our own tests to check for errors. This
example also moves the attributes into the connect() method call itself, a clean style that's
commonly used:

 #!/usr/bin/perl -w
 #
 # ch04/error/ex1: Small example using manual error checking.

 use DBI; # Load the DBI module

 ### Perform the connection using the Oracle driver
 my $dbh = DBI->connect(undef, "stones", "stones", {
 PrintError => 0,
 RaiseError => 0
 }) or die "Can't connect to the database: $DBI::errstr\n";

 ### Prepare a SQL statement for execution
 my $sth = $dbh->prepare("SELECT * FROM megaliths")
 or die "Can't prepare SQL statement: $DBI::errstr\n";

 ### Execute the statement in the database
 $sth->execute
 or die "Can't execute SQL statement: $DBI::errstr\n";

 ### Retrieve the returned rows of data
 my @row;
 while (@row = $sth->fetchrow_array()) {
 print "Row: @row\n";
 }
 warn "Data fetching terminated early by error: $DBI::errstr\n"
 if $DBI::err;

 ### Disconnect from the database
 $dbh->disconnect
 or warn "Error disconnecting: $DBI::errstr\n";

 exit;

As can be seen from the example, the code to check the errors that may have arisen in a DBI method is
actually longer than the code to perform the operations themselves. Similarly, it is entirely possible
that you may just genuinely forget to add a check after a statement, which may result in extremely
bizarre program execution and error reporting, not to mention hours of wasted debugging time!

4.5.1.2 Automatic error checking

The automatic error checking capabilities of the DBI operates on two levels. The PrintError handle
attribute tells DBI to call the Perl warn() function (which typically results in errors being printed to
the screen when encountered) and the RaiseError handle attribute (which tells DBI to call the Perl
die() function upon error, typically causing the script to immediately abort).

Because the standard Perl functions of warn() and die() are used, you can change the effects of
PrintError and RaiseError with the $SIG{_ _WARN_ _} and $SIG{_ _DIE_ _} signal handlers.
Similarly, a die() from RaiseError can be caught via eval { ... }.

Programming the Perl DBI

 page 67

These different levels of automatic error checking can be turned on for any handle, although database
handles are usually the most common and useful. To enable the style of automatic error checking you
want, you may set the value of either of the following two attributes:

$h->{PrintError} = 1;
$h->{RaiseError} = 1;

Similarly, to disable automatic error checking, simply set the value of these attributes to 0.

If both RaiseError and PrintError are enabled, an error will cause warn() and die() to be
executed sequentially. If no $SIG{_ _DIE_ _} handle has been defined, warn() is skipped to avoid
the error message being printed twice.[8]

[8] The exact behavior when both attributes are set may change in future versions. This is something to consider
if the code is inside an eval

A more common way in which these attributes are used is to specify them in the optional attribute
hash supplied to DBI->connect() when connecting to a database. Automatic error checking is the
recommended style in which to write DBI code, so PrintError is enabled by default in
DBI->connect(). You can think of this as training wheels for novices and grease for quick-and-dirty
script writers. Authors of more significant works usually either enable RaiseError or disable
PrintError and do their own error checking.

The following short example illustrates the use of RaiseError instead of manual error checking is:

 #!/usr/bin/perl -w
 #
 # ch04/error/ex2: Small example using automatic error handling with
 # RaiseError, i.e., the program will abort upon detection
 # of any errors.

 use DBI; # Load the DBI module

 my ($dbh, $sth, @row);

 ### Perform the connection using the Oracle driver
 $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 PrintError => 0, ### Don't report errors via warn()
 RaiseError => 1 ### Do report errors via die()
 });
 ### Prepare a SQL statement for execution
 $sth = $dbh->prepare("SELECT * FROM megaliths");

 ### Execute the statement in the database
 $sth->execute();

 ### Retrieve the returned rows of data
 while (@row = $sth->fetchrow_array()) {
 print "Row: @row\n";
 }

 ### Disconnect from the database
 $dbh->disconnect();

 exit;

This example is both shorter and more readable than the manual error checking shown in a following
example. The actual program logic is clearer. The most obvious additional benefit is that we can
forget to handle error checking manually after a DBI operation, since the DBI will check for errors for
us.

4.5.1.3 Mixed error checking

You can mix error checking styles within a single program, since automatic error checking can be
easily enabled and disabled on a per-handle basis. There are plenty of occasions where mixed error
checking is useful. For example, you might have a program that runs continuously, such as one that
polls a database for recently added stock market quotes every couple of minutes.

Disaster occurs! The database crashes! The ideal situation here is that the next time the program tries
connecting to the database and fails, it'll wait a few minutes before retrying rather than aborting the
program altogether. Once we've connected to the database, the error checking should now simply
warn when a statement fails and not die.

Programming the Perl DBI

 page 68

This mixed style of error checking can be broken down into two areas: manual error checking for the
DBI->connect() call, and automatic error checking via PrintError for all other statements. This is
illustrated in the following example program:

 #!/usr/bin/perl -w
 #
 # ch04/error/mixed1: Example showing mixed error checking modes.

 use DBI; # Load the DBI module

 ### Attributes to pass to DBI->connect() to disable automatic
 ### error checking
 my %attr = (
 PrintError => 0,
 RaiseError => 0,
);

 ### The program runs forever and ever and ever and ever ...
 while (1) {
 my $dbh;

 ### Attempt to connect to the database. If the connection
 ### fails, sleep and retry until it succeeds ...
 until (
 $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" ,
 \%attr)
) {
 warn "Can't connect: $DBI::errstr. Pausing before retrying.\n";
 sleep(5 * 60);
 }

 eval { ### Catch _any_ kind of failures from the code within

 ### Enable auto-error checking on the database handle
 $dbh->{RaiseError} = 1;

 ### Prepare a SQL statement for execution
 my $sth = $dbh->prepare("SELECT stock, value FROM current_values");

 while (1) {

 ### Execute the statement in the database
 $sth->execute();

 ### Retrieve the returned rows of data
 while (my @row = $sth->fetchrow_array()) {
 print "Row: @row\n";
 }

 ### Pause for the stock market values to move
 sleep 60;
 }

 };
 warn "Monitoring aborted by error: $@\n" if $@;

 ### Short sleep here to avoid thrashing the database
 sleep 5;
 }

 exit;

This program demonstrates that with DBI, you can easily write explicit error checking and recovery
code alongside automatic error checking.

4.5.2 Error Diagnostics

The ability to trap errors within the DBI is very useful, with either manual or automatic error
checking, but this information is only marginally useful on its own. To be truly useful, it is necessary
to discern exactly what the error was in order to track it down and debug it.

Programming the Perl DBI

 page 69

To this end, DBI defines several error diagnostic methods that can be invoked against any valid
handle, driver, database, or statement. These methods will inform the programmer of the error code
and report the verbose information from the last DBI method called. These are:

$rv = $h->err();
$str = $h->errstr();
$str = $h->state();

These various methods return the following items of information that can be used for more accurate
debugging of errors:

• $h- >err() returns the error number that is associated with the current error flagged against
the handle $h. The values returned will be completely dependent on the values produced by
the underlying database system. Some systems may not support particularly meaningful
information; for example, mSQL errors always have the error number of -1. Oracle is slightly
more helpful: a connection failure may flag an ORA-12154 error message upon connection
failure, which would return the value of 12154 by invoking $h->err(). Although this value is
usually a number, you should not rely on that.

• $h- >errstr() is a slightly more useful method, in that it returns a string containing a
description of the error, as provided by the underlying database. This string should
correspond to the error number returned in $h->err().

For example, mSQL returns -1 as the error number for all errors, which is not particularly
useful. However, invoking $h->errstr() provides far more useful information. In the case
of connection failure, the error:

ERROR : Can't connect to local MSQL server

might be generated and returned by $h->errstr(). Under Oracle, a connection failure
returning the error number of 12154 will return the following string as its descriptive error
message:

ORA-12154: TNS:could not resolve service name (DBD ERROR: OCIServerAttach)

• $h- >state() returns a string in the format of the standard SQLSTATE five-character error
string. Many drivers do not fully support this method, and upon invoking it to discern the
SQLSTATE code, the value:

S1000

will be returned. The specific general success code 00000 is translated to 0, so that if no error
has been flagged, this method will return a false value.

The error information for a handle is reset by the DBI before most DBI method calls. Therefore, it's
important to check for errors from one method call before calling the next method on the same
handle. If you need to refer to error information later you'll need to save it somewhere else yourself.

A rewriting of the previous example to illustrate using the specific handle methods to report on errors
can be seen in the following code:

#!/usr/bin/perl -w

ch04/error/ex3: Small example using manual error checking which also uses
handle-specific methods for reporting on the errors.

use DBI; # Load the DBI module

Attributes to pass to DBI->connect() to disable automatic
error checking
my %attr = (
 PrintError => 0,
 RaiseError => 0,
);

Perform the connection using the Oracle driver
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , \%attr)
 or die "Can't connect to database: ", $DBI::errstr, "\n";

Programming the Perl DBI

 page 70

Prepare a SQL statement for execution
my $sth = $dbh->prepare("SELECT * FROM megaliths")
 or die "Can't prepare SQL statement: ", $dbh->errstr(), "\n";

Execute the statement in the database
$sth->execute
 or die "Can't execute SQL statement: ", $sth->errstr(), "\n";

Retrieve the returned rows of data
while (my @row = $sth->fetchrow_array()) {
 print "Row: @row\n";
}
warn "Problem in fetchrow_array(): ", $sth->errstr(), "\n"
 if $sth->err();

Disconnect from the database
$dbh->disconnect
 or warn "Failed to disconnect: ", $dbh->errstr(), "\n";

exit;

As you can see, it's even more long-winded than using the $DBI::errstr variable, which can at least
be interpolated directly into the error messages.

In addition to these three methods, which allow finely grained error checking at a handle level, there
are three corresponding variables that will contain the same information, but at a DBI class level:

$DBI::err
$DBI::errstr
$DBI::state

Use of these variables is essentially the same as that of $h->err() and friends, but the values referred
to are for the last handle used within DBI. They are particularly handy for interpolating into strings
for error messages.

Since these variables are associated with the last handle used within the DBI, they have an even
shorter lifespan than the handle error methods, and should be used only immediately after the
method call that failed. Otherwise, it is highly likely they will contain misleading error information.

The one case where the variables are very useful is for connection errors. When these errors occur,
there's no new handle returned in which to hold error information. Since scripts don't use the internal
driver handles, the $DBI::errstr variable provides a very simple and effective way to get the error
message from a connect() failure.

In summary, for most applications, automatic error checking using RaiseError and/or PrintError is
recommended. Otherwise, manual checking can be used and $DBI::errstr can easily be interpolated
into messages. The handle methods are available for more complex applications.

4.6 Utility Methods and Functions

To round off our basic introduction to DBI, we'll tell you about some useful utility methods and
functions that will make your life that little bit easier. These include the very useful quote escaping
method, DBI execution tracing, and various functions to tidy up your data.

4.6.1 Database-Specific Quote Handling

By far the most important utility method is quote() , which correctly quotes and escapes SQL
statements in a way that is suitable for a given database engine. This feature is important if you have a
Perl string that you wish to insert into a database, as the data will be required, in most cases, to have
quotation marks around it.

To confuse matters, database engines tend to have a different format for specifying these surrounding
quotation marks. DBI circumvents this problem by declaring the quote() method to be executed
against a database handle, which ensures that the correct quotation rules are applied.

This method, when executed against a database handle, converts the string given as an argument
according to defined rules, and returns the correctly escaped string for use against the database.

Programming the Perl DBI

 page 71

For example:

#!/usr/bin/perl -w

ch04/util/quote1: Demonstrates the use of the $dbh->quote() method

use DBI;

The string to quote
my $string = "Don't view in monochrome (it looks 'fuzzy')!";

Connect to the database
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 RaiseError => 1
});

Escape the string quotes ...
my $quotedString = $dbh->quote($string);

Use quoted string as a string literal in a SQL statement
my $sth = $dbh->prepare("
 SELECT *
 FROM media
 WHERE description = $quotedString
 ");
$sth->execute();

exit;

For example, if you quoted the Perl string of Do it! via an Oracle database handle, you would be
returned the value of 'Do it!'. However, the quote() method also takes care of cases such as Don't
do it! which needs to be translated to 'Don''t do it!' for most databases. The simplistic addition
of surrounding quotes would have produced 'Don't do it!' which is not a valid SQL string literal.

Some databases require a more complex quote() method, and some drivers (though not all) have a
quote() method that can cope with multiline strings and even binary data.

As a special case, if the argument is undef, the quote() method returns the string NULL , without
quotes. This corresponds to the DBI's use of undef to represent NULL values, and to how NULL values
are used in SQL.

4.6.2 Tracing DBI Execution

DBI sports an extremely useful ability to generate runtime tracing information of what it's doing,
which can be a huge time-saver when trying to track down strange problems in your DBI programs.

At the highest level, you can call the DBI- >trace() method, which enables tracing on all DBI
operations from that point onwards. There are several valid tracing levels:

0

Disables tracing.

1

Traces DBI method execution showing returned values and errors.

2

As for 1, but also includes method entry with parameters.

3

As for 2, but also includes more internal driver trace information.

4

Levels 4, and above can include more detail than is helpful.

Programming the Perl DBI

 page 72

The trace() method can be used with two argument forms, either specifying only the trace level or
specifying both the trace level and a file to which the trace information is appended. The following
example shows the use of DBI->trace():

#!/usr/bin/perl -w

ch04/util/trace1: Demonstrates the use of DBI tracing.

use DBI;

Remove any old trace files
unlink 'dbitrace.log' if -e 'dbitrace.log';

Connect to a database
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password");

Set the tracing level to 1 and prepare()
DBI->trace(1);
doPrepare();

Set trace output to a file at level 2 and prepare()
DBI->trace(2, 'dbitrace.log');
doPrepare();

Set the trace output back to STDERR at level 2 and prepare()
DBI->trace(2, undef);
doPrepare();

exit;

prepare a statement (invalid to demonstrate tracing)
sub doPrepare {
 print "Preparing and executing statement\n";
 my $sth = $dbh->prepare("
 SELECT * FROM megalith
 ");
 $sth->execute();
 return;
}

exit;

This program generates quite a bit of trace information, of which we'll show just a small fragment:

-> prepare for DBD::Oracle::db (DBI::db=HASH(0xcd45c)~0xcd4a4 '
 SELECT * FROM megalith
 ') thr0
 <- prepare= DBI::st=HASH(0xcd648) at trace1 line 30.
 -> execute for DBD::Oracle::st (DBI::st=HASH(0xcd648)~0x16afec) thr0
 dbd_st_execute SELECT (out0, lob0)...
 !! ERROR: 942 'ORA-00942: table or view does not exist (DBD ERROR:
 OCIStmtExecute)'
 <- execute= undef at trace1 line 33.
DBD::Oracle::st execute failed: ORA-00942: table or view does not exist (DBD
ERROR: OCIStmtExecute) at trace1 line 33.

This trace information was generated with a setting of level 2, and shows the operations that DBI
undertook when trying to prepare and execute a statement. Lines prepended with -> are written
when the method is being entered, and lines prepended with <- are written when the method is
returning. These lines also show the information being returned from the method call. The DBI trace
output is indented by four spaces to make it easier to distinguish the trace output from any other
program output.

You can see the prepare() method being called along with its parameters: a database handle and the
SQL statement to prepare.[9] The next line shows the prepare() returning a statement handle. It also
shows the file and line number that prepare() was called from. Following that, we see execute()
being called, a trace line from the driver itself, and the method returning after logging an error.
Finally we see the warning generated by the DBI due to the PrintError attribute, which is on by
default.

[9] If the Perl you are using was built with threading enabled, then each method entry line also shows the thread
number, e.g., thr0. The DBI implements a per-driver mutex so that each DBD driver may only be entered by
one thread at a time. Trace levels 4 and above show this in action.

Programming the Perl DBI

 page 73

The trace information generated at level 1 is similar. The main difference is that the method entry
lines (->) are not shown.

The one drawback to this form of tracing is that if your program uses a lot of handles, then the volume
of tracing information could be quite vast. Similarly, you might have tracked your problem down to a
specific database operation that you'd like to trace individually.

The trace() method is also available at a handle level, allowing you to individually trace any database
and statement handle operations. Therefore, you could trace operations on a given database handle to
level 1 and a single statement handle to level 2. For example:

Connect to a database...
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password");

Trace the database handle to level 1 to the screen
$dbh->trace(1);

Create a new statement
my $sth = ...;

Trace the statement to level 2 to the file 'trace.lis'
$sth->trace(2, 'trace.lis');

Note that if a filename is specified when calling trace(), then currently, trace output from all handles
is redirected to that file.

If your programs are exhibiting odd behavior or are generating errors on a regular basis, you should
consider using the built-in tracing features of DBI to help you resolve your problems. This tool is
extremely useful, as you will be able to see exactly what data is being passed to the database, allowing
you to ensure that it's in the correct format.

Finally, tracing can also be controlled via the use of an environment variable called DBI_TRACE , which
acts in a similar manner to the DBI->trace() method. That is, it traces all handles used within the
program. This environment variable can be used in three ways that are summarized in the following
table.

DBI_TRACE Value Effect on DBI

1 DBI->trace(1);

dbitrace.log DBI->trace(2, 'dbitrace.log');

4=dbitrace.log DBI->trace(4, 'dbitrace.log');

If the trace level isn't specified in the DBI_TRACE environment variable, it will default to 2, as shown in
the table above.

4.6.3 Neat and Tidy Formatting

The DBI features a couple of utility functions that can be used to tidy up strings into a form suitable
for easy reading. These two functions are neat() and neat_list() , the former operating on a single
scalar value, the latter operating on a list of scalar values.

For example, to use neat() to tidy up some strings, you could write:

#!/usr/bin/perl -w

ch04/util/neat1: Tests out the DBI::neat() utility function.

use DBI;

Declare some strings to neatify
my $str1 = "Alligator's an extremely neat() and tidy person";
my $str2 = "Oh no\nhe's not!";

Neatify this first string to a maxlen of 40
print "String: " . DBI::neat($str1, 40) . "\n";

Neatify the second string to a default maxlen of 400
print "String: " . DBI::neat($str2) . "\n";

Programming the Perl DBI

 page 74

Neatify a number
print "Number: " . DBI::neat(42 * 9) . "\n";

Neatify an undef
print "Undef: " . DBI::neat(undef) . "\n";

exit;

which generates the output of:

String: 'Alligator's an extremely neat() and...'
String: 'Oh no
he's not!'
Number: 378
Undef: undef

demonstrating that string values are quoted,[10] whereas values known to be numeric are not. The first
string has been truncated to the desired length with ... added. Undefined values are recognized and
returned as the string undef without quotes.

[10] Note that internal quotes are not escaped. That's because neat() is designed to produce output for human
readers, and to do so quickly since it's used by the internal trace mechanisms. If you wish quote escaping to
occur, you could use the quote() method instead.

While the neat() function is handy for single values, the neat_list() function is handy for lists. It
simply calls neat() on each element of the referenced list before joining the list of values together
with the desired separator string. For example:

#!/usr/bin/perl -w

ch04/util/neat2: Tests out the DBI::neat_list() utility function

use DBI qw(neat_list);

Declare some strings to neatify
my @list = ('String-a-string-a-string-a-string-a-string', 42, 0, '', undef);

Neatify the strings into an array
print neat_list(\@list, 40, ", "), "\n";

exit;

which generates the output of:

'String-a-string-a-string-a-string-a...', 42, 0, '', undef

This example also shows that the utility functions can be imported into your package so you can drop
the DBI:: prefix.

DBI uses neat() and neat_list() internally to format the output generated by tracing. That's
important to know if you're wondering why the trace output is truncating your huge SQL statements
down to 400 characters.[11]

[11] 400 characters is the default value for the $DBI::neat_maxlen variable, which defines the default
maximum length for the neat() function.

4.6.4 Numeric Testing

The final utility function supplied by DBI that we'll look at is quite a curious one called
looks_like_number() . This function quite simply tells you whether or not a value looks like a
number or not.

looks_like_number() operates by taking a list of values as an argument and returns a new array
signifying whether or not the corresponding value within the original array was a number, not a
number, or undefined.

This may seem rather a curious thing to want to do, but in the case of handling large quantities of
data, it's useful for working out which values might need to have their quotes escaped via the quote()
method.

Programming the Perl DBI

 page 75

The returned array will contain the same number of values as the original data array, with the
elements containing one of three values signifying the following:

true The original value is a number.
false The original value is not a number.
undef The original value is empty or undefined.

The following example illustrates how this process works:

#!/usr/bin/perl -w

ch04/util/lookslike1: Tests out the DBI::looks_like_number() function.

use DBI;

Declare a list of values
my @values = (333, 'Choronzon', 'Tim', undef, 'Alligator', 1234.34,
 'Linda', 0x0F, '0x0F', 'Larry Wall');

Check to see which are numbers!
my @areNumbers = DBI::looks_like_number(@values);

for (my $i = 0; $i < @values; ++$i) {

 my $value = (defined $values[$i]) ? $values[$i] : "undef";

 print "values[$i] -> $value ";

 if (defined $areNumbers[$i]) {
 if ($areNumbers[$i]) {
 print "is a number!\n";
 }
 else {
 print "is utterly unlike a number and should be quoted!\n";
 }
 }
 else {
 print "is undefined!\n";
 }
}

exit;

The results from this program illustrate how the values are treated and shows that hexadecimal values
are not treated as numbers:

values[0] -> 333 is a number!
values[1] -> Choronzon is utterly unlike a number and should be quoted!
values[2] -> Tim is utterly unlike a number and should be quoted!
values[3] -> undef is undefined!
values[4] -> Alligator is utterly unlike a number and should be quoted!
values[5] -> 1234.34 is a number!
values[6] -> Linda is utterly unlike a number and should be quoted!
values[7] -> 15 is a number!
values[8] -> 0x0F is utterly unlike a number and should be quoted!
values[9] -> Larry Wall is utterly unlike a number and should be quoted!

The first 0x0F in the list of values is reported as looking like a number because Perl converted it into
one (15) when the script was compiled. The second is not reported as looking like a number because
the looks_like_number() function only looks for integers and floating-point numbers.

And that brings us to the end of the introduction to DBI and its architecture. We'll be talking more on
how to actually do stuff with DBI in the next chapter.

Programming the Perl DBI

 page 76

Chapter 5. Interacting with the Database
In our journey through the DBI so far, we have discussed ways in which you can connect and
disconnect from databases of various types within Perl programs. We have also discussed ways in
which you can detect and rectify errors when calling DBI methods.

What we haven't discussed yet is how to manipulate data within your databases: that is, retrieving,
updating, and deleting information (amongst other activities). This chapter discusses how to perform
these activities with the DBI and how to use Perl's powerful data manipulation functionality to
efficiently manipulate your data.

Recall the discussion in Chapter 4 about the architecture of DBI - specifically, the topic of statement
handles. These handles, and the methods associated with them, provide the functionality to
manipulate data within your databases.

5.1 Issuing Simple Queries

The most common interaction between a program and a database is retrieving or fetching data. In
standard SQL, this process is performed with the SELECT keyword. With Perl and the DBI, we have
far more control over the way in which data is retrieved from the database. We also have far more
control over how to post-process the fetched data.

Retrieving data from a database using DBI is essentially a four-stage cycle:

1. The prepare stage parses an SQL statement, validates that statement, and returns a statement
handle representing that statement within the database.

2. Providing the prepare stage has returned a valid statement handle, the next stage is to execute
that statement within the database. This actually performs the query and begins to populate
data structures within the database with the queried data. At this stage, however, your Perl
program does not have access to the queried data.

3. The third stage is known as the fetch stage, in which the actual data is fetched from the
database using the statement handle. The fetch stage pulls the queried data, row by row, into
Perl data structures, such as scalars or hashes, which can then be manipulated and post-
processed by your program.

The fetch stage ends once all the data has been fetched, or it can be terminated early using the
finish() method.

If you'll need to re-execute() your query later, possibly with different parameters, then you
can just keep your statement handle, re-execute() it, and so jump back to stage 2.

4. The final stage in the data retrieval cycle is the deallocation stage. This is essentially an
automatic internal cleanup exercise in which the DBI and driver deallocate the statement
handle and associated information. For some drivers, that process may also involve talking to
the database to tell it to deallocate any information it may hold related to the statement.

All this is done for you automatically, triggered by Perl's own garbage collection mechanism.

This cycle occurs for every SQL SELECT statement executed. For other SQL statements, such as
INSERT, UPDATE, and DELETE, the fetch is skipped and only the prepare, execute, and deallocation
stages apply (as we'll discuss later in this chapter).

To understand how this four-stage data fetch cycle fits into your programs, we'll take a closer look at
each stage individually.

Programming the Perl DBI

 page 77

5.1.1 Preparing SQL Statements

The first stage of the cycle to retrieve data from your database is to prepare the statement handle from
an SQL statement. This stage generally corresponds to the parse stage that occurs internally within
your database engine.

What typically occurs is that the SQL statement is sent as a string of characters via a valid database
handle to the database. This string is then parsed by the database itself to ensure that it is valid SQL,
both in terms of syntax and also in terms of entities referred to within the database (e.g., to make sure
you aren't referring to tables that don't exist and that you have permission to refer to those that do).

Provided that the database swallows this statement without any complaints, it will return some sort of
database-specific data structure that encapsulates that parsed statement. It is this database-specific
data structure that the DBI further encapsulates as a statement handle. Figure 5.1 shows this process
more clearly.

Figure 5.1, Statement preparation data flow via DBI

It is through this DBI statement handle that you perform the remainder of the data-fetching cycle.

In DBI terms, the way to prepare a statement is to use the prepare() method, which is executed via a
database handle. For example, a simple DBI program that creates a statement handle can be written
as follows:

#!/usr/bin/perl -w

ch05/prepare/ex1: Simply creates a database handle and a statement handle

use DBI;

The database handle
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password");

The statement handle
my $sth = $dbh->prepare("SELECT id, name FROM megaliths");

exit;

Programming the Perl DBI

 page 78

This, of course, assumes that all goes well with the parsing of the statement. It is possible that you
made a mistake when typing in your SQL statement, or that the database failed to parse the statement
for any number of other reasons. If this occurs, a value of undef is returned from the prepare() call,
signifying that the parse has failed.

In addition to this return value, the DBI would also print out an error message because the
PrintError attribute is enabled by default on database handles from DBI->connect(). See Chapter
4 for more about PrintError.

Finally, there's an important twist to preparing statements, in that drivers are allowed to defer actually
doing the prepare stage of the cycle until execute() is called. That's because some databases don't
provide any other way of doing it. So everything that's been said about prepare() - what it does and
why it may fail - may actually not apply until execute() is called.

5.1.1.1 Constructing "on-the-fly" statements

It is also possible to construct ''on-the-fly'' SQL statements using Perl's built-in string handling
capabilities, which can then be passed to prepare(). A good example of this functionality can be
demonstrated using DBI to integrate databases and web sites.

Suppose you had your megalith database available on the Web for easy online browsing. When a user
types in the name of a site, it gets passed into a CGI script in the form of a string. This string is then
used in an SQL statement to retrieve the appropriate information on the site from the database.

Therefore, to be able to accomplish this sort of interactivity, you need to be able to custom-build SQL
statements, and using Perl's string handling is one way to do it.[1] The following code illustrates the
principle:

[1] A frequently better way is to use bind values, which we'll discuss later in this chapter.
This variable is populated from the online form, somehow...
my $siteNameToQuery = $CGI->param("SITE_NAME");

Take care to correctly quote it for use in an SQL statement
my $siteNameToQuery_quoted = $dbh->quote($siteNameToQuery);

Now interpolate the variable into the double-quoted SQL statement
$sth = $dbh->prepare("
 SELECT meg.name, st.site_type, meg.location, meg.mapref
 FROM megaliths meg, site_types st
 WHERE name = $siteNameToQuery_quoted
 AND meg.site_type_id = st.id
 ");
$sth->execute();
@row = $sth->fetchrow_array();
...

Furthermore, any part of this query can be constructed on the fly since the SQL statement is, at this
stage, simply a Perl string. Another neat trick is to adaptively query columns from the database
depending on which fields the online browser wants to display. Figure 5.2 shows the web page from
which the user selects his or her desired columns.

Figure 5.2, Megalithic query form

Programming the Perl DBI

 page 79

The code required to drive this form of SQL generation can be written neatly as:

Collect the selected field names
@fields = ();

Work out which checkboxes have been selected
push @fields, "name" if $nameCheckbox eq "CHECKED";
push @fields, "location" if $locationCheckbox eq "CHECKED";
push @fields, "type" if $typeCheckbox eq "CHECKED";
push @fields, "mapref" if $maprefCheckbox eq "CHECKED";

Sanity-check that *something* was selected
die "No fields were selected for querying!\n"
 unless @fields;

Now build the SQL statement
$statement = sprintf "SELECT %s FROM megaliths WHERE name = %s",
 join(", ", @fields), $dbh->quote($siteNameToQuery);

Perform the query
$sth = $dbh->prepare($statement);
$sth->execute();
@row = $sth->fetchrow_array();
...

That is, the entire SQL query, from the columns to fetch to the conditions under which the data is
fetched, has been constructed dynamically and passed to the database for processing.

The web page that was displayed on the user's browser after executing this query can be seen in Figure
5.3.

Figure 5.3, Megalithic query results

Therefore, by using Perl's string handling to build SQL statements based on input from the user, DBI
can be used to drive quite complex web forms in a very simple and flexible manner.

5.1.2 Executing Select Statements

The second stage of the data fetch cycle is to inform the database to go ahead and execute the SQL
statement that you have prepared. This execution stage will actually tell the database to perform the
query and begin to collect the result set of data.

Performing the execution of the SQL statement occurs via a valid statement handle created when the
prepare() method successfully completes. For example, execution of an SQL statement can be
expressed as simply as:

Create the statement handle
my $sth = $dbh->prepare("SELECT id, name FROM megaliths");

Execute the statement handle
$sth->execute();

Programming the Perl DBI

 page 80

Assuming that all goes well with the execution of your statement, a true value will be returned from
the execute() call. Otherwise, a value of undef is returned, signifying that the execution has failed.

As with most DBI methods, if PrintError is enabled, then an error message will be generated via
warn() . Alternatively, if RaiseError is enabled, an exception will be generated via die() . However
you choose to do it, it is always a good idea to check for errors.[2]

[2] We sometimes don't explicitly check for errors in the fragments of code we use as examples. In these cases,
you can safely assume that we're strapped into our RaiseError ejector seat.

After execute() returns successfully, the database has not necessarily completed the execution of the
SELECT statement; it may have only just started. Imagine that megaliths are very common, and our
megaliths table has ten million rows. In response to the execute() earlier, the database may do no
more than set a pointer, known as a cursor, to just above the first row of the table.

So, after successful execution, the database and driver are ready to return the results, but those results
will not have been returned to your Perl program yet. This is an important point to remember. To
extract the results data from the database, you need to explicitly fetch them. This is the third stage in
the cycle.

5.1.3 Fetching Data

Fetching data is the main object of issuing queries to the database. It's fine to exercise a database by
executing queries, but unless you actually retrieve that data, your program will never be able to make
use of it.

The data retrieved by your SQL query is known as a result set (so called because of the mathematical
set theory on which relational databases are based). The result set is fetched into your Perl program
by iterating through each record, or row, in the set and bringing the values for that row into your
program. This form of fetching result set data on a row-by-row basis is generally termed a cursor .

Cursors are used for sequential fetching operations: records are fetched in the order in which they are
stored within the result set. Currently, records cannot be skipped over or randomly accessed.
Furthermore, once a row addressed by a cursor has been fetched, it is ''forgotten'' by the cursor. That
is, cursors cannot step backwards through a result set.

Therefore, the general way in which we fetch data from the database's result set is to loop through the
records returned via the statement handle, processing each row until no rows are left to fetch. This
can be expressed by the following pseudo-code.

while (records to fetch from $sth) {
 ### Fetch the current row from the cursor
 @columns = get the column values;
 ### Print it out...
 print "Fetched Row: @columns\n";
}

The DBI simplifies this process even further by combining the check for more data and the fetching of
that data into a single method call.

There are several ways in which rows can be retrieved from the result set using different Perl
datatypes. For example, you can fetch a row in the form of a simple list of values, a reference to an
array of values, or a reference to a hash of field-name/value pairs. All essentially retrieve the current
row from the cursor, but return the data to your Perl program in different formats.

The simplest form of data fetching is to use the fetchrow_array() method, which returns an array,
or rather a list, containing the fields of the row. Let's say that we wanted to fetch the name of a
megalithic site and what sort of site it is from our megaliths database. Therefore, to fetch this data
from the table, we would write:

Prepare the SQL statement (assuming $dbh exists)
$sth = $dbh->prepare("
 SELECT meg.name, st.site_type
 FROM megaliths meg, site_types st
 WHERE meg.site_type_id = st.id
 ");

Programming the Perl DBI

 page 81

Execute the SQL statement and generate a result set
$sth->execute();

Fetch each row of result data from the database as a list
while (($name, $type) = $sth->fetchrow_array) {
 ### Print out a wee message....
 print "Megalithic site $name is a $type\n";
}

You could also fetch the data via fetchrow_array() into an array variable instead of a list of scalar
variables by writing:

while (@row = $sth->fetchrow_array) {
 ### Print out a wee message
 print "Megalith site $row[0] is a $row[1]\n";
}

which is functionally identical.

The fundamentally important thing to remember is that the fields in the result set are in the order in
which you asked for the columns in the SQL statement. Therefore, in the example code listed above,
the name field was requested before the site_type field. This ensured that the first element of the
array or scalar list was the value of the name field, followed by the values of the site_type field.

The while loop keeps looping until the expression in parentheses evaluates to false. Naturally, we
want to stop looping when there's no more data to fetch, and the fetchrow_array() method arranges
that for us. It returns an empty list when there's no more data. Perl treats that as a false value, thus
stopping the loop.

An important point to remember about fetch loops is that the fetch methods return the same value for
both the no-more-data condition and an error condition. So an error during fetching will cause the
loop to exit as if all the data had been fetched. When not using RaiseError, it's therefore good
practice to check for the occurrence of errors immediately after every loop exits. The example below
demonstrates this.[3]

[3] Other fetch loop examples in the book assume that RaiseError is enabled.

Another way in which you can fetch the data from the database is to use the fetchrow_arrayref()
method, which returns a reference to an array rather than an array itself. This method has a
performance benefit over fetchrow_array(), as the returned data is not copied into a new array for
each row fetched. For example:

Fetch the rows of result data from the database
as an array ref....
while ($array_ref = $sth->fetchrow_arrayref) {
 ### Print out a wee message....
 print "Megalithic site $arrayref->[0] is a $array_ref->[1]\n";
}
die "Fetch failed due to $DBI::errstr" if $DBI::err;

An important thing to watch out for is that currently the same array reference is used for all rows
fetched from the database for the current statement handle. This is of utmost importance if you are
storing the row data somewhere for future reference. For example, the following code was written to
stash the returned megalith data in a persistent store for future reference after fetching:

The stash for rows...
my @stash;

Fetch the row references and stash 'em!
while ($array_ref = $sth->fetchrow_arrayref) {
 push @stash, $array_ref; # XXX WRONG!
}

Dump the stash contents!
foreach $array_ref (@stash) {
 print "Row: @$array_ref\n";
}

Something very strange happens here. All the rows printed out from the stash are identical instead of
being different. This is because you've stored the reference to the row data instead of the row data
itself, and since DBI reuses the same reference for each row, you don't quite get the results you expect.
Be sure to store a copy of the values that the array reference points to rather than the reference itself,
as this example shows:

Programming the Perl DBI

 page 82

The stash for rows...
my @stash;

Fetch the row references and stash 'em!
while ($array_ref = $sth->fetchrow_arrayref) {
 push @stash, [@$array_ref]; # Copy the array contents
}

Dump the stash contents!
foreach $array_ref (@stash) {
 print "Row: @$array_ref\n";
}

The fetchrow_arrayref() method is used especially in conjunction with column binding, which we
shall discuss later in this chapter.

The final cursor-based way to fetch the rows of your result set data from the database is to grab it as a
hash reference. This functionality is implemented via the fetchrow_hashref() method, which is
used in the same way as fetchrow_arrayref(). For example:

Fetch the current row into a hash reference
while ($hash_ref = $sth->fetchrow_hashref) {
 ...

The hash pointed to by the reference has the names of the fetched fields as the keys to the hash, and
the values of those fields are stored as the hash values. Thus, if we fetched the name and site_type
fields from the database, we could address the hash elements like this:

Fetch rows into a hash reference
while ($hash_ref = $sth->fetchrow_hashref) {
 print "Megalithic site $hash_ref->{name} is a $hash_ref->{site_type}\n";
}

There are, as you might expect, a few caveats to using this particular method. The most important
thing to watch out for is the actual name of the field that you've fetched. Some databases will do
strange things to the field name, such as convert it to all uppercase or all lowercase characters, which
could cause you to access the wrong hash key. You can avoid this problem by telling
fetchrow_hashref() the name of the attribute to use to supply the field names. That is, you could
use NAME as the default; NAME_uc to force field names to be uppercase; and NAME_lc to force them to
be lowercase. For example, a portable way to use hash references can be written as:

Fetch rows into a hash reference with lowercase field names
while ($hash_ref = $sth->fetchrow_hashref('NAME_lc') {
 print "Megalithic site $hash_ref->{name} is a $hash_ref->{site_type}\n";
}

Specifying NAME_uc or NAME_lc is recommended, and doesn't have any impact on performance.

There are a couple more caveats with fetchrow_hashref() that we should discuss. If your SELECT
statement uses a fully qualified field name, such as:

SELECT megaliths.id, ...

then most databases will still return only the string id as the name of the field. That's not usually a
problem but can trip you up if you have selected more than one field with the same name, for
example:

SELECT megaliths.id, media.id ...

Since the hash returned by fetchrow_hashref() can have only one id key, you can't get values for
both fields. You can't even be sure which of the two id field values you've got. Your only options here
are to either use a different method to fetch the rows or to alias the column names. Aliasing the
columns is similar to aliasing the table names, which we discussed in Chapter 3. You can put an alias
name after the column expression:

SELECT megaliths.id meg_id, media.id med_id ...

though some databases require the slightly more verbose form:

SELECT megaliths.id AS meg_id, media.id AS med_id ...

This alias technique is also very handy when selecting expressions such as:

SELECT megaliths.id + 1 ...

because databases differ in how they name columns containing expressions. Using aliases not only
makes it easier to refer to the columns but also makes your application more portable.

Programming the Perl DBI

 page 83

When discussing fetchrow_arrayref(), we pointed out that it currently returns the same array
reference for each row. Well, fetchrow_hashref() currently doesn't return the same hash reference
for each row but definitely will in a future release. (This change will also make it faster, as it's a little
slower than we'd like at the moment.)

There are other techniques for fetching data from the database, but these deal with either batch
fetching or atomic fetching and are discussed later in this chapter.

5.1.3.1 A quick way to fetch and print

The DBI supports a utility method called dump_results() for fetching all of the rows in a statement
handle's result set and printing them out. This method is invoked via a prepared and executed
statement handle, and proceeds to fetch and print all the rows in the result set from the database. As
each line is fetched, it is formatted according either to default rules or to rules specified by you in your
program. Once dump_results() has finished executing, it prints the number of rows fetched from
the database and any error message. It then returns with the number of rows fetched.

For example, to quickly display the results of a query, you can write:

$sth = $dbh->prepare("
 SELECT name, mapref, location
 FROM megaliths
 ");
$sth->execute();
$rows = $sth->dump_results();

which would display the following results:

'Balbirnie', 'NO 285 029', 'Balbirnie Park, Markinch, Fife'
'Castlerigg', 'NY 291 236', 'Near Keswick, Cumbria, England'
'Sunhoney', 'NJ 716 058', 'Near Insch, Aberdeenshire'
'Avebury', 'SU 103 700', 'Avebury, Wiltshire, England'
4 rows

You can customize the way in which this output is formatted by specifying the maximum length of
each field within the row, the characters separating each field within the row, and the characters
separating each row. You can also supply a Perl filehandle to which the output is written.

The default settings for these parameters are:

1: Maximum Field Length - 35
2: Line Separator - "\n"
3: Field Separator - ","
4: Output file handle - STDOUT

Therefore, to generate output with 80 character fields separated by colons to a file, you can write:

Prepare and execute the query
$sth = $dbh->prepare("
 SELECT name, location, mapref
 FROM megaliths
 ");
$sth->execute();

Open the output file
open FILE, ">results.lis" or die "Can't open results.lis: $!";

Dump the formatted results to the file
$rows = $sth->dump_results(80, '\n', ':', *FILE);

Close the output file
close FILE or die "Error closing result file: $!\n";

dump_results() internally uses the neat_list() utility function (described in the previous
chapter) for the actual formatting operation. Because of this, you should not use the output of
dump_results() for any data transfer or data processing activity. It's only meant for human
consumption.

Programming the Perl DBI

 page 84

5.1.4 Finishing a Data Fetch Early

When a statement handle for a SELECT statement has been successfully executed, it is said to be
active. There's even a boolean statement handle attribute called Active that you can read. Being
active simply means that there's something actively going on within the database server on behalf of
this handle.

When you call a fetch method again, after fetching the last row of data, the driver automatically
finishes whatever is actively going on within the database server on behalf of this execute() and
resets the Active attribute. Most drivers don't actually have to do anything in this particular case
because the server knows that the driver has fetched the last row. So the server has automatically
freed up any resources it was using to store that result set.

Since this finishing-up is done automatically when a fetch method returns an end-of-data status,
there's usually no need to be aware of it. However, there are two types of situations where it's
appropriate to take matters into your own hands by calling the finish() method on the statement
handle. (Keep in mind that finish() doesn't "finish" the statement handle itself - it finishes only the
current execution of it. You can still call execute() on the handle again later.)

The first situation is a little obscure and relates to being a good database-citizen. If the database
server is using a significant amount of temporary disk space to hold your result set, and you haven't
fetched all the records, and you won't be destroying or re-executing the statement handle soon, then
it's appropriate to call finish(). That way, the server can free up the temporary disk space it's
holding for your results.[4]

[4] A classic example is SELECT dialled_number, count(*) FROM calls WHERE subscriber
= ? GROUP BY dialled_number ORDER BY count(*) DESC when you only want to fetch the first
few rows out of the thousands that the database has stored in temporary buffer space and sorted for you.

The second type of situation is less obscure, mainly because the DBI nags you about it by issuing
warnings like this one from disconnect():

disconnect invalidates 1 active statement handle
(either destroy statement handles or call finish on them before disconnecting)

What's happening here is that the DBI is warning you that an active statement handle, that may still
have data to be fetched from it, is being invalidated (i.e., made unusable) by disconnecting from the
database.

Why does the DBI bother to warn you? The idea is to help you spot cases where you have not caught
and dealt with an error from a fetch method that has terminated a fetch loop before all the data has
been retrieved. Some row fetch errors, such as a transaction being aborted, mean that it's not possible
for more rows to be fetched from that statement handle. In those cases, the driver resets the Active
flag. For others though, such as a divide-by-zero in a column expression, or a long field value being
truncated, further rows can be fetched, so the driver leaves the Active flag set.

In practice, there are other situations apart from fetch loops that can leave you with active statement
handles both in the normal flow of events and due to exceptional circumstances.

The most humble is the common desire to fetch only n rows because you know there are only n rows
to be fetched. Most drivers can't tell that you've fetched the last row, so they can't reset the Active
flag. This is similar to the "good database-citizen" situation we discussed earlier. The following
example shows the finish() method being called after fetching the one and only row of interest:

sub select_one_row {
 my $sth = shift;
 $sth->execute(@_) or return;
 my @row = $sth->fetchrow_array();
 $sth->finish();
 return @row;
}

A more exceptional situation is often related to using RaiseError . When an exception is thrown,
such as when the DBI detects an error on a handle with RaiseError set, or when any other code calls
die() , then the flow of control within your script takes a sudden leap from where it was up to the
nearest enclosing eval block. It's quite possible that this process may leave handles with unfinished
data.

Programming the Perl DBI

 page 85

The warning from disconnect() , and most other DBI warnings, can be silenced for a given handle
by resetting the Warn attribute of that handle. This practice is generally frowned upon, but if you
must, you can.

Remember that calling finish() is never essential, does not destroy the Perl statement handle
object itself, is not required to avoid leaks, and does not stop execute() being called again on the
handle. All of those are common misconceptions, often perpetuated in other books. We'll discuss how
statement handles actually do get destroyed in the next section.

5.1.5 Deallocating Statement Handles

When a statement is prepared, the returned statement handle is associated with allocated memory
resources within both your Perl script and the database server you're connected to. When you no
longer need a statement handle, you should destroy it. That sounds drastic, but all it really means is
letting go.

Statement handles are actually represented by Perl objects and, as such, are subject to the
machinations of Perl's garbage collector. This implies that when no references to a statement handle
remain (for example, the handle variable has gone out of scope or has been overwritten with a new
value), Perl itself will destroy the object and reclaim the resources used by it.

Here's an example of a short-lived statement handle:

if ($fetch_new_data) {
 my $sth = $dbh->prepare(...);
 $sth->execute();
 $data = $sth->fetchall_arrayref();
}

Notice that we don't have to make any explicit steps to free or deallocate the statement handle. Perl is
doing that for us. The my $sth variable holds the only reference to that particular statement handle
object. When the $sth variable ceases to exist at the end of the block, the last reference is removed
and Perl's garbage collector swings into action. Similarly, when the script exits, all global variables
cease to exist and any objects they refer to are deallocated in the same way.

Here's a slightly different example:

Issue SQL statements to select sites by type
foreach ('Stone Circle', 'Monolith', 'Henge') {
 my $sth = $dbh->prepare(... $_ ...);
 $sth->execute();
 $sth->dump_results();
}

The second and subsequent itterations of the loop assign a new statement handle reference to the
$sth variable, which deletes the reference it previously held. So once again, since that was the only
reference to the handle and it's now been deleted, the handle gets deallocated.

You might have an application that prepares, uses, and discards thousands (or hundreds of
thousands) of statement handles throughout its lifetime. If the database resources for the statements
were not freed until the database connection was closed, you could easily exhaust the database
resources in a short amount of time.

In practice, the only time that you might overload the database is when you're storing the statement
handles in arrays or hashes. If you're not careful to delete or overwrite old values, then handles can
accumulate.

To keep track of how many statement handles are allocated for a database handle (for example, to
help spot leaks), you can use the Kids and ActiveKids database handle attributes. Both of these will
return integer counts. The first counts all statement handles; the second counts only those that have
their Active attribute set.

Programming the Perl DBI

 page 86

5.2 Executing Non-SELECT Statements

We discussed in Chapter 3 the various data manipulation techniques that you might wish to use on
your data. So far in this chapter, we have discussed the most commonly used data manipulation
operation, fetching. But what about inserting, deleting, and updating data?

These operations are treated somewhat differently than querying, as they do not use the notion of a
cursor to iterate through a result set. They simply affect rows of data stored within tables without
returning any rows to your programs. As such, the full prepare-execute-fetch-deallocate cycle is not as
appropriate for these operations. The fetch stage simply doesn't apply.

Since you're usually going to invoke these statements only once, it would be very tiresome to have to
call prepare() to get a statement handle and then call execute() on that statement handle to
actually invoke it, only to immediately discard that statement handle.

Fortunately, the DBI defines a shortcut for carrying out these operations - the do() method, invoked
against a valid database handle. Using do() is extremely easy. For example, if you wished to delete
some rows of data from the megaliths table, the following code is all that's required:

Assuming a valid database handle exists....
Delete the rows for Stonehenge!
$rows = $dbh->do("
 DELETE FROM megaliths
 WHERE name = 'Stonehenge'
 ");

To signify whether or not the SQL statement has been successful, a value is returned from the call
signifying either the number of rows affected by the SQL statement, or undef if an error occurred.

Some databases and some statements will not be able to return the number of rows affected by some
statements; -1 will be returned in these cases.

As a special case, a row count of zero is returned as the string 0E0, which is just a fancy mathematical
way of saying zero. Returning 0E0 instead of 0 means that the do() method still returns a value that
Perl interprets as true, even when no rows have been affected.[5] The do() method returns a false
value only on an error.

[5] Perl actually has special logic to allow the string 0 but true to be used for this kind of purpose. The DBI
doesn't use that because people are bound to write messages like print Deleted $rows rows\n and
Deleted 0E0 rows reads slightly better than Deleted 0 but true rows.

A good DBI method to remember is quote() - especially when building SQL statements, and
especially when inserting new data into the database via do(). This method correctly quotes values
as literal strings within your SQL statement before it is issued to the database. We discussed this
method in Chapter 4.

5.3 Binding Parameters to Statements

One topic we have mentioned in our discussion of the preparation of statement handles is bind values.
You may also have come across the phrases placeholders , parameters , and binding . What are these
things?

A bind value is a value that can be bound to a placeholder declared within an SQL statement. This is
similar to creating an on-the-fly SQL statement such as:

$sth = $dbh->prepare("
 SELECT name, location
 FROM megaliths
 WHERE name = " . $dbh->quote($siteName) . "
 ");

but instead of interpolating the generated value into the SQL statement, you specify a placeholder and
then bind the generated value to that.

Programming the Perl DBI

 page 87

For example:

$sth = $dbh->prepare("
 SELECT name, location
 FROM megaliths
 WHERE name = ?
 ");
$sth->bind_param(1, $siteName);

The bind_ param() method is the call that actually associates the supplied value with the given
placeholder. The underlying database will correctly parse the placeholder and reserve a space for it,
which is "filled in" when bind_ param() is called. It is important to remember that bind_ param(
) must be called before execute(); otherwise, the missing value will not have been filled in and the
statement execution will fail.

It's equally simple to specify multiple bind values within one statement, since bind_ param() takes
the index, starting from 1, of the parameter to bind the given value to. For example:

$sth = $dbh->prepare("
 SELECT name, location
 FROM megaliths
 WHERE name = ?
 AND mapref = ?
 AND type LIKE ?
 ");
$sth->bind_param(1, "Avebury");
$sth->bind_param(2, $mapreference);
$sth->bind_param(3, "%Stone Circle%");

You may have noticed that we haven't called the quote() method on the values. Bind values are
passed to the database separately from the SQL statement,[6] so there's no need to "wrap up" the value
in SQL quoting rules.

[6] This is not strictly true, since some drivers emulate placeholders by doing a textual replacement of the
placeholders with bind values before passing the SQL to the database. Such drivers use Perl's internal
information to guess whether each value needs quoting or not. Refer to the driver documentation for more
information.

Some database drivers can accept placeholders in the form of :1, :2, and so on, or even :name or
:somevalue, but this is not guaranteed to be portable between databases. The only guaranteed
portable placeholder form is a single question mark, ?. Of course, if the underlying database in
question doesn't support binding, the driver may fail to parse the statement completely.

5.3.1 Bind Values Versus Interpolated Statements

So, why use bind values? What's the real differences between these and interpolated on-the-fly SQL
statements?

On the face of it, there's no obvious difference. Interpolated statement creation uses Perl's string-
handling functionality to create a complete SQL statement to send to the database. The bind values
are sent to the database after the SQL statement, but just before it's executed. In both cases, the same
result is achieved.

The actual difference lies in the way that databases handle bind values, assuming that they do. For
example, most large database systems feature a data structure known as the " Shared SQL Cache," into
which SQL statements are stored along with additional related information such as a query execution
plan .

The general idea here is that if the statement already exists within the Shared SQL Cache, the database
doesn't need to reprocess that statement before returning a handle to the statement. It can simply
reuse the information stored in the cache. This process can increase performance quite dramatically
in cases where the same SQL is executed over and over again.[7]

[7] I've known a case where the database spent over a minute just trying to work out a "good enough" query
execution plan for a complex SQL query. In cases like this, reuse of the processed statement handle makes for a
very large improvement in performance.

Programming the Perl DBI

 page 88

For example, say we wished to fetch the general information for 100 megalithic sites, using the name
as the search field. We can write the following SQL to do so:

SELECT name, location, mapref
FROM megaliths
WHERE name = <search_term>

By using interpolated SQL, we would actually issue 100 different SQL statements to the database.
Even though they are almost identical, they are different enough for the database to re-parse the
statement and not use the cached information. By using a bind value, the same piece of SQL and the
same "execution plan" will be reused over and over again, even though a different bind value is
supplied for each query.

Therefore, for databases that support it, using bind values with prepared statement handles can quite
dramatically increase the performance of your applications and the efficiency of your database. This is
especially significant when trying to insert many records.

That said, there are good reasons to use interpolated SQL statements instead of bind values. One of
these reasons could be simply that your database doesn't support bind values! A more complex reason
is that your database may have restrictive rules about what parts of an SQL statement may use
placeholders.

In the examples listed above, we've illustrated the use of bind values to supply conditions for the
query. For the sake of badness, say we wanted to iterate through a list of database tables and return
the row count from each one. The following piece of code illustrates the idea using an interpolated
SQL statement:

foreach $tableName (qw(megaliths, media, site_types)) {
 $sth = $dbh->prepare("
 SELECT count(*)
 FROM $tableName
 ");
 $sth->execute();
 my $count = $sth->fetchrow_array();
 print "Table $tableName has $count rows\n";
}

By using an interpolated statement, this code would actually execute correctly and produce the desired
results, albeit at the cost of parsing and executing four different SQL statements within the database.
We could rewrite the code to use bind values, which would be more efficient (theoretically):

$sth = $dbh->prepare("
 SELECT count(*)
 FROM ?
 ");
 $sth->bind_param(1, $tableName);
 ...

On most databases, this statement would actually fail to parse at the prepare() call, because
placeholders can generally be used only for literal values. This is because the database needs enough
information to create the query execution plan, and it can't do that with incomplete information (e.g.,
if it doesn't know the name of the table).

Additionally, the following code will fail, since you are binding more than just literal values:

$sth = $dbh->prepare("
 SELECT count(*)
 FROM megaliths
 ?
 ");
 $sth->bind_param(1, "WHERE name = 'Avebury'");
 ...

Of course, your driver might just support this sort of thing, but don't rely on it working on other
database systems!

Programming the Perl DBI

 page 89

5.3.2 Bind Values and Data Typing

Perl is a loosely typed language, in that you have strings and you have numbers. Numbers can be
strings and strings can, on occasion, be numbers. You can perform arithmetic on strings. It can all be
very confusing for us, so you can imagine how the driver feels when confronted with bind values.

To help the driver work out what sort of data is being supplied in a bind value, you can supply an
additional argument that specifies the datatype. For example, the following code will bind the
appropriately typed bind values to the statement for execution in the database:

use DBI qw(:sql_types);

$sth = $dbh->prepare("
 SELECT meg.name, meg.location, st.site_type, meg.mapref
 FROM megaliths meg, site_types st
 WHERE name = ?
 AND id = ?
 AND mapref = ?
 AND meg.site_type_id = st.id
 ");
No need for a datatype for this value. It's a string.
$sth->bind_param(1, "Avebury");

This one is obviously a number, so no type again
$sth->bind_param(2, 21);

However, this one is a string but looks like a number
$sth->bind_param(3, 123500, { TYPE => SQL_VARCHAR });

Alternative shorthand form of the previous statement
$sth->bind_param(3, 123500, SQL_VARCHAR);

All placeholders now have values bound, so we can execute
$sth->execute();

The use DBI qw(:sql_types); statement asks for the standard SQL types to be imported as names,
actually subroutines, that return the corresponding standard SQL integer type value. SQL_VARCHAR,
for example, returns 12. If you don't want to import the SQL type names, you can add a DBI:: prefix,
so that SQL_VARCHAR would be DBI::SQL_VARCHAR. However, that's not recommended because you
lose the significant benefits of compile-time checking by use strict;.

If a type is specified, the driver should take that as a strong hint about what to do. But it is just a hint.
Some drivers don't pay any attention to the specified type. Of those that do, most only use it to
differentiate between strings, numbers, and LONG/LOB types. This is a relatively new area for the
DBI and drivers, and one that's advancing slowly.

In general, databases tend to support a far wider range of datatypes than numbers and strings. Date
types are very common and have widely varying formats. The DBI currently copes with these quite
happily, by ducking the issue and expecting you to supply strings containing the data, formatted in the
form expected by the database for the appropriate datatype.[8]

[8] Future versions may acquire ODBC-style escape functions.

5.3.3 Binding Input and Output Parameters

There is a counterpart method to the bind_ param() method called bind_ param_inout() , which
can be used to sneakily return values from the statement. Typically, this is only useful with stored
procedures that take input parameters and return values. Furthermore, few databases, and even
fewer drivers, support this functionality, so beware.

bind_ param_inout() behaves in a similar way to bind_ param(), but uses a reference to a bind
value instead of the value itself. This allows the bind value to be updated with the return value from
the statement.

An additional argument stating the maximum length of the value to be returned must also be
specified. If the returned value exceeds this value, the execute() call will fail. Therefore, if you
aren't sure how large the return value might be, you should be pessimistic and supply a large value for
this parameter. The only cost of doing so is using more memory than you need to.

Programming the Perl DBI

 page 90

A final, optional, argument that can be supplied is that of the datatype of the bind value. This
behavior is identical to datatype specification in bind_ param() . See the previous section for more
details on how to supply values for this argument.

An Oracle-specific example showing how bind_ param_inout() works revolves around the
following stored procedure, which returns the nearest integer values to a given input value:

-- Example stored procedure written in Oracle PL/SQL
PROCEDURE ceiling_floor (value IN NUMBER, c OUT NUMBER, f OUT NUMBER) IS
BEGIN
 c := CEIL(value);
 f := FLOOR(value);
END;

The DBI code to get these return values out of this procedure can be written as follows:

The variables to be populated as return values...
my $ceiling;
my $floor;

$sth = $dbh->prepare("BEGIN ceiling_floor(?, ?, ?); END;");
$sth->bind_param(1, 42.3);
$sth->bind_param_inout(2, \$ceiling, 50);
$sth->bind_param_inout(3, \$floor, 50);
$sth->execute();

print "Stored procedure returned $ceiling, $floor\n";

You can use both bind_ param() and bind_ param_inout() on the same statement handle quite
happily. Of course, if you use bind_ param() when a return value is expected, that return value will
be lost.

There is one quite subtle difference between bind_ param() and bind_ param_inout() that's
worth pointing out. When you call bind_ param(), the bind value you supply is copied and can't be
changed without calling bind_ param() again. However, when you call bind_ param_inout(), it
is the reference that's copied. The actual value that the reference points to is not read until execute(
) is called.

5.3.4 Binding Values Without bind_ param()

Calling bind_ param() for each placeholder can be rather long-winded and tedious when you have
many placeholders, so the DBI provides a simpler way to do it via the execute() method. When you
call execute(), you can simply give it a list of values, and execute() will call bind_ param() on
each one for you.

Furthermore, the do() method described above, and the selectrow_array() and
selectall_arrayref() methods, which we'll discuss shortly, all call execute() one way or
another, and also accept a list of bind values.

The following code illustrates passing a bind value to the execute() method:

$sth = $dbh->prepare("
 SELECT name, location, mapref
 FROM megaliths
 WHERE name = ? OR description LIKE ?
 ");
$sth->execute("Avebury", "%largest stone circle%");
...

When specifying bind values in this manner, explicit data typing of the supplied values is not possible.
In some cases, the underlying driver will correctly guess the type, but in most cases all values are
passed to the database as SQL_VARCHAR values. However, if you have previously called bind_ param(
) or bind_ param_inout() for some or all placeholders with an explicitly specified datatype, that
datatype will be used instead. For example:

$sth->prepare("
 SELECT name, location, mapref
 FROM megaliths
 WHERE id = ?
 ");
$sth->bind_param(1, 42, SQL_INTEGER);
$sth->execute(123456);
...

Programming the Perl DBI

 page 91

will result in the value of 123456 being supplied to the database as the bind value with the type of
SQL_INTEGER instead of SQL_VARCHAR.

5.4 Binding Output Columns

In the examples of fetching data that we've seen so far, a fetch() method has been called that returns
values we've copied into Perl variables. For example:

while(($foo, $bar) = $sth->fetchrow_array) { ... }

This syntax is fine, but it can get messy if many fields are being returned. It also involves extra
copying of data, which can get expensive if many large strings are being fetched.

DBI supports a feature that simplifies the fetching of data and avoids the extra copying. This has the
desired effect of making fetches very fast. It's known as binding columns, and it works by nominating
a Perl variable to be used directly for storing values of a particular column as they are fetched. This
has the basic effect that when data is fetched from the database via a fetch() method,[9] the Perl
variables associated with each column are automatically updated with the fetched values.

[9] fetch() is just a handy short alias for fetchrow_arrayref().

The best way to illustrate this process is by an example:

Perl variables to store the field data in
my ($name, $location, $type);

Prepare and execute the SQL statement
$sth = $dbh->prepare("
 SELECT meg.name, meg.location, st.site_type
 FROM megaliths meg, site_types st
 WHERE meg.site_type_id = st.id
 ");
$sth->execute();

Associate Perl variables with each output column
$sth->bind_col(1, \$name);
$sth->bind_col(2, \$location);
$sth->bind_col(3, \$type);

Fetch the data from the result set
while ($sth->fetch) {
 print "$name is a $type located in $location\n";
}

The method we have used to explicitly associate the Perl variables to the output columns is bind_col(
) , which takes the index of the column to associate, starting from 1, and a reference to the Perl
variable to associate it with. Thus, when the fetch() call completes, the associated Perl variables will
be automatically updated without having to explicitly assign the fetched values. This is an extremely
efficient way of fetching data from the database, both from a programming perspective and also from
a performance point of view. bind_col() uses references to Perl variables, and, as such, there is no
additional object or memory allocation when using bound output columns.

To ensure maximum portability, bind_col() should be called against an executed statement handle.
For example, if your database does not return any real information from the prepare() call,
bind_col() will not have sufficient information to succesfully associate the output columns with the
Perl variables. This might lead to extremely peculiar results.

Using bind_col() to explicitly bind each column individually can get a bit tiresome, especially if
many output columns are used. Fortunately, DBI defines an additional method called bind_columns(
) that can be used to quickly specify column bindings for multiple columns in one call.

bind_columns() works in an almost identical way to bind_col() except that instead of explicitly
specifying the column index to bind a Perl variable to, you simply specify the Perl variables and the
column assignation occurs automatically. For example, the code from earlier can be rewritten in the
following way to use bind_columns():

Perl variables to store the field data in
my ($name, $location, $type);

Programming the Perl DBI

 page 92

Prepare and execute the SQL statement
$sth = $dbh->prepare("
 SELECT meg.name, meg.location, st.site_type
 FROM megaliths meg, site_types st
 WHERE meg.site_type_id = st.id
 ");
$sth->execute();

Associate Perl variables with each output column
$sth->bind_columns(undef, \$name, \$location, \$type);

Fetch the data from the result set
while ($sth->fetch) {
 print "$name is a $type located in $location\n";
}

It is important to know that the number of columns specified in the SQL statement and the number of
Perl variables specified in bind_columns() must match exactly. You cannot pick and choose which
columns to fetch the data from as you can with bind_col().[10]

[10] The first argument to bind_columns() is an undef, due to historical reasons. It's no longer
required if you are using DBI 1.08 or later.

Since bind_columns() uses bind_col() internally, the rules for using these two methods are the
same.

Finally, we should mention that bind values specified with a SQL statement are completely unrelated
to the ability to bind Perl variables to output columns of an SQL statement. They are separate
operations. Bind values operate at a database input level, whereas output column bindings operate
purely at a Perl output level.

5.5 do() Versus prepare()

As we mentioned in a previous section, the do() method supplied by the DBI makes executing non-
SELECT statements much simpler than repeatedly preparing and executing statements. This is
achieved by simply wrapping the prepare and execute stages into one composite method.

There is a drawback to doing this, however: performance. If you invoked do() repeatedly to insert a
huge number of rows into a table, you could be preparing a statement handle many times more than is
required, especially if the statement contained placeholder variables. For example, the following
script inserts some rows into the megaliths table:

Iterate through the various bits of data...
foreach $name (qw(Stonehenge Avebury Castlerigg Sunhoney)) {
 ### ... and insert them into the table
 $dbh->do("INSERT INTO megaliths (name) VALUES (?)",
 undef, $name);
}

Internally, what happens is that for each row being inserted, a new statement handle is created, and
the statement is prepared, executed, and finally destroyed. Therefore, this loop has four prepare calls,
four executes, and four destroys. However, since we're using a bind value for each loop, the database
will likely need to parse the statement only once and use that statement again from the Shared SQL
Cache. Therefore, in essence, our program is "wasting" three prepares of that statement.

This is a rather inefficient process. In this case, it would be better to hand- prepare and re-execute the
statement handle for each iteration of the loop. For example:

Setup the statement for repeated execution
$sth = $dbh->prepare("INSERT INTO megaliths (name) VALUES (?)");

Iterate through the various bits of data...
foreach $name (qw(Stonehenge Avebury Castlerigg Sunhoney)) {
 ### ... and insert them into the table
 $sth->execute($name);
}

This code prepares the statement only once and executes it four times, once per row to be inserted.
This is slightly less convenient to write, but typically significantly faster to execute.

Programming the Perl DBI

 page 93

While we're on the subject of insertion speed, it's important to point out that there may be a faster
way. Using a Perl script with the DBI is unlikely ever to be as fast for bulk loading of records as the
database vendors' own specially optimized tools such as Oracle's SQL*Loader or Sybase's BCP. But
don't lose heart; Perl is the ideal tool to create and manipulate the data files that these loaders use.

5.6 Atomic and Batch Fetching

Atomic and batch fetching are two slightly more interesting ways of getting data out of your database.
The two procedures are somewhat related to each other, in that they potentially make life a lot easier
for you, but they do it in radically different ways.

5.6.1 Atomic Fetching

When you want to fetch only one row, atomic fetching allows you to compress the four-stage data
fetching cycle (as described earlier) into a single method. The two methods you can use for atomic
fetching are selectrow_array() and selectrow_arrayref() . They behave in a similar fashion to
their row-oriented cousins, fetchrow_array() and fetchrow_arrayref(), the major differences
being that the two atomic methods do not require a prepared and executed statement handle to work,
and, more importantly, that they will return only one row of data.

Because neither method requires a statement handle to be used, they are actually invoked via a
database handle. For example, to select the name and type fields from any arbitrary row in our
megaliths database, we can write the following code:

Assuming a valid $dbh exists...
($name, $mapref) =
 $dbh->selectrow_array("SELECT name, mapref
 FROM megaliths");
print "Megalith $name is located at $mapref\n";

This is far more convenient than using the prepare() and execute() then the fetchrow_array()
or fetchrow_arrayref() methods for single rows.

Finally, bind values can be supplied, which again helps with the reuse of database resources.

5.6.2 Batch Fetching

Batch fetching is the ability to fetch the entire result set from an SQL query in one call, as opposed to
iterating through the result set using row-oriented methods such as fetchrow_array(), etc.

The DBI defines several methods for this purpose, including fetchall_arrayref() and
selectall_arrayref() , which basically retrieve the entire result set into a Perl data structure for
you to manipulate. They are invoked against a prepared and executed statement handle.

fetchall_arrayref() operates in three different modes depending on what arguments have been
passed to it. It can be called with no arguments, with a reference to an array slice as an argument, and
with a reference to a hash slice as an argument. We'll discuss these modes in the following sections.

5.6.2.1 No arguments

When fetchall_arrayref() is invoked with no arguments, it returns a reference to an array
containing references to each row in the result set. Each of those references refers to an array
containing the field values for that row. Figure 5.4 illustrates the data structure returned.

Figure 5.4, fetchall_arrayref() data structure

Programming the Perl DBI

 page 94

This looks pretty convoluted, but it is, in fact, extremely simple to access the data stored within the
data structure. For example, the following code shows how to dereference the data structure returned
by fetchall_arrayref() when run with no arguments:

#!/usr/bin/perl -w

ch05/fetchall_arrayref/ex1: Complete example that connects to a database,
executes a SQL statement, then fetches all the
data rows out into a data structure. This
structure is then traversed and printed.

use DBI;

The database handle
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 RaiseError => 1
});

The statement handle
my $sth = $dbh->prepare(" SELECT name, location, mapref FROM megaliths ");

Execute the statement
$sth->execute();

Fetch all the data into a Perl data structure
my $array_ref = $sth->fetchall_arrayref();

Traverse the data structure and dump each piece of data out

For each row in the returned array reference ...
foreach my $row (@$array_ref) {
 ### Split the row up and print each field ...
 my ($name, $type, $location) = @$row;
 print "\tMegalithic site $name, found in $location, is a $type\n";
}

exit;

Therefore, if you want to fetch all of the result set from your database, fetchall_arrayref() is an
efficient and easy way of doing it. This is doubly true if you were planning on building an in-memory
data structure containing the returned rows for post-processing. Instead of doing it yourself, you can
simply use what fetchall_arrayref() returned instead.

5.6.2.2 Slice array reference argument

It is also possible to use fetchall_arrayref() to return a data structure containing only certain
columns from each row returned in the result set. For example, we might issue an SQL statement
selecting the name, site_type, location, and mapref fields, but only wish to build an in-memory
data structure for the rows name and location.

This cannot be done by the standard no-argument version of fetchall_arrayref(), but is easily
achieved by specifying an array slice as an argument to fetchall_arrayref().

Therefore, if our original SQL statement was:

SELECT meg.name, st.site_type, meg.location, meg.mapref
FROM megaliths meg, site_types st
WHERE meg.site_type_id = st.id

then the array indices for each returned row would map as follows:

name -> 0
site_type -> 1
location -> 2
mapref -> 3

By knowing these array indices for the columns, we can simply write:

Retrieve the name and location fields...
$array_ref = $sth->fetchall_arrayref([0, 2]);

The array indices are specified in the form standard to Perl itself, so you can quite easily use ranges
and negative indices for special cases.

Programming the Perl DBI

 page 95

For example:

Retrieve the second last and last columns
$array_ref = $sth->fetchall_arrayref([-2, -1]);

Fetch the first to third columns
$array_ref = $sth->fetchall_arrayref([0 .. 2]);

The actual data structure created when fetchall_arrayref() is used like this is identical in form to
the structure created by fetchall_arrayref() when invoked with no arguments.

5.6.2.3 Slice hash reference argument

The final way that fetchall_arrayref() can be used is to selectively store columns into an array
reference by passing a hash reference argument containing the columns to store. This is similar to the
fetchrow_hashref() method but returns a reference to an array containing hash references for all
rows in the result set.

If we wished to selectively store the name and location columns from an SQL statement declared as:

SELECT name, location, mapref
FROM megaliths

we can instruct fetchall_arrayref() to store the appropriate fields by passing an anonymous hash
as an argument. This hash should be initialized to contain the names of the columns to store.

For example, storing the name and location columns can be written easily as:

Store the name and location columns
$array_ref = $sth->fetchall_arrayref({ name => 1, location => 1 });

The data structure created by fetchall_arrayref() running in this mode is a reference to an array
of hash references, with each hash reference keyed by the column names and populated with the
column values for the row in question. Traversing this data structure is quite straightforward. The
following code illustrates a technique to do it:

#!/usr/bin/perl -w

ch05/fetchall_arrayref/ex3: Complete example that connects to a database,
executes a SQL statement, then fetches all the
data rows out into a data structure. This
structure is then traversed and printed.

use DBI;

The database handle
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 RaiseError => 1,
});

The statement handle
my $sth = $dbh->prepare(" SELECT name, location, mapref FROM megaliths ");

Execute the statement
$sth->execute();

Fetch all the data into an array reference of hash references!
my $array_ref = $sth->fetchall_arrayref({ name => 1, location => 1 });

Traverse the data structure and dump each piece of data out

For each row in the returned array reference.....
foreach my $row (@$array_ref) {
 ### Get the appropriate fields out the hashref and print...
 print "\tMegalithic site $row->{name}, found in $row->{location}\n";
}

exit;

Programming the Perl DBI

 page 96

There are a couple of important points to be noted with this form of result set fetching:

• If you have issued a SQL statement with multiple columns with the same name, the returned
hash references will have only a single entry for all the columns. That is, earlier entries will be
overwritten and lost. The same condition applies to fetchrow_hashref(), since this
method is what fetchall_arrayref() calls internally when given a hash slice.

An example piece of SQL that would cause problems is:

SELECT m.name, c.name
FROM megaliths m, countries c
WHERE m.country_id = c.id

In this case, the returned hash reference for the rows would contain either the country column
values, or the megalith column values, but not both.

• The second point regarding this use of fetchall_arrayref() is that the column names
stored in the returned hash are always lowercase. The case that the database uses and the
case used in the parameter to fetchall_arrayref() are ignored.

To sum up, batch value fetching is a convenient way to retrieve all the data in the result set into Perl
data structures for future processing. Do keep in mind, though, that large results sets will eat large
amounts of memory. If you try to fetch too large a data set, you will run out of memory before the
method returns to you. Your system administrator may not be amused.

Programming the Perl DBI

 page 97

Chapter 6. Advanced DBI
This chapter covers some of the more advanced topics of using DBI, including the ability to alter the
way in which the database and statement handles function on-the-fly, as well as how to use explicit
transaction handling within your database. These topics are not strictly necessary for basic DBI usage,
but they contain useful information that will allows you to maximize the potential of your DBI
programs.

6.1 Handle Attributes and Metadata

In addition to methods associated with database and statement handles, the DBI also defines
attributes for these handles that allow the developer to examine or fine-tune the environment in
which the handles operate. Some attributes are unique to either database or statement handles, and
some are common to both.

The attribute values of a handle can be thought of as a hash of key/value pairs, and can be
manipulated in the same way as you would manipulate an ordinary hash via a reference. Here are a
few examples using the AutoCommit attribute:

Set the database handle attribute "AutoCommit" to 1 (e.g., on)
$dbh->{AutoCommit} = 1;

Fetch the current value of "AutoCommit" from the handle
$foo = $dbh->{AutoCommit};

Fetching attributes as hash values, rather than as method calls, has the added bonus that the hash
lookup can be interpolated inside double-quoted strings:

Print the current value of "AutoCommit" from the handle
print "AutoCommit: $dbh->{AutoCommit}\n";

With AutoCommit enabled, that would print:

AutoCommit: 1

as you might expect. Actually, since AutoCommit is a boolean attribute, it would print 1 after any
value that Perl considers true had been assigned to it.

After a false value was assigned, you may reasonably expect a 0 to be printed, but you might be
surprised to see:

AutoCommit:

That's because Perl uses an internal representation of false that is both a numeric zero and an empty
string at the same time. When used in a string context, the empty string is printed. In a numeric
context, the zero is used.

When getting or setting an attribute value, the DBI automatically checks that the attribute name you
are using and generates an error if it's not known.[1] Similarly, any attempts to set a read-only attribute
will result in an error. Be aware, however, that these errors are reported using die() regardless of the
setting of the RaiseError attribute, and are thus potentially fatal. That's another good reason to use
eval {...} blocks, as we discussed in Chapter 4.

[1] Driver-specific attributes, e.g., those that start with a lowercase letter, are a special case. Any get or set of a
driver-specific attribute that hasn't been handled by the driver is handled by the DBI without error. That makes
life easier for driver developers. On the other hand, you need to take extra care with the spelling.

A statement handle is known as a child, or kid, of its parent database handle. Similarly, database
handles are themselves children of their parent driver handle. Child handles inherit some attribute
values from parent handles.

Programming the Perl DBI

 page 98

The rules for this behavior are defined in a common-sense manner and are as follows:

• A statement handle will inherit (copy) the current values of certain attributes from its parent
database handle.

• If that new statement handle then has its attribute values altered, this affects neither the
parent database handle nor any other statement handles. The changes are contained entirely
within the altered statement handle.

• Changes to attributes within a database handle do not affect any of its existing child statement
handles. The database handle attribute changes only affect future statement handles created
from that database handle.

The DBI specification in Appendix A should be consulted for complete information on which
attributes are inherited.

6.1.1 Passing Attributes to DBI Methods

Handles carry with them their set of current attribute values that methods often use to control how
they behave. Many methods are defined to also accept an optional reference to a hash of attribute
values.

This is primarily an escape mechanism for driver developers and their users, and so does not always
work in the way you might think. For example, you might expect this code:

$dbh->{RaiseError} = 1;
...
$dbh->do($sql_statement, undef, { RaiseError => 0 }); # WRONG

to turn off RaiseError for the do() method call. But it doesn't! Attribute parameters are ignored by
the DBI on all database handle and statement handle method calls. You don't even get a warning that
the attribute has been ignored.

If they're ignored, then what's the point in having them? Well, the DBI itself ignores them, but the DBD
driver that processed the method call may not. Or then again, it may! Attribute hash parameters to
methods are hints to the driver and typically only usefully hold driver-specific attributes.[2]

[2] It's possible that a future version of the DBI may look for certain non-driver-specific attributes, such as
RaiseError.

That doesn't apply to the DBI->connect() method call because it's not a driver method, it's a DBI
method. Its attribute hash parameter, \%attr , is used to set the attributes of the newly created
database handle. We gave some examples using RaiseError in Chapter 4, and we give more in the
following section.

6.1.2 Connecting with Attributes

One of Perl's many catch phrases is "there's more than one way to do it," and the DBI is no exception.
In addition to being able to set attributes on a handle by simple assignment and by the attribute
parameter of the connect() method (as shown earlier), the DBI provides another way.

You can include attribute assignments in the data source name parameter of the connect() method.
For example:

$dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 RaiseError => 1
});

can also be expressed as:

$dbh = DBI->connect("dbi:Oracle(RaiseError=>1):archaeo", '', '');

You can't have any space before the opening parenthesis or after the closing one before the colon, but
you can have spaces within the parentheses. You can also use just = instead of => if you prefer. If you
want to set more than one attribute then use a comma to separate each one.

Programming the Perl DBI

 page 99

The attribute settings in the data source name parameter take precedence over those in the attribute
parameter. This can be very handy when you want to override a hardcoded attribute setting, such as
PrintError. For example, this code will leave PrintError on:

$dbh = DBI->connect("dbi:Oracle(PrintError=>1):archaeo", '', '', {
 PrintError => 0
});

But what's the point of just hardcoding the attribute setting in two different places? This example is
not very useful as it stands, but we could let the application accept the data source name parameter
from the command line as an option, or leave it empty and use the DBI_DSN environment variable.
That makes the application much more flexible.

6.1.3 The Significance of Case

You may have noticed that some attribute names use all uppercase letters, like NUM_OF_FIELDS, while
others use mixed case letters, like RaiseError. If you've seen any descriptions of individual database
drivers you may have also noticed some attribute names that use all lowercase letters, like ado_conn
and ora_type.

There is a serious method behind the apparently inconsistent madness. The letter case used for
attribute names is significant and plays an important part in the portability of DBI scripts and the
extensibility of the DBI itself. The letter case of the attribute name is used to signify who defined the
meaning of that name and its values, as follows:

UPPER_CASE

Attribute names that use only uppercase letters and underscores are defined by external
standards, such as ISO SQL or ODBC.

The statement handle TYPE attribute is a good example here. It's an uppercase attribute
because the values it returns are the standard portable datatype numbers defined by ISO SQL
and ODBC, and not the nonportable native database datatype numbers.

MixedCase

Attribute names that start with an uppercase letter but include lowercase letters are defined
by the DBI specification.

lower_case

Attribute names that start with a lowercase letters are defined by individual database drivers.
These are known as driver-specific attributes.

Because the meanings are assigned by driver authors without any central control, it's
important that two driver authors don't pick the same name for attributes with different
behaviors. To ensure this, driver-specific attributes all begin with a prefix that identifies the
particular driver. For example, DBD::ADO attributes all begin with ado_ , DBD::Informix
attributes begin with ix_, etc.

For example, most drivers provide a driver-specific version of the statement handle TYPE
attribute that returns the native database datatype numbers instead of the standard ones.
DBD::Oracle calls it ora_type, DBD::Ingres calls it ing_ingtype, and DBD::mysql calls it
mysql_type. The prefix also makes it easier to find driver-specific code in applications when
maintaining them.

Driver-specific attributes play an important role in the DBI. They are an escape valve. They
let drivers expose more of the special functionality and information that they have available
without having to fit it inside the fairly narrow DBI straitjacket.

Programming the Perl DBI

 page 100

6.1.4 Common Attributes

Common attributes are those that can be queried and set within both database and statement handles.
This section discusses some of the most commonly used attributes, including:

PrintError

The PrintError attribute, when enabled, will cause the DBI to issue a warning when a DBI
method returns with an error status. This functionality is extremely useful for rapid
debugging of your programs, as you may not have written explicit return value checking code
after every DBI statement.

The printed error string lists the class of the database driver through which the DBI method
was dispatched, the method that caused the error to occur, and the value of $DBI::errstr.
The following message was generated when the prepare() method did not successfully
execute against an Oracle7 database using the DBD::Oracle driver:

DBD::Oracle::db prepare failed: ORA-00904:
 invalid column name (DBD: error possibly near <*> indicator at char 8 in
'
 SELECT <*>nname, location, mapref
 FROM megaliths
 ') at /opt/WWW/apache/cgi-bin/megalith/megadump line 79.

PrintError uses the standard Perl function called warn() to render the error message.
Therefore, you could use a $SIG{_ _WARN_ _} error handler or an error handling module
such as CGI::ErrorWrap to re-route the error messages from PrintError.

This attribute is enabled by default.

RaiseError

The RaiseError attribute is similar in style to its PrintError cousin, but differs slightly in
operation. Whereas PrintError simply displayed a message when the DBI detected an error
had occurred, RaiseError usually kills the program stone-dead.

RaiseError uses the standard Perl function die() to throw the exception and exit. This
means you can use eval to catch the exception and deal with it yourself.[3] This is an important
and valuable error handling strategy for larger applications and is highly recommended when
using transactions.

[3] It also allows you to define a $SIG{_ _DIE_ _} handler, which handles the die() call
instead of the Perl default behavior.

The format of the error message printed by RaiseError is identical to that of PrintError. If
both PrintError and RaiseError are defined, PrintError will be skipped if no $SIG{_
DIE _} handler is installed.[4]

[4] A future release may also skip PrintError if RaiseError is set and the current code is
executing within an eval.

RaiseError is disabled by default.

ChopBlanks

This attribute regulates the behavior of the underlying database driver regarding the CHAR
datatype in fixed-width and blank-padded character columns. By setting this attribute to a
true value, any CHAR columns returned by a SELECT statement will have any trailing blanks
chopped off. No other datatypes are affected even when trailing blanks are present.

Setting ChopBlanks usually occurs when you simply want to remove trailing spaces from data
without having to write some explicit truncation code either in the original SQL statement or
in Perl.

This can be a very handy mechanism when dealing with old databases that tend to use fixed-
width, blank-padded CHAR types more often than VARCHAR types. The blank padding added by
the database tends to get in the way.

This attribute is currently disabled by default.

Programming the Perl DBI

 page 101

LongReadLen and LongTruncOk

Many databases support BLOB (binary large object), LONG, or similar datatypes for holding
very long strings or large amounts of binary data in a single field. Some databases support
variable-length long values over 2,000,000,000 bytes in length.

Since values of that size can't usually be held in memory, and because databases can't usually
know in advance the length of the longest LONG that will be returned from a SELECT
statement (unlike other datatypes), some special handling is required. In this situation, the
value of the LongReadLen attribute is used to determine how much buffer space to allocate
when fetching such fields.

LongReadLen typically defaults to or a small value like 80, which means that little or no LONG
data will be fetched at all. If you plan to fetch any LONG datatypes, you should set
LongReadLen within your application to slightly more than the length of the longest long
column you expect to fetch. Setting it too high just wastes memory.[5]

[5] Using a value which is a power of two, such as 64 KB, 512 KB, 8 MB etc., can actually cause twice
that amount to be taken on systems that have poor memory allocators. That's because a few extra
bytes are needed for housekeeping information and, because the dumb allocator only works with
powers of two, it has to double the allocation to make room for it.

The LongTruncOk attribute is used to determine how to behave if a fetched value turns out to
be larger than the buffer size defined by LongReadLen. For example, if LongTruncOk is set to
a true value, (e.g., "truncation is okay") the over-long value will be silently truncated to the
length specified by LongReadLen, without an error.

On the other hand, if LongTruncOk is false then fetching a LONG data value larger than
LongReadLen is treated as an error. If RaiseError is not enabled then the fetch call retrieving
the data will appear to fail in the usual way, which looks like the end of data has been reached.

LongTruncOk is set to false by default, which causes overly long data fetches to fail. Be sure to
enable RaiseError or check for errors after your fetch loops.

We'll discuss handling LONG data in more detail in later in this chapter.

The DBI specification in Appendix A provides a complete list of all the common attributes defined
within the DBI.

6.1.5 Database Handle Attributes

Database handle attributes are specific to database handles and are not valid for other types of
handles. They include:

AutoCommit

The AutoCommit database handle attribute can be used to allow your programs to use fine-
grained transaction behavior (as opposed to the default "commit everything" behavior).

The functionality of this attribute is closely tied into the way in which DBI defines transaction
control. Therefore, a complete description of this parameter can be found later in this
chapter.

Name

The Name database handle attribute holds the "name" of the database. Usually the same as the
"dbi:DriverName:..." string used to connect to the database, but with the leading
"dbi:DriverName:" removed.

The DBI Specification in Appendix A provides a complete list of all the database handle attributes
defined within the DBI. We'll discuss statement handle attributes in a moment, but first we'll explore
database metadata.

Programming the Perl DBI

 page 102

6.1.6 Database Metadata

Database metadata is high-level information, or "data about data," stored within a database describing
that database. This information is extremely useful for dynamically building SQL statements or even
generating dynamic views of the database contents.

The metadata stored by a database, and the way in which it's stored, varies widely between different
database systems. Most major systems provide a system catalog , consisting of a set of tables and
views that can be queried to get information about all the entities in the database, including tables and
views. There are two common problems with trying to query the system catalog directly: they can be
complex and difficult to query, and the queries are not portable to other types of database.

The DBI should provide a range of handy methods to access this information in a portable way, and
one day it will. However, currently it only provides two methods that can be executed against a valid
database handle to extract entity metadata from the database.

The first of these methods is called tables() , and simply returns an array containing the names of
tables and views within the database defined by the relevant database handle. The following code
illustrates the use of this method:

Connect to the database
my $dbh = DBI->connect('dbi:Oracle:archaeo', 'stones', 'stones');

Get a list of tables and views
my @tables = $dbh->tables();

Print 'em out
foreach my $table (@tables) {
 print "Table: $table\n";
}

Connecting to a MySQL database would generate:

Table: megaliths
Table: media
Table: site_types

However, connecting to an Oracle database would generate:

Table: STONES.MEGALITHS
Table: STONES.MEDIA
Table: STONES.SITE_TYPES

In both cases, if the database contains other tables, they'd be included in the output.

Oracle stores all names in uppercase by default, so that explains one of the differences, but what about
the "STONES." that's been prefixed to each table name?

Oracle, like most other big database systems, supports the concept of schemas . A schema is a way of
grouping together related tables and other database objects into a named collection. In Oracle each
user gets their own schema with the same name as the user. (Not all databases that support schemas
take this approach.)

If an Oracle user other than stones wanted to refer to the media table then, by default, they would
need to fully qualify the table name by adding the stones schema name, e.g., stones.media. If they
didn't then the database would think they were refering to a media table in their own schema.

So, the leading STONES in the output is the name of the schema that the tables are defined in.
Returning the fully qualified table names is important because the tables() method will return the
names of all the tables owned by all the users that it can discover.

The other method used to retrieve database metadata is called table_info() , and returns more
detailed information about the tables and views stored within the database.

When invoked, table_info() returns a prepared and executed statement handle that can be used to
fetch information on the tables and views in the database.

Programming the Perl DBI

 page 103

Each row fetched from this statement handle contains at least the following fields in the order listed:[6]

[6] Database drivers are free to include additional columns of information in the result data.
TABLE_QUALIFIER

This field contains the table qualifier identifier. In most cases this will be undef (NULL).

TABLE_OWNER

This field contains the name of the owner of the table. If your database does not support
multiple schema or table owners, this field will contain undef (NULL).

TABLE_NAME

This field contains the name of the table and should never be undef.

TABLE_TYPE

This field contains the ''type'' of entity signified by this row. The possible values include
TABLE, VIEW, SYSTEM TABLE, GLOBAL TEMPORARY, LOCAL TEMPORARY, ALIAS, SYNONYM, or some
database driver-specific identifier.

REMARKS

This field contains a description or comment about the table. This field may be undef
(NULL).

Therefore, if we wished to list some basic information on the tables contained within the current
schema or database, we can write the following program that uses table_info() to retrieve all the
table information, then formats the output:

#!/usr/bin/perl -w

ch06/dbhdump: Dumps information about a SQL statement.

use DBI;

Connect to the database
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 RaiseError => 1
});

Create a new statement handle to fetch table information
my $tabsth = $dbh->table_info();

Print the header
print "Qualifier Owner Table Name Type Remarks\n";
print "========= ======== =============================== ===== =======\n\n";

Iterate through all the tables...
while (my ($qual, $owner, $name, $type, $remarks) =
 $tabsth->fetchrow_array()) {

 ### Tidy up NULL fields
 foreach ($qual, $owner, $name, $type, $remarks) {
 $_ = "N/A" unless defined $_;
 }

 ### Print out the table metadata...
 printf "%-9s %-9s %-32s %-6s %s\n", $qual, $owner, $name, $type, $remarks;
}

exit;

Running this program against our megalithic database on an Oracle database produces the following
output:

Qualifier Owner Table Name Type Remarks
========= ======== =============================== ===== =======

N/A STONES MEDIA TABLE N/A
N/A STONES MEGALITHS TABLE N/A
N/A STONES SITE_TYPES TABLE N/A

This form of metadata is not tremendously useful, as it lists only metadata about the objects within the
database, and not the structure of the objects themselves (such as table column names). Extracting
the structure of each table or view within the database requires us to look to a different type of
metadata, which is available via statement handles .

Programming the Perl DBI

 page 104

6.1.7 Statement Handle Attributes or Statement Metadata

Statement handle attributes are specific to statement handles, and inherit any inheritable attributes
from their parent database handle. Many statement handle attributes are defined as being read-only
because they simply describe the prepared statement or its results.

In theoretical terms, these attributes should be defined when the statement handle is prepared, but in
practical terms, you should only rely on the attribute values after the statement handle has been both
prepared and executed. Similarly, with a few drivers, fetching all the data from a SELECT statement or
explicitly invoking the finish() method against a statement handle may cause the values of the
statement handle attributes to be no longer available.

The DBI specification in Appendix A provides a complete list of all the statement handle attributes
defined within the DBI.

Statement

This attribute contains the statement string passed to the prepare() method.

NUM_OF_FIELDS

This attribute is set to contain the number of columns that will be returned by a SELECT
statement. For example:

$sth = $dbh->prepare("
 SELECT name, location, mapref
 FROM megaliths
 ");
$sth->execute();
print "SQL statement contains $sth->{NUM_OF_FIELDS} columns\n";

Non-SELECT statements will contain the attribute value of zero. This allows you to quickly
determine whether or not the statement is a SELECT statement.

NAME
NAME_uc
NAME_lc

The NAME attribute contains the names of the selected columns within the statement. The
attribute value is actually a reference to an array, with length equal to the number of fields in
the original statement.

For example, you can list all the column names of a table like this:

$sth = $dbh->prepare("SELECT * FROM megaliths");
$sth->execute();
for ($i = 1 ; $i <= $sth->{NUM_OF_FIELDS} ; $i++) {
 print "Column $i is called $sth->{NAME}->[$i-1]\n";
}

The names contained within the attribute array are the column names returned by the
underlying database.

There are two additional attributes relating to the column names. NAME_uc contains the same
column names as the NAME attribute, but with any lowercase characters converted to
uppercase. Similarly the NAME_lc attribute has any uppercase characters converted to
lowercase. Generally these attributes should be used in preference to NAME.

NULLABLE

The NULLABLE attribute contains a reference to an array of integer values that tells us whether
or not a column may contain a NULL value. The elements of the attribute array each contain
one of three values:

0

The column cannot contain a NULL value.

1

The column can contain a NULL value.

2

It is unknown if the column can contain a null value.

Programming the Perl DBI

 page 105

TYPE

The TYPE attribute contains a reference to an array of integer values representing the
international standard values for the respective datatypes. The array of integers has a length
equal to the number of columns selected within the original statement, and can be referenced
in a similar way to the NAME attribute example shown earlier.

The standard values for common types are:

SQL_CHAR 1
SQL_NUMERIC 2
SQL_DECIMAL 3
SQL_INTEGER 4
SQL_SMALLINT 5
SQL_FLOAT 6
SQL_REAL 7
SQL_DOUBLE 8
SQL_DATE 9
SQL_TIME 10
SQL_TIMESTAMP 11
SQL_VARCHAR 12
SQL_LONGVARCHAR -1
SQL_BINARY -2
SQL_VARBINARY -3
SQL_LONGVARBINARY -4
SQL_BIGINT -5
SQL_TINYINT -6
SQL_BIT -7
SQL_WCHAR -8
SQL_WVARCHAR -9
SQL_WLONGVARCHAR -10

While these numbers are fairly standard,[7] the way drivers map their native types to these
standard types varies greatly. Native types that don't correspond well to one of these types
may be mapped into the range officially reserved for use by the Perl DBI: -9999 to -9000.

[7] Some are ISO standard, others are Microsoft ODBC de facto standard. See
ftp://jerry.ece.umassd.edu/isowg3/dbl/SQL_Registry and search for "SQL Data Types," or the types
names of interest, on http://search.microsoft.com/us/dev/ and browse the results.

PRECISION

The PRECISION attribute contains a reference to an array of integer values that represent the
defined length or size of the columns in the SQL statement.

There are two general ways in which the precision of a column is calculated. String datatypes,
such as CHAR and VARCHAR, return the maximum length of the column. For example, a column
defined within a table as:

location VARCHAR2(1000)

would return a precision value of 1000.

Numeric datatypes are treated slightly differently in that the number of significant digits is
returned. This may have no direct relationship with the space used to store the number.
Oracle, for example, stores numbers with 38 digits of precision but uses a variable length
internal format of between 1 and 21 bytes.

For floating-point types such as REAL, FLOAT, and DOUBLE, the maximum ''display size'' can be
up to seven characters greater than the precision due to concatenated sign, decimal point, the
letter ''E,'' a sign, and two or three exponent digits.

SCALE

The SCALE attribute contains a reference to an array of integer values that represents the
number of decimal places in the column. This is obviously only of any real use with floating-
point numbers. Integers and non-numeric datatypes will return zero.

NUM_OF_PARAMS

The NUM_OF_PARAMS attribute contains the number of parameters (placeholders) specified
within the statement.

Common uses for these statement handle attributes are to format and display data fetched from
queries dynamically and to find out information about the tables stored within the database.

ftp://jerry.ece.umassd.edu/isowg3/dbl/SQL_Registry
http://search.microsoft.com/us/dev/

Programming the Perl DBI

 page 106

The following script performs the latter operation by first creating a statement handle that fetches
information on all tables, as discussed earlier in Section 6.1.6, and then iterating through each table
listing the table structure via the statement metadata:

#!/usr/bin/perl -w

ch06/tabledump: Dumps information about all the tables.

use DBI;

Connect to the database
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 RaiseError => 1
});

Create a new statement handle to fetch table information
my $tabsth = $dbh->table_info();

Iterate through all the tables...
while (my ($qual, $owner, $name, $type) = $tabsth->fetchrow_array()) {

 ### The table to fetch data for
 my $table = $name;

 ### Build the full table name with quoting if required
 $table = qq{"$owner"."$table"} if defined $owner;

 ### The SQL statement to fetch the table metadata
 my $statement = "SELECT * FROM $table";

 print "\n";
 print "Table Information\n";
 print "=================\n\n";
 print "Statement: $statement\n";

 ### Prepare and execute the SQL statement
 my $sth = $dbh->prepare($statement);
 $sth->execute();

 my $fields = $sth->{NUM_OF_FIELDS};
 print "NUM_OF_FIELDS: $fields\n\n";

 print "Column Name Type Precision Scale Nullable?\n";
 print "------------------------------ ---- --------- ----- ---------\n\n";

 ### Iterate through all the fields and dump the field information
 for (my $i = 0 ; $i < $fields ; $i++) {

 my $name = $sth->{NAME}->[$i];

 ### Describe the NULLABLE value
 my $nullable = ("No", "Yes", "Unknown")[$sth->{NULLABLE}->[$i]];
 ### Tidy the other values, which some drivers don't provide
 my $scale = $sth->{SCALE}->[$i];
 my $prec = $sth->{PRECISION}->[$i];
 my $type = $sth->{TYPE}->[$i];

 ### Display the field information
 printf "%-30s %5d %4d %4d %s\n",
 $name, $type, $prec, $scale, $nullable;
 }

 ### Explicitly deallocate the statement resources
 ### because we didn't fetch all the data
 $sth->finish();
}

exit;

Programming the Perl DBI

 page 107

When executed against our megalithic database, the following output is displayed:

Table Information
=================

Statement: SELECT * FROM STONES.MEDIA
NUM_OF_FIELDS: 5

Column Name Type Precision Scale Nullable?
------------------------------ ---- --------- ----- ---------

ID 3 38 0 No
MEGALITH_ID 3 38 0 Yes
URL 12 1024 0 Yes
CONTENT_TYPE 12 64 0 Yes
DESCRIPTION 12 1024 0 Yes

Table Information
=================

Statement: SELECT * FROM STONES.MEGALITHS
NUM_OF_FIELDS: 6

Column Name Type Precision Scale Nullable?
------------------------------ ---- --------- ----- ---------

ID 3 38 0 No
NAME 12 512 0 Yes
DESCRIPTION 12 2048 0 Yes
LOCATION 12 2048 0 Yes
MAPREF 12 16 0 Yes
SITE_TYPE_ID 3 38 0 Yes

Table Information
=================

Statement: SELECT * FROM STONES.SITE_TYPES
NUM_OF_FIELDS: 3
Column Name Type Precision Scale Nullable?
------------------------------ ---- --------- ----- ---------

ID 3 38 0 No
SITE_TYPE 12 512 0 Yes
DESCRIPTION 12 2048 0 Yes

This output shows the structural information of entities within our database. We could have achieved
the same effect by querying our database's underlying system tables. This would give us more
information, but would not be portable.

6.2 Handling LONG/LOB Data

The DBI requires some additional information to allow you to query back LONG/LOB (long/large
object) datatypes from a database. As we discussed earlier in the section on the LongReadLen and
LongTruncLen attributes, the DBI is unable to determine how large a buffer to allocate when fetching
columns containing LOB data. Therefore, we cannot simply issue a SELECT statement and expect it to
work.

Selecting LOB data is straightforward and essentially identical to selecting any other column of
another datatype, with the important exception that you should set at least the LongReadLen attribute
value prior to preparing the statement that will return the LOB.

Programming the Perl DBI

 page 108

For example:

We're not expecting binary data of more than 512 KB...
$dbh->{LongReadLen} = 512 * 1024;

Select the raw media data from the database
$sth = $dbh->prepare("
 SELECT mega.name, med.media_data
 FROM megaliths mega, media med
 WHERE mega.id = med.megaliths_id
 ");
$sth->execute();
while (($name, $data) = $sth->fetchrow_array) {
 ...
}

Without the all-important setting of LongReadLen, the fetchrow_array() call would likely fail when
fetching the first row, because the default value for LongReadLen is very small - typically 80 or less.

What happens if there's a rogue column in the database that is longer than LongReadLen? How would
the code in the previous example cope? What would happen?

When the length of the fetched LOB data exceeds the value of LongReadLen, an error occurs unless
you have set the LongTruncOk attribute to a true value. The DBI defaults LongTruncOk to false to
ensure that accidental truncation is an error.

But there's a potential problem here if RaiseError is not enabled. How does the snippet of code
above behave if it tries to fetch a row with a LOB field that exceeds the value of LongReadLen? The
fetchrow_array() returns an empty list if there's an error when trying to fetch a row. But
fetchrow_array() also returns an empty list when there's no more data to fetch. The while loop will
simply end and any code following it will be executed. If the loop should have fetched 50 records it
might stop after 45 if the 46th record was too big. Without error checking, you may never realize that
you're missing some rows! The same applies to loops using other fetchrow methods such as
fetchrow_hashref().

Few people remember to check for errors after fetch loops and that's a common cause of problems
with code that handles LONG/LOB fields. Even when not handling special datatypes it's always a
good idea to check for errors after fetch loops, or let the DBI do it for you by enabling RaiseError, as
we discussed in Chapter 4.

Getting back to our little snippet of code, let's assume that we are happy for values longer than
LongReadLen to be silently truncated without causing an error. The following code stub would
correctly handle this eventuality:

We are interested in the first 512 KB of data
$dbh->{LongReadLen} = 512 * 1024;
$dbh->{LongTruncOk} = 1; ### We're happy to truncate any excess

Select the raw media data from the database
$sth = $dbh->prepare("
 SELECT mega.name, med.media_data
 FROM megaliths mega, media med
 WHERE mega.id = med.megaliths_id
 ");
$sth->execute();
while (($name, $data) = $sth->fetchrow_arrayref) {
 ...
}

The only change, apart from comments, is the addition of a line setting the LongTruncOk attribute to a
true value.

The ability to truncate LOB data when overly large is quite useful for text and some forms of binary
data, but not for others. Storing streaming media that is interpreted on a temporal basis doesn't
unduly suffer from being truncated, as you will be able to view or listen to the stream up until the
point of truncation. However, binary files such as ZIP files that store a checksum at the very end will
be rendered useless when truncated. With this sort of data, it's not recommended that LongTruncOk
be enabled, as it will allow truncated, and hence corrupted, data to be returned with no indication that
there's a problem. In that situation, you won't be able to determine whether or not the column
contains corrupted data, or if the column has been chopped by DBI. Caveat emptor!

Programming the Perl DBI

 page 109

One thing to be aware of when writing portable code to fetch LOB data from a database is that the
format of that data may vary on a per-database and datatype basis. For example, in Oracle, a column
with a LONG RAW datatype, rather than a simple LONG type, is passed to and from the database
encoded as a pair of hexadecimal digits for each byte. So after fetching the hex string, you'd need to
decode it using unpack("H*",...) to get the original binary value. For historical reasons, for these
datatypes, the LongReadLen attribute refers to the length of the binary data, so hex-encoded strings up
to twice that length may be fetched.

The DBI currently defines no way to fetch LONG/LOB values piece-wise, in other words, piece-by-
piece. That means you're limited to fetching values that will fit into your available memory. It also
means you can't stream the data out while still fetching it from the database. Some drivers do
implement an unofficial blob_read() method, so take a look at your driver documentation if you
need piece-wise fetches.

6.2.1 Inserting and Updating LONG/LOB Columns

Some databases let you insert into LONG/LOB columns using SQL statements with literal strings, like
this:

INSERT INTO table_name (key_num, long_description) VALUES (42, '...')

Ignoring portability for the moment, that's fine for simple short textual strings, but soon runs into
problems for anything else. Firstly, most databases have a limit on the maximum length of an SQL
statement, and it's usually far shorter than the maximum length of a LONG/LOB column. Secondly,
most databases have limits on which characters can be included in literal strings. The DBD driver's
quote() method will do its best, but it's often not possible to put all possible binary data values into a
string. Finally, coming back to portability, many databases are strict about data typing and just don't
let you assign literal strings to LONG/LOB columns.

So how do we avoid these problems? Here's where placeholders come to our aid once again. We
discussed placeholders in some detail in Chapter 5 so we'll only cover LONG/LOB issues here.

To use placeholders, we'd implement the statement above using the DBI as:

use DBI qw(:sql_types);

$sth = $dbh->prepare("
 INSERT INTO table_name (key_num, long_description) VALUES (?, ?)
");
$sth->bind_param(1, 42);
$sth->bind_param(2, $long_description, SQL_LONGVARCHAR);
$sth->execute();

Passing SQL_LONGVARCHAR as the optional TYPE parameter to bind_ param() gives the driver a
strong hint that you're binding a LONG/LOB type. Some drivers don't need the hint but it's always a
good idea to include it.

The DBI currently defines no way to insert or update LONG/LOB values piece-wise, in other words,
piece by piece. That means you're limited to handling values that will fit into your available memory.

6.3 Transactions, Locking, and Isolation

The final topic in this chapter deals with the important (and hair-raising!) topic of transaction
handling.

Transaction handling is a feature of the more powerful database systems in which SQL statements can
be grouped into logical chunks. Each chunk is known as a transaction, and the operations it performs
are guaranteed to be atomic for the purposes of recovery. According to the ANSI/ISO SQL standard, a
transaction begins with the first executable SQL statement and ends when it is explicitly committed or
rolled back.

The process of committing data writes it into the database tables and make it visible to other
concurrent users. Rolling back discards any changes that have been made to any tables since the
beginning of the current transaction.

Programming the Perl DBI

 page 110

The standard example to explain transactions is a bank transfer in which a customer transfers $1000
from one bank account to another. The bank transfer consists of three distinct stages:

1. Decrease the source account by the required amount.

2. Increase the target account by the required amount.

3. Write a journal entry recording the transfer.

When viewed as three separate stages, the possibility of disaster is quite obvious. Suppose there's a
power outage between stages 1 and 2. The hapless customer is now $1000 poorer, as the money has
neither reached the target account nor been logged in the transfer journal. The bank is now $1000
richer.[8]

[8] No wonder the money is decremented first.

Of course, if the power outage occurred between stages 2 and 3, the customer would have the correct
amount of money in the correct accounts, but the bank would have no record of the transactions. This
would lead to all sorts of book-keeping problems.

The answer is to treat the three separate stages as one logical unit, or transaction. Thus, when stage 1
starts executing, the transaction is started automatically. The same transaction continues until stage 3
is completed, after which point the transaction can be terminated with all the changes either being
committed to the database or rolled back and discarded. Therefore, if a power outage happens at any
point during the transaction, the entire transaction can be automatically rolled back when the
database restarts and no permanent changes to the data will have been made.

A transaction is an all-or-nothing situation. Either it all works, or it all fails - which is great news for
our luckless bank customer.

Transactions are also sometimes described as having A.C.I.D. properties:

Atomic

A transaction's changes to the database are atomic: either all happen or none happen.

Consistent

A transaction is a correct transformation of the state. The actions taken as a group do not
violate any of the integrity constraints associated with the state.

Isolated

Even though transactions can execute concurrently, it appears to each transaction that others
executed either before or after it.

Durable

Once a transaction completes successfully (e.g., commit() returns success), then its changes
to the state of the database survive any later failures.

Implementing ACID transaction handling within a database requires the use of a journal log file, along
with some sophisticated techniques and much careful coding. That's why it's rare to find ACID
transactions supported on free databases (with the notable exception of PostgreSQL), and why it
carries a performance penalty when it is supported.

On the upside, full transaction handling brings with it far greater safety from power failures, client
failures, database failures, and other popular forms of disaster. Simple explicit locking mechanisms
do not afford the same level of safety and recoverability, as we shall discuss later.

Since not all database systems support transaction processing, you may not have the luxury of being
able to roll back from inadvertent data corruptions or be saved from power outage. But if your
database does support transactions, the DBI makes it easy to manage them in a portable manner.

Programming the Perl DBI

 page 111

6.3.1 Automatic Transaction Handling

The ISO standard for SQL defines a particular model for transactions. It says that a database
connection is always in a transaction. Each and every transaction will end with either a commit or a
rollback, and every new transaction will begin with the next statement executed. Most systems also
define an auto-commit mechanism that acts as if commit() is automatically called after each
statement.

The DBI standard tries to find a way to let all drivers for all databases appear to offer the same
facilities, as much as possible. It does this by relying on the fact that there's little practical difference
between a database that supports transactions but has auto-commit enabled, versus a database that
doesn't support transactions at all.

The DBI standard also tries to ensure that an application written to require transactions can't
accidentally be run against a database that doesn't support them. It does this by treating an attempt
to disable auto-commit as a fatal error for such a database.

Given that the ability to enable and disable auto-commit is important, the DBI defines a database
handle attribute called AutoCommit that regulates whether or not DBI should appear to automatically
force a data commit after every statement.

For example, if you issue a statement like $dbh->do() that deletes some data within your database,
and AutoCommit is set to a true value, you cannot roll back your change even if the database supports
transactions.

The DBI defaults to having AutoCommit enabled, making this potentially dangerous behavior
automatic unless explicitly disabled. This is due to the precedent set by ODBC and JDBC. It was
probably a mistake for the DBI to put standards compliance above safety in this case. A future version
may issue a warning if AutoCommit is not specified as an attribute to DBI->connect(), so it's worth
getting used to adding it now.

The behavior of changing this attribute depends on which type of transaction handling your database
supports. There are three possibilities:

No transaction support

Databases that have no transaction support are treated as always having AutoCommit enabled.
Attempting to disable AutoCommit will result in a fatal error.

Always active transaction support

This group of databases includes mainstream commercial RDBMS products, such as Oracle,
that support the ANSI/ISO standard for transaction behavior.

If AutoCommit is switched from being enabled to disabled, no immediate actions should
occur. Any future statements that you issue become part of a new transaction that must be
committed or rolled back.

If AutoCommit is switched from being disabled to enabled, any outstanding database changes
will be automatically committed.

Explicit transaction support

Some databases, such as Informix, support the idea that transactions are optional and must
be explicitly started by applications when required.

The DBI attempts to treat these systems as systems that have always active transactions. To
accomplish this, the DBI requires the driver to automatically begin a transaction when
AutoCommit is switched from enabled to disabled. Once a transaction has been committed or
rolled back, the driver will automatically start a new transaction.

Therefore, despite its database independence, the DBI offers both simple automatic transaction
committing and powerful manual transaction processing modes.

Programming the Perl DBI

 page 112

6.3.2 Forcing a Commit

The DBI defines a method called commit() for explicitly committing any uncommitted data within the
current transaction. This method is executed against a valid database handle:

$dbh->commit();

If commit() is invoked while AutoCommit is enabled, a warning will be displayed similar to:

commit ineffective with AutoCommit

which merely tells you that the database changes have already been committed. This warning will also
be displayed when commit() is invoked against a database that has no transaction support because, by
definition, AutoCommit will be enabled.

6.3.3 Rolling Back Changes

The corollary operation to committing data to the database is to roll it back. The DBI defines a
method called rollback(), which can be used to roll back the most recent uncommitted database
changes.

Like commit(), the rollback() method is executed against a database handle:

$dbh->rollback();

Similarly, if rollback() is invoked while AutoCommit is enabled, a warning will be displayed similar
to:

rollback ineffective with AutoCommit

signifying that the database changes have already been committed. This warning will also be
displayed when rollback() is invoked against a database that has no transaction support because, by
definition, AutoCommit will be enabled.

6.3.4 Disconnecting, One Way or Another

The transaction effect of explicitly disconnecting from a database while AutoCommit is disabled is,
sadly, undefined. Some database systems, such as Oracle and Ingres, will automatically commit any
outstanding changes. However, other database systems, such as Informix, will roll back any
outstanding changes. Because of this, applications not using AutoCommit should always explicitly call
commit() or rollback() before calling disconnect() .

So what happens if you don't explicitly call disconnect(), or don't have the chance to because the
program exits after a die? Well, because DBI handles are object references, we can be sure that Perl
itself will call the DESTROY method for us on each handle if the program exits, the handle goes out of
scope, or the only copy of a handle is overwritten by another value.

The actual implementation of the DESTROY method is in the hands of the driver author. If the
database handle is still connected then it should automatically call rollback() (unless AutoCommit is
enabled) before calling disconnect(). Calling rollback() in DESTROY is critical. If the driver
doesn't, then a program aborting due to a die part way though a transaction may actually
"accidentally" commit the incomplete transaction! Fortunately, all the drivers that we're aware of that
support transactions do the right thing.

As an extra sanity check, if you disconnect from a database while you still have active statement
handles, you will get a warning. We discussed active statement handles and related topics in Chapter
5.

6.3.5 Combining Automatic Error Handling with Transactions

Transactions, as you've probably realized by now, are closely related to error handling. This is
especially true when you have to clean up after an error by putting everything in the database back to
the way it was before the transaction started.

Chapter 4, we discussed error handling in some detail and sang the praises of using the RaiseError
attribute for automatic error detection.

Programming the Perl DBI

 page 113

Imagine combining the automatic error detection of the DBI's RaiseError attribute and the error
trapping of Perl's eval { ... } and the error handling properties of transactions. The result is a
simple yet powerful way to write robust applications in Perl.

There is a fairly common structure to these kind of applications, so to help us discuss the issues, we've
included the following example.

This outline example processes CSV files containing sales data from one country, it fetches currency
exchange rate information from a web site and adds that to the data, it then performs a series of
inserts, selects, updates and more inserts of the data to update the database. That processing is
repeated for a series of countries.

Here's the code:

Connect to the database with transactions and error handing enabled
my $dbh = DBI->connect("dbi:Oracle:archaeo", "username", "password" , {
 AutoCommit => 0,
 RaiseError => 1,
});

Keep a count of failures. Used for program exit status
my @failed;

foreach my $country_code (qw(US CA GB IE FR)) {

 print "Processing $country_code\n";

 ### Do all the work for one country inside an eval
 eval {

 ### Read, parse and sanity check the data file (e.g., using DBD::CSV)
 my $data = load_sales_data_file("$country_file.csv");

 ### Add data from the Web (e.g., using the LWP modules)
 add_exchange_rates($data, $country_code,
 "http://exchange-rate-service.com");

 ### Perform database loading steps (e.g., using DBD::Oracle)
 insert_sales_data($dbh, $data);
 update_country_summary_data($dbh, $data);
 insert_processed_files($dbh, $country_code);

 ### Everything done okay for this file, so commit the database changes
 $dbh->commit();

 };

 ### If something went wrong...
 if ($@) {

 ### Tell the user that something went wrong, and what went wrong
 warn "Unable to process $country_code: $@\n";
 ### Undo any database changes made before the error occured
 $dbh->rollback();

 ### Keep track of failures
 push @failed, $country_code;

 }
}
$dbh->disconnect();

Exit with useful status value for caller
exit @failed ? 1 : 0;

http://exchange-rate-service.com

Programming the Perl DBI

 page 114

In the following list, we make some observations about how and why the code is structured the way it
is and discuss a few related issues:

Unit of work

A key design issue is what the "unit of work" should be. In other words, how much work
should we do before committing and thus how much would be undone by a rollback on error?
The smallest unit should correspond to the smallest logically complete change to the database.
In our example, that corresponds to the complete processing of one country file, and that's
what we've chosen as the unit of work here.

We could have opted for a larger unit of work. Processing all the files as one unit would be
another obvious choice. In that case, we'd simply need to move the foreach loop to inside the
eval. You should be aware that most databases have limits on the amount of database
changes you can make without committing. It's usually large, and always configurable, but
you need to be aware that there are limits that may bite you if you try to do too much.

Where to commit

It's important to have the commit() inside the eval. The commit call is the most critical part
of the transaction. Don't assume that the commit() will succeed just because the previous
statements didn't return an error. Databases are free to defer much of the real work till
commit is called.

The commit() call should be the very last thing before the end of the eval block. Sometimes
it's more tricky. Imagine that the requirements changed and you were asked to make the
script delete the files as it processed them. Where would you put the unlink() call? Before or
after the commit()? Think about that for a moment. Remember that there's always the risk
that either the commit() or the unlink() could fail. You need to weigh up both the risks and
the after effects of either case.

Here's how it applies in our example: if you commit first and the unlink fails, then you'll
process the file again the next time the script is run. If you unlink first and the commit fails,
then you've lost the data. In this case, the lesser of the two evils is clearly to commit first and
risk double processing, especially as double processing is probably easy to avoid by checking
the data in the file against what's already in the database.

In the real world, things can be rather more complex. However, there are plenty of creative
ways to address this two system commit problem. The most important thing to remember is
that there is a problem to address whenever some change outside the database has to be
committed at the same time that the database changes are committed.

When things go wrong

The first thing to do in your if ($@) {...} block is to print an error message. The error
message code helps document what the error handling block is dealing with. And doing it
first avoids the risk that another fatal error will happen before your message is printed, thus
masking the underlying problem.

Please do yourself and your users a favor by always including as much useful information in
your error messages as possible. It sounds simple, but over and over again we see code like:

$dbh->commit() or die "commit failed!"; # DUMB!

Using RaiseError helps here because it generates a message (or Perl $@ variable value) that
includes the underlying error from the driver, and the driver and method names.[9]

[9] It also includes the filename and line number of the code where the error happened, but you can
strip that off using a regular expression if you like.

So, if you catch an error using eval, remember to print the contents of $@. But don't stop at
that. In most applications, there are variables that indicate what's being processed at the
time. Including one or more of those, like $country_code in our example, adds valuable
context to the error message.

As a general guide, every die or warn should have at least one variable interpolated into it, not
counting $! or $@.

Programming the Perl DBI

 page 115

Consider protecting the rollback

So things have gone wrong, you've printed your error message, now it's time to rollback().
Pause for a moment. Remember that the database handle you're using has RaiseError set.
That means that if the rollback itself fails then a new exception will be "thrown" and the script
will immediately exit or jump into the arms of an enclosing eval.

Ask yourself if you're happy for a rollback error to trigger another exception. If not, then wrap
it in an eval like this:

eval { $dbh->rollback };

Likely reasons for rollback() failing include database server shutdown or network
communications failure, either of which may have been the cause of the error you're handling
now. A rollback failure generally means that the database server is having a problem, and it's
not worth trying to continue, so the default behavior is often what you want.

Exit status

Returning a reliable success/fail exit status from your scripts, even if you don't think you'll
need it, is just good design. We recommend good design.

Death by misadventure

One of the important things to remember with transactions is that any calls made within an
eval block can cause the program to die, and many of these calls may be totally unrelated to
DBI. Therefore, by using an eval to trap any sort of problem whatsoever, you guarantee that
you can cleanly roll back any incomplete transactions.

Programming the Perl DBI

 page 116

Chapter 7. ODBC and the DBI
Open Database Connectivity, commonly known as ODBC , defines a database-independent API. The
ODBC Driver Manager supports the API and manages one or more plug-in drivers for talking to
different types of databases. The architecture is shown in Figure 7.1.

Figure 7.1, The ODBC architecture

Doesn't this all sound rather familiar? The ODBC driver manager and drivers are doing just what the
DBI and its drivers are doing: defining and implementing a database-independent, application-
programming interface.

This leads us to a whole bunch of questions: What's the difference? Why not just use ODBC and not
the DBI? Can the DBI and ODBC work together? What advantages does one have over the other?

Before we try to answer those questions, let's get some perspective by looking into the history and
goals of ODBC and the DBI, and take a look at the Win32::ODBC module, which implements a direct
interface to ODBC for Perl.

7.1 ODBC - Embraced and Extended

In the early 1990s, a consortium of vendors formed the SQL Access Group to support SQL
interoperability across disparate systems. In October 1992 and October 1993, a major part of that
work was published as a draft standard entitled " Call Level Interface," or CLI, which is another name
for an Application Programing Interface, or API. However, the SQL Access Group CLI standard never
really took off. At least, not in that form.

Microsoft needed to implement a similar concept, to avoid having to release multiple versions of any
product that needed to talk to multiple databases. They saw the SQL Access Group CLI standard and
''embraced and extended'' it, radically. The result was the Open Database Connectivity interface,
which rapidly became a de facto standard. In fairness, Microsoft turned an incomplete paper
standard into a fully featured practical reality.

7.2 DBI - Thrashed and Mutated

Meanwhile, since September 29, 1992, before ODBC even existed, a group of interested parties had
been working on thrashing out a database-independent interface specification for Perl 4. After
approximately eighteen months, DBperl (as it was then known) was quite stable, and implementation
was about to start.[1] However, at this time, Larry Wall was starting to release alpha versions of Perl 5.

[1] Archaeologists can find the specification of this very old version at
http://www.perl.com/CPAN/modules/dbperl/DBI/dbispec.v05.

http://www.perl.com/CPAN/modules/dbperl/DBI/dbispec.v05

Programming the Perl DBI

 page 117

It soon became apparent that the object-oriented features of Perl 5 could be used to implement a
dramatically improved database interface. So the work on the DBI took a new direction and, at the
same time, started to be loosely modeled as a superset of the SQL Access Group CLI standard. Thus,
at a high-level, the DBI has much in common with both that standard and ODBC as we know it today.

7.3 The Nuts and Bolts of ODBC

We'll now take a look at the main features of ODBC that set it apart from the DBI and that enable it to
work well as a database-independent interface. The four main features are:

• A standard SQL syntax

• Standard error codes

• Rich metadata

• Many attributes and options

7.3.1 A Standard SQL Syntax

Standardized SQL syntax is something of a Holy Grail. ODBC drivers generally do a good job of
implementing it, whereas the DBI just ducks the issue entirely! The problem is that while SQL may be
a standardized language in theory, in practice it's far enough from the standard on most vendors'
databases to cause portability problems.

For example, even a simple task like concatenating two database fields needs to be written like this
(for databases conforming to the SQL-92 standard):

SELECT first_name || ' ' || last_name FROM table

Other databases require one of these forms:

SELECT first_name + ' ' + last_name FROM table
SELECT CONCAT(first_name, ' ', last_name) FROM table
SELECT CONCAT(CONCAT(first_name, ' ') last_name) FROM table
SELECT first_name CONCAT ' ' CONCAT last_name FROM table

The SQL dialect used by different database systems is riddled with such inconsistencies, not to
mention endless "extensions" to the standard. This is a major headache for developers wishing to
write an application that will work with any of a number of databases.

The ODBC approach to this problem is rather elegant. It allows portability when using standard SQL,
but doesn't prevent access to database-specific features. When an application passes an SQL
statement to the driver, the driver parses it as an SQL-92 statement, and then rewrites it to match the
actual syntax of the database being used.

If the parse fails because the SQL doesn't conform to the standard, then the original SQL is passed to
the database unaltered. That way, database-specific features can be accessed, and the ODBC parsing
doesn't get in the way.

The DBI ducked this whole issue because it would require drivers to be far more complicated than
they are now. Parsing and rewriting SQL is not a trivial activity; therefore, the DBI does not try to
offer SQL-level portability. In practice, that hasn't been a big problem for people. Perl makes it very
easy for applications to build SQL statements as needed for the database being used, as we discussed
in Chapter 5.

7.3.2 Standard Error Codes

If an INSERT statement fails, how can you tell whether it was because the table already has a record
with the same primary key? With ODBC, you'd check the SQLSTATE error indicator to see if it was
"23000", regardless of the database being used. With DBI, you're on your own.

Programming the Perl DBI

 page 118

ODBC defines a large number of standard error codes that you can use to determine in reasonable
detail what went wrong. They're not often needed, but when they are, they're very useful. Having said
that, this idyllic picture is tarnished by the fact that many of the codes change depending on the
version of the ODBC driver being used. For example, while an ODBC 2.x driver returns "S0011" when
a CREATE INDEX statement names an index that already exists, an ODBC 3.x driver returns "42S11".
So much for standards!

The DBI leaves you with having to check for different $DBI::err values or $DBI::errstr strings,
depending on the database driver being used. The DBI does provide a $DBI::state variable and $h-
>state() method that drivers can use to provide the standard error codes, but few do at the moment.

7.3.3 Rich Metadata

ODBC defines a wide range of metadata functions that provide information both about the structure of
the data in the database and the datatypes supported by the database. The following table lists the
functions and shows which are supported by the Win32::ODBC and DBI modules.

ODBC Function Win32::ODBC DBI

Tables

TablePrivileges

Columns

ColumnPrivileges

SpecialColumns

Statistics

PrimaryKeys

ForeignKeys

Procedures

ProcedureColumns

GetTypeInfo

As you can see, the DBI lags behind the Win32::ODBC module. By the time you read this book, the
DBI may have defined interfaces for some of the functions, but how quickly the drivers actually
implement the functions is harder to guess. The DBD::ODBC and DBD::Oracle modules will probably
lead the way.

7.3.4 Many Attributes and Options

In trying to be a comprehensive interface to a very wide variety of real-world data sources, ODBC
provides a way to tell the application about every minute detail of the driver and data source it's
connected to. There are so many details available via the GetInfo() function - over 200 at the last
count - that we're not going to waste paper listing any of them.

Though some books include the list as a great way of adding impressive bulk, we'll just direct you to
the online version at Microsoft:

http://msdn.microsoft.com/library/sdkdoc/dasdk/odch5fu7.htm

http://msdn.microsoft.com/library/sdkdoc/dasdk/odch5fu7.htm

Programming the Perl DBI

 page 119

If that URL ceases to work, then use the MSDN search facility at:

http://msdn.microsoft.com/us/dev/

and search for SQLGetInfo returns using the exact phrase option. The link you want will probably
just be called SQLGetInfo.[2]

[2] Microsoft ODBC functions all have an SQL prefix.

ODBC also provides for a great many knobs and buttons that you can use to tailor the fine details of
driver behavior to suit your application. These can be accessed via the following functions:

GetEnvAttr SetEnvAttr -- 4 attributes
GetConnectAttr SetConnectAttr -- 16 attributes
GetStmtAttr SetStmtAttr -- 33 attributes

Prior to ODBC 3.x, there was an older set of functions with names that end in Option instead of Attr.
These functions are almost identical to those above, but accept a smaller range of attributes. To find
details of all these functions, you can use the Microsoft MSDN search procedure described earlier in
this section.

The Win32::ODBC module provides access to the GetInfo(), Get /SetConnectOption(), and Get
/SetStmtOption() functions. The DBI defines only a very limited subset of this functionality via an
assortment of DBI handle attributes.

7.4 ODBC from Perl

So we've established that the ODBC standard is a rather good thing, but how can you use it?

To use ODBC from Perl, there are only two practical options: the Win32::ODBC module and the DBI
with the DBD::ODBC module. We'll describe DBD::ODBC first and then take a deeper look at
Win32::ODBC.

7.4.1 DBD::ODBC

The DBD::ODBC module was written by Tim Bunce and Jeff Urlwin, based on original code by Thomas
K. Wenrich. It's a Perl extension written in C and is not tied to Microsoft Win32 platforms. That
makes it a good option for directly using ODBC on Unix, VMS, and other non-Windows systems.

Being a DBI driver, the main goal of the DBD::ODBC module is to implement the functionality required
by the DBI, not simply to give access to ODBC from Perl.

The DBD::ODBC driver is described in more detail in Appendix B.

7.4.2 Win32::ODBC

The Win32::ODBC module was written by Dave Roth, based on original code by Dan DeMaggio. It's a
Perl extension written in C++ and is closely associated with the Win32 platform.

The main goal of the Win32::ODBC module is to provide direct access to the ODBC functions. From
that point of view, Win32::ODBC provides a fairly thin, low-level interface.

Here's a sample of Win32::ODBC code:

use Win32::ODBC;

Connect to a data source
$db = new Win32::ODBC("DSN=MyDataDSN;UID=me;PWD=secret")
 or die Win32::ODBC::Error();

Prepare and Execute a statement
if ($db->Sql("SELECT item, price FROM table")) {
 print "SQL Error: " . $db->Error() . "\n";
 $db->Close();
 exit;
}

http://msdn.microsoft.com/us/dev/

Programming the Perl DBI

 page 120

Fetch row from data source
while ($db->FetchRow) {
 my ($item, $price) = $db->Data(); ### Get data values from the row
 print "Item $item = $price\n";
}

Disconnect
$db->Close();

The most significant disadvantages of Win32::ODBC compared to DBD::ODBC are:

There is no separate statement handle

The database connection handle is used to store the details of the current statement. There is
no separate statement handle, so only one statement can execute per database handle. But
that's not as bad as it may seem, because it's possible to clone database handles so that more
than one handle can share the same underlying ODBC database connection.

There are no separate prepare and execute steps

You cannot prepare a statement for execution later. The Sql() method, like the DBI do()
method, combines both.

Placeholders and bind parameters are not supported

This is perhaps the most significant disadvantage of Win32::ODBC. All values must be passed
as literal text values within the SQL statements.

The lack of support for placeholders, especially when coupled with the inability to prepare
statements, means that nontrivial applications based on Win32::ODBC tend to place a greater
burden on database servers and thus run more slowly.

It also causes problems when trying to insert binary data such as images.

Fetching rows is a two-step process

The FetchRow() method doesn't actually return any data to the script. To get the row of data
values, you need to call either the Data() method to get a simple list (like fetchrow_array()
), or the DataHash() method to get a hash (like fetchrow_hashref()).

This is more of a nuisance than a significant disadvantage. It's also another reason why
Win32::ODBC is a little slower than using DBI.

There is no automatic error handling

In ODBC, there is no equivalent to the DBI's RaiseError and PrintError mechanism. You
need to explicitly test the return status of all Win32::ODBC method calls if you want to write a
robust application.

The lack of automatic error handling makes Win32::ODBC less suitable for nontrivial
applications when application reliability is important. This is especially true where
transactions are being used.

Win32::ODBC is slightly slower than DBD::ODBC

Even for simple queries, Win32::ODBC tends to be slightly slower than DBD::ODBC for the
same platform and database. As always with benchmarks, your mileage may vary, so test it
yourself if this is an issue for you.

There are plans to address some of these disadvantages in a later release. The most significant
advantages of Win32::ODBC compared to DBD::ODBC are:

Most of the ODBC API is available to use

This is currently the biggest advantage that Win32::ODBC has over DBD::ODBC.

The remaining items in this list are really significant ODBC features rather than features of
the Win32::ODBC module itself, but until DBD::ODBC supports them, they still count as
advantages of Win32::ODBC.

Programming the Perl DBI

 page 121

Attributes, options, and metadata are available

These are described in the previous section. A wide range of metadata functions is available,
along with functions for controlling many attributes and options.

Scrolling cursors are supported

Scrolling cursors let you read the rows of data returned by a query in any order. You can jump
to the last row and read backwards. You can jump to any row either by absolute row number
or relative to the current row. That's very handy for interactive browsing applications.

7.5 The Marriage of DBI and ODBC

The DBI has been strongly influenced by ODBC and the international standards that lie behind it
(X/Open SQL CLI and ISO/IEC 9075-3:1995 SQL/CLI). The development of the DBD::ODBC module
has given the DBI a more solid footing in the world of ODBC.

The DBI specification naturally evolves over time. The ODBC standard gives it a standards-based
framework to build around. So, for example, if a method to return information about the datatypes
supported by a database needs to be added, then following the proven standard function that makes
much more sense than defining a new way. Thus, the DBI type_info method is modeled very closely
on the GetTypeInfo ODBC function.

As the DBI and DBD::ODBC modules evolve, they'll naturally move closer together. As there are two
excellent portable Open Source driver managers available,[3] the DBD::ODBC module should become as
portable as DBI itself. At that point, it may well make sense to combine the two.

[3] It's available from the FreeODBC project at: http://users.ids.net/~bjepson/FreeODBC/.

7.6 Questions and Choices

Hopefully by now we've answered all your questions about using ODBC from Perl, except one. If you
need to choose between Win32::ODBC and DBD::ODBC, which do you choose?

It's actually a reasonably straightforward choice. If you need to use more of the ODBC API than is
available through DBD::ODBC, then use Win32::ODBC. Otherwise the DBI plus DBD::ODBC
combination is probably your best bet.

http://users.ids.net/~bjepson/FreeODBC/

Programming the Perl DBI

 page 122

Chapter 8. DBI Shell and Database Proxying
This chapter takes a look at two essential additions to the Perl DBI armory: a command-line shell for
databases, and the proxying drivers that provide network access to remote database drivers.

8.1 dbish - The DBI Shell

The DBI Shell, or dbish , is a command-line tool that allows you to run arbitrary SQL statements and
diagnostics against databases without needing to write a complete Perl program.

For example, let's say we wanted to get a quick list of all the megaliths in Wiltshire. We could write a
complete Perl program that connects to the database, prepares and executes the appropriate SQL
statement, fetches the data back, formats it, and disconnects from the database.

With the DBI, this process is easy, but it's a bit tedious if you just want some quick information.

This is where the dbish comes into play. dbish allows you to connect to a data source and type an
SQL statement straight into it. dbish handles all the underlying connecting, preparing, and
executing, and also gives you the results right away.

8.1.1 Starting Up dbish

dbish is an executable program bundled with the DBI. You should be able to start it up by typing:

dbish

which will return a prompt in the following manner:

DBI::Shell 10.5 using DBI 1.14

WARNING: The DBI::Shell interface and functionality are
======= very likely to change in subsequent versions!

Available DBI drivers:
 1: dbi:ADO
 2: dbi:ExampleP
 3: dbi:Oracle
 4: dbi:Proxy
Enter driver name or number, or full 'dbi:...:...' DSN:

Some drivers require real username and password authentication to connect to databases. To support
this requirement, you can supply additional arguments to dbish in the form of:

dbish <data_source> [username] [password]

For example:

dbish '' stones stones

or:

dbish dbi: stones stones

In this case, we haven't specified a driver, and so we'll choose one interactively through the menus.
We can also bypass the menus by putting in the data source name for the desired database:

dbish dbi:Oracle:archaeo stones stones

If you don't specify a driver on the command line, the displayed menus allow you to select a type of
database by listing the various drivers available. For example, if an Oracle database contained the
megalithic database, you would select the dbi:Oracle data source by typing 3. This will result in that
specific database driver being queried for available data sources. For example:

Enter data source to connect to:
 1: dbi:Oracle:archaeo
 2: dbi:Oracle:sales
Enter data source or number, or full 'dbi:...:...' DSN:

This example shows that the underlying Oracle database driver is aware of two locally configured
Oracle databases. Our megalithic database is stored in the archaeo database, so type 1.

Programming the Perl DBI

 page 123

At this stage, dbish will attempt to connect to the database. Once you have connected successfully to
a data source, you will see a prompt such as:

stones@dbi:Oracle:archaeo>

telling you that you are connected to the data source dbi:Oracle:archaeo as the user stones, and
that dbish is ready for you to issue commands to it.

You can make a connection to another database from within dbish by using the /connect command.
For example:

stones@dbi:Oracle:archaeo> /connect dbi:Oracle:sales dbusername
Disconnecting from dbi:Oracle:archaeo.
Connecting to 'dbi:Oracle:sales' as 'dbusername'...
Password for 'dbusername' (not echoed to screen):
stones@dbi:Oracle:sales>

Unfortunately, connecting to multiple databases simultaneously is not yet supported by dbish.

8.1.2 Handling Statements

In general, the most common reason for using dbish is to issue ad-hoc SQL statements to a database,
either to check that the statement works before including it in a Perl program, or just to get some
quick answers. This task is exactly what dbish was designed for.

dbish commands are entered as a forward slash (/) followed by a command name and optionally
some extra arguments. For example:

/help

Anything entered that doesn't start with a forward slash is considered to be part of an SQL statement
and is appended to a '' statement buffer.'' Once the SQL statement is complete, you can execute it, and
the results, if any, will be returned to your screen.

For example, to query the names of all sites in the megalithic database, type:

stones@dbi:Oracle:archaeo> SELECT name FROM megaliths
Current statement buffer (enter '/' to execute or '/help' for help):
SELECT name FROM megaliths

stones@dbi:Oracle:archaeo> /
'Avebury'
'Stonehenge'
'Lundin Links'
...
[132 rows of 1 fields returned]
stones@dbi:Oracle:archaeo>

Note that a forward slash by itself can be used to execute statements. After executing a statement, the
statement buffer is cleared. But suppose we start typing in a new query and then change our minds
about what we want to return:

stones@dbi:Oracle:archaeo> SELECT name FROM megaliths
Current statement buffer (enter '/' to execute or '/help' for help):
SELECT name FROM megaliths
stones@dbi:Oracle:archaeo> SELECT name, mapref FROM megaliths
Current statement buffer (enter '/' to execute or '/help' for help):
SELECT name FROM megaliths
SELECT name, mapref FROM megaliths

stones@dbi:Oracle:archaeo>

This is totally wrong! Fortunately, you can clear the statement buffer of old statements and start new
ones afresh with the /clear command. Statements that have been executed are automatically cleared
from the statement buffer, but can be recalled with the /history command. You can even use the
/edit command to start up an external editor for editing your SQL.

The way in which results of SELECT statements are displayed is also configurable using the /format
command. The two options currently available are /format neat and /format box. The default
option is neat, which uses the DBI::neat_list() function to format the data. For example, the
statement:

stones@dbi:Oracle:archaeo> SELECT name, mapref FROM megaliths /

Programming the Perl DBI

 page 124

has the following output:

'Avebury', 'SU 102 699'
'Stonehenge' 'SU 123 422',
'Lundin Links', 'NO 404 027'
...
[132 rows of 1 fields returned]

The box option is prettier:

+--------------+------------+
| name | mapref |
+--------------+------------+
| Avebury | SU 102 699 |
+--------------+------------+
| Stonehenge | SU 123 422 |
+--------------+------------+
| Lundin Links | NO 404 027 |
+--------------+------------+

It's also possible to issue non-SELECT statements from dbish with the / command. Want to delete all
the rows from a table? Simply type:

stones@dbi:Oracle:archaeo> delete from megaliths /
[132 rows affected]
stones@dbi:Oracle:archaeo>

Quick, easy, and very deadly! Any non-SELECT statement can be issued in this way, including CREATE
TABLE statements or even stored procedure calls, if your database supports them.[1]

[1] There's a /do command that forces the do() method to be used instead of a prepare() followed by an
execute(). In practice, it's rarely needed.

8.1.3 Some Miscellaneous dbish Commands

As dbish is a fairly fully featured command-line shell,[2] it has some convenient commands defined
within it that allow you to commit and roll back database changes, recall statements and commands
that you'd executed in the past, and even execute arbitrary Perl statements!

[2] dbish's powerful command-line editing functionality comes courtesy of the Term::Readline and
Term::Readline::Gnu modules. You don't need to install them to use dbish, but it helps.

One of the most useful of the miscellaneous statements is /table_info , which lists the tables in the
database that you are currently connected to. This statement is indispensable when you're trying to
remember exactly what that pesky table name is!

A full list of these commands can be seen by typing the all-important /help command.

dbish is currently a handy tool for performing quick tasks on a database. It should continue to evolve
over time into an indispensable part of the database administrator's and database developer's armory,
much like proprietary tools such as Oracle's SQL*Plus utility.

8.2 Database Proxying

Database proxying is the ability to forward database queries to a database, using an intermediate piece
of software, the proxy, and return the results from those queries without the client program having
any database drivers installed.

For example, a common use for a database proxy is for a client program located on a Unix machine to
query a Microsoft Access database located on a Windows machine. Suppose the Unix machine has no
ODBC software or drivers installed and thus doesn't know anything about ODBC. This means that it
needs to forward any queries to a proxy server that does know about ODBC and the Access database.
The proxy server then issues the query and gathers the results, which it then passes back to the client
program for processing.

Programming the Perl DBI

 page 125

This functionality is extremely powerful, as it allows us to access databases on virtually any operating
system from any other operating system, provided that they are both running Perl and the DBI. There
is an additional benefit in terms of software distribution: if client PCs used Perl scripts to access an
Oracle database located on a central Unix server, you don't have to undergo a potentially complex
Oracle client software installation. DBI proxy capabilities make this client software unnecessary.

Furthermore, you can automatically add ''network awareness'' to types of databases that could never
otherwise support such a thing. For example, with the DBI proxy capabilities, you could run a Perl
script on a Windows machine that queries data from a CSV file over the network.

Finally, the DBI proxy architecture allows for on-the-fly compression of query and result data, and
also encryption of that data. These two facilities make DBI a powerful tool for pulling large results
sets of data over slow network links such as a modem. It also makes DBI a secure tool for querying
sensitive data. We shall discuss these two topics in greater detail in a later section.

8.2.1 The Database Proxy Architecture

The DBI supports database proxying through two modules, DBD::Proxy and DBI::ProxyServer .
DBD::Proxy is used by client programs to talk to a proxy server that is implemented with the
DBI::ProxyServer module. Figure 8.1 illustrates the architecture.

Figure 8.1, DBI proxy architecture

Because the DBI::ProxyServer module uses the underlying database drivers to actually interface
with the databases, any type of database can be queried and manipulated via proxy, including CSV
files and XBase (DBF) files. The DBI proxy architecture does not restrict you to using high-end
databases such as Oracle or Informix.

So how do we use this proxy server? Let's look at the common example of a Perl program running on a
Unix box that wants to query a Microsoft Access database running on a Windows machine.

8.2.1.1 Setting up a proxy server

The DBI proxy server is simply a layer on top of the DBI; it can only be a server for the data sources
that the underlying DBI is able to connect to. So, before we get involved in setting up the proxy server
to accept proxy client connections, we must install any database drivers that its clients may need. For
our example of connecting to an Access database, we'll need to install the DBD::ODBC module.[3]

[3] If you have a compiler, you can get the source from CPAN and build it yourself, or, on Windows, just fetch and
install a pre-built version using the PPM tool supplied with ActiveState Perl.

You will also need to configure your ODBC data source within the Windows ODBC Control Panel. For
our megalithic database, let's call the ODBC data source archaeo.

Programming the Perl DBI

 page 126

We can test that this data source is correctly configured using the DBI Shell dbish locally on the
Windows machine:

dbish dbi:ODBC:archaeo

or via a short script that can be run on your Windows machine:

use DBI;
$dbh = DBI->connect("dbi:ODBC:archaeo", "username", "password");
$dbh->disconnect();

If dbish connects, or if no errors occur when executing the script, it looks like everything's installed
and configured correctly.

The easiest way to set up a DBI proxy server is to use the script called dbiproxy , which is distributed
with the core DBI module. The DBI::ProxyServer module, used by dbiproxy, has a few prerequisite
modules that must be installed in order for it to work: PlRPC and Net::Daemon . These can be
downloaded and installed from CPAN using:

perl -MCPAN -e 'install Bundle::DBI'

Or, if you are running the ActiveState Perl for Windows, you can install these modules separately via
PPM (since PPM currently does not currently support bundles).

The crucial information required by dbiproxy is the port number to which the proxy server should
listen for incoming proxy client connections. If the port number is 3333, we can run the proxy server
with the following command:

dbiproxy --localport 3333

This will start up the server; it's now waiting for connections. If you want to verify that the server is
indeed up and running, you can run it with the --debug flag and the optional --logfile flag to
specify where the debug output will go.

For example:

dbiproxy --localport 3333 --debug

will produce debug output either in the command prompt window on a Windows machine, and or via
syslog(1) on a Unix machine. On Unix workstations, you can redirect the output to the current
terminal with:

dbiproxy --localport 3333 --debug --logfile /dev/tty

This should behave correctly under most modern Unix platforms.

8.2.1.2 Connecting to the proxy server

Now that we have configured our proxy server to sit and wait on port 3333 on our Windows machine,
we need to tell the client Perl program on the Unix machine to use that proxy server instead of
attempting to make a direct database connection itself.

For example, the ODBC test script above connects directly via the DBD::ODBC module with the
following DBI->connect() call:

$dbh = DBI->connect("dbi:ODBC:archaeo", "username", "password");

This is fine for local connections, but how do we translate that into something the proxy server can
use?

DBD::Proxy makes liberal use of the optional arguments that can be added to a DSN when specifying
which database to connect to. DBD::Proxy allows you to specify the hostname of the machine upon
which the proxy server is running, the port number that the proxy server is listening to, and the data
source of the database that you wish the proxy server to connect to.

Therefore, to connect to the ODBC database called archaeo on the Windows machine fowliswester
with a proxy server running on port 3333, you should use the following DBI- >connect() syntax:

$dsn = "dbi:ODBC:archaeo";
$proxy = "hostname=fowliswester;port=3333";
$dbh = DBI->connect("dbi:Proxy:$proxy;dsn=$dsn", '', '');

This looks quite long-winded, but it's a very compact and portable way to make a pass-through
connection to a remote database by proxy.

Programming the Perl DBI

 page 127

Once you have connected to the proxy server and it connects to the desired data source, a valid
database handle will be returned, allowing you to issue queries exactly as if you had connected directly
to that database. Therefore, when using a proxy server, only the DBI->connect() call will vary -
which is exactly the same behavior as changing from one database to another.

Having said that, it's even possible to use the proxy without editing your programs at all. You just
need to set the DBI_AUTOPROXY environment variable and the DBI will do the rest. For the example
above, you can leave the connect() statement referring to dbi:ODBC:archaeo and just set the
DBI_AUTOPROXY environment variable to:

dbi:Proxy:hostname=fowliswester;port=3333

The value contained within the DBI_AUTOPROXY value has the DSN specified in the DBI->connect()
call concatenated to it to produce the correct proxy DSN. For example:

$ENV{DBI_AUTOPROXY} = 'dbi:Proxy:hostname=fowliswester;port=3333';
$dbh = DBI->connect("dbi:ODBC:archaeo", "username", "password");

would result in the script attempting a connection to the DSN of:

dbi:Proxy:hostname=fowliswester;port=3333;dsn=dbi:ODBC:archaeo

The other important point to stress regarding the client is that you do not need to install any database
drivers whatsoever. The database drivers are used only by the proxy server.

8.2.2 Advanced Topics

The DBI proxy architecture is implemented on top of a couple of lower-level Perl networking modules
such as PlRPC and, in the case of DBI::ProxyServer , Net::Daemon . As such, these modules have a
lot of features that are inherited into the DBI proxy architecture, such as powerful access-list
configuration and on-the-fly compression and ciphering.

We shall look at each of these topics in more detail and explain how they can be used effectively in
your software.

8.2.2.1 Access configuration

The Net::Daemon, RPC::PlServer, and DBI::ProxyServer modules share a common configuration
filesystem because of the ways that RPC::PlServer inherits from Net::Daemon and
DBI::ProxyServer inherits from RPC::PlServer.[4]

[4] All these modules, including DBD::Proxy were designed and implemented by a single author, Jochen
Wiedmann. Thank you, Jochen.

The configuration files for these modules are expressed as Perl scripts in which various options are
set. The most useful options are those that allow you to specify access lists. Access lists allow you to
control which machines may connect to the proxy server, and the mode that the network transport
between these machines and the proxy server operates in.

For example, if you had a secure corporate LAN containing a database server and client PCs, you
might say that the client PCs could connect to the central database via a proxy server without any
authentication or encryption. That is, a PC connected to the LAN is trusted.

However, computers in employees' houses that need access to the database are not trusted, as the data
flowing across the phone line might be somehow intercepted by competitors. Therefore, the network
transport between these machines and the central database server is encrypted.

A sample configuration file for the proxy server might look like:

{
 facility => 'daemon',
 pidfile => '/var/dbiproxy/dbiproxy.pid',
 user => 'nobody',
 group => 'nobody',
 localport => '3333',
 mode => 'fork',

Programming the Perl DBI

 page 128

 # Access control
 clients => [
 # Accept the local LAN (192.168.1.*)
 {
 mask => '^192\.168\.1\.\d+$',
 accept => 1
 },
 # Accept our off-site machines (192.168.2.*) but with a cipher
 {
 mask => '^192\.168\.2\.\d+$',
 accept => 1,
 # We'll discuss secure encryption ciphers shortly
 cipher => Crypt::IDEA->new('be39893df23f98a2')
 },
 # Deny everything else
 {
 mask => '.*',
 accept => 0
 }
]
}

The dbiproxy script can be started with this custom configuration file in the following way:

dbiproxy --configfile <filename>

For example, if we had saved the above configuration file as proxy.config, we could start up
dbiproxy with the command:

dbiproxy --configfile proxy.config

Furthermore, the DBI::ProxyServer configuration file also allows us to apply access lists to
individual types of statements. For example, you might want the workstations of sales operators to be
able to query data, but not change it in any way. This can be done using the following configuration
options:

Only allow the given SELECT queries from sales
workstations (192.168.3.*)
clients => [
 {
 mask => '^192\.168\.3\.\d+$',
 accept => 1,
 sql => {
 select => 'SELECT name, mapref FROM megaliths WHERE name = ?'
 }
 },
]

The other statement restriction keys that you can use are insert, update, and delete. For example,
if you wished to allow only particular DELETE statements to be executed, you could write the following
access control:

sql => {
 delete => 'DELETE FROM megaliths WHERE id = ?'
}

This control would refuse any DELETE statements that did not conform to the given control mask, such
as someone maliciously executing DELETE FROM megaliths.

Therefore, the access control functionality inherent in DBI::ProxyServer and its parent modules can
be used to build complex (yet flexible) networked database systems quickly and easily.

8.2.2.2 Compression

In the previous example, we discussed the possibility of a user querying the database via a modem line
and proxy server. Suppose the user executes a query that returns 100,000 rows of data, each row
being around 1 KB. That's a lot of information to pull across a slow network connection.

To speed things up, you could configure the proxy server to use on-the-fly compression (via the
Compress::Zlib module) to clients querying the database over dial-up connection. This will radically
reduce the quantity of data being transferred across the modem link. You can do this by running the
dbiproxy script with the additional arguments of:

--compression gzip

which specifies that the GNU gzip compression method should be used.

Programming the Perl DBI

 page 129

In order for your client to be able to send and receive compressed data from the DBI proxy server, you
also must tell the proxy driver to use a compressed data stream. This is done by specifying the
additional DSN key/value pair of compression=gzip when connecting to the database. For example:

$proxyloc = 'hostname=fowliswester;port=3333';
$compression = 'compression=gzip';
$dsn = 'dbi:ODBC:archaeo';
$dbh = DBI->connect("dbi:Proxy:$proxyloc;$compression;dsn=$dsn",
 "username", "password");

The trade-off is the cost in CPU time for the proxy server and proxy client to compress and
decompress the data, respectively. From a client perspective, this is probably not an issue, but the
proxy server might be affected, especially if several large queries are being executed simultaneously,
with each requiring compression.

However, compression is a useful and transparent feature that can increase the efficiency of your
networks and databases when using DBI proxying.

8.2.2.3 Ciphers

The final configuration topic that we will cover for the DBI proxy architecture is that of on-the-fly
encryption of data.

This functionality is useful if you are implementing a secure networked database environment where
database operations might be occurring over nonsecure network links, such as a phone line through a
public ISP. For example, an employee at home might use his or her own ISP to access a secure
company database. Or you might wish to make an e-commerce transaction between two participating
financial institutions.

Both of these examples are prime candidates for using the cipher mechanism in DBI::ProxyServer.
Ciphering is implemented within the RPC::PlClient and RPC::PlServer modules. This allows
DBD::Proxy and DBI::ProxyServer to use those mechanisms by means of inheritance. The actual
ciphering mechanism uses external modules such as Crypt::IDEA or Crypt::DES for key generation
and comparison.[5]

[5] The technical differences and ins and outs of these algorithms are way beyond the scope of this book. You
should consult the documentation for these modules for pointers to texts discussing the various cryptographic
algorithms.

The very basic premise of an encrypted data stream is that the client and server generate keys, which
are then sent to each other. When the client wishes to transmit data to the server, it encrypts the data
with the server's key. Similarly, if the server wishes to send data to the client, it uses the client's key to
encrypt it first. This system allows the client and server to decode the incoming data safely. Since the
data is encrypted before transmission and decoded after receipt, anyone snooping on the network will
see only encrypted data.

Therefore, to support encryption via DBI proxying, we need to configure both the client connecting to
the proxy server to use encryption and also configure the server to use the same encryption.

The configuration of the client is trivial and is simply a case of specifying additional arguments to the
DBI->connect() call. For example, to use Crypt::IDEA as the underlying ciphering method, we can
write:

use Crypt::IDEA;

The key is a random, but long, hexadecimal number!
$key = 'b3a6d83ef3187ac4';

Connect to the proxy server
$dbh = DBI->connect("dbi:Proxy:cipher=IDEA;key=$key;...", '', '');

The actual key creation occurs by instantiating a new object of the given cipher type (in this case
Crypt::IDEA) with the given key value. This cipher object is then passed to the proxy server. We
could have used the Crypt::DES module to provide the underlying encryption services by simply
changing cipher=IDEA to cipher=DES.[6] This demonstrates the configurability of the DBI proxy
encryption mechanisms.

[6] We would also need to change the use Crypt::IDEA; line accordingly.

Programming the Perl DBI

 page 130

For example, if we were transmitting sensitive but not confidential data from our internal database to
someone's home PC, we might wish to use the relatively low-grade encryption offered by Crypt::DES.
However, if more confidential data was being transmitted, we might wish to switch over to using the
stronger but slower encryption of Crypt::IDEA.

Configuring the proxy server is equally straightforward and is achieved by specifying the encryption
rules within the proxy server configuration file. For example, a simple proxy server configuration that
encrypts all traffic with Crypt::IDEA can be written as:

require Crypt::IDEA;

The key to encrypt data with
$key = 'b3a6d83ef3187ac4';

{
 clients => [{
 'accept' => 1,
 'cipher' => IDEA->new(pack("H*", $key))
 }]
}

The important aspect of this configuration file is that the key being used to create the Crypt::IDEA
object matches that used by the client programs connecting to this proxy server. If the keys do not
match, no connection will be made, as the client and server will not be able to decode data flowing
over the network connection.

Programming the Perl DBI

 page 131

Appendix A. DBI Specification
This appendix is a slightly edited version of the DBI specification, a "living document" that evolves at a
slow but steady pace as new versions of the DBI are released. This document is based on the DBI
specification for DBI version 1.14.

Although we know that it will be slightly out of date by the time you read it, we have included this
specification in the book because it is important reference material, and we believe the book would be
incomplete without it. For up-to-date information, consult the online documentation for the version
of the DBI you have installed. You can usually access the online documentation with the perldoc DBI
command. The Changes file supplied with the DBI distribution contains detailed change information.

Note that whenever the DBI changes, the drivers take some time to catch up. Recent versions of the
DBI have added new features (marked NEW in the text) that may not yet be supported by the drivers
you use. Talk to the authors of those drivers if you need support for new features.

A.1 Synopsis
use DBI;

@driver_names = DBI->available_drivers;
@data_sources = DBI->data_sources($driver_name);

$dbh = DBI->connect($data_source, $username, $auth, \%attr);

$rv = $dbh->do($statement);
$rv = $dbh->do($statement, \%attr);
$rv = $dbh->do($statement, \%attr, @bind_values);

$ary_ref = $dbh->selectall_arrayref($statement);
@row_ary = $dbh->selectrow_array($statement);
$ary_ref = $dbh->selectcol_arrayref($statement);

$sth = $dbh->prepare($statement);
$sth = $dbh->prepare_cached($statement);

$rv = $sth->bind_param($p_num, $bind_value);
$rv = $sth->bind_param($p_num, $bind_value, $bind_type);
$rv = $sth->bind_param($p_num, $bind_value, \%attr);

$rv = $sth->execute;
$rv = $sth->execute(@bind_values);

$rc = $sth->bind_col($col_num, \$col_variable);
$rc = $sth->bind_columns(@list_of_refs_to_vars_to_bind);

@row_ary = $sth->fetchrow_array;
$ary_ref = $sth->fetchrow_arrayref;
$hash_ref = $sth->fetchrow_hashref;

$ary_ref = $sth->fetchall_arrayref;

$rv = $sth->rows;

$rc = $dbh->commit;
$rc = $dbh->rollback;

$sql = $dbh->quote($string);

$rc = $h->err;
$str = $h->errstr;
$rv = $h->state;

$rc = $dbh->disconnect;

Programming the Perl DBI

 page 132

A.1.1 Getting Help

If you have questions about DBI, you can get help from the dbi-users@isc.org mailing list. You can
subscribe to the list by visiting:

http://www.isc.org/dbi-lists.html

Also worth a visit is the DBI home page at:

http://www.symbolstone.org/technology/perl/DBI

Before asking any questions, reread this document, consult the archives, and read the DBI FAQ. The
archives are listed at the end of this document. The FAQ is installed as a DBI::FAQ module, so you
can read it by executing perldoc DBI::FAQ.

Please note that Tim Bunce does not maintain the mailing lists or the web page (generous volunteers
do that). So please don't send mail directly to him; he just doesn't have the time to answer questions
personally. The dbi-users mailing list has lots of experienced people who should be able to help you if
you need it.

A.2 Description

The DBI is a database access module for the Perl programming language. It defines a set of methods,
variables, and conventions that provide a consistent database interface, independent of the actual
database being used.

It is important to remember that the DBI is just an interface. The DBI is a layer of "glue" between an
application and one or more database driver modules. It is the driver modules that do most of the
real work. The DBI provides a standard interface and framework for the drivers to operate within.

A.2.1 Architecture of a DBI Application

The API, or Application Programming Interface, defines the call interface and variables to Perl scripts
to use. The API is implemented by the Perl DBI extension (see Figure A.1).

Figure A.1, DBI application architecture

The DBI "dispatches" the method calls to the appropriate driver for actual execution. The DBI is also
responsible for the dynamic loading of drivers, error checking and handling, providing default
implementations for methods, and many other non-database-specific duties.

Each driver contains implementations of the DBI methods using the private interface functions of the
corresponding database engine. Only authors of sophisticated/multi-database applications or generic
library functions need to be concerned with drivers.

http://www.isc.org/dbi-lists.html
http://www.symbolstone.org/technology/perl/DBI

Programming the Perl DBI

 page 133

A.2.2 Notation and Conventions

The following conventions are used in this document:

$dbh

Database handle object

$sth

Statement handle object

$drh

Driver handle object (rarely seen or used in applications)

$h

Any of the handle types above ($dbh, $sth, or $drh)

$rc

General return code (boolean: true=ok, false=error)

$rv

General Return Value (typically an integer)

@ary

List of values returned from the database, typically a row of data

$rows

Number of rows processed (if available, else -1)

$fh

A filehandle

undef

NULL values are represented by undefined values in Perl

\%attr

Reference to a hash of attribute values passed to methods

Note that Perl will automatically destroy database and statement handle objects if all references to
them are deleted.

A.2.3 Outline Usage

To use DBI, first you need to load the DBI module:

use DBI;
use strict;

(The use strict; isn't required but is strongly recommended.)

Then you need to connect to your data source and get a handle for the connection:

$dbh = DBI->connect($dsn, $user, $password,
 { RaiseError => 1, AutoCommit => 0 });

Since connecting can be expensive, you generally just connect at the start of your program and
disconnect at the end.

Explicitly defining the required AutoCommit behavior is strongly recommended and may become
mandatory in a later version. This determines if changes are automatically committed to the database
when executed, or if they need to be explicitly committed later.

The DBI allows an application to "prepare" statements for later execution. A prepared statement is
identified by a statement handle held in a Perl variable. We'll call the Perl variable $sth in our
examples.

Programming the Perl DBI

 page 134

The typical method call sequence for a SELECT statement is:

prepare,
 execute, fetch, fetch, ...
 execute, fetch, fetch, ...
 execute, fetch, fetch, ...

For example:

$sth = $dbh->prepare("SELECT foo, bar FROM table WHERE baz=?");

$sth->execute($baz);

while (@row = $sth->fetchrow_array) {
 print "@row\n";
}

The typical method call sequence for a non-SELECT statement is:

prepare,
 execute,
 execute,
 execute.

For example:

$sth = $dbh->prepare("INSERT INTO table(foo,bar,baz) VALUES (?,?,?)");

while(<CSV>) {
 chop;
 my ($foo,$bar,$baz) = split /,/;
 $sth->execute($foo, $bar, $baz);
}

The do() method can be used for non-repeated, non-SELECT statements (or with drivers that don't
support placeholders):

$rows_affected = $dbh->do("UPDATE your_table SET foo = foo + 1");

To commit your changes to the database (when AutoCommit is off):

$dbh->commit; # or call $dbh->rollback; to undo changes

Finally, when you have finished working with the data source, you should disconnect from it:

$dbh->disconnect;

A.2.4 General Interface Rules and Caveats

The DBI does not have a concept of a "current session." Every session has a handle object (i.e., a $dbh)
returned from the connect method. That handle object is used to invoke database-related methods.

Most data is returned to the Perl script as strings. (Null values are returned as undef.) This allows
arbitrary precision numeric data to be handled without loss of accuracy. Beware that Perl may not
preserve the same accuracy when the string is used as a number.

Dates and times are returned as character strings in the native format of the corresponding database
engine. Time zone effects are database/driver-dependent.

Perl supports binary data in Perl strings, and the DBI will pass binary data to and from the driver
without change. It is up to the driver implementors to decide how they wish to handle such binary
data.

Most databases that understand multiple character sets have a default global charset. Text stored in
the database is, or should be, stored in that charset; if not, then that's the fault of either the database
or the application that inserted the data. When text is fetched, it should be automatically converted to
the charset of the client, presumably based on the locale. If a driver needs to set a flag to get that
behavior, then it should do so; it should not require the application to do that.

Multiple SQL statements may not be combined in a single statement handle ($sth), although some
databases and drivers do support this feature (notably Sybase and SQL Server).

Non-sequential record reads are not supported in this version of the DBI. In other words, records can
be fetched only in the order that the database returned them, and once fetched they are forgotten.

Programming the Perl DBI

 page 135

Positioned updates and deletes are not directly supported by the DBI. See the description of the
CursorName attribute for an alternative.

Individual driver implementors are free to provide any private functions and/or handle attributes that
they feel are useful. Private driver functions can be invoked using the DBI func() method. Private
driver attributes are accessed just like standard attributes.

Many methods have an optional \%attr parameter which can be used to pass information to the
driver implementing the method. Except where specifically documented, the \%attr parameter can
be used only to pass driver-specific hints. In general, you can ignore \%attr parameters or pass it as
undef.

A.2.5 Naming Conventions and Name Space

The DBI package and all packages below it (DBI::*) are reserved for use by the DBI. Extensions and
related modules use the DBIx:: namespace (see http://www.perl.com/CPAN/modules/by-
module/DBIx/). Package names beginning with DBD:: are reserved for use by DBI database drivers.
All environment variables used by the DBI or by individual DBDs begin with DBI_ or DBD_.

The letter case used for attribute names is significant and plays an important part in the portability of
DBI scripts. The case of the attribute name is used to signify who defined the meaning of that name
and its values, as the following table shows.

Case of Name Has a Meaning Defined By

UPPER_CASE Standards, e.g., X/Open, ISO SQL92, etc. (portable)

MixedCase DBI API (portable), underscores are not used

lower_case Driver or database engine specific (non-portable)

It is of the utmost importance that driver developers use only lowercase attribute names when
defining private attributes. Private attribute names must be prefixed with the driver name or suitable
abbreviation (e.g., ora_ for Oracle, ing_ for Ingres, etc.).

Here's a sample of the Driver Specific Prefix Registry:

ado_ DBD::ADO
best_ DBD::BestWins
csv_ DBD::CSV
db2_ DBD::DB2
f_ DBD::File
file_ DBD::TextFile
ib_ DBD::InterBase
ing_ DBD::Ingres
ix_ DBD::Informix
msql_ DBD::mSQL
mysql_ DBD::mysql
odbc_ DBD::ODBC
ora_ DBD::Oracle
proxy_ DBD::Proxy
solid_ DBD::Solid
syb_ DBD::Sybase
tuber_ DBD::Tuber
xbase_ DBD::XBase

A.2.6 SQL - A Query Language

Most DBI drivers require applications to use a dialect of SQL (Structured Query Language) to interact
with the database engine. The following URLs provide useful information and further links about
SQL:

http://www.altavista.com/query?q=sql+tutorial
http://www.jcc.com/sql_stnd.html
http://www.contrib.andrew.cmu.edu/~shadow/sql.html

http://www.perl.com/CPAN/modules/bymodule/DBIx/
http://www.altavista.com/query?q=sql+tutorial
http://www.jcc.com/sql_stnd.html
http://www.contrib.andrew.cmu.edu/~shadow/sql.html

Programming the Perl DBI

 page 136

The DBI itself does not mandate or require any particular language to be used; it is language-
independent. In ODBC terms, the DBI is in "pass-thru" mode, although individual drivers might not
be. The only requirement is that queries and other statements must be expressed as a single string of
characters passed as the first argument to the prepare or do methods.

For an interesting diversion on the real history of RDBMS and SQL, from the people who made it
happen, see:

http://ftp.digital.com/pub/DEC/SRC/technical-notes/SRC-1997-018-html/sqlr95.html

Follow the "And the rest" and "Intergalactic dataspeak" links for the SQL history.

A.2.7 Placeholders and Bind Values

Some drivers support placeholders and bind values. Placeholders, also called parameter markers, are
used to indicate values in a database statement that will be supplied later, before the prepared
statement is executed. For example, an application might use the following to insert a row of data into
the sales table:

INSERT INTO sales (product_code, qty, price) VALUES (?, ?, ?)

or the following, to select the description for a product:

SELECT description FROM products WHERE product_code = ?

The ? characters are the placeholders. The association of actual values with placeholders is known as
binding, and the values are referred to as bind values.

When using placeholders with the SQL LIKE qualifier, you must remember that the placeholder
substitutes for the whole string. So you should use "... LIKE ? ..." and include any wildcard
characters in the value that you bind to the placeholder.

A.2.7.1 Null values

Undefined values, or undef, can be used to indicate null values. However, care must be taken in the
particular case of trying to use null values to qualify a SELECT statement.

For example:

SELECT description FROM products WHERE product_code = ?

Binding an undef (NULL) to the placeholder will not select rows that have a NULL product_code.
(Refer to the SQL manual for your database engine or any SQL book for the reasons for this.) To
explicitly select NULLs, you have to say "WHERE product_code IS NULL" and to make that general,
you have to say:

... WHERE (product_code = ? OR (? IS NULL AND product_code IS NULL))

and bind the same value to both placeholders.

A.2.7.2 Performance

Without using placeholders, the insert statement shown previously would have to contain the literal
values to be inserted and would have to be re-prepared and re-executed for each row. With
placeholders, the insert statement needs to be prepared only once. The bind values for each row can
be given to the execute method each time it's called. By avoiding the need to re-prepare the
statement for each row, the application typically runs many times faster.

Here's an example:

my $sth = $dbh->prepare(q{
 INSERT INTO sales (product_code, qty, price) VALUES (?, ?, ?)
}) || die $dbh->errstr;
while (<>) {
 chop;
 my ($product_code, $qty, $price) = split /,/;
 $sth->execute($product_code, $qty, $price) || die $dbh->errstr;
}
$dbh->commit || die $dbh->errstr;

See execute and bind_ param for more details.

http://ftp.digital.com/pub/DEC/SRC/technical-notes/SRC-1997-018-html/sqlr95.html

Programming the Perl DBI

 page 137

The q{...} style quoting used in this example avoids clashing with quotes that may be used in the
SQL statement. Use the double-quote like the qq{...} operator if you want to interpolate variables
into the string. See the section on "Quote and Quote-Like Operators" in the perlop manpage for more
details.

See also the bind_column method, which is used to associate Perl variables with the output columns
of a SELECT statement.

A.3 The DBI Class

In this section, we cover the DBI class methods, utility functions, and the dynamic attributes
associated with generic DBI handles.

A.3.1 DBI Class Methods

The following methods are provided by the DBI class:

connect

$dbh = DBI->connect($data_source, $username, $password)
 || die $DBI::errstr;
$dbh = DBI->connect($data_source, $username, $password, \%attr)
 || die $DBI::errstr;

connect establishes a database connection, or session, to the requested $data_source . Returns a
database handle object if the connection succeeds. Use $dbh->disconnect to terminate the
connection.

If the connect fails (see below), it returns undef and sets both $DBI::err and $DBI::errstr. (It does
not set $!, etc.) You should generally test the return status of connect and print $DBI::errstr if it
has failed.

Multiple simultaneous connections to multiple databases through multiple drivers can be made via
the DBI. Simply make one connect call for each database and keep a copy of each returned database
handle.

The $data_source value should begin with dbi:driver_name:. The driver_name specifies the
driver that will be used to make the connection. (Letter case is significant.)

As a convenience, if the $data_source parameter is undefined or empty, the DBI will substitute the
value of the environment variable DBI_DSN. If just the driver_name part is empty (i.e., the
$data_source prefix is dbi::), the environment variable DBI_DRIVER is used. If neither variable is
set, then connect dies.

Examples of $data_source values are:

dbi:DriverName:database_name
dbi:DriverName:database_name@hostname:port
dbi:DriverName:database=database_name;host=hostname;port=port

There is no standard for the text following the driver name. Each driver is free to use whatever syntax
it wants. The only requirement the DBI makes is that all the information is supplied in a single string.
You must consult the documentation for the drivers you are using for a description of the syntax they
require. (Where a driver author needs to define a syntax for the $data_source, it is recommended
that he or she follow the ODBC style, shown in the last example above.)

Programming the Perl DBI

 page 138

If the environment variable DBI_AUTOPROXY is defined (and the driver in $data_source is not Proxy)
then the connect request will automatically be changed to:

dbi:Proxy:$ENV{DBI_AUTOPROXY};dsn=$data_source

and passed to the DBD::Proxy module. DBI_AUTOPROXY is typically set as "hostname=...;port=...".
See the DBD::Proxy documentation for more details.

If $username or $password are undefined (rather than just empty), then the DBI will substitute the
values of the DBI_USER and DBI_PASS environment variables, respectively. The DBI will warn if the
environment variables are not defined. However, the everyday use of these environment variables is
not recommended for security reasons. The mechanism is primarily intended to simplify testing.

DBI->connect automatically installs the driver if it has not been installed yet. Driver installation
either returns a valid driver handle, or it dies with an error message that includes the string
install_driver and the underlying problem. So DBI->connect will die on a driver installation
failure and will only return undef on a connect failure, in which case $DBI::errstr will hold the error
message.

The $data_source argument (with the "dbi:...:" prefix removed) and the $username and
$password arguments are then passed to the driver for processing. The DBI does not define any
interpretation for the contents of these fields. The driver is free to interpret the $data_source,
$username, and $password fields in any way, and supply whatever defaults are appropriate for the
engine being accessed. (Oracle, for example, uses the ORACLE_SID and TWO_TASK environment
variables if no $data_source is specified.)

The AutoCommit and PrintError attributes for each connection default to "on." (See AutoCommit and
PrintError for more information.) However, it is strongly recommended that you explicitly define
AutoCommit rather than rely on the default. Future versions of the DBI may issue a warning if
AutoCommit is not explicitly defined.

The \%attr parameter can be used to alter the default settings of PrintError, RaiseError ,
AutoCommit, and other attributes. For example:

$dbh = DBI->connect($data_source, $user, $pass, {
 PrintError => 0,
 AutoCommit => 0
});

You can also define connection attribute values within the $data_source parameter. For example:

dbi:DriverName(PrintError=>0,Taint=>1):...

Individual attribute values specified in this way take precedence over any conflicting values specified
via the \%attr parameter to connect.

Where possible, each session ($dbh) is independent from the transactions in other sessions. This is
useful when you need to hold cursors open across transactions - for example, if you use one session for
your long lifespan cursors (typically read-only) and another for your short update transactions.

For compatibility with old DBI scripts, the driver can be specified by passing its name as the fourth
argument to connect (instead of \%attr):

$dbh = DBI->connect($data_source, $user, $pass, $driver);

In this "old-style" form of connect, the $data_source should not start with dbi:driver_name:. (If it
does, the embedded driver_name will be ignored). Also note that in this older form of connect, the
$dbh->{AutoCommit} attribute is undefined, the $dbh->{PrintError} attribute is off, and the old
DBI_DBNAME environment variable is checked if DBI_DSN is not defined. Beware that this "old-style"
connect will be withdrawn in a future version of DBI.

Programming the Perl DBI

 page 139

connect_cached (NEW)

$dbh = DBI->connect_cached($data_source, $username, $password)
 || die $DBI::errstr;
$dbh = DBI->connect_cached($data_source, $username, $password,
\%attr)
 || die $DBI::errstr;

connect_cached is like connect, except that the database handle returned is also stored in a hash
associated with the given parameters. If another call is made to connect_cached with the same
parameter values, then the corresponding cached $dbh will be returned if it is still valid. The cached
database handle is replaced with a new connection if it has been disconnected or if the ping method
fails.

Note that the behavior of this method differs in several respects from the behavior of persistent
connections implemented by Apache::DBI.

Caching can be useful in some applications, but it can also cause problems and should be used with
care. The exact behavior of this method is liable to change, so if you intend to use it in any production
applications you should discuss your needs on the dbi-users mailing list.

The cache can be accessed (and cleared) via the CachedKids attribute.

available_drivers

@ary = DBI->available_drivers;
@ary = DBI->available_drivers($quiet);

Returns a list of all available drivers by searching for DBD::* modules through the directories in @INC.
By default, a warning is given if some drivers are hidden by others of the same name in earlier
directories. Passing a true value for $quiet will inhibit the warning.

data_sources

@ary = DBI->data_sources($driver);
@ary = DBI->data_sources($driver, \%attr);

Returns a list of all data sources (databases) available via the named driver. The driver will be loaded
if it hasn't been already. If $driver is empty or undef, then the value of the DBI_DRIVER environment
variable is used.

Data sources are returned in a form suitable for passing to the connect method (that is, they will
include the dbi:$driver: prefix).

Note that many drivers have no way of knowing what data sources might be available. These drivers
return an empty or incomplete list.

Programming the Perl DBI

 page 140

trace

DBI->trace($trace_level)
DBI->trace($trace_level, $trace_filename)

DBI trace information can be enabled for all handles using the trace DBI class method. To enable
trace information for a specific handle, use the similar $h->trace method described elsewhere.

Trace levels are as follows:

Trace level 1 is best for a simple overview of what's happening. Trace level 2 is a good choice for
general purpose tracing. Levels 3 and above (up to 9) are best reserved for investigating a specific
problem, when you need to see "inside" the driver and DBI.

The trace output is detailed and typically very useful. Much of the trace output is formatted using the
neat function, so strings may be edited and truncated.

Initially, trace output is written to STDERR. If $trace_filename is specified, the file is opened in
append mode and all trace output (including that from other handles) is redirected to that file.
Further calls to trace without a $trace_filename do not alter where the trace output is sent. If
$trace_filename is undefined, then trace output is sent to STDERR and the previous trace file is
closed.

See also the $h->trace and $h->trace_msg methods for information about the DBI_TRACE
environment variable.

A.3.2 DBI Utility Functions

In addition to the methods listed in the previous section, the DBI package also provides the following
utility functions:

neat

$str = DBI::neat($value, $maxlen);

Returns a string containing a neat (and tidy) representation of the supplied value.

Strings will be quoted, although internal quotes will not be escaped. Values known to be numeric will
be unquoted. Undefined (NULL) values will be shown as undef (without quotes). Unprintable
characters will be replaced by a dot (.).

For result strings longer than $maxlen, the result string will be truncated to $maxlen-4, and "...'"
will be appended. If $maxlen is 0 or undef, it defaults to $DBI::neat_maxlen, which, in turn, defaults
to 400.

This function is designed to format values for human consumption. It is used internally by the DBI for
trace output. It should typically not be used for formatting values for database use. (See also quote.)

Programming the Perl DBI

 page 141

neat_list

$str = DBI::neat_list(\@listref, $maxlen, $field_sep);

Calls DBI::neat on each element of the list and returns a string containing the results joined with
$field_sep. $field_sep defaults to ", ".

looks_like_number

@bool = DBI::looks_like_number(@array);

Returns true for each element that looks like a number. Returns false for each element that does not
look like a number. Returns undef for each element that is undefined or empty.

A.3.3 DBI Dynamic Attributes

Dynamic attributes are always associated with the last handle used (that handle is represented by $h
in the descriptions below).

Where an attribute is equivalent to a method call, refer to the method call for all related
documentation.

Warning: these attributes are provided as a convenience, but they do have limitations. Specifically,
they have a short lifespan: because they are associated with the last handle used, they should be used
only immediately after calling the method that "sets" them. If in any doubt, use the corresponding
method call.

$DBI::err

Equivalent to $h->err.

$DBI::errstr

Equivalent to $h->errstr.

$DBI::state

Equivalent to $h->state.

$DBI::rows

Equivalent to $h->rows. Please refer to the documentation for the rows method.

Programming the Perl DBI

 page 142

A.4 Methods Common to All Handles

The following methods can be used by all types of DBI handles:

err

$rv = $h->err;

Returns the native database engine error code from the last driver method called. The code is
typically an integer, but you should not assume that.

The DBI resets $h->err to undef before most DBI method calls, so the value has only a short lifespan.
Also, most drivers share the same error variables across all their handles, so calling a method on one
handle will typically reset the error on all the other handles that are children of that driver.

If you need to test for individual errors and have your program be portable to different database
engines, then you'll need to determine what the corresponding error codes are for all those engines,
and test for all of them.

errstr

$str = $h->errstr;

Returns the native database engine error message from the last driver method called. This has the
same lifespan issues as the err method described above.

state

$str = $h->state;

Returns an error code in the standard SQLSTATE five-character format. Note that the specific success
code 00000 is translated to 0 (false). If the driver does not support SQLSTATE (and most don't), then
state will return S1000 (General Error) for all errors.

Programming the Perl DBI

 page 143

trace

$h->trace($trace_level);
$h->trace($trace_level, $trace_filename);

DBI trace information can be enabled for a specific handle (and any future children of that handle) by
setting the trace level using the trace method.

Trace level 1 is best for a simple overview of what's happening. Trace level 2 is a good choice for
general-purpose tracing. Levels 3 and above (up to 9) are best reserved for investigating a specific
problem, when you need to see "inside" the driver and DBI. Set $trace_level to 0 to disable the
trace.

The trace output is detailed and typically very useful. Much of the trace output is formatted using the
neat function, so strings may be edited and truncated.

Initially, trace output is written to STDERR. If $trace_filename is specified, then the file is opened in
append mode and all trace output (including that from other handles) is redirected to that file.
Further calls to trace without a $trace_filename do not alter where the trace output is sent. If
$trace_filename is undefined, then trace output is sent to STDERR and the previous trace file is
closed.

See also the DBI->trace method for information about the DBI_TRACE environment variable.

trace_msg

$h->trace_msg($message_text);
$h->trace_msg($message_text, $min_level);

Writes $message_text to the trace file if trace is enabled for $h or for the DBI as a whole. Can also
be called as DBI- >trace_msg($msg). See trace.

If $min_level is defined, then the message is output only if the trace level is equal to or greater than
that level. $min_level defaults to 1.

func

$h->func(@func_arguments, $func_name);

The func method can be used to call private non-standard and non-portable methods implemented by
the driver. Note that the function name is given as the last argument.

This method is not directly related to calling stored procedures. Calling stored procedures is currently
not defined by the DBI. Some drivers, such as DBD::Oracle, support it in non-portable ways.

See driver documentation for more details.

Programming the Perl DBI

 page 144

A.5 Attributes Common to All Handles

These attributes are common to all types of DBI handles.

Some attributes are inherited by child handles. That is, the value of an inherited attribute in a newly
created statement handle is the same as the value in the parent database handle. Changes to
attributes in the new statement handle do not affect the parent database handle and changes to the
database handle do not affect existing statement handles, only future ones.

Attempting to set or get the value of an unknown attribute is fatal, except for private driver-specific
attributes (which all have names starting with a lowercase letter).

For example:

$h->{AttributeName} = ...; # set/write
... = $h->{AttributeName}; # get/read

Warn (boolean, inherited)

Enables useful warnings for certain bad practices. Enabled by default. Some emulation layers,
especially those for Perl 4 interfaces, disable warnings. Since warnings are generated using the Perl
warn function, they can be intercepted using the Perl $SIG{_ _WARN_ _} hook.

Active (boolean, read-only)

True if the handle object is "active." This is rarely used in applications. The exact meaning of active is
somewhat vague at the moment. For a database handle, it typically means that the handle is
connected to a database ($dbh->disconnect sets Active off). For a statement handle, it typically
means that the handle is a SELECT that may have more data to fetch. (Fetching all the data or calling
$sth->finish sets Active off.)

Kids (integer, read-only)

For a driver handle, Kids is the number of currently existing database handles that were created from
that driver handle. For a database handle, Kids is the number of currently existing statement handles
that were created from that database handle.

Programming the Perl DBI

 page 145

ActiveKids (integer, read-only)

Like Kids, but only counting those that are Active (as above).

CachedKids (hash ref)

For a database handle, returns a reference to the cache (hash) of statement handles created by the
prepare_cached method. For a driver handle, returns a reference to the cache (hash) of database
handles created by the connect_cached method.

CompatMode (boolean, inherited)

Used by emulation layers (such as Oraperl) to enable compatible behavior in the underlying driver
(e.g., DBD::Oracle) for this handle. Not normally set by application code.

InactiveDestroy (boolean)

This attribute can be used to disable the database engine related effect of destroying a handle (which
would normally close a prepared statement or disconnect from the database, etc.).

For a database handle, this attribute does not disable an explicit call to the disconnect method, only
the implicit call from DESTROY.

This attribute is specifically designed for use in Unix applications that "fork" child processes. Either
the parent or the child process, but not both, should set InactiveDestroy on all their shared handles.

Programming the Perl DBI

 page 146

PrintError (boolean, inherited)

This attribute can be used to force errors to generate warnings (using warn) in addition to returning
error codes in the normal way. When set "on," any method that results in an error occurring will
cause the DBI to effectively do a warn("$class $method failed: $DBI::errstr") where $class is
the driver class, and $method is the name of the method which failed.

For example:

DBD::Oracle::db prepare failed: ... error text here ...

By default, DBI->connect sets PrintError to "on."

If desired, the warnings can be caught and processed using a $SIG{_ _WARN_ _} handler or modules
like CGI::Carp and CGI::ErrorWrap.

RaiseError (boolean, inherited)

This attribute can be used to force errors to raise exceptions rather than simply return error codes in
the normal way. It is "off " by default. When set to "on", any method that results in an error will cause
the DBI to effectively do a die("$class $method failed: $DBI::errstr"), where $class is the
driver class, and $method is the name of the method that failed. For example:

DBD::Oracle::db prepare failed: ... error text here ...

If PrintError is also on, then the PrintError is done before the RaiseError unless no _ _DIE_ _
handler has been defined, in which case PrintError is skipped, since the die will print the message.

If you want to temporarily turn RaiseError off (inside a library function that is likely to fail, for
example), the recommended way is like this:

{
 local $h->{RaiseError}; # localize and turn off for this block
 ...
}

The original value will automatically and reliably be restored by Perl, regardless of how the block is
exited. The same logic applies to other attributes, including PrintError.

Sadly, this doesn't work for Perl versions up to and including 5.004_04. For backwards compatibility,
you could just use eval { ... } instead.

Programming the Perl DBI

 page 147

ChopBlanks (boolean, inherited)

This attribute can be used to control the trimming of trailing space characters from fixed-width
character (CHAR) fields. No other field types are affected, even where field values have trailing
spaces.

The default is false (although it is possible that the default may change). Applications that need
specific behavior should set the attribute as needed. Emulation interfaces should set the attribute to
match the behavior of the interface they are emulating.

Drivers are not required to support this attribute, but any driver that does not support it must arrange
to return undef as the attribute value.

LongReadLen (unsigned integer, inherited)

This attribute may be used to control the maximum length of long fields ("blob," "memo," etc.), which
the driver will read from the database automatically when it fetches each row of data. The
LongReadLen attribute relates only to fetching and reading long values; it is not involved in inserting
or updating them.

A value of 0 means not to automatically fetch any long data. (fetch should return undef for long
fields when LongReadLen is 0.)

The default is typically 0 (zero) bytes but may vary between drivers. Applications fetching long fields
should set this value to slightly larger than the longest long field value to be fetched.

Some databases return some long types encoded as pairs of hex digits. For these types, LongReadLen
relates to the underlying data length and not the doubled-up length of the encoded string.

Changing the value of LongReadLen for a statement handle after it has been prepare'd will typically
have no effect, so it's common to set LongReadLen on the $dbh before calling prepare.

Note that the value used here has a direct effect on the memory used by the application, so don't be
too generous.

See LongTruncOk for more information on truncation behavior.

Programming the Perl DBI

 page 148

LongTruncOk (boolean, inherited)

This attribute may be used to control the effect of fetching a long field value that has been truncated
(typically because it's longer than the value of the LongReadLen attribute).

By default, LongTruncOk is false, and so fetching a long value that needs to be truncated will cause the
fetch to fail. (Applications should always be sure to check for errors after a fetch loop in case an error,
such as a divide by zero or long field truncation, caused the fetch to terminate prematurely.)

If a fetch fails due to a long field truncation when LongTruncOk is false, many drivers will allow you to
continue fetching further rows.

See also LongReadLen.

Taint (boolean, inherited)

If this attribute is set to a true value and Perl is running in taint mode (e.g., started with the -T
option), then all data fetched from the database is tainted, and the arguments to most DBI method
calls are checked for being tainted. This may change.

The attribute defaults to off, even if Perl is in taint mode. See the perlsec manpage for more about
taint mode. If Perl is not running in taint mode, this attribute has no effect.

When fetching data that you can trust, you can turn off the taint attribute for that statement handle,
for the duration of the fetch loop.

Currently only fetched data is tainted. It is possible that the results of other DBI method calls, and the
value of fetched attributes, may also be tainted in future versions. That change may well break your
applications unless you take great care now. If you use DBI taint mode, please report your experience
and any suggestions for changes.

private_*

The DBI provides a way to store extra information in a DBI handle as "private" attributes. The DBI
will allow you to store and retrieve any attribute that has a name starting with private_. It is strongly
recommended that you use just one private attribute (e.g., use a hash ref) and give it a long and
unambiguous name that includes the module or application name that the attribute relates to (e.g.,
private_YourFullModuleName_thingy).

Programming the Perl DBI

 page 149

A.6 DBI Database Handle Objects

This section covers the methods and attributes associated with database handles.

A.6.1 Database Handle Methods

The following methods are specified for DBI database handles:

do

$rc = $dbh->do($statement) || die $dbh->errstr;
$rc = $dbh->do($statement, \%attr) || die $dbh->errstr;
$rv = $dbh->do($statement, \%attr, @bind_values) || ...

Prepares and executes a single statement. Returns the number of rows affected or undef on error. A
return value of -1 means the number of rows is not known or is not available.

This method is typically most useful for non-SELECT statements that either cannot be prepared in
advance (due to a limitation of the driver) or do not need to be executed repeatedly. It should not be
used for SELECT statements because it does not return a statement handle (so you can't fetch any
data).

The default do method is logically similar to:

sub do {
 my($dbh, $statement, $attr, @bind_values) = @_;
 my $sth = $dbh->prepare($statement, $attr) or return undef;
 $sth->execute(@bind_values) or return undef;
 my $rows = $sth->rows;
 ($rows == 0) ? "0E0" : $rows; # always return true if no error
}

For example:

my $rows_deleted = $dbh->do(q{
 DELETE FROM table
 WHERE status = ?
}, undef, 'DONE') || die $dbh->errstr;

Using placeholders and @bind_values with the do method can be useful because it avoids the need to
correctly quote any variables in the $statement. But if you'll be executing the statement many times,
then it's more efficient to prepare it once and call execute many times instead.

The q{...} style quoting used in this example avoids clashing with quotes that may be used in the
SQL statement. Use the double-quote-like qq{...} operator if you want to interpolate variables into
the string. See the section on "Quote and Quote-Like Operators" in the perlop manpage for more
details.

Programming the Perl DBI

 page 150

selectrow_array

@row_ary = $dbh->selectrow_array($statement);
@row_ary = $dbh->selectrow_array($statement, \%attr);
@row_ary = $dbh->selectrow_array($statement, \%attr,
@bind_values);

This utility method combines prepare, execute, and fetchrow_array into a single call. If called in a
list context, it returns the first row of data from the statement. If called in a scalar context, it returns
the first field of the first row. The $statement parameter can be a previously prepared statement
handle, in which case the prepare is skipped.

If any method fails, and RaiseError is not set, selectrow_array will return an empty list.

In a scalar context, selectrow_array returns the value of the first field. An undef is returned if there
are no matching rows or if an error occurred. Since that undef can't be distinguished from an undef
returned because the first field value was NULL, calling selectrow_array in a scalar context should
be used with caution.

selectall_arrayref

$ary_ref = $dbh->selectall_arrayref($statement);
$ary_ref = $dbh->selectall_arrayref($statement, \%attr);
$ary_ref = $dbh->selectall_arrayref($statement, \%attr,
@bind_values);

This utility method combines prepare, execute, and fetchall_arrayref into a single call. It
returns a reference to an array containing a reference to an array for each row of data fetched.

The $statement parameter can be a previously prepared statement handle, in which case the prepare
is skipped. This is recommended if the statement is going to be executed many times.

If any method except fetch fails, and RaiseError is not set, selectall_arrayref will return undef.
If fetch fails, and RaiseError is not set, then it will return with whatever data it has fetched thus far.

selectcol_arrayref

$ary_ref = $dbh->selectcol_arrayref($statement);
$ary_ref = $dbh->selectcol_arrayref($statement, \%attr);
$ary_ref = $dbh->selectcol_arrayref($statement, \%attr,
@bind_values);

This utility method combines prepare, execute, and fetching one column from all the rows, into a
single call. It returns a reference to an array containing the values of the first column from each row.

The $statement parameter can be a previously prepared statement handle, in which case the prepare
is skipped. This is recommended if the statement is going to be executed many times.

If any method except fetch fails, and RaiseError is not set, selectcol_arrayref will return undef.
If fetch fails and RaiseError is not set, then it will return with whatever data it has fetched thus far.

Programming the Perl DBI

 page 151

prepare

$sth = $dbh->prepare($statement) || die $dbh->errstr;
$sth = $dbh->prepare($statement, \%attr) || die $dbh->errstr;

Prepares a single statement for later execution by the database engine and returns a reference to a
statement handle object.

The returned statement handle can be used to get attributes of the statement and invoke the execute
method. See "Statement Handle Methods."

Drivers for engines without the concept of preparing a statement will typically just store the statement
in the returned handle and process it when $sth->execute is called. Such drivers are unlikely to give
much useful information about the statement, such as $sth->{NUM_OF_FIELDS}, until after $sth-
>execute has been called. Portable applications should take this into account.

In general, DBI drivers do not parse the contents of the statement (other than simply counting any
placeholders). The statement is passed directly to the database engine, sometimes known as pass-
thru mode. This has advantages and disadvantages. On the plus side, you can access all the
functionality of the engine being used. On the downside, you're limited if you're using a simple
engine, and you need to take extra care if you're writing applications intended to be portable between
engines.

Portable applications should not assume that a new statement can be prepared and/or executed while
still fetching results from a previous statement.

Some command-line SQL tools use statement terminators, like a semicolon, to indicate the end of a
statement. Such terminators should not normally be used with the DBI.

prepare_cached

$sth = $dbh->prepare_cached($statement)
$sth = $dbh->prepare_cached($statement, \%attr)
$sth = $dbh->prepare_cached($statement, \%attr, $allow_active)

Like prepare except that the statement handle returned will be stored in a hash associated with the
$dbh. If another call is made to prepare_cached with the same $statement and %attr values, then
the corresponding cached $sth will be returned without contacting the database server.

This caching can be useful in some applications, but it can also cause problems and should be used
with care. A warning will be generated if the cached $sth being returned is active (i.e., it is a SELECT
that may still have data to be fetched). This warning can be suppressed by setting $allow_active to
true. The cache can be accessed (and cleared) via the CachedKids attribute.

Here's an example of one possible use of prepare_cached:

while (($field, $value) = each %search_fields) {
 push @sql, "$field = ?";
 push @values, $value;
}
$qualifier = "";
$qualifier = "where ".join(" and ", @sql) if @sql;
$sth = $dbh->prepare_cached("SELECT * FROM table $qualifier");
$sth->execute(@values);

Programming the Perl DBI

 page 152

commit

$rc = $dbh->commit || die $dbh->errstr;

Commits (makes permanent) the most recent series of database changes if the database supports
transactions and AutoCommit is off.

If AutoCommit is on, then calling commit will issue a "commit ineffective with AutoCommit" warning.

rollback

$rc = $dbh->rollback || die $dbh->errstr;

Rolls back (undoes) the most recent series of uncommitted database changes if the database supports
transactions and AutoCommit is off.

If AutoCommit is on, then calling rollback will issue a "rollback ineffective with AutoCommit"
warning.

disconnect

$rc = $dbh->disconnect || warn $dbh->errstr;

Disconnects the database from the database handle. disconnect is typically used only before exiting
the program. The handle is of little use after disconnecting.

The transaction behavior of the disconnect method is, sadly, undefined. Some database systems
(such as Oracle and Ingres) will automatically commit any outstanding changes, but others (such as
Informix) will roll back any outstanding changes. Applications not using AutoCommit should
explicitly call commit or rollback before calling disconnect.

The database is automatically disconnected by the DESTROY method if still connected when there are
no longer any references to the handle. The DESTROY method for each driver should implicitly call
rollback to undo any uncommitted changes. This is vital behavior to ensure that incomplete
transactions don't get committed simply because Perl calls DESTROY on every object before exiting.
Also, do not rely on the order of object destruction during "global destruction," as it is undefined.

Generally, if you want your changes to be commited or rolled back when you disconnect, then you
should explicitly call commit or rollback before disconnecting.

If you disconnect from a database while you still have active statement handles, you will get a warning.
The statement handles should either be cleared (destroyed) before disconnecting, or the finish
method should be called on each one.

Programming the Perl DBI

 page 153

ping

$rc = $dbh->ping;

Attempts to determine, in a reasonably efficient way, if the database server is still running and the
connection to it is still working. Individual drivers should implement this function in the most
suitable manner for their database engine.

The current default implementation always returns true without actually doing anything. Actually, it
returns "0 but true", which is true but zero. That way you can tell if the return value is genuine or
just the default. Drivers should override this method with one that does the right thing for their type
of database.

Few applications would have use for this method. See the specialized Apache::DBI module for one
example usage.

table_info (NEW)

$sth = $dbh->table_info;

Warning: This method is experimental and may change.

Returns an active statement handle that can be used to fetch information about tables and views that
exist in the database.

The handle has at least the following fields in the order show below. Other fields, after these, may also
be present.

Note that table_info might not return records for all tables. Applications can use any valid table
regardless of whether it's returned by table_info. See also tables.

For more detailed information about the fields and their meanings, refer to:

If that URL ceases to work, then use the MSDN search facility at:

and search for SQLTables returns using the exact phrase option. The link you want will probably
just be called SQLTables and will be part of the Data Access SDK.

tables (NEW)

@names = $dbh->tables;

Warning: This method is experimental and may change.

Returns a list of table and view names, possibly including a schema prefix. This list should include all
tables that can be used in a SELECT statement without further qualification.

Note that table_info might not return records for all tables. Applications can use any valid table
regardless of whether it's returned by tables. See also table_info.

Programming the Perl DBI

 page 154

type_info_all (NEW)

$type_info_all = $dbh->type_info_all;

Warning: This method is experimental and may change.

Returns a reference to an array that holds information about each datatype variant supported by the
database and driver. The array and its contents should be treated as read-only.

The first item is a reference to a hash of Name => Index pairs. The following items are references to
arrays, one per supported datatype variant. The leading hash defines the names and order of the
fields within the following list of arrays. For example:

$type_info_all = [
 { TYPE_NAME => 0,
 DATA_TYPE => 1,
 COLUMN_SIZE => 2, # was PRECISION originally
 LITERAL_PREFIX => 3,
 LITERAL_SUFFIX => 4,
 CREATE_PARAMS => 5,
 NULLABLE => 6,
 CASE_SENSITIVE => 7,
 SEARCHABLE => 8,
 UNSIGNED_ATTRIBUTE=> 9,
 FIXED_PREC_SCALE => 10, # was MONEY originally
 AUTO_UNIQUE_VALUE => 11, # was AUTO_INCREMENT originally
 LOCAL_TYPE_NAME => 12,
 MINIMUM_SCALE => 13,
 MAXIMUM_SCALE => 14,
 NUM_PREC_RADIX => 15,
 },
 ['VARCHAR', SQL_VARCHAR,
 undef, "'","'", undef,0, 1,1,0,0,0,undef,1,255, undef
],
 ['INTEGER', SQL_INTEGER,
 undef, "", "", undef,0, 0,1,0,0,0,undef,0, 0, 10
],
];

Note that more than one row may have the same value in the DATA_TYPE field if there are different
ways to spell the type name and/or there are variants of the type with different attributes (e.g., with
and without AUTO_UNIQUE_VALUE set, with and without UNSIGNED_ATTRIBUTE, etc.).

The rows are ordered by DATA_TYPE first and then by how closely each type maps to the corresponding
ODBC SQL datatype, closest first.

The meaning of the fields is described in the documentation for the type_info method. The index
values shown above (e.g., NULLABLE => 6) are for illustration only. Drivers may define the fields with
a different order.

This method is not normally used directly. The type_info method provides a more useful interface to
the data.

Programming the Perl DBI

 page 155

type_info (NEW)

@type_info = $dbh->type_info($data_type);

Warning: This method is experimental and may change.

Returns a list of hash references holding information about one or more variants of $data_type. The
list is ordered by DATA_TYPE first and then by how closely each type maps to the corresponding ODBC
SQL datatype, closest first. If called in a scalar context then only the first (best) element is returned.

If $data_type is undefined or SQL_ALL_TYPES, then the list will contain hashes for all datatype
variants supported by the database and driver.

If $data_type is an array reference, then type_info returns the information for the first type in the
array that has any matches.

The keys of the hash follow the same letter case conventions as the rest of the DBI (see "Naming
Conventions and Name Space"). The following items should exist:

Since DBI and ODBC drivers vary in how they map their types into the ISO standard types, you may
need to search for more than one type. Here's an example looking for a usable type to store a date:

$my_date_type = $dbh->type_info([SQL_DATE, SQL_TIMESTAMP]);

Similarly, to more reliably find a type to store small integers, you could use a list starting with
SQL_SMALLINT, SQL_INTEGER, SQL_DECIMAL, etc.

For more detailed information about these fields and their meanings, refer to:

If that URL ceases to work, then use the MSDN search facility at:

and search the MSDN library for SQLGetTypeInfo returns using the exact phrase option. The link
you want will probably just be called SQLGetTypeInfo (there may be more than one).

The individual datatypes are currently described here:

If that URL ceases to work, or to get more general information, use the MSDN search facility as
described above, and search for SQL Data Types.

quote

$sql = $dbh->quote($value);
$sql = $dbh->quote($value, $data_type);

Quotes a string literal for use as a literal value in an SQL statement, by escaping any special characters
(such as quotation marks) contained within the string and adding the required type of outer quotation
marks.

$sql = sprintf "SELECT foo FROM bar WHERE baz = %s",
 $dbh->quote("Don't");

For most database types, quote would return 'Don''t' (including the outer quotation marks).

An undefined $value value will be returned as the string NULL (without quotation marks) to match
how NULLs are represented in SQL.

If $data_type is supplied, it is used to try to determine the required quoting behavior by using the
information returned by type_info. As a special case, the standard numeric types are optimized to
return $value without calling type_info.

Programming the Perl DBI

 page 156

quote will probably not be able to deal with all possible input (such as binary data or data containing
newlines), and is not related in any way with escaping or quoting shell meta-characters. There is no
need to quote values being used with placeholders and bind values.

A.6.2 Database Handle Attributes

This section describes attributes specific to database handles.

Changes to these database handle attributes do not affect any other existing or future database
handles.

Attempting to set or get the value of an unknown attribute is fatal, except for private driver-specific
attributes (which all have names starting with a lowercase letter).

For example:

$h->{AutoCommit} = ...; # set/write
... = $h->{AutoCommit}; # get/read

AutoCommit (boolean)

If true, then database changes cannot be rolled back (undone). If false, then database changes
automatically occur within a "transaction," which must either be committed or rolled back using the
commit or rollback methods.

Drivers should always default to AutoCommit mode (an unfortunate choice largely forced on the DBI
by ODBC and JDBC conventions.)

Attempting to set AutoCommit to an unsupported value is a fatal error. This is an important feature of
the DBI. Applications that need full transaction behavior can set $dbh->{AutoCommit} = 0 (or set
AutoCommit to 0 via connect) without having to check that the value was assigned successfully.

For the purposes of this description, we can divide databases into three categories:

A.6.2.1 Databases that don't support transactions at all

For these databases, attempting to turn AutoCommit off is a fatal error. commit and rollback both
issue warnings about being ineffective while AutoCommit is in effect.

A.6.2.2 Databases in which a transaction is always active

These are typically mainstream commercial relational databases with "ANSI standard" transaction
behavior. If AutoCommit is off, then changes to the database won't have any lasting effect unless
commit is called (but see also disconnect). If rollback is called, then any changes since the last
commit are undone.

If AutoCommit is on, then the effect is the same as if the DBI called commit automatically after every
successful database operation. In other words, calling commit or rollback explicitly while
AutoCommit is on would be ineffective because the changes would have already been commited.

Changing AutoCommit from off to on should issue a commit in most drivers.

Changing AutoCommit from on to off should have no immediate effect.

Programming the Perl DBI

 page 157

For databases that don't support a specific autocommit mode, the driver has to commit each
statement automatically using an explicit COMMIT after it completes successfully (and roll it back using
an explicit rollback if it fails). The error information reported to the application will correspond to
the statement that was executed, unless it succeeded and the commit or rollback failed.

A.6.2.3 Databases in which a transaction must be explicitly started

For these databases, the intention is to have them act like databases in which a transaction is always
active (as described earlier).

To do this, the DBI driver will automatically begin a transaction when AutoCommit is turned off (from
the default "on" state) and will automatically begin another transaction after a commit or rollback.
In this way, the application does not have to treat these databases as a special case.

See disconnect for other important notes about transactions.

Driver (handle)

Holds the handle of the parent driver. The only recommended use for this attribute is to find the
name of the driver using:

$dbh->{Driver}->{Name}

Name (string)

Holds the "name" of the database. Usually (and recommended to be) the same as the
"dbi:DriverName:..." string used to connect to the database, but with the leading
dbi:DriverName: removed.

RowCacheSize (integer) (NEW)

A hint to the driver indicating the size of the local row cache that the application would like the driver
to use for future SELECT statements. If a row cache is not implemented, then setting RowCacheSize is
ignored and getting the value returns undef.

Some RowCacheSize values have special meaning, as follows:

Note that large cache sizes may require a very large amount of memory (cached rows × maximum size
of row). Also, a large cache will cause a longer delay not only for the first fetch, but also whenever the
cache needs refilling.

See also the RowsInCache statement handle attribute.

Programming the Perl DBI

 page 158

A.7 DBI Statement Handle Objects

This section lists the methods and attributes associated with DBI statement handles.

A.7.1 Statement Handle Methods

The DBI defines the following methods for use on DBI statement handles:

bind_ param

$rc = $sth->bind_param($p_num, $bind_value) || die
$sth->errstr;
$rv = $sth->bind_param($p_num, $bind_value, \%attr) || ...
$rv = $sth->bind_param($p_num, $bind_value, $bind_type) || ...

The bind_ param method can be used to bind a value with a placeholder embedded in the prepared
statement. Placeholders are indicated with the question mark character (?). For example:

$dbh->{RaiseError} = 1; # save having to check each method call
$sth = $dbh->prepare("SELECT name, age FROM people WHERE name LIKE ?");
$sth->bind_param(1, "John%"); # placeholders are numbered from 1
$sth->execute;
DBI::dump_results($sth);

Note that the ? is not enclosed in quotation marks, even when the placeholder represents a string.
Some drivers also allow placeholders like :name and :n (e.g., :1, :2, and so on) in addition to ?, but
their use is not portable. Undefined bind values or undef can be used to indicate null values.

Some drivers do not support placeholders.

With most drivers, placeholders can't be used for any element of a statement that would prevent the
database server from validating the statement and creating a query execution plan for it. For example:

"SELECT name, age FROM ?" # wrong (will probably fail)
"SELECT name, ? FROM people" # wrong (but may not 'fail')

Also, placeholders can only represent single scalar values. For example, the following statement won't
work as expected for more than one value:

"SELECT name, age FROM people WHERE name IN (?)" # wrong

A.7.1.1 Datatypes for placeholders

The \%attr parameter can be used to hint at which datatype the placeholder should have. Typically,
the driver is interested in knowing only if the placeholder should be bound as a number or a string.
For example:

$sth->bind_param(1, $value, { TYPE => SQL_INTEGER });

As a shortcut for this common case, the datatype can be passed directly, in place of the \%attr hash
reference. This example is equivalent to the one above:

$sth->bind_param(1, $value, SQL_INTEGER);

The TYPE value indicates the standard (non-driver-specific) type for this parameter. To specify the
driver-specific type, the driver may support a driver-specific attribute, such as { ora_type => 97 }.
The datatype for a placeholder cannot be changed after the first bind_ param call. However, it can be
left unspecified, in which case it defaults to the previous value.

Perl only has string and number scalar datatypes. All database types that aren't numbers are bound as
strings and must be in a format the database will understand.

Programming the Perl DBI

 page 159

As an alternative to specifying the datatype in the bind_ param call, you can let the driver pass the
value as the default type (VARCHAR). You can then use an SQL function to convert the type within the
statement. For example:

INSERT INTO price(code, price) VALUES (?, CONVERT(MONEY,?))

The CONVERT function used here is just an example. The actual function and syntax will vary between
different databases and is non-portable.

See also Section A.2.7 for more information.

bind_param_inout

$rc = $sth->bind_param_inout($p_num, \$bind_value, $max_len) ||
die $sth->errstr;
$rv = $sth->bind_param_inout($p_num, \$bind_value, $max_len,
\%attr) || ...
$rv = $sth->bind_param_inout($p_num, \$bind_value, $max_len,
$bind_type) || ...

This method acts like bind_ param , but also enables values to be updated by the statement. The
statement is typically a call to a stored procedure. The $bind_value must be passed as a reference to
the actual value to be used.

Note that unlike bind_ param, the $bind_value variable is not read when bind_ param_inout is
called. Instead, the value in the variable is read at the time execute is called.

The additional $max_len parameter specifies the minimum amount of memory to allocate to
$bind_value for the new value. If the value returned from the database is too big to fit, then the
execution should fail. If unsure what value to use, pick a generous length, i.e., a length larger than the
longest value that would ever be returned. The only cost of using a larger value than needed is wasted
memory.

It is expected that few drivers will support this method. The only driver currently known to do so is
DBD::Oracle (DBD::ODBC may support it in a future release). Therefore, it should not be used for
database-independent applications.

Undefined values or undef are used to indicate null values. See also "Placeholders and Bind Values"
for more information.

execute

$rv = $sth->execute || die $sth->errstr;
$rv = $sth->execute(@bind_values) || die $sth->errstr;

Performs whatever processing is necessary to execute the prepared statement. An undef is returned if
an error occurs. A successful execute always returns true regardless of the number of rows affected,
even if it's zero (see below). It is always important to check the return status of execute (and most
other DBI methods) for errors.

For a non-SELECT statement, execute returns the number of rows affected, if known. If no rows were
affected, then execute returns 0E0, which Perl will treat as 0 but will regard as true. Note that it is not
an error for no rows to be affected by a statement. If the number of rows affected is not known, then
execute returns -1.

Programming the Perl DBI

 page 160

For SELECT statements, execute simply "starts" the query within the database engine. Use one of the
fetch methods to retrieve the data after calling execute. The execute method does not return the
number of rows that will be returned by the query (because most databases can't tell in advance), it
simply returns a true value.

If any arguments are given, then execute will effectively call bind_ param for each value before
executing the statement. Values bound in this way are usually treated as SQL_VARCHAR types unless
the driver can determine the correct type (which is rare), or unless bind_ param (or bind_
param_inout) has already been used to specify the type.

fetchrow_arrayref

$ary_ref = $sth->fetchrow_arrayref;
$ary_ref = $sth->fetch; # alias

Fetches the next row of data and returns a reference to an array holding the field values. Null fields
are returned as undef values in the array. This is the fastest way to fetch data, particularly if used with
$sth->bind_columns.

If there are no more rows, or if an error occurs, then fetchrow_arrayref returns an undef. You
should check $sth->err afterwards (or use the RaiseError attribute) to discover if the undef
returned was due to an error.

Note that the same array reference will currently be returned for each fetch, so don't store the
reference and then use it after a later fetch.

fetchrow_array

 @ary = $sth->fetchrow_array;

An alternative to fetchrow_arrayref . Fetches the next row of data and returns it as a list containing
the field values. Null fields are returned as undef values in the list.

If there are no more rows, or if an error occurs, then fetchrow_array returns an empty list. You
should check $sth->err afterwards (or use the RaiseError attribute) to discover if the empty list
returned was due to an error.

In a scalar context, fetchrow_array returns the value of the first field. An undef is returned if there
are no more rows or if an error occurred. Since that undef can't be distinguished from an undef
returned because the first field value was NULL, you should exercise some caution if you use
fetchrow_array in a scalar context.

Programming the Perl DBI

 page 161

fetchrow_hashref

 $hash_ref = $sth->fetchrow_hashref;
 $hash_ref = $sth->fetchrow_hashref($name);

An alternative to fetchrow_arrayref . Fetches the next row of data and returns it as a reference to a
hash containing field name and field value pairs. Null fields are returned as undef values in the hash.

If there are no more rows, or if an error occurs, then fetchrow_hashref returns an undef. You
should check $sth->err afterwards (or use the RaiseError attribute) to discover if the undef
returned was due to an error.

The optional $name parameter specifies the name of the statement handle attribute. For historical
reasons it defaults to NAME; however, using either NAME_lc or NAME_uc is recommended for portability.

The keys of the hash are the same names returned by $sth->{$name}. If more than one field has the
same name, there will only be one entry in the returned hash for those fields.

Because of the extra work fetchrow_hashref and Perl have to perform, this attribute is not as
efficient as fetchrow_arrayref or fetchrow_array.

Currently, a new hash reference is returned for each row. This will change in the future to return the
same hash ref each time, so don't rely on the current behavior.

fetchall_arrayref

$tbl_ary_ref = $sth->fetchall_arrayref;
$tbl_ary_ref = $sth->fetchall_arrayref($slice_array_ref);
$tbl_ary_ref = $sth->fetchall_arrayref($slice_hash_ref);

The fetchall_arrayref method can be used to fetch all the data to be returned from a prepared and
executed statement handle. It returns a reference to an array that contains one reference per row.

If there are no rows to return, fetchall_arrayref returns a reference to an empty array. If an error
occurs, fetchall_arrayref returns the data fetched thus far, which may be none. You should check
$sth->err afterwards (or use the RaiseError attribute) to discover if the data is complete or was
truncated due to an error.

When passed an array reference, fetchall_arrayref uses fetchrow_arrayref to fetch each row as
an array ref. If the parameter array is not empty, then it is used as a slice to select individual columns
by index number. With no parameters, fetchall_arrayref acts as if passed an empty array ref.

When passed a hash reference, fetchall_arrayref uses fetchrow_hashref to fetch each row as a
hash reference. If the parameter hash is not empty, then it is used as a slice to select individual
columns by name. The names should be lower case regardless of the letter case in $sth->{NAME}.
The values of the hash should be set to 1.

For example, to fetch just the first column of every row:

$tbl_ary_ref = $sth->fetchall_arrayref([0]);

To fetch the second to last and last column of every row:

$tbl_ary_ref = $sth->fetchall_arrayref([-2,-1]);

To fetch only the fields called "foo" and "bar" of every row:

$tbl_ary_ref = $sth->fetchall_arrayref({ foo=>1, bar=>1 });

The first two examples return a reference to an array of array refs. The last returns a reference to an
array of hash refs.

Programming the Perl DBI

 page 162

finish

$rc = $sth->finish;

Indicates that no more data will be fetched from this statement handle before it is either executed
again or destroyed. The finish method is rarely needed, but can sometimes be helpful in very
specific situations to allow the server to free up resources (such as sort buffers).

When all the data has been fetched from a SELECT statement, the driver should automatically call
finish for you. So you should not normally need to call it explicitly.

Consider a query like:

SELECT foo FROM table WHERE bar=? ORDER BY foo

where you want to select just the first (smallest) "foo" value from a very large table. When executed,
the database server will have to use temporary buffer space to store the sorted rows. If, after executing
the handle and selecting one row, the handle won't be re-executed for some time and won't be
destroyed, the finish method can be used to tell the server that the buffer space can be freed.

Calling finish resets the Active attribute for the statement. It may also make some statement
handle attributes (such as NAME and TYPE) unavailable if they have not already been accessed (and
thus cached).

The finish method does not affect the transaction status of the database connection. It has nothing
to do with transactions. It's mostly an internal "housekeeping" method that is rarely needed. There's
no need to call finish if you're about to destroy or re-execute the statement handle. See also
disconnect and the Active attribute.

rows

$rv = $sth->rows;

Returns the number of rows affected by the last row-affecting command, or -1 if the number of rows is
not known or not available.

Generally, you can only rely on a row count after a non-SELECT execute (for some specific operations
like UPDATE and DELETE), or after fetching all the rows of a SELECT statement.

For SELECT statements, it is generally not possible to know how many rows will be returned except by
fetching them all. Some drivers will return the number of rows the application has fetched so far, but
others may return -1 until all rows have been fetched. So use of the rows method or $DBI::rows with
SELECT statements is not recommended.

One alternative method to get a row count for a SELECT is to execute a "SELECT COUNT(*) FROM ..."
SQL statement with the same "..." as your query, and then fetch the row count from that.

Programming the Perl DBI

 page 163

bind_col

$rc = $sth->bind_col($column_number, \$var_to_bind);

Binds an output column (field) of a SELECT statement to a Perl variable. See bind_columns for an
example. Note that column numbers count up from 1.

Whenever a row is fetched from the database, the corresponding Perl variable is automatically
updated. There is no need to fetch and assign the values manually. The binding is performed at a very
low level using Perl aliasing, so there is no extra copying taking place. This makes using bound
variables very efficient.

For maximum portability between drivers, bind_col should be called after execute. This restriction
may be removed in a later version of the DBI.

You do not need to bind output columns in order to fetch data, but it can be useful for some
applications that need either maximum performance or greater clarity of code. The bind_ param
method performs a similar but opposite function for input variables.

bind_columns

$rc = $sth->bind_columns(@list_of_refs_to_vars_to_bind);

Calls bind_col for each column of the SELECT statement. The bind_columns method will die if the
number of references does not match the number of fields.

For maximum portability between drivers, bind_columns should be called after execute.

For example:

$dbh->{RaiseError} = 1; # Do this, or check every call for errors
$sth = $dbh->prepare(q{ SELECT region, sales FROM sales_by_region });
$sth->execute;
my ($region, $sales);

Bind Perl variables to columns:
$rv = $sth->bind_columns(\$region, \$sales);

You can also use Perl's \(...) syntax (see perlref docs):
$sth->bind_columns(\($region, $sales));

Column binding is the most efficient way to fetch data
while ($sth->fetch) {
 print "$region: $sales\n";
}

For compatibility with old scripts, the first parameter will be ignored if it is undef or a hash reference.

Programming the Perl DBI

 page 164

dump_results

$rows = $sth->dump_results($maxlen, $lsep, $fsep, $fh);

Fetches all the rows from $sth, calls DBI::neat_list for each row, and prints the results to $fh
(defaults to STDOUT) separated by $lsep (default "\n"). $fsep defaults to ", " and $maxlen defaults
to 35.

This method is designed as a handy utility for prototyping and testing queries. Since it uses
neat_list to format and edit the string for reading by humans, it is not recomended for data transfer
applications.

A.7.2 Statement Handle Attributes

This section describes attributes specific to statement handles. Most of these attributes are read-only.

Changes to these statement handle attributes do not affect any other existing or future statement
handles.

Attempting to set or get the value of an unknown attribute is fatal, except for private driver-specific
attributes (which all have names starting with a lowercase letter).

For example:

... = $h->{NUM_OF_FIELDS}; # get/read

Note that some drivers cannot provide valid values for some or all of these attributes until after $sth-
>execute has been called.

See also finish to learn more about the effect it may have on some attributes.

NUM_OF_FIELDS (integer, read-only)

Number of fields (columns) the prepared statement will return. Non-SELECT statements will have
NUM_OF_FIELDS == 0.

NUM_OF_PARAMS (integer, read-only)

The number of parameters (placeholders) in the prepared statement. See "Substitution Variables"
later in this appendix for more details.

Programming the Perl DBI

 page 165

NAME (array-ref, read-only)

Returns a reference to an array of field names for each column. The names may contain spaces but
should not be truncated or have any trailing space. Note that the names have the letter case (upper,
lower, or mixed) as returned by the driver being used. Portable applications should use NAME_lc or
NAME_uc. For example:

print "First column name: $sth->{NAME}->[0]\n";

NAME_lc (array-ref, read-only)

Like NAME but always returns lowercase names.

NAME_uc (array-ref, read-only)

Like NAME but always returns uppercase names.

TYPE (array-ref, read-only) (NEW)

Returns a reference to an array of integer values for each column. The value indicates the datatype of
the corresponding column.

The values correspond to the international standards (ANSI X3.135 and ISO/IEC 9075), which, in
general terms, means ODBC. Driver-specific types that don't exactly match standard types should
generally return the same values as an ODBC driver supplied by the makers of the database. That
might include private type numbers in ranges the vendor has officially registered.

For more information, see:

ftp://jerry.ece.umassd.edu/isowg3/dbl/SQL_Registry

Where there's no vendor-supplied ODBC driver to be compatible with, the DBI driver can use type
numbers in the range that is now officially reserved for use by the DBI: -9999 to -9000.

All possible values for TYPE should have at least one entry in the output of the type_info_all method
(see type_info_all).

ftp://jerry.ece.umassd.edu/isowg3/dbl/SQL_Registry

Programming the Perl DBI

 page 166

PRECISION (array-ref, read-only) (NEW)

Returns a reference to an array of integer values for each column. For non-numeric columns, the
value generally refers to either the maximum length or the defined length of the column. For numeric
columns, the value refers to the maximum number of significant digits used by the datatype (without
considering a sign character or decimal point). Note that for floating-point types (REAL, FLOAT,
DOUBLE), the "display size" can be up to seven characters greater than the precision. (for the sign +
decimal point + the letter E + a sign + two or three digits).

SCALE (array-ref, read-only) (NEW)

Returns a reference to an array of integer values for each column. NULL (undef) values indicate
columns where scale is not applicable.

NULLABLE (array-ref, read-only)

Returns a reference to an array indicating the possibility of each column returning a NULL. Possible
values are 0 = no, 1 = yes, 2 = unknown. For example:

print "First column may return NULL\n" if $sth->{NULLABLE}->[0];

CursorName (string, read-only)

Returns the name of the cursor associated with the statement handle, if available. If not available, or
if the database driver does not support the "where current of ..." SQL syntax, then it returns
undef.

Programming the Perl DBI

 page 167

Statement (string, read-only) (NEW)

Returns the statement string passed to the prepare method.

RowsInCache (integer, read-only)

If the driver supports a local row cache for SELECT statements, then this attribute holds the number of
unfetched rows in the cache. If the driver doesn't, then it returns undef. Note that some drivers pre-
fetch rows on execute, whereas others wait till the first fetch.

See also the RowCacheSize database handle attribute.

A.8 Further Information

A.8.1 Threads and Thread Safety

Perl versions 5.004_50 and later include optional experimental support for multiple threads on many
platforms. If the DBI is built using a Perl that has threads enabled, then it will use a per-driver mutex
to ensure that only one thread is with a driver at any one time. Please note that support for threads in
Perl is still experimental and is known to have some significant problems. It's use is not
recommended.

A.8.2 Signal Handling and Canceling Operations

The first thing to say is that signal handling in Perl is currently not safe. There is always a small risk of
Perl crashing and/or core dumping during or after handling a signal. (The risk was reduced with
5.004_04 but is still present.)

The two most common uses of signals in relation to the DBI are for canceling operations when the
user types Ctrl-C (interrupt), and for implementing a timeout using alarm() and $SIG{ALRM}.

To assist in implementing these operations, the DBI provides a cancel method for statement handles.
The cancel method should abort the current operation and is designed to be called from a signal
handler.

However, it must be stressed that: a) few drivers implement this functionality at the moment (the DBI
provides a default method that just returns undef); and b) even if implemented, there is still a
possibility that the statement handle, and possibly the parent database handle, will not be usable
afterwards.

If cancel returns true, then it has successfully invoked the database engine's own cancel function. If
it returns false, then cancel failed. If it returns undef, then the database engine does not have cancel
implemented.

Programming the Perl DBI

 page 168

A.9 See Also

A.9.1 Driver and Database Documentation

Refer to the documentation for the DBD driver you are using.

Refer to the SQL language reference manual for the database engine you are using.

A.9.2 Books and Journals
Programming the Perl DBI, by Alligator Descartes and Tim Bunce
Programming Perl, 2nd Ed, by Larry Wall, Tom Christiansen, and Randal Schwartz
Learning Perl, by Randal Schwartz
Dr Dobb's Journal, November 1996
The Perl Journal, April 1997

A.9.3 Manual Pages

Consult the perl manpage, the perlmod manpage, and the perlbook manpage.

A.9.4 Mailing List

The dbi-users mailing list is the primary means of communication among users of the DBI and its
related modules. Subscribe and unsubscribe via:

http://www.isc.org/dbi-lists.html

There are typically between 700 and 900 messages per month. You have to subscribe in order to be
able to post. However, you can opt for a "post-only" subscription.

Mailing list archives are held at:

http://www.xray.mpe.mpg.de/mailing-lists/dbi/
http://www.egroups.com/list/dbi-users/info.html
http://www.bitmechanic.com/mail-archives/dbi-users/

A.9.5 Assorted Related WWW Links

The DBI home page:

http://www.symbolstone.org/technology/perl/DBI

Other DBI-related links:

http://tegan.deltanet.com/~phlip/DBUIdoc.html
http://dc.pm.org/perl_db.html
http://wdvl.com/Authoring/DB/Intro/toc.html
http://www.hotwired.com/webmonkey/backend/tutorials/tutorial1.html

Other database-related links:

http://www.jcc.com/sql_stnd.html
http://cuiwww.unige.ch/OSG/info/FreeDB/FreeDB.home.html

Commercial and data warehouse links:

http://www.dwinfocenter.org
http://www.datawarehouse.com
http://www.datamining.org
http://www.olapcouncil.org
http://www.idwa.org
http://www.knowledgecenters.org/dwcenter.asp

Recommended Perl programming link:

http://language.perl.com/style/

http://www.isc.org/dbi-lists.html
http://www.xray.mpe.mpg.de/mailing-lists/dbi/
http://www.egroups.com/list/dbi-users/info.html
http://www.bitmechanic.com/mail-archives/dbi-users/
http://www.symbolstone.org/technology/perl/DBI
http://tegan.deltanet.com/~phlip/DBUIdoc.html
http://dc.pm.org/perl_db.html
http://wdvl.com/Authoring/DB/Intro/toc.html
http://www.hotwired.com/webmonkey/backend/tutorials/tutorial1.html
http://www.jcc.com/sql_stnd.html
http://cuiwww.unige.ch/OSG/info/FreeDB/FreeDB.home.html
http://www.dwinfocenter.org
http://www.datawarehouse.com
http://www.datamining.org
http://www.olapcouncil.org
http://www.idwa.org
http://www.knowledgecenters.org/dwcenter.asp
http://language.perl.com/style/

Programming the Perl DBI

 page 169

A.9.6 FAQ

Please also read the DBI FAQ which is installed as a DBI::FAQ module. You can use perldoc to read
it by executing the perldoc DBI::FAQ command.

A.10 Authors

DBI was created by Tim Bunce. This text by Tim Bunce, J. Douglas Dunlop, Jonathan Leffler, and
others. Perl was created by Larry Wall and the perl5-porters.

A.11 Copyright

The DBI module is copyright © 1994-2000 Tim Bunce. England. All rights reserved.

You may distribute under the terms of either the GNU General Public License or the Artistic License,
as specified in the Perl README file.

A.12 Acknowledgments

I would like to acknowledge the valuable contributions of the many people I have worked with on the
DBI project, especially in the early years (1992-1994). In no particular order: Kevin Stock, Buzz
Moschetti, Kurt Andersen, Ted Lemon, William Hails, Garth Kennedy, Michael Peppler, Neil S.
Briscoe, Jeff Urlwin, David J. Hughes, Jeff Stander, Forrest D. Whitcher, Larry Wall, Jeff Fried, Roy
Johnson, Paul Hudson, Georg Rehfeld, Steve Sizemore, Ron Pool, Jon Meek, Tom Christiansen, Steve
Baumgarten, Randal Schwartz, and a whole lot more.

Then, of course, there are the poor souls who have struggled through untold and undocumented
obstacles to actually implement DBI drivers. Among their ranks are Jochen Wiedmann, Alligator
Descartes, Jonathan Leffler, Jeff Urlwin, Michael Peppler, Henrik Tougaard, Edwin Pratomo, Davide
Migliavacca, Jan Pazdziora, Peter Haworth, Edmund Mergl, Steve Williams, Thomas Lowery, and
Phlip Plumlee. Without them, the DBI would not be the practical reality it is today. I'm also especially
grateful to Alligator Descartes for starting work on the Programming the Perl DBI book and letting me
jump on board.

A.13 Translations

A German translation of this text is available, thanks to O'Reilly, at:

http://www.oreilly.de/catalog/perldbiger

Some other translations:

Spanish - http://cronopio.net/perl/
Japanese - http://member.nifty.ne.jp/hippo2000/dbimemo.htm

A.14 Support/ Warranty

The DBI is free software. It comes without warranty of any kind.

Commercial support for Perl and the DBI, DBD::Oracle, and Oraperl modules can be arranged via
The Perl Clinic. For more details, visit:

http://www.perlclinic.com

http://www.oreilly.de/catalog/perldbiger
http://cronopio.net/perl/
http://member.nifty.ne.jp/hippo2000/dbimemo.htm
http://www.perlclinic.com

Programming the Perl DBI

 page 170

A.15 Training

Here are some references to DBI-related training resources (no recommendation implied):

http://www.treepax.co.uk/
http://www.keller.com/dbweb/

http://www.treepax.co.uk/
http://www.keller.com/dbweb/

Programming the Perl DBI

 page 171

Appendix B. Driver and Database
Characteristics
In this appendix, we hope to give you a flavor of the functionality and quirks of different DBI drivers
and their databases.

The line between the functionality and quirks of a given driver and the functionality and quirks of its
corresponding database is rather blurred. In some cases, the database has functionality that the
driver can't or doesn't access; in others, the driver may emulate functionality that the database doesn't
support, such as placeholders. So when you see the terms driver or database below, take them with a
pinch of salt.

Our primary goals are:

• to provide a simple overview of each driver and database.

• to help you initially select a suitable DBI driver and database for your new applications.

• to help you identify potential issues if you need to port an existing application from one driver
and database combination to another.

We don't attempt to describe the drivers and databases in detail here, and we're not reproducing their
documentation. We're only interested in the key features that are most commonly used or relevant to
our goals. And for those features, we're just providing an outline guide, sometimes little more than
signposts. Consult the database and driver documentation for full details.

With the cooperation of the driver authors, we have produced descriptions for the following drivers
and databases:

DBD::ADO

Microsoft "Active Data Objects"

DBD::CSV

General "Comma Separated Value" ASCII files

DBD::DB2

IBM DB2

DBD::Empress

Empress

DBD::Informix

Informix

DBD::Ingres

Ingres

DBD::InterBase

InterBase

DBD::mysql & DBD::mSQL

MySQL and mSQL database

DBD::ODBC

For any ODBC data source

DBD::Oracle

Oracle

DBD::Pg

PostgreSQL

Programming the Perl DBI

 page 172

DBD::SearchServer

Fulcrum Search Server

DBD::Sybase

For Sybase and Microsoft SQL Server

DBD::XBase

For XBase files (dBase, etc.)

For each of these drivers, we've tried to cover the same range of topics in the same order.

The topics include:

• Driver summary information

• How to connect

• Supported datatypes, their ranges and functionality

• Variations in SQL dialect and default behaviors

• Advanced database features

• How to access database metadata

Reading straight through is not for the faint-hearted. We recommend dipping in on an as-needed
basis.

B.1 Acquiring the DBI and Drivers

Before you can use a DBI driver module, you obviously need to get it from somewhere and install it on
your system.

If you're on a Microsoft Windows system and using the ActiveState version of Perl, then the first thing
to try is their Perl Package Manager , or PPM for short. The PPM utility is installed with ActiveState
Perl and greatly simplifies downloading and installing pre-compiled modules. Installing a DBI driver
using PPM also automatically installs the DBI if it's not already installed. For more information refer
to:

http://www.activestate.com/PPM/

That simple solution won't work for everyone. If you're not using ActiveState Perl on Microsoft
Windows, or the driver you want isn't one that they have pre-compiled for downloading via PPM, then
you'll have to travel the longer road: download the source code for the driver and build it yourself. It's
usually not as hard as it may sound.

The source code for DBI drivers can be downloaded from any site that is part of the Comprehensive
Perl Archive Network (CPAN). Here are a few handy URLs to get you started:

http://www.perl.com/CPAN/modules/by-module/DBD/
http://www.perl.org/CPAN/modules/by-module/DBD/
http://search.cpan.org/search?mode=module&query=DBD

If you've not already installed the DBI, then you'll need to do that first. Simply substituting DBI for
DBD in the URLs above will take you to the source code for the DBI module.

Remember that many drivers for database systems require some database-specific client software to
be installed on the machine in order to be able to build the driver. The driver documentation should
explain what's needed.

http://www.activestate.com/PPM/
http://www.perl.com/CPAN/modules/by-module/DBD/
http://www.perl.org/CPAN/modules/by-module/DBD/
http://search.cpan.org/search?mode=module&query=DBD

Programming the Perl DBI

 page 173

DBD::ADO

General Information

Driver version

DBD::ADO version 0.03.

At the time of this writing, the DBD::ADO driver, and even ADO itself, are relatively new. Things are
bound to change, so be sure to read the latest documentation.

Feature summary

Because DBD::ADO acts as an interface to other lower-level database drivers within Windows, much of
its behavior is governed by those drivers.

Transactions Dependent on connected data source
Locking Dependent on connected data source
Table joins Dependent on connected data source
LONG/LOB datatypes Dependent on connected data source
Statement handle attributes available After execute()
Placeholders No, not yet
Stored procedures Limited support, no parameters
Bind output values No
Table name letter case Dependent on connected data source
Field name letter case Dependent on connected data source
Quoting of otherwise invalid names Dependent on connected data source
Case-insensitive "LIKE" operator Dependent on connected data source
Server table ROW ID pseudocolumn Dependent on connected data source
Positioned update/delete No
Concurrent use of multiple handles Dependent on connected data source

Author and contact details

The driver is maintained by Thomas Lowery and Phlip Plumlee. They can be contacted via the dbi-
users mailing list.

Supported database versions and options

The DBD::ADO module requires Microsoft ADO version 2.1 or later to work reliably. Using NT with
Service Pack 4 is recommended. The module is pure Perl, making use of the Win32::OLE module to
handle the ADO requests.

The DBD::ADO module supports the use of SQL statements to query any data source your raw ADO
supports. This can include the Jet data drivers for the various Microsoft Office file formats, any
number of ODBC data drivers, or experimental data providers that expose file system folder
hierarchies or Internet directory services as data sources.

Each provider system supports SQL in some format, either in a native format like MS-SQL Server's
Transact SQL or as an emulation layer in the data provider, such as a Jet data driver reading an Excel
spreadsheet.

Information about ADO can be found at http://www.microsoft.com/data/ado/.

Differences from the DBI specification

DBD::ADO is a very new and currently incomplete driver. It is evolving rapidly though, and since it's
written in pure Perl using Win32::OLE, it's easy for people to enhance.

http://www.microsoft.com/data/ado/

Programming the Perl DBI

 page 174

Connect Syntax

The DBI->connect() Data Source Name, or DSN, has the following format:

dbi:ADO:DSN

DSN must be an ODBC Data Source Name registered with the Control Panel ODBC Data Sources
applet. If your DBI application runs as a service or daemon, such as a CGI script, the DSN must
appear on the "System DSN" tab.

There are no driver-specific attributes for the DBI->connect() method. DBD::ADO supports an
unlimited number of concurrent data source connections to one or more data sources, subject to the
limitations of those data sources.

Datatypes

The numeric, string, date, and LONG/LOB datatypes depend on the interaction of four forces: what a
Perl "scalar" supports, how the Win32::OLE layer translates VARIANTs into scalars, the types that
VARIANT itself permits, and the types your target provider emits.

A user/programmer must research those forces in his or her relevant documentation. Rest assured
that DBD::ADO will then transmit the type correctly.

Transactions, Isolation, and Locking

DBD::ADO reflects the capabilities of the native connection to the user. Transactions, if a provider
supports them, are per connection - all statements derived from one connection will ''see'' updates to
the data that awaits a COMMIT statement. Other connections to that data source will not see these
pending updates.

SQL Dialect

Because DBD::ADO acts as an interface to other database drivers, the following issues are governed by
those drivers and the databases they connect to:

• Case-sensitivity of LIKE operator
• Table join syntax
• Table and column names
• Row ID
• Automatic key or sequence generation
• Automatic row numbering and row count limiting

For more information, refer to the documentation for the drivers and the database being used. The
DBD::ADO driver does not support positioned updates and deletes.

Parameter Binding

Parameter binding is not yet supported by DBD::ADO.

Stored Procedures

Calling stored procedures is supported by DBD::ADO using the ODBC style {call
procedure_name()} syntax.

Table Metadata

DBD::ADO does not currently support the table_info() method. It awaits the needed slack time
and/or other volunteers.

Driver-Specific Attributes and Methods

The ADO connection object can be accessed from database and statement handles via the ado_conn
attribute. The ADO RecordSet object can be accessed from statement handles via the ado_rs
attribute.

Programming the Perl DBI

 page 175

DBD::CSV

General Information

Driver version

DBD::CSV version 0.1019

Feature summary
Transactions No
Locking Implicit, per-statement only
Table joins No
LONG/LOB datatypes Yes, up to 4 GB
Statement handle attributes available After execute()
Placeholders Yes, "?" style
Stored procedures No
Bind output values No
Table name letter case Sensitive, partly depends on filesystem
Field name letter case Sensitive, stored with original letter case
Quoting of otherwise invalid names No
Case-insensitive "LIKE" operator Yes, "CLIKE"
Server table ROW ID pseudocolumn No
Positioned update/delete No
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Jochen Wiedmann. He can be contacted via the dbi-users mailing list.

Supported database versions and options

The DBD::CSV driver is built upon the services of several other related modules. The Text::CSV_XS
module is used for reading and writing CSV files. The abstract generic DBD::File class provides the
driver framework for handling flat files. That, in turn, uses the SQL::Statement module to parse and
evaluate simple SQL statements.

It's important to note that while just about everyone thinks they know what the CSV file format is,
there is actually no formal definition of the format, and there are many subtle differences.

Here's one description of a CSV file:

http://www.whatis.com/csvfile.htm

Differences from the DBI specification

DBD::CSV does not fully parse the statement until it's executed. Thus, attributes like $sth-
>{NUM_OF_FIELDS} are not available until after $sth->execute() has been called. This is valid
behavior but is important to note when porting applications originally written for other drivers.

The statement handle attributes PRECISION, SCALE, and TYPE are not supported. Also note that many
statement attributes cease to be available after fetching all the result rows or calling the finish()
method.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, can be one of the following:

dbi:CSV:
dbi:CSV:attrs

where attrs is an optional semicolon-separated list of key=value pairs.

The number of database handles is limited by memory only. It is recommended to use multiple
database handles for different table formats.

http://www.whatis.com/csvfile.htm

Programming the Perl DBI

 page 176

Commonly used attributes include:

f_dir=directory

By default, files in the current directory are treated as tables. The attribute f_dir makes the
module open files in the given directory.

csv_eol
csv_sep_char
csv_quote_char
csv_escape_char

These attributes are used for describing the CSV file format in use. For example, to open
/etc/passwd, which is colon-separated and line-feed terminated, as a table, one would use:

csv_eol=\n;csv_sep_char=:

The defaults are \r\n, comma (,), double quote ("), and double quote (") respectively. All of
these attributes and defaults are inherited from the Text::CSV_XS module.

Datatypes

Numeric data handling

Without question, the main disadvantage of the DBD::CSV module is the lack of appropriate type
handling. While reading a CSV table, you have no way to reliably determine the correct datatype of
the fields. All fields look like strings and are treated as such by default.

The SQL::Statement module, and hence the DBD::CSV driver, accepts the numeric types INTEGER and
REAL in CREATE TABLE statements, but they are always stored as strings and, by default, retrieved as
strings.

It is possible to read individual columns as integers or doubles, in which case they are converted to
Perl's internal datatypes IV and NV - integer and numeric value respectively. Unsigned values are not
supported.

To assign certain datatypes to columns, you have to create metadata definitions. The following
example reads a table table_name with columns I, N, and P of type INTEGER, DOUBLE, and STRING,
respectively:

my $dbh = DBI->connect("DBI:CSV:", '', '');
$dbh->{csv_tables}->{table_name}->{types} = [
 Text::CSV_XS::IV(), Text::CSV_XS::NV(), Text::CSV_XS::PV()
];
my $sth = $dbh->prepare("SELECT id, sales, description FROM table_name");

String data handling

Similar to numeric values, DBD::CSV accepts more datatypes in CREATE TABLE statements than it
really supports. You can use CHAR(n) and VARCHAR(n) with arbitrary numbers n, BLOB, or TEXT, but
in fact these are always BLOBs, in a loose kind of way.

The one underlying string type can store any binary data including embedded NUL characters.
However, many other CSV tools may choke if given such data.

Date data handling

No date or time types are directly supported.

LONG/BLOB data handling

BLOBs are equivalent to strings. They are only limited in size by available memory.

Other data handling issues

The type_info() method is supported.

Programming the Perl DBI

 page 177

Transactions, Isolation, and Locking

The driver doesn't support transactions.

No explicit locks are supported. Tables are locked while statements are executed, but the lock is
immediately released once the statement is completed.

SQL Dialect

Case sensitivity of LIKE operator

Two different LIKE operators are supported. LIKE is case-sensitive, whereas CLIKE is not.

Table join syntax

Table joins are not supported.

Table and column names

Table and column names are case-sensitive. However, you should consider that table names are in
fact filenames, so tables Foo and foo may both be present with the same data. However, they may be
subject to different metadata definitions in $dbh->{csv_tables}.

See Table Metadata for more details on table and column names.

Row ID

Row IDs are not supported.

Automatic key or sequence generation

Neither automatic keys nor sequences are supported.

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

Positioned updates and deletes are not supported.

Parameter Binding

Question marks are supported as placeholders, as in:

$dbh->do("INSERT INTO A VALUES (?, ?)", undef, $id, $name);

The :1 placeholder style is not supported.

Stored Procedures

Stored procedures are not supported.

Table Metadata

By default, the driver expects the column names to be stored in the table's first row, as in:

login:password:uid:gid:comment:shell:homedir
root:s34hj34n34jh:0:0:Superuser:/bin/bash:/root

If column names are not present, you may specify column names via:

$dbh->{csv_tables}->{$table}->{skip_rows} = 0;
$dbh->{csv_tables}->{$table}->{col_names} =
 [qw(login password uid gid comment shell homedir)];

in which case the first row is treated as a data row.

Programming the Perl DBI

 page 178

If column names are not supplied and not read from the first row, the names col0, col1, etc. are
generated automatically.

Column names can be retrieved via the standard $sth->{NAME} attribute. The NULLABLE attribute
returns an array of all ones. Other metadata attributes are not supported.

The table names, or filenames, can be read via $dbh->table_info() or $dbh->tables() as usual.

Driver-Specific Attributes and Methods

Besides the attributes f_dir, csv_eol, csv_sep_char, csv_quote_char, and csv_sep_char that
have already been discussed above, the most important database handle attribute is:

$dbh->{csv_tables}

csv_tables is used for specifying table metadata. It is a hash ref with table names as keys, the values
being hash refs with the following attributes:

file

The filename being associated with the table. By default, the file name is $dbh-
>{f_dir}/$table.

col_names

An array ref of column names.

skip_rows

This number of rows will be read from the top of the file before reading the table data, and the
first of those will be treated as an array of column names. However, the col_names attribute
takes precedence.

types

This is an array ref of the Text::CSV_XS type values for the corresponding columns. Three
types are supported and their values are defined by the IV(), NV(), and PV() functions in the
Text::CSV_XS package.

There are no driver-specific statement handle attributes and no private methods for either type of
handle.

Programming the Perl DBI

 page 179

DBD::DB2

General Information

Driver version

DBD::DB2 version 0.71

Feature summary
Transactions Yes
Locking Yes, implicit and explicit
Table joins Yes, inner and outer
LONG/LOB datatypes Yes, up to 2 GB
Statement handle attributes available After prepare()
Placeholders Yes, "?" (native)
Stored procedures Yes
Bind output values No
Table name letter case Insensitive, stored as uppercase
Field name letter case Insensitive, stored as uppercase
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator No
Server table ROW ID pseudocolumn No
Positioned update/delete Yes
Concurrent use of multiple handles Unrestricted

Author and contact details

Support for the DBD::DB2 driver is provided by IBM through its service agreements for DB2 UDB.
Any comments, suggestions, or enhancement requests can be sent via email to db2perl@ca.ibm.com.
Please see the web site at:

http://www.ibm.com/data/db2/perl

for more information.

Supported database versions and options

The DBD::DB2 driver supports DB2 UDB V5.2 and later.

Here are some URLs to more database/driver-specific information:

http://www.software.ibm.com/data/db2/perl
http://www.software.ibm.com/data/db2
http://www.software.ibm.com/data/db2/library
http://www.software.ibm.com/data/db2/udb/ad

Differences from the DBI specification

The only significant difference in behavior from the current DBI specification is the way in which
datatypes are specified in the bind_ param() method. Please see the information later in this
section of the document about using the bind_ param() method with the DBD::DB2 driver.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, is specified as follows:

dbi:DB2:database_name

There are no driver-specific attributes for the DBI->connect() method.

DBD::DB2 supports concurrent database connections to one or more databases.

http://www.ibm.com/data/db2/perl
http://www.software.ibm.com/data/db2/perl
http://www.software.ibm.com/data/db2
http://www.software.ibm.com/data/db2/library
http://www.software.ibm.com/data/db2/udb/ad

Programming the Perl DBI

 page 180

Datatypes

Numeric data handling

DB2 UDB supports the following numeric datatypes:

SMALLINT
INTEGER
BIGINT
REAL
DOUBLE
FLOAT
DECIMAL or NUMERIC

A SMALLINT is a two-byte integer than can range from -32768 to +32767. The maximum precision is
5. Scale is not applicable.

An INTEGER is a four-byte integer that can range from -2147483648 to +2147483647. The maximum
precision is 10. Scale is not applicable.

A BIGINT is an eight-byte integer that can range from -9223372036854775808 to
+9223372036854775807. The maximum precision is 19. Scale is not applicable.

A REAL is a 32-bit approximation of a real number. The number can be or can range from -3.402e+38
to -1.175e-37, or from +1.175e-37 to +3.402e+38. The maximum precision is 7. Scale is not
applicable.

A DOUBLE or FLOAT is a 64-bit approximation of a real number. The number can be or can range from
-1.79769e+308 to -2.225e-307, or from 2.225e-307 to 1.79769e+308. The maximum precision is 15.
Scale is not applicable.

A DECIMAL or NUMERIC value is a packed decimal number with an implicit decimal point that can range
from -10**31+1 to +10**31-1. The maximum precision is 31 digits. The scale cannot be negative or
greater than the precision.

Notice that DB2 supports numbers outside the typical valid range for Perl numbers. This isn't a major
problem because DBD::DB2 always returns all numbers as strings.

String data handling

DB2 UDB supports the following string datatypes:

CHAR
CHAR FOR BIT DATA
VARCHAR
VARCHAR FOR BIT DATA
GRAPHIC
VARGRAPHIC

CHAR is a fixed-length character string that can be up to 254 bytes long. VARCHAR is a variable-length
character string that can be up to 32672 bytes. The FOR BIT DATA variants are used for data not
associated with a particular coded character set.

GRAPHIC is a fixed-length string of double-byte characters that can be up to 127 characters long.

VARGRAPHIC is a variable-length string of double-byte characters that can be up to 16336 characters
long.

The CHAR and GRAPHIC types are fixed-length strings, padded with blanks.

For DB2 UDB, CHAR fields can be in mixed codesets (national character sets). The non-ASCII
characters are handled according to the mixed code page definition. For example, Shift-JIS characters
in the range 0x81 to 0x9F and 0xE0 to 0xFC are DBCS introducer bytes, and characters in the range
0xA0 to 0xDF are single-byte Katakana characters. Blank padding for CHAR fields is always with
ASCII blank (single-byte blank). For UTF-8, characters with the sign bit set are interpreted according
to the UTF-8 definition.

Programming the Perl DBI

 page 181

GRAPHIC datatypes are stored as pure double-byte in the default code page of the database, or in UCS-
2 in the case of a Unicode database. Blank padding for GRAPHIC fields is always with the DBCS blank
of the corresponding code page, or with the UCS-2 blank (U+0020) in the case of a Unicode
database.

Code page conversions between the client code page and the database code page are automatically
performed by DB2 UDB.

Unicode support is provided with DB2 UDB Version 5 + FixPak 7 (DB2 UDB V5.2 is actually DB2
UDB V5 + FixPak 6). In a Unicode database, CHAR datatypes are stored in UTF-8 format and GRAPHIC
datatypes are stored in UCS-2 format.

With DB2 UDB Version 6.1, the VARCHAR() function has been extended to convert graphic string
datatypes to a VARCHAR, with the exception of LONG VARGRAPHIC and DBCLOB. This function is valid for
UCS-2 databases only. For non-Unicode databases, this is not allowed.

All character types can store strings with embedded nul("\0") bytes.

Strings can be concatenated using the || operator or the CONCAT(s1,s2) SQL function.

Date data handling

DB2 UDB supports the following date, time, and date/time datatypes:

DATE
TIME
TIMESTAMP

DATE is a three-part value consisting of year, month, and day. The range of the year part is 0001 to
9999. Two-digit years cannot be used with DB2 UDB. Years must be specified with all four digits.

TIME is a three-part value consisting of hour, minute, and second designates a time of day under a 24-
hour clock.

TIMESTAMP is a seven-part value, consisting of year, month, day, hour, minute, second, and
microsecond, that designates a date and time as defined above, except that the time includes a
fractional specification of microseconds. If you specify a TIMESTAMP value without a time component,
the default time is 00:00:00 (midnight).

The current date, time, and date/time can be retrieved using the CURRENT DATE, CURRENT TIME, and
CURRENT TIMESTAMP special registers.

DB2 UDB supports the following date, time, and date/time formats:

ISO (International Standards Organization)
USA (IBM USA standard)
EUR (IBM European standard)
JIS (Japanese Industrial Standard Christian era)
LOC (site-defined, depends on database country code)

You can input date and date/time values in any supported format. For example:

create table datetest(dt date);
insert into datetest('1991-10-27');
insert into datetest('10/27/1991');

The default output format for DATE, TIME, and TIMESTAMP is that format that is associated with the
country code of the database (LOC format above). You can use the CHAR() function and specify an
alternate format.

Datetime values can be incremented, decremented, and subtracted. DB2 UDB provides a wide range
of date functions including DAY(), DAYOFWEEK(), DAYOFYEAR(), MONTHNAME(), and
TIMESTAMPDIFF(). See the DB2 UDB documentation for additional functions.

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970" value to
the corresponding database date/time (local time not GMT):

TIMESTAMP('1970-01-01','00:00') + seconds_since_epoch

Programming the Perl DBI

 page 182

There is no simple expression that will do the reverse. Subtracting timestamp('1970-01-
01','00:00') from another timestamp gives a timestamp duration which is a DECIMAL(20,6) value
with format yyyymmddhhmmss.zzzzzz.

DB2 does no automatic time zone adjustments.

LONG/BLOB data handling

DB2 UDB supports the following LONG/BLOB datatypes:

BLOB
CLOB
DBCLOB
LONG VARCHAR
LONG VARCHAR FOR BIT DATA
LONG VARGRAPHIC

BLOB (binary large object) is a variable-length string measured in bytes that can be up to 2 GB long. A
BLOB is primarily intended to hold non-traditional data such as pictures, voice, and mixed media.
BLOBs are not associated with a coded character set (similar to FOR BIT DATA character strings; see
below).

CLOB (character large object) is a variable-length string measured in bytes that can be up to 2 GB long.
A CLOB is used to store large character-based data.

DBCLOB (double-byte character large object) is a variable-length string of double-byte characters that
can be up to 1,073,741,823 characters long. A DBCLOB is used to store large DBCS character based
data.

LONG VARCHAR is a variable-length character string that can be up to 32,700 bytes long. LONG VARCHAR
FOR BIT DATA is used for data not associated with a coded character set.

LONG VARGRAPHIC is a variable-length string of double-byte characters that can be up to 16,350
characters long.

None of these types need to be passed to and from the database as pairs of hex digits.

Sadly, the DBD::DB2 driver does not yet support the LongReadLen and LongTruncOk attributes.
Values of any length can be inserted and fetched up to the maximum size of the corresponding
datatype although system resources may be a constraint.

The DBD::DB2 driver is unusual in that it requires heavy use of bind parameter attributes both for
ordinary types and for LONG/BLOB types. (See Parameter Binding for discussion on attribute hashes.)
For example, here's an attribute hash for a CLOB, which will have a maximum length of 100K in this
particular application:

$attrib_clob = {
 ParamT => SQL_PARAM_INPUT,
 Ctype => SQL_C_CHAR,
 Stype => SQL_CLOB,
 Prec => 100000
 Scale => 0,
};

Other data handling issues

The DBD::DB2 driver does not yet support the type_info() method.

DB2 UDB does not automatically convert strings to numbers or numbers to strings.

Transactions, Isolation, and Locking

DB2 UDB supports transactions and four transaction isolation levels: Repeatable Read, Read Stability,
Cursor Stability, Uncommited Read. The default transaction isolation level is Cursor Stability.

Programming the Perl DBI

 page 183

For the DBD::DB2 driver, the isolation level can be changed by setting the TXNISOLATION keyword in
the db2cli.ini file to the desired value. This keyword is set in a database-specific section, meaning that
it will affect all applications that connect to that particular database. There is no way to change the
isolation level from SQL.

The default behavior for reading and writing is based on the isolation level. Rows returned by a
SELECT statement can be explicitly locked by appending FOR UPDATE and a list of field names to the
SELECT statement. For example:

SELECT colname1, colname2
FROM tablename
WHERE colname1 = 'testvalue'
FOR UPDATE OF colname1, colname2

The LOCK TABLE table_name IN lock_mode statement can be used to apply an explicit lock on an
entire table.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is case-sensitive.

Table join syntax

You can perform an equi-join, or inner join, using the standard WHERE a.field = b.field syntax.
You can also use the following syntax:

SELECT tablea.col1, tableb.col1
 FROM tablea INNER JOIN tableb
 ON tableb.name = tablea.name

DB2 UDB supports left outer joins, right outer joins, and full outer joins. For example, to perform a
left outer join, you can use the following statement:

SELECT tablea.col1, tablea.col2, tableb.col1, tableb.col2
 FROM tablea LEFT OUTER JOIN tableb
 ON tableb.name = tablea.name

Changing "LEFT" to "RIGHT" or "FULL" gives you the other forms of outer join.

Table and column names

In DB2 UDB Version 5.2, the maximum length of table names and column names is 18. In DB2 UDB
Version 6.1, the maximum length of table names will be increased to 128 and the maximum length of
column names will be increased to 30.

The first character must be a letter, but the rest can be any combination of uppercase letters, digits,
and underscores.

Table and field names can be delimited by double quotes (") and can contain the same characters as
described above plus lowercase letters.

Table and column names are stored as uppercase in the catalogs unless delimited. Delimited
identifiers preserve the case. Two consecutive quotation marks are used to represent one quotation
mark within the delimited identifier.

National characters can be used in table and column names.

Row ID

DB2 UDB does not support a "table row ID" pseudocolumn.

Programming the Perl DBI

 page 184

Automatic key or sequence generation

The GENERATE_UNIQUE function can be used to provide unique values (keys) in a table. For example:

CREATE TABLE EMP_UPDATE (
 UNIQUE_ID CHAR(13) FOR BIT DATA, -- note the "FOR BIT DATA"
 EMPNO CHAR(6),
 TEXT VARCHAR(1000)
)
INSERT INTO EMP_UPDATE VALUES
 (GENERATE_UNIQUE(), '000020', 'Update entry...'),
 (GENERATE_UNIQUE(), '000050', 'Update entry...')

Sadly, DB2 does not provide any way to discover the most recent value generated by
GENERATE_UNIQUE.

DB2 UDB does not support named sequence generators.

Automatic row numbering and row count limiting

There is no pseudocolumn that can be used to sequentially number the rows fetched by a SELECT
statement. However, you can number the rows of a result set using the OLAP function ROWNUMBER.
For example:

SELECT ROWNUMBER() OVER (order by lastname) AS number, lastname, salary
FROM employee ORDER BY number;

This returns the rows of the employee table with numbers assigned according to the ascending order
of last names, ordered by the row numbers.

A cursor can be declared with the FETCH FIRST n ROWS ONLY clause to limit the number of rows
returned.

Positioned updates and deletes

DB2 UDB supports positioned updates and deletes. Since specific testing of this functionality has not
been done with the DBD::DB2 driver, it's not officially supported; however, no problems are
anticipated.

The syntax for a positioned update is as follows. DELETE has a similar syntax.

"UPDATE ... WHERE CURRENT OF $sth->{CursorName}"

Parameter Binding

Parameter binding is directly supported by DB2 UDB. Only the standard ? style of placeholders is
supported.

The DBD::DB2 driver does not support the TYPE attribute exactly as described in the DBI
documentation. Attribute hashes are used to pass type information to the bind_ param() method.
An attribute hash is simply a collection of information about a particular type of data. (See the
DBD::DB2 documentation for a list of predefined attribute hashes).

The following is an example of how a complete new attribute hash can be created:

$attrib_char = {
 ParamT => SQL_PARAM_INPUT,
 Ctype => SQL_C_CHAR,
 Stype => SQL_CHAR,
 Prec => 254,
 Scale => 0,
};

Stored Procedures

Stored procedures are invoked by using the following SQL syntax:

CALL procedure-name(argument, ...)

Programming the Perl DBI

 page 185

Table Metadata

DBD::DB2 does not yet support the table_info() method.

The SYSCAT.COLUMNS view contains one row for each column that is defined for all tables and views in
the database.

The SYSCAT.INDEXES view contains one row for each index that is defined for all tables in a database.
Primary keys are implemented as unique indexes.

Driver-Specific Attributes and Methods

DBD::DB2 has no driver-specific attributes or methods.

Programming the Perl DBI

 page 186

DBD::Empress and DBD::EmpressNet

General Information

Driver version

DBD::Empress version 0.51.

Feature summary
Transactions Yes
Locking Yes, implicit and explicit
Table joins Yes, inner and outer
LONG/LOB datatypes Yes, up to 2 GB
Statement handle attributes available After prepare()
Placeholders Yes, "?" (native)
Stored procedures Yes
Bind output values No
Table name letter case Sensitive, stored as defined
Field name letter case Sensitive, stored as defined
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator Yes, "MATCH"
Server table ROW ID pseudocolumn Yes, "MS_RECORD_NUMBER"
Positioned update/delete No
Concurrent use of multiple handles Yes, with some restrictions

Author and contact details

The driver was written by Steve Williams. He can be contacted at swilliam@empress.com.

Supported database versions and options

DBD::Empress supports Empress V6.10 and later. For further information refer to:

http://www.empress.com

These drivers use the same Perl interface but use a different underlying database interface.
DBD::Empress is for direct access of databases, while DBD::EmpressNet is for distibuted database
connected via the Empress Connectivity Server (referred to in Empress v8.10 and earlier as the
Empress ODBC server).

Differences from the DBI specification

There are no significant differences.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, can be one of the following:

dbi:Empress:physical_database
dbi:EmpressNet:logical_database
dbi:EmpressNet:SERVER=server_name;DATABASE=physical_database;PORT=port_number

There are no driver-specific attributes for the DBI->connect() method.

DBD::EmpressNet supports an unlimited number of concurrent database connections to one or more
databases.

DBD::Empress also supports multiple concurrent database connections to one or more databases.
However, these connections are simulated, and there are therefore a number of limitations. Most of
these limitations are associated with transaction processing: 1) AutoCommit must be on or off for all
connections; and 2) Switching processing from one database to another automatically commits any
transactions on the first database.

http://www.empress.com

Programming the Perl DBI

 page 187

Datatypes

Numeric data handling

Empress RDBMS supports the following numeric datatypes:

DECIMAL(p,s) 1 to 15 digits
DOLLAR(p,type) 1 to 13 digits
REAL Typically 4-byte single precision float
FLOAT(p) Typically 4 or 8-byte float as required
LONGFLOAT Typically 8-byte double precision float
SHORTINTEGER -127 to 127
INTEGER -32767 to 32767
LONGINTEGER -2147483647 to 2147483647

The DBD driver supports Empress Generic datatypes only. This means that all data for a specific
group will be retrieved as the same datatype. For example, SHORTINTEGER, INTEGER, and
LONGINTEGER will all be retrieved as LONGINTEGER.

DBD::Empress always returns all numbers as strings.

String data handling

Empress RDBMS supports the following string datatypes:

CHAR (length, type)
NLSCHAR (length, type)
TEXT (display_length, primary, overflow, extent)
NLSTEXT (display_length, primary, overflow, extent)

All arguments have default values. See Empress SQL Reference (A4) for details. The maximum size
for all string types is typically 2**31-1 bytes (2 GB). None of the string types are blank padded.

NLSCHAR and NLSTEXT are can be used for storage of 8-bit and multibyte characters but UTF-8 is not
currently supported.

Strings can be concatenated using the s1 CONCAT(s2) SQL function.

Date data handling

Empress RDBMS supports the following date/time datatypes:

DATE(t) = 0000-01-01 to 9999-12-31 at 1 day resolution
TIME(t) = 1970-01-01 to 2035-12-31 at 1 second resolution
MICROTIMESTAMP(t) = 0000-01-01 to 9999-12-31 at 1 microsecond resolution

The (t) is the format type for default output. This is one of the nine types defined in the section on
date/time formats.

Empress supports nine formats for date/time types:

Type Date Time MicroTimestamp
0 yyyymmdd yyyymmddhhmmss yyyymmddhhmmssffffff
1 dd aaaaaaaaa yyyy dd aaaaaaaaa yyyy hh:mm:ss dd aaaaaaaaa yyyy hh:mm:ss.
 fffff
2 aaaaaaaaa dd, yyyy aaaaaaaaa dd, yyyy hh:mm:ss aaaaaaaaa dd, yyyy hh:mm:
 ss.fffff
3 mm/dd/yy mm/dd/yy hh:mm:ss mm/dd/yy hh:mm:ss.ffffff
4 dd/mm/yy dd/mm/yy hh:mm:ss dd/mm/yy hh:mm:ss.ffffff
5 dd aaa yy dd aaa yy hh:mm:ss dd aaa yy hh:mm:ss.ffffff
6 aaa dd, yy aaa dd, yy hh:mm:ss aaa dd, yy hh:mm:ss.fffff
7 mm/dd/yyyy mm/dd/yyyy hh:mm:ss mm/dd/yyyy hh:mm:ss.ffffff
8 dd/mm/yyyy dd/mm/yyyy hh:mm:ss dd/mm/yyyy hh:mm:ss.ffffff

The date part for all types is not optional. If you specify a value without a time component, the default
time is 00:00:00 (midnight). If only two digits of the year are input, then the century pivots on the
Empress variable MSDATELIMIT. For Empress v8.xx and above, the default for this is 1950. Earlier
versions of Empress defaulted to 1900.

Empress accepts any of the nine specified types as input. The only limitation is that you cannot insert
a four-digit year into a date type that uses a two-digit format. It always uses MSDATELIMIT for input
dates.

Programming the Perl DBI

 page 188

For output, DBD::Empress uses just yyyymmddhhmmssffffff and DBD:: EmpressNet uses just yyyy-
mm-dd hh:mm:ss.ffffff. Empress does not support changing of the default display formats. It is
not possible to format a date/time value in other styles for output. The best approach is to select the
components of the date/time, using SQL functions like DAYOF(d) and MONTHOF(d), and format them
using Perl.

The current date/time at the server, can be obtained using the NOW or TODAY pseudo constants. NOW
returns the current date and time. TODAY returns the date portion only.

Date and time arithmetic can be done using the Empress date/time operators. For example:

NOW + 2 MINUTES + 5 SECONDS
TODAY - 3 DAYS

Empress provides a wide range of date functions including DAYOF(), MONTHOF(), YEAROF(),
HOUROF(), MINUTEOF(), SECONDOF(), WEEKOFYEAR(), DAYNAME(), DAYOFWEEK(), DAYOFYEAR(
), and DATENEXT().

The following SQL expression:

'1 jan 1970' + unix_time_field SECONDS

would convert to a local time from 1 Jan 1970, but the GMT base cannot be generated directly.

The number of seconds since 1 Jan 1970 for date granularity can be obtained for the local time zone
(not GMT) using:

(date_field - '1 jan 1970') * 86400

Empress does no automatic time zone adjustments.

LONG/BLOB data handling

Empress RDBMS supports the following LONG datatypes:

TEXT Variable length 7-bit character data
NLSTEXT As TEXT but allows 8-bit characters
BULK User Interpreted (Byte Stream)

The maximum size for all these types is typically 2**31-1 bytes (2 GB).

LongReadLen works as defined for DBD::EmpressNet but is ignored for DBD:: Empress. The
maximum LongReadLen is limited to 2 GB typically. LongTruncOk is not implemented.

No special handling is required for binding LONG/BLOB datatypes. The TYPE attribute is currently
not used when binding parameters. The maximum length of bind_ param() parameters is limited
by the capabilities of the OS or the size of the C int, whichever comes first.

Other data handling issues

The type_info() method is not supported.

Empress automatically converts strings to numbers and dates, and numbers and dates to strings, as
needed.

Transactions, Isolation, and Locking

DBD::Empress supports transactions. The default isolation level is Serializable.

Other transaction isolation levels are not explicitly supported. However Read Uncommited is
supported on a single query basis. This is activated by adding the BYPASS option into each SQL
statement.

For example:

SELECT BYPASS * FROM table_name

Record level locking is the default. Read locks do not block other read locks, but read locks block
write locks, and write locks block all other locks. Write locks can be bypassed for read using the
BYPASS option.

Programming the Perl DBI

 page 189

When in transaction mode (AutoCommit off), selected rows are automatically locked against update
unless the BYPASS option is used in the SELECT statement.

The LOCK TABLE table_name IN lock_mode statement can be used to apply an explicit lock on a
table. Lock mode can be EXCLUSIVE or SHARE. SHARE requires the user to have SELECT or UPDATE
privileges on the table. EXCLUSIVE requires the user to have UPDATE, INSERT, or DELETE privileges.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is case-sensitive. The MATCH operator is case-insensitive.

Table join syntax

For outer joins, the Empress keyword OUTER should be placed before the table(s) that should drive the
outer join. For example:

SELECT customer_name, order_date
FROM OUTER customers, orders
WHERE customers.cust_id = orders.cust_id;

This returns all the rows in the customer's table that have no matching rows in the orders table.
Empress returns NULL for any select list expressions containing columns from the orders table.

Table and Column Names

The names of Empress identifiers, such as tables and columns, cannot exceed 32 characters in length.
The first character must be a letter, but the rest can be any combination of letters, numerals, and
underscores (_). Empress table/column names are stored as defined. They are case-sensitive.

Empress tables and fields can contain most ASCII characters (except $ and ?) if they are quoted.

Any ISO-Latin characters can be used in the base product. Specific products for other languages, such
as Japanese, can handle those character sets.

Row ID

A table row identifier can be referenced as MS_RECORD_NUMBER. It can be treated as a string during
fetch; however, it must be treated as an integer when it is used in a WHERE clause. It is useful only
for explicit fetch; inequalities are not allowed.

SELECT * FROM table_name WHERE MS_RECORD_NUMBER = ?

Automatic key or sequence generation

Empress has no "auto increment" or "system generated" key mechanism, and does not support
sequence generators.

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

Positioned updates and deletes are not supported.

Parameter Binding

Parameter binding is directly supported by Empress. Only the standard ? style of placeholders is
supported.

DBD::Empress recognizes the bind_ param() TYPE attribute SQL_BINARY. All other types are
automatically bound correctly without TYPE being used. Unsupported types are ignored without
warning.

Programming the Perl DBI

 page 190

Stored Procedures

DBD::Empress does not explicitly support stored procedures. Implicit support is available for stored
procedures in SQL statements. For example:

$sth->prepare("SELECT func(attribute) FROM table_name");

Table Metadata

DBD::Empress does not support the table_info() method.

The SYS_ATTRS and SYS_TABLES system tables can be used to obtain detailed information about the
columns of a table. For example:

SELECT * FROM sys_attrs
WHERE attr_tabnum = (SELECT tab_number FROM sys_tables WHERE tab_name='x')

However, this requires SELECT privileges on these system tables.

Detailed information about indices or keys cannot currently be easily retrieved though DBD::Empress.
It is possible, though difficult, to interpret the contents of the system tables to obtain this information.

Driver-Specific Attributes and Methods

DBD::Empress has no significant driver-specific handle attributes or private methods.

Programming the Perl DBI

 page 191

DBD::Informix

General Information

Driver version

DBD::Informix version 0.62.

Feature summary
Transactions Yes, if enabled when database was created
Locking Yes, implicit and explicit
Table joins Yes, inner and outer
LONG/LOB datatypes Yes, up to 2 GB
Statement handle attributes available After prepare()
Placeholders Yes, "?" (native)
Stored procedures Yes
Bind output values Yes
Table name letter case Configurable
Field name letter case Configurable
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator No
Server table ROW ID pseudocolumn Yes, "ROWID"
Positioned update/delete Yes
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Jonathan Leffler. He can be contacted via the dbi-users mailing list.

Supported database versions and options

The DBD::Informix module supports Informix OnLine and SE from version 5.00 onwards. There are
some restrictions in the support for IUS (a.k.a., IDS/UDO). It uses Informix-ESQL/C (a.k.a., Informix
ClientSDK). You must have a development license for Informix-ESQL/C (or the C-code version of
Informix-4GL) to be able to compile the DBD::Informix code.

For more information, refer to:

http://www.informix.com
http://www.iiug.org

Differences from the DBI Specification

If you change AutoCommit after preparing a statement, you will probably run into problems that you
don't expect. So don't do that.

See the DBD::Informix documentation for more details on this and other assorted subtle
compatibility issues.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, has the following form:

dbi:Informix:connect_string

where connect_string is any valid string that can be passed to the Informix CONNECT statement (or
to the DATABASE statement for version 5.x systems). The acceptable notations include:

dbase
dbase@server
@server
/path/to/dbase
//machine/path/to/dbase

There are no driver-specific attributes for the DBI->connect() method.

http://www.informix.com
http://www.iiug.org

Programming the Perl DBI

 page 192

If you're using version 6.00 or later of ESQL/C, then the number of database handles is limited only
by your imagination and the computer's physical constraints. If you're using 5.x, you're stuck with one
connection at a time.

Datatypes

Numeric data handling

Informix supports these numeric datatypes:

INTEGER - signed 32-bit integer, excluding -2**31
SERIAL - synonym for INTEGER as far as scale is concerned
SMALLINT - signed 16-bit integer, excluding -2**15
FLOAT - Native C 'double'
SMALLFLOAT - Native C 'float'
REAL - Synonym for SMALLFLOAT
DOUBLE PRECISION - Synonym for FLOAT
DECIMAL(s) - s-digit floating point number (non-ANSI databases)
DECIMAL(s) - s-digit integer (MODE ANSI databases)
DECIMAL(s,p) - s-digit fixed-point number with p decimal places
MONEY(s) - s-digit fixed-point number with 2 decimal places
MONEY(s,p) - s-digit fixed-point number with p decimal places
NUMERIC(s) - synonym for DECIMAL(s)
NUMERIC(s,p) - synonym for DECIMAL(s,p)
INT8 - signed 64-bit integer, excluding -2**63 (IDS/UDO)
SERIAL8 - synonym for INT8 as far as scale is concerned

DBD::Informix always returns all numbers as strings. Thus the driver puts no restriction on size of
PRECISION or SCALE.

String data handling

Informix supports the following string datatypes:

VARCHAR(size)
NVARCHAR(size)
CHAR
CHAR(size)
NCHAR
NCHAR(size)
CHARACTER VARYING(size)
NATIONAL CHARACTER VARYING(size)
NATIONAL CHARACTER(size)
CHARACTER(size)
VARCHAR(size,min) -- and synonyms for this type
NVARCHAR(size,min) -- and synonyms for this type
LVARCHAR -- IDS/UDO only

Arguably, TEXT and BYTE blobs should also be listed here, as they are automatically converted from/to
strings.

CHAR types have a limit of 32767 bytes in OnLine and IDS and a slightly smaller value (325xx) for SE.
For VARCHAR types, the limit is 255. LVARCHAR columns are limited to 2 KB; when used to transfer
other datatypes, up to 32 KB. DBD::Informix 0.61 doesn't have fully operational LVARCHAR support.

The CHAR and NCHAR types are fixed-length and blank-padded.

Handling of national character sets depends on the database version (and is different for versions 5,
for versions 6 and 7.1x, and for versions 7.2x and later). Details for version 8.x vary depending on x.
It depends on the locale, determined by a wide range of standard (e.g., LANG, LC_COLLATE) and non-
standard (e.g., DBNLS, CLIENT_LOCALE) environment variables. For details, read the relevant manual.
Unicode is not currently directly supported by Informix (as of 1999-02-28).

Strings can be concatenated using the || operator.

Programming the Perl DBI

 page 193

Date data handling

There are two basic date/time handling types: DATE and DATETIME. DATE supports dates in the range
01/01/0001 through 31/12/9999. It is fairly flexible in its input and output formats. Internally, it is
represented by the number of days since December 31 1899, so January 1 1900 was day 1. It does not
understand the calendric gyrations of 1752, 1582-4, or the early parts of the first millenium, and
imposes the calendar as of 1970-01-01 on these earlier times.

DATETIME has to be qualified by two components from the set:

YEAR MONTH DAY HOUR MINUTE SECOND FRACTION FRACTION(n) for n = 1..5

These store a date using ISO 8601 format for the constants. For example, DATE("29/02/2000") is
equivalent to:

DATETIME("2000-02-29") YEAR TO DAY,

and The Epoch for POSIX systems can be expressed as:

DATETIME(1970-01-01 00:00:00) YEAR TO SECOND

There is no direct support for time zones.

The default date/time format depends on the environment locale settings and the version and the
datatype. The DATETIME types are rigidly ISO 8601 except for converting one-digit or two-digit years
to a four-digit equivalent, subject to version and environment.

Handling of two-digit years depends on the version, the bugs fixed, and the environment. In general
terms (for current software), if the environment variable DBCENTURY is unset or is set to 'R', then the
current century is used. If DBCENTURY is 'F', the date will be in the future; if DBCENTURY is 'P', it will be
in the past; if DBCENTURY is 'C', it will be the closest date (50-year window, based on current day,
month and year, with the time of day untested).

The current datetime is returned by the CURRENT function, usually qualified as CURRENT YEAR TO
SECOND.

Informix provides no simple way to input or output dates and times in other formats. Whole chapters
can be written on this subject.

Informix supports a draft version of the SQL2 INTERVAL datatype:

INTERVAL start[(p1)] [TO end[(p2)]]

(Where [] indicates optional parts.)

The following interval qualifications are possible:

YEAR, YEAR TO MONTH,
MONTH,
DAY, DAY TO HOUR, DAY TO MINUTE, DAY TO SECOND,
HOUR, HOUR TO MINUTE, HOUR TO SECOND,
MINUTE, MINUTE TO SECOND,
SECOND, FRACTION

p1 specifies the number of digits specified in the most significant unit of the value, with a maximum of
9 and a default of 2 (except YEAR that defaults to 4). p2 specifies the number of digits in fractional
seconds, with a maximum of 5 and a default of 3.

Literal interval values may be specified using the following syntax:

INTERVAL value start[(p1)] [TO end[(p2)]]

For example:

INTERVAL(2) DAY
INTERVAL(02:03) HOUR TO MINUTE
INTERVAL(12345:67.891) MINUTE(5) TO FRACTION(3)

The expression "2 UNITS DAY" is equivalent to the first of these, and similar expressions can be used
for any of the basic types.

A full range of operations can be performed on dates and intervals, e.g., datetime-datetime=interval,
datetime+interval=datetime, interval/number=interval.

Programming the Perl DBI

 page 194

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970 GMT" value
to the corresponding database date/time:

DATETIME(1970-01-01 00:00:00) YEAR TO SECOND + seconds_since_epoch UNITS SECOND

There is no simple expression for inline use that will do the reverse. Use a stored procedure; see the
comp.databases.informix archives at DejaNews, or the Informix International Users Group (IIUG)
web site at http://www.iiug.org.

Informix does not handle multiple time zones in a simple manner.

LONG/BLOB data handling

Informix supports the following large object types:

BYTE - binary data max 2 GB
TEXT - text data max 2 GB
BLOB - binary data max 2 GB (maybe bigger); IDS/UDO only
CLOB - character data max 2 GB (maybe bigger); IDS/UDO only

DBD::Informix does not currently have support for BLOB and CLOB datatypes, but does support the
BYTE and TEXT types.

The DBI LongReadLen and LongTruncOk attributes are not implemented. If the data selected is a
BYTE or TEXT type, then the data is stored in the relevant Perl variable, unconstrained by anything
except memory up to a limit of 2 GB.

The maximum length of bind_ param() parameter value that can be used to insert BYTE or TEXT
data is 2 GB. No specialized treatment is necessary for fetch or insert. UPDATE simply doesn't work.

The bind_ param() method doesn't pay attention to the TYPE attribute. Instead, the string
presented will be converted automatically to the required type. If it isn't a string type, it needs to be
convertible by whichever bit of the system ends up doing the conversion. UPDATE can't be used with
these types in DBD::Informix; only version 7.30 IDS provides the data necessary to be able to handle
blobs.

Other data handling issues

The type_info() method is not supported.

Non-BLOB types can be automatically converted to and from strings most of the time. Informix also
supports automatic conversions between pure numeric datatypes whereever it is reasonable.
Converting from DATETIME or INTERVAL to numeric datatypes is not automatic.

Transactions, Isolation, and Locking

Informix databases can be created with or without transaction support.

Informix supports several transaction isolation levels: REPEATABLE READ, CURSOR STABILITY,
COMMITTED READ, and DIRTY READ. Refer to the Informix documentation for their exact
meaning. Isolation levels apply only to ONLINE and IDS and relatives; SE supports only a level
somewhere in between COMMITTED READ and DIRTY READ.

The default isolation level depends on the type of database to which you're connected. You can use
SET ISOLATION TO level to change the isolation level. If the database is unlogged (that is, it has no
transaction support), you can't set the isolation level. In some more recent versions, you can also set a
transaction to READ ONLY.

The default locking behavior for reading and writing depends on the isolation level, the way the table
was defined, and on whether or not the database was created with transactions enabled.

Rows returned by a SELECT statement can be locked to prevent them being changed by another
transaction, by appending FOR UPDATE to the select statement. Optionally, you can specify a column
list in parentheses after the FOR UPDATE clause.

http://www.iiug.org

Programming the Perl DBI

 page 195

The LOCK TABLE table_name IN lock_mode statement can be used to apply an explicit lock on a
table. The lock mode can be SHARED or EXCLUSIVE. There are constraints on when tables can be
unlocked, and when locks can be applied. Row/page locking occurs with cursors FOR UPDATE. In
some types of database, some cursors are implicitly created FOR UPDATE.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is case-sensitive.

Table join syntax

All Informix versions support the basic WHERE a.field = b.field style join notation. Support for
SQL-92 join notation depends on DBMS version; most do not.

Outer joins are supported. The basic version is:

SELECT * FROM A, OUTER B WHERE a.col1 = b.col2

All rows from A will be selected. Where there is one or more rows in B matching the row in A
according to the join condition, the corresponding rows will be returned. Where there is no matching
row in B, NULL will be returned in the B-columns in the SELECT list. There are all sorts of other
contortions, such as complications with criteria in the WHERE clause, or nested outer joins.

Table and column names

For most versions, the maximum size of a table name or column name is 18 characters, as required by
SQL-86. For the latest versions (Centaur, provisionally 9.2 or 7.4), the answer will be 128, as required
by SQL-92. Owner (schema) names can be eight characters in the older versions and 32 in the
versions with long table/column names.

The first character must be a letter, but the rest can be any combination of letters, numerals, and
underscores (_).

If the DELIMIDENT environment variable is set, then table and column and owner names can be quoted
inside double quotes, and any characters become valid. To embed a double quote in the name, use
two adjacent double quotes, such as "I said, ""Don't""". (Normally, Informix is very relaxed about
treating double quotes and single quotes as equivalent, so often you could write 'I said, "Don''t"'
as the equivalent of the previous example. With DELIMIDENT set, you have to be more careful.) Owner
names are delimited identifiers and should be embedded in double quotes for maximum safety.

The case-preserving and case-sensitive behavior of table and column names depends on the
environment and the quoting mechanisms used.

Support for using national character sets in names depends on the version and the environment
(locale).

Row ID

Most tables have a virtual ROWID column which can be selected. Fragmented tables do not have one
unless it is specified in the WITH ROWIDS clause when the table is created or altered. In that case, it is
a physical ROWID column that otherwise appears as a virtual column (meaning SELECT * does not
select it).

As with any type except the BLOB types, a ROWID can be converted to a string and used as such. Note
that ROWIDs need not be contiguous, nor start at either zero or one.

Programming the Perl DBI

 page 196

Automatic key or sequence generation

The SERIAL and SERIAL8 datatypes are "auto incrementing" keys. If you insert a zero into these
columns, the next previously unused key number is unrollbackably allocated to that row. Note that
NULL can't be used; you have to insert a zero. If you insert a non-zero value into the column, the
specified value is used instead. Usually, there is a unique constraint on the column to prevent
duplicate entries.

To get the value just inserted, you can use:

$sth->{ix_sqlerrd}[1]

Informix doesn't support sequence generators directly, but you can create your own with stored
procedures.

Automatic row numbering and row count limiting

Informix does not support a way to automatically number returned rows.

Some recent versions of Informix support a FIRST row count limiting directive on SELECT
statements:

SELECT FIRST num_of_rows ...

Positioned updates and deletes

Positioned updates and deletes are supported using the WHERE CURRENT OF syntax. For example:

$dbh->do("UPDATE ... WHERE CURRENT OF $sth->{CursorName}");

Parameter Binding

Parameter binding is directly supported by Informix. Only the standard ? style of placeholder is
supported.

The TYPE attribute to bind_ param() is not currently supported, but some support is expected in a
future release.

Stored Procedures

Some stored procedures can be used as functions in ordinary SQL:

SELECT proc1(Col1) FROM SomeTable WHERE Col2 = proc2(Col3);

All stored procedures can be executed via the SQL EXECUTE PROCEDURE statement. If the procedure
returns no values, it can just be executed. If the procedure does return values, even single values via a
RETURN statement, then it can be treated like a SELECT statement. So after calling execute() you can
fetch results from the statement handle as if a SELECT statement had been executed. For example:

$sth = $dbh->prepare("EXECUTE PROCEDURE CursoryProcedure(?,?)");
$sth->execute(1, 12);
$ref = $sth->fetchall_arrayref();

Table Metadata

The DBI table_info() method isn't currently supported. The private _tables() method can be
used to get a list of all tables or a subset.

Details of the columns of a table can be fetched using the private _columns() method.

The keys/indexes of a table can be fetched by querying the system catalog.

Further information about these and other issues can be found via the comp.databases.informix
newsgroup, and via the International Informix User Group (IIUG) at http://www.iiug.org.

http://www.iiug.org

Programming the Perl DBI

 page 197

Driver-Specific Attributes and Methods

Refer to the DBD::Informix documentation for details of driver-specific database and statement
handle attributes.

Private _tables() and _columns() methods give easy access to table and column details.

Other Significant Database or Driver Features

Temporary tables can be created during a database session that are automatically dropped at the end
of that session if they have not already been dropped explicitly. It's a very handy feature.

The latest versions of Informix (IDS/UDO, IUS) support user-defined routines and user-defined
types, which can be implemented in the server in C or (shortly) Java.

The SQL-92 "CASE WHEN" syntax is supported by some versions of the Informix servers. That
greatly simplifies some kinds of queries.

Programming the Perl DBI

 page 198

DBD::Ingres

General Information

Driver version

DBD::Ingres version 0.16 and, where noted, the 0.20 release

Feature summary
Transactions Yes
Locking Yes, implicit and explicit
Table joins Yes, inner and outer
LONG/LOB datatypes Yes, up to 2 GB
Statement handle attributes available After prepare()
Placeholders Yes, "?" and ":1" styles (native)
Stored procedures Yes
Bind output values Yes
Table name letter case Insensitive, stored as uppercase
Field name letter case Insensitive, stored as uppercase
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator No
Server table ROW ID pseudocolumn Yes, "tid"
Positioned update/delete No
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Henrik Tougaard. He can be contacted via the dbi-users mailing list.

Supported database versions and options

The DBD::Ingres module supports both Ingres 6.4 and OpenIngres (1.x & II). For more information
about Ingres, refer to:

http://www.cai.com/products/ingres.htm

Differences from the DBI specification

Prepared statements do not work across transactions because commit/rollback and close/invalidate
are all prepared statements. Work is underway to fix this deficiency.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, can be one of the following:

dbi:Ingres:dbname
dbi:Ingres:vnode::dbname
dbi:Ingres:dbname;options

Where options are the SQL option flags as defined in the CA-OpenIngres System Reference Guide.

There are no driver-specific attributes for the DBI->connect() method.

DBD::Ingres supports an unlimited number of concurrent database connections to one or more
databases.

Datatypes

http://www.cai.com/products/ingres.htm

Programming the Perl DBI

 page 199

Numeric data handling

The database and driver supports one-byte, two-byte and four-byte INTEGERs, four-byte and eight-
byte FLOATS, and a currency type. The database and the driver (from version 0.20) supports the
DECIMAL-number type.

Type Description Range

INTEGER1 1-byte integer -128 to +127

SMALLINT 2-byte integer -32,678 to +32,767

INTEGER 4-byte integer -2,147,483,648 to +2,147,483,647

FLOAT4 4-byte floating -1.0e+38 to 1.0e+38 (7 digits)

FLOAT 8-byte floating -1.0e+38 to 1.0e+38 (16 digits)

MONEY 8-byte money $-999,999,999,999.99 to $999,999,999,999.99

DECIMAL fixed-point numeric Depends on precision (max 31) and scale

DBD::Ingres always returns all numbers as Perl numbers - integers where possible, floating point
otherwise. It is therefore possible that some precision may be lost when fetching DECIMAL types with a
precision greater than Perl numbers (usually 16). If that's an issue, then convert the value to a string
in the SELECT expression.

String data handling

Ingres and DBD::Ingres supports the following string datatypes:

VARCHAR(size)
CHAR(size)
TEXT(size)
C(size)

All string types have a limit of 2000 bytes. The CHAR, TEXT, and C types are fixed length and blank
padded.

All string types can handle national character sets. The C type will accept only printing characters.
CHAR and VARCHAR accept all character values including embedded nul characters ("\0"). Unicode is
not formally supported yet.

Strings can be concatenated using the SQL + operator.

Date data handling

Ingres has just one date datatype: DATE. However, it can contain either an absolute date and time or a
time interval. Dates and times are in second resolution between approximately 1-JAN-1581 and 31-
DEC-2382. Intervals are stored to a one second resolution.

Ingres supports a variety of date formats, depending on the setting of the environment variable
II_DATE_FORMAT. The default output format is US: DD-MMM-YYYY HH:MM:SS.

Many input formats are allowed. For the default format the following are accepted: MM/DD/YYYY, DD-
MMM-YYYY, MM-DD-YYYY, YYYY.MM.DD, YYYY_MM_DD, MMDDYY, MM-DD, and MM/DD.

If you specify a DATE value without a time component, the default time is 00:00:00 (midnight). If you
specify a DATE value without a date, the default date is the first day of the current month. If a date
format that has a two-digit year, such as the YY in DD-MON-YY (a common default), then the date
returned is always in the current century.

Programming the Perl DBI

 page 200

The following date-related functions are supported:

DATE(string) - converts a string to a date
DATE_TRUNC(unit, date) - date value truncated to the specified unit
DATE_PART(unit, date) - integer containing the specified part
DATE_GMT(date) - converts date to string "YYYY_MM_DD HH:MM:SS GMT"
INTERVAL(unit, interval) - express interval as numeric count of units

The current date and time is returned by the DATE('now') function. The current date is returned by
DATE('today').

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970 GMT" value
to the corresponding database date/time:

DATE('01.01.1970 00:00 GMT')+DATE(CHAR(seconds_since_epoch)+' seconds')

And to do the reverse:

INT4(INTERVAL('seconds', DATE('now')-DATE('01.01.1970 00:00 GMT')))

A three-letter time zone name (from a limited set) can be appended to a date. If no time zone name is
given, then the current client time zone is assumed. All datetimes are stored in the database as GMT
and are converted back to the local time of the client fetching the data. All date comparisions in the
server are done in GMT.

LONG/BLOB data handling

Ingres supports these LONG types:

LONG VARCHAR - Character data of variable length up to 2 GB
LONG BYTE - Raw binary data of variable length up to 2 GB

However, the DBD::Ingres driver does not yet support these types.

Other data handling issues

The DBD::Ingres driver supports the type_info() method.

Ingres supports automatic conversions between datatypes wherever it's reasonable.

Transactions, Isolation, and Locking

Ingres supports transactions. The default transaction isolation level is Serializable. OpenIngres II
supports Repeatable Read, Read Commited, and Serializable.

The reading of a record sets a read-lock preventing writers from changing that record and, depending
on lock granularity, possibly other records. Other readers are not hindered in their reading. Writing a
record sets a lock that prevents other writers from writing, and readers from reading.

The SET LOCKMODE statement allows you to change the locking granularity. It can be set to:

ROW - lock only the affected rows (OpenIngres II only)
PAGE - lock the page that contains the affected row
TABLE - lock the entire table

With the statement SET LOCKMODE SESSION WHERE READLOCK=NOLOCK it is possible, but definitely
not recommended, to set the isolation level to Read Uncommited.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is case-sensitive.

Table join syntax

OpenIngres supports outer joins in ANSI SQL-92 syntax. Ingres 6.4 does not support outer joins.

Programming the Perl DBI

 page 201

Table and column names

The names of identifiers cannot exceed 32 characters. The first character must be a letter or an
underscore (_), but the rest can be any combination of letters, numerals, dollar signs ($), pound signs
(#), and at signs (@).

However, if an identifier is enclosed by double quotes ("), it can contain any combination of legal
characters, including spaces but excluding quotation marks. This is not supported in Ingres 6.4.

Case significance is determined by the settings for the Ingres installation as set by the administrator
when Ingres is installed.

National character sets can be used in identifiers, if enclosed in double quotes.

Row ID

The Ingres "row ID" pseudocolumn is called tid. It's an integer. It can be used without special
handling. For example:

SELECT * FROM table WHERE tid=1029;

Automatic key or sequence generation

OpenIngres II supports "logical key" columns. They are defined by using a special datatype:
TABLE_KEY WITH SYSTEM MAINTAINED. Ingres 6.4 required an extra-cost option to support that
feature.

A column can be defined as either TABLE_KEY or OBJECT_KEY. Table_keys are unique in the table,
whereas object_keys are unique in the entire database.

DBD::Ingres can't currently find the value of the last automatic key inserted, though it may do so in
the future if enough people ask nicely, or someone contributes the code.

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

Positioned updates and deletes are supported in DBD::Ingres version 0.20 using the WHERE CURRENT
OF syntax. For example:

$dbh->do("UPDATE ... WHERE CURRENT OF $sth->{CursorName}");

The CursorName is automatically defined by DBD::Ingres for each prepared statement.

Parameter Binding

Parameter binding is directly supported by Ingres. Only the standard ? placeholder style is supported.

When using the bind_ param() method, the common integer, float, and char types can be defined
using the TYPE attribute. Unsupported values of the TYPE attribute generate a warning.

Stored Procedures

Calling a stored procedure is done by the execute procedure statement. For example:

$dbh->do("execute procedure my_proc(param1='value')");

It is not yet possible to get results.

Programming the Perl DBI

 page 202

Table Metadata

DBD::Ingres version 0.20 supports the table_info() method.

The IICOLUMNS catalog contains information about all columns of a table.

The IIINDEXES catalog contains detailed information about all indexes in the database, one row per
index. The IIINDEX_COLUMNS catalog contains information about the columns that make up each
index.

Primary keys are indicated in the key_sequence field of the IICOLUMNS catalog.

Driver-Specific Attributes and Methods

DBD::Ingres has no driver-specific database handle attributes. However, it does support a number of
statement handle attributes. Each returns a reference to an array of values, one for each column of the
select results. These attributes are:

ing_type

'i' for integer columns, 'f' for float, and 's' for strings

ing_ingtype

The numeric Ingres type of the columns

ing_length

The Ingres length of the columns (as used in the database)

DBD::Ingres supports just one private method:

get_dbevent()

This private method calls GET DBEVENT and INQUIRE_INGRES to fetch a pending database
event. If called without an argument, a blocking GET DBEVENT WITH WAIT is called. A
numeric argument results in a call to GET DBEVENT WITH WAIT= :seconds.

Programming the Perl DBI

 page 203

DBD::InterBase

General Information

Driver version

DBD::InterBase version 0.021

This version of the DBD::InterBase driver is a pure Perl wrapper module around the IBPerl module.
The author is working on a direct XS version, so be sure to read the latest documentation.

Feature summary
Transactions Yes
Locking Yes, implicit and explicit
Table joins Yes, inner and outer
LONG/LOB datatypes Yes, up to 4 GB
Statement handle attributes available After first row fetched
Placeholders Yes, "?" style (native)
Stored procedures Yes
Bind output values Yes
Table name letter case Insensitive, stored as uppercase
Field name letter case Insensitive, stored as uppercase
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator No
Server table ROW ID pseudocolumn No
Positioned update/delete No
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Edwin Pratomo. He can be contacted via the dbi-users mailing list, or at
ed.pratomo@computer.org.

Supported database versions and options

DBD::InterBase has been used to access InterBase 4.0 for Linux, and InterBase 5.5 for NT, and
should also work with any version of InterBase above version 3.3 supported by IBPerl.
DBD::InterBase also inherits all limitations applied to IBPerl 0.7, for instance, lack of metadata.

For further information about InterBase, refer to:

http://www.interbase.com
http://www.interbase.com/products/dsqlsyntax.html

Differences from the DBI specification

DBD::InterBase does not have access to statement metadata until after the statement has been
executed and the first row fetched. Thus, attributes like $sth->{NUM_OF_FIELDS} are not available
until after $sth->execute() and a fetch method has been called. Hopefully this will be fixed in a
later version.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, has the following format:

dbi:InterBase:attrs

where attrs is a semicolon-separated list of key=value pairs Valid attributes include:

database

Specifies the full path to the database within the server that should be made the default
database.

http://www.interbase.com
http://www.interbase.com/products/dsqlsyntax.html

Programming the Perl DBI

 page 204

host (optional)

Specify the host name of the InterBase server to connect to. Default to localhost.

role (optional)

Specify an SQL role name - supported only in InterBase 5.0 and later.

charset (optional)

Specify the client character set to use. Useful if the client's default character set is different
from the server. Using this will enable automatic character conversion from one character set
to the other. Default to NONE.

DBD::InterBase supports an unlimited number of concurrent database connections to one or more
databases.

Datatypes

Numeric data handling

InterBase supports INTEGER, SMALLINT, FLOAT, DOUBLE PRECISION, NUMERIC (p,s), and
DECIMAL(p,s).

FLOAT and INTEGER are always 32-bit, and SMALLINT is 16-bit. DOUBLE PRECISION is platform-
dependent but generally 64-bit. Precision for NUMERIC/DECIMAL is from 1 to 15, and scale is from 1 to
15.

DBD::InterBase always returns all numbers as strings.

String data handling

InterBase supports the following string datatypes:

CHAR(size) fixed length blank-padded
VARCHAR(size) variable length with limit

Range of size is 1 to 32,767 bytes. The character set for each field may also be specified. For
example:

CHAR(size) CHARACTER SET "ISO8859_1"
VARCHAR(size) CHARACTER SET "ISO8859_1"

InterBase also supports NCHAR(size) and NCHAR(size) VARYING as aliases for the CHARACTER SET
"ISO8859_1" examples above.

Date data handling

InterBase supports one flexible date datatype: DATE, which includes either date, time, or date and time
information. Data that will be stored as DATE datatype should be in format: DD MON YYYY HH:MM:SS, or
DD-MON-YYYY HH:MM:SS. DD and MON parts must be supplied, other parts, if omitted, will be set to
current year/time.

The DD MON YYYY parts can have any value from January 1, 100 AD to February 29, 32768 AD.
HH:MM:SS ranges from 00:00:00 to 23:59:59.

The year part should be written in four digits, if it is only in two digits, then InterBase will infer the
century number using a sliding window algorithm: subtracting the two-digit year number entered
from the last two digits of the current year, if the absolute difference is greater than 50, then the
century of the number entered is 20; otherwise, it is 19.

Fetched DATE values are formatted using a strftime() format string. This format string can be
specified as DateFormat attribute when invoking prepare() method. If this attribute is left
unspecified, then "%c" will be used as the format string. For example:

$stmt = "SELECT * FROM BDAY";
$opt = { 'DateFormat' => "%d %B %Y" };
$array_ref = $dbh->selectall_arrayref($stmt, $opt);

InterBase does not directly support SQL-92 DATE, TIME, and TIMESTAMP datatypes.

Programming the Perl DBI

 page 205

Date literals used by InterBase are: NOW, TODAY, YESTERDAY, and TOMORROW. For example:

CREATE TABLE SALES (
 ORDER_ID INTEGER NOT NULL,
 SHIP_DATE DATE DEFAULT "NOW" NOT NULL,
PRIMARY KEY(ORDER_ID));

LONG/BLOB data handling

InterBase supports a BLOB datatype. DBD::InterBase can handle BLOBs up to 4 GB, assuming you
have that much memory in your system.

A BLOB column can be defined to hold either binary data or text data; if text, then a character set can
also be specified. BLOB data is stored in segments, and the segment size (up to 64 KB) can also be
specified for each BLOB column.

Other data handling issues

InterBase supports automatic conversions between datatypes wherever it is reasonable.

Transactions, Isolation, and Locking

InterBase supports transactions. Transaction isolation can be altered using the SET TRANSACTION
ISOLATION LEVEL x statement. Refer to the InterBase DSQL manual for full details.

Rows returned by a SELECT statement can be locked to prevent them being changed by another
transaction, by appending FOR UPDATE to the select statement. Optionally, you can specify a column
list in parentheses after the FOR UPDATE clause.

There is no explicit LOCK TABLE statement.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is case-sensitive.

Table join syntax

Outer joins and inner joins are supported and are expressed using the ISO standard SQL syntax.

Table and column names

The maximum size of table and column names can't exceed 31 characters in length. Only
alphanumeric characters can be used; the first character must be a letter.

InterBase converts all identifiers to uppercase.

Row ID

There is no "Row ID" concept.

Automatic key or sequence generation

A mechanism to create unique, sequential number that is automatically inserted at SQL operation
such as INSERT, UPDATE is called GENERATOR. For example:

CREATE GENERATOR generator_name
SET GENERATOR generator_name TO integer_value

where integer_value is an integer value from -2**31 to 2**31 - 1. The SET GENERATOR command sets
the starting value of a newly created generator, or resets the value of an existing generator.

To use the generator, InterBase's GEN_ID function should be invoked. For example:

INSERT INTO SALES (PO_NUMBER) VALUES (GEN_ID(generator_name, step))

Programming the Perl DBI

 page 206

There's no DROP GENERATOR command; here is how to delete a GENERATOR:

DELETE FROM RDB$GENERATORS WHERE RDB$GENERATOR_NAME = 'generator_name'

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

InterBase does not support positioned updates or deletes.

Parameter Binding

Parameter binding is supported directly by InterBase. DBD::InterBase supports the ? placeholder
style.

The TYPE attribute of the bind_ param() as well as type_info() method are not yet supported.

Stored Procedures

InterBase does support stored procedures, but neither DBD::InterBase nor IBPerl has support for
them that yet.

Table Metadata

DBD::InterBase hasn't yet supported the table_info() method.

Driver-Specific Attributes and Methods

There are no significant DBD::InterBase driver-specific database handle attributes.

Programming the Perl DBI

 page 207

DBD::mysql and DBD::mSQL

General Information

Driver version

DBD::mysql and DBD::mSQL versions 1.20xx and 1.21_xx

Version 1.20xx (even numbers) is the stable line, which is maintained for bug and portability fixes
only. Version 1.21_xx (odd numbers) is used for development of the driver: all new features or
interface modifications will be done in this line until it finally becomes 1.22xx.

Feature summary
Transactions No
Locking Yes, explicit (MySQL only)
Table joins Yes, inner and outer (inner only for mSQL)
LONG/LOB datatypes Yes, up to 4 GB
Statement handle attributes available After execute()
Placeholders Yes, "?" (emulated)
Stored procedures No
Bind output values No
Table name letter case Depends on filesystem, stored as defined
Field name letter case Insensitive/Sensitive (MySQL/mSQL), stored
 as defined
Quoting of otherwise invalid names No
Case-insensitive "LIKE" operator Varies, see description below
Server table ROW ID pseudocolumn Yes, "_rowid" (mSQL only)
Positioned update/delete No
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Jochen Wiedmann. He can be contacted via the mailing list Msql-Mysql-
modules@lists.mysql.com.

Supported database versions and options

MySQL and mSQL are freely available, small, efficient database servers. MySQL has a rich feature set
while mSQL is quite minimalist.

The DBD::mysql driver 1.20xx supports all MySQL versions since around 3.20. The DBD::mysql
driver 1.21_xx supports MySQL 3.22 or later.

The DBD::mSQL drivers 1.20xx and 1.21_xx support all mSQL versions up to and including mSQL
2.0.x.

For further information about MySQL:

http://www.mysql.com/

For further information about mSQL:

http://www.blnet.com/msqlpc
http://www.hughes.com.au/

Differences from the DBI specification

Both DBD::mysql and DBD::mSQL do not fully parse the statement until it's executed. Thus attributes
like $sth->{NUM_OF_FIELDS} are not available until after $sth->execute() has been called. This is
valid behavior, but is important to note when porting applications written originally for other drivers.

Also note that many statement attributes cease to be available after fetching all the result rows or
calling the finish() method.

http://www.mysql.com/
http://www.blnet.com/msqlpc
http://www.hughes.com.au/

Programming the Perl DBI

 page 208

Connect Syntax

The DBI->connect() Data Source Name, or DSN, can be one of the following:

DBI:mysql:attrs
DBI:mSQL:attrs

where attrs is a semicolon-separated list of key=value pairs. Valid attributes include:

database=$database

The database name you want to connect to.

host=$host

The name of the machine running the server for the database you want to connect to, by
default localhost.

msql_configfile=$file

Load driver-specific settings from the given file, by default InstDir/msql.conf.

mysql_compression=1

For slow connections, you may wish to compress the traffic between your client and the
engine. If the MySQL engine supports it, this can be enabled by using this attribute. Default
is off.

There are no driver-specific attributes applicable to the connect() method. The number of database
and statement handles is limited by memory only. There are no restrictions on their concurrent use.

Datatypes

Numeric data handling

MySQL has five sizes of integer datatype, each of which can be signed (the default) or unsigned (by
adding the word UNSIGNED after the type name).

Name Bits Signed Range Unsigned Range

TINYINT 8 -128..127 0..255

SMALLINT 16 -32768..32767 0..65535

MEDIUMINT 24 -8388608..8388607 0..16777215

INTEGER 32 -2147483648..2147483647 0..4294967295

BIGINT 64 -(2*63)..(2**63-1) 0..(2**64)

The type INT can be used as an alias for INTEGER. Other aliases include INT1=TINYINT,
INT2=SMALLINT, INT3=MEDIUMINT, INT4=INT, INT8=BIGINT, and MIDDLEINT=MEDIUMINT.

Note that all arithmetic is done using signed BIGINT or DOUBLE values, so you shouldn't use unsigned
big integers larger than the largest signed big integer (except with bit functions). Note that -, +, and *
will use BIGINT arithmetic when both arguments are INTEGER values. This means that if you multiply
two big integers (or multiply the results from functions that return integers), you may get unexpected
results if the result is bigger than 9223372036854775807.

MySQL has three main non-integer datatypes: FLOAT, DOUBLE, and DECIMAL. Aliases FLOAT4 for
FLOAT and FLOAT8 for DOUBLE also work.

In what follows, the letter M is used for the maximum display size or PRECISION in ODBC and DBI
terminology. The letter D is used for the number of digits that may follow the decimal point. (SCALE
in ODBC and DBI terminology).

Maximum display size (PRECISION) and number of fraction digits (SCALE) are typically not required.
For example, if you use just "DOUBLE," then default values will be silently inserted.

Programming the Perl DBI

 page 209

DOUBLE(M,D)

A normal-size (double-precision) floating-point number. Allowable values are -
1.7976931348623157e+308 to -2.2250738585072014e-308, and 2.225073858 5072014e-308
to 1.7976931348623157e+308.

REAL and DOUBLE PRECISION can be used as aliases for DOUBLE.

FLOAT(M,D)

A small (single-precision) floating-point number. Allowable values are -3.402823466e+38 to
-1.175494351e-38, and -1.175494351e-38 to 3.40282346 6e+38.

FLOAT(M)

A floating-point number. Precision (M) can be 4 or 8. FLOAT(4) is a single-precision number
and FLOAT(8) is a double-precision number. These types are like the FLOAT and DOUBLE types
described above. FLOAT(4) and FLOAT(8) have the same ranges as the corresponding FLOAT
and DOUBLE types, but their display size and number of decimals is undefined.

DECIMAL(M,D)

The DECIMAL type is an unpacked floating-point number type. NUMERIC is an alias for
DECIMAL. It behaves like a CHAR column; "unpacked" means the number is stored as a string,
using one character for each digit of the value, and the decimal point. If D is 0, values will
have no decimal point or fractional part. The maximum range of DECIMAL values is the same
as for DOUBLE, but the actual range for a given DECIMAL column may be constrained by the
choice of M and D.

NUMERIC can be used as an alias for DECIMAL.

The numeric datatypes supported by mSQL are much more restricted:

INTEGER corresponds to MySQL's INTEGER type.
UINT corresponds to MySQL's INTEGER UNSIGNED type.
REAL corresponds to MySQL's REAL type.

The driver returns all datatypes, including numbers, as strings. It thus puts no restriction on size of
PRECISION or SCALE.

String data handling

The following string types are supported by MySQL, quoted from mysql.info where M denotes the
maximum display size or PRECISION:

CHAR(M)

A fixed-length string that is always right-padded with spaces to the specified length. The
range of M is 1 to 255 characters.

VARCHAR(M)

A variable-length string. Note that trailing spaces are removed by the database when the
value is stored (this differs from the ANSI SQL specification). The range of M is 1 to 255
characters.

ENUM('value1','value2',...)

An enumeration. A string object that can have only one value, chosen from the specified list
of values (or NULL). An ENUM can have a maxiumum of 65535 distinct values.

SET('value1','value2',...)

A set. A string object that can have zero or more values, each of which must be chosen from
the specified list of values. A SET can have a maximum of 64 members.

CHAR and VARCHAR types have a limit of 255 bytes. Binary characters, including the NUL byte, are
supported by all string types. (Use the $dbh->quote() method for literal strings).

These aliases are also supported:

BINARY(num) CHAR(num) BINARY
CHAR VARYING VARCHAR
LONG VARBINARY BLOB
LONG VARCHAR TEXT
VARBINARY(num) VARCHAR(num) BINARY

Programming the Perl DBI

 page 210

With DBD::mysql, the ChopBlanks attribute is always on. The MySQL engine itself removes spaces
from the string's right end. Another "feature" is that CHAR and VARCHAR columns are always case-
insensitive in comparisons and sort operations, unless you use the BINARY attribute, as in:

CREATE TABLE foo (A VARCHAR(10) BINARY)

With versions of MySQL after 3.23, you can perform a case-insensitve comparison of strings with the
BINARY operator modifier:

SELECT * FROM table WHERE BINARY column = "A"

National language characters are handled in comparisons following the coding system that was
specified at compile-time, by default ISO-8859-1. Non-ISO coding systems, and in particular UTF-16,
are not supported.

Strings can be concatenated using the CONCAT(s1, s2, ...) SQL function.

The mSQL engine (and hence the DBD::mSQL driver) supports only the CHAR(M) string type, which
corresponds to the MySQL's VARCHAR(M) type, and a TEXT(M) type, which is a cross between a CHAR
and a BLOB. All string types have trailing spaces removed by mSQL. Also, mSQL has no way to
concatenate strings.

Date data handling

The following date and time types are supported by MySQL, and quoted from mysql.info:

DATE

A date. The supported range is 0000-01-01 to 9999-12-31. MySQL displays DATE values in
YYYY-MM-DD format, but allows you to assign values to DATE columns using these formats:

YYMMDD
YYYYMMDD
YY.MM.DD
YYYY.MM.DD

Where . may be any non-numerical separator, and a two-digit year is assumed to be 20YY if
YY is less than 70.

DATETIME

A date and time combination. The supported range is 0000-01-01 00:00:00 to 9999-12-31
23:59:59. MySQL displays DATETIME values in YYYY-MM-DD HH:MM:SS format, but allows you
to assign values to DATETIME columns using the formats shown for DATE above but with
HH:MM:SS appended.

TIMESTAMP(M)

A timestamp. The range is 1970-01-01 00:00:00 to sometime in the year 2032 (or 2106,
depending on the OS specific type time_t). MySQL displays TIMESTAMP values in
YYYYMMDDHHMMSS, YYMMDDHHMMSS, YYYYMMDD, or YYMMDD format, depending on whether M is 14
(or missing), 12, 8, or 6, but allows you to assign values to TIMESTAMP columns using either
strings or numbers. This output format behavior disagrees with the manual, so check your
version because the behavior may change.

A TIMESTAMP column is useful for recording the time of an INSERT or UPDATE operation
because it is automatically set to the time of the last operation if you don't give it a value
yourself. You can also set it to the current time by giving it a NULL value.

TIME

A time. The range is -838:59:59 to 838:59:59. MySQL displays TIME values in HH:MM:SS
format. You can assign values to TIME columns using these formats: [[[DAYS]
[H]H:]MM:]SS[.fraction] or [[[[[H]H]H]H]MM]SS [.fraction].

YEAR

A year. The allowable values are 1901-2155, and 0000 in the four-digit year format, and 1970-
2069 if you use the two-digit year format (70-69). On input, two-digit years in the range 00-
69 are assumed to be 2000-2069. (YEAR is a new type for MySQL 3.22.)

Programming the Perl DBI

 page 211

If you are using two-digit years as in YY-MM-DD (dates) or YY (years), then they are converted into
2000-2069 and 1970-1999, repectively. Thus, MySQL has no Y2K problem, but a Y2070 problem!

In MySQL 3.23, this feature will be changed to 2000-2068 and 1969-1999, following the X/Open Unix
standard.[A]

[A] See http://www.unix-systems.org/version2/whatsnew/year2000.html.

The NOW() function, and its alias SYSDATE, allow you to refer to the current date and time in SQL.

The DATE_FORMAT(date, format) function can be used to format date and time values using printf-
like format strings.

MySQL has a rich set of functions operating on dates and times, including DAYOFWEEK(date) (1 =
Sunday, ..., 7 = Saturday), WEEKDAY(date) (0 = Monday, ..., 6 = Sunday), DAYOFMONTH(date),
DAYOFYEAR(date), MONTH(date), DAYNAME (date), MONTHNAME(date), WEEK(date), YEAR(date),
HOUR(time), MINUTE (time), SECOND(time), DATE_ADD(date, interval) (interval being
something like "2 HOURS"), and DATE_SUB(date, interval).

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970 GMT" value
to the corresponding database date/time:

FROM_UNIXTIME(seconds_since_epoch)

and the reverse:

UNIX_TIMESTAMP(timestamp)

MySQL does no automatic time zone adjustments.

The mSQL database supports these date/time types:

DATE - corresponds to MySQL's DATE type
TIME - corresponds to MySQL's TIME type

The only date format supported by mSQL is DD-MMM-YYYY, where MMM is the three-character English
abbreviation for the month name. The only time format supported by mSQL is HH:MM:SS.

LONG/BLOB data handling

These are MySQL's BLOB types, quoted from mysql.info :

TINYBLOB / TINYTEXT maximum length of 255 (2**8 - 1)
BLOB / TEXT maximum length of 65535 (2**16 - 1)
MEDIUMBLOB / MEDIUMTEXT maximum length of 16777215 (2**24 - 1)
LONGBLOB / LONGTEXT maximum length of 4294967295 (2**32 - 1)

Binary characters in all BLOB types are allowed. The LongReadLen and LongTruncOk types are not
supported.

The maximum length of bind_ param() parameter values is only limited by the maximum length of
an SQL statement. By default that's 1MB but can be extended to just under 24 MB by changing the
mysqld variable max_allowed_packet.

No TYPE or other attributes need to be given to bind_ param() when binding these types.

The only BLOB type supported by mSQL is TEXT. This is a cross between a traditional VARCHAR type
and a BLOB. An average width is specified, and data longer than average is automatically stored in
an overflow area in the table.

Other data handling issues

The driver versions 1.21_xx and above do support the type_info() method.

MySQL supports automatic conversions between datatypes wherever it's reasonable. mSQL, on the
other hand, supports none.

http://www.unix-systems.org/version2/whatsnew/year2000.html

Programming the Perl DBI

 page 212

Transactions, Isolation, and Locking

Both mSQL and MySQL do not support transactions.

Since both mSQL and MySQL currently execute statements from multiple clients one at a time
(atomic), and don't support transactions, there's no need for a default locking behavior to protect
transaction isolation.

With MySQL, locks can be explicitly obtained on tables. For example:

LOCK TABLES table1 READ, table2 WRITE

Locks are released with any subsequent LOCK TABLES statement, by dropping a connection or with an
explicit command:

UNLOCK TABLES

There are also user-defined locks that can be manipulated with the GET_LOCK() and RELEASE_LOCK()
SQL functions. You can't automatically lock rows or tables during SELECT statements; you have to do
it explicitly.

And, as you might guess, mSQL doesn't support any kind of locking at the moment.

SQL Dialect

Case sensitivity of LIKE operator

With MySQL, case-sensitivity of all character comparison operators, including LIKE, requires on the
presence of the BINARY attribute on at least one of the fields - either on the field type in the CREATE
TABLE statement or on the field name in the comparison operator. However, you can always force
case-insensitivity using the TOLOWER function.

mSQL has three LIKE operators: LIKE is case-sensitive, CLIKE is case-insensitive, and RLIKE uses Unix
style regular expressions.

Table join syntax

Joins are supported with the usual syntax:

SELECT * FROM a,b WHERE a.field = b.field

or, alternatively:

SELECT * FROM a JOIN b USING field

Outer joins are supported by MySQL, not mSQL, with:

SELECT * FROM a LEFT OUTER JOIN b ON condition

Outer joins in MySQL are always left outer joins.

Table and column names

MySQL table and column names may have at most 64 characters. mSQL table and column names are
limited to 35 characters.

With MySQL, you can put single quotes around table or column names (you can use the standard
double quotes if the database is started with the --ansi-mode option). You need to do that if the
name contains special characters or matches a reserved word. Quoting identifiers isn't supported by
mSQL.

Table names are limited by the fact that tables are stored in files and the table names are really file
names. In particular, the case-sensitivity of table names depends on the underlying file system and
some characters like . and / are not allowed.

Column names are case-insensitive with MySQL and case-sensitive with mSQL, but both engines store
them without case conversions.

Names can include national character set characters (with the eighth bit set) in MySQL but not mSQL.

Programming the Perl DBI

 page 213

Row ID

MySQL doesn't have row IDs. mSQL has a pseudocolumn _rowid.

The mSQL _rowid column value is numeric and, since mSQL doesn't automatically convert strings to
numbers, you must take care not to quote the value when using it in later SELECT statements.

Note that because transactions and locking aren't supported, there's a greater risk that the row
identified by a _rowid value you just fetched may have been deleted and possibly replaced by a
different row by the time you use the row ID value moments later.

Automatic key or sequence generation

All MySQL integer table fields can have an AUTO_INCREMENT attribute. That is, given a table:

CREATE TABLE a (
 id INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
 ...)

and a statement:

INSERT INTO a (id, ...) VALUES (NULL, ...)

a unique ID will be generated automatically (similarly, if the ID field had not been mentioned in the
insert statement at all). The generated ID can later be retrieved with:

$sth->{mysql_insertid} (1.21_xx)
$sth->{insertid} (1.20_xx)

or, if you've used $dbh->do and not prepare/execute, then use:

$dbh->{mysql_insertid} (1.21_xx)
$dbh->do("SELECT LAST_INSERT_ID()"); (1.20_xx)

MySQL does not support sequence generators directly, but they can be emulated with a little care
(refer to the MySQL manual for details). For example:

UPDATE seq SET id=last_insert_id(id+1)

The mSQL database supports sequence generators, but just one per table. After executing:

CREATE SEQUENCE on A

you can later do:

SELECT _seq FROM A

to fetch the value. You can't refer directly to the sequence from an insert statement; instead, you have
to fetch the sequence value and then execute an insert with that value.

Automatic row numbering and row count limiting

Neither engine supports automatic row numbering of SELECT statement results.

Both mSQL and MySQL support row count limiting with:

SELECT * FROM A LIMIT 10

to retrieve the first 10 rows only, but only MySQL supports:

SELECT * FROM A LIMIT 20, 10

to retrieve rows 20-29, with the count starting at 0.

Positioned updates and deletes

Neither positioned updates nor deletes are supported by MySQL or mSQL.

Parameter Binding

Neither engine supports placeholders, but the DBD::mysql and DBD::mSQL drivers provide full
emulation. Question marks are used as placeholders, as in:

$dbh->do("INSERT INTO table VALUES (?, ?)", undef, $id, $name);

The :1 placeholder style is not supported.

Programming the Perl DBI

 page 214

In the above example, the driver attempts to guess the datatype of the inserted values by looking at
Perl's own internal string versus number datatype hints. This is fine with MySQL, because MySQL
can deal with expressions like:

INSERT INTO table (id_number) VALUES ('2')

where id_number is a numeric column. But this doesn't apply to mSQL, which would treat that as an
error. So you sometimes need to force a datatype, either by using:

$dbh->do("INSERT INTO table VALUES (?, ?)", undef, int($id), "$name");

or by using the TYPE attribute of the bind_ param() method:

use DBI qw(:sql_types);
$sth = $dbh->prepare("INSERT INTO table VALUES (?, ?)");
$sth->bind_param(1, $id, SQL_INTEGER);
$sth->bind_param(2, $name, SQL_VARCHAR);
$sth->execute();

Unsupported values of the TYPE attribute do not currently generate a warning.

Stored Procedures

Neither mSQL nor MySQL have a concept of stored procedures, although there are plans to add some
stored procedure features to MySQL.

Table Metadata

The 1.21_xx version of the drivers was the first to support the table_info() method.

To obtain information on a generic table, you can use the query:

LISTFIELDS $table

This will return a statement handle without result rows. The TYPE, NAME, ... attributes are describing
the table.

With MySQL you can use:

SHOW INDEX FROM $table

to retrieve information on a table's indexes, in particular a primary key. The information will be
returned in rows. The DBD::mSQL driver does support a similar thing using:

LISTINDEX $table $index

with $index being the name of a given index.

Driver-Specific Attributes and Methods

The following driver-specific database handle attributes are supported:

mysql_info
mysql_thread_id
mysql_insertid

These attributes correspond to the C calls mysql_info(), mysql_thread_id(), and
mysql_insertid(), respectively.

The following driver-specific statement handle attributes are supported:

mysql_use_result
mysql_store_result

With DBD::mysql, there are two different ways the driver fetches results from the server.
With mysql_store_result enabled, it fetches all rows at once, creating a result table in
memory and returns it to the caller (a 100% row cache).

With mysql_use_result, it returns rows to the application as they are fetched. This is less
memory-consuming on the client side, but should not be used in situations where multiple
people can query the database, because it can block other applications. (Don't confuse that
with locking!)

mysql_insertid

A previously generated auto_increment column value, if any.

Programming the Perl DBI

 page 215

mysql_is_blob
mysql_is_key
msql_is_num
mysql_is_num
msql_is_ pri_key
mysql_is_ pri_key

These attributes return an array ref with the given flags set for any column of the result set.
Note you may use these with the LISTFIELDS query to obtain information about the columns
of a table.

mysql_max_length

Unlike the PRECISION attribute, this returns the true actual maximum length of the particular
data in the current result set. This can be helpful, for example, when displaying ASCII tables.

This attribute doesn't work with mysql_use_result enabled, since it needs to look at all the
data.

msql_table
mysql_table

Similar to NAME, but the table names and not the column names are returned.

msql_type
mysql_type

Similar to TYPE, but they return the respective engine's native type.

msql_type_name
mysql_type_name

Similar to msql_type and mysql_type, but column names are returned, that you can use in a
CREATE TABLE statement.

A single private method called admin() is supported. It provides a range of administration functions:

$rc = $drh->func('createdb', $db, $host, $user, $password, 'admin');
$rc = $drh->func('dropdb', $db, $host, $user, $password, 'admin');
$rc = $drh->func('shutdown', $host, $user, $password, 'admin');
$rc = $drh->func('reload', $host, $user, $password, 'admin');

$rc = $dbh->func('createdb', $database, 'admin');
$rc = $dbh->func('dropdb', $database, 'admin');
$rc = $dbh->func('shutdown', 'admin');
$rc = $dbh->func('reload', 'admin');

These correspond to the respective commands of mysqladmin and msqladmin.

Programming the Perl DBI

 page 216

DBD::ODBC

General Information

Driver version

DBD::ODBC version 0.20

Feature summary

Because DBD::ODBC acts as an interface to other database drivers, much of its behavior is governed by
those drivers.

Transactions Dependent on connected data source
Locking Dependent on connected data source
Table joins Dependent on connected data source
LONG/LOB datatypes Dependent on connected data source
Statement handle attributes available After prepare()
Placeholders Yes
Stored procedures Yes
Bind output values No
Table name letter case Dependent on connected data source
Field name letter case Dependent on connected data source
Quoting of otherwise invalid names Dependent on connected data source
Case-insensitive "LIKE" operator Dependent on connected data source
Server table ROW ID pseudocolumn Dependent on connected data source
Positioned update/delete Yes
Concurrent use of multiple handles Dependent on connected data source

Author and contact details

The driver authors are Jeff Urlwin and Tim Bunce. The original work was based upon an early version
of Thomas Wenrich's DBD::Solid. The authors can be contacted via the dbi-users mailing list.

Supported database versions and options

The DBD::ODBC module supports ODBC Version 2.x and 3.x on Unix and Win32. For all platforms,
both an ODBC driver manager and an ODBC driver are required in addition to the DBD::ODBC
module.

For Win32, the driver manager is included with the operating system. For Unix and variants, the
iODBC driver manager source is included in the iodbcsrc directory. While iODBC acts as the driver
manager, you still have to find an actual driver for your platform and database.

Driver providers include:

Intersolv: http://www.intersolv.com
OpenLink: http://www.openlinksw.com

There are other vendors; this is not an exhaustive list. Other related ODBC links include:

http://www.genix.net/unixODBC
http://www.openlinksw.com/iodbc
http://www.microsoft.com/data/odbc

To subscribe to the freeodbc development mailing list, send a message to freeodbc-request@as220.org
with just the word subscribe in the body of the message.

Differences from the DBI specification

DBD::ODBC does not currently support "out" parameter binding. That should be fixed in a later
release.

http://www.intersolv.com
http://www.openlinksw.com
http://www.genix.net/unixODBC
http://www.openlinksw.com/iodbc
http://www.microsoft.com/data/odbc

Programming the Perl DBI

 page 217

Connect Syntax

The DBI->connect() Data Source Name, or DSN, has the following forms:

dbi:ODBC:odbc_dsn
dbi:ODBC:driver=Microsoft Access Driver (*.mdb);dbq=\\server\share\access.mdb

In the first example above, odbc_dsn is an ODBC Data Source Name (DSN). An ODBC DSN is simply
a name you use to refer to a set of driver-specific connection parameters defined elsewhere.
Connection parameters typically include the name of the ODBC driver to use, the database name, and
any required connection details.

Under Win32, the best method of creating an ODBC DSN is by using the ODBC32 applet on the
Windows Control Panel. Under Unix variants, you typically need to edit a text file called .odbc.ini in
your home directory. Refer to your driver manager documentation for more details.

The second connection example above uses the driver-specific connection string. By specifying all the
required information, you can bypass the need to use a previously defined DSN. In our example we're
using the "Microsoft Access Driver (*.mdb)" driver to reach the data in the
\\server\share\access.mdb Access database file.

There are currently no driver-specific attributes for the DBI->connect() method.

Most ODBC drivers and databases let you make multiple concurrent database connections to the same
database. A few do not.

Some ODBC drivers and databases, most notably Sybase and SQL Server, do not let you prepare and
execute a new statement handle while still fetching data from another statement handle associated
with the same database handle.

Datatypes

Numeric data handling

The numeric data handling for ODBC is dependent upon a variety of factors. One of those critical
factors is the end database. For example, Oracle supports different numeric types than Sybase which,
in turn, supports different numeric types than a CSV file. You will need to read your database
documentation for more information.

Unfortunately, the second critical set of factors are the ODBC driver manufacturer and version of the
driver. For example, I have seen a great variety in the handling of numeric values between versions of
Oracle's ODBC drivers. What works with one version, sadly, may not work with even a later version of
Oracle's drivers. You will need to read your ODBC driver documentation for more information.

The DBI type_info() and type_info_all() methods provide information about the datatypes
supported by the database and driver being used.

String data handling

As with numeric handling, string data handling is dependent upon the database and driver. Please see
"Numeric Data Handling" above for more information.

Strings can be concatenated using the CONCAT(s1,s2) SQL function.

Date data handling

As with numeric handling, date data handling is dependent upon the database and driver. Please see
"Numeric Data Handling" above for more information.

You can use ODBC escape sequences to define a date in a database-independent way. For example, to
insert a date of Jan 21, 1998 into a table, you could use:

INSERT INTO table_name (date_field) VALUES ({d '1998-01-21'});

Programming the Perl DBI

 page 218

You can use placeholders within escape sequences instead of literal values. For example:

INSERT INTO table_name (date_field) VALUES ({d ?});

Similar escape sequences are defined for other date/time types. Here's the full set:

{d 'YYYY-MM-DD'} -- date
{t 'HH:MM:SS'} -- time
{ts 'YYYY-MM-DD HH:MM:SS'} -- timestamp
{ts 'YYYY-MM-DD HH:MM:SS.FFFFFFF'} -- timestamp

If you specify a DATE value without a time component, the default time is 00:00:00 (midnight).
There is also an interval escape clause which is constructed like this:

{interval [+|-] 'value' [interval_qualifier]}

For example:

{interval '200-11' YEAR(3) TO MONTH}

Please see an ODBC reference guide for more information.

The current date and time on the server can be found by using an ODBC scalar function escape
sequence to call the appropriate function. For example:

INSERT INTO table_name (date_field) VALUES ({fn CURDATE});

The {fn ...} escape sequence isn't required if the entire SQL statement conforms to the level of SQL-
92 grammar supported by your ODBC driver.

Other related functions include CURTIME(), NOW(), CURRENT_DATE(), CURRENT_TIME(), and
CURRENT_TIMESTAMP(). The last three require an ODBC v3 driver.

Other date/time related functions include: DAYNAME(), DAYOFMONTH(), DAYOFWEEK(), DAYOFYEAR(
), EXTRACT(), HOUR(), MINUTE(), MONTH(), MONTHNAME(), SECOND(), WEEK(), and YEAR().

Basic date/time arithmetic can be performed using the TIMESTAMPADD() and TIMESTAMPDIFF()
functions.

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970" value to
the corresponding database date/time:

TIMESTAMPADD(SQL_TSI_SECOND, seconds_since_epoch, {d '1970-01-01'})

to do the reverse you can use:

TIMESTAMPDIFF(SQL_TSI_SECOND, {d '1970-01-01'}, date_field)

ODBC itself does not have any support for time zones, though the database to which you are
connected may.

LONG/BLOB data handling

Support for LONG/BLOB datatypes and their maximum lengths are very dependent on the database to
which you are connected.

The LongReadLen and LongTruncOk attributes work as defined. However, the driver implementations
do affect this. Some drivers do not properly indicate that they have truncated the data, or they have
more data available than was actually returned. The DBD::ODBC tests attempt to determine correct
support for this.

No special handling is required for LONG/BLOB datatypes. They can be treated just like any other field
when fetching or inserting, etc.

Other data handling issues

The DBD::ODBC driver supports the type_info() method.

Transactions, Isolation, and Locking

DBD::ODBC supports transactions if the databases you are connected to supports them.

Programming the Perl DBI

 page 219

Supported isolation levels, the default isolation level, and locking behavior are all dependent on the
database to which you are connected.

SQL Dialect

Because DBD::ODBC acts as an interface to other database drivers, the following issues are governed by
those drivers and the databases they connect to:

• Case-sensitivity of LIKE operator

• Table and column names

• Row ID

• Automatic key or sequence generation

• Automatic row numbering and row count limiting

For more information, refer to the documentation for the drivers and the database being used.

Table join syntax

Table join syntax is partly dependent on the database to which you are connected and the ODBC
driver you are using. The ODBC standard SQL defines the standard syntax for inner joins and an
escape sequence to use for outer joins:

{oj outer_join}

where outer_ join is defined as:

table_name [LEFT | RIGHT | FULL]
 OUTER JOIN [table_name | outer_join] ON condition

An outer join request must appear after the FROM clause of a SELECT but before a WHERE clause, if one
exists.

Positioned updates and deletes

This is dependent on the database to which you are connected. Positioned updates and deletes are
supported in ODBC SQL using the WHERE CURRENT OF syntax.

For example:

$dbh->do("UPDATE ... WHERE CURRENT OF $sth->{CursorName}");

Parameter Binding

Parameter binding is supported by DBD::ODBC if the underlying ODBC driver driver supports it. Only
the standard ? style of placeholders is supported.

The TYPE attribute to the bind_ param() method is supported.

Stored Procedures

Stored procedures can be called using the following ODBC escape sequence:

{call procedure1_name}
{call procedure2_name(?, ?)}
{?= call procedure3_name(?, ?)}

The last form would be used to return values from the procedure, but DBD::ODBC currently does not
support output parameters.

Programming the Perl DBI

 page 220

Table Metadata

DBD::ODBC supports the table_info() method.

DBD::ODBC also supports many of the ODBC metadata functions that can be used to discover
information about the tables within a database. These can be accessed as driver-specific private
methods:

SQLGetTypeInfo -- $dbh->func(xxx, 'GetTypeInfo')
SQLDescribeCol -- $sth->func(colno, 'DescribeCol')
SQLColAttributes -- $sth->func(xxx, colno, 'ColAttributes')
SQLGetFunctions -- $dbh->func(xxx, 'GetFunctions')
SQLColumns -- $dbh->func(catalog, schema, table, column, 'columns')
SQLStatistics -- $dbh->func(catalog, schema, table, unique, 'Statistics')
SQLPrimaryKeys -- $dbh->func(catalog, schema, table, 'PrimaryKeys')
SQLForeignKeys -- $dbh->func(pkc, pks, pkt, fkc, fks, fkt, 'ForeignKeys')

The DBI will provide standard methods for these soon, possibly by the time you read this book.

Driver-Specific Attributes and Methods

DBD::ODBC has no driver-specific handle attributes.

In addition to the private methods described in "Table Metadata" above, the GetInfo() private
method can be used to discover many details about the driver and database you are using.

Programming the Perl DBI

 page 221

DBD::Oracle

General Information

Driver version

DBD::Oracle version 1.03

Feature summary
Transactions Yes
Locking Yes, implicit and explicit
Table joins Yes, inner and outer
LONG/LOB datatypes Yes, up to 4 GB
Statement handle attributes available After prepare()
Placeholders Yes, "?" and ":1" styles (native)
Stored procedures Yes
Bind output values Yes
Table name letter case Insensitive, stored as uppercase
Field name letter case Insensitive, stored as uppercase
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator No
Server table ROW ID pseudocolumn Yes, "ROWID"
Positioned update/delete No
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Tim Bunce. He can be contacted via the dbi-users mailing list.

Supported database versions and options

The DBD::Oracle module supports both Oracle 7 and Oracle 8.

Building for Oracle 8 defaults to use the new Oracle 8 OCI interface, which enables use of some Oracle
8 features including LOBs and "INSERT ... RETURNING ...".

An emulation module for the old Perl4 oraperl software is supplied with DBD::Oracle, making it very
easy to upgrade oraperl scripts to Perl5.

For further information about Oracle, refer to:

http://www.oracle.com
http://technet.oracle.com

Differences from the DBI specification

DBD::Oracle has no known significant differences in behavior from the current DBI specification.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, can be one of the following:

dbi:Oracle:tnsname
dbi:Oracle:sidname
dbi:Oracle:host=hostname;sid=sid

Some other less common formats also work if supported by the Oracle client version being used.

There are no significant driver-specific attributes for the DBI->connect() method.

DBD::Oracle supports an unlimited number of concurrent database connections to one or more
databases.

http://www.oracle.com
http://technet.oracle.com

Programming the Perl DBI

 page 222

Datatypes

Numeric data handling

Oracle has only one flexible underlying numeric type, NUMBER. But Oracle does support several
ANSI standard and IBM datatype names as aliases, including:

INTEGER = NUMBER(38)
INT = NUMBER(38)
SMALLINT = NUMBER(38)
DECIMAL(p,s) = NUMBER(p,s)
NUMERIC(p,s) = NUMBER(p,s)
FLOAT = NUMBER
FLOAT(b) = NUMBER(p) where b is the binary precision, 1 to 126
REAL = NUMBER(18)

The NUMBER datatype stores positive and negative fixed and floating-point numbers with
magnitudes between 1.0 × 10-130 and 9.9...9 × 10125 (38 nines followed by 88 zeroes), with 38 digits
of precision.

You can specify a fixed-point number using the following form: NUMBER(p,s) where s is the scale, or
the number of digits to the right of the decimal point. The scale can range from -84 to 127.

You can specify an integer using NUMBER(p). This is a fixed-point number with precision p and scale
0. This is equivalent to NUMBER(p,0).

You can specify a floating-point number using NUMBER. This is a floating-point number with decimal
precision 38. A scale value is not applicable for floating-point numbers.

DBD::Oracle always returns all numbers as strings. Thus the driver puts no restriction on size of
PRECISION or SCALE.

String data handling

Oracle supports the following string datatypes:

VARCHAR2(size)
NVARCHAR2(size)
CHAR
CHAR(size)
NCHAR
NCHAR(size)
RAW(size)

The RAW type is presented as hexadecimal characters. The contents are treated as non-character
binary data and thus are never "translated" by character set conversions or gateway interfaces.

CHAR types and the RAW type have a limit of 2000 bytes. For VARCHAR types the limit is 2000 bytes in
Oracle 7 and 4000 in Oracle 8.

The NVARCHAR2 and NCHAR variants hold string values of a defined national character set (Oracle 8
only). For those types the maximum number of characters stored may be lower when using multibyte
character sets.

The CHAR and NCHAR types are fixed length and blank padded.

Oracle automatically converts character data between the character set of the database defined when
the database was created and the character set of the client, defined by the NLS_LANG parameter for
the CHAR and VARCHAR2 types or the NLS_NCHAR parameter for the NCHAR and NVARCHAR2 types.

CONVERT(string, dest_char_set, source_char_set) can be used to convert strings between
character sets. Oracle 8 supports 180 storage character sets. UTF-8 is supported. See the "National
Language Support" section of the Oracle Reference manual for more details on character set issues.

Strings can be concatenated using either the CONCAT(s1,s2,...) SQL function or the || operator.

Programming the Perl DBI

 page 223

Date data handling

Oracle supports one flexible date/time datatype: DATE. A DATE can have any value from January 1,
4712 BC to December 31, 4712 AD with a one second resolution.

Oracle supports a very wide range of date formats and can use one of several calendars (Arabic Hijrah,
English Hijrah, Gregorian, Japanese Imperial, Persian, ROC Official (Republic of China), and Thai
Buddha). We'll only consider the Gregorian calendar here.

The default output format for the DATE type is defined by the NLS_DATE_FORMAT configuration
parameter, but it's typically DD-MON-YY, e.g., 20-FEB-99 in most western installations. The default
input format for the DATE type is the same as the output format. Only that one format is recognized.

If you specify a DATE value without a time component, the default time is 00:00:00 (midnight). If you
specify a DATE value without a date, the default date is the first day of the current month. If a date
format that has a two-digit year, such as the YY in DD-MON-YY (a common default) then the date
returned is always in the current century. The RR format can be used instead to provide a fifty-year
pivot.

The default date format is specified either explicitly with the initialization parameter
NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRITORY. For information on
these parameters, see Oracle8 Reference.

You can change the default date format for your session with the ALTER SESSION command. For
example:

ALTER SESSION SET NLS_DATE_FORMAT = 'MM/DD/YYYY'

The TO_DATE() function can be used to parse a character string containing a date in a known format.
For example:

UPDATE table SET date_field = TO_DATE('1999-02-21', 'YYYY-MM-DD')

The TO_CHAR() function can be used to format a date. For example:

SELECT TO_CHAR(SYSDATE, 'YYYY-MM-DD') FROM DUAL

The current date/time is returned by the SYSDATE() function.

You can add numbers to DATE values. The number is interpreted as numbers of days; for example,
SYSDATE + 1 is this time tomorrow, and SYSDATE - (3/1440) is three minutes ago. You can subtract
two dates to find the difference, in days, between them.

Oracle provides a wide range of date functions including ROUND(), TRUNC(), NEXT_DAY(),
ADD_MONTHS(), LAST_DAY() (of the month), and MONTHS_BETWEEN().

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970" value to
the corresponding database date/time:

to_date(trunc(:unixtime/86400, 0) + 2440588, 'J') -- date part
+(mod(:unixtime,86400)/86400) -- time part

To do the reverse you can use:

(date_time_field - TO_DATE('01-01-1970','DD-MM-YYYY')) * 86400

Oracle does no automatic time zone adjustments. However it does provide a NEW_TIME() function
that calculates time zone adjustments for a range of time zones. NEW_TIME(d, z1, z2) returns the
date and time in time zone z2 when the date and time in time zone z1 are represented by d.

LONG/BLOB data handling

Oracle supports these LONG/BLOB datatypes:

LONG - Character data of variable length
LONG RAW - Raw binary data of variable length
CLOB - A large object containing single-byte characters
NCLOB - A large object containing national character set data
BLOB - Binary large object
BFILE - Locator for external large binary file

Programming the Perl DBI

 page 224

The LONG types can hold up to 2 GB. The other types (LOB and FILE) can hold up to 4 GB. The LOB
and FILE types are only available when using Oracle 8 OCI.

The LONG RAW and RAW types are passed to and from the database as strings consisting of pairs of hex
digits.

The LongReadLen and LongTruncOk attributes work as defined. However, the LongReadLen attribute
seems to be limited to 65535 bytes on most platforms when using Oracle 7. Building DBD::Oracle
with Oracle 8 OCI raises that limit to 4 GB.

The maximum length of bind_ param() parameter value that can be used to insert LONG data
seems to be limited to 65535 bytes on most platforms when using Oracle 7. Building DBD::Oracle
with Oracle 8 OCI raises that limit to 4 GB.

The TYPE attribute value SQL_LONGVARCHAR indicates an Oracle LONG type. The value
SQL_LONGVARBINARY indicates an Oracle LONG RAW type. These values are not always required but
their use is strongly recommended.

No other special handling is required for LONG/BLOB datatypes. They can be treated just like any other
field when fetching or inserting, etc.

Other data handling issues

The DBD::Oracle driver supports the type_info() method.

Oracle supports automatic conversions between datatypes wherever it's reasonable.

Transactions, Isolation, and Locking

DBD::Oracle supports transactions. The default transaction isolation level is READ COMMITED.

Oracle supports READ COMMITED and SERIALIZABLE isolation levels. The level may be changed
once per-transaction by executing a SET TRANSACTION ISOLATION LEVEL x statement (where x is the
name of the isolation level required).

Oracle also supports transaction-level read consistency. This can be enabled by issuing a SET
TRANSACTION statement with the READ ONLY option.

In Oracle, the default behavior is that a lock never prevents other users from querying the table. A
query never places a lock on a table. Readers never block writers, and writers never block readers.

Rows returned by a SELECT statement can be locked to prevent them from being changed by another
transaction by appending FOR UPDATE to the SELECT statement. Optionally, you can specify a column
list in parentheses after the FOR UPDATE clause.

The LOCK TABLE table_name IN lock_mode statement can be used to apply an explicit lock on an
entire table. A range of row and table locks are supported.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is case-sensitive.

Table join syntax

Oracle supports inner joins with the usual syntax:

SELECT * FROM a, b WHERE a.field = b.field

To write a query that performs an outer join of tables A and B and returns all rows from A, the Oracle
outer join operator (+) must be applied to all column names of B that appear in the join condition.

Programming the Perl DBI

 page 225

For example:

SELECT customer_name, order_date
FROM customers, orders
WHERE customers.cust_id = orders.cust_id (+);

For all rows in the customer's table that have no matching rows in the orders table, Oracle returns
NULL for any select list expressions containing columns from the orders table.

Table and column names

The names of Oracle identifiers, such as tables and columns, cannot exceed thirty characters in length.

The first character must be a letter, but the rest can be any combination of letters, numerals, dollar
signs ($), pound signs (#), and underscores (_).

However, if an Oracle identifier is enclosed by double quotes ("), it can contain any combination of
legal characters including spaces but excluding quotation marks.

Oracle converts all identifiers to uppercase unless enclosed in double quotes. National characters can
also be used when identifiers are quoted.

Row ID

The Oracle "row id" pseudocolumn is called ROWID. Oracle ROWIDs are alphanumeric case-
sensitive strings. They can be treated as ordinary strings and used to rapidly (re)select rows.

Automatic key or sequence generation

Oracle supports "sequence generators". Any number of named sequence generators can be created in
a database using the CREATE SEQUENCE seq_name SQL command. Each has pseudocolumns called
NEXTVAL and CURRVAL. The typical usage is:

INSERT INTO table (k, v) VALUES (seq_name.nextval, ?)

To get the value just inserted you can use:

SELECT seq_name.currval FROM DUAL

Oracle does not support automatic key generation such as "auto increment" or "system generated"
keys. However they can be emulated using triggers and sequence generators.

For example:

CREATE TRIGGER trigger_name
 BEFORE INSERT ON table_name FOR EACH ROW
 DECLARE newid integer;
BEGIN
 IF (:NEW.key_field_name IS NULL)
 THEN
 SELECT sequence_name.NextVal INTO newid FROM DUAL;
 :NEW.key_field_name := newid;
 END IF;
END;

Oracle8i (8.1.0 and above) supports Universal Unique ID number generation, per the IETF Internet-
Draft, using the new SYS_GUID() function. GUIDs are more useful than sequence generators in a
distributed database since no two hosts will generate the same GUID.

Automatic row numbering and row count limiting

The ROWNUM pseudocolumn can be used to sequentially number selected rows (starting at 1). Sadly,
however, Oracle's ROWNUM has some frustrating limitations. Refer to the Oracle SQL documentation.

Positioned updates and deletes

Oracle does not support positioned updates or deletes.

Programming the Perl DBI

 page 226

Parameter Binding

Parameter binding is directly supported by Oracle. Both the ? and :1 style of placeholders are
supported. The :name style is also supported, but is not portable.

The bind_ param() method TYPE attribute can be used to indicate the type a parameter should be
bound as. These SQL types are bound as VARCHAR2: SQL_NUMERIC, SQL_DECIMAL, SQL_INTEGER,
SQL_SMALLINT, SQL_FLOAT, SQL_REAL, SQL_DOUBLE, and SQL_VARCHAR. Oracle will automatically
convert from VARCHAR2 to the required type.[B]

The SQL_CHAR type is bound as a CHAR, thus enabling fixed-width, blank-padded comparison
semantics.

The SQL_BINARY and SQL_VARBINARY types are bound as RAW. SQL_LONGVARBINARY is bound as LONG
RAW and SQL_LONGVARCHAR as LONG.

Unsupported values of the TYPE attribute generate a warning.

Refer to the DBD::Oracle documentation for details of how to bind LOBs and CURSORs.

Stored Procedures

Oracle stored procedures are implemented in the Oracle PL/SQL language.[C]

The DBD::Oracle module can be used to execute a block of PL/SQL code by starting it with a BEGIN
and ending it with an END;. PL/SQL blocks are used to call stored procedures. Here's a simple
example that calls a stored procedure called "foo" and passes it two parameters:

$sth = $dbh->prepare("BEGIN foo(:1, :2); END;");
$sth->execute("Baz", 24);

Here's a more complex example that shows a stored procedure being called with two parameters and
returning the return value of the procedure. The second parameter of the procedure is defined as IN
OUT so we bind that using bind_ param_inout() to enable it to update the Perl variable:

$sth = $dbh->prepare("BEGIN :result = func_name(:id, :changeme); END;");
$sth->bind_param(":id", "FooBar");
my ($result, $changeme) = (41, 42);
$sth->bind_param_inout(":result", \$result, 100);
$sth->bind_param_inout(":changeme", \$changeme, 100);
$sth->execute();
print "func_name returned '$result' and updated changeme to '$changeme'\n";

Table Metadata

DBD::Oracle supports the table_info() method.

The ALL_TABLES view contains detailed information about all tables in the database, one row per
table.

The ALL_TAB_COLUMNS view contains detailed information about all columns of all the tables in the
database, one row per table.

The ALL_INDEXES view contains detailed information about all indexes in the database, including
primary keys, one row per index.

The ALL_IND_COLUMNS view contains information about the columns that make up each index.

(Note that for all these views, fields containing statistics derived from the actual data in the
corresponding table are updated only when the SQL ANALYSE command is executed for that table.)

Driver-Specific Attributes and Methods

DBD::Oracle has no significant driver-specific database or statement handle attributes.

Programming the Perl DBI

 page 227

The following private methods are supported:

plsql_errstr
$plsql_errstr = $dbh->func('plsql_errstr');

Returns error text from the USER_ERRORS table.

dbms_output_enable
$dbh->func('dbms_output_enable');

Enables the DBMS_OUTPUT package. The DBMS_OUTPUT package is typically used to receive
trace and informational messages from stored procedures.

dbms_output_get
$msg = $dbh->func('dbms_output_get');
@msgs = $dbh->func('dbms_output_get');

Gets a single line or all available lines using DBMS_OUTPUT.GET_LINE.

dbms_output_put
$msg = $dbh->func('dbms_output_put', @msgs);

Puts messages using DBMS_OUTPUT.PUT_LINE.

Programming the Perl DBI

 page 228

DBD::Pg

General Information

Driver version

DBD::Pg version 0.91

Feature summary
Transactions Yes
Locking Yes, implicit and explicit
Table joins Yes, inner only
LONG/LOB datatypes Yes, max size depends on filesystem
Statement handle attributes available After execute()
Placeholders Yes, "?" and ":1" styles (native)
Stored procedures No
Bind output values No
Table name letter case Insensitive, stored as lowercase
Field name letter case Insensitive, stored as lowercase
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator No, but has "~*" case-insensitive regex
 match
Server table ROW ID pseudocolumn Yes, "oid"
Positioned update/delete No
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Edmund Mergl. He can be contacted via the dbi-users mailing list.

Supported database versions and options

The DBD-Pg-0.91 module supports PostgreSQL 6.4. For futher information please refer to:

http://www.postgresql.org

Differences from the DBI Specification

DBD::Pg does not fully parse the statement until it's executed. Thus, attributes like $sth-
>{NUM_OF_FIELDS} are not available until after $sth->execute() has been called. This is valid
behavior, but it is important to note when porting applications originally written for other drivers.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, can be one of the following:

dbi:Pg:dbname=$dbname
dbi:Pg:dbname=$dbname;host=$host;port=$port;options=$options;tty=$tty

All parameters, including the userid and password parameter of the connect command, have a hard-
coded default that can be overridden by setting appropriate environment variables.

There are no driver-specific attributes for the DBI->connect() method.

DBD::Pg supports an unlimited number of concurrent database connections to one or more databases.

http://www.postgresql.org

Programming the Perl DBI

 page 229

Datatypes

Numeric data handling

PostgreSQL supports the following numeric types:

PostgreSQL Range

int2 -32768 to +32767

int4 -2147483648 to +2147483647

float4 6 decimal places

float8 15 decimal places

Some platforms also support the int8 type. DBD::Pg always returns all numbers as strings.

String data handling

PostgreSQL supports the following string datatypes:

CHAR single character
CHAR(size) fixed length blank-padded
VARCHAR(size) variable length with limit
TEXT variable length

All string datatypes have a limit of 4096 bytes. The CHAR type is fixed length and blank padded.

There is no special handling for data with the eighth bit set. They are stored unchanged in the
database. None of the character types can store embedded nulls and Unicode is not formally
supported.

Strings can be concatenated using the || operator.

Date data handling

PostgreSQL supports the following date/time datatypes:

Datatype Storage Recommendation Description

abstime 4 bytes original date and time limited range

date 4 bytes SQL92 type wide range

datetime 8 bytes best general date and time wide range, high precision

interval 12 bytes SQL92 type equivalent to timespan

reltime 4 bytes original time interval limited range, low precision

time 4 bytes SQL92 type wide range

timespan 12 bytes best general time interval wide range, high precision

timestamp 4 bytes SQL92 type limited range

Programming the Perl DBI

 page 230

Datatype Range Resolution

abstime 1901-12-14 2038-01-19 1 sec

date 4713 B.C. 32767 A.D. 1 day

datetime 4713 B.C. 1465001 A.D. 1 microsec

interval -178000000 years +178000000 years 1 microsec

reltime -68 years +68 years 1 sec

time 00:00:00:00 23:59:59:99 1 microsec

timespan -178000000 years 178000000 years 1 microsec

timestamp 1901-12-14 2038-01-19 1 sec

PostgreSQL supports a range of date formats:

Name Example

ISO 1997-12-17 0:37:16-08

SQL 12/17/1997 07:37:16.00 PST

Postgres Wed Dec 17 07:37:16 1997 PST

European 17/12/1997 15:37:16.00 MET

NonEuropean 12/17/1997 15:37:16.00 MET

US 12/17/1997 07:37:16.00 MET

The default output format does not depend on the client/server locale. It depends on, in increasing
priority: the PGDATESTYLE environment variable at the server, the PGDATESTYLE environment variable
at the client, and the SET DATESTYLE SQL command.

All of the formats described above can be used for input. A great many others can also be used. There
is no specific default input format. If the format of a date input is ambiguous then the current
DATESTYLE is used to help disambiguate.

If you specify a date/time value without a time component, the default time is 00:00:00 (midnight).
To specify a date/time value without a date is not allowed. If a date with a two-digit year is input, then
if the year was less than 70, add 2000; otherwise, add 1900.

The current date/time is returned by the keyword 'now' or 'current' , which has to be cast to a valid
datatype. For example:

SELECT 'now'::datetime

PostgreSQL supports a range of date/time functions for converting between types, extracting parts of
a date/time value, truncating to a given unit, etc. The usual arithmetic can be performed on date and
interval values, e.g., date-date=interval, etc.

Programming the Perl DBI

 page 231

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970 GMT" value
to the corresponding database date/time:

DATETIME(unixtime_field)

and to do the reverse:

DATE_PART('epoch', datetime_field)

The server stores all dates internally in GMT. Times are converted to local time on the database server
before being sent to the client frontend, hence by default are in the server time zone.

The TZ environment variable is used by the server as default time zone. The PGTZ environment
variable on the client side is used to send the time zone information to the backend upon connection.
The SQL SET TIME ZONE command can set the time zone for the current session.

LONG/BLOB data handling

PostgreSQL handles BLOBs using a so-called "large objects" type. The handling of this type differs
from all other datatypes. The data are broken into chunks, which are stored in tuples in the database.
Access to large objects is given by an interface which is modelled closely after the Unix file system.
The maximum size is limited by the file size of the operating system.

If you just select the field, you get a "large object identifier" and not the data itself. The LongReadLen
and LongTruncOk attributes are not implemented because they don't make sense in this case. The
only method implemented by the driver is the undocumented DBI method blob_read().

Other data handling issues

The DBD::Pg driver supports the type_info() method.

PostgreSQL supports automatic conversions between datatypes wherever it's reasonable.

Transactions, Isolation, and Locking

PostgreSQL supports transactions. The current default isolation transaction level is Serializable and is
currently implemented using table-level locks. Both may change. No other isolation levels for
transactions are supported.

With AutoCommit on, a query never places a lock on a table. Readers never block writers, and writers
never block readers. This behavior changes whenever a transaction is started (with AutoCommit off).
Then a query induces a shared lock on a table and blocks anyone else until the transaction has been
finished.

The LOCK TABLE table_name statement can be used to apply an explicit lock on a table. This works
only inside a transaction (with AutoCommit off).

To ensure that a table being selected does not change before you make an update later in the
transaction, you must explicitly lock it with a LOCK TABLE statement before executing the select.

Programming the Perl DBI

 page 232

SQL Dialect

Case sensitivity of LIKE operator

PostgreSQL has the following string matching operators:

Glyph Description Example

~~ Same as SQL "LIKE" operator 'scrappy,marc' ~~ '%scrappy%'

!~~ Same as SQL "NOT LIKE" operator 'bruce' !~~ '%al%'

~ Match (regex), case-sensitive 'thomas' ~ '.*thomas.*'

~* Match (regex), case-insensitive 'thomas' ~* '.*Thomas.*'

!~ Doesn't match (regex), case-sensitive 'thomas' !~ '.*Thomas.*'

!~* Doesn't match (regex), case-insensitive 'thomas' !~ '.*vadim.*'

Table join syntax

Outer joins are not supported. Inner joins use the traditional syntax.

Table and column names

The maximum size of table and column names cannot exceed 31 charaters in length. Only
alphanumeric characters can be used; the first character must be a letter.

If an identifier is enclosed by double quotes ("), it can contain any combination of characters except
double quotes.

PostgreSQL converts all identifiers to lowercase unless enclosed in double quotes. National character
set characters can be used, if enclosed in quotation marks.

Row ID

The PostgreSQL "row id" pseudocolumn is called oid, object identifier. It can be treated as a string
and used to rapidly (re)select rows.

Automatic key or sequence generation

PostgreSQL does not support automatic key generation such as "auto increment" or "system
generated" keys.

However, PostgreSQL does support "sequence generators." Any number of named sequence
generators can be created in a database. Sequences are used via functions called NEXTVAL and
CURRVAL. The typical usage is:

INSERT INTO table (k, v) VALUES (NEXTVAL('seq_name'), ?);

To get the value just inserted, you can use the corresponding currval() SQL function in the same
session, or:

SELECT last_value FROM seq_name

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

PostgreSQL does not support positioned updates or deletes.

Programming the Perl DBI

 page 233

Parameter Binding

Parameter binding is emulated by the driver. Both the ? and :1 style of placeholders are supported.

The TYPE attribute of the bind_ param() method may be used to influence how parameters are
treated. These SQL types are bound as VARCHAR: SQL_NUMERIC, SQL_DECIMAL, SQL_INTEGER,
SQL_SMALLINT, SQL_FLOAT, SQL_REAL, SQL_DOUBLE, and SQL_VARCHAR.

The SQL_CHAR type is bound as a CHAR, thus enabling fixed-width, blank-padded comparison
semantics.

Unsupported values of the TYPE attribute generate a warning.

Stored Procedures

DBD::Pg does not support stored procedures.

Table Metadata

DBD::Pg supports the table_info() method.

The pg_attribute table contains detailed information about all columns of all the tables in the
database, one row per table.

The pg_index table contains detailed information about all indexes in the database, including primary
keys, one row per index.

Driver-Specific Attributes and Methods

There are no significant DBD::Pg driver-specific database handle attributes.

DBD::Pg has the following driver-specific statement handle attributes:

pg_size

Returns a reference to an array of integer values for each column. The integer shows the
storage (not display) size of the column in bytes. Variable length columns are indicated by -1.

pg_type

Returns a reference to an array of strings for each column. The string shows the name of the
datatype.

pg_oid_status

Returns the OID of the last INSERT command.

pg_cmd_status

Returns the name of the last command type. Possible types are: INSERT, DELETE, UPDATE, and
SELECT.

DBD::Pg has no private methods.

Other Significant Database or Driver Features

PostgreSQL offers substantial additional power by incorporating the following four additional basic
concepts in such a way that users can easily extend the system: classes, inheritance, types, and
functions.

Other features provide additional power and flexibility: constraints, triggers, rules, transaction
integrity, procedural languages, and large objects.

It's also free Open Source Software with an active community of developers.

Programming the Perl DBI

 page 234

DBD::SearchServer

General Information

Driver version

DBD::SearchServer version 0.20

This driver was previously known as DBD::Fulcrum.

Feature summary
Transactions No
Locking Yes, implicit and explicit
Table joins No, but see description below
LONG/LOB datatypes Yes, up to 2 GB
Statement handle attributes available After execute()
Placeholders Yes, "?" and ":1" styles (emulated)
Stored procedures No
Bind output values No
Table name letter case Insensitive, stored as uppercase
Field name letter case Insensitive, stored as uppercase
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator Yes, "LIKE"
Server table ROW ID pseudocolumn Yes, "FT_CID"
Positioned update/delete Yes
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Davide Migliavacca. He can be contacted via the dbi-users mailing list. Davide
Migliavacca has no relationship with PCDOCS/Fulcrum, the maker of SearchServer, and particularly
no contact with product support for PCDOCS/Fulcrum customers.

Supported database versions and options

The DBD::SearchServer module supports PCDOCS/Fulcrum SearchServer, versions 2.x thru 3.5.

Fulcrum SearchServer is a very powerful text-retrieval system with a SQL interface. You should not
expect to find a full-fledged SQL RDBMS here. Refer to the product documentation for details about
the query language.

For further information about SearchServer, refer to:

http://www.pcdocs.com

Differences from the DBI specification

DBD::SearchServer doesn't fully parse the statement until it's executed. Attributes like $sth-
>{NUM_OF_FIELDS} aren't available until after $sth->execute() has been called. This is valid
behavior but is important to note when porting applications originally written for other drivers.

Connect Syntax

Under Unix, you may specify where SearchServer will find the database tables by using a set of
environment variables: FULSEARCH, FULCREATE, and FULTEMP. So the connect string is always just:

dbi:SearchServer:

Under WIN32, you may use the fully qualified DSN syntax using the ODBC data source name as the
third component of the connect string:

dbi:SearchServer:DSN

http://www.pcdocs.com

Programming the Perl DBI

 page 235

There are no driver-specific attributes for the DBI->connect() method.

DBD::SearchServer supports an unlimited number of concurrent database connections to the same
server.

Datatypes

Numeric data handling

SearchServer has two numeric datatypes: INTEGER and SMALLINT. INTEGER (or INT) is an unsigned
32-bit binary integer with 10 digits of precision. SMALLINT is a signed 16-bit binary integer with 5
digits of precision.

String data handling

SearchServer supports the following string datatypes:

CHAR(size)
VARCHAR(size)
APVARCHAR(size)

A CHAR column is of fixed size, whereas a VARCHAR column can be of varying length up to the specified
maximum size. If the size is not specified, it defaults to 1. The maximum size for a CHAR or VARCHAR
column is 32,767.

APVARCHAR is a special datatype. You can have at most one APVARCHAR column per table; it is designed
to contain the full text of the document to be indexed and it is used in queries to retrieve the text. It is
eventually modified to identify spots where the query matched. The maximum length of the
APVARCHAR column is 2,147,483,647.

The CHAR type is fixed-length and blank-padded to the right.

SearchServer has its own conversion functionality for national language character sets. Basically, it
treats all text as being specified in one of three internal character sets (FTICS). It is up to the
application to use character sets consistently. The document readers (software that is used by
SearchServer to actually access documents when indexing) are responsible for translating from other
characters sets to FTICS. A number of "translation" filters are distributed with the product.

ISO Latin 1 (8859-1) is supported. See the "Character Sets" section of the SearchSQL Reference
Manual for more details on character set issues.

Date data handling

SearchServer supports only a DATE datatype. A DATE can have any value from January 1, 100 AD to
December 31, 2047 AD with one-day resolution. Rows in tables have an automatic read-only
FT_TIMESTAMP column with a better resolution, but it is not of a DATE type (it is an INTEGER). Also,
only date literals can be used with DATE columns.

The date format is YYYY-MM-DD (ISO standard). There are provisions for other formats, but their use
is discouraged.

Only the ISO date format is recognized for input.

If a two-digit year value is entered, then 1900 is added to the value. However, this isn't supported
functionality, for good reason.

No date/time arithmetic or functions are provided, and there is no support for time zones.

Programming the Perl DBI

 page 236

LONG/BLOB data handling

The APVARCHAR type can hold up to 2 GB.

LongReadLen and LongTruncOk are ignored due to very different semantics of the APVARCHAR type.

You need to use the undocumented blob_read() method to fetch data from an APVARCHAR column.
Inserting an APVARCHAR column happens indirectly by specifying an external document in the
FT_SFNAME reserved column. Document data is not really inserted into the tables, it is indexed. Later,
however, you can fetch the document selecting the APVARCHAR column.

Other data handling issues

The DBD::SearchServer driver does not support the type_info() method.

Transactions, Isolation, and Locking

DBD::SearchServer does not support transactions.

Locking is performed based on the characteristics of the table, set at creation time or modified later
with an external utility, ftlock.

By default, ROWLOCKING is applied, which applies "transient" locks during normal operations including
select, searched update, and delete. These locks should not prevent reading the affected rows, but will
block additional concurrent modifications, and prevent reindexing of the locked rows.

If set to NOLOCKING, no locking will be performed on that table by the engine, meaning that data
integrity is left for the application to manage. Please read the documentation carefully before playing
with these parameters; there is additional feedback with the PERIODIC or IMMEDIATE indexing mode.

Rows returned by a SELECT statement can be locked to prevent them from being changed by another
transaction, by appending FOR UPDATE to the select statement.

There is no explicit table lock facility. You can prevent a table schema being modified, dropped, or
even reindexed using PROTECT TABLE, but this does not include row-level modifications, which are still
allowed. UNPROTECT TABLE restores normal behavior.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is not case-sensitive.

Table join syntax

SearchServer does not really supports joins, however it does support a kind of view mechanism.

With views, tables must be located on the same node and have the same schema. Only read-only
access is granted with views, and they have to be described using a special syntax file. Please refer to
the "Data Administration and Preparation" manual for more information on views.

Table and column names

Letters, numbers, and underscores (_) are valid characters in identifiers. The maximum size of table
and column names is not known at this time.

SearchServer converts all identifiers to uppercase. Table and column names are not case-sensitive.
National characters can be used in identifier names.

Row ID

The SearchServer "row id" pseudocolumn is called FT_CID and is of the INTEGER datatype. FT_CID
can be used in a WHERE clause, but only with the = operator.

Programming the Perl DBI

 page 237

Automatic key or sequence generation

SearchServer does not support automatic key generation such as "auto increment" or "system
generated" keys. However, the integer FT_CID pseudocolumn is not reissued when rows are deleted.

There is no support for sequence generators.

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

Positioned updates and deletes are supported using the WHERE CURRENT OF syntax. For example:

$dbh->do("UPDATE ... WHERE CURRENT OF $sth->{CursorName}");

Parameter Binding

Both the ? and :1 style of placeholders are supported by driver emulation.

The TYPE attribute to bind_ param() is ignored, so no warning is generated for unsupported values.

Stored Procedures

There are no stored procedures or functions in SearchServer.

Table Metadata

DBD::SearchServer supports the table_info() method.

The COLUMNS system table contains detailed information about all columns of all the tables in the
database, one row per column. The COLUMNS system table uses the INDEX_MODE column to identify
indexed columns and which indexing mode is used for them.

Driver-Specific Attributes and Methods

DBD::SearchServer has no driver-specific database handle attributes. It does have one driver-
specific statement handle attribute:

ss_last_row_id

This attribute is read-only and is valid after an INSERT, DELETE, or UPDATE statement. It will
report the FT_CID (row ID) of the last affected row in the statement. You'll have to
prepare/execute the statement (as opposed to simply do()-ing it) in order to fetch the
attribute.

There are no private methods.

Programming the Perl DBI

 page 238

DBD::Sybase - For Sybase and Microsoft SQL Server

General Information

Driver version

DBD::Sybase version 0.14

Feature summary
Transactions Yes
Locking Yes, implicit and explicit
Table joins Yes, inner and outer
LONG/LOB datatypes Yes, up to 2 GB
Statement handle attributes available After execute()
Placeholders Yes, "?" style (native), see text below
Stored procedures Yes
Bind output values No, all values returned via fetch methods
Table name letter case Sensitive, stored as defined, configurable
Field name letter case Sensitive, stored as defined, configurable
Quoting of otherwise invalid names Yes, via double quotes
Case-insensitive "LIKE" operator No
Server table ROW ID pseudocolumn No
Positioned update/delete No
Concurrent use of multiple handles Statement handles restricted, see below

Author and contact details

The driver author is Michael Peppler. He can be contacted via the dbi-users mailing list, or at
mpeppler@peppler.org.

Supported database versions and options

The DBD::Sybase module supports Sybase 10.x and 11.x, and offers limited support for accessing
Sybase 4.x and Microsoft MS-SQL servers, assuming availability of Sybase OpenClient, or the
FreeTDS libraries.

The standard release of MS-SQL 7 can not be accessed using the Sybase libraries, but can be used
using the FreeTDS libraries. There is a patch for MS-SQL 7 to allow Sybase clients to connect:

http://support.microsoft.com/support/kb/articles/q239/8/83.asp

The FreeTDS libraries (www.freetds.org) is an Open Source effort to reverse engineer the TDS
(Tabular Data Stream) protocol that both Sybase and Microsoft use. FreeTDS is still in alpha, but
DBD::Sybase builds cleanly against the latest release and suppports most functions (apart from ?-
style placeholders).

Here are some URLs to more database/driver specific information:

http://www.sybase.com
http://techinfo.sybase.com
http://sybooks.sybase.com
http://www.microsoft.com/sql
http://www.freetds.org

Differences from the DBI specification

The LongReadLen and LongTruncOk attributes are not supported.

Note that DBD::Sybase does not fully parse the statement until it's executed. Thus, attributes like
$sth->{NUM_OF_FIELDS} are not available until after $sth->execute() has been called. This is
valid behavior but is important to note when porting applications originally written for other drivers.

http://support.microsoft.com/support/kb/articles/q239/8/83.asp
http://www.sybase.com
http://techinfo.sybase.com
http://sybooks.sybase.com
http://www.microsoft.com/sql
http://www.freetds.org

Programming the Perl DBI

 page 239

Connect Syntax

The DBI->connect() Data Source Name, or DSN, has the following format:

dbi:Sybase:attrs

where attrs is a semicolon-separated list of key=value pairs. Valid attributes include:

server

Specifies the Sybase server to connect to.

database

Specifies the database within the server that should be made the default database for this
session (via USE database).

charset

Specifies the client character set to use. Useful if the client's default character set is different
from the server. Using this will enable automatic character conversion from one character set
to the other.

DBD::Sybase supports an unlimited number of concurrent database connections to one or more
databases.

It is not normally possible for Sybase clients to prepare/execute a new statement handle while still
fetching data from another statement handle that is associated with the same database handle.
However, DBD::Sybase emulates this process by opening a new connection that will automatically be
closed when the new statement handle is destroyed. You should be aware that there are some subtle
but significant transaction issues with this approach.

Datatypes

Numeric data handling

The driver supports INTEGER, SMALLINT, TINYINT, MONEY, SMALLMONEY, FLOAT, REAL, DOUBLE,
NUMERIC(p,s), and DECIMAL(p,s).

INTEGER is always a 32-bit int, SMALLINT is 16-bit, and TINYINT is 8-bit. All others except the
NUMERIC/DECIMAL datatypes are hardware specific. Precision for NUMERIC/DECIMAL is from 1 to 38,
and scale is from to 38.

NUMERIC/DECIMAL values are returned as Perl strings by default, even if the scale is and the precision
is small enough to fit in an integer value. All other numbers are returned in native format.

String data handling

DBD::Sybase supports CHAR, VARCHAR, BINARY, and VARBINARY, all limited to 255 characters in length.
The CHAR type is fixed-length and blank-padded.

Sybase automatically converts CHAR and VARCHAR data between the character set of the server (see the
syscharset system table) and the character set of the client, defined by the locale setting of the client.
The BINARY and VARBINARY types are not converted. UTF-8 is supported.

See the "OpenClient International Developer's Guide" in the Sybase OpenClient manuals for more on
character set issues.

Strings can be concatenated using the SQL + operator.

Date data handling

Sybase supports the DATETIME and SMALLDATETIME values. A DATETIME can have a value from Jan 1
1753 to Dec 31, 9999 with a 300th of a second resolution. A SMALLDATETIME has a range of Jan 1 1900
to Jun 6 2079 with a one-minute resolution.

Programming the Perl DBI

 page 240

The current date on the server is obtained with the GETDATE() SQL function.

The Sybase date format depends on the locale settings for the client. The default date format is based
on the "C" locale:

Feb 16 1999 12:07PM

In this same locale, Sybase understands several input formats in addition to the one above:

2/16/1998 12:07PM
1998/02/16 12:07
1998-02-16 12:07
19980216 12:07

If the time portion is omitted, it is set to 00:00. If the date portion is omitted, it is set to Jan 1 1900.
If the century is omitted, it is assumed to be 2000 if year < 50, and 1900 if year >= 50.

You can use the special _date_fmt() private method (accessed via $dbh->func()) to change the
date input and output format. The formats are based on Sybase's standard conversion routines. The
following subset of available formats has been implemented:

LONG - Nov 15 1998 11:30:11:496AM
SHORT - Nov 15 1998 11:30AM
DMY4_YYYY - 15 Nov 1998
MDY1_YYYY - 11/15/1998
DMY1_YYYY - 15/11/1998
HMS - 11:30:11

Use the CONVERT() SQL function to convert date and time values from other formats. For example:

UPDATE a_table
 SET date_field = CONVERT(datetime_field, '1999-02-21', 105)

CONVERT() is a generic conversion function that can convert to and from most datatypes. See the
CONVERT() function in Chapter 2 of the Sybase Reference Manual.

Arithmetic on date/time types is done on dates via the DATEADD(), DATEPART(), and DATEDIFF()
Transact SQL functions. For example:

SELECT DATEDIFF(ss, date1, date2)

returns the difference in seconds between date1 and date2.

Sybase does not understand time zones at all, except that the GETDATE() SQL function returns the
date in the time zone that the server is running in (via localtime).

The following SQL expression can be used to convert an integer "seconds since 1-jan-1970" value
("Unix time") to the corresponding database date/time:

DATEADD(ss, unixtime_field, 'Jan 1 1970')

Note however that the server does not understand time zones, and will therefore give the local Unix
time on the server, and not the correct value for the GMT time zone.

If you know that the server runs in the same time zone as the client, you can use:

use Time::Local;
$time_to_database = timegm(localtime($unixtime));

to convert the Unix time value before sending it to Sybase.

To do the reverse, converting from a database date/time value to Unix time, you can use:

DATEDIFF(ss, 'Jan 1 1970', datetime_field)

The same GMT versus localtime caveat applies in this case. If you know that the server runs in the
same time zone as the client, you can convert the returned value to the correct GMT-based value with
this Perl expression:

use Time::Local;
$time = timelocal(gmtime($time_from_database));

Programming the Perl DBI

 page 241

LONG/BLOB data handling

Sybase supports an IMAGE and a TEXT type for LONG/BLOB data. Each type can hold up to 2 GB of
binary data, including nul characters. The main difference between an IMAGE and a TEXT column lies
in how the client libraries treat the data on input and output. TEXT data is entered and returned "as
is." IMAGE data is returned as a long hex string, and should be entered in the same way.

LongReadLen and LongTrunkOk attributes have no effect. The default limit for TEXT/IMAGE data is 32
KB, but this can be changed by the SET TEXTSIZE Transact-SQL command.

Bind parameters can not be used to insert TEXT or IMAGE data to Sybase.

Other data handling issues

The DBD::Sybase driver does not support the type_info() method yet.

Sybase does not automatically convert numbers to strings or strings to numbers. You need to
explicitly call the CONVERT SQL function. However, placeholders don't need special handling because
DBD::Sybase knows what type each placeholder needs to be.

Transactions, Isolation, and Locking

DBD::Sybase supports transactions. The default transaction isolation level is READ COMMITTED.

Sybase supports READ COMMITED, READ UNCOMMITED, and SERIALIZABLE isolation levels.
The level be changed per-connection or per-statement by executing SET TRANSACTION_ISOLATION
LEVEL x, where x is for READ UNCOMMITED, 1 for READ COMMITED, and 3 for SERIALIZABLE.

By default, a READ query will acquire a shared lock on each page that it reads. This will allow any
other process to read from the table, but will block any process trying to obtain an exclusive lock (for
update). The shared lock is only maintained for the time the server needs to actually read the page,
not for the entire length of the SELECT operation. (11.9.2 and later servers have various additional
locking mechanisms.)

There is no explicit LOCK TABLE statement. Appending WITH HOLDLOCK to a SELECT statement can be
used to force an exclusive lock to be acquired on a table, but is rarely needed.

The correct way to do a multi-table update with Sybase is to wrap the entire operation in a transaction.
This will ensure that locks will be acquired in the correct order, and that no intervening action from
another process will modify any rows that your operation is currently modifying.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is case-sensitive.

Table join syntax

Outer joins are supported using the =* (right outer join) and *= (left outer join) operators:

SELECT customers.customer_name, orders.order_date
FROM customers, orders
WHERE customers.cust_id =* orders.cust_id

For all rows in the customer's table that have no matching rows in the orders table, Sybase returns
NULL for any select list expressions containing columns from the orders table.

Programming the Perl DBI

 page 242

Table and column names

The names of identifiers, such as tables and columns, cannot exceed thirty characters in length.

The first character must be an alphabetic character (as defined by the current server character set) or
an underscore (_). Subsequent characters can be alphabetic, and may include currency symbols, @,
#, and _. Identifiers can't include embedded spaces or the %, !, ^, *, or . symbols. In addition,
identifiers must not be on the "reserved word" list (see the Sybase documentation for a complete list).

Table names or column names may be quoted if the set quoted_identifier option is turned on.
This allows the user to get around the reserved word limitation. When this option is set, character
strings enclosed in double quotes are treated as identifiers, and strings enclosed in single quotes are
treated as literal strings.

By default identifiers are case-sensitive. This can be turned off by changing the default sort order for
the server.

National characters can be used in identifier names without quoting.

Row ID

Sybase does not support a pseudo "row ID" column.

Automatic key or sequence generation

Sybase supports an IDENTITY feature for automatic key generation. Declaring a table with an
IDENTITY column will generate a new value for each insert. The values assigned always increase but
are not guaranteed to be sequential.

To fetch the value generated and used by the last insert, you can:

SELECT @@IDENTITY

Sybase does not support sequence generators, although ad hoc stored procedures to generate
sequence numbers are quite easy to write.[D]

[D] See http://techinfo.sybase.com/css/techinfo.nsf/DocID/ID=860 for a complete explanation of the various
possibilities.

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

Sybase does not support positioned updates or deletes.

Parameter Binding

Parameter binding is directly suported by Sybase. However, there are two downsides that you should
be aware of.

Firstly, DBD::Sybase creates an internal stored procedure for each prepare() call that includes ?
style parameters. These stored procedures live in the tempdb database, and are only destroyed when
the connection is closed. It is quite possible to run out of tempdb space if a lot of prepare() calls with
placeholders are being made in a script.

Secondly, because all the temporary stored procedures are created in tempdb, this causes a potential
hot spot due to the locking of system tables in tempdb. This performance problem may be removed in
an upcoming release of Sybase (possibly 11.9.4 or 12.0).

The :1 placeholder style is not supported and the TYPE attribute to bind_ param() is currently
ignored, so unsupported values don't generate a warning. Finally, trying to bind a TEXT or IMAGE
datatype will fail.

http://techinfo.sybase.com/css/techinfo.nsf/DocID/ID=860

Programming the Perl DBI

 page 243

Stored Procedures

Sybase stored procedures are written in Transact-SQL, which is Sybase's procedural extension to SQL.

Stored procedures are called exactly the same way as regular SQL, and can return the same types of
results (i.e., a SELECT in the stored procedure can be retrieved with $sth->fetch()).

If the stored procedure returns data via OUTPUT parameters, then these must be declared first:

$sth = $dbh->prepare(qq[
 declare \@name varchar(50)
 exec getName 1234, \@name output
]);

Stored procedures can't be called with bind (?) parameters. So the following code would be illegal:

$sth = $dbh->prepare("exec my_proc ?"); # illegal
$sth->execute($foo);

Use this code instead:

$sth = $dbh->prepare("exec my_proc '$foo'");
$sth->execute();

Because Sybase stored procedures almost always return more than one result set, you should always
make sure to use a loop until syb_more_results is 0:

do {
 while($data = $sth->fetch) {
 ...
 }
} while($sth->{syb_more_results});

Table Metadata

DBD::Sybase supports the table_info() method.

The syscolumns table has one row per column per table. See the definitions of the Sybase system
tables for details. However, the easiest method to obtain table metadata is to use the sp_help stored
procedure.

The easiest way to get detailed information about the indexes of a table is to use the sp_helpindex (or
sp_helpkey) stored procedure.

Driver-Specific Attributes and Methods

DBD::Sybase has the following driver-specific database handle attributes:

syb_show_sql

If set, then the current statement is included in the string returned by $dbh->errstr.

syb_show_eed

If set, then extended error information is included in the string returned by $dbh->errstr.
Extended error information includes the index causing a duplicate insert to fail, for example.

DBD::Sybase has the following driver-specific statement handle attributes:

syb_more_results

Described elsewhere in this document.

syb_result_type

Returns the numeric result type of the current result set. Useful when executing stored
procedures to determine what type of information is currently fetchable (normal select rows,
output parameters, status results, etc.).

One private method is provided:

_date_fmt

Sets the default date conversion and display formats. See the description elsewhere in this
document.

Programming the Perl DBI

 page 244

Other Significant Database or Driver Features

Sybase and DBD::Sybase allow multiple statements to be prepared with one call and then executed
with one call. The results are fed back to the client as a stream of tabular data. Stored procedures can
also return a stream of multiple data sets. Each distinct set of results is treated as a normal single
result set, so fetch() returns undef at the end of each set. To see if there are more data sets to follow,
the syb_more_results attribute can be checked. Here is a typical loop making use of this Sybase-
specific feature:

do {
 while($d = $sth->fetch) {
 ... do something with the data
 }
} while($sth->{syb_more_results});

Sybase also has rich and powerful stored procedure and trigger functionality and encourages you to
use them.

Programming the Perl DBI

 page 245

DBD::XBase

General Information

Driver version

DBD::XBase version 0.145

Feature summary
Transactions No
Locking No
Table joins No
LONG/LOB datatypes Yes, up to 2 GB
Statement handle attributes available After execute()
Placeholders Yes, "?" and ":1" styles (emulated)
Stored procedures No
Bind output values No
Table name letter case Sensitive, stored as defined
Field name letter case Insensitive, stored as uppercase
Quoting of otherwise invalid names No
Case-insensitive "LIKE" operator Yes, "LIKE"
Server table ROW ID pseudocolumn No
Positioned update/delete No
Concurrent use of multiple handles Unrestricted

Author and contact details

The driver author is Jan Pazdziora. He can be contacted at adelton@fi.muni.cz or via the dbi-users
mailing list.

Supported database versions and options

The DBD::XBase module supports dBaseIII and IV and Fox* flavors of dbf files, including their dbt
and fpt memo files.

Very comprehensive information about the XBase format, along with many references, can be found
at:

http://www.e-bachmann.dk/docs/xbase.htm

Differences from the DBI specification

DBD::XBase does not fully parse the statement until it is executed. Thus attributes like $sth-
>{NUM_OF_FIELDS} are not available until after $sth->execute() has been called. This is valid
behavior but is important to note when porting applications written originally for other drivers.

Connect Syntax

The DBI->connect() Data Source Name, or DSN, should include the directory where the dbf files are
located as the third part:

dbi:XBase:/path/to/directory

It defaults to the current directory.

There are no driver-specific attributes for the DBI->connect() method.

DBD::XBase supports an unlimited number of concurrent database connections to one or more
databases.

http://www.e-bachmann.dk/docs/xbase.htm

Programming the Perl DBI

 page 246

Datatypes

Numeric data handling

DBD::XBase supports generic NUMBER(p,s), FLOAT(p,s), and INTEGER(l) types. The maximum
scale and precision is limited by Perl's handling of numbers. In the dbf files, the numbers are stored
as ASCII strings, binary integers, or floats.

Existing dbf files come with the field types defined in the dbf file header. Numeric types can be either
stored as ASCII string or in some binary format. DBD::XBase (via XBase.pm) parses this information
and reads and writes the fields in that format.

When you create a new dbf file via CREATE TABLE, the numeric fields are always created in the
traditional XBase way, as an ASCII string. (The XBase.pm module offers more control over this
process.)

Numeric fields are always returned as Perl numeric values, not strings. Consequently, numbers
outside of Perl's valid range are not possible. This restriction might be withdrawn in the future.

String data handling

DBD::XBase has CHAR(length) and VARCHAR(length) datatypes.

The maximum length is 65535 characters for both types.[E]

[E] This limit is effective even though the older dBases allowed only 254 characters. Therefore, newly created dbf
files might not be portable to older XBase-compatible software.

Both CHAR and VARCHAR are blank-padded, so ChopBlanks applies to both.

Data with the eighth bit set are handled transparently. No national language character set
conversions are done. Since the string types can store binary data, Unicode strings can be stored.

Date data handling

DBD::XBase supports these date and time types:

DATE
DATETIME
TIME

The DATE type holds an eight-character string in the format YYYYMMDD. Only that format can be used
for input and output. DBD::XBase doesn't check for validity of the values.

The DATETIME and TIME types internally store a four-byte integer day value and a four-byte integer
seconds value (counting 1/1000's of a second). DBD::XBase inputs and outputs these types using a
floating-point Unix-style "seconds-since-epoch" value (possibly with decimal part). This might
change in the future.

There is no way to get the current date/time, and no SQL date/time functions are supported. There is
also no concept of time zones.

LONG/BLOB data handling

DBD::XBase supports a MEMO datatype. BLOB can be used as an alias for MEMO. Strings up to 2 GB can
be stored in MEMO fields (for all types of XBase memo files).

With dBaseIII dbt files, the memo field cannot contain a 0x1A byte. With dBaseIV and Fox* dbt/fpts,
any character values can be stored.

No special handling is required for fetching or inserting MEMO fields. The LongReadLen and
LongTruncOk attributes are currently ignored.

Programming the Perl DBI

 page 247

Other data handling issues

The DBD::XBase driver supports the type_info() method.

DBD::XBase supports automatic conversions between datatypes wherever it's reasonable.

Transactions, Isolation, and Locking

DBD::XBase does not support transactions and does not lock the tables it is working on.

SQL Dialect

Case sensitivity of LIKE operator

The LIKE operator is not case-sensitive.

Table join syntax

DBD::XBase does not support table joins.

Table and column names

The XBase format stores each table as a distinct file. Memo fields are stored in an additional file. The
table names are limited by the filesystem's maximum filename length. They are stored and treated as
entered. The case-sensitivity depends on the filesystem that the file is stored on.

Column names are limited to eleven characters. They are stored as uppercase, but are not case-
sensitive.

Table and field names have to start with letter. Any combination of letters, digits, and underscores
may follow. National character sets can be used.

DBD::XBase does not support putting quotes around table or column names.

Row ID

DBD::XBase does not support a "row ID" pseudocolumn.

Automatic key or sequence generation

DBD::XBase does not support automatic key generation or sequence generators owing to the
limitations of the XBase format.

Automatic row numbering and row count limiting

Neither automatic row numbering nor row count limitations are supported.

Positioned updates and deletes

DBD::XBase does not support positioned updates or deletes.

Parameter Binding

Parameter binding is implemented in the driver and supports the ?, :1, and :name placeholder styles.

The TYPE attribute to bind_ param() is ignored. Consequently, unsupported values of the TYPE
attribute do not currently generate a warning.

Stored Procedures

Stored procedures are not applicable in the XBase format.

Programming the Perl DBI

 page 248

Table Metadata

DBD::XBase supports the table_info method.

There is no way to get detailed information about the columns of a table (at the moment) other than
by doing a SELECT * FROM table and using the NAME and TYPE attributes of the statement handle.

Keys and indexes are not currently supported.

Driver-Specific Attributes and Methods

DBD::XBase has just one driver-specific attribute and that is valid for both database and statement
handles:

xbase_ignorememo

Ignore memo files and thus don't fail to read a table where the memo file is missing or
corrupt.

DBD::XBase has no generally useful private methods.

Programming the Perl DBI

 page 249

Appendix C. ASLaN Sacred Site Charter
If this book has piqued your interest in megalithic sites, please read the following charter outlining
what is, and what isn't, respectable behavior at these sites. Many sites have been lost over the
centuries due to vandalism and willful destruction. We would like to ensure that no more are lost for
the same reasons.

In an effort to preserve our dwindling megalithic sites, the following requests are commonly included
in literature that discusses megaliths. While a simple plea such as "Please don't trash megalithic sites"
might be more appropriate for a book of this type, such a plea is, sadly, often ignored. We are
including this document in the hopes that it will have more impact and impart a greater
understanding of the issues involved.

We'd also like to draw your attention to the fact that many sites are in government care and, as such,
any destructive behavior is illegal.

Doom and gloom aside, the sites are there to be enjoyed and have different meanings for different
people. Enjoy!

• Please take care when visiting sacred sites to leave them as the next visitor would like to find
them. Respect the land and all its inhabitants - people, animals, and plants.

• Digging holes for any purpose will damage plants and probably insects and archaeological
remains. Damaging archaeology makes it harder for us, and future generations, to
understand the history of the site. Damaging any aspect of the site will damage the spirit of
the place.

• Lighting fires can cause similar damage to digging. A fire can damage standing stones - if they
get too hot, they split. Fires can spread quickly in summer, killing wildlife, and it can be very
difficult to make sure a fire is truly out. Fires also cause archaeological damage by preventing
geophysical surveys and contaminating archaeological layers with ash and charcoal. Heat,
candle wax, and graffiti damage moss and lichens, which can take decades to recover.
Damage caused by fires will damage the spirit of the place.

• If an offering seems appropriate, please think about all its effects. Don't leave artificial
materials. Choose your offerings carefully so that they can't be mistaken for litter. Please
don't bury things. Biodegradable offerings decay - please bear this in mind if you leave them.
If there are already offerings at the site, consider the effects of adding more.

• Please don't take anything, except litter, from a site. Much of the vegetation around sacred
sites is unusual or rare, so don't pick flowers. Don't take stones - they may be an important
part of the site in ways that aren't obvious.

• In times past, it was traditional to leave no traces of any ritual because of persecution. This
tradition is worth reviving because it shows reverence to nature and the spirit of the place.

• Don't change the site; let the site change you.

ASLaN is the Ancient Sacred Landscape Network, formed to be a national focus for the preservation
and protection of sacred sites and their settings, and maintenance of and access to them. More
information on ASLaN can be found at:

http://www.symbolstone.org/archaeology/aslan

http://www.symbolstone.org/archaeology/aslan

Programming the Perl DBI

 page 250

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Programming the Perl DBI is a cheetah (Acinonyx jubatus), one of the
oldest big cats, dating back four million years.

The cheetah is the fastest land animal in the world, reaching speeds up to 70 miles per hour, powered
by its long legs and lean body. Its body is tan with black spots, and, at a distance, it's hard to tell males
from females. A cheetah grows to be approximately two and a half feet tall at the shoulder; it
measures around four feet long, with a tail about two feet long. An adult weighs 90-130 pounds. The
life span of the cheetah is about ten years.

A mother cheetah's litter includes four to five cubs, who stay with their mother for a year and a half.
The young learn hunting and survival skills in that time. The cheetah hunts by stalking and chasing
its prey, which includes antelope, gazelles, rabbits, and game birds.

The cheetah is now considered to be an endangered species, with only 10,000-12,000 alive today,
living almost exclusively in the grasslands of Africa. That number is much lower than the estimated
100,000 in 1900. In fact, it is extinct in more than twenty of the countries it originally inhabited. The
cheetah suffers from loss of both habitat and food, plus poaching. Conservation groups are working to
help preserve the cheetah in its natural habitat and keep it from extinction.

Nicole Arigo was the production editor and copyeditor for this book . Madeleine Newell proofread the
book. Melanie Wang, Sarah Jane Shangraw, and Jane Ellin provided quality control. Judy Hoer
wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Kathleen Wilson produced the
cover layout with QuarkXPress 4.04 using Adobe's ITC Garamond font. Alicia Cech designed the
interior layout based on a series design by Nancy Priest. Mike Sierra implemented the design in
FrameMaker 5.5. The text and heading fonts are ITC Garamond Light and Garamond Book. The
illustrations that appear in the book were produced by Robert Romano using Macromedia FreeHand
8 and Adobe Photoshop 5. This colophon was written by Nicole Arigo.

Programming the Perl DBI

 page 251

An interview with Alligator Descartes and Tim
Bunce, co-authors of Programming the Perl DBI
The beauty of the Perl Database Interface, better known as the Perl DBI, is its ability to mediate
between the simple but powerful Perl programming language and virtually any type of database. This
is no small thing with the Web morphing into an unprecedented data warehouse. Using the Perl DBI,
developers can program database applications to interface with different drivers, they can use the
same interface with the full array of popular databases, they can work with different databases at the
same time, and they can write code for one database and reuse it for any other.

Co-authored by one of the DBI community's earliest members, Alligator Descartes, and the Perl DBI's
inventor, Tim Bunce, Programming the Perl DBI lays out the possibilities and the practice of
"database-independent" programming. Here Descartes and Bunce talk about the origins of the DBI,
their respective roles, and the need for this book.

Houston:
Tim, how did you come up with the Perl DBI?

Bunce:
It all started long, long ago with a mail message I received from Ted Lemon:

You are one of the four people who have introduced some type of extended perl for
the purposes of managing a database. Here is the list:

• infoperl (Informix) Kurt Andersen (kurt@...com)

• interperl (Interbase) Buzz Moschetti (buzz@...com)

• oraperl (Oracle) Kevin Stock (kstock@...com)

• sybperl (Sybperl) Michael Peppler (mpeppler@...ch)

New threads are beginning to sprout in comp.lang.perl regarding autoloading code,
and it occurs to me that since we're all trying to do the same thing, it might be a
swell idea to standardize our perl-DB-API interfaces. For example, sybperl, and
oraperl require the perl script to "log in" to the DB, whereas interperl does not.

A standardized perl interface to SQL/cursor based DB engines with dynamic
loading is a formidable tool. Imagine the fun one could have with benchmarking...
:-)

Let me know what you think.
---snip---

Though I'm not one of the original four, I was on the "perldb-interest" mailing list
that Ted setup two weeks later. Soon I was contributing to the discussions, which
were mostly between Buzz, Kurt, Kevin, Michael, and myself, if I remember correctly.
For a long time Kurt did great work as an "editor" distilling our sometimes heated
discussions into updated versions of a draft specification. By January 1993 we were
up to around 400 lines of text. By April 1993 it was around 1,000 lines. And so it
grew as issues were resolved and some consensus reached.

Then, on the June 15, 1993, Kurt sent a message saying that he'd "left HP to return to
school and change...career to that of a chiropractor!" Someone needed to take over
the role of editor. Because I'd been an active contributor to the design and had
responsibility for the "switch" part (basically what DBI is today), it made sense for me
to take over as editor.

Programming the Perl DBI

 page 252

Only a week earlier Kevin Stock had had to bow out, as well. Since he was our "Oracle
man" and I needed a Perl interface for Oracle, I naturally ended up writing
DBD::Oracle as the first DBI driver many months later. The loss of Kurt and Kevin
was a blow but Garth Kennedy, Neil Briscoe, William Hails, Forrest Whitcher, and
others provided sufficient feedback to keep us from going off the rails as I tried to
push the spec forward.

Throughout all this it was known as the "DBperl" specification. After a lengthy poll
we renamed it DBI in September 1994. Almost two years to the day since it began, I
released the first alpha of DBI on October 12, 1994.

Houston:
Why did you need the DBI?

Bunce:
The company I work for, Paul Ingram Group, is a small, specialist software systems
house. Much of our work involves the development of special custom applications for
data acquisition, processing, storage, management, and reporting. As Technical
Director, I was responsible for selecting technologies to best fill our clients' needs.
Perl was clearly an excellent tool for us, but to be fully useful it needed to be able to
talk to databases.

Since we use whatever database the customer wants, and since we prefer to write
reusable data-driven code, one important goal was for any library code we developed
to be reusable as part of another system using a different database. In the end, it took
about three years to make that a practical reality!

Houston:
What databases were you using at the time?

Bunce:
In '92, mostly Ingres; after '95, mostly Oracle.

Houston:
How have others continued to contribute to the DBI?

Bunce:
Countless people have contributed over the years. The mailing list archives are vast.
Among the most important are probably the poor souls who've struggled to
implement drivers for other databases. Without them the DBI would just be a way to
talk to Oracle via my driver.

Houston:
Alligator, as one of those "poor souls" involved early on, what got you interested in
DBI?

Descartes:
I originally got into accessing databases via Perl using the Oraperl module written for
Perl 4 by Kevin Stock. I used to write Pro*C reports in C, but moving to Perl turned
out to be a far faster way to write the code.

When I started using the DBI, it was at a very, very early release with a single driver,
DBD::Oracle, which was also at a very early stage of release. In the course of my job
at the time, I decided to put together a little Oracle database monitoring program
using Tk and DBI. This was a fairly hefty application that used DBI in ways that the
DBI theoretically supported, but in ways the DBI and DBD::Oracle drivers didn't
quite cope with yet. This seemed to give Tim Bunce a lot of grief. That said, the
interface was simple, easy to use, and very powerful.

Programming the Perl DBI

 page 253

I started doing some work with Informix, and decided to contribute some code to the
DBI instead of just snowing Tim under with bug reports. I ended up writing the first
drivers not written by Tim: DBD::Informix and DBD::mSQL. After about a year or so,
those drivers were passed to other, more capable individuals since I really didn't use
either database on a day-to-day basis.

Houston:
What lead you to want to write a book about the Perl DBI?

Descartes:
The driving reason was that I had been one of the first serious DBI users, and also the
first person--other than Tim--to develop drivers for the DBI. Much of that experience
and knowledge from those activities made me think documenting the DBI would be
useful. This was doubly true when I noticed the same questions appearing over and
over again on the DBI-users mailing list. I realized one of the problems appeared to
be that people don't like learning from specifications.

However, given the size of the task, I'd decided that doing the documentation for free
wasn't really an option. Around the same time, I had a book published, which
probably made it easier to approach O'Reilly about buying into my writing the book.
And doing an O'Reilly book is just such a cool thing to do--the pinnacle of technical
publishing, in my opinion!

Houston:
How did your collaboration with Tim Bunce come about?

Descartes:
Unfortunately, the collaboration wasn't initially one of your classic let's-write-a-book-
together efforts, although it has pretty much turned out that way! Originally, I'd
started the book while living in San Francisco. I'd turned out about five draft chapters
quite quickly, then the book ground to a standstill because the DBI was in flux. I
didn't want to commit potentially out-of-date material to printing.

Tim and I had a few heated exchanges about getting version 1.0 of the DBI finished so
that I could get on with the book. I needed the specification to stop sliding about so
much! I was also writing the Java Native Methods book for O'Reilly and consulting,
so the DBI book got squeezed off my schedule. About a year later, O'Reilly asked me
to consider bringing Tim [Bunce] onboard because it would be a "golden"
combination of authors. That was fine, so we split the book in half and restarted it.

Houston:
What do you hope to accomplish with this book?

Bunce:
We wanted to help people get the most out of the DBI by providing an accurate, clear,
and helpful guide. Accuracy is important: In fact, it's one of my main motivations for
working on the book. Every other book I've seen that discusses the DBI has
significant errors. I really wanted there to be at least one good accurate book on the
DBI. I'm hopeful that our book will become the standard text for the DBI. That's
certainly what I had in mind as I was working on it (and Alligator will tell you how
picky I've been about getting it right).

Houston:
Alligator?

Descartes:
Picky! But picky is good! As Tim said, accuracy was pretty much first and foremost in
our minds because virtually all the published material on DBI, excluding the spec, is
wrong. Sometimes a bit wrong; but very often completely wrong.

Programming the Perl DBI

 page 254

Houston:
What did each of you contribute to the book project?

Descartes:
Because of Tim's work commitments, I ended up turning out most of the prose in the
first eight chapters, leaving Tim to concentrate on the reference material. This
worked out pretty well, because I hate writing reference material, and Tim dislikes
writing prose. Basically, once we'd worked out what we were best suited for,
everything started moving really quickly. Within about two months, we had finished
writing and got into editing pretty heavily. At this stage, because we were editing each
other's text, Tim tightened up my prose and I made his reference material a bit more
fluid and less reference-y. In the end, I think it's all worked out really well. I don't
think either of us, working on our own, could have written the book so well.

Bunce:
Umm, for the record, I wrote Chapter 7. :-)

Alligator:
I said most! But, yes, I stand corrected. Sorry about that. Perhaps we both better edit
this interview, too.

Houston:
So what do you see in the future for database technology and the Perl DBI?

Bunce:
I'm not into making predictions about database technology, but I do know what I
want to do with the DBI. The biggest items are:

• Adding definitions for metadata methods.

• A common test suite for all the drivers.

• Enhancements to the proxy server.

• Closer integration with ODBC.

• Integrate a common ODBC style SQL parser and execution engine for use by
DBI drivers for non-SQL data sources like DBM files.

There are also lots of smaller things that I want to do. I've been too busy for the last
few months to do much DBI work. I hope that situation will improve soon.

Houston:
What are both of you doing now professionally?

Bunce:
Too much for too many people. But that's changing now, and I hope to have more
time to work on the DBI again soon.

Descartes:
I've recently finished some work for an American company doing 3D-graphics work,
and I'm currently taking a little bit of time out to do some artwork. I'm planning on
doing consulting work at some point in the near future, one aspect of which will be
Perl and DBI.

Houston:
What keeps you involved, Alligator, since I understand you are doing a lot of
development with Java now?

Programming the Perl DBI

 page 255

Descartes:
Basically, I like data. I have a lot of my own databases that contain information on
things like standing stones and sculptured stones, on which I use DBI to present
reports. It lets me build ways of correlating the data quickly and easily.

I'm also in the process of setting up an online shop, which uses DBI pretty heavily, to
sell prints by some local Glasgow artists and myself. So, although I'm not
tremendously active in the DBI community nowadays, in terms of driver
development, I'm still using the software on a daily basis! I do manage the "official"
DBI web page, and I have since day one.

Houston:
I feel compelled to ask this on behalf of readers even though the FAQ on your site
(http://www.symbolstone.org/) warns not to: What's the story behind the name
"Alligator?"

Descartes:
I'm not telling. Actually, it's a pseudonym I use for a good reason: anonymity from
hordes of festering geeks! So I'm not telling the story behind it. And if Tim tells you, I
know where he lives....

Houston:
Then would you at least give us some background about your interest in stone
formations since you use these for examples throughout Programming the Perl DBI,
as well as on your Web site (http://www.symbolstone.org/)?

Descartes:
There's really not a lot to it. Scotland is covered in stone circles and standing stones.
They're pretty hard to miss! I find them fascinating sites because of their age and
mystery (over 5,000 years old and no one has the faintest idea what they're for!). Not
to mention the fact that the bulk of some of the stones is gargantuan and would be an
engineering achievement to move even with today's technology. One of my ulterior
motives for using megalithic examples is that O'Reilly has let me stand on a soapbox a
bit and moan about the vandalism of these sites, which is becoming a real problem.
Hopefully this will help raise people's awareness and help protect these sites for the
future.

We also thought megaliths would be a good topic for the examples because they're so
unusual in a technical book. Because the scope of megaliths is so huge, virtually all
the examples and example code use the same data set. This should help readers work
things out faster. That is, they only have to figure out what the code does. They don't
have to figure out what the example is about and then figure out what the code does.

http://www.symbolstone.org/
http://www.symbolstone.org/)?

	Table of Contents
	Preface
	1. Introduction
	2. Basic Non-DBI Databases
	3. SQL and Relational Databases
	4. Programming with the DBI
	5. Interacting with the Database
	6. Advanced DBI
	7. ODBC and the DBI
	8. DBI Shell and Database Proxying
	A. DBI Specification
	B. Driver and Database Characteristics
	C. ASLaN Sacred Site Charter
	Colophon
	Interview With the Authors

