
This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by George Shepherd

All rights reserved. No part of the contents of this book may be reproduced or transmitted in
any form or by any means without the written permission of the publisher.
Library of Congress Cataloging-in-Publication Data

Shepherd, George
 Programming with Microsoft Visual C++ .NET, Sixth Edition (Core Reference) / George Shepherd.
 p. cm.
 Includes index.
 ISBN 0-7356-1549-7

 2002

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For
further informa-tion about international editions, contact your local Microsoft Corporation
office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web
site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Active Directory, ActiveX, FrontPage, Links, Microsoft, Microsoft Press, MSDN, Outlook,
PivotChart, PivotTable, PowerPoint, SharePoint, Visio, Visual Basic, Windows, and Windows
NT are either regis-tered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real
company, organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred.

The example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real
company, organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred.

Acquisitions Editors: Juliana Aldous and Danielle Bird
Project Editor: Denise Bankaitis
Technical Editor: Julie Xiao

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedicated to Sandy Daston and Ted Shepherd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments
This part of book writing is always the best—everybody involved is nearly done with the
manuscript and all that's left to do is to thank everybody. Because the author's name appears
on the cover, it's sometimes easy to forget all the other folks involved in a project as large as
this. Many other folks gave their time and energy to this project, and I wish to thank you.

Thank you Sandy Daston and Ted Shepherd—my family, for your support while I wrote this
book.

Thank you, Denise Bankaitis. As the project editor, you kept me going by reminding me of the
importance of this project (a key C++ reference for .NET) and by coordinating the efforts of
the rest of the team, which includes Julie Xiao, Ina Chang, Danielle Bird, Juliana Aldous, Joel
Panchot, Carl Diltz, and Gina Cassill.

Thank you, Julie Xiao, for keeping the manuscript accurate.

Thank you, Ina Chang, for making my sentences readable.

Thank you, Danielle Bird and Juliana Aldous. As acquisition editors, you got this project
rolling and kept it on track.

Thank you, Joel Panchot, for making sure the art in this book looks good.

Thank you, Carl Diltz and Gina Cassill, for composing the manuscript and making it look
great.

I would also like to thank the folks at DevelopMentor, for providing a wonderful environment
and community for thinking and learning about modern computing. You guys are wonderful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The release of the Microsoft Visual Studio .NET (and Visual C++ .NET in particular) has
underscored Microsoft’s increasing focus on Internet technologies, which are at the heart of
the Microsoft .NET architecture. In addition to supporting the .NET initiative, Visual C++
.NET keeps all the productivity-boosting features you’re familiar with, such as Edit And
Continue, IntelliSense, AutoComplete, and code tips. Visual C++ .NET also includes many
new features such as managed code extensions for .NET programming, support for attributed
code, and a more consistent development environment. These features take Visual C++ .NET
to a new level. This book will get you up to speed on the latest technologies introduced into
Visual C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.NET, MFC, and ATL

The technology churn we face these days is pretty impressive. We went from no computers on
our office desktops to nearly everyone having a computer running MS-DOS in the 1980s to
nearly everyone running Microsoft Windows by the mid-1990s. The technology wheel is
about to turn again. In the late 1990s, everyone was developing Web sites by hand using tools
such as raw Hypertext Markup Language (HTML), Common Gateway Interface (CGI),
Internet Server Application Programming Interface (ISAPI) DLLs, Java, and Active Server
Pages (ASP). In July 2000, Microsoft announced to the world that it would change all that by
betting the company on a new technology direction named .NET.

The current thrust of Microsoft is indeed .NET. For a number of years, it’s been possible to
build a Web site by setting up a server somewhere, getting an IP address, and putting up some
content. Anyone with the URL of your site can surf there and check it out. Commercial
enterprises have been taking advantage of the Web by posting information that’s useful to
customers. The Web has also become an invaluable research tool and efficient news broadcast
medium.

The computing world of the near future will involve the Web heavily. However, rather than
just having human eyeballs look at Web sites, computers themselves will look at Web sites.
That is, Web sites will be programmable through Web services. The .NET vision also pushes
the responsibility of providing a rich user interface out to the server.

With so much emphasis on Web services and server-based user interfaces, it might seem that
standalone applications and client-side user interface scenarios—normally the realm of tools
such as the Microsoft Foundation Class Library (MFC)—will be left in the dust. But the need
for rich client-side user interfaces is unlikely to go away. Many thought that the advent of the
PC and distribution technologies would spell the end of centralized processing on mainframes
and minicomputers. It turns out that PCs and distribution technologies only added to the
available computing arsenal. The .NET vision of Web services and rich user interfaces
provided by the server only adds to the options available to software developers. Rich client-
side user interfaces will continue to be viable for many types of applications, running
alongside other applications that use other kinds of user interfaces (such as server-generated
user interfaces).

MFC is a mature and well-understood technology that’s accompanied by a host of third-party
extensions. For at least a little while longer, MFC represents the most effective way to write
full-featured standalone applications. A good portion of this book will focus on MFC-style
development, but we’ll also cover Windows Forms—the .NET way to write client-side user
interfaces.

Of course, the next question is: Where does this leave COM? COM has solved many problems
related to distributed processing, but it has some serious shortcomings—mostly centered
around component versioning and type information. Microsoft’s .NET vision is based on the
common language runtime. The runtime takes the place of COM as the interoperability
standard within .NET. We’ll cover .NET and the common language runtime in depth in Part
VI of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM and the common language runtime represent different approaches to component
architecture, but Microsoft has taken great care to ensure a seamless coexistence. The
interoperability path between COM and the runtime is smooth in most cases. Within the .NET
world, you probably won’t find yourself using COM as a component architecture. However,
you might find yourself using Active Template Library (ATL) Server, which is a high-
performance means of writing Web sites.

I’ve updated the coverage of ATL and MFC in this edition of the book because you’ll still find
it very useful. More important, I’ll show you how to leverage your heritage code (sounds
better than “legacy code,” doesn’t it?) as you move into the .NET world.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managed C++ vs. C#

The .NET platform has introduced a new C++-like language named C#. C# is a curly-brace-
oriented language without all the headaches of C++. Much of C#’s appeal is due to the fact
that it’s missing some of the more problematic elements of C++ (such as raw pointer
management) while maintaining the useful features (such as virtual functions). The C#
compiler eventually emits managed code—the kind that runs under the common language
runtime.

However, the entire world isn’t going to switch over to C# overnight. There’s just too much
C++ code out there to convert. Also, it will take a bit of time for developers to become fully
comfortable with C#. In the meantime, .NET has introduced extensions to C++ for producing
managed code (code that runs under the common language runtime). Managed Extensions for
C++ will help ease the burden of developing software for the .NET platform because they
allow you to quickly update existing C++ code to work with .NET. Getting the managed code
features in C++ means sprinkling your code with various keywords. In the end, C# and
managed C++ boil down to the same executable code once the compilers are done with it. In
the .NET world, you’ll probably find yourself writing new components using C# while using
managed C++ to add .NET features to your existing code base.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.NET vs. the Java Platform

In recent years, we’ve seen a great deal of interest in the Java programming language and
platform. Java became a great boon for Internet developers by providing a useful means of
distributing client user interfaces (through Java applets) and by providing enterprise solutions
through Java Enterprise Edition. Now, .NET has become the best Internet development
platform available today. Unlike the Java platform, which requires that you write all your code
using the Java syntax, .NET often lets you use multiple syntaxes to arrive at the same machine
instruction set. You can use C++ (the main focus of this book) and its managed extensions,
Visual Basic .NET, C#, and even a host of third-party .NET languages to write your programs.
Once you develop your source code, it is compiled to intermediate language and then
eventually machine code before it runs. Because .NET code is managed by a runtime, you get
benefits such as garbage collection and better code security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Who This Book Is For

Visual C++ .NET, with its sophisticated application framework and support for .NET, is for
professional programmers, and so is this book. I’ll assume that you’re proficient in the C
language—you can write an if statement without consulting the manual. And I’ll assume that
you’ve been exposed to the C++ language—you’ve at least taken a course or read a book even
if you haven’t written much code. You might compare learning C++ to learning French. You
can study French in school, but you won’t be able to speak fluently unless you go to a French-
speaking country and start talking to people.

The Visual C++ wizards save you time and improve accuracy, but programmers must
understand the code that the wizards generate and, ultimately, they must understand the
structure of the MFC and ATL libraries, the inner workings of the Windows operating system,
and how .NET works. I won’t assume, however, that you already know Windows and .NET
programming. I’m sure that proficient C programmers can learn Windows the MFC way and
the .NET way. It’s more important to know C++ than it is to know the Win32 application
programming interface (API). You should, however, know how to run Windows and
Windows-based applications.

If you’re already experienced with the Win32 API or with the MFC library, there’s something
in this book for you, too. You’ll learn about new features such as the Multiple Top-Level
Interface (MTI) and the Visual C++ .NET wizards. If you haven’t already figured out the
Component Object Model (COM), this book presents some important theory that will get you
started on understanding ActiveX controls. You’ll also learn about ATL Server and OLE DB
templates. And you’ll learn about C++ programming for the Internet (including Dynamic
HTML). Finally, this book includes hard-to-find coverage of the new managed C++
extensions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What’s Not Covered

It’s impossible to cover every aspect of Windows and .NET programming in a single book.
I’ve excluded topics that depend on special-purpose hardware and software, such as MAPI,
TAPI, and communications port access. I’ll cover using ActiveX controls in an application
and writing ActiveX controls using ATL, but I’ll defer the in-depth coverage to Adam
Denning and his ActiveX Controls Inside Out (Microsoft Press, 1997). I’ll get you started with
32-bit memory management, DLL theory, multi-threaded programming techniques, and .NET
programming, but you need to get the third edition of Jeffrey Richter’s Programming
Applications for Microsoft Windows (Microsoft Press, 1997) if you’re serious about these
subjects. Another useful book is MFC Internals by George Shepherd and Scot Wingo
(Addison-Wesley, 1996). I’ll also give you a head start into the .NET space, but I’ll leave the
hardcore runtime issues to Jeffrey Richter’s Applied .NET Programming (Microsoft Press,
2002).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How to Use This Book

When you’re starting with Visual C++ .NET, you can use this book as a tutorial by going
through it sequentially. Later, you can use it as a reference by looking up topics in the table of
contents or in the index. Because of the tight interrelationships among many application
framework elements, it wasn’t possible to cleanly isolate each concept in its own chapter, so
the book isn’t organized as an encyclopedia. When you use this book, you’ll definitely want to
keep the online help available for looking up classes and member functions.

If you’re experienced with earlier versions of Visual C++, scan Part I for an overview of new
features. Then skip the basic MFC coverage in Part II but read the more advanced coverage.
Also, be sure to read the .NET coverage. Much of the software development community’s
efforts are heading in this direction, and Visual C++ .NET fully supports the .NET
programming model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How This Book Is Organized

As the table of contents shows, this book has six parts and an appendix section.

Part I: Windows, Visual C++ .NET, and Application Framework
Fundamentals

This part tries to strike a balance between abstract theory and practical application. After a
quick review of Win32 and the Visual C++ .NET components, you’ll be introduced to the
MFC application framework and the document-view architecture. You’ll look at a simple
“Hello, world!” program built with the MFC library classes that requires only 30 lines of code.

Part II: MFC Essentials

The MFC library documentation presents all the application framework elements in quick
succession, with the assumption that you’re at least familiar with the original Windows API.
In Part II of this book, you’re confined to one major application framework component—the
view, which is really a window. You’ll learn what experienced Windows programmers know
already, but in the context of C++ and the MFC library classes. You’ll use the Visual C++
.NET tools that eliminate much of the coding drudgery that early Windows programmers had
to endure.

This part covers a lot of territory, including graphics programming with bitmaps, dialog data
exchange, ActiveX control usage, 32-bit memory management, and multi-threaded
programming. The exercises will help you to write reasonably sophisticated Windows-based
programs, but those programs won’t take advantage of the advanced application framework
features.

Part III: MFC’s Document-View Architecture

This part introduces the real core of application framework programming—the document-view
architecture. You’ll learn what a document is (something much more general than a word
processing document), and you’ll see how to connect the document to the view that you
studied in Part II. You’ll be amazed, once you’ve written a document class, at how the MFC
library simplifies file I/O and printing.

Along the way, you’ll learn about command message processing, toolbars and status bars,
splitter frames, and context-sensitive help. You’ll also be introduced to the Single Document
Interface (SDI), the Multiple Document Interface (MDI), and the Multiple Top-Level Interface
(MTI), which is the current standard for Windows-based applications such as Microsoft Word.

Part III also discusses dynamic link libraries (DLLs) written with the MFC library. You’ll
learn the distinction between an extension DLL and a regular DLL.

Part IV: COM, Automation, ActiveX, and OLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM itself deserves more than one book. Part IV will get you started in learning fundamental
COM theory from the MFC point of view. You’ll progress to Automation, which is the link
between C++ and Visual Basic for Applications (VBA). You’ll also become familiar with
uniform data transfer, and you’ll learn the basics of compound documents and embedded
objects. You’ll learn about the ATL class library support for OLE DB.

Part V: Programming for the Internet

This part starts with a technical Internet tutorial that covers the TCP/IP protocol and the
fundamentals of Internet programming. You’ll learn how to develop servers using ATL
Server, and you’ll learn how to program for Dynamic HTML.

Part VI: .NET and Beyond

The Internet is evolving as the next frontier for software development. The Internet is no
longer just about building Web sites for people to simply look at—it’s about Web sites that
people can program. The wire’s in place, but until the advent of XML, no one was been able
to agree on how to send method calls across the Internet. Two main thrusts of .NET include
Web services and server-based user interfaces. .NET fully supports both these notions, along
with a new way to write client user interfaces: Windows Forms. Part VI covers what .NET is
all about and what you can do with it as a platform. Included here are chapters on the common
language runtime and managed code, programming managed components using C++,
ASP.NET, and ADO.NET.

Appendixes

Appendix A contains a list of message map macros and their corresponding handler function
prototypes. The code wizards available from Class View usually generate this code for you,
but sometimes you must make manual entries.

Appendix B offers a description of the MFC application framework’s runtime class
information and dynamic creation system. This is independent of the runtime type information
(RTTI) feature that is now a part of ANSI C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 vs. Win16

A few old computers out there are still running Windows 3.1. However, there’s not much
point in spending money writing new programs for obsolete technology. This edition of
Programming with Microsoft Visual C++ .NET is about 32-bit programming for Windows
98/Me and Windows NT/2000/XP using the Win32 API. If you really need to do 16-bit
programming, I suggest that you find an old copy of the second edition of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System Requirements

To use this book, you’ll need to have Visual C++ .NET or Visual Studio .NET installed on
your computer. Any computer that satisfies the minimum requirements for Visual C++ .NET
will work effectively with most of the examples in this book. Be aware that Windows XP
Home Edition and Windows NT 4.0 don’t support the hosting of ASP.NET Web applications
with the .NET Framework. You can build these projects on these operating systems, but you’ll
need to upload the projects to a properly configured host to execute them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sample Files

You can find the sample files on the book’s companion CD, along with other supplemental
content. To access the files on the CD, insert the disc in your computer’s CD drive and make a
selection from the menu that appears. If the AutoRun feature is not enabled on your system (if
a menu doesn’t appear when you insert the CD into the drive), run StartCD.exe in the root
folder of the companion CD. Installing the sample files on your hard disk requires
approximately 60 MB of disk space. If you have trouble running any of these files, refer to the
text in the book that describes these programs.

With a conventional C-language program using the Windows API, the source code files tell
the whole story. With the MFC library application framework, things are not so simple. The
MFC Application Wizard generates much of the C++ code, and the resources originate in the
resource editors. The examples in the early chapters of this book include step-by-step
instructions for using the tools to generate and customize the source code files. You’d be well
advised to walk through those instructions for the first few examples—there’s very little code
to type. For the middle chapters, use the code from the sample files but read through the steps
to appreciate the role of the resource editors and the wizards. For the final chapters, not all the
source code is listed. You’ll need to examine the sample files for those examples.

Aside from the sample files, the book’s supplemental content includes two eBook
installations: a standalone eBook installation and a Visual Studio Help eBook installation. The
standalone eBook installation allows you to access an electronic version of the print book
directly from your desktop. The Visual Studio Help eBook installation allows you to access
the second electronic version of the print book directly from the Visual Studio .NET help
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio .NET Professional Trial Version

In addition to the companion CD, this book also includes a DVD with an evaluation copy of
Visual Studio .NET Professional. This evaluation copy can help you follow the examples in
this book and get you started learning Visual C++ .NET, but the software will expire and stop
working 60 days after you install it. You can learn more about this evaluation copy and its
system requirements at http://msdn.microsoft.com/vstudio/productinfo/trial.asp. Note that no
product support is available for the trial version.

Windows Forms Library Extensions

One of the biggest selling points behind MFC during the 1990s was the great class libraries
available for extending the framework. With Windows Forms on the horizon, it’s time to keep
an eye out for class libraries that extend Windows Forms.

MFC and its extensions were confined to the C++ language, but the .NET common language
runtime offers a variety of syntaxes for writing Windows Forms, including C#, Visual Basic
.NET, and Managed C++. Syncfusion, a company based in Cary, North Carolina, provides a
wide variety of .NET tools to make programming for .NET easier. Syncfusion’s Essential
Suite includes components to make your .NET Windows Forms applications more solid and
polished. You can download a fully functional 15-day trial version from
http://www.syncfusion.com, as well as the Essential Suite Interactive Showcase, an
application that shows several Syncfusion components in action. The components run under
the common language runtime, so they work with Managed C++ as well as with C# and
Visual Basic .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Microsoft Press Support Information

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. Microsoft Press provides corrections for books at
http://www.microsoft.com/mspress/support/.

To connect directly to the Microsoft Press Knowledge Base and submit a query, go to:
http://www.microsoft.com/mspress/support/search.asp.

If you have comments, questions, or ideas regarding this book or the companion content or
questions that are not answered by querying the Knowledge Base, please send them to
Microsoft Press using postal mail or e-mail:

Microsoft Press
Attn: Programming with Microsoft Visual C++ .NET Editor
One Microsoft Way
Redmond, WA 98052-6399
mspinput@microsoft.com

Note that product support is not offered through the above mail addresses. For Microsoft
Visual C++ .NET support information, please visit the Microsoft Support Web site at:
http://support.microsoft.com.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1
Windows and Visual C++ .NET

In the early nineties, the battle was for the desktop operating system. Now that battle is over,
and Microsoft Windows runs on the vast majority of personal computer systems. This chapter
summarizes the low-level Windows programming model (Win32, in particular) and shows you
how the Microsoft Visual C++ .NET components work together to help you write applications
for Windows. Along the way, you might learn some new things about Windows as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Programming Model

No matter which development tools you use, programming for Windows is different from old-
style batch-oriented or transaction-oriented programming. To get started, you need to know
some Windows fundamentals. As a frame of reference, we’ll use the well-known MS-DOS
programming model. Even if you don’t currently program for plain MS-DOS, you’re probably
familiar with it.

Message Processing

When you write an MS-DOS–based application in C, the only absolute requirement is a
function named main. The operating system calls main when the user runs the program, and
from that point on, you can use any programming structure you want. If your program needs
to get user keystrokes or otherwise use operating system services, it calls an appropriate
function, such as getchar, or perhaps uses a character-based windowing library.

When the Windows operating system launches a program, it calls the program’s WinMain
function. Somewhere your application must have WinMain, which performs some specific
tasks. Its most important task is creating the application’s main window, which must have its
own code to process messages that Windows sends it. An essential difference between a
program written for MS-DOS and a program written for Windows is that an MS-DOS–based
program calls the operating system to get user input but a Windows-based program processes
user input via messages from the operating system.

NOTE
Many development environments for Windows, including Visual C++ .NET with
Microsoft Foundation Class (MFC) library version 7.0, simplify programming by
hiding the WinMain function and structuring the message-handling process. When
you use the MFC library, you need not write a WinMain function, but it is essential
that you understand the link between the operating system and your programs.

Most messages in Windows are strictly defined and apply to all programs. For example, a
WM_CREATE message is sent when a window is being created, a WM_LBUTTONDOWN
message is sent when the user presses the left mouse button, a WM_CHAR message is sent
when the user types a character, and a WM_CLOSE message is sent when the user closes a
window. All messages have two 32-bit parameters that convey information such as cursor
coordinates, key code, and so forth. Windows sends WM_COMMAND messages to the
appropriate window in response to user menu choices, dialog box button clicks, and so on.
Command message parameters vary depending on the window’s menu layout. You can define
your own messages, which your program can send to any window on the desktop. These user-
defined messages actually make C++ look a little like Smalltalk.

Don’t worry yet about how these messages are connected to your code. That’s the job of the
application framework. Be aware, though, that the Windows message processing requirement
imposes a lot of structure on your program. Don’t try to force your Windows-based programs
to look like your old MS-DOS programs. Study the examples in this book, and then be
prepared to start fresh.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Graphics Device Interface

Many MS-DOS programs write directly to the video memory and the printer port. The
disadvantage of this technique is the need to supply driver software for every video board and
every printer model. Windows introduced a layer of abstraction called the Graphics Device
Interface (GDI). Windows provides the video and printer drivers, so your program doesn’t
need to know the type of video board and printer attached to the system. Instead of addressing
the hardware, your program calls GDI functions that reference a data structure called a device
context. Windows maps the device context structure to a physical device and issues the
appropriate input/output instructions. The GDI is almost as fast as direct video access, and it
allows different applications written for Windows to share the display.

Later in the book, we’ll look at GDI+. As you might guess, GDI+ is the successor to GDI. The
services of GDI+ are exposed through a set of C++ classes deployed as managed code—that
is, code running under the common language runtime. GDI+ introduces several enhancements
over classic GDI, including gradient brushes, cardinal splines, independent path objects,
scalable regions, alpha blending, and multiple image formats.

Resource-Based Programming

To do data-driven programming in MS-DOS, you must either code the data as initialization
constants or provide separate data files for your program to read. When you program for
Windows, you store data in a resource file using a number of established formats. The linker
combines this binary resource file with the C++ compiler’s output to generate an executable
program. Resource files can include bitmaps, icons, menu definitions, dialog box layouts, and
strings. They can even include custom resource formats that you define.

You use a text editor to edit a program, but you generally use WYSIWYG (what you see is
what you get) tools to edit resources. If you’re laying out a dialog box, for example, you select
elements (buttons, list boxes, and so forth) from an array of icons called a control palette, and
you position and size the elements with the mouse. Visual C++ .NET has graphics resource
editors for all standard resource formats.

Memory Management

With each new version of Windows, memory management gets easier. If you’ve heard horror
stories about locking memory handles, thunks, and burgermasters, don’t worry. That’s all in
the past. Today you simply allocate the memory you need, and Windows takes care of the
details. Chapter 10 describes current memory management techniques for Win32, including
virtual memory and memory-mapped files.

Dynamic-Link Libraries

In the MS-DOS environment, all of a program’s object modules are statically linked during
the build process. Windows allows dynamic linking, which means that specially constructed
libraries can be loaded and linked at run time. Multiple applications can share dynamic-link
libraries (DLLs), which saves memory and disk space. Dynamic linking increases program
modularity because you can compile and test DLLs separately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Designers originally created DLLs for use with the C language, and C++ has added some
complications. The MFC library developers succeeded in combining all the application
framework classes into a few ready-built DLLs. This means that you can statically or
dynamically link the application framework classes into your application. In addition, you can
create your own extension DLLs that build on the MFC DLLs. Chapter 22 includes
information about creating MFC extension DLLs and regular DLLs.

The Win32 Application Programming Interface

Early Windows programmers wrote applications in C for the Win16 application programming
interface (API). Of course, today few folks write 16-bit applications. Most developers write
applications using the Win32 API. The main difference between the Win16 functions and the
Win32 functions is that in the latter, many of the parameters have been widened. So while the
Windows API has changed over the years (and continues to change), developers using the
MFC library have remained insulated from these changes because the MFC standard was
designed to work with either Win16 or Win32 underneath.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual C++ .NET Components

Visual C++ .NET consists of several complete Windows application development systems in
one product. If you want, you can develop C-language Windows-based programs using only
the Win32 API. C-language Win32 programming is described in Charles Petzold’s book
Programming Windows, Fifth Edition (Microsoft Press, 1998). (Petzold has a new book on
Windows-based programming from Microsoft Press, called Programming Microsoft Windows
with C#, which covers programming Windows using C# and Windows Forms. We’ll take a
look at programming Windows using Windows Forms and C++ later in this book.) You can
use many Visual C++ .NET tools, including the resource editors, to make low-level Win32
programming easier. You can also use application framework libraries such as the MFC
library and Windows Forms in the managed library to further speed your Windows-based
application development.

Finally, Visual C++ .NET includes the Active Template Library (ATL), which you can use to
develop ActiveX controls. ATL programming is neither Win32 C-language programming nor
MFC programming, and it’s complex enough to deserve its own book. However, we’ll touch
on ATL development in this book. ATL will probably find itself most at home within the
high-performance Web server environment.

The first section of this book is about C++ programming within the MFC library application
framework that’s part of Visual C++ .NET. You’ll be using the C++ classes documented in the
Microsoft Visual C++ MFC Library Reference included in the Visual Studio .NET
documentation, and you’ll also be using application framework–specific Visual C++ .NET
tools such as Class View.

NOTE
Use of the MFC library programming interface doesn’t cut you off from the Win32
functions. In fact, you’ll almost always need some direct Win32 calls in your MFC
library programs.

A quick run-through of the Visual C++ .NET components will help you get your bearings
before you zero in on the application framework. Figure 1-1 shows an overview of the Visual
C++ MFC application build process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-1. The Visual C++ MFC application build process.

Visual C++ .NET and the Build Process

Visual Studio .NET is a suite of developer tools that includes Visual C++ .NET. The Visual
Studio .NET integrated development environment (IDE) is shared by several tools, including
Visual C++ .NET, Microsoft Visual C#, and Microsoft Visual Basic .NET. The IDE has come
a long way from the original Visual Workbench, which was based on QuickC for Windows.
Docking windows, configurable toolbars, and a customizable editor that runs macros are now
part of Visual Studio .NET. The online help system (now integrated with the MSDN Library
viewer) works like a Web browser. Figure 1-2 shows Visual C++ .NET in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-2. Visual C++ .NET windows.

If you’ve used earlier versions of Visual C++, you already understand how Visual C++ .NET
operates (although some of the menus might have changed). But if you’re new to IDEs, you’ll
need to know what a project is. A project is a collection of interrelated source files that are
compiled and linked to make up an executable Windows-based program or a DLL. Source
files for each project are generally stored in a separate subdirectory. A project also depends on
many files outside the project subdirectory, such as include files and library files.

Visual Studio .NET also supports building projects outside of the development environment.
Within Visual Studio .NET, makefiles are still supported. (A makefile stores compiler and
linker options and expresses all the interrelationships among source files.) That is, you can still
type up a makefile by hand and run it though NMAKE.EXE. (A source code file needs
specific include files, an executable file requires certain object modules and libraries, and so
forth.) NMAKE reads the makefile and then invokes the compiler, assembler, resource
compiler, and linker to produce the final output, which is generally an executable file.
NMAKE uses built-in inference rules that tell it, for example, to invoke the compiler to
generate an OBJ file from a specified CPP file. Note that Visual C++ .NET no longer supports
the ability to export a makefile for the active project from the development environment. Use
Devenv command line switches to build Visual Studio .NET projects at the command line.

In a Visual C++ .NET project, a text-format project file (with a VCPROJ extension) maintains
the dependencies between project parts. A separate text-format solution file (with an SLN
extension) has an entry for each project in the solution. The solution file organizes projects,
project items, and solution items into a single solution by providing the environment with
references to their locations on disk. It’s possible to have multiple projects in a solution, but all
the examples in this book have just one project per solution. To work on an existing project,
you tell Visual C++ .NET to open the SLN file, and then you can edit and build the project.

Visual C++ .NET creates some intermediate files too. Table 1-1 lists the files that Visual C++
.NET generates in the solution.

Table 1-1. File Types Generated in Visual C++ .NET Projects
Filename extension Description

APS Supports Resource View

BSC Browser information file

IDL Interface Definition Language file

NCB Supports Class View

SLN Solution file Do not delete or edit in a text editor.

SUO Holds solution options and configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VCPROJ Project file Do not delete or edit in a text editor.

The Resource View Window and the Resource Editors

When you open the Resource View window (choose Resource View from the View menu) in
the Visual C++ .NET IDE, you can select a resource for editing. The main window hosts a
resource editor appropriate for the resource type. The window can also host a WYSIWYG
editor for menus and a powerful graphical editor for dialog boxes, and it includes tools for
editing icons, bitmaps, and strings. The dialog editor allows you to insert ActiveX controls in
addition to standard Windows controls and the Windows common controls.

Each project usually has one text-format resource script (RC) file that describes the project’s
menu, dialog box, string, and accelerator resources. The RC file also has #include statements
to bring in resources from other subdirectories. These resources include project-specific items,
such as bitmap (BMP) and icon (ICO) files, and resources common to all Visual C++ .NET
programs, such as error message strings. Editing the RC file outside the resource editors is not
recommended. The resource editors can also process EXE and DLL files, so you can use the
Clipboard to “steal” resources, such as bitmaps and icons, from other Windows-based
applications.

The C/C++ Compiler

The Visual C++ .NET compiler can process both C source code and C++ source code. It
determines the language by looking at the source code’s filename extension. The C extension
indicates C source code, and the CPP or CXX extension indicates C++ source code. The
compiler is compliant with all ANSI (American National Standards Institute) standards,
including the latest recommendations of a working group on C++ libraries, and has additional
Microsoft extensions. Templates, exceptions, and runtime type information (RTTI) are fully
supported in Visual C++ .NET. The C++ Standard Template Library (STL) is also included,
although it is not integrated into the MFC library.

The Source Code Editor

Visual C++ .NET includes a sophisticated source code editor that supports many features such
as dynamic syntax coloring, auto-tabbing, keyboard bindings for a variety of popular editors
(such as VI and EMACS), and pretty printing. Starting with Visual C++ 6, the environment
includes a feature named AutoComplete. If you have used any of the Microsoft Office
products or Visual Basic, you might already be familiar with this technology. Using the Visual
Studio .NET AutoComplete feature, all you have to do is type the beginning of a programming
statement and the editor will provide you with a list of possible completions to choose from.
This feature is extremely handy when you are working with C++ objects and have forgotten
an exact member function or data member name—they’re all there in the list for you. Thanks
to this feature, you no longer have to memorize thousands of Win32 APIs or rely heavily on
the online help system.

The Resource Compiler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Visual C++ resource compiler reads an ASCII RC file from the resource editors and
writes a binary RES file for the linker.

The Linker

The linker reads the OBJ and RES files produced by the C/C++ compiler and the resource
compiler, and it accesses LIB files for MFC code, runtime library code, and Windows code. It
then writes the project’s EXE file. An incremental link option minimizes the execution time
when only minor changes have been made to the source files. The MFC header files contain
#pragma statements (special compiler directives) that specify the required library files, so you
don’t have to tell the linker explicitly which libraries to read.

The Debugger

If your program works the first time, you don’t need a debugger. The rest of us might need one
from time to time. Visual Studio .NET provides an integrated debugger by combining features
of the earlier versions of Visual C++ and Visual Basic debuggers and adding many new
features. These new features include the following:

Cross-language debugging Visual Studio .NET lets you debug projects that are part of
the same solution even if they’re written in different languages.

Attachment to a running program Visual Studio .NET lets you attach to and debug a
program that is running outside of Visual Studio .NET.

Remote debugging Visual Studio .NET supports remote debugging. That is, you can
attach to a program that’s running on another server.

Debugging of ASP.NET Web applications ASP.NET files are compiled, so they get the
same treatment during debugging that other languages get. This makes it much easier
than before to debug Web applications.

.NET Framework classes for debugging and code tracing The .NET Framework classes
make it easy to instrument and put trace statements in your code. Because these classes
are managed code, you can run them within managed C++ code.

Figure 1-3 shows the integrated debugger in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-3. The Visual C++ .NET debugger window.

Note that the Variables and Watch windows can expand an object pointer to show all data
members of the derived class and base classes. If you position the cursor on a simple variable,
the debugger will show you its value in a little window. To debug a program, you must build
the program with the compiler and linker options set to generate debugging information.

Visual C++ .NET includes an Edit And Continue feature. Edit And Continue lets you debug
an application, change the application, and then continue debugging with the new code. This
feature dramatically reduces the amount of time you spend debugging because you no longer
have to manually leave the debugger, recompile, and then debug again. To use this feature,
you simply edit any code while you’re in the debugger and then hit the Continue button.
Visual C++ .NET will compile the changes and restart the debugger for you.

The MFC Application Wizard

The MFC Application Wizard is a code generator that creates a working skeleton of a
Windows-based application with features, class names, and source code filenames that you
specify using dialog boxes. You’ll use the MFC Application Wizard extensively as you work
through the examples in this book. Don’t confuse the MFC Application Wizard with older
code generators that generate all the code for an application. The MFC Application Wizard
code is minimalist code; the functionality is inside the application framework base classes.

The MFC Application Wizard gets you started quickly with a new application. Moreover, the
wizard is extensible—you can write your own code generators. If you discover that your team
needs to develop multiple projects with a telecommunications interface, you can build a
special wizard that automates the process.

Class View

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can open the Class View window by choosing Class View from the View menu. You get
a tree view of all the classes in your project, which displays member functions and data
members, as shown in Figure 1-2. Double-click an element, and you will see the source code
immediately. When you make changes to your code, Class View will reflect the changes by
updating its content automatically. Earlier versions of Visual C++ included a single
component named ClassWizard that handled almost all tasks involved in managing Visual
C++ class code. The ClassWizard functionality has been replaced with several new wizards
that individually perform such tasks as adding whole new classes, adding virtual functions to a
class, and adding message-handler functions. For example, adding classes and functions has
been replaced by functionality found in Class View.

Solution Explorer

Solution Explorer represents an organized view of your entire project. An entire Visual Studio
.NET application might include many items—including many projects. Solution Explorer
allows you to manage all aspects of a solution.

Solution Explorer includes a tree view listing the items in your project. Solution Explorer
allows you to open the items for modification or perform other management tasks. The tree
view of the items shows the logical relationship of the solution to projects and solution items.
The view does not necessarily represent a physical storage relationship. You can associate
files with the solution but not a specific project by adding them directly to the solution.

The Object Browser

If you write an application from scratch, you probably have a good mental picture of your
source code files, classes, and member functions. If you take over someone else’s application,
however, you’ll generally need some assistance. The Visual C++ .NET Object Browser (the
browser, for short) lets you examine (and edit) an application from the class or function
viewpoint instead of from the file viewpoint. It’s a little like the “inspector” tools available
with object-oriented libraries such as Smalltalk.

To invoke the browser, you choose Other Windows, Object Browser from the View menu.
The browser has the following viewing modes:

Definitions and References You select any function, variable, type, macro, or class and
then see where it’s defined and used in your project.

Sorting You can sort objects and members alphabetically, by type, and by access.

Derived Classes and Members/Base Classes and Members These are graphical class
hierarchy diagrams. For a selected class, you see the derived classes or the base classes
plus members. You can control the hierarchy expansion with the mouse.

A typical browser window is shown in Chapter 3.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you rearrange the lines in any source code file, Visual C++ .NET will regenerate
the browser database when you rebuild the project. This increases the build time.

Unified Modeling Language Tools

Visual C++ .NET now includes Unified Modeling Language (UML) tools. UML is a set of
diagramming and program description conventions for describing a system. The diagram types
contained in UML include class diagrams, object diagrams, activity diagrams, and state
diagrams. Many organizations are standardizing on UML as the way to document their
systems.

Visual C++ .NET includes a command on the Project menu for reverse-engineering a project
into a UML diagram. To reverse-engineer a Visual C++ .NET project into a set of UML
diagrams, you first generate browser information for the project. Then you choose Visio
UML, Reverse Engineer from the Project menu. Visual C++ .NET will generate a UML
package (collection of diagrams) of your project and will fire up a copy of Visio and display
the package. (The UML diagrams are generated in Visio format.)

NOTE
To view the online help for a Visio UML solution, you must keep Visio active and
running. At the end of the Visual Studio .NET Enterprise Architect installation,
you will see an option to install Visio.

Online Help

Starting with Visual C++ 6, the help system has been moved to a separate application named
the MSDN Library Viewer. This help system is based on HTML. Each topic is covered in an
individual HTML document, and then all are combined into indexed files. The MSDN Library
Viewer uses code from Microsoft Internet Explorer 4, so it works like the Web browser you
already know. The MSDN Library can access the help files from the Visual Studio .NET CDs
or from your hard disk, depending upon your choices during the install process, and it can
access HTML files on the Internet.

Visual C++ .NET allows you to access help in different ways:

By book When you choose Contents from Visual Studio .NET’s Help menu, the
Contents window opens and displays Visual Studio .NET documentation and the
MSDN Library. Here you’ll find Visual Studio .NET, the .NET Framework SDK,
Platform SDK documentation, and more, all organized hierarchically by book and
chapter. The scope of contents displayed depends on the filter you choose.

By topic When you choose Index from Visual Studio .NET’s Help menu, the Index
window opens. You type a keyword in this window to see the topics and articles
included for that keyword. The scope of topics displayed depends on the filter you
choose.

By word When you choose Search from Visual Studio .NET’s Help menu, the Search

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By word When you choose Search from Visual Studio .NET’s Help menu, the Search
window opens. You can use this window to perform a full-text search for a combination
of words to view articles that contain those words. The scope of the search results
depends on the filter you apply.

Dynamic help Dynamic help helps you run Visual Studio .NET by providing pointers
to information specific to the current area you’re using or to the task you’re trying to
complete within the IDE.

F1 help This is the programmer’s best friend. Just move the cursor inside a function,
macro, or class name and then press the F1 key, and the help system will go to work. If
the name is found in several places—in the MFC and Win32 help files, for example—
the Index window displays a list of topics, where you can choose the help topic you
want.

However you access online help, you can copy any help text to the Clipboard for inclusion in
your program.

Windows Diagnostic Tools

Visual C++ .NET contains a number of useful diagnostic tools. SPY++ gives you a tree view
of your system’s processes, threads, and windows. It also lets you view messages and examine
the windows of running applications. Visual C++ .NET also includes a whole suite of ActiveX
utilities, an ActiveX control test program, and other utilities.

The MFC Library Version 7

The MFC library version 7 is one of the main subjects of this book. It defines the application
framework that you’ll be learning intimately. Chapter 2 will get you started with actual code
and will introduce some important concepts.

The ATL Library Version 7.0

The ATL is separate from the MFC library and is used for building ActiveX controls. You can
build ActiveX controls with either the MFC or ATL library, but ATL controls are much
smaller and are quicker to load on the Internet. Chapter 27 and Chapter 28 provide a brief
overview of ATL and creating ActiveX controls with ATL. We’ll also take a look at ATL
Server in this book.

.NET Support

Visual Studio .NET fully supports the .NET Framework. While DLLs, C++, the MFC library,
COM, and ATL can all work together to create Windows applications, the whole system does
have a couple of warts. Once in a while, it seems that some parts are stuck together with
bandages. One of the primary goals of .NET is to unify the programming model so the
Windows platform is more solid. For example, the common language runtime functions to
give all programming syntaxes a consistent set of data types. ASP.NET also runs under the
runtime, making Web application programming much more consistent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to Visual Basic .NET, Microsoft is updating C++ to run under the new
environment by adding managed extensions. You use managed extensions to tell the Visual
C++ .NET compiler to emit code that runs under the runtime. There’s a lot of heritage C++
code out there, and using managed extensions promises to make moving over to .NET much
easier. I’ll cover .NET and Visual C++ .NET’s role in building .NET applications in detail in
the second half of the book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2
The Microsoft Foundation Class Library Application Framework

This chapter introduces the Microsoft Foundation Class (MFC) library 7.0 application
framework and explains its benefits. It includes a stripped-down but fully operational MFC
library program for Microsoft Windows that should help you understand what application
framework programming is all about. I’m keeping theory to a minimum here, but I’ve included
sections on message mapping and on documents and views to help you understand the
examples in later chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Use This Application Framework?

If you’re going to develop applications for Windows, you’ve got to choose a development
environment. Assuming that you’ve already rejected non-C options such as Microsoft Visual
Basic and Borland Delphi, here are some of your remaining options:

Program in C with the Win32 API.

Write your own C++ Windows class library that uses Win32.

Use the MFC library application framework.

Use another Windows-based application framework. (Most of them are defunct,
however—such as Borland’s Object Windows Library [OWL].)

NOTE
We’ll cover .NET Windows Forms in Part VI of this book.

If you’re starting from scratch, any option will involve a big learning curve. If you’re already
a Win32 programmer, you’ll still have a learning curve with the MFC library. Since its
release, the MFC library has become the dominant Windows class library. But even if you’re
familiar with it, it’s still a good idea to step through the features of this programming choice.

The MFC library is the low-level C++ interface to the Windows
API

C++ has been a standard for many developers for a number of years. It’s turned into a mature,
well-understood framework with great third-party support. If you need the highest-
performance applications, your applications must live as closely to the Windows API as
possible. C++ and MFC are as close as you can get without writing WndProc methods by
hand.

Application framework applications use a standard structure

Any programmer starting on a large project develops some kind of structure for the code. The
problem is that each programmer’s structure is different, and it’s difficult for a new team
member to learn the structure and conform to it. The MFC library application framework
includes its own application structure—one that’s been proven in many software environments
and in many projects. If you write a program for Windows that uses the MFC library, you can
safely retire to a Caribbean island, knowing that your minions can easily maintain and enhance
your code back home.

Don’t think that the MFC library’s structure makes your programs inflexible. With the MFC
library, your program can call Win32 functions at any time, so you can take maximum
advantage of Windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Application framework applications are small and fast

Back in the 16-bit days, you could build a self-contained Windows EXE file that was less than
20 KB in size. Today, Windows-based programs are larger. One reason is that 32-bit code is
fatter. Even with the large memory model, a Win16 program uses 16-bit addresses for stack
variables and many globals. Win32 programs use 32-bit addresses for everything and often
use 32-bit integers because they’re more efficient than 16-bit integers. In addition, the C++
exception-handling code consumes a lot of memory.

That old 20 KB program didn’t have a docking toolbar, splitter windows, print preview
capabilities, or control container support—features that users now expect. MFC programs are
bigger because they do more and look better. Fortunately, it’s now easy to build applications
that dynamically link to the MFC code (and to C run-time code), so the size goes back down
again—from 192 KB to about 20 KB! Of course, you’ll need some big support DLLs in the
background, but those are a fact of life these days.

As far as speed is concerned, you’re working with machine code produced by an optimizing
compiler. Execution is fast, but you might notice a startup delay as the support DLLs are
loaded.

The Visual C++ .NET tools reduce coding drudgery

The Visual C++ .NET resource editors, the MFC Application Wizard, and the code wizards
available from Class View significantly reduce the time needed to write code that’s specific to
your application. For example, the resource editor creates a header file that contains assigned
values for #define constants. The MFC Application Wizard generates skeleton code for your
entire application, and you can use the Properties window to add message handlers and map
messages to them.

The MFC library application framework is feature rich

The MFC library 1.0 classes, introduced with C/C++ 7.0, included the following features:

A C++ interface to the Windows API

General-purpose (non-Windows-specific) classes, including:

Collection classes for lists, arrays, and maps

A useful and efficient string class

Time, time span, and date classes

File access classes for operating system independence

Support for systematic object storage and retrieval to and from disk

A “common root object” class hierarchy

Streamlined Multiple Document Interface (MDI) application support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some support for OLE 1.0

The MFC library 2.0 classes (in Visual C++ 1.0) picked up where the version 1.0 classes left
off by supporting many user interface features that are found in current Windows-based
applications, plus they introduced the application framework architecture. Here’s a summary
of the important new features:

Full support for File Open, Save, and Save As commands and the most recently used
file list

Print preview and printer support

Support for scrolling windows and splitter windows

Support for toolbars and status bars

Access to Visual Basic controls

Support for context-sensitive help

Support for automatic processing of data entered in a dialog box

An improved interface to OLE 1.0

DLL support

The MFC library 2.5 classes (in Visual C++ 1.5) contributed the following:

Open Database Connectivity (ODBC) support that allows your application to access and
update data stored in many popular databases such as Microsoft Access, Microsoft
FoxPro, and Microsoft SQL Server

An interface to OLE 2.01, with support for in-place editing, linking, drag and drop, and
OLE Automation

Visual C++ 2.0 was the first 32-bit version of the product. It included support for Microsoft
Windows NT version 3.5. It also contained the MFC library 3.0, which had the following new
features:

Tab dialog box (property sheet) support (which was also added to Visual C++ 1.51,
included on the same CD)

Docking control bars that were implemented within MFC

Support for thin-frame windows

A separate Control Development Kit (CDK) for building 16-bit and 32-bit OLE
controls, although no OLE control container support was provided

A subscription release, Visual C++ 2.1 with the MFC library 3.1, added the following:

Support for the new Windows 95 (beta) common controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A new ODBC Level 2 driver integrated with the Access Jet database engine

Winsock classes for TCP/IP data communication

Microsoft decided to skip Visual C++ 3.0 and proceeded directly to 4.0 in order to
synchronize the product version with the MFC library. The MFC library 4.0 contains these
additional features:

New OLE-based Data Access Objects (DAO) classes for use with the Jet engine

Use of the Windows 95 docking control bars instead of the MFC control bars

Full support for the common controls in the released version of Windows 95, with new
tree view and rich-edit view classes

New classes for thread synchronization

OLE control container support

Visual C++ 4.2 was an important subscription release that included the MFC library 4.2. The
following new features were included:

WinInet classes

ActiveX Documents server classes

ActiveX synchronous and asynchronous moniker classes

Enhanced MFC ActiveX Control classes, with features such as windowless activation,
optimized drawing code, and so forth

Improved MFC ODBC support, including recordset bulk fetches and data transfer
without binding

Visual C++ 5.0 included the MFC library 4.21, which fixed some 4.2 bugs. Visual C++ 5.0
introduced some worthwhile features of its own as well:

A redesigned IDE, Microsoft Developer Studio 97, which included an HTML-based
online help system and integration with other languages, including Java

The Active Template Library (ATL) for efficient ActiveX control construction for the
Internet

C++ language support for COM (Component Object Model) client programs with the
new #import statement for type libraries, as described in Chapter 25.

Visual C++ 6.0 includes the MFC library 6.0. (Notice that the versions are synchronized
again.) Many of the features in the MFC library 6.0 enabled developers to support the
modern platform at the time, the Microsoft Active Platform, including the following:

MFC classes that encapsulate the new Windows common controls introduced as part of
Microsoft Internet Explorer 4.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Support for Dynamic HTML (DHTML), which allows MFC programmers to create
applications that can dynamically manipulate and generate HTML pages

Active Document Containment, which allows MFC-based applications to contain Active
Documents

OLE DB Consumers and Providers Template support and ActiveX Data Objects (ADO)
data binding, which help database developers who use the MFC library or ATL

The latest edition of Visual C++, Visual C++ .NET, includes the MFC library 7.0. Many of
the features in the MFC library 7.0 support Internet programming (and the new Microsoft
.NET platform) and also improve the Windows development environment. The new features
include the following:

Enhanced support for HTML help within MFC applications

Support for windowless controls

DHTML dialog boxes and editing components

HTTP argument management classes

Windows 2000 Print dialog box

Stricter message-handler type checking

Date support beyond the year 2038

The Learning Curve

All the benefits sound great, don’t they? But you’re probably thinking, “You don’t get
something for nothing.” Yes, that’s true. To use the application framework effectively, you
have to learn it thoroughly, and that takes time. If you had to learn C++, Windows, and the
MFC library (without OLE) all at the same time, it would take at least six months before you
were really productive. Interestingly, that’s close to the learning time for the Win32 API
alone.

How can that be if the MFC library offers so much more? For one thing, you can avoid many
programming details that C-language Win32 programmers are forced to learn. From my own
experience, I can say that an object-oriented application framework makes programming for
Windows easier to learn—that is, once you understand object-oriented programming.

The MFC library won’t bring real Windows-based programming to the masses. Programmers
of applications for Windows have usually commanded higher salaries than other programmers,
and that situation will continue. The MFC library’s learning curve, together with the
application framework’s power, should ensure that MFC library programmers will continue to
be in strong demand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What’s an Application Framework?

One definition of application framework is “an integrated collection of object-oriented
software components that offers all that’s needed for a generic application.” That isn’t a very
useful definition, is it? If you really want to know what an application framework is, you’ll
have to read the rest of this book. The application framework example that you’ll look at later
in this chapter is a good starting point.

An Application Framework vs. a Class Library

One reason that C++ is a popular language is that it can be “extended” with class libraries.
Some class libraries are delivered with C++ compilers, others are sold by third-party software
firms, and still others are developed in-house. A class library is a set of related C++ classes
that can be used in an application. A mathematics class library, for example, might perform
common mathematics operations, and a communications class library might support the
transfer of data over a serial link. Sometimes you construct objects of the supplied classes,
sometimes you derive your own classes—it all depends on the design of the particular class
library.

An application framework is a superset of a class library. An ordinary library is an isolated set
of classes designed to be incorporated into any program, but an application framework defines
the structure of the program itself. Microsoft didn’t invent the application framework concept.
It first appeared in the academic world, and the first commercial version was MacApp for the
Apple Macintosh. Since the MFC library 2.0 was introduced, other companies, including
Borland, have released similar products.

An Application Framework Example

Enough generalizations. It’s time to look at some code—not pseudocode but real code that
actually compiles and runs with the MFC library. Guess what? It’s the good old “Hello,
world!” application, with a few additions. (If you’ve used version 1.0 of the MFC library, this
code will be familiar except for the frame window base class.) It’s about the minimum amount
of code for a working MFC library application for Windows. (Contrast it with an equivalent
pure Win32 application such as you would see in a Petzold book!) You don’t have to
understand every line now. Don’t bother to type it in and test it, because EX21B on the
companion CD is quite similar. Wait for the next chapter, where you’ll start using the “real”
application framework.

NOTE
By convention, MFC library class names begin with the letter C.

Following is the source code for the header and implementation files for our MYAPP
application. The classes CMyApp and CMyFrame are each derived from MFC library base
classes. First, here is the MyApp.h header file for the MYAPP application:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// application class
class CMyApp : public CWinApp
{
public:
 virtual BOOL InitInstance();
};

// frame window class
class CMyFrame : public CFrameWnd
{
public:
 CMyFrame();
protected:
 // "afx_msg" indicates that the next two functions are part
 // of the MFC library message dispatch system
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg void OnPaint();
 DECLARE_MESSAGE_MAP()
};

And here is the MyApp.cpp implementation file for the MYAPP application:

#include <afxwin.h> // MFC library header file declares base classes
#include "myapp.h"

CMyApp theApp; // the one and only CMyApp object

BOOL CMyApp::InitInstance()
{
 m_pMainWnd = new CMyFrame();
 m_pMainWnd->ShowWindow(m_nCmdShow);

 m_pMainWnd->UpdateWindow();
 return TRUE;
}

BEGIN_MESSAGE_MAP(CMyFrame, CFrameWnd)
 ON_WM_LBUTTONDOWN()
 ON_WM_PAINT()
END_MESSAGE_MAP()

CMyFrame::CMyFrame()
{
 Create(NULL, "MYAPP Application");
}

void CMyFrame::OnLButtonDown(UINT nFlags, CPoint point)
{
 TRACE("Entering CMyFrame::OnLButtonDown - %lx, %d, %d\n",
 (long) nFlags, point.x, point.y);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (long) nFlags, point.x, point.y);
}

void CMyFrame::OnPaint()
{
 CPaintDC dc(this);
 dc.TextOut(0, 0, "Hello, world!");
}

Here are some of the program elements:

The WinMain function Windows requires your application to have a WinMain function.
You don’t see WinMain here because it’s hidden inside the application framework.

The CMyApp class An object of class CMyApp represents an application. The program
defines a single global CMyApp object, theApp. The CWinApp base class determines
most of the theApp object’s behavior.

Application startup When the user starts the application, Windows calls the application
framework’s built-in WinMain function, and WinMain looks for your globally
constructed application object of a class derived from CWinApp. Don’t forget that in a
C++ program global objects are constructed before the main program is executed.

The CMyApp::InitInstance member function When the WinMain function finds the
application object, it calls the virtual InitInstance member function, which makes the
calls needed to construct and display the application’s main frame window. You must
override InitInstance in your derived application class because the CWinApp base class
doesn’t know what kind of main frame window you want.

The CWinApp::Run member function The Run function is hidden in the base class, but
it dispatches the application’s messages to its windows, thus keeping the application
running. WinMain calls Run after it calls InitInstance.

The CMyFrame class An object of class CMyFrame represents the application’s main
frame window. When the constructor calls the Create member function of the base class
CFrameWnd, Windows creates the actual window structure and the application
framework links it to the C++ object. You must call the ShowWindow and
UpdateWindow functions, also member functions of the base class, in order to display
the window.

The CMyFrame::OnLButtonDown function This function is a sneak preview of the
MFC library’s message-handling capability. I’ve elected to “map” the left mouse button
down event to a CMyFrame member function. You’ll learn the details of the MFC
library’s message mapping in Chapter 5. For the time being, accept that this function
gets called when the user presses the left mouse button. The function invokes the MFC
library TRACE macro to display a message in the debugging window.

The CMyFrame::OnPaint function The application framework calls this important
mapped member function of class CMyFrame every time it’s necessary to repaint the
window: at the start of the program, when the user resizes the window, and when all or
part of the window is newly exposed. The CPaintDC statement relates to the classic
Graphics Device Interface (GDI) and is explained in later chapters. The TextOut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphics Device Interface (GDI) and is explained in later chapters. The TextOut
function displays “Hello, world!” (We’ll look at GDI+ when we discuss .NET).

Application shutdown The user shuts down the application by closing the main frame
window. This action initiates a sequence of events, which ends with the destruction of
the CMyFrame object, the exit from Run, the exit from WinMain, and the destruction of
the CMyApp object.

Look at the code example again. This time try to get the big picture. Most of the application’s
functionality is in the MFC library base classes CWinApp and CFrameWnd. In writing
MYAPP, I’ve followed a few simple structure rules and have written key functions in my
derived classes. C++ lets you “borrow” a lot of code without copying it. Think of it as a
partnership between you and the application framework. The application framework provides
the structure, and you provide the code that makes the application unique.

Now you’re beginning to see why the application framework is more than just a class library.
Not only does the application framework define the application structure, but it also
encompasses more than C++ base classes. You’ve already seen the hidden WinMain function
at work. Other elements support message processing, diagnostics, DLLs, and so forth.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Library Message Mapping

Take a look at the OnLButtonDown member function in the previous example. You might
think that it would be an ideal candidate for a virtual function. A window base class would
define virtual functions for mouse event messages and other standard messages, and derived
window classes could override the functions as necessary. Some Windows class libraries do
work this way.

However, the MFC library application framework doesn’t use virtual functions for Windows
messages. Instead, it uses macros to “map” specified messages to derived class member
functions. Why the rejection of virtual functions? Suppose the MFC library used virtual
functions for messages. The CWnd class would declare virtual functions for more than 100
messages. C++ requires a virtual function dispatch table, called a vtable, for each derived class
used in a program. Each vtable needs one 4-byte entry for each virtual function, regardless of
whether the functions are actually overridden in the derived class. Thus, for each distinct type
of window or control, the application would need a table consisting of over 400 bytes to
support virtual message handlers.

What about message handlers for menu command messages and messages from button clicks?
You couldn’t define these as virtual functions in a window base class because each application
might have a different set of menu commands and buttons. The MFC library message map
system avoids large vtables, and it accommodates application-specific command messages in
parallel with ordinary Windows messages. It also allows selected nonwindow classes, such as
document classes and the application class, to handle command messages. The MFC library
uses macros to connect (or map) Windows messages to C++ member functions. No extensions
to the C++ language are necessary.

An MFC message handler requires a function prototype, a function body, and an entry (macro
invocation) in the message map. The Properties window helps you add message handlers to
your classes. You select a Windows message ID from a list box, and the wizard generates the
code with the correct function parameters and return values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Documents and Views

The previous example used an application object and a frame window object. Most of your
MFC library applications will be more complex. Typically, they’ll contain application and
frame classes plus two other classes that represent the “document” and the “view.” This
document-view architecture is the core of the application framework and is loosely based on
the Model/View/Controller classes from the Smalltalk world.

In simple terms, the document-view architecture separates data from the user’s view of the
data. One obvious benefit is multiple views of the same data. Consider a document that
consists of a month’s worth of stock quotes stored on disk. Suppose a table view and a chart
view of the data are both available. The user updates values through the table view window,
and the chart view window changes because both windows display the same information (but
in different views).

In an MFC library application, documents and views are represented by instances of C++
classes. Figure 2-1 shows three objects of class CStockDoc corresponding to three companies:
AT&T, IBM, and GM. All three documents have a table view attached, and one document
also has a chart view. As you can see, there are four view objects—three objects of class
CStockTableView and one of class CStockChartView.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-1. The document-view relationship.

The document base class code interacts with the File Open and File Save commands; the
derived document class does the actual reading and writing of the document object’s data.
(The application framework does most of the work of displaying the File Open and File Save
dialog boxes and opening, closing, reading, and writing files.) The view base class represents a
window contained inside a frame window; the derived view class interacts with its associated
document class and does the application’s display and printer I/O. The derived view class and
its base classes handle Windows messages. The MFC library orchestrates all interactions
among documents, views, frame windows, and the application object, mostly through virtual
functions.

Don’t think that a document object must be associated with a disk file that is read entirely into
memory. If a “document” were really a database, for example, you could override selected
document class member functions and the File Open command would bring up a list of
databases instead of a list of files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3
Getting Started with the MFC Application Wizard

Chapter 2 introduced the MFC library’s document-view architecture. This hands-on chapter
will show you how to build a functioning MFC library application while insulating you from
the complexities of the class hierarchy and object interrelationships. You’ll work with only
one document-view program element: the view class that is closely associated with a window.
For the time being, you can ignore elements such as the application class, the frame window,
and the document. Of course, your application won’t be able to save its data to disk and won’t
support multiple views, but Part III of this book will give you plenty of opportunity to explore
using those features.

Because resources are so important in Microsoft Windows based applications, you’ll use
Resource View in this chapter to visually explore the resources of your new program. The
chapter will also give you some hints on setting up your Windows environment for maximum
build speed and optimal debugging output.

NOTE
To compile and run the examples presented in this chapter and in the following
chapters, you must have Microsoft Windows NT 4.0, Windows 2000, or Windows
XP installed, plus all the Microsoft Visual C++ .NET components. Be sure that
Visual C++ .NET’s executable, include, and library directories are set correctly.
(You can change the directories by choosing Options from the Tools menu and
clicking the Projects folder.) If you have any problems with the steps presented,
please refer to your Visual C++ .NET documentation and Readme files for
troubleshooting instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What’s a View?

From a user’s standpoint, a view is an ordinary window that the user can size, move, and close
in the same way as any other Windows-based application window. From the programmer’s
perspective, a view is a C++ object of a class derived from the MFC library CView class. Like
any C++ object, the view object’s behavior is determined by the member functions (and data
members) of the class—both the application-specific functions in the derived class and the
standard functions inherited from the base classes.

With Visual C++ .NET, you can produce interesting applications for Windows by simply
adding code to the derived view class that the MFC Application Wizard code generator
produces. When your program runs, the MFC library application framework constructs an
object of the derived view class and displays a window that is tightly linked to the C++ view
object. As is customary in C++ programming, the view class code is divided into two source
modules—the header file (H) and the implementation file (CPP).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Library Application Types

The MFC library supports three application types: Single Document Interface (SDI), Multiple
Document Interface (MDI), and Multiple Top-Level Windows Interface (MTI). An SDI
application has, from the user’s point of view, only one window. If the application depends on
disk-file “documents,” only one document can be loaded at a time. The original Windows
Notepad is an example of an SDI application. An MDI application has multiple child
windows, each of which corresponds to an individual document. Earlier versions of Microsoft
Office applications (before Office 2000) such as Microsoft Word are examples of MDI
applications. An MTI application is a single instance of an application running several of the
top-level windows. Modern versions of the Office applications use this model.

When you run the MFC Application Wizard to create a new project, MDI is the default
application type. For the early examples in this book, you’ll be generating SDI applications
because fewer classes and features are involved. Be sure to select the Single Document option
(on the Application Type page of the MFC Application Wizard) for these examples. Starting
with Chapter 18, you’ll be generating MDI applications. The MFC library application
framework architecture ensures that most SDI examples can be upgraded easily to MDI
applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Library User Interfaces

In addition to providing options for SDI, MDI, and MTI-style application interfaces, the MFC
library gives you a choice between a standard application user interface (UI) and a Windows
Explorer–style UI. Examples of the classic-style UI include Microsoft Word and Microsoft
Paintbrush. The Windows Explorer–style UI features two panes separated by a splitter. The
left pane usually includes a TreeView with expandable nodes, and the right pane usually
includes a ListView. Windows Explorer is an example of this style of UI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ex03a: The “Do-Nothing” Application

The MFC Application Wizard generates the code for a functioning MFC library application.
This working application simply brings up an empty window with a menu attached. Later, you
add code that draws inside the window. You take the following steps to build an application:

1. Run the MFC Application Wizard to generate SDI application source code. Choose
New Project from Visual C++’s File menu. Select Visual C++ Projects, and then select
MFC Application from the list of templates, as shown here.

Type C:\vcppnet\ in the Location box. Type Ex03a in the Name box, and then click
OK. Use the links on the left side of the dialog box to move through the various
Application Wizard pages to set up project options.

On the Application Type page, select the Single Document option and accept the
defaults for the rest of the application, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the Generated Classes page, shown below, notice that the class names and source-
file names have been generated based on the project name Ex03a. You can make
changes to these names at this point if you want to. Click Finish. The wizard will create
your application’s subdirectory (Ex03a under \vcppnet) and a series of files in that
subdirectory. When the wizard is finished, look in the application’s subdirectory.

Table 3-1 lists the files that are of interest (for now).

Table 3-1. Important Files in the Application’s Subdirectory
File Description

Ex03a.vcproj A project file that allows Visual C++ .NET to build your application

Ex03a.sln A solution file that contains a single entry for ex03a.vcproj

Ex03a.rc An ASCII resource script file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ex03aView.cpp A view class implementation file that contains CEx03aView class
member functions

Ex03aView.h A view class header file that contains the CEx03aView class
declaration

ReadMe.txt A text file that explains the purpose of the generated files

resource.h A header file that contains #define constant definitions

Open the ex03aView.cpp and ex03aView.h files and look at the source code. Together,
these files define the CEx03aView class, which is central to the application. An object of
class CEx03aView corresponds to the application’s view window, where all the “action”
takes place.

2. Compile and link the generated code. In addition to generating code, the MFC
Application Wizard creates custom project and workspace files for your application.
The project file, ex03a.vcproj, specifies all the file dependencies along with the compile
and link option flags. Because the new project becomes Visual C++ .NET’s current
project, you can now build the application by choosing Build from the Build menu or by
clicking the Build toolbar button, shown here:

If the build is successful, an executable program named Ex03a.exe will be created in a
new Debug subdirectory underneath \vcppnet\Ex03a. The OBJ files and other
intermediate files are also stored in Debug. Compare the file structure on disk with the
structure in Solution Explorer, shown below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Solution Explorer contains a logical view of your project. The header files show up
under Header Files, even though they are in the same subdirectory as the CPP files. The
resource files are stored in the \res subdirectory.

3. Test the resulting application. Choose Start Without Debugging from the Debug menu.
Experiment with the program. It doesn’t do much, does it? (What do you expect with no
coding?) Actually, as you might guess, the program has a lot of features—you simply
haven’t activated them yet. Close the program window when you’ve finished
experimenting.

4. Browse the application. Press CTRL+ALT+J to bring up the Object Browser. If your
project settings don’t specify browser database creation, Visual C++ .NET will offer to
change the settings and recompile the program for you. (To change the settings yourself,
choose Properties from the Project menu. Open the C/C++ folder, click on the Browse
Information property page, and change the Enable Browse Information property to
Include All Browse Information (/FR).)

After you expand the hierarchy, you should see output similar to this:

Compare the browser output to Class View:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class View shows the class hierarchy, much like the Object Browser does. But the
Object Browser shows all the functions available on a class, and Class View shows only
those that have been overridden. If Class View is sufficient for you, don’t bother
building the browser database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CEx03aView View Class

The MFC Application Wizard generated the CEx03aView view class, which is specific to the
Ex03a application. (The wizard generates classes based on the project name you entered in the
New Project dialog box.) CEx03aView is at the bottom of a long inheritance chain of MFC
library classes, as shown previously in the Object Browser window. The class picks up
member functions and data members all along the chain. You can learn about these classes in
the Microsoft Foundation Class Reference (online or printed version), but be sure to look at
the descriptions for every base class because the descriptions of inherited member functions
aren’t generally repeated for derived classes.

The most important CEx03aView base classes are CWnd and CView. CWnd provides the
CEx03aView view class’s “windowness,” and CView provides the hooks to the rest of the
application framework, particularly to the document and to the frame window, as you’ll see in
Chapter 12 of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drawing Inside the View Window: The Windows GDI

Now you’re ready to write code to draw inside the view window. You’ll be making a few
changes directly to the Ex03a source code. Specifically, you’ll be fleshing out the OnDraw
member function in ex03aView.cpp and working with the device context and the Graphics
Device Interface (GDI).

The OnDraw Member Function

OnDraw is a virtual member function of the CView class that the application framework calls
every time the view window needs to be repainted. A window needs to be repainted if the user
resizes the window or reveals a previously hidden part of the window, or if the application
changes the window’s data. If the user resizes the window or reveals a hidden area, the
application framework calls OnDraw, but if a function in your program changes the data, it
must inform Windows of the change by calling the view’s inherited Invalidate (or
InvalidateRect) member function. This call to Invalidate triggers a later call to OnDraw.

Even though you can draw inside a window at any time, it’s better to let window changes
accumulate and then process them all together in the OnDraw function. That way, your
program can respond both to program-generated events and to Windows-generated events
such as size changes.

The Windows Device Context

Recall from Chapter 1 that Windows doesn’t allow direct access to the display hardware but
communicates through an abstraction called a device context that is associated with the
window. In the MFC library, the device context is a C++ object of class CDC that is passed
(by pointer) as a parameter to OnDraw. After you have the device context pointer, you can
call the many CDC member functions that do the work of drawing.

Adding Draw Code to the Ex03a Program

Now let’s write the code to draw some text and a circle inside the view window. Be sure that
the project Ex03a is open in Visual C++ .NET. You can use Class View to locate the code for
the function (double-click OnDraw), or you can open the source code file ex03aView.cpp
from Solution Explorer and locate the function yourself.

1. Edit the OnDraw function in ex03aView.cpp. Find the Application Wizard–generated
OnDraw function in ex03aView.cpp:

void CEx03aView::OnDraw(CDC* /* pDC */)
{
 CEx03aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // TODO: add draw code for native data here
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Uncomment the pointer to the device context and add the following boldface code
(which you type in) to replace the previous code:

void CEx03aView::OnDraw(CDC* pDC)
{

pDC->TextOut(0, 0, "Hello, world!"); // prints in default font
 // & size, top left corner
pDC->SelectStockObject(GRAY_BRUSH); // selects a brush for the
 // circle interior
pDC->Ellipse(CRect(0, 20, 100, 120)); // draws a gray circle
 // 100 units in diameter
}

You can safely remove the call to GetDocument because we're not dealing with
documents yet. The functions TextOut, SelectStockObject, and Ellipse are all member
functions of the application framework’s device context class CDC. The Ellipse
function draws a circle if the bounding rectangle’s length is equal to its width.

The MFC library provides a handy utility class, CRect, for Windows rectangles. A
temporary CRect object serves as the bounding rectangle argument for the ellipse
drawing function. You’ll see more of the CRect class in quite a few of the examples in
this book.

2. Recompile and test Ex03a. Choose Build from the Build menu, and if there are no
compile errors, test the application again. Now you have a program that visibly does
something!

For Win32 Programmers
Rest assured that the standard Windows WinMain and window procedure functions
are hidden away inside the application framework. You’ll see those functions later
in this book, when we examine the MFC library frame and application classes. In
the meantime, you’re probably wondering what happened to the WM_PAINT
message. You’d expect to do your window drawing in response to this Windows
message, and you’d expect to get your device context handle from a
PAINTSTRUCT structure returned by the Windows BeginPaint function.

It so happens that the application framework has done all the dirty work for you
and served up a device context (in object pointer form) in the virtual function
OnDraw. As explained in Chapter 2, true virtual functions in window classes are an
MFC library rarity. MFC library message map functions dispatched by the
application framework handle most Windows messages. MFC 1.0 programmers
always defined an OnPaint message map function for their derived window classes.
Beginning with version 2.5, however, OnPaint was mapped in the CView class, and
that function made a polymorphic call to OnDraw. Why? Because OnDraw needs
to support the printer as well as the display. Both OnPaint and OnPrint call

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to support the printer as well as the display. Both OnPaint and OnPrint call
OnDraw, thus enabling the same drawing code to accommodate both the printer
and the display.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Preview of the Resource Editors

Now that you have a complete application program, it’s a good time for a quick look at the
resource editors. Although the application’s resource script, Ex03a.rc, is an ASCII file,
modifying it with a text editor is not a good idea. That’s the resource editors’ job.

The Contents of Ex03a.rc

The resource file determines much of the Ex03a application’s “look and feel.” The file
Ex03a.rc contains (or points to) the Windows resources listed in Table 3-2.

Table 3-2. Windows Resources Contained in MFC Applications
Resource Description

Accelerator Includes definitions for keys that simulate menu and toolbar selections.

Dialog Includes layout and contents of dialog boxes. Ex03a has only the About dialog
box.

Icon Represents icons (16-by-16-pixel and 32-by-32-pixel versions), such as the
application icon you see in Windows Explorer and in the application’s About
dialog box. Ex03a uses the MFC logo for its application icon.

Manifest Contains the run-time type information for the application.

Menu Represents the application’s top-level menu and associated shortcut menus.

String table Includes strings that are not part of the C++ source code.

Toolbar Represents the row of buttons immediately below the menu.

Version Includes program description, version number, language, and so on.

In addition to the resources listed above, ex03a.rc contains these statements

#include "afxres.h"

and further in the file contains this statement

#include "afxres.rc"

which bring in some MFC library resources common to all applications. These resources
include strings, graphical buttons, and elements needed for printing and for OLE.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you’re using the shared DLL version of the MFC library, the common resources
are stored inside the MFC DLL.

The Ex03a.rc file also contains this statement:

#include "resource.h"

This statement brings in some #define constants, including IDR_MAINFRAME (which
identifies the menu, icon, string list, and accelerator table), IDR_EX03ATYPE (which
identifies the default document icon, which we won’t use in this program), and
IDD_ABOUTBOX (which identifies the About dialog box). This same resource.h file is
included indirectly by the application’s source code files. If you use a resource editor to add
more constants (symbols), the definitions will ultimately show up in resource.h. Be careful if
you edit this file in text mode because your changes might be removed the next time you use a
resource editor.

Running the Dialog Resource Editor

The Dialog resource editor allows you to create or edit dialog box resources. To run the editor,
follow these steps:

1. Open the project’s RC file. Choose Resource View from the View menu. If you expand
each item, you’ll see the following in the Resource View window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Examine the application’s resources. Now take some time to explore the individual
resources. When you select a resource by double-clicking on it, another window opens
with tools appropriate for the selected resource. If you open a dialog resource, the
control palette should appear. If it doesn’t, click the Toolbox button on the left side of
Visual Studio .NET.

3. Modify the IDD_ABOUTBOX dialog box. Make some changes to the About Ex03a
dialog box.

You can change the size of the window by dragging the right and bottom borders, move
the OK button, change the text, and so forth. Simply click on an element to select it, and
then right-click to change its properties.

4. Rebuild the project with the modified resource file. In Visual C++ .NET, choose Build
from the Build menu. Notice that no actual C++ recompilation is necessary. Visual C++
.NET saves the edited resource file, and then the Resource Compiler (rc.exe) processes
Ex03a.rc to produce a compiled version, Ex03a.res, which is fed to the linker. The
linker runs quickly because it can link the project incrementally.

5. Test the new version of the application. Run the Ex03a program again, and then choose
About from the application’s Help menu to confirm that your dialog box was changed as
expected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 Debug Target vs. Win32 Release Target

When you build your application, you can choose one of two targets: debug and release. These
are the two default targets generated by the MFC Application Wizard. The default project
settings are summarized in Table 3-4.

Table 3-4. MFC Application Wizard Default Project Settings
Option Release Build Debug Build

Source Code
Debugging

Disabled Enabled for both compiler
and linker

MFC Diagnostic
Macros

Disabled (NDEBUG defined) Enabled (_DEBUG
defined)

Library Linkage MFC Release library MFC Debug libraries

Compiler
Optimization

Speed optimization (not available in
Learning Edition)

No optimization (faster
compile)

You develop your application in Debug mode, and then you rebuild in Release mode before
delivery. The Release build EXE will be smaller and faster, assuming you’ve fixed all the
bugs. You select the configuration from the build target window in the toolbar, as shown in
Figure 1-2 in Chapter 1. By default, the Debug output files and intermediate files are stored in
the project’s Debug subdirectory and the Release files are stored in the Release subdirectory.
You can change these directories on the General property page in the Configuration Properties
folder, which you can access in the project’s Property Pages dialog box.

You can create your own custom configurations if you need to, by choosing Configuration
Manager from Visual C++ .NET’s Build menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Understanding Precompiled Headers

When the MFC Application Wizard generates a project, it generates switch settings and files
for precompiled headers. You must understand how the make system processes precompiled
headers in order to manage your projects effectively.

NOTE
Visual C++ .NET has two precompiled header “systems”: automatic and manual.
Automatic precompiled headers, which are activated by the /Yx compiler switch,
store compiler output in a “database” file. Manual precompiled headers are
activated by the /Yc and /Yu switch settings and are central to all the MFC
Application Wizard–generated projects.

Precompiled headers represent compiler “snapshots” taken at a particular line of source code.
In MFC library programs, the snapshot is generally taken immediately after the following
statement:

#include "StdAfx.h"

The file StdAfx.h contains #include statements for the MFC library header files. The file’s
contents depend on the options you select when you run the MFC Application Wizard, but the
file always contain these statements:

#include <afxwin.h>
#include <afxext.h>

If you’re using compound documents, StdAfx.h also contains this statement:

#include <afxole.h>

And if you’re using Automation or ActiveX controls, it contains:

#include <afxdisp.h>

If you’re using Internet Explorer 4.0 Common Controls, StdAfx.h contains this statement:

#include <afxdtctl.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Occasionally, you’ll need other header files—for example, the header for template-based
collection classes that is accessed by this statement:

#include <afxtempl.h>

The source file StdAfx.cpp contains only this statement:

#include "StdAfx.h"

This statement is used to generate the precompiled header file in the project directory. The
MFC library headers included by StdAfx.h never change, but they do take a long time to
compile. The compiler switch /Yc, used only with StdAfx.cpp, causes the creation of the
precompiled header (PCH) file. The switch /Yu, used with all the other source code files,
causes the use of an existing PCH file. The switch /Fp specifies the PCH filename that would
otherwise default to the project name (with the PCH extension) in the target’s output files
subdirectory. Figure 3-1 illustrates the whole process.

The MFC Application Wizard sets the /Yc and /Yu switches for you, but you can make
changes if you need to. It’s possible to define compiler switch settings for individual source
files. If you select only StdAfx.cpp in the C/C++ folder in the project’s Property Pages dialog
box, you’ll see the /Yc setting on the Precompiled Headers property page. This overrides the
/Yu setting that is defined for the target.

Be aware that PCH files are big—10 MB is typical. If you’re not careful, you’ll fill up your
hard disk. You can keep things under control by periodically cleaning out your projects’
Debug directories, or you can use the /Fp compiler option to reroute PCH files to a common
directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-1. The Visual C++ .NET precompiled header process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two Ways to Run a Program

Visual C++ .NET lets you run your program directly (by pressing CTRL+F5) or through the
debugger (by pressing F5). Running your program directly is much faster because Visual C++
.NET doesn’t have to load the debugger first. If you know you don’t want to see diagnostic
messages or use breakpoints, start your program by pressing CTRL+F5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4
Visual C++ .NET Wizards

Developing for the Microsoft platform involves a lot of boilerplate coding. Back in the early
days of Windows development, most developers started a Windows-based project armed with
only a copy of Charles Petzold’s Programming Windows and the Windows Software
Development Kit (SDK). Even the Windows SDK documentation recommended the editor
inheritance method of application development.

To understand the fundamental underpinnings of any technology, you have to write all the
code for an application. But there comes a time when writing the same boilerplate again and
again becomes merely a drill and a waste of time. To address this issue, the Microsoft Visual
Studio .NET environment provides a set of code generators to start you off on all types of
projects. The available project templates appear in the New Project window when you choose
New, Project from the File menu. You select the project template you want, run through the
dialog boxes to configure the project, and click Finish. Voilà—you’ve got a working
application.

But that’s not the end of the story. The wizard technology is extensible—you can write your
own wizards. This chapter gives you a rundown of Visual Studio .NET’s wizards and explains
how to write your own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Wizard Types

Visual Studio .NET supports two types of wizards: those with a user interface and those
without. Depending on the complexity of your wizard, you might want to include a user
interface. Most of the wizards you’ll see in this book include one. For example, the MFC
Application Wizard includes several pages that provide such options as type of document
interface (SDI or MDI), whether to support printing and print preview, and whether to use
ActiveX controls. For simple application types, you might not need a user interface.

Wizards without user interfaces simply take a project name you supply and generate project
files based on templates you provide. Wizards with user interfaces tend to be a little more
involved and can include several pages of application options.

In fact, the source code for all the Visual C++ .NET wizards is available. You can find the
Wizard source code files in the \Program Files\Microsoft Visual Studio
.NET\VC7\VCWizards directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How Wizards Work

Before we create a wizard, let’s look at how wizards work. We’ll look at the three main parts
of a wizard: the original boilerplate code, the user interface, and the code it generates.

The general idea behind a code generator is to create a basic project for you to relieve you
from having to type all the boilerplate code. That basically means a bare-bones application or
library that works and compiles. However, you want the code to reflect the nature of the
project. For example, if you’re writing a payroll application, you want the classes in the
application to have names like CPayrollDoc, CPayrollView, and CPayrollFrame. It’s the
wizard’s job to substitute the plain vanilla names of the basic application with the names the
developer types in.

The wizard is also responsible for adding or leaving out certain parts of code, depending on
the developer’s selections. For example, if you select the About dialog box from a list of
options, the wizard will add the correct code for the dialog box to the finished application.

The wizard presents these choices through a user interface. The heart of the wizard’s interface
is an HTML control named IVCWizCtrlUI. The Visual Studio .NET wizards use HTML to
drive the user interface. When you execute the wizard, the IVCWizCtrlUI interface looks for
the list of files representing the user interface and displays those pages within the wizard. The
wizard is responsible for managing navigation through each of the pages as well as generating
the code when the developer clicks the Finish button.

A wizard can contain any number of pages, each driven by a separate HTML file. The wizard
provides navigation functionality through the Next and Back buttons (or any other format you
specify). The HTML files that implement the wizard interface contain the SYMBOL tag, which
identifies the default for developer-defined options.

The wizard maintains a symbol table during the lifetime of its execution. The symbol table is
just a dictionary lookup mechanism for making substitutions. The symbols declared in the
HTML file are written into the symbol table when the user clicks Finish. For example,
examine the following HTML in a wizard user interface:

 <SYMBOL NAME='SOURCE_FILE' VALUE='MySource.cpp' TYPE=text></SYMBOL>

In the wizard user interface, the text box represents an input box for the user to type into. The
text box is identified using the symbol SOURCE_FILE. This is the key the wizard will look
for when it makes substitutions for source files. We’ll look at how that works in just a minute.
Basically, each HTML file used by the wizard is responsible for recording user selections to
the symbols table.

Logic within the wizards is usually implemented using JScript. If you need to provide
customized behavior from within the wizard, you can use JScript functions to access the
Visual C++ Wizard Model. These functions are in the HTML page section headed <SCRIPT
LANGUAGE=‘JSCRIPT’>.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
For more information about the Visual C++ Wizard Model and other object
models that make up the Visual C++ Extensibility Object Model, refer to the
MSDN Library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Wizard

The first step in creating a wizard is to write and debug a boilerplate application. Once you’ve
done that, you can use Visual Studio .NET to generate a blank wizard for you. Visual Studio
.NET includes a wizard named the Custom Wizard for creating wizards. This wizard generates
all the files necessary to implement a wizard.

To create a wizard, choose New, Project from the File menu, select Visual C++ Projects, and
then select the Custom Wizard template. Type a name for the wizard in the Project Name text
box. The Custom Wizard includes only two pages: an overview page and the Application
Settings page. The Application Settings page lets you specify a wizard-friendly name, whether
to include a user interface, and the number of pages in the wizard. The files created by the
Custom Wizard are listed in Table 4-1.

Table 4-1. Files Generated by the Custom Wizard
Files Description

Project.vsz A text file that identifies the wizard engine and provides context and
optional custom parameters.

Project.vsdir A text file that provides a routing service between the Visual Studio shell
and the items in the wizard project.

HTML files
(optional)

Files for wizards that implement a user interface. The wizard user interface
is implemented as HTML. Wizards without a user interface do not contain
HTML files.
The Default.htm file specifies the user interface features. Wizards with
more than one page specified in the Application Settings page of the
Custom Wizard include additional files; these files are named
Page_PageNum.htm.

Script files Wizard logic code is executed as script. A wizard includes a JScript file
named Default.js for each project. A wizard also includes Common.js.
These files contain JScript functions that access the Visual C++ Wizard,
Code, Project, and Resource Editor Models to customize a wizard. You can
customize and add functions in the wizard project’s Default.js file.

Template files A collection of text files in the Templates directory that contain directives.
These files are parsed and inserted into the symbol table based on the user’s
selections. The template text files are rendered according to the user input
and added to the project. The appropriate information is obtained by
directly accessing the wizard control’s symbol table.

Templates.inf A text file that lists all templates associated with the project.

Default.vcproj An XML file that contains the information on the project type.

Sample.txt A template file that shows how your wizard directives are used.

ReadMe.txt A template file that contains a summary of each file created by the Custom
Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Images file
(optional)

A file of images, such as icons, GIFs, BMPs, and other HTML-supported
image formats, to enhance your wizard’s user interface. Of course, a wizard
that has no user interface does not need images.

Styles.css
(optional)

A file that defines the styles for the user interface. Again, if your wizard has
no user interface, the Custom Wizard does not create a CSS file.

Common.js Common JScript functionality used by all wizards. This file isn’t actually
generated by the Custom Wizard—it’s included in the source code that’s
generated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Wizard for Developing Web Applications Using
Managed C++

In this section, we’ll look at how to create a custom application wizard that generates a Web
application using ASP.NET and managed C++. We’ll look at the details involved in writing a
Web Forms applications using ASP.NET and managed C++ in the second half of the book.
For now, we’ll create an application wizard that can generate Web Forms applications. A Web
Forms application involves several different kinds of files to be generated. In addition, we can
add several options such as tracing/debugging options and include several kinds of controls to
see how the application wizard works. The files included in the Web Forms application
include source code for a Managed C++ DLL, an ASP.NET (ASPX) file, a Web.Config file,
and a Visual Studio Solution file. Each of these files will need to contain a couple of different
substitutions made by the application wizard.

We’ll create our wizard using the Custom Wizard. As mentioned, the Custom Wizard is a
canned Visual Studio .NET wizard that creates a custom wizard. The name of the sample
wizard for this chapter will be ManagedCWebFormWizard. The wizard will have a user
interface consisting of one page. You can have as many pages as you want in your wizard.
We’re keeping it to one page in this example to make the sample more digestible.

The user interface itself will include check boxes for adding controls to the page and for
turning on debugging and tracing options. Solution Explorer lets you get to the HTML page
representing the wizard user interface. Editing this page is much like editing normal dialog
boxes. You can select a control from the Toolbox on the left side of the Visual Studio .NET’s
IDE, place the control on the page, and set its properties using the Properties window. The
wizard has six check boxes on the interface page. Three of the check boxes will manage the
controls on the Web Form—one each for adding a CheckBox control to the Web Form, for
adding a Label control, and for adding a TextBox control. You can use the Properties window
to provide IDs for each of the controls. The TextBox check box has an ID of UseTextBox, the
Label check box has an ID of UseLabel, and the CheckBox check box an ID of UseCheckBox.
When the wizard generates the code, it looks for these symbols to add code to the ASPX page
and the code page.

The three other check boxes are for managing debug options: one for page tracing, one for
request tracing, and one to turn on debugging. The check boxes have IDs of UsePageTracing,
UseRequestTracing, and UsePageDebugging. As with the user interface page, the wizard will
look for these symbols to add the right code to the generated project.

Figure 4-1 shows default.htm, the user interface page, as it will appear in the finished wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-1. Default.htm of the ManagedCWebFormWizard application in the finished wizard.

Once the controls are on the page, they need to be associated with symbols that the wizard can
use to make substitutions. The wizard’s default user interface page (default.htm) has a block of
symbol entries. You then modify the symbols for the Web application wizard, as shown here:

<SYMBOL NAME="UseCheckBox" TYPE="checkbox" VALUE="false"></SYMBOL>
<SYMBOL NAME="UseTextBox" TYPE="checkbox" VALUE="false"></SYMBOL>
<SYMBOL NAME="UseLabel" TYPE="checkbox" VALUE="false"></SYMBOL>
<SYMBOL NAME="UsePageTracing" TYPE="checkbox" VALUE="false"></SYMBOL>
<SYMBOL NAME="UseRequestTracing" TYPE="checkbox" VALUE="false"></SYMBOL>
<SYMBOL NAME="UsePageDebugging" TYPE="checkbox" VALUE="false"></SYMBOL>

Notice that each of these symbols is associated with a check box on the wizard user interface
page.

The next step is to take the original source code and insert annotations where you want the
wizard to add replacement code. Once we have the original boilerplate code, all the original
boilerplate source code for the wizard will live under the Templates directory for that wizard.
The final ManagedCWebForm will need to include three files: the header file containing the
C++ class, the ASPX file containing the Web page layout information, and the Web.Config
file containing the configuration settings. The boilerplate code for these files will be included
in the Template directory for the wizard. Let’s take a look at the boilerplate code the wizard
will use to generate the applications. Here’s the code for the C++ header file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ManagedCWebForm.h

#pragma once

using namespace System;
#using <System.Dll>
#using <System.Web.dll>

using namespace System;
using namespace System::Web;
using namespace System::Web::UI;
using namespace System::Web::UI::WebControls;
using namespace System::Collections;
using namespace System::ComponentModel;

namespace ProgVSNET_ManagedCWebForm
{
 public __gc class ManagedCWebPage : public Page
 {
 public:
 Button* m_button;

[!if UseLabel]
 Label* m_label;
[!endif]
[!if UseTextBox]
 TextBox* m_text;
[!endif]
[!if UseCheckBox]
 CheckBox* m_check;
[!endif]

 ManagedCWebPage()
 {
 // To do: Construction code here...
 }

 void SubmitEntry(Object* o, EventArgs* e)
 {
 // Called when Submit button pressed
 // To do: insert Page Loading code here...
 String* str;

 str = new String("Hello ");
 str = str->Concat(str, m_text->get_Text());
 str = str->Concat(str, new String(" you pushed Submit"));
[!if UseLabel]
 m_label->set_Text(str);
[!if UseLabel]
 }

 void Page_Load(Object* o, EventArgs* e)
 {
 // To do: insert Page Loading code here...
[!if UsePageTracing]
 Trace->Write("Custom", "Inside Page_Load");
[!endif]
 if(!IsPostBack) {
 }
 }
 };
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

When the wizard generates the final code, it looks for the key symbol contained in the square
brace to see whether it is in the symbol table. In our example, the expressions are simply
Boolean tests. If the check boxes are selected, the controls or debugging features are turned
on. Otherwise, they’re turned off, and the specific code will be omitted from the generated
source code. The same principle applies to every file that needs to be generated. For example,
the wizard will take the following boilerplate code for the ASP.NET page and examine the
UseRequestTracing, UseTextBox, UseLabel, and UseCheckBox symbols to figure out what
code to include:

<%@ Page Language="C#"
[!if UseRequestTracing]
 Trace=true
[!endif]
 Inherits="ProgVSNET_ManagedCWebForm.ManagedCWebPage"
%>

<html>
<body>
<form runat=server>
<h2>ASP.NET Web Form</h2>

 <asp:Button Text="Sumit Entry" id="m_button"
 OnClick="SubmitEntry" runat=server />

 <asp:Label Text="Type your name here" runat=server />

[!if UseTextBox]
 <asp:TextBox id="m_text" runat=server />

[!endif]

[!if UseCheckBox]
 <asp:CheckBox id="m_check" runat=server />

[!end]

[!if UseLabel]
 <asp:Label id="m_label" runat=server />
[!endif]

</form>
</body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last file that needs to be created is the Web.Config file—an XML file that ASP.NET
looks for to learn how to configure the Web application. In this case, page-level tracing and
page debugging are turned on or off depending on the state of the check boxes, as shown in
the following code:

<configuration>
 <system.web>
[!if UsePageDebugging]
 <compilation debug='true'></compilation>
[!endif]
[!if UsePageTracing]
 <trace enabled='true'></trace>
[!endif]
 </system.web>
</configuration>

In addition to the code boilerplate, the wizard also needs to know which files to include when
it generates the application. The Templates directory for the wizards includes a file named
Templates.inf that includes a list of files to generate when it produces the application.
Templates.inf tells the wizard which files to include in the final project. For our example,
we’ll add ManagedCWebForm.cpp, ManagedCWebForm.h, ManagedCWebForm.aspx, and
Web.config to this file. This file works the same way as the other files described earlier—the
wizard checks for symbols in the symbol table and generates the application based on
selections made within the user interface. As the script code generates the project, the script
code calls the GetTargetName function to change the name of the core files
(ManagedCWebForm.aspx, ManagedCWebForm.cpp, and ManagedWebForm.h) to reflect the
name of the project typed in by the developer when he or she runs the wizard. Here’s the
GetTargetName method modified to make the file name substitutions.

function GetTargetName(strName, strProjectName)
{
 try
 {
 var strTarget = strName;

 if (strName.substr(0, 15) == "ManagedCWebForm")
 {
 var strlen = strName.length;
 strTarget = strProjectName + strName.substr(15, strlen - 15);
 }
 return strTarget;
 }
 catch(e)
 {
 throw e;
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After the wizard generates the files, it creates a project out of those files. The scripts for
creating the project are found in the scripts subdirectory for the wizard project. The default
scripts generated by the Custom Wizard include a method named AddConfig. Visual Studio
.NET includes a project object model that lets you change the project configuration of the
generated project. Following is the source code that flips the DLL switch on and generates a
managed assembly. (We’ll cover managed code in the last part of the book.)

function AddConfig(proj, strProjectName)
{
 try
 {
 var config = proj.Object.Configurations('Debug');
 config.IntermediateDirectory = 'Debug';
 config.OutputDirectory = 'Debug';

 config.ConfigurationType = typeDynamicLibrary;

 var CLTool = config.Tools('VCCLCompilerTool');
 // TODO: Add compiler settings
 CLTool.CompileAsManaged = managedAssembly;

 var LinkTool = config.Tools('VCLinkerTool');
 // TODO: Add linker settings

 config = proj.Object.Configurations('Release');
 config.IntermediateDirectory = 'Release';
 config.OutputDirectory = 'Release';

 var CLTool = config.Tools('VCCLCompilerTool');
 // TODO: Add compiler settings
 CLTool.CompileAsManaged = managedAssembly;

 var LinkTool = config.Tools('VCLinkerTool');
 // TODO: Add linker settings
 }
 catch(e)
 {
 throw e;
 }
}

Once the wizard has been created, you need to let Visual Studio .NET know of its existence.
In order for Visual Studio .NET to pick up on the wizard, the wizard needs its own directory
under \Program Files\Microsoft Visual Studio .NET\VC7\VCWizards. The user interface files
go into the HTML directory underneath the wizard directory, the template files (boilerplate
code) go into the Templates directory underneath the wizard directory, the images go in the
Images directory under the wizard directory, and the scripts go under the Scripts directory
underneath the wizard directory. Both the user interface files and the template files can be
localized. The VSDIR file, the VSZ file, and the icon file go under \Program Files\Microsoft

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

localized. The VSDIR file, the VSZ file, and the icon file go under \Program Files\Microsoft
Visual Studio .NET\VC7\VCProjects. As mentioned earlier, the VSDIR and VSZ files are
generated by the Custom Wizard.

The application wizard model within Visual Studio .NET is rich and flexible. We only looked
at substitutions that use the state of a check box to determine whether to include code. There
are many other ways to set up the application wizard to generate any kind of application. In
fact, this wizard architecture is also how Visual Studio .NET implements its other wizards—
including the ATL Simple Object Wizard, the Generic C++ Class Wizard, and the Add
Member Variable Wizard.

Each of these wizards can reach into Visual Studio .NET and access the entire Visual Studio
object model, which is how the environment seems to understand the classes and other code
within your application.

Be sure to check out \Program Files\Microsoft Visual Studio .NET\VC7\VCWizards for more
examples—you’ll find all of Visual Studio .NET’s wizards there.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5
Windows Message Mapping

In Chapter 3, you saw how the MFC library application framework calls the view class’s
virtual OnDraw function. In the online help for the MFC library, where it documents the
CView class and its base class, CWnd, you’ll see several hundred member functions. Functions
whose names begin with On—such as OnKeyDown and OnLButtonUp—are member functions
that the application framework calls in response to various Windows “events” such as
keystrokes and mouse clicks.

Most of these functions that are called by the application framework aren’t virtual functions
and thus require more programming steps. This chapter explains how to use the Microsoft
Visual C++ .NET Class View’s Properties window to set up the message map structure
necessary for connecting the application framework to your functions’ code.

This chapter includes sample applications of message map functions. The first two
applications use an ordinary CView class. The Ex05a example shows the interaction between
user-driven events and the OnDraw function. The Ex05b example shows the effects of
different Windows mapping modes.

More often than not, however, you’ll want a scrolling view. The last example, Ex05c, uses
CScrollView in place of the CView base class. This allows the MFC library application
framework to insert scroll bars and connect them to the view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting User Input: Message Map Functions

The Ex03a application from Chapter 3 does not accept user input (other than the standard
Microsoft Windows resizing and window close commands). The window contains menus and
a toolbar, but these are not “connected” to the view code. I won’t discuss the menus and the
toolbar until Part III of this book because they depend on the frame class, but plenty of other
Windows input sources will keep you busy until then. However, before you can process any
Windows event, even a mouse click, you must learn how to use the MFC library message map
system.

The Message Map

When the user clicks the left mouse button in a view window, Windows sends a message—
specifically, WM_LBUTTONDOWN—to that window. If your program needs to take action in
response to WM_LBUTTONDOWN, your view class must have a member function that looks
like this:

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // event processing code here
}

Your class header file must also have the corresponding prototype:

afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

The afx_msg notation is a “no-op” that alerts you that this is a prototype for a message map
function.

Next, your code file needs a message map macro that connects your OnLButtonDown
function to the application framework:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_WM_LBUTTONDOWN() // entry specifically for OnLButtonDown
 // other message map entries
END_MESSAGE_MAP()

Finally, your class header file needs this statement:

DECLARE_MESSAGE_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How do you know which function goes with which Windows message? Appendix A (and the
MFC library online documentation) includes a table that lists all standard Windows messages
and corresponding member function prototypes. You can manually code the message-handling
functions—indeed, you still have to do that for certain messages. But fortunately, the code
wizards available from Class View’s Properties window automate the coding of most message
map functions.

Saving the View’s State: Class Data Members

If your program accepts user input, you’ll want the user to get some visual feedback. The
view’s OnDraw function draws an image based on the view’s current state, and user actions
can alter that state. In a full-blown MFC library application, the document object holds the
state of the application, but you’re not to that point yet. For now, we’ll use two view class data
members, m_rectEllipse and m_nColor. The first is an object of class CRect, which holds the
current bounding rectangle of an ellipse, and the second is an integer that holds the current
ellipse color value.

NOTE
By convention, MFC library nonstatic class data member names begin with m_.

We’ll make a message-mapped member function toggle the ellipse color (the view’s state)
between gray and white. (The toggle is activated by a click of the left mouse button.) The
initial values of m_rectEllipse and m_nColor are set in the view’s constructor, and the color is
changed in the OnLButtonDown member function.

NOTE
Why not use a global variable for the view’s state? Because if you do, you’ll be in
trouble if your application has multiple views. Besides, encapsulating data in
objects is a big part of what object-oriented programming is all about.

Initializing a View Class Data Member

The most efficient place to initialize a class data member is in the constructor, as shown here:

CMyView::CMyView() : m_rectEllipse(0, 0, 200, 200) {...}

You can initialize m_nColor with the same syntax. We’re using a built-in type (integer), so the
generated code is the same if you use an assignment statement in the constructor body.

Invalid Rectangle Theory

The OnLButtonDown function can toggle the value of m_nColor all day, but if that’s all it did,
the OnDraw function wouldn’t get called (unless, for example, the user resized the view
window). The OnLButtonDown function must call the InvalidateRect function (a member

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window). The OnLButtonDown function must call the InvalidateRect function (a member
function that the view class inherits from CWnd). InvalidateRect triggers a Windows
WM_PAINT message, which is mapped in the CView class to call to the virtual OnDraw
function. If necessary, OnDraw can access the “invalid rectangle” parameter that was passed
to InvalidateRect.

You can optimize painting in Windows in two ways. First, you must be aware that Windows
updates only those pixels that are inside the invalid rectangle. Thus, the smaller you make the
invalid rectangle (in the OnLButtonDown handler, for instance), the more quickly it can be
repainted. Second, it’s a waste of time to execute drawing instructions outside the invalid
rectangle. Your OnDraw function can call the CDC member function GetClipBox to
determine the invalid rectangle, and then it can avoid drawing objects outside it. Remember
that OnDraw is being called not only in response to your InvalidateRect call but also when
the user resizes or exposes the window. Thus, OnDraw is responsible for all drawing in a
window, and it has to adapt to whatever invalid rectangle it gets.

For Win32 Programmers
The MFC library makes it easy to attach your own state variables to a window
through C++ class data members. In Win32 programming, the WNDCLASS
members cbClsExtra and cbWndExtra are available for this purpose, but the code
for using this mechanism is so complex that developers tend to use global variables
instead.

The Window’s Client Area

A window has a rectangular client area that excludes the border, caption bar, menu bar, and
any docking toolbars. The CWnd member function GetClientRect supplies you with the
client-area dimensions. Normally, you’re not allowed to draw outside the client area, and most
mouse messages are received only when the cursor is in the client area.

CRect, CPoint, and CSize Arithmetic

The CRect, CPoint, and CSize classes are derived from the Windows RECT, POINT, and SIZE
structures, and thus they inherit public integer data members, as follows:

CRect left, top, right, bottom

CPoint x, y

CSize cx, cy

If you look in the MFC Library Reference, you’ll see that these three classes have a number of
overloaded operators. You can, among other things, do the following:

Add a CSize object to a CPoint object

Subtract a CSize object from a CPoint object

Subtract one CPoint object from another, yielding a CSize object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add a CPoint or CSize object to a CRect object

Subtract a CPoint or CSize object from a CRect object

The CRect class has member functions that relate to the CSize and CPoint classes. For
example, the TopLeft member function returns a CPoint object, and the Size member function
returns a CSize object. From this, you can begin to see that a CSize object is the “difference
between two CPoint objects” and that you can “bias” a CRect object by a CPoint object.

Determining Whether a Point Is Inside a Rectangle

The CRect class has a member function, PtInRect, that tests a point to see whether it falls
inside a rectangle. The second OnLButtonDown parameter, point, is an object of class CPoint
that represents the cursor location in the client area of the window. If you want to know
whether that point is inside the m_rectEllipse rectangle, you can use PtInRect in this way:

if (m_rectEllipse.PtInRect(point)) {
 // point is inside rectangle
}

As you’ll soon see, however, this simple logic applies only if you’re working in device
coordinates (which you are at this stage).

The CRect LPCRECT Operator

If you read the MFC Library Reference carefully, you’ll notice that CWnd::InvalidateRect
takes an LPCRECT parameter (a pointer to a RECT structure), not a CRect parameter. A CRect
parameter is allowed because the CRect class defines an overloaded operator, LPCRECT(),
that returns the address of a CRect object, which is equivalent to the address of a RECT object.
Thus, the compiler converts CRect arguments to LPCRECT arguments when necessary. You
call functions as if they have CRect reference parameters.

The following view member function code retrieves the client rectangle coordinates and stores
them in rectClient:

CRect rectClient;
GetClientRect(rectClient);

Determining Whether a Point Is Inside an Ellipse

The Ex05a code determines whether the mouse hit is inside the rectangle. If you want to make
a better test, you can find out whether the hit is inside the ellipse. To do this, you construct an
object of class CRgn that corresponds to the ellipse and then use the PtInRegion function
instead of PtInRect. Here’s the code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CRgn rgn;
rgn.CreateEllipticRgnIndirect(m_rectEllipse);
if (rgn.PtInRegion(point)) {
 // point is inside ellipse
}

Note that the CreateEllipticRgnIndirect function is another function that takes an LPCRECT
parameter. It builds a special region structure within Windows that represents an elliptical
region inside a window. That structure is then attached to the C++ CRgn object in your
program. (The same type of structure can also represent a polygon.)

The Ex05a Example

In the Ex05a example, an ellipse (which happens to be a circle) changes color when the user
clicks the left mouse button while the mouse cursor is inside the rectangle that bounds the
ellipse. You’ll use the view class data members to hold the view’s state, and you’ll use the
InvalidateRect function to cause the view to be redrawn.

In the Chapter 3 example, drawing in the window depends on only one function, OnDraw.
The Ex05a example requires three customized functions (including the constructor) and two
data members. The complete CEx05aView header and source code files are shown below.
(The steps for creating the program are listed after the code.) All changes to the original MFC
Application Wizard output and OnLButtonDown are shown in boldface.

Ex05aView.H
// Ex05aView.h : interface of the Cex05aView class
//

#pragma once

class CEx05aView : public CView
{
protected: // create from serialization only
 CEx05aView();
 DECLARE_DYNCREATE(CEx05aView)

// Attributes
public:
 CEx05aDoc* GetDocument() const

// Operations
public:

// Overrides
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

// Implementation
public:
 virtual ~CEx05aView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

// Generated message map functions
protected:
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 DECLARE_MESSAGE_MAP()

private:
 int m_nColor;
 CRect m_rectEllipse;#ifndef _DEBUG // debug version in Ex05aView.cpp
inline CEx05aDoc* CEx05aView::GetDocument() const
 { return reinterpret_cast<CEx05aDoc*>(m_pDocument); }
#endif

};

Ex05aView.cpp
// Ex05aView.cpp : implementation of the CEx05aView class
//

#include "stdafx.h"
#include "Ex05a.h"

#include "Ex05aDoc.h"
#include "Ex05aView.h"

#ifdef _DEBUG
#define new DEBUG_NEW

#endif

///
// CEx05aView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IMPLEMENT_DYNCREATE(CEx05aView, CView)

BEGIN_MESSAGE_MAP(CEx05aView, CView)
 ON_WM_LBUTTONDOWN()
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP()
 ///
// CEx05aView construction/destruction

CEx05aView::CEx05aView() : m_rectEllipse(0, 0, 200, 200){
 m_nColor = GRAY_BRUSH;
}

CEx05aView::~CEx05aView()
{
}

BOOL CEx05aView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CView::PreCreateWindow(cs);
}

///
// CEx05aView drawing

void CEx05aView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

///
// CEx05aView printing

BOOL CEx05aView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // default preparation
 return DoPreparePrinting(pInfo);
}

void CEx05aView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}

void CEx05aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx05aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}

///
// CEx05aView diagnostics

#ifdef _DEBUG
void CEx05aView::AssertValid() const
{
 CView::AssertValid();
}

void CEx05aView::Dump(CDumpContext& dc) const
{
 CView::Dump(dc);
}

CEx05aDoc* CEx05aView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx05aDoc)));
 return (CEx05aDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CEx05aView message handlers

void CEx05aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }
}

Using Class View with Ex05a

Look at the following Ex05aView.h source code:

afx_msg void OnLButtonDown(UINT nFlags, Cpoint point);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now look at the following Ex05aView.cpp source code:

ON_WM_LBUTTONDOWN()

The MFC Application Wizard used to generate comment lines for the benefit of the Class
Wizard. Fortunately, these comments are no longer needed. Visual C++ .NET keeps track of
the entire state of your code at all times, including mapping functions and maps to specific
lines in your code. The code wizards available from the Class View’s Properties window add
message handler prototypes based on this internal information. In addition, the code wizards
generate a skeleton OnLButtonDown member function in Ex05aView.cpp, complete with the
correct parameter declarations and return type.

Notice how the combination of the MFC Application Wizard and code wizards is different
from a conventional code generator. You run a conventional code generator only once and
then edit the resulting code. You run the MFC Application Wizard to generate the application
only once, but you can run the code wizards as many times as necessary, and you can edit the
code at any time.

Using the MFC Application Wizard and the Code Wizards Together

The following steps show how you use the MFC Application Wizard and the code wizards
available from Class View’s Properties window to create this application:

1. Run the MFC Application Wizard to create Ex05a. Use the wizard to generate an SDI
project named Ex05a in the \vcppnet subdirectory. The default class names are shown
here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add the m_rectEllipse and m_nColor data members to CEx05aView. Choose Class
View from the View menu in Visual C++ .NET and right-click the CEx05aView class.
Choose Add Variable and then insert the following two data members:

private:
 CRect m_rectEllipse;
 int m_nColor;

If you prefer, you can type the above code inside the class declaration in the file
ex05aView.h.

3. Use the Class View’s Properties window to add a CEx05aView class message
handler. Select the CEx05aView class within Class View, as shown in the following
illustration. Next, right-click on CEx05aView and choose Properties. Click the
Messages button on the Properties window’s toolbar. Scroll down and click on the
WM_LBUTTONDOWN entry. You’ll see a drop-down combo box appear next to the
entry. Select <Add> OnLButtonDown. The OnLButtonDown function will be written
into the code and will appear inside the Code Editor.

4. Edit the OnLButtonDown code in Ex05aView.cpp. Once you add the message handler,
the file Ex05aView.cpp will open in the Code Editor and the cursor will be positioned to
the newly generated OnLButtonDown member function. The following boldface code
(that you type in) replaces the previous code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx05aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_rectEllipse.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(m_rectEllipse);
 }
}

5. Edit the constructor and the OnDraw function in Ex05aView.cpp. The following
boldface code (that you type in) replaces the previous code:

CEx05aView::CEx05aView() : m_rectEllipse(0, 0, 200, 200){
 m_nColor = GRAY_BRUSH;
}

void CEx05aView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

6. Build and run the Ex05a program. Choose Build from the Build menu or, on the Build
toolbar, click the button shown here.

Next, choose Start Without Debugging from the Debug menu. The resulting program
will respond to clicks of the left mouse button by changing the color of the circle in the
view window. (Don’t click the mouse’s left button quickly in succession; Windows will
interpret this as a double-click rather than two single clicks.)

For Win32 Programmers
A conventional Windows-based application registers a series of window classes
(not the same as C++ classes) and, in the process, assigns a unique function, known
as a window procedure, to each class. Each time the application calls
CreateWindow to create a window, it specifies a window class as a parameter and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CreateWindow to create a window, it specifies a window class as a parameter and
thus links the newly created window to a window procedure function. This
function, which is called each time Windows sends a message to the window, tests
the message code that is passed as a parameter and then executes the appropriate
code to handle the message.

The MFC application framework has a single window class and window procedure
function for most window types. This window procedure function looks up the
window handle (passed as a parameter) in the MFC handle map to get the
corresponding C++ window object pointer. The window procedure function then
uses the MFC runtime class system to determine the C++ class of the window
object. Next, it locates the handler function in static tables created by the dispatch
map functions, and finally it calls the handler function with the correct window
object selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Windows Mapping Modes

Up to now, your drawing units have been display pixels, also known as device coordinates.
The Ex05a drawing units are pixels because the device context has the default mapping mode,
MM_TEXT, assigned to it. The following statement draws a square of 200 by 200 pixels, with
its top left corner at the top left of the window’s client area. (Positive y values increase as you
move down the window.)

pDC->Rectangle(CRect(0, 0, 200, 200));

This square will look smaller on a high-resolution display of 1024-by-768 pixels than on a
standard VGA display that is 640-by-480 pixels, and it will look tiny if printed on a laser
printer with 600-dpi resolution. (Try EX05A’s Print Preview feature to see for yourself.)

What if you want the square to be 4-by-4 centimeters (cm), regardless of the display device?
Windows provides a number of other mapping modes, or coordinate systems, that you can
associate with the device context. Coordinates in the current mapping mode are called logical
coordinates. If you assign the MM_HIMETRIC mapping mode, for example, a logical unit is
1/100 millimeter (mm) instead of 1 pixel. In the MM_HIMETRIC mapping mode, the y axis
runs in the opposite direction to that in the MM_TEXT mode: y values decrease as you move
down. Thus, a 4-by-4-cm square is drawn in logical coordinates this way:

pDC->Rectangle(CRect(0, 0, 4000, -4000));

Looks easy, doesn’t it? Well, it isn’t, because you can’t work only in logical coordinates. Your
program is always switching between device coordinates and logical coordinates, and you
need to know when to convert between them. This section gives you a few rules that can make
your programming life easier. First, you need to know what mapping modes Windows gives
you.

The MM_TEXT Mapping Mode

At first glance, MM_TEXT appears to be no mapping mode at all, but rather another name for
device coordinates. Almost. In MM_TEXT, coordinates map to pixels, values of x increase as
you move right, and values of y increase as you move down, but you’re allowed to change the
origin through calls to the CDC functions SetViewportOrg and SetWindowOrg.

Here’s some code that sets the window origin to (100, 100) in logical coordinate space and
then draws a 200-by-200-pixel square offset by (100, 100). (An illustration of the output is
shown in Figure 5-1.) The logical point (100, 100) maps to the device point (0, 0). A scrolling
window uses this kind of transformation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CMyView::OnDraw(CDC* pDC)
{
 pDC->SetMapMode(MM_TEXT);
 pDC->SetWindowOrg(CPoint(100, 100));
 pDC->Rectangle(CRect(100, 100, 300, 300));
}

Figure 5-1. A square drawn after the origin has been moved to (100, 100).

The Fixed-Scale Mapping Modes

One important group of Windows mapping modes provides fixed scaling. You’ve already seen
that, in the MM_HIMETRIC mapping mode, x values increase as you move right and y values
decrease as you move down. All fixed mapping modes follow this convention, and you can’t
change it. The only difference among the fixed mapping modes is the actual scale factor, as
shown in Table 5-1.

Table 5-1. . The Scale Factor for
Mapping Modes

Mapping Mode Logical Unit

MM_LOENGLISH 0.01 inch

MM_HIENGLISH 0.001 inch

MM_LOMETRIC 0.1 mm

MM_HIMETRIC 0.01 mm

MM_TWIPS 1/1440 inch

The last mapping mode, MM_TWIPS, is most often used with printers. One twip is 1/20 point.
(A point is a type measurement unit that equals exactly 1/72 inch in Windows.) If the mapping
mode is MM_TWIPS and you want, for example, 12-point type, you set the character height to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mode is MM_TWIPS and you want, for example, 12-point type, you set the character height to
12 x 20, or 240, twips.

The Variable-Scale Mapping Modes

Windows provides two mapping modes, MM_ISOTROPIC and MM_ANISOTROPIC, that
allow you to change the scale factor as well as the origin. With these mapping modes, your
drawing can change size as the user changes the size of the window. Also, if you invert the
scale of one axis, you can “flip” an image about the other axis and you can define your own
arbitrary fixed-scale factors.

With the MM_ISOTROPIC mode, a 1:1 aspect ratio is always preserved. In other words, a
circle is always a circle as the scale factor changes. With the MM_ANISOTROPIC mode, the x
and y scale factors can change independently. Circles can be squished into ellipses.

Here’s an OnDraw function that draws an ellipse that fits exactly in its window:

void CMyView::OnDraw(CDC* pDC)
{
 CRect rectClient;

 GetClientRect(rectClient);
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1000, 1000);
 pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
 pDC->SetViewportOrg(rectClient.right / 2, rectClient.bottom / 2);

 pDC->Ellipse(CRect(-500, -500, 500, 500));
}

What’s going on here? The functions SetWindowExt and SetViewportExt work together to set
the scale, based on the window’s current client rectangle returned by the GetClientRect
function. The resulting window size is exactly 1000-by-1000 logical units. The
SetViewportOrg function sets the origin to the center of the window. Thus, a centered ellipse
with a radius of 500 logical units fills the window exactly, as illustrated in Figure 5-2.

Here are the formulas for converting logical units to device units:

x scale factor = x viewport extent / x window extent

y scale factor = y viewport extent / y window extent

device x = logical x x scale factor + x origin offset

device y = logical y y scale factor + y origin offset

Suppose the window is 448 pixels wide (rectClient.right). The right edge of the ellipse’s client
rectangle is 500 logical units from the origin. The x scale factor is 448/1000, and the x origin
offset is 448/2 device units. If you use the formulas shown above, the right edge of the
ellipse’s client rectangle comes out to 448 device units, the right edge of the window. The x

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ellipse’s client rectangle comes out to 448 device units, the right edge of the window. The x
scale factor is expressed as a ratio (viewport extent/window extent) because Windows device
coordinates are integers, not floating-point values. The extent values are meaningless by
themselves.

Figure 5-2. A centered ellipse drawn in the MM_ANISOTROPIC mapping mode.

If you substitute MM_ISOTROPIC for MM_ANISOTROPIC in the preceding example, the
“ellipse” is always a circle, as shown in Figure 5-3. It expands to fit the smallest dimension of
the window rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-3. A centered ellipse drawn in the MM_ISOTROPIC mapping mode.

Coordinate Conversion

Once you set the mapping mode (plus the origin) of a device context, you can use logical
coordinate parameters for most CDC member functions. If you get the mouse cursor
coordinates from a Windows mouse message (the point parameter in OnLButtonDown), for
example, you’re dealing with device coordinates. Many other MFC library functions,
particularly the member functions of class CRect, work correctly only with device coordinates.

NOTE
The CRect arithmetic functions use the underlying Win32 RECT arithmetic
functions, which assume that right is greater than left and bottom is greater than
top. A rectangle (0, 0, 1000, –1000) in MM_HIMETRIC coordinates, for example,
has bottom less than top and cannot be processed by functions such as
CRect::PtInRect unless your program first calls CRect::NormalizeRect, which
changes the rectangle’s data members to (0, –1000, 1000, 0).

Furthermore, you’re likely to need a third set of coordinates that we’ll call physical
coordinates. Why do you need another set? Suppose you’re using the MM_LOENGLISH
mapping mode in which a logical unit is 0.01 inch, but an inch on the screen represents a foot
(12 inches) in the real world. Now suppose the user works in inches and decimal fractions. A
measurement of 26.75 inches translates to 223 logical units, which must ultimately be
translated to device coordinates. You’ll want to store the physical coordinates as either
floating-point numbers or scaled long integers to avoid rounding-off errors.

For the physical-to-logical translation, you’re on your own, but the Windows GDI takes care
of the logical-to-device translation for you. The CDC functions LPtoDP and DPtoLP translate
between the two systems as long as the device context mapping mode and associated
parameters have already been set. Your job is to decide when to use each system. Here are a
few rules of thumb:

Assume that the CDC member functions take logical coordinate parameters.

Assume that the CWnd member functions take device coordinate parameters.

Do all hit-test operations in device coordinates. Define regions in device coordinates.
Functions such as CRect::PtInRect work best with device coordinates.

Store long-term values in logical or physical coordinates. If you store a point in device
coordinates and the user scrolls through a window, that point is no longer valid.

Suppose you need to know whether the mouse cursor is inside a rectangle when the user clicks
the left mouse button. The code is shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// m_rect is CRect data member of the derived view class with MM_LOENGLISH
// logical coordinates

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect = m_rect; // rect is a temporary copy of m_rect.
 CClientDC dc(this); // This is how we get a device context
 // for SetMapMode and LPtoDP
 // -- more in next chapter
 dc.SetMapMode(MM_LOENGLISH);
 dc.LPtoDP(rect); // rect is now in device coordinates
 if (rect.PtInRect(point)) {
 TRACE("Mouse cursor is inside the rectangle.\n");
 }
}

Notice the use of the TRACE macro (covered in Chapter 2).

NOTE
As you’ll soon see, it’s better to set the mapping mode in the virtual CView
function OnPrepareDC instead of in the OnDraw function.

The Ex05b Example: Converting to the MM_HIMETRIC Mapping Mode

Ex05b is Ex05a converted to MM_HIMETRIC coordinates. The Ex05b project on the
companion CD uses new class names and filenames, but the following instructions take you
through modifying the Ex05a code. Like Ex05a, Ex05b performs a hit-test so that the ellipse
changes color only when you click inside the bounding rectangle.

1. Use the Class View’s Properties window to override the virtual OnPrepareDC
function. You can override virtual functions for selected MFC library base classes,
including CView in the Properties window. The code wizards available from the
Properties window generate the correct function prototype in the class’s header file and
a skeleton function in the CPP file. Select the class name CEx05aView in Class View,
right-click on it, and then choose Properties. Click the Overrides button on the
Properties window toolbar and select the OnPrepareDC function in the list. Add the
function. Visual C++ .NET will load the implementation file so you can edit the
function as shown here:

void CEx05aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_HIMETRIC);
 CView::OnPrepareDC(pDC, pInfo);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The application framework calls the virtual OnPrepareDC function just before it calls
OnDraw.

2. Edit the view class constructor. You must change the coordinate values for the ellipse
rectangle. That rectangle is now 4-by-4 centimeters instead of 200-by-200 pixels. Note
that the y value must be negative; otherwise, the ellipse will be drawn on the “virtual
screen” right above your monitor! Change the values as shown here:

CEx05aView::CEx05aView() : m_rectEllipse(0, 0, 4000, -4000)
{
 m_nColor = GRAY_BRUSH;
}

3. Edit the OnLButtonDown function. This function must convert the ellipse rectangle to
device coordinates in order to do the hit-test. Change the function as shown in the
following code:

void CEx05aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }
 InvalidateRect(rectDevice);
 }
}

4. Build and run the Ex05b program. The output should look similar to the output from
Ex05a, except that the ellipse size will be different. If you try using Print Preview again,
the ellipse should appear much larger than it did in Ex05a.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating a Scrolling View Window

As the lack of scroll bars in Ex05a and Ex05b indicates, the MFC library CView class, the
base class of CEx05bView, doesn’t directly support scrolling. Another MFC library class,
CScrollView, does support scrolling. CScrollView is derived from CView. We’ll create a new
program, Ex05c, that uses CScrollView in place of CView. All the coordinate conversion code
you added in Ex05b sets you up for scrolling.

The CScrollView class supports scrolling from the scroll bars but not from the keyboard. It’s
easy enough to add keyboard scrolling, so we’ll do it.

A Window Is Larger Than What You See

If you use the mouse to shrink the size of an ordinary window, the contents of the window will
remain anchored at the top left of the window and items at the bottom and/or on the right of
the window will disappear. When you expand the window, the items will reappear. You can
correctly conclude that a window is larger than the viewport that you see on the screen. The
viewport doesn’t have to be anchored at the top left of the window area, however. Through the
use of the CWnd functions ScrollWindow and SetWindowOrg, the CScrollView class allows
you to move the viewport anywhere within the window, including areas above and to the left
of the origin.

Scroll Bars

Windows makes it easy to display scroll bars at the edges of a window, but Windows by itself
doesn’t make any attempt to connect those scroll bars to their window. That’s where the
CScrollView class fits in. CScrollView member functions process the WM_HSCROLL and
WM_VSCROLL messages sent by the scroll bars to the view. Those functions move the
viewport within the window and do all the necessary housekeeping.

Scrolling Alternatives

The CScrollView class supports a particular kind of scrolling that involves one big window
and a small viewport. Each item is assigned a unique position in this big window. If, for
example, you have 10,000 address lines to display, instead of having a window 10,000 lines
long, you probably want a smaller window with scrolling logic that selects only as many lines
as the screen can display. In that case, you should write your own scrolling view class derived
from CView.

The OnInitialUpdate Function

You’ll be seeing more of the OnInitialUpdate function when you study the document-view
architecture, starting in Chapter 15. The virtual OnInitialUpdate function is important here
because it is the first function called by the framework after your view window is fully
created. The framework calls OnInitialUpdate before it calls OnDraw for the first time, so
OnInitialUpdate is the natural place for setting the logical size and mapping mode for a
scrolling view. You set these parameters with a call to the CScrollView::SetScrollSizes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scrolling view. You set these parameters with a call to the CScrollView::SetScrollSizes
function.

Accepting Keyboard Input

Keyboard input is really a two-step process. Windows sends WM_KEYDOWN and
WM_KEYUP messages, with virtual key codes, to a window, but before they get to the
window they are translated. If an ANSI character is typed (resulting in a WM_KEYDOWN
message), the translation function checks the keyboard shift status and then sends a
WM_CHAR message with the proper code, either uppercase or lowercase. Cursor keys and
function keys don’t have codes, so there’s no translation to do. The window gets only the
WM_KEYDOWN and WM_KEYUP messages.

You can use the Class View’s Properties window to map all these messages to your view. If
you’re expecting characters, map WM_CHAR; if you’re expecting other keystrokes, map
WM_KEYDOWN. The MFC library neatly supplies the character code or virtual key code as a
handler function parameter.

The Ex05c Example: Scrolling

The goal of Ex05c is to make a logical window 20 centimeters wide by 30 centimeters high.
The program draws the same ellipse that it drew in the Ex05b project. You could edit the
Ex05b source files to convert the CView base class to a CScrollView base class, but it’s easier
to start over with the MFC Application Wizard. The wizard generates the OnInitialUpdate
override function for you. Here are the steps:

1. Run the MFC Application Wizard to create Ex05c. Use the wizard to generate an SDI
program named Ex05c in the \vcppnet subdirectory. Set the CEx05cView base class to
CScrollView, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add the m_rectEllipse and m_nColor data members in Ex05cView.h. Insert the
following code using the Add Member Variable Wizard available from the Class View’s
Properties window or by typing inside the CEx05cView class declaration:

private:
 CRect m_rectEllipse;
 int m_nColor;

These are the same data members that were added in the Ex05a and Ex05b projects.

3. Modify the MFC Application Wizard–generated OnInitialUpdate function. Edit
OnInitialUpdate in Ex05cView.cpp as shown here:

void CEx05cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(20000, 30000); // 20 by 30 cm
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizePage, sizeLine);
}

4. Use the Class View’s Properties window to add a message handler for the
WM_KEYDOWN message. The code wizards available from the Properties window
generate the member function OnKeyDown along with the necessary message map
entries and prototypes. Edit the code as follows:

 void CEx05cView::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 switch (nChar) {
 case VK_HOME:
 OnVScroll(SB_TOP, 0, NULL);
 OnHScroll(SB_LEFT, 0, NULL);
 break;
 case VK_END:
 OnVScroll(SB_BOTTOM, 0, NULL);
 OnHScroll(SB_RIGHT, 0, NULL);
 break;
 case VK_UP:
 OnVScroll(SB_LINEUP, 0, NULL);
 break;
 case VK_DOWN:
 OnVScroll(SB_LINEDOWN, 0, NULL);
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case VK_PRIOR:
 OnVScroll(SB_PAGEUP, 0, NULL);
 break;
 case VK_NEXT:
 OnVScroll(SB_PAGEDOWN, 0, NULL);
 break;
 case VK_LEFT:
 OnHScroll(SB_LINELEFT, 0, NULL);
 break;
 case VK_RIGHT:
 OnHScroll(SB_LINERIGHT, 0, NULL);
 break;
 default:
 break;
 }
}

5. Edit the constructor and the OnDraw function. Change the MFC Application Wizard–
generated constructor and the OnDraw function in Ex05cView.cpp as follows:

CEx05cView::CEx05cView() : m_rectEllipse(0, 0, 4000, -4000)
 m_nColor = GRAY_BRUSH;
}

void CEx05cView::OnDraw(CDC* pDC)
{
 pDC->SelectStockObject(m_nColor);
 pDC->Ellipse(m_rectEllipse);
}

These functions are identical to those used in the Ex05a and Ex05b projects.

6. Map the WM_LBUTTONDOWN message and edit the handler. Make the following
changes to the generated code:

void CEx05cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectDevice = m_rectEllipse;
 dc.LPtoDP(rectDevice);
 if (rectDevice.PtInRect(point)) {
 if (m_nColor == GRAY_BRUSH) {
 m_nColor = WHITE_BRUSH;
 }
 else {
 m_nColor = GRAY_BRUSH;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 InvalidateRect(rectDevice);
 }
}

This function is identical to the OnLButtonDown handler in the Ex05b project. It calls
OnPrepareDC as before, but something is different. The CEx05bView class doesn’t
have an overridden OnPrepareDC function, so the call goes to
CScrollView::OnPrepareDC. That function sets the mapping mode based on the first
parameter to SetScrollSizes, and it sets the window origin based on the current scroll
position. Even if your scroll view were to use the MM_TEXT mapping mode, you’d still
need the coordinate conversion logic to adjust for the origin offset.

7. Build and run the Ex05c program. Check to be sure that the mouse hit logic is working
even if the circle is scrolled partially out of the window. Also check the keyboard logic.
The output should look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Other Windows Messages

The MFC library directly supports hundreds of Windows message-handling functions. In
addition, you can define your own messages. You’ll see plenty of message-handling examples
in later chapters, including handlers for menu items, child window controls, and so forth. In
the meantime, five special Windows messages deserve special attention: WM_CREATE,
WM_CLOSE, WM_QUERYENDSESSION, WM_DESTROY, and WM_NCDESTROY.

The WM_CREATE Message

This is the first message that Windows sends to a view. It is sent when the window’s Create
function is called by the framework. At that time, the window creation is not finished, so the
window is not visible. Therefore, your OnCreate handler cannot call Windows functions that
depend on the window being completely alive. You can call such functions in an overridden
OnInitialUpdate function, but you must be aware that in an SDI application OnInitialUpdate
can be called more than once in a view’s lifetime.

The WM_CLOSE Message

Windows sends the WM_CLOSE message when the user closes a window from the system
menu and when a parent window is closed. If you implement the OnClose message map
function in your derived view class, you can control the closing process. If, for example, you
need to prompt the user to save changes to a file, you can do it in OnClose. Only after you’ve
determined that it is safe to close the window should you call the base class OnClose function,
which will continue the close process. The view object and the corresponding window will
both still be active.

NOTE
When you’re using the full application framework, you probably won’t use the
WM_CLOSE message handler. You can override the CDocument::SaveModified
virtual function instead, as part of the application framework’s highly structured
program exit procedure.

The WM_QUERYENDSESSION Message

Windows sends the WM_QUERYENDSESSION message to all running applications when the
user exits Windows. The OnQueryEndSession message map function handles it. If you write a
handler for WM_CLOSE, you should write one for WM_QUERYENDSESSION, too.

The WM_DESTROY Message

Windows sends the WM_DESTROY message after the WM_CLOSE message, and the
OnDestroy message map function handles it. When your program receives this message, it
should assume that the view window is no longer visible on the screen but that it is still active
and its child windows are still active. You use this message handler to do cleanup that depends
on the existence of the underlying window. Be sure to call the base class OnDestroy function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on the existence of the underlying window. Be sure to call the base class OnDestroy function.
You cannot “abort” the window destruction process in your view’s OnDestroy function.
OnClose is the place to do that.

The WM_NCDESTROY Message

This is the last message that Windows sends when the window is being destroyed. All child
windows have already been destroyed. You can do final processing in OnNcDestroy that
doesn’t depend on a window being active. Be sure to call the base class OnNcDestroy
function.

NOTE
Do not try to destroy a dynamically allocated window object in OnNcDestroy.
That job is reserved for a special CWnd virtual function, PostNcDestroy, that the
base class OnNcDestroy calls. MFC Technical Note #17 in the online
documentation offers hints about when it’s appropriate to destroy a window object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6
Classic GDI Functions, Fonts, and Bitmaps

You’ve already seen some elements of the Graphics Device Interface (GDI). Anytime your
program draws to the screen or the printer, it can use the GDI or GDI+ functions. We’ll look at
the classic GDI functions in this chapter and discuss GDI+ functions when we cover .NET in
Chapter 33.

The GDI provides functions for drawing points, lines, rectangles, polygons, ellipses, bitmaps,
and text. You can draw circles and squares intuitively once you study the available functions,
but text programming is more difficult. This chapter gives you the information you need to
start using the GDI effectively in the Microsoft Visual C++ .NET environment. You’ll also
learn how to use fonts and bitmaps on the display and the printer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Device Context Classes

In Chapter 3 and Chapter 5, we passed the view class’s OnDraw member function a pointer to
a device context object. OnDraw selected a brush and then drew an ellipse. The Microsoft
Windows device context is the key GDI element that represents a physical device. Each C++
device context object has an associated Windows device context, which is identified by a 32-
bit handle of type HDC.

The Microsoft Foundation Class (MFC) library provides a number of device context classes.
The base class CDC has all the member functions (including some virtual functions) that
you’ll need for drawing. Except for the oddball CMetaFileDC class, derived classes are
distinct only in their constructors and destructors. If you (or the application framework)
construct an object of a derived device context class, you can pass a CDC pointer to a function
such as OnDraw. For the display, the usual derived classes are CClientDC and CWindowDC.
For other devices, such as printers or memory buffers, you construct objects of the base class
CDC.

The “virtualness” of the CDC class is an important feature of the application framework. In
Chapter 17, you’ll see how easy it is to write code that works with both the printer and the
display. A statement in OnDraw such as

pDC->TextOut(0, 0, "Hello");

sends text to the display, the printer, or the Print Preview window, depending on the class of
the object referenced by the CView::OnDraw function’s pDC parameter.

For display and printer device context objects, the application framework attaches the handle
to the object. For other device contexts, such as the memory device context that you’ll see in
later chapters, you must call a member function after construction in order to attach the handle.

The CClientDC and CWindowDC Display Context Classes

Recall that a window’s client area excludes the border, the caption bar, and the menu bar. If
you create a CClientDC object, you have a device context that is mapped only to this client
area—you can’t draw outside it. The point (0, 0) usually refers to the upper left corner of the
client area. As you’ll see later, an MFC CView object corresponds to a child window that is
contained inside a separate frame window, often along with a toolbar, a status bar, and scroll
bars. The client area of the view therefore does not include these other windows. If the
window contains a docked toolbar along the top, for example, (0, 0) refers to the point
immediately under the left edge of the toolbar.

If you construct an object of class CWindowDC, the point (0, 0) is at the upper left corner of
the nonclient area of the window. With this whole-window device context, you can draw in
the window’s border, in the caption area, and so forth. Don’t forget that the view window
doesn’t have a nonclient area, so CWindowDC is more applicable to frame windows than it is
to view windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constructing and Destroying CDC Objects

If you construct a CDC object, it is important to destroy it as soon as you’re done with it.
Windows limits the number of available device contexts, and if you fail to release a Windows
device context object, a small amount of memory will be lost until your program exits. You’ll
usually construct a device context object inside a message handler function such as
OnLButtonDown. The easiest way to ensure that the device context object is destroyed (and
that the underlying Windows device context is released) is to construct the object on the stack
in the following way:

 void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;

 CClientDC dc(this); // constructs dc on the stack
 dc.GetClipBox(rect); // retrieves the clipping rectangle
} // dc automatically released

Notice that the CClientDC constructor takes a window pointer as a parameter. The destructor
for the CClientDC object is called when the function returns. You can also get a device
context pointer by using the CWnd::GetDC member function, as shown in the following code.
You must be careful here to call the ReleaseDC function to release the device context.

void CMyView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CRect rect;

 CDC* pDC = GetDC(); // a pointer to an internal dc
 pDC->GetClipBox(rect); // retrieves the clipping rectangle
 ReleaseDC(pDC); // Don't forget this
}

WARNING
Do not destroy the CDC object passed by the pointer to OnDraw. The application
framework will handle the destruction for you.

The State of the Device Context

You already know that a device context is required for drawing. When you use a CDC object
to draw an ellipse, for example, what you see on the screen (or on hard copy) depends on the
current “state” of the device context. The state includes the following:

Attached GDI drawing objects such as pens, brushes, and fonts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mapping mode that determines the scale of items when they are drawn. (You
already experimented with the mapping mode in Chapter 5.)

Various details such as text alignment parameters and polygon filling mode.

You’ve seen, for example, that selecting a gray brush before drawing an ellipse results in the
ellipse having a gray interior. When you create a device context object, it has certain default
characteristics, such as a black pen for shape boundaries. All other state characteristics are
assigned through CDC class member functions. GDI objects are selected into the device
context by means of the overloaded SelectObject functions. A device context can, for example,
have one pen, one brush, or one font selected at any given time.

The CPaintDC Class

You’ll need the CPaintDC class only if you override your view’s OnPaint function. The
default OnPaint calls OnDraw with a properly set up device context, but sometimes you’ll
need display-specific drawing code. The CPaintDC class is special because its constructor and
destructor do housekeeping unique to drawing to the display. Once you have a CDC pointer,
however, you can use it as you would any other device context pointer.

Here’s a sample OnPaint function that creates a CPaintDC object:

void CMyView::OnPaint()
{
 CPaintDC dc(this);
 OnPrepareDC(&dc); // explained later
 dc.TextOut(0, 0, "for the display, not the printer");
 OnDraw(&dc); // stuff that's common to display and printer
}

For Win32 Programmers
The CPaintDC constructor calls BeginPaint for you, and the destructor calls
EndPaint. If you construct your device context on the stack, the EndPaint call is
completely automatic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GDI Objects

A Windows GDI object type is represented by an MFC library class. CGdiObject is the
abstract base class for the GDI object classes. A Windows GDI object is represented by a C++
object of a class derived from CGdiObject.

Here’s a list of the GDI derived classes:

CBitmap A bitmap is an array of bits in which one or more bits correspond to each
display pixel. You can use bitmaps to represent images or to create brushes.

CBrush A brush defines a bitmapped pattern of pixels that is used to fill areas with
color.

CFont A font is a complete collection of characters of a particular typeface and a
particular size. Fonts are generally stored on disk as resources, and some are device-
specific.

CPalette A palette is a color-mapping interface that allows an application to take full
advantage of the color capability of an output device without interfering with other
applications.

CPen A pen is a tool for drawing lines and shape borders. You can specify a pen’s color
and thickness and whether it draws solid, dotted, or dashed lines.

CRgn A region is an area whose shape is a polygon, an ellipse, or a combination of
polygons and ellipses. You can use regions for filling, clipping, and mouse hit-testing.

Constructing and Destroying GDI Objects

You never construct an object of class CGdiObject; instead, you construct objects of the
derived classes. Constructors for some GDI derived classes, such as CPen and CBrush, allow
you to specify enough information to create the object in one step. Others, such as CFont and
CRgn, require a second creation step. For these classes, you construct the C++ object with the
default constructor and then you call a create function such as CreateFont or
CreatePolygonRgn.

The CGdiObject class has a virtual destructor. The derived class destructors delete Windows
GDI objects that are attached to the C++ objects. If you construct an object of a class derived
from CGdiObject, you must delete it before exiting the program. To delete a GDI object, you
must first separate it from the device context. You’ll see an example of this in the next section.

For Win32 Programmers
With Win32, the GDI memory is owned by the process and is released when your
program terminates. Still, an unreleased GDI bitmap object can waste a significant
amount of memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tracking GDI Objects

OK, so you know you have to delete your GDI objects and that they must first be
disconnected from their device contexts. But how do you disconnect them? A member of the
CDC::SelectObject family of functions does the work of selecting a GDI object into the
device context, and in the process it returns a pointer to the previously selected object (which
gets deselected in the process). Trouble is, you can’t deselect the old object without selecting a
new object. One easy way to track the objects is to “save” the original GDI object when you
select your own GDI object and “restore” the original object when you’re finished. Then
you’ll be ready to delete your own GDI object. Here’s an example:

void CMyView::OnDraw(CDC* pDC)
{
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
 // 2 pixels wide
 CPen* pOldPen = pDC->SelectObject(&newPen);

 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 pDC->SelectObject(pOldPen); // newPen is deselected
} // newPen automatically destroyed on exit

When a device context object is destroyed, all of its GDI objects are deselected. Thus, if you
know that a device context will be destroyed before its selected GDI objects are destroyed,
you don’t have to deselect the objects. If, for example, you declare a pen as a view class data
member (and you initialize it when you initialize the view), you don’t have to deselect the pen
inside OnDraw because the device context, which is controlled by the view base class’s
OnPaint handler, will be destroyed first.

Stock GDI Objects

Windows contains a number of stock GDI objects that you can use. These objects are part of
Windows, so you don’t have to worry about deleting them. (Windows ignores requests to
delete stock objects anyway.) The MFC library function CDC::SelectStockObject selects a
stock object into the device context and returns a pointer to the previously selected object,
which it deselects. Stock objects are handy when you want to deselect your own nonstock
GDI object before its destruction. You can use a stock object as an alternative to the “old”
object you used in the previous example, as shown here:

void CMyView::OnDraw(CDC* pDC)
{
 CPen newPen(PS_DASHDOTDOT, 2, (COLORREF) 0); // black pen,
 // 2 pixels wide

 pDC->SelectObject(&newPen);
 pDC->MoveTo(10, 10);
 pDC->Lineto(110, 10);
 pDC->SelectStockObject(BLACK_PEN); // newPen is deselected

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDC->SelectStockObject(BLACK_PEN); // newPen is deselected
} // newPen destroyed on exit

The MFC Library Reference lists, under CDC::SelectStockObject, the stock objects available
for pens, brushes, fonts, and palettes.

The Lifetime of a GDI Selection

For the display device context, you get a “fresh” device context at the beginning of each
message handler function. No GDI selections (or mapping modes or other device context
settings) persist after your function exits. You must therefore set up your device context from
scratch each time. The CView class virtual member function OnPrepareDC is useful for
setting the mapping mode, but you must manage your own GDI objects.

For other device contexts, such as those for printers and memory buffers, your assignments
can last longer. For these long-life device contexts, things get a little more complicated. The
complexity results from the temporary nature of GDI C++ object pointers returned by the
SelectObject function. (The temporary “object” is destroyed by the application framework
during the idle loop processing of the application, sometime after the handler function returns
the call. See MFC Technical Note #3 in the online documentation.) You can’t simply store the
pointer in a class data member; instead, you must convert it to a Windows handle (the only
permanent GDI identifier) with the GetSafeHandle member function. Here’s an example:

// m_pPrintFont points to a CFont object created in CMyView's constructor
// m_hOldFont is a CMyView data member of type HFONT, initialized to 0

void CMyView::SwitchToCourier(CDC* pDC)
{
 m_pPrintFont->CreateFont(30, 10, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH │ FF_MODERN,
 "Courier New"); // TrueType
 CFont* pOldFont = pDC->SelectObject(m_pPrintFont);

 // m_hOldFont is the CGdiObject public data member that stores
 // the handle
 m_hOldFont = (HFONT) pOldFont->GetSafeHandle();
}

void CMyView:SwitchToOriginalFont(CDC* pDC)
{
 // FromHandle is a static member function that returns an
 // object pointer
 if (m_hOldFont) {
 pDC->SelectObject(CFont::FromHandle(m_hOldFont));
 }
}

// m_pPrintFont is deleted in the CMyView destructor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// m_pPrintFont is deleted in the CMyView destructor

CAUTION
Be careful when you delete an object whose pointer is returned by SelectObject. If
you’ve allocated the object yourself, you can delete it. If the pointer is temporary,
as it will be for the object initially selected into the device context, you won’t be
able to delete the C++ object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fonts

Old-fashioned character-mode applications could display only the boring system font on the
screen. Windows provides multiple device-independent fonts in variable sizes. By using these
Windows fonts effectively, you can significantly energize an application with minimum
programming effort. TrueType fonts, which were first introduced with Windows 3.1, are
easier to program than the original device-dependent fonts first introduced with Windows.
You’ll see several example programs that use various fonts later in this chapter.

Fonts Are GDI Objects

Fonts are an integral part of the Windows GDI. This means that fonts behave in the same way
other GDI objects do. They can be scaled and clipped, and they can be selected into a device
context just as a pen or a brush can be selected. All GDI rules about deselection and deletion
apply to fonts.

Selecting a Font

You can choose between two font types—device-independent TrueType fonts and device-
dependent fonts such as the Windows display System font and the LaserJet LinePrinter font—
or you can specify a font category and size and let Windows select the font for you. If you let
Windows select the font, it will choose a TrueType font if possible. The MFC library provides
a font selection dialog box tied to the currently selected printer, so there’s little need for printer
font guesswork. You let the user select the exact font and size for the printer, and then you
approximate the display the best you can.

Printing with Fonts

For text-intensive applications, you’ll probably want to specify printer font sizes in points (1
point = 1/72 inch). Why? Most, if not all, built-in printer fonts are defined in terms of points.
The LaserJet LinePrinter font, for example, comes in one size, 8.5 point. You can specify
TrueType fonts in any point size. If you work in points, you need a mapping mode that easily
accommodates points. That’s what MM_TWIPS is for. An 8.5-point font is 8.5 x 20, or 170,
twips, and that’s the character height you’ll want to specify.

Displaying Fonts

If you’re not worried about the display matching the printed output, you have a lot of
flexibility. You can select any of the scalable Windows TrueType fonts, or you can select the
fixed-size system fonts (stock objects). With the TrueType fonts, it doesn’t much matter what
mapping mode you use; simply choose a font height and go for it. No need to worry about
points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Matching printer fonts to make printed output match the screen presents some problems, but
TrueType makes it easier than it used to be. Even if you’re printing with TrueType fonts,
however, you’ll never quite get the display to match the printer output. Why? Characters are
ultimately displayed in pixels (or dots), and the width of a string of characters is equal to the
sum of the pixel widths of its characters, possibly adjusted for kerning. The pixel width of the
characters depends on the font, the mapping mode, and the resolution of the output device.
Only if both the printer and the display are set to MM_TEXT mode (1 pixel or dot = 1 logical
unit) will you get an exact correspondence. If you’re using the CDC::GetTextExtent function
to calculate line breaks, the screen breakpoint will occasionally be different from the printer
breakpoint.

NOTE
In the MFC Print Preview mode, which we’ll examine closely in Chapter 15, line
breaks occur exactly as they do on the printer, but the print quality in the preview
window suffers in the process.

If you’re matching a printer-specific font on the screen, TrueType again makes the job easier.
Windows substitutes the closest matching TrueType font. For the 8.5-point LinePrinter font,
Windows comes pretty close with its Courier New font.

Logical Inches and Physical Inches on the Display

The CDC member function GetDeviceCaps returns various display measurements that are
important to your graphics programming. The six indexes described in Table 6-1 provide
information about the display size. The values listed are for a typical display card configured
for a resolution of 640-by-480 pixels with Windows 2000 and Windows XP.

Table 6-1. Logical Inches vs. Physical Inches
Index Description Value

HORZSIZE Physical width in millimeters 320

VERTSIZE Physical height in millimeters 240

HORZRES Width in pixels 640

VERTRES Height in raster lines 480

LOGPIXELSX Horizontal pixels per logical inch 96

LOGPIXELSY Vertical pixels per logical inch 96

The indexes HORZSIZE and VERTSIZE represent the physical dimensions of your display.
(These indexes might not be true because Windows doesn’t know what size display you have
connected to your video adapter.) You can also calculate a display size by dividing HORZRES
and VERTRES by LOGPIXELSX and LOGPIXELSY, respectively. The size calculated this
way is known as the logical size of the display. Using the values above and the fact that there

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

way is known as the logical size of the display. Using the values above and the fact that there
are 25.4 millimeters per inch, we can quickly calculate the two display sizes for a 640-by-480
pixel display under Windows 2000 and Windows XP. The physical display size is 12.60 by
9.45 inches, and the logical size is 6.67 by 5.00 inches. So the physical size and the logical
size need not be the same.

For Windows 2000 and Windows XP, it turns out that HORZSIZE and VERTSIZE are
independent of the display resolution, and LOGPIXELSX and LOGPIXELSY are always 96. So
the logical size changes for different display resolutions, but the physical size does not.

Whenever you use a fixed mapping mode such as MM_HIMETRIC or MM_TWIPS, the
display driver uses the physical display size to do the mapping. So, for Windows 2000 and
Windows XP, text is smaller on a small monitor, but that’s not what you want. Instead, you
want your font sizes to correspond to the logical display size, not the physical size.

You can invent a special mapping mode, called logical twips, for which one logical unit is
equal to 1/1440 logical inch. This mapping mode is independent of the operating system and
display resolution and is used by programs such as Microsoft Word. Here’s the code that sets
the mapping mode to logical twips:

pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(1440, 1440);
pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 -pDC->GetDeviceCaps(LOGPIXELSY));

NOTE
From the Windows Control Panel, you can adjust both the display font size and the
display resolution. If you change the display font size from the default 100 percent
to 200 percent, HORZSIZE becomes 160, VERTSIZE becomes 120, and the dots-
per-inch value becomes 192. In that case, the logical size is divided by 2, and all
text drawn with the logical twips mapping mode is doubled in size.

Computing Character Height

Five font height measurement parameters are available through the CDC function
GetTextMetrics, but only three are significant. Figure 6-1 shows the important font
measurements. The tmHeight parameter represents the full height of the font, including
descenders (for the characters g, j, p, q, and y) and any diacritics that appear over capital
letters. The tmExternalLeading parameter is the distance between the top of the diacritic and
the bottom of the descender from the line above. The sum of tmHeight and tmExternalLeading
is the total character height. The value of tmExternalLeading can be 0.

You would think that tmHeight would represent the font size in points. Wrong! Another
GetTextMetrics parameter, tmInternalLeading, comes into play. The point size corresponds to
the difference between tmHeight and tmInternalLeading. With the MM_TWIPS mapping mode
in effect, a selected 12-point font might have a tmHeight value of 295 logical units and a
tmInternalLeading value of 55. The font’s net height of 240 corresponds to the point size of
12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-1. Font height measurements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex06a Example

This example sets up a view window with the logical twips mapping mode. A text string is
displayed in 10-point sizes with the Arial TrueType font. Here are the steps for building the
application:

1. Use the MFC Application Wizard to generate the Ex06a project. Start by choosing New
from the File menu, and then select MFC Application. Select Single Document on the
Application Type page, and deselect Printing And Print Preview on the Advanced
Features page. Accept all the other default settings.

2. Select the CEx06aView class in Class View, and then use the Properties window to
override the OnPrepareDC function in the CEx06aView class. Edit the code in
Ex06aView.cpp as follows:

void CEx06aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(1440, 1440);
 pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
}

3. Add a private ShowFont helper function to the view class. Add the following prototype
in Ex06aView.h:

private:
 void ShowFont(CDC* pDC, int& nPos, int nPoints);

Then add the function itself in Ex06aView.cpp:

void CEx06aView::ShowFont(CDC* pDC, int& nPos, int nPoints)
{
 TEXTMETRIC tm;
 CFont fontText;
 CString strText;
 CSize sizeText;
 fontText.CreateFont(-nPoints * 20, 0, 0, 0, 400,
 FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH │ FF_SWISS, "Arial");
 CFont* pOldFont = (CFont*) pDC->SelectObject(&fontText);
 pDC->GetTextMetrics(&tm);
 TRACE("points = %d, tmHeight = %d, tmInternalLeading = %d,"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("points = %d, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", nPoints, tm.tmHeight,
 tm.tmInternalLeading, tm.tmExternalLeading);
 strText.Format("This is %d-point Arial", nPoints);
 sizeText = pDC->GetTextExtent(strText);
 TRACE("string width = %d, string height = %d\n", sizeText.cx,
 sizeText.cy);
 pDC->TextOut(0, nPos, strText);
 pDC->SelectObject(pOldFont);
 nPos += tm.tmHeight + tm.tmExternalLeading;
}

4. Edit the OnDraw function in Ex06aView.cpp. The MFC Application Wizard always
generates a skeleton OnDraw function for your view class. Find the function, and
replace the code with the following:

void CEx06aView::OnDraw(CDC* pDC)
{
 int nPosition = 0;
 for (int i = 6; i <= 24; i += 2) {
 ShowFont(pDC, nPosition, i);
 }
 TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",
 pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
 TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
 pDC->GetDeviceCaps(HORZSIZE),
 pDC->GetDeviceCaps(VERTSIZE));
 TRACE("HORZRES = %d, VERTRES = %d\n",
 pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));
}

5. Build and run the Ex06a program. You must run the program from the debugger if you
want to see the output from the TRACE statements. You can choose Start from the
Debug menu in Visual C++ .NET, press the F5 key, or click the Continue button on the
Debug toolbar (which will force the project to be built).

The resulting output (assuming the use of a standard VGA card) will look like the
following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the output string sizes don’t quite correspond to the point sizes. This discrepancy
results from the font engine’s conversion of logical units to pixels. The program’s trace output,
partially shown here, shows the printout of font metrics. (The numbers depend on your display
driver and your video driver.)

points = 6, tmHeight = 150, tmInternalLeading = 30, tmExternalLeading = 4
string width = 990, string height = 150
points = 8, tmHeight = 210, tmInternalLeading = 45, tmExternalLeading = 5
string width = 1380, string height = 210
points = 10, tmHeight = 240, tmInternalLeading = 45, tmExternalLeading = 6
string width = 1770, string height = 240
points = 12, tmHeight = 270, tmInternalLeading = 30, tmExternalLeading = 8
string width = 2130, string height = 270

The Ex06a Program Elements

Following is a discussion of the important elements in the Ex06a example.

Setting the Mapping Mode in the OnPrepareDC Function

The application framework calls OnPrepareDC before calling OnDraw, so the OnPrepareDC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The application framework calls OnPrepareDC before calling OnDraw, so the OnPrepareDC
function is the logical place to prepare the device context. If you had other message handlers
that needed the correct mapping mode, those functions would have contained calls to
OnPrepareDC.

The ShowFont Private Member Function

ShowFont contains code that is executed 10 times in a loop. With C, you would have made
this a global function, but with C++ it’s better to make it a private class member function,
sometimes known as a helper function.

This function creates the font, selects it into the device context, prints a string to the window,
and then deselects the font. If you choose to include debug information in the program,
ShowFont also displays useful font metrics information, including the actual width of the
string.

Calling CFont::CreateFont

This call includes lots of parameters, but the important ones are the first two—the font height
and the width. A width value of 0 means that the aspect ratio of the selected font will be set to
a value specified by the font designer. If you put a nonzero value here, as you’ll see in the next
example, you can change the font’s aspect ratio.

TIP
If you want your font to be a specific point size, the CreateFont font height
parameter (the first parameter) must be negative. If you’re using the MM_TWIPS
mapping mode for a printer, for example, a height parameter of –240 ensures a true
12-point font, with tmHeight - tmInternalLeading = 240. A +240 height parameter
gives you a smaller font, with tmHeight = 240.

The last CreateFont parameter specifies the font name, in this case the Arial TrueType font. If
you had used NULL for this parameter, the FF_SWISS specification (which indicates a
proportional font without serifs) would have caused Windows to select the best matching font,
which, depending on the specified size, might have been the System font or the Arial
TrueType font. The font name takes precedence. If you had specified FF_ROMAN (which
indicates a proportional font with serifs) with Arial, for example, you would have gotten Arial.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex06b Example

This program is similar to Ex06a except that it shows multiple fonts. The mapping mode is
MM_ANISOTROPIC, with the scale dependent on the window size. The characters change
size along with the window. This program effectively shows off some TrueType fonts and
contrasts them with the old-style fonts. Here are the steps for building the application:

1. Run the MFC Application Wizard to generate the Ex06b project. Make it an SDI
application and deselect Printing And Print Preview on the Advanced Features page.

2. Select the CEx06bView class in Class View, and then use the Properties window to
override the OnPrepareDC function in the CEx06bView class. Edit the code in
Ex06bView.cpp as shown here:

 void CEx06bView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 CRect clientRect;
 GetClientRect(clientRect);
 pDC->SetMapMode(MM_ANISOTROPIC); // +y = down
 pDC->SetWindowExt(400, 450);
 pDC->SetViewportExt(clientRect.right, clientRect.bottom);
 pDC->SetViewportOrg(0, 0);
}

3. Add a private TraceMetrics helper function to the view class. Add the following
prototype in Ex06bView.h:

private:
 void TraceMetrics(CDC* pDC);

Then add the function itself in Ex06bView.cpp:

void CEx06bView::TraceMetrics(CDC* pDC)
{
 TEXTMETRIC tm;
 char szFaceName[100];
 pDC->GetTextMetrics(&tm);
 pDC->GetTextFace(99, szFaceName);
 TRACE("font = %s, tmHeight = %d, tmInternalLeading = %d,"
 " tmExternalLeading = %d\n", szFaceName, tm.tmHeight,
 tm.tmInternalLeading, tm.tmExternalLeading);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

4. Edit the OnDraw function in Ex06bView.cpp. The MFC Application Wizard always
generates a skeleton OnDraw function for your view class. Find the function, and edit
the code as follows:

void CEx06bView::OnDraw(CDC* pDC)
{
 CFont fontTest1, fontTest2, fontTest3, fontTest4;
 fontTest1.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH │ FF_SWISS, "Arial");
 CFont* pOldFont = pDC->SelectObject(&fontTest1);
 TraceMetrics(pDC);
 pDC->TextOut(0, 0, "This is Arial, default width");

 fontTest2.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH │ FF_MODERN, "Courier");
 // not TrueType
 pDC->SelectObject(&fontTest2);
 TraceMetrics(pDC);
 pDC->TextOut(0, 100, "This is Courier, default width");

 fontTest3.CreateFont(50, 10, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH │ FF_ROMAN, NULL);
 pDC->SelectObject(&fontTest3);
 TraceMetrics(pDC);
 pDC->TextOut(0, 200, "This is generic Roman, variable width");
 fontTest4.CreateFont(50, 0, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH │ FF_MODERN, "LinePrinter");
 pDC->SelectObject(&fontTest4);
 TraceMetrics(pDC);
 pDC->TextOut(0, 300, "This is LinePrinter, default width");
 pDC->SelectObject(pOldFont);
}

5. Build and run the Ex06b program. Run the program from the debugger to see the
TRACE output. The program’s window is shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resize the window to make it smaller, and watch the font sizes change. Compare the
following window with the previous one:

If you continue to downsize the window, notice how the Courier font stops shrinking
after a certain size and how the Roman font width changes.

The Ex06b Program Elements

Following is a discussion of the important elements in the Ex06b example.

The OnDraw Member Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OnDraw function displays character strings in four fonts, as follows:

fontTest1 The TrueType font Arial with default width selection.

fontTest2 The old-style font Courier with default width selection. Notice how jagged
the font appears in larger sizes.

fontTest3 The generic Roman font for which Windows supplies the TrueType font
Times New Roman with programmed width selection. The width is tied to the
horizontal window scale, so the font stretches to fit the window.

fontTest4 The LinePrinter font is specified, but because this is not a Windows font for
the display, the font engine falls back on the FF_MODERN specification and selects the
TrueType Courier New font.

The TraceMetrics Helper Function

The TraceMetrics helper function calls CDC::GetTextMetrics and CDC::GetTextFace to get
the current font’s parameters, which it prints in the Debug window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex06c Example: CScrollView Revisited

You saw the CScrollView class in Chapter 5 (in Ex05c). The Ex06c program allows the user to
move an ellipse with a mouse by “capturing” the mouse, using a scrolling window with the
MM_LOENGLISH mapping mode. Keyboard scrolling is left out, but you can add it by
borrowing the OnKeyDown member function from Ex05c.

Instead of a stock brush, we’ll use a pattern brush for the ellipse—a real GDI object. There’s
one complication with pattern brushes, however: You must reset the origin as the window
scrolls; otherwise, strips of the pattern won’t line up and the effect will be ugly.

As with the Ex05c program, this example involves a view class derived from CScrollView.
Here are the steps to create the application:

1. Run the MFC Application Wizard to generate the Ex06c project. Make it an SDI
application and deselect Printing And Print Preview on the Advanced Features page. Be
sure to set the view base class to CScrollView.

2. Edit the CEx06cView class header in the file Ex06cView.h. Add the following lines in
the class CEx06cView declaration:

private:
 const CSize m_sizeEllipse; // logical
 CPoint m_pointTopLeft; // logical, top left of ellipse rectangle
 CSize m_sizeOffset; // device, from rect top left
 // to capture point
 BOOL m_bCaptured;

3. Select the CEx06cView class in Class View, and then use the Properties window to add
three message handlers to the CEx06cView class. Add the message handlers as follows:

Message Member Function

WM_LBUTTONDOWN OnLButtonDown

WM_LBUTTONUP OnLButtonUp

WM_MOUSEMOVE OnMouseMove

4. Edit the CEx06cView message handler functions. The code wizards available from the
Properties window generated the skeletons for the functions listed in the preceding step.
Find the functions in Ex06cView.cpp and code them as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // still logical
 CRect rectEllipse(m_pointTopLeft, m_sizeEllipse);
 CRgn circle;
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.LPtoDP(rectEllipse); // Now it's in device coordinates
 circle.CreateEllipticRgnIndirect(rectEllipse);
 if (circle.PtInRegion(point)) {
 // Capturing the mouse ensures subsequent LButtonUp message
 SetCapture();
 m_bCaptured = TRUE;
 CPoint pointTopLeft(m_pointTopLeft);
 dc.LPtoDP(&pointTopLeft);
 m_sizeOffset = point - pointTopLeft; // device coordinates
 // New mouse cursor is active while mouse is captured
 ::SetCursor(::LoadCursor(NULL, IDC_CROSS));
 }
}

void CEx06cView::OnLButtonUp(UINT nFlags, CPoint point)
{
 if (m_bCaptured) {
 ::ReleaseCapture();
 m_bCaptured = FALSE;
 }
}

void CEx06cView::OnMouseMove(UINT nFlags, CPoint point)
{
 if (m_bCaptured) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CRect rectOld(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectOld);
 InvalidateRect(rectOld, TRUE);
 m_pointTopLeft = point - m_sizeOffset;
 dc.DPtoLP(&m_pointTopLeft);
 CRect rectNew(m_pointTopLeft, m_sizeEllipse);
 dc.LPtoDP(rectNew);
 InvalidateRect(rectNew, TRUE);
 }
}

5. Edit the CEx06cView constructor, the OnDraw function, and the OnInitialUpdate
function. The MFC Application Wizard generated these skeleton functions. Find them

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function. The MFC Application Wizard generated these skeleton functions. Find them
in Ex06cView.cpp, and code them as follows:

CEx06cView::CEx06cView() : m_sizeEllipse(100, -100),
 m_pointTopLeft(0, 0),
 m_sizeOffset(0, 0){
 m_bCaptured = FALSE;
}

void CEx06cView::OnDraw(CDC* pDC)
{
 CBrush brushHatch(HS_DIAGCROSS, RGB(255, 0, 0));
 CPoint point(0, 0); // logical (0, 0)
 pDC->LPtoDP(&point); // In device coordinates,
 pDC->SetBrushOrg(point); // align the brush with
 // the window origin
 pDC->SelectObject(&brushHatch);
 pDC->Ellipse(CRect(m_pointTopLeft, m_sizeEllipse));
 pDC->SelectStockObject(BLACK_BRUSH); // Deselect brushHatch
 // Test invalid rect
 pDC->Rectangle(CRect(100, -100, 200, -200));
}

void CEx06cView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 CSize sizeTotal(800, 1050); // 8-by-10.5 inches
 CSize sizePage(sizeTotal.cx / 2, sizeTotal.cy / 2);
 CSize sizeLine(sizeTotal.cx / 50, sizeTotal.cy / 50);
 SetScrollSizes(MM_LOENGLISH, sizeTotal, sizePage, sizeLine);
}

6. Build and run the Ex06c program. The program allows an ellipse to be dragged with the
mouse, and it allows the window to be scrolled through. The program’s window should
look like the one shown here. As you move the ellipse, observe the black rectangle. You
should be able to see the effects of invalidating the rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex06c Program Elements

Following is a discussion of the important elements in the Ex06c example.

The m_sizeEllipse and m_pointTopLeft Data Members

Rather than store the ellipse’s bounding rectangle as a single CRect object, the program
separately stores its size (m_sizeEllipse) and the position of its top left corner
(m_pointTopLeft). To move the ellipse, the program merely recalculates m_pointTopLeft, and
any round-off errors in the calculation won’t affect the size of the ellipse.

The m_sizeOffset Data Member

When OnMouseMove moves the ellipse, the relative position of the mouse within the ellipse
must be the same as it was when the user first pressed the left mouse button. The m_sizeOffset
object stores this original offset of the mouse from the top left corner of the ellipse rectangle.

The m_bCaptured Data Member

The m_bCaptured Boolean variable is set to TRUE when mouse tracking is in progress.

The SetCapture and ReleaseCapture Functions

SetCapture is the CWnd member function that “captures” the mouse, such that mouse
movement messages are sent to this window even if the mouse cursor is outside the window.
An unfortunate side effect of this function is that the ellipse can be moved outside the window
and “lost.” A desirable and necessary effect is that all subsequent mouse messages are sent to
the window, including the WM_LBUTTONUP message, which would otherwise be lost. The
Win32 ReleaseCapture function turns off mouse capture.

The SetCursor and LoadCursor Win32 Functions

The MFC library does not “wrap” some Win32 functions. By convention, we use the C++
scope resolution operator (::) when calling Win32 functions directly. In this case, there is no
potential for conflict with a CView member function, but you can deliberately choose to call a
Win32 function in place of a class member function with the same name. In that case, the ::
operator ensures that you call the globally scoped Win32 function.

When the first parameter is NULL, the LoadCursor function creates a cursor resource from
the specified predefined mouse cursor that Windows uses. The SetCursor function activates
the specified cursor resource. This cursor remains active as long as the mouse is captured.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CScrollView::OnPrepareDC Member Function

The CView class has a virtual OnPrepareDC function that does nothing. The CScrollView
class implements the function for the purpose of setting the view’s mapping mode and origin,
based on the parameters that you passed to SetScrollSizes in OnInitialUpdate. The application
framework calls OnPrepareDC for you prior to calling OnDraw, so you don’t need to worry
about it. You must call OnPrepareDC yourself in any other message handler function that
uses the view’s device context, such as OnLButtonDown and OnMouseMove.

The OnMouseMove Coordinate Transformation Code

As you can see, this function contains several translation statements. The logic can be
summarized by the following steps:

1. Construct the previous ellipse rectangle and convert it from logical to device
coordinates.

2. Invalidate the previous rectangle.

3. Update the top left coordinate of the ellipse rectangle.

4. Construct the new rectangle and convert it to device coordinates.

5. Invalidate the new rectangle.

The function calls InvalidateRect twice. Windows “saves up” the two invalid rectangles and
computes a new invalid rectangle that is the union of the two, intersected with the client
rectangle.

The OnDraw Function

The SetBrushOrg call is necessary to ensure that all of the ellipse’s interior pattern lines up
when the user scrolls through the view. The brush is aligned with a reference point, which is at
the top left of the logical window, converted to device coordinates. This is a notable exception
to the rule that CDC member functions require logical coordinates.

The CScrollView SetScaleToFitSize Mode

The CScrollView class has a stretch-to-fit mode that displays the entire scrollable area in the
view window. The Windows MM_ANISOTROPIC mapping mode comes into play, with one
restriction: positive y values always increase in the down direction, as in MM_TEXT mode.

To use the stretch-to-fit mode, make the following call in your view’s function in place of the
call to SetScrollSizes:

SetScaleToFitSize(sizeTotal);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can make this call in response to a Shrink To Fit menu command. Thus, the display can
toggle between scrolling mode and shrink-to-fit mode.

Using the Logical Twips Mapping Mode in a Scrolling View

The MFC CScrollView class allows you to specify only standard mapping modes. The Ex17a
example in Chapter 17 shows a new class, CLogScrollView, that accommodates the logical
twips mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bitmaps

Without graphics images, Windows-based applications would be pretty dull. Some
applications depend on images for their usefulness, but any application can be spruced up with
the addition of decorative clip art from a variety of sources. Windows bitmaps are arrays of
bits mapped to display pixels. That might sound simple, but you have to learn a lot about
bitmaps before you can use them to create professional applications for Windows.

In the following sections, you’ll learn how to create device-independent bitmaps (DIBs). By
using DIBs, you’ll have an easier time with colors and with the printer. In some cases, you’ll
get better performance. The Win32 function CreateDIBSection gives you the benefits of DIBs
combined with all the features of GDI bitmaps.

You’ll also learn how to use the MFC CBitmapButton class to put bitmaps on push buttons.
(Using CBitmapButton to put bitmaps on pushbuttons has nothing to do with DIBs, but it’s a
useful technique that would be difficult to master without an example.)

GDI Bitmaps and Device-Independent Bitmaps

In this section, we’ll spend more time looking at DIBs. The best place to check is the Platform
SDK available through the MSDN help system. Windows has two kinds of bitmaps: GDI
bitmaps and DIBs. GDI bitmaps have been around for quite a while, and you can find a great
deal of information about them elsewhere.

GDI bitmap objects are represented by the MFC library CBitmap class. The GDI bitmap
object has an associated Windows data structure, maintained inside the Windows GDI module,
that is device-dependent. Your program can get a copy of the bitmap data, but the bit
arrangement depends on the display hardware. GDI bitmaps can be freely transferred among
programs on a single computer, but because of their device dependency, transferring bitmaps
by disk or modem doesn’t make sense.

A GDI bitmap is simply another GDI object, such as a pen or a font. You must somehow
create a bitmap, and then you must select it into a device context. When you’re finished with
the object, you must deselect it and delete it. You know the drill.

There’s a catch, though, because the “bitmap” of the display or printer device is effectively the
display surface or the printed page itself. Therefore, you can’t select a bitmap into a display
device context or a printer device context. You have to create a special memory device context
for your bitmaps, using the CDC::CreateCompatibleDC function. You must then use the CDC
member function StretchBlt or BitBlt to copy the bits from the memory device context to the
“real” device context. These “bit-blitting” functions are generally called in your view class’s
OnDraw function. Of course, you mustn’t forget to clean up the memory device context when
you’re finished.

For Win32 Programmers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Win32, you’re allowed to put a GDI bitmap handle on the Clipboard for transfer
to another process, but behind the scenes Windows converts the device-dependent
bitmap to a DIB and copies the DIB to shared memory. That’s a good reason to
consider using DIBs from the start.

DIBs offer many programming advantages over GDI bitmaps. Because a DIB carries its own
color information, color palette management is easier. DIBs also make it easy to control gray
shades when you print. Any computer running Windows can process DIBs, which are usually
stored in BMP disk files or as a resource in your program’s EXE or DLL file. The wallpaper
background on your monitor is read from a BMP file when you start Windows. The primary
storage format for Microsoft Paint is the BMP file, and Visual C++ .NET uses BMP files for
toolbar buttons and other images. Other graphic interchange formats are available, such as
TIFF, GIF, and JPEG, but only the DIB format is directly supported by the Win32 API.

Color Bitmaps and Monochrome Bitmaps

Windows deals with color bitmaps a little differently from the way it deals with brush colors.
Many color bitmaps are 16-color. A standard VGA board has four contiguous color planes,
with one corresponding bit from each plane combining to represent a pixel. The 4-bit color
values are set when the bitmap is created. With a standard VGA board, bitmap colors are
limited to the standard 16 colors. Windows does not use dithered colors in bitmaps.

A monochrome bitmap has only one plane. Each pixel is represented by a single bit that is
either off (0) or on (1). The CDC::SetTextColor function sets the “off” display color, and
SetBkColor sets the “on” color. You can specify these pure colors individually with the
Windows RGB macro.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DIBs and the CDib Class

MFC includes a class for plain GDI bitmaps (CBitmap). However, MFC does not include a
class for managing DIBs, so this chapter includes a class for managing DIBs. It’s a complete
rewrite of the CDib class from the early editions of this book (before the fourth edition), and it
takes advantage of Win32 features such as memory-mapped files, improved memory
management, and DIB sections. It also includes palette support. Before you examine the CDib
class, however, you need a little background on DIBs.

A Few Words About Palette Programming

Windows palette programming is quite complex, but you’ve got to deal with it if you expect
your users to run their displays in the 8-bpp (bits per pixel) mode—and many users will if they
have video cards with 1 MB or less of memory.

Suppose you’re displaying a single DIB in a window. First, you must create a logical palette, a
GDI object that contains the colors in the DIB. Then you must “realize” this logical palette
into the hardware system palette, a table of the 256 colors that the video card can display at
that instant. If your program is the foreground program, the realization process tries to copy all
your colors into the system palette, but it doesn’t touch the 20 standard Windows colors. For
the most part, your DIB looks just like you want it to look.

But what if another program is the foreground program, and what if that program has a forest
scene DIB with 236 shades of green? Your program will still realize its palette, but something
different will happen. The system palette won’t change, but Windows will set up a new
mapping between your logical palette and the system palette. If your DIB contains a neon pink
color, for example, Windows will map it to the standard red color. If your program forgets to
realize its palette, your neon pink stuff will turn green when the other program becomes
active.

The forest scene example is extreme because we assume that the other program grabs 236
colors. If the other program instead realizes a logical palette with only 200 colors, Windows
will let your program load 36 of its own colors (including, one hopes, neon pink).

So when is a program supposed to realize its palette? The Windows message
WM_PALETTECHANGED is sent to your program’s main window whenever a program,
including yours, realizes its palette. Another message, WM_QUERYNEWPALETTE, is sent
whenever one of the windows in your program gets the input focus. Your program should
realize its palette in response to both these messages (unless your program generated the
message). These palette messages are not sent to your view window, however. You must map
them in your application’s main frame window and then notify the view. Chapter 14 will
discuss the relationship between the frame window and the view.

You call the Win32 RealizePalette function to perform the realization, but first you must call
SelectPalette to select your DIB’s logical palette into the device context. SelectPalette has a
flag parameter that you normally set to FALSE in your WM_PALETTECHANGED and
WM_QUERYNEWPALETTE handlers. This flag ensures that your palette is realized as a
foreground palette if your application is indeed running in the foreground. If you use a TRUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

foreground palette if your application is indeed running in the foreground. If you use a TRUE
flag parameter here, you can force Windows to realize the palette as if the application were in
the background.

You must also call SelectPalette for each DIB that you display in your OnDraw function. This
time, you call it with a TRUE flag parameter. Things get complicated if you’re displaying
several DIBs, each with its own palette. Basically, you’ve got to select a palette for one of the
DIBs and realize it (by selecting it with the FALSE parameter) in the palette message handlers.
The selected DIB will end up looking better than the other DIBs. There are ways of merging
palettes, but it might be easier to go out and buy more video memory.

DIBs, Pixels, and Color Tables

A DIB contains a two-dimensional array of elements called pixels. In many cases, each DIB
pixel will be mapped to a display pixel, but the DIB pixel might be mapped to some logical
area on the display, depending on the mapping mode and the display function stretch
parameters.

A pixel consists of 1, 4, 8, 16, 24, or 32 contiguous bits, depending on the color resolution of
the DIB. For 16-bpp, 24-bpp, and 32-bpp DIBs, each pixel represents an RGB color. A pixel
in a 16-bpp DIB typically contains 5 bits each for red, green, and blue values; a pixel in a 24-
bpp DIB has 8 bits for each color value. The 16-bpp and 24-bpp DIBs are optimized for video
cards that can display 65,536 or 16.7 million simultaneous colors.

A 1-bpp DIB is a monochrome DIB, but these DIBs don’t have to be black and white—they
can contain any two colors selected from the color table that is built into each DIB. A
monochrome bitmap has two 32-bit color table entries, each containing 8 bits for red, green,
and blue values plus another 8 bits for flags. Zero (0) pixels use the first entry, and one (1)
pixel uses the second. Whether you have a 65,536-color video card or a 16.7-million-color
card, Windows can display the two colors directly. (Windows truncates 8-bits-per-color values
to 5 bits for 65,536-color displays.) If your video card is running in 256-color palettized mode,
your program can adjust the system palette to load the two specified colors.

Eight-bpp DIBs are quite common. Like a monochrome DIB, an 8-bpp DIB has a color table,
but the color table has 256 (or fewer) 32-bit entries. Each pixel is an index into this color table.
If you have a palettized video card, your program can create a logical palette from the 256
entries. If another program (running in the foreground) has control of the system palette,
Windows will do its best to match your logical palette colors to the system palette.

What if you’re trying to display a 24-bpp DIB with a 256-color palettized video card? If the
DIB author was nice, he will have included a color table containing the most important colors
in the DIB. Your program can build a logical palette from that table, and the DIB will look
fine. If the DIB has no color table, use the palette returned by the Win32
CreateHalftonePalette function; it’s better than the 20 standard colors you’d get with no
palette at all. Another option is to analyze the DIB to identify the most important colors, but
you can buy a utility to do that.

The Structure of a DIB Within a BMP File

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You know that the DIB is the standard Windows bitmap format and that a BMP file contains a
DIB. So let’s look inside a BMP file to see what’s there. Figure 6-2 shows a layout for a BMP
file.

Figure 6-2. The layout for a BMP file.

The BITMAPFILEHEADER structure contains the offset to the image bits, which you can use
to compute the combined size of the BITMAPINFOHEADER structure and the color table that
follows. The BITMAPFILEHEADER structure contains a file size member, but you can’t
depend on it because you don’t know whether the size is measured in bytes, words, or double
words.

The BITMAPINFOHEADER structure contains the bitmap dimensions, the bits per pixel,
compression information for both 4-bpp and 8-bpp bitmaps, and the number of color table
entries. If the DIB is compressed, this header contains the size of the pixel array; otherwise,
you can compute the size from the dimensions and the bits per pixel. Immediately following
the header is the color table (if the DIB has a color table). The DIB image comes after that.
The DIB image consists of pixels arranged by column within rows, starting with the bottom
row. Each row is padded to a 4-byte boundary.

The only place you’ll find a BITMAPFILEHEADER structure, however, is in a BMP file. If
you get a DIB from the Clipboard, for example, there will be no file header. You can always
count on the color table to follow the BITMAPINFOHEADER structure, but you can’t count
on the image to follow the color table. If you’re using the CreateDIBSection function, for
example, you must allocate the bitmap info header and color table and then let Windows
allocate the image somewhere else.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DIB Access Functions

Windows supplies some important DIB access functions. None of these functions is wrapped
by MFC, so you’ll need to refer to the online Win32 documentation for details. Here’s a
summary:

SetDIBitsToDevice This function displays a DIB directly on the display or printer. No
scaling occurs; one bitmap bit corresponds to one display pixel or one printer dot. This
scaling restriction limits the function’s usefulness. The function doesn’t work like BitBlt
because BitBlt uses logical coordinates.

StretchDIBits This function displays a DIB directly on the display or printer in a
manner similar to that of StretchBlt.

GetDIBits This function constructs a DIB from a GDI bitmap, using memory that you
allocate. You have some control over the format of the DIB because you can specify the
number of color bits per pixel and the compression. If you’re using compression, you
have to call GetDIBits twice—once to calculate the memory needed and once to
generate the DIB data.

CreateDIBitmap This function creates a GDI bitmap from a DIB. As for all these DIB
functions, you must supply a device context pointer as a parameter. A display device
context will do; you don’t need a memory device context.

CreateDIBSection This Win32 function creates a special kind of DIB known as a DIB
section. It then returns a GDI bitmap handle. This function gives you the best features of
DIBs and GDI bitmaps. You have direct access to the DIB’s memory, and with the
bitmap handle and a memory device context, you can call GDI functions to draw into
the DIB.

The CDib Class

If DIBs look intimidating, don’t worry. The CDib class makes DIB programming easy. The
best way to get to know the CDib class is to look at the public member functions and data
members. The CDib header file is shown below. Consult the Ex06d folder on the companion
CD to see the implementation code.

CDib.h
#ifndef _INSIDE_VISUAL_CPP_CDIB
#define _INSIDE_VISUAL_CPP_CDIB

class CDib : public CObject
{
 enum Alloc {noAlloc, crtAlloc,
 heapAlloc}; // applies to BITMAPINFOHEADER
 DECLARE_SERIAL(CDib)
public:
 LPVOID m_lpvColorTable;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LPVOID m_lpvColorTable;
 HBITMAP m_hBitmap;
 LPBYTE m_lpImage; // starting address of DIB bits
 LPBITMAPINFOHEADER m_lpBMIH; // buffer containing the
 // BITMAPINFOHEADER
private:
 HGLOBAL m_hGlobal; // for external windows we need to free;
 // could be allocated by this class or
 // allocated externally
 Alloc m_nBmihAlloc;
 Alloc m_nImageAlloc;
 DWORD m_dwSizeImage; // of bits—not BITMAPINFOHEADER
 // or BITMAPFILEHEADER
 int m_nColorTableEntries;

 HANDLE m_hFile;
 HANDLE m_hMap;
 LPVOID m_lpvFile;
 HPALETTE m_hPalette;
public:
 CDib();
 CDib(CSize size, int nBitCount); // builds BITMAPINFOHEADER
 ~CDib();
 int GetSizeImage() {return m_dwSizeImage;}
 int GetSizeHeader()
 {return sizeof(BITMAPINFOHEADER) +
 sizeof(RGBQUAD) * m_nColorTableEntries;}
 CSize GetDimensions();
 BOOL AttachMapFile(const char* strPathname,
 BOOL bShare = FALSE);
 BOOL CopyToMapFile(const char* strPathname);
 BOOL AttachMemory(LPVOID lpvMem, BOOL bMustDelete = FALSE,
 HGLOBAL hGlobal = NULL);
 BOOL Draw(CDC* pDC, CPoint origin,
 CSize size); // until we implement CreateDibSection
 HBITMAP CreateSection(CDC* pDC = NULL);
 UINT UsePalette(CDC* pDC, BOOL bBackground = FALSE);
 BOOL MakePalette();
 BOOL SetSystemPalette(CDC* pDC);
 BOOL Compress(CDC* pDC,
 BOOL bCompress = TRUE); // FALSE means decompress
 HBITMAP CreateBitmap(CDC* pDC);
 BOOL Read(CFile* pFile);
 BOOL ReadSection(CFile* pFile, CDC* pDC = NULL);
 BOOL Write(CFile* pFile);
 void Serialize(CArchive& ar);
 void Empty();
private:
 void DetachMapFile();
 void ComputePaletteSize(int nBitCount);
 void ComputeMetrics();
};
#endif // _INSIDE_VISUAL_CPP_CDIB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s a rundown of the CDib member functions, starting with the constructors and the
destructor:

Default constructor You’ll use the default constructor in preparation for loading a DIB
from a file or for attaching to a DIB in memory. The default constructor creates an
empty DIB object.

DIB section constructor If you need a DIB section that is created by the
CreateDIBSection function, use this constructor. Its parameters determine DIB size and
the number of colors. The constructor allocates info header memory but not image
memory. You can also use this constructor if you need to allocate your own image
memory.

Parameter Description

size CSize object that contains the width and height of the DIB

nBitCount Bits per pixel; should be 1, 4, 8, 16, 24, or 32

Destructor The CDib destructor frees all allocated DIB memory.

AttachMapFile This function opens a memory-mapped file in read mode and attaches it
to the CDib object. The return is immediate because the file isn’t actually read into
memory until it is used. When you access the DIB, however, a delay might occur as the
file is paged in. The AttachMapFile function releases existing allocated memory and
closes any previously attached memory-mapped file.

Parameter Description

strPathname Pathname of the file to be mapped

bShare Flag that is TRUE if the file is to be opened in share mode; the default
value is FALSE

Return
value

TRUE if successful

AttachMemory This function associates an existing CDib object with a DIB in memory.
This memory can be in the program’s resources, or it can be Clipboard or OLE data
object memory. Memory might have been allocated from the CRT heap using the new
operator, or it might have been allocated from the Windows heap using GlobalAlloc.

Parameter Description

lpvMem Address of the memory to be attached

bMustDelete Flag that is TRUE if the CDib class is responsible for deleting this
memory; the default value is FALSE

hGlobal If memory was obtained with a call to the Win32 GlobalAlloc
function, the CDib object needs to keep the handle in order to free it
later, assuming that bMustDelete was set to TRUE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Return
value

TRUE if successful

Compress This function regenerates the DIB as a compressed or an uncompressed DIB.
Internally, it converts the existing DIB to a GDI bitmap and then makes a new
compressed or an uncompressed DIB. Compression is supported only for 4-bpp and 8-
bpp DIBs. You can’t compress a DIB section.

Parameter Description

pDC Pointer to the display device context

bCompress TRUE (default) to compress the DIB; FALSE to uncompress it

Return value TRUE if successful

CopyToMapFile This function creates a new memory-mapped file and copies the
existing CDib data to the file’s memory, releasing any previously allocated memory and
closing any existing memory-mapped file. The data isn’t actually written to disk until
the new file is closed, but that happens when the CDib object is reused or destroyed.

Parameter Description

strPathname Pathname of the file to be mapped

Return value TRUE if successful

CreateBitmap This function creates a GDI bitmap from an existing DIB and is called
by the Compress function. Don’t confuse this function with CreateSection, which
generates a DIB and stores the handle.

Parameter Description

pDC Pointer to the display or printer device context

Return
value

Handle to a GDI bitmap—NULL if unsuccessful. This handle is not
stored as a public data member.

CreateSection This function creates a DIB section by calling the Win32
CreateDIBSection function. The image memory will be uninitialized.

Parameter Description

pDC Pointer to the display or printer device context

Return
value

Handle to a GDI bitmap—NULL if unsuccessful. This handle is stored as
a public data member.

Draw This function outputs the CDib object to the display (or to the printer) with a call
to the Win32 StretchDIBits function. The bitmap will be stretched as necessary to fit the
specified rectangle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parameter Description

pDC Pointer to the display or printer device context that will receive the DIB
image

origin CPoint object that holds the logical coordinates at which the DIB will be
displayed

size CSize object that represents the display rectangle’s width and height in
logical units

Return
value

TRUE if successful

Empty This function empties the DIB, freeing allocated memory and closing the map
file if necessary.

GetDimensions This function returns the width and height of a DIB in pixels.

Parameter Description

Return value CSize object

GetSizeHeader This function returns the number of bytes in the info header and color
table combined.

Parameter Description

Return value 32-bit integer

GetSizeImage This function returns the number of bytes in the DIB image (excluding
the info header and the color table).

Parameter Description

Return value 32-bit integer

MakePalette If the color table exists, this function reads it and creates a Windows
palette. The HPALETTE handle is stored in a data member.

Parameter Description

Return value TRUE if successful

Read This function reads a DIB from a file into the CDib object. The file must have
been successfully opened. If the file is a BMP file, reading starts from the beginning of
the file. If the file is a document, reading starts from the current file pointer.

Parameter Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pFile Pointer to a CFile object; the corresponding disk file contains the DIB

Return value TRUE if successful

ReadSection This function reads the info header from a BMP file, calls
CreateDIBSection to allocate image memory, and then reads the image bits from the file
into that memory. Use this function if you want to read a DIB from disk and then edit it
by calling GDI functions. You can write the DIB back to disk using Write or
CopyToMapFile.

Parameter Description

pFile Pointer to a CFile object; the corresponding disk file contains the DIB

pDC Pointer to the display or printer device context

Return value TRUE if successful

Serialize Serialization is covered in Chapter 16. The CDib::Serialize function, which
overrides the MFC CObject::Serialize function, calls the Read and Write member
functions. See the MSDN Library for a description of the parameters.

SetSystemPalette If you have a 16-bpp, 24-bpp, or 32-bpp DIB that doesn’t have a color
table, you can call this function to create for your CDib object a logical palette that
matches the palette returned by the CreateHalftonePalette function. If your program is
running on a 256-color palettized display and you don’t call SetSystemPalette, you’ll
have no palette at all, and only the 20 standard Windows colors will appear in your DIB.

Parameter Description

pDC Pointer to the display context

Return value TRUE if successful

UsePalette This function selects the CDib object’s logical palette into the device
context and then realizes the palette. The Draw member function calls UsePalette
before painting the DIB.

Parameter Description

pDC Pointer to the display device context for realization

bBackground If this flag is FALSE (the default value) and the application is running
in the foreground, Windows will realize the palette as the foreground
palette. (It will copy as many colors as possible into the system
palette.) If this flag is TRUE, Windows will realize the palette as a
background palette. (It will map the logical palette to the system
palette as best it can.)

Return value Number of entries in the logical palette mapped to the system palette.
If the function fails, the return value is GDI_ERROR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Write This function writes a DIB from the CDib object to a file. The file must have
been successfully opened or created.

Parameter Description

pFile Pointer to a CFile object; the DIB will be written to the corresponding
disk file

Return
value

TRUE if successful

For your convenience, four public data members give you access to the DIB memory and to
the DIB section handle. These members should give you a clue about the structure of a CDib
object. A CDib is just a bunch of pointers to heap memory. That memory might be owned by
the DIB or by someone else. Additional private data members determine whether the CDib
class frees the memory.

DIB Display Performance

Optimized DIB processing is now a major feature of Windows. Modern video cards have
frame buffers that conform to the standard DIB image format. If you have one of these cards,
your programs can take advantage of the new Windows DIB engine, which speeds up the
process of drawing directly from DIBs. If you’re still running in VGA mode, however, you’re
out of luck; your programs will still work, but not as quickly.

If you’re running Windows in 256-color mode, your 8-bpp bitmaps will be drawn quickly,
either with StretchBlt or with StretchDIBits. If, however, you’re displaying 16-bpp or 24-bpp
bitmaps, those drawing functions will be too slow. Your bitmaps will appear more quickly in
this situation if you create a separate 8-bbp GDI bitmap and then call StretchBlt. Of course,
you must be careful to realize the correct palette before creating the bitmap and before
drawing it.

Here’s some code that you might insert just after loading your CDib object from a BMP file:

// m_hBitmap is a data member of type HBITMAP
// m_dcMem is a memory device context object of class CDC
m_pDib->UsePalette(&dc);
m_hBitmap = m_pDib->CreateBitmap(&dc); // could be slow
::SelectObject(m_dcMem.GetSafeHdc(), m_hBitmap);

Here’s the code you use in place of CDib::Draw in your view’s OnDraw member function:

 m_pDib->UsePalette(pDC); // could be in palette msg handler
CSize sizeDib = m_pDib->GetDimensions();
pDC->StretchBlt(0, 0, sizeDib.cx, sizeDib.cy, &m_dcMem,
 0, 0, sizeToDraw.cx, sizeToDraw.cy, SRCCOPY);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Don’t forget to call DeleteObject for m_hBitmap when you’re done with it.

The Ex06d Example

Now you’ll put the CDib class to work in an application. The Ex06d program displays two
DIBs, one from a resource and the other loaded from a BMP file that you select at run time.
The program manages the system palette and displays the DIBs correctly on the printer.

Here are the steps to build Ex06d. It’s a good idea to type in the view class code, but you’ll
want to use the cdib.h and cdib.cpp sample files.

1. Run the MFC Application Wizard to generate the Ex06d project. Accept all the defaults
but two: Select Single Document and select the CScrollView view base class for
CEx06dView.

2. Import the Red Blocks bitmap. Choose Add Resource from Visual C++ .NET’s Project
menu. In the Add Resource dialog box, click the Import button. Next, import Red
Blocks.bmp from the \vcppnet\bitmaps directory on the companion CD. Visual C++
.NET will copy this bitmap file into your project’s \res subdirectory. Assign
IDB_REDBLOCKS as the ID, and save the changes.

3. Integrate the CDib class with this project. If you’ve created this project from scratch,
copy the cdib.h and cdib.cpp files from \vcppnet\ Ex06d on the companion CD. Simply
copying the files to disk isn’t enough; you must also add the CDib files to the project.
Choose Add Existing Item from Visual C++ .NET’s Project menu. Select cdib.h and
cdib.cpp, and click the Open button. If you now switch to Class View or Solution
Explorer, you’ll see the class CDib and all of its member variables and functions.

4. Add two private CDib data members to the class CEx06dView. In Class View, right-
click on the CEx06dView class. Choose Add Variable from the shortcut menu, and then
add the m_dibResource member.

Add m_dibFile in the same way. The result should be two data members at the bottom
of the header file:

CDib m_dibFile;
CDib m_dibResource;

Class View also adds this statement at the top of the Ex06dView.h file:

#include "cdib.h" // Added by Class View

5. Edit the OnInitialUpdate member function in Ex06dView.cpp. This function sets the
mapping mode to MM_HIMETRIC and loads the m_dibResource object directly from
the IDB_REDBLOCKS resource. The CDib::AttachMemory function connects the
object to the resource in your EXE file. Add the following code shown in boldface:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx06dView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(30000, 40000); // 30-by-40 cm
 CSize sizeLine = CSize(sizeTotal.cx / 100, sizeTotal.cy / 100);
 SetScrollSizes(MM_HIMETRIC, sizeTotal, sizeTotal, sizeLine);
 LPVOID lpvResource = (LPVOID) ::LoadResource(NULL,
 ::FindResource(NULL, MAKEINTRESOURCE(IDB_REDBLOCKS),
 RT_BITMAP));
 m_dibResource.AttachMemory(lpvResource); // no need for
 // ::LockResource
 CClientDC dc(this);
 TRACE("bits per pixel = %d\n", dc.GetDeviceCaps(BITSPIXEL));
}

6. Edit the OnDraw member function in the file Ex06dView.cpp. This code calls
CDib::Draw for each of the DIBs. The UsePalette calls should really be made by
message handlers for the WM_QUERYNEWPALETTE and WM_PALETTECHANGED
messages. These messages are hard to deal with because they don’t go to the view
directly, so we’ll take a shortcut. Add the following code shown in boldface:

void CEx06cView::OnDraw(CDC* pDC)
{
 BeginWaitCursor();
 m_dibResource.UsePalette(pDC); // should be in palette
 m_dibFile.UsePalette(pDC); // message handlers, not here
 pDC->TextOut(0, 0,
 "Press the left mouse button here to load a file.");
 CSize sizeResourceDib = m_dibResource.GetDimensions();
 sizeResourceDib.cx *= 30;
 sizeResourceDib.cy *= -30;
 m_dibResource.Draw(pDC, CPoint(0, -800), sizeResourceDib);
 CSize sizeFileDib = m_dibFile.GetDimensions();
 sizeFileDib.cx *= 30;
 sizeFileDib.cy *= -30;
 m_dibFile.Draw(pDC, CPoint(1800, -800), sizeFileDib);
 EndWaitCursor();
}

7. Map the WM_LBUTTONDOWN message in the CEx06dView class. Edit the file
Ex06cView.cpp. OnLButtonDown contains code to read a DIB in two ways. If you
leave the MEMORY_MAPPED_FILES definition intact, the AttachMapFile code will be
activated to read a memory-mapped file. If you comment out the first line, the Read call
will be activated. The SetSystemPalette call is there for DIBs that don’t have a color
table. Add the following code shown in boldface:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#define MEMORY_MAPPED_FILESvoid CEx06cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CFileDialog dlg(TRUE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) {
 return;
 }
#ifdef MEMORY_MAPPED_FILES
 if (m_dibFile.AttachMapFile(dlg.GetPathName(),
 TRUE) == TRUE) { // share
 Invalidate();
 }
 #else
 CFile file;
 file.Open(dlg.GetPathName(), CFile::modeRead);
 if (m_dibFile.Read(&file) == TRUE) {
 Invalidate();
 }
#endif // MEMORY_MAPPED_FILES
 CClientDC dc(this);
 m_dibFile.SetSystemPalette(&dc);
}

8. Build and run the application. The bitmaps directory on the companion CD contains
several interesting bitmaps. The Chicago.bmp file is an 8-bpp DIB with 256-color table
entries. The forest.bmp and clouds.bmp files are also 8-bpp, but they have smaller color
tables. The balloons.bmp is a 24-bpp DIB with no color table. Try some other BMP files
if you have them. Note that Red Blocks is a 16-color DIB that uses standard colors,
which are always included in the system palette.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Going Further with DIBs

Each new version of Windows offers more DIB programming choices. Windows 2000
provides the LoadImage and DrawDibDraw functions, which are useful alternatives to the
DIB functions already described. Experiment with these functions to see if they work well in
your applications.

The LoadImage Function

The LoadImage function can read a bitmap directly from a disk file, returning a DIB section
handle. Suppose you want to add an ImageLoad member function to CDib that works like
ReadSection. You can add this code to cdib.cpp:

BOOL CDib::ImageLoad(const char* lpszPathName, CDC* pDC)
{
 Empty();
 m_hBitmap = (HBITMAP) ::LoadImage(NULL, lpszPathName,
 IMAGE_BITMAP, 0, 0,
 LR_LOADFROMFILE │ LR_CREATEDIBSECTION │ LR_DEFAULTSIZE);
 DIBSECTION ds;
 VERIFY(::GetObject(m_hBitmap, sizeof(ds), &ds) == sizeof(ds));
 // Allocate memory for BITMAPINFOHEADER
 // and biggest possible color table
 m_lpBMIH = (LPBITMAPINFOHEADER) new
 char[sizeof(BITMAPINFOHEADER) + 256 * sizeof(RGBQUAD)];
 memcpy(m_lpBMIH, &ds.dsBmih, sizeof(BITMAPINFOHEADER));
 TRACE("CDib::LoadImage, biClrUsed = %d, biClrImportant = %d\n",
 m_lpBMIH->biClrUsed, m_lpBMIH->biClrImportant);
 ComputeMetrics(); // sets m_lpvColorTable
 m_nBmihAlloc = crtAlloc;
 m_lpImage = (LPBYTE) ds.dsBm.bmBits;
 m_nImageAlloc = noAlloc;
 // Retrieve the DIB section's color table
 // and make a palette from it
 CDC memdc;
 memdc.CreateCompatibleDC(pDC);
 ::SelectObject(memdc.GetSafeHdc(), m_hBitmap);
 UINT nColors = ::GetDIBColorTable(memdc.GetSafeHdc(), 0, 256,
 (RGBQUAD*) m_lpvColorTable);
 if (nColors != 0) {
 ComputePaletteSize(m_lpBMIH->biBitCount);
 MakePalette();
 }
 // memdc deleted and bitmap deselected
 return TRUE;
}

Note that this function extracts and copies the BITMAPINFOHEADER structure and sets the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that this function extracts and copies the BITMAPINFOHEADER structure and sets the
values of the CDib pointer data members. You must do some work to extract the palette from
the DIB section, but the Win32 GetDIBColorTable function gets you started. It’s interesting
that GetDIBColorTable can’t tell you how many palette entries a particular DIB uses. If the
DIB uses only 60 entries, for example, GetDIBColorTable generates a 256-entry color table
with the last 196 entries set to 0.

The DrawDibDraw Function

Windows includes the Video for Windows (VFW) component, which is supported by Visual
C++ .NET. The VFW DrawDibDraw function is an alternative to StretchDIBits. One
advantage of DrawDibDraw is its ability to use dithered colors. Another is its increased speed
in drawing a DIB with a bpp value that does not match the current video mode. The main
disadvantage is the need to link the VFW code into your process at run time.

Here is a DrawDib member function for the CDib class that calls DrawDibDraw:

BOOL CDib::DrawDib(CDC* pDC, CPoint origin, CSize size)
{
 if (m_lpBMIH == NULL) return FALSE;
 if (m_hPalette != NULL) {
 ::SelectPalette(pDC->GetSafeHdc(), m_hPalette, TRUE);
 }
 HDRAWDIB hdd = ::DrawDibOpen();
 CRect rect(origin, size);
 pDC->LPtoDP(rect); // Convert DIB's rectangle
 // to MM_TEXT coordinates
 rect -= pDC->GetViewportOrg();
 int nMapModeOld = pDC->SetMapMode(MM_TEXT);
 ::DrawDibDraw(hdd, pDC->GetSafeHdc(), rect.left, rect.top,
 rect.Width(), rect.Height(), m_lpBMIH, m_lpImage, 0, 0,
 m_lpBMIH->biWidth, m_lpBMIH->biHeight, 0);
 pDC->SetMapMode(nMapModeOld);
 VERIFY(::DrawDibClose(hdd));
 return TRUE;
}

Note that DrawDibDraw needs MM_TEXT coordinates and the MM_TEXT mapping mode.
Thus, logical coordinates must be converted not to device coordinates but to pixels with the
origin at the top left of the scrolling window.

To use DrawDibDraw, your program needs an ?include<vfw.h> statement, and you must add
vfw32.lib to the list of linker input files. DrawDibDraw might assume the bitmap it draws is in
read/write memory—something to keep in mind if you map the memory to the BMP file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Putting Bitmaps on Pushbuttons

The MFC library makes it easy to display a bitmap (instead of text) on a pushbutton. If you
were to program this from scratch, you would set the Owner Draw property for your button
and then write a message handler in your dialog class that would paint a bitmap on the button
control’s window. If you use the MFC CBitmapButton class instead, you end up doing a lot
less work, but you have to follow a kind of “cookbook” procedure. Don’t worry too much
about how it all works (but be glad that you don’t have to write much code!).

To make a long story short, you lay out your dialog resource as usual, with unique text
captions for the buttons you designate for bitmaps. Next, you add some bitmap resources to
your project, and you identify those resources by name rather than by numeric ID. Finally,
you add some CBitmapButton data members to your dialog class, and you call the AutoLoad
member function for each one, which matches a bitmap name to a button caption. If the button
caption is Copy, you add two bitmaps: COPYU for the up state and COPYD for the down
state. By the way, you must still set the button’s Owner Draw property. (This will all make
more sense when you write a program).

NOTE
If you look at the MFC source code for the CBitmapButton class, you’ll see that
the bitmap is an ordinary GDI bitmap painted with a BitBlt call. Thus, you can’t
expect any palette support. That’s rarely a problem because bitmaps for buttons are
usually 16-color bitmaps that depend on standard VGA colors.

The Ex06e Example

Ex06e shows how to show different bitmaps on a pushbutton. Here are the steps for building
Ex06e:

1. Run the MFC Application Wizard to produce the Ex06e project. Accept all the defaults
but two: Select Single Document and deselect Printing And Print Preview.

2. Modify the project’s IDD_ABOUTBOX dialog resource in Resource View. We’ll use
the About dialog box that the MFC Application Wizard generates for hosting the bitmap
button. Add three pushbuttons with captions, as shown below, accepting the default IDs
IDC_BUTTON1, IDC_BUTTON2, and IDC_BUTTON3. The size of the buttons isn’t
important because the framework adjusts the button size at run time to match the bitmap
size.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set the Owner Draw property to True for all three buttons.

3. Import EditCopy.bmp, EditPast.bmp, and EditCut.bmp from the \vcppnet\Ex06e
directory on the companion CD. Choose Add Resource from the Project menu, and then
click the Import button to import the bitmaps into the project. Start with EditCopy.bmp.
Assign the name COPYU to the button.

Be sure to use quotes around the name in order to identify the resource by name rather
than by ID. This is now the bitmap for the button’s up state. Close the bitmap window
and, from Resource View, use the Clipboard to make a copy of the bitmap. Rename the
copy COPYD (down state), and then edit this bitmap. Choose Invert Colors from the
Image menu. There are other ways of making a variation of the up image, but inversion
is the quickest.

Repeat the steps listed above for the EditCut and EditPast bitmaps. When you’re
finished, you should have the following bitmap resources in your project.

Resource Name Original File Invert Colors

"COPYU" EditCopy.bmp No

"COPYD" EditCopy.bmp Yes

"CUTU" EditCut.bmp No

"CUTD" EditCut.bmp Yes

"PASTEU" EditPast.bmp No

"PASTED" EditPast.bmp Yes

4. Edit the code for the CAboutDlg class. Both the declaration and the implementation for
this class are contained in the Ex06e.cpp file. First add the three private data members
shown here in the class declaration:

CBitmapButton m_editCopy;
CBitmapButton m_editCut;
CBitmapButton m_editPaste;

Then use the code wizards available from the Properties window to override the
OnInitDialog virtual function. This function is coded as follows:

BOOL CAboutDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 VERIFY(m_editCopy.AutoLoad(IDC_BUTTON1, this));
 VERIFY(m_editCut.AutoLoad(IDC_BUTTON2, this));
 VERIFY(m_editPaste.AutoLoad(IDC_BUTTON3, this));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return TRUE;
 //return TRUE unless you set the focus to a control
 //EXCEPTION: OCX Property Pages should return FALSE
}

The AutoLoad function connects each button with the two matching resources. The
VERIFY macro is an MFC diagnostic aid that displays a message box if you didn’t code
the bitmap names correctly.

5. Edit the OnDraw function in Ex06eView.cpp. Replace the code generated by the MFC
Application Wizard with the following line:

pDC->TextOut(0, 0, "Choose About from the Help menu.");

6. Build and test the application. When the program starts, choose About from the Help
menu and observe the button behavior. The following image shows the CUT button in
the down state.

Note that bitmap buttons send BN_CLICKED notification messages just as ordinary
buttons do. The code wizards available from the Properties window can, of course, map
those messages in your dialog class.

Going Further with Bitmap Buttons

You’ve seen bitmaps for the buttons’ up and down states. The CBitmapButton class also
supports bitmaps for the focused and disabled states. For the Copy button, the focused bitmap
name would be COPYF, and the disabled bitmap name would be COPYX. If you want to test
the disabled option, make a COPYX bitmap, possibly with a red line through it, and then add
the following line to your program:

m_editCopy.EnableWindow(FALSE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7
Dialog Boxes

Almost every Microsoft Windows–based program uses dialog boxes to interact with the user.
The dialog box might be a simple OK message box, or it might be a complex data entry form.
Calling this powerful user interface element a dialog “box” does it an injustice—a dialog box
is actually a window that receives messages, that can be moved and closed, and that can even
accept drawing instructions in its client area.

The two kinds of dialog boxes are modal and modeless. This chapter explores both types.
We’ll also take a look at the special-purpose Windows common dialog boxes for opening
files, selecting fonts, and so forth.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modal vs. Modeless Dialog Boxes

The CDialog base class supports both modal and modeless dialog boxes. With a modal dialog
box, such as the Open File dialog box, the user cannot work elsewhere in the same application
(more correctly, in the same user interface thread) until the dialog box is closed. With a
modeless dialog box, the user can work in another window in the application while the dialog
box remains on the screen. Microsoft Word’s Find and Replace dialog box is a good example
of a modeless dialog box; you can edit your document while the dialog box is open.

Your choice of a modal or a modeless dialog box depends on the application. Modal dialog
boxes are much easier to program, which might influence your decision.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resources and Controls

If a dialog box is simply a window, what makes it different from the CView windows you’ve
seen already? For one thing, a dialog box is almost always tied to a Windows resource that
identifies the dialog box’s elements and specifies their layout. Because you can use the dialog
editor (one of the resource editors) to create and edit a dialog resource, you can quickly and
efficiently produce dialog boxes in a visual manner.

A dialog box contains a number of elements called controls. Dialog controls include edit
controls (text boxes), buttons, list boxes, combo boxes, static text (labels), tree views, progress
indicators, and sliders. Windows manages these controls using special grouping and tabbing
logic, and that relieves you of a major programming burden. The dialog controls can be
referenced either by a CWnd pointer (because they are really windows) or by an index number
(with an associated #define constant) assigned in the resource. A control sends a message to its
parent dialog box in response to a user action such as typing text or clicking a button.

The Microsoft Foundation Class (MFC) library and Microsoft Visual Studio work together to
enhance the dialog logic that Windows provides. Visual Studio can generate a class derived
from CDialog and lets you associate dialog class data members with dialog controls. You can
specify editing parameters such as maximum text length and numeric high and low limits.
Visual Studio generates statements that call the MFC data exchange and data validation
functions to move information back and forth between the screen and the data members.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming a Modal Dialog Box

Modal dialog boxes are the most frequently used dialog boxes. A user action (a menu choice,
for example) brings up a dialog box on the screen, the user enters data in the dialog box, and
then the user closes the dialog box. Here’s a summary of the steps to add a modal dialog box
to an existing project:

1. Use the dialog editor to create a dialog resource that contains various controls. The
dialog editor updates the project’s resource script (RC) file to include your new dialog
resource, and it updates the project’s resource.h file with corresponding #define
constants.

2. Use the MFC Class Wizard to create a dialog class derived from CDialog and attached
to the resource created in step 1. Visual Studio adds the associated code and header file
to the Microsoft Visual C++ project.

NOTE
When Visual Studio generates your derived dialog class, it generates a
constructor that invokes a CDialog modal constructor, which takes a
resource ID as a parameter. Your generated dialog header file contains the
class enumerator constant IDD, which is set to the dialog resource ID. In the
CPP file, the constructor implementation looks like this:

IMPLEMENT_DYNAMIC(CMyDialog, CDialog)
CMyDialog::CMyDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CMyDialog::IDD, pParent)
{
 // initialization code here
}

The use of enum IDD decouples the CPP file from the resource IDs that are
defined in the project’s resource.h file.

3. Use Visual Studio to add data members, exchange functions, and validation functions to
the dialog class.

4. Use Class View’s Properties window to add message handlers for the dialog box’s
buttons and other event-generating controls.

5. Write the code for special control initialization (in OnInitDialog) and for the message
handlers. Be sure the CDialog virtual member function OnOK is called when the user
closes the dialog box (unless the user cancels the dialog box). (Note: OnOK is called by
default.)

6. Write the code in your view class to activate the dialog box. This code consists of a call
to your dialog class’s constructor followed by a call to the DoModal dialog class
member function. DoModal returns only when the user exits the dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we’ll proceed with a real example, one step at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex07a Example: The Dialog Box That Ate Cincinnati

We’ll dive in headfirst here and build a dialog box that contains almost every kind of control.
The job will be easy because Visual Studio’s dialog editor will help us. The finished product is
shown in Figure 7-1.

Figure 7-1. The finished dialog box in action.

As you can see, the dialog box supports a human resources application. The program is
brightened a little by the use of Loyalty and Reliability scroll bar controls. Here is a classic
example of direct action and visual representation of data! These are standard Windows
controls we’re looking at—we’ll cover ActiveX controls in Chapter 9.

Building the Dialog Resource

Here are the steps for building the dialog resource:

1. Run the MFC Application Wizard to generate a project named Ex07a. Choose New
Project from Visual Studio’s File menu. In the New Project dialog box, select the MFC
Application, type the name Ex07a, and click OK. In the MFC Application Wizard,
accept all the defaults but two: On the Application Type page, select Single Document,
and on the Advanced Features page, deselect Printing And Print Preview.

2. Create a new dialog resource with ID IDD_DIALOG1. Choose Add Resource from
Visual Studio’s Project menu. In the Add Resource dialog box, click Dialog and then
click New. Visual Studio will create a new dialog resource and display it in the dialog
editor, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dialog editor will assign the resource ID IDD_DIALOG1 to the new dialog box.
Notice that the dialog editor inserts OK and Cancel buttons for the new dialog box.

3. Size the dialog box and set its properties. Enlarge the dialog box so that it is about 6
inches wide and 5 inches tall.

Right-click on the new dialog box and choose Properties from the shortcut menu. The
Properties window will appear (usually on the right side of the screen, depending upon
your profile settings):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The state of the pushpin button in the title bar of the Properties window determines
whether the Properties window stays visible. (When the pushpin is “pushed in,” the
dialog box stays visible and does not slide out of view when not in use.) In the
Properties window, change the Caption property for the new dialog box to The Dialog
Box That Ate Cincinnati. Change the System Menu property to False to remove the close
button from the dialog box title bar.

4. Add the dialog box’s controls. Use the Toolbox to add each control. (If the Toolbox is
not visible, choose Toolbox from the View menu.) Drag controls from the Toolbox to
the new dialog box, and then position and size the controls, as shown in Figure 7-1.
Here are the Toolbox controls:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
The dialog editor displays the position and size of each control in the lower
right corner of the status bar. The position units are special “dialog units,” or
DLUs, not device units. A horizontal DLU is the average width of the dialog
font divided by 4. A vertical DLU is the average height of the font divided
by 8. The dialog font is normally 8-point MS Sans Serif.

Here’s a brief description of the dialog box’s controls:

The static text control for the Name field. A static text control simply paints
characters on the screen. No user interaction occurs at run time. You can type the
text after you position the bounding rectangle (which sets the Caption property in
the Properties window), and you can resize the rectangle as needed. Add a static
text control for the Name field and set the Caption property to &Name. Follow the
same procedure for the other static text controls in the dialog box. All static text
controls have the same ID, but that’s okay because the program doesn’t need to
access any of them.

NOTE
If you include an ampersand (&) in the Caption property for a static
text control, at run time an underline will appear below the character
that follows when the Alt key is pressed. This enables the user to jump
to selected controls by holding down the Alt key and pressing the key
corresponding to the underlined character. The related control must
immediately follow the static text in the tabbing order. (I’ll discuss
tabbing order later in the chapter.) Thus, Alt+N jumps to the Name
edit control and Alt+K jumps to the Skill combo box. (See Figure 7-1,
shown earlier.) Needless to say, designated jump characters should be
unique within the dialog box. The Skill control uses Alt+K because
the SS Nbr control uses Alt+S.

The Name edit control. An edit control is the primary means of entering text in a
dialog box. Add a Name edit control and in the Properties window change this
control’s ID from IDC_EDIT1 to IDC_NAME. Leave the defaults for the rest of
the properties. Notice that the default sets Auto HScroll to True, which means that
the text scrolls horizontally when the box is filled.

The SS Nbr (social security number) edit control. The SS Nbr control is similar to
the Name edit control. Simply change its ID to IDC_SSN. Later, you’ll use the
Add Member Variable Wizard to make this a numeric field.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To align two or more controls, first select the controls by dragging or
by clicking on the first control and then Shift+clicking on the other
controls you want to align. Next, choose one of the alignment
commands (Lefts, Centers, Rights, Tops, Middles, or Bottoms) from
the Format menu’s Align submenu.

You can also align controls to a grid. To turn on the grid, click the
Toggle Grid button (on the Dialog Editor toolbar) to reveal the grid
and to help align controls.

The Bio (biography) edit control. This is a multi-line edit control. To make an edit
control multi-line, set the Multiline property to True. Set Auto HScroll to False
and change its ID to IDC_BIO.

The Category group box. This control serves only to group two radio buttons
visually. Set the Caption property to &Category. The default ID is sufficient.

The Hourly and Salary radio buttons. Position these radio buttons inside the
Category group box. For the Hourly radio button, set Caption to Hourly, Group to
True, ID to IDC_CAT, and Tabstop to True. For the Salary radio button, set
Caption to Salary and Tabstop to True.

Be sure that both buttons have the Auto property set to True (the default) and that
only the Hourly button has the Group property set to True. Setting the Group
property to True indicates that the Hourly radio button is the first control in the
Category group. When these properties are set correctly, Windows will ensure
that only one of the two buttons can be selected at a time. The Category group
box has no effect on the buttons’ operation.

The Insurance group box. This control holds three check boxes. Set the Caption
property to &Insurance and set the Group property to True.

NOTE
Later, when you set the dialog box’s tab order, you can ensure that the
Insurance group box follows the last radio button of the Category
group. Setting the Group property to True will “terminate” the
previous group. If you fail to do this, it isn’t a serious problem, but
you’ll get several warning messages when you run the program
through the debugger.

The Life, Disability, and Medical check boxes. Place these controls inside the
Insurance group box. Set the Caption properties to Life, Disability, and Medical
and set the IDs to IDC_LIFE, IDC_DIS, and IDC_MED. Unlike radio buttons,
check boxes are independent; the user can set any combination.

The Skill combo box. This is the first of three types of combo boxes. Change the
ID to IDC_SKILL, and then set the Type property to Simple. Increase the height of
the control to accommodate multiple lines. In the Data property, add the three
skills Manager, Programmer, and Writer (separating each line with a semicolon).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is a combo box of type Simple. The user can type anything in the top edit
control, use the mouse to select an item from the attached list box, or use the Up
or Down direction key to select an item from the attached list box.

The Educ (education) combo box. Change the ID to IDC_EDUC and set the Sort
property to False. In the Data property, add the three education levels High
School, College, and Graduate (separating each line with a semicolon. In this
drop-down combo box, the user can type anything in the edit box, click on the
arrow, and then select an item from the drop-down list or use the Up or Down
direction key to select an item from the attached list box.

NOTE
To set the size for the drop-down portion of a combo box, click on the
box’s arrow and drag down from the center of the bottom of the
rectangle.

The Dept (department) list box. Change the ID to IDC_DEPT; otherwise, leave
the defaults. In this list box, the user can select only a single item by using the
mouse, by using the Up or Down direction key, or by typing the first character of
a selection. Note that the list box doesn’t have a Data property, so you can’t enter
the initial choices. You’ll see how to programmatically set these choices later in
the chapter.

The Lang (language) combo box. Change the ID to IDC_LANG, and then set the
Type property to Drop List. In the Data property, add the languages English,
French, and Spanish (separating each line with a semicolon). With this drop-
down combo box, the user can select only from the attached list box. To select,
the user can click on the arrow and then select an entry from the drop-down list,
or the user can type in the first letter of the selection and then refine the selection
using the Up or Down direction key.

The Loyalty and Reliability horizontal scroll bars. Do not confuse scroll bar
controls with a window’s built-in scroll bars (as seen in scrolling views). A scroll
bar control behaves in the same manner as other controls do and can be resized at
design time. Position and size the horizontal scroll bar controls as shown earlier in
Figure 7-1, and then assign the IDs IDC_LOYAL and IDC_RELY.

The OK, Cancel, and Special buttons. Add a button control below the existing OK
and Cancel buttons. Set the Caption property to S&pecial and then set the ID
IDC_SPECIAL. Later, you’ll learn about special meanings that are associated
with the default IDs IDOK and IDCANCEL.

Any icon. (The MFC icon is shown as an example.) You can use the Picture
control to display any icon or bitmap in a dialog box, as long as the icon or
bitmap is defined in the resource script. We’ll use the program’s MFC icon,
identified as IDR_MAINFRAME. Set the Type option to Icon, and set the Image
property to IDR_MAINFRAME. Leave the ID as IDC_STATIC.

5. Check the dialog box’s tabbing order. Choose Tab Order from the Format menu. Use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Check the dialog box’s tabbing order. Choose Tab Order from the Format menu. Use
the mouse to set the tabbing order shown below. Click on each control in the order
shown, and then press Enter.

TIP
If you mess up the tab sequence partway through, you can recover with a
Ctrl+left mouse click on the last correctly sequenced control. Subsequent
mouse clicks will start with the next sequence number.

6. Save the resource file on disk. For safety, choose Save from the File menu or click the
Save button on the toolbar to save Ex07a.rc. Keep the newly built dialog box open in
the dialog editor.

Creating the Dialog Class

You’ve now built a dialog resource, but you can’t use it without a corresponding dialog class.
(The section titled “Understanding the Ex07a Application” later in this chapter explains the
relationship between the dialog box and the underlying classes.) Class View works in
conjunction with the dialog editor to create that class. Here are the steps to create a dialog
class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Start the MFC Class Wizard. In Class View, select the Ex07a project, as shown here.

On the Project menu, choose Add Class (or right-click on the project name in Class
View and choose Add, Add Class). In the Add Class dialog box, select the MFC Class
template. Click Open in the Add Class dialog box. The MFC Class Wizard will appear.

2. Add the CEx07aDialog class. Create a CDialog-based class by filling in the fields of the
MFC Class Wizard, as shown below. Be sure the Dialog ID drop-down list is set to
IDD_DIALOG1 so the dialog resource you created earlier is used.

When you click Finish, the CEx07aDialog class will be added to Class View and its
CPP file will be opened in the editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Add the CEx07aDialog member variables. After the CEx07aDialog class is added, you
can add member variables using the Add Member Variable Wizard (shown below). To
start the wizard, right-click on the CEx07aDialog class in Class View and choose Add,
Add Variable.

You must associate data members with each of the dialog box’s controls. To do this,
select the Control Variable check box, select a control from the Control ID drop-down
list, and select Value from the Category drop-down list. Type a name in the Variable
Name box and enter any other parameters. Here you can see the settings for adding the
CString member variable named m_strBio for the Bio edit control:

When you’re finished, click Finish and repeat this process for each of the controls listed
in the table on the following page.

As you select controls in the Add Member Variables Wizard, you can set such things as
the length of the string to enter or the range of numbers to enter. If you select a CString
variable, you can set its maximum number of characters; if you select a numeric
variable, you can set its minimum and maximum values. Set the minimum value for
IDC_SSN to 0 and the maximum value to 999999999.

Most relationships between control types and variable types are obvious. The way in
which radio buttons correspond to variables is not so intuitive, however. You should
associate an integer variable with each radio button group, with the first radio button
corresponding to value 0, the second to 1, and so forth.

Control ID Data Member Type Parameters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDC_BIO m_strBio CString Max chars = 1000

IDC_CAT m_bCat int

IDC_DEPT m_strDept CString

IDC_DIS m_bInsDis BOOL

IDC_EDUC m_strEduc CString

IDC_LANG m_strLang CString

IDC_LIFE m_bInsLife BOOL

IDC_LOYAL m_nLoyal int

IDC_MED m_bInsMed BOOL

IDC_NAME m_strName CString

IDC_RELY m_nRely int

IDC_SKILL m_strSkill CString

IDC_SSN m_nSsn int Min value = 0
Max value = 999999999

4. Add the message-handling function for the Special button. CEx07aDialog doesn’t need
many message-handling functions because the CDialog base class, with the help of
Windows, does most of the dialog management. When you specify the ID IDOK for the
OK button, for example, the virtual CDialog function OnOK gets called when the user
clicks the button. For other buttons, however, you need message handlers.

With the CEx07aDialog class selected in Class View, click the Events button at the top
of the Properties window to add event handlers. The Properties window should contain
an entry for IDC_SPECIAL. Expand the IDC_SPECIAL tree and click the
BN_CLICKED message. Click the down arrow for the BN_CLICKED message, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio invents a message handler named OnBnClickedSpecial. Click <Add>
OnBnClickedSpecial to add the message handler. Visual Studio opens the file
Ex07aDialog.cpp and moves to the OnBnClickedSpecial function. Insert a TRACE
statement in the OnBnclickedSpecial function by typing in the following boldface code,
which replaces the existing code:

void CEx07aDialog:: OnBnClickedSpecial ()
{
 TRACE("CEx07aDialog::OnBnClickedSpecial\n");
}

5. Add an OnInitDialog message-handling function. As you’ll see in a moment, Visual
Studio generates code that initializes a dialog box’s controls. This DDX (Dialog Data
Exchange) code won’t initialize the list-box choices, however, so you must override the
CDialog::OnInitDialog function. Although OnInitDialog is a virtual member function,
Visual Studio generates the prototype and skeleton if you map the WM_INITDIALOG
message in the derived dialog class. With the CEx07aDialog class selected in Class
View, click the Overrides button at the top of the Properties window. In the list of
overrides, select the OnInitDialog function and click the down arrow to select the
method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click <Add> OnInitDialog. Visual Studio will place the OnInitDialog function in
Ex07aDialog.cpp and open the source code file so you can edit the function. Type in the
boldface code shown here to replace the existing code:

BOOL CEx07aDialog::OnInitDialog()
{
 // Be careful to call CDialog::OnInitDialog
 // only once in this function
 CListBox* pLB = (CListBox*) GetDlgItem(IDC_DEPT);
 pLB->InsertString(-1, "Documentation");
 pLB->InsertString(-1, "Accounting");
 pLB->InsertString(-1, "Human Relations");
 pLB->InsertString(-1, "Security");
 // Call after initialization
 return CDialog::OnInitDialog();
}

This code initializes the Dept list box with four values. You can also use the same
initialization technique for the combo boxes in place of setting the Data property in the
resource.

Connecting the Dialog Box to the View

Now we’ve got the resource and the code for a dialog box, but it’s not connected to the view.
In most applications, you would probably use a menu command to display a dialog box, but
we haven’t studied menus yet. Here we’ll use the familiar mouse-click message
WM_LBUTTONDOWN to display the dialog box. The steps are as follows:

1. Add the OnLButtonDown member function. You’ve done this in the examples in earlier
chapters. Simply select the CEx07aView class in Class View, and at the top of the
Properties window, click the Messages button to display the list of messages for
CEx07aView. Select the WM_LBUTTONDOWN entry, click the down arrow, and select
<Add> OnLButtonDown to add the OnLButtonDown member function to
Ex07aView.cpp.

2. Write the code for OnLButtonDown in file Ex07aView.cpp. Add the boldface code
shown below. Most of the code consists of TRACE statements to print the dialog data
members after the user exits the dialog box, but the CEx07aDialog constructor call and
the DoModal call are the critical statements.

void CEx07aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx07aDialog dlg;
 dlg.m_strName = "Shakespeare, Will";
 dlg.m_nSsn = 307806636;
 dlg.m_nCat = 1; // 0 = hourly, 1 = salary
 dlg.m_strBio = "This person is not a well-motivated tech writer";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dlg.m_strBio = "This person is not a well-motivated tech writer";
 dlg.m_bInsLife = TRUE;
 dlg.m_bInsDis = FALSE;
 dlg.m_bInsMed = TRUE;
 dlg.m_strDept = "Documentation";
 dlg.m_strSkill = "Writer";
 dlg.m_nLang = 0;
 dlg.m_strEduc = "College";
 dlg.m_nLoyal = dlg.m_nRely = 50;
 int ret = dlg.DoModal();
 TRACE("DoModal return = %d\n", ret);
 TRACE("name = %s, ssn = %d, hourly = %d salary = %d\n",
 dlg.m_strName, dlg.m_nSsn, dlg.m_nCat);
 TRACE("dept = %s, skill = %s, lang = %d, educ = %s\n",
 dlg.m_strDept, dlg.m_strSkill, dlg.m_nLang, dlg.m_strEduc);
 TRACE("life = %d, dis = %d, med = %d, bio = %s\n",
 dlg.m_bInsLife, dlg.m_bInsDis, dlg.m_bInsMed, dlg.m_strBio);
 TRACE("loyalty = %d, reliability = %d\n",
 dlg.m_nLoyal, dlg.m_nRely);
}

3. Add code to the virtual OnDraw function in the file Ex07aView.cpp. To prompt the user
to press the left mouse button, code the CEx07aView::OnDraw function. (The skeleton
was generated by MFC Application Wizard.) The boldface code shown here (which you
type in) replaces the existing code:

void CEx07aView::OnDraw(CDC* pDC)
{
 CEx07aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

4. Add the dialog class include statement to Ex07aView.cpp. The OnLButtonDown
function shown above depends on the declaration of class CEx07aDialog. You must
insert the include statement

#include "Ex07aDialog.h"

at the top of the CEx07aView class source code file (Ex07aView.cpp), after the
following statement:

#include "Ex07aView.h"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Build and test the application. If you’ve done everything correctly, you should be able
to build and run the Ex07a application through Visual C++. Try entering data in each
control, and then click OK and observe the TRACE results in the Output window.
Notice that the scroll bar controls don’t do much yet; we’ll attend to them later. Notice
what happens when you press Enter while typing in text data in a control: The dialog
box closes immediately. Here’s an example of the TRACE results in the Output window:

Understanding the Ex07a Application

When your program calls DoModal, control is returned to your program only when the user
closes the dialog box. If you understand that, you understand modal dialog boxes. When you
start creating modeless dialog boxes, you’ll begin to appreciate the programming simplicity of
modal dialog boxes. A lot happens “out of sight” as a result of that DoModal call, however.
Here’s a “what calls what” summary:

 CDialog::DoModal
 CEx07aDialog::OnInitDialog
 …additional initialization…
 CDialog::OnInitDialog
 CWnd::UpdateData(FALSE)
 CEx07aDialog::DoDataExchange
 user enters data…
 user clicks the OK button
 CEx07aDialog::OnOK
 …additional validation…
 CDialog::OnOK
 CWnd::UpdateData(TRUE)
 CEx07aDialog::DoDataExchange
 CDialog::EndDialog(IDOK)

OnInitDialog and DoDataExchange are virtual functions overridden in the CEx07aDialog
class. Windows calls OnInitDialog as part of the dialog box initialization process, and that
results in a call to DoDataExchange, a CWnd virtual function that was overridden by Visual
Studio. Here is a listing of that function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx07aDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_BIO, m_strBio);
 DDV_MaxChars(pDX, m_strBio, 1000);
 DDX_Radio(pDX, IDC_CAT, m_nCat);
 DDX_LBString(pDX, IDC_DEPT, m_strDept);
 DDX_Check(pDX, IDC_DIS, m_bInsDis);
 DDX_CBString(pDX, IDC_EDUC, m_strEduc);
 DDX_CBIndex(pDX, IDC_LANG, m_nLang);
 DDX_Check(pDX, IDC_LIFE, m_bInsLife);
 DDX_Scroll(pDX, IDC_LOYAL, m_nLoyal);
 DDX_Check(pDX, IDC_MED, m_bInsMed);
 DDX_Text(pDX, IDC_NAME, m_strName);
 DDX_Scroll(pDX, IDC_RELY, m_nRely);
 DDX_CBString(pDX, IDC_SKILL, m_strSkill);
 DDX_Text(pDX, IDC_SSN, m_nSsn);
 DDV_MinMaxInt(pDX, m_nSsn, 0, 999999999);
}

The DoDataExchange function and the DDX_ (exchange) and DDV_ (validation) functions
are “bidirectional.” If UpdateData is called with a FALSE parameter, the functions transfer
data from the data members to the dialog box controls. If the parameter is TRUE, the functions
transfer data from the dialog box controls to the data members. DDX_Text is overloaded to
accommodate a variety of data types.

The EndDialog function is critical to the dialog box exit procedure. DoModal returns the
parameter passed to EndDialog. IDOK accepts the dialog box’s data, and IDCANCEL cancels
the dialog box.

TIP
You can write your own “custom” DDX function and wire it into Visual C++. This
feature is useful if you’re using a unique data type throughout your application.
For details, see the “TN026: DDX and DDV Routines” topic in the Visual Studio
documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enhancing the Ex07a Application

The Ex07a application requires little coding for a lot of functionality. Now we’ll make a new
version of the program that uses some hand-coding to add extra features. We’ll eliminate
Ex07a’s rude habit of dumping the user in response to a press of the Enter key, and we’ll hook
up the scroll bar controls.

Taking Control of the OnOK Exit

In the original Ex07a application, the CDialog::OnOK virtual function handles the OK button,
which triggers data exchange and the exit from the dialog box. Pressing the Enter key happens
to have the same effect, and that might or might not be what you want. If the user presses
Enter while in the Name edit control, for example, the dialog box closes immediately.

What’s going on here? When the user presses Enter, Windows looks to see which button has
the input focus, as indicated on the screen by a dotted rectangle. If no button has the focus,
Windows looks for the default button that the program or the resource specifies. (The default
button has a thicker border.) If the dialog box has no default button, the virtual OnOK function
is called, even if the dialog box does not contain an OK button.

You can disable the Enter key by writing a do-nothing CEx07aDialog:: OnOK function and
adding the exit code to a new function that responds to clicking the OK button. Here are the
steps:

1. “Map” the IDOK button to the virtual OnOK function.In Class View, select the
CEx07aDialog class. At the top of the Properties window, click the Overrides button to
get the list of overridden functions. Click OnOK from the function list, click the down
arrow, and click <Add> OnOK. This action generates the prototype and skeleton for
OnOK. Leave the OnOK function as is for now.

2. Use the dialog editor to change the OK button ID.Display the IDD_DIALOG1 resource
and select the OK button. In the Properties window, change its ID from IDOK to
IDC_OK, and then set the Default Button property to False.

3. Create a member function named OnClickedOk.In Class View, select the CEx07aDialog
class. Click the Events button at the top of the Properties window. Expand the IDC_OK
item, select the BN_CLICKED message, and then click <Add> OnBnClickedOk to add
the OnBnClicked message handler for the newly renamed control IDC_OK.

4. Edit the body of the OnClickedOk function in Ex07aDialog.cpp.This function calls the
base class OnOK function, as did the original CEx07aDialog::OnOK function. Here is
the code:

void CEx07aDialog::OnClickedOk()
{
 TRACE("CEx07aDialog::OnClickedOk\n");
 CDialog::OnOK();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

5. Edit the original OnOK function in Ex07aDialog.cpp.This function is a “leftover”
handler for the old IDOK button. Edit the code as shown here:

void CEx07aDialog::OnOK()
{
 // dummy OnOK function -- do NOT call CDialog::OnOK()
 TRACE("CEx07aDialog::OnOK\n");
}

6. Build and test the application.Try pressing the Enter key now. Nothing should happen,
but TRACE output should appear in the Output window. Clicking the OK button should
exit the dialog box as before, however.

OnCancel Processing

Just as pressing the Enter key triggers a call to OnOK, pressing the Esc key triggers a call to
OnCancel, which results in an exit from the dialog box with a DoModal return code of
IDCANCEL. Ex07a does no special processing for IDCANCEL; therefore, pressing the Esc
key (or clicking the Close button) closes the dialog box. You can circumvent this process by
substituting a dummy OnCancel function, following approximately the same procedure you
used for the OK button.

Hooking Up the Scroll Bar Controls

The dialog editor allows you to include scroll bar controls in your dialog box, and the Add
Member Variable Wizard lets you add integer data members. You must add code to make the
Loyalty and Reliability scroll bars work.

Scroll bar controls have position and range values that can be read and written. If you set the
range to (0, 100), for example, a corresponding data member with a value of 50 will position
the scroll box at the center of the bar. (The function CScrollBar::SetScrollPos also sets the
scroll box position.) The scroll bars send the WM_HSCROLL and WM_VSCROLL messages to
the dialog box when the user drags the scroll box or clicks the arrows. The dialog box’s
message handlers must decode these messages and position the scroll box accordingly.

Each control you’ve seen so far has had its own individual message handler function. Scroll
bar controls are different because all horizontal scroll bars in a dialog are tied to a single
WM_HSCROLL message handler and all vertical scroll bars are tied to a single
WM_VSCROLL handler. Because this monster dialog contains two horizontal scroll bars, the
single WM_HSCROLL message handler must figure out which scroll bar sent the scroll
message.

Here are the steps for adding the scroll bar logic to Ex07a:

1. Add the class enum statements for the minimum and maximum scroll range.In
Ex07aDialog.h, add the following lines at the top of the class declaration:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enum { nMin = 0 };
enum { nMax = 100 };

2. Edit the OnInitDialog function to initialize the scroll ranges.In the OnInitDialog
function, we’ll set the minimum and the maximum scroll values such that the
CEx07aDialog data members represent percentage values. A value of 100 means “Set
the scroll box to the extreme right”; a value of 0 means “Set the scroll box to the
extreme left.”

Add the following code to the CEx07aDialog member function OnInitDialog in the file
Ex07aDialog.cpp:

CScrollBar* pSB = (CScrollBar*) GetDlgItem(IDC_LOYAL);
pSB->SetScrollRange(nMin, nMax);
pSB = (CScrollBar*) GetDlgItem(IDC_RELY);
pSB->SetScrollRange(nMin, nMax);

3. Add a scroll bar message handler to CEx07aDialog.Select CEx07aDialog in Class View
and click the Messages button at the top of the Properties window. Select the
WM_HSCROLL message, and then add the member function OnHScroll. Enter the
following code shown in boldface:

void CEx07aDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 int nTemp1, nTemp2;
 nTemp1 = pScrollBar->GetScrollPos();
 switch(nSBCode) {
 case SB_THUMBPOSITION:
 pScrollBar->SetScrollPos(nPos);
 break;
 case SB_LINELEFT: // left arrow button
 nTemp2 = (nMax - nMin) / 10;
 if ((nTemp1 - nTemp2) > nMin) {
 nTemp1 -= nTemp2;
 }
 else {
 nTemp1 = nMin;
 }
 pScrollBar->SetScrollPos(nTemp1);
 break;
 case SB_LINERIGHT: // right arrow button
 nTemp2 = (nMax - nMin) / 10;
 if ((nTemp1 + nTemp2) < nMax) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if ((nTemp1 + nTemp2) < nMax) {
 nTemp1 += nTemp2;
 }
 else {
 nTemp1 = nMax;
 }
 pScrollBar->SetScrollPos(nTemp1);
 break;
 }
}

4. Build and test the application.Build and run Ex07a again. Do the scroll bars work this
time? The scroll boxes should “stick” after you drag them with the mouse, and they
should move when you click the scroll bars’ arrows. (Notice that we haven’t added logic
to cover the user’s click on the scroll bar itself.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Identifying Controls: CWnd Pointers and Control IDs

When you lay out a dialog resource in the dialog editor, you identify each control by an ID
such as IDC_SSN. In your program code, however, you often need access to a control’s
underlying window object. The MFC library provides the CWnd::GetDlgItem function for
converting an ID to a CWnd pointer. You’ve seen this already in the OnInitDialog member
function of class CEx07aDialog. The application framework “manufactured” this returned
CWnd pointer because there never was a constructor call for the control objects. This pointer is
temporary and should not be stored for later use.

TIP
If you need to convert a CWnd pointer to a control ID, use the MFC library
GetDlgCtrlID member function of class CWnd.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting the Dialog Box Background Color or a Control Color

You can change the background color of individual dialog boxes or specific controls in a
dialog box, but you have to do some extra work. The parent dialog is sent a WM_CTLCOLOR
message for each control immediately before the control is displayed. A WM_CTLCOLOR
message is also sent on behalf of the dialog box itself. If you map this message in your derived
dialog class, you can set the foreground and background text colors and select a brush for the
control or dialog nontext area.

Following is a sample OnCtlColor function that sets all edit control backgrounds to yellow
and the dialog box background to red. The m_hYellowBrush and m_hRedBrush variables are
data members of type HBRUSH, which are initialized in the dialog box’s OnInitDialog
function. The nCtlColor parameter indicates the type of control, and the pWnd parameter
identifies the specific control. If you wanted to set the color for an individual edit control, you
can convert pWnd to a child window ID and test it.

HBRUSH CMyDialog::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)
{
 if (nCtlColor == CTLCOLOR_EDIT) {
 pDC->SetBkColor(RGB(255, 255, 0)); // yellow
 return m_hYellowBrush;
 }
 if (nCtlColor == CTLCOLOR_DLG) {
 pDC->SetBkColor(RGB(255, 0, 0)); // red
 return m_hRedBrush;
 }
 return CDialog::OnCtlColor(pDC, pWnd, nCtlColor);
}

NOTE
The dialog box does not post the WM_CTLCOLOR message in the message queue;
instead, it calls the Win32 SendMessage function to send the message
immediately. The message handler can then return a parameter, in this case a
handle to a brush. This is not an MFC CBrush object but rather a Win32
HBRUSH. You can create the brush by calling the Win32 functions
CreateSolidBrush, CreateHatchBrush, and so forth.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Dialog Controls at Run Time

You’ve seen how to use the resource editor to create dialog controls at build time. If you need
to add a dialog control at run time, here are the programming steps:

1. Add an embedded control window data member to your dialog class.The MFC control
window classes include CButton, CEdit, CListBox, and CComboBox. An embedded
control C++ object is constructed and destroyed along with the dialog object.

2. Add an ID constant for the new control.Right-click on the dialog class in Resource
View and choose Resource Symbols to open the Resource Symbols dialog box. Add the
new constant.

3. Use Class View’s Property Page to override CDialog::OnInitDialog.This function
should call the embedded control window’s Create member function. This call displays
the new control in the dialog box. Windows will destroy the control window when it
destroys the dialog box.

4. In your derived dialog class, manually add the necessary notification message handlers
for your new control.

In Chapter 12, you’ll add a rich edit control to a view at run time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Other Control Features

You’ve seen how to customize the control class CScrollBar by adding code in the dialog box’s
OnInitDialog member function. You can program other controls in a similar fashion. In the
Visual Studio documentation, look at the control classes, particularly CListBox and
CComboBox. Each has a number of features that the Properties window and the Visual Studio
wizards do not directly support. Some combo boxes, for example, can support multiple
selections by applying the LBS_MULTIPLESEL list box style to the combo box. If you want
to use these features, don’t try to use Class View to add data members. Instead, define your
own data members and add your own exchange code in OnInitDialog and OnBnClickedOk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Common Dialog Boxes

Windows provides a group of standard user interface dialog boxes (in COMDLG32.DLL), and
these are supported by the MFC library classes. You’re probably familiar with all or most of
these dialog boxes because so many Windows-based applications, including Visual C++
applications, already use them. All the common dialog classes are derived from a common
base class, CCommonDialog. Table 7-1 shows lists the CCommonDialog classes.

Table 7-1. CCommonDialog Classes
Class Purpose

CColorDialog Allows the user to select or create a color

CFileDialog Allows the user to open or save a file

CFindReplaceDialog Allows the user to substitute one string for another

CFontDialog Allows the user to select a font from a list of available fonts

COleDialog Useful for inserting OLE objects

CPageSetupDialog Allows the user to input page measurement parameters

CPrintDialog Allows the user to set up the printer and print a document

CPrintDialogEx Printing and Print Preview for Windows 2000

One characteristic that all common dialog boxes share is that they gather information from the
user but don’t do anything with it. The file dialog box can help the user select a file to open,
but it really just provides your program with the pathname—your program must make the call
that opens the file. Similarly, a font dialog box fills in a structure that describes a font, but it
doesn’t create the font.

Using the CFileDialog Class Directly

Using the CFileDialog class to open a file is easy. The following code opens a file that the
user has selected using the dialog box:

CFileDialog dlg(TRUE, "bmp", "*.bmp");
if (dlg.DoModal() == IDOK) {
 CFile file;
 VERIFY(file.Open(dlg.GetPathName(), CFile::modeRead));
}

The first constructor parameter (TRUE) specifies that this object is a File Open dialog box
instead of a File Save dialog box. The default file extension is BMP, and *.bmp appears first in
the filename edit box. The CFileDialog::GetPath-Name function returns a CString object that
contains the full pathname of the selected file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deriving from the Common Dialog Classes

You can usually use the common dialog classes directly. If you derive your own classes, you
can add functionality without duplicating code. Each COMDLG32 dialog works a little
differently, however. The next example is specific to the file dialog box, but it should give you
some ideas for customizing the other common dialog boxes.

Nested Dialog Boxes

Win32 provides a way to “nest” one dialog box inside another so that multiple dialog boxes
appear as one seamless whole. You must first create a dialog resource template with a “hole”
in it—typically a group box control—with the specific child window ID stc32 (=0x045f).
Your program sets some parameters that tell COMDLG32 to use your template. In addition,
your program must hook into the COMDLG32 message loop so that it gets first crack at
selected notifications. When you’re done with all of this, you’ll notice that you’ve created a
dialog box that is a child of the COMDLG32 dialog box, even though your template wraps
COMDLG32’s template. This sounds difficult, and it is, unless you use MFC. With MFC, you
build the dialog resource template with a “hole” in it as described above, derive a class from
one of the common dialog base classes, add the class-specific connection code in
OnInitDialog, and then happily use the Properties window for a class to map the messages that
originate from your template’s new controls.

The Ex07b Example: CFileDialog

In this example, we’ll derive a class CEx07bDialog that adds a working Delete All Matching
Files button to the standard file dialog box. It will also change the dialog box’s title and
change the Open button’s caption to Delete (to delete a single file). The example illustrates
how you can use nested dialog boxes to add new controls to standard common dialog boxes.
The new file dialog box is activated as in the previous examples—by pressing the left mouse
button when the mouse cursor is in the view window. Because you should be gaining skill
with Visual C++, the following steps won’t be as detailed as those for the earlier examples.
Figure 7-2 shows what the dialog box looks like.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-2. The Delete File dialog box in action.

Follow these steps to build the Ex07b application:

1. Create a new MFC Application project named Ex07b.In the MFC Application Wizard,
accept all the defaults but two: On the Application Type page, select Single Document,
and on the Advanced Features page, deselect Printing And Print Preview.

2. Create a new dialog resource and set its properties.On the Project menu, choose Add
Resource and add a new dialog box. Make the dialog box about 3 by 5 inches. Using the
Properties window for the dialog box, change the ID property to IDD_FILESPECIAL,
set the Style property to Child, set the Border property to None, and set the Clip
Siblings and Visible properties to True.

3. Specify controls for the dialog box.Delete the existing OK and Cancel buttons on the
dialog box. Add a button at the bottom of the dialog box and set the ID to
IDC_DELETE and set the Caption to Delete All Matching Files. Add a group box, set
the ID to stc32=0x045f, and set the Visible property to False, as shown here.

Check your work by right-clicking on the IDD_FILESPECIAL dialog resource in
Resource View and choosing Resource Symbols. You should see a symbol list like the
one shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Use the MFC Class Wizard to create the CSpecialFileDialog class.In Class View, right-
click on the Ex07b project, choose Add, Add Class, select the MFC Class template, and
click Open to start the MFC Class Wizard. Fill in the wizard, as shown below. Be sure
to change the filenames to SpecFileDlg.h and SpecFileDlg.cpp. Unfortunately, we
cannot use the Base Class drop-down list to change the base class to CFileDialog—that
would decouple our class from the IDD_FILESPECIAL template. We have to change
the base class by hand. When you’re finished, click the Finish button.

5. Edit the file SpecFileDlg.h.Change the line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class CSpecialFileDialog : public CDialog

to

class CSpecialFileDialog : public CFileDialog

Add the following two public data members:

CString m_strFilename;
BOOL m_bDeleteAll;

Finally, edit the constructor declaration:

CSpecialFileDialog(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt = NULL,
 LPCTSTR lpszFileName = NULL,
 DWORD dwFlags = OFN_HIDEREADONLY │ OFN_OVERWRITEPROMPT,
 LPCTSTR lpszFilter = NULL,
 CWnd* pParentWnd = NULL);

6. Replace CDialog with CFileDialog in SpecFileDlg.cpp.Choose Find And Replace,
Replace from the Edit menu, and replace this name globally.

7. Edit the CSpecialFileDialog constructor in SpecFileDlg.cpp.The derived class
constructor must invoke the base class constructor and initialize the m_bDeleteAll data
member. In addition, it must set some members of the CFileDialog base class data
member m_ofn, which is an instance of the Win32 OPENFILENAME structure. The
Flags and lpTemplateName members control the coupling to your IDD_FILESPECIAL
dialog template, and the lpstrTitle member changes the main dialog box title. Edit the
constructor as follows:

CSpecialFileDialog::CSpecialFileDialog(BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt, LPCTSTR lpszFileName, DWORD dwFlags,
 LPCTSTR lpszFilter, CWnd* pParentWnd)
 : CFileDialog(bOpenFileDialog, lpszDefExt, lpszFileName,
 dwFlags, lpszFilter, pParentWnd)
{
 m_ofn.Flags │= OFN_ENABLETEMPLATE;
 m_ofn.lpTemplateName = MAKEINTRESOURCE(IDD_FILESPECIAL);
 m_ofn.lpstrTitle = "Delete File";
 m_bDeleteAll = FALSE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_bDeleteAll = FALSE;
}

8. Override the OnInitDialog function in the CSpecialDialog class.Select the
CSpecialFileDialog class in Class View, click the Overrides button in the Properties
window, and add the OnInitDialog function. The OnInitDialog member function needs
to change the common dialog box’s Open button caption to Delete. The child window
ID is IDOK. Edit the code as follows.

BOOL CSpecialFileDialog::OnInitDialog()
 BOOL bRet = CFileDialog::OnInitDialog();
 if (bRet == TRUE) {
 GetParent()->GetDlgItem(IDOK)->SetWindowText("Delete");
 }
 return bRet;
}

9. Add a BN_CLICKED message handler for the new IDC_DELETE button (Delete All
Matching Files) in the CSpecialDialog class.Select the CSpecialFileDialog class in
Class View, click the Events button in the Properties window, and add the
OnBnClickedDelete message handler. The OnBnClickedDelete member function sets
the m_bDeleteAll flag and then forces the main dialog box to exit as if the Cancel button
had been clicked. The client program (in this case, the view) gets the IDCANCEL return
from DoModal and reads the flag to see whether it should delete all files. Edit the code
as follows:

 void CSpecialFileDialog::OnBnClickedDelete()
{
 m_bDeleteAll = TRUE;
 // 0x480 is the child window ID of the File Name edit control
 // (as determined by SPYXX)
 GetParent()->GetDlgItem(0x480)->GetWindowText(m_strFilename);
 GetParent()->SendMessage(WM_COMMAND, IDCANCEL);
}

10. Add code to the virtual OnDraw function in file Ex07bView.cpp.The CEx07bView
OnDraw function (whose skeleton was generated by MFC Application Wizard) should
be coded as follows to prompt the user to press the mouse button:

void CEx07bView::OnDraw(CDC* pDC)
{
 CEx07bDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

11. Add the WM_LBUTTONDOWN message handler to the CEx07bView class.Select the
CEx07bView class in Class View, click the Messages button in the Properties window,
and add the OnLButtonDown message handler. Edit the code as follows:

void CEx07bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CSpecialFileDialog dlgFile(TRUE, NULL, "*.obj");
 CString strMessage;
 int nModal = dlgFile.DoModal();
 if ((nModal == IDCANCEL) && (dlgFile.m_bDeleteAll)) {
 strMessage.Format(
 "Are you sure you want to delete all %s files?",
 dlgFile.m_strFilename);
 if (AfxMessageBox(strMessage, MB_YESNO) == IDYES) {
 HANDLE h;
 WIN32_FIND_DATA fData;
 while((h = ::FindFirstFile(
 dlgFile.m_strFilename, &fData))
 != (HANDLE) 0xFFFFFFFF) { // no MFC equivalent
 if (::DeleteFile(fData.cFileName) == FALSE) {
 strMessage.Format("Unable to delete file %s\n",
 fData.cFileName);
 AfxMessageBox(strMessage);
 break;
 }
 }
 }
 }
 else if (nModal == IDOK) {
 CString strSingleFilename = dlgFile.GetPathName();
 strMessage.Format(
 "Are you sure you want to delete %s?",
 strSingleFilename);
 if (AfxMessageBox(strMessage, MB_YESNO) == IDYES) {
 CFile::Remove(strSingleFilename);
 }
 }
}

Remember that common dialog boxes only gather data. Because the view is the client of
the dialog box, the view must call DoModal for the file dialog object and then figure out
what to do with the information returned. In this case, the view has the return value from
DoModal (either IDOK or IDCANCEL) and the value of the public m_bDeleteAll data
member, and it can call various CFileDialog member functions such as GetPathName.
If DoModal returns IDCANCEL and the flag is TRUE, the function makes the Win32
file system calls necessary to delete all the matching files. If DoModal returns IDOK,
the function can use the MFC CFile functions to delete an individual file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the global AfxMessageBox function is a convenient way to pop up a simple dialog
that displays some text and then queries the user for a Yes/No answer. The Visual
Studio documentation describes all of the message box variations and options.

12. Include SpecFileDlg.h in Ex07bView.cpp.Of course, you’ll need to include the
statement

#include "SpecFileDlg.h"

after the line

#include "Ex07bView.h"

13. Build and test the application.Build and run Ex07b. Pressing the left mouse button
should bring up the Delete File dialog box, and you should be able to use it to navigate
through the disk directory and delete files. Be careful not to delete your important
source files!

Other Customizations for CFileDialog

In the Ex07b example, you added a button to the dialog box. It’s easy to add other controls,
too. Just put them in the dialog resource template, and if they’re standard Windows controls
such as edit controls or list boxes, you can use the Add Member Variable Wizard to add data
members and DDX/DDV code to your derived class. The client program can set the data
members before calling DoModal, and it can retrieve the updated values after DoModal
returns.

NOTE
Even if you don’t use nested dialog boxes, two windows are still associated with a
CFileDialog object. Suppose you have overridden OnInitDialog in a derived class
and you want to assign an icon to the file dialog box. You must call
CWnd::GetParent to get the top-level window, just as you did in the Ex07b
example. Here’s the code:

HICON hIcon = AfxGetApp()->LoadIcon(IDI_MYICON);
GetParent()->SetIcon(hIcon, TRUE); // Set big icon
GetParent()->SetIcon(hIcon, FALSE); // Set small icon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming a Modeless Dialog Box

The dialog boxes we’ve worked with so far in this chapter have been ordinary modal dialog
boxes. Now let’s move on to the modeless dialog box and to the common dialog boxes for
modern versions of the Windows base class CDialog. They both use a dialog resource that you
can build with the dialog editor. If you’re using a modeless dialog box with a view, you’ll
need to know some specialized programming techniques.

Creating Modeless Dialog Boxes

For modal dialog boxes, you’ve already learned that you construct a dialog object using a
CDialog constructor that takes a dialog resource template ID as a parameter, and then you
display the modal dialog box by calling the DoModal member function. The window ceases to
exist as soon as DoModal returns. Thus, you can construct a modal dialog object on the stack,
knowing that the dialog box has been destroyed by the time the dialog object goes out of
scope.

Modeless dialog boxes are more complicated. You start by invoking the CDialog default
constructor to construct the dialog object, but to create the dialog box you need to call the
CDialog::Create member function instead of DoModal. Create takes the resource ID as a
parameter and returns immediately with the dialog box still on the screen. You must worry
about exactly when to construct the dialog object, when to create the dialog box, when to
destroy the dialog box, and when to process user-entered data.

Table 7-2 summarizes the differences between creating a modal dialog box and a modeless
dialog box.

Table 7-2. Modal vs. Modeless Dialog Boxes
Modal Dialog Box Modeless Dialog Box

Constructor Used Constructor with resource ID
param

Default constructor (no
params)

Function Used to Create
Window

DoModal Create with resource ID
param

User-Defined Messages

Suppose you want the modeless dialog box to be destroyed when the user clicks the dialog
box’s OK button. This presents a problem. How does the view know that the user has clicked
the OK button? The dialog box could call a view class member function directly, but that
would “marry” the dialog box to a particular view class. A better solution is for the dialog box
to send the view a user-defined message as the result of a call to the OK button message-
handling function. When the view gets the message, it can destroy the dialog box (but not the
object so that it can maintain any user data specified in the dialog box). This sets the stage for
the creation of a new dialog box.

You have two options for sending Windows messages: the CWnd::SendMessage function or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You have two options for sending Windows messages: the CWnd::SendMessage function or
the PostMessage function. The former causes an immediate call to the message-handling
function, and the latter posts a message in the Windows message queue. Because there’s a
slight delay with the PostMessage option, it’s reasonable to expect that the handler function
has returned by the time the view gets the message.

Dialog Box Ownership

Now suppose you’ve accepted the dialog box default pop-up style, which means that the
dialog box isn’t confined to the view’s client area. As far as Windows is concerned, the dialog
box’s “owner” is the application’s main frame window (which you’ll see in Chapter 12), not
the view. You need to know the dialog box’s view to send the view a message. Therefore,
your dialog class must track its own view through a data member that the constructor sets. The
CDialog constructor’s pParent parameter doesn’t have any effect here, so don’t bother using
it.

The Ex07c Example: A Modeless Dialog Box

We could convert the monster dialog box created earlier in the chapter to a modeless dialog
box, but starting from scratch with a simpler dialog box is easier. Example Ex07c uses a
dialog box with one edit control, an OK button, and a Cancel button. As in the Dialog Box
That Ate Cincinnati example, pressing the left mouse button while the mouse cursor is inside
the view window brings up the dialog box, but now we have the option of destroying it in
response to another event—pressing the right mouse button when the mouse cursor is inside
the view window. We’ll allow only one open dialog box at a time, so we must be sure that a
second left button press doesn’t bring up a duplicate dialog box.

To summarize the upcoming steps, the Ex07c view class has a single associated dialog object
that is constructed on the heap when the view is constructed. The dialog box is created and
destroyed in response to user actions, but the dialog object is not destroyed until the
application terminates.

Here are the steps to create the Ex07c example:

1. Create a new MFC Application project named Ex07c.In the MFC Application Wizard,
accept all the defaults but two: On the Application Type page, select Single Document,
and on the Advanced Features page, deselect Printing And Print Preview.

2. Create a new dialog resource.On the Project menu, select Add Resource and add a new
dialog box. The dialog editor assigns the ID IDD_DIALOG1 to the new dialog box.
Using the Properties window for the dialog box, change the Caption property to
Modeless Dialog and set the Visible property to True. Leave the default OK and Cancel
buttons with IDs IDOK and IDCANCEL

3. Add controls to the dialog box.Add a static text control and an edit control with the
default ID IDC_EDIT1. Change the Caption property of the static text control to Edit 1.
Here is the completed dialog box:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Use the MFC Class Wizard to create the CEx07cDialog class.In Class View, right-click
on the Ex07c project, choose Add and then Add Class, select the MFC Class template,
and click Open to start the MFC Class Wizard. Name the class CEx07cDialog, make
sure it derives from CDialog, and set the Dialog ID to IDD_DIALOG1, as shown here.
When you’re finished, click the Finish button.

5. Add message handlers for IDCANCEL and IDOK.Select the CEx07cDialog class in
Class View, click the Events button in the Properties window, and add the
OnBnClickedCancel and OnBnClickedOk message handlers as shown in the following
table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object ID Message Member Function

IDCANCEL BN_CLICKED OnBnClickedCancel

IDOK BN_CLICKED OnBnClickedOk

6. Add a variable to the CEx07cDialog class.Select the CEx07cDialog class in Class View.
Choose Add Variable from the Project menu, and use the Add Member Variable Wizard
to add member variables for the IDC_EDIT1 control. Make the variable of type CString
and name it m_strEdit1, as shown here:

7. Edit Ex07cDialog.h to add a view pointer and function prototypes.Type the following
boldface code in the CEx07cDialog class declaration:

private:
 CView* m_pView;

Also, add the function prototypes as follows:

public:
 CEx07cDialog(CView* pView);
 BOOL Create();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
Using the CView class rather than the CEx07cView class allows the dialog
class to be used with any view class.

8. Edit Ex07cDialog.h to define the WM_GOODBYE message ID.Add the following line
of code at the top of Ex07cDialog.h:

#define WM_GOODBYE WM_USER + 5

The Windows constant WM_USER is the first message ID available for user-defined
messages. The application framework uses a few of these messages, so we’ll skip over
the first five messages.

NOTE
Visual C++ maintains a list of symbol definitions in your project’s
resource.h file, but the resource editor does not understand constants based
on other constants. Don’t manually add WM_GOODBYE to resource.h
because Visual C++ might delete it.

9. Add the modeless constructor in the file Ex07cDialog.cpp.You could modify the
existing CEx07cDialog constructor, but if you add a separate one, the dialog class can
serve for both modal and modeless dialog boxes. Add the following code to
Ex07cDialog.cpp.

CEx07cDialog::CEx07cDialog(CView* pView) // modeless constructor
: m_strEdit1(_T(""))
{
 m_pView = pView;
}

You should also add the following line to the modal constructor generated by the MFC
Application Wizard:

IMPLEMENT_DYNAMIC(CEx07cDialog, CDialog)
CEx07cDialog::CEx07cDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CEx07cDialog::IDD, pParent)
 , m_strEdit1(_T(""))
{
 m_pView = NULL;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The C++ compiler is clever enough to distinguish between the modeless constructor
CEx07cDialog(CView*) and the modal constructor CEx07cDialog(CWnd*). If the
compiler sees an argument of class CView or a derived CView class, it generates a call
to the modeless constructor. If it sees an argument of class CWnd or another derived
CWnd class, it generates a call to the modal constructor.

10. Add the Create function in Ex07cDialog.cpp.This derived dialog class Create function
calls the base class function with the dialog resource ID as a parameter. Add the
following lines:

BOOL CEx07cDialog::Create()
{
 return CDialog::Create(CEx07cDialog::IDD);
}

NOTE
Create is not a virtual function. You can choose a different name if you
want to.

11. Edit the OnBnClickedCancel and OnBnClickedOk functions in Ex07cDialog.cpp.These
virtual functions generated in an earlier step are called in response to dialog button
clicks. Add the following code shown in boldface:

void CEx07cDialog::OnBnClickedCancel()
{
 if (m_pView != NULL) {
 // modeless case -- do not call base class OnCancel
 m_pView->PostMessage(WM_GOODBYE, IDCANCEL);
 }
 else {
 CDialog::OnCancel(); // modal case
 }
}

void CEx07cDialog::OnBnClickedOk()
{
 if (m_pView != NULL) {
 // modeless case -- do not call base class OnOK
 UpdateData(TRUE);
 m_pView->PostMessage(WM_GOODBYE, IDOK);
 }
 else {
 CDialog::OnOK(); // modal case
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the dialog box is being used as a modeless dialog box, it sends the user-defined
message WM_GOODBYE to the view. We’ll worry about handling the message later.

IMPORTANT
For a modeless dialog box, be sure to not call the CDialog::OnOK or
CDialog::OnCancel function. This means you must override these virtual
functions in your derived class; otherwise, using the Esc key, the Enter key,
or a button click will result in a call to the base class functions, which call
the Windows EndDialog function. EndDialog is appropriate only for modal
dialog boxes. In a modeless dialog box, you must call DestroyWindow
instead and, if necessary, you must call UpdateData to transfer data from the
dialog controls to the class data members.

12. Edit the Ex07cView.h header file.You need a data member to hold the dialog box
pointer:

private:
 CEx07cDialog* m_pDlg;

You also need to add the forward declaration at the beginning of Ex07cView.h:

class CEx07cDialog;

You won’t have to include Ex07cDialog.h in every module that includes Ex07cView.h.

13. Modify the CEx07cView constructor and destructor in the file Ex07cView.cpp.The
CEx07cView class has a data member, m_pDlg, that points to the view’s CEx07cDialog
object. The view constructor constructs the dialog box object on the heap, and the view
destructor deletes it. Add the following code shown in boldface:

CEx07cView::CEx07cView()
{
 m_pDlg = new CEx07cDialog(this);
}

CEx07cView::~CEx07cView()
{
 delete m_pDlg; // destroys window if not already destroyed
}

14. Add code to the virtual OnDraw function in the Ex07cView.cpp file.Edit the
CEx07cView OnDraw function (whose skeleton was generated by the MFC Application
Wizard) as follows to prompt the user to press the mouse button:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx07cView::OnDraw(CDC* pDC)
{
 CEx07cDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

15. Add message handlers in CEx07cView for WM_LBUTTONDOWN and
WM_RBUTTONDOWN.Select the CEx07cView class in Class View, click the Messages
button in the Properties window, and add the OnLButtonDown and OnRButtonDown
functions. Then edit the code in file Ex07cView.cpp as follows:

void CEx07cView::OnLButtonDown(UINT nFlags, CPoint point)
{
 // creates the dialog if not created already
 if (m_pDlg->GetSafeHwnd() == 0) {
 m_pDlg->Create(); // displays the dialog window
 }
}

void CEx07cView::OnRButtonDown(UINT nFlags, CPoint point)
{
 m_pDlg->DestroyWindow();
 // no problem if window was already destroyed
}

For most window types except main frame windows, the DestroyWindow function does
not destroy the C++ object. We want this behavior because we’ll take care of the dialog
object’s destruction in the view destructor.

16. Add the dialog box header include statement to the file Ex07cView.cpp.While you’re in
Ex07cView.cpp, add the following dialog box header include statement after the view
header include statement:

#include "Ex07cView.h"
#include "Ex07cDialog.h"

17. Add your own message code for the WM_GOODBYE message.Because Class View
does not support user-defined messages, you must write the code yourself. This task
makes you appreciate the work Visual Studio does for the other messages.

In Ex07cView.cpp, add the following line between the BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP statements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_MESSAGE(WM_GOODBYE, OnGoodbye)

Also in Ex07cView.cpp, add the message handler function itself:

LRESULT CEx07cView::OnGoodbye(WPARAM wParam, LPARAM lParam)
{
 // message received in response to modeless dialog OK
 // and Cancel buttons
 TRACE("CEx07cView::OnGoodbye %x, %lx\n", wParam, lParam);
 TRACE("Dialog edit1 contents = %s\n",
 (const char*) m_pDlg->m_strEdit1);
 m_pDlg->DestroyWindow();
 return 0L;
}

In Ex07cView.h, add the following function prototype after the afx_msg prototypes for
OnLButtonDown and OnRButtonDown:

afx_msg LRESULT OnGoodbye(WPARAM wParam, LPARAM lParam);

With Win32, the wParam and lParam parameters are the usual means of passing
message data. In a mouse button down message, for example, the mouse x and y
coordinates are packed into the lParam value. With the MFC library, message data is
passed in more meaningful parameters. The mouse position is passed as a CPoint object.
User-defined messages must use wParam and lParam, so you can use these two
variables however you want. In this example, we’ve put the button ID in wParam.

18. Build and test the application.Build and run Ex07c. Press the left mouse button and then
the right mouse button. (Be sure the mouse cursor is outside the dialog box when you
press the right mouse button.) Press the left mouse button again and enter some data in
the Edit 1 edit control, and then click the dialog box’s OK button. Does the view’s
TRACE statement correctly list the edit control’s contents?

NOTE
If you use the Ex07c view and dialog classes in an MDI application, each
MDI child window can have one modeless dialog box. When the user closes
an MDI child window, the child’s modeless dialog box will be destroyed
because the view’s destructor calls the dialog box destructor, which in turn
destroys the dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8
Common Controls

In Chapter 7, we looked at some of the standard controls that come with Microsoft Windows,
including the button control, the check box, the radio button, the static text box, the list box,
and the combo box. In this chapter, we’ll look at a bunch of other controls—the common
controls. These are included in a DLL named COMCTL32.DLL and the latest version of the
DLL is 6.0. The common controls update all of the existing controls and add a variety of
advanced new controls. Microsoft Visual C++ and Microsoft Foundation Class (MFC) library
have added a great deal of support for these new controls.

NOTE
The version of COMCTL32.DLL installed on a system depends on the version of
Windows and the version of Microsoft Internet Explorer. Windows 95 included a
version of COMCTL32.DLL, but COMCTL32.DLL was not included in Windows
NT 4.0. Subsequent versions of Windows (including Windows 2000 and Windows
XP) include a recent version COMCTL32.DLL. Internet Explorer 3.0 and later
included a version of COMCTL32.DLL.

To be safe when targeting older systems, you should redistribute a recent version
of COMCTL32.DLL as part of your installation. You can upgrade
COMCTL32.DLL by installing the latest version of Internet Explorer. A
component package that upgrades COMCTL32.DLL might also be available. Be
sure to check the Microsoft Knowledge Base article “Redistribution of
COMCTL32.DLL” (Q186176) and http://msdn.microsoft.com for the latest news
on this subject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Standard Common Controls

The standard common controls are the progress control, the slider control, the spin control, the
list control, and the tree control. Figure 8-1 shows the Windows common controls dialog box
example from this chapter.

Figure 8-1. The Windows common controls dialog box.

The Progress Control

The progress control is the easiest common control to program and is represented by the MFC
CProgressCtrl class. It is generally used only for output. To initialize the progress control, you
call the SetRange and SetPos member functions in your OnInitDialog function, and then you
call SetPos anytime in your message handlers. The progress control shown in Figure 8-1 has a
range of 0 to 100, which is the default.

The Slider Control

The slider control (class CSliderCtrl), sometimes called a trackbar, allows the user to set an
“analog” value. (In the Ex07a example in Chapter 7, slider controls would have been more
effective than the horizontal Loyalty and Reliability scroll bars.) If you specify a large range
for this control—0 to 100 or more, for example—the slider’s motion will appear continuous. If
you specify a small range, such as 0 to 5, the slider will move in discrete increments. You can
program tick marks to match the increments. In this discrete mode, you can use a slider to set
such items as the display screen resolution, lens f-stop values, and so forth. The slider does not
have a default range.

The slider is easier to program than the scroll bar because you don’t have to map the
WM_HSCROLL or WM_VSCROLL messages in the dialog class hosting the controls. As long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WM_HSCROLL or WM_VSCROLL messages in the dialog class hosting the controls. As long
as you set the range, the slider will move when the user slides it or clicks in the body of the
slider. You might choose to map the scroll messages anyway if you want to show the position
value in another control. The GetPos member function returns the current position value. The
top slider in Figure 8-1 operates continuously in the range 0 to 100. The bottom slider has a
range of 0 to 4, and those indexes are mapped to a series of double-precision values (4.0, 5.6,
8.0, 11.0, and 16.0).

The Spin Control

The spin control (class CSpinButtonCtrl), sometimes called a spin button, is a tiny scroll bar
that’s most often used in conjunction with an edit control. The edit control, located just ahead
of the spin control in the dialog box’s tabbing order, is known as the spin control’s buddy. The
idea is that the user holds down the left mouse button on the spin control to raise or lower the
value in the edit control. The spin speed accelerates as the user continues to hold down the
mouse button.

If your program uses an integer in the buddy, you can avoid C++ programming almost
entirely. Just use Visual Studio to attach an integer data member to the edit control and set the
spin control’s range in the OnInitDialog function. (You probably won’t want the spin
control’s default range, which runs backward from a minimum of 100 to a maximum of 0.)
Don’t forget to set the Auto Buddy and Set Buddy Integer properties for the spin control. You
can call the SetRange and SetAccel member functions in your OnInitDialog function to change
the range and the acceleration profile.

If you want your edit control to display a noninteger, such as a time or a floating-point
number, you must map the spin control’s WM_VSCROLL (or WM_HSCROLL) messages and
write handler code to convert the spin control’s integer to the buddy’s value.

The List Control

You use the list control (class CListCtrl) if you want a list that contains images as well as text.
In Figure 8-1, shown earlier, you can see a list control with a “list view” style and small icons.
The elements are arranged in a grid, and the control includes horizontal scrolling. When the
user selects an item, the control sends a notification message, which you map in your dialog
class. That message handler can determine which item the user selected. Items are identified
by a zero-based integer index.

Both the list control and the tree control get their graphic images from a common control
element called an image list (class CImageList). Your program must assemble the image list
from icons or bitmaps and then pass an image list pointer to the list control. Your
OnInitDialog function is a good place to create and attach the image list and to assign text
strings. The InsertItem member function serves this purpose.

List control programming is straightforward if you stick with strings and icons. If you
implement drag-and-drop or if you need custom owner-drawn graphics, you’ve got more work
to do.

The Tree Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You’re already familiar with tree controls if you’ve used Windows Explorer or Visual
Studio’s Solution Explorer. The MFC CTreeCtrl class makes it easy to add this same
functionality to your own programs. In Figure 8-1, you saw a tree control that shows a modern
American combined family. The user can expand and collapse elements by clicking the + and
– buttons or by double-clicking the elements. The icon next to each item is programmed to
change when the user selects the item with a single click.

The list control and the tree control have some things in common: They can both use the same
image list, and they share some of the same notification messages. Their methods of
identifying items are different, however. The tree control uses an HTREEITEM handle instead
of an integer index. To insert an item, you call the InsertItem member function, but first you
must build up a TV_INSERTSTRUCT structure that identifies (among other things) the string,
the image list index, and the handle of the parent item (which is null for top-level items).

As with list controls, infinite customization possibilities are available for the tree control. For
example, you can allow the user to edit items and to insert and delete items.

The WM_NOTIFY Message

The original Windows controls sent their notifications in WM_COMMAND messages. But the
standard 32-bit wParam and lParam message parameters are not sufficient for the information
that a common control needs to send to its parent. Microsoft solved this “bandwidth” problem
by defining a new message, WM_NOTIFY. With the WM_NOTIFY message, wParam is the
control ID and lParam is a pointer to an NMHDR structure, which is managed by the control.
This C structure is defined by the following code:

typedef struct tagNMHDR {
 HWND hwndFrom; // handle to control sending the message
 UINT idFrom; // ID of control sending the message
 UINT code; // control-specific notification code
} NMHDR;

However, many controls send WM_NOTIFY messages with pointers to structures larger than
NMHDR. Those structures contain the three members above plus appended control-specific
members. Many tree control notifications, for example, pass a pointer to an
NM_TREEVIEWture that contains TV_ITEM structures, a drag point, and so forth. When
Visual Studio maps a WM_NOTIFY message, it generates a pointer to the appropriate
structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex08a Example: Standard Common Controls

To get an idea of how these common controls work, we’ll put them in a modal dialog box. The
steps are as follows.

1. Run the MFC Application Wizard to generate a project named Ex08a.Choose New
Project from Visual Studio’s File menu. In the New Project dialog box, select the MFC
Application template, type the name Ex08a, and click OK. In the MFC Application
Wizard, accept all the defaults but two: On the Application Type page, select Single
Document, and on the Advanced Features page, deselect Printing And Print Preview.
When you’re finished, click Finish.

Don’t worry about the other properties now—you’ll set those in the following steps.
(Some controls might look different than they do in Figure 8-1 until you set their
properties.)

2. Create a new dialog resource with ID IDD_DIALOG1.Choose Add Resource from the
Project menu and add a new dialog resource. Using the Toolbox, add controls to the
dialog box. The following is a list of the control types, their IDs, and their tab order.
After you set the Caption properties to the appropriate text, the dialog box should have
the following controls and tab order:

Control Type ID Tab Order

Static Text IDC_STATIC 1

Progress IDC_PROGRESS1 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Static Text IDC_STATIC 3

Slider IDC_SLIDER1 4

Static Text IDC_STATIC_SLIDER1 5

Static Text IDC_STATIC 6

Slider IDC_SLIDER2 7

Static Text IDC_STATIC_SLIDER2 8

Static Text IDC_STATIC 9

Edit IDC_BUDDY_SPIN1 10

Spin IDC_SPIN1 11

Static Text IDC_STATIC 12

Static Text IDC_STATIC 13

List control IDC_LISTVIEW1 14

Static Text IDC_STATIC_LISTVIEW1 15

Static Text IDC_STATIC 16

Tree control IDC_TREEVIEW1 17

Static Text IDC_STATIC_TREEVIEW1 18

Button IDOK 19

Button IDCANCEL 20

3. Use the MFC Class Wizard to create a new class, CEx08aDialog, derived from
CDialog.Choose Add Class from Project menu to display the MFC Class Wizard. Select
CDialog as the base class and IDD_DIALOG1 as the name of the Dialog ID, as shown
here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Override the OnInitDialog function and handle the WM_HSCROLL and the
WM_VSCROLL messages.Select the CEx08aDialog class in Class View. Click the
Overrides button at the top of the Properties window and add the OnInitDialog function.
Click the Messages button at the top of the Properties window and add the OnHScroll
and OnVScroll functions for the WM_HSCROLL and WM_VSCROLL messages.

5. Program the progress control.Visual Studio won’t generate a data member for this
control, so you must do it yourself. Add a public integer data member named
m_nProgress in the CEx08aDialog class header, and set it to 0 in the constructor. Also,
add the following code in the OnInitDialog member function:

// Progress control
CProgressCtrl* pProg =
 (CProgressCtrl*) GetDlgItem(IDC_PROGRESS1);
pProg->SetRange(0, 100);
pProg->SetPos(m_nProgress);

6. Program the “continuous” slider control.Add a public integer data member named
m_nSlider1 to the CEx08aDialog header, and set it to 0 in the constructor. Then add the
following code in the OnInitDialog member function to set the slider’s range, initialize
its position from the data member, and set the neighboring static control to the slider’s
current value:

// Slider control
CString strText1;
CSliderCtrl* pSlide1 =
 (CSliderCtrl*) GetDlgItem(IDC_SLIDER1);
pSlide1->SetRange(0, 100);
pSlide1->SetPos(m_nSlider1);
strText1.Format("%d", pSlide1->GetPos());
SetDlgItemText(IDC_STATIC_SLIDER1, strText1);

To keep the static control updated, you must map the WM_HSCROLL message that the
slider sends to the dialog box. Add the following boldface code to the OnHScroll
handler, replacing the existing code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx08aDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 CSliderCtrl* pSlide = (CSliderCtrl*) pScrollBar;
 CString strText;
 strText.Format("%d", pSlide->GetPos());
 SetDlgItemText(IDC_STATIC_SLIDER1, strText);
}

Finally, you need to update the slider’s m_nSlider1 data member when the user clicks
OK. Your natural instinct might be to put this code in the OnOK button handler. You
would have a problem, however, if a data exchange validation error occurred that
involved any other control in the dialog box. Your handler would set m_nSlider1 even if
the user chose to cancel the dialog box. To avoid this problem, add your code in the
DoDataExchange function as shown below. If you do your own validation and detect a
problem, call the CDataExchange::Fail function, which alerts the user with a message
box.

void CEx08aDialog::DoDataExchange(CDataExchange* pDX)
{
 if (pDX->m_bSaveAndValidate) {
 TRACE("updating slider data members\n");
 CSliderCtrl* pSlide1 =
 (CSliderCtrl*) GetDlgItem(IDC_SLIDER1);
 m_nSlider1 = pSlide1->GetPos();
 }
 CDialog::DoDataExchange(pDX);
}

7. Program the “discrete” slider control.Add a public integer data member named
m_nSlider2 to the CEx08aDialog header, and set it to 0 in the constructor. This data
member is a zero-based index into the dValue, the array of numbers (4.0, 5.6, 8.0, 11.0,
and 16.0) that the slider can represent. Define dValue as a public static double array
member variable in Ex08aDialog.h:

static double dValue[5];

Initialize dValue at the top of Ex08aDialog.cpp using the following line:

double CEx08aDialog::dValue[5] = {4.0, 5.6, 8.0, 11.0, 16.0};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, add code in the OnInitDialog member function to set the slider’s range and initial
position.

CString strText2;
CSliderCtrl* pSlide2 =
 (CSliderCtrl*) GetDlgItem(IDC_SLIDER2);
pSlide2->SetRange(0, 4);
pSlide2->SetPos(m_nSlider2);
strText2.Format("%3.1f", dValue[pSlide2->GetPos()]);
SetDlgItemText(IDC_STATIC_SLIDER2, strText2);

If you had only one slider, the WM_HSCROLL handler in step 5 would work. But
because you have two sliders that send WM_HSCROLL messages, the handler must
differentiate between them. Here’s the new code:

void CEx08aDialog::OnHScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 CSliderCtrl* pSlide = (CSliderCtrl*) pScrollBar;
 CString strText;

 // Two sliders are sending
 // HSCROLL messages (different processing)
 switch(pScrollBar->GetDlgCtrlID()) {
 case IDC_SLIDER1:
 strText.Format("%d", pSlide->GetPos());
 SetDlgItemText(IDC_STATIC_SLIDER1, strText);
 break;
 case IDC_SLIDER2:
 strText.Format("%3.1f", dValue[pSlide->GetPos()]);
 SetDlgItemText(IDC_STATIC_SLIDER2, strText);
 break;
 }
}

Slider2 needs tick marks, so display the dialog editor and set the control’s Tick Marks
and Auto Ticks properties to True in the Properties window. With Auto Ticks set to True,
the slider will place a tick at every increment. If you don’t see the tick marks after
setting these properties, you might need to increase the height of the control.

The same data exchange considerations that applied to the previous slider apply to this
slider. Add the following code in the dialog class DoDataExchange member function
inside the block for the if statement you added in the previous step:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSliderCtrl* pSlide2 =
 (CSliderCtrl*) GetDlgItem(IDC_SLIDER2);
m_nSlider2 = pSlide2->GetPos();

Display the dialog editor and set the Point property of both sliders to Bottom/Right.
Select the IDC_STATIC_SLIDER1 and IDC_STATIC_SLIDER2 static controls and set
the Align Text property to Right.

8. Program the spin button control.The spin control depends on its buddy edit control,
which is located immediately before it in the tab order. Use the Add Member Variable
Wizard to add a double-precision data member named m_dSpin for the
IDC_BUDDY_SPIN1 edit control. We’re using a double instead of an int because the int
would require almost no programming, and that would be too easy. We want the edit
control range to be 0.0 to 10.0, but the spin control itself needs an integer range. You
can start the Add Member Variable Wizard by selecting the CEx08aDialog class in
Class View and then choosing Add Variable from the Project menu. The settings for the
wizard are shown here:

Add the following code to OnInitDialog to set the spin control range from 0 to 100 and
set its initial value to m_dSpin * 10.0:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Spin control
CSpinButtonCtrl* pSpin =
 (CSpinButtonCtrl*) GetDlgItem(IDC_SPIN1);
pSpin->SetRange(0, 100);
pSpin->SetPos((int) (m_dSpin * 10.0));

To display the current value in the buddy edit control, you need to handle the
WM_VSCROLL message that the spin control sends to the dialog box. Add the
following boldfaced code to OnVScroll:

void CEx08aDialog::OnVScroll(UINT nSBCode, UINT nPos,
 CScrollBar* pScrollBar)
{
 if (nSBCode == SB_ENDSCROLL) {
 return; // Reject spurious messages
 }
 // Process scroll messages from IDC_SPIN1 only
 if (pScrollBar->GetDlgCtrlID() == IDC_SPIN1) {
 CString strValue;
 strValue.Format("%3.1f", (double) nPos / 10.0);
 ((CSpinButtonCtrl*) pScrollBar)->GetBuddy()
 ->SetWindowText(strValue);
 }
 CDialog::OnVScroll(nSBCode, nPos, pScrollBar);
}

There’s no need to add code in OnOK or in DoDataExchange because the Dialog Data
Exchange (DDX) code processes the contents of the edit control.

Display the dialog editor and set the Auto Buddy property for the spin control to True.
Set the Read Only property for the buddy edit control to True.

9. Set up an image list.Both the list control and the tree control need an image list, and the
image list needs icons. The companion CD contains icons in the Ex08a\res folder. These
icons are circles with black outlines and different-colored interiors. Use fancier icons if
you have them.

To import these icons into the Ex08a project, first copy the .ico files to your Ex08a\res
folder and then choose Add Resource from the Project menu. In the Add Resource
dialog box, click Import. In the Import dialog box, navigate to the icon files. Set the
Files Of Type drop-down list to Icon Files. Select Icon0.ico to Icon7.ico and click Open.
The icons will be opened in the image editor and added to the Icon folder in Resource
View. Using the Properties window, set the ID property for each icon as shown here,
and then close the icons in the icon editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Icon File ID

Icon0.ico IDI_WHITE

Icon1.ico IDI_BLACK

Icon2.ico IDI_RED

Icon3.ico IDI_BLUE

Icon4.ico IDI_YELLOW

Icon5.ico IDI_CYAN

Icon6.ico IDI_PURPLE

Icon7.ico IDI_GREEN

When you’re finished, the Icon folder in Resource View will look like the following:

Next, add a public CImageList data member named m_imageList in the CEx08aDialog
class header, and then add the following code to OnInitDialog:

// Icons
HICON hIcon[8];
int n;
m_imageList.Create(16, 16, 0, 8, 8); // 32, 32 for large icons
hIcon[0] = AfxGetApp()->LoadIcon(IDI_WHITE);
hIcon[1] = AfxGetApp()->LoadIcon(IDI_BLACK);
hIcon[2] = AfxGetApp()->LoadIcon(IDI_RED);
hIcon[3] = AfxGetApp()->LoadIcon(IDI_BLUE);
hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);
hIcon[5] = AfxGetApp()->LoadIcon(IDI_CYAN);
hIcon[6] = AfxGetApp()->LoadIcon(IDI_PURPLE);
hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);
for (n = 0; n < 8; n++) {
 m_imageList.Add(hIcon[n]);
}

About Icons
You probably know that a bitmap is an array of bits that represent pixels on
the display. (Bitmaps were discussed in Chapter 6.) In Windows, an icon is a
“bundle” of bitmaps. First of all, an icon has different bitmaps for different
sizes. Typically, small icons are 16 by 16 pixels and large icons are 32 by 32
pixels. Within each size are two separate bitmaps: one 4-bit-per-pixel bitmap
for the color image and one monochrome (1-bit-per-pixel) bitmap for the
“mask.” If a mask bit is 0, the corresponding image pixel represents an
opaque color. If the mask bit is 1, an image color of black (0) means that the
pixel is transparent and an image color of white (0xF) means that the
background color is inverted at the pixel location.

Small icons were new with Windows 95. They’re used on the taskbar, in
Windows Explorer, and in your list and tree controls, if you want them there.
If an icon doesn’t have a 16-by-16-pixel bitmap, Windows manufactures a
small icon out of the 32-by-32-pixel bitmap, but it won’t be as neat as one
you draw yourself. The image editor in Visual Studio lets you create and edit
icons. The following shows the image editor and the Colors palette.

The top square in the upper left portion of the Colors palette shows you the
main color for brushes, shape interiors, and so on, and the square underneath
it shows the border color for shape outlines. You select a main color by left-
clicking on a color, and you select a border color by right-clicking on a color.
Now look at the two “monitors” to the right of the upper left square of the
Colors palette. You click on the upper monitor to paint transparent pixels,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colors palette. You click on the upper monitor to paint transparent pixels,
which are drawn in dark cyan. You click on the lower monitor to paint
inverted pixels, which are drawn in red.

10. Program the list control.In the dialog editor, set the following properties for the list
control.

List Control Property Value

Alignment Top

Always Show Selection True

Single Selection True

View List

Then add the following code to OnInitDialog:

// List control
static char* color[] = {"white", "black", "red",
 "blue", "yellow", "cyan",
 "purple", "green"};
CListCtrl* pList =
 (CListCtrl*) GetDlgItem(IDC_LISTVIEW1);
pList->SetImageList(&m_imageList, LVSIL_SMALL);
for (n = 0; n < 8; n++) {
 pList->InsertItem(n, color[n], n);
}
pList->SetBkColor(RGB(0, 255, 255)); // UGLY!
pList->SetTextBkColor(RGB(0, 255, 255));

As the last two lines illustrate, you don’t use the WM_CTLCOLOR message with
common controls; you just call a function to set the background color. As you’ll see
when you run the program, however, the icons’ inverse-color pixels look shabby.

If you use the list control’s LVN_ITEMCHANGED notification message, you’ll be able
to track the user’s selection of items. In Class View, select the CEx08aDialog class. In
the Properties window, click the Events button, expand the IDC_LISTVIEW1 item,
select the LVN_ITEMCHANGED event, and then add the OnLvnItemchangedListview1
handler. Add the following code to the OnLvnItemchangedListview1 handler to display
the selected item’s text in a static control:

void CEx08aDialog::OnLvnItemchangedListview1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNMLISTVIEW pNMLV = reinterpret_cast<LPNMLISTVIEW>(pNMHDR);
 CListCtrl* pList =
 (CListCtrl*) GetDlgItem(IDC_LISTVIEW1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (CListCtrl*) GetDlgItem(IDC_LISTVIEW1);
 int nSelected = pNMLV->iItem;
 if (nSelected >= 0) {
 CString strItem = pList->GetItemText(nSelected, 0);
 SetDlgItemText(IDC_STATIC_LISTVIEW1, strItem);
 }
 *pResult = 0;
}

The NM_LISTVIEW structure has a data member called iItem that contains the index of
the selected item.

11. Program the tree control.In the dialog editor, set the following properties for the tree
control.

Tree Control Property Value

Has Buttons True

Has Lines True

Lines At Root True

Scroll True

Next, add the following lines to OnInitDialog:

// Tree control
CTreeCtrl* pTree = (CTreeCtrl*) GetDlgItem(IDC_TREEVIEW1);
pTree->SetImageList(&m_imageList, TVSIL_NORMAL);
// tree structure common values
TV_INSERTSTRUCT tvinsert;
tvinsert.hParent = NULL;
tvinsert.hInsertAfter = TVI_LAST;
tvinsert.item.mask = TVIF_IMAGE │ TVIF_SELECTEDIMAGE │
 TVIF_TEXT;
tvinsert.item.hItem = NULL;
tvinsert.item.state = 0;
tvinsert.item.stateMask = 0;
tvinsert.item.cchTextMax = 6;
tvinsert.item.iSelectedImage = 1;
tvinsert.item.cChildren = 0;
tvinsert.item.lParam = 0;
// top level
tvinsert.item.pszText = "Homer";
tvinsert.item.iImage = 2;
HTREEITEM hDad = pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Marge";
HTREEITEM hMom = pTree->InsertItem(&tvinsert);
// second level
tvinsert.hParent = hDad;
tvinsert.item.pszText = "Bart";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tvinsert.item.pszText = "Bart";
tvinsert.item.iImage = 3;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Lisa";
pTree->InsertItem(&tvinsert);
// second level
tvinsert.hParent = hMom;
tvinsert.item.pszText = "Bart";
tvinsert.item.iImage = 4;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Lisa";
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Dilbert";
HTREEITEM hOther = pTree->InsertItem(&tvinsert);
// third level
tvinsert.hParent = hOther;
tvinsert.item.pszText = "Dogbert";
tvinsert.item.iImage = 7;
pTree->InsertItem(&tvinsert);
tvinsert.item.pszText = "Ratbert";
pTree->InsertItem(&tvinsert);

As you can see, this code sets TV_INSERTSTRUCT text and image indexes and calls
InsertItem to add nodes to the tree.

Finally, add the TVN_SELCHANGED notification for the tree control. In Class View,
select the CEx08aDialog class. In the Properties window, click the Events button,
expand the IDC_TREEVIEW1 item, select the TVN_SELCHANGED event, and then add
the OnTvnSelchangedTreeview1 handler. Add the following boldface code to display
the selected text in a static control:

void CEx08aDialog::OnTvnSelchangedTreeview1 (NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNMTREEVIEW pNMTreeView = reinterpret_cast<LPNMTREEVIEW>(pNMHDR;
 CTreeCtrl* pTree = (CTreeCtrl*) GetDlgItem(IDC_TREEVIEW1);
 HTREEITEM hSelected = pNMTreeView->itemNew.hItem;
 if (hSelected != NULL) {
 char text[31];
 TV_ITEM item;
 item.mask = TVIF_HANDLE │ TVIF_TEXT;
 item.hItem = hSelected;
 item.pszText = text;
 item.cchTextMax = 30;
 VERIFY(pTree->GetItem(&item));
 SetDlgItemText(IDC_STATIC_TREEVIEW1, text);
 }
 *pResult = 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The NM_TREEVIEW structure has a data member called itemNew that contains
information about the selected node; itemNew.hItem is the handle of that node. The
GetItem function retrieves the node’s data, storing the text using a pointer supplied in
the TV_ITEM structure. The mask variable tells Windows that the hItem handle is valid
going in and that text output is desired.

12. Add code to the virtual OnDraw function in the file Ex08aView.cpp.

Add the following boldface code:

void CEx08aView::OnDraw(CDC* pDC)
{
 CEx08aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

13. Add the OnLButtonDown member function.Select the CEx08aView class in Class View.
In the Properties window, click the Messages button, select the WM_LBUTTONDOWN
message, and add the OnLButtonDown function. Add the following boldface code:

void CEx08aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx08aDialog dlg;
 dlg.m_nSlider1 = 20;
 dlg.m_nSlider2 = 2; // index for 8.0
 dlg.m_nProgress = 70; // write-only
 dlg.m_dSpin = 3.2;
 dlg.DoModal();
 CView::OnLButtonDown(nFlags, point);
}

In Ex08aView.cpp, add a statement to include Ex08aDialog.h:

#include "Ex08aDialog.h"

14. Compile and run the program.Experiment with the controls to see how they work. We
haven’t added code to make the progress indicator functional; we’ll cover that in
Chapter 13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Advanced Common Controls

In addition to the standard common controls, Windows includes a set of advanced common
controls, including the date and time picker, the month calendar, the internet protocol address
control, and the extended combo box control. Example Ex08b uses each of these common
controls. Figure 8-2 shows the dialog box from that example. You can refer back to that
example as you read the descriptions that follow.

Figure 8-2. Advanced common controls in a dialog box.

The Date and Time Picker

A common field on a dialog box is a place for the user to enter a date and time. Before there
was a date and time picker, developers had to either use a third-party control or subclass an
MFC edit control to do significant data validation to ensure that the entered date was valid.
The date and time picker control prompts the user for a date or time while offering the
developer a wide variety of styles and options. For example, dates can be displayed in short
formats (8/14/68) or long formats (August 14, 1968). A time mode lets the user enter a time
using a familiar hours/minutes/seconds AM/PM format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The control also lets you decide if you want the user to select the date using in-place editing, a
pull-down calendar, or a spin button. Several selection options are available, including single
and multiple select (for a range of dates) and the ability to turn on and off the “circling” in red
ink of the current date. The control even has a mode that lets the user select “no date” via a
check box. In Figure 8-2, the first four controls on the left illustrate the variety of
configurations available with the date and time picker control.

The MFC class CDateTimeCtrl provides the MFC interface to the date and time picker
common control. This class provides a variety of notifications that enhance the
programmability of the control. CDateTimeCtrl provides member functions for dealing with
either CTime or COleDateTime time structures.

You set the date and time in a CDateTimeCtrl using the SetTime member function. You can
retrieve the date and time using the GetTime function. You can create custom formats using
the SetFormat member function and change a variety of other configurations using the
CDateTimeCtrl interface.

CTime vs. COleDateTime
Most “longtime” MFC developers are accustomed to using the CTime class.
However, because CTime’s valid dates are limited to dates between January 1,
1970, and January 18, 2038, many developers need an alternative. One popular
alternative is COleDateTime, which is provided for OLE automation support and
handles dates from 1 January 100 through 31 December 9999. Both classes have
pros and cons. For example, CTime handles all the issues of daylight saving time,
while COleDateTime does not.

Many developers choose COleDateTime because of its much larger range. Any
application that uses CTime will need to be reworked in approximately 40 years
because the maximum value is the year 2038. The class you decide to use must
depend on your particular needs and the potential longevity of your application.

The Month Calendar

The large display at the bottom left of Figure 8-2 is a month calendar. Like the date and time
picker control, the month calendar control lets the user select a date. However, the month
calendar control can also be used to implement a small personal information manager in your
applications. You can show as many months as you have room for—from one month to a
year’s worth of months, if you want. Ex08b uses the month calendar control to show only two
months.

The month calendar control supports single or multiple selection and allows you to display a
variety of options, such as numbered months and a circled “today’s date.” Notifications for the
control let the developer specify which dates are in boldface. It is entirely up to the developer
to decide what boldface dates might represent. For example, you could use the bold feature to
indicate holidays, appointments, or unusable dates. The MFC class CMonthCalCtrl
implements this control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To initialize the CMonthCalCtrl class, you can call the SetToday member function.
CMonthCalCtrl provides members that deal with both CTime and COleDateTime, including
SetToday.

The Internet Protocol Address Control

If you write an application that uses any form of Internet or TCP/IP functionality, you might
need to prompt the user for an Internet Protocol (IP) address. The common controls include an
IP address edit control, as shown in the top right of Figure 8-2. In addition to letting the user
enter a 4-byte IP address, this control performs an automatic validation of the entered IP
address. CIPAddressCtrl provides MFC support for the IP address control.

An IP address consists of four “fields,” as shown in Figure 8-3. The fields are numbered from
left to right.

Figure 8-3. The fields of an IP address control.

To initialize an IP address control, you call the SetAddress member function in your
OnInitDialog function. SetAddress takes a DWORD, with each byte in the DWORD
representing one of the fields. In your message handlers, you can call the GetAddress member
function to retrieve a DWORD or a series of BYTES to retrieve the various values of the four
IP address fields.

The Extended Combo Box

The “old-fashioned” combo box was developed in the early days of Windows. Its inflexible
design has been the source of much developer confusion. With the common controls,
Microsoft has released a much more flexible version of the combo box called the extended
combo box.

The extended combo box gives the developer much easier access to and better control over the
edit control portion of the combo box. In addition, the extended combo box lets you attach an
image list to the items in the combo box. You can display graphics in the extended combo box
easily, especially compared with the old days of using owner-drawn combo boxes. Each item
in the extended combo box can be associated with three images: a selected image, an
unselected image, and an overlay image. You can use these images to provide a variety of
graphical displays in the combo box, as we’ll see shortly in the Ex08b sample. The two combo
boxes on the right in Figure 8-2 are both extended combo boxes. The MFC CComboBoxEx
class provides comprehensive extended combo box support.

Like the list control introduced earlier in this chapter, CComboBoxEx can be attached to a
CImageList that will automatically display graphics next to the text in the extended combo
box. If you’re familiar with CComboBox, CComboBoxEx might cause some confusion:
Instead of containing strings, the extended combo box contains items of type
COMBOBOXEXITEM, a structure that consists of the following fields:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UINT mask A set of bit flags that specify which operations are to be performed using
the structure. For example, set the CBEIF_IMAGE flag if the image field is to be set or
retrieved in an operation.

INT_PTR iItem The extended combo box item number. Like the older style of combo
box, the extended combo box uses zero-based indexing.

LPSTR pszText The text of the item.

int cchTextMax The length of the buffer available in pszText.

int iImage A zero-based index into an associated image list.

int iSelectedImage An index of the image in the image list to be used to represent the
“selected” state.

int iOverlay An index of the image in the image list to be used to overlay the current
image.

int iIndent The number of 10-pixel indentation spaces.

LPARAM lParam A 32-bit parameter for the item.

You’ll see how to use this structure in the upcoming Ex08b example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex08b Example: Advanced Common Controls

In this example, we’ll build a dialog box that demonstrates how to create and program each
type of advanced common control. The steps required to create the dialog box are as follows:

1. Run the MFC Application Wizard to generate a project named Ex08b.Choose New
Project from the Visual Studio File menu. In the New Project dialog box, select the
MFC Application template, type the name Ex08b, and click OK. In the MFC
Application Wizard, accept all the defaults but one: On the Application Type page,
select Single Document.

2. Create a new dialog resource with ID IDD_DIALOG1.Choose Add Resource from the
Project menu and add a new dialog resource. Using the Toolbox, add controls to the
dialog box. The following is a list of the control types, their IDs, and their tab order.
After you set the Caption properties for the static text controls to the appropriate text,
the dialog box should have the following controls and tab order:

Until we set some properties, your dialog box will not look exactly like the one shown
earlier in Figure 8-2.

Control Type ID Tab Order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Group Box IDC_STATIC 1

Static IDC_STATIC 2

Date Time Picker IDC_DATETIMEPICKER1 3

Static IDC_STATIC1 4

Static IDC_STATIC 5

Date Time Picker IDC_DATETIMEPICKER2 6

Static IDC_STATIC2 7

Static IDC_STATIC 8

Date Time Picker IDC_DATETIMEPICKER3 9

Static IDC_STATIC3 10

Static IDC_STATIC 11

Date Time Picker IDC_DATETIMEPICKER4 12

Static IDC_STATIC4 13

Static IDC_STATIC 14

Month Calendar IDC_MONTHCALENDAR1 15

Static IDC_STATIC5 16

Group Box IDC_STATIC 17

Static IDC_STATIC 18

IP Address IDC_IPADDRESS1 19

Static IDC_STATIC6 20

Group Box IDC_STATIC 21

Static IDC_STATIC 22

Extended Combo Box IDC_COMBOBOXEX1 23

Static IDC_STATIC7 24

Static IDC_STATIC 25

Extended Combo Box IDC_COMBOBOXEX2 26

Static IDC_STATIC8 27

Button IDOK 28

Button IDCANCEL 29

3. Use the MFC Class Wizard to create a new class, CEx08bDialog, that is derived from
CDialog.Choose Add Class from the Project menu to start the MFC Class Wizard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDialog.Choose Add Class from the Project menu to start the MFC Class Wizard.
Select CDialog as the base class and IDD_DIALOG1 as the name of the Dialog ID, as
shown here:

Override the OnInitDialog function. Select the CEx08bDialog class in Class View.
Click the Overrides button at the top of the Properties window and add the OnInitDialog
function.

4. Set the properties for the dialog box’s controls.To demonstrate the full range of controls,
we’ll need to set a variety of properties for each of the common controls in this example.
Here’s a brief overview of each property you’ll need to set:

The Short Date and Time PickerFor the first date and time picker control
(IDC_DATETIMEPICKER1), be sure the Format property is set to Short Date
(the default).

The Long Date and Time PickerFor the second date and time picker control
(IDC_DATETIMEPICKER2), set the Format property to Long Date.

The Short and NULL Date and Time PickerFor the third date and time picker
control (IDC_DATETIMEPICKER3), be sure the Format property is set to Short
Date and set the Allow Edit, Show None, and Use Spin Control properties to True.

The Time PickerThe fourth date and time picker control
(IDC_DATETIMEPICKER4) is configured to let the user select a time. Set the
Format property to Time, and set the Use Spin Control property to True.

The Month CalendarTo configure the month calendar, you must set a few
properties. First set the Day States property to True. With the default properties,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

properties. First set the Day States property to True. With the default properties,
the month calendar does not look like a control in the dialog box. No borders are
drawn. To make the control fit in with the other controls in the dialog box, set the
Client Edge and Static Edge properties to True.

The IP AddressThis control (IDC_IPADDRESS1) does not require any special
properties.

Extended Combo BoxesThese controls (IDC_COMBOBOXEX1 and
IDC_COMBOBOXEX2) do not require any special properties.

5. Add the variables to CEx08bDialog.Use the Add Member Variable Wizard to add
member variables to CEx08bDialog. To start the wizard, select the CEx08bDialog class
in Class View and then choose Add Variable from the Project menu. Enter the following
member variables for each control listed.

Control ID Category Variable Type Variable Name

IDC_DATETIMEPICKER1 Control CDateTimeCtrl m_MonthCal1

IDC_DATETIMEPICKER2 Control CDateTimeCtrl m_MonthCal2

IDC_DATETIMEPICKER3 Control CDateTimeCtrl m_MonthCal3

IDC_DATETIMEPICKER4 Control CDateTimeCtrl m_MonthCal4

IDC_IPADDRESS1 Control CIPAddressCtrl m_ptrIPCtrl

IDC_MONTHCALENDAR1 Control CMonthCalCtrl m_MonthCal5

IDC_STATIC1 Value CString m_strDate1

IDC_STATIC2 Value CString m_strDate2

IDC_STATIC3 Value CString m_strDate3

IDC_STATIC4 Value CString m_strDate4

IDC_STATIC5 Value CString m_strDate5

IDC_STATIC6 Value CString m_strIPValue

IDC_STATIC7 Value CString m_strComboEx1

IDC_STATIC8 Value CString m_strComboEx2

6. Program the short date and time picker.In this example, we don’t mind if the first date
and time picker starts with the current date, so we don’t have any OnInitDialog handling
for this control. (If we did want to change the date, we could make a call to SetTime for
the control in OnInitDialog.) At run time, when the user selects a new date in the first
date and time picker, the companion static control will be automatically updated. To
achieve this, we need to add a handler for the DTN_DATETIMECHANGE message.
Select the CEx08bDialog class in Class View, click the Events button in the Properties
window, expand the IDC_DATETIMEPICKER1 item, select the
DTN_DATETIMECHANGE message, and add the
OnDtnDatetimechangeDatetimepicker1 handler. Repeat this step for each of the other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnDtnDatetimechangeDatetimepicker1 handler. Repeat this step for each of the other
three IDC_DATETIMEPICKER IDs. Next, add the following boldface code to the
handler for Datetimepicker1 created by Visual Studio:

void CEx08bDialog::OnDtnDatetimechangeDatetimepicker1 (NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNMDATETIMECHANGE pDTChange =
 reinterpret_cast<LPNMDATETIMECHANGE>(pNMHDR);
 CTime ct;
 m_MonthCal1.GetTime(ct);
 m_strDate1.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

This code uses the m_MonthCal1 data member that maps to the first date and time
picker to retrieve the time into the CTime object variable ct. It then calls the
CString::Format member function to set the companion static string. Finally, the call to
UpdateData(FALSE) triggers MFC’s DDX and causes the static to be automatically
updated to m_strDate1.

7. Program the long date and time picker.Now we need to provide a similar handler for the
second date and time picker:

void CEx08bDialog::OnDtnDatetimechangeDatetimepicker2(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNMDATETIMECHANGE pDTChange =
 reinterpret_cast<LPNMDATETIMECHANGE>(pNMHDR);
 CTime ct;
 m_MonthCal2.GetTime(ct);
 m_strDate2.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

8. Program the third date and time picker.The third date and time picker needs a similar
handler, but because we set the Show None style in the dialog box properties, it is
possible for the user to specify a NULL date by selecting the inline check box. Instead of
blindly calling GetTime, we have to check the return value. If the return value of the
GetTime call is nonzero, the user has selected a NULL date. If the return value is zero, a
valid date has been selected. As in the previous two handlers, when a CTime object is
returned, it is converted into a string and automatically displayed in the companion
static control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx08bDialog::OnDtnDatetimechangeDatetimepicker3(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNMDATETIMECHANGE pDTChange =
 reinterpret_cast<LPNMDATETIMECHANGE>(pNMHDR);
 //NOTE: this one can be null!
 CTime ct;
 int nRetVal = m_MonthCal3.GetTime(ct);
 if (nRetVal) //If not zero, it's null; and if it is,
 // do the right thing.
 {
 m_strDate3 = "NO DATE SPECIFIED!!";
 }
 else
 {
 m_strDate3.Format(_T("%02d/%02d/%2d"),ct.GetMonth(),
 ct.GetDay(),ct.GetYear());
 }
 UpdateData(FALSE);
 *pResult = 0;
}

9. Program the time picker.The time picker needs a similar handler, but this time the
format displays hours/minutes/seconds instead of months/days/years:

void CEx08bDialog::OnDtnDatetimechangeDatetimepicker4(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNMDATETIMECHANGE pDTChange =
 reinterpret_cast<LPNMDATETIMECHANGE>(pNMHDR);
 CTime ct;
 m_MonthCal4.GetTime(ct);
 m_strDate4.Format(_T("%02d:%02d:%2d"),
 ct.GetHour(),ct.GetMinute(),ct.GetSecond());
 UpdateData(FALSE);
 *pResult = 0;
}

10. Program the month selector.You might think that the month selector handler is similar to
the date and time picker’s handler, but they’re actually somewhat different. First of all,
the message you need to handle for detecting when the user has selected a new date is
the MCN_SELCHANGE message. Select the CEx08bDialog class in Class View, click
the Events button in the Properties window, expand the IDC_MONTHCALENDER1
item, select the MCN_SELCHANGE message, and add the
OnMcnSelchangeMonthcalender1 handler. In addition to the different message handler,
this control uses GetCurSel as the date and time picker instead of GetTime. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this control uses GetCurSel as the date and time picker instead of GetTime. The
following code shows the MCN_SELCHANGE handler for the month calendar control.

void CEx08bDialog::OnMcnSelchangeMonthcalendar1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNSELCHANGE pSelChange =
 reinterpret_cast<LPNMSELCHANGE>(pNMHDR);
 CTime ct;
 m_MonthCal5.GetCurSel(ct);
 m_strDate5.Format(_T("%02d/%02d/%2d"),
 ct.GetMonth(),ct.GetDay(),ct.GetYear());
 UpdateData(FALSE);
 *pResult = 0;
}

11. Program the IP control.First, we need to make sure the control is initialized. In this
example, we initialize the control to 0 by giving it a 0 DWORD value. If you don’t
initialize the control, each segment will be blank. To initialize the control, add this call
to the CEx08bDialog::OnInitDialog function:

// Initialize the IP control
m_ptrIPCtrl.SetAddress(0L);

Now we need to add a handler to update the companion static control whenever the IP
address control changes. First, we need to add a handler for the IPN_FIELDCHANGED
notification message. Select the CEx08bDialog class in Class View, click the Events
button in the Properties window, expand the IDC_IPADDRESS1 item, select the
IPN_FIELDCHANGED message, and add the OnIpnFieldchangedIpaddress1 handler.

Next, we need to implement the handler as follows:

void CEx08bDialog::OnIpnFieldchangedIpaddress1(NMHDR* pNMHDR,
 LRESULT* pResult)
{
 LPNMIPADDRESS pIPAddr =
 reinterpret_case<LPNMIADDRESS>(pNMHDR);
 DWORD dwIPAddress;
 m_ptrIPCtrl.GetAddress(dwIPAddress);

 m_strIPValue.Format("%d.%d.%d.%d %x.%x.%x.%x",
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),
 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)),
 HIBYTE(HIWORD(dwIPAddress)),
 LOBYTE(HIWORD(dwIPAddress)),
 HIBYTE(LOWORD(dwIPAddress)),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HIBYTE(LOWORD(dwIPAddress)),
 LOBYTE(LOWORD(dwIPAddress)));
 UpdateData(FALSE);
 *pResult = 0;
}

The first call to CIPAddressCtrl::GetAddress retrieves the current IP address into the
local dwIPAddress DWORD variable. Next, we make a fairly complex call to
CString::Format to deconstruct the DWORD into the various fields. This call uses the
LOWORD macro to first get to the bottom word of the DWORD and then uses the
HIBYTE/LOBYTE macros to further deconstruct the fields in order from field 0 to field
3.

12. Add Items to the first extended combo box.Add this code to OnInitDialog to
programmatically add three items (“George”, “Sandy”, and “Teddy”) to the first
extended combo box. Can you spot how this differs from a “normal” combo box
control?

// Initialize IDC_COMBOBOXEX1
CComboBoxEx* pCombo1 =
 (CComboBoxEx*) GetDlgItem(IDC_COMBOBOXEX1);
CString rgstrTemp1[3];
rgstrTemp1[0] = "George";
rgstrTemp1[1] = "Sandy";
rgstrTemp1[2] = "Teddy";
COMBOBOXEXITEM cbi1;
cbi1.mask = CBEIF_TEXT;
for (int nCount = 0; nCount < 3; nCount++)
{
 cbi1.iItem = nCount;
 cbi1.pszText = (LPTSTR)(LPCTSTR)rgstrTemp1[nCount];
 cbi1.cchTextMax = 256;
 pCombo1->InsertItem(&cbi1);
}

The first thing you probably noticed is the use of the COMBOBOXEXITEM structure
for the extended combo box instead of the plain integers used for items in an older
combo box.

13. Add a handler for the first extended combo box.We need to handle the
CBN_SELCHANGE message for the first extended combo box. Select the
CEx08bDialog class in Class View, click the Events button in the Properties window,
expand the IDC_COMBOBOX1 item, select the CBN_SELCHANGE message, and add
the OnCbnSelchangeComboboxex1 handler. The following code shows the extended
combo box handler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx08bDialog::OnCbnSelchangeComboboxex1 ()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX1);
 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC7,str);
 return;
}

Once the handler retrieves the item, it extracts the string and calls SetDlgItemText to
update the companion static control.

14. Add Images to the items in the second extended combo box.The first extended combo
box does not need any special programming. It simply demonstrates how to implement a
simple extended combo box that is similar to the older, nonextended combo box. The
second combo box requires a good bit of programming. First, we created six bitmaps
and eight icons that we need to add to the resources for the project. Of course, you’re
free to grab these images from the companion CD instead of recreating them all by
hand, or you can choose to use any bitmaps and icons. Add these bitmaps and icons to
Resource View and set their IDs as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before we start adding graphics to the extended combo box, let’s create a public
CImageList data member in the CEx08bDialog class named m_imageList. Add the
following code toEx08bDialog.h:

CImageList m_imageList;

Now we can add some of the bitmap images to the image list and then “attach” the
images to the three items already in the extended combo box. Add the following code to
your CEx08bDialog’s OnInitDialog method to achieve this:

// Initialize IDC_COMBOBOXEX2
CComboBoxEx* pCombo2 =
 (CComboBoxEx*) GetDlgItem(IDC_COMBOBOXEX2);
// First let's add images to the items there.
// We have six images in bitmaps to match to our strings:
m_imageList.Create(32,16,ILC_MASK,12,4);
CBitmap bitmap;
bitmap.LoadBitmap(IDB_BMBIRD);
m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
bitmap.DeleteObject();
bitmap.LoadBitmap(IDB_BMBIRDSELECTED);
m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
bitmap.DeleteObject();
bitmap.LoadBitmap(IDB_BMDOG);
m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
bitmap.DeleteObject();
bitmap.LoadBitmap(IDB_BMDOGSELECTED);
m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
bitmap.DeleteObject();
bitmap.LoadBitmap(IDB_BMFISH);
m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
bitmap.DeleteObject();
bitmap.LoadBitmap(IDB_BMFISHSELECTED);
m_imageList.Add(&bitmap, (COLORREF)0xFFFFFF);
bitmap.DeleteObject();
// Set the imagelist
pCombo2->SetImageList(&m_imageList);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pCombo2->SetImageList(&m_imageList);
CString rgstrTemp2[3];
rgstrTemp2[0] = "Tweety";
rgstrTemp2[1] = "Mack";
rgstrTemp2[2] = "Jaws";
COMBOBOXEXITEM cbi2;
cbi2.mask = CBEIF_TEXT│CBEIF_IMAGE│CBEIF_SELECTEDIMAGE│CBEIF_INDENT;
int nBitmapCount = 0;
for (int nCount = 0; nCount < 3; nCount++)
{
 cbi2.iItem = nCount;
 cbi2.pszText = (LPTSTR)(LPCTSTR)rgstrTemp2[nCount];
 cbi2.cchTextMax = 256;
 cbi2.iImage = nBitmapCount++;
 cbi2.iSelectedImage = nBitmapCount++;
 cbi2.iIndent = (nCount & 0x03);
 pCombo2->InsertItem(&cbi2);
}

The extended combo box initialization code first creates a pointer to the control using
GetDlgItem. Then it calls Create to create memory for the images to be added and to
initialize the image list. The next series of calls loads each bitmap, adds them to the
image list, and then deletes the resource allocated in the load.

CComboBoxEx::SetImageList is called to associate the m_imageList with the extended
combo box. Then a COMBOBOXEXITEM structure is initialized with a mask, and the
for loop iterates from 0 through 2, setting the selected and unselected images with each
pass through the loop. There’s an array of strings named rgstrTemp that’s associated
with each picture. The rgstrTemp array includes the strings “Tweety”, “Mack”, and
“Jaws”. The variable nBitmapCount is used to set the string in the extended combo box.
The variable nBitmapCount also increments through the image list to ensure that the
correct image ID is put into the COMBOBOXEXITEM structure. Then the loop sets up
the images for the list item and finally calls CComboBoxEx::InsertItem to put the
COMBOBOXEXITEM structure back into the extended combo box and complete the
association of images with the existing items in the list.

15. Add items to the second extended combo box.The other technique available for putting
images into an extended combo box is to add them dynamically, as shown in the
following code. Add this code to OnInitDialog:

HICON hIcon[8];
int n;
// Now let's insert some color icons
hIcon[0] = AfxGetApp()->LoadIcon(IDI_WHITE);
hIcon[1] = AfxGetApp()->LoadIcon(IDI_BLACK);
hIcon[2] = AfxGetApp()->LoadIcon(IDI_RED);
hIcon[3] = AfxGetApp()->LoadIcon(IDI_BLUE);
hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hIcon[4] = AfxGetApp()->LoadIcon(IDI_YELLOW);
hIcon[5] = AfxGetApp()->LoadIcon(IDI_CYAN);
hIcon[6] = AfxGetApp()->LoadIcon(IDI_PURPLE);
hIcon[7] = AfxGetApp()->LoadIcon(IDI_GREEN);
for (n = 0; n < 8; n++) {
 m_imageList.Add(hIcon[n]);
}
static char* color[] = {"white", "black", "red",
 "blue", "yellow", "cyan",
 "purple", "green"};
cbi2.mask = CBEIF_IMAGE│CBEIF_TEXT│CBEIF_OVERLAY│
 CBEIF_SELECTEDIMAGE;
for (n = 0; n < 8; n++) {
 cbi2.iItem = n;
 cbi2.pszText = color[n];
 cbi2.iImage = n+6; // 6 is the offset into the image list from
 cbi2.iSelectedImage = n+6; // the first six items we added...
 cbi2.iOverlay = n+6;
 int nItem = pCombo2->InsertItem(&cbi2);
 ASSERT(nItem == n);
}

The addition of the icons above is similar to the Ex08a list control example shown
earlier in this chapter. The for loop fills out the COMBOBOXEXITEM structure and
then calls CComboBoxEx::InsertItem with each item to add it to the list.

16. Add a handler for the second extended combo box.Select the CEx08bDialog class in
Class View, click the Events button in the Properties window, expand the
IDC_COMBOBOX2 item, select the CBN_SELCHANGE message, and add the
OnCbnSelchangeComboboxex2 handler. Add the following boldface code to the second
extended combo box handler. The handler is essentially the same as the first.

void CEx08bDialog::OnCbnSelchangeComboboxex2()
{
 COMBOBOXEXITEM cbi;
 CString str ("dummy_string");
 CComboBoxEx * pCombo = (CComboBoxEx *)GetDlgItem(IDC_COMBOBOXEX2);
 int nSel = pCombo->GetCurSel();
 cbi.iItem = nSel;
 cbi.pszText = (LPTSTR)(LPCTSTR)str;
 cbi.mask = CBEIF_TEXT;
 cbi.cchTextMax = str.GetLength();
 pCombo->GetItem(&cbi);
 SetDlgItemText(IDC_STATIC8,str);
 return;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17. Connect the view and the dialog box.Add code to the virtual OnDraw function in
Ex08bView.cpp. Edit the code as follows:

void CEx08bView::OnDraw(CDC* pDC)
{
 CEx08vDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

18. Add the OnLButtonDown member function to the CEx08aView class.Select the
CEx08bView class in Class View, click the Messages button in the Properties window,
select the WM_LBUTTONDOWN message, and add the OnLButtonDown handler. Edit
the code as follows:

void CEx08aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx08bDialog dlg;
 dlg.DoModal();
 CView::OnLButtonDown(nFlags, point);
}

Add a statement to include Ex08bDialog.h in file Ex08aView.cpp.

#include "Ex08bDialog.h"

19. Compile and run the program.Now you can experiment with the various common
controls to see how they work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9
Using ActiveX Controls

Developers have long searched for a way to “componentize” user interface elements. Even
though Microsoft Windows has user interface elements such as buttons and edit boxes built
into it, it’s useful to have other controls—charts or grids, for example. The solution to this
problem in classic Windows development is ActiveX controls (formerly known as OLE
controls, or OCXs). Developers can use ActiveX controls in both Microsoft Visual Basic and
Microsoft Visual C++.

Even with Microsoft .NET coming down the line, ActiveX controls are still useful, and you’ll
find a ton of them out there. This chapter is about using ActiveX controls in a Visual C++
.NET application. The premise here is that you can learn to use ActiveX controls without
knowing much about the Component Object Model (COM) on which they’re based. After all,
Microsoft doesn’t require that Visual Basic programmers be COM experts. In order to
effectively write ActiveX controls, however, you need to know a bit more, starting with the
fundamentals of COM. We’ll take a close look at COM as well as using ATL to create
ActiveX controls in Chapters 22 through 28. You might also pick up a copy of Adam
Denning’s ActiveX Controls Inside Out (Microsoft Press, 1997) if you’re serious about
creating ActiveX controls. Of course, knowing more ActiveX control theory won’t hurt when
you’re using the controls in your programs. Chapter 24, Chapter 25, and Chapter 30 of this
book are a good place to start. Even in the Microsoft .NET world, ActiveX will continue to
play a part in building customizable, componentized application user interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls vs. Ordinary Windows Controls

An ActiveX control is a software module that plugs into your C++ program in the same way
that a Windows control does. At least that’s the way it seems at first. It’s worthwhile here to
analyze the similarities and differences between ActiveX controls and the controls you already
know.

Ordinary Controls: A Frame of Reference

In Chapter 8, you used ordinary Windows controls such as the edit control and the list box,
and you saw the Windows common controls that work in much the same way. These controls
are all child windows that you use most often in dialog boxes, and they are represented by
MFC classes such as CEdit and CTreeCtrl. The client program is always responsible for the
creation of the control’s child window.

Ordinary controls send notification command messages (standard Windows messages), such
as BN_CLICKED, to the dialog box. If you want to perform an action on the control, you call
a C++ control class member function, which sends a Windows message to the control. The
controls are all windows in their own right. All the MFC control classes are derived from
CWnd, so if you want to get the text from an edit control, you call CWnd::GetWindowText.
But even that function works by sending a message to the control.

Windows controls are an integral part of Windows, even though the Windows common
controls are in a separate DLL. Another species of ordinary control, the so-called custom
control, is a programmer-created control that acts as an ordinary control in that it sends
WM_COMMAND notifications to its parent window and receives user-defined messages.
You’ll see one of these in Chapter 22.

How ActiveX Controls Are Similar to Ordinary Controls

You can consider an ActiveX control to be a child window, just as an ordinary control is. If
you want to include an ActiveX control in a dialog box, you use the dialog editor to place it
there, and the identifier for the control will turn up in the resource template. If you’re creating
an ActiveX control on the fly, you call a Create member function for a class that represents
the control, usually in the WM_CREATE handler for the parent window. To manipulate an
ActiveX control, you call a C++ member function, just as you do for a Windows control. The
window that contains a control is called a container.

How ActiveX Controls Differ from Ordinary Controls: Properties and
Methods

The most prominent ActiveX control features are properties and methods. Those C++ member
functions that you call to manipulate a control instance all revolve around properties and
methods. Properties have symbolic names that are matched to integer indexes. (These are
actually DISPIDs, which we’ll look at in Chapter 23.) For each property, the control designer
assigns a property name, such as BackColor or GridCellEffect, and a property type, such as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assigns a property name, such as BackColor or GridCellEffect, and a property type, such as
string, integer, or double. There’s even a picture type for bitmaps and icons. The client
program can set an individual ActiveX control property by specifying the property’s integer
index and its value. The client can get a property by specifying the index and accepting the
appropriate return value. In certain cases, Visual Studio .NET lets you define data members in
your client window class that are associated with the properties of the controls that the client
class contains. The generated Dialog Data Exchange (DDX) code exchanges data between the
control properties and the client class data members.

ActiveX control methods are like functions. A method has a symbolic name, a set of
parameters, and a return value. You call a method by calling a C++ member function of the
class that represents the control. A control designer can define any needed methods, such as
PreviousYear or LowerControlRods.

An ActiveX control doesn’t send WM_ notification messages to its container the way an
ordinary control does; instead, it “fires events.” An event has a symbolic name and can have
an arbitrary sequence of parameters—it’s really a container function that the control calls.
Like ordinary control notification messages, events don’t return a value to the ActiveX
control. Examples of events are Click, KeyDown, and NewMonth. Events are mapped in your
client class just as control notification messages are.

In the MFC world, ActiveX controls act just like child windows, but there’s a significant layer
of code between the container window and the control window. In fact, the control might not
even have a window. When you call Create, the control’s window isn’t created directly;
instead, the control code is loaded and given the command for “in-place activation.” The
ActiveX control then creates its own window, which MFC lets you access through a CWnd
pointer. It’s not a good idea for the client to use the control’s hWnd directly, however.

A DLL is used to store one or more ActiveX controls, but the DLL often has an OCX filename
extension instead of a DLL extension. Your container program loads the DLLs when it needs
them, using sophisticated COM techniques that rely on the Windows Registry. For the time
being, simply accept the fact that once you specify an ActiveX control at design time, it will
be loaded for you at run time. Obviously, when you ship a program that requires special
ActiveX controls, you’ll have to include the OCX files and an appropriate setup program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing ActiveX Controls

Let’s assume you’ve found a nifty ActiveX control that you want to use in your project. Your
first step is to copy the control’s DLL to your hard disk. You could put it anywhere, but it’s
easier to track your ActiveX controls if you put them in one place, such as in the system
directory (typically \Windows\System for Windows 95/98 or \Winnt\System32 for Windows
2000 or Windows XP). Copy associated files such as help (HLP) or license (LIC) files to the
same directory.

Your next step is to register the control in the Windows Registry. Actually, the ActiveX
control registers itself when a client program calls a special exported function. The Windows
utility Regsvr32 is a tool that accepts the control name on the command line. Regsvr32 is
suitable for installation scripts, but another program, RegComp, in the project REGCOMP on
the book’s companion CD, lets you find your control by browsing the disk. Some controls
have licensing requirements, which might involve extra entries to the Registry. (See Chapter
15, Chapter 17, Chapter 24, and Chapter 25 for information about how the Windows Registry
works.) Licensed controls usually come with setup programs that take care of those details.

After you register your ActiveX control, you must install it in each project that uses it. That
doesn’t mean that the OCX file gets copied. It means that Visual Studio .NET generates a C++
wrapper class for the specific control, and that the control shows up in the dialog editor control
palette for that project.

To install an ActiveX control in a project, choose Add Class from the Project menu and then
choose MFC Class From ActiveX Control, as shown here:

Select an ActiveX control in the Add Class From ActiveX Control Wizard. This gets you the
list of all the ActiveX controls currently registered on your system. A typical list is shown
here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Calendar Control

The MSCal.ocx control is a popular ActiveX calendar control that’s probably already installed
and registered on your computer. If it isn’t there, don’t worry. It’s on the companion CD.

Figure 9-1 shows the calendar control inside a modal dialog box.

Figure 9-1. The calendar control in use.

The calendar control comes with a help file that lists the control’s properties, methods, and
events, as shown in Table 9-1.

Table 9-1. Properties, Methods, and Events of the
Calendar Control

Properties Methods Events

BackColor AboutBox AfterUpdate

Day NextDay BeforeUpdate

DayFont NextMonth Click

DayFontColor NextWeek DblClick

DayLength NextYear KeyDown

FirstDay PreviousDay KeyPress

GridCellEffect PreviousMonth KeyUp

GridFont PreviousWeek NewMonth

GridFontColor PreviousYear NewYear

GridLinesColor Refresh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Month Today

MonthLength

ShowDateSelectors

ShowDays

ShowHorizontalGridlines

ShowTitle

ShowVerticalGridlines

TitleFont

TitleFontColor

Value

ValueIsNull

Year

You’ll be using the BackColor, Day, Month, Year, and Value properties in the Ex09a example
later in this chapter. BackColor is an unsigned long, but it is used as an OLE_COLOR, which
is almost the same as a COLORREF. Day, Month, and Year are short integers. Value’s type is
the special type VARIANT, which is described in Chapter 25. It holds the entire date as a 64-bit
value.

Each of the properties, methods, and events listed in the table has a corresponding integer
identifier. Information about the names, types, parameter sequences, and integer IDs is stored
inside the control and is accessible to Visual Studio .NET at container design time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Control Container Programming

MFC and Visual Studio .NET support ActiveX controls both in dialog boxes and as “child
windows.” To use ActiveX controls, you must understand how a control grants access to
properties, and you must understand the interactions between your DDX code and those
property values.

Property Access

The ActiveX control developer designates certain properties for access at design time. Those
properties are specified in the property pages that the control displays in the dialog editor
when you right-click on a control and choose Properties. The calendar control’s main property
page looks like this:

All the control’s properties, including the design-time properties, are accessible at runtime.
Some properties, however, might be designated as read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio .NET’s C++ Wrapper Classes for ActiveX Controls

When you insert an ActiveX control into a project, Visual Studio .NET generates a C++
wrapper class, derived from CWnd, that is tailored to your control’s methods and properties.
The class has member functions for all properties and methods, and it has constructors that
you can use to dynamically create an instance of the control. (Visual Studio .NET also
generates wrapper classes for objects used by the control.) Here are a few typical member
functions from the file CCalendar.h that Visual Studio .NET generates for the calendar
control:

unsigned long get_BackColor()
{
 unsigned long result;
 InvokeHelper(DISPID_BACKCOLOR,
 DISPATCH_PROPERTYGET, VT_UI4, (void*)&result, NULL);
 return result;
}
void put_BackColor(unsigned long newValue)
{
 static BYTE parms[] = VTS_UI4 ;
 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYPUT,
 VT_EMPTY, NULL, parms, newValue);
}
short get_Day()
{
 short result;
 InvokeHelper(0x11, DISPATCH_PROPERTYGET,
 VT_I2, (void*)&result, NULL);
 return result;
}
void put_Day(short newValue)
{
 static BYTE parms[] = VTS_I2 ;
 InvokeHelper(0x11, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, newValue);
}
LPDISPATCH get_DayFont()
{
 LPDISPATCH result;
 InvokeHelper(0x1, DISPATCH_PROPERTYGET,
 VT_DISPATCH, (void*)&result, NULL);
 return result;
}
void put_DayFont(LPDISPATCH newValue)
{
 static BYTE parms[] = VTS_DISPATCH ;
 InvokeHelper(0x1, DISPATCH_PROPERTYPUT,
 VT_EMPTY, NULL, parms, newValue);
}
unsigned long get_DayFontColor()
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 unsigned long result;
 InvokeHelper(0x2, DISPATCH_PROPERTYGET, VT_UI4,
 (void*)&result, NULL);
 return result;
}
void put_DayFontColor(unsigned long newValue)
{
 static BYTE parms[] = VTS_UI4 ;
 InvokeHelper(0x2, DISPATCH_PROPERTYPUT,
 VT_EMPTY, NULL, parms, newValue);
}
short get_DayLength()
{
 short result;
 InvokeHelper(0x12, DISPATCH_PROPERTYGET, VT_I2,
 (void*)&result, NULL);
 return result;
}
void put_DayLength(short newValue)
{
 static BYTE parms[] = VTS_I2 ;
 InvokeHelper(0x12, DISPATCH_PROPERTYPUT,
 VT_EMPTY, NULL, parms, newValue);
}
short get_FirstDay()
{
 short result;
 InvokeHelper(0x13, DISPATCH_PROPERTYGET,
 VT_I2, (void*)&result, NULL);
 return result;
}
void put_FirstDay(short newValue)
{
 static BYTE parms[] = VTS_I2 ;
 InvokeHelper(0x13, DISPATCH_PROPERTYPUT,
 VT_EMPTY, NULL, parms, newValue);
}

void NextDay()
{
 InvokeHelper(0x16, DISPATCH_METHOD,
 VT_EMPTY, NULL, NULL);
}
void NextMonth()
{
 InvokeHelper(0x17, DISPATCH_METHOD,
 VT_EMPTY, NULL, NULL);
}
void NextWeek()
{
 InvokeHelper(0x18, DISPATCH_METHOD,
 VT_EMPTY, NULL, NULL);
}
void NextYear()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void NextYear()
{
 InvokeHelper(0x19, DISPATCH_METHOD,
 VT_EMPTY, NULL, NULL);
}

You don’t have to concern yourself too much with the code inside these functions, but you can
match up the first parameter of each InvokeHelper function with the dispatch ID for the
corresponding property or method in the calendar control property list. As you can see,
properties always have separate put_ and get_ functions. To call a method, you simply call the
corresponding function. For example, to call the NextDay method from a dialog class function,
you write code such as this:

m_calendar.NextDay();

In this case, m_calendar is an object of class CCalendar, the wrapper class for the calendar
control.

MFC Application Wizard Support for ActiveX Controls

When the ActiveX Controls option (the default) is selected in the MFC Application Wizard,
the wizard inserts the following line in your application class InitInstance member function:

AfxEnableControlContainer();

It also inserts the following line in the project’s StdAfx.h file:

#include <afxdisp.h>

If you decide to add ActiveX controls to an existing project that doesn’t include the two lines
above, you can simply add the lines.

The Add Class Wizard and the Container Dialog Box

If you’ve used the dialog editor to generate a dialog template, you know that you can use the
Add Class Wizard to generate a C++ class for the dialog window. If your template contains
one or more ActiveX controls, you can use the Add Member Variable Wizard to add data
members and the Class View’s Properties window to add event handler functions.

Dialog Class Data Members vs. Wrapper Class Usage

What kind of data members can you add to the dialog box for an ActiveX control? If you want
to set a control property before you call DoModal for the dialog box, you can add a dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to set a control property before you call DoModal for the dialog box, you can add a dialog
data member for that property. If you want to change properties inside the dialog member
functions, you must take another approach: You add a data member that is an object of the
wrapper class for the ActiveX control.

Now is a good time to review the MFC DDX logic. Look back at the Cincinnati dialog box in
Chapter 8. The CDialog::OnInitDialog function calls CWnd::UpdateData(FALSE) to read the
dialog class data members, and the CDialog::OnOK function calls UpdateData(TRUE) to
write the members. Suppose you add a data member for each ActiveX control property and
you need to get the Value property value in a button handler. If you call UpdateData(FALSE)
in the button handler, it will read all the property values from all the dialog’s controls—clearly
a waste of time. It’s more effective to avoid using a data member and to call the wrapper class
get_ function instead. To call that function, you must first tell Visual Studio .NET to add a
wrapper class object data member.

Suppose you have a calendar wrapper class CCalendar and you have an m_calendar data
member in your dialog class. If you want to get the Value property, you do it like this:

COleVariant var = m_calendar.get_Value();

NOTE
The VARIANT type and COleVariant class are described in Chapter 23.

Now consider another case: You want to set the day to the 5th of the month before the control
is displayed. To do this by hand, you add a dialog class data member m_sCalDay that
corresponds to the control’s short integer Day property. Then you add the following line to the
DoDataExchange function:

DDX_OCShort(pDX, IDC_CALENDAR1, 0x11, m_sCalDay);

The third parameter is the Day property’s integer index (its DispID), which you can find in the
get_Day and put_Day functions generated by Visual Studio .NET for the control. Here’s how
you construct and display the dialog box:

CMyDialog dlg;
dlg.m_sCalDay = 5;
dlg.DoModal();

The DDX code takes care of setting the property value from the data member before the
control is displayed. No other programming is needed. As you’d expect, the DDX code sets
the data member from the property value when the user clicks the OK button.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even when Visual Studio .NET correctly detects a control’s properties, it can’t
always generate data members for all of them. In particular, no DDX functions
exist for VARIANT properties such as the calendar’s Value property. You have to
use the wrapper class for these properties.

Mapping ActiveX Control Events

The Class View’s Properties window lets you map ActiveX control events in the same way
that you map Windows messages and command messages from controls. If a dialog class
contains one or more ActiveX controls, the code wizards available from the Properties
window add and maintain an event sink map that connects mapped events to their handler
functions. You can see the code in ActiveXDialog.h and ActiveXDialog.cpp later in this
chapter.

NOTE
ActiveX controls have the annoying habit of firing events before your program is
ready for them. If your event handler uses windows or pointers to C++ objects, it
should verify the validity of those entities before using them.

Locking ActiveX Controls in Memory

Normally, an ActiveX control remains mapped in your process as long as its parent dialog box
is active. That means it must be reloaded each time the user opens a modal dialog box. The
reloads are usually quicker than the initial load because of disk caching, but you can lock the
control into memory for better performance. To do so, add the following line in the overridden
OnInitDialog function after the base class call:

AfxOleLockControl(m_calendar.GetClsid());

The ActiveX control remains mapped until your program exits or until you call the
AfxOleUnlockControl function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex09a Example: An ActiveX Control Dialog Container

Now it’s time to build an application that uses a calendar control in a dialog box. Here are the
steps to create the Ex09a example:

1. Verify that the calendar control is registered.If the control does not appear in your
system directory, copy the files MSCal.ocx, MSCal.hlp, and MSCal.cnt to your system
directory and register the control by running the REGCOMP program.

2. Run the MFC Application Wizard to generate the Ex09a project.Accept all of the
default settings but two: Select Single Document and deselect Printing And Print
Preview. On the Advanced Features page, be sure the ActiveX Controls option is
selected, as shown here:

3. Install the calendar control in the Ex09a project.Choose Add Class from Visual C++
.NET’s Project menu. Choose MFC Class From ActiveX Control and then click Open.
Select Calendar Control 9.0 from the list of available controls in the Add Class From
ActiveX Control Wizard. Visual Studio .NET will generate a class in the Ex09a
directory. The Add Class From ActiveX Control Wizard is shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Edit the calendar control class to handle help messages.Add the following message map
code to CCalendar.cpp:

BEGIN_MESSAGE_MAP(CCalendar, CWnd)
 ON_WM_HELPINFO()
END_MESSAGE_MAP()

In the same file, add the OnHelpInfo function:

BOOL CCalendar::OnHelpInfo(HELPINFO* pHelpInfo)
{
 // Edit the following string for your system
 ::WinHelp(GetSafeHwnd(), "c:\\winnt\\system32\\mscal.hlp",
 HELP_FINDER, 0);
 return FALSE;
}

In CCalendar.h, add the function prototype and declare the message map:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

protected:
 afx_msg BOOL OnHelpInfo(HELPINFO* pHelpInfo);
 DECLARE_MESSAGE_MAP()

The OnHelpInfo function is called if the user presses the F1 key when the calendar
control has the input focus. We have to add the message map code by hand because
Visual Studio .NET doesn’t modify generated ActiveX classes.

NOTE
The ON_WM_HELPINFO macro maps the WM_HELP message. You can
use ON_WM_HELPINFO in any view or dialog class and then code the
handler to activate any help system.

5. Use the dialog editor to create a new dialog resource.Choose Add Resource from Visual
C++ .NET’s Project menu, and then choose Dialog. The dialog editor will assign the ID
IDD_DIALOG1 to the new dialog box. Next, change the ID to IDD_ACTIVEXDIALOG,
change the dialog caption to ActiveX Dialog, and set the dialog’s Context Help
property. Accept the default OK and Cancel buttons with the IDs IDOK and
IDCANCEL, and then add the other controls as shown earlier in Figure 9-1. Make the
Select Date button the default button. Right-click on the dialog box, select Insert
ActiveX Control, and then select the calendar control from the list. Then set an
appropriate tab order. While the dialog template is showing in the dialog editor, choose
Tab Order from the Format menu. Click on the controls in the order you want them to
tab. You’ll see numbers next to the controls, indicating the tab order. Assign control IDs
as shown in the following table.

Control ID

Calendar control IDC_CALENDAR1

Select Date button IDC_SELECTDATE

Edit control IDC_DAY

Edit control IDC_MONTH

Edit control IDC_YEAR

Next Week button IDC_NEXTWEEK

6. Use Visual Studio .NET to create the CActiveXDialog class.Choose Add Class from
Visual C++ .NET’s Project menu. Choose MFC Class and click Open. In the MFC
Class Wizard, create a CDialog derived class based on the IDD_ACTIVEXDIALOG
template. Be sure to select CDialog as the base class. Name the class CActiveXDialog.

Right-click on the CActiveXDialog class in Class View and then choose Properties.
Click the Overrides button on the Properties window toolbar to list virtual functions for
CActiveXDialog. Add overriding functions for OnInitDialog and OnOK.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Events button on the Properties window toolbar, and then add the message
handler functions shown in the following table. To add a message handler function,
click on an object ID, click on an event, click the drop-down combo box that appears
next to the entry, and select <Add>_. The function will be written into the code and will
appear inside the Code Editor.

Object ID Event Member Function

IDC_CALENDAR1 NewMonth NewMonthCalendar1

IDC_SELECTDATE BN_CLICKED OnBnClickedSelectdate

IDC_NEXTWEEK BN_CLICKED OnBnClickedNextweek

7. Use the Add Member Variable Wizard to add data members to the CActiveXDialog
class.Right-click on CActiveDialog in Class View and choose Add Variable from the
shortcut menu, and then add the data members m_calendar, m_sDay, m_sMonth, and
m_sYear, as shown here:

8. Edit the CActiveXDialog class.Add m_varValue and m_BackColor data members, and
then edit the code for the two overriding functions and three handler functions
(OnInitDialog, NewMonthCalendar1, OnBnClickedSelectdate, OnBnClickedNextweek,
and OnOK). The following code shows all the code for the dialog class, with new code
in boldface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveXDialog.h
#pragma once
#include "ccalendar.h"
//
// CActiveXDialog dialog
class CActiveXDialog : public CDialog

 {
 DECLARE_DYNAMIC(CActiveXDialog)
public:
 CActiveXDialog(CWnd* pParent = NULL); // standard constructor
 virtual ~ActiveXDialog();

// Dialog Data
 enum { IDD = IDD_ACTIVEXDIALOG };

 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 DECLARE_MESSAGE_MAP()
public:

 virtual BOOL OnInitDialog();
 void NewMonthCalendar1();
 afx_msg void OnBnClickedSelectdate();
 afx_msg void OnBnClickedNextweek();

 DECLARE_EVENTSINK_MAP()
public:
 CCalendar m_calendar;
 short m_sDay;
 short m_sMonth;
 short m_sYear;
 COleVariant m_varValue;
 unsigned long m_BackColor;
 protected:
 virtual void OnOK();
};

ActiveXDialog.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveXDialog.cpp
// ActiveXDialog.cpp : implementation file
//

#include "Stdafx.h"
#include "Ex09a.h"
#include "ActiveXDialog.h"
// CActiveXDialog dialog
IMPLEMENT_DYNAMIC(CActiveXDialog, CDialog)
CActiveXDialog::CActiveXDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CActiveXDialog::IDD, pParent)
{
 m_sDay = 0;
 m_sMonth = 0;
 m_sYear = 0;
 m_BackColor = 0x8000000F;
}

ActiveXDialog::~ActiveXDialog()
{
}

void CActiveXDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);

 DDX_Control(pDX, IDC_CALENDAR1, m_calendar);
 DDX_Text(pDX, IDC_DAY, m_sDay);
 DDX_Text(pDX, IDC_MONTH, m_sMonth);
 DDX_Text(pDX, IDC_YEAR, m_sYear);

 DDX_OCColor(pDX, IDC_CALENDAR1, DISPID_BACKCOLOR, m_BackColor);
}

BEGIN_MESSAGE_MAP(CActiveXDialog, CDialog)
 ON_BN_CLICKED(IDC_SELECTDATE, OnBnClickedSelectdate)
 ON_BN_CLICKED(IDC_NEXTWEEK, OnBnClickedNextweek)

END_MESSAGE_MAP()

//
// CActiveXDialog message handlers

BEGIN_EVENTSINK_MAP(CActiveXDialog, CDialog)
 ON_EVENT(CActiveXDialog, IDC_CALENDAR1, 3,
 NewMonthCalendar1, VTS_NONE)
END_EVENTSINK_MAP()
BOOL CActiveXDialog::OnInitDialog()
{
 CDialog::OnInitDialog();
 m_calendar.put_Value(m_varValue); // no DDX for VARIANTs
 return TRUE; //return TRUE unless you set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return TRUE; //return TRUE unless you set
 //the focus to a control
 //EXCEPTION: OCX Property Pages
 //should return FALSE

}
void CActiveXDialog::OnOK()
{
 CDialog::OnOK();
 m_varValue = m_calendar.get_Value(); // no DDX for VARIANTs
}

void CActiveXDialog::NewMonthCalendar1()
{
 AfxMessageBox("EVENT: CActiveXDialog::NewMonthCalendar1");
}

void CActiveXDialog::OnBnClickedSelectdate()
{
 CDataExchange dx(this, TRUE);
 DDX_Text(&dx, IDC_DAY, m_sDay);
 DDX_Text(&dx, IDC_MONTH, m_sMonth);
 DDX_Text(&dx, IDC_YEAR, m_sYear);
 m_calendar.put_Day(m_sDay);
 m_calendar.put_Month(m_sMonth);
 m_calendar.put_Year(m_sYear);
}

void CActiveXDialog::OnBnClickedNextweek()
{
 m_calendar.NextWeek();
}

The OnBnClickedSelectdate function is called when the user clicks the Select Date
button. The function gets the day, month, and year values from the three edit controls
and transfers them to the control’s properties. The Add Member Variable Wizard can’t
add DDX code for the BackColor property, so you must add it by hand. In addition,
there’s no DDX code for VARIANT types, so you must add code to the OnInitDialog
and OnOK functions to set and retrieve the date with the control’s Value property.

9. Connect the dialog box to the view. Use the Class View’s Properties window to map the
WM_LBUTTONDOWN message, and then edit the handler function as follows:

void CEx09aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CActiveXDialog dlg;
 dlg.m_BackColor = RGB(255, 251, 240); // light yellow
 COleDateTime today = COleDateTime::GetCurrentTime();
 dlg.m_varValue = COleDateTime(today.get_Year(),
 today.get_Month(),
 today.get_Day(), 0, 0, 0);
 if (dlg.DoModal() == IDOK) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (dlg.DoModal() == IDOK) {
 COleDateTime date(dlg.m_varValue);
 AfxMessageBox(date.Format("%B %d, %Y"));
 }
}

The code sets the background color to light yellow and the date to today’s date, displays
the modal dialog box, and reports the date returned by the calendar control. You’ll need
to include ActiveXDialog.h in Ex09aView.cpp.

10. Edit the virtual OnDraw function in the file Ex09aView.cpp.To prompt the user to press
the left mouse button, replace the code in the view class OnDraw function with this
single line:

pDC->TextOut(0, 0, "Press the left mouse button here.");

11. Build and test the Ex09a application.Open the dialog box, enter a date in the three edit
controls, and then click the Select Date button. Click the Next Week button. Try moving
the selected date directly to a new month, and observe the message box that is triggered
by the NewMonth event. Watch for the final date in another message box when you
click OK.

For Win32 Programmers
If you use a text editor to look inside the Ex09a.rc file, you might be quite
mystified. Here’s the entry for the calendar control in the ActiveX dialog template:

CONTROL "",IDC_CALENDAR1,
 "{8E27C92B-1264-101C-8A2F-040224009C02}",
 WS_TABSTOP,7,7,217,113

There’s a 32-digit number sequence where the window class name should be.
What’s going on? Actually, the resource template isn’t the one that Windows sees.
The CDialog::DoModal function “preprocesses” the resource template before
passing it on to the dialog box procedure within Windows. It strips out all the
ActiveX controls and creates the dialog window without them. Then it loads the
controls (based on their 32-digit identification numbers, called CLSIDs) and
activates them in place, causing them to create their own windows in the correct
places. The initial values for the properties you set in the dialog editor are stored in
binary form inside the project’s custom DLGINIT resource.

When the modal dialog box runs, the MFC code coordinates the messages sent to
the dialog window both by the ordinary controls and by the ActiveX controls. This
allows the user to tab between all the controls in the dialog box, even though the
ActiveX controls are not part of the actual dialog template.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you call the member functions for the control object, you might think you’re
calling functions for a child window. The control window is quite far removed, but
MFC steps in to make it seem as if you’re communicating with a real child
window. In ActiveX terminology, the container owns a site, which is not a window.
You call functions for the site, and ActiveX and MFC make the connection to the
underlying window in the ActiveX control.

The container window is an object of a class derived from CWnd. The control site
is also an object of a class derived from CWnd—the ActiveX control wrapper class.
That means that the CWnd class has built-in support for both containers and sites.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Controls in HTML Files

You’ve seen the ActiveX calendar control in an MFC modal dialog box. You can use the same
control in a Web page. The following HTML code will work (if the person reading the page
has the calendar control installed and registered on his or her machine):

<OBJECT
 CLASSID="clsid:8E27C92B-1264-101C-8A2F-040224009C02"
 WIDTH=300 HEIGHT=200 BORDER=1 HSPACE=5 ID=calendar>
 <PARAM NAME="Day" VALUE=7>
 <PARAM NAME="Month" VALUE=11>
 <PARAM NAME="Year" VALUE=1998>
</OBJECT>

The CLASSID attribute (the same number that was in the Ex09a dialog resource) identifies the
calendar control in the Registry. A browser can download an ActiveX control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating ActiveX Controls at Run Time

You’ve seen how to use the dialog editor to insert ActiveX controls at design time. If you need
to create an ActiveX control at run time without a resource template entry, here are the
programming steps:

1. Insert the component into your project. Visual Studio .NET will create the files for a
wrapper class.

2. Add an embedded ActiveX control wrapper class data member to your dialog class or
other C++ window class. An embedded C++ object will be constructed and destroyed
along with the window object.

3. Choose Resource View from Visual C++ .NET’s View menu. In Resource View, right-
click on your RC file and choose Resource Symbols from the shortcut menu. Add an ID
constant for the new control.

4. If the parent window is a dialog box, use Class View’s Properties window to override
CDialog::OnInitDialog. For other windows besides CDialog, use Class View’s
Properties window to map the WM_CREATE message. The new function should call the
embedded control class’s Create member function. This call indirectly displays the new
control in the dialog box. The control will be properly destroyed when the parent
window is destroyed.

5. In the parent window class, manually add the necessary event message handlers and
prototypes for your new control. Don’t forget to add the event sink map macros.

TIP
The code wizards available from Class View don’t help you with event sink
maps when you add a dynamic ActiveX control to a project. Consider
inserting the target control in a dialog box in another temporary project.
After you’re finished mapping events, simply copy the event sink map code
to the parent window class in your main project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex09b Example: The Web Browser ActiveX Control

Most of the functionality in Microsoft Internet Explorer is contained in one big ActiveX
control, Shdocvw.dll. When you run Internet Explorer, you launch a small shell program that
loads this Web browser control in its main window.

NOTE
You can find complete documentation for the Web browser control’s properties,
methods, and events in the online MSDN Library included with Visual Studio.
NET.

Because of this modular architecture, you can write your own custom browser program with
little effort. Ex09b creates a two-window browser that displays a search engine page side-by-
side with the target page, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This view window contains two Web browser controls that are sized to occupy the entire
client area. When the user clicks an item in the search (right-hand) control, the program
intercepts the command and routes it to the target (left-hand) control.

Here are the steps for building the example:

1. Be sure the Web browser control is registered.You undoubtedly have the latest version
of Internet Explorer installed, since Visual Studio .NET requires it, so the Web browser
control should be registered. You can download Internet Explorer from
http://www.microsoft.com if necessary.

2. Run the MFC Application Wizard to generate the Ex09b project.Accept all the default
settings but two: Select Single Document and deselect Printing And Print Preview. Be
sure the ActiveX Controls option is selected, as in Ex09a.

3. Install the Web browser control in the Ex09b project.Choose Add Class from the Project
menu, and select the MFC Class From ActiveX Control template. Then select Microsoft
Web Browser. Visual Studio .NET will present two interfaces for which to generate
wrapper classes: IWebBrowser and IWebBrowser2. Select IWebBrowser2. Visual Studio
.NET will generate the wrapper class CWebBrowser2 and add the files to your project.

4. Add two CWebBrowser2 data members to the CEx09bView class.It’s easiest to add
these member variables by hand in the header file:

private:
 CWebBrowser2 m_target;
 CWebBrowser2 m_search;

Be sure to add an #include statement for the cwebbrowser2.h file.

5. Add the child window ID constants for the two controls.Right-click on the dialog class
in Resource View and choose Resource Symbols from the shortcut menu. Add the
symbols ID_BROWSER_SEARCH and ID_BROWSER_TARGET.

6. Add a static character array data member for the Google URL.Add the following static
data member to the class declaration in Ex09bView.h:

 private:
 static const char s_engineGoogle[];

Then add the following definition in Ex09bView.cpp, outside any function:

const char CEx09bView::s_engineGoogle[] = "http://www.google.com/";

7. Use Class View’s Properties window to map the view’s WM_CREATE and WM_SIZE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. Use Class View’s Properties window to map the view’s WM_CREATE and WM_SIZE
messages.Edit the handler code in Ex09bView.cpp as follows:

int CEx09bView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 DWORD dwStyle = WS_VISIBLE │ WS_CHILD;
 if (m_search.Create(NULL, dwStyle, CRect(0, 0, 100, 100),
 this, ID_BROWSER_SEARCH) == 0) {
 AfxMessageBox("Unable to create search control!\n");
 return -1;
 }
 m_search.Navigate(s_engineGoogle, NULL, NULL, NULL, NULL);
 if (m_target.Create(NULL, dwStyle, CRect(0, 0, 100, 100),
 this, ID_BROWSER_TARGET) == 0) {
 AfxMessageBox("Unable to create target control!\n");
 return -1;
 }
 m_target.GoHome(); // as defined in Internet Explorer options
 return 0;
}

void CEx09bView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 CRect rectClient;
 GetClientRect(rectClient);
 CRect rectBrowse(rectClient);
 rectBrowse.right = rectClient.right / 2;
 CRect rectSearch(rectClient);
 rectSearch.left = rectClient.right / 2;
 m_target.put_Width(rectBrowse.right - rectBrowse.left);
 m_target.put_Height(rectBrowse.bottom - rectBrowse.top);
 m_target.UpdateWindow();
 m_search.put_Left(rectSearch.left);
 m_search.put_Width(rectSearch.right - rectSearch.left);
 m_search.put_Height(rectSearch.bottom - rectSearch.top);
 m_search.UpdateWindow();
}

The OnCreate function creates two browser windows inside the view window. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OnCreate function creates two browser windows inside the view window. The
right-hand browser displays the top-level Google page, and the left-hand browser
displays the “home” page as defined through the Internet Options icon in Control Panel.
The OnSize function, which is called whenever the view window changes size, ensures
that the browser windows completely cover the view window. The CWebBrowser2
member functions put_Width and put_Height set the browser’s Width and Height
properties.

8. Add the event sink macros in the CEx09bView files.The code wizards available from
Class View’s Properties window can’t map events from a dynamic ActiveX control, so
you must do it manually. Add the following lines inside the class declaration in the file
Ex09bView.h:

protected:
 afx_msg void OnBeforeNavigateExplorer1(LPCTSTR URL,
 long Flags, LPCTSTR TargetFrameName,
 VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel);
 afx_msg void OnTitleChangeExplorer2(LPCTSTR Text);
 DECLARE_EVENTSINK_MAP()

Then add the following code in Ex09bView.cpp:

BEGIN_EVENTSINK_MAP(CEx09bView, CView)
 ON_EVENT(CEx09bView, ID_BROWSER_SEARCH, 100,
 OnBeforeNavigateExplorer1, VTS_BSTR VTS_I4 VTS_BSTR
 VTS_PVARIANT VTS_BSTR VTS_PBOOL)
 ON_EVENT(CEx09bView, ID_BROWSER_TARGET, 113,
 OnTitleChangeExplorer2, VTS_BSTR)
END_EVENTSINK_MAP()

9. Add two event handler functions.Add the following member functions in
Ex09bView.cpp:

void CEx09bView::OnBeforeNavigateExplorer1(LPCTSTR URL,
 long Flags, LPCTSTR TargetFrameName,
 VARIANT FAR* PostData, LPCTSTR Headers, BOOL FAR* Cancel)
{
 TRACE("CEx09bView::OnBeforeNavigateExplorer1 -URL = %s\n", URL);
 if (!strnicmp(URL, s_engineGoogle, strlen(s_engineGoogle))) {
 return;
 }
 m_target.Navigate(URL, NULL, NULL, PostData, NULL);
 *Cancel = TRUE;
}
void CEx09bView::OnTitleChangeExplorer2(LPCTSTR Text)
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 // Careful! Event could fire before we're ready.
 CWnd* pWnd = AfxGetApp()->m_pMainWnd;
 if (pWnd != NULL) {
 if (::IsWindow(pWnd->m_hWnd)) {
 pWnd->SetWindowText(Text);
 }
 }
}

The OnBeforeNavigateExplorer1 handler is called when the user clicks on a link in the
search page. The function compares the clicked URL (in the URL string parameter) with
the search engine URL. If they match, the navigation proceeds in the search window;
otherwise, the navigation is cancelled and the Navigate method is called for the target
window. The OnTitleChangeExplorer2 handler updates the Ex09b window title to
match the title on the target page.

10. Build and test the Ex09b application.Search for something on the Google page, and then
watch the information appear in the target page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Picture Properties

Some ActiveX controls support picture properties, which can accommodate bitmaps,
metafiles, and icons. If an ActiveX control has at least one picture property, Visual Studio
.NET will generate a CPicture class in your project during the control’s installation. You don’t
need to use this CPicture class, but you must use the MFC class CPictureHolder. To access
the CPictureHolder class declaration and code, you need the following line in StdAfx.h:

#include <afxctl.h>

Suppose you have an ActiveX control with a picture property named Picture. Here’s how you
set the Picture property to a bitmap in your program’s resources:

CPictureHolder pict;
pict.CreateFromBitmap(IDB_MYBITMAP); // from project's resources
m_control.SetPicture(pict.GetPictureDispatch());

NOTE
If you include the AfxCtl.h file, you can’t statically link your program with the
MFC library. If you need a standalone program that supports picture properties,
you’ll have to borrow code from the CPictureHolder class, located in the \Program
Files\Microsoft Visual Studio .NET\VC7\atlmfc\src\mfc\ctlpict.cpp file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bindable Properties: Change Notifications

If an ActiveX control has a property designated as bindable, the control will send an
OnChanged notification to its container when the value of the property changes inside the
control. In addition, the control can send an OnRequestEdit notification for a property whose
value is about to change but has not yet changed. If the container returns FALSE from its
OnRequestEdit handler, the control should not change the property value.

MFC fully supports property change notifications in ActiveX control containers, but as of
Visual C++ .NET, no wizard support is available. That means you must manually add entries
to your container class’s event sink map.

Suppose you have an ActiveX control with a bindable property named Note with a dispatch ID
of 4. You add an ON_PROPNOTIFY macro to the EVENTSINK macros in this way:

BEGIN_EVENTSINK_MAP(CAboutDlg, CDialog)
 ON_PROPNOTIFY(CAboutDlg, IDC_MYCTRL1, 4, OnNoteRequestEdit,
 OnNoteChanged)
END_EVENTSINK_MAP()

You must then code the OnNoteRequestEdit and OnNoteChanged functions with return types
and parameter types exactly as shown here:

BOOL CMyDlg::OnNoteRequestEdit(BOOL* pb)
{
 TRACE("CMyDlg::OnNoteRequestEdit\n");
 *pb = TRUE; // TRUE means change request granted
 return TRUE;
}

BOOL CMyDlg::OnNoteChanged()
{
 TRACE("CMyDlg::OnNoteChanged\n");
 return TRUE;
}

You’ll also need corresponding prototypes in the class header, as shown here:

afx_msg BOOL OnNoteRequestEdit(BOOL* pb);
afx_msg BOOL OnNoteChanged();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10
Win32 Core Memory Management

Microsoft Windows has been through a great number of changes over the years. In the late
1980s, system memory was at a huge premium, and it was all you could do to squeeze the
bytes out of the RAM installed on your machine. With Windows running at 32 bits, the story
has changed dramatically. In 16-bit Windows, you had to perform an immense amount of
housekeeping by calling the Win16 memory management functions (such as GlobalAlloc and
GlobalLock). These functions were carried forward into Win32, but only for reasons of
backward compatibility. Underneath, the original functions work very differently, and many
new ones have been added.

This chapter covers Win32 memory management theory, including the virtual memory and the
fundamental heap management functions. The chapter also covers how the C++ new and
delete operators connect with the underlying heap functions. Finally, the chapter covers how
to use the memory-mapped file functions, finishing with some practical tips on managing
dynamic memory. For more in-depth information about Windows memory management,
you’ll want to look at Jeffrey Richter’s Programming Applications for Microsoft Windows,
Fourth Edition (Microsoft Press, 1999), which covers Windows 2000.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Processes and Memory Space

Before you learn how Windows manages memory, you must first understand what a process
is. If you already know what a program is, you’re on your way. A program is an EXE file that
you can launch in various ways in Windows. Once a program is running, it’s called a process.
A process owns its memory, file handles, and other system resources. If you launch the same
program twice in a row, you’ll have two separate processes running simultaneously. The
Windows Task Manager (right-click on the taskbar) gives you a detailed list of processes that
are currently running, and they allow you to kill processes that are not responding. The
SPYXX.exe program (which is also included with Visual Studio) shows the relationships
among processes, threads, and windows.

NOTE
The Windows Task Manager shows running programs and active processes. The
Processes tab shows active processes. A single process (such as Windows
Explorer) might have several main windows, each supported by its own thread,
and some processes don’t have windows at all. (See Chapter 11 for a discussion of
threads.)

NOTE
The Microsoft .NET Framework provides a new level of isolation: the
AppDomain. We’ll look at AppDomains in .

The important thing to know about a process is that it has its own “private” 4 GB virtual
address space (which I’ll describe in detail shortly). For now, pretend that your computer has
hundreds of gigabytes of RAM and that each process gets 4 GB. Your program can access any
byte of this space with a single 32-bit linear address. Each process’s memory space contains a
variety of items, including the following:

Your program’s EXE image

Any nonsystem DLLs that your program loads, including the MFC DLLs

Your program’s global data (read-only as well as read/write)

Your program’s stack

Dynamically allocated memory, including Windows and C runtime library (CRT) heaps

Memory-mapped files

Interprocess shared memory blocks

Memory local to specific executing threads

All sorts of special system memory blocks, including virtual memory tables

The Windows kernel and executive, plus DLLs that are part of Windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows 95/98 Process Address Space

In Windows 95/98, only the bottom 2 GB (0 to 0x7FFFFFFF) of address space is truly private,
and the bottom 4 MB of that is off-limits. The stack, heaps, and read/write global memory are
mapped in the bottom 2 GB, along with application EXE and DLL files.

The top 2 GB of space is the same for all processes and is shared by all processes. The
Windows 95/98 kernel, executive, virtual device drivers (VxDs), and file system code, along
with important tables such as page tables, are mapped to the top 1 GB (0xC0000000 to
0xFFFFFFFF) of address space. Windows DLLs and memory-mapped files are located in the
range 0x80000000 to 0xBFFFFFFF.

Figure 10-1 shows a memory map of two processes using the same program.

How safe is all this? It’s next to impossible for one process to overwrite another process’s
stack, global, or heap memory because this memory, located in the bottom 2 GB of virtual
address space, is assigned only to that specific process. All EXE and DLL code is flagged as
read-only, so there’s no problem if the code is mapped in several processes.

However, because important Windows read/write data is mapped there, the top 1 GB of
address space is vulnerable. An errant program could wipe out important system tables located
in this region. In addition, one process could mess up another process’s memory-mapped files
in the range 0x80000000 through 0xBFFFFFFF because this region is shared by all processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-1. A typical Windows 95/98 virtual memory map for two processes linked to the
same EXE file.

The Windows NT/2000/XP Process Address Space

A process in Windows NT/2000/XP can access only the bottom 2 GB of its address space, and
the lowest and highest 64 KB of that is inaccessible. The EXE, the application’s DLLs and
Windows DLLs, and memory-mapped files all reside in this space between 0x00010000 and
0x7FFEFFFF. The Windows NT kernel, executive, and device drivers all reside in the upper 2
GB, where they’re completely protected from any tampering by an errant program. Memory-
mapped files are safer, too. One process cannot access another’s memory-mapped file without
knowing the file’s name and explicitly mapping a view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How Virtual Memory Works

You know that your computer doesn’t really have hundreds of gigabytes of RAM. And it
doesn’t have hundreds of gigabytes of disk space either. Windows uses some smoke and
mirrors here.

First of all, a process’s 4 GB address space is used sparsely. Various programs and data
elements will be scattered throughout the 4 GB address space in 4 KB units, starting on 4 KB
boundaries. Each 4 KB unit, called a page, can hold either code or data. When a page is being
used, it occupies physical memory, but you never see its physical memory address. The Intel
microprocessor chip efficiently maps a 32-bit virtual address to both a physical page and an
offset within the page, using two levels of 4 KB page tables, as shown in Figure 10-2. Note
that individual pages can be flagged as either read-only or read/write. Also note that each
process has its own set of page tables. The chip’s CR3 register holds a pointer to the directory
page, so when Windows switches from one process to another, it simply updates CR3.

So now our process is down from 4 GB to maybe 5 MB—a definite improvement. But if we’re
running several programs, along with Windows itself, we’ll still run out of RAM. In Figure
10-2, you’ll notice that the page table entry has a “present” bit that indicates whether the 4 KB
page is currently in RAM. If we try to access a page that’s not in RAM, an interrupt will fire
and Windows will analyze the situation by checking its internal tables. If the memory
reference was bogus, we’ll get the dreaded “page fault” message and the program will exit.
Otherwise, Windows will read the page from a disk file into RAM and update the page table
by loading the physical address and setting the present bit. This is the essence of Win32 virtual
memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. Win32 virtual memory management (Intel).

The Windows virtual memory manager figures out how to read and write 4 KB pages so that it
optimizes performance. If one process hasn’t used a page for a while and another process
needs memory, the first page will be swapped out or discarded and the RAM will be used for
the new process’s page. Your program won’t normally be aware that this is going on. The
more disk I/O that happens, however, the worse your program’s performance will be, so it
stands to reason that more RAM is better.

I’ve mentioned the disk, but I haven’t talked about files yet. All processes share a big system-
wide swap file that’s used for all read/write data and some read-only data. (Windows
NT/2000/XP supports multiple swap files.) Windows determines the swap file size based on
available RAM and free disk space, but there are ways to fine-tune the swap file’s size and
specify its physical location on disk.

The swap file isn’t the only file used by the virtual memory manager, however. It wouldn’t
make sense to write code pages back to the swap file, so instead of using the swap file,
Windows maps EXE and DLL files directly to their files on disk. Because the code pages are
marked read-only, there’s never a need to write them back to disk.

If two processes use the same EXE file, that file is mapped into each process’s address space.
The code and constants never change during program execution, so the same physical memory
can be mapped for each process. The two processes cannot share global data, however, and
Windows 95/98 and Windows NT/2000/XP handle this situation differently. Windows 95/98
maps separate copies of the global data to each process. In Windows NT/2000/XP, both
processes use the same copy of each page of global data until one process attempts to write to
that page. At that point, the page is copied; as a result, each process has its own private copy
stored at the same virtual address.

NOTE
A DLL can be mapped directly to its DLL file only if the DLL can be loaded at its
designated base address. If a DLL were statically linked to load at, say,
0x10000000 but that address range were already occupied by another DLL,
Windows would have to “fix up” the addresses within the DLL code. Windows
NT/2000/XP copies the altered pages to the swap file when the DLL is first
loaded, but Windows 95/98 can do the fix-up “on the fly” when the pages are
brought into RAM. Needless to say, it’s important to build your DLLs with
nonoverlapping address ranges. If you’re using the MFC DLLs, set the base
address of your own DLLs outside the range 0x5F400000 through 0x5FFFFFFF.
You’ll see more on writing DLLs in Chapter 20.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory-mapped files are also mapped directly. These can be flagged as read/write and made
available for sharing among processes.

For Win32 Programmers
If you’ve experimented with the Registers window in Visual Studio, you might
have noticed the segment registers, particularly CS, DS, and SS. (To display the
segment registers in Visual Studio .NET, you might need to right-click in the
Registers window and select the CPU Segments group.) These 16-bit relics haven’t
gone away, but you can mostly ignore them. In 32-bit mode, the Intel
microprocessor still uses segment registers, which are 16 bits long, to translate
addresses before sending them through the virtual memory system. A table in RAM
called the descriptor table has entries that contain the virtual memory base address
and block size for code, data, and stack segments. In 32-bit mode, these segments
can be up to 4 GB in size and can be flagged as read-only or read/write. For every
memory reference, the chip uses the selector, the contents of a segment register, to
look up the descriptor table entry for the purpose of translating the address.

Under Win32, each process has two segments—one for code and one for data and
the stack. You can assume that both have a base value of 0 and a size of 4 GB, so
they overlap. The net result is no translation at all, but Windows uses some tricks
that exclude the bottom 16 KB from the data segment. If you try to access memory
down there, you get a protection fault instead of a page fault, which is useful for
debugging null pointers.

Some future operating system might someday use segments to get around that
annoying 4 GB size limitation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VirtualAlloc Function: Committed and Reserved Memory

If your program needs dynamic memory, sooner or later the Win32 VirtualAlloc function will
be called. Chances are that your program will never call VirtualAlloc; instead, you’ll rely on
the Windows heap or the CRT heap functions to call it directly. Knowing how VirtualAlloc
works, however, will help you better understand the functions that call it.

First, you must understand what reserved and committed memory are. When memory is
reserved, a contiguous virtual address range is set aside. If, for example, you know that your
program is going to use a single memory block (known as a region) that is 5 MB in size but
you don’t need to use it all right away, you can call VirtualAlloc with a MEM_RESERVE
allocation type parameter and a 5 MB size parameter. Windows will round the start address of
the region to a 64 KB boundary and prevent your process from reserving other memory in the
same range. You can specify a start address for your region, but more often you’ll let
Windows assign it for you. Nothing else will happen. No RAM will be allocated, and no swap
file space will be set aside.

When you get more serious about needing memory, you can call VirtualAlloc again to
commit the reserved memory, using a MEM_COMMIT allocation type parameter. Now the
start and end addresses of the region will be rounded to 4 KB boundaries, and corresponding
swap file pages will be set aside together with the required page table. The block will be
designated as either read-only or read/write. Still, no RAM will be allocated, however; RAM
allocation occurs only when you try to access the memory. If the memory was not previously
reserved, no problem. If the memory was previously committed, still no problem. The rule is
that memory must be committed before you can use it.

You can call the VirtualFree function to “decommit” committed memory, thereby returning
the designated pages back to reserved status. VirtualFree can also free a reserved region of
memory, but you have to specify the base address you got from a previous VirtualAlloc
reservation call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Heap and the GlobalAlloc Function Family

A heap is a memory pool for a specific process. When your program needs a block of
memory, it calls a heap allocation function, and it calls a companion function to free the
memory. There’s no assumption about 4 KB page boundaries; the heap manager uses space in
existing pages or calls VirtualAlloc to get more pages. We’ll first look at Windows heaps, then
we’ll consider heaps managed by the CRT library for functions such as malloc and new.

Windows provides each process with a default heap, and the process can create any number of
additional Windows heaps. The HeapAlloc function allocates memory in a Windows heap,
and HeapFree releases it.

You might never need to call HeapAlloc yourself, but it will be called for you by the
GlobalAlloc function that’s left over from Win16. In the ideal 32-bit world, you wouldn’t have
to use GlobalAlloc, but in this world, you’ll still run into some code ported from Win16 that
uses “memory handle” (HGLOBAL) parameters instead of 32-bit memory addresses.

GlobalAlloc uses the default Windows heap. It does two different things, depending on its
attribute parameter. If you specify GMEM_FIXED, GlobalAlloc will simply call HeapAlloc
and return the address cast as a 32-bit HGLOBAL value. If you specify GMEM_MOVEABLE,
the returned HGLOBAL value will be a pointer to a handle table entry in your process. That
entry will contain a pointer to the actual memory, which is allocated with HeapAlloc.

Why bother with “movable” memory if it adds an extra level of indirection? You’re looking at
an artifact from Win16 in which, once upon a time, the operating system actually moved
memory blocks around. In Win32, movable blocks exist only to support the GlobalReAlloc
function, which allocates a new memory block, copies bytes from the old block to the new,
frees the old block, and assigns the new block address to the existing handle table entry. If
nobody ever called GlobalReAlloc, we could always use HeapAlloc instead of GlobalAlloc.

Unfortunately, many library functions use HGLOBAL return values and parameters instead of
memory addresses. If such a function returns an HGLOBAL value, you should assume that
memory was allocated with the GMEM_MOVEABLE attribute, and that means you must call
the GlobalLock function to get the memory address. (If the memory block represented by the
handle is fixed, the GlobalLock call just returns the handle as an address.) Call GlobalUnlock
when you’re finished accessing the memory. If you’re required to supply an HGLOBAL
parameter, to be absolutely safe you should generate it with a
GlobalAlloc(GMEM_MOVEABLE, …) call in case the called function decides to call
GlobalReAlloc and expects the handle value to be unchanged.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Small-Block Heap, the C++ new and delete Operators, and
_heapmin

You can use the Windows HeapAlloc function in your programs, but you’re more likely to use
the malloc and free functions supplied by the CRT. If you write C++ code, you won’t call
these functions directly; instead, you’ll use the new and delete operators, which map directly
to malloc and free. If you use new to allocate a block larger than a certain threshold, the CRT
will pass the call straight through to HeapAlloc to allocate memory from a Windows heap
created for the CRT. For blocks smaller than the threshold, the CRT manages a small-block
heap, calling VirtualAlloc and VirtualFree as necessary. Here is the algorithm:

1. Memory is reserved in 4 MB regions.

2. Memory is committed in 64 KB blocks (16 pages).

3. Memory is decommitted 64 KB at a time. As 128 KB becomes free, the last 64 KB is
decommitted.

4. A 4 MB region is released when every page in that region has been decommitted.

As you can see, this small-block heap takes care of its own cleanup. The CRT’s Windows
heap doesn’t automatically decommit and unreserve pages, however. To clean up the larger
blocks, you must call the CRT _heapmin function, which calls the Windows HeapCompact
function. (Unfortunately, the Windows 95/98 version of HeapCompact doesn’t do anything—
all the more reason to use Windows NT/2000/XP.) Once pages are decommitted, other
programs can reuse the corresponding swap file space.

NOTE
In previous versions of the CRT, the free list pointers were stored inside the heap
pages. This strategy required the malloc function to “touch” (read from the swap
file) many pages to find free space, and this degraded performance. The current
system, which stores the free list in a separate area of memory, is faster and
minimizes the need for third-party heap management software.

If you want to change or access the block size threshold, use the CRT functions
_set_sbh_threshold and _get_sbh_threshold.

A special debug version of malloc, _malloc_dbg, adds debugging information inside allocated
memory blocks. The new operator calls _malloc_dbg when you build an MFC project with
_DEBUG defined. Your program can then detect memory blocks that you forgot to free or that
you inadvertently overwrote.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory-Mapped Files

In case you think you don’t have enough memory management options already, I’ll toss you
another one. Suppose your program needs to read a device-independent bitmap (DIB) file.
Your instinct might be to allocate a buffer of the correct size, open the file, and then call a read
function to copy the whole disk file into the buffer. The Windows memory-mapped file is a
more elegant tool for handling this problem, however. You simply map an address range
directly to the file. When the process accesses a memory page, Windows allocates RAM and
reads the data from disk.

Here’s what the code looks like:

HANDLE hFile = ::CreateFile(strPathname, GENERIC_READ,
 FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
ASSERT(hFile != NULL);
HANDLE hMap = ::CreateFileMapping(hFile, NULL, PAGE_READONLY,
 0, 0, NULL);
ASSERT(hMap != NULL);
LPVOID lpvFile = ::MapViewOfFile(hMap, FILE_MAP_READ,
 0, 0, 0); // Map whole file
DWORD dwFileSize = ::GetFileSize(hFile, NULL); // useful info
// Use the file
::UnmapViewOfFile(lpvFile);
::CloseHandle(hMap);
::CloseHandle(hFile);

Here you’re using virtual memory backed by the DIB file. Windows determines the file size,
reserves a corresponding address range, and commits the file’s storage as the physical storage
for this range. In this case, lpvFile is the start address. The hMap variable contains the handle
for the file-mapping object, which can be shared among processes if you want.

The DIB in the example above is a small file that you could read entirely into a buffer.
Imagine a larger file for which you would normally issue seek commands. A memory-mapped
file works for such a file as well because of the underlying virtual memory system. RAM is
allocated and pages are read when you access them, and not before.

NOTE
By default, the entire file is committed when you map it, although it’s possible to
map only part of a file.

If two processes share a file mapping object (such as hMap in the sample code above), the file
itself is, in effect, shared memory, but the virtual addresses returned by MapViewOfFile might
be different. Indeed, this is the preferred Win32 method of sharing memory. (Calling the
GlobalAlloc function with the GMEM_SHARE flag doesn’t create shared memory as it did in
Win16.) If memory sharing is all you want to do and you don’t need a permanent disk file,
you can omit the call to CreateFile and pass 0xFFFFFFFF as the CreateFileMapping hFile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you can omit the call to CreateFile and pass 0xFFFFFFFF as the CreateFileMapping hFile
parameter. Now the shared memory will be backed by pages in the swap file. (See
Programming Applications for Microsoft Windows, Fourth Edition by Jeffrey Richter for
details on memory-mapped files.)

NOTE
If you intend to access only a few random pages of a file-mapping object that is
backed by the swap file, you can use a technique that Jeffrey Richter describes in
Programming Applications for Microsoft Windows. You call CreateFileMapping
with a special flag, and then you commit specific address ranges later using the
VirtualAlloc function.

NOTE
You might want to look carefully at the Windows message WM_COPYDATA.
This message lets you transfer data between processes in shared memory without
having to deal with the file mapping API. You must send this message rather than
post it, which means that the sending process has to wait while the receiving
process copies and processes the data.

Unfortunately, there’s no direct support for memory-mapped files or shared memory in MFC.
The CSharedFile class supports only clipboard memory transfers using HGLOBAL handles, so
the class isn’t as useful as its name implies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Accessing Resources

Resources are contained inside EXEs and DLLs and thus occupy virtual address space that
doesn’t change during the life of the process. It is therefore easy to read a resource directly. If
you need to access a bitmap, for example, you can get the DIB address with code like this:

LPVOID lpvResource = (LPVOID) ::LoadResource(NULL,
 ::FindResource(NULL, MAKEINTRESOURCE(IDB_REDBLOCKS),
 RT_BITMAP));

The LoadResource function returns an HGLOBAL value, but you can safely cast it to a
pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tips for Managing Dynamic Memory

The more you use the heap, the more fragmented it will get and the more slowly your program
will run. If your program is supposed to run for hours or days at a time, you have to be careful.
It’s better to allocate all the memory you need when your program starts and then free it when
the program exits, but that’s not always possible. The CString class is a nuisance because it’s
constantly allocating and freeing little bits of memory.

Don’t forget to call _heapmin every once in a while if your program allocates blocks larger
than the small-block heap threshold. And be sure to remember where heap memory comes
from. You’d have a big problem, for instance, if you called HeapFree on a small-block pointer
you got from new.

Be aware that your stack can be as big as it needs to be. Because you no longer have a 64 KB
size limit, you can put large objects on the stack, thereby reducing the need for heap
allocations.

Your program won’t run at full speed and then suddenly throw an exception when Windows
runs out of swap space. It will just slowly grind to a halt, making your customer unhappy.
There’s not much you can do except try to figure out which program is eating memory and
why. Because the USER and GDI modules in Windows 95/98 still have 16-bit components,
there is some possibility of exhausting the 64 KB heaps that hold GDI objects and window
structures. This possibility is pretty remote, however, and if it happens, it probably indicates a
bug in your program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Optimizing Storage for Constant Data

Remember that the code in your program is backed not by the swap file but directly by its
EXE and DLL files. If several instances of your program are running, the same EXE and DLL
files will be mapped to each process’s virtual address space. What about constant data? You
would want that data to be part of the program rather than have it copied to another block of
address space that’s backed by the swap file.

You’ve got to work a little bit to ensure that constant data gets stored with the program. First,
consider string constants, which often permeate your programs. You’d think that these would
be read-only data, but guess again. Because you’re allowed to write code like this (The
compiler will compile this code, but you’ll get a memory access error if you try to run it.)

char* pch = "test";
*pch = 'x';

The string “test” can’t possibly be constant data, and it isn’t. If you want “test” to be a
constant, you must declare it as an initialized const static or a global variable. Here’s the
global definition:

const char g_pch[] = "test";

Now g_pch is stored with the code, but where, specifically? To answer that, you must
understand the “data sections” that the Visual C++ linker generates. If you set the link options
to generate a map file, you’ll see a long list of the sections (memory blocks) in your program.
Individual sections can be designated for code or data, and they can be read-only or read/write.
Table 10-1 lists the important sections and describes their characteristics.

Table 10-1. Important Sections of a Program
Name Type Access Contents

.text Code Read-only Program code

.rdata Data Read-only Constant initialized data

.data Data Read/write Nonconstant initialized data

.bss Data Read/write Nonconstant uninitialized data

The .rdata section is part of the EXE file, and that’s where the linker puts the g_pch variable.
The more stuff you put in the .rdata section, the better. The use of the const modifier does the
trick.

You can put built-in types and even structures in the .rdata section, but you can’t put C++
objects there if they have constructors. If you write a statement such as this one

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const CRect g_rect(0, 0, 100, 100);

the linker puts the object into the .bss section, and it will be backed separately to the swap file
for each process. If you think about it, this makes sense because the compiler must invoke the
constructor function after the program is loaded.

Now suppose you wanted to do the worst possible thing: declare a CString global variable (or
static class data member) like this:

const CString g_str("this is the worst thing I can do");

Now you’ve got the CString object (which is quite small) in the .bss section, and you’ve also
got a character array in the .data section, neither of which can be backed by the EXE file. To
make matters worse, when the program starts, the CString class must allocate heap memory
for a copy of the characters. You’d be much better off using a const character array instead of
a CString object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11
Windows Message Processing and Multi-Threaded Programming

With its multi-tasking and multi-threading API, Win32 revolutionized programming for
Microsoft Windows. If you’ve seen magazine articles and advanced programming books on
these subjects, you might have been intimidated by the complexity of using multiple threads.
You can stick with single-threaded programming for a long time and still write useful Win32
applications. But if you learn the fundamentals of threads, you’ll be able to write more
efficient and capable programs. You’ll also be on your way to a better understanding of the
Win32 programming model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Message Processing

In order to understand threads, you must first understand how 32-bit Windows processes
messages. The best starting point is a single-threaded program that shows the importance of
the message translation and dispatch process. You can improve that program by adding a
second thread, which you’ll control with a global variable and a simple message. Then you
can experiment with events and critical sections. For heavy-duty multi-threading elements
such as mutexes and semaphores, however, you’ll need to refer to another book, such as
Jeffrey Richter’s Programming Applications for Microsoft Windows, Fourth Edition
(Microsoft Press, 1999).

How a Single-Threaded Program Processes Messages

All the programs so far in this book have been single-threaded, which means that your code
has only one path of execution. With Microsoft Visual Studio’s help, you’ve written handler
functions for various Windows messages and you’ve written OnDraw code that is called in
response to the WM_PAINT message. It might seem as if Windows magically calls your
handler when the message floats in, but it doesn’t work that way. Deep inside the MFC code
(which is linked to your program) are instructions that look something like this:

MSG message;
while (::GetMessage(&message, NULL, 0, 0)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
}

Windows determines which messages belong to your program, and the GetMessage function
returns when a message needs to be processed. If no messages are posted, your program is
suspended and other programs can run. When a message eventually arrives, your program
“wakes up.” The TranslateMessage function translates key messages into character messages.
For example, WM_KEYDOWN messages are translated into WM_CHAR messages containing
ASCII characters. The DispatchMessage function passes control (via the window class) to the
MFC message pump, which calls your function via the message map. When your handler is
finished, it returns to the MFC code, which eventually causes DispatchMessage to return.

Yielding Control

What would happen if one of your handler functions were a pig and chewed up 10 seconds of
CPU time? Back in the 16-bit days, that would have hung up the whole computer for the
duration. Only cursor tracking and a few other interrupt-based tasks would have run. With
Win32, multi-tasking got a whole lot better. Other applications can run because of preemptive
multi-tasking—Windows simply interrupts your pig function when it needs to. However, even
in Win32, your program will be locked out for 10 seconds. It won’t be able to process any
messages because DispatchMessage won’t return until the pig returns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is a way around this problem, however, which works with both Win16 and Win32. You
simply yield control once in a while by inserting the following instructions inside the main
loop:

MSG message;
if (::PeekMessage(&message, NULL, 0, 0, PM_REMOVE)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
}

The PeekMessage function works like GetMessage, except it returns immediately even if no
message has arrived for your program. In that case, the messages keep flowing. If there is a
message, however, the function pauses, the handler is called, and the message processing starts
up again after the handler exits.

Timers

A Windows timer is a useful programming element that sometimes makes multi-threaded
programming unnecessary. If you need to read a communication buffer, for example, you can
set up a timer to retrieve the accumulated characters every 100 milliseconds. You can also use
a timer to control animation because the timer is independent of CPU clock speed.

Timers are easy to use. You simply call the CWnd member function SetTimer with an interval
parameter, and then you provide a message handler function for the resulting WM_TIMER
messages. Once you start the timer with a specified interval in milliseconds, WM_TIMER
messages will be sent continuously to your window until you call CWnd::KillTimer or until
the timer’s window is destroyed. If you want to, you can use multiple timers, each identified
by an integer. Because Windows isn’t a real-time operating system, the interval between timer
events becomes imprecise if you specify an interval much less than 100 milliseconds.

Like any other Windows messages, timer messages can be blocked by other handler functions
in your program. Fortunately, timer messages don’t stack up. Windows won’t put a timer
message in the queue if a message for that timer is already present.

The Ex11a Program

We’re going to write a single-threaded program that contains a CPU-intensive computation
loop. We want to let the program process messages after the user starts the computation;
otherwise, the user won’t be able to cancel the job. Also, we’d like to display the percent-
complete status by using a progress indicator control, as shown in Figure 11-1. The Ex11a
program allows message processing by yielding control in the compute loop. A timer handler
updates the progress control based on compute parameters. The WM_TIMER messages could
not be processed if the compute process didn’t yield control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-1. The Compute dialog box.

Here are the steps for building the Ex11a application:

1. Run the MFC Application Wizard to generate a project named Ex11a.Choose New
Project from Visual Studio’s File menu. In the New Project dialog box, select the MFC
Application template, type the name Ex11a, and click OK. In the MFC Application
Wizard, accept all the default settings but two: On the Application Type page, select
Single Document, and on the Advanced Features page, deselect Printing And Print
Preview.

2. Create a new dialog resource named IDD_COMPUTE.Choose Add Resource from the
Project menu and add a new dialog resource. Change the ID property for the dialog box
to IDD_COMPUTE and change the Caption property to Compute. For the OK button,
change the ID property to IDC_START and change the Caption property to Start. For
the Cancel button, change the ID property to IDC_CANCEL. Using the Toolbox, add a
Progress control and leave the default ID property as IDC_PROGRESS1. When you’re
finished, your dialog box should look like the following:

3. Use the MFC Class Wizard to create the CComputeDlg class.Choose Add Class from
the Project menu to display the MFC Class Wizard. Type CComputeDlg as the class
name, select CDialog as the base class, and set the dialog ID to IDD_COMPUTE to
connect the new class to the dialog resource you just created.

4. Add WM_TIMER and BN_CLICKED message handlers.Select the CComputeDlg class
in Class View. Click the Messages button at the top of the Properties window and add
the OnTimer function for the WM_TIMER message. Click the Events button at the top
of the Properties window and add the OnBnClickedStart and OnBnClickedCancel
functions for IDC_START and IDC_CANCEL.

5. Add three data members to the CComputeDlg class.Edit the file ComputeDlg.h by
adding the following protected data members:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int m_nTimer;
int m_nCount;
enum { nMaxCount = 50000 };

The m_nCount data member of class CComputeDlg is incremented during the compute
process. It serves as a percent-complete measurement when divided by the “constant”
nMaxCount.

6. Add initialization code to the CComputeDlg constructor in the ComputeDlg.cpp
file.Add the following line to the constructor to ensure that the Cancel button will work
if the compute process has not been started:

m_nCount = 0;

7. Code the OnBnClickedStart function in ComputeDlg.cpp.This code is executed when
the user clicks the Start button. Add the following boldface code:

void CComputeDlg::OnBnClickedStart()
{
 MSG message;
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 volatile int nTemp;
 for (m_nCount = 0; m_nCount < nMaxCount; m_nCount++) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // uses up CPU cycles
 }
 if (::PeekMessage(&message, NULL, 0, 0, PM_REMOVE)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
 }
 }
 GetDlgItem(IDC_START)->EnableWindow(TRUE);
 CDialog::OnOK();
}

The main for loop is controlled by the value of m_nCount. At the end of each pass
through the outer loop, PeekMessage allows other messages, including WM_TIMER, to
be processed. The EnableWindow(FALSE) call disables the Start button during the
computation. If we didn’t take this precaution, the OnBnClickedStart function could be
reentered. The second call to EnableWindow(TRUE) enables the Start button so the user
can run the timer again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. Code the OnTimer function in ComputeDlg.cpp.When the timer fires, the progress
indicator’s position is set according to the value of m_nCount. Add the following
boldface code:

void CComputeDlg::OnTimer(UINT nIDEvent)
{
 CProgressCtrl* pBar =
 (CProgressCtrl*) GetDlgItem(IDC_PROGRESS1);
 pBar->SetPos(m_nCount * 100 / nMaxCount);
 CDialog::OnTimer(nIDEvent);
}

9. Update the OnBnClickedCancel function in ComputeDlg.cpp.When the user clicks the
Cancel button during computation, we don’t destroy the dialog; instead, we set
m_nCount to its maximum value, which causes OnBnClickedStart to exit the dialog box.
If the computation hasn’t started, it’s okay to exit directly. Add the following boldface
code:

void CComputeDlg::OnBnClickedCancel()
{
 TRACE("entering CComputeDlg::OnBnClickedCancel\n");
 if (m_nCount == 0) { // prior to Start button
 CDialog::OnCancel();
 }
 else { // computation in progress
 m_nCount = nMaxCount; // Force exit from OnBnClickedStart
 }
}

10. Edit the CEx11aView class in Ex11aView.cpp.First, edit the virtual OnDraw function to
display a message, as shown here:

void CEx11aView::OnDraw(CDC* pDC)
{
 CEx11aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(0, 0, "Press the left mouse button here.");
}

Then add the OnLButtonDown member function. Select the CEx11aView class in Class
View. In the Properties window, click the Messages button, select the
WM_LBUTTONDOWN message, and add the OnLButtonDown function. Add the
following boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void Cex11aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CComputeDlg dlg;
 dlg.DoModal();
 CView::OnLButtonDown(nFlags, point);
}

This code displays the modal dialog box whenever the user presses the left mouse
button while the mouse cursor is in the view window.

While you’re in Ex11aView.cpp, add the following #include statement:

#include "ComputeDlg.h"

11. Build and run the application.Press the left mouse button while the mouse cursor is
inside the view window to display the dialog box. Click the Start button, and then click
Cancel. The application should terminate the computation and fill the rest of the
progress control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On-Idle Processing

Before multi-threaded programming came along, Windows developers used on-idle processing
for “background” tasks such as pagination. On-idle processing is no longer as important, but
it’s still useful. The application framework calls the virtual member function OnIdle of class
CWinApp, and you can override this function to do background processing. OnIdle is called
from the framework’s message processing loop, which is actually a little more complicated
than the simple GetMessage/TranslateMessage/DispatchMessage sequence you’ve seen.

Generally, once the OnIdle function completes its work, it is not called again until the next
time the application’s message queue has been emptied. If you override this function, your
code will be called, but it won’t be called continuously unless there is a constant stream of
messages. The base class OnIdle updates the toolbar buttons and status indicators, and it
cleans up various temporary object pointers. It makes sense for you to override OnIdle to
update the user interface. The fact that your code won’t be executed when no messages are
coming is not important because the user interface shouldn’t be changing.

NOTE
If you do override CWinApp::OnIdle, don’t forget to call the base class OnIdle.
Otherwise, your toolbar buttons won’t be updated and temporary objects won’t be
deleted.

OnIdle isn’t called at all if the user is working in a modal dialog box or is using a menu. If you
need to use background processing for modal dialog boxes and menus, you’ll have to add a
message handler function for the WM_ENTERIDLE message, but you must add it to the frame
class rather than to the view class. That’s because pop-up dialog boxes are always “owned” by
the application’s main frame window, not by the view window. Chapter 14 explores the
relationship between the frame window and the view window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Multi-Threaded Programming

As you’ll recall from Chapter 10, a process is a running program that owns some memory, file
handles, and other system resources. An individual process can contain separate execution
paths, called threads. Don’t look for separate code for separate threads, however, because a
single function can be called from many threads. For the most part, all of a process’s code and
data space is available to all of the threads in the process. Two threads, for example, can
access the same global variables. Threads are managed by the operating system, and each
thread has its own stack.

Windows offers two kinds of threads, worker threads and user interface threads. The
Microsoft Foundation Class (MFC) library supports both. A user interface thread has windows
and therefore has its own message loop. A worker thread doesn’t have windows, so it doesn’t
need to process messages. Worker threads are easier to program and are generally more useful.
The remaining examples in this chapter illustrate worker threads. At the end of the chapter,
however, you’ll see an application for a user interface thread.

Don’t forget that even a single-threaded application has one thread—the main thread. In the
MFC hierarchy, CWinApp is derived from CWinThread. The samples in Chapter 2 refer to a
method named InitInstance and a member variable named m_pMainWnd that appear to belong
to CWinApp. The members are declared in CWinThread, but of course they’re inherited by
CWinApp. The important thing to remember here is that an application is a thread.

Writing the Worker Thread Function and Starting the Thread

If you haven’t guessed already, using a worker thread for a long computation is more efficient
than using a message handler that contains a PeekMessage call. Before you start a worker
thread, however, you must write a global function for your thread’s main program. This global
function should return a UINT, and it should take a single 32-bit value (declared LPVOID) as a
parameter. You can use the parameter to pass anything to your thread when you start it. The
thread does its computation, and when the global function returns, the thread terminates. The
thread will also be terminated if the process terminated, but it’s preferable to ensure that the
worker thread terminates first, which will guarantee that you’ll have no memory leaks.

To start the thread (with function name ComputeThreadProc), your program makes the
following call:

CWinThread* pThread =
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);

The compute thread code looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UINT ComputeThreadProc(LPVOID pParam)
{
 // Do thread processing
 return 0;
}

The AfxBeginThread function returns immediately; the return value is a pointer to the newly
created thread object. You can use that pointer to suspend and resume the thread
(CWinThread::SuspendThread and ResumeThread), but the thread object has no member
function to terminate the thread. The second parameter is the 32-bit value that gets passed to
the global function, and the third parameter is the thread’s priority code. Once the worker
thread starts, both threads run independently. Windows divides the time between the two
threads (and among the threads that belong to other processes) according to their priority. If
the main thread is waiting for a message, the compute thread can still run.

How the Main Thread Talks to a Worker Thread

The main thread (your application program) can communicate with the subsidiary worker
thread in many different ways. One option that will not work, however, is a Windows
message; the worker thread doesn’t have a message loop. The simplest means of
communication is a global variable because all the threads in the process have access to all the
globals.

Suppose the worker thread increments and tests a global integer as it computes and then exits
when the value reaches 100. The main thread could force the worker thread to terminate by
setting the global variable to 100 or higher. The following code looks as if it should work, and
when you test it, it probably will:

UINT ComputeThreadProc(LPVOID pParam)
{
 g_nCount = 0;
 while (g_nCount++ < 100) {
 // Do some computation here
 }
 return 0;
}

There’s a problem, however, that you can detect only by looking at the generated assembly
code. The value of g_nCount gets loaded into a register, the register is incremented, and then
the register value is stored back in g_nCount. Suppose g_nCount is 40 and Windows interrupts
the worker thread just after the worker thread loads 40 into the register. Now the main thread
gets control and sets g_nCount to 100. When the worker thread resumes, it increments the
register value and stores 41 back into g_nCount, obliterating the previous value of 100. The
thread loop doesn’t terminate!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you turn on the compiler’s optimization switch, you’ll have an additional problem. The
compiler uses a register for g_nCount, and the register stays loaded for the duration of the
loop. If the main thread changes the value of g_nCount in memory, it will have no effect on
the worker thread’s compute loop. (You can ensure that the counter isn’t stored in a register,
however, by declaring g_nCount as volatile.)

But suppose you rewrite the thread procedure as shown here:

UINT ComputeThreadProc(LPVOID pParam)
{
 g_nCount = 0;
 while (g_nCount < 100) {
 // Do some computation here
 ::InterlockedIncrement((long*) &g_nCount);
 }
 return 0;
}

The InterlockedIncrement function blocks other threads from accessing the variable while it is
being incremented. The main thread can safely stop the worker thread.

Now you’ve seen some of the pitfalls of using global variables for communication. Using
global variables is sometimes appropriate, as the next example illustrates, but there are
alternative methods that are more flexible, as you’ll see later in this chapter.

How the Worker Thread Talks to the Main Thread

It makes sense for the worker thread to check a global variable in a loop, but what if the main
thread were to do that? Remember the earlier function that consumed CPU cycles? You
definitely don’t want your main thread to enter a loop because that would waste CPU cycles
and stop your program’s message processing. A Windows message is the preferred way for a
worker thread to communicate with the main thread because the main thread always has a
message loop. This implies, however, that the main thread has a window (visible or invisible)
and that the worker thread has a handle to that window.

How does the worker thread get the handle? That’s what the 32-bit thread function parameter
is for. You pass the handle in the AfxBeginThread call. Why not pass the C++ window pointer
instead? Doing so would be dangerous because you can’t depend on the continued existence
of the object and you’re not allowed to share objects of MFC classes among threads. (This rule
does not apply to objects derived directly from CObject or to simple classes such as CRect and
CString.)

Do you send the message or post it? It’s better to post it because sending it could cause reentry
of the main thread’s MFC message pump code, and that would create problems in modal
dialog boxes. What kind of message do you post? Any user-defined message will do.

The Ex11b Program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex11b program looks exactly like the Ex11a program when you run it. When you look at
the code, however, you’ll see some differences. The computation is done in a worker thread
instead of in the main thread. The count value is stored in a global variable, g_nCount, which
is set to the maximum value in the dialog box’s Cancel button handler. When the thread exits,
it posts a message to the dialog box, which causes DoModal to exit.

The document, view, frame, and application classes are the same except for their names, and
the dialog resource is the same. The modal dialog class is still named CComputeDlg, but the
code inside is quite different. The constructor, timer handler, and data exchange functions are
pretty much the same.

The following code fragment shows the global variable definition and the global thread
function as given in the \Ex11b\ComputeDlg.cpp file on the companion CD. Note that the
function exits (and the thread terminates) when g_nCount is greater than a constant maximum
value. Before it exits, however, the function posts a user-defined message to the dialog box.

int g_nCount = 0;
UINT ComputeThreadProc(LPVOID pParam)
{
 volatile int nTemp; // volatile else compiler optimizes too much
 for (g_nCount = 0; g_nCount < CComputeDlg::nMaxCount;
 ::InterlockedIncrement((long*) &g_nCount)) {
 for (nTemp = 0; nTemp < 50000; nTemp++) {
 // uses up CPU cycles
 }
 }
 // WM_THREADFINISHED is user-defined message
 ::PostMessage((HWND) pParam, WM_THREADFINISHED, 0, 0);
 g_nCount = 0;
 return 0; // ends the thread
}

The following OnBnClickedStart handler is mapped to the dialog box’s Start button. Its job is
to start the timer and the worker thread. You can change the worker thread’s priority by
changing the third parameter of AfxBeginThread—for example, the computation runs a little
more slowly if you set the priority to THREAD_PRIORITY_LOWEST.

void CComputeDlg::OnBnClickedStart()
{
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd(),
 THREAD_PRIORITY_NORMAL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 THREAD_PRIORITY_NORMAL);
}

The following OnBnClickedCancel handler is mapped to the dialog box’s Cancel button. It
sets the g_nCount variable to the maximum value, causing the thread to terminate.

void CComputeDlg::OnBnClickedCancel()
{
 if (g_nCount == 0) { // prior to Start button
 CDialog::OnCancel();
 }
 else { // computation in progress
 g_nCount = nMaxCount; // Force thread to exit
 }
}

The following OnThreadFinished handler is mapped to the dialog box’s
WM_THREADFINISHED user-defined message. It causes the dialog box’s DoModal function
to exit.

LRESULT CComputeDlg::OnThreadFinished(WPARAM wParam, LPARAM lParam)
{
 GetDlgItem(IDC_START)->EnableWindow(TRUE);
 CDialog::OnOK();
 return 0;
}

Using Events for Thread Synchronization

The global variable is a crude but effective means of interthread communication. Now let’s try
something more sophisticated. We want to think in terms of thread synchronization instead of
simple communication. Our threads must carefully synchronize their interactions with one
another.

An event is one type of kernel object that Windows provides for thread synchronization.
(Processes and threads are also kernel objects.) An event is identified by a unique 32-bit
handle within a process. It can be identified by name, or its handle can be duplicated for
sharing among processes. An event can be either in the signaled (or true) state or in the
unsignaled (or false) state. Events come in two types: manual reset and autoreset. We’ll look
at autoreset events here because they’re ideal for the synchronization of two processes.

Let’s go back to our worker thread example. We want the main (user interface) thread to
“signal” the worker thread to make it start or stop, so we’ll need a “start” event and a “kill”
event. MFC provides a handy CEvent class that’s derived from CSyncObject. By default, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

event. MFC provides a handy CEvent class that’s derived from CSyncObject. By default, the
constructor creates a Win32 autoreset event object in the unsignaled state. If you declare your
events as global objects, any thread can easily access them. When the main thread wants to
start or terminate the worker thread, it sets the appropriate event to the signaled state by calling
CEvent::SetEvent.

Now the worker thread must monitor the two events and respond when one of them is
signaled. MFC provides the CSingleLock class for this purpose, but it’s easier to use the
Win32 WaitForSingleObject function. This function suspends the thread until the specified
object becomes signaled. When the thread is suspended, it’s not using any CPU cycles, which
is good. The first WaitForSingleObject parameter is the event handle. You can use a CEvent
object for this parameter; the object will inherit from CSyncObject an operator HANDLE that
returns the event handle it has stored as a public data member. The second parameter is the
time-out interval. If you set this parameter to INFINITE, the function will wait forever until
the event becomes signaled. If you set the time-out to 0, WaitForSingleObject will return
immediately, with a return value of WAIT_OBJECT_0 if the event was signaled.

The Ex11c Program

The Ex11c program uses two events to synchronize the worker thread with the main thread.
Most of the Ex11c code is the same as Ex11b, but the CComputeDlg class is quite different.
The StdAfx.h file contains the following line for the CEvent class:

#include <afxmt.h>

There are two global event objects, as shown here. Note that the constructors create the
Windows events before the execution of the main program.

CEvent g_eventStart; // creates autoreset events
CEvent g_eventKill;

It’s best to look at the worker thread global function first. The function increments g_nCount,
just as it did in Ex11b. The worker thread is started by the OnInitDialog function instead of by
the Start button handler. The first WaitForSingleObject call waits for the start event, which is
signaled by the Start button handler. The INFINITE parameter means that the thread waits as
long as necessary. The second WaitForSingleObject call is different—it has a 0 time-out
value. It’s located in the main compute loop and simply makes a quick test to see whether the
kill event was signaled by the Cancel button handler. If the event was signaled, the thread
terminates.

UINT ComputeThreadProc(LPVOID pParam)
{
 volatile int nTemp;
 ::WaitForSingleObject(g_eventStart, INFINITE);
 TRACE("starting computation\n");
 for (g_nCount = 0; g_nCount < CComputeDlg::nMaxCount;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for (g_nCount = 0; g_nCount < CComputeDlg::nMaxCount;
 g_nCount++) {
 for (nTemp = 0; nTemp < 10000; nTemp++) {
 // Simulate computation
 }
 if (::WaitForSingleObject(g_eventKill, 0) == WAIT_OBJECT_0) {
 break;
 }
 }
 // Tell owner window we're finished
 ::PostMessage((HWND) pParam, WM_THREADFINISHED, 0, 0);
 g_nCount = 0;
 return 0; // ends the thread
}

Here is the OnInitDialog function that’s called when the dialog box is initialized. Note that it
starts the worker thread, which doesn’t do anything until the start event is signaled.

BOOL CComputeDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 AfxBeginThread(ComputeThreadProc, GetSafeHwnd());
 return TRUE; // Return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

The following Start button handler sets the start event to the signaled state, thereby starting the
worker thread’s compute loop:

void CComputeDlg::OnBnClickedStart()
{
 m_nTimer = SetTimer(1, 100, NULL); // 1/10 second
 ASSERT(m_nTimer != 0);
 GetDlgItem(IDC_START)->EnableWindow(FALSE);
 g_eventStart.SetEvent();
}

The following Cancel button handler sets the kill event to the signaled state, causing the
worker thread’s compute loop to terminate:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CComputeDlg::OnBnClickedCancel()
{
 if (g_nCount == 0) { // prior to Start button
 // Must start it before we can kill it
 g_eventStart.SetEvent();
 }
 g_eventKill.SetEvent();
}

Note the awkward use of the start event when the user cancels without starting the compute
process. It might be neater to define a new cancel event and then replace the first
WaitForSingleObject call with a WaitForMultipleObjects call in the ComputeThreadProc
function. If WaitForMultipleObjects were to detect a cancel event, it could cause an immediate
thread termination.

Thread Blocking

The first WaitForSingleObject call in the ComputeThreadProc function above is an example
of thread blocking. The thread simply stops executing until an event becomes signaled. A
thread can be blocked in many other ways. You can call the Win32 Sleep function, for
example, to put your thread to “sleep” for 500 milliseconds. Many functions block threads,
particularly those functions that access hardware devices or Internet hosts. Back in the Win16
days, those functions took over the CPU until they were finished. In Win32, they allow other
processes and threads to run.

You should avoid putting blocking calls in your main user interface thread. Remember that if
your main thread is blocked, it can’t process its messages, and that makes the program appear
sluggish. If you have a task that requires heavy file I/O, put the code in a worker thread and
synchronize it with your main thread.

Be careful of calls in your worker thread that could block indefinitely. Check the online
documentation to determine whether you have the option of setting a time-out value for a
particular I/O operation. If a call does block forever, the thread will be terminated when the
main process exits, but then you’ll have some memory leaks. You could call the Win32
TerminateThread function from your main thread, but you’d still have the memory-leak
problem.

Critical Sections

Remember the problems with access to the g_nCount global variable? If you want to share
global data among threads and you need more flexibility than simple instructions such as
InterlockedIncrement can provide, the best synchronization tool for you might be critical
sections—sections of code that require exclusive access to shared data. Events are good for
signaling, but critical sections are good for controlling access to data.

MFC provides the CCriticalSection class, which wraps the Windows critical section handle.
The constructor calls the Win32 InitializeCriticalSection function, the Lock and Unlock

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The constructor calls the Win32 InitializeCriticalSection function, the Lock and Unlock
member functions call EnterCriticalSection and LeaveCriticalSection, and the destructor calls
DeleteCriticalSection. Here’s how you use the class to protect global data:

CCriticalSection g_cs; // global variables accessible from all threads
int g_nCount;

void func()
{
 g_cs.Lock();
 g_nCount++;
 g_cs.Unlock();
}

Suppose your program tracks time values as hours, minutes, and seconds, each stored in a
separate integer, and suppose two threads are sharing time values. Thread A is changing a time
value but is interrupted by thread B after it has updated hours but before it has updated
minutes and seconds. Thread B will have an invalid time value.

If you write a C++ class for your time format, it’s easy to control data access by making the
data members private and providing public member functions. The CHMS class, shown in the
following code sample, does exactly that. Notice that the class has a data member of type
CCriticalSection. Thus, a critical section object is associated with each CHMS object.

Notice that the other member functions call the Lock and Unlock member functions. If thread
A is executing in the middle of SetTime, thread B will be blocked by the Lock call in
GetTotalSecs until thread A calls Unlock. The IncrementSecs function calls SetTime, resulting
in nested locks on the critical section. That’s okay because Windows keeps track of the
nesting level.

The CHMS class works well if you use it to construct global objects. If you share pointers to
objects on the heap, you have another set of problems. Each thread must determine whether
another thread has deleted the object, and that means you must synchronize access to the
pointers.

HMS.h
#include "StdAfx.h"

class CHMS
{
private:
 int m_nHr, m_nMn, m_nSc;
 CCriticalSection m_cs;
public:
 CHMS() : m_nHr(0), m_nMn(0), m_nSc(0) {}

 ~CHMS() {}

 void SetTime(int nSecs)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void SetTime(int nSecs)
 {
 m_cs.Lock();
 m_nSc = nSecs % 60;
 m_nMn = (nSecs / 60) % 60;
 m_nHr = nSecs / 3600;
 m_cs.Unlock();
 }

 int GetTotalSecs()
 {
 int nTotalSecs;
 m_cs.Lock();
 nTotalSecs = m_nHr * 3600 + m_nMn * 60 + m_nSc;
 m_cs.Unlock();
 return nTotalSecs;
 }

 void IncrementSecs()
 {
 m_cs.Lock();
 SetTime(GetTotalSecs() + 1);
 m_cs.Unlock();
 }
};

No sample program that uses the CHMS class is provided, but HMS.h is included on the
book’s companion CD. If you write a multi-threaded program, you can share global objects of
the class. You don’t need any other calls to the thread-related functions.

Mutexes and Semaphores

As I mentioned, I’m leaving these synchronization objects to Jeffrey Richter’s Programming
Applications for Microsoft Windows. You might need a mutex or a semaphore if you’re
controlling access to data across different processes because a critical section is accessible
only within a single process. Mutexes and semaphores (along with events) are shareable by
name.

User Interface Threads

The MFC library provides good support for user interface threads. You derive a class from
CWinThread, and you use an overloaded version of AfxBeginThread to start the thread. Your
derived CWinThread class has its own InitInstance function, and most important, it has its
own message loop. You can construct windows and map messages as required.

Why might you want a user interface thread? If you want multiple top-level windows, you can
create and manage them from your main thread. Suppose you allow the user to run multiple
instances of your application but you want all instances to share memory. You can configure a
single process to run multiple user interface threads such that users think they’re running
separate processes. That’s exactly what Windows Explorer does. Check it out with SPY++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Starting the second and subsequent threads is a little tricky because the user actually launches
a new process for each copy of Windows Explorer. When the second process starts, it signals
the first process to start a new thread, and then it exits. The second process can locate the first
process by calling the Win32 FindWindow function or by declaring a shared data section.
Shared data sections are explained in detail in Jeffrey Richter’s book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12
Menus, Keyboard Accelerators, the Rich Edit Control, and
Property Sheets

In the book’s examples so far, mouse clicks have triggered most program activity. Even
though menu commands might have been more appropriate, we’ve used mouse clicks because
mouse-click messages are handled simply and directly within the Microsoft Foundation Class
(MFC) library view window. If you want program activity to be triggered when the user
chooses a command from a menu, you must first become familiar with the other application
framework elements.

This chapter concentrates on menus and the command routing architecture. Along the way, I’ll
introduce frames and documents and explain the relationships between these new application
framework elements and the already familiar view element. You’ll use the menu editor to lay
out a menu visually, and you’ll use the code wizards available from Class View to link
document and view member functions to menu commands. You’ll learn how to use special
update command user interface member functions to enable and disable menu commands, and
you’ll learn how to use keyboard accelerators as menu shortcut keys.

Because you’re probably tired of circles and dialog boxes, we’ll first examine two new MFC
building blocks: the rich edit common control, which can add powerful text editing features to
your application, and property sheets, which are ideal for setting edit options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Main Frame Window and Document Classes

Up to now, we’ve been using a view window as if it were the application’s only window. In a
Single Document Interface (SDI) application, the view window sits inside another window—
the application’s main frame window. The main frame window has the title bar and the menu
bar. Various child windows, including the toolbar window, the view window, and the status
bar window, occupy the main frame window’s client area, as shown in Figure 12-1. The
application framework controls the interaction between the frame and the view by routing
messages from the frame to the view.

Figure 12-1. The child windows within an SDI main frame window.

Look again at any project files generated by the MFC Application Wizard. The MainFrm.h
and MainFrm.cpp files contain the code for the application’s main frame window class, which
is derived from the class CFrameWnd. Other files, with names such as Ex12aDoc.h and
Ex12aDoc.cpp, contain code for the application’s document class, which is derived from
CDocument. In this chapter, you’ll begin working with the MFC document class. You’ll start
by learning that each view object has exactly one document object attached and that the view’s
inherited GetDocument member function returns a pointer to that object. You’ll learn much
more about the document-view interactions in Chapter 15.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Menus

A Microsoft Windows menu is a familiar application element that consists of a top-level
horizontal list of menus with submenus that appear when the user selects a top-level
command. Most of the time, you define for a frame window a default menu resource that loads
when the window is created. You can also define a menu resource independent of a frame
window. In that case, your program must call the functions necessary to load and activate the
menu.

A menu resource completely defines the initial appearance of a menu. Menu commands can be
grayed out or have check marks, and bars can separate groups of menu commands. Multiple
levels of associated menus are possible. If a first-level menu command is associated with a
submenu, the menu command carries a right-pointing arrow symbol, as shown next to the
Windows menu command in Figure 12-2.

Figure 12-2. Submenus (shown in Microsoft Visual C++ .NET).

Visual C++ .NET includes an easy-to-use menu-resource editing tool. This tool lets you edit
menus in a WYSIWYG environment. Each menu command has a properties dialog box that
defines all the characteristics of that command. The resulting resource definition is stored in
the application’s resource script (RC) file. Each command is associated with an ID, such as
ID_FILE_OPEN, that is defined in the Resource.h file.

The MFC library extends the functionality of the standard menus for Windows. Each menu
command can have a prompt string that appears in the frame’s status bar when the command is
highlighted. These prompts are really Windows string resource elements linked to the menu
command by a common ID. From the point of view of the menu editor and your program, the
prompts appear to be part of the menu command definition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keyboard Accelerators

You’ve probably noticed that most menu commands contain an underlined letter. In Visual
C++ .NET (and most other applications), pressing Alt+F,S activates the File Save menu
command. This shortcut system is the standard Windows method of using the keyboard to
choose commands from menus. If you look at an application’s menu resource script (or the
menu editor’s properties dialog box), you’ll see an ampersand (&) preceding the character that
is underlined in each of the application’s menu commands.

Windows offers an alternative way of linking keystrokes to menu commands. The keyboard
accelerator resource consists of a table of key combinations with associated command IDs.
The Edit Copy command (with the command ID ID_EDIT_COPY), for example, might be
linked to the Ctrl+C key combination through a keyboard accelerator entry. A keyboard
accelerator entry does not have to be associated with a menu command. If no Edit Copy
command were present, the Ctrl+C key combination would nevertheless activate the
ID_EDIT_COPY command.

NOTE
If a keyboard accelerator is associated with a menu command or toolbar button,
the accelerator key will be disabled when the command or button is disabled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command Processing

As you saw in Chapter 2, the application framework provides a sophisticated routing system
for command messages. These messages originate from menu commands, keyboard
accelerators, and toolbar and dialog box button clicks. Command messages can also be sent by
calls to the CWnd::SendMessage or PostMessage function. Each message is identified by a
#define constant that is often assigned by a resource editor. The application framework has its
own set of internal command message IDs, such as ID_FILE_PRINT and ID_FILE_OPEN.
Your project’s Resource.h file contains IDs that are unique to your application.

Most command messages originate in the application’s frame window, and without the
application framework in the picture, that’s where you would put the message handlers. With
command routing, however, you can handle a message almost anywhere. When the
application framework sees a frame window command message, it starts looking for message
handlers in one of the sequences listed here.

SDI Application MDI Application

View View

Document Document

SDI main frame window MDI child frame window

Application MDI main frame window application

Most applications have a particular command handler in only one class, but suppose your one-
view application has an identical handler in both the view class and the document class.
Because the view is higher in the command route, only the view’s command handler function
will be called.

What is required to install a command handler function? The installation requirements are
similar to those of the window message handlers you’ve already seen. You need the function
itself, a corresponding message map entry, and the function prototype. Suppose you have a
menu command named Zoom (with IDM_ZOOM as the associated ID) that you want your
view class to handle. You first add the following code to your view implementation file:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND(IDM_ZOOM, OnZoom)
END_MESSAGE_MAP()

void CMyView::OnZoom()
{
 // command message processing code
}

Next, add the following function prototype to the CMyView class header file (before the
DECLARE_MESSAGE_MAP macro):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

afx_msg void OnZoom();

Of course, Visual Studio .NET automates the process of inserting command message handlers
the same way it facilitates the insertion of window message handlers. You’ll learn how this
works in the next example, Ex12a.

Command Message Handling in Derived Classes

The command routing system is one dimension of command message handling. The class
hierarchy is a second dimension. If you look at the source code for the MFC library classes,
you’ll see lots of ON_COMMAND message map entries. When you derive a class from one of
these base classes—for example, CView—the derived class inherits all the CView message
map functions, including the command message functions. To override one of the base class
message map functions, you must add both a function and a message map entry to your
derived class.

Update Command User Interface Handlers

You often need to change the appearance of a menu command to match the internal state of
your application. If your application’s Edit menu includes a Clear All command, for example,
you might want to disable that command if there’s nothing to clear. You’ve undoubtedly seen
such grayed-out commands in Windows-based applications, and you’ve probably also seen
check marks next to commands.

With Win32 programming, it’s difficult to keep menu commands synchronized with the
application’s state. Every piece of code that changes the internal state must contain statements
to update the menu. The MFC library takes a different approach by calling a special update
command user interface handler function whenever a submenu is first displayed. The handler
function’s argument is a CCmdUI object, which contains a pointer to the corresponding
command. The handler function can then use this pointer to modify the command’s
appearance. Update command user interface handlers apply only to commands on submenus,
not to top-level menu commands that are permanently displayed. For example, you can’t use
an update command user interface handler to disable a File menu command.

The update command user interface coding requirements are similar to those for commands.
You need the function itself, a special message map entry, and of course the prototype. The
associated ID—in this case, IDM_ZOOM—is the same constant used for the command. Here
is an example of the necessary additions to the view class code file:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_UPDATE_COMMAND_UI(IDM_ZOOM, OnUpdateZoom)
END_MESSAGE_MAP()

void CMyView::OnUpdateZoom(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck(m_bZoomed); // m_bZoomed is a class data member
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Here is the function prototype that you must add to the class header (before the
DECLARE_MESSAGE_MAP macro):

afx_msg void OnUpdateZoom(CCmdUI* pCmdUI);

Needless to say, the code wizards available from Class View’s Properties window automate
the process of inserting update command user interface handlers.

Commands That Originate in Dialog Boxes

Suppose you have a pop-up dialog box with buttons, and you want a particular button to send
a command message. Command IDs must be in the range 0x8000 to 0xDFFF, the same ID
range that the resource editor uses for your menu commands. If you assign an ID in this range
to a dialog box button, the button will generate a routable command. The application
framework first routes this command to the main frame window because the frame window
owns all pop-up dialog boxes. The command routing then proceeds normally; if your view has
a handler for the button’s command, that’s where it will be handled. To ensure that the ID is in
the range 0x8000 to 0xDFFF, you must use Visual C++ .NET’s Resource Symbols dialog box
to enter the ID before you assign the ID to a button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Framework’s Built-in Menu Commands

You don’t have to start each frame menu from scratch—the MFC library defines some useful
menu commands for you, along with all the command handler functions, as shown in Figure
12-3.

Figure 12-3. The standard SDI frame menus.

The menu commands and command message handlers that you get depend on the options you
select in the MFC Application Wizard. If you deselect Printing And Print Preview, for
example, the Print and Print Preview commands won’t appear. Because printing is optional,
the message map entries are not defined in the CView class but are generated in your derived
view class. That’s why entries such as the following are defined in the CMyView class instead
of in the CView class:

ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

Enabling and Disabling Menu Commands

The application framework can disable a menu command if it does not find a command
message handler in the current command route. This feature saves you the trouble of having to
write ON_UPDATE_COMMAND_UI handlers. You can disable the feature if you set the
CFrameWnd data member m_bAutoMenuEnable to FALSE.

Suppose you have two views for one document but only the first view class has a message
handler for the IDM_ZOOM command. The Zoom command on the frame menu will be
enabled only when the first view is active. Or consider the Edit Cut, Copy, and Paste
commands, which are supplied with the application framework. These will be disabled if you
haven’t provided message handlers in your derived view or document class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Text Editing Options

Windows itself supplies two text editing tools: the edit control and the rich edit common
control. Both can be used as controls within dialog boxes, but both can also be made to look
like view windows. The MFC library supports this versatility with the CEditView and
CRichEditView classes.

The CEditView Class

This class is based on the Windows edit control. The MFC Application Wizard gives you the
option of making CEditView the base class of your view class. When the framework gives you
an edit view object, it has all the functionality of both CView and CEdit. There’s no multiple
inheritance here, just some magic that involves window subclassing. The CEditView class
implements and maps the Clipboard cut, copy, and paste functions, so they appear active on
the Edit menu. The default character limit for CEditView is 1,048,575. You can change the
character limit by sending the EM_LIMITTEXT message to the underlying edit control.
However, the limits are different depending on the operating system and the type of edit
control (single or multi-line). See the MSDN Library for more information on these limits.

The CRichEditView Class

This class uses the rich edit control, so it supports mixed formats and large quantities of text.
The CRichEditView class is designed to be used with the CRichEditDoc and
CRichEditCntrItem classes to implement a complete ActiveX container application.

The CRichEditCtrl Class

This class wraps the rich edit control, and you can use it to make a fairly decent text editor.
That’s exactly what we’ll do in the upcoming Ex12a example. We’ll use an ordinary view
class derived from CView, and we’ll cover the view’s client area with a big rich edit control
that resizes itself when the view size changes. The CRichEditCtrl class has dozens of useful
member functions, and it picks up other functions from its CWnd base class. The functions
we’ll use in this chapter are listed in Table 12-1.

Table 12-1. Commonly Used CRichEditCtrl Functions
Function Description

Create Creates the rich edit control window (which is called from the
parent’s WM_CREATE handler).

SetWindowPos Sets the size and position of the edit window (sizes the control to
cover the view’s client area).

GetWindowText Retrieves plain text from the control. (CRichEditCtrl includes
other functions for retrieving the text using rich text formatting
codes.)

SetWindowText Stores plain text in the control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetModify Gets a flag that is TRUE if the text has been modified (when the
user types in the control or the program calls SetModify(TRUE)).

SetModify Sets the modify flag to TRUE or FALSE.

GetSel Gets a flag that indicates whether the user has selected text

SetDefaultCharFormat Sets the control’s default format characteristics.

SetSelectionCharFormat Sets the format characteristics of the selected text.

NOTE
If you use the dialog editor to add a rich edit control to a dialog resource, your
application class InitInstance member function must call the function
AfxInitRichEdit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex12a Example

This example illustrates the routing of menu and keyboard accelerator commands to both
documents and views. The application’s view class is derived from CView and contains a rich
edit control. View-directed menu commands, originating from a new submenu named
Transfer, move data between the view object and the document object, and a Clear Document
command erases the document’s contents. On the Transfer menu, the Store Data In Document
command is grayed out if the view hasn’t been modified since the last time the data was
transferred. The Clear Document command, located on the Edit menu, is grayed out when the
document is empty. Figure 12-4 shows the first version of the Ex12a program in use.

Figure 12-4. The Ex12a program in use.

If we were to exploit the document-view architecture fully, we would tell the rich edit control
to keep its text inside the document, but that’s rather difficult to do. Instead, we’ll define a
document CString data member named m_strText, the contents of which the user can transfer
to and from the control. The initial value of m_strText is a Hello message; choosing Clear
Document from the Edit menu sets it to empty. By running this example, you’ll start to
understand the separation of the document and the view.

The first part of the Ex12a example uses Visual C++ .NET’s WYSIWYG menu editor and
keyboard accelerator editor along with the code wizards available from Class View’s
Properties window. You’ll need to do very little C++ coding. Simply follow these steps:

1. Run the MFC Application Wizard to generate the Ex12a project.Accept all the default
settings but two: Select Single Document and deselect Printing And Print Preview.

2. Use the resource editor to edit the application’s main menu.In Resource View, edit the
IDR_MAINFRAME menu resource to add a separator and a Clear Document command
to the Edit menu, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TIP
The resource editor’s menu resource editor is intuitive, but you might need
some help the first time you insert a command in the middle of a menu. Just
right-click where you want to insert the command and choose Insert New
from the shortcut menu. You’ll automatically see where to add the
command. To insert a separator, choose Insert Separator from the shortcut
menu.

Now add a Transfer menu, and then define the underlying commands:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC library has defined the following command IDs for your new menu
commands in the Resource Symbols dialog box. (Note that \t is a tab character—but
type \t; don’t press the Tab key.)

Menu Caption Command ID

Edit Clear &Document ID_EDIT_CLEARDOCUMENT

Transfer &Get Data From
Document\tF2

ID_TRANSFER_GETDATAFROMDOCUMENT

Transfer &Store Data In
Document\tF3

ID_TRANSFER_STOREDATAINDOCUMENT

After you add the commands, right-click on each of them and choose Properties from
the shortcut menu. Type an appropriate prompt string in each command’s Properties
window. These prompts will appear in the application’s status bar window when the
command is highlighted.

3. Use the resource editor to add keyboard accelerators.Open the IDR_MAINFRAME
accelerator table by double-clicking on its icon in Resource View, and then click on the
empty row entry at the bottom of the table to add the following items.

Accelerator ID Key

ID_TRANSFER_GETDATAFROMDOCUMENT VK_F2

ID_TRANSFER_STOREDATAINDOCUMENT VK_F3

Be sure to select None from the drop-down list in the Modifier box to turn off the Ctrl,
Alt, and Shift modifiers.

4. Use Class View’s Properties window for the CEx12aView class to add the view class
command and update command user interface message handlers.Select the CEx12aView
class, and then add the following member functions:

Object ID Event Member Function

ID_TRANSFER_GETDATAFROMDOCUMENTCOMMAND OnTransferGetdatafromdocument

ID_TRANSFER_STOREDATAINDOCUMENTCOMMAND OnTransferStoredataindocument

ID_TRANSFER_STOREDATAINDOCUMENTUPDATE_
COMMAND_UI

OnUpdateTransferStoredataindocument

5. Use Class View’s Properties window for the CEx12aDoc class to add the document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Use Class View’s Properties window for the CEx12aDoc class to add the document
class command and update command user interface message handlers.Select the
CEx12aDoc class, and then add the following member functions:

Object ID Event Member Function

ID_EDIT_CLEARDOCUMENTCOMMAND OnEditCleardocument

ID_EDIT_CLEARDOCUMENTUPDATE_
COMMAND_UI

OnUpdateEditCleardocument

6. Insert the following line in the Ex12aDoc.cpp file:

#include "Ex12aView.h"

7. Add a CString data member to the CEx12aDoc class.Edit the file Ex12aDoc.h or use
Class View.

public:
 CString m_strText;

8. Edit the document class member functions in Ex12aDoc.cpp.The OnNewDocument
function was generated by Visual Studio .NET. The framework calls this function after
it first constructs the document and when the user chooses New from the File menu.
Your version sets some text in the string data member. Add the following boldface code:

BOOL CEx12aDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;
 m_strText = "Hello (from CEx12aDoc::OnNewDocument)";
 return TRUE;
}

The Edit Clear Document message handler sets m_strText to empty, and the update
command user interface handler grays out the command if the string is already empty.
Remember that the framework calls OnUpdateEditCleardocument when the Edit menu
is displayed. Add the following boldface code:

void CEx12aDoc::OnEditCleardocument()
{
 m_strText.Empty();
 //reflect changes to the views
 POSITION pos = GetFirstViewPosition();
 while (pos != NULL)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 CEx12aView* pView = (CEx12aView*) GetNextView(pos);
 pView->m_rich.SetWindowText(m_strText);
 }
}

void CEx12aDoc::OnUpdateEditCleardocument(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(!m_strText.IsEmpty());
}

9. Add a CRichEditCtrl data member to the CEx12aView class.Edit the file Ex12aView.h
or use Class View.

public:
 CRichEditCtrl m_rich;

10. Use Class View’s Properties window to map the WM_CREATE and WM_SIZE
messages in the CEx12aView class.The OnCreate function creates the rich edit control.
The control’s size is 0 here because the view window doesn’t have a size yet. Add the
following boldface code:

 int CEx12aView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 CRect rect(0, 0, 0, 0);
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;
 m_rich.Create(ES_AUTOVSCROLL │ ES_MULTILINE │ ES_WANTRETURN │
 WS_CHILD │ WS_VISIBLE │ WS_VSCROLL, rect, this, 1);
 return 0;
}

Windows sends the WM_SIZE message to the view as soon as the view’s initial size is
determined and again each time the user changes the frame size. This handler simply
adjusts the rich edit control’s size to fill the view client area. Add the following boldface
code:

void CEx12aView::OnSize(UINT nType, int cx, int cy)
{
 CRect rect;
 CView::OnSize(nType, cx, cy);
 GetClientRect(rect);
 m_rich.SetWindowPos(&wndTop, 0, 0, rect.right - rect.left,
 rect.bottom - rect.top, SWP_SHOWWINDOW);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11. Edit the menu command handler functions in Ex12aView.cpp.Visual Studio .NET
generated these skeleton functions when you mapped the menu commands in step 4.
The OnTransferGetdatafromdocument function gets the text from the document data
member and puts it in the rich edit control. The function then clears the control’s
modified flag. There is no update command user interface handler. Add the following
boldface code:

void CEx12aView::OnTransferGetdatafromdocument()
{
 CEx12aDoc* pDoc = GetDocument();
 m_rich.SetWindowText(pDoc->m_strText);
 m_rich.SetModify(FALSE);
}

The OnTransferStoredataindocument function copies the text from the view’s rich edit
control to the document string and resets the control’s modified flag. The corresponding
update command user interface handler grays out the command if the control has not
been changed since it was last copied to or from the document. Add the following
boldface code:

 void CEx12aView::OnTransferStoredataindocument()
{
 CEx12aDoc* pDoc = GetDocument();
 m_rich.GetWindowText(pDoc->m_strText);
 m_rich.SetModify(FALSE);
}

void CEx12aView::OnUpdateTransferStoredataindocument(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_rich.GetModify());
}

12. Build and test the Ex12a application.When the application starts, the Clear Document
command on the Edit menu should be enabled. Choose Get Data From Document from
the Transfer menu. Some text should appear. Edit the text, and then choose Store Data
In Document. That command should now appear gray. Try choosing the Clear
Document command, and then choose Get Data From Document again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Property Sheets

You’ve already seen property sheets in Visual C++ .NET and in many other modern
Windows-based programs. A property sheet is a nice user interface element that allows you to
cram lots of categorized information into a small dialog box. The user selects pages by
clicking on their tabs. Windows offers a tab control that you can insert in a dialog box, but it’s
more likely that you’ll want to put dialog boxes inside the tab control. The MFC library
supports this, and the result is called a property sheet. The individual dialog boxes are called
property pages.

Building a Property Sheet

Follow these general steps to build a property sheet using the Visual C++ .NET tools:

1. Use the resource editor to create a series of dialog templates that are all approximately
the same size. The captions are the strings that you want to display on the tabs.

2. Use the MFC Class Wizard to generate a class for each template. Select CPropertyPage
as the base class. Add data members for the controls.

3. Use the MFC Class Wizard to generate a single class derived from CPropertySheet.

4. To the sheet class, add one data member for each page class.

5. In the sheet class constructor, call the AddPage member function for each page,
specifying the address of the embedded page object.

6. In your application, construct an object of the derived CPropertySheet class, and then
call DoModal. You must specify a caption in the constructor call, but you can change
the caption later by calling CPropertySheet::SetTitle.

7. Take care of programming for the Apply button.

Property Sheet Data Exchange

The framework puts three buttons on a property sheet (as in Figure 12-5 in the next section.)
Be aware that the framework calls the Dialog Data Exchange (DDX) code for a property page
each time the user switches to and from that page. As you would expect, the framework calls
the DDX code for a page when the user clicks OK, thus updating that page’s data members.
From these statements, you can conclude that all data members for all pages are updated when
the user clicks OK to exit the sheet. All this with no C++ programming on your part!

NOTE
With a normal modal dialog box, if the user clicks the Cancel button, the changes
will be discarded and the dialog class data members will remain unchanged. With
a property sheet, however, the data members will be updated if the user changes
one page and then moves to another, even if the user exits by clicking the Cancel
button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What does the Apply button do? Nothing at all if you don’t write some code. It won’t even be
enabled. To enable it for a given page, you must set the page’s modified flag by calling
SetModified(TRUE) when you detect that the user has made changes on the page.

If you’ve enabled the Apply button, you can write a handler function for it in your page class
by overriding the virtual CPropertyPage::OnApply function. Don’t try to understand property
page message processing in the context of normal modal dialog boxes; it’s quite different. The
framework gets a WM_NOTIFY message for all button clicks. It calls the DDX code for the
page if the OK or Apply button was clicked. It then calls the virtual OnApply functions for all
the pages, and it resets the modified flag, which disables the Apply button. Don’t forget that
the DDX code has already been called to update the data members in all pages, so you need to
override OnApply in only one page class.

What you put in your OnApply function is your business, but one option is to send a user-
defined message to the object that created the property sheet. The message handler can get the
property page data members and process them. Meanwhile, the property sheet stays on the
screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex12a Example Revisited

Now we’ll add a property sheet to Ex12a that allows the user to change the rich edit control’s
font characteristics. Of course, we could use the standard MFC CFontDialog function, but
then you wouldn’t learn how to create property sheets. Figure 12-5 shows the property sheet
that you’ll build as you continue with Ex12a.

Figure 12-5. The property sheet from Ex12a.

If you haven’t built Ex12a, follow the instructions that begin on page 285 to build it. If you
already have Ex12a working with the Transfer menu commands, just continue on with these
steps:

1. Use the resource editor to edit the application’s main menu.In Resource View, edit the
IDR_MAINFRAME menu resource to add a Format menu that looks like this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC library has defined the following command IDs for the new Format menu
commands.

Caption Command ID

&Default ID_FORMAT_DEFAULT

&Selection ID_FORMAT_SELECTION

Add appropriate prompt strings for the two menu commands using the Properties
window.

2. Use Class View’s Properties window to add the view class command and update
command user interface message handlers.Select the CEx12aView class in Class View,
and then add the following member functions.

Object ID Event Member Function

ID_FORMAT_DEFAULT COMMAND OnFormatDefault

ID_FORMAT_SELECTION COMMAND OnFormatSelection

ID_FORMAT_SELECTION UPDATE_
COMMAND_UI

OnUpdateFormatSelection

3. Use the resource editor to add four property page dialog templates.Right-click on the
RC file in Resource View and choose Add Resource from the shortcut menu. In the Add
Resource dialog box, select the small property page template. The templates are shown
here with their associated IDs:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the IDs listed below for the controls in the dialog boxes. Set the Auto Buddy and the
Set Buddy Integer properties for the Spin control, and set the Group property for the
IDC_FONT and IDC_COLOR radio buttons. Set the minimum value of
IDC_FONTSIZE to 8 and its maximum value to 24.

Use the MFC Class Wizard to create the classes CPage1, CPage2, CPage3, and
CPage4. In each case, select CPropertyPage as the base class. Have the MFC Class
Wizard generate the code for all these classes in the files Property.h and Property.cpp by
changing the filenames within the text boxes for the header file and the CPP file. When
Visual Studio .NET asks you whether you want to merge the files, click Yes. Then add
the data members shown here:

Dialog Box Control ID Type Data Member

IDD_PAGE1 First radio button IDC_FONT int m_nFont

IDD_PAGE2 Bold check box IDC_BOLD BOOL m_bBold

IDD_PAGE2 Italic check box IDC_ITALIC BOOL m_bItalic

IDD_PAGE2 Underline check box IDC_UNDERLINE BOOL m_bUnderline

IDD_PAGE3 First radio button IDC_COLOR int m_nColor

IDD_PAGE4 Edit control IDC_FONT SIZE int m_nFontSize

IDD_PAGE4 Spin control IDC_SPIN1

Finally, use Class View’s Properties window to override the OnInitDialog virtual
function for CPage4.

4. Use the MFC Class Wizard to create a class derived from CPropertySheet.Select the
name CFontSheet. Generate the code in the files Property.h and Property.cpp, the same
files you used for the property page classes. The following code shows these files with
the added code in boldface:

Property.h
#pragma once
// Property.h : header file
//

#define WM_USERAPPLY WM_USER + 5
extern CView* g_pView;

//
// CPage1 dialog

class CPage1 : public CPropertyPage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class CPage1 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage1)

public:
 CPage1();
 virtual ~CPage1();

// Dialog Data
 enum { IDD = IDD_PAGE1 };
 int m_nFont;

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 virtual BOOL OnApply();
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

//
// CPage2 dialog

 class CPage2 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage2)

public:
 CPage2();
 virtual ~CPage2();

// Dialog Data
 enum { IDD = IDD_PAGE2 };
 BOOL m_bBold;
 BOOL m_bItalic;
 BOOL m_bUnderline;

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

//
// CPage3 dialog

class CPage3 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage3)
public:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public:
 CPage3();
 virtual ~CPage3();
// Dialog Data
 enum { IDD = IDD_PAGE3 };
 int m_nColor;

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

//
// CPage4 dialog

class CPage4 : public CPropertyPage
{
 DECLARE_DYNCREATE(CPage4)
public:
 CPage4();
 virtual ~CPage4();
// Dialog Data
 enum { IDD = IDD_PAGE4 };
 int m_nFontSize;

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
 // support
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
public:
 virtual BOOL OnInitDialog();
};

//
// CFontSheet

class CFontSheet : public CPropertySheet
{
 DECLARE_DYNAMIC(CFontSheet)
public:
 CPage1 m_page1;
 CPage2 m_page2;
 CPage3 m_page3;
 CPage4 m_page4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CPage4 m_page4;
public:
 CFontSheet(UINT nIDCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);
 CFontSheet(LPCTSTR pszCaption, CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);
 virtual ~CFontSheet();

protected:
 DECLARE_MESSAGE_MAP()
};

Property.cpp
// Property.cpp : implementation file

#include "stdafx.h"
#include "Ex12a.h"
#include "Property.h"

CView* g_pView;
//
// CPage1 dialog

IMPLEMENT_DYNCREATE(CPage1, CPropertyPage)

 CPage1::CPage1() : CPropertyPage(CPage1::IDD)
{
 m_nFont = -1;
}

CPage1::~CPage1()
{
}

BOOL CPage1::OnApply()
{
 TRACE("CPage1::OnApply\n");
 g_pView->SendMessage(WM_USERAPPLY);
 return TRUE;
}
BOOL CPage1::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
void CPage1::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage1::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 DDX_Radio(pDX, IDC_FONT, m_nFont);
}

BEGIN_MESSAGE_MAP(CPage1, CPropertyPage)
END_MESSAGE_MAP()

//
// CPage1 message handlers

//
// CPage2 dialog

IMPLEMENT_DYNCREATE(CPage2, CPropertyPage)

CPage2::CPage2() : CPropertyPage(CPage2::IDD)
{
 m_bBold = FALSE;
 m_bItalic = FALSE;
 m_bUnderline = FALSE;
}

CPage2::~CPage2()
{
}

BOOL CPage2::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage2::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage2::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 DDX_Check(pDX, IDC_BOLD, m_bBold);
 DDX_Check(pDX, IDC_ITALIC, m_bItalic);
 DDX_Check(pDX, IDC_UNDERLINE, m_bUnderline);
}

BEGIN_MESSAGE_MAP(CPage2, CPropertyPage)
END_MESSAGE_MAP()

//
// CPage2 message handlers

//
// CPage3 dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// CPage3 dialog

 IMPLEMENT_DYNCREATE(CPage3, CPropertyPage)

CPage3::CPage3() : CPropertyPage(CPage3::IDD)
{
 m_nColor = -1;
}

CPage3::~CPage3()
{
}

BOOL CPage3::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}
void CPage3::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage3::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 DDX_Radio(pDX, IDC_COLOR, m_nColor);
}

BEGIN_MESSAGE_MAP(CPage3, CPropertyPage)
END_MESSAGE_MAP()

//
// CPage3 message handlers

//
// CPage4 dialog

IMPLEMENT_DYNCREATE(CPage4, CPropertyPage)

CPage4::CPage4() : CPropertyPage(CPage4::IDD)
{
 m_nFontSize = 0;
}

CPage4::~CPage4()
{
}

BOOL CPage4::OnCommand(WPARAM wParam, LPARAM lParam)
{
 SetModified(TRUE);
 return CPropertyPage::OnCommand(wParam, lParam);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CPage4::DoDataExchange(CDataExchange* pDX)
{
 TRACE("Entering CPage4::DoDataExchange -- %d\n",
 pDX->m_bSaveAndValidate);
 CPropertyPage::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_FONTSIZE, m_nFontSize);
 DDV_MinMaxInt(pDX, m_nFontSize, 8, 24);
}

BEGIN_MESSAGE_MAP(CPage4, CPropertyPage)
END_MESSAGE_MAP()

//
// CPage4 message handlers

BOOL CPage4::OnInitDialog()
{
 CPropertyPage::OnInitDialog();
 ((CSpinButtonCtrl*) GetDlgItem(IDC_SPIN1))->SetRange(8, 24);
 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

 //
// CFontSheet

IMPLEMENT_DYNAMIC(CFontSheet, CPropertySheet)
CFontSheet::CFontSheet(UINT nIDCaption, CWnd* pParentWnd,
 UINT iSelectPage)
 :CPropertySheet(nIDCaption, pParentWnd, iSelectPage)
{
}

CFontSheet::CFontSheet(LPCTSTR pszCaption, CWnd* pParentWnd,
 UINT iSelectPage)
 :CPropertySheet(pszCaption, pParentWnd, iSelectPage)
{
 AddPage(&m_page1);
 AddPage(&m_page2);
 AddPage(&m_page3);
 AddPage(&m_page4);
}

CFontSheet::~CFontSheet()
{
}
BEGIN_MESSAGE_MAP(CFontSheet, CPropertySheet)
END_MESSAGE_MAP()

//
// CFontSheet message handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Insert the following line in the Ex12aView.h file:

#include "Property.h"

6. Add two data members and two prototypes to the CEx12aView class:

private:
 CFontSheet m_sh;
 BOOL m_bDefault; // TRUE default format, FALSE selection

Now add the prototype for the private function Format:

void Format(CHARFORMAT &cf);

Insert the prototype for the protected function OnUserApply before the
DECLARE_MESSAGE_MAP macro:

afx_msg LRESULT OnUserApply(WPARAM wParam, LPARAM lParam);

7. Edit and add code in the file Ex12aView.cpp.Map the user-defined WM_USERAPPLY
message, as shown here:

ON_MESSAGE(WM_USERAPPLY, OnUserApply)

Add the following lines to the OnCreate function, just before the return 0 statement:

CHARFORMAT cf;
Format(cf);
m_rich.SetDefaultCharFormat(cf);

Edit the view constructor to set default values for the property sheet data members, as
follows:

CEx12aView::CEx12aView() : m_sh(""){

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CEx12aView::CEx12aView() : m_sh(""){
 m_sh.m_page1.m_nFont = 0;
 m_sh.m_page2.m_bBold = FALSE;
 m_sh.m_page2.m_bItalic = FALSE;
 m_sh.m_page2.m_bUnderline = FALSE;
 m_sh.m_page3.m_nColor = 0;
 m_sh.m_page4.m_nFontSize = 12;
 g_pView = this;
 m_bDefault = TRUE;
}

Edit the format command handlers, as shown here:

void CEx12aView::OnFormatDefault()
{
 m_sh.SetTitle("Default Format");
 m_bDefault = TRUE;
 m_sh.DoModal();
}

void CEx12aView::OnFormatSelection()
{
 m_sh.SetTitle("Selection Format");
 m_bDefault = FALSE;
 m_sh.DoModal();
}

void CEx12aView::OnUpdateFormatSelection(CCmdUI* pCmdUI)
{
 long nStart, nEnd;
 m_rich.GetSel(nStart, nEnd);
 pCmdUI->Enable(nStart != nEnd);
}

Add the following handler for the user-defined WM_USERAPPLY message:

LRESULT CEx12aView::OnUserApply(WPARAM wParam, LPARAM lParam)
{
 TRACE("CEx12aView::OnUserApply -- wParam = %x\n", wParam);
 CHARFORMAT cf;
 Format(cf);
 if (m_bDefault) {
 m_rich.SetDefaultCharFormat(cf);
 }
 else {
 m_rich.SetSelectionCharFormat(cf);
 }
 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Add the Format helper function, as shown below, to set a CHARFORMAT structure
based on the values of the property sheet data members:

void CEx12aView::Format(CHARFORMAT& cf)
{
 cf.cbSize = sizeof(CHARFORMAT);
 cf.dwMask = CFM_BOLD │ CFM_COLOR │ CFM_FACE │
 CFM_ITALIC │ CFM_SIZE │ CFM_UNDERLINE;
 cf.dwEffects = (m_sh.m_page2.m_bBold ? CFE_BOLD : 0) │
 (m_sh.m_page2.m_bItalic ? CFE_ITALIC : 0) │
 (m_sh.m_page2.m_bUnderline ? CFE_UNDERLINE : 0);
 cf.yHeight = m_sh.m_page4.m_nFontSize * 20;
 switch(m_sh.m_page3.m_nColor) {
 case -1:
 case 0:
 cf.crTextColor = RGB(0, 0, 0);
 break;
 case 1:
 cf.crTextColor = RGB(255, 0, 0);
 break;
 case 2:
 cf.crTextColor = RGB(0, 255, 0);
 break;
 }
 switch(m_sh.m_page1.m_nFont) {
 case -1:
 case 0:
 strncpy(cf.szFaceName, "Times New Roman" ,LF_FACESIZE);
 break;
 case 1:
 strncpy(cf.szFaceName, "Arial" ,LF_FACESIZE);
 break;
 case 2:
 strncpy(cf.szFaceName, "Courier New" ,LF_FACESIZE);
 break;
 }
 cf.bCharSet = 0;
 cf.bPitchAndFamily = 0;
}

8. Build and test the enhanced Ex12a application.Type some text, and then choose Default
from the Format menu. Observe the TRACE messages in the Debug window as you
click on property sheet tabs and click the Apply button. Try highlighting some text and
then formatting the selection.

Apply Button Processing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might be curious about the way the property sheet classes process the Apply button. In all
the page classes, the overridden OnCommand functions enable the Apply button whenever a
control sends a message to the page. This works fine for pages 1 through 3 in Ex12a, but for
page 4, OnCommand is called during the initial conversation between the Spin control and its
buddy.

The OnApply virtual override in the CPage1 class sends a user-defined message to the view.
The function finds the view in an expedient way—by using a global variable set by the view
class. A better approach would be to pass the view pointer to the sheet constructor and then to
the page constructor.

The view class calls the property sheet’s DoModal function for both default formatting and
selection formatting. It sets the m_bDefault flag to indicate the mode. We don’t need to check
the return from DoModal because the user-defined message is sent for both the OK button and
the Apply button. If the user clicks Cancel, no message is sent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CMenu Class

Up to this point, the application framework and the menu editor have shielded you from the
menu class, CMenu. A CMenu object can represent each Windows menu, including the top-
level menu commands and submenus. Most of the time, the menu’s resource is directly
attached to a frame window when the window’s Create or LoadFrame function is called, and
a CMenu object is never explicitly constructed. The CWnd member function GetMenu returns
a temporary CMenu pointer. Once you have this pointer, you can freely access and update the
menu object.

Suppose you want to switch menus after the application starts. IDR_MAINFRAME always
identifies the initial menu in the resource script. If you want a second menu, you use the menu
editor to create a menu resource with your own ID. Then, in your program, you construct a
CMenu object, use the CMenu::LoadMenu function to load the menu from the resource, and
call the CWnd::SetMenu function to attach the new menu to the frame window. You then call
the Detach member function to separate the object’s HMENU handle so the menu is not
destroyed when the CMenu object goes out of scope.

You can use a resource to define a menu, and then your program can modify the commands at
run time. If necessary, however, you can build the whole menu at run time, without benefit of
a resource. In either case, you can use CMenu member functions such as ModifyMenu,
InsertMenu, and DeleteMenu. Each of these functions operates on an individual command
identified by ID or by a relative position index.

A menu object is actually composed of a nested structure of submenus. You can use the
GetSubMenu member function to get a CMenu pointer to a submenu contained in the main
CMenu object. The CMenu::GetMenuString function returns the menu command string
corresponding to either a zero-based index or a command ID. If you use the command ID
option, the menu is searched, together with any submenus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Floating Shortcut Menus

Floating shortcut menus are one of the latest trends in user interface design. The user clicks the
right mouse button and a floating menu offers commands that relate to the current selection.
It’s easy to create these menus using the resource editor and the MFC library
CMenu::TrackPopupMenu function. Just follow these steps:

1. Use the menu editor to insert a new, empty menu in your project’s resource file.

2. Type some characters in the left top-level command, and then add commands in the
resulting shortcut menu.

3. Use Class View’s Properties window to add a WM_CONTEXTMENU message handler
in your view class or in some other window class that receives mouse-click messages.
Code the handler as shown here:

 void CMyView::OnContextMenu(CWnd *pWnd, CPoint point)
{
 CMenu menu;
 menu.LoadMenu(IDR_MYFLOATINGMENU);
 menu.GetSubMenu(0)
 ->TrackPopupMenu(TPM_LEFTALIGN │ TPM_RIGHTBUTTON,
 point.x, point.y, this);
}

You can use Class View’s Properties window to map the floating menu’s command IDs
in the same way you would map the frame menu’s command IDs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extended Command Processing

In addition to the ON_COMMAND message map macro, the MFC library provides an
extended variation, ON_COMMAND_EX. The extended command message map macro
provides two features not supplied by the regular command message—a command ID function
parameter and the ability to reject a command at run time, sending it to the next object in the
command route. If the extended command handler returns TRUE, the command goes no
further; if it returns FALSE, the application framework looks for another command handler.

The command ID parameter is useful when you want one function to handle several related
command messages. You might invent some of your own uses for the rejection feature.

The code wizards available from Class View’s Properties window can’t help you with
extended command handlers, so you have to do the coding yourself, outside the
AFX_MSG_MAP brackets. Assume that IDM_ZOOM_1 and IDM_ZOOM_2 are related
command IDs defined in Resource.h. Here’s the class code you need to process both messages
with one function, OnZoom:

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND_EX(IDM_ZOOM_1, OnZoom)
 ON_COMMAND_EX(IDM_ZOOM_2, OnZoom)
END_MESSAGE_MAP()

BOOL CMyView::OnZoom(UINT nID)
{
 if (nID == IDM_ZOOM_1) {
 // code specific to first zoom command
 }
 else {
 // code specific to second zoom command
 }
 // code common to both commands
 return TRUE; // Command goes no further
}

Here’s the function prototype:

afx_msg BOOL OnZoom(UINT nID);

Other MFC message map macros are helpful for processing ranges of commands, as you
might see in dynamic menu applications. These macros include ON_COMMAND_RANGE,
ON_COMMAND_EX_RANGE, and ON_UPDATE_COMMAND_UI_RANGE.

If the values of IDM_ZOOM_1 and IDM_ZOOM_2 were consecutive, you could rewrite the
CMyView message map as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEGIN_MESSAGE_MAP(CMyView, CView)
 ON_COMMAND_EX_RANGE(IDM_ZOOM_1, IDM_ZOOM_2, OnZoom)
END_MESSAGE_MAP()

Now OnZoom is called for both menu commands, and the handler can determine the command
from the integer parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13
Toolbars and Status Bars

All of the book’s Microsoft Visual C++ examples up to this point have included toolbars and
status bars. The MFC Application Wizard generates the code that initializes these application
framework elements if you accept the wizard’s default Standard Docking Toolbar and Initial
Status Bar user interface features. The default toolbar provides graphics equivalents for many
of the standard application framework menu commands, and the default status bar displays
menu prompts together with the keyboard state indicators CAP, NUM, and SCRL.

This chapter shows you how to customize the toolbar and the status bar for your application.
You can add your own toolbar graphical buttons and control their appearance. You can also
disable the status bar’s normal display of menu prompts and keyboard indicators so that your
application can take over the status bar for its own use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Bars and the Application Framework

The toolbar is an object of class CToolBar, and the status bar is an object of class CStatusBar.
Both of these classes are derived from class CControlBar, which is itself derived from CWnd.
The CControlBar class supports control bar windows that are positioned inside frame
windows. These control bar windows resize and reposition themselves as the parent frame
moves and changes size. The application framework takes care of the construction and
destruction of the control bar objects and window creation. The MFC Application Wizard
generates control bar code for its derived frame class located in the files MainFrm.cpp and
MainFrm.h.

In a typical Single Document Interface (SDI) application, a CToolBar object occupies the top
portion of the CMainFrame client area and a CStatusBar object occupies the bottom portion.
The view occupies the remaining (middle) part of the frame.

Beginning with version 4.0 of the Microsoft Foundation Class (MFC) library, the toolbar has
been built around the toolbar common control that was first introduced with Microsoft
Windows 95. Thus the toolbar is fully dockable. The programming interface is much the same
as it was in earlier versions of the MFC library, however. The button images are easy to work
with because a special resource type is supported by the resource editor.

Assuming that MFC Application Wizard has generated the control bar code for your
application, the user can enable and disable the toolbar or the status bar individually by
choosing commands from the application’s View menu. When a control bar is disabled, it
disappears and the view size is recalculated. Apart from the common behavior just described,
toolbar and status bar objects operate independently of each other and have rather different
characteristics.

Version 6.0 of the MFC library, introduced a new MFC toolbar called the rebar. The rebar is
based on the controls that come with the common controls and provides a Microsoft Internet
Explorer–style “sliding” toolbar. I’ll cover the rebar later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Toolbars

A toolbar consists of a number of horizontally (or vertically) arranged graphical buttons that
might be clustered in groups. The programming interface determines the grouping. The
graphical images for the buttons are stored in a single bitmap that is attached to the
application’s resource file. When a button is clicked, it sends a command message, as menus
and keyboard accelerators do. An update command user interface message handler is used to
update the button’s state, which in turn is used by the application framework to modify the
button’s graphical image.

The Toolbar Bitmap

Each button on a toolbar appears to have its own bitmap, but actually a single bitmap serves
the entire toolbar. The toolbar bitmap has a tile, 15 pixels high and 16 pixels wide, for each
button. The application framework supplies the button borders, and it modifies these borders,
together with the button’s bitmap tile color, to reflect the current button state. Figure 13-1
shows the relationship between the toolbar bitmap and the corresponding toolbar.

Figure 13-1. A toolbar bitmap and an actual toolbar.

The toolbar bitmap is stored in the file Toolbar.bmp in the application’s \res subdirectory. The
bitmap is identified in the resource script (RC) file as IDR_MAINFRAME. You don’t edit the
toolbar bitmap directly; instead, you use Microsoft Visual Studio’s special toolbar editing
facility.

Toolbar Button States

Each toolbar button can assume the states listed in Table 13-1. (There are additional states for
later toolbar versions.)

Table 13-1. Toolbar States
State Description

0 Normal, unpressed state.

TBSTATE_CHECKED Checked (down) state.

TBSTATE_ENABLED Available for use. Button is grayed-out and unavailable if
this state is not set.

TBSTATE_HIDDEN Not visible.

TBSTATE_INDETERMINATE Grayed-out.

TBSTATE_PRESSED Currently selected (pressed) using the mouse.

TBSTATE_WRAP Line break follows the button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A toolbar button can be a pushbutton, which is down only when currently clicked by the
mouse, or it can be a check box button, which can be toggled up and down with mouse clicks.
All toolbar buttons in the standard application framework toolbar are pushbuttons.

The Toolbar and Command Messages

When the user clicks a toolbar button with the mouse, a command message is generated. This
message is routed like the menu command messages you saw in Chapter 12. Most of the time,
a toolbar button matches a menu command. In the standard application framework toolbar, for
example, the Disk button is equivalent to the File Save menu command—both generate the
ID_FILE_SAVE command. The object receiving the command message doesn’t need to know
whether the message was produced by a button click or by the menu command.

A toolbar button doesn’t have to mirror a menu command. If you don’t provide an equivalent
menu command, however, you should define a keyboard accelerator for the button so the user
can activate the command with the keyboard or with a keyboard macro product for Windows.
You can use Class View and the Properties window to define commands and update command
user interface message handlers for toolbar buttons, whether or not they have corresponding
menu commands.

A toolbar has an associated bitmap resource and, in the RC file, a companion toolbar resource
that defines the menu commands associated with the buttons. Both the bitmap and the toolbar
resource have the same ID, typically IDR_MAINFRAME. The text of the toolbar resource
generated by the MFC Application Wizard is shown here:

IDR_MAINFRAME TOOLBAR 16, 15
BEGIN
 BUTTON ID_FILE_NEW
 BUTTON ID_FILE_OPEN
 BUTTON ID_FILE_SAVE
 SEPARATOR
 BUTTON ID_EDIT_CUT
 BUTTON ID_EDIT_COPY
 BUTTON ID_EDIT_PASTE
 SEPARATOR
 BUTTON ID_FILE_PRINT
 BUTTON ID_APP_ABOUT
END

The SEPARATOR constants serve to group the buttons by inserting corresponding spaces on
the toolbar. If the number of toolbar bitmap panes exceeds the number of resource elements
(excluding separators), the extra buttons are not displayed.

When you edit the toolbar using the resource editor, you’re editing both the bitmap resource
and the toolbar resource. You select a button image, and then you edit the properties, including
the button’s ID, in the Properties window.

Toolbar Update Command User Interface Message Handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You’ll recall from Chapter 12 that update command user interface message handlers are used
to disable or add check marks to menu commands. These same message handlers apply to
toolbar buttons. If your update command user interface message handler calls the
CCmdUI::Enable member function with a FALSE parameter, the corresponding button will be
set to the disabled (grayed-out) state and no longer respond to mouse clicks.

Next to a menu command, the CCmdUI::SetCheck member function displays a check mark.
For the toolbar, the SetCheck function implements check box buttons. If the update command
user interface message handler calls SetCheck with a parameter value of 1, the button will be
toggled to the down (checked) state; if the parameter is 0, the button will be toggled up
(unchecked).

NOTE
If the SetCheck parameter value is 2, the button will be set to the indeterminate
state. This state looks like the disabled state, but the button is still active and its
color is a bit brighter.

The update command user interface message handlers for a shortcut menu are called only
when the menu is painted. The toolbar is displayed all the time, so when are its update
command user interface message handlers called? They’re called during the application’s idle
processing so the buttons can be updated continuously. If the same handler covers a menu
command and a toolbar button, it is called both during idle processing and when the shortcut
menu is displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolTips

You’ve seen ToolTips in various Windows applications, including Visual Studio. When the
user positions the mouse on a toolbar button for a certain interval of time, text is displayed in a
little ToolTip box next to the button. In Chapter 12, you learned that menu commands can
have associated prompt strings, which are string resource elements with matching IDs. To
create a ToolTip, you simply add the tip text to the end of the menu prompt, preceded by a
newline (\n) character. The resource editor lets you edit the prompt string while you’re editing
the toolbar images. Just select a toolbar image and edit the Prompt property in the Properties
window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Locating the Main Frame Window

The toolbar and status bar objects you’ll be working with are attached to the application’s
main frame window, not to the view window. How does your view find its main frame
window? In an SDI application, you can use the CWnd::GetParentFrame function.
Unfortunately, this function won’t work in an MDI application because the view’s parent
frame is the MDI child frame, not the MDI frame window.

If you want your view class to work in both SDI and MDI applications, you must find the
main frame window through the application object. The AfxGetApp global function returns a
pointer to the application object. You can use that pointer to get the CWinApp data member
m_pMainWnd. In an MDI application, the MFC Application Wizard generates code that sets
m_pMainWnd, but in an SDI application, the framework sets m_pMainWnd during the view
creation process. Once m_pMainWnd is set, you can use it in a view class to get the frame’s
toolbar with statements such as this:

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
CToolBar* pToolBar = &pFrame->m_wndToolBar;

NOTE
You’ll need to cast m_pMainWnd from CFrameWnd* to CMainFrame* because
m_wndToolBar is a member of that derived class. You’ll also have to make
m_wndToolBar public or make your class a friend of CMainFrame.

You can use similar logic to locate menu commands, status bar objects, and dialog objects.

NOTE
In an SDI application, the value of m_pMainWnd is not set when the view’s
OnCreate message handler is called. If you need to access the main frame window
in your OnCreate function, you must use the GetParentFrame function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex13a Example: Using Toolbars

In this example, we’ll add three special-purpose buttons that control drawing in the view
window. We’ll also construct a Draw menu with three commands, as follows:

Command Function

Circle Draws a circle in the view window

Square Draws a square in the view window

Pattern Toggles a diagonal line fill pattern for new squares and circles

The menu and toolbar choices force the user to alternate between drawing circles and squares.
After the user draws a circle, the Circle command and toolbar button are disabled; after the
user draws a square, the Square command and toolbar button are disabled.

On the application’s Draw menu, the Pattern command gets a check mark when pattern fill is
active. On the toolbar, the corresponding button is a check box button that is down when
pattern fill is active and up when it is not active.

Figure 13-2 shows the application in action. The user has just drawn a square with pattern fill.
Notice the states of the three drawing buttons.

Figure 13-2. The Ex13a program in action.

The Ex13a example introduces the resource editor for toolbars. You’ll need to do very little
C++ coding. Simply follow these steps:

1. Run the MFC Application Wizard to generate a project named Ex13a.Choose New

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Run the MFC Application Wizard to generate a project named Ex13a.Choose New
Project from Visual Studio’s File menu. In the New Project dialog box, select the MFC
Application template, type the name Ex13a, and click OK. In the MFC Application
Wizard, accept all the defaults but two: On the Application Type page, select Single
Document, and on the Advanced Features page, deselect Printing And Print Preview.

2. Use the resource editor to edit the application’s main menu.In Resource View, double-
click on IDR_MAINFRAME under Menu. Edit the IDR_MAINFRAME menu resource to
create a new Draw menu that looks like the following. To reposition a menu, you can
just drag the menu.

In the Properties window, verify that the following properties are set for your new Draw
menu commands:

Caption ID Prompt

&Circle ID_DRAW_CIRCLE Draw a circle\nCircle

&Square ID_DRAW_SQUARE Draw a square\nSquare

&Pattern ID_DRAW_PATTERN Change the pattern\nPattern

3. Use the resource editor to update the application’s toolbar.Edit the IDR_MAINFRAME
toolbar resource to create a group of three new buttons that looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The toolbar editor is fairly intuitive. You add new buttons by editing the blank button at
the far right of the toolbar. Use the Ellipsis, Rectangle, and Line tools on the Image
Editor toolbar to draw on a button. You can move buttons around by dragging them
with the mouse. To add a separator between buttons, drag the button where the separator
should appear slightly to the right or left and the buttons will be nudged over. The
Delete key erases a button’s pixels. If you want to eliminate a button entirely, just drag
it off the toolbar.

In the Properties window, set the ID property for the new buttons to
ID_DRAW_CIRCLE, ID_DRAW_SQUARE, and ID_DRAW_PATTERN.

4. Add the CEx13aView class message handlers.Select the CEx13aView class in Class
View, click the Events button in the Properties window, and add message handlers for
the following command and update command user interface messages:

Object ID Message Member Function

ID_DRAW_CIRCLE COMMAND OnDrawCircle

ID_DRAW_CIRCLE UPDATE_COMMAND_UI OnUpdateDrawCircle

ID_DRAW_PATTERN COMMAND OnDrawPattern

ID_DRAW_PATTERN UPDATE_COMMAND_UI OnUpdateDrawPattern

ID_DRAW_SQUARE COMMAND OnDrawSquare

ID_DRAW_SQUARE UPDATE_COMMAND_UI OnUpdateDrawSquare

5. Add three data members to the CEx13aView class.Add the following code to
Ex13aView.h:

protected:
 CRect m_rect;
 BOOL m_bCircle;
 BOOL m_bPattern;

6. Edit the Ex13aView.cpp file.The CEx13aView constructor simply initializes the class
data members. Add the following boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CEx13aView::CEx13aView() : m_rect(0, 0, 100, 100){
 m_bCircle = TRUE;
 m_bPattern = FALSE;
}

The OnDraw function draws an ellipse or a rectangle, depending on the value of the
m_bCircle flag. The brush is plain white or a diagonal pattern, depending on the value
of m_bPattern.

void CEx13aView::OnDraw(CDC* pDC)
{
 Cex13aDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 CBrush brush(HS_BDIAGONAL, 0L); // brush with diagonal pattern
 if (m_bPattern) {
 pDC->SelectObject(&brush);
 }
 else {
 pDC->SelectStockObject(WHITE_BRUSH);
 }
 if (m_bCircle) {
 pDC->Ellipse(m_rect);
 }
 else {
 pDC->Rectangle(m_rect);
 }
 pDC->SelectStockObject(WHITE_BRUSH); // Deselects brush
 // if selected
}

The OnDrawCircle function handles the ID_DRAW_CIRCLE command message, and
the OnDrawSquare function handles the ID_DRAW_SQUARE command message.
These two functions move the drawing rectangle down and to the right, and then they
invalidate the rectangle, causing the OnDraw function to redraw it. The effect of this
invalidation strategy is a diagonal cascading of alternating squares and circles. Also, the
display is not buffered, so when the window is hidden or minimized, previously drawn
items are not redisplayed.

void CEx13aView::OnDrawCircle()
{
 m_bCircle = TRUE;
 m_rect += CPoint(25, 25);
 InvalidateRect(m_rect);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InvalidateRect(m_rect);
}

void CEx13aView::OnDrawSquare()
{
 m_bCircle = FALSE;
 m_rect += CPoint(25, 25);
 InvalidateRect(m_rect);
}

The following two update command user interface functions alternately enable and
disable the Circle and Square buttons and corresponding menu commands. Only one
item can be enabled at a time.

void CEx13aView::OnUpdateDrawCircle(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(!m_bCircle);
}

void CEx13aView::OnUpdateDrawSquare(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bCircle);
}

The OnDrawPattern function toggles the state of the m_bPattern flag.

void CEx13aView::OnDrawPattern()
{
 m_bPattern ^= 1;
}

The OnUpdateDrawPattern function updates the Pattern button and menu command
according to the state of the m_bPattern flag. The toolbar button appears to move in and
out, and the command check mark appears and disappears.

void CEx13aView::OnUpdateDrawPattern(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck(m_bPattern);
}

7. Build and test the Ex13a application.Notice the behavior of the toolbar buttons. Try the
corresponding menu commands, and notice that they too are enabled, disabled, and
checked as the application’s state changes. Observe the ToolTip and the prompt in the
status bar when you stop the mouse pointer on one of the new toolbar buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Status Bars

The status bar window neither accepts user input nor generates command messages. Its job is
simply to display text in panes under program control. The status bar supports two types of
text panes—message line panes and status indicator panes. To use the status bar for
application-specific data, you must first disable the standard status bar that displays the menu
prompt and keyboard status.

The Status Bar Definition

The static indicators array that the MFC Application Wizard generates in the MainFrm.cpp
file defines the panes for the application’s status bar. The constant ID_SEPARATOR identifies
a message line pane; the other constants are string resource IDs that identify indicator panes.
Figure 13-3 shows the indicators array and its relationship to the standard framework status
bar.

Figure 13-3. The status bar and the indicators array.

The CStatusBar::SetIndicators member function, called in the application’s derived frame
class, configures the status bar according to the contents of the indicators array.

The Message Line

A message line pane displays a string that the program supplies dynamically. To set the value
of the message line, you must first get access to the status bar object and then you must call
the CStatusBar::SetPaneText member function with a zero-based index parameter. Pane 0 is
the leftmost pane, 1 is the next pane to the right, and so forth.

The following code fragment is part of a view class member function. Note that you must
navigate up to the application object and then back down to the main frame window.

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
CStatusBar* pStatus = &pFrame->m_wndStatusBar;
pStatus->SetPaneText(0, "message line for first pane");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Normally, the length of a message line pane is exactly one-fourth the width of the display. If,
however, the message line is the first (index 0) pane, it is a stretchy pane without a beveled
border. Its minimum length is one-fourth the display width, and it expands if room is available
in the status bar.

The Status Indicator

A status indicator pane is linked to a single resource-supplied string that is displayed or hidden
by logic in an associated update command user interface message handler function. An
indicator is identified by a string resource ID, and that same ID is used to route update
command user interface messages. The Caps Lock indicator is handled in the frame class by a
message map entry and a handler function equivalent to those shown below. The Enable
function turns on the indicator if the Caps Lock mode is set.

ON_UPDATE_COMMAND_UI(ID_INDICATOR_CAPS, OnUpdateKeyCapsLock)

void CMainFrame::OnUpdateKeyCapsLock(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_CAPITAL) & 1);
}

The status bar update command user interface functions are called during idle processing so
that the status bar is updated whenever your application receives messages.

The length of a status indicator pane is the exact length of the corresponding resource string.

Taking Control of the Status Bar

In the standard application framework implementation, the status bar has the child window ID
AFX_IDW_STATUS_BAR. The application framework looks for this ID when it wants to
display a menu prompt. The update command user interface handlers for the keyboard state
indicators, embedded in the frame window base class, are linked to the following string IDs:
ID_INDICATOR_CAPS, ID_INDICATOR_NUM, and ID_INDICATOR_SCRL. To take
control of the status bar, you must use a different child window ID and different indicator ID
constants.

NOTE
The only reason to change the status bar’s child window ID is to prevent the
framework from writing menu prompts in pane 0. If you like the menu prompts,
you can disregard the following instructions.

The status bar window ID is assigned in the CStatusBar::Create function called by the derived
frame class OnCreate member function. That function is contained in the MainFrm.cpp file
that the MFC Application Wizard generates. The window ID is the third Create parameter,
and it defaults to AFX_IDW_STATUS_BAR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To assign your own ID, you must replace this call

m_wndStatusBar.Create(this);

with this call

m_wndStatusBar.Create(this, WS_CHILD │ WS_VISIBLE │ CBRS_BOTTOM,
 ID_MY_STATUS_BAR);

You must also, of course, define the ID_MY_STATUS_BAR constant in the resource.h file
(using Visual C++’s resource symbol editor).

We left out one thing. The standard application framework’s View menu allows the user to
turn the status bar on and off. That logic is pegged to the AFX_IDW_STATUS_BAR window
ID, so you have to change the menu logic, too. In your derived frame class, you must write
message map entries and handlers for the ID_VIEW_STATUS_BAR command and update
command user interface messages. ID_VIEW_STATUS_BAR is the ID of the Status Bar menu
command. The derived class handlers override the standard handlers in the CFrameWnd base
class. See the upcoming Ex13b example for code details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex13b Example: Using Status Bars

The Ex13b example replaces the standard application framework status bar with a new status
bar that has the following text panes:

Pane Index String ID Type Description

0 ID_SEPARATOR (0) Message line x cursor coordinate

1 ID_SEPARATOR (0) Message line y cursor coordinate

2 ID_INDICATOR_LEFT Status indicator Left mouse button status

3 ID_INDICATOR_RIGHT Status indicator Right mouse button status

The resulting status bar is shown in Figure 13-4. Notice that the leftmost pane stretches past its
normal screen length as the displayed frame window expands.

Figure 13-4. The status bar of the Ex13b example.

Follow these steps to produce the Ex13b example:

1. Run the MFC Application Wizard to generate a project named Ex13b.Choose New
Project from Visual Studio’s File menu. In the New Project dialog box, select the MFC
Application template, type the name Ex13b, and click OK. In the MFC Application
Wizard, accept all the defaults but two: On the Application Type page, select Single
Document, and on the Advanced Features page, deselect Printing And Print Preview.

2. Use the string editor to edit the application’s string table resource.The application has a
single string table resource with artificial “segment” divisions left over from the 16-bit
era. In Resource View, double-click on the String Table icon in the String Table folder
to bring up the string editor. Then select the empty entry at the end of the list and add
the following two strings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String ID String Caption

ID_INDICATOR_LEFT LEFT

ID_INDICATOR_RIGHT RIGHT

When you’re finished, the string table should appear as follows:

3. Edit the application’s symbols.Choose Resource Symbols from the Edit menu. Click the
New button and add the new status bar identifier, ID_MY_STATUS_BAR, and accept the
default value as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Add View menu command handlers in the class CmainFrame.Select the CMainFrame
class in Class View, click the Events button in the Properties window, and add the
following command message handlers:

Object ID Message Member Function

ID_VIEW_STATUS_BAR COMMAND OnViewStatusBar

ID_VIEW_STATUS_BAR UPDATE_COMMAND_UI OnUpdateViewStatusBar

5. Add the following function prototypes to MainFrm.h.You must add these CMainFrame
message handler prototypes manually because Visual Studio doesn’t recognize the
associated command message IDs.

afx_msg void OnUpdateLeft(CCmdUI* pCmdUI);
afx_msg void OnUpdateRight(CCmdUI* pCmdUI);

While MainFrm.h is open, make m_wndStatusBar public rather than protected.

6. Edit the MainFrm.cpp file.Replace the original indicators array with the following
boldface code:

static UINT indicators[] =
{
 ID_SEPARATOR, // first message line pane
 ID_SEPARATOR, // second message line pane
 ID_INDICATOR_LEFT,
 ID_INDICATOR_RIGHT,
};

Next, edit the OnCreate member function. Replace the following statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (!m_wndStatusBar.Create(this) ││
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
{
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
}

with the statement shown here:

if (!m_wndStatusBar.Create(this,
 WS_CHILD │ WS_VISIBLE │ CBRS_BOTTOM, ID_MY_STATUS_BAR
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
{
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
}

The modified call to Create uses our own status bar ID, ID_MY_STATUS_BAR, instead
of AFX_IDW_STATUS_BAR (the application framework’s status bar object).

Now add the following message map entries for the class CMainFrame. Visual Studio
can’t add these for you because it doesn’t recognize the string table IDs as object IDs.

ON_UPDATE_COMMAND_UI(ID_INDICATOR_LEFT, OnUpdateLeft)
ON_UPDATE_COMMAND_UI(ID_INDICATOR_RIGHT, OnUpdateRight)

Add the following CMainFrame member functions that update the two status indicators:

void CMainFrame::OnUpdateLeft(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_LBUTTON) < 0);
}
void CMainFrame::OnUpdateRight(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(::GetKeyState(VK_RBUTTON) < 0);
}

Note that the left and right mouse buttons have virtual key codes like keys on the
keyboard have. You don’t have to depend on mouse-click messages to determine the
button status.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, edit the following View menu functions in MainFrm.cpp:

void CMainFrame::OnViewStatusBar()
{
 m_wndStatusBar.ShowWindow((m_wndStatusBar.GetStyle() &
 WS_VISIBLE) == 0);
 RecalcLayout();
}
void CMainFrame::OnUpdateViewStatusBar(CCmdUI* pCmdUI)
{
 pCmdUI->SetCheck((m_wndStatusBar.GetStyle() & WS_VISIBLE) != 0);
}

These functions ensure that the View menu’s Status Bar command is properly linked to
the new status bar.

7. Edit the OnDraw function in Ex13bView.cpp.The OnDraw function displays a message
in the view window. Add the following boldface code:

void CEx13bView::OnDraw(CDC* pDC)
{
 CEx13bDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 pDC->TextOut(0, 0,
 "Watch the status bar while you move and click the mouse.");
}

8. Add a WM_MOUSEMOVE handler in the CEx13bView class.Select the CEx13bView
class in Class View, click the Messages button in the Properties window, and add the
OnMouseMove function. Edit the function as shown below. This function gets a pointer
to the status bar object and then calls the SetPaneText function to update the first and
second message line panes.

void CEx13bView::OnMouseMove(UINT nFlags, CPoint point)
{
 CString str;
 CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;
 CStatusBar* pStatus = &pFrame->m_wndStatusBar;
 if (pStatus) {
 str.Format("x = %d", point.x);
 pStatus->SetPaneText(0, str);
 str.Format("y = %d", point.y);
 pStatus->SetPaneText(1, str);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Finally, add the statement

#include "MainFrm.h"

near the top of the file Ex13bView.cpp.

9. Build and test the Ex13b application.Move the mouse and observe that the first two
status bar panes accurately reflect the mouse cursor’s position. Try the left and right
mouse buttons. Can you toggle the status bar on and off from the View menu?

NOTE
If you want the first (index 0) status bar pane to have a beveled border like the
other panes and you want the status bar to grow and resize to fit the contents,
include the following two lines in the CMainFrame::OnCreate function, following
the call to the status bar Create function.

m_wndStatusBar.SetPaneInfo(0, 0, 0, 50);
m_wndStatusBar.SetPaneInfo(1, 0, SBPS_STRETCH, 50);

These statements change the width of the first two panes (from their default of
one-fourth the display size) and make the second pane (index 1) the stretchy one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rebars

As you learned in Chapter 8, Visual C++ contains features originally found in Internet
Explorer: the common controls. One of these is a new kind of toolbar called a rebar. You’re
probably familiar with the rebar if you’ve used Internet Explorer. The rebar differs from the
default MFC toolbar in that it provides grippers and allows the user to “slide” its horizontal
and vertical positions. In contrast, you change the MFC toolbar’s position using drag-and-drop
docking. Rebars also allow the developer to provide many more internal control types—such
as drop-down menus—than are available in CToolBar.

Anatomy of a Rebar

Figure 13-5 shows the various terms used on a rebar. Each internal toolbar in a rebar is called
a band. The raised edge where the user slides the band is called a gripper. Each band can also
have a label.

Figure 13-5. Rebar terminology.

MFC provides two classes that facilitate working with rebars:

CReBarA high-level abstraction class that provides members for adding CToolBar and
CDialogBar classes to rebars as bands. CReBar also handles communication (such as
message notifications) between the underlying control and the MFC framework.

CReBarCtrlA low-level wrapper class that wraps the ReBar control. This class provides
numerous members for creating and manipulating rebars but does not provide the
niceties that are found in CReBar.

Most MFC applications use CReBar and call the member function GetReBarCtrl, which
returns a CReBarCtrl pointer to gain access to the lower-level control if needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex13c Example: Using Rebars

Let’s get familiar with the rebar by jumping into an example. This example creates an SDI
application that has a rebar with two bands: a familiar toolbar band and a dialog bar band.
Figure 13-6 shows the example in action.

Figure 13-6. Ex13c rebar example.

Here are the steps required to create the Ex13c example:

1. Run the MFC Application Wizard to generate a project named Ex13c.Choose New
Project from Visual Studio’s File menu. In the New Project dialog box, select the MFC
Application template, type the name Ex13c, and click OK. In the MFC Application
Wizard, accept all the defaults but two: On the Application Type page, select Single
Document, and on the User Interface Features page under Toolbars, select Standard
Docking and Browser Style.

2. Compile and run the application.When you run the application, you’ll see that the MFC
Application Wizard has automatically created a rebar with two bands. One band
contains a conventional toolbar and the other contains the text TODO: layout dialog bar
in the band.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Open the MainFrm.h header file and see the code below, which declares the CReBar
data member m_ndReBar.

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;
 CReBar m_wndReBar;
 CDialogBar m_wndDlgBar;

In the MainFrm.cpp file, you can see the code that adds the toolbar and the dialog bar to
the CReBar object:

 if (!m_wndReBar.Create(this) ││
 !m_wndReBar.AddBar(&m_wndToolBar) ││
 !m_wndReBar.AddBar(&m_wndDlgBar))
 {
 TRACE0("Failed to create rebar\n");
 return -1; // fail to create
 }

3. Lay out the dialog bar.In Resource View, under the Dialog node, you’ll find a dialog
resource for the dialog bar with the ID IDR_MAINFRAME. Open IDR_MAINFRAME,
and you’ll see the dialog bar with the text TODO: layout dialog bar. Let’s put some real
controls onto the dialog bar. First, delete the static control with the TODO text in it.
Then place a combo box on the dialog bar and use the Properties window to enter the
following default data items in the Data property: One;Two;Buckle;My;Shoe!;. Now
place a button on the dialog bar and change the button’s Caption property to Increment.
Place a progress control on the dialog bar and set the Smooth property to True. Finally,
place another button on the dialog bar and change the Caption property to Decrement.
When you’re done laying out out the dialog bar, it should look similar to this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Edit the MainFrm.h file.Visual Studio doesn’t understand how to connect the controls
on the dialog bar with handlers in the CMainFrame class. We need to add them by
hand. Open up MainFrm.h and add the following prototypes to CMainFrame.

afx_msg void OnButton1();
afx_msg void OnButton2();

5. Edit the MainFrm.cpp file.Open MainFrm.cpp and add the following message maps for
Button1 and Button2:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_BN_CLICKED(IDC_BUTTON1, OnButton1)
 ON_BN_CLICKED(IDC_BUTTON2, OnButton2)END_MESSAGE_MAP()

Add the following OnButton1 and OnButton2 methods to CMainFrame.cpp:

void CMainFrame::OnButton1()
{
 CProgressCtrl * pProgress =
 (CProgressCtrl*)m_wndDlgBar.GetDlgItem(IDC_PROGRESS1);
 pProgress->StepIt();
}
void CMainFrame::OnButton2()
{
 CProgressCtrl * pProgress =
 (CProgressCtrl*)m_wndDlgBar.GetDlgItem(IDC_PROGRESS1);
 int nCurrentPos = pProgress->GetPos();
 pProgress->SetPos(nCurrentPos-10);
}

The OnButton1 handler first gets a pointer to the progress control and then calls StepIt
to increment the progress control. OnButton2 decrements the current progress position
by 10.

6. Compile and test the Ex13c application.Now you can compile and run Ex13c to see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Compile and test the Ex13c application.Now you can compile and run Ex13c to see
your custom rebar in action. The Increment button increases the progress bar and the
Decrement button decreases it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14
A Reusable Frame Window Base Class

C++ offers programmers the ability to produce “software building blocks” that can be taken
off the shelf and fitted easily into an application. The Microsoft Foundation Class (MFC)
library classes are a good example of this kind of reusable software. This chapter shows you
how to build your own reusable base class by taking advantage of what the MFC library
already provides.

In the process of building the reusable class, you’ll learn a few more things about Microsoft
Windows and the MFC library. In particular, you’ll see how the application framework allows
access to the Windows Registry, you’ll learn more about the mechanics of the CFrameWnd
class, and you’ll get more exposure to static class variables and the CString class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Reusable Base Classes Are Difficult to Write

In a normal application, you write code for software components that solve particular
problems. It’s usually a simple matter of meeting the project specification. With reusable base
classes, however, you must anticipate future programming needs, both your own and those of
others. You have to write a class that is general and complete yet efficient and easy to use.

This chapter’s example shows the difficulty of building reusable software. The class was
originally intended to be a frame class that would “remember” its window size and position. In
addition to remembering their window sizes, many existing Windows-based programs also
remember whether they’ve been minimized to the taskbar or whether they’ve been maximized
to full screen. Then there is the oddball case of a window that is both minimized and
maximized. In addition, the frame class needs to manage the toolbar and the status bar, and the
class has to work in a dynamic-link library (DLL). In short, it’s surprisingly difficult to write a
frame class that would do everything that a programmer might expect.

In a production programming environment, reusable base classes might fall out of the normal
software development cycle. A class written for one project might be extracted and further
generalized for another project. There’s always the temptation, though, to cut and paste
existing classes without asking, “What can I factor out into a base class?” If you’re in the
software business for the long term, it’s beneficial to start building your library of truly
reusable components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CPersistentFrame Class

In this chapter, we’ll use a class named CPersistentFrame that’s derived from the
CFrameWnd class. This CPersistentFrame class supports a persistent Single Document
Interface (SDI) frame window that remembers the following characteristics:

Window size

Window position

Maximized status

Minimized status

Toolbar and status bar enablement and position

When you terminate an application that’s built with the CPersistentFrame class, the above
information is saved on disk in the Windows Registry. When the application starts again, it
reads the Registry and restores the frame to its state at the previous exit.

You can use the persistent view class in any SDI application, including the examples in this
book. All you have to do is substitute CPersistentFrame for CFrameWnd in your application’s
derived frame class files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFrameWnd::ActivateFrame Member Function

Why choose CFrameWnd as the base class for a persistent window? Why not have a persistent
view class instead? In an MFC SDI application, the main frame window is always the parent
of the view window. This frame window is created first, and then the control bars and the view
are created as child windows. The application framework ensures that the child windows
shrink and expand appropriately as the user changes the size of the frame window. It wouldn’t
make sense to change the view size after the frame was created.

The key to controlling the frame’s size is the CFrameWnd::ActivateFrame member function.
The application framework calls this virtual function (which is declared in CFrameWnd)
during the SDI main frame window creation process (and in response to the File New and File
Open commands). The framework’s job is to call the CWnd::ShowWindow function with the
parameter nCmdShow. ShowWindow makes the frame window visible along with its menu,
view window, and control bars. The nCmdShow parameter determines whether the window is
maximized or minimized.

If you override ActivateFrame in your derived frame class, you can change the value of
nCmdShow before passing it to the CFrameWnd::ActivateFrame function. You can also call
the CWnd::SetWindowPlacement function, which sets the size and position of the frame
window, and you can set the visible status of the control bars. Because all changes are made
before the frame window becomes visible, no annoying flash occurs on the screen.

You must be careful not to reset the frame window’s position and size after every File New or
File Open command. A first-time flag data member ensures that your
CPersistentFrame::ActivateFrame function operates only when the application starts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PreCreateWindow Member Function

PreCreateWindow, which is declared at the CWnd level, is another virtual function that you
can override to change the characteristics of your window before it is displayed. The
framework calls this function before it calls ActivateFrame. The MFC Application Wizard
always generates an overridden PreCreateWindow function in your project’s view and frame
window classes.

This function has a CREATESTRUCT structure as a parameter, and two of the data members
in this structure are style and dwExStyle. You can change these data members before passing
the structure on to the base class PreCreateWindow function. The style flag determines
whether the window has a border, scroll bars, a minimize box, and so on. The dwExStyle flag
controls other characteristics, such as always-on-top status. See the Window Styles and
Extended Window Styles sections of the MFC Library Reference for details.

The CREATESTRUCT member lpszClass is also useful for changing the window’s
background brush, cursor, or icon. It makes no sense to change the brush or cursor in a frame
window because the view window covers the client area. If you want an ugly red view
window with a special cursor, for example, you can override your view’s PreCreateWindow
function like this:

BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs)
{
 if (!CView::PreCreateWindow(cs)) {
 return FALSE;
 }
 cs.lpszClass =
 AfxRegisterWndClass(CS_DBLCLKS │ CS_HREDRAW │ CS_VREDRAW,
 AfxGetApp()->LoadCursor(IDC_MYCURSOR),
 ::CreateSolidBrush(RGB(255, 0, 0)));
 if (cs.lpszClass != NULL) {
 return TRUE;
 }
 else {
 return FALSE;
 }
}

If you override the PreCreateWindow function in your persistent frame class, windows of all
derived classes will share the characteristics you programmed in the base class. Of course,
derived classes can have their own overridden PreCreateWindow functions, but then you’ll
have to be careful about the interaction between the base class and derived class functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows Registry

If you’ve used Win16-based applications, you’ve probably seen INI files. You can still use
INI files in Win32-based applications, but Microsoft recommends that you use the Windows
Registry instead. The Registry is a set of system files, managed by Windows, in which
Windows and individual applications can store and access permanent information. The
Registry is organized as a kind of hierarchical database in which string and integer data is
accessed by a multi-part key.

For example, a text processing application, TEXTPROC, might need to store the most recent
font and point size in the Registry. Suppose that the program name forms the root of the key (a
simplification) and that the application maintains two hierarchy levels below the name. The
structure looks something like this:

TEXTPROC
 Text formatting
 Font = Times New Roman
 Points = 10

Unicode
European languages use characters that can be encoded in 8 bits—even characters
with diacritics. Most Asian languages require 16 bits for their characters. Many
programs use the double-byte character set (DBCS) standard; some characters use 8
bits and others 16 bits, depending on the value of the first 8 bits. DBCS is being
replaced by Unicode, in which all characters are 16-bit “wide” characters. No
specific Unicode character ranges are set aside for individual languages: If a
character is used in both the Chinese and the Japanese languages, for example, that
character appears only once in the Unicode character set.

When you look at MFC source code and the code that the MFC Application Wizard
generates, you’ll see the types TCHAR, LPTSTR, and LPCTSTR and you’ll see
literal strings such as _T(“string”). You’re looking at Unicode macros. If you build
your project without defining _UNICODE, the compiler will generate code for
ordinary 8-bit ANSI characters (CHAR) and pointers to 8-bit character arrays
(LPSTR, LPCSTR). If you do define _UNICODE, the compiler will generate code
for 16-bit Unicode characters (WCHAR), pointers (LPWSTR, LPCWSTR), and
literals (L“wide string”).

The _UNICODE preprocessor symbol also determines which Windows functions
your program will call. Many Win32 functions have two versions. When your
program calls CreateWindowEx, for example, the compiler will generate code to
call either CreateWindowExA (with ANSI parameters) or CreateWindowExW (with
Unicode parameters). In Windows NT, Windows 2000, and Windows XP, which
use Unicode internally, CreateWindowExW passes all parameters straight through,
but CreateWindowExA converts ANSI string and character parameters to Unicode.
In Windows 95, Windows 98, and Windows Me, which use ANSI internally,
CreateWindowExW is a stub that returns an error and CreateWindowExA passes the
parameters straight through.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to create a Unicode application, you should target it for Windows
NT/2000/XP and use the macros throughout. You can write Unicode applications
for Windows 95/98/Me, but you’ll do extra work to call the “A” versions of the
Win32 functions. As shown in Chapters 24 through 30, COM calls that support
Automation always use wide characters. Although Win32 functions are available
for converting between ANSI and Unicode, if you’re using the CString class you
can rely on a wide character constructor and the AllocSysString member function to
do the conversions.

For simplicity, this book’s example programs use ANSI only. The code generated
by the MFC Application Wizard uses Unicode macros, but the code I wrote uses 8-
bit literal strings and the char, char*, and const char* types.

The MFC library provides four CWinApp member functions, which are holdovers from the
days of INI files, for accessing the Registry. The MFC Application Wizard generates a call to
CWinApp::SetRegistryKey in your application’s InitInstance function, as shown here:

SetRegistryKey(_T("Local AppWizard-Generated Applications"));

If you remove this call, your application will not use the Registry but will create and use an
INI file in the Windows directory. The SetRegistryKey function’s string parameter establishes
the top of the hierarchy, and the following Registry functions define the bottom two levels,
called the heading name and the entry name.

GetProfileInt

WriteProfileInt

GetProfileString

WriteProfileString

These functions treat Registry data as CString objects or unsigned integers. If you need
floating-point values as entries, you must use the string functions and do the conversion
yourself. All the functions take a heading name and an entry name as parameters. In the
TEXTPROC example shown earlier, the heading name is Text Formatting and the entry names
are Font and Points.

To use the Registry access functions, you need a pointer to the application object. The global
function AfxGetApp does the job. In the previous sample Registry, the Font and Points entries
were set with the following code:

AfxGetApp()->WriteProfileString("Text formatting", "Font",
 "Times New Roman");
AfxGetApp()->WriteProfileInt("Text formatting", "Points", 10);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You’ll see a real Registry example shortly, in Ex14a, and you’ll learn to use the Windows
Regedit program to examine and edit the Registry.

NOTE
The application framework stores a list of most recently used files in the Registry
under the heading Recent File List.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the CString Class

The MFC CString class is a significant de facto extension of the C++ language. The CString
class has many useful operators and member functions, but perhaps its most important feature
is its dynamic memory allocation. You never have to worry about the size of a CString object.
The following statements represent typical uses of CString objects:

CString strFirstName("Elvis");
CString strLastName("Presley");
CString strTruth = strFirstName + " " + strLastName; // concatenation
strTruth += " is alive";
ASSERT(strTruth == "Elvis Presley is alive");
ASSERT(strTruth.Left(5) == strFirstName);
ASSERT(strTruth[2] == 'v'); // subscript operator

In a perfect world, C++ programs would use all CString objects and never use ordinary zero-
terminated character arrays. Unfortunately, many runtime library functions still use character
arrays, so programs must always mix and match their string representations. Fortunately, the
CString class provides a const char*() operator that converts a CString object to a character
pointer. Many of the MFC library functions have const char* parameters. Take the global
AfxMessageBox function, for example. Here is one of the function’s prototypes:

int AFXAPI AfxMessageBox(LPCTSTR lpszText, UINT nType = MB_OK,
 UINT nIDHelp = 0);

Note that LPCTSTR is not a pointer to a CString object but is a Unicode-enabled replacement
for const char*.

You can call AfxMessageBox in this way

char szMessageText[] = "Unknown error";
AfxMessageBox(szMessageText);

or this way:

CString strMessageText("Unknown error");
AfxMessageBox(strMessageText);

Now suppose you want to generate a formatted string. CString::Format does the job, as shown
here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int nError = 23;
CString strMessageText;
strMessageText.Format("Error number %d", nError);
AfxMessageBox(strMessageText);

NOTE
Suppose you want direct write access to the characters in a CString object. If you
write code like this:

CString strTest("test");
strncpy(strTest, "T", 1);

you’ll get a compile error because the first parameter of strncpy is declared char*,
not const char*. The CString::GetBuffer function “locks down” the buffer with a
specified size and returns a char*. You must call the ReleaseBuffer member
function later to make the string dynamic again. The correct way to capitalize the T
is shown in the following example.

CString strTest("test");
strncpy(strTest.GetBuffer(5), "T", 1);
strTest.ReleaseBuffer();
ASSERT(strTest == "Test");

The const char* operator takes care of converting a CString object to a constant character
pointer, but what about conversion in the other direction? It so happens that the CString class
has a constructor that converts a constant character pointer to a CString object, and it has a set
of overloaded operators for these pointers. That’s why statements such as the following work:

strTruth += " is alive";

The special constructor works with functions that take a CString reference parameter, such as
CDC::TextOut. In the following statement, a temporary CString object is created on the
calling program’s stack and then the object’s address is passed to TextOut:

pDC->TextOut(0, 0, "Hello, world!");

It’s more efficient to use the other overloaded version of CDC::TextOut if you’re willing to
count the characters:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pDC->TextOut(0, 0, "Hello, world!", 13);

If you’re writing a function that takes a string parameter, you’ve got some design choices.
Here are some programming rules:

If the function doesn’t change the contents of the string and you’re willing to use C
runtime functions such as strncpy, use a const char* parameter.

If the function doesn’t change the contents of the string but you want to use CString
member functions inside the function, use a const CString& parameter.

If the function changes the contents of the string, use a CString& parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Position of a Maximized Window

As a Windows user, you know that you can maximize a window from the system menu or by
clicking a button at the top right corner of the window. You can return a maximized window
to its original size in a similar fashion. It’s obvious that a maximized window remembers its
original size and position.

The CWnd function GetWindowRect retrieves the screen coordinates of a window. If a
window is maximized, GetWindowRect returns the coordinates of the screen rather than the
window’s unmaximized coordinates. If a persistent frame class is to work for maximized
windows, it has to know the window’s unmaximized coordinates.
CWnd::GetWindowPlacement retrieves the unmaximized coordinates together with some flags
that indicate whether the window is currently minimized or maximized.

The companion SetWindowPlacement function lets you set the maximized and minimized
status and the size and position of the window. To calculate the position of the top left corner
of a maximized window, you need to account for the window’s border size, which is
obtainable from the Win32 GetSystemMetrics function. Later in the chapter, you’ll see the
Persist.cpp file, in which the CPersistentFrame::ActivateFrame code shows an example of
how SetWindowPlacement is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Bar Status and the Registry

The MFC library provides two CFrameWnd member functions, SaveBarState and
LoadBarState, for saving and loading control bar status to and from the Registry, respectively.
These functions process the size and position of the status bar and docked toolbars. They don’t
process the position of floating toolbars, however.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Static Data Members

The CPersistentFrame class stores its Registry key names in static const char array data
members. What would the other storage choices be? String resource entries won’t work
because the strings need to be defined with the class itself. (String resources make sense if
CPersistentFrame is made into a DLL, however.) Global variables are generally not
recommended because they defeat encapsulation. Static CString objects don’t make sense
because the characters must be copied to the heap when the program starts.

An obvious choice would be regular data members. But static data members are better
because, as constants, they’re segregated into the program’s read-only data section and can be
mapped to multiple instances of the same program. If the CPersistentFrame class is part of a
DLL, all processes that are using the DLL can map the character arrays. Static data members
are really global variables, but they’re scoped to their class so there’s no chance of name
collisions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Default Window Rectangle

You’re used to defining rectangles using device or logical coordinates. A CRect object
constructed with the following statement has a special meaning:

CRect rect(CW_USEDEFAULT, CW_USEDEFAULT, 0, 0);

When Windows creates a new window with this special rectangle, it positions the window in a
cascade pattern with the top left corner below and to the right of the window most recently
created. The right and bottom edges of the window are always within the display’s boundaries.

The CFrameWnd class’s static rectDefault data member is constructed using
CW_USEDEFAULT in this way, so it contains the special rectangle. The CPersistentFrame
class declares its own rectDefault default window rectangle with a fixed size and position as a
static data member, thus hiding the base class member.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex14a Example: Using a Persistent Frame Window Class

The Ex14a program illustrates the use of a persistent frame window class, CPersistentFrame.
The following code shows the contents of the files Persist.h and Persist.cpp, which are
included in the Ex14a project on the companion CD. In this example, we’ll insert the new
frame class into an MFC Application Wizard–generated SDI application. Ex14a is a “do-
nothing” application, but you can insert the persistent frame class into any of your own SDI
“do-something” applications.

Persist.h
// Persist.h

#ifndef _INSIDE_VISUAL_CPP_PERSISTENT_FRAME
#define _INSIDE_VISUAL_CPP_PERSISTENT_FRAME

class CPersistentFrame : public CFrameWnd
{ // remembers where it was on the desktop
 DECLARE_DYNAMIC(CPersistentFrame)
private:
 static const CRect s_rectDefault;
 static const char s_profileHeading[];
 static const char s_profileRect[];
 static const char s_profileIcon[];
 static const char s_profileMax[];
 static const char s_profileTool[];
 static const char s_profileStatus[];
 BOOL m_bFirstTime;
protected: // Create from serialization only
 CPersistentFrame();
 ~CPersistentFrame();

 public:
 virtual void ActivateFrame(int nCmdShow = -1);
 protected:
 afx_msg void OnDestroy();
 DECLARE_MESSAGE_MAP()
};

#endif // _INSIDE_VISUAL_CPP_PERSISTENT_FRAME

Persist.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Persist.cpp
// Persist.cpp Persistent frame class for SDI apps

#include "stdafx.h"
#include "persist.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif
///
// CPersistentFrame

const CRect CPersistentFrame::s_rectDefault(10, 10,
 500, 400); // static
const char CPersistentFrame::s_profileHeading[] = "Window size";
const char CPersistentFrame::s_profileRect[] = "Rect";
const char CPersistentFrame::s_profileIcon[] = "icon";
const char CPersistentFrame::s_profileMax[] = "max";
const char CPersistentFrame::s_profileTool[] = "tool";
const char CPersistentFrame::s_profileStatus[] = "status";
IMPLEMENT_DYNAMIC(CPersistentFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CPersistentFrame, CFrameWnd)
 ON_WM_DESTROY()
END_MESSAGE_MAP()

///
CPersistentFrame::CPersistentFrame(){
 m_bFirstTime = TRUE;
}
///
CPersistentFrame::~CPersistentFrame()
{
}
///
void CPersistentFrame::OnDestroy()
{
 CString strText;
 BOOL bIconic, bMaximized;

 WINDOWPLACEMENT wndpl;
 wndpl.length = sizeof(WINDOWPLACEMENT);
 // gets current window position and
 // iconized/maximized status
 BOOL bRet = GetWindowPlacement(&wndpl);
 if (wndpl.showCmd == SW_SHOWNORMAL) {
 bIconic = FALSE;
 bMaximized = FALSE;
 }
 else if (wndpl.showCmd == SW_SHOWMAXIMIZED) {
 bIconic = FALSE;
 bMaximized = TRUE;
 }
 else if (wndpl.showCmd == SW_SHOWMINIMIZED) {
 bIconic = TRUE;
 if (wndpl.flags) {
 bMaximized = TRUE;
 }
 else {
 bMaximized = FALSE;
 }
 }
 strText.Format("%04d %04d %04d %04d",
 wndpl.rcNormalPosition.left,
 wndpl.rcNormalPosition.top,
 wndpl.rcNormalPosition.right,
 wndpl.rcNormalPosition.bottom);
 AfxGetApp()->WriteProfileString(s_profileHeading,
 s_profileRect, strText);
 AfxGetApp()->WriteProfileInt(s_profileHeading,
 s_profileIcon, bIconic);
 AfxGetApp()->WriteProfileInt(s_profileHeading,
 s_profileMax, bMaximized);
 SaveBarState(AfxGetApp()->m_pszProfileName);
 CFrameWnd::OnDestroy();
}

///
void CPersistentFrame::ActivateFrame(int nCmdShow)
{
 CString strText;
 BOOL bIconic, bMaximized;
 UINT flags;
 WINDOWPLACEMENT wndpl;
 CRect rect;

 if (m_bFirstTime) {
 m_bFirstTime = FALSE;
 strText = AfxGetApp()->GetProfileString(s_profileHeading,
 s_profileRect);
 if (!strText.IsEmpty()) {
 rect.left = atoi((const char*) strText);
 rect.top = atoi((const char*) strText + 5);
 rect.right = atoi((const char*) strText + 10);
 rect.bottom = atoi((const char*) strText + 15);
 }
 else {
 rect = s_rectDefault;
 }
 bIconic = AfxGetApp()->GetProfileInt(s_profileHeading,
 s_profileIcon, 0);
 bMaximized = AfxGetApp()->GetProfileInt(s_profileHeading,
 s_profileMax, 0);
 if (bIconic) {
 nCmdShow = SW_SHOWMINNOACTIVE;
 if (bMaximized) {
 flags = WPF_RESTORETOMAXIMIZED;
 }
 else {
 flags = WPF_SETMINPOSITION;
 }
 }
 else {
 if (bMaximized) {
 nCmdShow = SW_SHOWMAXIMIZED;
 flags = WPF_RESTORETOMAXIMIZED;
 }
 else {
 nCmdShow = SW_NORMAL;
 flags = WPF_SETMINPOSITION;
 }
 }
 wndpl.length = sizeof(WINDOWPLACEMENT);
 wndpl.showCmd = nCmdShow;
 wndpl.flags = flags;
 wndpl.ptMinPosition = CPoint(0, 0);
 wndpl.ptMaxPosition =
 CPoint(-::GetSystemMetrics(SM_CXBORDER),
 -::GetSystemMetrics(SM_CYBORDER));
 wndpl.rcNormalPosition = rect;
 LoadBarState(AfxGetApp()->m_pszProfileName);
 // sets window's position and minimized/maximized status
 BOOL bRet = SetWindowPlacement(&wndpl);
 }
 CFrameWnd::ActivateFrame(nCmdShow);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Here are the steps for building the Ex14a application:

1. Run the MFC Application Wizard to generate the Ex14a project.Accept all default
settings but two: Select Single Document and deselect Printing And Print Preview.

2. Modify MainFrm.h.You must change the base class of CMainFrame.

To do this, simply change the line

class CMainFrame : public CFrameWnd

to

class CMainFrame : public CPersistentFrame

Also, add this line:

#include "persist.h"

3. Modify MainFrm.cpp.Globally replace all occurrences of CFrameWnd with
CPersistentFrame.

4. Modify Ex14a.cpp.Replace the line

SetRegistryKey(_T("Local AppWizard-Generated Applications"));

with this line:

SetRegistryKey("Programming Visual C++ .NET");

5. Add the Persist.cpp file to the project.You can type in the Persist.h and Persist.cpp files
from the previous code listing, or you can copy the files from the companion CD.
Having the files in the \vcppnet\Ex14a directory is not sufficient. You must add the
names of the files to the solution. Choose Add Existing Item from Visual C++ .NET’s
Project menu, and select Persist.h and Persist.cpp from the list.

6. Build and test the Ex14a application.Size and move the application’s frame window,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Build and test the Ex14a application.Size and move the application’s frame window,
and then close the application. When you restart the application, does its window open
at the same location at which it was closed? Experiment with maximizing and
minimizing, and then change the status and position of the control bars. Does the
persistent frame remember its settings?

7. Examine the Windows Registry.Run the Windows Regedit.exe program. Navigate to the
HKEY_CURRENT_USER\Software\Programming Visual C++ .NET\Ex14a key. You
should see data values similar to those shown here:

Notice the relationship between the Registry key and the SetRegistryKey function
parameter, “Programming Visual C++ .NET”. If you supply an empty string as the
SetRegistryKey parameter, the program name (Ex14a, in this case) will be positioned
directly below the Software key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Persistent Frames in MDI Applications

We won’t get into Multiple Document Interface (MDI) applications until Chapter 16, but if
you’re using this book as a reference, you might want to apply the persistent frame technique
to MDI applications.

The CPersistentFrame class, as presented in this chapter, won’t work in an MDI application
because the MDI main frame window’s ShowWindow function is called, not by a virtual
ActivateFrame function, but directly by the application class’s InitInstance member function.
If you need to control the characteristics of an MDI main frame window, add the necessary
code to InitInstance.

The ActivateFrame function is called, however, for CMDIChildWnd objects. This means your
MDI application could remember the sizes and positions of its child windows. You could store
the information in the Registry, but you would have to accommodate multiple windows. You
would have to modify the CPersistentFrame class for this purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15
Separating the Document from Its View

Now you’ll finally get to see the interaction between documents and views. Chapter 12 gave
you a preview of this interaction when it showed the routing of command messages to both
view objects and document objects. In this chapter, you’ll see how the document maintains the
application’s data and how the view presents the data to the user. You’ll also learn how the
document and view objects talk to each other while the application executes.

The two examples in this chapter both use the CFormView class as the base class for their
views. The first example is as simple as possible, with the document holding only one simple
object of class CStudent, which represents a single student record. The view shows the
student’s name and grade and allows editing. With the CStudent class, you’ll get some practice
writing classes to represent real-world entities. You’ll also get to use the Microsoft Foundation
Class (MFC) library diagnostic dump functions.

The second example goes further by introducing pointer collection classes—the CObList and
CTypedPtrList classes in particular. The document holds a collection of student records, and
the view allows the sequencing, insertion, and deletion of individual records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document-View Interaction Functions

You already know that the document object holds the data and that the view object displays
the data and allows editing. A Single Document Interface (SDI) application has a document
class derived from CDocument, and it has one or more view classes, each ultimately derived
from CView. A complex handshaking process takes place among the document, the view, and
the rest of the application framework.

To understand this process, you need to know about five important member functions in the
document and view classes. Two are nonvirtual base class functions that you call in your
derived classes; three are virtual functions that you often override in your derived classes.
Let’s look at these functions one at a time.

The CView::GetDocument Function

A view object has one and only one associated document object. The GetDocument function
allows an application to navigate from a view to its document. Suppose a view object gets a
message that the user has entered new data into an edit control. The view must tell the
document object to update its internal data accordingly. The GetDocument function provides
the document pointer that can be used to access document class member functions or public
data members.

NOTE
The CDocument::GetNextView function navigates from the document to the view,
but because a document can have more than one view, you have to call this
member function once for each view, inside a loop. You’ll seldom call
GetNextView because the application framework provides a better method of
iterating through a document’s views.

When the MFC Application Wizard generates a derived CView class, it creates two special
type-safe versions of the GetDocument function (a debug version and a non-debug version)
that return a pointer to an object of your derived document class. The non-debug version
(which appears in the view header file) looks like this:

inline CMyDoc* CMyView::GetDocument() const
 { return reinterpret_cast<CMyDoc*>(m_pDocument); }

The debug version (which appears in the view source code file and is compiled when
debugging is defined) looks like this:

CMyDoc* CMyView::GetDocument() const // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyDoc)));
 return (CMyDoc*)m_pDocument;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

When the compiler sees a call to GetDocument in your view class code, it uses
CMyView::GetDocument, which returns CMyDocument *, instead of using
CView::GetDocument, which returns CDocument *. Because CMyDocument * is returned,
you do not have to cast the returned pointer to your derived document class. Without a helper
function like this, the compiler would call the base class’s GetDocument function and thus
return a pointer to a CDocument object.

Notice that a statement such as the following always calls the base class’s GetDocument
function—whether or not you have the previous helper function in your program—because the
CView::GetDocument function is not a virtual function:

pView->GetDocument(); // pView is declared CView*

The CDocument::UpdateAllViews Function

If the document data changes for any reason, all views must be notified so they can update
their representations of that data. If UpdateAllViews is called from a member function of a
derived document class, its first parameter, pSender, is NULL. If UpdateAllViews is called
from a member function of a derived view class, set the pSender parameter to the current
view, like this:

GetDocument()->UpdateAllViews(this);

The non-null parameter prevents the application framework from notifying the current view.
The assumption here is that the current view has already updated itself.

The function has optional hint parameters that you can use to give view-specific and
application-dependent information about which parts of the view to update. This is an
advanced use of the function.

How exactly is a view notified when UpdateAllViews gets called? Take a look at the next
function, OnUpdate.

The CView::OnUpdate Function

This virtual function is called by the application framework in response to your application’s
call to the CDocument::UpdateAllViews function. You can, of course, call it directly within
your derived CView class. Typically, your derived view class’s OnUpdate function accesses
the document, gets the document’s data, and then updates the view’s data members or controls
to reflect the changes. Alternatively, OnUpdate can invalidate a portion of the view, causing
the view’s OnDraw function to use document data to draw in the window. The OnUpdate
function might look something like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CMyView::OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)
{
 CMyDocument* pMyDoc = GetDocument();
 CString lastName = pMyDoc->GetLastName();
 m_pNameStatic->SetWindowText(lastName); // m_pNameStatic is
 // a CMyView data member
}

The hint information is passed through directly from the call to UpdateAllViews. The default
OnUpdate implementation invalidates the entire window rectangle. In your overridden
version, you can choose to define a smaller invalid rectangle as specified by the hint
information.

If the CDocument function UpdateAllViews is called with the pSender parameter pointing to a
specific view object, OnUpdate is called for all the document’s views except the specified
view.

The CView::OnInitialUpdate Function

This virtual CView function is called when the application starts, when the user chooses New
from the File menu, or when the user chooses Open from the File menu. The CView base class
version of OnInitialUpdate does nothing but call OnUpdate. If you override OnInitialUpdate
in your derived view class, be sure that the view class calls the base class’s OnInitialUpdate
function or the derived class’s OnUpdate function.

You can use your derived class’s OnInitialUpdate function to initialize your view object.
When the application starts, the application framework calls OnInitialUpdate immediately
after OnCreate (if you’ve mapped OnCreate in your view class). OnCreate is called once, but
OnInitialUpdate can be called many times.

The CDocument::OnNewDocument Function

The framework calls this virtual function after a document object is first constructed or when
the user chooses New from the File menu in an SDI application. This is a good place to set the
initial values of your document’s data members. The MFC Application Wizard generates an
overridden OnNewDocument function in your derived document class. Be sure to retain the
call to the base class function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Simplest Document-View Application

Suppose you don’t need multiple views of your document, but you plan to take advantage of
the application framework’s file support. In this case, you can forget about the
UpdateAllViews and OnUpdate functions. Simply follow these steps when you develop the
application:

1. In your derived document class header file (generated by the MFC Application Wizard),
declare your document’s data members. These data members are the primary data
storage for your application. You can make these data members public, or you can
declare the derived view class a friend of the document class.

2. In your derived view class, override the OnInitialUpdate virtual member function. The
application framework calls this function after the document data has been initialized or
read from disk. (Chapter 16 discusses disk file I/O.) OnInitialUpdate should update the
view to reflect the current document data.

3. In your derived view class, let your window message handlers, command message
handlers, and your OnDraw function read and update the document data members
directly, using GetDocument to access the document object.

The sequence of events for this simplified document-view environment is as follows:

Application starts CMyDocument object is constructed

CMyView object is constructed

View window is created

CMyView::OnCreate is called (if it is mapped)

CMyDocument::OnNewDocument is called

CMyView::OnInitialUpdate is called

 View object is initialized

 View window is invalidated

 CMyView::OnDraw is called

User edits data CMyView functions update CMyDocument data
members

User exits application CMyView object is destroyed

CMyDocument object is destroyed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CFormView Class

The CFormView class is a useful view class that has many of the characteristics of a modeless
dialog box. Like a class derived from CDialog, a derived CFormView class is associated with
a dialog resource that defines the frame characteristics and enumerates the controls. The
CFormView class supports the same dialog data exchange and validation (DDX and DDV)
functions that you saw in the CDialog examples in Chapter 7.

A CFormView object receives notification messages directly from its controls, and it receives
command messages from the application framework. This application framework command-
processing ability clearly separates CFormView from CDialog, and it makes controlling the
view from the frame’s main menu or toolbar easy.

WARNING
If the MFC Application Wizard generates a Form View dialog box, the properties
are set correctly, but if you use the dialog editor to make a dialog box for a form
view, you must specify the following items in the Dialog Properties window:
Style = Child
Border = None
Visible = unchecked

The CFormView class is derived from CView (actually, from CScrollView) and not from
CDialog. You can’t, therefore, assume that CDialog member functions are supported.
CFormView does not have virtual OnInitDialog, OnOK, and OnCancel functions. CFormView
member functions do not call UpdateData and the DDX functions. You have to call
UpdateData yourself at the appropriate times, usually in response to control notification
messages or command messages.

Even though the CFormView class is not derived from the CDialog class, it is built around the
Microsoft Windows dialog box. For this reason, you can use many of the CDialog class
member functions such as GotoDlgCtrl and NextDlgCtrl. All you have to do is cast your
CFormView pointer to a CDialog pointer. The following statement, extracted from a member
function of a class derived from CFormView, sets the focus to a specified control. GetDlgItem
is a CWnd function and is thus inherited by the derived CFormView class.

((CDialog*) this)->GotoDlgCtrl(GetDlgItem(IDC_NAME));

The MFC Application Wizard gives you the option of using CFormView as the base class for
your view. When you select CFormView, the MFC Application Wizard generates an empty
dialog box with the correct style properties set. The next step is to use the Class View’s
Properties window to add control notification message handlers, command message handlers,
and update command user interface handlers. (The example steps show you what to do.) You
can also define data members and validation criteria.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObject Class

If you study the MFC library hierarchy, you’ll notice that the CObject class is at the top. Most
other classes are derived from the CObject root class. When a class is derived from CObject, it
inherits a number of important characteristics. The many benefits of CObject derivation will
become clear as you read the chapters that follow.

In this chapter, you’ll see how CObject derivation allows objects to participate in the
diagnostic dumping scheme and allows objects to be elements in the collection classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Diagnostic Dumping

The MFC library gives you some useful tools for diagnostic dumping. You enable these tools
when you select the Debug configuration. When you select the Release configuration,
diagnostic dumping is disabled and the diagnostic code is not linked to your program. All
diagnostic output goes to the Debug view in the debug Output window.

TIP
To clear diagnostic output from the debug Output window, position the cursor in
the Output window and click the right mouse button. Then choose Clear All from
the shortcut menu.

The TRACE Macro

We’ve been using the TRACE macro throughout the preceding examples in this book. TRACE
statements are active whenever the constant _DEBUG is defined (when you select the Debug
configuration and when the afxTraceEnabled variable is set to TRUE). TRACE statements
work like C language printf statements, but they’re completely disabled in the release version
of the program. Here’s a typical TRACE statement:

int nCount = 9;
CString strDesc("total");
TRACE("Count = %d, Description = %s\n", nCount, strDesc);

Even though the TRACE macro is deprecated (the documentation suggests using ATLTRACE),
it is still available and works just fine.

The afxDump Object

An alternative to the TRACE statement is more compatible with the C++ language. The MFC
afxDump object accepts program variables with a syntax similar to that of cout, the C++
output stream object. You don’t need complex formatting strings; instead, overloaded
operators control the output format. The afxDump output goes to the same destination as the
TRACE output, but the afxDump object is defined only in the Debug version of the MFC
library.

Here is a typical stream-oriented diagnostic statement that produces the same output as the
TRACE statement above:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int nCount = 9;
CString strDesc("total");
#ifdef _DEBUG
 afxDump << "Count = " << nCount
 << ", Description = " << strDesc << "\n";
#endif // _DEBUG

Although both afxDump and cout use the same insertion operator (<<), they don’t share any
code. The cout object is part of the Microsoft Visual C++ iostream library, and afxDump is
part of the MFC library. Don’t assume that any of the cout formatting capability is available
through afxDump.

Classes that aren’t derived from CObject, such as CString, CTime, and CRect, contain their
own overloaded insertion operators for CDumpContext objects. The CDumpContext class, of
which afxDump is an instance, includes the overloaded insertion operators for the native C++
data types (int, double, char*, and so on). The CDumpContext class also contains insertion
operators for CObject references and pointers, and that’s where things get interesting.

The Dump Context and the CObject Class

If the CDumpContext insertion operator accepts CObject pointers and references, it must also
accept pointers and references to derived classes. Consider a trivial class, CAction, which is
derived from CObject, as shown here:

class CAction : public CObject
{
public:
 int m_nTime;
};

What happens when the following statement executes?

#ifdef _DEBUG
 afxDump << action; // action is an object of class CAction
#endif // _DEBUG

The virtual CObject::Dump function gets called. If you haven’t overridden Dump for CAction,
you don’t get much except for the address of the object. If you’ve overridden Dump, however,
you can get the internal state of your object. Here’s a CAction::Dump function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#ifdef _DEBUG
void CAction::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc); // Always call base class function
 dc << "time = " << m_nTime << "\n";
}
#endif // _DEBUG

The base class (CObject) Dump function prints a line such as this:

a CObject at $4115D4

If you have called the DECLARE_DYNAMIC macro in your CAction class definition and the
IMPLEMENT_DYNAMIC macro in your CAction declaration, you’ll see the name of the class
in your dump, as shown here

a CAction at $4115D4

even if your dump statement looks like this:

#ifdef _DEBUG
 afxDump << (CObject&) action;
#endif // _DEBUG

The two macros work together to include the MFC library runtime class code in your derived
CObject class. With this code in place, your program can determine an object’s class name at
run time (for the dump, for example) and it can obtain class hierarchy information.

NOTE
The (DECLARE_SERIAL, IMPLEMENT_SERIAL) and
(DECLARE_DYNCREATE, IMPLEMENT_DYNCREATE) macro pairs provide the
same runtime class features as those provided by the (DECLARE_DYNAMIC,
IMPLEMENT_DYNAMIC) macro pair.

Automatic Dump of Undeleted Objects

When the Debug configuration is selected, the application framework dumps all objects that
are undeleted when your program exits. This dump is a useful diagnostic aid, but if you want it
to be really useful, you must be sure to delete all your objects, even the ones that would
normally disappear after the exit. This object cleanup is good programming discipline.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code that adds debug information to allocated memory blocks is now in the Debug
version of the C runtime (CRT) library rather than in the MFC library. If you choose to
dynamically link MFC, the MSVCRTD DLL will be loaded along with the necessary MFC
DLLs. When you add the following line at the top of a CPP file, the CRT library will list the
filename and line number at which the allocations were made:

#define new DEBUG_NEW

The MFC Application Wizard puts this line at the top of all the CPP files it generates.

Window Subclassing for Enhanced Data-Entry Control
What if you want an edit control (in a dialog box or a form view) that accepts only
numeric characters? That’s easy. You just set the Number style in the control’s
property sheet. If, however, you want to exclude numeric characters or change the
case of alphabetic characters, you must do some programming.

The MFC library provides a convenient way to change the behavior of any standard
control, including the edit control. Two other ways are available: You can derive
your own classes from CEdit, CListBox, and so forth (with their own message
handler functions) and then create control objects at run time. Or you can register a
special window class, as a Win32 programmer would, and integrate it into the
project’s resource file with a text editor. Neither of these methods, however, allows
you to use the dialog editor to position controls in the dialog resource.

The easy way to modify a control’s behavior is to use the MFC library’s window
subclassing feature. You use the dialog editor to position a normal control in a
dialog resource, and then you write a new C++ class that contains message handlers
for the events that you want to handle yourself. Here are the steps for subclassing
an edit control:

1. With the dialog editor, position an edit control in your dialog resource.
Assume that it has the child window ID IDC_EDIT1.

2. Write a new class—for example, CNonNumericEdit—that is derived from
CEdit. Map the WM_CHAR message and write a handler like this:

void CNonNumericEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 if (!isdigit(nChar)) {
 CEdit::OnChar(nChar, nRepCnt, nFlags);
 }
}

3. In your derived dialog or form view class header, declare a data member of
class CNonNumericEdit in this way:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private:
 CNonNumericEdit m_nonNumericEdit;

4. If you’re working with a dialog class, add the following line to your
OnInitDialog override function:

m_nonNumericEdit.SubclassDlgItem(IDC_EDIT1, this);

5. If you’re working with a form view class, add the following code to your
OnInitialUpdate override function:

if (m_nonNumericEdit.m_hWnd == NULL) {
 m_nonNumericEdit.SubclassDlgItem(IDC_EDIT1, this);
}

The CWnd::SubclassDlgItem member function ensures that all messages are routed
through the application framework’s message dispatch system before being sent to
the control’s built-in window procedure. This technique is called dynamic
subclassing and is explained in more detail in Technical Note #14 in the MFC
Library Reference.

The code in the preceding steps only accepts or rejects a character. If you want to
change the value of a character, your handler must call CWnd::DefWindowProc,
which bypasses some MFC logic that stores parameter values in thread object data
members. Here’s a sample handler that converts lowercase characters to uppercase:

void CUpperEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{
 if (islower(nChar)) {
 nChar = toupper(nChar);
 }
 DefWindowProc(WM_CHAR, (WPARAM) nChar,
 (LPARAM) (nRepCnt │ (nFlags << 16)));
}

You can also use window subclassing to handle reflected messages, which were
mentioned in Chapter 7. If an MFC window class doesn’t map a message from one
of its child controls, the framework will reflect the message back to the control.
Technical Note #62 in the MFC Library Reference explains the details.

If you need an edit control with a yellow background, for example, you can derive
a class CYellowEdit from CEdit and use Class View’s Properties window to map
the =WM_CTLCOLOR message in CYellowEdit. (The Properties window lists the
message name with an equal sign in front to indicate that it is reflected.) The
handler code, shown below, is substantially the same as the nonreflected
WM_CTLCOLOR handler shown on page 157. (Member variable m_hYellowBrush

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WM_CTLCOLOR handler shown on page 157. (Member variable m_hYellowBrush
is defined in the control class’s constructor.)

HBRUSH CYellowEdit::CtlColor(CDC* pDC, UINT nCtlColor)
{
 pDC->SetBkColor(RGB(255, 255, 0)); // yellow
 return m_hYellowBrush;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex15a Example: A Simple Document-View Interaction

The first of this chapter’s two examples shows a very simple document-view interaction. The
CEx15aDoc document class, which is derived from CDocument, allows for a single embedded
CStudent object. The CStudent class represents a student record composed of a CString name
and an integer grade. The CEx15aView view class is derived from CFormView. It is a visual
representation of a student record that has edit controls for the name and grade. The default
Enter pushbutton updates the document with data from the edit controls. Figure 15-1 shows
the Ex15a program window.

Figure 15-1. The Ex15a program in action.

The code for the CStudent class is shown below. Most of the class’s features serve Ex15a, but
a few items carry forward to Ex15b and the programs discussed in Chapter 16. For now, take
note of the two data members, the default constructor, the operators, and the Dump function
declaration. The DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros ensure that the
class name is available for the diagnostic dump.

Student.h
// student.h

#ifndef _INSIDE_VISUAL_CPP_STUDENT
#define _INSIDE_VISUAL_CPP_STUDENT
class CStudent : public CObject
{
 DECLARE_DYNAMIC(CStudent)
public:
 CString m_strName;
 int m_nGrade;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int m_nGrade;

 CStudent()
 {
 m_nGrade = 0;
 }

 CStudent(const char* szName, int nGrade) : m_strName(szName)
 {
 m_nGrade = nGrade;
 }

 CStudent(const CStudent& s) : m_strName(s.m_strName)
 {
 // copy constructor
 m_nGrade = s.m_nGrade;
 }

 const CStudent& operator =(const CStudent& s)
 {
 m_strName = s.m_strName;
 m_nGrade = s.m_nGrade;
 return *this;
 }

 BOOL operator ==(const CStudent& s) const
 {
 if ((m_strName == s.m_strName) && (m_nGrade == s.m_nGrade)) {
 return TRUE;
 }
 else {
 return FALSE;
 }
 }

 BOOL operator !=(const CStudent& s) const
 {
 // Let's make use of the operator we just defined!
 return !(*this == s);
 }
#ifdef _DEBUG
 void Dump(CDumpContext& dc) const;
#endif // _DEBUG
};

#endif // _INSIDE_VISUAL_CPP_STUDENT

Student.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Student.cpp
#include "stdafx.h"
#include "student.h"

IMPLEMENT_DYNAMIC(CStudent, CObject)

#ifdef _DEBUG
void CStudent::Dump(CDumpContext& dc) const
{
 CObject::Dump(dc);
 dc << "m_strName = " << m_strName << "\nm_nGrade = " << m_nGrade;
}
#endif // _DEBUG

Follow these steps to build the Ex15a example:

1. Run the MFC Application Wizard to generate the Ex15a project.Make it an SDI
application. On the Generated Classes page, change the view’s base class to
CFormView, as shown here.

2. Use the menu editor to replace the Edit menu commands.Delete the current Edit menu
commands and replace them with a Clear All command. Use the default constant
ID_EDIT_CLEARALL, which is assigned by the application framework.

3. Use the dialog editor to modify the IDD_EX15A_FORM dialog box. Open the MFC
Application Wizard–generated dialog box IDD_EX15A_FORMand then add controls as
shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure that you set the following properties in the dialog editor’s Properties window:
Style = Child, Border = None, Visible = False. Use the following IDs for the controls.

Control ID

Name edit control IDC_NAME

Grade edit control IDC_GRADE

Enter button IDC_ENTER

4. Use Class View’s Properties window to add message handlers for CEx15aView.Select
the CEx15aView class, and then add handlers for the following messages. Accept the
default function names.

Object ID Message Member Function

IDC_ENTER BN_CLICKED OnBnClickedEnter

ID_EDIT_CLEARALL COMMAND OnEditClearall

ID_EDIT_CLEARALL UPDATE_COMMAND_UI OnUpdateEditClearall

5. Use the Add Member Variable Wizard to add variables for CEx15aView.In Class View,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Use the Add Member Variable Wizard to add variables for CEx15aView.In Class View,
right-click on CEx15aView and choose Add Variable. Add the following variables:

Control ID Member Variable Category Variable Type

IDC_GRADE m_nGrade Value int

IDC_NAME m_strName Value CString

For m_nGrade, enter a minimum value of 0 and a maximum value of 100. Notice that
the Add Member Variable Wizard generates the code necessary to validate data entered
by the user.

6. Add a prototype for the helper function UpdateControlsFromDoc.In Class View, right-
click on CEx15aView and choose Add Function. Fill out the dialog box to add the
following function:

private:
 void UpdateControlsFromDoc(void);

7. Edit the file Ex15aView.cpp.The MFC Application Wizard generated the skeleton
OnInitialUpdate function, and the Add Member Function Wizard available from Class
View generated the skeleton UpdateControlsFromDoc function.
UpdateControlsFromDoc is a private helper member function that transfers data from
the document to the CEx15aView data members and then to the dialog edit controls.
Edit the code as shown here:

void CEx15aView::OnInitialUpdate()
{ // called on startup
 CFormView::OnInitialUpdate();
 UpdateControlsFromDoc();
}
void CEx15aView::UpdateControlsFromDoc(void)
{ // called from OnInitialUpdate and OnEditClearall
 CEx15aDoc* pDoc = GetDocument();
 m_nGrade = pDoc->m_student.m_nGrade;
 m_strName = pDoc->m_student.m_strName;
 UpdateData(FALSE); // calls DDX
}

The OnBnClickedEnter function replaces the OnOK function you’d expect to see in a
dialog class. The function transfers data from the edit controls to the view’s data
members and then to the document. Add the boldface code shown here:

void CEx15aView::OnBnClickedEnter()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx15aView::OnBnClickedEnter()
{
 CEx15aDoc* pDoc = GetDocument();
 UpdateData(TRUE);
 pDoc->m_student.m_nGrade = m_nGrade;
 pDoc->m_student.m_strName = m_strName;
}

In a complex multi-view application, the Edit Clear All command would be routed
directly to the document. In this simple example, it’s routed to the view. The update
command user interface handler disables the menu command if the document’s student
object is already blank. Add the following boldface code:

void CEx15aView::OnEditClearall()
{
 GetDocument()->m_student = CStudent(); // "blank" student object
 UpdateControlsFromDoc();
}
void CEx15aView::OnUpdateEditClearall(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(GetDocument()->m_student != CStudent());
// blank?
}

8. Edit the Ex15a project to add the files for CStudent.Be sure that Student.h and
Student.cpp are in your project directory. Choose Add Existing Item from the Project
menu and select the Student.h header and the Student.cpp source code files. Visual C++
.NET will add the files’ names to the project’s project file so that they will be compiled
when you build the project.

9. Add a CStudent data member to the CEx15aDoc class.Edit the code in Ex15aDoc.h and
remember to include Student.h in the CEx15aDoc.h file.

public:
 CStudent m_student;

The CStudent constructor is called when the document object is constructed, and the
CStudent destructor is called when the document object is destroyed.

10. Edit the Ex15aDoc.cpp file.Use the CEx15aDoc constructor to initialize the student
object, as shown here:

CEx15aDoc::CEx15aDoc() : m_student("default value", 0){
 TRACE("Document object constructed\n");
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can’t tell whether the Ex15a program works properly unless we dump the document
when the program exits. We’ll use the destructor to call the document’s Dump function,
which calls the CStudent::Dump function shown here:

CEx15aDoc::~CEx15aDoc()
{
#ifdef _DEBUG
 Dump(afxDump);
#endif // _DEBUG
}

void CEx15aDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
 dc << "\n" << m_student << "\n";
}

11. Build and test the Ex15a application.Type a name and a grade, and then click Enter.
Now exit the application. Does the Debug window show messages similar to those
shown here?

a CEx15aDoc at $411580
m_strTitle = Untitled
m_strPathName =
m_bModified = 0
m_pDocTemplate = $4113A0

a CStudent at $4115D4
m_strName = Sullivan, Walter
m_nGrade = 78

NOTE
To see these messages, you must compile the application with the DEBUG symbol
defined or with the Debug configuration selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A More Advanced Document-View Interaction

If you’re laying the groundwork for a multi-view application, the document-view interaction
must be more complex than the simple interaction shown in example Ex15a. The fundamental
problem is this: The user edits in view #1, so view #2 (and any other views) must be updated
to reflect the changes. Now you need the UpdateAllViews and OnUpdate functions because
the document will act as the clearinghouse for all view updates. The development steps are
shown here:

1. In your derived document class header file (generated by the MFC Application Wizard),
declare your document’s data members. If you want to, you can make these data
members private and you can define member functions to access them or declare the
view class as a friend of the document class.

2. In your derived view class, use Class View’s Properties window to override the
OnUpdate virtual member function. The application framework calls this function
whenever the document data has changed for any reason. OnUpdate should update the
view with the current document data.

3. Evaluate all your command messages. Determine whether each one is document-
specific or view-specific. (A good example of a document-specific command is the
Clear All command on the Edit menu.) Now map the commands to the appropriate
classes.

4. In your derived view class, allow the appropriate command message handlers to update
the document data. Be sure that these message handlers call the
CDocument::UpdateAllViews function before they exit. Use the type-safe version of the
CView::GetDocument member function to access the view’s document.

5. In your derived document class, allow the appropriate command message handlers to
update the document data. Be sure that these message handlers call the
CDocument::UpdateAllViews function before they exit.

The sequence of events for the complex document-view interaction is shown here:

Application
starts

CMyDocument object is constructed
CMyView object is constructed
Other view objects are constructed
View windows are created
CMyView::OnCreate is called (if it is mapped)
CDocument::OnNewDocument is called
CView::OnInitialUpdate is called
 CMyView::OnUpdate is called
 The view is initialized

User executes
view
command

CMyView functions update CMyDocument data members
 CDocument::UpdateAllViews is called OnUpdate functions are called
for other views

User executes CMyDocument functions update data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User executes
document
command

CMyDocument functions update data
members CDocument::UpdateAllViews is called CMyView::OnUpdate
is called Other views’ OnUpdate functions are called

User exits
application

View objects are destroyed CMyDocument object is destroyed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CDocument::DeleteContents Function

At some point, you’ll need a function to delete the contents of your document. You could
write your own private member function, but it happens that the application framework
declares a virtual DeleteContents function for the CDocument class. The application
framework calls your overridden DeleteContents function when the document is closed and, as
you’ll see in the next chapter, at other times as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CObList Collection Class

Once you get to know the collection classes, you’ll wonder how you ever got along without
them. The CObList class is a useful representative of the collection class family. If you’re
familiar with this class, it’s easy to learn the other list classes, the array classes, and the map
classes.

You might think that collections are something new, but the C programming language has
always supported one kind of collection: the array. C arrays must be fixed in size, and they do
not support insertion of elements. Many C programmers have written function libraries for
other collections, including linked lists, dynamic arrays, and indexed dictionaries. For
implementing collections, the C++ class is an obvious and good alternative to a C function
library. A list object, for example, neatly encapsulates the list’s internal data structures.

The CObList class supports ordered lists of pointers to objects of classes derived from
CObject. Another MFC collection class, CPtrList, stores void pointers instead of CObject
pointers. Why not use CPtrList instead? The CObList class offers advantages for diagnostic
dumping, which you’ll see in this chapter, and for serialization, which you’ll see in the next
chapter. One important feature of CObList is that it can contain mixed pointers. In other
words, a CObList collection can hold pointers to both CStudent objects and CTeacher objects,
assuming that both CStudent and CTeacher were derived from CObject.

Using the CObList Class for a First-In, First-Out List

One of the easiest ways to use a CObList object is to add new elements to the tail, or bottom,
of the list and to remove elements from the head, or top, of the list. The first element added to
the list will always be the first element removed from the head of the list. Suppose you’re
working with element objects of class CAction, which is your own custom class derived from
CObject. A command-line program that puts five elements into a list and then retrieves them
in the same sequence is shown here:

#include <afx.h>
#include <afxcoll.h>

class CAction : public CObject
{
private:
 int m_nTime;
public:
 CAction(int nTime) { m_nTime = nTime; } // Constructor stores
 // integer time value
 void PrintTime() { TRACE("time = %d\n", m_nTime); }
};

int main()
{
 CAction* pAction;
 CObList actionList; // action list constructed on stack
 int i;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // inserts action objects in sequence {0, 1, 2, 3, 4}
 for (i = 0; i < 5; i++) {
 pAction = new CAction(i);
 actionList.AddTail(pAction); // no cast necessary for pAction
 }

 // retrieves and removes action objects in sequence {0, 1, 2, 3, 4}
 while (!actionList.IsEmpty()) {
 pAction = // cast required for
 (CAction*) actionList.RemoveHead(); // return value
 pAction->PrintTime();
 delete pAction;
 }

 return 0;
}

Here’s what’s going on in the program. First, a CObList object, actionList, is constructed.
Then the CObList::AddTail member function inserts pointers to newly constructed CAction
objects. No casting is necessary for pAction because AddTail takes a CObject pointer
parameter and pAction is a pointer to a derived class.

Next, the CAction object pointers are removed from the list of the objects deleted. A cast is
necessary for the returned value of RemoveHead because RemoveHead returns a CObject
pointer that is higher in the class hierarchy than CAction.

When you remove an object pointer from a collection, the object is not automatically deleted.
The delete statement is necessary for deleting the CAction objects.

CObList Iteration: The POSITION Variable

Suppose you want to iterate through the elements in a list. The CObList class provides a
GetNext member function that returns a pointer to the “next” list element, but using it is a little
tricky. GetNext takes a parameter of type POSITION, which is a 32-bit variable. The
POSITION variable is an internal representation of the retrieved element’s position in the list.
Because the POSITION parameter is declared as a reference (&), the function can change its
value.

GetNext does the following:

1. It returns a pointer to the “current” object in the list, which is identified by the incoming
value of the POSITION parameter.

2. It increments the value of the POSITION parameter to the next list element.

Here’s what a GetNext loop looks like, assuming you’re using the list generated in the
previous example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CAction* pAction;
POSITION pos = actionList.GetHeadPosition();
while (pos != NULL) {
 pAction = (CAction*) actionList.GetNext(pos);
 pAction->PrintTime();
}

Now suppose you have an interactive Windows-based application that uses toolbar buttons to
sequence forward and backward through the list one element at a time. You can’t use GetNext
to retrieve the entry because GetNext always increments the POSITION variable and you don’t
know in advance whether the user will want the next element or the previous element. Here’s
a sample view class command message handler function that gets the next list entry. In the
CMyView class, m_actionList is an embedded CObList object and the m_position data member
is a POSITION variable that holds the current list position.

CMyView::OnCommandNext()
{
 POSITION pos;
 CAction* pAction;

 if ((pos = m_position) != NULL) {
 m_actionList.GetNext(pos);
 if (pos != NULL) { // pos is NULL at end of list
 pAction = (CAction*) m_actionList.GetAt(pos);
 pAction->PrintTime();
 m_position = pos;
 }
 else {
 AfxMessageBox("End of list reached");
 }
 }
}

GetNext is now called first to increment the list position, and the CObList::GetAt member
function is called to retrieve the entry. The m_position variable is updated only when we’re
sure we’re not at the tail of the list.

The CTypedPtrList Template Collection Class

The CObList class works fine if you want a collection to contain mixed pointers. If, on the
other hand, you want a type-safe collection that contains only one type of object pointer, you
should look at the MFC library template pointer collection classes. CTypedPtrList is a good
example. Templates were introduced in Visual C++ version 2.0. CTypedPtrList is a template
class that you can use to create a list of any pointers to objects of any specified class. To make
a long story short, you use the template to create a custom derived list class, using either
CPtrList or CObList as a base class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To declare an object for CAction pointers, you write the following line of code:

CTypedPtrList<CObList, CAction*> m_actionList;

The first parameter is the base class for the collection, and the second parameter is the type for
parameters and return values. Only CPtrList and CObList are permitted for the base class
because those are the only two MFC library pointer list classes. If you’re storing objects of
classes derived from CObject, you should use CObList as your base class; otherwise, use
CPtrList.

By using the template as shown above, the compiler ensures that all list member functions
return a CAction pointer. Thus, you can write the following code:

pAction = m_actionList.GetAt(pos); // no cast required

If you want to clean up the notation a little, use a typedef statement to generate what looks like
a class, as shown here:

typedef CTypedPtrList<CObList, CAction*> CActionList;

Now you can declare m_actionList as follows:

CActionList m_actionList;

The Dump Context and Collection Classes

The Dump function for CObList and the other collection classes has a useful property. If you
call Dump for a collection object, you can get a display of each object in the collection. If the
element objects use the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros, the
dump will show the class name for each object.

The default behavior of the collection Dump functions is to display only class names and
addresses of element objects. If you want the collection Dump functions to call the Dump
function for each element object, you must, somewhere at the start of your program, make the
following call:

#ifdef _DEBUG
 afxDump.SetDepth(1);
#endif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now the following statement

#ifdef _DEBUG
 afxDump << actionList;
#endif

will produce output such as this:

a CObList at $411832
with 4 elements
 a CAction at $412CD6
time = 0
 a CAction at $412632
time = 1
 a CAction at $41268E
time = 2
 a CAction at $4126EA
time = 3

If the collection contains mixed pointers, the virtual Dump function will be called for the
object’s class and the appropriate class name will be printed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex15b Example: A Multi-View SDI Application

This second SDI example improves on Ex15a in the following ways:

Instead of a single embedded CStudent object, the document contains a list of CStudent
objects. (Now you see the reason for using the CStudent class instead of making
m_strName and m_nGrade data members of the document.)

Toolbar buttons allow the user to sequence through the list.

The application is structured to allow the addition of extra views. The Edit Clear All
command is now routed to the document object, so the document’s UpdateAllViews
function and the view’s OnUpdate function are brought into play.

The student-specific view code is isolated so that the CEx15bView class can later be
transformed into a base class that contains only general-purpose code. Derived classes
can override selected functions to accommodate lists of application-specific objects.

The Ex15b window, shown in Figure 15-2, looks a little different from the Ex15a window
shown earlier in Figure 15-1. The toolbar buttons are enabled only when appropriate. The
Next (down arrow) button, for example, is disabled when we’re positioned at the bottom of the
list.

Figure 15-2. The Ex15b program in action.

The toolbar buttons function as follows.

Button Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Retrieves the first student record

Retrieves the last student record

Retrieves the previous student record

Retrieves the next student record

Inserts a new student record

Deletes the current student record

The Clear button in the view window clears the contents of the Name and Grade edit controls.
The Clear All command on the Edit menu deletes all the student records in the list and clears
the view’s edit controls.

This example deviates from the step-by-step format in the previous examples. There’s now
more code, so we’ll simply show selected code and the resource requirements. Boldface code
indicates additional code or other changes that you enter in the output from the MFC
Application Wizard and the code wizards available from Class View’s Properties window.
The frequent use of TRACE statements lets you follow the program’s execution in the
debugging window.

Resource Requirements

The file Ex15b.rc defines the application’s resources as follows.

Toolbar

The toolbar (visible in Figure 15-2) was created by erasing the Edit Cut, Copy, and Paste tiles
(fourth, fifth, and sixth from the left) and replacing them with six new patterns. The Flip
Vertical command (on the Image menu) was used to duplicate some of the tiles. The Ex15b.rc
file defines the linkage between the command IDs and the toolbar buttons.

Student Menu

It isn’t absolutely necessary to have menu commands that correspond to the new toolbar
buttons. (Class View’s Properties window allows you to map toolbar button commands just as
easily as menu commands.) However, most applications for Windows have corresponding
menu commands, so users generally expect them.

Edit Menu

On the Edit menu, the clipboard commands are replaced by the Clear All command. See step 2
of the Ex15a example for an illustration of the Edit menu.

The IDD_EX15B_FORM Dialog Template

The IDD_EX15B_FORM dialog template is similar to the Ex15a dialog box shown in Figure
15-1 except that the Enter pushbutton has been replaced by the Clear pushbutton.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following IDs identify the controls:

Control ID

Name edit control IDC_NAME

Grade edit control IDC_GRADE

Clear pushbutton IDC_CLEAR

The controls’ styles are the same as for the Ex15a program.

Code Requirements

Here’s a list of the files and classes in the Ex15b example.

Header File Source Code
File

Classes Description

Ex15b.h Ex15b.cpp CEx15bApp
CAboutDlg

Application class (from the MFC
Application Wizard) About dialog box

MainFrm.h MainFrm.cpp CMainFrame SDI main frame

Ex15bDoc.h Ex15bDoc.cpp Ex15bDoc Student document

Ex15b.h Ex15b.cpp Ex15bView Student form view (derived from
CFormView)

Student.h Student.cpp Cstudent Student record (similar to Ex15a)

StdAfx.h StdAfx.cpp Includes the standard precompiled headers

CEx15bApp

The files Ex15b.cpp and Ex15b.h are the standard MFC Application Wizard output.

CMainFrame

The code for the CMainFrame class in MainFrm.cpp is the standard MFC Application Wizard
output.

CStudent

This is the code from Ex15a, except for the following line added at the end of Student.h:

typedef CTypedPtrList<CObList, CStudent*> CStudentList;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
Use of the MFC template collection classes requires the following statement in
StdAfx.h:

#include <afxtempl.h>

CEx15bDoc

The MFC Application Wizard originally generated the CEx15bDoc class. The code used in the
Ex15b example is shown here:

Ex15bDoc.h
// Ex15bDoc.h : interface of the CEx15bDoc class
//

#pragma once

#include "student.h"
class CEx15bDoc : public CDocument
{
protected: // create from serialization only
 CEx15bDoc();
 DECLARE_DYNCREATE(CEx15bDoc)

// Attributes
public:
 CStudentList* GetList() {
 return &m_studentList;
 }
// Operations
public:

// Overrides
 public:
 virtual BOOL OnNewDocument();
 virtual void Serialize(CArchive& ar);

// Implementation
public:
 virtual ~CEx15bDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()

private:
 CStudentList m_studentList;
};

Ex15bDoc.cpp
// Ex15bDoc.cpp : implementation of the CEx15bDoc class
//

#include "stdafx.h"
#include "Ex15b.h"

#include "Ex15bDoc.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CEx15bDoc

IMPLEMENT_DYNCREATE(CEx15bDoc, CDocument)

BEGIN_MESSAGE_MAP(CEx15bDoc, CDocument)
 ON_COMMAND(ID_EDIT_CLEARALL, OnEditClearall)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CLEARALL, OnUpdateEditClearall)
END_MESSAGE_MAP()

// CEx15bDoc construction/destruction

CEx15bDoc::CEx15bDoc()
{
 TRACE("Entering CEx15bDoc constructor\n");
#ifdef _DEBUG
 afxDump.SetDepth(1); // Ensure dump of list elements
#endif // _DEBUG

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#endif // _DEBUG
}

CEx15bDoc::~CEx15bDoc()
{
}

BOOL CEx15bDoc::OnNewDocument()
{
 TRACE("Entering CEx15bDoc::OnNewDocument\n");
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add reinitialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}

// CEx15bDoc serialization

void CEx15bDoc::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
}

// CEx15bDoc diagnostics

#ifdef _DEBUG
void CEx15bDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CEx15bDoc::Dump(CDumpContext& dc) const
{
 CDocument::Dump(dc);
 dc << "\n" << m_studentList << "\n";
}
#endif //_DEBUG

// CEx15bDoc commands

void CEx15bDoc::DeleteContents()
{
#ifdef _DEBUG

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#ifdef _DEBUG
 Dump(afxDump);
#endif
 while (m_studentList.GetHeadPosition()) {
 delete m_studentList.RemoveHead();
 }
}

void CEx15bDoc::OnEditClearall()
{
 DeleteContents();
 UpdateAllViews(NULL);
}

void CEx15bDoc::OnUpdateEditClearall(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(!m_studentList.IsEmpty());
}

Message Handlers for CEx15bDoc

The Edit Clear All command is handled in the document class. The following message
handlers were added through Class View’s Properties window.

Object ID Message Member Function

ID_EDIT_CLEARALL COMMAND OnEditClearall

ID_EDIT_CLEARALL ON_UPDATE_COMMAND_UI OnUpdateEditClearall

Data Members

The document class provides for an embedded CStudentList object, the m_stu-dentList data
member, which holds pointers to CStudent objects. The list object is constructed when the
CEx15bDoc object is constructed, and it is destroyed at program exit. CStudentList is a typedef
for a CTypedPtrList for CStudent pointers.

Constructor

The document constructor sets the depth of the dump context so that a dump of the list causes
dumps of the individual list elements.

GetList

The inline GetList function helps isolate the view from the document. The document class
must be specific to the type of object in the list—in this case, objects of the class CStudent. A
generic list view base class, however, can use a member function to get a pointer to the list
without knowing the name of the list object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DeleteContents

The DeleteContents function is a virtual override function that is called by other document
functions and by the application framework. Its job is to remove all student object pointers
from the document’s list and to delete those student objects. An important point to remember
here is that SDI document objects are reused after they’re closed. DeleteContents also dumps
the student list.

Dump

The MFC Application Wizard generates the Dump function skeleton between the lines #ifdef
_DEBUG and #endif. Because the afxDump depth was set to 1 in the document constructor, all
the CStudent objects contained in the list are dumped.

CEx15bView

The code for the CEx15bView class is shown in the following code listing.

Ex15bView.h
// Ex15bView.h : interface of the CEx15bView class
//

#pragma once

class CEx15bView : public CFormView
{
protected:
 POSITION m_position; // current position in document list
 CStudentList* m_pList; // copied from document
protected: // create from serialization only
 CEx15bView();
 DECLARE_DYNCREATE(CEx15bView)

public:
 enum{ IDD = IDD_EX15B_FORM };

// Attributes
public:
 CEx15bDoc* GetDocument() const;

// Operations
public:

// Overrides
 public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 virtual void OnInitialUpdate(); // called first time after construct

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual void OnInitialUpdate(); // called first time after construct

// Implementation
public:
 virtual ~CEx15bView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 virtual void ClearEntry();
 virtual void InsertEntry(POSITION position);
 virtual void GetEntry(POSITION position);
// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()
public:
 afx_msg void OnStudentHome();
 afx_msg void OnStudentDelete();
 afx_msg void OnStudentEnd();
 afx_msg void OnStudentInsert();
 afx_msg void OnStudentNext();
 afx_msg void OnStudentPrevious();
 afx_msg void OnUpdateStudentHome(CCmdUI *pCmdUI);
 afx_msg void OnUpdateStudentDelete(CCmdUI *pCmdUI);
 afx_msg void OnUpdateStudentEnd(CCmdUI *pCmdUI);
 afx_msg void OnUpdateStudentNext(CCmdUI *pCmdUI);
 afx_msg void OnUpdateStudentPrevious(CCmdUI *pCmdUI);
 int m_nGrade;
 CString m_strName;
protected:
 virtual void OnUpdate(Cview* /*pSender/,
 LPARAM /*lHint*/, CObject* /*pHint*/)
public:
 afx_msg void OnBnClickedClear();
};

#ifndef _DEBUG // debug version in Ex15bView.cpp
inline CEx15bDoc* CEx15bView::GetDocument() const
 { return reinterpret_cast<CEx15bDoc*>(m_pDocument); }
#endif

Ex15bView.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ex15bView.cpp
// Ex15bView.cpp : implementation of the CEx15bView class
//

#include "stdafx.h"
#include "Ex15b.h"

#include "Ex15bDoc.h"
#include "Ex15bView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CEx15bView

IMPLEMENT_DYNCREATE(CEx15bView, CFormView)

BEGIN_MESSAGE_MAP(CEx15bView, CFormView)
 ON_COMMAND(ID_STUDENT_HOME, OnStudentHome)
 ON_COMMAND(ID_STUDENT_DELETE, OnStudentDelete)
 ON_COMMAND(ID_STUDENT_END, OnStudentEnd)
 ON_COMMAND(ID_STUDENT_INSERT, OnStudentInsert)
 ON_COMMAND(ID_STUDENT_NEXT, OnStudentNext)
 ON_COMMAND(ID_STUDENT_PREVIOUS, OnStudentPrevious)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_HOME, OnUpdateStudentHome)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_DELETE, OnUpdateStudentDelete)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_END, OnUpdateStudentEnd)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_NEXT, OnUpdateStudentNext)
 ON_UPDATE_COMMAND_UI(ID_STUDENT_PREVIOUS, OnUpdateStudentPrevious)
 ON_BN_CLICKED(IDC_CLEAR, OnBnClickedClear)
END_MESSAGE_MAP()

// CEx15bView construction/destruction

CEx15bView::CEx15bView()
 : CFormView(CEx15bView::IDD)
 , m_nGrade(0)
 , m_strName(_T(""))
 , m_position(NULL){
 TRACE("Entering CEx15bView constructor\n");
}

CEx15bView::~CEx15bView()
{
}

void CEx15bView::DoDataExchange(CDataExchange* pDX)
{
 CFormView::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_GRADE, m_nGrade);
 DDX_Text(pDX, IDC_NAME, m_strName);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

BOOL CEx15bView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return CFormView::PreCreateWindow(cs);
}

void CEx15bView::OnInitialUpdate()
{
 TRACE("Entering CEx15bView::OnInitialUpdate\n");
 m_pList = GetDocument()->GetList();
 CFormView::OnInitialUpdate();
}

// CEx15bView diagnostics

#ifdef _DEBUG
void CEx15bView::AssertValid() const
{
 CFormView::AssertValid();
}

void CEx15bView::Dump(CDumpContext& dc) const
{
 CFormView::Dump(dc);
}

CEx15bDoc* CEx15bView::GetDocument() const // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx15bDoc)));
 return (CEx15bDoc*)m_pDocument;
}
#endif //_DEBUG

// CEx15bView message handlers

void CEx15bView::OnStudentHome()
{
 TRACE("Entering CEx15bView::OnStudentHome\n");
 // need to deal with list empty condition
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void CEx15bView::OnUpdateStudentHome(CCmdUI *pCmdUI)
{
 // called during idle processing and when Student menu drops down
 POSITION pos;
 // enables button if list not empty and not at home already
 pos = m_pList->GetHeadPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CEx15bView::OnStudentDelete()
{
 // deletes current entry and positions to next one or head
 POSITION pos;
 TRACE("Entering CEx15bView::OnStudentDelete\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos == NULL) {
 pos = m_pList->GetHeadPosition();
 TRACE("GetHeadPos = %ld\n", pos);
 if (pos == m_position) {
 pos = NULL;
 }
 }
 GetEntry(pos);
 CStudent* ps = m_pList->GetAt(m_position);
 m_pList->RemoveAt(m_position);
 delete ps;
 m_position = pos;
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
 }
}

void CEx15bView::OnUpdateStudentDelete(CCmdUI *pCmdUI)
{
 // called during idle processing and when Student menu drops down
 pCmdUI->Enable(m_position != NULL);
}

void CEx15bView::OnStudentEnd()
{
 TRACE("Entering CEx15bView::OnStudentEnd\n");
 if (!m_pList->IsEmpty()) {
 m_position = m_pList->GetTailPosition();
 GetEntry(m_position);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void CEx15bView::OnUpdateStudentEnd(CCmdUI *pCmdUI)
{
 // called during idle processing and when Student menu drops down
 POSITION pos;
 // enables button if list not empty and not at end already
 pos = m_pList->GetTailPosition();
 pCmdUI->Enable((m_position != NULL) && (pos != m_position));
}

void CEx15bView::OnStudentInsert()
{
 TRACE("Entering CEx15bView::OnStudentInsert\n");
 InsertEntry(m_position);
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(this);
}

void CEx15bView::OnStudentNext()
{
 POSITION pos;
 TRACE("Entering CEx15bView::OnStudentNext\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetNext(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }
}

void CEx15bView::OnUpdateStudentNext(CCmdUI *pCmdUI)
{
 OnUpdateStudentEnd(pCmdUI);
}

void CEx15bView::OnStudentPrevious()
{
 POSITION pos;
 TRACE("Entering CEx15bView::OnStudentPrevious\n");
 if ((pos = m_position) != NULL) {
 m_pList->GetPrev(pos);
 if (pos) {
 GetEntry(pos);
 m_position = pos;
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void CEx15bView::OnUpdateStudentPrevious(CCmdUI *pCmdUI)
{
 OnUpdateStudentHome(pCmdUI);
}

void CEx15bView::OnUpdate(CView* /*pSender*/,
 LPARAM /*lHint*/, CObject* /*pHint*/)
{
 // called by OnInitialUpdate and by UpdateAllViews
 TRACE("Entering CEx15bView::OnUpdate\n");
 m_position = m_pList->GetHeadPosition();
 GetEntry(m_position); // initial data for view
}

void CEx15bView::ClearEntry()
{
 m_strName = "";
 m_nGrade = 0;
 UpdateData(FALSE);
 ((CDialog*) this)->GotoDlgCtrl(GetDlgItem(IDC_NAME));
}

void CEx15bView::GetEntry(POSITION position)
{
 if (position) {
 CStudent* pStudent = m_pList->GetAt(position);
 m_strName = pStudent->m_strName;
 m_nGrade = pStudent->m_nGrade;
 }
 else {
 ClearEntry();
 }
 UpdateData(FALSE);
}

void CEx15bView::InsertEntry(POSITION position)
{
 if (UpdateData(TRUE)) {
 // UpdateData returns FALSE if it detects a user error
 CStudent* pStudent = new CStudent;
 pStudent->m_strName = m_strName;
 pStudent->m_nGrade = m_nGrade;
 m_position = m_pList->InsertAfter(m_position, pStudent);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void CEx15bView::OnBnClickedClear()
{
 TRACE("Entering CEx15bView::OnBnClickedClear\n");
 ClearEntry();
}

Message Handlers for CEx15bView

Class View’s Properties window was used to map the CEx15bView Clear pushbutton
notification message as follows:

Object ID Message Member Function

IDC_CLEAR BN_CLICKED OnBnClickedClear

Because CEx15bView is derived from CFormView, Class View supports the definition of
dialog data members. The variables shown here were added using the Add Member Variable
Wizard:

Control ID Member Variable Category Variable Type

IDC_GRADE m_nGrade Value int

IDC_NAME m_strName Value CString

You can use Class View’s Properties window to map toolbar button commands to their
handlers. Here are the commands and the handler functions to which they were mapped:

Object ID Message Member Function

ID_STUDENT_HOME COMMAND OnStudentHome

ID_STUDENT_END COMMAND OnStudentEnd

ID_STUDENT_PREVIOUS COMMAND OnStudentPrevious

ID_STUDENT_NEXT COMMAND OnStudentNext

ID_STUDENT_INSERT COMMAND OnStudentInsert

ID_STUDENT_DELETE COMMAND OnStudentDelete

Each command handler has built-in error checking.

The following update command user interface message handlers are called during idle
processing to update the state of the toolbar buttons and, when the Student menu is painted, to
update the menu commands.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object ID Message Member Function

ID_STUDENT_HOME UPDATE_COMMAND_UI OnUpdateStudentHome

ID_STUDENT_END UPDATE_COMMAND_UI OnUpdateStudentEnd

ID_STUDENT_PREVIOUS UPDATE_COMMAND_UI OnUpdateStudentPrevious

ID_STUDENT_NEXT UPDATE_COMMAND_UI OnUpdateStudentNext

ID_STUDENT_DELETE UPDATE_COMMAND_UI OnUpdateCommandDelete

For example, the Following button, which retrieves the first student record, is disabled when
the list is empty and when the m_position variable is already set to the head of the list.

The Previous button is disabled under the same circumstances, so it uses the same update
command user interface handler. The End and the Next buttons share a handler for similar
reasons. Because a delay sometimes occurs in calling the update command user interface
functions, the command message handlers must look for error conditions.

Data Members

The m_position data member is a kind of cursor for the document’s collection. It contains the
position of the CStudent object that is currently displayed. The m_pList variable provides a
quick way to get at the student list in the document.

OnInitialUpdate

The virtual OnInitialUpdate function is called when you start the application. It sets the view’s
m_pList data member for subsequent access to the document’s list object.

OnUpdate

The virtual OnUpdate function is called both by the OnInitialUpdate function and by the
CDocument::UpdateAllViews function. It resets the list position to the head of the list, and it
displays the head entry. In this example, the UpdateAllViews function is called only in
response to the Edit Clear All command. In a multi-view application, you might need a
different strategy for setting the CEx15bView m_position variable in response to document
updates from another view.

Protected Virtual Functions

The following three functions are protected virtual functions that deal specifically with
CStudent objects: GetEntry, InsertEntry, and ClearEntry. You can transfer these functions to a
derived class if you want to isolate the general-purpose list-handling features in a base class.

Testing the Ex15b Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fill in the student name and grade fields, and then click this button to insert the entry into the
list:

Repeat this action several times, using the Clear pushbutton to erase the data from the previous
entry. When you exit the application, the debug output should look similar to this:

 a CEx15bDoc at $4116D0
m_strTitle = Untitled
m_strPathName =
m_bModified = 1
m_pDocTemplate = $4113F1

a CObList at $411624
with 4 elements
 a CStudent at $412770
m_strName = Fisher, Lon
m_nGrade = 67
 a CStudent at $412E80
m_strName = Meyers, Lisa
m_nGrade = 80
 a CStudent at $412880
m_strName = Seghers, John
m_nGrade = 92
 a CStudent at $4128F0
m_strName = Anderson, Bob
m_nGrade = 87

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two Exercises for the Reader

You might have noticed the absence of a Modify button on the toolbar. Without such a button,
you can’t modify an existing student record. Can you add the necessary toolbar button and
message handlers? The most difficult task might be designing a graphic for the button’s tile.

Recall that the CEx15bView class is just about ready to be a general-purpose base class. Try
separating the CStudent-specific virtual functions into a derived class. After that, make another
derived class that uses a new element class other than CStudent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16
Reading and Writing Documents

As you’ve probably noticed, every MFC Application Wizard–generated program has a File
menu with the familiar New, Open, Save, and Save As commands. In this chapter, you’ll learn
how to make your application respond to these read and write document commands.

We’ll look at both Single Document Interface (SDI) and Multiple Document Interface (MDI)
applications. As you learn about reading and writing documents, you’ll get a heavy but
necessary dose of application framework theory; you’ll learn a lot about the various helper
classes that have been concealed up to this point. Knowing these details will help you to get
the most out of the application framework.

This chapter includes three examples: an SDI application, an MDI application based on the
Ex15b example from the previous chapter, and a Multiple Top-Level Interface (MTI)
application. All these examples use the student list document with a CFormView-derived view
class. The student list can be written to and read from disk through a process called
serialization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is Serialization?

In the world of object-oriented programming, objects can be persistent, which means they can
be saved on disk when a program exits and then restored when the program is restarted. This
process of saving and restoring objects is called serialization. In the Microsoft Foundation
Class (MFC) library, designated classes have a member function named Serialize. When the
application framework calls Serialize for a particular object—for example, an object of class
CStudent—the data for the student is either saved on disk or read from disk.

In the MFC library, serialization is not a substitute for a database management system. All the
objects associated with a document are sequentially read from or written to a single disk file.
It’s not possible to access individual objects at random disk file addresses. If you need
database capability in your application, consider using the database support within MFC and
the Active Template Library (ATL).

Disk Files and Archives

How do you know whether Serialize should read or write data? How is Serialize connected to
a disk file? With the MFC library, objects of class CFile represent disk files. A CFile object
encapsulates the binary file handle that you get through the Win32 function CreateFile. This is
not the buffered FILE pointer that you’d get with a call to the C runtime fopen function; rather,
it’s a handle to a binary file. The application framework uses this file handle for Win32
ReadFile, WriteFile, and SetFilePointer calls.

If your application does no direct disk I/O but instead relies on the serialization process, you
can avoid direct use of CFile objects. Between the Serialize function and the CFile object is an
archive object (of class CArchive), as shown in Figure 16-1.

The CArchive object buffers data for the CFile object, and it maintains an internal flag that
indicates whether the archive is storing (writing to disk) or loading (reading from disk). Only
one active archive is associated with a file at any one time. The application framework takes
care of constructing the CFile and CArchive objects, opening the disk file for the CFile object,
and associating the archive object with the file. All you have to do (in your Serialize function)
is load data from or store data in the archive object. The application framework calls the
document’s Serialize function during the File Open and File Save processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-1. The serialization process.

Making a Class Serializable

A serializable class must be derived directly or indirectly from CObject. Also (with some
exceptions), the class declaration must contain the DECLARE_SERIAL macro call, and the
class implementation file must contain the IMPLEMENT_SERIAL macro call. (See the MFC
Library Reference for a description of these macros.) This chapter’s CStudent class example is
modified from the class in Chapter 15 to include these macros.

Writing a Serialize Function

In Chapter 15, you saw a CStudent class, derived from CObject, with these data members:

public:
 CString m_strName;
 int m_nGrade;

Now your job is to write a Serialize member function for CStudent. Because Serialize is a
virtual member function of class CObject, you must be sure that the return value and
parameter types match the CObject declaration. The Serialize function for the CStudent class
is shown here:

void CStudent::Serialize(CArchive& ar)
{
 TRACE("Entering CStudent::Serialize\n");
 if (ar.IsStoring()) {
 ar << m_strName << m_nGrade;
 }
 else {
 ar >> m_strName >> m_nGrade;
 }
}

Most serialization functions call the Serialize functions of their base classes. If CStudent were
derived from CPerson, for example, this would be the first line of the Serialize function:

CPerson::Serialize(ar);

The Serialize function for CObject (and for CDocument, which doesn’t override it) doesn’t do
anything useful, so there’s no need to call it.

Notice that ar is a CArchive reference parameter that identifies the application’s archive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that ar is a CArchive reference parameter that identifies the application’s archive
object. The CArchive::IsStoring member function tells you whether the archive is currently
being used for storing. The CArchive class has overloaded insertion operators (<<) and
extraction operators (>>) for many of the C++ built-in types, as shown in Table 16-1.

Table 16-1. Types Supported by
CArchive’s Insertion and

Extraction Operators
Type Description

BYTE 8 bits, unsigned

WORD 16 bits, unsigned

LONG 32 bits, signed

DWORD 32 bits, unsigned

float 32 bits

double 64 bits, IEEE standard

int 32 bits, signed

short 16 bits, signed

char 8 bits, unsigned

unsigned 32 bits, unsigned

The insertion operators are overloaded for values; the extraction operators are overloaded for
references. Sometimes you must use a cast to satisfy the compiler. Suppose you have a data
member m_nType that is an enumerated type. Here’s the code you would use:

 ar << (int) m_nType;
 ar >> (int&) m_nType;

MFC classes that are not derived from CObject, such as CString and CRect, have their own
overloaded insertion and extraction operators for CArchive.

Loading from an Archive: Embedded Objects vs. Pointers

Now suppose your CStudent object has other objects embedded in it, and that these objects are
not instances of standard classes such as CString, CSize, and CRect. Let’s add a new data
member to the CStudent class:

public:
 CTranscript m_transcript;

Assume that CTranscript is a custom class, derived from CObject, with its own Serialize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assume that CTranscript is a custom class, derived from CObject, with its own Serialize
member function. There’s no overloaded << or >> operator for CObject, so the
CStudent::Serialize function now looks like this:

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring()) {
 ar << m_strName << m_nGrade;
 }
 else {
 ar >> m_strName >> m_nGrade;
 }
 m_transcript.Serialize(ar);
}

Before the CStudent::Serialize function can be called to load a student record from the
archive, a CStudent object must exist somewhere. The embedded CTranscript object
m_transcript is constructed along with the CStudent object before the call to the
CTranscript::Serialize function. When the virtual CTranscript::Serialize function does get
called, it can load the archived transcript data into the embedded m_transcript object. If you’re
looking for a rule, here it is: Always make a direct call to Serialize for embedded objects of
classes derived from CObject.

Suppose that, instead of an embedded object, your CStudent object contains a CTranscript
pointer data member such as this:

public:
 CTranscript* m_pTranscript;

You could use the Serialize function, as shown here, but as you can see, you would have to
construct a new CTranscript object yourself:

 void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade;
 else {
 m_pTranscript = new CTranscript;
 ar >> m_strName >> m_nGrade;
 }
 m_pTranscript->Serialize(ar);
}

Because the CArchive insertion and extraction operators are indeed overloaded for CObject
pointers, you can write Serialize in this way instead:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CStudent::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar << m_strName << m_nGrade << m_pTranscript;
 else
 ar >> m_strName >> m_nGrade >> m_pTranscript;
}

But how is the CTranscript object constructed when the data is loaded from the archive?
That’s where the DECLARE_SERIAL and IMPLEMENT_SERIAL macros in the CTranscript
class come in.

When the CTranscript object is written to the archive, the macros ensure that the class name is
written along with the data. When the archive is read, the class name is read in and an object
of the correct class is dynamically constructed, under the control of code generated by the
macros. Once the CTranscript object has been constructed, the overridden Serialize function
for CTranscript can be called to do the work of reading the student data from the disk file.
Finally, the CTranscript pointer is stored in the m_pTranscript data member. To avoid a
memory leak, you must be sure that m_pTranscript does not already contain a pointer to a
CTranscript object. If the CStudent object was just constructed and thus was not previously
loaded from the archive, the transcript pointer will be null.

The insertion and extraction operators do not work with embedded objects of classes derived
from CObject, as shown here:

ar >> m_strName >> m_nGrade >> &m_transcript; // Don't try this

Serializing Collections

Because all collection classes are derived from the CObject class and the collection class
declarations contain the DECLARE_SERIAL macro call, you can conveniently serialize
collections with a call to the collection class’s Serialize member function. If you call Serialize
for a CObList collection of CStudent objects, for example, the Serialize function for each
CStudent object will be called in turn. You should, however, remember the following specifics
about loading collections from an archive:

If a collection contains pointers to objects of mixed classes (all derived from CObject),
the individual class names will be stored in the archive so that the objects can be
properly constructed with the appropriate class constructor.

If a container object, such as a document, contains an embedded collection, loaded data
is appended to the existing collection. You might need to empty the collection before
loading from the archive. This is usually done in the document’s virtual DeleteContents
function, which is called by the application framework.

When a collection of CObject pointers is loaded from an archive, the following

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a collection of CObject pointers is loaded from an archive, the following
processing steps take place for each object in the collection:

The object’s class is identified.

Heap storage is allocated for the object.

The object’s data is loaded into the newly allocated storage.

A pointer to the new object is stored in the collection.

The Ex16a example shows serialization of an embedded collection of CStudent records.

The Serialize Function and the Application Framework

OK, so you know how to write Serialize functions, and you know that these function calls can
be nested. But do you know when the first Serialize function gets called to start the
serialization process? With the application framework, everything is keyed to the document
(the object of a class derived from CDocument). When you choose Save or Open from the File
menu, the application framework creates a CArchive object (and an underlying CFile object)
and then calls your document class’s Serialize function, passing a reference to the CArchive
object. Your derived document class Serialize function then serializes each of its
nontemporary data members.

NOTE
If you take a close look at any MFC Application Wizard–generated document
class, you’ll notice that the class includes the DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE macros rather than the DECLARE_SERIAL and
IMPLEMENT_SERIAL macros. The SERIAL macros are not needed because
document objects are never used in conjunction with the CArchive extraction
operator or included in collections; the application framework calls the document’s
Serialize member function directly. You should include the DECLARE_SERIAL
and IMPLEMENT_SERIAL macros in all other serializable classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SDI Application

You’ve seen many SDI applications that have one document class and one view class. We’ll
stick to a single view class in this chapter, but we’ll explore the interrelationships among the
application object, the main frame window, the document, the view, the document template
object, and the associated string and menu resources.

The Windows Application Object

For each of your applications, the MFC Application Wizard has been quietly generating a
class derived from CWinApp. It has also been generating a statement such as this:

CMyApp theApp;

What you’re seeing here is the mechanism that starts an MFC application. The class CMyApp
is derived from the class CWinApp, and theApp is a globally declared instance of the class.
This global object is called the Windows application object.

Here’s a summary of the startup steps in a Microsoft Windows MFC library application:

1. Windows loads your program into memory.

2. The global object theApp is constructed. (All globally declared objects are constructed
immediately when the program is loaded.)

3. Windows calls the global function WinMain, which is part of the MFC library.
(WinMain is equivalent to the non-Windows main function—each is a main program
entry point.)

4. WinMain searches for the one and only instance of a class derived from CWinApp.

5. WinMain calls the InitInstance member function for theApp, which is overridden in your
derived application class.

6. Your overridden InitInstance function starts the process of loading a document and
displaying the main frame and view windows.

7. WinMain calls the Run member function for theApp, which starts the processes of
dispatching window messages and command messages.

You can override another important CWinApp member function. The ExitInstance function is
called when the application terminates, after all its windows are closed.

NOTE
Windows allows multiple instances of programs to run. The InitInstance function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows allows multiple instances of programs to run. The InitInstance function
is called each time a program instance starts up. In Win32, each instance runs as an
independent process. It’s only incidental that the same code is mapped to the
virtual memory address space of each process. If you want to locate other running
instances of your program, you must either call the Win32 FindWindow function
or set up a shared data section or memory-mapped file for communication.

The Document Template Class

If you look at the InitInstance function that the MFC Application Wizard generates for your
derived application class, you’ll see that the following statements are featured:

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CEx16aDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CEx16aView));
AddDocTemplate(pDocTemplate);

Unless you start doing fancy things with splitter windows and multiple views, this is the only
time you’ll actually see a document template object. In this case, it’s an object of class
CSingleDocTemplate, which is derived from CDocTemplate. The CSingleDocTemplate class
applies only to SDI applications because SDI applications are limited to one document object.
AddDocTemplate is a member function of class CWinApp.

The AddDocTemplate call, together with the document template constructor call, establishes
the relationships among classes—the application class, the document class, the view window
class, and the main frame window class. The application object exists, of course, before
template construction, but the document, view, and frame objects are not constructed at this
time. The application framework dynamically constructs these objects later, when they’re
needed.

This dynamic construction is a sophisticated use of the C++ language. The
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros in a class declaration and
implementation enable the MFC library to construct objects of the specified class dynamically.
If this dynamic construction capability weren’t present, more relationships among your
application’s classes would have to be hard-coded. Your derived application class, for
example, would need code for constructing document, view, and frame objects of your
specific derived classes. This would compromise the object-oriented nature of your program.

With the template system, all that’s required in your application class is use of the
RUNTIME_CLASS macro. Notice that the target class’s declaration must be included for this
macro to work.

Figure 16-2 illustrates the relationships among the various classes, and Figure 16-3 illustrates
the object relationships. An SDI application can have only one template (and associated class
groups), and when the SDI program is running, there can be only one document object and
only one main frame window object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-2. Class relationships.

Figure 16-3. Object relationships.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC library dynamic construction capability was designed before the runtime
type information (RTTI) feature was added to the C++ language. The original
MFC implementation goes beyond RTTI, and the MFC library continues to use it
for dynamic object construction.

The Document Template Resource

The first AddDocTemplate parameter is IDR_MAINFRAME, the identifier for a string table
resource. Here is the corresponding string that the MFC Application Wizard generates for
Ex16a in the application’s RC file:

IDR_MAINFRAME
 "Ex16a\n" // application window caption
 "\n" // root for default document name
 // ("Untitled" used if none provided)
 "Ex16a\n" // document type name
 "Ex16a Files (*.16a)\n" // document type description and filter
 ".16a\n" // extension for documents of this type
 "Ex16a.Document\n" // Registry file type ID
 "Ex16a.Document" // Registry file type description

NOTE
The resource compiler won’t accept the string concatenations as shown in this
example. If you examine the Ex16a.rc file, you’ll see the substrings combined in
one long string.

IDR_MAINFRAME specifies one string that is separated into substrings by newline characters
(\n). The substrings show up in various places when the application executes. The string 16a is
the default document file extension specified to the MFC Application Wizard.

The IDR_MAINFRAME ID, in addition to specifying the application’s strings, identifies the
application’s icon, toolbar resources, and menu. The MFC Application Wizard generates these
resources, and you can maintain them using the resource editors.

So now you’ve seen how the AddDocTemplate call ties all the application elements together.
Be aware, though, that no windows have been created yet and so nothing appears on the
screen.

Multiple Views of an SDI Document

Providing multiple views of an SDI document is a little more complicated. You could provide
a menu command that allows the user to choose a view, or you could allow multiple views in a
splitter window. We’ll look at both techniques in Chapter 18.

Creating an Empty Document: The CWinApp::OnFileNew Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After your application class’s InitInstance function calls the AddDocTemplate member
function, it calls OnFileNew (indirectly through CWinApp::ProcessShellCommand), another
important CWinApp member function. OnFileNew sorts through the web of interconnected
class names and does the following:

1. Constructs the document object but does not attempt to read data from disk.

2. Constructs the main frame object (of class CMainFrame); it also creates the main frame
window but does not show it. The main frame window includes the IDR_MAINFRAME
menu, the toolbar, and the status bar.

3. Constructs the view object; it also creates the view window but doesn’t show it.

4. Establishes connections among the document, main frame, and view objects. Do not
confuse these object connections with the class connections established by the call to
AddDocTemplate.

5. Calls the virtual CDocument::OnNewDocument member function for the document
object, which calls the virtual DeleteContents function.

6. Calls the virtual CView::OnInitialUpdate member function for the view object.

7. Calls the virtual CFrameWnd::ActivateFrame for the frame object to show the main
frame window together with the menus, view window, and control bars.

NOTE
Some of the functions listed here are not called directly by OnFileNew but are
called indirectly through the application framework.

In an SDI application, the document, main frame, and view objects are created only once, and
they last for the life of the program. The CWinApp::OnFileNew function is called by
InitInstance. It’s also called in response to the user choosing the File New command. In this
case, OnFileNew must behave a little differently. It can’t construct the document, frame, and
view objects because they’re already constructed. Instead, it reuses the existing document
object and performs steps 5, 6, and 7 above. Notice that OnFileNew always calls
DeleteContents (indirectly) to empty the document.

The Document Class’s OnNewDocument Function

You’ve seen the view class OnInitialUpdate member function and the document class
OnNewDocument member function in Chapter 15. If an SDI application didn’t reuse the same
document object, you wouldn’t need OnNewDocument because you could perform all
document initialization in your document class constructor. Now you must override
OnNewDocument to initialize your document object each time the user chooses File New or
File Open. The MFC Application Wizard helps you by providing a skeleton function in the
derived document class it generates.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It’s a good idea to minimize the work you do in constructor functions. The fewer
things you do, the less chance there is for the constructor to fail—and constructor
failures are messy. Functions such as CDocument::OnNewDocument and
CView::OnInitialUpdate are excellent places to do initial housekeeping. If
anything fails at creation time, you can display a message box, and in the case of
OnNewDocument, you can return FALSE. Be advised that both functions can be
called more than once for the same object. If you need certain instructions
executed only once, declare a “first time” flag data member and then test/set it
appropriately.

Connecting File Open to Your Serialization Code: The OnFileOpen Function

When the MFC Application Wizard generates an application, it maps the File Open menu
command to the CWinApp::OnFileOpen member function. When called, this function invokes
a sequence of functions to accomplish these steps:

1. Prompts the user to select a file.

2. Calls the virtual function CDocument::OnOpenDocument for the already existing
document object. This function opens the file, calls CDocument::DeleteContents, and
constructs a CArchive object set for loading. It then calls the document’s Serialize
function, which loads data from the archive.

3. Calls the view’s OnInitialUpdate function.

The Most Recently Used (MRU) file list is a handy alternative to the File Open command. The
application framework tracks the four most recently used files and displays their names on the
File menu. These filenames are stored in the Windows Registry between program executions.

NOTE
You can change the number of recent files tracked by supplying a parameter to the
LoadStdProfileSettings function in the application class InitInstance function.

The Document Class’s DeleteContents Function

When you load an existing SDI document object from a disk file, you must somehow erase the
existing contents of the document object. The best way to do this is to override the
CDocument::DeleteContents virtual function in your derived document class. The overridden
function, as you’ve seen in Chapter 15, does whatever is necessary to clean up your document
class’s data members. In response to both the File New and File Open menu commands, the
CDocument functions OnNewDocument and OnOpenDocument both call the DeleteContents
function, which means DeleteContents is called immediately after the document object is first
constructed. It’s called again when you close a document.

If you want your document classes to work in SDI applications, plan on emptying the
document’s contents in the DeleteContents member function rather than in the destructor. Use
the destructor only to clean up items that last for the life of the object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Connecting the File Save and File Save As Commands to Your Serialization
Code

When the MFC Application Wizard generates an application, it maps the File Save menu
command to the OnFileSave member function of the CDocument class. OnFileSave calls the
CDocument function OnSaveDocument, which in turn calls your document’s Serialize
function with an archive object set for storing. The File Save As menu command is handled in
a similar manner: It is mapped to the CDocument function OnFileSaveAs, which calls
OnSaveDocument. Here the application framework does all the file management necessary to
save a document on disk.

NOTE
The File New and File Open menu commands are mapped to application class
member functions, but File Save and File Save As are mapped to document class
member functions. File New is mapped to OnFileNew. The SDI version of
InitInstance also calls OnFileNew (indirectly). No document object exists when
the application framework calls InitInstance, so OnFileNew can’t possibly be a
member function of CDocument. When a document is saved, however, a document
object certainly exists.

The Document’s “Dirty” Flag

Many document-oriented applications for Windows track the user’s modifications of a
document. If the user tries to close a document or exit the program, a message box asks
whether the user wants to save the document. The MFC application framework directly
supports this behavior with the CDocument data member m_bModified. This Boolean variable
is TRUE if the document has been modified (has become “dirty”); otherwise, it is FALSE.

The protected m_bModified flag is accessed through the CDocument member functions
SetModifiedFlag and IsModified. The framework sets the document object’s flag to FALSE
when the document is created or read from disk and when it is saved on disk. The programmer
must use the SetModifiedFlag function to set the flag to TRUE when the document data
changes. The virtual function CDocument::SaveModified, which the framework calls when the
user closes the document, displays a message box if the m_bModified flag is set to TRUE. You
can override this function if you need to do something else.

In the Ex16a example, you’ll see how a one-line update command user interface function can
use IsModified to control the state of the disk button and the corresponding menu command.
When the user modifies the file, the disk button is enabled; when the user saves the file, the
button is grayed out.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In one respect, MFC SDI applications behave a little differently from other
Windows-based SDI applications such as Notepad. Here’s a typical sequence of
events:

1. The user creates a document and saves it on disk (for example, under the
name test.dat).

2. The user modifies the document.

3. The user chooses File Open and then specifies test.dat.

When the user chooses File Open, Notepad asks whether the user wants to save the
changes made to the document (in step 2 above). If the user answers no, the
program will reread the document from disk. An MFC application, on the other
hand, will assume that the changes are permanent and will not reread the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex16a Example: SDI with Serialization

The Ex16a example is similar to example Ex15b. The dialog template and the toolbar are the
same, and the view class is the same. Serialization has been added, together with an update
command user interface function for File Save. The header and implementation files for the
view and document classes will be reused in example Ex16b.

All the new code (code that is different from Ex15b) is listed, with additions and changes to
the wizard-generated code shown in boldface. The files and classes in the Ex16a example are
listed in Table 16-2.

Table 16-2. Files and Classes in Ex16a
Header File Source Code

File
Class Description

Ex16a.h Ex16a.cpp CEx16aApp Application class (from the MFC
Application Wizard)

CAboutDlg About dialog box

MainFrm.h MainFrm.cpp CMainFrame SDI main frame

Ex16aDoc.h Ex16aDoc.cpp CEx16aDoc Student document

Ex16aView.h Ex16aView.cpp CEx16aView Student form view (borrowed from Ex15b)

Student.h Student.cpp CStudent Student record

StdAfx.h StdAfx.cpp Precompiled headers (with afxtempl.h
included)

CStudent

The Ex16a Student.h file is almost the same as the file in the Ex15b project. The header
contains the macro

DECLARE_SERIAL(CStudent)

instead of

DECLARE_DYNAMIC(CStudent)

and the implementation file contains the macro

IMPLEMENT_SERIAL(CStudent, CObject, 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IMPLEMENT_SERIAL(CStudent, CObject, 0)

instead of

IMPLEMENT_DYNAMIC(CStudent, CObject)

The virtual Serialize function has also been added.

CEx16aApp

The application class files shown in the following example contain only code generated by the
MFC Application Wizard. The application was generated with a default file extension and
with the Windows Explorer launch and drag-and-drop capabilities. These features are
described later in this chapter.

To generate additional code, when you first run the MFC Application Wizard you must enter
the filename extension in the File Extension box of the wizard’s Document Template Strings
Page, as shown here:

This ensures that the document template resource string contains the correct default extension
and that the correct Windows Explorer–related code is inserted into your application class
InitInstance member function. You can change some of the other resource substrings if you
want.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ex16a.h
// Ex16a.h : main header file for the Ex16a application
#pragma once

#ifndef __AFXWIN_H__
 #error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

// CEx16aApp:
// See Ex16a.cpp for the implementation of this class
class CEx16aApp : public CWinApp
{
public:
 CEx16aApp();
// Overrides
public:
 virtual BOOL InitInstance();

// Implementation
 afx_msg void OnAppAbout();
 DECLARE_MESSAGE_MAP()
};
extern CEx16aApp theApp;

Ex16a.cpp
// Ex16a.cpp : Defines the class behaviors for the application.

#include "stdafx.h"
#include "Ex16a.h"
#include "MainFrm.h"
#include "Ex16aDoc.h"
#include "Ex16aView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CEx16aApp

BEGIN_MESSAGE_MAP(CEx16aApp, CWinApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

// CEx16aApp construction

CEx16aApp::CEx16aApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

// The one and only CEx16aApp object
CEx16aApp theApp;

// CEx16aApp initialization

BOOL CEx16aApp::InitInstance()
{
 // InitCommonControls() is required on Windows XP if an application
 // manifest specifies use of ComCtl32.dll version 6 or later to enable
 // visual styles. Otherwise, any window creation will fail.
 InitCommonControls();
 CWinApp::InitInstance();

 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }
 AfxEnableControlContainer();
 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need
 // Change the registry key under which our settings are stored
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));
 LoadStdProfileSettings(4); // Load standard INI file
 // options (including MRU)
 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views
 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CEx16aDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CEx16aView));
 AddDocTemplate(pDocTemplate);
 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);
 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);
 // Dispatch commands specified on the command line. Will return FALSE if
 // app was launched with /RegServer, /Register, /Unregserver
 // or /Unregister.
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;
 // The one and only window has been initialized, so show and update it
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();
 // call DragAcceptFiles only if there's a suffix
 // In an SDI app, this should occur after ProcessShellCommand
 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();
 return TRUE;
}
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 enum { IDD = IDD_ABOUTBOX };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Implementation
protected:
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
}
void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}
BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
END_MESSAGE_MAP()

// App command to run the dialog
void CEx16aApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}
// CEx16aApp message handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CMainFrame

The main frame window class code, shown in the following example, is almost unchanged
from the code that the MFC Application Wizard generated. The overridden ActivateFrame
function and the WM_DROPFILES handler exist solely for trace purposes.

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
#pragma once
class CMainFrame : public CFrameWnd
{
protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:
// Operations
public:
// Overrides
public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 DECLARE_MESSAGE_MAP()
public:
 afx_msg void OnDropFiles(HDROP hDropInfo);
 virtual void ActivateFrame(int nCmdShow = -1);
};

MainFrm.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MainFrm.cpp
// MainFrm.cpp : implementation of the CMainFrame class
#include "stdafx.h"
#include "Ex16a.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif
// CMainFrame
IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)
BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_DROPFILES()
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL
};

// CMainFrame construction/destruction
CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}
CMainFrame::~CMainFrame()
{
}
int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,
 WS_CHILD │ WS_VISIBLE │ CBRS_TOP
 │ CBRS_GRIPPER │ CBRS_TOOLTIPS │ CBRS_FLYBY │ CBRS_SIZE_DYNAMIC) ││
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }
 if (!m_wndStatusBar.Create(this) ││
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }

 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_wndToolBar);
 return 0;
}
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 return TRUE;
}

// CMainFrame diagnostics
#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}
void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}
#endif //_DEBUG
// CMainFrame message handlers
void CMainFrame::OnDropFiles(HDROP hDropInfo)
{
 TRACE("Entering CMainFrame::OnDropFiles\n");
 CFrameWnd::OnDropFiles(hDropInfo);
}
void CMainFrame::ActivateFrame(int nCmdShow)
{
 TRACE("Entering CMainFrame::ActivateFrame\n");
 CFrameWnd::ActivateFrame(nCmdShow);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The CEx16aDoc Class

The CEx16aDoc class is the same as the CEx15bDoc class from the previous chapter except
for four functions: Serialize, DeleteContents, OnOpenDocument, and OnUpdateFileSave.

Serialize

One line has been added to the MFC Application Wizard–generated function to serialize the
document’s student list, as shown here:

///
// CEx16aDoc serialization

void CEx16aDoc::Serialize(CArchive& ar)
{
 TRACE("Entering CEx16aDoc::Serialize\n");
 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }
 m_studentList.Serialize(ar);
}

DeleteContents

The Dump statement is replaced by a simple TRACE statement. Here is the modified code:

void CEx16aDoc::DeleteContents()
{
 TRACE("Entering CEx16aDoc::DeleteContents\n");
 while (m_studentList.GetHeadPosition()) {
 delete m_studentList.RemoveHead();
 }
}

OnOpenDocument

This virtual function is overridden only for the purpose of displaying a TRACE message, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CEx16aDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 TRACE("Entering CEx16aDoc::OnOpenDocument\n");
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 // TODO: Add your specialized creation code here

 return TRUE;
}

OnUpdateFileSave

This message map function grays out the File Save toolbar button when the document is in the
unmodified state. The view controls this state by calling the document’s SetModifiedFlag
function, as shown here:

void CEx16aDoc::OnUpdateFileSave(CCmdUI* pCmdUI)
{
 // Disable disk toolbar button if file is not modified
 pCmdUI->Enable(IsModified());
}

The CEx16aView Class

The code for the CEx16aView class borrows code from the CEx15bView class in Chapter 15.

Testing the Ex16a Application

Build the program and start it from the debugger, and then test it by typing some data and
saving it on disk with the filename Test.16a. (You don’t need to type the .16a part.)

Exit the program, and then restart it and open the file you saved. Did the data you typed come
back? Take a look at the Debug window and observe the sequence of function calls. You
should see the trace messages showing the student document being read and written as you
load and save the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Explorer Launch and Drag and Drop

In the past, PC users were accustomed to starting up a program and then selecting a disk file
(sometimes called a document) that contained data the program understood. Many MS-DOS–
based programs worked this way. The old Windows Program Manager improved things by
allowing the user to double-click on a program icon instead of typing a program name.
Meanwhile, Apple Macintosh users were double-clicking on a document icon; the Macintosh
operating system figured out which program to run.

Windows Explorer still lets users double-click on a program, but it also lets users double-click
on a document icon to run the document’s program. But how does Windows Explorer know
which program to run? Windows Explorer uses the Windows Registry to make the connection
between document and program. The link starts with the filename extension that you typed
into the MFC Application Wizard, but as you’ll see, there’s more to it than that. Once the
association is made, users can launch your program by double-clicking on its document icon
or by dragging the icon from Windows Explorer to a running instance of your program. In
addition, users can drag the icon to a printer, and your program will print it.

Program Registration

In Chapter 14, you saw how MFC applications store data in the Windows Registry by calling
SetRegistryKey from the InitInstance function. Independent of this SetRegistryKey call, your
program can write file association information in a different part of the Registry on startup. To
activate this feature, you must type in the filename extension when you create the application
with the MFC Application Wizard. After you do that, the MFC Application Wizard adds the
extension as a substring in your template string and adds the following line in your
InitInstance function:

RegisterShellFileTypes(TRUE);

Now your program adds two items to the Registry. Under the HKEY_CLASSES_ROOT top-
level key, it adds a subkey and a data string as shown here (for the Ex16a example):

.16a = Ex16a.Document

The data item is the file type ID that the MFC Application Wizard has chosen for you.
Ex16a.Document, in turn, is the key for finding the program itself. The Registry entries for
Ex16a.Document, also beneath HKEY_CLASSES_ROOT, are shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Registry contains the full pathname of the Ex16a program. Now Windows Explorer can
use the Registry to navigate from the extension to the file type ID to the actual program itself.
After the extension is registered, Windows Explorer will find the document’s icon and display
it next to the filename.

Double-Clicking on a Document

When the user double-clicks on a document icon, Windows Explorer executes the associated
SDI program, passing in the selected filename on the command line. You might notice that the
MFC Application Wizard generates a call to EnableShellOpen in the application class
InitInstance function. This supports execution via DDE message, the technique used by the
File Manager in Windows NT 3.51. Windows Explorer can launch your SDI application
without this call.

Enabling Drag and Drop

If you want your already-running program to open files dragged from Windows Explorer, you
must call the CWnd function DragAcceptFiles for the application’s main frame window. The
application object’s public data member m_pMainWnd points to the CFrameWnd (or
CMDIFrameWnd) object. When the user drops a file anywhere inside the frame window, the
window receives a WM_DROPFILES message, which triggers a call to
FrameWnd::OnDropFiles. The following line in InitInstance, generated by the MFC
Application Wizard, enables drag and drop:

m_pMainWnd->DragAcceptFiles();

Program Startup Parameters

When you choose Run from the Start menu or when you double-click the program directly in
Windows Explorer, there is no command-line parameter. The InitInstance function processes
the command line with calls to ParseCommandLine and ProcessShellCommand. If the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the command line with calls to ParseCommandLine and ProcessShellCommand. If the
command line contains something that looks like a filename, the program immediately loads
that file. Thus, you create a Windows shortcut that can run your program with a specific
document file.

Experimenting with Explorer Launch and Drag and Drop

Once you’ve built Ex16a, you can try running it from Windows Explorer. You must execute
the program directly, however, in order to write the initial entries in the Registry. Be sure that
you’ve saved at least one 16A file to disk, and then exit Ex16a. Start Windows Explorer and
locate the directory in which you saved 16A files. Double-click on one of the 16A files in the
panel on the right. Your program should start with the selected file loaded. Now, with both
Ex16a and Windows Explorer open on the desktop, try dragging another file from Windows
Explorer to the Ex16a window. The program should open the new file just as if you had
chosen File Open from the Ex16a menu.

You might also want to look at the Ex16a entries in the Registry. Run the Regedit program
(possibly named Regedt32 in Windows 2000 and Windows XP), and expand the
HKEY_CLASSES_ROOT key. Look under .16a and Ex16a.Document. Also expand the
HKEY_CURRENT_USER key, and look at Local AppWizard-Generated Applications under
Software. You should see a Recent File List under the subkey Ex16a. The Ex16a program
calls SetRegistryKey with the string Local AppWizard-Generated Applications, so the program
name goes beneath the Ex16a subkey.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MDI Support

In addition to SDI applications, MFC supports MDI applications. In this section, we’ll look at
MDI applications and see how they read and write their document files. For a long time, MDI
applications were the preferred MFC library program style. It’s the MFC Application Wizard
default, and most of the sample programs that come with Visual C++ are MDI applications.

In addition, you’ll learn the similarities and differences between SDI and MDI applications,
and you’ll learn how to convert an SDI application to an MDI application. Be sure that you
thoroughly understand the SDI application described earlier in this chapter before you attack
the MDI application in this section.

Before you look at the MFC library code for MDI applications, you should be familiar with
the operation of Windows MDI programs. Take a close look at Visual C++ .NET now. It’s an
MDI application whose “multiple documents” are program source code files. Visual C++
.NET is not the most typical MDI application, however, because it collects its documents into
projects. It’s better to examine Microsoft Word or, better yet, a real MFC library MDI
application—the kind that the MFC Application Wizard generates.

A Typical MDI Application, MFC Style

Ex16b is an MDI version of Ex16a. Figure 16-4 shows the Ex16b program in use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16-4. The Ex16b application with two files open.

The user has two separate document files open, each in a separate MDI child window. Only
one child window is active at a time. The application has only one menu and one toolbar, and
all commands are routed to the active child window. The main window’s title bar reflects the
name of the active child window’s document file.

The child window’s minimize box allows the user to reduce the child window to an icon in the
main window. The application’s Window menu (shown in Figure 16-4) lets the user control
the presentation through the following commands.

Menu Command Action

New Window Opens as an additional child window for the selected document

Cascade Arranges the existing windows in an overlapped pattern

Tile Arranges the existing windows in a nonoverlapped, tiled
pattern

Arrange Icons Arranges minimized windows in the frame window

(document names) Selects the corresponding child window and brings it to the top

The menus and toolbars in an MDI application are dynamic. When all the windows in an MDI
application are closed, the File menu changes, most toolbar buttons are disabled, and the
window caption does not show a filename. The only choice the user has is to start a new
document or to open an existing document from disk.

As the user creates new files, the empty child window gets the default document name
Ex16b1. This name is based on the Doc Type Name (Ex16b) selected in the Document
Template Strings page of the MFC Application Wizard. The first new file is Ex16b1, the
second is Ex16b2, and so forth. The user normally chooses a different name when saving the
document.

An MFC library MDI application, like many commercial MDI applications, starts up with a
new, empty document. (Visual C++ .NET is an exception.) If you want your application to
start up with a blank frame, you can modify the argument to the ProcessShellCommand call in
the application class file, as shown in example Ex16b.

The MDI Application Object

You’re probably wondering how an MDI application works and what code makes it different
from an SDI application. Actually, the startup sequences are pretty much the same. An
application object of a class derived from class CWinApp has an overridden InitInstance
member function. This InitInstance function is somewhat different from the SDI InitInstance
function, starting with the call to AddDocTemplate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MDI Document Template Class

The MDI template construction call in InitInstance looks like this:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(
 IDR_EX16BTYPE,
 RUNTIME_CLASS(CEx16bDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CEx16b));
AddDocTemplate(pDocTemplate);

Unlike Ex16a, an MDI application can use multiple document types and allows the
simultaneous existence of more than one document object. This is the essence of the MDI
application.

The single AddDocTemplate call shown in the previous example permits the MDI application
to support multiple child windows, each connected to a document object and a view object.
It’s also possible to have several child windows (and corresponding view objects) connected
to the same document object. In this chapter, we’ll start with only one view class and one
document class. You’ll see multiple view classes and multiple document classes in Chapter 18.

NOTE
When your application is running, the document template object maintains a list of
active document objects that were created from the template. The
CMultiDocTemplate member functions GetFirstDocPosition and GetNextDoc
allow you to iterate through the list. Use CDocument::GetDocTemplate to
navigate from a document to its template.

The MDI Frame Window and the MDI Child Window

The SDI examples had only one frame window class and only one frame window object. For
SDI applications, the MFC Application Wizard generated a class named CMainFrame, which
was derived from the class CFrameWnd. An MDI application has two frame window classes
and many frame objects, as shown in the following table. The MDI frame–view window
relationship is shown in Figure 16-5.

Base Class MFC
Application
Wizard–
Generated Class

Number
of
Objects

Menu
and
Control
Bars

Contains
a View

Object Constructed

CMDIFrameWnd CMainFrame 1 only Yes No In application class’s
InitInstance
function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CMDIChildWnd CChildFrame 1 per
child
window

No Yes By application
framework when a
new child window is
opened

Figure 16-5. The MDI frame–view window relationship.

In an SDI application, the CMainFrame object frames the application and contains the view
object. In an MDI application, the two roles are separated. Now the CMainFrame object is
explicitly constructed in InitInstance, and the CChildFrame object contains the view. The
MFC Application Wizard generates the following code:

CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
m_pMainWnd = pMainFrame;

pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

The application framework can create the CChildFrame objects dynamically because the
CChildFrame runtime class pointer is passed to the CMultiDocTemplate constructor.

NOTE
The MDI InitInstance function sets the CWinApp data member m_pMainWnd to
point to the application’s main frame window. This means you can access
m_pMainWnd through the global AfxGetApp function anytime you need to get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

m_pMainWnd through the global AfxGetApp function anytime you need to get
your application’s main frame window.

The Main Frame and Document Template Resources

An MDI application (such as Ex16b, described later in this chapter) has two separate string
and menu resources, identified by the IDR_MAINFRAME and IDR_EX16BTYPE constants.
The first resource set goes with the empty main frame window; the second set goes with the
occupied main frame window. Here are the two string resources with substrings broken out:

IDR_MAINFRAME
 "Ex16b" // application window caption

IDR_EX16BTYPE
 "\n" // (not used)
 "Ex16b\n" // root for default document name
 "Ex16b\n" // document type name
 "Ex16b Files (*.16b)\n" // document type description and filter
 ".16b\n" // extension for documents of this type
 "Ex16b.Document\n" // Registry file type ID
 "Ex16b.Document" // Registry file type description

NOTE
The resource compiler won’t accept the string concatenations as shown here. If
you examine the Ex16b.rc file, you’ll see the substrings combined in one long
string.

The application window caption comes from the IDR_MAINFRAME string. When a document
is open, the document filename is appended. The last two substrings in the IDR_EX16BTYPE
string support embedded launch and drag and drop.

Creating an Empty Document

The CWinApp::OnFileNew function enables you to create an empty document. The MDI
InitInstance function calls OnFileNew (through ProcessShellCommand), as did the SDI
InitInstance function. This time, however, the main frame window has already been created.
OnFileNew, through a call to the CMultiDocTemplate function OpenDocumentFile, now does
the following:

1. Constructs a document object but does not attempt to read data from disk.

2. Constructs a child frame window object (of class CChildFrame). Also creates the child
frame window but does not show it. In the main frame window, the IDR_EX16BTYPE
menu replaces the IDR_MAINFRAME menu. IDR_EX16BTYPE also identifies an icon
resource that is used when the child window is minimized within the frame.

3. Constructs a view object. Also creates the view window but does not show it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Establishes connections among the document, the main frame, and view objects. Do not
confuse these object connections with the class associations established by the call to
AddDocTemplate.

5. Calls the virtual OnNewDocument member function for the document object.

6. Calls the virtual OnInitialUpdate member function for the view object.

7. Calls the virtual ActivateFrame member function for the child frame object to show the
frame window and the view window.

The OnFileNew function is also called in response to the File New menu command. In an
MDI application, OnFileNew performs exactly the same steps as it does when called from
InitInstance.

NOTE
Some functions listed above are not called directly by OpenDocumentFile but are
called indirectly through the application framework.

Creating an Additional View for an Existing Document

If you choose the New Window command from the Window menu, the application framework
opens a new child window that is linked to the currently selected document. The associated
CMDIFrameWnd function, OnWindowNew, does the following:

1. Constructs a child frame object (of class CChildFrame). Also creates the child frame
window but does not show it.

2. Constructs a view object. Also creates the view window but does not show it.

3. Establishes connections between the new view object and the existing document and
main frame objects.

4. Calls the virtual OnInitialUpdate member function for the view object.

5. Calls the virtual ActivateFrame member function for the child frame object to show the
frame window and the view window.

Loading and Storing Documents

In MDI applications, documents are loaded and stored the same way as in SDI applications but
with two important differences: A new document object is constructed each time a document
file is loaded from disk, and the document object is destroyed when the child window is
closed. Don’t worry about clearing a document’s contents before loading—but override the
CDocument::DeleteContents function anyway to make the class portable to the SDI
environment.

Multiple Document Templates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MDI application can support multiple document templates through multiple calls to the
AddDocTemplate function. Each template can specify a different combination of document,
view, and MDI child frame classes. When the user chooses New from the File menu of an
application with multiple templates, the application framework displays a list box that allows
the user to select a template by name as specified in the string resource (document type
substring). Multiple AddDocTemplate calls are not supported in SDI applications because the
document, view, and frame objects are constructed once for the life of the application.

NOTE
When your application is running, the application object keeps a list of active
document template objects. The CWinApp member functions
GetFirstDocTemplatePosition and GetNextDocTemplate allow you to iterate
through the list of templates. These functions, together with the CDocTemplate
member functions GetFirstDocPosition and GetNextDoc, allow you to access all
of the application’s document objects.

If you don’t want the template list box, you can edit the File menu to add a New menu
command for each document type. Code the command message handlers as shown here, using
the document type substring from each template:

void CMyApp::OnFileNewStudent()
{
 OpenNewDocument("Studnt");
}
void CMyApp::OnFileNewTeacher()
{
 OpenNewDocument("Teachr");
}

Then add the OpenNewDocument helper function as follows:

BOOL CMyApp::OpenNewDocument(const CString& strTarget)
{
 CString strDocName;
 CDocTemplate* pSelectedTemplate;
 POSITION pos = GetFirstDocTemplatePosition();
 while (pos != NULL) {
 pSelectedTemplate = (CDocTemplate*) GetNextDocTemplate(pos);
 ASSERT(pSelectedTemplate != NULL);
 ASSERT(pSelectedTemplate->IsKindOf(
 RUNTIME_CLASS(CDocTemplate)));
 pSelectedTemplate->GetDocString(strDocName,
 CDocTemplate::docName);
 if (strDocName == strTarget) { // from template's
 // string resource
 pSelectedTemplate->OpenDocumentFile(NULL);
 return TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return TRUE;
 }
 }
 return FALSE;
}

Explorer Launch and Drag and Drop

When you double-click on a document icon for an MDI application in Windows Explorer, the
application launches only if it was not running already; otherwise, a new child window opens
in the running application for the document you selected. The EnableShellOpen call in the
application class InitInstance function is necessary for this to work. Drag and drop works
much the same way in an MDI application as it does in an SDI application. If you drag a file
from Windows Explorer to your MDI main frame window, the program opens a new child
frame (with associated document and view) just as if you’d chosen the File Open command.
As with SDI applications, you must use the Document Template Strings page of the MFC
Application Wizard to specify the filename extension.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex16b Example: An MDI Application

This example is the MDI version of the Ex16a example. It uses the same document and view
class code and the same resources (except the program name). The application code and main
frame class code are different, however. All the new code is listed here, including the code
that the MFC Application Wizard generates. A list of the files and classes in the Ex16b
example are shown in Table 16-3.

Table 16-3. Files and Classes in Ex16b
Header File Source Code

File
Class Description

Ex16b.h Ex16b.cpp CEx16bApp Application class (from the MFC
Application Wizard)

CAboutDlg About dialog box

MainFrm.h MainFrm.cpp CMainFrame MDI main frame

ChildFrm.h ChildFrm.cpp CChildFrame MDI child frame

CEx16bDoc.h CEx16bDoc.cpp CEx16bDoc Student document (borrowed from
Ex16a)

CEx16bView.h Ex16bView.cpp CEx16bView Student form view (borrowed from
Ex16a)

Student.h Student.cpp CStudent Student record (from Ex16a)

StdAfx.h StdAfx.cpp Precompiled headers (with afxtempl.h
included)

CEx16bApp

In the CEx16bApp source code listing, the OpenDocumentFile member function is overridden
only for the purpose of inserting a TRACE statement. Also, a few lines have been added before
the ProcessShellCommand call in InitInstance. They check the argument to
ProcessShellCommand and change it if necessary to prevent the creation of any empty
document window on startup. The following shows the source code:

Ex16b.h
// Ex16b.h : main header file for the Ex16b application
//
#pragma once

#ifndef __AFXWIN_H__
 #error include 'stdafx.h' before including this file for PCH
#endif

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "resource.h" // main symbols

// CEx16bApp:
// See Ex16b.cpp for the implementation of this class
//

class CEx16bApp : public CWinApp
{
public:
 CEx16bApp();
// Overrides
public:
 virtual BOOL InitInstance();

// Implementation
 afx_msg void OnAppAbout();
 DECLARE_MESSAGE_MAP()
 virtual CDocument* OpenDocumentFile(LPCTSTR lpszFileName);
};
extern CEx16bApp theApp;

Ex16b.cpp
// Ex16b.cpp : Defines the class behaviors for the application.
//
#include "stdafx.h"
#include "Ex16b.h"
#include "MainFrm.h"
#include "ChildFrm.h"
#include "Ex16bDoc.h"
#include "Ex16bView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CEx16bApp

BEGIN_MESSAGE_MAP(CEx16bApp, CWinApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

// CEx16bApp construction

CEx16bApp::CEx16bApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Place all significant initialization in InitInstance
}

// The one and only CEx16bApp object
CEx16bApp theApp;

// CEx16bApp initialization
BOOL CEx16bApp::InitInstance()
{
 // InitCommonControls() is required on Windows XP if an application
 // manifest specifies use of ComCtl32.dll version 6 or later to enable
 // visual styles. Otherwise, any window creation will fail.
 InitCommonControls();
 CWinApp::InitInstance();

 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }
 AfxEnableControlContainer();
 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need
 // Change the registry key under which our settings are stored
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));
 // Load standard INI file options (including MRU)
 LoadStdProfileSettings(4);
 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views
 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(
 IDR_Ex16bTYPE,
 RUNTIME_CLASS(CEx16bDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CEx16bView));
 AddDocTemplate(pDocTemplate);
 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;
 // call DragAcceptFiles only if there's a suffix
 // In an MDI app, this should occur immediately after setting m_pMainWnd
 // Enable drag/drop open
 m_pMainWnd->DragAcceptFiles();
 // Enable DDE Execute open
 EnableShellOpen();
 RegisterShellFileTypes(TRUE);
 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // no empty document window on startup
 if(cmdInfo.m_nShellCommand == CCommandLineInfo::FileNew) {
 cmdInfo.m_nShellCommand = CCommandLineInfo::FileNothing;
 }
 // Dispatch commands specified on the command line. Will return FALSE
 // if app was launched with /RegServer, /Register, /Unregserver
 // or /Unregister.
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;
 // The main window has been initialized, so show and update it
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();
 return TRUE;
}

// CAboutDlg dialog used for App About
class CAboutDlg : public CDialog
{
public:
 CAboutDlg();
// Dialog Data
 enum { IDD = IDD_ABOUTBOX };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Implementation
protected:
 DECLARE_MESSAGE_MAP()
};
CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
}
void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}
BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
END_MESSAGE_MAP()

// App command to run the dialog
void CEx16bApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

// CEx16bApp message handlers
CDocument* CEx16bApp::OpenDocumentFile(LPCTSTR lpszFileName)
{
 TRACE("CEx16bApp::OpenDocumentFile\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("CEx16bApp::OpenDocumentFile\n");
 return CWinApp::OpenDocumentFile(lpszFileName);
}

CMainFrame

This main frame class, as shown in the following code listings, is almost identical to the SDI
version, except that it’s derived from CMDIFrameWnd instead of CFrameWnd.

MainFrm.h
// MainFrm.h : interface of the CMainFrame class
//
#pragma once
class CMainFrame : public CMDIFrameWnd
{
 DECLARE_DYNAMIC(CMainFrame)
public:
 CMainFrame();
// Attributes
public:
// Operations
public:
// Overrides
public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;
// Generated message map functions
protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 DECLARE_MESSAGE_MAP()
};

MainFrm.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MainFrm.cpp
// MainFrm.cpp : implementation of the CMainFrame class
//
#include "stdafx.h"
#include "Ex16b.h"
#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CMainFrame
IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)
BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
 ON_WM_CREATE()
END_MESSAGE_MAP()

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL
};

// CMainFrame construction/destruction
CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}
CMainFrame::~CMainFrame()
{
}
int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,
 WS_CHILD │ WS_VISIBLE │ CBRS_TOP
 │ CBRS_GRIPPER │ CBRS_TOOLTIPS │ CBRS_FLYBY
 │ CBRS_SIZE_DYNAMIC) ││
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }
 if (!m_wndStatusBar.Create(this) ││
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE0("Failed to create status bar\n");
 return -1; // fail to create
 }
 // TODO: Delete these three lines if you don't want the toolbar to
 // be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_wndToolBar);
 return 0;
}
BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CMDIFrameWnd::PreCreateWindow(cs))
 return FALSE;
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs

 return TRUE;
}
// CMainFrame diagnostics
#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CMDIFrameWnd::AssertValid();
}
void CMainFrame::Dump(CDumpContext& dc) const
{
 CMDIFrameWnd::Dump(dc);
}
#endif //_DEBUG
// CMainFrame message handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// CMainFrame message handlers

CChildFrame

This child frame class, shown in the following code listings, lets you conveniently control the
child frame window’s characteristics by adding code in the PreCreateWindow function. You
can also map messages and override other virtual functions.

ChildFrm.h
// ChildFrm.h : interface of the CChildFrame class
//
#pragma once

class CChildFrame : public CMDIChildWnd
{
 DECLARE_DYNCREATE(CChildFrame)
public:
 CChildFrame();
// Attributes
public:
// Operations
public:
// Overrides
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

// Implementation
public:
 virtual ~CChildFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()
public:
 virtual void ActivateFrame(int nCmdShow = -1);
};

ChildFrm.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ChildFrm.cpp
// ChildFrm.cpp : implementation of the CChildFrame class
//
#include "stdafx.h"
#include "Ex16b.h"
#include "ChildFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CChildFrame
IMPLEMENT_DYNCREATE(CChildFrame, CMDIChildWnd)
BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
END_MESSAGE_MAP()

// CChildFrame construction/destruction
CChildFrame::CChildFrame()
{
 // TODO: add member initialization code here
}
CChildFrame::~CChildFrame()
{
}
BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 if(!CMDIChildWnd::PreCreateWindow(cs))
 return FALSE;
 return TRUE;
}
// CChildFrame diagnostics
#ifdef _DEBUG
void CChildFrame::AssertValid() const
{
 CMDIChildWnd::AssertValid();
}
void CChildFrame::Dump(CDumpContext& dc) const
{
 CMDIChildWnd::Dump(dc);
}
#endif //_DEBUG

// CChildFrame message handlers
void CChildFrame::ActivateFrame(int nCmdShow)
{
 TRACE("Entering CChildFrame::ActivateFrame\n");
 CMDIChildWnd::ActivateFrame(nCmdShow);
}

Testing the Ex16b Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Do the build, run the program from Visual C++ .NET, and then make several documents. Try
saving the documents on disk, closing them, and reloading them. Also, choose New Window
from the Window menu. Notice that you now have two views (and child frames) attached to
the same document. Now exit the program and start Windows Explorer. The files you created
should show up with document icons. Double-click on a document icon and see whether the
Ex16b program starts up. Now, with both Windows Explorer and Ex16b on the desktop, drag
a document from Windows Explorer to Ex16b. Was the file opened?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MTI Support

Windows 2000 introduced a third type of application into its repertoire: the Multiple Top-
Level Interface (MTI) application. This is the type of interface favored by Microsoft Office
2000 and Office XP applications. MTI applications are similar to SDI applications, but
whereas SDI applications run as separate windows—one instance of the application for every
window open—MTI applications have one instance serving all the open windows. When the
user creates a new file, the application opens a new independent top-level window and a new
document along with them—but they’re tied to the same running instance of the application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex16c Example: An MTI Application

This example is an MTI version of the Ex16a we looked at in a previous section. To create this
example, in the MFC Application Wizard select Multiple Top-Level Documents on the
Application Type page and deselect Printing And Print Preview on the Advanced Features
page. On the Generated Classes page, change the view’s base class to CFormView.

Ex16c uses the same document and view class code and the same resources (except the
resource name). The application code and main frame class code are different, however. You
can examine all the new code in the Ex16c application on the companion CD. A list of files
and classes in the Ex16c example are shown in Table 16-4.

Table 16-4. Files and Classes in Ex16c
Header File Source Code

File
Class Description

Ex16c.h Ex16c.cpp CEx16cApp Application class (from the MFC
Application Wizard)

CAboutDlg About dialog box

MainFrm.h MainFrm.cpp CMainFrame MTI main frame

CEx16cDoc.h CEx16cDoc.cpp CEx16cDoc Student document (borrowed from
Ex16a)

CEx16cView.h Ex16cView.cpp CEx16cView Student form view (borrowed from
Ex16a)

Student.h Student.cpp CStudent Student record (from Ex16a)

StdAfx.h StdAfx.cpp Precompiled headers (with afxtempl.h
included)

Unlike the MDI and SDI applications, the MTI application includes a New Frame command
on the File menu. This command tells the application to open a new top-level window. The
following listing illustrates handling the New Frame command:

void CEx16cApp::OnFileNewFrame()
{
 ASSERT(m_pDocTemplate != NULL);
 CDocument* pDoc = NULL;
 CFrameWnd* pFrame = NULL;

 // Create a new instance of the document referenced
 // by the m_pDocTemplate member.
 pDoc = m_pDocTemplate->CreateNewDocument();
 if (pDoc != NULL)
 {
 // If creation worked, use create a new frame for
 // that document.
 pFrame = m_pDocTemplate->CreateNewFrame(pDoc, NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pFrame = m_pDocTemplate->CreateNewFrame(pDoc, NULL);
 if (pFrame != NULL)
 {
 // Set the title, and initialize the document.
 // If document initialization fails, clean-up
 // the frame window and document.

 m_pDocTemplate->SetDefaultTitle(pDoc);
 if (!pDoc->OnNewDocument())
 {
 pFrame->DestroyWindow();
 pFrame = NULL;
 }
 else
 {
 // Otherwise, update the frame
 m_pDocTemplate->InitialUpdateFrame(pFrame, pDoc, TRUE);
 }
 }
 }

 // If we failed, clean up the document and show a
 // message to the user.
 if (pFrame == NULL ││ pDoc == NULL)
 {
 delete pDoc;
 AfxMessageBox(AFX_IDP_FAILED_TO_CREATE_DOC);
 }
}

MTI applications use the CMultiDocTemplate class to manage the document, the frame, and
the view. Notice that OnFileNewFrame creates a new document and then a new top-level
frame window instead of depending on the framework to create the document, frame, and
view classes. Otherwise, MTI applications manage their documents and views in the same
way that SDI and MDI applications do.

Testing the Ex16c Application

To test the Ex16c application, run the application and choose New Frame from the File menu.
Notice that a new frame opens up near the existing frame. The new top-level frame includes a
new instance of the document, but the document is associated with the new frame (rather than
with a new MDI child frame, as in Ex16b).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17
Printing and Print Preview

If you’re depending on the Win32 API alone, printing will be one of the tougher programming
jobs you’ll face. The Microsoft Foundation Class (MFC) library application framework goes a
long way toward making printing easier, and it adds a print preview capability that behaves
like the print preview functions in commercial Microsoft Windows–based programs such as
Microsoft Word and Microsoft Excel.

In this chapter, you’ll learn how to use the MFC library print and print preview features. In the
process, you’ll get a feel for what’s involved in Windows-based printing and how it’s different
from printing in MS-DOS. First, we’ll do some WYSIWYG printing in which the printer
output matches the screen display. This option requires careful use of mapping modes. Then
we’ll print a paginated data processing–style report that doesn’t reflect the screen display at
all. In that example, we’ll use a template array to structure our document so the program can
print any specified range of pages on demand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows-Based Printing

In the old days, programmers had to worry about configuring their applications for dozens of
printers. Windows makes life easier because it provides all of the printer drivers you’ll ever
need. It also supplies a consistent user interface for printing.

Standard Printer Dialog Boxes

When the user chooses Print from the File menu of a Windows-based application, the standard
Print dialog box appears, as shown in Figure 17-1.

Figure 17-1. The standard Print dialog box.

If the user clicks the Properties button in the Print dialog box, the Document Properties dialog
box appears, as shown in Figure 17-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-2. The Document Properties dialog box.

During the printing process, the application displays a standard printer status dialog box.

Interactive Print Page Selection

If you’ve worked in the data processing field, you might be used to batch-mode printing. A
program reads a record and then formats and prints selected information as a line in a report.
Let’s say, for example, that every time 50 lines have been printed the program ejects the paper
and prints a new page heading. The programmer assumes that the whole report will be printed
at one time and therefore makes no allowance for interactively printing selected pages.

As Figure 17-1 shows, page numbers are important in Windows-based printing. A program
must respond to a user’s page selection by calculating which information to print and then
printing the selected pages. If you’re aware of this page selection requirement, you can design
your application’s data structures accordingly.

Remember the student list from Chapter 16? Let’s say the list includes 1000 student names
and the user wants to print page 5 of a student report. If each student record requires one print
line and a page holds 50 lines, page 5 will include records 201 through 250. With an MFC list
collection class, you’re stuck iterating through the first 200 list elements before you can start
printing. Maybe the list isn’t the ideal data structure. How about an array collection instead?
With the CObArray class (or one of the template array classes), you can directly access the
201st student record.

Not every application has elements that map to a fixed number of print lines. Suppose the
student record contains a multi-line text biography field. You can’t know how many
biography lines each record includes, so you have to search through the entire file to determine
the page breaks. If your program can remember those page breaks as it calculates them, its
efficiency will increase.

Display Pages vs. Printed Pages

In many cases, you’ll want a printed page to correspond to a display page. You cannot
guarantee that objects will be printed exactly as they’re displayed on screen, but with
TrueType fonts, your printed page will be pretty close. If you’re working with full-size paper
and you want the corresponding display to be readable, you’ll certainly want a display
window that’s larger than the screen. Thus, a scrolling view such as the one that the
CScrollView class provides is ideal for your printable views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At other times, you might not care about display pages. Perhaps your view holds its data in a
list box, or maybe you don’t need to display the data at all. In these cases, your program can
contain stand-alone print logic that simply extracts data from the document and sends it to the
printer. Of course, the program must properly respond to a user’s page-range request. If you
query the printer to determine the paper size and orientation (portrait or landscape), you can
adjust the pagination accordingly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Print Preview

The MFC library print preview feature shows you on screen the exact page and line breaks
you’ll get when you print your document on a selected printer. The fonts might look a little
funny, especially in the smaller sizes, but that’s not a problem.

Print preview is an MFC library feature, not a Windows feature. Don’t underestimate how
much effort went into programming print preview. (Just look at the source code.) The print
preview program examines each character individually, determining its position based on the
printer’s device context. After selecting an approximating font, the program displays the
character in the Print Preview window at the proper location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming for the Printer

The application framework does most of the work for printing and print preview. To use the
printer effectively, you must understand the sequence of function calls and know which
functions to override.

The Printer Device Context and the CView::OnDraw Function

When your program prints on the printer, it uses a device context object of class CDC. Don’t
worry about where the object comes from; the application framework constructs it and passes
it as a parameter to your view’s OnDraw function. If your application uses the printer to
duplicate the display, the OnDraw function can do double duty. If you’re displaying, the
OnPaint function calls OnDraw and the device context is the display context. If you’re
printing, OnDraw is called by another CView virtual function, OnPrint, with a printer device
context as a parameter. The OnPrint function is called once to print an entire page.

In print preview mode, the OnDraw parameter is actually a pointer to a CPreviewDC object.
Your OnPrint and OnDraw functions work the same regardless of whether you’re printing or
previewing.

The CView::OnPrint Function

You’ve seen that the base class OnPrint function calls OnDraw and that OnDraw can use both
a display device context and a printer device context. The mapping mode should be set before
OnPrint is called. You can override OnPrint to print items that you don’t need on the display,
such as a title page, headers, and footers. The OnPrint parameters are a pointer to the device
context and a pointer to a print information object (CPrintInfo) that includes page dimensions,
the current page number, and the maximum page number.

In your overridden OnPrint function, you can elect not to call OnDraw at all to support print
logic that is totally independent of the display logic. The application framework calls the
OnPrint function once for each page to be printed, with the current page number in the
CPrintInfo structure. You’ll find out shortly how the application framework determines the
page number.

Preparing the Device Context: The CView::OnPrepareDC Function

If you need a display mapping mode other than MM_TEXT (and you often will), you’ll usually
set it in the view’s OnPrepareDC function. You must override this function yourself if your
view class is derived directly from CView, but it’s already overridden if your view is derived
from CScrollView. The OnPrepareDC function is called in OnPaint immediately before the
call to OnDraw. If you’re printing, the same OnPrepareDC function is called, this time
immediately before the application framework calls OnPrint. Thus, the mapping mode is set
before both the painting of the view and the printing of a page.

The second parameter of the OnPrepareDC function is a pointer to a CPrintInfo structure.
This pointer is valid only if OnPrepareDC is being called before printing. You can test for this
condition by calling the CDC member function IsPrinting. The IsPrinting function is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

condition by calling the CDC member function IsPrinting. The IsPrinting function is
particularly handy if you’re using OnPrepareDC to set different mapping modes for the
display and the printer.

If you do not know in advance how many pages your print job will require, your overridden
OnPrepareDC function can detect the end of the document and reset the m_bContinuePrinting
flag in the CPrintInfo structure. When this flag is FALSE, the OnPrint function won’t be
called again and control will pass to the end of the print loop.

The Start and End of a Print Job

When a print job starts, the application framework calls two CView functions,
OnPreparePrinting and OnBeginPrinting. (The MFC Application Wizard generates the
OnPreparePrinting, OnBeginPrinting, and OnEndPrinting functions for you if you select the
Printing And Print Preview option.) The first function, OnPreparePrinting, is called before the
display of the Print dialog box. If you know the first and last page numbers, call
CPrintInfo::SetMinPage and CPrintInfo::SetMaxPage in OnPreparePrinting. The page
numbers you pass to these functions will appear in the Print dialog box for the user to
override.

The second function, OnBeginPrinting, is called after the Print dialog box closes. You
override this function to create Graphics Device Interface (GDI) objects, such as fonts, that
you need for the entire print job. A program runs faster if you create a font once instead of re-
creating it for each page.

The CView function OnEndPrinting is called at the end of the print job, after the last page has
been printed. You override this function to get rid of GDI objects created in OnBeginPrinting.

Table 17-1 lists the important overridable CView print loop functions.

Table 17-1. Overridable CView Print Loop Functions
Function Common Override Behavior

OnPreparePrinting Sets first and last page numbers

OnBeginPrinting Creates GDI objects

OnPrepareDC (for each page) Sets mapping mode and optionally detects end of print job

OnPrint (for each page) Does print-specific output and then calls OnDraw

OnEndPrinting Deletes GDI objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex17a Example: A WYSIWYG Print Program

This example displays and prints a single page of text stored in a document. The printed image
should match the displayed image. The MM_TWIPS mapping mode is used for both printer
and display. First, we’ll use a fixed drawing rectangle, and then we’ll base the drawing
rectangle on the printable area rectangle supplied by the printer driver.

Here are the steps for building the example:

1. Run the MFC Application Wizard to generate the Ex17a project.Accept the default
options. On the Generated Classes page, rename the document class CPoemDoc and the
view class CStringView. Derive CStringView from CScrollView. Note that this is an
MDI application.

2. Add a CStringArray data member to the CPoemDoc class.Edit the PoemDoc.h header
file as follows:

public:
 CStringArray m_stringArray;

The document data is stored in a string array. The MFC library CStringArray class holds
an array of CString objects, which are accessible by a zero-based subscript. You need
not set a maximum dimension in the declaration because the array is dynamic.

3. Add a CRect data member to the CStringView class.Edit the StringView.h header file as
shown here:

private:
 CRect m_rectPrint;

4. Edit three CPoemDoc member functions in the file PoemDoc.cpp.The MFC Application
Wizard generates skeleton OnNewDocument and Serialize functions, but we’ll have to
use Class View’s Properties window to override the DeleteContents function. We’ll
initialize the poem document in the overridden OnNewDocument function.
DeleteContents is called in CDocument::OnNewDocument, so by calling the base class
function first we’re sure the poem won’t be deleted. (The text, by the way, is an excerpt
from the 20th poem in Lawrence Ferlinghetti’s book A Coney Island of the Mind.) Type
10 lines of your choice. You can substitute another poem or maybe your favorite Win32
function description. Add the following boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CPoemDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 m_stringArray.SetSize(10);
 m_stringArray[0] = "The pennycandystore beyond the El";
 m_stringArray[1] = "is where I first";
 m_stringArray[2] = " fell in love";
 m_stringArray[3] = " with unreality";
 m_stringArray[4] = "Jellybeans glowed in the semi-gloom";
 m_stringArray[5] = "of that september afternoon";
 m_stringArray[6] = "A cat upon the counter moved among";
 m_stringArray[7] = " the licorice sticks";
 m_stringArray[8] = " and tootsie rolls";
 m_stringArray[9] = " and Oh Boy Gum";
 return TRUE;
}

NOTE
The CStringArray class supports dynamic arrays, but here we’re using the
m_stringArray object as if it were a static array of 10 elements.

The application framework calls the document’s virtual DeleteContents function when it
closes the document; this action deletes the strings in the array. A CStringArray contains
actual objects, and a CObArray contains pointers to objects. This distinction is
important when it’s time to delete the array elements. Here, the RemoveAll function
actually deletes the string objects:

void CPoemDoc::DeleteContents()
{
 // called before OnNewDocument and when document is closed
 m_stringArray.RemoveAll();
}

Serialization isn’t important in this example, but the following function shows how easy
it is to serialize strings. The application framework calls the DeleteContents function
before loading from the archive, so you don’t have to worry about emptying the array.
Add the following boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CPoemDoc::Serialize(CArchive& ar)
{
 m_stringArray.Serialize(ar);
}

5. Edit the OnInitialUpdate function in StringView.cpp.You must override the function for
all classes derived from CScrollView. This function’s job is to set the logical window
size and the mapping mode. Add the following boldface code:

void CStringView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();
 CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
 CSize sizePage(sizeTotal.cx / 2,
 sizeTotal.cy / 2); // page scroll
 CSize sizeLine(sizeTotal.cx / 100,
 sizeTotal.cy / 100); // line scroll
 SetScrollSizes(MM_TWIPS, sizeTotal, sizePage, sizeLine);
}

6. Edit the OnDraw function in StringView.cpp.The OnDraw function of class
CStringView draws on both the display and the printer. In addition to displaying the
poem text lines in 10-point Roman font, it draws a border around the printable area and
a crude ruler along the top and left margins. OnDraw assumes the MM_TWIPS mapping
mode, in which 1 inch = 1440 units. Add the boldface code shown here:

void CStringView::OnDraw(CDC* pDC)
{
 int i, j, nHeight;
 CString str;
 CFont font;
 TEXTMETRIC tm;
 CPoemDoc* pDoc = GetDocument();
 // Draw a border — slightly smaller to avoid truncation
 pDC->Rectangle(m_rectPrint + CRect(0, 0, -20, 20));
 // Draw horizontal and vertical rulers
 j = m_rectPrint.Width() / 1440;
 for (i = 0; i <= j; i++) {
 str.Format("%02d", i);
 pDC->TextOut(i * 1440, 0, str);
 }
 j = -(m_rectPrint.Height() / 1440);
 for (i = 0; i <= j; i++) {
 str.Format("%02d", i);
 pDC->TextOut(0, -i * 1440, str);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pDC->TextOut(0, -i * 1440, str);
 }
 // Print the poem 0.5 inch down and over;
 // use 10-point roman font
 font.CreateFont(-200, 0, 0, 0, 400, FALSE,
 FALSE, 0, ANSI_CHARSET,
 OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH │ FF_ROMAN,
 "Times New Roman");
 CFont* pOldFont = (CFont*) pDC->SelectObject(&font);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;
 TRACE("font height = %d, internal leading = %d\n",
 nHeight, tm.tmInternalLeading);
 j = pDoc->m_stringArray.GetSize();
 for (i = 0; i < j; i++) {
 pDC->TextOut(720, -i * nHeight - 720,
 pDoc->m_stringArray[i]);
 }
 pDC->SelectObject(pOldFont);
 TRACE("LOGPIXELSX = %d, LOGPIXELSY = %d\n",
 pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSY));
 TRACE("HORZSIZE = %d, VERTSIZE = %d\n",
 pDC->GetDeviceCaps(HORZSIZE),
 pDC->GetDeviceCaps(VERTSIZE));
}

7. Edit the OnPreparePrinting function in StringView.cpp.This function sets the
maximum number of pages in the print job. This example has only one page. You must
call the base class DoPreparePrinting function in your overridden OnPreparePrinting
function. Add the following boldface code:

BOOL CStringView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}

8. Edit the constructor in StringView.cpp.The initial value of the print rectangle should be
8 by 15 inches, expressed in twips (1 inch = 1440 twips). Add the following boldface
code:

CStringView::CStringView() : m_rectPrint(0, 0, 11520, -21600)
}

9. Build and test the application.If you run the Ex17a application under Windows NT,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. Build and test the application.If you run the Ex17a application under Windows NT,
Window 2000, or Windows XP with the lowest screen resolution, your MDI child
window will look like the one shown here. (The text will be larger with higher
resolutions.)

The window text is too small, isn’t it? Go ahead and choose Print Preview from the File
menu, and then click twice with the magnifying glass to enlarge the image. The Print
Preview output is shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remember logical twips from Chapter 6? We’ll now use logical twips to enlarge type
on the display while keeping the printed text the same size. This requires some extra
work because the CScrollView class wasn’t designed for nonstandard mapping modes.
We’ll change the view’s base class from CScrollView to CLogScrollView, which is a
class that borrows from the MFC code in ViewScrl.cpp. The files LogScrollView.h and
LogScrollView.cpp are in the \vcppnet\Ex17a directory on the companion CD.

10. Insert the CLogScrollView class into the project.Copy the files LogScrollView.h and
LogScrollView.cpp from the companion CD if you haven’t done so already. Choose
Add Existing Item from the Project menu. Select the two new files and click OK to
insert them into the project.

11. Edit the StringView.h header file.Add the following line at the top of the file:

#include "LogScrollView.h"

Then change the line

class CStringView : public CScrollView

to

class CStringView : public CLogScrollView

12. Edit the StringView.cpp file.Globally replace all occurrences of CScrollView with
CLogScrollView. Then edit the OnInitialUpdate function. Here’s the edited code, which
is much shorter:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CStringView::OnInitialUpdate()
{
 CLogScrollView::OnInitialUpdate();
 CSize sizeTotal(m_rectPrint.Width(), -m_rectPrint.Height());
 SetLogScrollSizes(sizeTotal);
}

13. Build and test the application again.Now the screen should look like this:

Reading the Printer Rectangle

The Ex17a program prints in a fixed-size rectangle that’s appropriate for a laser printer set to
portrait mode with 8.5-by-11-inch (letter-size) paper. But what if you load European-size
paper or switch to landscape mode? The program should be able to adjust accordingly.

It’s relatively easy to read the printer rectangle. Remember the CPrintInfo pointer that’s
passed to OnPrint? That structure has a data member m_rectDraw that contains the rectangle
in logical coordinates. Your overridden OnPrint function simply stuffs the rectangle in a view
data member, and OnDraw uses it. There’s only one problem: You can’t get the rectangle until
you start printing, so the constructor still needs to set a default value for OnDraw to use before
printing begins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want the Ex17a program to read the printer rectangle and adjust the size of the scroll
view, use Class View’s Properties window to override OnPrint and then code the function as
follows:

void CStringView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 m_rectPrint = pInfo->m_rectDraw;
 SetLogScrollSizes(CSize(m_rectPrint.Width(),
 -m_rectPrint.Height()));
 CLogScrollView::OnPrint(pDC, pInfo);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Template Collection Classes Revisited: The CArray Class

In the Ex15b example in Chapter 15, you saw the MFC library CTypedPtrList template
collection class, which was used to store a list of pointers to CStudent objects. Another
collection class, CArray, is appropriate for our next example, Ex17b. This class is different
from CTypedPtrList in two ways. First, it’s an array, with elements accessible by index, just
like CStringArray in Ex17a. Second, the array holds actual objects, not pointers to objects. In
Ex17b, the elements are CRect objects. The elements’ class does not have to be derived from
CObject, and indeed, CRect is not.

As in Ex17b, a typedef makes the template collection easier to use. We’ll use the following
statement to define an array class that holds CRect objects and whose functions take CRect
reference parameters. (It’s cheaper to pass a 32-bit pointer than to copy a 128-bit object.)

typedef CArray<CRect, CRect&> CRectArray;

To use the template array, you declare an instance of CRectArray and then you call CArray
member functions such as SetSize. You can also use the CArray subscript operator to get and
set elements.

The template classes CArray, CList, and CMap are easy to use if the element class is
sufficiently simple. The CRect class fits that description because it contains no pointer data
members. Each template class uses a global function, SerializeElements, to serialize all the
elements in the collection. The default SerializeElements function does a bitwise copy of each
element to and from the archive.

If your element class contains pointers or is otherwise complex, you must write your own
SerializeElements function. For example, if you write this function for the rectangle array (not
required), your code will look like this:

void AFXAPI SerializeElements(CArchive& ar, CRect* pNewRects,
 int nCount)
{
 for (int i = 0; i < nCount; i++, pNewRects++) {
 if (ar.IsStoring()) {
 ar << *pNewRects;
 }
 else {
 ar >> *pNewRects;
 }
 }
}

When the compiler sees this function, it uses the function to replace the SerializeElements
function inside the template. This only works, however, if the compiler sees the
SerializeElements prototype before it sees the template class declaration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
The template classes depend on two other global functions, ConstructElements and
DestructElements. Starting with Microsoft Visual C++ version 4.0, these functions
call the element class constructor and destructor for each object. Therefore, there’s
no real need to replace them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex17b Example: A Multi-Page Print Program

In this example, the document contains an array of 50 CRect objects that define circles. The
circles are randomly positioned in a 6-by-6-inch area and have random diameters of as much
as 0.5 inch. The circles, when drawn on the display, look like two-dimensional simulations of
soap bubbles. Instead of drawing the circles on the printer, the application prints the
corresponding CRect coordinates in numeric form, 12 to a page, with headers and footers.
Here are the steps:

1. Run the MFC Application Wizard to generate a project named Ex17b.Select Single
Document, and accept the defaults for all the other settings.

2. Edit the StdAfx.h header file.You’ll need to bring in the declarations for the MFC
template collection classes. Add the following statement:

#include <afxtempl.h>

3. Edit the Ex17bDoc.h header file.In the Ex17a example, the document data consists of
strings stored in a CStringArray collection. Because we’re using a template collection
for ellipse rectangles, we’ll need a typedef statement outside the class declaration, as
shown here:

 typedef CArray<CRect, CRect&> CRectArray;

Next, add the following public data members to the Ex17bDoc.h header file:

public:
 enum { nLinesPerPage = 12 };
 enum { nMaxEllipses = 50 };
 CRectArray m_ellipseArray;

The two enumerations are object-oriented replacements for #defines.

4. Edit the Ex17bDoc.cpp implementation file.The overridden OnNewDocument function
initializes the ellipse array with some random values, and the Serialize function reads
and writes the whole array. The MFC Application Wizard generated the skeletons for
both functions. You don’t need a DeleteContents function because the CArray subscript
operator writes a new CRect object on top of any existing one. Add the following
boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CEx17bDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 int n1, n2, n3;
 // Make 50 random circles
 srand((unsigned) time(NULL));
 m_ellipseArray.SetSize(nMaxEllipses);
 for (int i = 0; i < nMaxEllipses; i++) {
 n1 = rand() * 600 / RAND_MAX;
 n2 = rand() * 600 / RAND_MAX;
 n3 = rand() * 50 / RAND_MAX;
 m_ellipseArray[i] = CRect(n1, -n2, n1 + n3, -(n2 + n3));
 }
 return TRUE;
}

void CEx17bDoc::Serialize(CArchive& ar)
{
 m_ellipseArray.Serialize(ar);
}

5. Edit the Ex17bView.h header file.Use the Add Member Variable Wizard and the Add
Member Function Wizard, both available from Class View, to add the member variable
and two function prototypes listed below. The Add Member Function Wizard will also
generate skeletons for the functions in Ex17bView.cpp.

public:
 int m_nPage;
private:
 void PrintPageHeader(CDC *pDC);
 void PrintPageFooter(CDC *pDC);

The m_nPage data member holds the document’s current page number for printing. The
private functions are for the header and footer subroutines.

6. Edit the OnDraw function in Ex17bView.cpp.The overridden OnDraw function simply
draws the bubbles in the view window. Add the boldface code shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx17bView::OnDraw(CDC* pDC)
{
 int i, j;
 CEx17bDoc* pDoc = GetDocument();
 j = pDoc->m_ellipseArray.GetUpperBound();
 for (i = 0; i < j; i++) {
 pDC->Ellipse(pDoc->m_ellipseArray[i]);
 }
}

7. Insert the OnPrepareDC function in Ex17bView.cpp.The view class is not a scrolling
view, so the mapping mode must be set in this function. Use Class View’s Properties
window to override the OnPrepareDC function, and then add the following boldface
code:

void CEx17bView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 pDC->SetMapMode(MM_LOENGLISH);
}

8. Insert the OnPrint function in Ex17bView.cpp.The CView default OnPrint function
calls OnDraw. In this example, we want the printed output to be entirely different from
the displayed output, so the OnPrint function must take care of the print output without
calling OnDraw. OnPrint first sets the mapping mode to MM_TWIPS, and then it
creates a fixed-pitch font. After printing the numeric contents of 12 m_ellipseArray
elements, OnPrint deselects the font. You could have created the font once in
OnBeginPrinting, but you wouldn’t have noticed the increased efficiency. Use Class
View’s Properties window to override the OnPrint function, and then add the following
boldface code:

void CEx17bView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 int i, nStart, nEnd, nHeight;
 CString str;
 CPoint point(720, -1440);
 CFont font;
 TEXTMETRIC tm;
 pDC->SetMapMode(MM_TWIPS);
 CEx17bDoc* pDoc = GetDocument();
 m_nPage = pInfo->m_nCurPage; // for PrintPageFooter's benefit
 nStart = (m_nPage - 1) * CEx17bDoc::nLinesPerPage;
 nEnd = nStart + CEx17bDoc::nLinesPerPage;
 // 14-point fixed-pitch font
 font.CreateFont(-280, 0, 0, 0, 400, FALSE, FALSE,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 font.CreateFont(-280, 0, 0, 0, 400, FALSE, FALSE,
 0, ANSI_CHARSET, OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
 DEFAULT_PITCH │ FF_MODERN, "Courier New");
 // Courier New is a TrueType font
 CFont* pOldFont = (CFont*) (pDC->SelectObject(&font));
 PrintPageHeader(pDC);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;
 for (i = nStart; i < nEnd; i++) {
 if (i > pDoc->m_ellipseArray.GetUpperBound()) {
 break;
 }
 str.Format("%6d %6d %6d %6d %6d", i + 1,
 pDoc->m_ellipseArray[i].left,
 pDoc->m_ellipseArray[i].top,
 pDoc->m_ellipseArray[i].right,
 pDoc->m_ellipseArray[i].bottom);
 point.y -= nHeight;
 pDC->TextOut(point.x, point.y, str);
 }
 PrintPageFooter(pDC);
 pDC->SelectObject(pOldFont);
}

9. Edit the OnPreparePrinting function in Ex17bView.cpp.The OnPreparePrinting
function (whose skeleton is generated by the MFC Application Wizard) computes the
number of pages in the document and then communicates that value to the application
framework through the SetMaxPage function. Add the following boldface code:

BOOL CEx17bView::OnPreparePrinting(CPrintInfo* pInfo)
{
 CEx17bDoc* pDoc = GetDocument();
 pInfo->SetMaxPage(pDoc->m_ellipseArray.GetUpperBound() /
 CEx17bDoc::nLinesPerPage + 1);
 return DoPreparePrinting(pInfo);
}

10. Insert the page header and footer functions in Ex17bView.cpp.These private functions,
called from OnPrint, print the page headers and the page footers. The page footer
includes the page number, stored by OnPrint in the view class data member m_nPage.
The CDC::GetTextExtent function provides the width of the page number so that it can
be right-justified. Add the boldface code shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx17bView::PrintPageHeader(CDC* pDC)
{
 CString str;
 CPoint point(0, 0);
 pDC->TextOut(point.x, point.y, "Bubble Report");
 point += CSize(720, -720);
 str.Format("%6.6s %6.6s %6.6s %6.6s %6.6s",
 "Index", "Left", "Top", "Right", "Bottom");
 pDC->TextOut(point.x, point.y, str);
}

void CEx17bView::PrintPageFooter(CDC* pDC)
{
 CString str;

 CPoint point(0, -14400); // Move 10 inches down
 CEx17bDoc* pDoc = GetDocument();
 str.Format("Document %s", (LPCSTR) pDoc->GetTitle());
 pDC->TextOut(point.x, point.y, str);
 str.Format("Page %d", m_nPage);
 CSize size = pDC->GetTextExtent(str);
 point.x += 11520 - size.cx;
 pDC->TextOut(point.x, point.y, str); // right-justified
}

11. Build and test the application.For one set of random numbers, the bubble view window
looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each time you choose New from the File menu, you should see a different picture. In
Print Preview, the first page of the output should look like this:

In the Print dialog box, you can specify any range of pages to print.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18
Splitter Windows and Multiple Views

Except for the Ex16b example, every program you’ve seen so far in this book has had only
one view attached to a document. If you’ve used a Microsoft Windows–based word
processor, you know that it’s convenient to have two windows open simultaneously on
different parts of a document. Both windows might show a normal view, or one window might
show a print layout view and the other might show an outline view.

With the application framework, you can use a splitter window or multiple Multiple Document
Interface (MDI) child windows to display multiple views. You’ll learn about both presentation
options in this chapter and learn how to make multiple view objects of the same view class
(the normal view) in both cases. It’s slightly more difficult, however, to use two or more view
classes in the same application (say, the outline view and the print layout view).

This chapter emphasizes the selection and presentation of multiple views. The examples are
based on a document with data initialized in the OnNewDocument function. You can refer
back to Chapter 15 for a review of document-view communication.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Splitter Window

A splitter window appears as a special type of frame window that holds several views in
panes. The application can split the window on creation, or the user can split the window by
choosing a menu command or by dragging a splitter box on the window’s scroll bar. After the
window has been split, the user can move the splitter bars with the mouse to adjust the relative
sizes of the panes. Splitter windows can be used in both Single Document Interface (SDI) and
MDI applications.

An object of class CSplitterWnd represents the splitter window. As far as Windows is
concerned, a CSplitterWnd object is an actual window that fully occupies the frame window
(CFrameWnd or CMDIChildWnd) client area. The view windows occupy the splitter window
pane areas. The splitter window does not take part in the command dispatch mechanism. The
active view window (in a splitter pane) is connected directly to its frame window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

View Options

When you combine multi-view presentation methods with application models, you get a
number of permutations. Here are some of them:

SDI application with splitter window, single view classThis chapter’s first example,
Ex18a, illustrates this scenario. Each splitter window pane can be scrolled to a different
part of the document. The programmer determines the maximum number of horizontal
and vertical panes; the user makes the split at run time.

SDI application with splitter window, multiple view classesThe Ex18b example
illustrates this scenario. The programmer determines the number of panes and the
sequence of views; the user can change the pane size at run time.

SDI application with no splitter windows, multiple view classesThe Ex18c example
illustrates this scenario. The user switches view classes by choosing a command from a
menu.

MDI application with no splitter windows, single view classThis is the standard MDI
application you saw in Chapter 16. The New Window menu command lets the user open
a new child window for a document that’s already open.

MDI application with no splitter windows, multiple view classesA small change to the
standard MDI application allows the use of multiple views. As example Ex18d shows,
all you need to do is add a menu command and a handler function for each additional
view class.

MDI application with splitter child windowsThis scenario is covered thoroughly in the
SCRIBBLE example in the MFC Library Reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic and Static Splitter Windows

A dynamic splitter window allows the user to split the window at any time by choosing a
menu command or by dragging a splitter box on the scroll bar. The panes in a dynamic splitter
window generally use the same view class. The top left pane is initialized to a particular view
when the splitter window is created. In a dynamic splitter window, scroll bars are shared
among the views. In a window with a single horizontal split, for example, the bottom scroll bar
controls both views. A dynamic splitter application starts with a single view object. When the
user splits the frame, other view objects are constructed. When the user unsplits the frame,
view objects are destroyed.

The panes of a static splitter window are defined when the window is first created, and they
cannot be changed. The user can move the bars but cannot unsplit or resplit the window. Static
splitter windows can accommodate multiple view classes, with the configuration set at
creation time. In a static splitter window, each pane has separate scroll bars. In a static splitter
window application, all view objects are constructed when the frame is constructed, and they
are all destroyed when the frame is destroyed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex18a Example: A Single View Class SDI Dynamic Splitter

In this example, the user can dynamically split the view into four panes with four separate
view objects, all managed by a single view class. We’ll use the document and the view code
from the Ex17a example. The MFC Application Wizard lets you add a dynamic splitter
window to a new application. You create an SDI project and select Split Window on the User
Interface Features page, as shown here:

When you select the Split Window check box, the MFC Application Wizard adds code to your
CMainFrame class. Of course, you can add the same code to the CMainFrame class of an
existing application to add splitter capability.

Resources for Splitting

When the MFC Application Wizard generates an application with a splitter frame, it includes a
Split menu command on the project’s View menu. The ID_WINDOW_SPLIT command ID is
mapped in the CView class within the MFC library.

CMainFrame

The application’s main frame window class needs a splitter window data member and a
prototype for an overridden OnCreateClient function. Here are the additions that the MFC
Application Wizard makes to the MainFrm.h file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

protected:
 CSplitterWnd m_wndSplitter;
public:
 virtual BOOL OnCreateClient(LPCREATESTRUCT lpcs,
 CCreateContext* pContext);

The application framework calls the CFrameWnd::OnCreateClient virtual member function
when the frame object is created. The base class version creates a single view window as
specified by the document template. The MFC Application Wizard–generated OnCreateClient
override shown here (in MainFrm.cpp) creates a splitter window instead, and the splitter
window creates the first view:

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 return m_wndSplitter.Create(this,
 2, 2, // TODO: adjust the number of rows, columns
 CSize(10, 10), // TODO: adjust the minimum pane size
 pContext);
}

The CsplitterWnd::Create member function creates a dynamic splitter window, and the
CSplitterWnd object knows the view class because its name is embedded in the
CCreateContext structure that’s passed as a parameter to Create.

The second and third Create parameters (2, 2) specify that the window can be split into a
maximum of two rows and two columns. If you change the parameters to (2, 1), you’ll allow
only a single horizontal split. The parameters (1, 2) allow only a single vertical split. The
CSize parameter specifies the minimum pane size.

Testing the Ex18a Application

When the application starts, you can split the window by choosing Split from the View menu
or by dragging the splitter boxes at the left and top of the scroll bars. Figure 18-1 shows a
typical single view window with a four-way split. Multiple views share the scroll bars.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-1. A single view window with a four-way split.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex18b Example: A Double View Class SDI Static Splitter

In Ex18b, we’ll extend Ex18a by defining a second view class and allowing a static splitter
window to show the two views. (The H and CPP files are cloned from the original view class.)
This time the splitter window works a little differently. Instead of starting off as a single pane,
the splitter is initialized with two panes. The user can move the bar between the panes by
dragging it with the mouse or by choosing the Window Split menu command.

The easiest way to generate a static splitter application is to let the MFC Application Wizard
generate a dynamic splitter application and then edit the generated
CMainFrame::OnCreateClient function.

CHexView

The CHexView class was written to allow programmers to appreciate poetry. It is essentially
the same code used for CStringView except for the OnDraw member function:

void CHexView::OnDraw(CDC* pDC)
{
 // hex dump of document strings
 int i, j, k, l, n, nHeight;
 CString outputLine, str;
 CFont font;
 TEXTMETRIC tm;

 CPoemDoc* pDoc = GetDocument();
 font.CreateFont(-160, 80, 0, 0, 400, FALSE, FALSE, 0,
 ANSI_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY, DEFAULT_PITCH │ FF_SWISS, "Arial");
 CFont* pOldFont = pDC->SelectObject(&font);
 pDC->GetTextMetrics(&tm);
 nHeight = tm.tmHeight + tm.tmExternalLeading;

 j = pDoc->m_stringArray.GetSize();
 for (i = 0; i < j; i++) {
 outputLine.Format("%02x ", i);
 l = pDoc->m_stringArray[i].GetLength();
 for (k = 0; k < l; k++) {
 n = pDoc->m_stringArray[i][k] & 0x00ff;
 str.Format("%02x ", n);
 outputLine += str;
 }
 pDC->TextOut(720, -i * nHeight - 720, outputLine);
 }
 pDC->SelectObject(pOldFont);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function displays a hexadecimal dump of all strings in the document’s m_stringArray
collection. Notice the use of the subscript operator to access individual characters in a CString
object.

CMainFrame

As in Ex18a, the Ex18b application’s main frame window class needs a splitter window data
member and a prototype for an overridden OnCreateClient function. You can let the MFC
Application Wizard generate the code by specifying Split Window, as in Ex18a. You don’t
have to modify the MainFrm.h file.

The implementation file, MainFrm.cpp, needs both view class headers (and the prerequisite
document header), as shown here:

#include "PoemDoc.h"
#include "StringView.h"
#include "HexView.h"

The MFC Application Wizard generates dynamic splitter code in the OnCreateClient function,
so you’ll have to do some editing if you want a static splitter. Instead of calling
CSplitterWnd::Create, you call the CSplitterWnd::CreateStatic function, which is tailored for
multiple view classes. The following calls to CSplitterWnd::CreateView attach the two view
classes. As the second and third CreateStatic parameters (2, 1) dictate, this splitter window
contains only two panes. The horizontal split is initially 100 device units from the top of the
window. The top pane is the string view; the bottom pane is the hex dump view. The user can
change the splitter bar position, but not the view configuration.

BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
 CCreateContext* pContext)
{
 VERIFY(m_wndSplitter.CreateStatic(this, 2, 1));
 VERIFY(m_wndSplitter.CreateView(0, 0, RUNTIME_CLASS(CStringView),
 CSize(100, 100), pContext));
 VERIFY(m_wndSplitter.CreateView(1, 0, RUNTIME_CLASS(CHexView),
 CSize(100, 100), pContext));
 return TRUE;
}

Testing the Ex18b Application

When you start the Ex18b application, the window should look like the one shown here.
Notice the separate horizontal scroll bars for the two views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex18c Example: Switching View Classes Without a Splitter

Sometimes you’ll just want to switch view classes under program control and not be bothered
with a splitter window. The Ex18c example is an SDI application that switches between
CStringView and CHexView in response to commands on the View menu. Starting with what
the MFC Application Wizard generates, all you need to do is add two new menu commands
and then add some code to the CMainFrame class. You also need to change the CStringView
and CHexView constructors from protected to public.

Resource Requirements

The following two commands have been added to the View menu in the IDR_MAINFRAME
menu resource.

Caption Command ID CMainFrame Function

St&ring View ID_VIEW_STRINGVIEW OnViewStringView

&Hex View ID_VIEW_HEXVIEW OnViewHexView

The Class View’s Properties window was used to add the command-handling functions and
corresponding update command user interface handlers to the CMainFrame class.

CMainFrame

The CMainFrame class gets a new private helper function, SwitchToView, which is called
from the two menu command handlers. The enum parameter tells the function which view to
switch to. Here are the two added items in the MainFrm.h header file:

private:
 enum eView { STRING = 1, HEX = 2 };
 void SwitchToView(eView nView);

The SwitchToView function (in MainFrm.cpp) makes some low-level MFC calls to locate the
requested view and activate it. Don’t worry about how it works—just adapt it to your own
applications when you want the view-switching feature. Add the following code:

void CMainFrame::SwitchToView(eView nView)
{
 CView* pOldActiveView = GetActiveView();
 CView* pNewActiveView = (CView*) GetDlgItem(nView);
 if (pNewActiveView == NULL) {
 switch (nView) {
 case STRING:
 pNewActiveView = (CView*) new CStringView;
 break;
 case HEX:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case HEX:
 pNewActiveView = (CView*) new CHexView;
 break;
 }
 CCreateContext context;
 context.m_pCurrentDoc = pOldActiveView->GetDocument();
 pNewActiveView->Create(NULL, NULL, WS_BORDER,
 CFrameWnd::rectDefault, this, nView, &context);
 pNewActiveView->OnInitialUpdate();
 }
 SetActiveView(pNewActiveView);
 pNewActiveView->ShowWindow(SW_SHOW);
 pOldActiveView->ShowWindow(SW_HIDE);
 pOldActiveView->SetDlgCtrlID(
 pOldActiveView->GetRuntimeClass() ==
 RUNTIME_CLASS(CStringView) ? STRING : HEX);
 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
 RecalcLayout();
}

Finally, here are the menu command handlers and update command user interface handlers
that the code wizard available from Class View’s Properties window initially generated (along
with message map entries and prototypes). The update command user interface handlers test
the current view’s class.

void CMainFrame::OnViewStringView()
{
 SwitchToView(STRING);
}

void CMainFrame::OnUpdateViewStringView(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(
 !GetActiveView()->IsKindOf(RUNTIME_CLASS(CStringView)));
}

void CMainFrame::OnViewHexView()
{
 SwitchToView(HEX);
}

void CMainFrame::OnUpdateViewHexView(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(
 !GetActiveView()->IsKindOf(RUNTIME_CLASS(CHexView)));
}

Testing the Ex18c Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex18c application initially displays the CStringView view of the document. You can
toggle between the CStringView and CHexView views by choosing the appropriate command
from the View menu. Both views of the document are shown side by side in Figure 18-2.

Figure 18-2. The CStringView view and the CHexView view of the document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex18d Example: A Multiple View Class MDI Application

The final example, Ex18d, uses the previous document and view classes to create a multiple
view class MDI application without a splitter window. The logic is different from the logic in
the other multiple view class applications. This time the action takes place in the application
class in addition to the main frame class. As you study Ex18d, you’ll gain more insight into
the use of CDocTemplate objects.

This example was generated with the Context-Sensitive Help option on the Advanced Features
page of the MFC Application Wizard. If you’re starting from scratch, use the wizard to
generate an ordinary MDI application with one of the view classes. Then add the second view
class to the project and modify the application class files and main frame class files, as
described in the following sections.

Resource Requirements

Two items have been added to the Window menu in the IDR_Ex18dTYPE menu resource:

Caption Command ID CMainFrame Function

New &String Window
(replaces New Window
item)

ID_WINDOW_NEWSTRINGWINDOWCMDIFrameWnd::OnWindowNew

New &Hex Window ID_WINDOW_NEWHEXWINDOWOnWindowNewhexwindow

Class View’s Properties window was used to add the command-handling function
OnWindowNewhexwindow to the CMainFrame class.

CEx18dApp

In the application class header file, Ex18d.h, the following data member and function
prototype have been added:

public:
 CMultiDocTemplate* m_pTemplateHex;

The implementation file, Ex18d.cpp, contains the #include statements shown here:

#include "PoemDoc.h"
#include "StringView.h"
#include "HexView.h"

The CEx18dApp InitInstance member function has the code shown below inserted
immediately after the AddDocTemplate function call:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

m_pTemplateHex = new CMultiDocTemplate(
 IDR_Ex18dTYPE,
 RUNTIME_CLASS(CPoemDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CHexView));

The AddDocTemplate call generated by the MFC Application Wizard established the primary
document-frame-view combination for the application that is effective when the program
starts. The template object above is a secondary template that can be activated in response to
the New Hex Window menu command.

Now all you need is an ExitInstance member function, which overrides the
WinApp::ExitInstance to clean up the secondary template:

int CEx18dApp::ExitInstance()
{
 delete m_pTemplateHex;
 return CWinApp::ExitInstance(); // saves profile settings
}

CMainFrame

The main frame class implementation file, MainFrm.cpp, has the CHexView class header (and
the prerequisite document header) included:

#include "PoemDoc.h"
#include "HexView.h"

The base frame window class, CMDIFrameWnd, has an OnWindowNew function that is
normally connected to the standard New Window command on the Window menu. The New
String Window command is mapped to this function in Ex18d. The New Hex Window
command is mapped to the command handler function below to create new hex child
windows. The function is a clone of OnWindowNew, adapted for the hex view-specific
template defined in InitInstance.

void CMainFrame::OnWindowNewhexwindow()
{
 CMDIChildWnd* pActiveChild = MDIGetActive();
 CDocument* pDocument;
 if (pActiveChild == NULL ││
 (pDocument = pActiveChild->GetActiveDocument()) == NULL) {
 TRACE("Warning: No active document for WindowNew command\n");
 AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
 return; // Command failed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return; // Command failed
 }
 // Otherwise, we have a new frame!
 CDocTemplate* pTemplate =
 ((CEx18dApp*) AfxGetApp())->m_pTemplateHex;
 ASSERT_VALID(pTemplate);
 CFrameWnd* pFrame =
 pTemplate->CreateNewFrame(pDocument, pActiveChild);
 if (pFrame == NULL) {
 TRACE("Warning: failed to create new frame\n");
 AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
 return; // Command failed
 }
 pTemplate->InitialUpdateFrame(pFrame, pDocument);
}

NOTE
The function cloning above is a useful MFC programming technique. You must
first find a base class function that does almost what you want, and then copy it
from the \Vc7\atlmfc\src\mfc subdirectory into your derived class, changing it as
required. The only danger with cloning is that subsequent versions of the MFC
library might implement the original function differently.

Testing the Ex18d Application

When you start the Ex18d application, a text view child window appears. Choose New Hex
Window from the Window menu. The application should look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19
Context-Sensitive Help

Help technology comes in two flavors these days: HTML format and the classic WinHelp
format. Microsoft Foundation Class (MFC) library application framework programs work with
both WinHelp and HTML Help, but the trend is toward HTML Help. You can see an example
of HTML Help in the Microsoft Visual C++ .NET online documentation.

This chapter shows you how to construct and process a simple standalone help file that has a
table of contents and lets the user jump between topics. You’ll also learn how your MFC
library program activates the help system using help context IDs derived from window and
command IDs keyed to an MFC Application Wizard–generated help file. Finally, you’ll learn
how to use the MFC library help message routing system to customize the help capability.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WinHelp vs. HTML Help

The choice between WinHelp and HTML Help is largely a personal one. The programmatic
interface for accessing and managing each help system from MFC is the same. WinHelp uses
Rich Text Format (RTF), whereas HTML Help uses HTML format. Over the last few years,
several Microsoft Windows help tools such as RoboHELP from Blue Sky Software and
ForeHelp from the Forefront Corporation have made writing standard WinHelp
straightforward, but WinHelp implementations will probably eventually give way to HTML
Help help systems.

The process of accessing topics in classic WinHelp is sequential—you get a list of topics via
an index or table of contents, and when you select a topic WinHelp takes you to another
window. Here’s an example of the default WinHelp produced by the MFC Application
Wizard:

Here’s the screen you see after selecting the “File menu commands” topic. You can get to the
contents or the index or get back to the previous topic by clicking the appropriate button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s an example of the default HTML Help produced by the MFC Application Wizard.
Notice that the left pane of the window includes an Index tab, a Contents tab, and a Search tab,
and that the topic content is shown in the right pane.

The HTML Help system is implemented as an ActiveX control named HHCtrl.ocx.
HHCtrl.ocx provides navigation features and manages secondary windows and pop-up
definitions. HHCtrl.ocx is flexible and will display topics from a precompiled help file as well
as from HTML pages displayed in a Web browser.

Let’s first look at using WinHelp in an MFC application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Windows WinHelp Program

If you’ve used commercial Windows-based applications, you’re familiar with their
sophisticated help screens, in which graphics, hyperlinks, and pop-ups abound. At some
software firms, including Microsoft, help authoring has been elevated to a profession in its
own right. This chapter won’t turn you into a help expert, but you can get started by learning
to prepare a simple no-frills help file.

Rich Text Format

The original Windows SDK documentation showed you how to format help files using the
ASCII file format called Rich Text Format (RTF). We’ll be using RTF too, but we’ll be
working in WYSIWYG mode to avoid the direct use of awkward escape sequences. You’ll
write with the same fonts, sizes, and styles that users will see on the help screens. You’ll
definitely need a word processor that handles RTF. Microsoft Word is just fine, but many
other word processors also accommodate the RTF format.

Writing a Simple Help File

We’re going to write a simple help file with a table of contents and three topics. This help file
is designed to be run directly from WinHelp and started from Windows. No C++
programming is involved. Here are the steps:

1. Create a \vcppnet\Ex19a subdirectory.

2. Write the main help text file. Use Word (or another RTF-compatible word processor) to
type text as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure to apply the double-underline and hidden text formatting correctly and to insert
the page break at the correct place.

NOTE
To see hidden text, you must turn on your word processor’s hidden text
viewing mode. In Word, choose Options from the Tools menu, click on the
View tab, and then select All in the Formatting Marks section.

3. Insert footnotes for the Table Of Contents screen. The Table Of Contents screen is the
first topic screen in this help system. Using the specified custom footnote marks, insert
the following footnotes at the beginning of the topic title:

Footnote Mark Text Description

HID_CONTENTS Help context ID

$ SIMPLE Help Contents Topic title

When you’re finished with this step, the document should look like this:

4. Insert footnotes for the Help Topic 1 screen. The Help Topic 1 screen is the second
topic screen in the help system. Using the specified custom footnote marks, insert these
footnotes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Footnote Mark Text Description

HID_TOPIC1 Help context ID

$ SIMPLE Help Topic 1 Topic title

K SIMPLE Topics Keyword text

5. Clone the Help Topic 1 screen. Copy the entire Help Topic 1 section of the document—
including the page break—to the Clipboard, and then paste two copies of the text into
the document. The footnotes will be copied along with the text. In the first copy, change
all occurrences of 1 to 2. In the second copy, change all occurrences of 1 to 3. Don’t
forget to change the footnotes. With Word, seeing which footnote goes with which topic
can be a little difficult, so be careful. When you’re finished with this step, the document
text (including footnotes) should look like this:

6. Save the document. Save the document as \vcppnet\Ex19a\Simple.rtf. Specify Rich Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Save the document. Save the document as \vcppnet\Ex19a\Simple.rtf. Specify Rich Text
Format as the file type.

7. Write a help project file. Using Visual C++ .NET or another text editor, create the file
\vcppnet\Ex19a\Simple.hpj, as follows:

[OPTIONS]
CONTENTS=HID_CONTENTS
TITLE=SIMPLE Application Help
COMPRESS=true
WARNING=2

[FILES]
Simple.rtf

This file specifies the context ID of the Table Of Contents screen and the name of the
RTF file that contains the help text. Be sure to save the file in text (ASCII) format.

8. Build the help file. From Windows, run the Microsoft Help Workshop (HCRTF) utility
(located by default in Program Files\Microsoft Visual Studio .NET\Common7\Tools).
Open the file \vcppnet\Ex19a\Simple.hpj, and then compile the help file by choosing
Compile from the File menu.

The Windows Help Compiler will run with the project file Simple.hpj. The output will
be the help file Simple.hlp in the same directory.

9. Run WinHelp with the new help file. In Windows Explorer, double-click on the file
\vcppnet\Ex19a\Simple.hlp. The Table Of Contents screen should look like this:

Now move the cursor to Topic 1. Notice that the cursor changes from an arrow to a
pointing hand. When you press the left mouse button, the Help Topic 1 screen should
appear, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HID_TOPIC1 text on the Table Of Contents screen links to the corresponding
context ID (the # footnote) on the topic page. This link is known as a jump.

The link to Topic 2 is coded as a pop-up jump. When you click on Topic 2, here’s what
you’ll see:

10. Click the WinHelp Contents button. Clicking this button should take you to the Table
Of Contents screen, as shown at the beginning of step 9. WinHelp knows the ID of the
Table Of Contents window because you specified it in the HPJ file.

11. Click the WinHelp Index button. When you click the Index button, WinHelp opens its
Index dialog box, which displays the help file’s list of keywords. In Simple.hlp, all
topics (excluding the table of contents) have the same keyword (the K footnotes):
SIMPLE Topics. When you double-click on this keyword, you’ll see all associated topic
titles (the $ footnotes), as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What we have here is a two-level help search hierarchy. The user can type the first few
letters of the keyword and then select a topic from a list box. The more carefully you
select your keywords and topic titles, the more effective your help system will be.

An Improved Table of Contents

You’ve been looking at an “old-style” help table of contents. The latest Win32 version of
WinHelp can give you a modern, tree-view table of contents. All you need is a text file with a
CNT extension. Add a new file, Simple.cnt, in the \vcppnet\Ex19a directory, containing this
text:

:Base Simple.hlp
1 Help topics
2 Topic 1=HID_TOPIC1
2 Topic 2=HID_TOPIC2
2 Topic 3=HID_TOPIC3

Notice the context IDs that match the help file. The next time you run WinHelp with the
Simple.hlp file, you’ll see a new contents screen similar to the one shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use HCRTF to edit CNT files. The CNT file is independent of the HPJ file and
the RTF files. If you update your RTF files, you must make corresponding changes in your
CNT file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Application Framework and WinHelp

You’ve seen WinHelp running as a standalone program. The application framework and
WinHelp cooperate to give you context-sensitive help. Here are some of the main elements:

1. You select the Context-Sensitive Help option when you run the MFC Application
Wizard. Select WinHelp (rather than HTML Text) as the help system.

2. The MFC Application Wizard generates a Help Topics command on your application’s
Help menu, and it creates one or more generic RTF files together with an HPJ file and a
batch file that runs the Help Compiler.

3. The MFC Application Wizard inserts a keyboard accelerator for the F1 key, and it maps
the F1 key and the Help Topics command to member functions in the main frame
window object.

4. When your program runs, it calls WinHelp when the user presses F1 or chooses the
Help Topics command, passing a context ID that determines which help topic is
displayed.

You now need to understand how WinHelp is called from another application and how your
application generates context IDs for WinHelp.

Calling WinHelp

The CWinApp member function WinHelp activates WinHelp from within your application. If
you look up WinHelp in the online documentation, you’ll see a long list of actions that the
optional second parameter controls. We’ll ignore the second parameter and pretend that
WinHelp has only one unsigned long integer parameter, dwData. This parameter corresponds
to a help topic.

Suppose the SIMPLE help file is available and that your program contains the following
statement:

AfxGetApp()->WinHelp(HID_TOPIC1);

When the statement is executed in response to the F1 key or some other event, the Help Topic
1 screen appears, as it would if the user had clicked on Topic 1 in the Help Table Of Contents
screen.

“Wait a minute,” you might say. “How does WinHelp know which help file to use?” The
name of the help file matches the application name. If the executable program name is
Simple.exe, the help file is named Simple.hlp.

NOTE
You can force WinHelp to use a different help file by setting the CWinApp data
member m_pszHelpFilePath.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

member m_pszHelpFilePath.

And how does WinHelp match the program constant HID_TOPIC1 to the help file’s context
ID? The help project file must contain a MAP section that maps context IDs to numbers. If
your application’s resource.h file defines HID_TOPIC1 as 101, the Simple.hpj MAP section
will look like this:

[MAP]
HID_TOPIC1 101

The program’s #define constant name doesn’t have to match the help context ID; only the
numbers must match. Making the names correspond is good practice, however.

Using Search Strings

For a text-based application, you might need help based on a keyword rather than a numeric
context ID. In this case, you can use the WinHelp HELP_KEY or HELP_PARTIALKEY
option, as follows:

CString string("find this string");
AfxGetApp()->WinHelp((DWORD) (LPCSTR) string, HELP_KEY);

The double cast for string is necessary because the first WinHelp parameter is multi-purpose;
its meaning depends on the value of the second parameter.

Calling WinHelp from the Application’s Menu

The MFC Application Wizard generates a Help Topics command on the Help menu, and it
maps that command to CWnd::OnHelpFinder in the main frame window, which calls
WinHelp in this way:

AfxGetApp()->WinHelp(0L, HELP_FINDER);

With this call, WinHelp displays the Help Table Of Contents screen, and the user can navigate
through the help file using jumps and searches.

If you want the old-style table of contents, you can call WinHelp in this way instead:

AfxGetApp()->WinHelp(0L, HELP_INDEX);

And if you want a “help on help” item, you can make this call:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AfxGetApp()->WinHelp(0L, HELP_HELPONHELP);

HELP_HELPONHELP is a standard identifier that asks the help system to display help on
how to use Windows Help. This works only if the Winhlp32.hlp file is available.

Help Context Aliases

The ALIAS section of the HPJ file allows you to equate one context ID with another. Suppose
your HPJ file contains the following statements:

[ALIAS]
HID_TOPIC1 = HID_GETTING_STARTED

[MAP]
HID_TOPIC1 101

Your RTF files can use HID_TOPIC1 and HID_GETTING_STARTED interchangeably. Both
will be mapped to the help context 101 as generated by your application.

Determining the Help Context

You now have enough information to add a simple context-sensitive help system to an MFC
program. You define F1 (the standard MFC library Help key) as a keyboard accelerator, and
then you write a command handler that maps the program’s help context to a WinHelp
parameter. You could invent your own method for mapping the program state to a context ID,
but why not take advantage of the system that’s already built into the application framework?

The application framework determines the help context based on the ID of the active program
element. These identified program elements include menu commands, frame windows, dialog
boxes, message boxes, and control bars. For example, a menu command might be identified as
ID_EDIT_CLEARALL. The main frame window usually has the IDR_MAINFRAME identifier.
You might expect these identifiers to map directly to help context IDs. IDR_MAINFRAME,
for example, will map to a help context ID of the same name. But what if a frame ID and a
command ID have the same numeric value? Obviously, you need a way to prevent such
overlaps.

The application framework solves the overlap problem by defining a new set of help #define
constants that are derived from program element IDs. These help constants are the sum of the
element ID and a base value, as shown in the following table.

Program Element Element ID
Prefix

Help Context ID
Prefix

Base
(Hexadecimal)

Menu command or toolbar
button

ID_, IDM_ HID_, HIDM_ 10000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Frame or dialog box IDR_, IDD_ HIDR_, HIDD 20000

Error message box IDP_ HIDP_ 30000

Nonclient area H… 40000

Control bar IDW_ HIDW_ 50000

Dispatch error messages 60000

HID_EDIT_CLEARALL (0x1E121) corresponds to ID_EDIT_CLEARALL (0xE121), and
HIDR_MAINFRAME (0x20080) corresponds to IDR_MAINFRAME (0x80).

F1 Help

Two separate context-sensitive help access methods are built into an MFC application and are
available if you’ve selected the MFC Application Wizard’s Context-Sensitive Help option.
The first is standard F1 help. The user presses F1, the program makes its best guess about the
help context, and then it calls WinHelp. In this mode, it is possible to determine the currently
selected menu command or the currently selected window (frame, view, dialog box, or
message box).

Shift+F1 Help

With Shift+F1 help, which is more powerful than the F1 mode, the program can identify the
following help contexts:

A menu command selected with the mouse cursor

A toolbar button

A frame window

A view window

A specific graphics element within a view window

The status bar

Various nonclient elements such as the system menu control

NOTE
Shift+F1 help doesn’t work with modal dialog boxes or message boxes.

The user activates Shift+F1 help by pressing Shift+F1 or by clicking the Context Help toolbar
button. In either case, the mouse cursor changes to include a question mark next to it. On the
next mouse click, the help topic appears, with the position of the mouse cursor determining the
context.

Message Box Help: The AfxMessageBox Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The global function AfxMessageBox displays application framework error messages. This
function is similar to the CWnd::MessageBox member function except that it has a help
context ID as a parameter. The application framework maps this ID to a WinHelp context ID
and then calls WinHelp when the user presses F1. If you can use the AfxMessageBox help
context parameter, be sure to use prompt IDs that begin with IDP_. In your RTF file, use help
context IDs that begin with HIDP_.

There are two versions of AfxMessageBox. In the first version, the prompt string is specified
by a character-array pointer parameter. In the second version, the prompt ID parameter
specifies a string resource. If you use the second version, your executable program will be
more efficient. Both AfxMessageBox versions take a style parameter that makes the message
box display an exclamation point, a question mark, or another graphics symbol.

Generic Help

When context-sensitive help is enabled, the MFC Application Wizard assembles a series of
default help topics that are associated with standard MFC library program elements. Here are
some of the standard topics:

Menu and toolbar commands (File, Edit, and so forth)

Nonclient window elements (maximize box, title bar, and so forth)

Status bar

Error message boxes

These topics are contained in the files AfxCore.rtf and AfxPrint.rtf, which are copied, along
with the associated bitmap files, to the application’s \hlp subdirectory. Your job is to
customize the generic help files.

NOTE
The MFC Application Wizard generates AfxPrint.rtf only if you specify the
Printing And Print Preview option.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Help Example with No Programming Required

If you followed the instructions for the Ex18d example in Chapter 18, you selected the MFC
Application Wizard’s Context-Sensitive Help option. We’ll now use that example to explore
the application framework’s built-in help capability. You’ll see how easy it is to link help
topics to menu command IDs and frame window resource IDs. We’ll edit RTF files, not CPP
files.

Here are the steps for customizing the help for Ex18d:

1. Verify that the help file was built correctly. If you’ve built the Ex18d project, the help
file was probably created correctly as part of the build process. Check this by running
the application and then pressing the F1 key. You should see the generic Application
Help screen with the title “Modifying the Document,” as shown here:

If you do not see this screen, the help file was not built correctly. You can rebuild it by
rebuilding the entire solution. Rerun the Ex18d program, and press F1 again.

2. Test the generic help file. Try the following experiments:

Close the Help dialog box, press Alt+F, and then press F1. This should open the
help topic for the File New command. You can also press F1 while holding down
the mouse button on the File New command to see the same help topic.

Close the Help dialog box, click the Context Help toolbar button and then choose
Save from the File menu. You should get the appropriate help topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Context Help toolbar button again, and then select the frame window’s
title bar. You should get an explanation of a Windows title bar.

Close all child windows and then press F1. You should see a main index page that
is also an old-style table of contents.

3. Change the application title. The file AfxCore.rtf, in the \vcppnet\Ex18d\hlp directory,
contains the string <<YourApp>> throughout. Replace it globally with Ex18d.

4. Change the Modifying The Document Help screen. The file AfxCore.rtf in the
\vcppnet\Ex18d\hlp directory contains text for the generic Application Help screen.
Search on Modifying the Document, and then change the text to something appropriate
for the application. This topic has the help context ID HIDR_DOC1TYPE. The
generated Ex18d.hpj file provides the alias HIDR_Ex18dTYPE.

5. Add a topic for the New String Window and New Hex Window commands on the
Window menu. The New String Window and New Hex Window commands were added
to Ex18d, but without appropriate help text. Add a topic to AfxCore.rtf, as shown here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Be sure the # footnote that links the topic to the context ID uses
HID_WINDOW_NEWSTRINGWINDOW and HID_WINDOW_NEWHEXWINDOW, as
defined in hlp\Ex18d.hm. The program’s command ID for the New String Window
command is ID_WINDOW_NEWSTRINGWINDOW. The command ID for a new hex
window is ID_WINDOW_NEWHEXWINDOW.

6. Rebuild and test the application. Rebuild the entire application to synchronize the help
files. Try the two new help links.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Help Command Processing

You’ve seen the components of a help file, and you’ve seen the effects of F1 and Shift+F1.
You know how the application element IDs are linked to help context IDs. What you haven’t
seen is the application framework’s internal processing of the help requests. Why should you
be concerned? Suppose you want to provide help on a specific view window instead of a
frame window. What if you need help topics linked to specific graphics items in a view
window? You can address these and other needs by mapping the appropriate help messages in
the view class.

Help command processing depends on whether the help request was an F1 request or a
Shift+F1 request. Let’s look at the processing of each help request separately.

F1 Processing

The F1 key is normally handled by a keyboard accelerator entry that the MFC Application
Wizard inserts in the RC file. The accelerator associates the F1 key with an ID_HELP
command that is sent to the OnHelp member function in the CFrameWnd class.

NOTE
In an active modal dialog box or a menu command in progress, the F1 key is
processed by a Windows hook that causes the same OnHelp function to be called.
The F1 accelerator key would otherwise be disabled.

The CFrameWnd::OnHelp function sends an MFC-defined WM_COMMANDHELP message
to the innermost window, which is usually the view. If your view class does not map this
message or if the handler returns FALSE, the framework will route the message to the next
outer window, which is either the MDI child frame or the main frame. If you have not mapped
WM_COMMANDHELP in your derived frame window classes, the message will be processed
in the MFC CFrameWnd class, which displays help for the symbol that the MFC Application
Wizard generates for your application or document type.

If you map the WM_COMMANDHELP message in a derived class, your handler must call
CWinApp::WinHelp with the proper context ID as a parameter.

For any application, the MFC Application Wizard adds the symbol IDR_MAINFRAME to
your project and the HM file defines the help context ID HIDR_MAINFRAME, which is
aliased to main_index in the HPJ file. The standard AfxCore.rtf file associates the main index
with this context ID.

For an MDI application named SAMPLE, for example, the MFC Application Wizard will also
add the symbol IDR_SAMPLETYPE to your project and the HM file will define the help
context ID HIDR_SAMPLETYPE, which is aliased to HIDR_DOC1TYPE in the HPJ file. The
standard AfxCore.rtf file will associate the topic “Modifying the Document” with this context
ID.

Shift+F1 Processing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the user presses Shift+F1 or clicks the Context Help toolbar button, a command
message is sent to the CFrameWnd function OnContextHelp. When the user presses the mouse
button again after positioning the mouse cursor, an MFC-defined WM_HELPHITTEST
message is sent to the innermost window where the mouse click is detected. From that point
on, the routing of this message is identical to that for the WM_COMMANDHELP message,
described previously.

The lParam parameter of OnHelpHitTest contains the mouse coordinates in device units,
relative to the upper left corner of the window’s client area. The y value is in the high-order
half; the x value is in the low-order half. You can use these coordinates to set the help context
ID specifically for an item in the view. Your OnHelpHitTest handler should return the correct
context ID; the framework will call WinHelp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example Ex19b: Help Command Processing

Ex19b is based on example Ex18d from Chapter 18. It’s a two-view MDI application with
view-specific help added. Each of the two view classes has an OnCommandHelp message
handler to process F1 help requests and an OnHelpHitTest message handler to process
Shift+F1 help requests.

Header Requirements

The compiler recognizes help-specific identifiers only if the following #include statement is
present:

#include <afxpriv.h>

In Ex19b, the statement is in the StdAfx.h file.

CStringView

The modified string view in StringView.h needs message map function prototypes for both F1
help and Shift+F1 help, as shown here:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);

Here are the message map entries in StringView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)

The OnCommandHelp message handler member function in StringView.cpp processes F1
help requests. It responds to the message sent from the MDI main frame and displays the help
topic for the string view window, as shown here:

LRESULT CStringView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{
 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_STRINGVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the OnHelpHitTest member function handles Shift+F1 help, as shown here:

LRESULT CStringView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)
{
 return HID_BASE_RESOURCE + IDR_STRINGVIEW;
}

In a more complex application, you might want OnHelpHitTest to set the help context ID
based on the mouse cursor position.

CHexView

The CHexView class processes help requests the same way as the CStringView class does.
Following is the necessary header code in HexView.h:

afx_msg LRESULT OnCommandHelp(WPARAM wParam, LPARAM lParam);
afx_msg LRESULT OnHelpHitTest(WPARAM wParam, LPARAM lParam);

Here are the message map entries in HexView.cpp:

ON_MESSAGE(WM_COMMANDHELP, OnCommandHelp)
ON_MESSAGE(WM_HELPHITTEST, OnHelpHitTest)

And here is the implementation code in HexView.cpp:

LRESULT CHexView::OnCommandHelp(WPARAM wParam, LPARAM lParam)
{
 if (lParam == 0) { // context not already determined
 lParam = HID_BASE_RESOURCE + IDR_HEXVIEW;
 }
 AfxGetApp()->WinHelp(lParam);
 return TRUE;
}

LRESULT CHexView::OnHelpHitTest(WPARAM wParam, LPARAM lParam)
{
 return HID_BASE_RESOURCE + IDR_HEXVIEW;
}

Resource Requirements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two new symbols were added to the project’s Resource.h file. Their values and corresponding
help context IDs are shown here:

Symbol Value Help Context ID Value

IDR_STRINGVIEW 101 HIDR_STRINGVIEW 0x20065

IDR_HEXVIEW 102 HIDR_HEXVIEW 0x20066

Help File Requirements

Two topics were added to the AfxCore.rtf file with the help context IDs HIDR_STRINGVIEW
and HIDR_HEXVIEW, as shown here:

The generated Ex19b.hm file, which is in the project’s \hlp subdirectory, should look like this:

// Commands (ID_* and IDM_*)
HID_WINDOW_NEWHEXWINDOW 0x10082
HID_WINDOW_NEWSTRINGWINDOW 0x10083

// Prompts (IDP_*)
HIDP_OLE_INIT_FAILED 0x30064

// Resources (IDR_*)
HIDR_MANIFEST 0x20001
HIDR_MAINFRAME 0x20080
HIDR_Ex19bTYPE 0x20081
HIDR_STRINGVIEW 0x20065

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HIDR_STRINGVIEW 0x20065
HIDR_HEXVIEW 0x20066

// Dialogs (IDD_*)
HIDD_ABOUTBOX 0x20064

// Frame Controls (IDW_*)

Testing the Ex19b Application

To test the application, open a string child window and a hexadecimal child window. Test the
action of F1 help and Shift+F1 help within those windows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC and HTML Help

When you add help to your application, the second option is to use HTML Help. MFC
applications access HTML Help in much the same way that they access WinHelp file. The
application feeds context-sensitive help IDs into the help system, and the help system displays
the appropriate help screen. However, HTML Help files are constructed differently than
WinHelp files. HTML Help files are compiled from a number of HTML pages rather than
from a single RTF file.

The following table shows the files generated by the MFC Application Wizard when you
select HTML Help Format as the help system:

File Description

HTMLDefines.h Includes the context IDs for the entire project.

HTML help
documents

HTML files that define the help text—generally one per help topic.

projectname.hhc HTML Help Compiler file that contains instructions to the HTML Help
compiler about how to compile the help contents.

projectname.hhp HTML Help Compiler file that defines directives for compiling a help
project.

Main_index.htm Top-level HTM file. This is also where you add your own help topics.

Let’s take a look at how to add HTML Help to an MFC application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example Ex19c: HTML Help

Ex19c is also based on example Ex18d. It is an MDI application that includes two views to a
single document and uses HTML Help. The example was created using the MFC Application
Wizard with HTML Help Format selected on the Advanced Features page.

If you look in the file hid_window_newhexwindow.htm, you’ll see some updated help text
reflecting the New String Window menu command. This is the text that appears whenever you
select context-sensitive help for the New String Window command. Also notice a new file
(one not generated by the MFC Application Wizard) named hid_window_newhex.htm, which
is the help text that appears for the New Hex Window command.

If you’re feeling gutsy, you can modify the help files with Notepad. The file includes tags that
are used by the HTML help system, so tread lightly. However, a better option is to open the
.HTM file in Visual Studio .NET. Visual Studio .NET understands HTML files and lets you
edit them easily.

You might wonder how to create new help topics in the first place? The easiest way to create a
new help topic is to take an existing HTM file, rename it appropriately, and then add new
content to the file. Then you associate the new HTM file with the command ID as described
below.

Visual Studio .NET adds help context IDs when you add new menu commands to the program
and recompile it. Near the top of the HTMLDefines.h file, you’ll see the following lines,
which define help contexts for the New String Window menu command and the New Hex
Window menu command:

#define HID_WINDOW_NEWSTRINGWINDOW 0x10082
#define HID_WINDOW_NEWHEXWINDOW 0x10083

In addition to the standard menu command help created by the MFC Application Wizard,
Ex19c has a new help topic for the New Hex Window command. The help context ID was
generously included by Visual Studio .NET when the command was added. Now it needs to
be tied to the hid_window_newhexwindow.htm file. A line in the Ex19c.hhp file associates the
help context ID with the help file:

hid_window_newhexwindow = hid_window_newhexwindow.htm

Finally, the Ex19c.hhp file includes a reference to the new HTML file under the files tag:

[FILES]
afx_hidd_color.htm
afx_hidd_fileopen.htm
afx_hidd_filesave.htm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hid_window_newstringwindow.htm
hid_window_newhexwindow.htm
hid_window_split.htm

Once you relate the HTML files to the help command IDs, there’s nothing else you need to do
to get the help topics working. The rest of the built-in MFC help functionality will take care of
the details for you. To see for yourself, run the Ex19c example, select various menu
commands and push F1. You’ll see the correct help screens appear after pressing F1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20
Dynamic-Link Libraries

Dynamic-link libraries (DLLs) lie at the heart of the Microsoft Windows component model—
even with the Microsoft .NET common language runtime right around the corner. Windows is
itself composed of DLLs, which are binary modules. Binary modularity is different from
source code modularity, which is what C++ employs. Instead of programming giant EXEs that
you must rebuild and test each time you make a change, you can build smaller DLL modules
and test them individually. You can, for example, put a C++ class in a DLL, which might be
as small as 12 KB after compiling and linking. Client programs can load and link your DLL
very quickly when they run.

DLLs have become quite easy to write. Win32 has greatly simplified the programming model,
and more and better support is available from the Microsoft Foundation Class (MFC) DLL
Wizard and the MFC library. This chapter shows you how to write DLLs in C++ and how to
write client programs that use DLLs. We’ll explore how Win32 maps DLLs into your
processes, and you’ll learn the differences between MFC library regular DLLs and MFC
library extension DLLs. You’ll see examples of simple DLLs of both types as well as a more
complex DLL example that implements a custom control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DLL Fundamentals

Before we look at the application framework’s support for DLLs, you must understand how
Win32 integrates DLLs into your process. You might want to review Chapter 10 to refresh
your knowledge of processes and virtual memory. Remember that a process is a running
instance of a program and that the program starts out as an EXE file on disk.

Basically, a DLL is a file on disk (usually with a DLL extension) consisting of global data,
compiled functions, and resources that becomes part of your process. A DLL is compiled to
load at a preferred base address, and if there’s no conflict with other DLLs, the file is mapped
to the same virtual address in your process. The DLL has various exported functions, and the
client program (the program that loaded the DLL in the first place) imports those functions.
Windows matches up the imports and exports when it loads the DLL.

NOTE
Win32 DLLs allow exported global variables as well as functions.

In Win32, each process gets its own copy of the DLL’s read/write global variables. If you
want to share memory among processes, you must use a memory-mapped file or declare a
shared data section, as described in Jeffrey Richter’s Programming Applications for Microsoft
Windows (Microsoft Press, 1999). Whenever your DLL requests heap memory, that memory
is allocated from the client process’s heap.

How Imports Are Matched to Exports

A DLL contains a table of exported functions. These functions are identified to the outside
world by their symbolic names and (optionally) by integers called ordinal numbers. The
function table also contains the addresses of the functions within the DLL. When the client
program first loads the DLL, it doesn’t know the addresses of the functions it needs to call, but
it does know the symbols or ordinals. The dynamic linking process then builds a table that
connects the client’s calls to the function addresses in the DLL. If you edit and rebuild the
DLL, you don’t need to rebuild your client program unless you’ve changed function names or
parameter sequences.

NOTE
In a simple world, you’d have one EXE file that imports functions from one or
more DLLs. In the real world, many DLLs call functions inside other DLLs. Thus,
a particular DLL can have both exports and imports. This is not a problem because
the dynamic linkage process can handle cross-dependencies.

In the DLL code, you must explicitly declare your exported functions as follows. (The
alternative is to list your exported functions in a module-definition [DEF] file, but that’s
usually more troublesome.)

__declspec(dllexport) int MyFunction(int n);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__declspec(dllexport) int MyFunction(int n);

On the client side, you must declare the corresponding imports like this:

__declspec(dllimport) int MyFunction(int n);

If you’re using C++, the compiler generates a decorated name for MyFunction that other
languages can’t use. These decorated names are the long names that the compiler invents
based on class name, function name, and parameter types. They are listed in the project’s
MAP file. If you want to use the plain name MyFunction, you have to write the declarations in
this way:

extern "C" __declspec(dllexport) int MyFunction(int n);
extern "C" __declspec(dllimport) int MyFunction(int n);

NOTE
By default, the compiler uses the __cdecl argument-passing convention, which
means that the calling program pops the parameters off the stack. Some client
languages might require the __stdcall convention, which replaces the Pascal
calling convention and results in the called function popping the stack. As a result,
you might have to use the __stdcall modifier in your DLL export declaration.

Just having import declarations isn’t enough to make a client link to a DLL. The client’s
project must specify the import library (LIB) to the linker, and the client program must
actually contain a call to at least one of the DLL’s imported functions. That call statement
must be in an executable path in the program.

Implicit Linkage vs. Explicit Linkage

The preceding section primarily described implicit linking, which is what C++ programmers
will probably use for their DLLs. When you build a DLL, the linker produces a companion
import LIB file, which contains every DLL’s exported symbols and (optionally) ordinals, but
no code. The LIB file is a surrogate for the DLL that’s added to the client program’s project.
When you build (statically link) the client, the imported symbols are matched to the exported
symbols in the LIB file, and those symbols (or ordinals) are bound into the EXE file. The LIB
file also contains the DLL filename (but not its full pathname), which gets stored in the EXE
file. When the client is loaded, Windows finds and loads the DLL and then dynamically links
it by symbol or by ordinal.

Explicit linking is more appropriate for interpreted languages such as Microsoft JScript, but
you can use it from C++ if you need to. With explicit linking, you don’t use an import file;
instead, you call the Win32 LoadLibrary function, specifying the DLL’s pathname as a
parameter. LoadLibrary returns an HINSTANCE parameter that you can use in a call to
GetProcAddress, which converts a symbol (or an ordinal) to an address inside the DLL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose you have a DLL that exports a function such as this:

extern "C" __declspec(dllexport) double SquareRoot(double d);

Here’s an example of a client’s explicit linkage to the function:

typedef double (SQRTPROC)(double);
HINSTANCE hInstance;
SQRTPROC* pFunction;
VERIFY(hInstance = ::LoadLibrary("c:\\winnt\\system32\\mydll.dll"));
VERIFY(pFunction = (SQRTPROC*)::GetProcAddress(hInstance, "SquareRoot"));
double d = (*pFunction)(81.0); // Call the DLL function

With implicit linkage, all DLLs are loaded when the client is loaded, but with explicit linkage,
you can determine when DLLs are loaded and unloaded. Explicit linkage allows you to
determine at run time which DLLs to load. You can, for example, have one DLL with string
resources in English and another with string resources in Spanish. Your application will load
the appropriate DLL after the user chooses a language.

Symbolic Linkage vs. Ordinal Linkage

In Win16, the more efficient ordinal linkage was the preferred linkage option. In Win32, the
efficiency of symbolic linkage has been improved. Microsoft now recommends symbolic over
ordinal linkage. The DLL version of the MFC library, however, uses ordinal linkage.

A typical MFC program might link to hundreds of functions in the MFC DLL. Ordinal linkage
permits that program’s EXE file to be smaller because it does not have to contain the long
symbolic names of its imports. If you build your own DLL with ordinal linkage, you must
specify the ordinals in the project’s DEF file, which doesn’t have too many other uses in the
Win32 environment. If your exports are C++ functions, you must use decorated names in the
DEF file (or declare your functions with extern “C”).

Here’s a short extract from one of the MFC library DEF files:

 ??0CRecentFileList@@QAE@IPBD0HH@Z @ 479 NONAME
 ??0CRecordset@@QAE@PAVCDatabase@@@Z @ 480 NONAME
 ??0CRecordView@@IAE@I@Z @ 481 NONAME
 ??0CRecordView@@IAE@PBD@Z @ 482 NONAME
 ??0CRectTracker@@QAE@PBUtagRECT@@I@Z @ 483 NONAME
 ??0CReObject@@QAE@PAVCRichEditCntrItem@@@Z @ 484 NONAME
 ??0CReObject@@QAE@XZ @ 485 NONAME
 ??0CResetPropExchange@@QAE@XZ @ 486 NONAME
 ??0CRichEditCntrItem@@QAE@PAU_reobject@@PAVCRichEditDoc@@@Z @ 487 NONAME
 ??0CRichEditDoc@@IAE@XZ @ 488 NONAME
 ??0CRichEditView@@QAE@XZ @ 489 NONAME
 ??0CScrollView@@IAE@XZ @ 490 NONAME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ??0CScrollView@@IAE@XZ @ 490 NONAME
 ??0CSemaphore@@QAE@JJPBDPAU_SECURITY_ATTRIBUTES@@@Z @ 491 NONAME
 ??0CSharedFile@@QAE@II@Z @ 492 NONAME

The numbers after the @ symbols are the ordinals. (Kind of makes you want to use symbolic
linkage instead, doesn’t it?)

The DLL Entry Point: DllMain

By default, the linker assigns the main entry point _DllMainCRTStartup to your DLL. When
Windows loads the DLL, it calls this function, which first calls the constructors for global
objects and then calls the global function DllMain, which you’re supposed to write. DllMain is
called not only when the DLL is attached to the process but also when it is detached (and at
other times as well).

Here’s a skeleton DllMain function:

HINSTANCE g_hInstance;
extern "C" int APIENTRY
 DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("Ex20a.DLL Initializing!\n");
 // Do initialization here
 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 TRACE0("Ex20a.DLL Terminating!\n");
 // Do cleanup here
 }
 return 1; // ok
}

If you don’t write a DllMain function for your DLL, a do-nothing version will be brought in
from the runtime library.

The DllMain function is also called when individual threads are started and terminated, as
indicated by the dwReason parameter. Richter’s book tells you all you need to know about this
complex subject.

Instance Handles: Loading Resources

Each DLL in a process is identified by a unique 32-bit HINSTANCE value. In addition, the
process itself has an HINSTANCE value. All these instance handles are valid only within a
particular process, and they represent the starting virtual address of the DLL or EXE. In
Win32, the HINSTANCE and HMODULE values are the same and the types can be used

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32, the HINSTANCE and HMODULE values are the same and the types can be used
interchangeably. The process (EXE) instance handle is almost always 0x400000, and the
handle for a DLL loaded at the default base address is 0x10000000. If your program uses
several DLLs, each will have a different HINSTANCE value, either because the DLLs had
different base addresses specified at build time or because the loader copied and relocated the
DLL code.

Instance handles are particularly important for loading resources. The Win32 FindResource
function takes an HINSTANCE parameter. EXEs and DLLs can each have their own resources.
If you want a resource from the DLL, you specify the DLL’s instance handle. If you want a
resource from the EXE file, you specify the EXE’s instance handle.

How do you get an instance handle? If you want the EXE’s handle, you call the Win32
GetModuleHandle function with a NULL parameter. If you want the DLL’s handle, you call
the Win32 GetModuleHandle function with the DLL name as a parameter. Later, you’ll see
that the MFC library has its own method of loading resources by searching various modules in
sequence.

How the Client Program Finds a DLL

If you link explicitly using LoadLibrary, you can specify the DLL’s full pathname. If you
don’t specify the pathname, or if you link implicitly, Windows will follows this search
sequence to locate your DLL:

1. The directory containing the EXE file

2. The process’s current directory

3. The Windows system directory

4. The Windows directory

5. The directories listed in the Path environment variable

Here’s a trap you can easily fall into. You build a DLL as one project, copy the DLL file to the
system directory, and then run the DLL from a client program. So far, so good. Next, you
rebuild the DLL with some changes, but you forget to copy the DLL file to the system
directory. The next time you run the client program, it loads the old version of the DLL. Be
careful!

Debugging a DLL

Visual C++ makes debugging a DLL easy. You just run the debugger from the DLL project.
The first time you do this, the debugger will ask for the pathname of the client EXE file. Every
time you “run” the DLL from the debugger after this, the debugger will load the EXE, but the
EXE will use the search sequence to find the DLL. This means that you must either set the
Path environment variable to point to the DLL or copy the DLL to a directory in the search
sequence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC DLLs: Extension vs. Regular

We’ve been looking at Win32 DLLs that have a DllMain function and some exported
functions. Now we’ll move on to the MFC application framework, which adds its own support
layer on top of the Win32 basics. The MFC Application Wizard lets you build two kinds of
DLLs with MFC library support: extension DLLs and regular DLLs. You must understand the
differences between these two types so you can decide which one is best for your needs.

NOTE
Of course, Visual C++ .NET lets you build a pure Win32 DLL without the MFC
library, just as it lets you build a Windows-based program without the MFC
library.

An extension DLL supports a C++ interface. In other words, the DLL can export whole
classes and the client can construct objects of those classes or derive classes from them. An
extension DLL dynamically links to the code in the DLL version of the MFC library.
Therefore, an extension DLL requires that your client program be dynamically linked to the
MFC library (the MFC Application Wizard default) and that both the client program and the
extension DLL be synchronized to the same version of the MFC DLLs (mfc70.dll, mfc70d.dll,
and so on). Extension DLLs are quite small; you can build a simple extension DLL with a size
of 10 KB, which will load quickly.

If you need a DLL that can be loaded by any Win32 programming environment, you should
use a regular DLL. A big restriction here is that the regular DLL can export only C-style
functions. It can’t export C++ classes, member functions, or overloaded functions because
every C++ compiler has its own method of decorating names. You can, however, use C++
classes (and MFC library classes, in particular) inside your regular DLL. Implementing a
COM interface for your DLL also solves the issue of integrating with Visual Basic.

When you build an MFC regular DLL, you can choose to statically link or dynamically link to
the MFC library. If you choose static linking, your DLL will include a copy of all the MFC
library code it needs and will thus be self-contained. A typical release-build statically linked
regular DLL is about 144 KB. If you choose dynamic linking, the size will drop to about 17
KB but you’ll have to ensure that the proper MFC DLLs are present on the target machine.
That’s no problem if the client program is already dynamically linked to the same version of
the MFC library.

When you tell the MFC wizards what kind of DLL or EXE you want, compiler #define
constants are set as shown in the following table.

Dynamically Linked to Shared MFC
Library

Statically Linked to MFC
Library

Regular DLL _AFXDLL, _USRDLL _USRDLL

Extension
DLL

_AFXEXT, _AFXDLL Unsupported option

Client EXE _AFXDLL No constants defined

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you look inside the MFC source code and header files, you’ll see a lot of #ifdef statements
for these constants. This means that the library code is compiled quite differently depending
on the kind of project you’re producing.

MFC Extension DLLs: Exporting Classes

If your extension DLL contains only exported C++ classes, you’ll have an easy time building
and using it. The steps shown later for building the Ex20a example show you how to tell the
MFC DLL Wizard that you’re building an extension DLL skeleton. That skeleton has only the
DllMain function. You simply add your own C++ classes to the project. There’s only one
special thing you must do: You must add the macro AFX_EXT_CLASS to the class declaration,
as shown here:

class AFX_EXT_CLASS CStudent : public CObject

This modification goes into the H file that’s part of the DLL project, and it also goes into the
H file that client programs use. In other words, the H files are exactly the same for both client
and DLL. The macro generates different code depending on the situation—it exports the class
in the DLL and imports the class in the client.

The MFC Extension DLL Resource Search Sequence

If you build a dynamically linked MFC client application, many of the MFC library’s standard
resources (error message strings, print preview dialog templates, and so on) will be stored in
the MFC DLLs, but your application will have its own resources, too. When you call an MFC
function such as CString::LoadString or CBitmap::LoadBitmap, the framework will step in
and search first the EXE file’s resources and then the MFC DLL’s resources.

If your program includes an extension DLL and your EXE needs a resource, the search
sequence will be first the EXE file, then the extension DLL, and then the MFC DLLs. If you
have a string resource ID, for example, that is unique among all resources, the MFC library
will find it. If you have duplicate string IDs in your EXE file and your extension DLL file, the
MFC library will load the string in the EXE file.

If the extension DLL loads a resource, the sequence will be first the extension DLL, then the
MFC DLLs, and then the EXE.

You can change the search sequence if you need to. Suppose you want your EXE code to
search the extension DLL’s resources first. You can use code such as this:

HINSTANCE hInstResourceClient = AfxGetResourceHandle();
// Use DLL's instance handle
AfxSetResourceHandle(::GetModuleHandle("mydllname.dll"));
CString strRes;
strRes.LoadString(IDS_MYSTRING);
// Restore client's instance handle
AfxSetResourceHandle(hInstResourceClient);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AfxSetResourceHandle(hInstResourceClient);

You can’t use AfxGetInstanceHandle instead of ::GetModuleHandle. In an extension DLL,
AfxGetInstanceHandle returns the EXE’s instance handle, not the DLL’s handle.

The Ex20a Example: An MFC Extension DLL

This example makes an extension DLL out of the CPersistentFrame class you saw in Chapter
14. First you’ll build the Ex20a.dll file, and then you’ll use it in a test client program, Ex20b.

Here are the steps for building the Ex20a example:

1. Run the MFC DLL Wizard to produce the Ex20a project. Choose New Project from the
Visual Studio .NET File menu. Select Visual C++ Projects, and then select MFC DLL
from the list of templates. On the Application Settings page, select the MFC Extension
DLL, as shown here:

2. Examine the Ex20a.cpp file. The MFC DLL Wizard generates the following code,
which includes the DllMain function:

// Ex20a.cpp : Defines the initialization routines for the DLL.
//
#include "stdafx.h"
#include <afxdllx.h>

#ifdef _DEBUG
#define new DEBUG_NEW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#define new DEBUG_NEW
#endif

static AFX_EXTENSION_MODULE Ex20aDLL = { NULL, NULL };

extern "C" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 // Remove this if you use lpReserved
 UNREFERENCED_PARAMETER(lpReserved);

 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("Ex20a.DLL Initializing!\n");

 // Extension DLL one-time initialization
 if (!AfxInitExtensionModule(Ex20aDLL, hInstance))
 return 0;

 // Insert this DLL into the resource chain
 // NOTE: If this Extension DLL is being implicitly
 // linked to by an MFC Regular DLL
 // (such as an ActiveX Control) instead of an
 // MFC application, then you will want to remove
 // this line from DllMain and put it in a separate
 // function exported from this Extension DLL.
 // The Regular DLL that uses this Extension DLL
 // should then explicitly call that function to
 // initialize this Extension DLL.
 // Otherwise, the CDynLinkLibrary object will not be
 // attached to the Regular DLL's resource chain,
 // and serious problems will result.

 new CDynLinkLibrary(Ex20aDLL);

 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 TRACE0("Ex20a.DLL Terminating!\n");

 // Terminate the library before destructors are called
 AfxTermExtensionModule(Ex20aDLL);
 }
 return 1; // ok
}

3. Insert the CPersistentFrame class into the project. Choose Add Existing Item from the
Project menu and locate the files Persist.h and Persist.cpp in the Ex14a folder on the
companion CD. Add the class to the current project.

4. Edit the Persist.h file. Modify the line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class CPersistentFrame : public CFrameWnd

to read

class AFX_EXT_CLASS CPersistentFrame : public CFrameWnd

5. Build the project and copy the DLL file. Copy the file Ex20a.dll from the
\vcppnet\Ex20a\Debug directory to your system directory.

The Ex20b Example: A DLL Test Client Program

This example starts off as a client for Ex20a.dll. It imports the CPersistentFrame class from
the DLL and uses it as a base class for the SDI frame window. Later, we’ll add code to load
and test the other sample DLLs in this chapter.

Here are the steps for building the Ex20b example:

1. Run the MFC Application Wizard to produce the Ex20b project. This is an ordinary
MFC EXE program. Select Single Document. Otherwise, accept the default settings. Be
absolutely sure that you accept the Use MFC In A Shared DLL option on the
Application Type page.

2. Copy the file persist.h from the \vcppnet\Ex20a directory. Note that you’re copying the
header file, not the CPP file.

3. Change the CFrameWnd base class to CPersistentFrame, as you did in Ex14a. Replace
all occurrences of CFrameWnd with CPersistentFrame in both MainFrm.h and
MainFrm.cpp. Also insert the following line into MainFrm.h:

#include "persist.h"

4. Add the Ex20a import library to the linker’s input library list. Choose Add Existing Item
from the Visual Studio .NET Project menu.

5. Locate the Ex20a.lib file in the \vcppnet\Ex20a\Debug directory on the companion CD.

6. Build and test the Ex20b program. If you run the program from the debugger and
Windows can’t find the Ex20a DLL, Windows will display a message box when Ex20b
starts. If all goes well, you should have a persistent frame application that works exactly
like the one in Ex14a. The only difference is that the CPersistentFrame code will be in
an extension DLL.

MFC Regular DLLs: The AFX_EXTENSION_MODULE Structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the MFC DLL Wizard generates a regular DLL, the DllMain function will be inside the
framework and you’ll end up with a structure of type AFX_EXTENSION_MODULE (and a
global instance of the structure). AFX_EXTENSION_MODULE is used during initialization of
MFC extension DLLs to hold the state of extension DLL module.

You usually don’t need to do anything with this structure. You normally just write C functions
and then export them using the __declspec(dllexport) modifier (or using entries in the project’s
DEF file).

Using the AFX_MANAGE_STATE Macro

When mfc70.dll is loaded as part of a process, it stores data in some truly global variables. If
you call MFC functions from an MFC program or extension DLL, mfc70.dll will know how to
set these global variables on behalf of the calling process. If you call into mfc70.dll from a
regular MFC DLL, however, the global variables will not be synchronized and the effects will
be unpredictable. To solve this problem, insert the following line at the start of all exported
functions in your regular DLL:

AFX_MANAGE_STATE(AfxGetStaticModuleState());

If the MFC code is statically linked, the macro will have no effect.

The MFC Regular DLL Resource Search Sequence

When an EXE links to a regular DLL, resource loading functions inside the EXE will load the
EXE’s own resources. Resource loading functions inside the regular DLL will load the DLL’s
own resources.

If you want your EXE code to load resources from the DLL, you can use
AfxSetResourceHandle to temporarily change the resource handle. If you’re writing an
application that needs to be localized, you can put language-specific strings, dialog boxes,
menus, and so forth in an MFC regular DLL. You might, for example, include the modules
English.dll, German.dll, and French.dll. Your client program will explicitly load the correct
DLL and load the resources using regular resource-management function calls, which will
have the same IDs in all the DLLs.

The Ex20c Example: An MFC Regular DLL

This example creates a regular DLL that exports a single square root function. First we’ll build
the Ex20c.dll file, and then we’ll modify the test client program, Ex20b, to test the new DLL.

Here are the steps for building the Ex20c example:

1. Run the MFC DLL Wizard to produce the project Ex20c. Proceed as you did for Ex20a,
but accept Regular DLL Using Shared MFC DLL (instead of selecting MFC Extension
DLL) on the Application Settings page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Examine the Ex20c.cpp file. The MFC DLL Wizard generates the following code:

// Ex20c.cpp : Defines the initialization routines for the DLL.
//
#include "stdafx.h"
#include "Ex20c.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

//
// Note!
// If this DLL is dynamically linked against the MFC
// DLLs, any functions exported from this DLL which
// call into MFC must have the AFX_MANAGE_STATE macro
// added at the very beginning of the function.
//
// For example:
//
// extern "C" BOOL PASCAL EXPORT ExportedFunction()
// {
// AFX_MANAGE_STATE(AfxGetStaticModuleState());
// // normal function body here
// }
//
// It is very important that this macro appear in each
// function, prior to any calls into MFC. This means that
// it must appear as the first statement within the
// function, even before any object variable declarations
// as their constructors may generate calls into the MFC
// DLL.
//
// Please see MFC Technical Notes 33 and 58 for additional
// details.
//

// CEx20cApp
BEGIN_MESSAGE_MAP(CEx20cApp, CWinApp)
END_MESSAGE_MAP()

// CEx20cApp construction
CEx20cApp::CEx20cApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

// The one and only CEx20cApp object
CEx20cApp theApp;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// CEx20cApp initialization
BOOL CEx20cApp::InitInstance()
{
 CWinApp::InitInstance();

 return TRUE;
}

3. Add the code for the exported Ex20cSquareRoot function. It’s okay to add this code in
the Ex20c.cpp file, although you can use a new file if you want to:

extern "C" __declspec(dllexport) double Ex20cSquareRoot(double d)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 TRACE("Entering Ex20cSquareRoot\n");
 if (d >= 0.0) {
 return sqrt(d);
 }
 AfxMessageBox("Can't take square root of a negative number.");
 return 0.0;
}

You can see that there’s no problem with the DLL displaying a message box or another
modal dialog box. You’ll need to include math.h in the file that contains this code.

Be sure to prototype the Ex20cSquareRoot function in the Ex20c.h file so external
clients can see it.

4. Build the project and copy the DLL file. Copy the file Ex20c.dll from the
\vcppnet\Ex20c\Debug directory to your system directory.

Updating the Ex20b Example: Adding Code to Test Ex20c.dll

When we built the Ex20b program, it linked dynamically to the Ex20a MFC extension DLL.
Now we’ll update the project to implicitly link to the Ex20c MFC regular DLL and to call the
DLL’s square root function.

Here are the steps for updating the Ex20b example:

1. Add a new dialog resource and class to the Ex20b project. Use the dialog editor to
create the IDD_EX20C template, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the Add Class Wizard to add a class CTest20cDialog that is derived from CDialog.
The controls, data members, and message map function are shown in the following
table.

Control ID Type Data Member Message Map Function

IDC_INPUT Edit control m_dInput (double)

IDC_OUTPUT Edit control m_dOutput (double)

IDC_COMPUTE Button OnBnClickedCompute

2. Code the OnBnClickedCompute function to call the DLL’s exported function. Edit the
generated function in Test20cDialog.cpp as shown here:

void CTest20cDialog::OnBnClickedCompute()
{
 UpdateData(TRUE);
 m_dOutput = Ex20cSquareRoot(m_dInput);
 UpdateData(FALSE);
}

You must declare the Ex20cSquareRoot function as an imported function. Add the
following line to the Test20cDialog.h file:

extern "C" __declspec(dllimport) double Ex20cSquareRoot(double d);

3. Integrate the CTest20cDialog class into the Ex20b application. You must add a top-level
menu, Test, and an Ex20c DLL option with the ID ID_TEST_EX20CDLL. Use Class
View’s Properties window to map this option to a member function in the CEx20bView
class, and then code the handler in Ex20bView.cpp as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx20bView::OnTestEx20cdll()
{
 CTest20cDialog dlg;
 dlg.DoModal();
}

Of course, you must add the following line to the Ex20bView.cpp file:

#include "Test20cDialog.h"

4. Add the Ex20c import library to the linker’s input library list. Choose Add Existing Item
from the Visual Studio .NET Project menu, and then add
\vcppnet\Ex20c\Debug\Ex20c.lib to the project. Now the program should implicitly link
to both the Ex20a DLL and the Ex20c DLL. As you can see, the client doesn’t care
whether the DLL is a regular DLL or an extension DLL. You just specify the LIB name
to the linker.

5. Build and test the updated Ex20b application. Choose Ex20c DLL from the Test menu.
Type a number in the Input edit control, and then click the Compute Sqrt button. The
result should appear in the Output control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Custom Control DLL

Programmers have been using DLLs for custom controls since the early days of Windows
because custom controls are neatly self-contained. The original custom controls were written
in pure C and configured as standalone DLLs. Today, you can use the features of the MFC
library in your custom controls, and the wizards help make coding easier. A regular DLL is
the best choice for a custom control because the control doesn’t need a C++ interface and it
can be used by any development system that accepts custom controls (such as the Borland
C++ compiler). You’ll probably want to use the MFC dynamic linking option because the
resulting DLL will be small and quick to load.

What Is a Custom Control?

You’ve seen ordinary controls in Chapter 7, Windows common controls in Chapter 8, and
ActiveX controls in Chapter 9. The custom control acts like an ordinary control, such as the
edit control, in that it sends WM_COMMAND notification messages to its parent window and
receives user-defined messages. The dialog editor lets you position custom controls in dialog
templates. That’s what the custom control button on the control palette is for.

You have a lot of freedom in designing your custom control. You can paint anything you want
in its window (which is managed by the client application), and you can define any
notification and inbound messages you need. You can use Class View’s Properties window to
map normal Windows messages in the control (WM_LBUTTONDOWN, for example), but you
must manually map the user-defined messages and manually map the notification messages in
the parent window class.

A Custom Control’s Window Class

A dialog resource template specifies its custom controls by their symbolic window class
names. Don’t confuse the Win32 window class with the C++ class; the only similarity is the
name. A window class is defined by a structure that contains the following:

The name of the class

A pointer to the WndProc function that receives messages sent to windows of the class

Miscellaneous attributes, such as the background brush

The Win32 RegisterClass function copies the structure into process memory so that any
function in the process can use the class to create a window. When the dialog window is
initialized, Windows creates the custom control child windows from the window class names
stored in the template.

Suppose that the control’s WndProc function is inside a DLL. When the DLL is initialized (by
a call to DllMain), it can call RegisterClass for the control. Because the DLL is part of the
process, the client program can create child windows of the custom control class. To
summarize, the client knows the name string of a control window class and it uses that class
name to construct the child window. All the code for the control, including the WndProc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name to construct the child window. All the code for the control, including the WndProc
function, is inside the DLL. All that’s necessary is that the client load the DLL before creating
the child window.

The MFC Library and the WndProc Function

Okay, so Windows calls the control’s WndProc function for each message sent to that
window. But you really don’t want to write an old-fashioned switch-case statement—you
want to map those messages to C++ member functions, as you’ve been doing all along. Now,
in the DLL, you must rig up a C++ class that corresponds to the control’s window class. Once
you’ve done that, you can use Class View’s Properties window to map messages.

The obvious part is the writing of the C++ class for the control. You simply use the Add Class
Wizard to create a new class that’s derived from CWnd. The tricky part is wiring the C++
class to the WndProc function and to the application framework’s message pump. You’ll see a
real WndProc in the Ex20d example, but here’s the pseudocode for a typical control WndProc
function:

LRESULT MyControlWndProc(HWND hWnd, UINT message
 WPARAM wParam, LPARAM lParam)
{
 if (this is the first message for this window) {
 CWnd* pWnd = new CMyControlWindowClass();
 attach pWnd to hWnd
 }
 return AfxCallWndProc(pWnd, hWnd, message, WParam, lParam);
}

The MFC AfxCallWndProc function passes messages to the framework, which dispatches
them to the member functions mapped in CMyControlWindowClass.

Custom Control Notification Messages

The control communicates with its parent window by sending it special WM_COMMAND
notification messages with parameters, as shown here:

Parameter Usage

(HIWORD) wParam Notification code

(LOWORD) wParam Child window ID

lParam Child window handle

The meaning of the notification code is arbitrary and depends on the control. The parent
window must interpret the code based on its knowledge of the control. For example, the code
77 might mean that the user typed a character while positioned on the control.

The control might send a notification message such as this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetParent()->SendMessage(WM_COMMAND,
 GetDlgCtrlID() │ ID_NOTIFYCODE << 16, (LONG) GetSafeHwnd());

On the client side, you map the message with the MFC ON_CONTROL macro, like this:

ON_CONTROL(ID_NOTIFYCODE, IDC_MYCONTROL, OnClickedMyControl)

You then declare the handler function like this:

afx_msg void OnClickedMyControl();

User-Defined Messages Sent to the Control

User-defined messages (described in Chapter 7) are the means by which the client program
communicates with the control. Because a standard message returns a 32-bit value if it is sent
rather than posted, the client can obtain information from the control.

The Ex20d Example: A Custom Control

The Ex20d program is an MFC regular DLL that implements a traffic light control indicating
off, red, yellow, and green states. When clicked with the left mouse button, the DLL sends a
clicked notification message to its parent and responds to two user-defined messages,
RYG_SETSTATE and RYG_GETSTATE. The state is an integer that represents the color.
Credit for this example goes to Richard Wilton, who included the original C-language version
of this control in his book Windows 3 Developer’s Workshop (Microsoft Press, 1991).

The Ex20d project was originally generated using the MFC DLL Wizard, with linkage to the
shared MFC DLL, just like Ex20c. The following is the code for the primary source file, with
the added code in the InitInstance function in boldface. The dummy exported Ex20dEntry
function exists solely to allow the DLL to be implicitly linked. The client program must
include a call to this function. That call must be in an executable path in the program or the
compiler will eliminate the call. Alternatively, the client program can call the Win32
LoadLibrary function in its InitInstance function to explicitly link the DLL.

Ex20d.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ex20d.cpp
// Ex20d.cpp : Defines the initialization routines for the DLL.
//
#include "stdafx.h"
#include "Ex20d.h"

#include "rygwnd.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#endif

extern "C" __declspec(dllexport) void Ex20dEntry() {} // dummy function
// Application Wizard comments removed.

// CEx20dApp

BEGIN_MESSAGE_MAP(CEx20dApp, CWinApp)
END_MESSAGE_MAP()

// CEx20dApp construction
CEx20dApp::CEx20dApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

// The one and only CEx20dApp object
CEx20dApp theApp;

// CEx20dApp initialization
BOOL CEx20dApp::InitInstance()
{
 CRygWnd::RegisterWndClass(AfxGetInstanceHandle());
 CWinApp::InitInstance();
 return TRUE;
}

The following is the code for the CRygWnd class, including the global RygWndProc function.
You can use the Add Class Wizard to create this class by choosing Add Class from the Project
menu. The code that paints the traffic light isn’t very interesting, so we’ll concentrate on the
functions that are common to most custom controls. The static RegisterWndClass member
function actually registers the RYG window class and must be called as soon as the DLL is
loaded. The OnLButtonDown handler is called when the user presses the left mouse button
inside the control window. It sends the clicked notification message to the parent window. The
overridden PostNcDestroy function is important because it deletes the CRygWnd object when
the client program destroys the control window. The OnGetState and OnSetState functions are
called in response to user-defined messages sent by the client. Remember to copy the DLL to
your system directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RygWnd.h
#pragma once

#define RYG_SETSTATE WM_USER + 0
#define RYG_GETSTATE WM_USER + 1
LRESULT CALLBACK AFX_EXPORT
 RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam);
// CRygWnd
class CRygWnd : public CWnd
{
private:
 int m_nState; // 0=off, 1=red, 2=yellow, 3=green
 static CRect s_rect;
 static CPoint s_point;
 static CRect s_rColor[3];
 static CBrush s_bColor[4];
public:
 static BOOL RegisterWndClass(HINSTANCE hInstance);
 DECLARE_DYNAMIC(CRygWnd)
public:
 CRygWnd();
 virtual ~CRygWnd();

private:
 void SetMapping(CDC* pDC);
 void UpdateColor(CDC* pDC, int n);
protected:
 afx_msg LRESULT OnSetState(WPARAM wParam, LPARAM lParam);
 afx_msg LRESULT OnGetState(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()
};

RygWnd.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RygWnd.cpp
// RygWnd.cpp : implementation file
//
#include "stdafx.h"
#include "Ex20d.h"
#include "RygWnd.h"

LRESULT CALLBACK AFX_EXPORT
 RygWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 CWnd* pWnd;
 pWnd = CWnd::FromHandlePermanent(hWnd);
 if (pWnd == NULL) {
 // Assume that client created a CRygWnd window
 pWnd = new CRygWnd();
 pWnd->Attach(hWnd);
 }
 ASSERT(pWnd->m_hWnd == hWnd);
 ASSERT(pWnd == CWnd::FromHandlePermanent(hWnd));
 LRESULT lResult = AfxCallWndProc(pWnd, hWnd, message,
 wParam, lParam);
 return lResult;
}

// static data members
CRect CRygWnd::s_rect(-500, 1000, 500, -1000); // outer rectangle
CPoint CRygWnd::s_point(300, 300); // rounded corners
CRect CRygWnd::s_rColor[] = {CRect(-250, 800, 250, 300),
 CRect(-250, 250, 250, -250),
 CRect(-250, -300, 250, -800)};
CBrush CRygWnd::s_bColor[] = {RGB(192, 192, 192),
 RGB(0xFF, 0x00, 0x00),
 RGB(0xFF, 0xFF, 0x00),
 RGB(0x00, 0xFF, 0x00)};
BOOL CRygWnd::RegisterWndClass(HINSTANCE hInstance) // static member
 // function
{
 WNDCLASS wc;
 wc.lpszClassName = "RYG"; // matches class name in client
 wc.hInstance = hInstance;
 wc.lpfnWndProc = RygWndProc;
 wc.hCursor = ::LoadCursor(NULL, IDC_ARROW);
 wc.hIcon = 0;
 wc.lpszMenuName = NULL;
 wc.hbrBackground = (HBRUSH) ::GetStockObject(LTGRAY_BRUSH);
 wc.style = CS_GLOBALCLASS;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 return (::RegisterClass(&wc) != 0);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
// CRygWnd
IMPLEMENT_DYNAMIC(CRygWnd, CWnd)
CRygWnd::CRygWnd()
{
 m_nState = 0;
 TRACE("CRygWnd constructor\n");
}

CRygWnd::~CRygWnd()
{
 TRACE("CRygWnd destructor\n");
}

BEGIN_MESSAGE_MAP(CRygWnd, CWnd)
 ON_MESSAGE(RYG_SETSTATE, OnSetState)
 ON_MESSAGE(RYG_GETSTATE, OnGetState)
 ON_WM_PAINT()
 ON_WM_LBUTTONDOWN()
END_MESSAGE_MAP()

void CRygWnd::SetMapping(CDC* pDC)
{
 CRect clientRect;
 GetClientRect(clientRect);
 pDC->SetMapMode(MM_ISOTROPIC);
 pDC->SetWindowExt(1000, 2000);
 pDC->SetViewportExt(clientRect.right, -clientRect.bottom);
 pDC->SetViewportOrg(clientRect.right / 2, clientRect.bottom / 2);
}
void CRygWnd::UpdateColor(CDC* pDC, int n)
{
 if (m_nState == n + 1) {
 pDC->SelectObject(&s_bColor[n+1]);
 }
 else {
 pDC->SelectObject(&s_bColor[0]);
 }
 pDC->Ellipse(s_rColor[n]);
}
// CRygWnd message handlers
void CRygWnd::OnPaint()
{
 int i;
 CPaintDC dc(this); // device context for painting
 SetMapping(&dc);
 dc.SelectStockObject(DKGRAY_BRUSH);
 dc.RoundRect(s_rect, s_point);
 for (i = 0; i < 3; i++) {
 UpdateColor(&dc, i);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void CRygWnd::OnLButtonDown(UINT nFlags, CPoint point)
{
 // Notification code is HIWORD of wParam, 0 in this case
 GetParent()->SendMessage(WM_COMMAND, GetDlgCtrlID(),
 (LONG) GetSafeHwnd()); // 0
}

void CRygWnd::PostNcDestroy()
{
 TRACE("CRygWnd::PostNcDestroy\n");
 delete this; // CWnd::PostNcDestroy does nothing
}

LRESULT CRygWnd::OnSetState(WPARAM wParam, LPARAM lParam)
{
 TRACE("CRygWnd::SetState, wParam = %d\n", wParam);
 m_nState = (int) wParam;
 Invalidate(FALSE);
 return 0L;
}
LRESULT CRygWnd::OnGetState(WPARAM wParam, LPARAM lParam)
{
 TRACE("CRygWnd::GetState\n");
 return m_nState;
}

Revising the Updated Ex20b Example: Adding Code to Test Ex20d.dll

The Ex20b program already links to the Ex20a and Ex20c DLLs. Now we’ll revise the project
to implicitly link to the Ex20d custom control.

Here are the steps for updating the Ex20b example:

1. Add a new dialog resource and class to the Ex20b project. Use the dialog editor to
create the IDD_EX20D template with a custom control with the child window ID
IDC_RYG, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specify RYG as the window class name of the custom control using the dialog editor’s
Properties window.

Then use the Add Class Wizard to generate a class CTest20dDialog that is derived from
CDialog.

2. Edit the Test20dDialog.h file. Add the following private data member:

enum { OFF, RED, YELLOW, GREEN } m_nState;

Also add the following import and user-defined message IDs:

extern "C" __declspec(dllimport) void Ex20dEntry(); // dummy
 // function
#define RYG_SETSTATE WM_USER + 0
#define RYG_GETSTATE WM_USER + 1

3. Edit the constructor in Test20dDialog.cpp to initialize the state data member. Add the
following boldface code:

CTest20dDialog::CTest20dDialog(CWnd* pParent /*=NULL*/)
 : CDialog(CTest20dDialog::IDD, pParent)
{
 m_nState = OFF;
 Ex20dEntry(); // Make sure DLL gets loaded
}

4. Map the control’s clicked notification message. You can’t use Class View’s Properties
window here, so you must add the message map entry and handler function in the
Test20dDialog.cpp file, as shown here:

void CTest20dDialog::OnClickedRyg()
{
 switch(m_nState) {
 case OFF:
 m_nState = RED;
 break;
 case RED:
 m_nState = YELLOW;
 break;
 case YELLOW:
 m_nState = GREEN;
 break;
 case GREEN:
 m_nState = OFF;
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 }
 GetDlgItem(IDC_RYG)->SendMessage(RYG_SETSTATE, m_nState);
 return;
}

BEGIN_MESSAGE_MAP(CTest20dDialog, CDialog)
 ON_CONTROL(0, IDC_RYG, OnClickedRyg) // Notification code is 0
END_MESSAGE_MAP()

When the dialog box gets the clicked notification message, it sends the RYG_SETSTATE
message back to the control in order to change the color. Don’t forget to add this
prototype in the Test20dDialog.h file:

afx_msg void OnClickedRyg();

5. Integrate the CTest20dDialog class into the Ex20b application.

6. You’ll need to add a second command to the Test menu—an Ex20d DLL option with
the ID ID_TEST_EX20DDLL. Use Class View’s Properties window to map this option
to a member function in the CEx20bView class, and then code the handler in
Ex20bView.cpp as follows:

void CEx20bView::OnTestEx20ddll()
{
 CTest20dDialog dlg;
 dlg.DoModal();
}

Of course, you have to add the following line to Ex20bView.cpp:

#include "Test20dDialog.h"

7. Add the Ex20d import library to the linker’s input library list. Choose Add Existing
Item from the Project menu. Add \vcppnet\ Ex20d\Debug\Ex20.lib to the project. With
this addition, the program should implicitly link to all three DLLs.

8. Build and test the updated Ex20b application. Choose Ex20d DLL from the Test menu.
Try clicking the traffic light with the left mouse button. The traffic-light color should
change.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21
MFC Programs Without Document or View Classes

The document-view architecture is useful for many applications, but sometimes a simpler
program structure is sufficient. This chapter includes three sample applications: a dialog box–
based program, a Single Document Interface (SDI) program, and a Multiple Document
Interface (MDI) program. None of these programs uses document, view, or document-
template classes, but they all use command routing and some other Microsoft Foundation
Class (MFC) library features. In Microsoft Visual C++ .NET, you can create all three types of
applications using the MFC Application Wizard.

In each example, we’ll look at how the MFC Application Wizard generates code that doesn’t
rely on the document-view architecture and how you can add your own code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex21a Example: A Dialog Box–Based Application

For many applications, a dialog box is a sufficient user interface. The dialog box appears when
the user starts the application. The user can minimize the dialog box, and as long as the dialog
box is not system modal, the user can freely switch to other applications.

In this example, the dialog box functions as a simple calculator, as shown in Figure 21-1. The
Add Member Variable Wizard takes care of defining the class data members and generating
the DDX (Dialog Data Exchange) function calls—everything but the coding of the compute
function. The application’s resource script, Ex21a.rc, defines an icon as well as the dialog box.

Figure 21-1. The Ex21a Calculator dialog box

The MFC Application Wizard gives you the option of generating a dialog box–based
application. Here are the steps for building the Ex21a example:

1. Run the MFC Application Wizard to produce the Ex21a project. Select the Dialog
Based option on the Application Type page, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the User Interface Features page, enter Ex21a Calculator as the dialog box title.

2. Edit the IDD_EX21A_DIALOG resource. Referring to Figure 21-1 as a guide, use the
dialog editor to assign IDs to the controls shown in the following table. Then open the
dialog box’s Properties window. Set the System Menu and Minimize Box properties to
True.

Control ID

Left operand edit control IDC_LEFT

Right operand edit control IDC_RIGHT

Result edit control IDC_RESULT

First radio button (group property set) IDC_OPERATION

Compute button IDC_COMPUTE

3. Use the Add Member Variable Wizard to add member variables, and use Class View’s
Properties window to add a command handler. The MFC Application Wizard has
already generated a class CEx21aDlg. Add the following data members:

Control ID Member Variable Type

IDC_LEFT m_dLeft Double

IDC_RIGHT m_dRight Double

IDC_RESULT m_dResult Double

IDC_OPERATION m_nOperation int

Add the message handler OnBnClickedCompute for the IDC_COMPUTE button.

4. Code the OnBnClickedCompute member function in the Ex21aDlg.cpp file. Add the
following boldface code:

void CEx21aDlg::OnBnClickedCompute()
{
 UpdateData(TRUE);
 if(m_nOperation == 0) {
 m_dResult = m_dLeft + m_dRight;
 } else if(m_nOperation == 1) {
 m_dResult = m_dLeft - m_dRight;
 } else if(m_nOperation == 2) {
 m_dResult = m_dLeft * m_dRight;
 } else if(m_nOperation == 3) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } else if(m_nOperation == 3) {
 if(m_dRight == 0) {
 AfxMessageBox("Divide by zero");
 } else {
 m_dResult = m_dLeft / m_dRight;
 }
 }
 UpdateData(FALSE);
}

5. Build and test the Ex21a application. Notice that the program’s icon appears on the
Windows taskbar. Verify that you can minimize the dialog box.

The Application Class InitInstance Function

The critical element of the Ex21a application is the CEx21aApp::InitInstance function
generated by the MFC Application Wizard. A normal InitInstance function creates a main
frame window and returns TRUE, which allows the program’s message loop to run. The
Ex21a version constructs a modal dialog object, calls DoModal, and then returns FALSE. This
means that the application exits after the user exits the dialog box. The DoModal function lets
the Windows dialog procedure get and dispatch messages, as it always does. Note that the
MFC Application Wizard does not generate a call to CWinApp::SetRegistryKey.

Here’s the generated InitInstance code from Ex21a.cpp:

BOOL CEx21aApp::InitInstance()
{
 // InitCommonControls() is required on Windows XP if an application
 // manifest specifies use of ComCtl32.dll version 6 or later to enable
 // visual styles. Otherwise, any window creation will fail.
 InitCommonControls();
 CWinApp::InitInstance();
 AfxEnableControlContainer();

 CEx21aDlg dlg;
 m_pMainWnd = &dlg;
 INT_PTR nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with Cancel
 }
 // Since the dialog has been closed, return FALSE so that we exit the
 // application, rather than start the application's message pump.
 return FALSE;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The Dialog Class and the Program Icon

The generated CEx21aDlg class contains these two message map entries:

ON_WM_PAINT()
ON_WM_QUERYDRAGICON()

The associated handler functions take care of displaying the application’s icon when the user
minimizes the program. This code applies only to Microsoft Windows NT version 3.51, in
which the icon is displayed on the desktop. You don’t need these handlers for Windows
95/98/Me or Windows NT 4.0/2000/XP because those versions of Windows display the
program’s icon directly on the taskbar.

There is some icon code that you do need. It’s in the dialog box’s OnInitDialog handler,
which is generated by the MFC Application Wizard. Notice the two SetIcon calls in the
OnInitDialog function code shown below. If you selected the About box option, the MFC
Application Wizard will generate code to add an About box to the System menu. The variable
m_hIcon is a data member of the dialog class that is initialized in the constructor.

 BOOL CEx21aDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 // Add "About..." menu item to system menu.
 // IDM_ABOUTBOX must be in the system command range.
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);
 if (pSysMenu != NULL)
 {
 CString strAboutMenu;
 strAboutMenu.LoadString(IDS_ABOUTBOX);
 if (!strAboutMenu.IsEmpty())
 {
 pSysMenu->AppendMenu(MF_SEPARATOR);
 pSysMenu->AppendMenu(MF_STRING,
 IDM_ABOUTBOX, strAboutMenu);
 }
 }
 // Set the icon for this dialog. The framework does this
 // automatically when the application's main window
 // is not a dialog.
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon
 // TODO: Add extra initialization here
 return TRUE; // return TRUE unless you set the focus to a control
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex21b Example: An SDI Application

This SDI “Hello, world!” example builds on the code you saw way back in Chapter 2. The
application has only one window—an object of a class derived from CFrameWnd. All
drawing occurs inside the frame window, and all messages are handled there.

1. Run the MFC Application Wizard to produce the Ex21b project. Select the Single
Document option on the Application Type page and deselect the Document/View
Architecture Support option, as shown here:

2. Add code to paint in the view. Add the following boldface code to the
CChildView::OnPaint function in the ChildView.cpp source code file:

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 dc.TextOut(0, 0, "Hello, world!");
 // Do not call CWnd::OnPaint() for painting messages
}

3. Compile and run the application. You now have a complete SDI application that has no
dependencies on the document-view architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC Application Wizard automatically takes out dependencies on the document-view
architecture and generates an application for you that has the following elements:

Main menu You can have a Windows-based application without a menu—you don’t
even need a resource script. But Ex21b has both. The application framework routes
menu commands to message handlers in the frame class.

Icon An icon is useful if the program is to be activated from Windows Explorer. It’s
also useful when the application’s main frame window is minimized. The icon is stored
in the resource, along with the menu.

Window close message command handler Many applications need to do special
processing when the main window is closed. If you’re using documents, you can
override the CDocument::SaveModified function. But here, to take control of the close
process, the MFC Application Wizard creates message handlers to process close
messages sent as a result of user actions and by Windows itself when it shuts down.

Toolbar and status bar The MFC Application Wizard automatically generates a default
toolbar and status bar for you and sets up the routing even though there are no
document-view classes.

Several interesting features in the SDI application have no document-view support, including:

CChildView class Contrary to its name, this class is actually a CWnd derivative that is
declared in ChildView.h and implemented in ChildView.cpp. CChildView implements
only a virtual OnPaint member function, which contains any code that you want to draw
in the frame window (as illustrated in step 2 of the Ex21b sample).

CMainFrame class This class contains a data member, m_wndView, that is created and
initialized in the CMainFrame::OnCreate member function.

CMainFrame::OnSetFocus function This function makes sure the focus is translated to
the CChildView:

void CMainFrame::OnSetFocus(CWnd* pOldWnd)
{
 // forward focus to the view window
 m_wndView.SetFocus();
}

CMainFrame::OnCmdMsg function This function gives the view a chance to handle
any command messages first:

BOOL CMainFrame::OnCmdMsg(UINT nID, int nCode, void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo)
{
 // let the view have first crack at the command
 if (m_wndView.OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;
 // otherwise, do default handling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // otherwise, do default handling
 return CFrameWnd::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex21c Example: An MDI Application

Now let’s create an MDI application that doesn’t use the document-view architecture.

1. Run the MFC Application Wizard to produce the Ex21c project. Select the Multiple
Documents option on the Application Type page and deselect Document/View
Architecture Support.

2. Add code to paint in the dialog box. Add the following boldface code to the
CChildView::OnPaint function in the ChildView.cpp source code file:

void CChildView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 dc.TextOut(0, 0, "Hello, world!");
 // Do not call CWnd::OnPaint() for painting messages
}

3. Compile and run the application. You now have a complete MDI application without
any dependencies on the document-view architecture.

As in Ex21b, this example automatically creates a CChildView class. The main
difference between Ex21b and Ex21c is that in Ex21c the CChildView class is created in
the CChildFrame::OnCreate function instead of in the CMainFrame class.

Now that you’ve learned how to create three kinds of applications that do not depend on the
document-view architecture, you can examine how they’re generated to learn how MFC
works. Try comparing the generated results to similar applications with document-view
architecture support to get a complete picture of how the document-view classes work with the
rest of MFC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22
The Component Object Model

The Component Object Model (COM) is the foundation of Microsoft’s ActiveX technology
and has become an integral part of Microsoft Windows. A great deal of modern Windows
programming involves COM, so it’s important to understand the COM architecture. But where
do you begin? You could start with the Microsoft Foundation Class classes for ActiveX
Controls, Automation, and OLE, but as useful as those classes are, they obscure the real COM
architecture. You’ve got to start with fundamental theory, and that includes COM and
something called an interface.

This chapter covers the theory you need for the next six chapters. You’ll learn about interfaces
and how the MFC library implements interfaces through its macros and interface maps.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX Technology

It can be tricky to figure out how to use the terms ActiveX and OLE. You can think of ActiveX
as something that was created when the “old” OLE was revamped to work with the Internet.
ActiveX includes Windows features that are built on COM (which you’ll study in this part of
the book), the Microsoft Internet Information Services (IIS) family, and the WinInet
programming interface.

Yes, OLE is still here, and once again it stands for Object Linking and Embedding, just as it
did in the days of OLE 1.0. It’s just another subset of ActiveX technology that includes odds
and ends such as drag and drop. Unfortunately (or fortunately, if you have existing code), the
MFC source code and the Windows API have not kept current with the naming conventions.
As a result, you’ll see lots of occurrences of OLE and Ole in class names and in function
names even though some of those classes and functions go beyond linking and embedding. In
this part of the book, you might also notice references to the “server” in the code generated by
the MFC Application Wizard. Microsoft now reserves this term for database servers and
Internet servers; component is the new term for OLE servers.

Bookstore computer sections are full of books on OLE, COM, and ActiveX. This book can’t
offer that level of detail, but you should come away with a pretty good understanding of COM
theory. You’ll find more on the connection to the MFC library classes than you might see in
other books, with the exception of MFC Internals by George Shepherd and Scot Wingo
(Addison-Wesley, 1996). The net result should be good preparation for the really heavy-duty
ActiveX/COM books, including Kraig Brockschmidt’s Inside OLE, 2nd edition (Microsoft
Press, 1995) and Don Box’s Essential COM (Addison-Wesley, 1998). A good mid-level book
is Dale Rogerson’s Inside COM (Microsoft Press, 1997).

As you’ll see in the final section of this book, COM brings as many problems to the table as it
solves. Most of this technology will be superseded by the .NET component model, which uses
assemblies and the common language runtime. However, COM is still important for the time
being. So let’s get cracking.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is COM?

COM is a software architecture that facilitates the dynamic composition of software. The DLL
model doesn’t handle versioning well, and the raw remote procedure call (RPC) mechanism is
difficult to manage. COM tries to solve these issues.

The “problem” is that there’s no standard way for Windows program modules to communicate
with one another. But what about the DLL, with its exported functions, Dynamic Data
Exchange (DDE), the Windows Clipboard, and the Windows API itself, not to mention legacy
standards such as Visual Basic custom controls (VBXs) and OLE 1? Aren’t they good
enough? Well, no. This potpourri of standards makes integrating software a nightmare.

The Essence of COM

What’s wrong with the old standards? A lot. The Windows API has too large a programming
“surface area”—more than 350 separate functions. VBXs don’t work in the 32-bit world. DDE
comes with a complicated system of applications, topics, and items. How you call a DLL is
totally application-specific. COM, in contrast, provides a unified, expandable, object-oriented
communications protocol for Windows that supports the following features:

A standard, language-independent way for a Win32 client EXE to load and call a Win32
DLL

A general-purpose way for one EXE to control another EXE on the same computer (the
DDE replacement)

A replacement for the VBX, called an ActiveX control

A powerful new way for application programs to interact with the operating system

Expansion to accommodate new protocols such as Microsoft’s OLE DB database
interface

Distributed COM (DCOM), which allows one EXE to communicate with another EXE
residing on a different computer, even if the computers use different microprocessor-
chip families

So what is COM? That’s an easier question to ask than to answer. At DevelopMentor, a
training facility for software developers, the party line for years has been that “COM is love.”
That is, COM is a powerful integrating technology that allows you to mix all sorts of disparate
software parts together at run time. COM allows developers to write software that runs
together regardless of issues such as thread-awareness and language choice.

The COM protocol connects one software module with another and then drops out of the
picture. After the connection is made, the two modules can communicate through a
mechanism called an interface. Interfaces require no statically or dynamically linked entry
points or hard-coded addresses other than the few general-purpose COM functions that start
the communication process. Interface (more precisely, COM interface) is a term that you’ll be
seeing a lot of.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Is a COM Interface?

Before digging into the topic of interfaces, let’s reexamine the nature of inheritance and
polymorphism in normal C++. We’ll use a planetary-motion simulation to illustrate C++
inheritance and polymorphism. Imagine a spaceship that travels through our solar system
under the influence of the sun’s gravity. In ordinary C++, you can declare a CSpaceship class
and write a constructor that sets the spaceship’s initial position and acceleration. You can then
write a nonvirtual member function named Fly that implements Kepler’s laws to model the
movement of the spaceship from one position to the next—say, over a period of 0.1 second.
You can also write a Display function that paints an image of the spaceship in a window. The
most interesting feature of the CSpaceship class is that the interface of the C++ class (the way
the client talks to the class) and the implementation are tightly bound. One of the main goals
of COM is to separate a class’s interface from its implementation.

If we think of this example within the context of COM, the spaceship code can exist as a
separate EXE or DLL (the component), which is a COM module. In COM, the simulation
manager (the client program) can’t call Fly or any CSpaceship constructor directly: COM
provides only a standard global function to gain access to the spaceship object, and then the
client and the object use interfaces to talk to one another.

Before we tackle real COM, let’s build a COM simulation in which both the component and
the client code are statically linked in the same EXE file. For our standard global function,
we’ll invent a function named GetClassObject. In this COM simulation, clients will use this
global single abstract function for objects of a particular class. In real COM, clients get a class
object first and then ask the class object to manufacture the real object in much the same way
that MFC does dynamic creation.

GetClassObject has the following three parameters:

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj);

The first parameter, nClsid, is a 32-bit integer that uniquely identifies the CSpaceship class.
The second parameter, nIid, is the unique identifier of the interface that we want. The third
parameter is a pointer to an interface to the object. Remember that we’ll be dealing with
interfaces, which are different from classes. As it turns out, a class can have several interfaces,
so the last two parameters exist to manage interface selection. The function will return TRUE
if the call is successful.

Now let’s back up to the design of CSpaceship. We haven’t really explained spaceship
interfaces yet. A COM interface is a C++ base class (actually, a C++ struct) that declares a
group of pure virtual functions. These functions completely control some aspect of derived
class behavior. For CSpaceship, let’s write an interface named IMotion, which controls the
spaceship object’s position. For simplicity’s sake, we’ll declare just two functions, Fly and
GetPosition, and we’ll keep things uncomplicated by making the position value an integer.
The Fly function calculates the position of the spaceship, and the GetPosition function returns
a reference to the current position. Here are the declarations:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

struct IMotion
{
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};

class CSpaceship : public IMotion
{
protected:
 int m_nPosition;
public:
 CSpaceship() { m_nPosition = 0; }
 void Fly();
 int& GetPosition() { return m_nPosition; }
};
IMotion* pMot;
GetClassObject(CLSID_CSpaceship, IID_IMotion, (void**) &pMot);

Assume for the moment that COM can use the unique integer identifiers CLSID_CSpaceship
and IID_IMotion to construct a spaceship object instead of some other kind of object. If the
call is successful, pMot will point to a CSpaceship object that GetClassObject will somehow
construct. As you can see, the CSpaceship class implements the Fly and GetPosition functions,
and our main program can call them for the one particular spaceship object, as shown here:

int nPos = 50;
pMot->GetPosition() = nPos;
pMot->Fly();
nPos = pMot->GetPosition();
TRACE("new position = %d\n", nPos);

Now the spaceship is off and flying. We’re controlling it entirely through the pMot pointer.
Notice that pMot is technically not a pointer to a CSpaceship object. However, in this case, a
CSpaceship pointer and an IMotion pointer are the same because CSpaceship is derived from
IMotion. You can see how the virtual functions work here: It’s classic C++ polymorphism.

Let’s make things a little more complex by adding a second interface, IVisual, which handles
the spaceship’s visual representation. One function is enough—Display. Here’s the whole base
class:

struct IVisual
{
 virtual void Display() = 0;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Are you getting the idea that COM wants you to associate functions in groups? You’re not
imagining it. But why? Well, in our space simulation, we’ll probably want to include other
kinds of objects in addition to spaceships. Imagine that the IMotion and IVisual interfaces are
being used for other classes. Perhaps a CSun class has an implementation of IVisual but does
not have an implementation of IMotion, and perhaps a CSpaceStation class has other
interfaces as well. If you “publish” your IMotion and IVisual interfaces, perhaps other space
simulation software companies will adopt them.

You can think of an interface as a contract between two software modules. The idea is that
interface declarations never change. If you want to upgrade your spaceship code, you don’t
change the IMotion or the IVisual interface; rather, you add a new interface, such as ICrew.
The existing spaceship clients can continue to run with the old interfaces, and new client
programs can use the new ICrew interface as well. These client programs can find out at run
time which interfaces a particular spaceship software version supports.

You can consider the GetClassObject function a more powerful alternative to the C++ new
operator and class constructors. With the ordinary new operator and constructor mechanism,
you obtain one object containing member functions. With the GetClassObject function, you
obtain the object and a way to talk to the object (an interface). As you’ll see later, you start
with one interface and then use that interface to get other interfaces to the same object.

So how do you program two interfaces for CSpaceship? You could use C++ multiple
inheritance, but that doesn’t work if two interfaces have the same member function name. The
MFC library uses nested classes instead, so that’s what we’ll use to illustrate multiple
interfaces on the CSpaceship class. Here’s a first cut at nesting interfaces within the
CSpaceship class:

class CSpaceship
{
protected:
 int m_nPosition;
 int m_nAcceleration;
 int m_nColor;
public:
 CSpaceship()
 { m_nPosition = m_nAcceleration = m_nColor = 0; }
 class XMotion : public IMotion
 {
 public:
 XMotion() { }
 virtual void Fly();
 virtual int& GetPosition();
 } m_xMotion;

 class XVisual : public IVisual
 {
 public:
 XVisual() { }
 virtual void Display();
 } m_xVisual;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 friend class XVisual;
 friend class XMotion;
};

NOTE
It might make sense to make m_nAcceleration a data member of XMotion and
make m_nColor a data member of XVisual. We’ll make them data members of
CSpaceship because that strategy is more compatible with the MFC macros, as
you’ll see later.

Notice that the implementations of IMotion and IVisual are contained within the “parent”
CSpaceship class. In COM, this parent class is known as the class with object identity. Be
aware that m_xMotion and m_xVisual are actually embedded data members of CSpaceship.
Indeed, you could have implemented CSpaceship strictly with embedding. Nesting, however,
offers two advantages: First, nested class member functions can access parent class data
members without the need for CSpaceship pointer data members. Second, the nested classes
are neatly packaged along with the parent while remaining invisible outside the parent. Look
at the following code for the GetPosition member function:

 int& CSpaceship::XMotion::GetPosition()
{
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->m_nPosition;
}

Notice the double-scope resolution operators, which are necessary for nested class member
functions. METHOD_PROLOGUE is a one-line MFC macro that uses the C offsetof operator
to retrieve the offset used in generating a this pointer to the parent class, pThis. The compiler
always knows the offset from the beginning of parent class data to the beginning of nested
class data. GetPosition can thus access the CSpaceship data member m_nPosition.

Now suppose you have two interface pointers, pMot and pVis, for a particular CSpaceship
object. (Don’t worry yet about how you got these pointers.) You can call interface member
functions in the following manner:

pMot->Fly();
pVis->Display();

What’s happening under the hood? In C++, each class (at least, each class that has virtual
functions and is not an abstract base class) has a virtual function table, which is otherwise
known as a vtable. In this example, that means there are vtables for CSpaceship::XMotion and
CSpaceship::XVisual. For each object, there’s a pointer to the object’s data, the first element
of which is a pointer to the class’s vtable. The pointer relationships are shown on the
following page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Theoretically, it’s possible to program COM in C. If you look at the Windows header files,
you’ll see code such as this:

#ifdef __cplusplus
 // C++-specific headers
#else
 /* C-specific headers */
#endif

In C++, interfaces are declared as C++ structures, often with inheritance; in C, they’re
declared as C typedef structures with no inheritance. In C++, the compiler generates vtables
for your derived classes; in C, you must “roll your own” vtables, and that gets tedious. It’s
important to realize, however, that in neither language do the interface declarations have data
members, constructors, or destructors. Therefore, you can’t rely on the interface having a
virtual destructor—but that’s not a problem because you never invoke a destructor for an
interface.

The IUnknown Interface and the QueryInterface Member Function

Let’s get back to the problem of how to obtain your interface pointers in the first place. COM
declares a special interface named IUnknown for this purpose. As a matter of fact, all
interfaces are derived from IUnknown, which has a pure virtual member function,
QueryInterface, that returns an interface pointer based on the interface ID you feed it.

Once the interface mechanisms are hooked up, the client needs to get an IUnknown interface
pointer (at the very least) or a pointer to one of the derived interfaces. Here’s the new interface
hierarchy, with IUnknown at the top:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

struct IUnknown
{
 virtual BOOL QueryInterface(int nIid, void** ppvObj) = 0;
};
struct IMotion : public IUnknown
{
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};
struct IVisual : public IUnknown
{
 virtual void Display() = 0;
};

To satisfy the compiler, we must add QueryInterface implementations in both
CSpaceship::XMotion and CSpaceship::XVisual. What do the vtables look like after this is
done? For each derived class, the compiler builds a vtable with the base class function pointers
on top, as shown here:

GetClassObject can get the interface pointer for a given CSpaceship object by getting the
address of the corresponding embedded object. Here’s the code for the QueryInterface
function in XMotion:

BOOL CSpaceship::XMotion::QueryInterface(int nIid,
 void** ppvObj)
{
 METHOD_PROLOGUE(CSpaceship, Motion)
 switch (nIid) {
 case IID_IUnknown:
 case IID_IMotion:
 *ppvObj = &pThis->m_xMotion;
 break;
 case IID_IVisual:
 *ppvObj = &pThis->m_xVisual;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 return TRUE;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Because IMotion is derived from IUnknown, an IMotion pointer is a valid pointer if the caller
asks for an IUnknown pointer.

NOTE
The COM standard requires that QueryInterface return exactly the same IUnknown
pointer value for IID_IUnknown, no matter which interface pointer you start with.
Thus, if two IUnknown pointers match, you can assume that they refer to the same
object. IUnknown is sometimes known as the “void*” of COM because it
represents the object’s identity.

The following is a GetClassObject function that uses the address of m_xMotion to obtain the
first interface pointer for the newly constructed CSpaceship object:

BOOL GetClassObject(int& nClsid, int& nIid,
 void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 CSpaceship* pObj = new CSpaceship();
 IUnknown* pUnk = &pObj->m_xMotion;
 return pUnk->QueryInterface(nIid, ppvObj);
}

Now your client program can call QueryInterface to obtain an IVisual pointer, as shown here:

IMotion* pMot;
IVisual* pVis;
GetClassObject(CLSID_CSpaceship, IID_IMotion, (void**) &pMot);
pMot->Fly();
pMot->QueryInterface(IID_IVisual, (void**) &pVis);
pVis->Display();

Notice that the client uses a CSpaceship object, but it never has an actual CSpaceship pointer.
Thus, the client cannot directly access CSpaceship data members, even if they’re public.
Notice also that we haven’t tried to delete the spaceship object yet—that will come shortly.

There’s a special graphical representation for interfaces and COM classes. Interfaces are
shown as small circles (or jacks) with lines attached to their class. The IUnknown interface,
which every COM class supports, is at the top, and the others are on the left. The CSpaceship
class can be represented like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reference Counting: The AddRef and Release Functions

COM interfaces don’t have virtual destructors, so it isn’t cool to write code like the following:

delete pMot; // pMot is an IMotion pointer; don't do this

COM has a strict protocol for deleting objects. The two other IUnknown virtual functions,
AddRef and Release, are the key. Each COM class has a data member—m_dwRef in the MFC
library—that keeps track of how many “users” an object has. Each time the component
program returns a new interface pointer (as in QueryInterface), the program calls AddRef,
which increments m_dwRef. When the client program is finished with the pointer, it calls
Release. When m_dwRef goes to 0, the object destroys itself. Here’s an example of a Release
function for the CSpaceship::XMotion class:

DWORD CSpaceship::XMotion::Release()
{
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 if (pThis->m_dwRef == 0)
 return 0;
 if (--pThis->m_dwRef == 0) {
 delete pThis; // the spaceship object
 return 0;
 }
 return pThis->m_dwRef;
}

In MFC COM-based programs, the object’s constructor sets m_dwRef to 1. This means that it
isn’t necessary to call AddRef after the object is first constructed. A client program should call
AddRef, however, if it makes a copy of an interface pointer.

Class Factories

Object-oriented terminology can get a little fuzzy sometimes. Smalltalk programmers, for
example, talk about objects the way C++ programmers talk about classes. The COM literature
often uses the term component object to refer to the object plus the code associated with it.
COM carries with it the notion of a class object, which is sometimes referred to as a class
factory. To be more accurate, it should probably be called an object factory. A COM class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

factory. To be more accurate, it should probably be called an object factory. A COM class
object represents the global static area of a specific COM class. Its analog in MFC is the
CRuntimeClass. A class object is sometimes called a class factory because it often implements
a special COM interface named IClassFactory. This interface, like all interfaces, is derived
from IUnknown. IClassFactory’s principal member function is CreateInstance, which in our
COM simulation is declared like this:

virtual BOOL CreateInstance(int& nIid, void** ppvObj) = 0;

Why use a class factory? You’ve already seen that you can’t call the target class constructor
directly—you have to let the component module decide how to construct objects. The
component provides the class factory for this purpose and thus encapsulates the creation step,
as it should. Locating and launching component modules—and thus establishing the class
factory—is expensive, but constructing objects with CreateInstance is cheap. We can
therefore allow a single class factory to create multiple objects.

What does all this mean? It means we messed up when we let GetClassObject construct the
CSpaceship object directly. We were supposed to construct a class factory object first and then
call CreateInstance to cause the class factory (object factory) to construct the actual spaceship
object.

Let’s properly construct the spaceship simulation. First, we’ll declare a new class,
CSpaceshipFactory. To avoid complication, we’ll derive the class from IClassFactory so we
don’t have to deal with nested classes. In addition, we’ll add the code that tracks references:

struct IClassFactory : public IUnknown
{
 virtual BOOL CreateInstance(int& nIid, void** ppvObj) = 0;
};

class CSpaceshipFactory : public IClassFactory
{
private:
 DWORD m_dwRef;
public:
 CSpaceshipFactory() { m_dwRef = 1; }
 // IUnknown functions
 virtual BOOL QueryInterface(int& nIid,
 void** ppvObj);
 virtual DWORD AddRef();
 virtual DWORD Release();
 // IClassFactory function
 virtual BOOL CreateInstance(int& nIid,
 void** ppvObj);
};

Next, we’ll write the CreateInstance member function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CSpaceshipFactory::CreateInstance(int& nIid, void** ppvObj)
{
 CSpaceship* pObj = new CSpaceship();
 IUnknown* pUnk = &pObj->m_xMotion;
 return pUnk->QueryInterface(nIid, ppvObj);
}

Finally, the new GetClassObject function will construct a class factory object and return an
IClassFactory interface pointer:

 BOOL GetClassObject(int& nClsid, int& nIid,
 void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 ASSERT((nIid == IID_IUnknown) ││ (nIid == IID_IClassFactory));
 CSpaceshipFactory* pObj = new CSpaceshipFactory();
 ppvObj = pObj; // IUnknown = IClassFactory* = CSpaceship*
}

The CSpaceship and CSpaceshipFactory classes work together and share the same class ID.
Now the client code looks like this (without error-checking logic):

IMotion* pMot;
IVisual* pVis;
IClassFactory* pFac;
GetClassObject(CLSID_CSpaceship, IID_IClassFactory, (void**) &pFac);
pFac->CreateInstance(IID_IMotion, &pMot);
pMot->QueryInterface(IID_IVisual, (void**) &pVis);
pMot->Fly();
pVis->Display();

Notice that the CSpaceshipFactory class implements the AddRef and Release functions. It
must do this because AddRef and Release are pure virtual functions in the IUnknown base
class. We’ll start using these functions in the next iteration of the program.

The CCmdTarget Class

We’re still a long way from real MFC COM-based code, but we can take one more step in the
COM simulation before we switch to the real thing. As you might guess, some code and data
can be “factored out” of our spaceship COM classes into a base class. That’s exactly what the
MFC library does. The base class is CCmdTarget, the standard base class for document and
window classes. CCmdTarget, in turn, is derived from CObject. We’ll use
CSimulatedCmdTarget instead, and we won’t put too much in it—only the reference-counting
logic and the m_dwRef data member. The CSimulatedCmdTarget functions ExternalAddRef

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

logic and the m_dwRef data member. The CSimulatedCmdTarget functions ExternalAddRef
and ExternalRelease can be called in derived COM classes. Because we’re using
CSimulatedCmdTarget, we’ll bring CSpaceshipFactory in line with CSpaceship and we’ll use
a nested class for the IClassFactory interface.

We can also do some factoring out inside our CSpaceship class. The QueryInterface function
can be “delegated” from the nested classes to the outer class helper function
ExternalQueryInterface, which calls ExternalAddRef. Thus, each QueryInterface function will
increment the reference count, but CreateInstance will call ExternalQueryInterface, followed
by a call to ExternalRelease. When the first interface pointer is returned by CreateInstance,
the spaceship object will have a reference count of 1. A subsequent QueryInterface call will
increment the count to 2, and in this case, the client will have to call Release twice to destroy
the spaceship object.

One last thing: We’ll make the class factory object a global object so we won’t have to call its
constructor. When the client calls Release, there won’t be a problem because the class
factory’s reference count will be 2 by the time the client receives it. (The CSpaceshipFactory
constructor sets the reference count to 1, and ExternalQueryInterface, called by
GetClassObject, sets the count to 2.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex22a Example: Simulated COM

The following files show code for a working “simulated COM” program, Ex22a. This is a
Win32 console application (without the MFC library) that uses a class factory to construct an
object of class CSpaceship, calls its interface functions, and then releases the spaceship. The
Interface.h header file contains the CSimulatedCmdTarget base class and the interface
declarations that are used by both the client and component programs. The Spaceship.h header
file contains the spaceship-specific class declarations that are used in the component program.
Spaceship.cpp is the component that implements GetClassObject, and Client.cpp is the client
that calls GetClassObject. What’s phony here is that both client and component code are
linked within the same Ex22a.exe program. Thus, our simulated COM is not required to make
the connection at run time. (You’ll see how that’s done later in this chapter.)

Interface.h
// definitions that make our code look like MFC code
#define BOOL int
#define DWORD unsigned int
#define TRUE 1
#define FALSE 0
#define TRACE printf
#define ASSERT assert
//----------definitions and macros-----------------------------
#define CLSID_CSpaceship 10
#define IID_IUnknown 0
#define IID_IClassFactory 1
#define IID_IMotion 2
#define IID_IVisual 3 // this macro for 16-bit Windows only
#define METHOD_PROLOGUE(theClass, localClass) \
 theClass* pThis = ((theClass*)((char*)(this) - \
 offsetof(theClass, m_x##localClass))); \

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj);

//----------interface declarations--------------------------------
struct IUnknown
{
 IUnknown() { TRACE("Entering IUnknown ctor %p\n", this); }
 virtual BOOL QueryInterface(int nIid, void** ppvObj) = 0;
 virtual DWORD Release() = 0;
 virtual DWORD AddRef() = 0;
};
struct IClassFactory : public IUnknown
{
 IClassFactory()
 { TRACE("Entering IClassFactory ctor %p\n", this); }
 virtual BOOL CreateInstance(int nIid, void** ppvObj) = 0;
};
struct IMotion : public IUnknown
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 IMotion() { TRACE("Entering IMotion ctor %p\n", this); }
 virtual void Fly() = 0; // pure
 virtual int& GetPosition() = 0;
};
struct IVisual : public IUnknown
{
 IVisual() { TRACE("Entering IVisual ctor %p\n", this); }
 virtual void Display() = 0;
};
class CSimulatedCmdTarget // 'simulated' CSimulatedCmdTarget
{
public:
 DWORD m_dwRef;
protected:
 CSimulatedCmdTarget() {
 TRACE("Entering CSimulatedCmdTarget ctor %p\n", this);
 m_dwRef = 1; // implied first AddRef
 }
 virtual ~CSimulatedCmdTarget()
 { TRACE("Entering CSimulatedCmdTarget dtor %p\n", this); }
 DWORD ExternalRelease() {
 TRACE("Entering CSimulatedCmdTarget::ExternalRelease--RefCount = %ld\n",
 m_dwRef);
 if (m_dwRef == 0)
 return 0;
 if(--m_dwRef == 0L) {
 TRACE("deleting\n");
 delete this;
 return 0;
 }
 return m_dwRef;
 }
 DWORD ExternalAddRef() { return ++m_dwRef; }
};

Spaceship.h
class CSpaceship;
//----------class declarations-------------------------------------
class CSpaceshipFactory : public CSimulatedCmdTarget
{
public:
 CSpaceshipFactory()
 { TRACE("Entering CSpaceshipFactory ctor %p\n", this); }
 ~CSpaceshipFactory()
 { TRACE("Entering CSpaceshipFactory dtor %p\n", this); }
 BOOL ExternalQueryInterface(int lRid, void** ppvObj);
 class XClassFactory : public IClassFactory
 {
 public:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public:
 XClassFactory()
 { TRACE("Entering XClassFactory ctor %p\n", this); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual BOOL CreateInstance(int lRid, void** ppvObj);
 } m_xClassFactory;
 friend class XClassFactory;
};
class CSpaceship : public CSimulatedCmdTarget
{
private:
 int m_nPosition; // We can access these from
 // all the interfaces
 int m_nAcceleration;
 int m_nColor;
public:
 CSpaceship() {
 TRACE("Entering CSpaceship ctor %p\n", this);
 m_nPosition = 100;
 m_nAcceleration = 101;
 m_nColor = 102;
 }
 ~CSpaceship()
 { TRACE("Entering CSpaceship dtor %p\n", this); }
 BOOL ExternalQueryInterface(int lRid, void** ppvObj);
 class XMotion : public IMotion
 {
 public:
 XMotion()
 { TRACE("Entering XMotion ctor %p\n", this); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual void Fly();
 virtual int& GetPosition();
 } m_xMotion;

 class XVisual : public IVisual
 {
 public:
 XVisual() { TRACE("Entering XVisual ctor\n"); }
 virtual BOOL QueryInterface(int lRid, void** ppvObj);
 virtual DWORD Release();
 virtual DWORD AddRef();
 virtual void Display();
 } m_xVisual;

 friend class XVisual; // These must be at the bottom!
 friend class XMotion;
 friend class CSpaceshipFactory::XClassFactory;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Spaceship.cpp
#include <stdio.h>
#include <stddef.h> // for offsetof in METHOD_PROLOGUE
#include <ASSERT.h>
#include "Interface.h"
#include "Spaceship.h"

CSpaceshipFactory g_factory;
//----------member functions--
BOOL CSpaceshipFactory::ExternalQueryInterface(int nIid,
 void** ppvObj) {
 TRACE(
 "Entering CSpaceshipFactory::ExternalQueryInterface--nIid = %d\n",
 nIid);
 switch (nIid) {
 case IID_IUnknown:
 case IID_IClassFactory:
 *ppvObj = &m_xClassFactory;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 ExternalAddRef();
 return TRUE;
}
BOOL CSpaceshipFactory::XClassFactory::QueryInterface(int nIid,
 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::XClassFactory::\
 QueryInterface--nIid = %d\n", nIid);
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->ExternalQueryInterface(nIid,
 ppvObj); // delegate to
 // CSpaceshipFactory
}

BOOL CSpaceshipFactory::XClassFactory::CreateInstance(int nIid,
 void** ppvObj) {
 TRACE("Entering CSpaceshipFactory::XClassFactory::CreateInstance\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 CSpaceship* pObj = new CSpaceship();
 if (pObj->ExternalQueryInterface(nIid, ppvObj)) {
 pObj->ExternalRelease(); // balance reference count
 return TRUE;
 }
 return FALSE;
}
DWORD CSpaceshipFactory::XClassFactory::Release() {
 TRACE("Entering CSpaceshipFactory::XClassFactory::Release\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}
DWORD CSpaceshipFactory::XClassFactory::AddRef() {
 TRACE("Entering CSpaceshipFactory::XClassFactory::AddRef\n");
 METHOD_PROLOGUE(CSpaceshipFactory, ClassFactory) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}
BOOL CSpaceship::ExternalQueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::ExternalQueryInterface--nIid = %d\n",
 nIid);
 switch (nIid) {
 case IID_IUnknown:
 case IID_IMotion:
 *ppvObj = &m_xMotion; // Both IMotion and IVisual are derived
 break; // from IUnknown, so either pointer will do
 case IID_IVisual:
 *ppvObj = &m_xVisual;
 break;
 default:
 *ppvObj = NULL;
 return FALSE;
 }
 ExternalAddRef();
 return TRUE;
}
BOOL CSpaceship::XMotion::QueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::XMotion::QueryInterface--nIid = %d\n",
 nIid);
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceship
}
DWORD CSpaceship::XMotion::Release() {
 TRACE("Entering CSpaceship::XMotion::Release\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}
DWORD CSpaceship::XMotion::AddRef() {
 TRACE("Entering CSpaceship::XMotion::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}
void CSpaceship::XMotion::Fly() {
 TRACE("Entering CSpaceship::XMotion::Fly\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
}
int& CSpaceship::XMotion::GetPosition() {
 TRACE("Entering CSpaceship::XMotion::GetPosition\n");
 METHOD_PROLOGUE(CSpaceship, Motion) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return pThis->m_nPosition;
}
BOOL CSpaceship::XVisual::QueryInterface(int nIid, void** ppvObj) {
 TRACE("Entering CSpaceship::XVisual::QueryInterface--nIid = %d\n",
 nIid);
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalQueryInterface(nIid, ppvObj); // delegate to
 // CSpaceship
}
DWORD CSpaceship::XVisual::Release() {
 TRACE("Entering CSpaceship::XVisual::Release\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalRelease(); // delegate to CSimulatedCmdTarget
}
DWORD CSpaceship::XVisual::AddRef() {
 TRACE("Entering CSpaceship::XVisual::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 return pThis->ExternalAddRef(); // delegate to CSimulatedCmdTarget
}
void CSpaceship::XVisual::Display() {
 TRACE("Entering CSpaceship::XVisual::Display\n");
 METHOD_PROLOGUE(CSpaceship, Visual) // makes pThis
 TRACE("this = %p, pThis = %p\n", this, pThis);
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nColor = %d\n", pThis->m_nColor);
}
//----------simulates COM component ----------------------------------
// In real COM, this would be DllGetClassObject, which would be called
// whenever a client called CoGetClassObject

BOOL GetClassObject(int nClsid, int nIid, void** ppvObj)
{
 ASSERT(nClsid == CLSID_CSpaceship);
 ASSERT((nIid == IID_IUnknown) ││ (nIid == IID_IClassFactory));
 return g_factory.ExternalQueryInterface(nIid, ppvObj);
 // Refcount is 2, which prevents accidental deletion
}

Client.cpp
#include <stdio.h>
#include <stddef.h> // for offsetof in METHOD_PROLOGUE
#include <assert.h>
#include "interface.h"

//----------main program---
int main() // simulates OLE client program
{
 TRACE("Entering client main\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("Entering client main\n");
 IUnknown* pUnk; // If you declare these void*, you lose type-safety
 IMotion* pMot;
 IVisual* pVis;
 IClassFactory* pClf;

 GetClassObject(CLSID_CSpaceship, IID_IClassFactory,
 (void**) &pClf);

 pClf->CreateInstance(IID_IUnknown, (void**) &pUnk);
 pUnk->QueryInterface(IID_IMotion, (void**) &pMot); // All three
 pMot->QueryInterface(IID_IVisual, (void**) &pVis); // pointers
 // should work
 TRACE("main: pUnk = %p, pMot = %p, pDis = %p\n", pUnk,
 pMot, pVis);

 // Test all the interface virtual functions
 pMot->Fly();
 int nPos = pMot->GetPosition();
 TRACE("nPos = %d\n", nPos);
 pVis->Display();

 pClf->Release();
 pUnk->Release();
 pMot->Release();
 pVis->Release();
 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Real COM with the MFC Library

So much for simulations. Now we'll get ready to convert the spaceship example to genuine
COM. You need to acquire a little more knowledge before we start, though. First, you must
learn about the CoGetClassObject function, then you must learn how COM uses the Windows
Registry to load the component, and then you have to understand the difference between an in-
process component (a DLL) and an out-of-process component (an EXE or a DLL running as a
surrogate). Finally, you must become familiar with the MFC macros that support nested
classes.

The net result will be an MFC regular DLL component that contains all the CSpaceship code
with the IMotion and IVisual interfaces. A regular MFC library Windows application will act
as the client. It will load and run the component when the user chooses a menu command.

The COM CoGetClassObject Function

In our simulation, we used a phony function named GetClassObject. In real COM, we'll use
the global CoGetClassObject function. (Co stands for "component object.") Compare the
following prototype to the GetClassObject function you saw earlier:

STDAPI CoGetClassObject(REFCLSID rclsid, DWORD dwClsContext,
 COSERVERINFO* pServerInfo, REFIID riid, LPVOID* ppvObj)

The interface pointer goes in the ppvObj parameter, and pServerInfo is a pointer to a machine
on which the class object is instantiated (NULL if the machine is local). The types REFCLSID
and REFIID are references to 128-bit globally unique identifiers (GUIDs) for COM classes
and interfaces. STDAPI indicates that the function returns a 32-bit value of type HRESULT.

The standard GUIDs (for example, those that name interfaces that Microsoft has created) are
defined in the Windows libraries that are dynamically linked to your program. You must
define GUIDs for custom classes and interfaces, such as those for spaceship objects, in this
way:

// {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IMotion =
 {0x692d03a4, 0xc689, 0x11ce, {0xb3, 0x37, 0x88, 0xea, 0x36,
 0xde, 0x9e, 0x4e}};

If the dwClsContext parameter is CLSCTX_INPROC_SERVER, the COM subsytem will look
for a DLL. If the parameter is CLSCTX_LOCAL_SERVER, COM will look for an EXE. The
two flags can be ORed together to indicate loading of a DLL if the DLL is available or an
EXE if the DLL isn't available. For example, in-process servers are fastest because everybody
shares the same address space. Communication EXE servers are considerably slower because
the interprocess calls involve data copying as well as many thread context switches. The return
value is an HRESULT value, which is 0 (NOERROR) if no error occurs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
Another COM function, CoCreateInstance, combines the functionality of
CoGetClassObject and IClassFactory::CreateInstance.

COM and the Windows Registry

In the Ex22a example, the component is statically linked to the client—a clearly bogus
circumstance. In real COM, the component is either a DLL or a separate EXE. When the client
calls the CoGetClassObject function, COM steps in and finds the correct component, which is
located somewhere on disk. How does COM make the connection? It looks up the class's
unique 128-bit class ID number in the Windows Registry. Thus, the class must be registered
permanently on your computer.

If you run the Windows Regedit program, you'll see a screen similar to the one shown in
Figure 22-1. This figure shows subfolders for four class IDs, three of which are class IDs
associated with DLLs (InprocServer32) and one of which is a class ID associated with an EXE
(LocalServer32). The CoGetClassObject function looks up the class ID in the Registry and
then loads the DLL or EXE as required.

What if you don't want to track those ugly class ID numbers in your client program? No
problem. COM supports another type of registration database entry that translates a human-
readable program ID into the corresponding class ID. Figure 22-2 shows the Registry entries.
The COM function CLSIDFromProgID reads the database and performs the translation.

Figure 22-1. Subfolders of four class IDs in the Registry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 22-2. Human-readable program IDs in the Registry.

The first CLSIDFromProgID parameter is a string that holds the program ID, but it's not an
ordinary string. This is your first exposure to double-byte characters in COM. All string
parameters of COM functions (except Data Access Objects [DAO]) are Unicode character
string pointers of type OLECHAR*. The constant need to convert between double-byte strings
and ordinary strings will make your life miserable. If you need a double-byte literal string,
prefix the string with an L character, like this:

CLSIDFromProgID(L"Spaceship", &clsid);

You'll begin learning about the MFC library's Unicode string conversion capabilities in
Chapter 23.

How does the registration information get into the Registry? You can program your
component application to call Windows functions that directly update the Registry. The MFC
library conveniently wraps these functions with the function
COleObjectFactory::UpdateRegistryAll, which finds all your program's global class factory
objects and registers their names and class IDs.

Runtime Object Registration

You've just seen how the Windows Registry registers COM classes on disk. Class factory
objects also must be registered in memory for out-of-process servers. It's unfortunate that the
word register is used in both contexts. Objects in out-of-process component modules are
registered at run time with a call to the COM CoRegisterClassObject function, and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registered at run time with a call to the COM CoRegisterClassObject function, and the
registration information is maintained in memory by the Windows DLLs. If the factory is
registered in a mode that permits a single instance of the component module to create multiple
COM objects, COM can use an existing process when a client calls CoGetClassObject.

How a COM Client Calls an In-Process Component

We're beginning with a DLL component instead of an EXE component because the program
interactions are simpler. I'll show pseudocode here because you'll be using the MFC library
classes, which hide much of the detail.

Client
 CLSID clsid;
 IClassFactory* pClf;
 IUnknown* pUnk;
 CoInitialize(NULL); // Initialize COM
 CLSIDFromProgID("componentname", &clsid);

COM
 COM uses the Registry to look up the class ID from
 "componentname"

Client
 CoGetClassObject(clsid, CLSCTX_INPROC_SERVER, NULL,
 IID_IClassFactory, (void**) &pClf);

COM
 COM uses the class ID to look for a component in memory
 if (component DLL is not loaded already)
 {
 COM gets DLL filename from the Registry
 COM loads the component DLL into process memory
 }

DLL Component
 if (component just loaded) {
 Global factory objects are constructed
 DLL's InitInstance called (MFC only)
 }

COM
 COM calls DLL's global exported DllGetClassObject with the
 CLSID value that was passed to CoGetClassObject

DLL Component
 DllGetClassObject returns IClassFactory*

COM
 COM returns IClassFactory* to client

Client
 pClf->CreateInstance (NULL, IID_IUnknown,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pClf->CreateInstance (NULL, IID_IUnknown,
 (void**) &pUnk);

DLL Component
 Class factory's CreateInstance function called (called
 directly—through component's vtable)

 Constructs object of "componentname" class

 Returns requested interface pointer

Client
 pClf->Release();
 pUnk->Release();

DLL Component
 "componentname" Release is called through vtable
 if (refcount == 0) {
 Object destroys itself
 }

Client
 CoFreeUnusedLibraries();

COM
 COM calls DLL's global exported DllCanUnloadNow

DLL Component
 DllCanUnloadNow called if (all DLL's objects destroyed) {
 return TRUE
 }

Client
 CoUninitialize(); // COM frees the DLL if DllCanUnloadNow
 returns TRUE just prior to exit

COM
 COM releases resources

Client
 Client exits

DLL Component
 Windows unloads the DLL if it is still loaded and no other
 programs are using it

Some important points to note: First, the DLL's exported DllGetClassObject function is called
in response to the client's CoGetClassObject call. Second, the class factory interface address
returned is the actual physical address of the class factory vtable pointer in the DLL. Third,
when the client calls CreateInstance—or any other interface function—the call is direct
(through the component's vtable).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COM linkage between a client EXE and a component DLL is quite efficient—as efficient
as the linkage to any C++ virtual function in the same process, plus the full C++ parameter
and return type-checking at compile time. The only penalty for using ordinary DLL linkage is
the extra step of looking up the class ID in the Registry when the DLL is first loaded.

How a COM Client Calls an Out-of-Process Component

The COM linkage to a separate EXE component is more complicated than the linkage to a
DLL component. The EXE component is in a different process, or possibly on a different
computer. Don't worry, though. You should write your programs as if a direct connection
existed. COM takes care of the details through its remoting architecture, which usually
involves RPCs.

In an RPC, the client makes calls to a special DLL called a proxy. The proxy sends a stream of
data to a stub, which is inside a DLL in the component's process. When the client calls a
component function, the proxy alerts the stub by sending a message to the component
program, which is processed by a hidden window. The mechanism of converting parameters to
and from data streams is called marshaling.

If you use standard interfaces (those defined by Microsoft) such as IClassFactory and IPersist
(an interface we'll look at later when we examine COM persistence), the proxy and the stub
code, which implement marshaling, are provided by the Windows OLEAUT32 DLL. If you
invent your own interfaces, such as IMotion and IVisual, you must write the proxies and stubs
yourself. Fortunately, creating proxy and stub classes involves simply defining your interfaces
in Interface Definition Language (IDL) and compiling the code produced by the Microsoft
Interface Definition Language (MIDL) compiler.

Here's the pseudocode interaction between an EXE client and an EXE component. Compare it
to the DLL version above. Notice that the client-side calls are exactly the same.

Client
 CLSID clsid;
 IClassFactory* pClf;
 IUnknown* pUnk;
 CoInitialize(NULL); // Initialize COM

COM
 COM uses the Registry to look up the class ID from
 "componentname"

Client
 CoGetClassObject(clsid, CLSCTX_LOCAL_SERVER, NULL,
 IID_IClassFactory, (void**) &pClf);

COM
 COM uses the class ID to look for a component in memory
 if (component EXE is not loaded already, or if we
 need another instance) {
 COM gets EXE filename from the Registry
 COM loads the component EXE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 COM loads the component EXE
 }

EXE Component
 if (just loaded) {
 Global factory objects are constructed
 InitInstance called (MFC only)
 CoInitialize(NULL);
 for each factory object {
 CoRegisterClassObject(...);
 Returns IClassFactory* to COM
 }
 }

COM
 COM returns the requested interface pointer to the client
 (client's pointer is not the same as the component's interface
 pointer)

Client
 pClf->CreateInstance(NULL, IID_IUnknown, (void**)
 &pUnk);

EXE Component
 Class factory's CreateInstance function called
 (called indirectly through marshaling)
 Constructs object of "componentname" class
 Returns requested interface pointer indirectly

Client
 pClf->Release();
 pUnk->Release();
 EXE Component
 "componentname" Release is called indirectly
 if (refcount == 0) {
 Object destroys itself
 }
 if (all objects released) {
 Component exits gracefully
 }

Client
 CoUninitialize(); // just prior to exit

COM
 COM calls Release for any objects this client has failed to
 release

EXE Component
 Component exits

COM
 COM releases resources

Client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Client
 Client exits

As you can see, COM plays an important role in the communication between the client and the
component. COM keeps an in-memory list of class factories that are in active EXE
components, but it does not keep track of individual COM objects such as the CSpaceship
object. Individual COM objects are responsible for updating the reference count and for
destroying themselves through the AddRef/Release mechanism. COM does step in when a
client exits. If that client is using an out-of-process component, COM will "listen in" on the
communication and keep track of the reference count on each object. COM will disconnect
from component objects when the client exits. Under certain circumstances, this will cause
those objects to be released. Don't depend on this behavior, however. Be sure that your client
program releases all its interface pointers before exiting.

The MFC Interface Macros

In Ex22a, you saw nested classes used for interface implementation. The MFC library has a
set of macros that automate this process. For the CSpaceship class, which is derived from the
real MFC CCmdTarget class, you use these macros inside the declaration:

BEGIN_INTERFACE_PART(Motion, IMotion)
 STDMETHOD_(void, Fly) ();
 STDMETHOD_(int&, GetPosition) ();
END_INTERFACE_PART(Motion)

BEGIN_INTERFACE_PART(Visual, IVisual)
 STDMETHOD_(void, Display) ();
END_INTERFACE_PART(Visual)

DECLARE_INTERFACE_MAP()

The INTERFACE_PART macros generate the nested classes, adding X to the first parameter to
form the class name and adding m_x to form the embedded object name. The macros generate
prototypes for the specified interface functions plus prototypes for QueryInterface, AddRef,
and Release.

The DECLARE_INTERFACE_MAP macro generates the declarations for a table that holds the
IDs of all the class's interfaces. The CCmdTarget::ExternalQueryInterface function uses the
table to retrieve the interface pointers.

In the CSpaceship implementation file, use the following macros:

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
 INTERFACE_PART(CSpaceship, IID_IMotion, Motion)
 INTERFACE_PART(CSpaceship, IID_IVisual, Visual)
END_INTERFACE_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These macros build the interface table used by CCmdTarget::ExternalQueryInterface. A
typical interface member function looks like this:

STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
{
 METHOD_PROLOGUE(CSpaceship, Motion)
 pThis->m_nPosition += 10;
 return;
}

Don't forget that you must implement all the functions for each interface, including
QueryInterface, AddRef, and Release. Those three functions can delegate to functions in
CCmdTarget.

NOTE
The STDMETHOD_ and STDMETHODIMP_ macros declare and implement
functions using the __stdcall parameter passing convention, as required by COM.
These macros allow you to specify the return value as the first parameter. Two
other macros, STDMETHOD and STDMETHODIMP, assume an HRESULT return
value.

The MFC COleObjectFactory Class

In the simulated COM example, you saw a CSpaceshipFactory class that was hard-coded to
generate CSpaceship objects. The MFC library applies its dynamic creation technology to the
problem. Thus, a single class, aptly named COleObjectFactory, can create objects of any class
specified at run time. All you need to do is use macros like these in the class declaration:

DECLARE_DYNCREATE(CSpaceship)
DECLARE_OLECREATE(CSpaceship)

And use macros like these in the implementation file:

IMPLEMENT_DYNCREATE(CSpaceship, CCmdTarget)
// {692D03A3-C689-11CE-B337-88EA36DE9E4E}
IMPLEMENT_OLECREATE(CSpaceship, "Spaceship", 0x692d03a3, 0xc689, 0x11ce,
 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e)

The DYNCREATE macros set up the standard dynamic creation mechanism. The
OLECREATE macros declare and define a global object of class COleObjectFactory with the
specified unique CLSID. In a DLL component, the exported DllGetClassObject function finds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specified unique CLSID. In a DLL component, the exported DllGetClassObject function finds
the specified class factory object and returns a pointer to it based on global variables set by the
OLECREATE macros. In an EXE component, initialization code calls the static
COleObjectFactory::RegisterAll, which finds all factory objects and registers each one by
calling CoRegisterClassObject. The RegisterAll function is also called when a DLL is
initialized. In that case, it merely sets a flag in the factory object(s).

We've really just scratched the surface of MFC's COM support. If you need more details, see
Shepherd and Wingo's MFC Internals.

Wizard Support for COM In-Process Components

The MFC DLL Wizard isn't optimized for creating COM DLL components, but you can add
COM support to your DLLs by requesting a regular DLL with Automation support. (Select
Automation on the Application Settings page.) The following functions in the project's main
source file are of interest:

BOOL CEx22bApp::InitInstance()
{
 CWinApp::InitInstance();
 // Register all OLE server (factories) as running. This enables the
 // OLE libraries to create objects from other applications.
 COleObjectFactory::RegisterAll();
 return TRUE;
}
// DllGetClassObject - Returns class factory
STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllGetClassObject(rclsid, riid, ppv);
}
// DllCanUnloadNow - Allows COM to unload DLL
STDAPI DllCanUnloadNow(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllCanUnloadNow();
}
// DllRegisterServer - Adds entries to the system registry
STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 if (!AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid))
 return SELFREG_E_TYPELIB;

 if (!COleObjectFactory::UpdateRegistryAll())
 return SELFREG_E_CLASS;

 return S_OK;
}
// DllUnregisterServer - Removes entries from the system registry
STDAPI DllUnregisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 if (!AfxOleUnregisterTypeLib(_tlid, _wVerMajor, _wVerMinor))
 return SELFREG_E_TYPELIB;

 if (!COleObjectFactory::UpdateRegistryAll(FALSE))
 return SELFREG_E_CLASS;

 return S_OK;
}

The four global functions are exported in the project's DEF file. By calling MFC functions,
you ensure that the global functions do everything you need in a COM in-process component.
The DllRegisterServer and DllUnregisterServer functions can be called by a utility program to
update the system Registry.

Once you've created the skeleton project, your next step is to use MFC Class Wizard to add
one or more COM-creatable classes to the project. Specify the class name, the base class, and
filenames for the new class on the Names page, as shown here:

In your generated class, you end up with some Automation elements such as dispatch maps,
but you can safely remove them. You can also remove the following two lines from StdAfx.h:

#include <afxodlgs.h>
#include <afxdisp.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC COM Client Programs

Writing an MFC COM client program is a no-brainer. You just use the MFC Application
Wizard to generate a normal application, and then you add the following line in StdAfx.h:

#include <afxole.h>

Next, add the following line at the beginning of the application class InitInstance member
function:

AfxOleInit();

You're now ready to add code that calls CoGetClassObject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex22b Example: An MFC COM In-Process Component

The Ex22b example is an MFC regular DLL that incorporates a true COM version of the
CSpaceship class you saw in Ex22a. The MFC DLL Wizard generated the Ex22b.cpp and
Ex22b.h files, as described previously. The Interface.h file, shown in the following listing,
declares the IMotion and IVisual interfaces. The code for the CSpaceship class is shown after
the Interface.h file. Compare that code to the code in Ex22a. Do you see how the use of the
MFC macros reduces code size? Note that the MFC CCmdTarget class takes care of the
reference counting and QueryInterface logic.

Interface.h
struct IMotion : public IUnknown
{
 STDMETHOD_(void, Fly) () = 0;
 STDMETHOD_(int&, GetPosition) () = 0;
};
struct IVisual : public IUnknown
{
 STDMETHOD_(void, Display) () = 0;
};

Spaceship.h
#pragma once
void ITrace(REFIID iid, const char* str);
// CSpaceship command target
class CSpaceship : public CCmdTarget
{
 DECLARE_DYNCREATE(CSpaceship)
private:
 int m_nPosition; // We can access this from all the interfaces
 int m_nAcceleration;
 int m_nColor;
public:
 CSpaceship();
 virtual ~CSpaceship();
 virtual void OnFinalRelease();
protected:
 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CSpaceship)

 BEGIN_INTERFACE_PART(Motion, IMotion)
 STDMETHOD_(void, Fly) ();
 STDMETHOD_(int&, GetPosition) ();
 END_INTERFACE_PART(Motion)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 END_INTERFACE_PART(Motion)

 BEGIN_INTERFACE_PART(Visual, IVisual)
 STDMETHOD_(void, Display) ();
 END_INTERFACE_PART(Visual)
 DECLARE_INTERFACE_MAP()
};

Spaceship.cpp
// Spaceship.cpp : implementation file
//
#include "stdafx.h"
#include "Ex22b.h"
#include "Interface.h"
#include "Spaceship.h"

// CSpaceship
// {692D03A4-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IMotion =
 { 0x692d03a4, 0xc689, 0x11ce,
 { 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e } };

// {692D03A5-C689-11CE-B337-88EA36DE9E4E}
static const IID IID_IVisual =
 { 0x692d03a5, 0xc689, 0x11ce,
 { 0xb3, 0x37, 0x88, 0xea, 0x36, 0xde, 0x9e, 0x4e } };

IMPLEMENT_DYNCREATE(CSpaceship, CCmdTarget)
CSpaceship::CSpaceship()
{
 TRACE("CSpaceship ctor\n");
 m_nPosition = 100;
 m_nAcceleration = 101;
 m_nColor = 102;
 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.
 AfxOleLockApp();
}
CSpaceship::~CSpaceship()
{
 TRACE("CSpaceship dtor\n");
 // To terminate the application when all objects created with
 // OLE automation, the destructor calls AfxOleUnlockApp.
 AfxOleUnlockApp();
}
void CSpaceship::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. The base class will automatically
 // delete the object. Add additional cleanup required for your
 // object before calling the base class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // object before calling the base class.
 delete this;
}
BEGIN_MESSAGE_MAP(CSpaceship, CCmdTarget)
END_MESSAGE_MAP()
// Note: we add support for IID_ISpaceship to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .IDL file.

// {E39B5EB0-A0DA-43F3-B9B0-206CF10890C1}
static const IID IID_ISpaceship =
 { 0xE39B5EB0, 0xA0DA, 0x43F3,
 { 0xB9, 0xB0, 0x20, 0x6C, 0xF1, 0x8, 0x90, 0xC1 } };

BEGIN_INTERFACE_MAP(CSpaceship, CCmdTarget)
 INTERFACE_PART(CSpaceship, IID_IMotion, Motion)
 INTERFACE_PART(CSpaceship, IID_IVisual, Visual)
END_INTERFACE_MAP()
// {13C4472C-84BB-4ED6-8164-83ED8EB136B5}
IMPLEMENT_OLECREATE_FLAGS(CSpaceship, "Ex22b.Spaceship",
 afxRegApartmentThreading, 0x13c4472c, 0x84bb, 0x4ed6, 0x81,
 0x64, 0x83, 0xed, 0x8e, 0xb1, 0x36, 0xb5)

STDMETHODIMP_(ULONG) CSpaceship::XMotion::AddRef()
{
 TRACE("CSpaceship::XMotion::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalAddRef();
}
STDMETHODIMP_(ULONG) CSpaceship::XMotion::Release()
{
 TRACE("CSpaceship::XMotion::Release\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalRelease();
}
STDMETHODIMP CSpaceship::XMotion::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CSpaceship::XMotion::QueryInterface");
 METHOD_PROLOGUE(CSpaceship, Motion)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}
STDMETHODIMP_(void) CSpaceship::XMotion::Fly()
{
 TRACE("CSpaceship::XMotion::Fly\n");
 METHOD_PROLOGUE(CSpaceship, Motion)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return;
}
STDMETHODIMP_(int&) CSpaceship::XMotion::GetPosition()
{
 TRACE("CSpaceship::XMotion::GetPosition\n");
 METHOD_PROLOGUE(CSpaceship, Motion)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 METHOD_PROLOGUE(CSpaceship, Motion)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nAcceleration = %d\n", pThis->m_nAcceleration);
 return pThis->m_nPosition;
}
STDMETHODIMP_(ULONG) CSpaceship::XVisual::AddRef()
{
 TRACE("CSpaceship::XVisual::AddRef\n");
 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalAddRef();
}
STDMETHODIMP_(ULONG) CSpaceship::XVisual::Release()
{
 TRACE("CSpaceship::XVisual::Release\n");
 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalRelease();
}
STDMETHODIMP CSpaceship::XVisual::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
{
 ITrace(iid, "CSpaceship::XVisual::QueryInterface");
 METHOD_PROLOGUE(CSpaceship, Visual)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}
STDMETHODIMP_(void) CSpaceship::XVisual::Display()
{
 TRACE("CSpaceship::XVisual::Display\n");
 METHOD_PROLOGUE(CSpaceship, Visual)
 TRACE("m_nPosition = %d\n", pThis->m_nPosition);
 TRACE("m_nColor = %d\n", pThis->m_nColor);
}
void ITrace(REFIID iid, const char* str)
{
 OLECHAR* lpszIID;
 ::StringFromIID(iid, &lpszIID);
 CString strTemp(lpszIID);
 TRACE("%s - %s\n", (const char*) strTemp, (const char*) str);
 AfxFreeTaskMem(lpszIID);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex22c Example: An MFC COM Client

The Ex22c example is an MFC program that incorporates a true COM version of the client
code you saw in Ex22a. This is a generic MFC Application Wizard–generated Single
Document Interface (SDI) EXE program with an added #include statement for the MFC COM
headers and a call to AfxOleInit, which initializes the DLL. A Spaceship command on an
added Test menu is mapped to the view class handler function shown in the following code.
The project also contains a copy of the Ex22b component’s Interface.h file, shown in the
previous section. You can see an #include statement for this file at the top of Ex22cView.cpp.

void CEx22cView::OnTestSpaceship()
{
 CLSID clsid;
 LPCLASSFACTORY pClf;
 LPUNKNOWN pUnk;
 IMotion* pMot;
 IVisual* pVis;

 HRESULT hr;
 if ((hr = ::CLSIDFromProgID(L"Ex22b.Spaceship", &clsid)) != NOERROR) {
 TRACE("unable to find Program ID -- error = %x\n", hr);
 return;
 }
 if ((hr = ::CoGetClassObject(clsid, CLSCTX_INPROC_SERVER,
 NULL, IID_IClassFactory, (void **) &pClf)) != NOERROR) {
 TRACE("unable to find CLSID -- error = %x\n", hr);
 return;
 }

 pClf->CreateInstance(NULL, IID_IUnknown, (void**) &pUnk);
 pUnk->QueryInterface(IID_IMotion, (void**) &pMot); // All three
 pMot->QueryInterface(IID_IVisual, (void**) &pVis); // pointers
 // should work
 TRACE("main: pUnk = %p, pMot = %p, pDis = %p\n", pUnk, pMot, pVis);

 // Test all the interface virtual functions
 pMot->Fly();
 int nPos = pMot->GetPosition();
 TRACE("nPos = %d\n", nPos);
 pVis->Display();

 pClf->Release();
 pUnk->Release();
 pMot->Release();
 pVis->Release();
 AfxMessageBox("Test succeeded. See Debug window for output.");
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To test the client and the component, you must first run the component to update the Registry.
Several utilities will help you do this, but you might want to try the RegComp program in the
\vcppnet\REGCOMP project on the companion CD. This program prompts you to select a
DLL or an OCX file, and then it calls the exported DllRegisterServer function.

Both client and component show their progress through TRACE calls. To view the trace result,
you need the debugger or some other utilities. You can run either the client or the component
from the Visual Studio .NET debugger. If you try to run the component, you’ll be prompted
for the client pathname. In either case, you don’t have to copy the DLL because Windows will
find it through the Registry.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Containment vs. Aggregation vs. Inheritance

In normal C++ programming, you frequently use inheritance to factor out common behavior
into a reusable base class. The CPersistentFrame class (discussed in Chapter 15) is an
example of reusability through inheritance.

COM uses containment and aggregation instead of inheritance. Let’s start with containment.
Suppose you want to extend the spaceship simulation to include planets in addition to
spaceships. Using C++ by itself, you would probably write a COrbiter base class that
encapsulates the laws of planetary motion. With COM, you would have “outer” CSpaceship
and CPlanet classes plus an “inner” COrbiter class. The outer classes would implement the
IVisual interface directly, but they would delegate their IMotion interfaces to the inner class.
The result would look something like this:

Note that the COrbiter object doesn’t know that it’s inside a CSpaceship or CPlanet object,
but the outer object certainly knows that it has a COrbiter object embedded inside. The outer
class needs to implement all its interface functions, but the IMotion functions, including
QueryInterface, simply call the same IMotion functions of the inner class.

A more complex alternative to containment is aggregation. With aggregation, the client can
have direct access to the inner object’s interfaces. Here is the aggregation version of the space
simulation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The orbiter is embedded in the spaceship and planet, just as it was in the containment case.
Suppose the client obtains an IVisual pointer for a spaceship and then calls QueryInterface for
an IMotion pointer. Using the outer IUnknown pointer will draw a blank because the
CSpaceship class doesn’t support IMotion. The CSpaceship class keeps track of the inner
IUnknown pointer (of its embedded COrbiter object), so the class uses that pointer to obtain
the IMotion pointer for the COrbiter object.

Now suppose the client obtains an IMotion pointer and then calls QueryInterface for IVisual.
The inner object must be able to navigate to the outer object, but how? Take a close look at the
CreateInstance call back on page 567. The first parameter is set to NULL in that case. If
you’re creating an aggregated (inner) object, you use that parameter to pass an IUnknown
pointer for the outer object that you’ve already created. This pointer is called the controlling
unknown. The COrbiter class saves this pointer in a data member and then uses it to call
QueryInterface for interfaces that the class itself doesn’t support.

The MFC library supports aggregation. The CCmdTarget class has a public data member,
m_pOuterUnknown, that holds the outer object’s IUnknown pointer (if the object is
aggregated). The CCmdTarget member functions ExternalQueryInterface, ExternalAddRef,
and ExternalRelease delegate to the outer IUnknown if it exists. The member functions
InternalQueryInterface, InternalAddRef, and InternalRelease do not delegate. See Technical
Note #38 in the MFC Library Reference for a description of the MFC macros that support
aggregation.

Even though aggregation plays a major role in the underpinnings of COM (particularly with
the proxy manager), you’re unlikely to ever use it in standard COM applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23
Automation

After reading Chapter 22, you should know what an interface is. You’ve already seen two
standard COM interfaces: IUnknown and IClassFactory. Now you’re ready for “applied”
COM, or at least one aspect of it—integrating with other applications via Automation
(formerly known as OLE Automation). You’ll learn about the COM IDispatch interface,
which enables C++ programs to communicate with Microsoft Visual Basic for Applications
(VBA) programs and with programs written in other scripting languages. In addition,
IDispatch is the key to getting your COM object onto a Web page. You’ll use the MFC library
implementation of IDispatch to write C++ Automation component and client programs. We’ll
also explore both out-of-process components and in-process components.

But before we jump into C++ Automation programming, you need to know how the rest of the
world writes programs. In this chapter, you’ll get some exposure to VBA as it is implemented
in Microsoft Excel. You’ll run your C++ components from Excel, and you’ll run Excel from a
C++ client program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating C++ Components for VBA

Not all programmers of Microsoft Windows–based applications will be C++ programmers,
especially if they have to learn the intricacies of COM theory. If you’ve been paying attention,
you’ve probably noticed a trend in which C++ programmers produce reusable modules.
Programmers who use higher-level languages (Visual Basic, VBA, and Web scripting
languages, for example) consume those modules by integrating them into applications. You
can participate in this programming model by learning how to make your software script-
friendly. Automation is one tool that the Microsoft Foundation Class library supports. ActiveX
controls are another tool for C++/VBA integration and are very much a superset of
Automation because both tools use the IDispatch interface. Using ActiveX controls, however,
might be overkill in many situations. Many applications, including Excel, can support both
Automation components and ActiveX controls. You’ll be able to apply all that you learn about
Automation when you write and use ActiveX controls.

Two factors are responsible for Automation’s success. First, VBA is supported by most
Microsoft applications, including Microsoft Word, Microsoft Access, and Excel, not to
mention Microsoft Visual Basic itself. All these applications can be linked to other
Automation-compatible components, including those written in C++ and VBA. For example,
you can write a C++ program that uses the text-processing capability of Word, or you can
write a C++ matrix inversion component that can be called from a VBA macro in an Excel
worksheet.

The second factor underlying Automation’s success is that dozens of software companies
provide Automation programming interfaces for their applications, mostly for the benefit of
VBA programmers. With a little effort, you can run these applications from C++. You can, for
example, write an MFC program that controls the Microsoft Visio drawing program.

Automation isn’t just for C++ and VBA programmers. Software tool companies are already
announcing Automation-compatible, Basic-like languages that you can license for your own
programmable applications. One version of Smalltalk even supports Automation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Clients and Components

A clearly defined “master-slave” relationship is always present in an Automation
communication dialog. The master is the Automation client and the slave is the Automation
component (server). The client initiates the interaction by constructing a component object (it
might have to load the component program) or by attaching to an existing object in a
component program that is already running. The client then calls interface functions in the
component and releases those interfaces when it’s finished.

Here are some interaction scenarios:

A C++ Automation client uses a Microsoft or third-party application as a component.
The interaction might trigger the execution of VBA code in the component application.

A C++ Automation component is used from inside a Microsoft application (or a Visual
Basic application), which acts as the Automation client. VBA code can thus construct
and use C++ objects.

A C++ Automation client uses a C++ Automation component.

A Visual Basic program uses an Automation-aware application such as Excel. In this
case, Visual Basic is the client and Excel is the component.

Excel: A Better Visual Basic Than Visual Basic

When the first three editions of this book were written, Visual Basic worked as an Automation
client but you couldn’t use it to create an Automation component. Since version 5.0, Visual
Basic has let you write components, too—even ActiveX controls. The book originally used
Excel instead of Visual Basic because Excel was the first Microsoft application to support
VBA syntax and could serve as both a client and a component. Here, we’ll stick with Excel
because C++ programmers who look down their noses at Visual Basic might be inclined to
buy Excel (if only to track their software royalties).

I strongly recommend that you get the latest version of Excel, which is a true 32-bit
application and is a part of the Microsoft Office suite. With this version of Excel, you can
write VBA code in a separate location that accesses worksheet cells in an object-oriented
manner. Adding visual programming elements—such as buttons—is easy. Forget all you ever
knew about the old spreadsheet programs that forced you to wedge macro code inside cells.

This chapter isn’t meant to be an Excel tutorial, but it includes a simple Excel workbook. (A
workbook is a file that can contain multiple worksheets plus separate VBA code.) This
workbook demonstrates a VBA macro that executes from a button. You can use Excel to load
Demo.xls from the \vcppnet\Ex23a subdirectory, or you can key in the example from scratch.
Figure 23-1 shows the actual spreadsheet with the button and sample data.

In this spreadsheet, you highlight cells A4 through A9 and click the Process Col button. A
VBA program iterates down the column and draws a hatched pattern on cells with numeric
values greater than 10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23-2 shows the macro code itself, which is “behind” the worksheet. In Excel, choose
Macro from the Tools menu, and then choose Visual Basic Editor. (Alt+F11 is the shortcut.)
As you can see, you’re working in the standard VBA environment at this point.

Figure 23-1. An Excel spreadsheet that uses VBA code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23-2. The VBA code for the Excel spreadsheet.

If you want to create the example yourself, follow these steps:

1. Start Excel with a new workbook, press Alt+F11, and then double-click Sheet1 in the
top left window.

2. Type in the macro code shown in Figure 23-2.

3. Return to the Excel window by choosing Close And Return To Microsoft Excel from
the File menu. Choose Toolbars from the View menu. Select Forms to display the
Forms toolbar. (You can also access the list of toolbars by right-clicking on any existing
toolbar.)

4. Click the Button control, and then create the button by dragging the mouse in the upper
left corner of the worksheet. Assign the button to the Sheet1.ProcessColumn macro.

5. Size the button, and type the caption Process Col (as shown in Figure 23-1).

6. Type some numbers in the column starting at cell A4. Select the cells containing these
numbers, and then click the button to test the program.

Pretty easy, isn’t it?

Let’s analyze an Excel VBA statement from the macro above:

Selection.Offset(1, 0).Range("A1").Select

The first element, Selection, is a property of an implied object, the Excel application. The
Selection property in this case is assumed to be a Range object that represents a rectangular
array of cells. The second element, Offset, is a property of the Range object that returns
another Range object based on the two parameters. In this case, the returned Range object is
the one-cell range that begins one row down from the original range. The third element,
Range, is a property of the Range object that returns yet another range. This time it’s the upper
left cell in the second range. Finally, the Select method causes Excel to highlight the selected
cell and makes it the new Selection property of the application.

As the program iterates through the loop, the preceding statement moves the selected cell
down the worksheet one row at a time. This style of programming takes some getting used to,
but it’s fairly common—especially in Office environments that usually deal with lots of
documents. The real value here is that you have all the capabilities of the Excel spreadsheet
and graphics engine available to you in a seamless programming environment.

Properties, Methods, and Collections

The distinction between a property and a method is somewhat artificial. Basically, a property
is a value that can be both set and retrieved. You can, for example, set and get the Selection
property for an Excel application. Another example is Excel’s Width property, which applies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property for an Excel application. Another example is Excel’s Width property, which applies
to many object types. Some Excel properties are read-only, but most are read/write.

Properties don’t officially have parameters, but some properties are indexed. The property
index acts a lot like a parameter. It doesn’t have to be an integer, and it can have more than
one element (a row and a column, for example). You’ll find many indexed properties in
Excel’s object model, and Excel VBA can handle indexed properties in Automation
components.

Methods are more flexible than properties. They can have zero or many parameters, and they
can either set or retrieve object data. Most frequently, they perform some action, such as
showing a window. Excel’s Select method is an example of an action method.

The Excel object model supports collection objects. For example, if you use the Worksheets
property of the Application object, you get back a Sheets collection object, which represents
all the worksheets in the active workbook. You can use the Item property (with an integer
index) to get a specific Worksheet object from a Sheets collection, or you can use an integer
index directly on the collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Interfaces

You’ve already learned that a COM interface is a useful way for Windows programs to
communicate with one another, but you’ve also learned that designing your own COM
interfaces is impractical in many cases. Automation’s general-purpose interface, IDispatch,
serves the needs of both C++ and VBA programmers. As you might guess from your glimpse
of Excel VBA, this interface involves objects, methods, and properties.

You can write COM interfaces that include functions with any parameter types and return
values you specify. IMotion and IVisual, which we created in Chapter 22, are examples. If
you’re going to let VBA programmers in, however, you can’t play fast and loose anymore.
You can solve the communication problem with one interface that has a member function
smart enough to accommodate methods and properties as defined by VBA. Needless to say,
IDispatch has such a function: Invoke. You use IDispatch::Invoke for COM objects that can
be constructed and used in either C++ or VBA programs.

Now you’re beginning to see what Automation does. It funnels all intermodule
communication through the IDispatch::Invoke function. How does a client first connect to its
component? IDispatch is merely another COM interface, so all the registration logic supported
by COM comes into play. Automation components can be DLLs or EXEs, and they can be
accessed over a network using Distributed COM (DCOM).

The IDispatch Interface

IDispatch is the heart of Automation. It’s fully supported by COM marshaling (that is,
Microsoft has already marshaled it for you), as are all the other standard COM interfaces, and
it’s well supported by the MFC library. At the component end, you need a COM class with an
IDispatch interface (plus the prerequisite class factory, of course). At the client end, you use
standard COM techniques to obtain an IDispatch pointer. (As you’ll see, the MFC library and
the wizards take care of a lot of these details for you.)

Remember that Invoke is the principal member function of IDispatch. If you were to look up
IDispatch::Invoke in the Visual C++ .NET online documentation, you’d see a really ugly set
of parameters. Don’t worry about those now. The MFC library steps in on both sides of the
Invoke call, using a data-driven scheme to call component functions based on dispatch map
parameters that you define with macros.

Invoke isn’t the only IDispatch member function. Another function your controller might call
is GetIDsOfNames. From the VBA programmer’s point of view, properties and methods have
symbolic names, but C++ programmers prefer more efficient integer indexes. Invoke uses
integers to specify properties and methods, so GetIDsOfNames is useful at the start of a
program for converting each name to a number if you don’t know the index numbers at
compile time. You’ve already seen that IDispatch supports symbolic names for methods. In
addition, the interface supports symbolic names for a method’s parameters. The
GetIDsOfNames function returns those parameter names along with the method name.
Unfortunately, the MFC IDispatch implementation doesn’t support named parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Programming Choices

Suppose you’re writing an Automation component in C++. You’ve got some choices to make.
Do you want an in-process component or an out-of-process component? What kind of user
interface do you want? Does the component need a user interface at all? Can users run your
EXE component as a standalone application? If the component is an EXE, will it be Single
Document Interface (SDI) or Multiple Document Interface (MDI)? Can the user shut down the
component program directly?

If your component is a DLL, COM linkage will be more efficient than it would be with an
EXE component because no marshaling is required. Most of the time, your in-process
Automation components won’t have their own user interfaces, except for modal dialog boxes.
If you need a component that manages its own child window, you should use an ActiveX
control, and if you want to use a main frame window, you should use an out-of-process
component. As with any 32-bit DLL, an Automation DLL is mapped into the client’s process
memory. If two client programs happen to request the same DLL, Windows will load and link
the DLL twice. Each client will be unaware that the other is using the same component.

With an EXE component, however, you must be careful to distinguish between a component
program and a component object. When a client calls IClassFactory::CreateInstance to
construct a component object, the component’s class factory constructs the object, but COM
might or might not need to start the component program.

Here are some scenarios:

The component’s COM-creatable class is programmed to require a new process for each
object constructed. In this case, COM starts a new process in response to the second and
subsequent CreateInstance calls, each of which returns an IDispatch pointer.

Here’s a special case of the above scenario that’s specific to MFC applications. The
component class is an MFC document class in an SDI application. Each time a client
calls CreateInstance, a new component process starts, complete with a document object,
a view object, and an SDI main frame window.

The component class is programmed to allow multiple objects in a single process. Each
time a client calls CreateInstance, a new component object is constructed. There is only
one component process, however.

Here’s a special case of the above scenario that’s specific to MFC applications. The
component class is an MFC document class in an MDI application. There is a single
component process with one MDI main frame window. Each time a client calls
CreateInstance, a new document object is constructed, along with a view object and an
MDI child frame window.

There’s one more interesting case. Suppose a component EXE is running before the client
needs it, and then the client decides to access a component object that already exists. You’ll
see this case with Excel. The user might have Excel running but minimized on the desktop,
and the client might need access to Excel’s one and only Application object. The client will
call the COM function GetActiveObject, which provides an interface pointer for an existing
component object. If the call fails, the client can create the object with CoCreateInstance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For component object deletion, normal COM rules apply. Automation objects have reference
counts, and they delete themselves when the client calls Release and the reference count goes
to 0. In an MDI component, if the Automation object is an MFC document, its destruction will
cause the corresponding MDI child window to close. In an SDI component, the destruction of
the document object will cause the component process to exit. The client is responsible for
calling Release for each IDispatch interface before the client exits. For EXE components,
COM will intervene if the client exits without releasing an interface, thus allowing the
component process to exit. You can’t always depend on this intervention, however, so be sure
that your client cleans up its interfaces!

With generic COM, a client application often obtains multiple interface pointers for a single
component object. Look back at the spaceship example in Chapter 22, in which the simulated
COM component class has both an IMotion pointer and an IVisual pointer. With Automation,
however, there’s usually only a single (IDispatch) pointer per object. As in all COM
programming, you must be careful to release all your interface pointers. In Excel, for example,
many properties return an IDispatch pointer to new or existing objects. If you fail to release a
pointer to an in-process COM component, the Debug version of the MFC library will alert you
with a memory-leak dump when the client program exits.

The MFC IDispatch Implementation

The component program can implement its IDispatch interface in several ways. The most
common way passes off much of the work to the Windows COM DLLs by calling the COM
function CreateStdDispatch or by delegating the Invoke call to the ITypeInfo interface, which
involves the component’s type library. A type library is a table, locatable through the Registry
that allows a client to query the component for the symbolic names of objects, methods, and
properties. A client can, for example, contain a browser that allows the user to explore the
component’s capabilities.

The MFC library supports type libraries, but it doesn’t use them in its implementation of
IDispatch, which is instead driven by a dispatch map. MFC programs don’t call
CreateStdDispatch at all, nor do they use a type library to implement
IDispatch::GetIDsOfNames. This means you can’t use the MFC library if you implement a
multilingual Automation component—one that supports English and German property and
method names, for example. (CreateStdDispatch doesn’t support multilingual components
either.)

Later in this chapter, you’ll learn how a client can use a type library, and you’ll see how MFC
wizards create and maintain type libraries for you. Once your component has a type library, a
client can use it for browsing, independent of the IDispatch implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MFC Automation Component

Let’s look at what happens in an MFC Automation component—in this case, a simplified
version of the Ex23c alarm clock program that’s discussed later in this chapter. In the MFC
library, the IDispatch implementation is part of the CCmdTarget base class, so you don’t need
INTERFACE_MAP macros. You write an Automation component class—CClock, for example
—that’s derived from CCmdTarget. This class’s CPP file contains DISPATCH_MAP macros:

BEGIN_DISPATCH_MAP(CClock, CCmdTarget)
 DISP_PROPERTY(CClock, "Time", m_time, VT_DATE)
 DISP_PROPERTY_PARAM(CClock, "Figure", GetFigure,
 SetFigure, VT_VARIANT, VTS_I2)
 DISP_FUNCTION(CClock, "RefreshWin", Refresh, VT_EMPTY, VTS_NONE)
 DISP_FUNCTION(CClock, "ShowWin", ShowWin, VT_BOOL, VTS_I2)
END_DISPATCH_MAP()

Looks a little like an MFC message map, doesn’t it? The CClock class header file contains
related code, shown here:

public:
 DATE m_time;
 afx_msg VARIANT GetFigure(short n);
 afx_msg void SetFigure(short n, const VARIANT& vaNew);
 afx_msg void Refresh();
 afx_msg BOOL ShowWin(short n);
 DECLARE_DISPATCH_MAP()

What does all this stuff mean? It means that the CClock class has the following properties and
methods:

Name Type Description

Time Property Linked directly to class data member m_time.

Figure Property An indexed property that’s accessed through member functions
GetFigure and SetFigure. The first parameter is the index, and the
second (for SetFigure) is the string value. (The figures are the XII,
III, VI, and IX that appear on the clock face.)

RefreshWin Method Linked to the class member function Refresh. It has no parameters
or return value.

ShowWin Method Linked to the class member function ShowWin. It is a short integer
parameter with a Boolean return value.

How does the MFC dispatch map relate to IDispatch and the Invoke member function? The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How does the MFC dispatch map relate to IDispatch and the Invoke member function? The
dispatch-map macros generate static data tables that the MFC library’s Invoke implementation
can read. A controller gets an IDispatch pointer for CClock (which is connected through the
CCmdTarget base class), and it calls Invoke with an array of pointers as a parameter. The
MFC library’s implementation of Invoke, which is buried somewhere inside CCmdTarget,
uses the CClock dispatch map to decode the supplied pointers and either calls one of your
member functions or accesses m_time directly.

As you’ll see in the examples, the Add Class Wizard can generate the Automation component
class for you and help you code the dispatch map.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An MFC Automation Client Program

Let’s move on to the client’s end of the Automation conversation. How does an MFC
Automation client program call Invoke? The MFC library provides a base class
COleDispatchDriver for this purpose. This class has a data member, m_lpDispatch, that
contains the corresponding component’s IDispatch pointer. To shield you from the
complexities of the Invoke parameter sequence, COleDispatchDriver has several member
functions, including InvokeHelper, GetProperty, and SetProperty. These three functions call
Invoke for an IDispatch pointer that links to the component. The COleDispatchDriver object
incorporates the IDispatch pointer.

Suppose our client program has a class CClockDriver that’s derived from
COleDispatchDriver and that drives CClock objects in an Automation component. The
functions that get and set the Time property are shown here:

 DATE CClockDriver::GetTime()
{
 DATE result;
 GetProperty(1, VT_DATE, (void*)&result);
 return result;
}
void CClockDriver::SetTime(DATE propVal)
{
 SetProperty(1, VT_DATE, propVal);
}

Here are the functions for the indexed Figure property:

VARIANT CClockDriver::GetFigure(short i)
{
 VARIANT result;
 static BYTE parms[] = VTS_I2;
 InvokeHelper(2, DISPATCH_PROPERTYGET, VT_VARIANT,
 (void*)&result, parms, i);
 return result;
}
void CClockDriver::SetFigure(short i, const VARIANT& propVal)
{
 static BYTE parms[] = VTS_I2 VTS_VARIANT;
 InvokeHelper(2, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL,
 parms, i, &propVal);
}

And here are the functions that access the component’s methods:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CClockDriver::RefreshWin()
{
 InvokeHelper(3, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}
BOOL CClockDriver::ShowWin(short i)
{
 BOOL result;
 static BYTE parms[] = VTS_I2;
 InvokeHelper(4, DISPATCH_METHOD, VT_BOOL,
 (void*)&result, parms, i);
 return result;
}

The function parameters identify the property or method, its return value, and its parameters.
You’ll learn about dispatch function parameters later, but for now take special note of the first
parameter for the InvokeHelper, GetProperty, and SetProperty functions. This is the unique
integer index, or dispatch ID (DISPID), for the property or method. Because you’re using
compiled C++, you can establish these IDs at compile time. If you’re using an MFC
Automation component with a dispatch map, the indexes will be determined by the map
sequence, beginning with 1. If you don’t know a component’s dispatch indexes, you can call
the IDispatch member function GetIDsOfNames to convert the symbolic property or method
names to integers.

The following illustration shows the interactions between the client (or controller) and the
component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The solid lines show the actual connections through the MFC base classes and the Invoke
function. The dotted lines represent the resulting logical connections between client class
members and component class members.

Most Automation components have a binary type library file with a TLB extension. The Add
Class Wizard can access this type library file to generate a class derived from
COleDispatchDriver. (Choose Add Class from the Project menu and select MFC Class From
TypeLib.) This generated controller class contains member functions for all the component’s
methods and properties with hard-coded DISPIDs. Sometimes you need to do some surgery on
this generated code, but that’s better than writing the functions from scratch.

After you have generated your driver class, you embed an object of this class in your client
application’s view class (or in another class), like this:

CClockDriver m_clock;

You then ask COM to create a clock component object using this statement:

m_clock.CreateDispatch("Ex23c.Document");

Now you’re ready to call the dispatch driver functions:

m_clock.SetTime(COleDateTime::GetCurrentTime());
m_clock.RefreshWin();

When the m_clock object goes out of scope, its destructor releases the IDispatch pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Automation Client Program That Uses the Compiler’s #import
Directive

Now you can use an entirely new way of writing Automation client programs. Instead of using
the Add Class Wizard to generate a class derived from COleDispatchDriver, you use the
compiler to generate header and implementation files directly from a component’s type
library. For the clock component, your client program contains the following statement:

#import"..\Ex23c\debug\Ex23c.tlb" rename_namespace("ClockDriv") using namespace ClockDriv;

The compiler then generates (and processes) two files, Ex23c.tlh and Ex23c.tli, in the project’s
Debug or Release subdirectory. The TLH file contains the IEx23c clock driver class
declaration plus this smart pointer declaration:

_COM_SMARTPTR_TYPEDEF(IEx23c, __uuidof(IDispatch));

The _COM_SMARTPTR_TYPEDEF macro generates the IEx23cPtr pointer type, which
encapsulates the component’s IDispatch pointer. The TLI file contains inline implementations
of member functions, some of which are shown in the following code:

inline HRESULT IEx23c::RefreshWin () {
 return _com_dispatch_method(this, 0x4, DISPATCH_METHOD,
 VT_EMPTY, NULL, NULL);
}
inline DATE IEx23c::GetTime () {
 DATE _result;
 _com_dispatch_propget(this, 0x1, VT_DATE, (void*)&_result);
 return _result;
}
inline void IEx23c::PutTime (DATE _val) {
 _com_dispatch_propput(this, 0x1, VT_DATE, _val);
}

Note the similarity between these functions and the COleDispatchDriver member functions
you’ve already seen. The functions _com_dispatch_method, _com_dispatch_propget, and
_com_dispatch_propput are in the runtime library.

In your Automation client program, you declare an embedded smart pointer member in your
view class (or in another class), like this:

IEx23cPtr m_clock;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You then create a clock component object using this statement:

m_clock.CreateInstance(__uuidof(Document));

Now you’re ready to use the IEx23cPtr class’s overloaded -> operator to call the member
functions defined in the TLI file:

m_clock->PutTime(COleDateTime::GetCurrentTime());
m_clock->RefreshWin();

When the m_clock smart pointer object goes out of scope, its destructor calls the COM
Release function.

The #import directive is the future of COM programming. With each new version of Visual
C++, you’ll see COM features moving into the compiler, along with the document-view
architecture itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The VARIANT Type

No doubt you noticed the VARIANT type used in both Automation client and component
functions in the previous example. VARIANT is an all-purpose data type that
IDispatch::Invoke uses to transmit parameters and return values. The VARIANT type is the
natural type to use when you exchange data with VBA. Here’s a simplified version of the
VARIANT definition in the Windows header files:

struct tagVARIANT {
 VARTYPE vt; // unsigned short integer type code
 WORD wReserved1, wReserved2, wReserved3;
 union {
 short iVal; // VT_I2 short integer
 long lVal; // VT_I4 long integer
 float fltVal; // VT_R4 4-byte float
 double dblVal; // VT_R8 8-byte IEEE float
 DATE date; // VT_DATE stored as dbl
 // date.time
 CY vtCY // VT_CY 64-bit integer
 BSTR bstrVal; // VT_BSTR
 IUnknown* punkVal; // VT_UNKNOWN
 IDispatch* pdispVal; // VT_DISPATCH
 short* piVal; // VT_BYREF │ VT_I2
 long* plVal; // VT_BYREF │ VT_I4
 float* pfltVal; // VT_BYREF │ VT_R4
 double* pdblVal; // VT_BYREF │ VT_R8
 DATE* pdate; // VT_BYREF │ VT_DATE
 CY* pvtCY; // VT_BYREF │ VT_CY
 BSTR* pbstrVal; // VT_BYREF │ VT_BSTR
 }
};
typedef struct tagVARIANT VARIANT;

As you can see, the VARIANT type is a C structure that contains a type code vt, some reserved
bytes, and a big union of types that you already know about. If vt is VT_I2, for example, you
read the VARIANT’s value from iVal, which contains a 2-byte integer. If vt is VT_R8, you read
this value from dblVal, which contains an 8-byte real value.

A VARIANT object can contain actual data or a pointer to data. If vt has the VT_BYREF bit set,
you must access a pointer in piVal, plVal, and so on. Note that a VARIANT object can contain
an IUnknown pointer or an IDispatch pointer. This means that you can pass a complete COM
object using an Automation call, but if you want VBA to process that object, its class should
have an IDispatch interface.

Strings are special. The BSTR type is yet another way to represent character strings. A BSTR
variable is a pointer to a zero-terminated character array with a character count in front. A
BSTR variable can therefore contain binary characters, including zeros. If you have a
VARIANT object with vt = VT_BSTR, memory will look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because the string has a terminating 0, you can use bstrVal as if it were an ordinary char
pointer, but you have to be very, very careful about memory cleanup. You can’t simply delete
the string pointer because the allocated memory begins with the character count. Windows
provides the SysAllocString and SysFreeString functions for allocating and deleting BSTR
objects.

NOTE
SysAllocString is another COM function that takes a wide string pointer as a
parameter. This means that all BSTR variables contain wide characters, even if you
haven’t defined _UNICODE. Be careful!

Windows supplies some useful VARIANT manipulation functions, including those shown in
the following table. If a VARIANT contains a BSTR, these functions ensure that memory is
allocated and cleared properly. The VariantInit and VariantClear functions set vt to
VT_EMPTY. All the variant functions are global functions and take a VARIANT* parameter.

Function Description

VariantInit Initializes a VARIANT

VariantClear Clears a VARIANT

VariantCopy Frees memory associated with the destination VARIANT and copies
the source VARIANT

VariantCopyInd Frees the destination VARIANT and performs any indirection
necessary to copy the source VARIANT

VariantChangeType Changes the type of the VARIANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COleVariant Class

Writing a C++ class to wrap the VARIANT structure makes a lot of sense. Constructors can
call VariantInit, and the destructor can call VariantClear. The class can have a constructor for
each standard type, and it can have copy constructors and assignment operators that call
VariantCopy. When a variant object goes out of scope, its destructor is called and memory is
cleaned up automatically.

The MFC team created such a class that works well in Automation clients and components. A
simplified declaration is shown here:

 class COleVariant : public tagVARIANT
{
// Constructors
public:
 COleVariant();

 COleVariant(const VARIANT& varSrc);
 COleVariant(const COleVariant& varSrc);

 COleVariant(LPCTSTR lpszSrc);
 COleVariant(CString& strSrc);

 COleVariant(BYTE nSrc);
 COleVariant(short nSrc, VARTYPE vtSrc = VT_I2);
 COleVariant(long lSrc, VARTYPE vtSrc = VT_I4);

 COleVariant(float fltSrc);
 COleVariant(double dblSrc);
 COleVariant(const COleDateTime& dateSrc);
// Destructor
 ~COleVariant(); // deallocates BSTR
// Operations
public:
 void Clear(); // deallocates BSTR
 VARIANT Detach(); // more later
 void ChangeType(VARTYPE vartype, LPVARIANT pSrc = NULL);
};

In addition, the CArchive and CDumpContext classes have comparison operators, assignment
operators, conversion operators, and friend insertion/extraction operators. See the MFC
Library Reference for a complete description of this useful MFC COleVariant class.

Now let’s see how the COleVariant class helps us write the component’s GetFigure function
that you saw referenced in the sample dispatch map. Assume that the component stores strings
for four figures in a class data member:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

private:
 CString m_strFigure[4];

Here’s what we’d have to do if we used the VARIANT structure directly:

VARIANT CClock::GetFigure(short n)
{
 VARIANT vaResult;
 ::VariantInit(&vaResult);
 vaResult.vt = VT_BSTR;
 // CString::AllocSysString creates a BSTR
 vaResult.bstrVal = m_strFigure[n].AllocSysString();
 return vaResult; // Copies vaResult without copying BSTR
 // BSTR still must be freed later
}

Here’s the equivalent, with a COleVariant return value:

VARIANT CClock::GetFigure(short n)
{
 return COleVariant(m_strFigure[n]).Detach();
}

Calling the COleVariant::Detach function is critical here. The GetFigure function constructs a
temporary object that contains a pointer to a BSTR. That object gets bitwise-copied to the
return value. If you didn’t call Detach, the COleVariant destructor would free the BSTR
memory and the calling program would get a VARIANT that contained a pointer to nothing.

A component’s variant dispatch function parameters are declared as const VARIANT&. You
can always cast a VARIANT pointer to a COleVariant pointer inside the function. Here’s the
SetFigure function:

void CClock::SetFigure(short n, const VARIANT& vaNew)
{
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &vaNew);
 m_strFigure[n] = vaTemp.bstrVal;
}

NOTE
Remember that all BSTR variables contain wide characters. The CString class has
a constructor and an assignment operator for the LPCWSTR (wide-character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a constructor and an assignment operator for the LPCWSTR (wide-character
pointer) type. Thus, the m_strFigure string will contain single-byte characters,
even though bstrVal points to a wide-character array.

Client dispatch function variant parameters are also typed as const VARIANT&. You can call
those functions with either a VARIANT or a COleVariant object. Here’s an example of a call to
the CClockDriver::SetFigure function:

pClockDriver->SetFigure(0, COleVariant("XII"));

NOTE
You can also use the standard classes _bstr_t and _variant_t to support BSTR and
VARIANT. These classes are independent of the MFC library. The _bstr_t class
encapsulates the BSTR data type; the _variant_t class encapsulates the VARIANT
type. Both classes manage resource allocation and deallocation. For more
information on these classes, see the Visual C++ .NET online documentation.

Parameter and Return Type Conversions for Invoke

All IDispatch::Invoke parameters and return values are processed internally as VARIANT
types. Remember that! The MFC library implementation of Invoke is smart enough to convert
between a VARIANT and whatever type you supply (where possible), so you have some
flexibility in declaring parameter and return types. Suppose, for example, that your
controller’s GetFigure function specifies the return type BSTR. If a component returns an int
or a long, all is well: COM and the MFC library will convert the number to a string. Suppose
your component declares a long parameter and the controller supplies an int. Again, no
problem.

NOTE
An MFC library Automation client specifies the expected return type as a VT_
parameter to the COleDispatchDriver functions GetProperty, SetProperty, and
InvokeHelper. An MFC library Automation component specifies the expected
parameter types as VTS_ parameters in the DISP_PROPERTY and
DISP_FUNCTION macros.

Unlike C++, VBA is not a strongly typed language. VBA variables are often stored internally
as VARIANT types. Take an Excel spreadsheet cell value, for example. A spreadsheet user can
type a text string, an integer, a floating-point number, or a date/time in a cell. VBA treats the
cell value as a VARIANT and returns a VARIANT object to an Automation client. If your client
function declares a VARIANT return value, it can test vt and process the data accordingly.

VBA uses a date/time format that is distinct from the MFC library CTime class. Variables of
type DATE hold both the date and the time in one double value. The fractional part represents
time (.25 is 6:00 AM), and the whole part represents the date (the number of days since
December 30, 1899). The MFC library provides a COleDateTime class that makes dates easy
to deal with. You can construct a date in this way:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COleDateTime date(2001, 2, 11, 18, 0, 0);

The above declaration initializes the date to February 11, 2001, at 6:00 PM.

The COleVariant class has an assignment operator for COleDateTime, and the COleDateTime
class has member functions for extracting date/time components. Here’s how you print the
time:

TRACE("time = %d:%d:%d\n",
 date.GetHour(),date.GetMinute(),date.GetSecond());

If you have a variant that contains a DATE, you use the COleVariant::ChangeType function to
convert a date to a string, as shown here:

COleVariant vaTimeDate = date;
COleVariant vaTemp;
vaTemp.ChangeType(VT_BSTR, &vaTimeDate);
CString str = vaTemp.bstrVal;
TRACE("date = %s\n", str);

One last item concerning Invoke parameters: A dispatch function can have optional
parameters. If the component declares trailing parameters as VARIANT types, the client
doesn’t have to supply them. If the client calls the function without supplying an optional
parameter, the VARIANT object’s vt value on the component end will be VT_ERROR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Automation Examples

The remainder of this chapter presents five sample programs. The first three programs are
Automation components—an EXE component with no user interface, a DLL component, and
a multi-instance SDI EXE component. Each of these component programs comes with an
Excel driver workbook file. The fourth sample program is an MFC Automation client program
that drives the three components and also runs Excel using the COleDispatchDriver class. The
last sample is a client program that uses the C++ #import directive instead of the MFC
COleDispatchDriver class.

The Ex23a Example: An Automation Component EXE with No User
Interface

The Ex23a example represents a typical use of Automation. It is similar to the Visual C++
.NET Autoclik example, which is an MDI framework application with the document object as
the Automation component. (To find the Autoclik example, look in the MFC Library
Reference and search for AutoClik.) However, unlike the Autoclik example, the Ex23a
example has no user interface. There is one Automation-aware class, and in the first version of
the program, a single process supports the construction of multiple Automation component
objects. In the second version, a new process starts up each time an Automation client creates
an object.

In the Ex23a example, a C++ component implements financial transactions. VBA
programmers can write user-interface–intensive applications that rely on the audit rules
imposed by the Automation component. A production component program would probably
use a database, but Ex23a is simpler. It implements a bank account with two methods, Deposit
and Withdrawal, and one read-only property, Balance. Obviously, Withdrawal can’t permit
withdrawals that make the balance negative. You can use Excel to control the component, as
shown in Figure 23-3.

Figure 23-3. An Excel workbook controlling the Ex23a component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here are the steps for creating the program from scratch:

1. Run the MFC Application Wizard to create the Ex23a project. Select the Dialog Based
option on the Application Type page. Deselect all options on the User Interface Features
and the Advanced Features pages except the Automation check box on the Advanced
Features page. This is the simplest application the MFC Application Wizard can
generate.

2. Eliminate the dialog class from the project. Using Windows Explorer, delete the files
Ex23aDlg.cpp, Ex23aDlg.h, DlgProxy.cpp, and DlgProxy.h. Remove Ex23aDlg.cpp,
Ex23aDlg.h, DlgProxy.cpp, and DlgProxy.h from the project by deleting them from
Solution Explorer. Edit Ex23a.cpp to remove the dialog #include, and remove all
dialog-related code from the InitInstance function. In Resource View, delete the
IDD_EX23A_DIALOG dialog resource template.

3. Add code to enable Automation. Selecting the Automation check box added this line in
StdAfx.h:

#include <afxdisp.h>

The InitInstance function (in Ex23a.cpp) now has COM initialization code in it. Be sure
to add the return TRUE statement that’s shown in boldface:

BOOL CEx23aApp::InitInstance()
{
 CWinApp::InitInstance();
 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }
 // Parse command line for automation or reg/unreg switches.
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // App was launched with /Embedding or /Automation switch.
 // Run app as automation server.
 if (cmdInfo.m_bRunEmbedded ││ cmdInfo.m_bRunAutomated)
 {
 // Register class factories via CoRegisterClassObject().
 COleTemplateServer::RegisterAll();
 return TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
 // App was launched with /Unregserver or /Unregister switch.
 // Remove entries from the registry.
 else if (cmdInfo.m_nShellCommand ==
 CCommandLineInfo::AppUnregister)
 {
 COleObjectFactory::UpdateRegistryAll(FALSE);
 AfxOleUnregisterTypeLib(_tlid, _wVerMajor, _wVerMinor);
 return FALSE;
 }
 // App was launched standalone or with other switches
 // (e.g. /Register or /Regserver). Update registry entries,
 // including typelibrary.
 else
 {
 COleObjectFactory::UpdateRegistryAll();
 AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid);
 if (cmdInfo.m_nShellCommand ==
 CCommandLineInfo::AppRegister)
 return FALSE;
 }
 return FALSE;
}

4. Use the Add Class Wizard to add a new class, CBank, as shown here:

Be sure to select the Creatable By Type ID option.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Use the Add Method Wizard and the Add Property Wizard to add two methods and a
property. To get to these wizards, open Class View, select the library node to expand the
library information, and right-click on the IBank node. You’ll see two commands: Add
Method and Add Property. First, add a Withdrawal method, as shown here:

The dAmount parameter is the amount to be withdrawn, and the return value is the
actual amount withdrawn. If you try to withdraw $100 from an account that contains
$60, the amount withdrawn will be $60.

Add a similar Deposit method that returns void, and then add the Balance property, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We could have selected direct access to a component data member, but then we
wouldn’t have read-only access. We selected Get/Set Methods so we can code the
SetBalance function to do nothing.

6. Add a public m_dBalance data member of type double to the CBank class. Because we
selected the Get/Set Methods option for the Balance property, the Add Property Wizard
won’t generate a data member. You should declare m_dBalance in the Bank.h file and
initialize m_dBalance to 0.0 in the CBank constructor located in the Bank.cpp file.

7. Edit the generated method and property functions. Add the following boldface code:

DOUBLE CBank::Withdrawal(DOUBLE dAmount)
{
 AFX_MANAGE_STATE(AfxGetAppModuleState());
 if (dAmount < 0.0) {
 return 0.0;
 }
 if (dAmount <= m_dBalance) {
 m_dBalance -= dAmount;
 return dAmount;
 }
 double dTemp = m_dBalance;
 m_dBalance = 0.0;
 return dTemp;
}
void CBank::Deposit(DOUBLE dAmount)
{
 AFX_MANAGE_STATE(AfxGetAppModuleState());
 if (dAmount < 0.0) {
 return;
 }
 m_dBalance += dAmount;
}
DOUBLE CBank::GetBalance(void)
{
 AFX_MANAGE_STATE(AfxGetAppModuleState());
 return m_dBalance;
}
void CBank::SetBalance(DOUBLE newVal)
{
 AFX_MANAGE_STATE(AfxGetAppModuleState());
 TRACE("Sorry, Dave, I can't do that!\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE("Sorry, Dave, I can't do that!\n");
}

8. Build the Ex23a program, and run it once to register the component.

9. Set up five Excel macros in a new workbook file, Ex23a.xls. Add the following code:

Dim Bank As Object
Sub LoadBank()
 Set Bank = CreateObject("Ex23a.Bank")
End Sub

Sub UnloadBank()
 Set Bank = Nothing
End Sub

Sub DoDeposit()
 Range("D4").Select
 Bank.Deposit (ActiveCell.Value)
End Sub

Sub DoWithdrawal()
 Range("E4").Select
 Dim Amt
 Amt = Bank.Withdrawal(ActiveCell.Value)
 Range("E5").Select
 ActiveCell.Value = Amt
End Sub

Sub DoInquiry()
 Dim Amt
 Amt = Bank.Balance()
 Range("G4").Select
 ActiveCell.Value = Amt
End Sub

10. Arrange an Excel worksheet as shown in Figure 23-3. Attach the macros to the buttons
(by right-clicking on the buttons).

11. Test the Ex23a bank component. Click the Load Bank Program button, enter a deposit
value in cell D4, and click the Deposit button. Click the Balance Inquiry button, and
watch the balance appear in cell G4. Enter a withdrawal value in cell E4, and click the
Withdrawal button. To see the balance, click the Balance Inquiry button.

NOTE
Sometimes you have to click the buttons twice. The first click switches the focus
to the worksheet, and the second click runs the macro. The hourglass pointer
indicates that the macro is working.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What’s happening in this program? Look closely at the CEx23aApp::InitInstance function.
When you run the program directly from Windows, it displays a message box and then quits,
but not before it updates the Registry. The COleObjectFactory::UpdateRegistryAll function
hunts for global class factory objects, and the CBank class’s IMPLEMENT_OLECREATE
macro invocation defines such an object. (The IMPLEMENT_OLECREATE_FLAGS line was
generated because we selected the Createable By Type ID check box when we added the
CBank class.) The unique class ID and the program ID, Ex23a.Bank, are added to the
Registry.

When Excel then calls CreateObject, COM loads the Ex23a program, which contains the
global factory for CBank objects. COM then calls the factory object’s CreateInstance function
to construct the CBank object and return an IDispatch pointer. Here’s the CBank class
declaration that the Add Class Wizard generated in the Bank.h file, with unnecessary detail
(and the method and property functions you’ve already seen) omitted:

#pragma once
// CBank command target
class CBank : public CCmdTarget
{
 DECLARE_DYNCREATE(CBank)
public:
 CBank();
 virtual ~CBank();
 virtual void OnFinalRelease();
 DOUBLE m_dBalance;
protected:
 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CBank)
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
 DOUBLE Withdrawal(DOUBLE dAmount);
 enum
 {
 dispidBalance = 3, dispidDeposit = 2L, dispidWithdrawal = 1L
 };
 void Deposit(DOUBLE dAmount);
 DOUBLE GetBalance(void);
 void SetBalance(DOUBLE newVal);
};

Here’s the code that was automatically generated by the Add Class Wizard in Bank.cpp:

// Bank.cpp : implementation file
//
#include "stdafx.h"
#include "Ex23a.h"
#include "Bank.h"

// CBank

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// CBank
IMPLEMENT_DYNCREATE(CBank, CCmdTarget)
CBank::CBank()
{
 EnableAutomation();
 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.
 AfxOleLockApp();
 m_dBalance = 0.0;
}
CBank::~CBank()
{
 // To terminate the application when all objects created with
 // with OLE automation, the destructor calls AfxOleUnlockApp.
 AfxOleUnlockApp();
}
void CBank::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. The base class will automatically
 // delete the object. Add additional cleanup required for your
 // object before calling the base class.
 CCmdTarget::OnFinalRelease();
}
BEGIN_MESSAGE_MAP(CBank, CCmdTarget)
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CBank, CCmdTarget)
 DISP_FUNCTION_ID(CBank, "Withdrawal", dispidWithdrawal,
 Withdrawal, VT_R8, VTS_R8)
 DISP_FUNCTION_ID(CBank, "Deposit", dispidDeposit,
 Deposit, VT_EMPTY, VTS_R8)
 DISP_PROPERTY_EX_ID(CBank, "Balance", dispidBalance,
 GetBalance, SetBalance, VT_R8)
END_DISPATCH_MAP()

// Note: we add support for IID_IBank to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .IDL file.

// {8BAD2B0C-62CC-4952-811C-C736DA06858E}
static const IID IID_IBank =
 { 0x8BAD2B0C, 0x62CC, 0x4952,
 { 0x81, 0x1C, 0xC7, 0x36, 0xDA, 0x6, 0x85, 0x8E } };

BEGIN_INTERFACE_MAP(CBank, CCmdTarget)
 INTERFACE_PART(CBank, IID_IBank, Dispatch)
END_INTERFACE_MAP()

// {3EC6FA59-9F9F-4619-9F62-BA5FE37176F0}
IMPLEMENT_OLECREATE_FLAGS(CBank, "Ex23a.Bank",
 afxRegApartmentThreading, 0x3ec6fa59, 0x9f9f,
 0x4619, 0x9f, 0x62, 0xba, 0x5f, 0xe3, 0x71,
 0x76, 0xf0)
// CBank message handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// CBank message handlers

This first version of the Ex23a program runs in single-process mode, as does the Autoclik
program. If a second Automation client asks for a new CBank object, COM will call the class
factory CreateInstance function again and the existing process will construct another CBank
object on the heap. You can verify this by making a copy of the Ex23a.xls workbook (under a
different name) and loading both the original and the copy. Click the Load Bank Program
button in each workbook, and watch the Debug window. InitInstance should be called only
once.

Debugging an EXE Component Program
When an Automation client launches an EXE component program, it sets the
/Embedding command-line parameter. If you want to debug your component, you
must do the same. Right-click on the project in Solution Explorer. Choose
Properties and then click Debugging in the Property Pages dialog box. Enter
/Automation (or /Embedding) in the Command Arguments box, as shown here:

When you choose Start from the Debug menu or press F5, your program will start
and then wait for a client to activate it. At this point, you should start the client
program from Windows (if it is not already running) and then use it to create a
component object. Your component program in the debugger should then construct
its object. It might be a good idea to include a TRACE statement in the component
object’s constructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remember that your component program must be registered before the client can
find it. That means you have to run it once without the /Automation (or the
/Embedding) flag. Many clients don’t synchronize with Registry changes. If your
client is running when you register the component, you might have to restart the
client.

The Ex23b Example: An Automation Component DLL

You could easily convert Ex23a from an EXE to a DLL. The CBank class would be exactly
the same, and the Excel driver would be similar. It’s more interesting, though, to write a new
application—this time with a minimal user interface. We’ll use a modal dialog box because
it’s the most complex user interface we can conveniently use in an Automation DLL.

The Ex23b program is fairly simple. An Automation component class, identified by the
registered name Ex23b.Auto, has the following properties and method:

Name Description

LongData Long integer property

TextData VARIANT property

DisplayDialog Method—no parameters, BOOL return

DisplayDialog displays the Ex23b data-gathering dialog box shown in Figure 23-4. An Excel
macro passes two cell values to the DLL and then updates the same cells with the updated
values.

Figure 23-4. The Ex23b DLL dialog box in action.

Parameters Passed by Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So far, you’ve seen VBA parameters passed by value. VBA has pretty strange rules
for calling methods. If the method has one parameter, you can use parentheses; if it
has more than one, you can’t (unless you’re using the function’s return value, in
which case you must use parentheses). Here’s some sample VBA code that passes
the string parameter by value:

Object.Method1 parm1, "text"
Object.Method2("text")
Dim s as String
s = "text"
Object.Method2(s)

Sometimes, though, VBA passes the address of a parameter (a reference). In this
example, the string is passed by reference:

Dim s as String
s = "text"
Object.Method1 parm1, s

You can override VBA’s default behavior by prefixing a parameter with ByVal or
ByRef. Your component can’t predict if it’s getting a value or a reference—it must
prepare for both. The trick is to test vt to see whether its VT_BYREF bit is set.
Here’s a sample method implementation that accepts a string (in a VARIANT)
passed either by reference or value:

void CMyComponent::Method(long nParm1, const VARIANT& vaParm2)
{
 CString str;
 if ((vaParm2.vt & 0x7f) == VT_BSTR) {
 if ((vaParm2.vt & VT_BYREF) != 0)
 str = *(vaParm2.pbstrVal); // byref
 else
 str = vaParm2.bstrVal; // byval
 }
 AfxMessageBox(str);
}

If you declare a BSTR parameter, the MFC library will do the conversion for you.
Suppose your client program passes a BSTR reference to an out-of-process
component and the component program changes the value. Because the component
can’t access the memory of the client process, COM must copy the string to the
component and then copy it back to the client after the function returns. So, before
you declare reference parameters, remember that passing references through
IDispatch is not like passing references in C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example was first generated as a normal MFC DLL using the MFC DLL Wizard with the
Regular DLL Using Shared MFC DLL option and the Automation option selected. Here are
the steps for building and testing the Ex23b component DLL from the code installed from the
companion CD:

1. In Visual Studio .NET, open the \vcppnet\Ex23b\Ex23b.sln solution. Build the project.

2. Register the DLL. You can use the RegComp program in the
\vcppnet\REGCOMP\Release directory on the companion CD; a file dialog box makes
it easy to select the DLL file. Or you can use Regsvr32.exe.

3. Start Excel, and then load the \vcppnet\Ex23b\Ex23b.xls workbook file. Type an integer
in cell C3, and then type some text in cell D3, as shown here:

Click the Load DLL button, and then click the Gather Data button. Edit the data, click
OK, and watch the new values appear in the spreadsheet.

4. Click the Unload DLL button. If you’ve started the DLL (and Excel) from the debugger,
you can watch the Debug window to be sure the DLL’s ExitInstance function is called.

Now let’s look at the Ex23b code. Like an MFC EXE, an MFC regular DLL has an
application class (derived from CWinApp) and a global application object. The overridden
InitInstance member function in Ex23b.cpp looks like this:

BOOL CEx23bApp::InitInstance()
{
 TRACE("CEx23bApp::InitInstance\n");
 CWinApp::InitInstance();

 // Register all OLE server (factories) as running. This enables the
 // OLE libraries to create objects from other applications.
 COleObjectFactory::RegisterAll();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return TRUE;
}

Debugging a DLL Component
To debug a DLL, you must tell the debugger which EXE file to load. Right-click on
the project name in Solution Explorer and choose Properties. Click Debugging in
the Property Pages dialog box and enter the controller’s full pathname (including
the EXE extension) in the Command box, as shown here:

When you press F5, your controller will start. When you activate the component
from the controller, the DLL will load.

It might be a good idea to include a TRACE statement in the component object’s
constructor. Don’t forget that your DLL must be registered before the client can
load it.

Here’s another option: If you have the source code for the client program, you can
start the client program in the debugger. When the client loads the component DLL,
you can see the output from the component program’s TRACE statements.

There’s also the following code for the three standard COM DLL exported functions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllGetClassObject(rclsid, riid, ppv);
}
// DllCanUnloadNow - Allows COM to unload DLL
STDAPI DllCanUnloadNow(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxDllCanUnloadNow();
}
// DllRegisterServer - Adds entries to the system registry
STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 if (!AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid))
 return SELFREG_E_TYPELIB;

 if (!COleObjectFactory::UpdateRegistryAll())
 return SELFREG_E_CLASS;

 return S_OK;
}
// DllUnregisterServer - Removes entries from the system registry
STDAPI DllUnregisterServer(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 if (!AfxOleUnregisterTypeLib(_tlid, _wVerMajor, _wVerMinor))
 return SELFREG_E_TYPELIB;

 if (!COleObjectFactory::UpdateRegistryAll(FALSE))
 return SELFREG_E_CLASS;

 return S_OK;
}

The PromptDlg.cpp file contains code for the CPromptDlg class, but that class is a standard
class derived from CDialog. The file PromptDlg.h contains the CPromptDlg class header.

The CEx23bAuto class—the Automation component class initially generated by the Add Class
Wizard (with the Createable By Type ID option)—is more interesting. This class is exposed to
COM under the program ID Ex23b.Ex23bAuto. The following listing shows the header file
Ex23bAuto.h:

Ex23bAuto.h

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ex23bAuto.h
#pragma once
// CEx23bAuto command target
class CEx23bAuto : public CCmdTarget
{
 DECLARE_DYNCREATE(CEx23bAuto)
public:
 CEx23bAuto();
 virtual ~CEx23bAuto();
 virtual void OnFinalRelease();
protected:
 DECLARE_MESSAGE_MAP()
 DECLARE_OLECREATE(CEx23bAuto)
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
 void OnLongDataChanged(void);
 LONG m_lData;
 enum
 {
 dispidDisplayDialog = 3L,
 dispidTextData = 2,
 dispidLongData = 1
 };
 void OnTextDataChanged(void);
 VARIANT m_vaTextData;
 VARIANT_BOOL DisplayDialog(void);
};

The following listing shows the implementation file Ex23bAuto.cpp:

Ex23bAuto.cpp
// Ex23bAuto.cpp : implementation file
//
#include "stdafx.h"
#include "Ex23b.h"
#include "Ex23bAuto.h"
#include "Promptdlg.h"

// CEx23bAuto
IMPLEMENT_DYNCREATE(CEx23bAuto, CCmdTarget)
CEx23bAuto::CEx23bAuto()
{
 EnableAutomation();
 // To keep the application running as long as an OLE automation
 // object is active, the constructor calls AfxOleLockApp.

 ::VariantInit(&m_vaTextData); // necessary initialization
 m_lData = 0;

 AfxOleLockApp();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxOleLockApp();
}
CEx23bAuto::~CEx23bAuto()
{
 // To terminate the application when all objects created with
 // with OLE automation, the destructor calls AfxOleUnlockApp.
 AfxOleUnlockApp();
}
void CEx23bAuto::OnFinalRelease()
{
 // When the last reference for an automation object is released
 // OnFinalRelease is called. The base class will automatically
 // delete the object. Add additional cleanup required for your
 // object before calling the base class.
 CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CEx23bAuto, CCmdTarget)
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CEx23bAuto, CCmdTarget)
 DISP_PROPERTY_NOTIFY_ID(CEx23bAuto, "LongData", dispidLongData, m_lData,
 OnLongDataChanged, VT_I4)
 DISP_PROPERTY_NOTIFY_ID(CEx23bAuto, "TextData", dispidTextData,
 m_vaTextData, OnTextDataChanged, VT_VARIANT)
 DISP_FUNCTION_ID(CEx23bAuto, "DisplayDialog", dispidDisplayDialog,
 DisplayDialog, VT_BOOL, VTS_NONE)
END_DISPATCH_MAP()

// Note: we add support for IID_IEx23bAuto to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the
// dispinterface in the .IDL file.

// {125FECB2-734D-49FD-95C7-FE44B77FDE2C}
static const IID IID_IEx23bAuto =
 { 0x125FECB2, 0x734D, 0x49FD, { 0x95, 0xC7, 0xFE, 0x44, 0xB7,
 0x7F, 0xDE, 0x2C } };

BEGIN_INTERFACE_MAP(CEx23bAuto, CCmdTarget)
 INTERFACE_PART(CEx23bAuto, IID_IEx23bAuto, Dispatch)
END_INTERFACE_MAP()

// {BAF3D9ED-4518-43CA-B017-2EBA332CB618}
IMPLEMENT_OLECREATE_FLAGS(CEx23bAuto, "Ex23b.Ex23bAuto",
 afxRegApartmentThreading, 0xbaf3d9ed, 0x4518, 0x43ca,
 0xb0, 0x17, 0x2e, 0xba, 0x33, 0x2c, 0xb6, 0x18)

// CEx23bAuto message handlers
void CEx23bAuto::OnLongDataChanged(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 TRACE("CEx23bAuto::OnLongDataChanged\n");
}
void CEx23bAuto::OnTextDataChanged(void)
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 TRACE("CEx23bAuto::OnTextDataChanged\n");
}
VARIANT_BOOL CEx23bAuto::DisplayDialog(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 VARIANT_BOOL bRet;
 TRACE("Entering CEx23bAuto::DisplayDialog %p\n", this);
 bRet = TRUE;
 AfxLockTempMaps(); // See MFC Tech Note #3
 CWnd* pTopWnd = CWnd::FromHandle(::GetTopWindow(NULL));
 try {
 CPromptDlg dlg /*(pTopWnd)*/;
 if (m_vaTextData.vt == VT_BSTR){
 dlg.m_strData = m_vaTextData.bstrVal; // converts
 // double-byte
 // character to
 // single-byte
 // character
 }
 dlg.m_lData = m_lData;
 if (dlg.DoModal() == IDOK) {
 m_vaTextData = COleVariant(dlg.m_strData).Detach();
 m_lData = dlg.m_lData;
 bRet = TRUE;
 }
 else {
 bRet = FALSE;
 }
 }
 catch (CException* pe) {
 TRACE("Exception: failure to display dialog\n");
 bRet = FALSE;
 pe->Delete();
 }
 AfxUnlockTempMaps();
 return bRet;
}

The two properties, LongData and TextData, are represented by the class data members
m_lData and m_vaTextData, which are both initialized in the constructor. When the LongData
property was added in the Add Property Wizard, a notification function,
OnLongDataChanged, was specified. This function is called whenever the controller changes
the property value. Notification functions apply only to properties that are represented by data
members. Don’t confuse this notification with the notifications that ActiveX controls give
their container when a bound property changes.

The DisplayDialog member function, which is the DisplayDialog method, is ordinary except
that the AfxLockTempMaps and AfxUnlockTempMaps functions are necessary for cleaning up
temporary object pointers that would normally be deleted in an EXE program’s idle loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What about the Excel VBA code? Here are the three macros and the global declarations:

Dim Dllcomp As Object
Private Declare Sub CoFreeUnusedLibraries Lib "OLE32" ()

Sub LoadDllComp()
 Set Dllcomp = CreateObject("Ex23b.Ex23bAuto")
 Range("C3").Select
 Dllcomp.LongData = Selection.Value
 Range("D3").Select
 Dllcomp.TextData = Selection.Value
End Sub

Sub RefreshDllComp() 'Gather Data button
 Range("C3").Select
 Dllcomp.LongData = Selection.Value
 Range("D3").Select
 Dllcomp.TextData = Selection.Value
 Dllcomp.DisplayDialog
 Range("C3").Select
 Selection.Value = Dllcomp.LongData
 Range("D3").Select
 Selection.Value = Dllcomp.TextData
End Sub

Sub UnloadDllComp()
 Set Dllcomp = Nothing
 Call CoFreeUnusedLibraries
End Sub

The first line in LoadDllComp creates a component object as identified by the registered name
Ex23b.Ex23bAuto. The RefreshDllComp macro accesses the component object’s LongData
and TextData properties. The first time you run LoadDllComp, it loads the DLL and
constructs an Ex23b.Auto object. The second time you run it, something curious happens: A
second object is constructed, and the original object is destroyed. If you run LoadDllComp
from another copy of the workbook, you get two separate Ex23b.Auto objects. Of course,
there’s only one mapping of Ex23b.dll in memory at any time unless you’re running more
than one Excel process.

Look closely at the UnloadDllComp macro. When the Set Dllcomp = Nothing statement is
executed, the DLL is disconnected, but it’s not unmapped from Excel’s address space, which
means the component’s ExitInstance function is not called. The CoFreeUnusedLibraries
function calls the exported DllCanUnloadNow function for each component DLL and, if that
function returns TRUE, CoFreeUnusedLibraries frees the DLL. MFC programs call
CoFreeUnusedLibraries in the idle loop (after a one-minute delay), but Excel doesn’t. That’s
why UnloadDllComp must call CoFreeUnusedLibraries after disconnecting the component.

The Ex23c Example: An SDI Automation Component EXE with User
Interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This Automation component example illustrates the use of a document component class in an
SDI application in which a new process is started for each object. This component program
demonstrates an indexed property plus a method that constructs a new COM object.

The first Automation component example, Ex23a, doesn’t have a user interface. The global
class factory constructs a CBank object that does the component’s work. But what if you want
your EXE component to have a window? If you’ve bought into the MFC document-view
architecture, you’ll want the document, view, and frame, with all the benefits they provide.

Suppose you create a regular MFC application and then add a COM-creatable class such as
CBank. How do you attach the CBank object to the document and view? From a CBank class
member function, you could navigate through the application object and main frame to the
current document or view, but you’d have a tough time in an MDI application if you
encountered several component objects and several documents. There’s a better way: You
make the document class the creatable class, and you have the full support of the MFC
Application Wizard for this task. This is true for both MDI and SDI applications.

The MDI Autoclik example demonstrates how COM triggers the construction of new
document, view, and child frame objects each time an Automation client creates a new
component object. Because the Ex23c example is an SDI program, Windows starts a new
process each time the client creates an object. Immediately after the program starts, COM,
with the help of the MFC application framework, constructs not only the Automation-aware
document but also the view and the main frame window.

Now is a good time to experiment with the Ex23c application, which was first generated by
the MFC DLL Wizard with the Automation option selected. It’s a Windows-based alarm clock
program that’s designed to be manipulated from an Automation client such as Excel. Ex23c
has the following properties and methods:

Name Description

Time DATE property that holds a COM DATE (m_vaTime)

Figure Indexed VARIANT property for the four figures on the clock face
(m_strFigure[])

RefreshWin Method that invalidates the view window and brings the main frame window
to the top (Refresh)

ShowWin Method that displays the application’s main window (ShowWin)

CreateAlarm Method that creates a CAlarm object and returns its IDispatch pointer
(CreateAlarm)

Here are the steps for building and running Ex23c from the companion CD:

1. In Visual Studio .NET, open the solution \vcppnet\Ex23c\Ex23c.sln. Build the project to
produce the Ex23c.exe file in the project’s Debug subdirectory.

2. Run the program once to register it. The program is designed to be executed either as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Run the program once to register it. The program is designed to be executed either as a
standalone application or as an Automation component. When you run it from Windows
or from Visual Studio .NET, it updates the Registry and displays the face of a clock
with the characters XII, III, VI, and IX at the 12, 3, 6, and 9 o’clock positions. Exit the
program.

3. Load the Excel workbook file \vcppnet\Ex23c\Ex23c.xls. The worksheet should look
like the one shown here:

Click the Load Clock button, and then double-click the Set Alarm button. (There might
be a long delay after you click the Load Clock button, depending on your system.) The
clock should appear as shown here, with the letter A indicating the alarm setting:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you’ve started the component program from the debugger, you can watch the Debug
window to see when InitInstance is called and when the document object is constructed.

If you’re wondering why there’s no menu, it’s because of the following statement in the
CMainFrame::PreCreateWindow function:

cs.hMenu = NULL;

4. Close the Clock program and then click the Unload Clock button. Or you can just click
the Unload Clock button. The clock will go away.

The MFC Application Wizard did most of the work of setting up the document as an
Automation component. In the derived application class CEx23cApp, it generated a data
member for the component, as shown here:

public:
 COleTemplateServer m_server;

The MFC COleTemplateServer class is derived from COleObjectFactory. It is designed to
create a COM document object when a client calls IClassFactory::CreateInstance. The class
ID comes from the global clsid variable defined in Ex23c.cpp. The human-readable program
ID (Ex23c.Document) comes from the IDR_MAINFRAME string resource.

In the InitInstance function (in Ex23c.cpp), the MFC Application Wizard generated the
following code, which connects the component object (the document) to the application’s
document template:

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CEx23cDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CEx23cView));
 AddDocTemplate(pDocTemplate);

 m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);

Now all the plumbing is in place for COM and the framework to construct the document,
together with the view and frame. When the objects are constructed, however, the main
window is not made visible. That’s your job. You must write a method that shows the
window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following UpdateRegistry call from the InitInstance function updates the Windows
Registry with the contents of the project’s IDR_MAINFRAME string resource:

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);

The following dispatch map in the Ex23cDoc.cpp file shows the properties and methods of the
CEx23cDoc class. Note that the Figure property is an indexed property that the Add Property
Wizard can generate if you specify a parameter. Later, you’ll see the code you have to write
for the GetFigure and SetFigure functions.

BEGIN_DISPATCH_MAP(CEx23cDoc, CDocument)
 DISP_PROPERTY_NOTIFY_ID(CEx23cDoc, "Time",
 dispidTime, m_time, OnTimeChanged, VT_DATE)
 DISP_FUNCTION_ID(CEx23cDoc, "ShowWin",
 dispidShowWin, ShowWin, VT_EMPTY, VTS_NONE)
 DISP_FUNCTION_ID(CEx23cDoc, "CreateAlarm",
 dispidCreateAlarm, CreateAlarm, VT_DISPATCH, VTS_DATE)
 DISP_FUNCTION_ID(CEx23cDoc, "RefreshWin",
 dispidRefreshWin, RefreshWin, VT_EMPTY, VTS_NONE)
 DISP_PROPERTY_PARAM_ID(CEx23cDoc, "Figure",
 dispidFigure, GetFigure, SetFigure, VT_VARIANT, VTS_I2)
END_DISPATCH_MAP()

The ShowWin and RefreshWin member functions aren’t very interesting, but the CreateAlarm
method is worth a close look. Here’s the corresponding CreateAlarm member function:

IDispatch* CEx23cDoc::CreateAlarm(DATE time)
{
 AFX_MANAGE_STATE(AfxGetAppModuleState());
 TRACE("Entering CEx23cDoc::CreateAlarm, time = %f\n", time);
 // OLE deletes any prior CAlarm object
 m_pAlarm = new CAlarm(time);
 return m_pAlarm->GetIDispatch(FALSE); // no AddRef here
}

We’ve chosen to have the component create an alarm object when a controller calls
CreateAlarm. CAlarm is an Automation component class that we’ve generated with the Add
Class Wizard. It is not COM-creatable, which means there’s no IMPLEMENT_OLECREATE
macro and no class factory. The CreateAlarm function constructs a CAlarm object and returns
an IDispatch pointer. (The FALSE parameter for CCmdTarget::GetIDispatch means that the
reference count is not incremented; the CAlarm object already has a reference count of 1 when
it is constructed.)

The CAlarm class is declared in Alarm.h as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#pragma once
// CAlarm command target
class CAlarm : public CCmdTarget
{
 DECLARE_DYNAMIC(CAlarm)
public:
 CAlarm(DATE time);
 virtual ~CAlarm();
 virtual void OnFinalRelease();
 DATE m_time;

protected:
 DECLARE_MESSAGE_MAP()
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
 void OnTimeChanged(void);

 enum
 {
 dispidTime = 1
 };
};

Notice the absence of the DECLARE_DYNCREATE macro.

Alarm.cpp contains a dispatch map, as follows:

BEGIN_DISPATCH_MAP(CAlarm, CCmdTarget)
 DISP_PROPERTY_NOTIFY_ID(CAlarm, "Time",
 dispidTime, m_time, OnTimeChanged, VT_DATE)
END_DISPATCH_MAP()

Why do we have a CAlarm class? We could have added an AlarmTime property in the
CEx23cDoc class instead, but then we would have needed another property or method to turn
the alarm on and off. By using the CAlarm class, what we’re really doing is setting ourselves
up to support multiple alarms—a collection of alarms.

To implement an Automation collection, we can write another class, CAlarms, that contains
the methods Add, Remove, and Item. Add and Remove are self-explanatory; Item returns an
IDispatch pointer for a collection element identified by an index, numeric, or some other key.
We can also implement a read-only Count property that returns the number of elements. The
document class (which owns the collection) will have an Alarms method with an optional
VARIANT parameter. If the parameter is omitted, the method will return the IDispatch pointer
for the collection. If the parameter specifies an index, the method will return an IDispatch
pointer for the selected alarm.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
If we want our collection to support the VBA “For Each” syntax, we’ll have some
more work to do. We’ll have to add an IEnum VARIANT interface to the CAlarms
class to enumerate the collection of variants and implement the Next member
function of this interface to step through the collection. Then we’ll have to add a
CAlarms method named _NewEnum that returns an IEnumVARIANT interface
pointer. If we want the collection to be general, we must allow separate
enumerator objects (with an IEnum VARIANT interface) and then implement the
other IEnumVARIANT functions—Skip, Reset, and Clone.

The Figure property is an indexed property, which makes it interesting. The Figure property
represents the four figures on the clock face—XII, III, VI, and IX. It’s a CString array, so we
can use Roman numerals. Here’s the declaration in Ex23cDoc.h:

public:
 CString m_strFigure[4];

And here are the GetFigure and SetFigure functions in Ex23cDoc.cpp:

VARIANT CEx23cDoc::GetFigure(SHORT n)
{
 AFX_MANAGE_STATE(AfxGetAppModuleState());
 TRACE("Entering CEx23cDoc::GetFigure -- n = %d m_strFigure[n] = %s\n",
 n, m_strFigure[n]);
 return COleVariant(m_strFigure[n]).Detach();
}
void CEx23cDoc::SetFigure(SHORT n, VARIANT FAR& newVal)
{
 AFX_MANAGE_STATE(AfxGetAppModuleState());
 TRACE("Entering CEx23cDoc::SetFigure -- n = %d, vt = %d\n", n,
 newVal.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, (COleVariant*) &newVal);
 m_strFigure[n] = vaTemp.bstrVal; // converts double-to-single
 SetModifiedFlag();
}

These functions tie back to the DISP_PROPERTY_PARAM macro in the CEx23cDoc dispatch
map. The first parameter is the index number, specified as a short integer by the last macro
parameter. Property indexes don’t have to be integers, and the index can have several
components (row and column numbers, for example). The ChangeType call in SetFigure is
necessary because the controller might otherwise pass numbers instead of strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You’ve just seen collection properties and indexed properties. What’s the difference? A
controller can’t add or delete elements of an indexed property, but it can add elements to a
collection and it can delete elements from a collection.

What draws the clock face? As you might expect, it’s the OnDraw member function of the
view class. This function uses GetDocument to get a pointer to the document object, and then
it accesses the document’s property data members and method member functions.

The Excel macro code is shown here:

Dim Clock As Object
Dim Alarm As Object

Sub LoadClock()
 Set Clock = CreateObject("Ex23c.Document")
 Range("A3").Select
 n = 0
 Do Until n = 4
 Clock.figure(n) = Selection.Value
 Selection.Offset(0, 1).Range("A1").Select
 n = n + 1
 Loop
 RefreshClock
 Clock.ShowWin
End Sub

Sub RefreshClock()
 Clock.Time = Now()
 Clock.RefreshWin
End Sub

Sub CreateAlarm()
 Range("E3").Select
 Set Alarm = Clock.CreateAlarm(Selection.Value)
 RefreshClock
End Sub

Sub UnloadClock()
 Set Clock = Nothing
End Sub

Notice the Set Alarm statement in the CreateAlarm macro. It calls the CreateAlarm method to
return an IDispatch pointer, which is stored in an object variable. If the macro is run a second
time, a new alarm is created, but the original one is destroyed because its reference count goes
to 0.

WARNING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You’ve seen a modal dialog box in a DLL (Ex23b), and you’ve seen a main frame
window in an EXE (Ex23c). Be careful with modal dialog boxes in EXEs. It’s fine
to have an About dialog box that’s invoked directly by the component program,
but it isn’t a good idea to invoke a modal dialog box in an out-of-process
component method function. The problem is that once the modal dialog box is on
the screen, the user can switch back to the client program. MFC clients handle this
situation with a special “Server Busy” message box, which appears right away.
Excel does something similar, but it waits 30 seconds, and this can confuse the
user.

The Ex23d Example: An Automation Client

So far, you’ve seen C++ Automation component programs. Now you’ll see a C++ Automation
client program that runs all the previous components and also controls Excel. The Ex23d
program was originally generated by the MFC Application Wizard, but without any COM
options. It was easier to add the COM code than it would have been to rip out the component-
specific code. If you use the MFC Application Wizard to build such an Automation controller,
add the following line at the end of StdAfx.h:

#include <afxdisp.h>

Then add this call at the beginning of the application’s InitInstance function:

AfxOleInit();

To prepare Ex23d, open the \vcppnet\Ex23d\Ex23d.sln solution and do the build. Run the
application, and you’ll see a standard SDI application with a menu structure similar to that
shown in Figure 23-5.

Figure 23-5. A sample menu structure for a standard SDI application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you’ve built and registered all the components, you can test them from Ex23d. Notice that
the DLL doesn’t have to be copied to the \Winnt\System32 directory because Windows finds
it through the Registry. For some components, you’ll have to watch the Debug window to
verify that the test results are correct. The program is reasonably modular. Menu commands
and update command user interface events are mapped to the view class. Each component
object has its own C++ controller class and an embedded data member in Ex23dView.h. We’ll
look at each part separately after we delve into type libraries.

Type Libraries and IDL Files

I’ve told you that type libraries aren’t necessary for the MFC IDispatch implementation, but
Visual C++ .NET has been quietly generating and updating type libraries for all your
components. What good are these type libraries? VBA can use a type library to browse your
component’s methods and properties, and it can use the type library for improved access to
properties and methods—a process called early binding (described later in this chapter). But
we’re building a C++ client program here, not a VBA program. It so happens that the Add
Class Wizard can read a component’s type library and use the information to generate C++
code for the client to use to “drive” an Automation component.

NOTE
The MFC Application Wizard initializes a project’s Interface Definition Language
(IDL) file when you first create it. The Add Property Wizard and the Add Method
Wizard edit this file each time you generate a new Automation component class or
add properties and methods to an existing class.

When you added properties and methods to your component classes, the Add Method Wizard
and the Add Property Wizard updated the project’s IDL file. This file is a text file that
describes the component in IDL. (Your GUID will be different if you used the MFC
Application Wizard to generate this project.) Here’s the IDL file for the bank component:

// Ex23a.idl : type library source for Ex23a.exe
// This file will be processed by the MIDL compiler to produce the
// type library (Ex23a.tlb).
#include "olectl.h"
[uuid(60BCA7D2-14D1-4832-A278-50670CD9975E), version(1.0)]
library Ex23a
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");

 // Primary dispatch interface for CEx23aDoc
 [uuid(1F013122-EA3D-414F-B58F-5A31A64EA5D5)]
 dispinterface IEx23a
 {
 properties:
 methods:
 };
 // Class information for CEx23aDoc
 [uuid(5EE5C98C-5CCF-46F4-9E95-17BC06237D8B)]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [uuid(5EE5C98C-5CCF-46F4-9E95-17BC06237D8B)]
 coclass Ex23a
 {
 [default] dispinterface IEx23a;
 };
 // Primary dispatch interface for Bank
 [uuid(8BAD2B0C-62CC-4952-811C-C736DA06858E)]
 dispinterface IBank
 {
 properties:
 [id(3), helpstring("property Balance")] DOUBLE Balance;
 methods:
 [id(1), helpstring("method Withdrawal")]
 DOUBLE Withdrawal(DOUBLE dAmount);
 [id(2), helpstring("method Deposit")]
 void Deposit(DOUBLE dAmount);
 };
 // Class information for Bank
 [uuid(3EC6FA59-9F9F-4619-9F62-BA5FE37176F0)]
 coclass Bank
 {
 [default] dispinterface IBank;
 };
};

The IDL file has a unique GUID type library identifier, 60BCA7D2-14D1-4832-A278-
50670CD9975E, that completely describes the bank component’s properties and methods
under a dispinterface named IBank. In addition, it specifies the dispinterface GUID,
8BAD2B0C-62CC-4952-811C-C736DA06858E, which is the same GUID that’s in the
interface map of the CBank class listed earlier. You’ll see the significance of this GUID later
in this chapter. The CLSID, 3EC6FA59-9F9F-4619-9F62-BA5FE37176F0, is what a VBA
browser can actually use to load your component.

Anyway, when you build your component project, Visual Studio .NET invokes the MIDL
utility, which reads the IDL file and generates a binary TLB file in your project’s debug or
release subdirectory. By default, the type information is also included as part of the binary.
When you develop a C++ client program, you can ask the Add Class Wizard to generate a
driver class from the component project’s TLB file.

To actually do this, you choose Add Class from the Project menu and select the MFC Class
From TypeLib template. You navigate to the component project’s TLB file, and then the Add
Class Wizard shows you a dialog box similar to the one shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IBank is the dispinterface specified in the IDL file. You can keep this name for the class if you
want, and you can specify the H filename. If a type library contains several interfaces, you can
make multiple selections. You’ll see the generated controller classes in the sections that
follow.

The Controller Class for Ex23a.exe

The Add Class From Typelib Wizard generated the IBank class (derived from
COleDispatchDriver) shown in the following listing. Look closely at the member function
implementations. Note the first parameters of the GetProperty, SetProperty, and InvokeHelper
function calls. These are hard-coded DISPIDs for the component’s properties and methods, as
determined by the component’s dispatch map sequence.

BankDriver.h
class CBank : public COleDispatchDriver
{
public:
 CBank(){} // Calls COleDispatchDriver default constructor
 CBank(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 CBank(const CBank& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}
 // Attributes
public:
 // Operations
public:
 // IBank methods
public:
 double Withdrawal(double dAmount)
 {
 double result;
 static BYTE parms[] = VTS_R8 ;
 InvokeHelper(0x1, DISPATCH_METHOD, VT_R8, (void*)&result,
 parms, dAmount);
 return result;
 }
 void Deposit(double dAmount)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void Deposit(double dAmount)
 {
 static BYTE parms[] = VTS_R8 ;
 InvokeHelper(0x2, DISPATCH_METHOD, VT_EMPTY, NULL,
 parms, dAmount);
 }
 // IBank properties
public:
 double GetBalance()
 {
 double result;
 GetProperty(0x3, VT_R8, (void*)&result);
 return result;
 }
 void SetBalance(double propVal)
 {
 SetProperty(0x3, VT_R8, propVal);
 }
};

The CEx23dView class has a data member m_bank of class IBank. The CEx23dView member
functions for the Ex23a.Bank component are listed below. They are hooked up to options on
the Ex23d main menu. Of particular interest is the OnBankoleLoad function. The
COleDispatchDriver::CreateDispatch function loads the component program (by calling
CoGetClassObject and IClassFactory::CreateInstance) and then calls QueryInterface to get
an IDispatch pointer, which it stores in the object’s m_lpDispatch data member. The
COleDispatchDriver::ReleaseDispatch function, called in OnBankoleUnload, calls Release on
the pointer.

void CEx23dView::OnBankoleLoad()
{
 if(!m_bank.CreateDispatch("Ex23a.Bank")) {
 AfxMessageBox("Ex23a.Bank component not found");
 return;
 }
}
void CEx23dView::OnUpdateBankoleLoad(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch == NULL);
}
void CEx23dView::OnBankoleTest()
{
 m_bank.Deposit(20.0);
 m_bank.Withdrawal(15.0);
 TRACE("new balance = %f\n", m_bank.GetBalance());
}
void CEx23dView::OnUpdateBankoleTest(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch != NULL);
}
void CEx23dView::OnBankoleUnload()
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 m_bank.ReleaseDispatch();
}
void CEx23dView::OnUpdateBankoleUnload(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_bank.m_lpDispatch != NULL);
}

The Controller Class for Ex23b.dll

The following listing shows the class header file generated by the Add Class From Typelib
Wizard:

AutoDriver.h
// Machine generated IDispatch wrapper class(es) created with
// Add Class from Typelib Wizard

// CEx23bAuto wrapper class
class CEx23bAuto : public COleDispatchDriver
{
public:
 CEx23bAuto(){} // Calls COleDispatchDriver default constructor
 CEx23bAuto(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 CEx23bAuto(const CEx23bAuto& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

 // Attributes
public:
 // Operations
public:
 // IEx23bAuto methods
public:
 BOOL DisplayDialog()
 {
 BOOL result;
 InvokeHelper(0x3, DISPATCH_METHOD, VT_BOOL,
 (void*)&result, NULL);
 return result;
 }
 // IEx23bAuto properties
public:
 long GetLongData()
 {
 long result;
 GetProperty(0x1, VT_I4, (void*)&result);
 return result;
 }
 void SetLongData(long propVal)
 {
 SetProperty(0x1, VT_I4, propVal);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SetProperty(0x1, VT_I4, propVal);
 }
 VARIANT GetTextData()
 {
 VARIANT result;
 GetProperty(0x2, VT_VARIANT, (void*)&result);
 return result;
 }
 void SetTextData(const VARIANT& propVal)
 {
 SetProperty(0x2, VT_VARIANT, &propVal);
 }
};

Notice that each property requires separate Get and Set functions in the client class, even
though a data member in the component represents the property.

The view class header has a data member m_auto of class CEx23bAuto. Here are some DLL-
related command handler member functions from Ex23dView.cpp:

void CEx23dView::OnDlloleGetdata()
{
 m_auto.DisplayDialog();
 COleVariant vaData = m_auto.GetTextData();
 ASSERT(vaData.vt == VT_BSTR);
 CString strTextData(vaData.bstrVal);
 long lData = m_auto.GetLongData();
 TRACE("CEx23dView::OnDlloleGetdata -- long = %ld, text = %s\n",
 lData, strTextData);
}
void CEx23dView::OnUpdateDlloleGetdata(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch != NULL);
}
void CEx23dView::OnDlloleLoad()
{
 if(!m_auto.CreateDispatch("Ex23b.Ex23bAuto")) {
 AfxMessageBox("Ex23b.Ex23bAuto component not found");
 return;
 }
 COleVariant va("test");
 m_auto.SetTextData(va); // testing
 m_auto.SetLongData(79); // testing
 // verify dispatch interface
 // {125FECB2-734D-49FD-95C7-FE44B77FDE2C}
 static const IID IID_IEx23bAuto =
 { 0x125FECB2, 0x734D, 0x49FD, { 0x95, 0xC7, 0xFE,
 0x44, 0xB7, 0x7F, 0xDE, 0x2C } };
 LPDISPATCH p;
 HRESULT hr = m_auto.m_lpDispatch->QueryInterface(IID_IEx23bAuto,
 (void**) &p);
 TRACE("OnDlloleLoad -- QueryInterface result = %x\n", hr);
 p->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 p->Release();
}
void CEx23dView::OnUpdateDlloleLoad(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch == NULL);
}
void CEx23dView::OnDlloleUnload()
{
 m_auto.ReleaseDispatch();
}
void CEx23dView::OnUpdateDlloleUnload(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_auto.m_lpDispatch != NULL);
}

The Controller Class for Ex23c.exe

The following code shows the headers for the CEx23c and CAlarm classes, which drive the
Ex23c Automation component:

ClockDriver.h
// Machine generated IDispatch wrapper class(es) created with
// Add Class from Typelib Wizard

// CEx23c wrapper class
class CEx23c : public COleDispatchDriver
{
public:
 CEx23c(){} // Calls COleDispatchDriver default constructor
 CEx23c(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 CEx23c(const CEx23c& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

 // Attributes
public:
 // Operations
public:
 // IEx23c methods
public:
 void ShowWin()
 {
 InvokeHelper(0x2, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
 }
 LPDISPATCH CreateAlarm(DATE Time)
 {
 LPDISPATCH result;
 static BYTE parms[] = VTS_DATE ;
 InvokeHelper(0x3, DISPATCH_METHOD, VT_DISPATCH,
 (void*)&result, parms, Time);
 return result;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return result;
 }
 void RefreshWin()
 {
 InvokeHelper(0x4, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
 }
 VARIANT get_Figure(short n)
 {
 VARIANT result;
 static BYTE parms[] = VTS_I2 ;
 InvokeHelper(0x5, DISPATCH_PROPERTYGET, VT_VARIANT,
 (void*)&result, parms, n);
 return result;
 }
 void put_Figure(short n, VARIANT newValue)
 {
 static BYTE parms[] = VTS_I2 VTS_VARIANT ;
 InvokeHelper(0x5, DISPATCH_PROPERTYPUT, VT_EMPTY,
 NULL, parms, n, &newValue);
 }
 // IEx23c properties
public:
 DATE GetTime()
 {
 DATE result;
 GetProperty(0x1, VT_DATE, (void*)&result);
 return result;
 }
 void SetTime(DATE propVal)
 {
 SetProperty(0x1, VT_DATE, propVal);
 }
};

CAlarm.h
class CAlarm : public COleDispatchDriver
{
public:
 CAlarm(){} // Calls COleDispatchDriver default constructor
 CAlarm(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
 CAlarm(const CAlarm& dispatchSrc) :
 COleDispatchDriver(dispatchSrc) {}

 // Attributes
public:
 // Operations
public:
 // IAlarm methods
public:
 // IAlarm properties
public:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public:
 DATE GetTime()
 {
 DATE result;
 GetProperty(0x1, VT_DATE, (void*)&result);
 return result;
 }
 void SetTime(DATE propVal)
 {
 SetProperty(0x1, VT_DATE, propVal);
 }
};

Of particular interest is the CEx23c::CreateAlarm member function in ClockDriver.h. This
function can be called only after the clock object (document) has been constructed. It causes
the Ex23c component to construct an alarm object and return an IDispatch pointer with a
reference count of 1. The COleDispatchDriver::AttachDispatch function connects that pointer
to the client’s m_alarm object, but if that object already has a dispatch pointer, the old pointer
is released. That’s why, if you watch the Debug window, you’ll see that the old Ex23c
instance exits immediately after you ask for a new instance. You’ll have to test this behavior
with the Excel driver because Ex23d disables the Load menu command when the clock is
running.

The view class has the data members m_clock and m_alarm. Here are the view class command
handlers:

void CEx23dView::OnClockoleCreatealarm()
{
 CAlarmDialog dlg;
 if (dlg.DoModal() == IDOK) {
 COleDateTime dt(2002, 12, 23, dlg.m_nHours, dlg.m_nMinutes,
 dlg.m_nSeconds);
 LPDISPATCH pAlarm = m_clock.CreateAlarm(dt);
 m_alarm.AttachDispatch(pAlarm); // releases prior object!
 m_clock.RefreshWin();
 }
}
void CEx23dView::OnUpdateClockoleCreatealarm(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.m_lpDispatch != NULL);
}
void CEx23dView::OnClockoleLoad()
{
 if(!m_clock.CreateDispatch("Ex23c.Document")) {
 AfxMessageBox("Ex23c.Document component not found");
 return;
 }
 m_clock.put_Figure(0, COleVariant("XII"));
 m_clock.put_Figure(1, COleVariant("III"));
 m_clock.put_Figure(2, COleVariant("VI"));
 m_clock.put_Figure(3, COleVariant("IX"));
 OnClockoleRefreshtime();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OnClockoleRefreshtime();
 m_clock.ShowWin();
}
void CEx23dView::OnUpdateClockoleLoad(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.m_lpDispatch == NULL);
}
void CEx23dView::OnClockoleRefreshtime()
{
 COleDateTime now = COleDateTime::GetCurrentTime();
 m_clock.SetTime(now);
 m_clock.RefreshWin();
}
void CEx23dView::OnUpdateClockoleRefreshtime(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.m_lpDispatch != NULL);
}
void CEx23dView::OnClockoleUnload()
{
 m_clock.ReleaseDispatch();
}
void CEx23dView::OnUpdateClockoleUnload(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.m_lpDispatch != NULL);
}

Controlling Excel

The Ex23d program contains code that loads Excel, creates a workbook, and reads from and
writes to cells from the active worksheet. Controlling Excel is exactly like controlling an MFC
Automation component, but you need to know about a few Excel peculiarities.

If you study Excel VBA, you’ll notice that you can use more than 100 “objects” in your
programs. All of these objects are accessible through Automation, but if you write an MFC
Automation client program, you’ll need to know about the objects’ properties and methods.
Ideally, you want a C++ class for each object, with member functions coded to the proper
dispatch IDs.

Excel has its own type library that is registered in the Registry. The Add Class From Typelib
Wizard can read the type library after looking it up in the Registry. The wizard can create C++
driver classes for individual Excel objects. It makes sense to select the objects you need and
then combine the classes into single files, as shown in Figure 23-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 23-6. The Add Class From Typelib Wizard can create C++?? classes for the Excel
objects listed in Excel’s type library.

You might need to edit the generated code to suit your needs. Let’s look at an example. If you
use the Add Class From Typelib Wizard to generate a driver class for the Worksheet object,
you get a get_Range member function, as shown here:

 LPDISPATCH get_Range(VARIANT Cell1, VARIANT Cell2)
 {
 LPDISPATCH result;
 static BYTE parms[] = VTS_VARIANT VTS_VARIANT ;
 InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&result, parms, &Cell1, &Cell2);
 return result;
 }

You know (from the Excel VBA documentation) that you can call the method with either a
single cell (one parameter) or a rectangular area specified by two cells (two parameters).
Remember that you can omit optional parameters in a call to InvokeHelper. Now it makes
sense to add a second overloaded get_Range function with a single cell parameter, like this:

LPDISPATCH get_Range(VARIANT Cell1) // added
{
 LPDISPATCH result;
 static BYTE parms[] = VTS_VARIANT;
 InvokeHelper(0xc5, DISPATCH_PROPERTYGET, VT_DISPATCH,
 (void*)&result, parms, &Cell1);
 return result;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How do you know which functions to fix up? They’re the functions you decide to use in your
program. You’ll have to read the Excel VBA reference manual to figure out the required
parameters and return values. Perhaps someday soon someone will write a set of C++ Excel
controller classes.

The Ex23d program uses the Excel objects and contains the corresponding classes shown in
the following table. The code for these objects is contained in the files CApplication.h,
CRange.h, CWorksheet.h, CWorksheets.h, and CWorkbooks.h.

Class View Class Data Member

CApplication m_app

CRange m_range[5]

CWorksheet m_worksheet

CWorkbooks m_workbooks

CWorksheets m_worksheets

The following view member function, OnExceloleLoad, handles the Excel Comp Load menu
command. This function must work if the user already has Excel running on the desktop. The
COM GetActiveObject function tries to return an IUnknown pointer for Excel.
GetActiveObject requires a class ID, so we must first call CLSIDFromProgID. If
GetActiveObject is successful, we call QueryInterface to get an IDispatch pointer and we
attach it to the view’s m_app controller object of class CApplication. If GetActiveObject is
unsuccessful, we call COleDispatchDriver::CreateDispatch, as we did for the other
components.

void CEx23dView::OnExceloleLoad()
{ // if Excel is already running, attach to it, otherwise start it
 LPDISPATCH pDisp;
 LPUNKNOWN pUnk;
 CLSID clsid;
 TRACE("Entering CEx23dView::OnExcelLoad\n");
 BeginWaitCursor();
 // Use Excel.Application.9 for Office 2000
 // Use Excel.Application.10 for Office XP
 ::CLSIDFromProgID(L"Excel.Application.10", &clsid); // from registry
 if(::GetActiveObject(clsid, NULL, &pUnk) == S_OK) {
 VERIFY(pUnk->QueryInterface(IID_IDispatch,
 (void**) &pDisp) == S_OK);
 m_app.AttachDispatch(pDisp);
 pUnk->Release();
 TRACE(" attach complete\n");
 }
 else {
 if(!m_app.CreateDispatch("Excel.Application.10")) {
 AfxMessageBox("Microsoft Excel program not found");
 }
 TRACE(" create complete\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TRACE(" create complete\n");
 }
 EndWaitCursor();
}

OnExceloleExecute is the command handler for the Execute command on the Excel Comp
menu. Its first task is to find the Excel main window and bring it to the top. We must write
some Windows code here because a method for this purpose couldn’t be found. We must also
create a workbook if no workbook is currently open.

We have to watch our method return values closely. The Workbooks Add method, for
example, returns an IDispatch pointer for a Workbook object and, of course, increments the
reference count. If we generated a class for Workbook, we could call
COleDispatchDriver::AttachDispatch so that Release would be called when the Workbook
object was destroyed. We don’t need a Workbook class, so we’ll simply release the pointer at
the end of the function. If we don’t properly clean up our pointers, we might get memory-leak
messages from the Debug version of MFC.

The rest of the OnExceloleExecute function accesses the cells in the worksheet. It’s easy to get
and set numbers, dates, strings, and formulas. The C++ code is similar to the VBA code you
would write to do the same job:

void CEx23dView::OnExceloleExecute()
{
 LPDISPATCH pRange, pWorkbooks;
 CWnd* pWnd = CWnd::FindWindow("XLMAIN", NULL);
 if (pWnd != NULL) {
 TRACE("Excel window found\n");
 pWnd->ShowWindow(SW_SHOWNORMAL);
 pWnd->UpdateWindow();
 pWnd->BringWindowToTop();
 }
 m_app.put_SheetsInNewWorkbook(1);

 VERIFY(pWorkbooks = m_app.get_Workbooks());
 m_workbooks.AttachDispatch(pWorkbooks);

 LPDISPATCH pWorkbook = NULL;
 if (m_workbooks.get_Count() == 0) {
 // Add returns a Workbook pointer, but we
 // don't have a Workbook class
 pWorkbook = m_workbooks.Add(COleVariant((short) 0)); // Save the
 // pointer for later release
 }
 LPDISPATCH pWorksheets = m_app.get_Worksheets();
 ASSERT(pWorksheets != NULL);
 m_worksheets.AttachDispatch(pWorksheets);
 LPDISPATCH pWorksheet = m_worksheets.get_Item(COleVariant((short) 1));

 m_worksheet.AttachDispatch(pWorksheet);
 m_worksheet.Select(COleVariant((short) 0));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VERIFY(pRange = m_worksheet.get_Range(COleVariant("A1"),
 COleVariant("A1")));
 m_range[0].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.get_Range(COleVariant("A2"),
 COleVariant("A2")));
 m_range[1].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.get_Range(COleVariant("A3"),
 COleVariant("A3")));
 m_range[2].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.get_Range(COleVariant("A3"),
 COleVariant("C5")));
 m_range[3].AttachDispatch(pRange);

 VERIFY(pRange = m_worksheet.get_Range(COleVariant("A6"),
 COleVariant("A6")));
 m_range[4].AttachDispatch(pRange);

 m_range[4].put_Value(COleVariant(COleDateTime(2002, 4, 24,
 15, 47, 8)));
 // retrieve the stored date and print it as a string
 COleVariant vaTimeDate = m_range[4].get_Value();
 TRACE("returned date type = %d\n", vaTimeDate.vt);
 COleVariant vaTemp;
 vaTemp.ChangeType(VT_BSTR, &vaTimeDate);
 CString str(vaTemp.bstrVal);
 TRACE("date = %s\n", (const char*) str);

 m_range[0].put_Value(COleVariant("test string"));

 COleVariant vaResult0 = m_range[0].get_Value();
 if (vaResult0.vt == VT_BSTR) {
 CString str(vaResult0.bstrVal);
 TRACE("vaResult0 = %s\n", (const char*) str);
 }
 m_range[1].put_Value(COleVariant(3.14159));

 COleVariant vaResult1 = m_range[1].get_Value();
 if (vaResult1.vt == VT_R8) {
 TRACE("vaResult1 = %f\n", vaResult1.dblVal);
 }
 m_range[2].put_Formula(COleVariant("=$A2*2.0"));

 COleVariant vaResult2 = m_range[2].get_Value();
 if (vaResult2.vt == VT_R8) {
 TRACE("vaResult2 = %f\n", vaResult2.dblVal);
 }
 COleVariant vaResult2a = m_range[2].get_Formula();
 if (vaResult2a.vt == VT_BSTR) {
 CString str(vaResult2a.bstrVal);
 TRACE("vaResult2a = %s\n", (const char*) str);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 m_range[3].FillRight();
 m_range[3].FillDown();
 // cleanup
 if (pWorkbook != NULL) {
 pWorkbook->Release();
 }
}

The Ex23e Example: An Automation Client

This program uses the #import directive to generate smart pointers. It behaves just like Ex23d
except that it doesn’t run Excel. The #import statements are in the StdAfx.h file to minimize
the number of times the compiler has to generate the driver classes. Here is the added code:

#include <afxdisp.h>
#import "..\Ex23a\Debug\Ex23a.tlb" rename_namespace("BankDriv")
using namespace BankDriv;

#import "..\Ex23b\Debug\Ex23b.tlb" rename_namespace("Ex23bDriv")
using namespace Ex23bDriv;

#import "..\Ex23c\Debug\Ex23c.tlb" rename_namespace("ClockDriv")
using namespace ClockDriv;

If you have ActiveX controls turned on when you generate the code, the MFC Application
Wizard will insert a call to AfxOleInit in your application class InitInstance member function.
(Otherwise, you must add it by hand.)

The view class header contains embedded smart pointers, as shown here:

IEx23bAutoPtr m_auto;
IBankPtr m_bank;
IEx23cPtr m_clock;
IAlarmPtr m_alarm;

Here’s the code for the view class menu command handlers:

void CEx23eView::OnBankoleLoad()
{
 if(m_bank.CreateInstance(__uuidof(Bank)) != S_OK) {
 AfxMessageBox("Bank component not found");
 return;
 }
}
void CEx23eView::OnUpdateBankoleLoad(CCmdUI *pCmdUI)
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 pCmdUI->Enable(m_bank.GetInterfacePtr() == NULL);
}

void CEx23eView::OnBankoleTest()
{
 try {
 m_bank->Deposit(20.0);
 m_bank->Withdrawal(15.0);
 TRACE("new balance = %f\n", m_bank->GetBalance());
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}
void CEx23eView::OnUpdateBankoleTest(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() != NULL);
}
void CEx23eView::OnBankoleUnload()
{
 m_bank.Release();
}
void CEx23eView::OnUpdateBankoleUnload(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_bank.GetInterfacePtr() != NULL);
}
void CEx23eView::OnClockoleCreatealarm()
{
 CAlarmDlg dlg;
 try {
 if (dlg.DoModal() == IDOK) {
 COleDateTime dt(2001, 12, 23, dlg.m_nHours,
 dlg.m_nMinutes, dlg.m_nSeconds);
 LPDISPATCH pAlarm = m_clock->CreateAlarm(dt);
 m_alarm.Attach((IAlarm*) pAlarm); // releases prior object!
 m_clock->RefreshWin();
 }
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}
void CEx23eView::OnUpdateClockoleCreatealarm(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}
void CEx23eView::OnClockoleLoad()
{
 if(m_clock.CreateInstance(__uuidof(CEx23cDoc)) != S_OK) {
 AfxMessageBox("Clock component not found");
 return;
 }
 try {
 m_clock->PutFigure(0, COleVariant("XII"));
 m_clock->PutFigure(1, COleVariant("III"));
 m_clock->PutFigure(2, COleVariant("VI"));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_clock->PutFigure(2, COleVariant("VI"));
 m_clock->PutFigure(3, COleVariant("IX"));
 OnClockoleRefreshtime();
 m_clock->ShowWin();
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}
void CEx23eView::OnUpdateClockoleLoad(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() == NULL);
}
void CEx23eView::OnClockoleRefreshtime()
{
 COleDateTime now = COleDateTime::GetCurrentTime();
 try {
 m_clock->PutTime(now);
 m_clock->RefreshWin();
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}
void CEx23eView::OnUpdateClockoleRefreshtime(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}
void CEx23eView::OnClockoleUnload()
{
 m_clock.Release();
}
void CEx23eView::OnUpdateClockoleUnload(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_clock.GetInterfacePtr() != NULL);
}
void CEx23eView::OnDlloleGetdata()
{
 try {
 m_auto->DisplayDialog();
 COleVariant vaData = m_auto->GetTextData();
 ASSERT(vaData.vt == VT_BSTR);
 CString strTextData(vaData.bstrVal);
 long lData = m_auto->GetLongData();
 TRACE("CEx23dView::OnDlloleGetdata—long = %ld, text = %s\n",
 lData, strTextData);
 } catch(_com_error& e) {
 AfxMessageBox(e.ErrorMessage());
 }
}
void CEx23eView::OnUpdateDlloleGetdata(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() != NULL);
}
void CEx23eView::OnDlloleLoad()
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(m_auto.CreateInstance(__uuidof(Ex23bAuto)) != S_OK) {
 AfxMessageBox("Ex23bAuto component not found");
 return;
 }
 IEx23bAuto* pEx23bAuto = 0;
 m_auto.QueryInterface(__uuidof(IEx23bAuto), (void**)&pEx23bAuto);
 if(pEx23bAuto) {
 pEx23bAuto->PutLongData(42);
 pEx23bAuto->Release();
 }
}
void CEx23eView::OnUpdateDlloleLoad(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() == NULL);
}
void CEx23eView::OnDlloleUnload()
{
 m_auto.Release();
}
void CEx23eView::OnUpdateDlloleUnload(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_auto.GetInterfacePtr() != NULL);
}

Note the use of the try/catch blocks in the functions that manipulate the components. These
blocks are particularly necessary for processing errors that occur when a component program
stops running. In the previous example, Ex23d, the MFC COleDispatchDriver class took care
of this detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBA Early Binding

When you ran the Ex23a, Ex23b, and Ex23c components from Excel VBA, you used
something called late binding. Normally, each time VBA accesses a property or a method, it
calls IDispatch::GetIDsOfNames to look up the DISPID from the symbolic name. Not only is
this inefficient, but VBA can’t do type checking until it actually accesses a property or a
method. Suppose, for example, that a VBA program tries to get a property value that it
assumes is a number, but the component provides a string instead. VBA will give you a run-
time error when it executes the Property Get statement.

With early binding, VBA can preprocess the Visual Basic code, converting property and
method symbols to DISPIDs before it runs the component program. In so doing, it can check
property types, method return types, and method parameters, giving you compile-time error
messages. Where can VBA get the advance information it needs? From the component’s type
library, of course. It can use that same type library to allow the VBA programmer to browse
the component’s properties and methods. VBA reads the type library before it even loads the
component program.

Registering a Type Library

You’ve already seen that Visual C++ .NET generates a TLB file for each component. In order
for VBA to locate that type library, its location must be specified in the Windows Registry.
Browsers use the TypeLib Registry entries, and the COM runtime uses the Interface Registry
entries for run-time type-checking and, for an EXE component, marshaling the dispinterface.

How a Component Can Register Its Own Type Library

When an EXE component is run as a standalone, it can call the MFC AfxRegisterTypeLib
function to make the necessary Registry entries, as shown here:

VERIFY(AfxOleRegisterTypeLib(AfxGetInstanceHandle(), theTypeLibGUID,
 "Ex23b.tlb"));

Here is theTypeLibGUID, which is a static variable of type GUID:

// {A9515ACA-5B85-11D0-848F-00400526305B}
static const GUID theTypeLibGUID =
 { 0xa9515aca, 0x5b85, 0x11d0, { 0x84, 0x8f, 0x00, 0x40, 0x05, 0x26,
 0x30, 0x5b } };

The AfxRegisterTypeLib function is declared in the Afxwin.h header and requires _AFXDLL to
be defined. This means you can’t use the function in a regular DLL unless you copy the code
from the MFC source files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IDL File

Now is a good time to look at the IDL file for the same project:

// Ex23b.idl : type library source for Ex23b.dll
// This file will be processed by the MIDL compiler to produce the
// type library (Ex23b.tlb).

#include "olectl.h"
[uuid(EE56DC40-B710-4543-8841-8D9C27ADA504), version(1.0)]
library Ex23b
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");
 // Primary dispatch interface for Ex23bAuto

 [uuid(125FECB2-734D-49FD-95C7-FE44B77FDE2C)]
 dispinterface IEx23bAuto
 {
 properties:
 [id(1), helpstring("property LongData")] LONG LongData;
 [id(2), helpstring("property TextData")] VARIANT TextData;
 methods:
 [id(3), helpstring("method DisplayDialog")]
 VARIANT_BOOL DisplayDialog(void);
 };
 // Class information for Ex23bAuto
 [uuid(BAF3D9ED-4518-43CA-B017-2EBA332CB618)]
 coclass Ex23bAuto
 {
 [default] dispinterface IEx23bAuto;
 };
};

As you can see, numerous connections exist among the Registry, the type library, the
component, and the VBA client.

NOTE
The Visual C++ utility called OLEVIEW lets you examine registered components
and their type libraries.

How Excel Uses a Type Library

Let’s examine the sequence of steps that Excel takes to use your type library:

1. When Excel starts up, it reads the TypeLib section of the Registry to compile a list of all
type libraries. It loads the type libraries for VBA and for the Excel object library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. After starting Excel, loading a workbook, and switching to the Visual Basic Editor, the
user (or workbook author) chooses References from the Tools menu and checks the
Ex23b LIB line, as shown below. When the workbook is saved, this reference
information is saved with it.

3. Now the Excel user can browse through the Ex23b properties and methods by choosing
Object Browser from the Visual Basic Editor’s View menu to view the Object Browser
dialog box, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. To make use of the type library in your VBA program, you simply replace the line

Dim DllComp as Object

with

Dim DllComp as IEx23bAuto

The VBA program will exit immediately if it can’t find IEx23bAuto in its list of
references.

5. Right after VBA executes the CreateObject statement and loads the component
program, it calls QueryInterface for IID_IEx23bAuto, which is defined in the Registry,
the type library, and the component class’s interface map. (IEx23bAuto is really an
IDispatch interface.) This is a sort of security check. If the component can’t deliver this
interface, the VBA program will exit. Theoretically, Excel can use the CLSID in the
type library to load the component program, but it uses the CLSID from the Registry
instead, just as it did in late binding mode.

Why Use Early Binding?

You might think that early binding will make your Automation component run faster. You
probably won’t notice any speed increase, though, because the IDispatch::Invoke calls are the
limiting factor. A typical MFC Invoke call from a compiled C++ client to a compiled C++
component requires about 0.5 milliseconds.

The browse capability that the type library provides is probably more valuable than the
compiled linkage. If you’re writing a C++ controller, for example, you can load the type
library through various COM functions, including LoadTypeLib, and then you can access it
through the ITypeLib and ITypeInfo interfaces. Plan to spend some time on that project,
however, because the type library interfaces are tricky.

Faster Client-Component Connections

Microsoft has recognized the limitations of the IDispatch interface. This interface is naturally
slow because all data must be funneled through VARIANT arguments and possibly converted
on both ends. There’s a new variation, however, called a dual interface. In a dual interface,
you define your own custom interface, which is derived from IDispatch. The Invoke and
GetIDsOfNames functions are included, but so are other functions. If the client is smart
enough, it can bypass the inefficient Invoke calls and use the specialized functions instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enough, it can bypass the inefficient Invoke calls and use the specialized functions instead.
Dual interfaces can either support only standard Automation types or support arbitrary types.
(A detailed discussion of dual interfaces is beyond the scope of this book. See Kraig
Brockschmidt’s Inside OLE, 2d ed. [Microsoft Press, 1995], for more information.)

There is no direct MFC support for dual interfaces in Visual C++ .NET, but the ACDUAL
Visual C++ sample should get you started.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24
Uniform Data Transfer: Clipboard Transfer and OLE Drag and
Drop

COM includes a powerful mechanism for transferring data within and among Microsoft
Windows–based applications: Uniform Data Transfer (UDT). As you’ll see, UDT gives you
all sorts of options for the formatting and storage of your transferred data, going well beyond
standard Clipboard transfers. The COM IDataObject interface is the key element of UDT.

Microsoft Foundation Class (MFC) support is available for UDT, but that support is not so
high-level that it obscures what’s going on at the COM interface level. One useful application
of UDT is OLE drag and drop. Many developers want to use drag-and-drop capabilities in
their applications, and drag-and-drop support means that programs have a standard for
information interchange. This chapter focuses on the MFC library support for drag-and-drop
operations, together with Clipboard transfer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IDataObject Interface

The IDataObject interface is used for Clipboard transfers and drag-and-drop operations, but
it’s also used in compound documents, ActiveX controls, and custom OLE features. In his
book Inside OLE, 2d ed. (Microsoft Press, 1995), Kraig Brockschmidt says, “Think of objects
as little piles of stuff.” The IDataObject interface helps you move those piles around, no
matter what kind of stuff they contain.

If you were programming at the Win32 level, you’d write C++ code that supported the
IDataObject interface. Your program would then construct data objects of this class, and
you’d manipulate those objects using the IDataObject member functions. In this chapter,
you’ll see how to accomplish the same results using MFC’s implementation of IDataObject.
We’ll start by taking a quick look at why the OLE Clipboard is an improvement over the
regular Windows Clipboard.

How IDataObject Improves on Standard Clipboard Support

MFC has never provided much support for the Windows Clipboard. If you’ve written
programs for the Clipboard, you’ve used Win32 Clipboard functions such as OpenClipboard,
CloseClipboard, GetClipboardData, and SetClipboardData. One program copies a single data
element of a specified format to the Clipboard, and another program selects the data by format
code and pastes it. Standard Clipboard formats include global memory (specified by an
HGLOBAL variable) and various Graphics Device Interface (GDI) objects such as bitmaps
and metafiles (which are specified by their handles). Global memory can contain text as well
as custom formats.

The IDataObject interface picks up where the Windows Clipboard leaves off. To make a long
story short, you transfer a single IDataObject pointer to or from the Clipboard instead of
transferring a series of discrete formats. The underlying data object can contain a whole array
of formats. Those formats can carry information about target devices, such as printer
characteristics, and they can specify the data’s aspect, or view. The standard aspect is content.
Other aspects include an icon for the data and a thumbnail picture.

Note that the IDataObject interface specifies the storage medium of a data object format.
Conventional Clipboard transfer relies exclusively on global memory. The IDataObject
interface permits the transmission of a disk filename or a structured storage pointer instead.
Thus, if you want to transfer a very large block of data that’s already in a disk file, you don’t
have to waste time copying it to and from a memory block.

In case you were wondering, IDataObject pointers are compatible with programs that use
existing Clipboard transfer methods. The format codes are the same. Windows takes care of
the conversion to and from the data object. Of course, if an OLE-aware program puts an
IStorage pointer in a data object and puts the object on the Clipboard, older, non-OLE-aware
programs will not be able to read that format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FORMATETC and STGMEDIUM Structures

Before you’re ready for the IDataObject member functions, you need to examine two
important COM structures that are used as parameter types: the FORMATETC structure and
the STGMEDIUM structure.

FORMATETC

The FORMATETC structure is often used instead of a Clipboard format to represent data
format information. However, unlike the Clipboard format, the FORMATETC structure
includes information about a target device, the aspect or view of the data, and a storage
medium indicator. Here are the members of the FORMATETC structure:

Type Name Description

CLIPFORMAT cfFormat A structure that contains Clipboard formats, such as
standard interchange formats (for example, CF_TEXT,
which is a text format, and CF_DIB, which is an image
compression format), custom formats (such as rich text
format), and OLE formats that are used to create linked
or embedded objects.

DVTARGETDEVICE* ptd A structure that contains information about the target
device for the data, including the device driver name. (It
can be NULL.)

DWORD dwAspect A DVASPECT enumeration constant (such as
DVASPECT_CONTENT, or DVASPECT
_THUMBNAIL)

LONG lindex Usually - 1.

DWORD tymed Specifies the type of media used to transfer the object’s
data (such as TYMED_HGLOBAL, TYMED_FILE, or
TYMED_ISTORAGE).

An individual data object accommodates a collection of FORMATETC elements, and the
IDataObject interface provides a way to enumerate them. A useful macro for filling in a
FORMATETC structure is shown here:

#define SETFORMATETC(fe, cf, asp, td, med, li) \
 ((fe).cfFormat=cf, \
 (fe).dwAspect=asp, \
 (fe).ptd=td, \
 (fe).tymed=med, \
 (fe).lindex=li)

STGMEDIUM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STGMEDIUM

The other important structure for IDataObject members is the STGMEDIUM structure. This
structure is a global memory handle used for operations involving data transfer. Here are the
members:

Type Name Description

DWORD tymed A storage medium value used in marshaling and
unmarshaling routines

HBITMAP hBitmap Bitmap handle*

HMETAFILEPICT hMetaFilePict Metafile handle*

HENHMETAFILE hEnhMetaFile Enhanced metafile handle*

HGLOBAL hGlobal Global memory handle*

LPOLESTR lpszFileName Disk filename (double-byte)*

ISTREAM* pstm IStream interface pointer*

ISTORAGE* pstg IStorage interface pointer*

IUNKNOWN pUnkForRelease Used by clients to call Release for formats with
interface pointers This member is part of a union,
including handles, strings, and interface pointers
used by the receiving process to access the
transferred data.

As you can see, the STGMEDIUM structure specifies where data is stored. The tymed variable
determines which union member is valid.

IDataObject Interface Member Functions

The IDataObject interface has nine member functions. Both Brockschmidt and the MFC
Library Reference do a good job describing all of them. We’ll look in detail at the functions
that are important for this chapter.

HRESULT EnumFormatEtc(DWORD dwDirection,
IEnumFORMATETC ppEnum);

If you have an IDataObject pointer for a data object, you can use EnumFormatEtc to
enumerate all the formats that it supports. This is an ugly API that the MFC library insulates
you from. You’ll learn how this happens when you examine the COleDataObject class.

HRESULT GetData(FORMATETC* pFEIn, STGMEDIUM* pSTM);

GetData is the most important function in the interface. Somewhere, up in the sky, is a data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetData is the most important function in the interface. Somewhere, up in the sky, is a data
object, and you have an IDataObject pointer to it. You specify, in a FORMATETC variable,
the exact format you want to use when you retrieve the data, and you prepare an empty
STGMEDIUM variable to accept the results. If the data object has the format you want,
GetData will fill in the STGMEDIUM structure. Otherwise, you’ll get an error return value.

HRESULT QueryGetData(FORMATETC* pFE);

You call QueryGetData if you’re not sure whether the data object can deliver data in the
format specified in the FORMATETC structure. The return value says, “Yes, I can” (S_OK) or
“No, I can’t” (an error code). Calling this function is definitely more efficient than allocating a
STGMEDIUM variable and calling GetData.

HRESULT SetData(FORMATETC* pFEIn,
STGMEDIUM* pSTM, BOOL fRelease);

Data objects rarely support SetData. Data objects are normally loaded with formats in their
own server module; clients retrieve data by calling GetData. With SetData, you’d be
transferring data in the other direction—like pumping water from your house back to the water
company.

Other IDataObject Member Functions: Advisory Connections

The interface contains other important functions that let you implement an advisory
connection. When the program using a data object needs to be notified whether the object’s
data changes, the program can pass an IAdviseSink pointer to the object by calling the
IDataObject::DAdvise function. The object will then call various IAdviseSink member
functions, which the client program will implement. You don’t need advisory connections for
drag-and-drop operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC UDT Support

The MFC library does a lot to make data object programming easier. As you study the MFC
data object classes, you’ll start to see a pattern in MFC COM support. At the component end,
the MFC library provides a base class that implements one or more OLE interfaces. The
interface member functions call virtual functions that you override in your derived class. At
the client end, the MFC library provides a class that wraps an interface pointer. You call
simple member functions that use the interface pointer to make COM calls.

The terminology needs some clarification here. The data object I’ve described is the actual
C++ object that you construct, and that’s the way Brockschmidt uses the term. In the MFC
documentation, a data object is what the client program sees through an IDataObject pointer.
A data source is the object you construct in a component program.

The COleDataSource Class

When you want to use a data source, you construct an object of class COleDataSource, which
implements the IDataObject interface (without advisory connection support). This class builds
and manages a collection of data formats stored in a cache in memory. A data source is a
regular COM object that keeps a reference count. Usually, you construct and fill a data source,
and then you pass it to the Clipboard or drag and drop it in another location, never to worry
about it again. If you decide to not pass off a data source, you can invoke the destructor, which
cleans up all its formats.

Following are some of the more useful member functions of the COleDataSource class.

void CacheData(CLIPFORMAT cfFormat,
 STGMEDIUM* lpStgMedium,
 FORMATETC* lpFormatEtc = NULL);

This function inserts an element in the data object’s cache for data transfer. The lpStgMedium
parameter points to the data, and the lpFormatEtc parameter describes the data. If, for
example, the STGMEDIUM structure specifies a disk filename, that filename gets stored inside
the data object. If lpFormatEtc is set to NULL, the function fills in a FORMATETC structure
with default values. It’s safer, though, to create your FORMATETC variable with the tymed
member set.

void CacheGlobalData(CLIPFORMAT cfFormat,
 HGLOBAL hGlobal, FORMATETC* lpFormatEtc = NULL);

You call this specialized version of CacheData to pass data in global memory (identified by
an HGLOBAL variable). The data source object is considered the owner of that global memory
block, so you should not free it after you cache it. You can usually omit the lpFormatEtc
parameter. The CacheGlobalData function does not make a copy of the data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROPEFFECT DoDragDrop(DWORD dwEffects =
 DROPEFFECT_COPY│DROPEFFECT_MOVE│
 DROPEFFECT_LINK, LPCRECT lpRectStartDrag = NULL,
 COleDropSource* pDropSource = NULL);

You call this function for drag-and-drop operations on a data source. You’ll see it used in the
Ex24b example.

void SetClipboard(void);

The SetClipboard function, which you’ll see in the Ex24a example, calls the OleSetClipboard
function to put a data source on the Windows Clipboard. The Clipboard is responsible for
deleting the data source and thus for freeing the global memory associated with the formats in
the cache. When you construct a COleDataSource object and call SetClipboard, COM calls
AddRef on the object.

The COleDataObject Class

This class is on the destination side of a data object transfer. Its base class is CCmdTarget, and
it has a public member m_lpDataObject that holds an IDataObject pointer. That member must
be set before you can effectively use the object. The class destructor calls Release only on the
IDataObject pointer.

Following are a few of the more useful COleDataObject member functions.

BOOL AttachClipboard(void);

As Brockschmidt points out, OLE Clipboard processing is internally complex. From the
developer’s point of view, however, it’s straightforward—as long as you use the
COleDataObject member functions. You first construct an “empty” COleDataObject object,
and then you call AttachClipboard, which calls the global OleGetClipboard function. Now the
m_lpDataObject data member will point back to the source data object (or so it will appear),
and you can access its formats.

If you call the GetData member function to get a format, you must remember that the
Clipboard owns the format and you cannot alter its contents. If the format consists of an
HGLOBAL pointer, you must not free that memory and you cannot hang onto the pointer. If
you need to have long-term access to the data in global memory, consider calling
GetGlobalData instead.

If a non-COM-aware program copies data to the Clipboard, the AttachClipboard function will
still work because COM invents a data object that contains formats corresponding to the
regular Windows data on the Clipboard.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void BeginEnumFormats(void);
BOOL GetNextFormat(FORMATETC* lpFormatEtc);

These two functions allow you to iterate through the formats that the data object contains. You
call BeginEnumFormats first, and then you call GetNextFormat in a loop until it returns
FALSE.

BOOL GetData(CLIPFORMAT cfFormat,
 STGMEDIUM* lpStgMedium
 FORMATETC* lpFormatEtc = NULL);

This function calls IDataObject::GetData and not much more. The function returns TRUE if
the data source contains the format you asked for. You generally need to supply the
lpFormatEtc parameter.

HGLOBAL GetGlobalData(CLIPFORMAT cfFormat,
 FORMATETC* lpFormatEtc = NULL);

Use the GetGlobalData function if you know that your requested format is compatible with
global memory. This function makes a copy of the selected format’s memory block, and it
gives you an HGLOBAL handle that you must free later. You can often omit the lpFormatEtc
parameter.

BOOL IsDataAvailable(CLIPFORMAT cfFormat,
 FORMATETC* lpFormatEtc = NULL);

The IsDataAvailable function tests whether the data object contains a given format.

MFC Data Object Clipboard Transfer

Now that you’ve seen the COleDataObject and COleDataSource classes, you’ll have an easy
time doing Clipboard data object transfers. But why not just do Clipboard transfers the old
way using GetClipboardData and SetClipboardData? You can for most common formats, but
if you write functions that process data objects, you can use those same functions for drag and
drop.

Figure 24-1 shows the relationship between the Clipboard and the COleDataSource and
COleDataObject classes. You construct a COleDataSource object on the copy side, and then
you fill its cache with formats. When you call SetClipboard, the formats are copied to the
Clipboard. On the paste side, you call AttachClipboard to attach an IDataObject pointer to a
COleDataObject object, after which you can retrieve individual formats.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 24-1. MFC OLE Clipboard processing.

Suppose you have a document-view application whose document has a CString data member
called m_strText. You want to use view class command handler functions that copy to and
paste from the Clipboard. Before you write those functions, you write two helper functions.
The first, SaveText, creates a data source object from the contents of m_strText. The function
constructs a COleDataSource object, and then it copies the string contents to global memory.
Finally, it calls CacheGlobalData to store the HGLOBAL handle in the data source object.
Here is the SaveText code:

COleDataSource* CMyView::SaveText()
{
 CEx24fDoc* pDoc = GetDocument();
 if (!pDoc->m_strtext.IsEmpty()) {
 COleDataSource* pSource = new COleDataSource();
 int nTextSize = GetDocument()->m_strText.GetLength() + 1;
 HGLOBAL hText = ::GlobalAlloc(GMEM_SHARE, nTextSize);
 LPSTR pText = (LPSTR) ::GlobalLock(hText);
 ASSERT(pText);
 strncpy(pText, GetDocument()->m_strText,
 nTextSize - 1);
 ::GlobalUnlock(hText);
 pSource->CacheGlobalData(CF_TEXT, hText);
 return pSource;
 }
 return NULL;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second helper function, DoPasteText, fills in m_strText from a data object specified as a
parameter. We’re using COleDataObject::GetData here instead of GetGlobalData because
GetGlobalData makes a copy of the global memory block. That extra copy operation is
unnecessary because we’re copying the text to the CString object. We won’t free the original
memory block because the data object owns it. Here’s the DoPasteText code:

// Memory is MOVEABLE, so we must use GlobalLock!
 SETFORMATETC(fmt, CF_TEXT, DVASPECT_CONTENT, NULL,
 TYMED_HGLOBAL, -1);
 VERIFY(pDataObject->GetData(CF_TEXT, &stg, &fmt));
 HGLOBAL hText = stg.hGlobal;
 GetDocument()->m_strText = (LPSTR) ::GlobalLock(hText);
 ::GlobalUnlock(hText);
 return TRUE;
}

Here are the two command handler functions:

void CMyView::OnEditCopy()
{
 COleDataSource* pSource = SaveText();
 if (pSource) {
 pSource->SetClipboard();
 }
}
void CMyView::OnEditPaste()
{
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 DoPasteText(&dataObject);
 // dataObject released
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRectTracker Class

The CRectTracker class is useful in both OLE and non-OLE programs. It allows the user to
move and resize a rectangular object in a view window. The class has two important data
members: the m_nStyle member, which determines the border, resize handle, and other
characteristics, and the m_rect member, which holds the device coordinates for the rectangle.

The important member functions follow.

void Draw(CDC* pDC) const;

The Draw function draws the tracker, including border and resize handles, but it does not draw
anything inside the rectangle. That’s your job.

BOOL Track(CWnd* pWnd, CPoint point,
 BOOL bAllowInvert = FALSE, CWnd* pWndClipTo = NULL);

You call this function in a WM_LBUTTONDOWN handler. If the cursor is on the rectangle
border, the user can resize the tracker by holding down the mouse button. If the cursor is
inside the rectangle, the user can move the tracker. If the cursor is outside the rectangle, Track
will return FALSE immediately; otherwise, Track will return TRUE only when the user
releases the mouse button. That means Track works a little like CDialog::DoModal. It
contains its own message dispatch logic.

int HitTest(CPoint point) const;

Call HitTest if you need to distinguish between mouse button hits inside and on the tracker
rectangle. The function returns immediately with the hit status in the return value.

BOOL SetCursor(CWnd* pWnd, UINT nHitTest) const;

Call this function in your view’s WM_SETCURSOR handler to ensure that the cursor changes
during tracking. If SetCursor returns FALSE, call the base class OnSetCursor function; if
SetCursor returns TRUE, you return TRUE.

CRectTracker Rectangle Coordinate Conversion

You must deal with the fact that the CRectTracker::m_rect member stores device coordinates.
If you’re using a scrolling view or have otherwise changed the mapping mode or viewport
origin, you must do coordinate conversion. Here’s a strategy:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Define a CRectTracker data member in your view class. Use the name m_tracker.

2. Define a separate data member in your view class to hold the rectangle in logical
coordinates. Use the name m_rectTracker.

3. In your view’s OnDraw function, set m_rect to the updated device coordinates, and then
draw the tracker. This adjusts for any scrolling since the last OnDraw. Some sample
code is shown here:

m_tracker.m_rect = m_rectTracker;
pDC->LPtoDP(m_tracker.m_rect); // tracker requires device
 // coordinates
m_tracker.Draw(pDC);

4. In your mouse button down message handler, call Track, set m_rectTracker to the
updated logical coordinates, and call Invalidate, as shown here:

if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker);
 Invalidate();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex24a Example: A Data Object Clipboard

This example uses the CDib class from Ex06d. Here, you can move and resize the device-
independent bitmap (DIB) image with a tracker rectangle, and you can copy and paste the DIB
to and from the Clipboard using a COM data object. The example also includes functions for
reading DIBs from and writing DIBs to BMP files.

If you create such an example from scratch, use the MFC Application Wizard without any
ActiveX or Automation options and then add the following line in your StdAfx.h file:

#include <afxole.h>

Add the following call at the start of the application’s InitInstance function:

AfxOleInit();

To prepare Ex24a, open the \vcppnet\Ex24a\Ex24a.sln solution and then build the project. Run
the application, and paste a bitmap into the rectangle by choosing Paste From from the Edit
menu. You’ll see an MDI application similar to the one shown in Figure 24-2.

Figure 24-2. The Ex24a program in operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CMainFrame Class

This class contains the handlers OnQueryNewPalette and OnPaletteChanged for the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages, respectively. These
handlers send a user-defined WM_VIEWPALETTECHANGED message to all the views, and
then the handler calls CDib::UsePalette to realize the palette. The value of wParam tells the
view whether it should realize the palette in background mode or in foreground mode.

The CEx24aDoc Class

This class is pretty straightforward. It contains an embedded CDib object, m_dib, plus a Clear
All command handler. The overridden DeleteContents member function calls the
CDib::Empty function.

The CEx24aView Class

This class contains the Clipboard function command handlers, the tracking code, the DIB
drawing code, and the palette message handler. The header and implementation files are
shown below with manually entered code in boldface:

Ex24aView.h
// Ex24aView.h : interface of the CEx24aView class
//
#pragma once
#define WM_VIEWPALETTECHANGED WM_USER + 5
class CEx24aView : public CScrollView
{
 // for tracking
 CRectTracker m_tracker;
 CRect m_rectTracker; // logical coordinates
 CSize m_sizeTotal; // document sizeprotected: // create from serialization only
 CEx24aView();
 DECLARE_DYNCREATE(CEx24aView)
// Attributes
public:
 CEx24aDoc* GetDocument() const;
// Operations
public:
// Overrides
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
// Implementation
public:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public:
 virtual ~CEx24aView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif
protected:
// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()
public:
 afx_msg void OnEditCopy();
 afx_msg void OnUpdateEditCopy(CCmdUI *pCmdUI);
 afx_msg void OnEditCut();
 afx_msg void OnEditPaste();
 afx_msg void OnUpdateEditPaste(CCmdUI *pCmdUI);
 afx_msg void OnEditCopyto();
 afx_msg void OnEditPastefrom();
 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
 afx_msg BOOL OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message);
 afx_msg void OnSetFocus(CWnd* pOldWnd);
 virtual void OnPrepareDC(CDC* pDC, CPrintInfo* pInfo = NULL);
 virtual void OnInitialUpdate();
 afx_msg LONG OnViewPaletteChanged(UINT wParam, LONG lParam);
 BOOL DoPasteDib(COleDataObject* pDataObject);
 COleDataSource* CEx24aView::SaveDib();
};
#ifndef _DEBUG // debug version in Ex24aView.cpp
inline CEx24aDoc* CEx24aView::GetDocument() const
 { return reinterpret_cast<CEx24aDoc*>(m_pDocument); }
#endif

Ex24aView.cpp
// Ex24aView.cpp : implementation of the CEx24aView class
//
#include "stdafx.h"
#include "Ex24a.h"
#include "Ex24aDoc.h"
#include "Ex24aView.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#endif
// CEx24aView
IMPLEMENT_DYNCREATE(CEx24aView, CScrollView)
BEGIN_MESSAGE_MAP(CEx24aView, CScrollView)
 // Standard printing commands
 ON_COMMAND(ID_FILE_PRINT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_DIRECT, CScrollView::OnFilePrint)
 ON_COMMAND(ID_FILE_PRINT_PREVIEW, CScrollView::OnFilePrintPreview)
 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ON_COMMAND(ID_EDIT_COPY, OnEditCopy)
 ON_UPDATE_COMMAND_UI(ID_EDIT_COPY, OnUpdateEditCopy)
 ON_COMMAND(ID_EDIT_CUT, OnEditCut)
 ON_COMMAND(ID_EDIT_PASTE, OnEditPaste)
 ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdateEditPaste)
 ON_COMMAND(ID_EDIT_COPYTO, OnEditCopyto)
 ON_COMMAND(ID_EDIT_PASTEFROM, OnEditPastefrom)
 ON_WM_LBUTTONDOWN()
 ON_WM_SETCURSOR()
 ON_WM_SETFOCUS()
 ON_WM_PALETTECHANGED()
END_MESSAGE_MAP()
// CEx24aView construction/destruction
CEx24aView::CEx24aView() : m_sizeTotal(800, 1050), // 8-by-10.5 inches
 // when printed
m_rectTracker(50, 50, 250, 250){
}
CEx24aView::~CEx24aView()
{
}
BOOL CEx24aView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 return CScrollView::PreCreateWindow(cs);
}
// CEx24aView drawing
void CEx24aView::OnDraw(CDC* pDC)
{
 CDib& dib = GetDocument()->m_dib;
 m_tracker.m_rect = m_rectTracker;
 pDC->LPtoDP(m_tracker.m_rect); // tracker wants device coordinates
 m_tracker.Draw(pDC);
 dib.Draw(pDC, m_rectTracker.TopLeft(), m_rectTracker.Size());
}
// CEx24aView printing
BOOL CEx24aView::OnPreparePrinting(CPrintInfo* pInfo)
{
 pInfo->SetMaxPage(1);
 return DoPreparePrinting(pInfo);
}
void CEx24aView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add extra initialization before printing
}
void CEx24aView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
 // TODO: add cleanup after printing
}
// CEx24aView diagnostics
#ifdef _DEBUG
void CEx24aView::AssertValid() const
{
 CScrollView::AssertValid();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CScrollView::AssertValid();
}
void CEx24aView::Dump(CDumpContext& dc) const
{
 CScrollView::Dump(dc);
}
CEx24aDoc* CEx24aView::GetDocument() const // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CEx24aDoc)));
 return (CEx24aDoc*)m_pDocument;
}
#endif //_DEBUG

// helper functions used for clipboard and drag-drop
BOOL CEx24aView::DoPasteDib(COleDataObject* pDataObject)
{
 // update command user interface should keep us out of
 // here if not CF_DIB
 if (!pDataObject->IsDataAvailable(CF_DIB)) {
 TRACE("CF_DIB format is unavailable\n");
 return FALSE;
 }
 CEx24aDoc* pDoc = GetDocument();
 // Seems to be MOVEABLE memory, so we must use GlobalLock!
 // (hDib != lpDib) GetGlobalData copies the memory, so we can
 // hang onto it until we delete the CDib.
 HGLOBAL hDib = pDataObject->GetGlobalData(CF_DIB);
 ASSERT(hDib != NULL);
 LPVOID lpDib = ::GlobalLock(hDib);
 ASSERT(lpDib != NULL);
 pDoc->m_dib.AttachMemory(lpDib, TRUE, hDib);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
 return TRUE;
}
COleDataSource* CEx24aView::SaveDib()
{
 CDib& dib = GetDocument()->m_dib;
 if (dib.GetSizeImage() > 0) {
 COleDataSource* pSource = new COleDataSource();
 int nHeaderSize = dib.GetSizeHeader();
 int nImageSize = dib.GetSizeImage();
 HGLOBAL hHeader = ::GlobalAlloc(GMEM_SHARE,
 nHeaderSize + nImageSize);
 LPVOID pHeader = ::GlobalLock(hHeader);
 ASSERT(pHeader != NULL);
 LPVOID pImage = (LPBYTE) pHeader + nHeaderSize;
 memcpy(pHeader, dib.m_lpBMIH, nHeaderSize);
 memcpy(pImage, dib.m_lpImage, nImageSize);
 // Receiver is supposed to free the global memory
 ::GlobalUnlock(hHeader);
 pSource->CacheGlobalData(CF_DIB, hHeader);
 return pSource;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return pSource;
 }
 return NULL;
}// CEx24aView message handlers
void CEx24aView::OnEditCopy()
{
 COleDataSource* pSource = SaveDib();
 if (pSource) {
 pSource->SetClipboard(); // OLE deletes data source
 }
}
void CEx24aView::OnUpdateEditCopy(CCmdUI *pCmdUI)
{
 // serves Copy, Cut, and Copy To
 CDib& dib = GetDocument()->m_dib;
 pCmdUI->Enable(dib.GetSizeImage() > 0L);
}
void CEx24aView::OnEditCut()
{
 OnEditCopy();
 GetDocument()->OnEditClearall();
}
void CEx24aView::OnEditPaste()
{
 CEx24aDoc* pDoc = GetDocument();
 COleDataObject dataObject;
 VERIFY(dataObject.AttachClipboard());
 DoPasteDib(&dataObject);
 CClientDC dc(this);
 pDoc->m_dib.UsePalette(&dc);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
}
void CEx24aView::OnUpdateEditPaste(CCmdUI *pCmdUI)
{
 COleDataObject dataObject;
 BOOL bAvail = dataObject.AttachClipboard() &&
 dataObject.IsDataAvailable(CF_DIB);
 pCmdUI->Enable(bAvail);
}
void CEx24aView::OnEditCopyto()
{
 CDib& dib = GetDocument()->m_dib;
 CFileDialog dlg(FALSE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) return;
 BeginWaitCursor();
 dib.CopyToMapFile(dlg.GetPathName());
 EndWaitCursor();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 EndWaitCursor();
}
void CEx24aView::OnEditPastefrom()
{
 CEx24aDoc* pDoc = GetDocument();
 CFileDialog dlg(TRUE, "bmp", "*.bmp");
 if (dlg.DoModal() != IDOK) return;
 if (pDoc->m_dib.AttachMapFile(dlg.GetPathName(), TRUE)) { // share
 CClientDC dc(this);
 pDoc->m_dib.SetSystemPalette(&dc);
 pDoc->m_dib.UsePalette(&dc);
 pDoc->SetModifiedFlag();
 pDoc->UpdateAllViews(NULL);
 }
}
void CEx24aView::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker); // Update logical coordinates
 Invalidate();
 }
}
BOOL CEx24aView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{
 if (m_tracker.SetCursor(pWnd, nHitTest)) {
 return TRUE;
 }
 else {
 return CScrollView::OnSetCursor(pWnd, nHitTest, message);
 }
}
void CEx24aView::OnSetFocus(CWnd* pOldWnd)
{
 CScrollView::OnSetFocus(pOldWnd);
 AfxGetApp()->m_pMainWnd->SendMessage(WM_PALETTECHANGED,
 (UINT) GetSafeHwnd());
}
void CEx24aView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{
 // custom MM_LOENGLISH; positive y is down
 if (pDC->IsPrinting()) {
 int nHsize = pDC->GetDeviceCaps(HORZSIZE) * 1000 / 254;
 int nVsize = pDC->GetDeviceCaps(VERTSIZE) * 1000 / 254;
 pDC->SetMapMode(MM_ANISOTROPIC);
 pDC->SetWindowExt(nHsize, nVsize);
 pDC->SetViewportExt(pDC->GetDeviceCaps(HORZRES),
 pDC->GetDeviceCaps(VERTRES));
 }
 else {
 CScrollView::OnPrepareDC(pDC, pInfo);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CScrollView::OnPrepareDC(pDC, pInfo);
 }
}
void CEx24aView::OnInitialUpdate()
{
 SetScrollSizes(MM_TEXT, m_sizeTotal);
 m_tracker.m_nStyle = CRectTracker::solidLine │
 CRectTracker::resizeOutside;
 CScrollView::OnInitialUpdate();
}
LONG CEx24aView::OnViewPaletteChanged(UINT wParam, LONG lParam)
{
 TRACE("CEx24aView::OnViewPaletteChanged, HWND = %x, code = %d\n",
 GetSafeHwnd(), wParam);
 CClientDC dc(this);
 GetDocument()->m_dib.UsePalette(&dc, wParam);
 Invalidate();
 return 0;
}

Several interesting things happen in the view class. In the DoPasteDib helper, we can call
GetGlobalData because we can attach the returned HGLOBAL variable to the document’s
CDib object. If we were to call GetData, we’d have to copy the memory block ourselves. The
Paste From and Copy To command handlers rely on the memory-mapped file support in the
CDib class. The OnPrepareDC function creates a special printer-mapping mode that is just
like MM_LOENGLISH except that positive y is down. One pixel on the display corresponds to
0.01 inch on the printer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MFC Drag and Drop

Drag and drop was the ultimate justification for the data object code you’ve been looking at.
OLE supports this feature with its IDropSource and IDropTarget interfaces plus some library
code that manages the drag-and-drop process. The MFC library offers good drag-and-drop
support at the view level, so we’ll use it. Be aware that drag-and-drop transfers are immediate
and independent of the Clipboard. If the user cancels the operation, there’s no “memory” of
the object being dragged.

Drag-and-drop transfers should work consistently between applications, between windows of
the same application, and within a window. When the user starts the operation, the cursor
should change to an arrow-rectangle combination. If the user holds down the Ctrl key, the
cursor turns into a plus sign (+), which indicates that the object is being copied rather than
moved.

MFC also supports drag-and-drop operations for items in compound documents. This is the
next level up in MFC OLE support, and it’s not covered in this chapter. Look up the
OCLIENT example in the MSDN Library under Visual C++ Samples.

The Source Side of the Transfer

When your source program starts a drag-and-drop operation for a data object, it calls
COleDataSource::DoDragDrop. This function internally creates an object of MFC class
COleDropSource, which implements the IOleDropSource interface. DoDragDrop is one of
those functions that don’t return for a while. It returns when the user drops the object or
cancels the operation or when a specified number of milliseconds have elapsed.

If you’re programming drag-and-drop operations to work with a CRectTracker object, you
should call DoDragDrop only when the user clicks inside the tracking rectangle, not on its
border. CRectTracker::HitTest gives you that information. When you call DoDragDrop, you
must set a flag that tells you whether the user is dropping the object into the same view (or
document) that it was dragged from.

The Destination Side of the Transfer

If you want to use the MFC library’s view class drag-and-drop support, you must add a data
member of class COleDropTarget to your derived view class. This class implements the
IDropTarget interface, and it holds an IDropSource pointer that links back to the
COleDropSource object. In your view’s OnInitialUpdate function, you call the Register
member function for the embedded COleDropTarget object.

After you’ve made your view a drop target, you must override four CView virtual functions,
which the framework calls during the drag-and-drop operation. Here’s a summary of what
they should do, assuming that you’re using a tracker:

Function Description

OnDragEnter Adjusts the focus rectangle and then calls OnDragOver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OnDragOver Moves the dotted focus rectangle and sets the drop effect (determines cursor
shape)

OnDragLeave Cancels the transfer operation; returns the rectangle to its original position
and size

OnDrop Adjusts the focus rectangle and then calls the DoPaste helper function to get
formats from the data object

The Drag-and-Drop Sequence

Figure 24-3 illustrates the MFC drag-and-drop process.

Figure 24-3. MFC OLE drag-and-drop processing.

Here’s a summary of what’s going on:

1. The user presses the left mouse button in the source view window.

2. The mouse button handler calls CRectTracker::HitTest and finds out that the cursor was
inside the tracker rectangle.

3. The handler stores formats in a COleDataSource object.

4. The handler calls COleDataSource::DoDragDrop for the data source.

5. The user moves the cursor to the view window of the target application.

6. OLE calls IDropTarget::OnDragEnter and OnDragOver for the COleDropTarget
object, which calls the corresponding virtual functions in the target’s view. The
OnDragOver function is passed a COleDataObject pointer for the source object, which
the target tests for a format that it can understand.

7. OnDragOver returns a drop effect code, which OLE uses to set the cursor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. OLE calls IDataSource::QueryContinueDrag on the source side to find out whether the
drag operation is still in progress. The MFC COleDataSource class responds
appropriately.

9. The user releases the mouse button to drop the object in the target view window.

10. OLE calls IDropTarget::OnDrop, which calls OnDrop for the target’s view. Because
OnDrop is passed a COleDataObject pointer, it can retrieve the desired format from that
object.

11. When OnDrop returns in the target program, DoDragDrop can return in the source
program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex24b Example: OLE Drag and Drop

This example picks up where the Ex24a example left off. It adds drag-and-drop support, using
the existing SaveDib and DoPasteDib helper functions. All of the Clipboard code is the same.
You should be able to adapt Ex24b to other applications that require drag and drop for data
objects.

To prepare Ex24b, open the \vcppnet\Ex24b\Ex24b.sln solution and build the project. Run the
application, and test drag and drop between child windows and between instances of the
program.

The CEx24bDoc Class

This class is just like the Ex24a version except for an added flag data member, m_bDragHere.
This flag is TRUE when a drag-and-drop operation is in progress for this document. The flag
is in the document and not in the view because it is possible to have multiple views attached to
the same document. It doesn’t make sense to drag a DIB from one view to another if both
views reflect the document’s m_dib member.

The CEx24bView Class

To start with, this class has three additional data members and a constructor that initializes all
the data members, as shown here:

CRect m_rectTrackerEnter; // original logical coordinates
COleDropTarget m_dropTarget;
CSize m_dragOffset; // device coordinates

CEx24bView::CEx24bView() : m_sizeTotal(800, 1050), // 8-by-10.5 inches
 // when printed
 m_rectTracker(50, 50, 250, 250),
 m_dragOffset(0, 0),
 m_rectTrackerEnter(50, 50, 250, 250)
{
}

The OnInitialUpdate function needs one additional line to register the drop target:

m_dropTarget.Register(this);

Following are the drag-and-drop virtual override functions. Note that OnDrop replaces the
DIB only if the document’s m_bDragHere flag is TRUE, so if the user drops the DIB in the
same window or in another window connected to the same document, nothing happens.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROPEFFECT CEx24bView::OnDragEnter(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 TRACE("Entering CEx24bView::OnDragEnter, point = (%d, %d)\n",
 point.x, point.y);
 m_rectTrackerEnter = m_rectTracker; // Save original coordinates
 // for cursor leaving
 // rectangle
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker); // will be erased in OnDragOver
 return OnDragOver(pDataObject, dwKeyState, point);
}
void CEx24bView::OnDragLeave()
{
 TRACE("Entering CEx24bView::OnDragLeave\n");
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker);
 m_rectTracker = m_rectTrackerEnter; // Forget it ever happened
}
DROPEFFECT CEx24bView::OnDragOver(COleDataObject* pDataObject, DWORD
 dwKeyState, CPoint point)
{
 if (!pDataObject->IsDataAvailable(CF_DIB)) {
 return DROPEFFECT_NONE;
 }
 MoveTrackRect(point);
 if((dwKeyState & MK_CONTROL) == MK_CONTROL) {
 return DROPEFFECT_COPY;
 }
 // Check for force move
 if ((dwKeyState & MK_ALT) == MK_ALT) {
 return DROPEFFECT_MOVE;
 }
 // default -- recommended action is move
 return DROPEFFECT_MOVE;
}
BOOL CEx24bView::OnDrop(COleDataObject* pDataObject,
 DROPEFFECT dropEffect, CPoint point)
{
 TRACE("Entering CEx24bView::OnDrop -- dropEffect = %d\n", dropEffect);
 BOOL bRet;
 CEx24bDoc* pDoc = GetDocument();
 MoveTrackRect(point);
 if(pDoc->m_bDragHere) {
 pDoc->m_bDragHere = FALSE;
 bRet = TRUE;
 }
 else {
 bRet = DoPasteDib(pDataObject);
 }
 return bRet;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The handler for the WM_LBUTTONDOWN message needs a substantial overhaul. It must call
DoDragDrop if the cursor is inside the rectangle and Track if it is on the rectangle border. The
revised code is shown here:

void CEx24bView::OnLButtonDown(UINT nFlags, CPoint point)
{
 CEx24bDoc* pDoc = GetDocument();
 if(m_tracker.HitTest(point) == CRectTracker::hitMiddle) {
 COleDataSource* pSource = SaveDib();
 if(pSource) {
 // DoDragDrop returns only after drop is complete
 CClientDC dc(this);
 OnPrepareDC(&dc);
 CPoint topleft = m_rectTracker.TopLeft();
 dc.LPtoDP(&topleft);
 // 'point' here is not the same as the point parameter in
 // OnDragEnter, so we use this one to compute the offset
 m_dragOffset = point - topleft; // device coordinates
 pDoc->m_bDragHere = TRUE;
 DROPEFFECT dropEffect = pSource->DoDragDrop(
 DROPEFFECT_MOVE│DROPEFFECT_COPY, CRect(0, 0, 0, 0));
 TRACE("after DoDragDrop -- dropEffect = %ld\n", dropEffect);
 if (dropEffect == DROPEFFECT_MOVE && pDoc->m_bDragHere) {
 pDoc->OnEditClearall();
 }
 pDoc->m_bDragHere = FALSE;
 delete pSource;
 }
 }
 else {
 if(m_tracker.Track(this, point, FALSE, NULL)) {
 CClientDC dc(this);
 OnPrepareDC(&dc);
 // should have some way to prevent it going out of bounds
 m_rectTracker = m_tracker.m_rect;
 dc.DPtoLP(m_rectTracker); // Update logical coords
 }
 }
 Invalidate();
}

Finally, the new MoveTrackRect helper function, shown here, moves the tracker’s focus
rectangle each time the OnDragOver function is called. This job was done by
CRectTracker::Track in the Ex24a example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx24bView::MoveTrackRect(CPoint point)
{
 CClientDC dc(this);
 OnPrepareDC(&dc);
 dc.DrawFocusRect(m_rectTracker);
 dc.LPtoDP(m_rectTracker);
 CSize sizeTrack = m_rectTracker.Size();
 CPoint newTopleft = point - m_dragOffset; // still device
 m_rectTracker = CRect(newTopleft, sizeTrack);
 m_tracker.m_rect = m_rectTracker;
 dc.DPtoLP(m_rectTracker);
 dc.DrawFocusRect(m_rectTracker);
}

I tested Ex24b against the Microsoft Office XP suite using both drag-and-drop and Clipboard
transfers. The CF_DIB format isn’t supported. If you want pictures from Microsoft Excel, you
must enhance Ex24b to process metafiles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 25
Introducing the Active Template Library

In this chapter, we’ll look at the Active Template Library (ATL), the second framework
included with Microsoft Visual C++ .NET. (MFC is the first.) We’ll start by quickly revisiting
the Component Object Model (COM) and looking at an alternative method of writing Chapter
22’s CSpaceship object, which will illustrate that there’s more than one way to write a COM
class. (This will become important as you examine ATL’s class composition methods.) Next,
we’ll investigate ATL, focusing first on C++ templates and raw C++ smart pointers and how
they can be useful in COM development. We’ll cover the client side of ATL programming and
examine some of ATL’s smart pointers. Finally, we’ll check out the server side of ATL
programming, reimplementing the Chapter 22 spaceship example using both classic ATL and
attributed ATL to get a feel for ATL’s architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Revisiting COM

The most important concept to understand about COM programming is that it is interface-
based. As you saw in Chapter 22, you don’t need real COM or even Microsoft runtime support
to use interface-based programming. All you need is some discipline.

Think back to the spaceship example in Chapter 22. We started out with a single class named
CSpaceship that implemented several functions. Seasoned C++ developers usually sit down at
the computer and start typing a class like this:

class CSpaceship {
 void Fly();
 int& GetPosition();
};

However, the procedure is a little different with interface-based development. Instead of
writing the class directly, with interface-based programming you spell out an interface before
implementing it. In Chapter 22, the Fly and GetPosition functions were moved into an abstract
base class named IMotion:

struct IMotion {
 virtual void Fly() = 0;
 virtual int& GetPosition() = 0;
};

We then inherited the CSpaceship class from the IMotion interface, like this:

class CSpaceship : IMotion {
 void Fly();
 int& GetPosition();
};

Notice that at this point the motion interface has been separated from its implementation.
When you practice interface development, the interface comes first. You can work on the
interface as you develop it, making sure it’s complete but not bloated. But once the interface
has been published (that is, once a lot of other developers have started coding to it), it is frozen
and can never change.

This subtle distinction between class-based programming and interface-based programming
seems to introduce some programming overhead. But it turns out to be one of the key points
for understanding COM. By collecting the Fly and the GetPosition functions in an interface,
you develop a binary signature. That is, by defining the interface ahead of time and talking to
the class through the interface, you give the client code a potentially language-neutral way of
talking to the class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Gathering functions together into interfaces is itself quite powerful. Say you want to describe
something other than a spaceship—an airplane, for example. It’s certainly conceivable that an
airplane would also have Fly and GetPosition functions. Interface programming provides a
more advanced form of polymorphism—polymorphism at the interface level, not only at the
single-function level.

Separating interface from implementation is the basis of interface-based development. COM is
centered on interface programming. It enforces the distinction between interface and
implementation. In COM, the only way client code can talk to an object is through an
interface. However, gathering functions together into interfaces isn’t quite enough. One more
ingredient is needed—a mechanism for discovering functionality at run time.

The Core Interface: IUnknown

The key element that makes COM different from ordinary interface programming is this rule:
The first three functions of every COM interface are the same. The core interface in COM,
IUnknown, looks like this:

struct IUnknown {
 virtual HRESULT QueryInterface(REFIID riid, void** ppv) = 0;
 virtual ULONG AddRef() = 0;
 virtual ULONG Release() = 0;
};

Every COM interface derives from this interface (which means that the first three functions of
every COM interface you’ll ever see will be QueryInterface, AddRef, and Release). To turn
IMotion into a COM interface, you derive it from IUnknown, like this:

struct IMotion : IUnknown {
 void Fly();
 int& GetPosition();
};

NOTE
If you want these interfaces to work out-of-process, you have to make each
function return an HRESULT. You’ll see this when we cover attributed ATL later
in the chapter.

AddRef and Release deserve some mention because they’re part of IUnknown. AddRef and
Release allow an object to control its own lifetime if it chooses to. As a rule, clients are
supposed to treat interface pointers like resources: Clients acquire interfaces, use them, and
then release them when they’re done using them. Objects learn about new references to
themselves via AddRef. Objects learn that they have been unreferenced through the Release

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

themselves via AddRef. Objects learn that they have been unreferenced through the Release
function. Objects often use this information to control their lifetimes. For example, many
objects self-destruct when their reference count reaches zero.

Here’s how some client code might use the spaceship:

void UseSpaceship() {
 IMotion* pMotion = NULL;

 pMotion = GetASpaceship(); // This is a member of the
 // hypothetical Spaceship
 // API. It's presumably an
 // entry point into some DLL.
 // Returns an IMotion* and
 // causes an implicit AddRef.
 If(pMotion) {
 pMotion->Fly();
 int i = pMotion->GetPosition();
 pMotion->Release(); // done with this instance of CSpaceship
 }
}

The other (and more important) function within IUnknown is the first one: QueryInterface.
QueryInterface is the COM mechanism for discovering functionality at run time. If someone
gives you a COM interface pointer to an object and you don’t want to use that pointer, you can
use the pointer to ask the object for a different interface to the same object. This mechanism
and the fact that interfaces remain constant once published are the key ingredients that allow
COM-based software to evolve safely over time. The result is that you can add functionality to
your COM software without breaking older versions of the clients running that software. In
addition, clients will have a widely recognized means of acquiring that new functionality once
they know about it.

For example, you add functionality to the implementation of CSpaceship by adding a new
interface named IVisual. Adding this interface makes sense because you can have objects in
three-dimensional space that move in and out of view. You might also have an invisible object
in three-dimensional space (a black hole, for example). Here’s the IVisual interface:

struct IVisual : IUnknown {
 virtual void Display() = 0;
};

A client might use the IVisual interface like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void UseSpaceship() {
 IMotion* pMotion = NULL;

 pMotion = GetASpaceship(); // Implicit AddRef
 if(pMotion) {
 pMotion->Fly();
 int i = pMotion->GetPosition();

 IVisual* pVisual = NULL;
 PMotion->QueryInterface(IID_IVisual, (void**) &pVisual);
 // Implicit AddRef within QueryInterface

 if(pVisible) {
 pVisual->Display(); // uncloaking now
 pVisual->Release(); // done with this interface
 }
 }
 pMotion->Release(); // done with this instance of IMotion
}

Notice that the preceding code uses interface pointers very carefully: It uses them only if the
interface was acquired properly, and then it releases the interface pointers when it is done
using them. This is raw COM programming at the lowest level—you acquire an interface
pointer, you use the interface pointer, and you release it when you’re done with it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing COM Code

As you can see, writing COM client code isn’t a whole lot different from writing regular C++
code. However, the C++ classes that the client talks to are abstract base classes. Instead of
calling operator new as you would in C++, you create COM objects and acquire COM
interfaces by explicitly calling some sort of API function. And instead of deleting the object
outright, you simply follow the COM interface rule of balancing calls to AddRef with calls to
Release.

What does it take to get the COM class up and running? You saw how to do it using MFC in
Chapter 22. Here’s another example of implementing CSpaceship as a COM class. This
example uses the multiple inheritance approach to writing COM classes. That is, the C++ class
inherits from several interfaces and then implements the union of all the functions (including
IUnknown, of course).

struct CSpaceship : IMotion, IDisplay {
 ULONG m_cRef;
 int m_nPosition;

 CSpaceship() : m_cRef(0),
 m_nPosition(0) {
 }

 HRESULT QueryInterface(REFIID riid,
 void** ppv);
 ULONG AddRef() {
 return InterlockedIncrement(&m_cRef);
 }
 ULONG Release() {
 ULONG cRef = InterlockedIncrement(&m_cRef);
 if(cRef == 0){
 delete this;
 return 0;
 } else
 return m_cRef;
 }
// IMotion functions:
 void Fly() {
 // Do whatever it takes to fly here
 }
 int GetPosition() {
 return m_nPosition;
 }

 // IVisual functions:
 void Display() {
 // Uncloak
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM Classes That Use Multiple Inheritance

If you’re used to seeing plain C++ code, the preceding code might look a little strange to you.
It shows a less common form of multiple inheritance called interface inheritance. Most C++
developers are used to an implementation inheritance in which the derived class inherits
everything from the base class—including the implementation. Interface inheritance simply
means that the derived class inherits the interfaces of the base class. The preceding code
effectively adds two data members to the CSpaceship class—a vptr for each implied vtable.

When you use the multiple inheritance approach to implementing interfaces, each interface
shares CSpaceship’s implementation of IUnknown. This sharing illustrates a rather esoteric yet
important concept known as COM identity. The basic idea of COM identity is that IUnknown
is the void* of COM. IUknown is the one interface guaranteed to be hanging off any object,
and you can always get to it. COM identity also says (in the previous example) that the client
can call QueryInterface through the CSpaceship IMotion interface to get the IVisual interface.
Conversely, the client can call QueryInterface through the CSpaceship IVisual interface to get
the IMotion interface. Finally, the client can call QueryInterface through IUnknown to acquire
the IMotion or the IVisual interface, and the client can call QueryInterface through either
IMotion or IVisual to get a pointer to IUnknown. To learn more about COM identity, see
Essential COM by Don Box (Addison-Wesley, 1997) or Inside COM by Dale Rogerson
(Microsoft Press, 1997).

Often you’ll see COM classes illustrated with “lollipop” diagrams depicting the interfaces
implemented by a COM class. You can see an example of a lollipop diagram on page 540 in
Chapter 22.

The multiple inheritance method of implementing CSpaceship automatically fulfills the rules
of COM identity. Note that all calls to QueryInterface, AddRef, and Release land in the same
place in the C++ class, regardless of the interface through which they were called.

This is more or less the essence of COM. As a COM developer, your job is to create useful
services and expose them through COM interfaces. At the most basic level, this means wiring
up some function tables to follow COM’s identity rules. You’ve seen two ways to accomplish
this so far. (Chapter 22 showed you how to do it using nested classes and MFC. This chapter
just showed you how to write a COM class that uses multiple inheritance in C++.) However,
in addition to interface programming and writing classes to implement interfaces, there are
several other pieces to the COM puzzle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COM Infrastructure

Once you get your mind around the concept of interface-based programming, you must
implement quite a few details in order to get the class to mix in with the rest of the system.
These details often overshadow the fundamental beauty of COM.

To start with, COM classes need a place to live, so you must package them in an EXE or a
DLL. In addition, each COM class you write needs an accompanying class object (often
referred to as a class factory). The way in which a COM server’s class object is exposed will
differ depending on how you package the COM class (in a DLL or an EXE). You must also
consider the server lifetime. The server should stay in memory for as long as it’s needed, and
it should go away when it’s not needed. To accomplish this, servers maintain global lock
counts that indicate the number of objects with extant interface pointers. Finally, well-behaved
servers insert the necessary values in the Windows Registry so client software can easily
activate them.

We’ve spent a lot of time looking at MFC in this book. As you saw in Chapter 22, MFC takes
care of most of the COM-based details for you. For example, CCmdTarget has an
implementation of IUnknown. MFC has even created C++ classes and macros to implement
class objects (such as COleObjectFactory, COleTemplateServer, DECLARE_OLE_CREATE,
and IMPLEMENT_OLE_CREATE) that will put most of the correct entries into the Registry.
MFC has the easiest-to-implement, zippiest version of IDispatch around—all you need is a
CCmdTarget object and the Visual Studio .NET environment (specifically, the Add Property
Wizard and the Add Method Wizard). And in case OLE drag and drop is your thing, MFC
provides a standard implementation of the drag and drop protocol. Finally, MFC remains
hands-down the easiest way to write fast, powerful ActiveX controls. (You can write ActiveX
controls in Microsoft Visual Basic, but you don’t have quite as much flexibility). These are all
great features. However, using MFC has a downside.

To get these features, you must buy into MFC 100 percent. That’s not necessarily a bad idea,
but you should be aware of the cost of entry when you decide to use MFC. MFC is big. It has
to be—it’s a C++ framework with many capabilities.

As you can see from the examples we’ve looked at so far, implementing COM classes and
making them available to clients involves writing a great deal of code—code that remains the
same from one class implementation to another. IUnknown implementations are generally the
same for every COM class you encounter—the main difference between them is the interfaces
exposed by each class.

Let’s take a quick peek at where COM and ATL fit into the big picture.

ActiveX, OLE, and COM

COM is simply the plumbing for a series of higher-level application integration technologies
consisting of such items as ActiveX controls and OLE drag and drop. These technologies
define protocols based on COM interfaces. You might choose to implement the higher-level
features such as drag and drop or controls yourself. However, it makes more sense to let some
sort of application framework do the grunt work. Of course, that’s why there’s MFC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
For more information about how to implement higher-level features in raw C++,
see Kraig Brockschmidt’s Inside OLE, 2d. ed. (Microsoft Press, 1995).

ActiveX, MFC, and COM

While the pure plumbing of COM is quite interesting by itself (it’s simply amazing to see how
COM remoting works), the higher-level features are what sell applications. MFC is a huge
framework geared toward creating entire Windows-based applications. Inside MFC, you’ll
find tons of utility classes and a data management/rendering mechanism (the document-view
architecture), as well as support for drag and drop, Automation, and ActiveX controls. You
probably don’t want to develop an OLE drag and drop from scratch; you’re much better off
using MFC. However, if you need to create a small or medium-size COM-based service, you
might want to turn away from MFC so you don’t have to include all the baggage that MFC
maintains for the higher-level features.

You can use raw C++ to create COM components, but you’ll end up spending a good portion
of your time hacking out the boilerplate code (IUnknown and class objects, for example).
Using MFC to write COM-based applications turns out to be a less painful way of adding the
big-ticket items to your application, but it’s difficult to write lightweight COM classes in
MFC. ATL sits between pure C++ and MFC as a way to implement COM-based software
without requiring you to type in the boilerplate code or buy into all of MFC’s architecture.
ATL is basically a set of C++ templates and other kinds of support for writing COM classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An ATL Roadmap

If you look at the source code for ATL, you’ll find that ATL consists of a collection of header
files and C++ source code files. Most of it resides inside the ATLMFC\Include directory that
comes with the installation of Microsoft Visual Studio .NET. Here’s a rundown on some of
the ATL files and what’s inside each of them.

AtlBase.h

This file contains:

ATL’s function typedefs

Structure and macro definitions

Smart pointers for managing COM interface pointers

Thread synchronization support classes

Definitions for CComBSTR, CComVariant, threading, and apartment support

AtlCom.h

This file contains:

Template classes for class object/class factory support

IUnknown implementations

Support for tear-off interfaces

Type information management and support

ATL’s IDispatch implementation

COM enumerator templates

Connection point support

AtlConv.cpp and AtlConv.h

These two source code files include support for Unicode conversions.

AtlCtl.cpp and AtlCtl.h

These two files contain:

The source code for ATL’s IDispatch client support and event firing support

CComControlBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OLE embedding protocol support for controls

Property page support

AtlIFace.idl and AtlIFace.h

AtlIFace.idl (which generates AtlIFace.h) includes an ATL-specific interface named
IRegistrar.

AtlImpl.cpp

AtlImpl.cpp implements such classes as CComBSTR, which is declared in AtlBase.h.

AtlWin.cpp and AtlWin.h

These files provide windowing and user-interface support, including:

A message-mapping mechanism

A windowing class

Dialog support

StatReg.cpp and StatReg.h

ATL features a COM component named the Registrar that handles putting appropriate entries
into the Registry. The code for implementing this feature is in StatReg.h and StatReg.cpp.

Let’s start our excursion into ATL by examining ATL’s support for client-side COM
development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Client-side ATL Programming

There are basically two sides to ATL—client-side support and object-side support. By far the
largest portion of support is on the object side because of all the code that’s needed to
implement ActiveX controls. However, the client-side support also turns out to be useful and
interesting. We’ll take a look at the client side of ATL next, with a little detour first to
examine C++ templates, which are the cornerstone of ATL.

C++ Templates

The key to understanding ATL is understanding C++ templates. Despite the intimidating
template syntax, the concept of templates is fairly straightforward. C++ templates are
sometimes called compiler-approved macros, which is an appropriate description. Think about
what macros do: When the preprocessor encounters a macro, it looks at the macro and expands
it into regular C++ code. But the problem with macros is that they’re sometimes error-prone
and they’re never type-safe. If you use a macro and pass an incorrect parameter, the compiler
won’t complain but your program might very well crash. Templates, however, are like type-
safe macros. When the compiler encounters a template, it will expand the template just as it
would a macro. But because templates are type-safe, the compiler will catch any type
problems before the user encounters them.

Using templates to reuse code is different from what you’re used to with conventional C++
development. Components written using templates reuse code by template substitution rather
than by inheriting functionality from base classes. All the boilerplate code from templates is
literally pasted into the project.

The archetypal example of using a template is a dynamic array. Imagine you need an array for
holding integers. Rather than declaring the array with a fixed size, you want the array to grow
as necessary. So you develop the array as a C++ class. Then someone you work with gets
wind of your new class and says that she needs the exact same functionality. However, she
wants to use floating point numbers in the array. Rather than pumping out the exact same code
(except for using a different type of data), you can use a C++ template.

Here’s an example of how you might use templates to solve the problem. The following is a
dynamic array implemented as a template:

template <class T> class DynArray {
public:
 DynArray();
 ~DynArray(); // clean up and do memory management
 int Add(T Element); // adds an element and does
 // memory management
 void Remove(int nIndex) // remove element and
 // do memory management
 T GetAt(nIndex) const;
 int GetSize();
private:
 T* TArray;
 int m_nArraysize;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

void UseDynArray() {
 DynArray<int> intArray;
 DynArray<float> floatArray;

 intArray.Add(4);
 floatArray.Add(5.0);

 intArray.Remove(0);
 floatArray.Remove(0);

 int x = intArray.GetAt(0);
 float f = floatArray.GetAt(0);
}

As you can imagine, creating templates is useful for implementing boilerplate COM code, and
templates are the mechanism that ATL uses for providing COM support. The previous
example is just one of the many uses for templates. Not only are templates useful for applying
type information to a certain kind of data structure, but they’re also useful for encapsulating
algorithms. You’ll see how when we take a closer look at ATL.

Smart Pointers

One of the most common uses of templates is for smart pointers. The traditional C++ literature
calls C++’s built-in pointers “dumb” pointers. That’s not a very nice name, but normal C++
pointers don’t do much except point. It’s often up to the client to perform details such as
pointer initialization.

As an example, let’s model two types of software developer who use C++ classes. We can
start by creating the classes CVBDeveloper and CCPPDeveloper:

class CVBDeveloper {
public:
 CVBDeveloper() {
 }
 ~CVBDeveloper() {
 AfxMessageBox
 ("I used Visual Basic .NET, so I got home early.");
 }
 virtual void DoTheWork() {
 AfxMessageBox("Write them forms");
 }
};

class CCPPDeveloper {
public:
 CCPPDeveloper() {
 }
 ~CCPPDeveloper() {
 AfxMessageBox("Stay at work and fix those pointer problems");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AfxMessageBox("Stay at work and fix those pointer problems");
 }
 virtual void DoTheWork() {
 AfxMessageBox("Hacking C++ code");
 }
};

The Visual Basic developer and the C++ developer both have functions for eliciting optimal
performance. Now imagine some client code that looks like this:

//UseDevelopers.cpp

void UseDevelopers() {
 CVBDeveloper* pVBDeveloper;

 // The VBDeveloper pointer needs
 // to be initialized
 // sometime. But what if
 // you forget to initialize and later
 // on do something like this:
 if(pVBDeveloper) {
 // Get ready for fireworks
 // because pVBDeveloper is
 // NOT NULL, it points
 // to some random data.
 c->DoTheWork();
 }
}

In this case, the client code forgot to initialize the pVBDeveloper pointer to NULL. (Of course,
this never happens in real life!) Because pVBDeveloper contains a non-NULL value (the value
is actually whatever happened to be on the stack at the time), the test to make sure the pointer
is valid will succeed when in fact you expect it to fail. The client will gleefully proceed,
believing all is well. The client will crash, of course, because the client is “calling into
darkness.” (Who knows where pVBDeveloper is pointing—probably to nothing that even
resembles a Visual Basic developer.) Naturally, you’d like some mechanism for ensuring that
the pointers are initialized. This is where smart pointers come in handy.

Now imagine a second scenario. You’d like to plug a little extra code into your developer-type
classes that performs some sort of operation common to all developers. For example, you
might like all the developers to do some design work before they begin coding. Consider the
earlier Visual Basic developer and C++ developer examples. When the client calls
DoTheWork, the developer will get right to coding without proper design, and he’ll probably
leave the poor clients in a lurch. What you’d like to do is add a generic hook to the developer
classes so they make sure the design is done before coding begins.

The C++ solution to coping with these problems is the smart pointer.

Giving C++ Pointers Some Brains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remember that a smart pointer is a C++ class for wrapping pointers. By wrapping a pointer in
a class (and specifically, a template), you can make sure that certain operations are taken care
of automatically rather than having mundane, boilerplate-type operations deferred to the
client. One good example of such an operation is to make sure pointers are initialized correctly
so that embarrassing crashes due to randomly assigned pointers don’t occur. Another good
example is to make certain that boilerplate code is executed before function calls are made
through a pointer.

Let’s invent a smart pointer for the developer model described earlier. Consider a template-
based class named SmartDeveloper:

template<class T>
class SmartDeveloper {
 T* m_pDeveloper;

public:
 SmartDeveloper(T* pDeveloper) {
 ASSERT(pDeveloper != NULL);
 m_pDeveloper = pDeveloper;
 }
 ~SmartDeveloper() {
 AfxMessageBox("I'm smart so I'll get paid.");
 }
 SmartDeveloper &
 operator=(const SmartDeveloper& rDeveloper) {
 return *this;
 }
 T* operator->() const {
 AfxMessageBox("About to de-reference pointer. Make /
 sure everything's okay. ");
 return m_pDeveloper;
 }
};

The SmartDeveloper template listed above wraps a pointer—any pointer. Because the
SmartDeveloper class is based on a template, it can provide generic functionality regardless of
the type associated with the class. You can think of templates as compiler-approved macros—
declarations of classes (or functions) whose code can apply to any type of data.

We want the smart pointer to handle all developers, including those using Visual Basic, Visual
C++, C#, and Delphi (among others). The template <class T> statement at the top
accomplishes this. The SmartDeveloper template includes a pointer (m_pDeveloper) to the
type of developer for which the class will be defined. The SmartDeveloper constructor takes a
pointer to that type as a parameter and assigns it to m_pDeveloper. Notice that the constructor
generates an assertion if the client passes a NULL parameter to construct SmartDeveloper.

In addition to wrapping a pointer, the SmartDeveloper implements several operators. The most
important one is the -> operator (the member selection operator). This operator is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

important one is the -> operator (the member selection operator). This operator is the
workhorse of any smart pointer class. Overloading the member selection operator is what turns
a regular class into a smart pointer. Normally, using the member selection operator on a
regular C++ dumb pointer tells the compiler to select a member belonging to the class or
structure being pointed to. By overriding the member selection operator, you provide a way
for the client to hook in and call some boilerplate code every time that client calls a method. In
the SmartDeveloper example, the smart developer makes sure the work area is in order before
working. (This example is somewhat contrived. In real life, you might want to put in a
debugging hook, for example.)

Adding the -> operator to the class causes the class to behave like C++’s built-in pointer. In
order to behave like native C++ pointers in other ways, smart pointer classes must implement
the other standard operators, such as the dereferencing and assignment operators.

Using Smart Pointers

Using smart pointers is really no different from using the regular built-in C++ pointers. Let’s
start by looking at a client that uses plain vanilla developer classes:

void UseDevelopers() {
 CVBDeveloper VBDeveloper;
 CCPPDeveloper CPPDeveloper;
 VBDeveloper.DoTheWork();
 CPPDeveloper.DoTheWork();
}

No surprises here—executing this code causes the developers simply to come in and do the
work. However, you want to use the smart developers—the ones that make sure the design is
done before they actually start to hack. Here’s the code that wraps the Visual Basic developer
and C++ developer objects in the smart pointer class:

void UseSmartDevelopers {
 CVBDeveloper VBDeveloper;
 CCPPDeveloper CPPDeveloper;

 SmartDeveloper<CVBDeveloper> smartVBDeveloper(&VBDeveloper);
 SmartDeveloper<CCPPDeveloper> smartCPPDeveloper(&CPPDeveloper);

 smartVBDeveloper->DoTheWork();
 smartCPPDeveloper->DoTheWork();
}

Instead of bringing in any old developer to do the work (as in the previous example), the client
asks the smart developers to do the work. The smart developers will automatically prepare the
design before proceeding with coding.

Smart Pointers and COM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the last example was fabricated to make an interesting story, smart pointers do have
useful applications in the real world. One of those applications is to make client-side COM
programming easier.

Smart pointers are frequently used to implement reference counting. Because reference
counting is a generic operation, hoisting client-side reference count management up into a
smart pointer makes sense.

Because you’re now familiar with COM, you understand that COM objects expose interfaces.
To C++ clients, interfaces are simply pure abstract base classes, and C++ clients treat
interfaces more or less like normal C++ objects. However, as you discovered in previous
chapters, COM objects are a bit different from regular C++ objects. COM objects live at the
binary level. As such, they are created and destroyed using language-independent means.
COM objects are created via API functions calls. Most COM objects use a reference count to
determine when to delete themselves from memory. Once a COM object is created, a client
object can refer to it in a number of ways by referencing multiple interfaces belonging to the
same COM object. In addition, several different clients can talk to a single COM object. In
these situations, the COM object must stay alive for as long as it is referenced. Most COM
objects destroy themselves when they’re no longer referenced by any clients. COM objects
use reference counting to accomplish this self-destruction.

To support this reference-counting scheme, COM defines a couple of rules for managing
COM interfaces from the client side. The first rule is that creating a new copy of a COM
interface should result in bumping the object’s reference count up by one. The second rule is
that clients should release interface pointers when they’re finished with them. Reference
counting is one of the more difficult aspects of COM to get right—especially from the client
side. Keeping track of COM interface reference counting is a perfect use of smart pointers.

For example, the smart pointer’s constructor might take the live interface pointer as an
argument and set an internal pointer to the live interface pointer. Then the destructor might
call the interface pointer’s Release function to release the interface so the interface pointer will
be released automatically when the smart pointer is deleted or falls out of scope. In addition,
the smart pointer can help manage COM interfaces that are copied.

For example, imagine you’ve created a COM object and you’re holding on to the interface
pointer. You need to make a copy of the interface pointer, perhaps to pass it as an out
parameter. At the native COM level, you must perform several steps. First, you must release
the old interface pointer. Then you need to copy the old pointer to the new pointer. Finally,
you must call AddRef on the new copy of the interface pointer. These steps must occur
regardless of the interface being used, making this process ideal for boilerplate code. To
implement this process in the smart pointer class, all you need to do is override the assignment
operator. The client can then assign the old pointer to the new pointer. The smart pointer does
all the work of managing the interface pointer, relieving the client of the burden.

ATL’s Smart Pointers

Much of ATL’s support for client-side COM development resides in a pair of ATL smart
pointers: CComPtr and CComQIPtr. CComPtr is a basic smart pointer that wraps COM
interface pointers. CComQIPtr adds a little more smarts by associating a GUID (for use as the
interface ID) with a smart pointer. CComPtr has much of its functionality factored out in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface ID) with a smart pointer. CComPtr has much of its functionality factored out in a
class named CComPtrBase. Let’s start by looking at CComPtrBase.

The CComPtrBase Class

CComPtrBase provides a basis for smart pointer classes that use COM-based memory
functions. Here’s CComPtrBase:

template <class T>
class CComPtrBase
{
protected:
 CComPtrBase() throw()
 {
 p = NULL;
 }
 CComPtrBase(int nNull) throw()
 {
 ATLASSERT(nNull == 0);
 (void)nNull;
 p = NULL;
 }
 CComPtrBase(T* lp) throw()
 {
 p = lp;
 if (p != NULL)
 p->AddRef();
 }
public:
 typedef T _PtrClass;
 ~CComPtrBase() throw()
 {
 if (p)
 p->Release();
 }
 operator T*() const throw()
 {
 return p;
 }
 T& operator*() const throw()
 {
 ATLASSERT(p!=NULL);
 return *p;
 }
 //The assert on operator& usually indicates a bug. If this is really
 //what is needed, however, take the address of the p member explicitly.
 T** operator&() throw()
 {
 ATLASSERT(p==NULL);
 return &p;
 }
 _NoAddRefReleaseOnCComPtr<T>* operator->() const throw()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 ATLASSERT(p!=NULL);
 return (_NoAddRefReleaseOnCComPtr<T>*)p;
 }
 bool operator!() const throw()
 {
 return (p == NULL);
 }
 bool operator<(T* pT) const throw()
 {
 return p < pT;
 }
 bool operator==(T* pT) const throw()
 {
 return p == pT;
 }
 // Release the interface and set to NULL
 void Release() throw()
 {
 T* pTemp = p;
 if (pTemp)
 {
 p = NULL;
 pTemp->Release();
 }
 }
 // Compare two objects for equivalence
 bool IsEqualObject(IUnknown* pOther) throw()
 {
 if (p == pOther)
 return true;

 if (p == NULL ││ pOther == NULL)
 return false; // One is NULL the other is not

 CComPtr<IUnknown> punk1;
 CComPtr<IUnknown> punk2;
 p->QueryInterface(__uuidof(IUnknown), (void**)&punk1);
 pOther->QueryInterface(__uuidof(IUnknown), (void**)&punk2);
 return punk1 == punk2;
 }
 // Attach to an existing interface (does not AddRef)
 void Attach(T* p2) throw()
 {
 if (p)
 p->Release();
 p = p2;
 }
 // Detach the interface (does not Release)
 T* Detach() throw()
 {
 T* pt = p;
 p = NULL;
 return pt;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 HRESULT CopyTo(T** ppT) throw()
 {
 ATLASSERT(ppT != NULL);
 if (ppT == NULL)
 return E_POINTER;
 *ppT = p;
 if (p)
 p->AddRef();
 return S_OK;
 }
 HRESULT SetSite(IUnknown* punkParent) throw()
 {
 return AtlSetChildSite(p, punkParent);
 }
 HRESULT Advise(IUnknown* pUnk, const IID& iid, LPDWORD pdw) throw()
 {
 return AtlAdvise(p, pUnk, iid, pdw);
 }
 HRESULT CoCreateInstance(REFCLSID rclsid,
 LPUNKNOWN pUnkOuter = NULL,
 DWORD dwClsContext = CLSCTX_ALL) throw()
 {
 ATLASSERT(p == NULL);
 return ::CoCreateInstance(rclsid, pUnkOuter, dwClsContext,
 __uuidof(T), (void**)&p);
 }
 HRESULT CoCreateInstance(LPCOLESTR szProgID,
 LPUNKNOWN pUnkOuter = NULL,
 DWORD dwClsContext = CLSCTX_ALL) throw()
 {
 CLSID clsid;
 HRESULT hr = CLSIDFromProgID(szProgID, &clsid);
 ATLASSERT(p == NULL);
 if (SUCCEEDED(hr))
 hr = ::CoCreateInstance(clsid, pUnkOuter, dwClsContext,
 __uuidof(T), (void**)&p);
 return hr;
 }
 template <class Q>
 HRESULT QueryInterface(Q** pp) const throw()
 {
 ATLASSERT(pp != NULL);
 return p->QueryInterface(__uuidof(Q), (void**)pp);
 }
 T* p;
};

CComPtrBase is a fairly basic smart pointer. Notice the data member p of type T (the type
introduced by the template parameter). CComPtrBase’s constructor performs an AddRef on the
pointer while the destructor releases the pointer—no surprises here. CComPtrBase also has all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pointer while the destructor releases the pointer—no surprises here. CComPtrBase also has all
the necessary operators for wrapping a COM interface. Only the assignment operator deserves
special mention. The assignment does a raw pointer reassignment. The assignment operator
calls a function named AtlComPtrAssign:

ATLINLINE ATLAPI_(IUnknown*) AtlComPtrAssign(IUnknown** pp,
 IUnknown* lp)
{
 if (lp != NULL)
 lp->AddRef();
 if (*pp)
 (*pp)->Release();
 *pp = lp;
 return lp;
}

AtlComPtrAssign does a blind pointer assignment, AddRef-ing the assignee before calling
Release on the assignor. You’ll soon see a version of this function that calls QueryInterface.

CComPtrBase’s main strength is that it helps you manage the reference count on a pointer to
some degree. The next class down the hierarchy is CComPtr—the class you’d use in a real
application.

The CComPtr Class

Because CComPtr derives from CComPtrBase, it includes all the interface pointer
management functionality of CComPtrBase. CComPtr can help you manage AddRef and
Release operations and code layout. A bit of code will help illustrate the usefulness of
CComPtr. Imagine that your client code needs three interface pointers to get the work done, as
shown here:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 LPPERSIST pPersist;
 LPDISPATCH pDispatch;
 LPDATAOBJECT pDataObject;
 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&pPersist);
 if(SUCCEEDED(hr)) {
 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *)
 &pDispatch);
 if(SUCCEEDED(hr)) {
 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &pDataObject);
 if(SUCCEEDED(hr)) {
 DoIt(pPersist, pDispatch, pDataObject);
 pDataObject->Release();
 }
 pDispatch->Release();
 }
 pPersist->Release();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

You could use the controversial goto statement (and risk facing derisive comments from your
coworkers) to try to make your code look cleaner, like this:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 LPPERSIST pPersist;
 LPDISPATCH pDispatch;
 LPDATAOBJECT pDataObject;

 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&pPersist);
 if(FAILED(hr)) goto cleanup;

 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *) &pDispatch);
 if(FAILED(hr)) goto cleanup;

 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &pDataObject);
 if(FAILED(hr)) goto cleanup;
 DoIt(pPersist, pDispatch, pDataObject);

cleanup:
 if (pDataObject) pDataObject->Release();
 if (pDispatch) pDispatch->Release();
 if (pPersist) pPersist->Release();
}

That might not be as elegant a solution as you’d like, however. Using CComPtr makes the
same code a lot prettier and much easier to read, as shown here:

void GetLottaPointers(LPUNKNOWN pUnk){
 HRESULT hr;
 CComPtr<IUnknown> persist;
 CComPtr<IUnknown> dispatch;
 CComPtr<IUnknown> dataobject;

 hr = pUnk->QueryInterface(IID_IPersist, (LPVOID *)&persist);
 if(FAILED(hr)) return;

 hr = pUnk->QueryInterface(IID_IDispatch, (LPVOID *) &dispatch);
 if(FAILED(hr)) return;

 hr = pUnk->QueryInterface(IID_IDataObject,
 (LPVOID *) &dataobject);
 if(FAILED(hr)) return;

 DoIt(pPersist, pDispatch, pDataObject);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Destructors call release...
}

At this point, you’re probably wondering why CComPtr doesn’t wrap QueryInterface. After
all, QueryInterface is a hot spot for reference counting. Adding QueryInterface support for the
smart pointer requires some way of associating a GUID with the smart pointer. CComPtr was
introduced in the first version of ATL. Rather than disrupt any existing code base, Microsoft
introduced a beefed-up version of CComPtr named CComQIPtr.

The CComQIPtr Class

Here’s CComQIPtr’s definition:

template <class T, const IID* piid = &__uuidof(T)>
class CComQIPtr : public CComPtr<T>
{
public:
 CComQIPtr() throw()
 {
 }
 CComQIPtr(T* lp) throw() :
 CComPtr<T>(lp)
 {
 }
 CComQIPtr(const CComQIPtr<T,piid>& lp) throw() :
 CComPtr<T>(lp.p)
 {
 }
 CComQIPtr(IUnknown* lp) throw()
 {
 if (lp != NULL)
 lp->QueryInterface(*piid, (void **)&p);
 }
 T* operator=(T* lp) throw()
 {
 return static_cast<T*>(AtlComPtrAssign((IUnknown**)&p, lp));
 }
 T* operator=(const CComQIPtr<T,piid>& lp) throw()
 {
 return static_cast<T*>(AtlComPtrAssign((IUnknown**)&p, lp.p));
 }
 T* operator=(IUnknown* lp) throw()
 {
 return static_cast<T*>(AtlComQIPtrAssign((IUnknown**)&p,
 lp, *piid));
 }
};

//Specialization to make it work
template<>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

template<>
class CComQIPtr<IUnknown, &IID_IUnknown> : public CComPtr<IUnknown>
{
public:
 CComQIPtr() throw()
 {
 }
 CComQIPtr(IUnknown* lp) throw()
 {
 //Actually do a QI to get identity
 if (lp != NULL)
 lp->QueryInterface(__uuidof(IUnknown), (void **)&p);
 }
 CComQIPtr(const CComQIPtr<IUnknown,&IID_IUnknown>& lp) throw() :
 CComPtr<IUnknown>(lp.p)
 {
 }
 IUnknown* operator=(IUnknown* lp) throw()
 {
 //Actually do a QI to get identity
 return AtlComQIPtrAssign((IUnknown**)&p, lp,
 __uuidof(IUnknown));
 }
 IUnknown* operator=(const CComQIPtr<IUnknown,&IID_IUnknown>& lp)
 throw()
 {
 return AtlComPtrAssign((IUnknown**)&p, lp.p);
 }
};

What makes CComQIPtr different from CComPtr is the second template parameter, piid—the
interfaces’s GUID. This smart pointer has several constructors: a default constructor, a copy
constructor, a constructor that takes a raw interface pointer of unspecified type, and a
constructor that accepts an IUnknown interface as a parameter. Notice in this last constructor
that if the developer creates an object of this type and initializes it with a plain old IUnknown
pointer, CComQIPtr will call QueryInterface using the GUID template parameter. Also notice
that the assignment to an IUnknown pointer calls AtlComQIPtrAssign to make the assignment.
As you can imagine, AtlComQIPtrAssign performs a QueryInterface under the hood using the
GUID template parameter.

Using CComQIPtr

Here’s how you might use CComQIPtr in some COM client code:

void GetLottaPointers(ISomeInterface* pSomeInterface){
 HRESULT hr;
 CComQIPtr<IPersist, &IID_IPersist> persist;
 CComQIPtr<IDispatch, &IID_IDispatch> dispatch;
 CComPtr<IDataObject, &IID_IDataObject> dataobject;

 dispatch = pSomeInterface; // implicit QI
 persist = pSomeInterface; // implicit QI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 persist = pSomeInterface; // implicit QI
 dataobject = pSomeInterface; // implicit QI

 DoIt(persist, dispatch, dataobject); // send to a function
 // that needs IPersist*,
 // IDispatch*, and
 // IDataObject*

 // Destructors call release...
}

CComQIPtr is useful when you want the Java-style or Visual Basic–style type conversions.
Notice that the code listed above doesn’t require any calls to QueryInterface or Release. Those
calls happen automatically.

ATL Smart Pointer Problems

Smart pointers can be convenient in some places (as in the CComPtr example, in which we
eliminated the goto statement). Unfortunately, C++ smart pointers aren’t the panacea that
programmers pray for to solve their reference-counting and pointer-management problems.
Smart pointers simply move these problems to a different level.

One situation in which you must be very careful with smart pointers is when you convert from
code that is not smart-pointer-based to code that uses the ATL smart pointers. The problem is
that the ATL smart pointers don’t hide the AddRef and Release calls. This just means that you
must take care to understand how the smart pointer works rather than be careful about how
you call AddRef and Release.

For example, imagine taking this code:

void UseAnInterface(){
 IDispatch* pDispatch = NULL;

 HRESULT hr = GetTheObject(&pDispatch);
 if(SUCCEEDED(hr)) {
 DWORD dwTICount;
 pDispatch->GetTypeInfoCount(&dwTICount);
 pDispatch->Release();
 }
}

and capriciously converting it to use a smart pointer, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void UseAnInterface() {
 CComPtr<IDispatch> dispatch = NULL;

 HRESULT hr = GetTheObject(&dispatch);
 if(SUCCEEDED(hr)) {
 DWORD dwTICount;
 dispatch->GetTypeInfoCount(&dwTICount);
 dispatch->Release();
 }
}

Because CComPtr and CComQIPtr do not hide calls to AddRef and Release, this blind
conversion causes a problem when the release is called through the dispatch smart pointer. The
IDispatch interface performs its own release, so the code above calls Release twice—the first
time explicitly through the call dispatch->Release() and the second time implicitly at the
function’s closing curly bracket.

In addition, ATL’s smart pointers include the implicit cast operator that allows smart pointers
to be assigned to raw pointers. In this case, what’s actually happening with the reference count
starts to get confusing.

The bottom line is that even though smart pointers make some aspects of client-side COM
development more convenient, they’re not foolproof. You still have to have some knowledge
about how smart pointers work if you want to use them safely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Server-side ATL Programming

Even though a fair amount of ATL is devoted to client-side development aids (such as smart
pointers and BSTR wrappers), the bulk of ATL exists to support COM-based servers. Next,
you’ll get an overview of ATL so you can understand how the pieces fit together, then we’ll
reimplement the spaceship example in ATL to investigate the ATL Object Wizard and get a
feel for what it takes to write COM classes using ATL.

ATL and COM Classes

Your job as a COM class developer is to wire up the function tables to their implementations
and to make sure that QueryInterface, AddRef, and Release work as advertised. How you get
that to happen is your own business. As far as users are concerned, they couldn’t care less
what methods you use. You’ve seen two basic approaches so far—the raw C++ method using
multiple inheritance of interfaces and the MFC approach using macros and nested classes. The
ATL approach to implementing COM classes is somewhat different from either of these
approaches.

Compare the raw C++ approach to MFC’s approach. Remember that one way of developing
COM classes using raw C++ involves multiply inheriting a single C++ class from at least one
COM interface and then writing all the code for the C++ class. At that point, you’ve got to add
any extra features (such as supporting IDispatch or COM aggregation) by hand. The MFC
approach to COM classes involves using macros that define nested classes (with one nested
class implementing each interface). MFC supports IDispatch and COM aggregation—you
don’t have to do a lot to get those features up and running. However, it’s difficult to paste any
new interfaces onto a COM class without a lot of typing. (As you saw in Chapter 22, MFC’s
COM support uses some lengthy macros.)

The ATL approach to composing COM classes requires inheriting a C++ class from several
template-based classes. However, Microsoft has already done the work of implementing
IUnknown for you through the class templates within ATL.

Let’s dive right in and create the spaceship example as a COM class. As always, start by
choosing New Project from the File menu in Visual C++ .NET. In the New Project dialog box
(shown in Figure 25-1), select ATL Project from the Visual C++ Projects folder. Give your
project a useful name such as ATLSpaceShipSvr, and click OK. The ATL Project Wizard will
launch.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-1. Selecting the ATL Project Wizard in the New Project dialog box.

ATL Project Options

On the Application Settings page of the ATL Project Wizard, shown in Figure 25-2, you can
select the server type for your project. The wizard gives you the choice of creating a Dynamic
Link Library (DLL), an executable (EXE), or a service (EXE). If you select the DLL option
and deselect the Attributed option, the options for attaching the proxy/stub code to the DLL
and for including MFC in your ATL project will be activated. There’s also an option for
supporting COM+ 1.0.

Figure 25-2. The Application Settings page of the ATL Project Wizard.

Selecting DLL as the server type will produce all the necessary pieces to make your server
DLL fit into the COM milieu. Among these pieces are the following well-known COM
functions: DllGetClassObject, DllCanUnloadNow, DllRegisterServer, and
DllUnregisterServer. Also included are the correct server lifetime mechanisms for a DLL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you decide you might want to run your DLL out of process as a surrogate, select the Allow
Merging Of Proxy/Stub Code option so you can package all your components into a single
binary file. (Proxy/stub code has traditionally shipped as a separate DLL.) That way, you’ll
have to distribute only a single DLL. If you decide you absolutely must include MFC in your
DLL, go ahead and select the Support MFC option. MFC support includes AfxWin.h and
AfxDisp.h in your StdAfx.h file and links your project to the current version of MFC’s import
library. Using MFC can be very convenient and almost addictive at times, but beware of
dependencies you’ll inherit when you include MFC. You can also select Support COM+ 1.0 to
add support for COM+ 1.0 run-time services.

If you elect to produce an executable EXE server, the ATL Project Wizard will produce code
that compiles to an EXE file. The EXE will correctly register the class objects with the
operating system by using CoRegisterClassObject and CoRevokeClassObject. The project will
also insert the correct code for managing the lifetime of the executable server. Finally, if you
select the Service (EXE) option, the wizard will add the necessary service-oriented code.

Attributed ATL vs. Classic ATL
I’ve mentioned the Attributed option on the Application Settings page of the ATL
Project Wizard. Attributes are a new feature in Visual C++ .NET, and they’re
designed to simplify COM programming and .NET common language runtime
development. Using attributes is like adding footnotes to your source code. By
including attributes in your source files, you give the compiler instructions to work
with provider DLLs to insert code or modify the code in the generated object files.
These attributes help Visual C++ .NET create IDL files, interfaces, type libraries,
and other COM elements. Attributes are supported by the Visual C++ .NET
wizards and the Properties windows.

If you’re familiar with Interface Definition Language (IDL), you’ll understand
attributes. Many of the separate declarations found in IDL become attributes that go
directly in the source code rather than in the IDL code.

C++ was invented a long time ago—even back before Windows was a popular
programming platform. As you’ve seen by looking at COM, C++ isn’t the best
solution for building DLLs and components—particularly because of all the
intricacies built into the language. That’s why COM exists. In many ways, COM
takes the best parts of C++’s use of tables of virtual functions mapped to
implementations and makes C++ DLLs distributable. Attributes go one step further.

Attributes extend C++ without breaking the classic structure of the language.
Attributes let you add language functionality through provider DLLs. The primary
goal of attributes is to simplify the authoring of COM components. You can apply
attributes to most C++ constructs, including classes, data members, and member
functions.

We’ll look at classic ATL programming and at attributed ATL programming later
in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the ATL Project Wizard to write a lightweight COM server yields a project file for
compiling your project. The project file ties together all the source code for the project and
maintains the proper build instructions for each of the files.

Creating a Classic ATL COM Class

Once you’ve created a COM server, you’re ready to start adding COM classes to the server.
Fortunately, there’s an easy way to do that with the ATL Simple Object Wizard, shown in
Figure 25-3. To access this wizard, choose Add Class from the Project menu. Then select ATL
Simple Object from among the templates.

NOTE
To create a classic COM DLL, be sure the Attributed check box is deselected on
the Application Settings page of the ATL Project Wizard.

Using the ATL Simple Object Wizard to generate a new object will add a C++ source file and
a header file containing the new class definition and implementation to your project. The
wizard will also add an interface to the IDL code. Although the wizard takes care of pumping
out a skeleton IDL file, you still need to understand IDL to some extent if you want to write
effective COM interfaces (as you’ll soon see).

Figure 25-3. Using the ATL Simple Object Wizard to insert a new ATL-based COM class into
the project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Options page of the ATL Simple Object Wizard allows you to select the threading model
for your COM class and specify whether you want a dual (IDispatch-based) or a custom
interface. It also allows you to choose how your class will support aggregation. The wizard
also lets you easily include the ISupportErrorInfo interface and connection points in your
class, and you can add Internet Explorer hosting support. Finally, you can aggregate to the
free-threaded marshaler for objects that specify Both or Neutral as the threading model.

Apartments and Threading

To figure out COM, you have to understand that COM is centered on the notion of
abstraction—hiding as much information as possible from the client. One piece of information
that COM hides from the client is whether the COM class is thread-safe. The client should be
able to use an object as it sees fit without worrying about whether an object properly serializes
access to itself—that is, whether it properly protects access to its internal data. COM defines
the notion of an apartment to provide this abstraction.

An apartment defines an execution context, or thread, that houses interface pointers. A thread
enters an apartment by calling a function from the CoInitialize family: CoInitialize,
CoInitializeEx, or OleInitialize. Then COM requires that all method calls to an interface
pointer be executed within the apartment that initialized the pointer (in other words, from the
same thread that called CoCreateInstance). COM defines two kinds of apartments—single-
threaded apartments and multi-threaded apartments. Single-threaded apartments can house
only one thread, and multi-threaded apartments can house several threads. A process can have
only one multi-threaded apartment, but it can have many single-threaded apartments. An
apartment can house any number of COM objects.

A single-threaded apartment guarantees that COM objects created within it will have method
calls serialized through the remoting layer; a COM object created within a multi-threaded
apartment will not. A helpful way to remember the difference between apartments is to think
of it this way: Instantiating a COM object within the multi-threaded apartment is like putting a
piece of data into the global scope where multiple threads can get to it. Instantiating a COM
object within a single-threaded apartment is like putting data within the scope of only one
thread. The bottom line is that COM classes that want to live in the multi-threaded apartment
had better be thread-safe, and COM classes that are satisfied living in their own apartments
need not worry about concurrent access to their data.

A COM object that lives within a different process space from its client has its method calls
serialized automatically via the remoting layer. However, a COM object that lives in a DLL
might want to provide its own internal protection (using critical sections, for example) rather
than having the remoting layer protect it. A COM class advertises its thread safety to the world
via a Registry setting. This named value lives in the Registry under the CLSID under
HKEY_CLASSES_ROOT, like this:

[HKCR\CLSID\{some GUID ...}\InprocServer32]
@="C:\SomeServer.DLL"
ThreadingModel=<thread model>

The ThreadingModel can be one of five values—Single, Both, Free, Apartment, or Neutral

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ThreadingModel can be one of five values—Single, Both, Free, Apartment, or Neutral
—or it can be blank. ATL provides support for all current threading models. Here’s a rundown
of what each value indicates:

Single or blank indicates that the class executes in the main thread only (the first single
thread created by the client).

Both indicates that the class is thread-safe and can execute in both the single-threaded
and multi-threaded apartments. This value tells COM to use the same kind of apartment
as the client.

Free indicates that the class is thread-safe. This value tells COM to force the object
inside the multi-threaded apartment.

Apartment indicates that the class isn’t thread-safe and must live in its own single-
threaded apartment.

Neutral indicates that the class can live in the thread-neutral apartment. It follows the
same rules as a multi-threaded class, but it can run on any thread.

When you select a threading model in the ATL Simple Object Wizard, the wizard will insert
different code into your class depending on your selection. For example, if you select the
Apartment model, the Object Wizard will derive your class from CComObjectRootEx and
include CComSingleThreadModel as the template parameter, like this:

class ATL_NO_VTABLE CClassicATLSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CClassicATLSpaceship,
 &CLSID_ClassicATLSpaceship>,
 public IDispatchImpl<IClassicATLSpaceship,
 &IID_IClassicATLSpaceship,
 &LIBID_SPACESHIPSVRLib>
{

};

The CComSingleThreadModel template parameter mixes in the more efficient standard
increment and decrement operations for IUnknown (because access to the class is
automatically serialized). In addition, the ATL Simple Object Wizard will cause the class to
insert the correct threading model value in the Registry. If you select the Single option in the
wizard, the class will use the CComSingleThreadModel but leave the ThreadingModel value
blank in the Registry.

Selecting the Both option or the Free option will cause the class to use the
CComMultiThreadModel template parameter, which employs the thread-safe Win32
increment and decrement operations InterlockedIncrement and InterlockedDecrement. For
example, a free-threaded class definition looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ATL_NO_VTABLE CClassicATLSpaceship :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<CClassicATLSpaceship,
 &CLSID_ClassicATLSpaceship>,
 public IDispatchImpl<IClassicATLSpaceship,
 &IID_IClassicATLSpaceship,
 &LIBID_SPACESHIPSVRLib>
{

};

Selecting the Both threading model will insert Both as the data for the ThreadingModel value;
selecting Free will insert the data value Free for the ThreadingModel value.

Connection Points and ISupportErrorInfo

Adding connection to your COM class is easy. Selecting the Connection Points check box
causes the class to derive from IConnectionPointImpl. This option also adds a blank
connection map to your class. Adding connection points (for example, an event set) to your
class is simply a matter of performing the following four steps:

1. Define the callback interface in the IDL file.

2. Use the ATL proxy generator to create a proxy.

3. Add the proxy class to the COM class.

4. Add the connection points to the connection point map.

ATL also includes support for ISupportErrorInfo. The ISupportErrorInfo interface ensures
that error information is propagated up the call chain correctly. OLE Automation objects that
use the error-handling interfaces must implement ISupportErrorInfo. Selecting Support
ISupportErrorInfo in the ATL Simple Object Wizard will cause the ATL-based class to derive
from ISupportErrorInfoImpl.

The Free-Threaded Marshaler

You can select the Free Threaded Marshaler option to aggregate the COM free-threaded
marshaler to your class. As mentioned, this option is available only for objects that specify
Both or Neutral as the threading model. The generated class does this by calling
CoCreateFreeThreadedMarshaler in its FinalConstruct function. The free-threaded marshaler
allows thread-safe objects to bypass the standard marshaling that occurs whenever cross-
apartment interface methods are invoked, allowing threads living in one apartment to access
interface methods in another apartment as if they were in the same apartment.

This process speeds up cross-apartment calls tremendously. The free-threaded marshaler does
this by implementing the IMarshal interface. When the client asks the object for an interface,
the remoting layer calls QueryInterface, asking for IMarshal. If the object implements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the remoting layer calls QueryInterface, asking for IMarshal. If the object implements
IMarshal (in this case, the object implements IMarshal because the ATL Simple Object
Wizard also adds an entry into the class’s interface to handle QueryInterface requests for
IMarshal) and the marshaling request is in process, the free-threaded marshaler will actually
copy the pointer into the marshaling packet. That way, the client will receive an actual pointer
to the object. The client can talk to the object directly without having to go through proxies
and stubs. Of course, if you select the Free Threaded Marshaler option, all data in your object
had better be thread-safe. Just be very cautious if you check this box.

Implementing the Spaceship Class Using Classic ATL

We’ll create the spaceship class using the defaults provided by the ATL Simple Object
Wizard. For example, the spaceship class will have a dual interface, so it will be accessible
from environments such as JScript on a Web page. In addition, the spaceship class will be an
apartment model object, which means that COM will manage most of the concurrency issues.
The only information you need to supply to the ATL Simple Object Wizard is a clever name.
Enter a value such as ClassicATLSpaceship in the Short Name text box on the Names page.

You don’t need to set any of the other options right now. For instance, you don’t need to set
the Connection Points option because we’ll cover connections in the next chapter. You can
always add connection points later by typing them in by hand.

Here’s the class definition generated by the wizard:

// CClassicATLSpaceship

class ATL_NO_VTABLE CClassicATLSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CClassicATLSpaceship,
 &CLSID_ClassicATLSpaceship>,
 public IDispatchImpl<IClassicATLSpaceship,
 &IID_IClassicATLSpaceship,
 &LIBID_ATLSpaceShipSvrLib, /*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:

};

ATL includes quite a few COM-oriented C++ classes, but those listed in the spaceship class’s
inheritance list above are enough to give you a sense of how ATL works.

The most generic ATL-based COM objects derive from three base classes: CComObjectRoot,
CComCoClass, and IDispatch. CComObjectRoot implements IUnknown and manages the
identity of the class. This means that CComObjectRoot implements AddRef and Release and
hooks into ATL’s QueryInterface mechanism. CComCoClass manages the COM class’s class
object and some general error reporting. In the class definition above, CComCoClass adds the
class object that knows how to create CClassicATLSpaceship objects. Finally, the code
produced by the ATL Simple Object Wizard includes an implementation of IDispatch based
on the type library produced by compiling the IDL. The default IDispatch is based on a dual
interface (which is an IDispatch interface followed by the functions defined in the IDL).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, using ATL to implement COM classes is different from using pure C++. The
Tao of ATL differs from what you might be used to when you develop normal C++ classes.
With classic ATL, the most important part of the project is the interfaces, which are described
in IDL. By adding functions to the interfaces in the IDL code, you automatically add functions
to the concrete classes implementing the interfaces. The functions are added automatically
because the projects are set up such that compiling the IDL file yields a C++ header file with
those functions. All that’s left for you to do after adding the functions in the interface is to
implement those functions in the C++ class. The IDL file also provides a type library so the
COM class can implement IDispatch. However, while ATL is useful for implementing
lightweight COM services and objects, it is also a new means by which you can create
ActiveX controls, as you’ll see in the next chapter.

Basic ATL Architecture

If you’ve experimented at all with ATL, you’ve seen how it simplifies the process of
implementing COM classes. The tool support is quite good—it’s almost as easy to develop
COM classes using Visual C++ .NET as it is to create MFC-based programs. You just use the
ATL Project Wizard to create a server and the ATL Simple Object Wizard to create a new
ATL-based class. As with MFC, you use Class View to add new function definitions to an
interface. Then you simply fill in the functions within the C++ code generated by Class View.
The code generated by the ATL Project Wizard includes all the necessary code for
implementing your class, including an implementation of IUnknown, a server module to house
your COM class, and a class object that implements IClassFactory.

Writing COM objects as just described is certainly more convenient than most other methods.
But exactly what happens when you use the ATL Project Wizard to generate the code for you?
Understanding how classic ATL works is important if you want to extend your ATL-based
COM classes and servers much beyond what the ATL Project Wizard and Class View
provide. For example, ATL provides support for advanced interface techniques such as tear-
off interfaces. Unfortunately, there’s no wizard option for implementing a tear-off interface.
Even though ATL supports it, you’ve got to do a little work by hand to accomplish the tear-off
interface. Understanding how ATL implements IUnknown is helpful in this situation.

Let’s examine the CClassicATLSpaceship class in a bit more detail. Here’s the entire
definition:

// CClassicATLSpaceship
class ATL_NO_VTABLE CClassicATLSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CClassicATLSpaceship,
 &CLSID_ClassicATLSpaceship>,
 public IDispatchImpl<IClassicATLSpaceship,
 &IID_IClassicATLSpaceship,
 &LIBID_ATLSpaceShipSvrLib, /*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
 CClassicATLSpaceship()
 {
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE_REGISTRY_RESOURCEID(IDR_CLASSICATLSPACESHIP)

BEGIN_COM_MAP(CClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }
 void FinalRelease()
 {
 }
public:
};

OBJECT_ENTRY_AUTO(__uuidof(ClassicATLSpaceship), CClassicATLSpaceship)

While this is ordinary vanilla C++ source code, it differs from normal, everyday C++ source
code for implementing a COM object in several ways. For example, while many COM class
implementations derive strictly from COM interfaces, this COM class derives from several
templates. In addition, this C++ class uses several odd-looking macros. As you examine the
code, you’ll see ATL’s implementation of IUnknown as well as a few other interesting items,
such as a technique for managing vtable bloat and an uncommon use for templates. Let’s start
by taking a look at the first symbol in the wizard-generated macro code: ATL_NO_VTABLE.

Managing Vtable Bloat

COM interfaces are easily expressed in C++ as pure abstract base classes. Writing COM
classes that use multiple inheritance (there are other ways to write COM classes) is merely a
matter of adding the COM interface base classes to your inheritance list and implementing the
union of all the functions. Of course, this means that the memory footprint of your COM
server will include a significant amount of vtable overhead for each interface implemented by
your class. That’s not a big deal if you have only a few interfaces and your C++ class
hierarchy isn’t very deep. However, implementing interfaces this way does add overhead that
tends to accumulate as interfaces are added and hierarchies deepen. ATL provides a way to cut
down on some of the overhead introduced by a lot of virtual functions. ATL defines the
following symbol:

#define ATL_NO_VTABLE __declspec(novtable)

Using ATL_NO_VTABLE prevents an object’s vtable (vtable) from being initialized in the
constructor, thereby eliminating from the linker the vtable and all the functions pointed to by
the vtable for that class. This elimination can lower the size of your COM server somewhat, as
long as the most-derived class does not use the novtable declspec shown above. You’ll notice

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

long as the most-derived class does not use the novtable declspec shown above. You’ll notice
the size difference in classes with deep derivation lists. One caveat, however: Calling virtual
functions from the constructor of any object that uses this declspec is unsafe because vptr is
uninitialized.

The second line in the class declaration previously shown demonstrates that
CClassicATLSpaceship derives from CComObjectRootEx. This is where you get to ATL’s
version of IUnknown.

ATL’s IUnknown: CComObjectRootEx

CComObjectRootEx isn’t at the top of the ATL hierarchy, but it’s pretty close. The actual base
class for a COM object in ATL is a class named CComObjectRootBase. (Both class
definitions are located in AtlCom.h.) Looking at CComObjectRootBase reveals the code you
might expect for a C++-based COM class. CComObjectRootBase includes a DWORD
member named m_dwRef for reference counting. You’ll also see OuterAddRef, OuterRelease,
and OuterQueryInterface for supporting COM aggregation and tear-off interfaces. Looking at
CComObjectRootEx reveals InternalAddRef, InternalRelease, and InternalQueryInterface for
performing the regular native reference counting, and QueryInterface mechanisms for class
instances with object identity.

Notice that CClassicATLSpaceship’s definition shows that the class is derived from
CComObjectRootEx and that CComObjectRootEx is a parameterized template class. The
following listing shows the definition of CComObjectRootEx:

template <class ThreadModel>
class CComObjectRootEx : public CComObjectRootBase
{
public:
 typedef ThreadModel _ThreadModel;
 typedef _ThreadModel::AutoCriticalSection _CritSec;
 typedef CComObjectLockT<_ThreadModel> ObjectLock;

 ULONG InternalAddRef()
 {
 ATLASSERT(m_dwRef != -1L);
 return _ThreadModel::Increment(&m_dwRef);
 }
 ULONG InternalRelease()
 {
#ifdef _DEBUG
 LONG nRef = _ThreadModel::Decrement(&m_dwRef);
 if (nRef < -(LONG_MAX / 2))
 {
 ATLASSERT(0 && _T("Release called on a pointer "
 "that has already been released"));
 }
 return nRef;
#else
 return _ThreadModel::Decrement(&m_dwRef);
#endif
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void Lock() {m_critsec.Lock();}
 void Unlock() {m_critsec.Unlock();}
private:
 _CritSec m_critsec;
};

CComObjectRootEx is a template class that varies in type based on the kind of threading
model class passed in as the template parameter. In fact, ATL supports several threading
models: single-threaded apartments, multi-threaded apartments, and free threading. ATL
includes three preprocessor symbols for selecting the various default threading models for
your project: _ATL_SINGLE_THREADED, _ATL_APARTMENT_THREADED, and
_ATL_FREE_ THREADED.

Defining the preprocessor symbol _ATL_SINGLE_THREADED in Stdafx.h changes the
default threading model to support only one STA-based thread. This option is useful for out-
of-process servers that don’t create any extra threads. Because the server supports only one
thread, ATL’s global state can remain unprotected by critical sections and the server will
therefore be more efficient. The downside is that your server can support only one thread.
Defining _ATL_APARTMENT_THREADED for the preprocessor will cause the default
threading model to support multiple STA-based threads. This is useful for apartment model in-
process servers (servers that support the ThreadingModel=Apartment Registry value).
Because a server that employs this threading model can support multiple threads, ATL
protects its global state using critical sections. Finally, defining the _ATL_FREE_THREADED
preprocessor symbol creates servers compatible with any threading environment. That is, ATL
protects its global state using critical sections, and each object in the server will have its own
critical sections to maintain data safety.

These preprocessor symbols merely determine which threading class to plug into
CComObjectRootEx as a template parameter. ATL provides three threading model classes.
The classes provide support for the most efficient yet thread-safe behavior for COM classes
within each of the three contexts listed above. The three classes are
CComMultiThreadModelNoCS, CComMultiThreadModel, and CComSingleThreadModel. The
following listing shows the three threading model classes within ATL:

class CComMultiThreadModelNoCS
{
public:
 static ULONG WINAPI Increment(LPLONG p) throw()
 {return InterlockedIncrement(p);}
 static ULONG WINAPI Decrement(LPLONG p) throw()
 {return InterlockedDecrement(p);}
 typedef CComFakeCriticalSection AutoCriticalSection;
 typedef CComFakeCriticalSection CriticalSection;
 typedef CComMultiThreadModelNoCS ThreadModelNoCS;
};

class CComMultiThreadModel
{
public:
 static ULONG WINAPI Increment(LPLONG p) throw()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 static ULONG WINAPI Increment(LPLONG p) throw()
 {return InterlockedIncrement(p);}
 static ULONG WINAPI Decrement(LPLONG p) throw()
 {return InterlockedDecrement(p);}
 typedef CComAutoCriticalSection AutoCriticalSection;
 typedef CComCriticalSection CriticalSection;
 typedef CComMultiThreadModelNoCS ThreadModelNoCS;
};

class CComSingleThreadModel
{
public:
 static ULONG WINAPI Increment(LPLONG p) throw() {return ++(*p);}
 static ULONG WINAPI Decrement(LPLONG p) throw() {return --(*p);}
 typedef CComFakeCriticalSection AutoCriticalSection;
 typedef CComFakeCriticalSection CriticalSection;
 typedef CComSingleThreadModel ThreadModelNoCS;
};

Notice that each of these classes exports two static functions—Increment and Decrement—and
various aliases for critical sections.

CComMultiThreadModel and CComMultiThreadModelNoCS both implement Increment and
Decrement using the thread-safe Win32 InterlockedIncrement and InterlockedDecrement
functions. CComSingleThreadModel implements Increment and Decrement using the more
conventional ++ and -- operators.

In addition to implementing incrementing and decrementing differently, the three threading
models also manage critical sections differently. ATL provides wrappers for two critical
sections—a CComCriticalSection (which is a plain wrapper around the Win32 critical section
API) and CComAutoCriticalSection (which is the same as CComCriticalSection with the
addition of automatic initialization and cleanup of critical sections). ATL also defines a “fake”
critical section class that has the same binary signature as the other critical section classes but
doesn’t do anything. As you can see from the class definitions, CComMultiThreadModel uses
real critical sections while CComMultiThreadModelNoCS and CComSingleThreadModel use
the fake no-op critical sections.

So now the minimal ATL class definition makes a bit more sense. CComObjectRootEx takes
a thread model class whenever you define it. CClassicATLSpaceship is defined using the
CComSingleThreadModel class, so it uses the CComSingleThreadModel methods for
incrementing and decrementing as well as the fake no-op critical sections. Thus
CClassicATLSpaceship uses the most efficient behavior because it doesn’t need to worry
about protecting data. However, you’re not stuck with that model. If you want to make
CClassicATLSpaceship safe for any threading environment, for example, you simply redefine
CClassicATLSpaceship to derive from CComObjectRootEx using CComMultiThreadModel as
the template parameter. AddRef and Release calls are automatically mapped to the correct
Increment and Decrement functions.

ATL and QueryInterface

It looks as though ATL took a cue from MFC for implementing QueryInterface—ATL uses a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It looks as though ATL took a cue from MFC for implementing QueryInterface—ATL uses a
lookup table just like MFC’s version. Take a look at the middle of CClassicATLSpaceship’s
definition—you’ll see a construct based on macros called the interface map. ATL’s interface
maps constitute its QueryInterface mechanism.

Clients use QueryInterface to arbitrarily widen the connection to an object. That is, when a
client needs a new interface, it will call QueryInterface through an existing interface. The
object will then look at the name of the requested interface and compare it to all the interfaces
implemented by the object. If the object implements the interface, it will hand the interface
back to the client. Otherwise, QueryInterface will return an error indicating that no interface
was found.

Traditional QueryInterface implementations usually consist of long if-then statements. For
example, a standard implementation of QueryInterface for a multiple-inheritance COM class
might look like this:

class CClassicATLSpaceship: public IDispatch,
 IClassicATLSpaceship {
 HRESULT QueryInterface(RIID riid,
 void** ppv) {
 if(riid == IID_IDispatch)
 ppv = (IDispatch) this;
 else if(riid == IID_IClassicATLSpaceship ││
 riid == IID_IUnknown)
 *ppv = (IClassicATLSpaceship *) this;
 else {
 *ppv = 0;
 return E_NOINTERFACE;
 }

 ((IUnknown*)(*ppv))->AddRef();
 return NOERROR;
 }
 // AddRef, Release, and other functions
};

As you’ll see in a moment, ATL uses a lookup table instead of this conventional if-then
statement.

ATL’s lookup table begins with a macro named BEGIN_COM_MAP. The following listing
shows the full definition of BEGIN_COM_MAP:

#define BEGIN_COM_MAP(x) public: \
 typedef x _ComMapClass; \
 static HRESULT WINAPI _Cache(void* pv, \
 REFIID iid, void** ppvObject, \
 DWORD_PTR dw) throw() \
 { \
 _ComMapClass* p = (_ComMapClass*)pv; \
 p->Lock(); \
 HRESULT hRes = \

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HRESULT hRes = \
 ATL::CComObjectRootBase::_Cache(pv, iid, ppvObject, dw); \
 p->Unlock(); \
 return hRes; \
 } \
 IUnknown* _GetRawUnknown() throw() \
 { ATLASSERT(_GetEntries()[0].pFunc == _ATL_SIMPLEMAPENTRY); \
 return (IUnknown*)((INT_PTR)this+_GetEntries()->dw); } \
 _ATL_DECLARE_GET_UNKNOWN(x) \
 HRESULT _InternalQueryInterface(REFIID iid, \
 void** ppvObject) throw() \
 { return InternalQueryInterface(this, \
 _GetEntries(), iid, ppvObject); } \
 const static ATL::_ATL_INTMAP_ENTRY* WINAPI _GetEntries() \
 throw() { \
 static const ATL::_ATL_INTMAP_ENTRY _entries[] = \
 { DEBUG_QI_ENTRY(x)

Each class that uses ATL for implementing IUnknown specifies an interface map to provide to
InternalQueryInterface. ATL’s interface maps consist of structures containing interface ID
(GUID)/DWORD/function pointer tuples. The following listing shows the type named
_ATL_INTMAP_ENTRY that contains these tuples:

struct _ATL_INTMAP_ENTRY
{
 const IID* piid; // the interface id (IID)
 DWORD_PTR dw;
 _ATL_CREATORARGFUNC* pFunc; //NULL:end, 1:offset, n:ptr
};

The first member is the interface ID (a GUID), and the second member indicates what action
to take when the interface is queried. There are three ways to interpret the third member. If
pFunc is equal to the constant _ATL_SIMPLEMAPENTRY (the value 1), dw is an offset into
the object. If pFunc is non-null but not equal to 1, pFunc indicates a function to be called
when the interface is queried. If pFunc is NULL, dw indicates the end of the QueryInterface
lookup table.

Notice that CClassicATLSpaceship uses COM_INTERFACE_ENTRY. This is the interface
map entry for regular interfaces. Here’s the raw macro:

#define offsetofclass(base, derived) \
 ((DWORD_PTR) \
 (static_cast<base*>((derived*)_ATL_PACKING))-_ATL_PACKING)

#define COM_INTERFACE_ENTRY(x) \
 {&_ATL_IIDOF(x), \
 offsetofclass(x, _ComMapClass), \
 _ATL_SIMPLEMAPENTRY}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM_INTERFACE_ENTRY fills the _ATL_INTMAP_ENTRY structure with the interface’s
GUID. In addition, notice how offsetofclass casts the this pointer to the right kind of interface
and fills the dw member with that value. Finally, COM_INTERFACE_ENTRY fills the last
field with _ATL_SIMPLEMAPENTRY to indicate that dw points to an offset into the class.

For example, the interface map for CClassicATLSpaceship looks like this after the
preprocessor is done with it:

const static _ATL_INTMAP_ENTRY* __stdcall _GetEntries() {
 static const _ATL_INTMAP_ENTRY _entries[] = {
 {&IID_IClassicATLSpaceship,
 ((DWORD)(static_cast<IClassicATLSpaceship*>
 ((_ComMapClass*)8))-8),
 ((_ATL_CREATORARGFUNC*)1)},
 {&IID_IDispatch,
 ((DWORD)(static_cast<IDispatch*>((_ComMapClass*)8))-8),
 ((_ATL_CREATORARGFUNC*)1)},
 {0, 0, 0}
 };
 return _entries;
}

Right now, the CClassicATLSpaceship class supports two interfaces—IClassicATLSpaceship
and IDispatch—so there are only two entries in the map.

CComObjectRootEx’s implementation of InternalQueryInterface uses the _GetEntries
function as the second parameter. CComObjectRootEx::InternalQueryInterface uses a global
ATL function named AtlInternalQueryInterface to look up the interface in the map.
AtlInternalQueryInterface simply walks through the map, trying to find the interface.

In addition to COM_INTERFACE_ENTRY, ATL includes 16 other macros for implementing
composition techniques ranging from tear-off interfaces to COM aggregation. Now you’ll see
what it takes to beef up the IClassicATLSpaceship interface and add those two other
interfaces, IMotion and IVisual. You’ll also learn about the strange COM beast known as a
dual interface.

Making the Spaceship Go

Now that you’ve got some ATL code staring you in the face, what can you do with it? This is
COM, so the place to start is in the IDL file. Again, if you’re a seasoned C++ developer, this is
a new aspect of software development you’re probably not used to. Remember that these days,
software distribution and integration are becoming very important. You’ve been able to get
away with hacking out C++ classes and throwing them together into a project because you (as
a developer) know the entire picture. However, component technologies (such as COM)
change that. The developer no longer knows the entire picture. Often you have only a
component—you don’t have the source code for the component. The only way to know how
to talk to a component is through the interfaces it exposes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keep in mind that modern software developers use many different tools—not just C++.
You’ve got Visual Basic developers, Delphi developers, and C developers. COM is all about
making the edges line up so that software pieces created by these various components can all
integrate smoothly when they come together. In addition, distributing software remotely
(either out-of-process on the same machine or even to a different machine) requires some sort
of interprocess communication. That’s why there’s IDL. Here’s the default IDL file created by
the ATL wizards with the new spaceship class:

import "oaidl.idl";
import "ocidl.idl";

[
 object,
 uuid(45896187-46FF-4A07-A9DC-557377380535),
 dual,
 nonextensible,
 helpstring("IClassicATLSpaceship Interface"),
 pointer_default(unique)
]
interface IClassicATLSpaceship : IDispatch{
};
[
 uuid(F5FD4043-22AE-470D-8C43-1AC904D2E8E0),
 version(1.0),
 helpstring("ATLSpaceShipSvr 1.0 Type Library")
]
library ATLSpaceShipSvrLib
{
 importlib("stdole2.tlb");
 [
 uuid(E485E21E-A23C-413F-A93B-909318565113),
 helpstring("ClassicATLSpaceship Class")
]
 coclass ClassicATLSpaceship
 {
 [default] interface IClassicATLSpaceship;
 };
};

The key concept involved here is that IDL is a purely declarative language. This language
defines how other clients will talk to an object. Remember that you’ll eventually run this code
through the MIDL compiler to get a pure abstract base class (which is useful for C++ clients)
and a type library (which is useful for Visual Basic and Java clients as well as others). If you
understand plain C code, you’re well on your way to understanding IDL. You might think of
IDL as C with footnotes. The syntax of IDL dictates that attributes always precede what they
describe. For example, attributes precede items such as interface declarations, library
declarations, and method parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you look at the IDL file, you’ll notice that it begins by importing Oaidl.idl and Ocidl.idl.
Importing these files is somewhat akin to including Windows.h inside one of your C or C++
files. These IDL files include definitions for all of the basic COM infrastructures (including
definitions for IUnknown and IDispatch).

An open square bracket ([) follows the import statement. In IDL, square brackets always
enclose attributes. The first element described in this IDL file is the IClassicATLSpaceship
interface. However, before you can describe the interface, you must apply some attributes to
it. For example, it needs a name (a GUID), and you need to tell the MIDL compiler that this
interface is COM-oriented rather than being used for standard remote procedure call (RPC)
and that this is a dual interface. (More on dual interfaces shortly.) Next comes the actual
interface itself. Notice how it appears very much like a normal C structure.

Once the interfaces are described in IDL, it can be useful to collect this information into a type
library, which is what the next section of the IDL file does. Notice that the type library section
also begins with an open square bracket, which designates that attributes are to follow. As
always, the type library is a discrete “thing” in COM and as such requires a name (GUID).
The library statement tells the MIDL compiler that this library includes a COM class named
ClassicATLSpaceship and that clients of this class can acquire the IClassicATLSpaceship
interface.

Adding Methods to an Interface

Right now, the IClassicATLSpaceship interface is pretty sparse. It looks as if it could use a
method or two. Let’s add one. When we added automation properties to the MFC-based COM
classes, we used Class View. We’ll do the same with ATL. Notice also that
CClassicATLSpaceship derives from something named IClassicATLSpaceship.
IClassicATLSpaceship is, of course, a COM interface. Double-clicking on
IClassicATLSpaceship in Class View brings that specific section of the IDL into the editor
window.

At this point, you could begin typing the COM interface into the IDL file. If you were to add
functions and methods in this way (straight into the IDL file), you’d have to touch the
ClassicATLSpaceship.h and ClassicATLSpaceship.cpp files and insert the methods by hand.
A more effective way to add functions to the interface is through Class View, using the Add
Method Wizard (shown in Figure 25-4). To edit the IDL using Class View, right-click on the
interface in Class View. You’ll see the Add Method and Add Property commands on the
shortcut menu. Let’s add a method named CallStarFleet.

To add a method, you simply type the name of the method in the Method Name text box. Then
you type the method parameters into the Parameter Name and Parameter Type text boxes.
Here’s where it helps to understand a little bit about IDL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 25-4. Adding a method to an interface.

Remember that IDL’s purpose is to provide completely unambiguous information about how
methods can be invoked. In the standard C++ world, you could often get away with
ambiguities such as open-ended arrays because the caller and the callee shared the same stack
frame—there was always a lot of wiggle room available. Now that method calls might
eventually go over the wire, it’s important to tell the remoting layer exactly what to expect
when it encounters a COM interface. You do this by applying attributes to the method
parameters (more square brackets).

The method call shown in Figure 25-4 (CallStarFleet) has two parameters in its list—a
floating point number that indicates the star date and a BSTR that indicates who received the
communication. Notice that the method definition spells out the parameter direction. The star
date is passed into the method call, which is designated by the [in] attribute. A BSTR that
identifies the recipient is passed back as a pointer to a BSTR. The [out] attribute indicates that
the direction of the parameter is from the object back to the client. The [retval] attribute
indicates that you can assign the result of this method to a variable in higher languages that
support this feature.

Dual Interfaces

In Chapter 23, you had a chance to see the IDispatch interface. IDispatch makes it possible to
expose functionality (at the binary level) to environments such as JScript that don’t have a
clue about vtables. In order for IDispatch to work, the client has to go through a lot of
machinations before it can call Invoke. The client first has to acquire the invocation tokens.
Then it has to set up the VARIANT arguments. On the object side, the object has to decode all
those VARIANT parameters, make sure they’re correct, put them on some sort of stack frame,
and then make the function call. As you can imagine, all this work is complex and time-
consuming.

If you’re writing a COM object and you expect some of your clients to use scripting languages
and other clients to use languages such as C++, you’ve got a dilemma. You’ve got to include
IDispatch or you’ll lock out your scripting language clients. If you provide only IDispatch,
you’ll make accessing your object from C++ very inconvenient. Of course, you can provide
access through both IDispatch and a custom interface, but that involves a lot of bookkeeping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

access through both IDispatch and a custom interface, but that involves a lot of bookkeeping
work. Dual interfaces evolved to handle this problem.

A dual interface is simply IDispatch with functions pasted onto the end. For example, the
IMotion interface described below is a valid dual interface:

interface IMotion : public IDispatch {
 virtual HRESULT Fly() = 0;
 virtual HRESULT GetPosition() = 0;
};

Because IMotion derives from IDispatch, the first seven functions of IMotion are those of
IDispatch. Clients that understand only IDispatch (JScript, for instance) look at the interface
as just another version of IDispatch and feed DISPIDs to the Invoke function in the hopes of
invoking a function. Clients that understand vtable-style custom interfaces look at the entire
interface, ignore the middle four functions (the IDispatch functions), and concentrate on the
first three functions (IUnknown) and the last three functions (the ones that represent the
interface’s core functions). Figure 25-5 shows the vtable layout of IMotion.

Most raw C++ implementations load the type library right away and delegate to ITypeInfo to
perform the nasty task of implementing Invoke and GetIDsOfNames. To get an idea of how
this works, see Kraig Brockschmidt’s Inside OLE, 2d. ed. (Microsoft Press, 1995) or Dale
Rogerson’s Inside COM (Microsoft Press, 1997).

Figure 25-5. The layout of a dual interface.

ATL and IDispatch

ATL’s implementation of IDispatch delegates to the type library. ATL’s implementation of
IDispatch lives in the class IDispatchImpl. Objects that want to implement a dual interface
include the IDispatchImpl template in the inheritance list, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ATL_NO_VTABLE CClassicATLSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CClassicATLSpaceship, &CLSID_ClassicATLSpaceship>,
 public IDispatchImpl<IClassicATLSpaceship, &IID_IClassicATLSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IVisual, &IID_IVisual,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>
{

};

In addition to including the IDispatchImpl template class in the inheritance list, the object
includes entries for the dual interface and for IDispatch in the interface map so that
QueryInterface works properly:

BEGIN_COM_MAP(CClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

As you can see, the IDispatchImpl template class arguments include the dual interface itself,
the GUID for the interface, and the GUID representing the type library that holds all the
information about the interface. In addition to these template arguments, the IDispatchImpl
class has some optional parameters not illustrated in Figure 25-5. The template parameter list
also includes room for a major and minor version of the type library. Finally, the last template
parameter is a class for managing the type information. ATL provides a default class named
CComTypeInfoHolder.

In most raw C++ implementations of IDispatch, the class calls LoadTypeLib and
ITypeLib::GetTypeInfoOfGuid in the constructor and holds on to the ITypeInfo pointer for the
life of the class. ATL’s implementation does things a little differently by using the
CComTypeInfoHolder class to help manage the ITypeInfo pointer. CComTypeInfoHolder
maintains an ITypeInfo pointer as a data member and wraps the critical IDispatch-related
functions GetIDsOfNames and Invoke.

Clients acquire the dual interface by calling QueryInterface for IID_IClassicATLSpaceship.
(The client can also get this interface by calling QueryInterface for IDispatch.) If the client
calls CallStarFleet on the interface, the client will access those functions directly (as it would
for any other COM interface).

When a client calls IDispatch::Invoke, the call lands inside IDispatchImpl’s Invoke function,
as you’d expect. From there, IDispatchImpl::Invoke delegates to the CComTypeInfoHolder
class to perform the invocation, the CComTypeInfoHolder class’s Invoke function. The
CComTypeInfoHolder class doesn’t call LoadTypeLib until an actual call to Invoke or
GetIDsOfNames. CComTypeInfoHolder has a member function named GetTI that consults the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetIDsOfNames. CComTypeInfoHolder has a member function named GetTI that consults the
Registry for the type information (using the GUID and any major/minor version numbers
passed in as a template parameter). Then CComTypeInfoHolder calls ITypeLib::GetTypeInfo
to get the information about the interface. At that point, the type information holder delegates
to the type information pointer. IDispatchImpl implements IDispatch::GetIDsOfNames in the
same manner.

The IMotion and IVisual Interfaces

To get this COM class up to snuff with the other versions (the raw C++ version and the MFC
version described in Chapter 22), you must add the IMotion and IVisual interfaces to the
project and to the class. Unfortunately, Visual Studio .NET doesn’t provide a wizard for
adding an interface to a project. To get this to happen, you can use the ATL Simple Object
Wizard to add a simple object. Alternatively, you can type the interfaces in by hand. Open the
IDL file and position the cursor near the top (somewhere after the #import statements but
before the library statement), and start typing interface definitions as described in the
following paragraph.

Once you get the hang of IDL, your first instinct when you describe an interface should be to
insert an open square bracket. Remember that in IDL, distinct items get attributes. One of the
most important attributes for an interface is the name, or the GUID. In addition, at the very
least the interface must have the object attribute to tell the MIDL compiler you’re dealing with
COM at this point (as opposed to regular RPC). You also want these interfaces to be dual
interfaces. The keyword dual in the interface attributes indicates this and inserts certain
Registry entries to get the universal marshaling working correctly. After the attributes are
closed off with a closing square bracket, the interface keyword kicks in to describe the
interface.

We’ll make IMotion a dual interface and IVisual a plain custom interface to illustrate how the
two different types of interfaces are attached to the CSpaceship class. Here are the IMotion
and IVisual interfaces described in IDL:

 [
 object,
 uuid(692D03A4-C689-11CE-B337-88EA36DE9E4E),
 dual,
 helpstring("IMotion interface")
]
 interface IMotion : IDispatch
 {
 HRESULT Fly();
 HRESULT GetPosition([out,retval]long* nPosition);
 };

 [
 object,
 uuid(692D03A5-C689-11CE-B337-88EA36DE9E4E),
 helpstring("IVisual interface")
]
 interface IVisual : IUnknown
 {
 HRESULT Display();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HRESULT Display();
 };

Once the interfaces are described in IDL, you run the IDL through the MIDL compiler again.
The MIDL compiler will spit out a new copy of Spaceshipsvr.h with the pure abstract base
classes for IMotion and IVisual.

Now you need to add these interfaces to the CSpaceship class. There are two steps here. The
first step is to create the interface part of the COM class’s identity. Let’s do the IMotion
interface first. Adding the IMotion interface to CSpaceship is easy. You just use the
IDispatchImpl template to provide an implementation of a dual interface, like this:

class ATL_NO_VTABLE CClassicATLSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CClassicATLSpaceship,
 &CLSID_ClassicATLSpaceship>,
 public IDispatchImpl<IClassicATLSpaceship,
 &IID_IClassicATLSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>
{

};

The second step involves beefing up the interface map so the client can acquire the IMotion
interface. However, having two dual interfaces in a single COM class brings up an interesting
issue. When a client calls QueryInterface for IMotion, the client should definitely get IMotion.
However, when the client calls QueryInterface for IDispatch, which version of IDispatch
should the client get—IClassicATLSpaceship’s dispatch interface or IMotion’s dispatch
interface?

Multiple Dual Interfaces

Remember that all dual interfaces begin with the seven functions of IDispatch. A problem
occurs whenever the client calls QueryInterface for IID_IDispatch. As a developer, you need
to choose which version of IDispatch to pass out.

The interface map is where the QueryInterface for IID_IDispatch is specified. ATL has a
specific macro for handling the dual interface situation. First, consider the interface map for
CClassicATLSpaceship so far:

BEGIN_COM_MAP(CClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the client calls QueryInterface, ATL rips through the table trying to match the requested
IID to one in the table. The interface map above handles two interfaces: IClassicATLSpaceship
and IDispatch. If you want to add another dual interface to the CClassicATLSpaceship class,
you need a different macro.

The macro that handles multiple dispatch interfaces in an ATL-based COM class is named
COM_INTERFACE_ENTRY2. To get QueryInterface working correctly, all you need to do is
decide which version of IDispatch the client should get when it asks for IDispatch, like this:

BEGIN_COM_MAP(CClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IMotion)
 COM_INTERFACE_ENTRY2(IDispatch, IClassicATLSpaceship)
END_COM_MAP()

In this case, a client that asks for IDispatch will get a pointer to IClassicATLSpaceship
(whose first seven functions include the IDispatch functions).

Adding a nondual interface to an ATL-based COM class is even easier. You just add the
interface to the inheritance list, like this:

class ATL_NO_VTABLE CClassicATLSpaceship :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CClassicATLSpaceship,
 &CLSID_ClassicATLSpaceship>,
 public IDispatchImpl<IClassicATLSpaceship,
 &IID_IClassicATLSpaceship,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl<IMotion, &IID_IMotion,
 &LIBID_SPACESHIPSVRLib>,
 public IDispatchImpl(IVisual, &IID_IVisual,
 &LIBID_SPACESHIPSVRLib>
{

};

Then you add an interface map entry, like this:

BEGIN_COM_MAP(CClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IMotion)
 COM_INTERFACE_ENTRY2(IDispatch, IClassicATLSpaceship)
 COM_INTERFACE_ENTRY(IVisual)
END_COM_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, you have a viable, working COM server that will register itself and be able to
play in the COM game of component software. But it turns out there’s another way to
implement COM servers using Visual C++ .NET: by using attributed programming.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributed Programming

Instead of adding COM support programmatically through C++ templates, you can employ a
more declarative approach using attributed programming. Whereas classic ATL programming
involves acquiring IUnknown support through template classes and interface map macros,
attributed programming simply involves declaring a class as a COM class directly in the
source code.

Let’s create the same spaceship server using attributed programming. First, create a new ATL
project, and this time select the Attributed check box on the Application Settings page of the
ATL Project Wizard. Then use the ATL Simple Object Wizard to add an attributed class. Call
the class AttributedATLSpaceship. When you page through the class options, you’ll notice that
the options are the same. That is, your class might be Apartment Threaded, Free Threaded,
Both, or Neutral. You can also create support for ISupportErrorInfo and enable connection
points.

However, when you look at the code emitted from the wizard, it will look quite a bit different
from classic ATL-based code. Here’s what you’ll get:

// IAttributedATLSpaceShip
[
 object,
 uuid("4B8685BD-00F1-4D38-AFC1-3012C786480D"),
 dual, helpstring("IAttributedATLSpaceShip Interface"),
 pointer_default(unique)
]
__interface IAttributedATLSpaceShip : IDispatch
{
};
// CAttributedATLSpaceShip
[
 coclass,
 threading("apartment"),
 vi_progid("AttributedATLSpaceShipSvr.AttributedATL"),
 progid("AttributedATLSpaceShipSvr.AttributedA.1"),
 version(1.0),
 uuid("CE07EBA4-0858-4A81-AD1C-C12710B4A1A2"),
 helpstring("AttributedATLSpaceShip Class")
]
class ATL_NO_VTABLE CAttributedATLSpaceShip :
 public IAttributedATLSpaceShip
{
public:
 CAttributedATLSpaceShip()
 {
 }
 DECLARE_PROTECT_FINAL_CONSTRUCT()
 HRESULT FinalConstruct()
 {
 return S_OK;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 void FinalRelease()
 {
 }
public:
};

All the COM support brought in as C++ templates in classic ATL is brought into the ATL
server through provider DLLs. The square-braced attributes at the top of the file instruct the
compiler to add the COM infrastructure to the CAttributedATLSpaceShip class. That’s a whole
lot easier than keeping track of classes such as CComObjectRootEx and CComCoClass and
macros such as BEGIN_COM_MAP.

Developing the COM class further is almost easy. For example, say you want to add the
IMotion and IVisible interfaces to the class. In attributed ATL, you just put the interfaces
directly into the ATL source code, like this:

[
 object,
 uuid("692D03A4-C689-11CE-B337-88EA36DE9E4E"),
 dual,
 helpstring("IMotion interface")
]
__interface IMotion : IDispatch
{
 HRESULT Fly();
 HRESULT GetPosition([out,retval]long* nPosition);
};
[
 object,
 uuid("692D03A5-C689-11CE-B337-88EA36DE9E4E"),
 helpstring("IVisual interface")
]
__interface IVisual : IUnknown
{
 HRESULT Display();
};
// More code

The attributes in front of the __interface keyword describe the interfaces as COM interfaces—
dual interfaces, to be exact. Once these interfaces are described in the source code, you can
implement the interfaces on the class by right-clicking on the class name in Class View,
choosing Add, and then selecting Implement Interface. You can select the interfaces from
registered type libraries or from the interfaces listed in the source code (IMotion and IVisual).
Visual Studio .NET stubs out the functions for you; you need to fill them in.

The resulting DLL is a full-fledged COM DLL complete with the expected entry points:
DllMain, DllGetClassObject, DllCanUnloadnow, DllRegisterServer, and
DllUnregisterServer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 26
ATL and ActiveX Controls

If, after reading about COM and ATL, you’re still wondering how COM will fit into your day-
to-day programming activities, you’re not alone. How to use COM in real life isn’t always
obvious at first glance. After all, you have to type in a whole lot of extra code just to get a
COM object up and running. However, one very real application of COM is right under your
nose—ActiveX controls. ActiveX controls are small gadgets (usually user-interface-oriented)
that are written around COM.

Chapter 9 showed you how to use ActiveX controls within an MFC application. In Chapter
25, we examined COM classes that were created using ATL. In this chapter, you’ll learn how
to write a kind of COM class called an ActiveX control. You had a chance to work with
ActiveX controls from the client side in Chapter 9. Now it’s time to write your own.

Several steps are involved in creating an ActiveX control using ATL:

Deciding what to draw

Developing incoming interfaces for the control

Developing outgoing interfaces (events) for the control

Implementing a persistence mechanism for the control

Providing a user interface for manipulating the control’s properties

This chapter covers all these steps. Soon you’ll be able to use ATL to create ActiveX controls
that you (and other developers) can use in other programs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What Are ActiveX Controls?

There’s still some confusion about what really constitutes an ActiveX control. In 1994,
Microsoft tacked some new interfaces onto its Object Linking and Embedding (OLE)
protocol, packaged them in DLLs, and called them OLE controls. Originally, OLE controls
implemented nearly the entire OLE document-embedding protocol. In addition, OLE controls
supported the following:

Dynamic invocation (Automation)

Property pages (so the user could modify the control’s properties)

Outbound callback interfaces (event sets)

Connections (a standard way for clients and controls to hook up the event callbacks)

When the Internet became a dominant factor in Microsoft’s marketing plans, the company
announced its intention to plant ActiveX controls on Web pages. At that point, the size of
these components became an issue. Microsoft took its OLE control specification, changed the
name from OLE controls to ActiveX controls, and stated that all the features listed above were
optional. That means that under the new ActiveX control definition, a control’s only
requirement is that it be based on COM and that it implement IUnknown. Of course, in order
for a control to be useful it really needs to implement most of the features listed above. So, in
the end, ActiveX controls and OLE controls are more or less the same animal.

These days, Microsoft .NET (and especially ASP.NET) emphasizes pure HTML running in
the browser as the dominant Web interface. The idea is to reduce the dependencies between
your Web site and specific kinds of browsers. However, ActiveX controls work the same way
they’ve always worked, and if you know that the browser on the other end of your Web site is
Microsoft Internet Explorer, ActiveX controls will still offer a means of providing a rich user
interface for the client.

Developers have been able to use MFC to create ActiveX controls since mid-1994. However,
one downside to using MFC to create ActiveX controls is that the controls become bound to
MFC. Sometimes you want your controls to be smaller or to work even if the end user doesn’t
have the MFC DLLs on her system. In addition, using MFC to create ActiveX controls forces
you make certain design decisions. For example, if you decide to use MFC to write an
ActiveX control, you more or less lock yourself out of using dual interfaces (unless you feel
like writing a lot of extra code). Using MFC to create ActiveX controls also means that the
control and its property pages must use IDispatch to communicate with each other.

To avoid the problems described so far, you can use ATL to create ActiveX controls. ATL
now includes the facilities to create full-fledged ActiveX controls, complete with every feature
an ActiveX control should have—including incoming interfaces, persistent properties,
property pages, and connection points. If you’ve ever written an ActiveX control using MFC,
you’ll see how much more flexible using ATL can be.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using ATL to Write an ActiveX Control

Although creating an ActiveX control using ATL is a pretty straightforward process, using
ATL ends up being a bit more burdensome than using MFC. That’s because ATL doesn’t
include all of MFC’s amenities. For example, ATL doesn’t include device context wrappers.
When you draw on a device context, you have to use the raw device context handle.

Despite these issues, creating an ActiveX control using ATL is a whole lot easier than creating
one from scratch. Also, using ATL gives you a certain amount of flexibility that you don’t get
when you use MFC. For example, adding dual interfaces to your control is a tedious process
with MFC, but you get them for free when you use ATL. The ATL Control Wizard also
makes it easy to add more COM classes (even noncontrol classes) to your project; adding new
controls to an MFC-based DLL is a bit more difficult.

In this chapter’s example, we’ll represent a small pair of dice as an ATL-based ActiveX
control. The dice control will illustrate the most important facets of ActiveX controls,
including control rendering, incoming interfaces, properties, property pages, and events. We’ll
take a look at both classic ATL and attributed versions of this control.

Creating a Control

As always, the easiest way to create a COM server in ATL is to simply add an ATL class to
your project using the ATL Control Wizard. You create a new ATL project by choosing New
Project from the File menu and selecting ATL Project from the project templates. Name the
project something clever, like ClassicATLDiceSvr. As you step through the ATL Project
Wizard, leave the default options as they are except for the Attributed option—deselect that
one.

After you create the DLL server, perform the following steps:

1. Choose Add Class from the Project menu. Select ATL Control from the class templates.

2. The Names page of the ATL Control Wizard (shown in Figure 26-1) lets you name the
control. In the Short Name text box, give the control a name (such as
ClassicATLDiceControl).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-1. The Names page of the ATL Control Wizard.

3. On the Options page, you configure the control. For example, you can:

Select a standard control, a composite control, or a DHTML control (and minimal
versions of each of these controls)

Designate the threading model for the control

Specify whether the main interface will be a dual or custom interface

Specify whether your control will support aggregation

Choose whether to use ActiveX control licensing and connection points in your
control

4. To make your life easier later, select Connection Points as the support option. (This will
save you some typing later on.) Leave everything else as the default value. Figure 26-2
shows what the Options page will look like.

5. On the Interfaces page, you specify what COM interfaces your control will support.
Add IPropertyNotifySink to the supported list.

6. On the Appearance page (shown in Figure 26-3), you can apply various traits to your
control. For example, you can give the control behaviors based on regular Microsoft
Windows controls such as buttons and edit controls. Other options include having your
control appear invisible at run time or giving your control an opaque background.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-2. The Options page of the ATL Control Wizard.

Figure 26-3. The Appearance page of the ATL Control Wizard.

7. Finally, select the Stock Properties page (shown in Figure 26-4) if you want to give your
control some stock properties. Stock properties are properties that you might expect any
control to have, including background colors, border colors, foreground colors, and a
caption.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-4. The Stock Properties page of the ATL Control Wizard.

8. When you’ve finished selecting the attributes for the control, click Finish.

The ATL Control Wizard will add a header file and a source file that define the new control.
In addition, it will set aside space in the IDL file to hold the control’s main interface and
assign a GUID to the interface. Here’s the C++ definition of the control produced by the
wizard:

class ATL_NO_VTABLE CClassicATLDiceControl :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CStockPropImpl<CClassicATLDiceControl,
 IClassicATLDiceControl>,
 public IPersistStreamInitImpl<CClassicATLDiceControl>,
 public IOleControlImpl<CClassicATLDiceControl>,
 public IOleObjectImpl<CClassicATLDiceControl>,
 public IOleInPlaceActiveObjectImpl<CClassicATLDiceControl>,
 public IViewObjectExImpl<CClassicATLDiceControl>,
 public IOleInPlaceObjectWindowlessImpl<CClassicATLDiceControl>,
 public ISupportErrorInfo,
 public IConnectionPointContainerImpl<CClassicATLDiceControl>,
 public CProxy_IClassicATLDiceControlEvents<CClassicATLDiceControl>,
 public IPersistStorageImpl<CClassicATLDiceControl>,
 public ISpecifyPropertyPagesImpl<CClassicATLDiceControl>,
 public IQuickActivateImpl<CClassicATLDiceControl>,
 public IDataObjectImpl<CClassicATLDiceControl>,
 public IProvideClassInfo2Impl<&CLSID_ClassicATLDiceControl,
 &__uuidof(_IClassicATLDiceControlEvents),
 &LIBID_ClassicATLDiceSvrLib>,
 public IPropertyNotifySinkCP<CClassicATLDiceControl>,
 public CComCoClass<CClassicATLDiceControl,
 &CLSID_ClassicATLDiceControl>,
 public CComControl<CClassicATLDiceControl>
{

}

That’s a pretty long inheritance list. You’ve already seen the template implementations of
IUnknown and support for class objects. They exist in CComObjectRootEx and
CComCoClass. You’ve also seen how ATL implements IDispatch within the IDispatchImpl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CComCoClass. You’ve also seen how ATL implements IDispatch within the IDispatchImpl
template. However, for a basic control about 11 more interfaces are required to make
everything work. These interfaces fall into several functional categories, as shown in the
following table.

Function/Category Interface

Handling self-description IProvideClassInfo2

Handling persistence IPersistStreamInit IPersistStorage

Handling activation IQuickActivate (and some of IOleObject)

Interface from the original OLE
control specification

IOleControl

Interface from the OLE Document
specification

IOleObject

Rendering IOleInPlaceActiveObject IViewObjectEx
IOleInPlaceObjectWindowless IDataObject

Helping the container manage
property pages

ISpecifyPropertyPages

Handling connections IPropertyNotifySinkCP IConnectionPointContainer

NOTE
The interfaces listed in the table are by and large boilerplate interfaces—ones that
a COM class must implement in order to qualify as an ActiveX control. Most of
the implementations are standard and vary only slightly (if at all) from one control
to the next. The beauty of ATL is that it implements this standard behavior and
gives you programmatic hooks into which you can plug in your custom code, so
you don’t have to burn your eyes out by looking directly at the COM code. You
can live a full and rich life without understanding exactly how these interfaces
work. However, if you want to know more about the internal workings of ActiveX
controls, be sure to check out Inside OLE by Kraig Brockschmidt (Microsoft
Press, 1995) and ActiveX Controls Inside Out by Adam Denning (Microsoft Press,
1997).

ATL’s Control Architecture

At the highest level, an ActiveX control has two aspects: its external state (what it renders on
the screen) and its internal state (its properties). Once an ActiveX control is hosted by some
sort of container (such as a Microsoft Visual Basic .NET form or an MFC dialog box), it
maintains a symbiotic relationship with that container. The client code talks to the control
through incoming COM interfaces such as IDispatch and OLE document interfaces such as
IOleObject and IDataObject.

The control also has the opportunity to talk back to the client. One method of implementing
this two-way communication is for the client to implement an IDispatch interface to represent
the control’s event set. The container maintains a set of properties called ambient properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the control’s event set. The container maintains a set of properties called ambient properties
that the control can use to find out about its host. For instance, a control can camouflage itself
within the container because the container makes the information stored in these properties
available through a specifically named IDispatch interface. The container can implement an
interface named IPropertyNotifySink to find out when the properties within a control might
change. Finally, the container will implement IOleClientSite and IOleControlSite as part of the
control-embedding protocol.

The interfaces listed earlier allow the client and the object to exhibit the behaviors expected of
an ActiveX control. We’ll tackle some of these interfaces as we go along. The best place to
begin looking at ATL-based controls is the CComControl class and its base classes.

The CComControl Class

You can find the definition of CComControl in Microsoft’s AtlCtl.h file under Atlmfc’s
Include directory. CComControl is a template class that takes two class parameters: the
CComControlBase class and the base window class WinBase.

template <class T, class WinBase = CWindowImpl< T > >
class ATL_NO_VTABLE CComControl : public CComControlBase,
 public WinBase
{

};

CComControl is a rather lightweight class that does little by itself—it derives functionality
from CComControlBase and WinBase. WinBase is the base class that implements windowing
functions, and it defaults to CWindowImpl. CComControl expects the template parameter to be
an ATL-based COM object that’s derived from CComObjectRootEx. CComControl requires
the template parameter for various reasons, the primary one being that from time to time the
control class will use the template parameter to call back to the control’s
InternalQueryInterface.

CComControl implements several functions that make it easy for the control to call back to the
client. For example, it implements a function named FireOnRequestEdit to allow controls to
tell the client that a specified property is about to change. This function calls back to the client
through the client-implemented interface IPropertyNotifySink. FireOnRequestEdit notifies all
connected IPropertyNotifySink interfaces that the property specified by a certain DISPID is
about to change.

CComControl also implements the FireOnChanged function. FireOnChanged is very much
like FireOnRequestEdit in that it calls back to the client through the IPropertyNotifySink
interface. This function tells the clients of the control (all clients connected to the control
through IPropertyNotifySink) that a property specified by a certain DISPID has already
changed.

In addition to mapping the IPropertyNotifySink interface to some more easily understood
functions, CComControl implements a function named ControlQueryInterface, which simply
forwards the call to the control’s IUnknown interface. (This is how you can get a control’s
IUnknown interface from inside the control.) You can also find an implementation of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IUnknown interface from inside the control.) You can also find an implementation of
MessageBox in CComControl now. Finally, CComControl implements a function named
CreateControlWindow. The default behavior for this function is to call CWindowImpl::Create.
If you want, you can override this function to do something other than create a single window.
For example, you might want to create multiple windows for your control.

Most of the real functionality for CComControl exists within those two other classes
—CComControlBase and CWindowImpl. Let’s take a look at those classes now.

The CComControlBase Class

CComControlBase is a much more substantial class than CComControl. To begin with,
CComControlBase maintains all the pointers used by the control to talk back to the client. It
uses ATL’s CComPtr smart pointer to include member variables that wrap the following
interfaces implemented for calling back to the client:

A wrapper for IOleInPlaceSite (m_spInPlaceSite)

An advise holder for the client’s data advise sink (m_spDataAdviseHolder)

An OLE advise holder for the client’s OLE advise sink (m_spOleAdviseHolder)

A wrapper for IOleClientSite (m_spClientSite)

A wrapper for IAdviseSink (m_spAdviseSink)

CComControlBase also uses ATL’s CComDispatchDriver to wrap the client’s dispatch
interface for exposing its ambient properties.

CComControlBase is also where you’ll find the member variables that contain the control’s
sizing and positioning information: m_sizeNatural, m_sizeExtent, and m_rcPos. The other
important data member within CComControlBase is the control’s window handle. Most
ActiveX controls are user interface gadgets, and as such they maintain a window.
CWindowImpl and CWindowImplBaseT handle the windowing aspects of an ATL-based
ActiveX control.

The CWindowImpl and CWindowImplBaseT Classes

CWindowImpl derives from CWindowImplBaseT, which derives from CWindowImplRoot,
which in turn derives from TBase and CMessageMap. As a template class, CWindowImpl
takes three parameters upon instantiation. The first template parameter is the control being
created. CWindowImpl needs the control type because CWindowImpl calls back to the control
during window creation. The second template parameter is the Windowing base class. The
default is CWindow. The third parameter represents a set of windowing traits for the control,
which applies the following traits to the control: WS_CHILD, WS_VISIBLE,
WS_CLIPCHILDREN, and WS_CLIPSIBLINGS. Let’s take a closer look at how ATL handles
windowing.

ATL Windowing

Just as CComControl is relatively lightweight (most work happens in CComControlBase), so
is CWindowImpl. CWindowImpl more or less handles only window creation. In fact, that’s the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is CWindowImpl. CWindowImpl more or less handles only window creation. In fact, that’s the
only function it explicitly defines. CWindowImpl::Create creates a new window based on the
window class information managed by a class named _ATL_WNDCLASSINFO. There’s an
ASCII character version and a wide-character version.

struct _ATL_WNDCLASSINFOA
{
 WNDCLASSEXA m_wc;
 LPCSTR m_lpszOrigName;
 WNDPROC pWndProc;
 LPCSTR m_lpszCursorID;
 BOOL m_bSystemCursor;
 ATOM m_atom;
 CHAR m_szAutoName[5+sizeof(void*)*CHAR_BIT];
 ATOM Register(WNDPROC* p)
 {
 return AtlWinModuleRegisterWndClassInfoA(&_AtlWinModule,
 &_AtlBaseModule, this, p);
 }
};

struct _ATL_WNDCLASSINFOW
{
 WNDCLASSEXW m_wc;
 LPCWSTR m_lpszOrigName;
 WNDPROC pWndProc;
 LPCWSTR m_lpszCursorID;
 BOOL m_bSystemCursor;
 ATOM m_atom;
 WCHAR m_szAutoName[5+sizeof(void*)*CHAR_BIT];
 ATOM Register(WNDPROC* p)
 {
 return AtlWinModuleRegisterWndClassInfoW(&_AtlWinModule,
 &_AtlBaseModule, this, p);
 }
};

ATL then uses typedefs to alias this structure to a single class named CWndClassInfo:

typedef _ATL_WNDCLASSINFOA CWndClassInfoA;
typedef _ATL_WNDCLASSINFOW CWndClassInfoW;
#ifdef UNICODE
#define CWndClassInfo CWndClassInfoW
#else
#define CWndClassInfo CWndClassInfoA
#endif

CWindowImpl uses a macro named DECLARE_WND_CLASS to add window class
information to a CWindowImpl-derived class. DECLARE_WND_CLASS also adds a function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

information to a CWindowImpl-derived class. DECLARE_WND_CLASS also adds a function
named GetWndClassInfo. Here’s the DECLARE_WND_CLASS macro:

#define DECLARE_WND_CLASS(WndClassName) \
static ATL::CWndClassInfo& GetWndClassInfo() \
{ \
 static ATL::CWndClassInfo wc = \
 { \
 { sizeof(WNDCLASSEX), \
 CS_HREDRAW │ CS_VREDRAW │ CS_DBLCLKS, StartWindowProc, \
 0, 0, NULL, NULL, NULL, (HBRUSH)(COLOR_WINDOW + 1), \
 NULL, WndClassName, NULL }, \
 NULL, NULL, IDC_ARROW, TRUE, 0, _T("") \
 }; \
 return wc; \
}

This macro expands to provide a CWndClassInfo structure for the control class. Because
CWndClassInfo manages the information for a single window class, each window created
through a specific instance of CWindowImpl will be based on the same window class.

CWindowImpl derives from CWindowImplBaseT. CWindowImplBaseT derives from
CWindowImplRoot, which is specialized around the CWindow class and the
CControlWinTraits classes, as follows:

template <class TBase = CWindow, class TWinTraits = CControlWinTraits>
class ATL_NO_VTABLE CWindowImplBaseT : public CWindowImplRoot< TBase >
{

};

CWindowImplRoot derives from CWindow by default and CMessageMap.
CWindowImplBaseT manages the window procedure of a CWindowImpl-derived class.
CWindow is a lightweight class that wraps window handles in the same way (but not as
extensively) as MFC’s CWnd class. CMessageMap is a tiny class that defines a single pure
virtual function named ProcessWindowMessage. ATL-based message-mapping machinery
assumes that this function is available, so ATL-based classes that want to use message maps
must derive from CMessageMap. Let’s take a quick look at ATL message maps.

ATL Message Maps

The root of ATL’s message mapping machinery lies within the CMessageMap class. ATL-
based controls expose message maps by virtue of indirectly deriving from CWindowImplBase.
In MFC, by contrast, deriving from CCmdTarget enables message mapping. However, as in
MFC, it’s not enough to derive from a class that supports message maps. The message maps
actually have to be there—and they are implemented via macros.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To implement a message map in an ATL-based control, you use message map macros. First,
ATL’s BEGIN_MSG_MAP macro goes into the control class’s header file.
BEGIN_MSG_MAP marks the beginning of the default message map.
CWindowImpl::WindowProc uses this default message map to process messages sent to the
window. The message map directs messages to the appropriate handler function or to another
message map. ATL defines another macro named END_MSG_MAP to mark the end of a
message map. Between BEGIN_MSG_MAP and END_MSG_MAP lie some other macros for
mapping window messages to member functions in the control.

Here’s a typical message map you might find in an ATL-based control:

BEGIN_MSG_MAP(CAFullControl)
 CHAIN_MSG_MAP(CComControl<CAFullControl>)
 DEFAULT_REFLECTION_HANDLER()
 MESSAGE_HANDLER(WM_TIMER, OnTimer);
 MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButton);
END_MSG_MAP()

This message map delegates most of the message processing to the control through the
CHAIN_MSG_MAP macro and handles message reflection through the
DEFAULT_REFLECTION_HANDLER macro. The message map also handles two window
messages explicitly: WM_TIMER and WM_LBUTTONDOWN. These are standard window
messages that are mapped using the MESSAGE_HANDLER macro. The macros simply
produce a table that relates window messages to member functions in the class. In addition to
handling regular messages, message maps are capable of handling other sorts of events. Here’s
a rundown of the kinds of macros that can go in a message map:

Macro Description

MESSAGE_HANDLER Maps a Windows message to a handler function

MESSAGE_RANGE_HANDLER Maps a contiguous range of Windows-based
messages to a handler function

COMMAND_HANDLER Maps a WM_COMMAND message to a handler
function based on the identifier and the notification
code of the menu item, control, or accelerator

COMMAND_ID_HANDLER Maps a WM_COMMAND message to a handler
function based on the identifier of the menu item,
control, or accelerator

COMMAND_CODE_HANDLER Maps a WM_COMMAND message to a handler
function based on the notification code

COMMAND_RANGE_HANDLER Maps a contiguous range of WM_COMMAND
messages to a handler function based on the
identifier of the menu item, control, or accelerator

NOTIFY_HANDLER Maps a WM_NOTIFY message to a handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function based on the notification code and the
control identifier

NOTIFY_ID_HANDLER Maps a WM_NOTIFY message to a handler
function based on the control identifier

NOTIFY_CODE_HANDLER Maps a WM_NOTIFY message to a handler
function based on the notification code

NOTIFY_RANGE_HANDLER Maps a contiguous range of WM_NOTIFY
messages to a handler function based on the control
identifier

NOTIFY_RANGE_CODE_HANDLER Maps a WM_NOTIFY message to a handler
function based on the notification code and a
contiguous range of control identifiers

Handling messages within ATL works much the same as in MFC. ATL includes a single
window procedure through which messages are routed. Technically, you can build your
controls effectively without understanding everything about ATL’s control architecture.
However, such knowledge can be helpful as you develop a control, and it can be even more
useful when you debug a control.

Developing a Control

Once the control is inserted into the server, you must add some code to make the control do
something. If you were to compile and load ATL’s default control into a container, the results
wouldn’t be particularly interesting. You’d simply see a blank rectangle with the string ATL
7.0 : ClassicATLDiceControl. You’d want to add code to render the control, to represent the
internal state of the control, to respond to events, and to generate events to send back to the
container.

Deciding What to Draw

A good place to start working on a control is its drawing code—you get instant gratification
that way. Our control is visually represented by a couple of dice. The easiest way to render the
dice control is to draw bitmaps representing each of the six possible dice faces and then show
the bitmaps on the screen. This implies that the dice control will maintain some variables to
represent its state. For example, the control needs to manage the bitmaps representing the dice
as well as two numbers that represent the first value shown by each die. Here’s the code from
ClassicATLDiceControl.h that represents the state of the dice:

#define MAX_DIEFACES 6

HBITMAP m_dieBitmaps[MAX_DIEFACES];
unsigned short m_nFirstDieValue;
unsigned short m_nSecondDieValue;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before diving headfirst into the control’s drawing code, you need to do a bit of preliminary
work—the bitmaps need to be loaded. Presumably, each die rendered by the dice control will
show any one of six dice faces, so the control needs one bitmap for each face. Figure 26-5
shows what one of the dice bitmaps looks like.

Figure 26-5. A bitmap for the dice control.

If you draw the bitmaps one at a time, they’ll have sequential identifiers in the resource.h file.
Giving the bitmaps sequential identifiers will make them easier to load. Otherwise, you might
need to modify the Resource.h file, which contains the following identifiers:

#define IDB_DICE1 220
#define IDB_DICE2 221
#define IDB_DICE3 222
#define IDB_DICE4 223
#define IDB_DICE5 224
#define IDB_DICE6 225

Loading bitmaps is fairly straightforward. You cycle through the bitmap array and load the
bitmap resources. When they’re stored in an array like this, grabbing the bitmap out of the
array and showing it is much easier than if you don’t use an array. Here’s the function that
loads the bitmaps into the array:

BOOL CClassicATLDiceControl::LoadBitmaps() {
 int i;
 BOOL bSuccess = TRUE;
 for(i=0; i<MAX_DIEFACES; i++) {
 DeleteObject(m_dieBitmaps[i]);
 m_dieBitmaps[i] = LoadBitmap(_AtlBaseModule.m_hInst,
 MAKEINTRESOURCE(nID+i));
 if(!m_dieBitmaps[i]) {
 ::MessageBox(NULL,
 "Failed to load bitmaps",
 NULL,
 MB_OK);
 bSuccess = FALSE;
 }
 }
 return bSuccess;
}

The best place to call LoadBitmaps is from within the control’s constructor, as shown in the
following code. To simulate a random roll of the dice, you set the control’s state so the first
and second die values are random numbers between 0 and 5. (These numbers will be used
when the dice control is drawn.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ATL_NO_VTABLE CClassicATLDiceControl : // big inheritance list {
 CClassicATLDiceControl () {
 LoadBitmaps();
 srand((unsigned)time(NULL));
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;

 }

}

Once the bitmaps are loaded, you’ll want to render them. The dice control should include a
function for showing each die face based on the current internal state of the dice. Here’s where
you’ll first encounter ATL’s drawing machinery.

One of the most convenient things about ATL-based controls (and MFC-based controls) is that
all the drawing code happens in one place: within the control’s OnDraw function. OnDraw is
a virtual function of COleControlBase. Here’s OnDraw’s signature:

virtual HRESULT OnDraw(ATL_DRAWINFO& di);

OnDraw takes a single parameter: a pointer to an ATL_DRAWINFO structure. Among other
things, the ATL_DRAWINFO structure contains a device context on which to render your
control. Here’s the ATL_DRAWINFO structure:

struct ATL_DRAWINFO {
 UINT cbSize;
 DWORD dwDrawAspect;
 LONG lindex;
 DVTARGETDEVICE* ptd;
 HDC hicTargetDev;
 HDC hdcDraw;
 LPCRECTL prcBounds; //Rectangle in which to draw
 LPCRECTL prcWBounds; //WindowOrg and Ext if metafile
 BOOL bOptimize;
 BOOL bZoomed;
 BOOL bRectInHimetric;
 SIZEL ZoomNum; //ZoomX = ZoomNum.cx/ZoomNum.cy
 SIZEL ZoomDen;
};

As you can see, there’s a lot more information here than a simple device context. Although
you can count on the framework filling it out correctly for you, it’s good to know where the
information in the structure comes from and how it fits into the picture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ActiveX controls are interesting because they’re drawn in two contexts. The first and most
obvious context is when the control is active and it draws within the actual drawing space of
the client. The other, less obvious context is during design time (such as when an ActiveX
control resides in a Visual Basic form in design mode). In the first context, ActiveX controls
render themselves to a live screen device context. In the second context, ActiveX controls
render themselves to a metafile device context.

Many ATL-based controls are composed of at least one window. So ATL controls need to
render themselves during the WM_PAINT message. Once the control receives the WM_PAINT
message, the message routing architecture passes control to CComControlBase::OnPaint.
(Remember that CComControlBase is one of the control’s base classes.)
CComControlBase::OnPaint performs several steps. The function begins by creating a
painting device context (using BeginPaint). Then it creates an ATL_DRAWINFO structure on
the stack and initializes the fields within the structure. OnPaint sets up ATL_DRAWINFO to
show the entire content. (The dwDrawAspect field is set to DVASPECT_CONTENT.) OnPaint
also sets the lindex field to –1, sets the drawing device context to the newly created painting
device context, and sets up the bounding rectangle to be the client area of the control’s
window. Then it goes on to call OnDrawAdvanced.

The default OnDrawAdvanced function prepares a normalized device context for drawing.
You can override this method if you want to use the device context passed by the container
without normalizing it. ATL then calls your control class’s OnDraw method.

The second context in which the OnDraw function is called is when the control draws to a
metafile. The control draws itself to a metafile whenever someone calls
IViewObjectEx::Draw. (IViewObjectEx is one of the interfaces implemented by the ActiveX
control.) ATL implements the IViewObjectEx interface through the template class
IViewObjectExImpl. IViewObjectExImpl::Draw is called whenever the control needs to take a
snapshot of its presentation space for the container to store. In this case, the container creates a
metafile device context and hands it to the control. IViewObjectExImpl initializes an
ATL_DRAWINFO structure and puts it on the stack. The bounding rectangle, the index, the
drawing aspect, and the device contexts are all passed in as parameters by the client. The rest
of the drawing is the same in this case—the control calls OnDrawAdvanced, which in turn
calls your version of OnDraw.

Once you’re armed with this knowledge, writing functions to render the bitmaps becomes
fairly straightforward. To show the first die face, you create a memory-based device context,
select the object into the device context, and BitBlt the memory device context into the real
device context. Here’s the code:

void CClassicATLDiceControl::ShowFirstDieFace(ATL_DRAWINFO& di) {

 BITMAP bmInfo;
 GetObject(m_dieBitmaps[m_nFirstDieValue-1],
 sizeof(bmInfo), &bmInfo);

 SIZE size;

 size.cx = bmInfo.bmWidth;
 size.cy = bmInfo.bmHeight;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HDC hMemDC;
 hMemDC = CreateCompatibleDC(di.hdcDraw);

 HBITMAP hOldBitmap;
 HBITMAP hbm = m_dieBitmaps[m_nFirstDieValue-1];
 hOldBitmap = (HBITMAP)SelectObject(hMemDC, hbm);

 if (hOldBitmap == NULL)
 return; // destructors will clean up

 BitBlt(di.hdcDraw,
 di.prcBounds->left+1,
 di.prcBounds->top+1,
 size.cx,
 size.cy,
 hMemDC, 0,
 0,
 SRCCOPY);

 SelectObject(di.hdcDraw, hOldBitmap);
 DeleteDC(hMemDC);
}

Showing the second die face follows more or less the same process—just be sure that the dice
are represented separately. For example, you probably want to change the call to BitBlt so the
two dice bitmaps are shown side by side.

void CClassicATLDiceControl::ShowSecondDieFace(ATL_DRAWINFO& di) {
 //
 // This code is exactly the same as ShowFirstDieFace
 // except the second die is positioned next to the first die.
 //
 BitBlt(di.hdcDraw,
 di.prcBounds->left+size.cx + 2,
 di.prcBounds->top+1,
 size.cx,
 size.cy,
 hMemDC, 0,
 0, SRCCOPY);
 // The rest is the same as in ShowFirstDieFace
}

The last step is to call these two functions whenever the control is asked to render itself—in
the control’s OnDraw function. ShowFirstDieFace and ShowSecondDieFace will show the
correct bitmap based on the state of m_nFirstDieValue and m_nSecondDieValue:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HRESULT OnDraw(ATL_DRAWINFO& di)
 {
 RECT& rc = *(RECT*)di.prcBounds;

 HBRUSH hBrush = CreateSolidBrush(m_clrBackColor);
 HBRUSH hOldBrush = (HBRUSH)SelectObject(di.hdcDraw, hBrush);

 Rectangle(di.hdcDraw, rc.left, rc.top, rc.right, rc.bottom);

 SelectObject(di.hdcDraw, hOldBrush);
 DeleteObject(hBrush);

 ShowFirstDieFace(di);
 ShowSecondDieFace(di);

 return S_OK;
 }

Notice that the drawing code takes the background color into account. We’ll be able to change
the background color a little later.

At this point, if you compile and load this control into some ActiveX control container (such
as a Visual Basic form or an MFC-based dialog box), you’ll see two die faces staring back at
you. Now it’s time to add some code to enliven the control and roll the dice.

Responding to Window Messages

Just looking at two dice faces isn’t that much fun. You want to make the dice work. A good
way to get the dice to appear to jiggle is to use a timer to generate events and then respond to
the timer by showing a new pair of dice faces. Setting up a Windows-based timer in the
control means adding a function to handle the timer message and adding a macro to the
control’s message map. Let’s start by using Class View’s Properties window to add a handler
for WM_TIMER. This will add a prototype for the OnTimer function and an entry into the
message map to handle the WM_TIMER message. We’ll then add some code to the OnTimer
function to handle the WM_TIMER message. The following code shows the OnTimer
function:

LRESULT CClassicATLDiceControl::OnTimer(UINT uMsg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled) {

 if(m_nTimesRolled > 15) {
 m_nTimesRolled = 0;
 KillTimer(1); } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();
 m_nTimesRolled++;
 }
 bHandled = TRUE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 bHandled = TRUE;
 return 0;
}

This function responds to the timer message by generating two random numbers, setting up the
control’s state to reflect these two new numbers, and then asking the control to refresh itself
by calling FireViewChange. Notice that the function kills the timer as soon as the dice have
rolled a certain number of times. Also notice that the message handler tells the framework that
it successfully handled the function by setting the bHandled variable to TRUE.

Notice there’s an entry for WM_TIMER in the control’s message map. Because WM_TIMER is
just a plain vanilla window message, it’s represented with a standard MESSAGE_HANDLER
macro as follows:

BEGIN_MSG_MAP(CClassicATLDiceControl)
 MESSAGE_HANDLER(WM_TIMER, OnTimer)
 CHAIN_MSG_MAP(CComControl<CClassicATLDiceControl>)
 DEFAULT_REFLECTION_HANDLER()
END_MSG_MAP()

As you can tell from this message map, the dice control already handles the gamut of
Windows-based messages through the CHAIN_MSG_MAP macro. However, now the pair of
dice can simulate rolling by responding to the timer message. Setting a timer causes the
control to repaint itself with a new pair of dice numbers every quarter of a second or so. Of
course, you need some way to start the dice rolling. Because this is an ActiveX control, it’s
reasonable to allow client code to start rolling the dice via a call to a function in one of its
incoming interfaces. We’ll use Class View’s Properties window to add a RollDice function to
the main interface. Right-click on the IClassicATLDiceControl interface that appears in Class
View and choose Add Method from the shortcut menu. Then add a RollDice function. Visual
C++ .NET will add a function named RollDice to your control. You implement RollDice by
setting the timer for a reasonably short interval and then returning S_OK. Add the following
boldface code:

STDMETHODIMP CClassicATLDiceControl::RollDice()
{
 if(::IsWindow(m_hWnd)) {
 SetTimer(1, 250);
 }
 return S_OK;
}

If you load the dice into an ActiveX control container, you’ll be able to browse and call the
control’s methods and roll the dice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to using the incoming interface to roll the dice, the user might reasonably expect to
roll the dice by double-clicking on the control. To enable this behavior, you just add a
message handler to trap the mouse-button-down message by adding a function to handle a left
mouse double-click:

LRESULT CClassicATLDiceControl::OnLButtonDblClick(UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 BOOL& bHandled) {
 RollDice();
 bHandled = TRUE;
 return 0;
}

Then be sure to add an entry to the message map to handle the WM_LBUTTONDOWN
message:

BEGIN_MSG_MAP(CClassicATLDiceControl)
 // Other message handlers
 MESSAGE_HANDLER(WM_LBUTTONDBLCLK, OnLButtonDblClick)
END_MSG_MAP()

When you load the dice control into a container and double-click on it, you should see the dice
roll. Now that you’ve added rendering code and given the control the ability to roll, it’s time to
add some properties.

Adding Properties and Property Pages

You’ve just seen that ActiveX controls have an external presentation state. (The presentation
state is the state reflected when the control draws itself.) Most ActiveX controls also have an
internal state. This internal state is a set of variables exposed to the outside world via interface
functions. These internal variables are also known as properties.

For example, imagine a simple grid implemented as an ActiveX control. The grid has an
external presentation state and a set of internal variables for describing the state of the grid.
The properties of a grid control would probably include the number of rows in the grid, the
number of columns in the grid, the color of the lines composing the grid, the type of font used,
and so forth.

As you saw in Chapter 25, adding properties to an ATL-based class means adding member
variables to the class and then creating get and put functions to access these properties. For
example, two member variables that you might add to the dice control include the dice color
and the number of times the dice should roll before stopping. These two properties can easily
be represented as a pair of short integers, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ATL_NO_VTABLE CClassicATLDiceControl :

{

 short m_nDiceColor;
 short m_nTimesToRoll;

};

To make these properties accessible to the client, you need to add get and put functions to the
control. You do this by right-clicking on the interface symbol in Class View and choosing
Add Property from the shortcut menu. Using Class View to add DiceColor and TimesToRoll
properties to the control will add four new functions to the control: get_DiceColor,
put_DiceColor, get_TimesToRoll, and put_TimesToRoll.

The get_DiceColor function should retrieve the state of m_nDiceColor:

STDMETHODIMP CClassicATLDiceControl::get_DiceColor(short * pVal)
{
 *pVal = m_nDiceColor;
 return S_OK;
}

To make the control interesting, put_DiceColor should change the colors of the dice bitmaps
and redraw the control immediately. Our example will use red and blue dice as well as the
original black and white dice. To make the control show the new color bitmaps immediately
after the client sets the dice color, the put_DiceColor function should load the new bitmaps
according to new color and redraw the control:

STDMETHODIMP ClassicATLDiceControl::put_DiceColor(short newVal)
{
 if(newVal < 3 && newVal >= 0)
 m_nDiceColor = newVal;
 LoadBitmaps();
 FireViewChange();
 return S_OK;
}

Of course, this means that LoadBitmaps needs to load the bitmaps based on the state of
m_nDiceColor, so we need to add the following boldface code to our existing LoadBitmaps
function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL CClassicATLDiceControl::LoadBitmaps() {
 int i;
 BOOL bSuccess = TRUE;
 int nID = IDB_WHITE1;
 switch(m_nDiceColor) {
 case 0:
 nID = IDB_WHITE1;
 break;

 case 1:
 nID = IDB_BLUE1;
 break;
 case 2:
 nID = IDB_RED1;
 break;
 }

 for(i=0; i<MAX_DIEFACES; i++) {
 DeleteObject(m_dieBitmaps[i]);
 m_dieBitmaps[i] = LoadBitmap(_AtlBaseModule.m_hInst,
 MAKEINTRESOURCE(nID+i));
 if(!m_dieBitmaps[i]) {
 ::MessageBox(NULL,
 "Failed to load bitmaps",
 NULL,
 MB_OK);
 bSuccess = FALSE;
 }
 }
 return bSuccess;
}

Just as the dice color property reflects the color of the dice, the number of times the dice rolls
should be reflected by the state of the TimesToRoll property. The get_TimesToRoll function
needs to read the m_nTimesToRoll member, and the put_TimesToRoll function needs to
modify m_nTimesToRoll. Add the boldface code shown here:

STDMETHODIMP CClassicATLDiceControl::get_TimesToRoll(short * pVal)
{
 *pVal = m_nTimesToRoll;
 return S_OK;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return S_OK;
}

STDMETHODIMP CClassicATLDiceControl::put_TimesToRoll(short newVal)
{
 m_nTimesToRoll = newVal;
 return S_OK;
}

Finally, instead of hard-coding the number of times the dice rolls, use the m_nTimesToRoll
variable to determine when to kill the timer:

LRESULT CClassicATLDiceControl::OnTimer(UINT uMsg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled)
{
 if(m_nTimesRolled > m_nTimesToRoll) {
 m_nTimesRolled = 0;
 KillTimer(1);
 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();
 m_nTimesRolled++;
 }
 bHandled = TRUE;
 return 0;
}

Now these two properties are exposed to the outside world. When the client code changes the
color of the dice, the control will load a new set of bitmaps and redraw the control with the
new dice faces. When the client code changes the number of times to roll, the dice control will
use that information to determine the number of times the dice control should respond to the
WM_TIMER message. So the next question is, “How are these properties accessed by the
client code?” One way is through a control’s property pages.

Property Pages

Because ActiveX controls are usually user interface gadgets that are meant to be mixed into
much larger applications, they often find a home within such places as Visual Basic forms and
MFC form views and dialog boxes. When a control is instantiated, the client code can usually
reach into the control and manipulate its properties by calling certain functions on the
control’s incoming interface functions. However, when an ActiveX control is in design mode,
accessing the properties through the interface functions isn’t always practical. It would be
unkind to tool developers to force them to go through the interface functions all the time just
to tweak some properties in the control. Why should the tool vendor who’s creating the client
have to provide a user interface for managing control properties? That’s what property pages
are for. Property pages are sets of dialog boxes that are implemented by the control for
manipulating properties. That way, the tool vendors don’t have to keep re-creating dialog
boxes for tweaking the properties of an ActiveX control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How property pages are used

Property pages are usually used in one of two ways. The first way is through the control’s
IOleObject interface. The client can call IOleObject’s DoVerb function, passing in the
properties verb identifier (named OLEIVERB_PROPERTIES and defined as the number -7)
to ask the control to show its property pages. The control then displays a dialog box, or
property frame, that contains all of the control’s property pages. For example, Figure 26-6
shows the Properties dialog box containing the property pages for the Microsoft Calendar 9.0
control.

Figure 26-6. The Microsoft Calendar 9.0 control executing the properties verb.

Property pages are a testament to the power of COM. As it turns out, each single property
page is a separate COM object (which is named using a GUID and registered like all the other
COM classes on your system). When a client asks an ActiveX control to show its property
pages via the properties verb, the control passes its own list of property page GUIDs into a
system API function named OleCreatePropertyFrame. OleCreatePropertyFrame enumerates
the property page GUIDs, calling CoCreateInstance for each property page. The property
frame gets a copy of an interface so that the frame can change the properties within the
control. OleCreatePropertyFrame calls back to the control when the user clicks OK or Apply.

The second way clients use property pages is when the client asks the control for a list of
property page GUIDs. The then client calls CoCreateInstance on each property page and
installs each property page in its own frame. Figure 26-7 shows an example of how Visual
C++ .NET uses the Microsoft Calendar property pages in its own property dialog frame. To
see a control’s property pages, highlight the control in the dialog box and select Property
Pages from the View menu.

This second method is by far the most common way for a control’s property pages to be used.
Notice that the property sheet in Figure 26-7 contains the same General tab shown in Figure
26-6. (The term property sheet generally refers to a collection of property pages.) The General

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26-6. (The term property sheet generally refers to a collection of property pages.) The General
property page in Figure 26-7 belongs to Visual C++. The Font and Color property pages are
coming from the MFC libraries to which the control is linking (even though they’re shown
within the context of Visual C++).

Figure 26-7. Visual C++ .NET inserting the Calendar 9.0 property pages into its own dialog
box for editing resource properties.

In order for a property page to work correctly, the control that the property page is associated
with must implement ISpecifyPropertyPages and the property page object must implement an
interface named IPropertyPage. With this in mind, let’s examine exactly how ATL
implements property pages.

Adding a property page to your control

You can use the Visual Studio .NET ATL Property Page Wizard to create property pages in
your ATL project. To create a property page, perform the following steps:

1. Choose Add Class from the Project menu.

2. Select ATL Property Page from the template list. Fill in the required information on the
ATL Property Page Wizard pages, and then click Finish.

The wizard will generate a dialog template and include it as part of a control’s resources. In
the dice control example, the two properties we’re concerned with are the color of the dice and
the number of times to roll the dice. The dialog template created by the ATL Property Page
Wizard is blank, so you’ll want to add a couple of controls to represent these properties. In this
example, the user will be able to select the dice color from a combo box and enter the number
of times the dice should roll in an edit control, as shown in Figure 26-8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 26-8. The property page dialog template.

The ATL Property Page Wizard also creates a C++ class for you that implements the interface
necessary for the class to behave as a property page. In addition to generating this C++ class,
the wizard makes the class part of the project. It adds the new property page class to the IDL
file within the coclass section. In addition, the wizard appends the property page to the object
map so DllGetClassObject can find the property page class. Finally, the wizard adds a new
Registry script (so the DLL will make the correct Registry entries when the control is
registered).

Here’s the header file created by the ATL Property Page Wizard for a property page named
DiceMainPropPage:

#pragma once

#include "resource.h" // main symbols
#include "ClassicATLDiceSvr.h"

// CDiceMainPropPage
class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{
public:
 CDiceMainPropPage()
 {
 m_dwTitleID = IDS_TITLEDiceMainPropPage;
 m_dwHelpFileID = IDS_HELPFILEDiceMainPropPage;
 m_dwDocStringID = IDS_DOCSTRINGDiceMainPropPage;
 }

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 }

 enum {IDD = IDD_DICEMAINPROPPAGE};

DECLARE_REGISTRY_RESOURCEID(IDR_DICEMAINPROPPAGE)

BEGIN_COM_MAP(CDiceMainPropPage)
 COM_INTERFACE_ENTRY(IPropertyPage)
END_COM_MAP()

BEGIN_MSG_MAP(CDiceMainPropPage)
 CHAIN_MSG_MAP(IPropertyPageImpl<CDiceMainPropPage>)
END_MSG_MAP()

// Handler prototypes:
// LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM lParam,
// BOOL& bHandled);
// LRESULT CommandHandler(WORD wNotifyCode, WORD wID, HWND hWndCtl,
// BOOL& bHandled);
// LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL& bHandled);
 STDMETHOD(Apply)(void)
 {
 ATLTRACE(_T("CDiceMainPropPage::Apply\n"));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 // Do something interesting here
 // ICircCtl* pCirc;
 // m_ppUnk[i]->QueryInterface(IID_ICircCtl, (void**)&pCirc);
 // pCirc->put_Caption(CComBSTR("something special"));
 // pCirc->Release();
 }
 m_bDirty = FALSE;
 return S_OK;
 }
};

OBJECT_ENTRY_AUTO(__uuidof(DiceMainPropPage), CDiceMainPropPage)

Examining this property page listing reveals that ATL’s property page classes are composed
of several ATL templates: CComObjectRootEx (to implement IUnknown), CComCoClass (the
class object for the property page), IPropertyPageImpl (for implementing IPropertyPage), and
CDialogImpl (for implementing the dialog-specific behavior).

As with most other COM classes created by ATL’s wizards, most of the code involved in
getting a property page to work is boilerplate code. Notice that besides the constructor and
some various maps, the only other function is one named Apply.

Before we get into the mechanics of implementing a property page, it’ll be helpful for you to
understand how the property page architecture works. The code you need to type in to get the
property pages working will then make more sense.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When the client decides it’s time to show some property pages, a modal dialog frame must be
constructed. The frame is constructed by the client or by the control itself. If the property
pages are being shown via the DoVerb function, the control will construct the frame. If the
property pages are being shown within the context of another application—such as when
Visual C++ .NET shows the control’s property pages within the IDE—the client will construct
the dialog frame. The key to the dialog frame is that it holds property page sites (small objects
that implement IPropertyPageSite) for each property page.

The client code (the modal dialog frame, in this case) then enumerates through a list of
GUIDs, calling CoCreateInstance on each one of them and asking for the IPropertyPage
interface. If the COM object produced by CoCreateInstance is a property page, it implements
the IPropertyPage interface. The dialog frame uses the IPropertyPage interface to talk to the
property page. Here’s the declaration of the IPropertyPage interface:

interface IPropertyPage : public IUnknown {
 HRESULT SetPageSite(IPropertyPageSite *pPageSite) = 0;
 HRESULT Activate(HWND hWndParent,
 LPCRECT pRect,
 BOOL bModal) = 0;
 HRESULT Deactivate(void) = 0;
 HRESULT GetPageInfo(PROPPAGEINFO *pPageInfo) = 0;
 HRESULT SetObjects(ULONG cObjects,
 IUnknown **ppUnk) = 0;
 HRESULT Show(UINT nCmdShow) = 0;
 HRESULT Move(LPCRECT pRect) = 0;
 HRESULT IsPageDirty(void) = 0;
 HRESULT Apply(void) = 0;
 HRESULT Help(LPCOLESTR pszHelpDir) = 0;
 HRESULT TranslateAccelerator(MSG *pMsg) = 0;
};

Once a property page has been created, the property page and the client code need some
channels to communicate back and forth with the control. After the property dialog frame
successfully calls QueryInterface for IPropertyPage on the property page objects, the frame
calls IPropertyPage::SetPageSite on each IPropertyPage interface pointer that it holds,
passing in an IPropertyPageSite interface pointer. The property page sites within the property
frame provide a way for each property page to call back to the frame. The property page site
provides information to the property page and receives notifications from the page when
changes occur. Here’s the IPropertyPageSite interface:

interface IPropertyPageSite : public IUnknown {
 public:
 virtual HRESULT OnStatusChange(DWORD dwFlags) = 0;
 virtual HRESULT GetLocaleID(LCID *pLocaleID) = 0;
 virtual HRESULT GetPageContainer(IUnknown *ppUnk) = 0;
 virtual HRESULT TranslateAccelerator(MSG *pMsg) = 0;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the frame and control connecting to each other through IPropertyPage and
IPropertyPageSite, each property page needs a way to talk back to the control. This is usually
done when the dialog frame calls IPropertyPage::SetObjects, passing in the control’s
IUnknown. Figure 26-9 depicts the property page architecture.

Now that you understand how ActiveX control property pages work in general, understanding
how they work within ATL will be a lot easier. You’ll see how ATL’s property pages work
when the client code exercises the control’s properties verb as well as when environments
such as Visual C++ .NET integrate a control’s property pages into the IDE.

Figure 26-9. How the property pages, property frame, and property page sites communicate.

ATL and the properties verb

The first way in which an ActiveX control shows its property pages is when the client invokes
the properties verb by calling IOleObject::DoVerb using the constant
OLEIVERB_PROPERTIES. When the client calls DoVerb in an ATL-based control, the call
ends up in the function CComControlBase::DoVerbProperties, which simply calls
OleCreatePropertyFrame, passing in its own IUnknown pointer and the list of property page
GUIDs. OleCreatePropertyFrame takes the list of GUIDs, calling CoCreateInstance on each
one to create the property pages, and arranges them within the dialog frame.
OleCreatePropertyFrame uses each property page’s IPropertyPage interface to manage the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OleCreatePropertyFrame uses each property page’s IPropertyPage interface to manage the
property page.

ATL property maps

Of course, understanding how OleCreatePropertyFrame works from within the ATL-based
control begs the next question: Where does the list of property pages actually come from?
ATL uses macros to generate lists of property pages called property maps. When you add a
new property page to an ATL-based control, you must set up the list of property pages using
these macros. ATL includes several macros for implementing property maps:
BEGIN_PROPERTY_MAP, PROP_ENTRY, PROP_ENTRY_EX, PROP_PAGE, PROP_
DATA_ENTRY, and END_PROPERTY_MAP. Here are those macros in the raw:

struct ATL_PROPMAP_ENTRY
{
 LPCOLESTR szDesc;
 DISPID dispid;
 const CLSID* pclsidPropPage;
 const IID* piidDispatch;
 DWORD dwOffsetData;
 DWORD dwSizeData;
 VARTYPE vt;
};

#define BEGIN_PROPERTY_MAP(theClass) \
 __if_not_exists(__ATL_PROP_NOTIFY_EVENT_CLASS) \
 { \
 typedef ATL::_ATL_PROP_NOTIFY_EVENT_CLASS \
 __ATL_PROP_NOTIFY_EVENT_CLASS; \
 } \
 typedef theClass _PropMapClass; \
 static ATL::ATL_PROPMAP_ENTRY* GetPropertyMap()\
 {\
 static ATL::ATL_PROPMAP_ENTRY pPropMap[] = \
 { \
 {OLESTR("_cx"), 0, &CLSID_NULL, NULL, offsetof(_PropMapClass,
 m_sizeExtent.cx), sizeof(long), VT_UI4}, \
 {OLESTR("_cy"), 0, &CLSID_NULL, NULL, offsetof(_PropMapClass,
 m_sizeExtent.cy), sizeof(long), VT_UI4},

// This one can be used on any type of object, but does not
// include the implicit m_sizeExtent
#define BEGIN_PROP_MAP(theClass) \
 __if_not_exists(__ATL_PROP_NOTIFY_EVENT_CLASS) \
 { \
 typedef ATL::_ATL_PROP_NOTIFY_EVENT_CLASS \
 __ATL_PROP_NOTIFY_EVENT_CLASS; \
 } \
 typedef theClass _PropMapClass; \
 static ATL::ATL_PROPMAP_ENTRY* GetPropertyMap()\
 {\
 static ATL::ATL_PROPMAP_ENTRY pPropMap[] = \
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

#define PROP_ENTRY(szDesc, dispid, clsid) \
 {OLESTR(szDesc), dispid, &clsid, &__uuidof(IDispatch), 0, 0, 0},

#define PROP_ENTRY_EX(szDesc, dispid, clsid, iidDispatch) \
 {OLESTR(szDesc), dispid, &clsid, &iidDispatch, 0, 0, 0},

#define PROP_PAGE(clsid) \
 {NULL, NULL, &clsid, &IID_NULL, 0, 0, 0},

#define PROP_DATA_ENTRY(szDesc, member, vt) \
 {OLESTR(szDesc), 0, &CLSID_NULL, NULL, offsetof(_PropMapClass,
 member), sizeof(((_PropMapClass*)0)->member), vt},

#define END_PROPERTY_MAP() \
 {NULL, 0, NULL, &IID_NULL, 0, 0, 0} \
 }; \
 return pPropMap; \
 }

#define END_PROP_MAP() \
 {NULL, 0, NULL, &IID_NULL, 0, 0, 0} \
 }; \
 return pPropMap; \
 }

When you decide to add property pages to a COM class using ATL’s property page macros,
according to the ATL documentation you should put these macros into your class’s header
file. For example, if you want to add property pages to the dice control, you add the following
code to the C++ class:

class ATL_NO_VTABLE CClassicATLDiceControl :

{

 BEGIN_PROP_MAP(CClassicATLDiceControl)

 PROP_DATA_ENTRY("_cx", m_sizeExtent.cx, VT_UI4)
 PROP_DATA_ENTRY("_cy", m_sizeExtent.cy, VT_UI4)
 PROP_ENTRY("Caption goes here...", 2,
 CLSID_MainPropPage)
 PROP_ENTRY_EX("Caption goes here...", 3,
 CLSID_SecondPropPage,
 DIID_SecondDualInterface)
 PROP_PAGE(CLSID_StockColorPage)
 END_PROPERTY_MAP()

};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ATL’s property map macros set up the list of GUIDs that represent property pages. ATL’s
property maps are composed of an array of ATL_PROPMAP_ENTRY structures. The
BEGIN_PROPERTY_MAP macro declares a static variable of this structure. The
PROP_DATA_ENTRY macros associate property dispatch names with internal class member
variables (in this case the x and y extents). The PROP_PAGE macro inserts a GUID into the
list of property pages. PROP_ENTRY inserts a property page GUID into the list and also
associates a specific control property with the property page. The final macro,
PROP_ENTRY_EX, lets you associate a certain dual interface to a property page. When client
code invokes the control’s properties verb, the control just rips through this list of GUIDs and
hands the list over to the OleCreatePropertyFrame so the property can create the property
pages.

Property pages and development tools

Executing the properties verb isn’t the only way for an ActiveX control to show its property
pages. As mentioned before, folks who write tools such as Visual Basic .NET and Visual C++
.NET might want programmatic access to a control’s property pages. For example, when you
use MFC to work on a dialog box containing an ActiveX control, right-clicking on the control
to view the properties will give you a dialog frame produced by Visual C++ .NET (as opposed
to the dialog frame produced by OleCreatePropertyFrame).

Visual C++ .NET uses the control’s ISpecifyPropertyPages interface to get the list of GUIDs
(the list generated by the property page macros). Here’s the ISpecifyPropertyPages interface
definition:

interface ISpecifyPropertyPages : public IUnknown {
 HRESULT GetPages(CAUUID *pPages);
};

typedef struct tagCAUUID
{
 ULONG cElems;
 GUID FAR* pElems;
} CAUUID;

ATL implements the ISpecifyPropertyPages::GetPages function by cycling through the list of
GUIDs (produced by the property map macros) and returning them within the CAUUID
structure. Environments such as Visual C++ .NET use each GUID in a call to
CoCreateInstance to create a new property page. The property page site and the property page
exchange interfaces. The property page site holds onto the property page’s IPropertyPage
interface, and the property page holds onto the property site’s IPropertyPageSite interface.
After the dialog frame constructs the property pages, it must reflect the current state of the
ActiveX control through the dialog controls. For that, you must override the property page’s
Activate method.

Showing the property page

The property page’s Activate method is called whenever the property page is about to be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The property page’s Activate method is called whenever the property page is about to be
shown. A good thing for a property page to do at this time is to fetch the values from the
ActiveX control and populate the property page’s controls. Remember that the property page
holds onto an array of unknown pointers. (They’re held in the IPropertyPageImpl’s m_ppUnk
array.) To access the ActiveX control’s properties, you must call QueryInterface on the
unknown pointers and ask for the interface that exposes the properties. In this case, the
interface is IClassicATLDiceCopntrol. Once the property page has the interface, it can use the
interface to fetch the properties and plug the values into the dialog box controls. Here’s the
overridden Activate method:

#include "ClassicATLDiceSvr.h"

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{

 STDMETHOD(Activate)(HWND hWndParent, LPCRECT prc, BOOL bModal)
 {
 // If we don't have any objects, this method should not be called
 // Note that OleCreatePropertyFrame will call Activate even if a call
 // to SetObjects fails, so this check is required
 if (!m_ppUnk)
 return E_UNEXPECTED;

 // Use Activate to update the property page's UI with information
 // obtained from the objects in the m_ppUnk array

 // We update the page to display the Name and ReadOnly properties of
 // the document

 // Call the base class
 HRESULT hr;
 hr = IPropertyPageImpl<CDiceMainPropPage>::Activate(hWndParent,
 prc, bModal);
 if (FAILED(hr))
 return hr;

 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr<IClassicATLDiceControl, &IID_IClassicATLDiceControl>
 pClassicATLDiceControl(m_ppUnk[i]);
 short nColor = 0;

 if FAILED(pClassicATLDiceControl->get_DiceColor(&nColor))
 {
 return E_FAIL;
 }
 HWND hWndComboBox = GetDlgItem(IDC_COLOR);
 ::SendMessage(hWndComboBox,
 CB_SETCURSEL,
 nColor, 0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nColor, 0);

 short nTimesToRoll = 0;
 if FAILED(pClassicATLDiceControl->get_TimesToRoll
 (&nTimesToRoll))
 {
 return E_FAIL;
 }
 SetDlgItemInt(IDC_TIMESTOROLL, nTimesToRoll, FALSE);
 }
 return S_OK;
 }

In addition to adding code to prepare to show the dialog box, you must add code to allow users
to set the control’s properties. Whenever the user changes a property, the property dialog box
will activate the Apply button, indicating that the user can apply the newly set properties.
When the user clicks the Apply button, control will jump to the property page’s Apply
function, so you must insert some code in here to make the Apply button work.

Handling the Apply button

After the user finishes manipulating the properties, he’ll click the Apply button or the OK
button to save the changes. In response, the client code will ask the property page to apply the
new properties to the control. Remember that the ActiveX control and the property page are
separate COM objects, so they need to communicate via interfaces. Here’s how the process
works.

When you create a property page using the ATL Property Page Wizard, ATL overrides the
Apply function from IPropertyPage for you. The property page site uses this function for
notifying the property page of changes that need to be made to the control. When the property
page’s Apply function is called, it’s time to synch up the state of the property page with the
state of the control. Remember that the control’s IUnknown interface was passed into the
property page early in the game via a call to IPropertyPage::SetObjects. (The interface
pointers are stored in the property page’s m_ppUnk array.) Most property pages respond to the
Apply function by setting the state of the ActiveX control properties through the interface
provided. In the case of our ATL-based property page, this means examining the value in the
combo box and the edit box and setting the new values inside the control itself, like this:

#include "ClassicATLDiceSvr.h"

class ATL_NO_VTABLE CDiceMainPropPage :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CDiceMainPropPage, &CLSID_DiceMainPropPage>,
 public IPropertyPageImpl<CDiceMainPropPage>,
 public CDialogImpl<CDiceMainPropPage>
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 STDMETHOD(Apply)(void)
 {
 USES_CONVERSION;
 ATLTRACE(_T("CDiceMainPropPage::Apply\n"));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr<IClassicATLDiceControl,
 &IID_IClassicATLDiceControl>
 pClassicATLDiceControl(m_ppUnk[i]);
 HWND hWndComboBox = GetDlgItem(IDC_COLOR);
 short nColor = (short)::SendMessage(hWndComboBox,
 CB_GETCURSEL,
 0, 0);
 if(nColor >= 0 && nColor <= 2) {
 if FAILED(pClassicATLDiceControl->put_DiceColor(nColor))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError),
 _T("Error"),
 MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 short nTimesToRoll = (short)GetDlgItemInt(IDC_TIMESTOROLL);
 if FAILED(pClassicATLDiceControl->put_TimesToRoll(nTimesToRoll))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError), _T("Error"), MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 m_bDirty = FALSE;
 return S_OK;
 }

Property Persistence

Once you’ve added properties to the control, you might want to have those properties persist
with their container. For example, imagine that a gaming company buys your dice control to
include in its Windows version of a new game. The game vendor uses your dice control within
one of their dialog boxes and configures the control so that the dice are blue and they roll 23
times before stopping. If the dice control has a sound property, the game authors can configure
the dice to emit a beep every time they roll. When someone plays the game and rolls the dice,
that person will see a pair of blue dice that roll 23 times before stopping and they’ll hear the
dice make a sound while rolling. Remember that these properties are all properties of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dice make a sound while rolling. Remember that these properties are all properties of the
control. If you’re using the control in an application, chances are good that you’ll want these
properties to be saved with the application.

Fortunately, adding persistence support to your control is almost free when you use the ATL
property macros. You’ve already seen how to add the property pages to the control DLL using
the property map macros. As it turns out, these macros also make the properties persistent.

You can find ATL’s code for handling the persistence of a control’s properties within the
CComControlBase class. CComControlBase has a member function named
IPersistStreamInit_Save that handles saving a control’s properties to a stream provided by the
client. Whenever the container calls IPersistStreamInit::Save, ATL ends up calling
IPersistStreamInit_Save to do the actual work. IPersistStreamInit_Save works by retrieving
the control’s property map—the list of properties maintained by the control. (Remember that
the BEGIN_PROPERTY_MAP macro adds a function named GetPropertyMap to the control.)
The first item written out by IPersistStreamInit_Save is the control’s extents (its size on the
screen). IPersistStreamInit_Save then cycles through the property map to write the contents of
the property map out to the stream. For each property, the control calls QueryInterface on
itself to get its own dispatch interface. As IPersistStreamInit_Save goes through the list of
properties, the control calls IDispatch::Invoke on itself to get the property based on the
DISPID associated with the property. (The property’s DISPID is included as part of the
property map structure.) The property comes back from IDispatch::Invoke as a variant, and
IPersistStreamInit_Save writes the property to the stream provided by the client.

Bidirectional Communication (Events)

Now that the dice control has properties and property pages and renders itself to a device
context, the last thing to do is to add some events to the control. Events provide a way for the
control to call back to the client code and inform the client code of certain events as they
occur.

For example, the user can roll the dice. Then, when the dice stop rolling, the client application
can fish the dice values out of the control. Another way to implement the control is to set it up
so that the control uses an event to notify the client application when the dice have rolled.
We’ll add some events to the dice control shortly. But first, we’ll look at how ActiveX control
events work.

How events work

When a control is embedded in a container (such as a Visual Basic .NET form or an MFC-
based dialog box), one of the steps the client code takes is to establish a connection to the
control’s event set. That is, the client implements an interface that has been described by the
control and makes that interface available to the control. That way, the control can talk back to
the container.

Part of developing a control involves defining an interface that the control can use to call back
to the client. For example, if you’re developing the control using MFC, the wizards will define
the interface and produce some functions you can call from within the control to fire events
back to the client. If you’re developing the control in ATL, you can accomplish the same
result by defining the event callback interface in the control’s IDL and using Class View to
create a set of callback proxy functions for firing the events to the container. When the
callback interface is defined by the control, the container must implement that interface and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

callback interface is defined by the control, the container must implement that interface and
hand it over to the control. The client and the control do this through the
IConnectionPointContainer and IConnectionPoint interfaces.

IConnectionPointContainer is the interface that a COM object implements to indicate that it
supports connections. IConnectionPointContainer represents a collection of connections
available to the client. Within the context of ActiveX controls, one of these connections is
usually the control’s main event set. Here’s the IConnectionPointContainer interface:

interface IConnectionPointContainer : IUnknown {
 HRESULT FindConnectionPoint(REFIID riid,
 IConnectionPoint **ppcp) = 0;
 HRESULT EnumConnectionPoints(IEnumConnectionsPoint **ppec) = 0;
};

IConnectionPointContainer represents a collection of IConnectionPoint interfaces. Here’s the
IConnectionPoint interface:

interface IConnectionPoint : IUnknown {
 HRESULT GetConnectionInterface(IID *pid) = 0;
 HRESULT GetConnectionPointContainer(
 IConnectionPointContainer **ppcpc) = 0;
 HRESULT Advise(IUnknown *pUnk, DWORD *pdwCookie) = 0;
 HRESULT Unadvise(dwCookie) = 0;
 HRESULT EnumConnections(IEnumConnections **ppec) = 0;
}

The container creates the control by calling CoCreateInstance on the control. As the control
and the container are establishing the interface connections between themselves, one of the
interfaces the container will ask for is IConnectionPointContainer. (The container calls
QueryInterface asking for IID_IConnectionPointContainer.) If the control supports
connection points (if the control answers Yes when queried for IConnectionPointContainer),
the control will use IConnectionPointContainer::FindConnectionPoint to get the
IConnectionPoint interface that represents the main event set. The container will know the
GUID that represents the main event set by looking at the control’s type information as the
control is inserted into the container.

If the container can establish a connection point to the control’s main event set (if
IConnectionPointContainer::FindConnectionPoint returns an IConnectionPoint interface
pointer), the container will use IConnectionPoint::Advise to subscribe to the callbacks. Of
course, in order to do this the container must implement the callback interface defined by the
control (which the container can learn about by using the control’s type library). Once the
connection is established, the control can call back to the container whenever the control fires
off an event. Next, we’ll look at what it takes to make events work within an ATL-based
ActiveX control.

Adding events to the dice control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are several steps to adding event sets to your control. Some are hidden by clever
wizardry. First, you use IDL to describe the events. Second, you add a proxy that encapsulates
the connection points and event functions. Finally, you fill out the control’s connection map so
the client and the object have a way to connect to each other. Let’s examine each step in detail.

When you use ATL to write an ActiveX control, IDL is the place to start adding events to
your control. The event callback interface is described within the IDL so the client will know
how to implement the callback interface correctly. The IDL is compiled into a type library that
the client will use to figure out how to implement the callback interface. The easiest way to
add events to the IDL is to select the event callback interface from within Class View and add
the event methods. For example, if you want to add events to indicate that the dice were rolled,
doubles were rolled, and snake eyes were rolled, you describe the callback interface with a
DiceRolled, a Doubles, and a SnakeEyes method. It’s just like defining methods within the
main interface. Here’s the control’s IDL file after adding the methods:

[
 uuid(D66265FF-D959-47FB-BC36-585AFC4FFB49),
 version(1.0),
 helpstring("ClassicATLDiceSvr 1.0 Type Library")
]
library ClassicATLDiceSvrLib
{
 importlib("stdole2.tlb");
 [
 uuid(2FECDCBE-D2C8-46EF-A4A1-E86CDC63B321),
 helpstring("_IClassicATLDiceControlEvents Interface")
]
 dispinterface _IClassicATLDiceControlEvents
 {
 properties:
 methods:
 [id(1)]void Doubles(short n);
 [id(2)]void SnakeEyes();
 [id(3)]void DiceRolled(short x, short y);
 };
 [
 uuid(75E15528-7E89-431F-B170-D6991C26F944),
 helpstring("ClassicATLDiceControl Class")
]
 coclass ClassicATLDiceControl
 {
 [default] interface IClassicATLDiceControl;
 [default, source] dispinterface _IClassicATLDiceControlEvents;
 };
 [
 uuid(7A91E3F2-21BB-4286-B02E-4F067FD48DB3),
 helpstring("CDiceMainPropPage Class")
]
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The control’s callback interface is defined as a dispatch interface (note the dispinterface
keyword) because that’s the most generic kind of interface available. When it comes to
callback interfaces, most environments understand only IDispatch. The code describes a
callback interface to be implemented by the client (if the client decides it wants to receive
these callbacks).

Implementing the connection point

After you’ve described the callback interface within the IDL and compiled the control, the
control’s type information will contain the callback interface description so the client will
know how to implement the callback interface. However, you don’t yet have a convenient way
to fire these events from the control. You could, of course, call back to the client by setting up
calls to IDispatch::Invoke by hand. However, a better way is to set up a proxy (a set of
functions that wrap calls to IDispatch) to handle the hard work for you. To generate a set of
functions that you can call to fire events in the container, you can use the Implement
Connection Point Wizard available from Class View.

In Class View, click the right mouse button while the cursor is hovering over the
CClassicATLDiceControl symbol. This will bring up the shortcut menu for the
CClassicATLDiceControl item. Choose Add, and then choose Add Connection Point to
launch the Implement Connection Point Wizard. This wizard will ask you to locate the type
information that describes the interface you expect to use when you call back to the container
(the _IClassicATLDiceControlEvents interface, in this case). By default, the wizard will look
at your control’s type library and show the interfaces found within it. Select
_IClassicATLDiceControlEvents and then click Finish to create a C++ class that wraps the
dice events interface. Given the above interface definition, here’s the code generated by the
Implement Connection Point Wizard:

#pragma once
template<class T>
class CProxy_IClassicATLDiceControlEvents :
 public IConnectionPointImpl<T,
 &__uuidof(_IClassicATLDiceControlEvents)>
{
public:
 HRESULT Fire_Doubles(short n)
 {
 HRESULT hr = S_OK;
 T * pThis = static_cast<T *>(this);
 int cConnections = m_vec.GetSize();

 for (int iConnection = 0; iConnection < cConnections;
 iConnection++)
 {
 pThis->Lock();
 CComPtr<IUnknown> punkConnection = m_vec.GetAt(iConnection);
 pThis->Unlock();

 IDispatch * pConnection =
 static_cast<IDispatch *>(punkConnection.p);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (pConnection)
 {
 CComVariant avarParams[1];
 avarParams[0] = n;
 DISPPARAMS params = { avarParams, NULL, 1, 0 };
 hr = pConnection->Invoke(1, IID_NULL, LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, ¶ms, NULL, NULL, NULL);
 }
 }
 return hr;
 }
 HRESULT Fire_SnakeEyes()
 {
 HRESULT hr = S_OK;
 T * pThis = static_cast<T *>(this);
 int cConnections = m_vec.GetSize();

 for (int iConnection = 0; iConnection < cConnections; iConnection++)
 {
 pThis->Lock();
 CComPtr<IUnknown> punkConnection = m_vec.GetAt(iConnection);
 pThis->Unlock();

 IDispatch * pConnection =
 static_cast<IDispatch *>(punkConnection.p);

 if (pConnection)
 {
 DISPPARAMS params = { NULL, NULL, 0, 0 };
 hr = pConnection->Invoke(2, IID_NULL, LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, ¶ms, NULL, NULL, NULL);
 }
 }
 return hr;
 }
 HRESULT Fire_DiceRolled(short x, short y)
 {
 HRESULT hr = S_OK;
 T * pThis = static_cast<T *>(this);
 int cConnections = m_vec.GetSize();

 for (int iConnection = 0; iConnection < cConnections; iConnection++)
 {
 pThis->Lock();
 CComPtr<IUnknown> punkConnection = m_vec.GetAt(iConnection);
 pThis->Unlock();

 IDispatch * pConnection =
 static_cast<IDispatch *>(punkConnection.p);

 if (pConnection)
 {
 CComVariant avarParams[2];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CComVariant avarParams[2];
 avarParams[1] = x;
 avarParams[0] = y;
 DISPPARAMS params = { avarParams, NULL, 2, 0 };
 hr = pConnection->Invoke(3, IID_NULL, LOCALE_USER_DEFAULT,
 DISPATCH_METHOD, ¶ms, NULL, NULL, NULL);
 }
 }
 return hr;
 }
};

The C++ class generated by the connection point generator serves a dual purpose. First, it acts
as the specific connection point. (Notice that it derives from IConnectionPointImpl.) Second, it
serves as a proxy to the interface implemented by the container. For example, if you want to
call over to the client and tell the client that doubles were rolled, you can simply call the
proxy’s Fire_Doubles function. Notice how the proxy wraps the IDispatch call so you don’t
have to get your hands messy dealing with variants by yourself.

Establishing the connection and firing the events

The final step in setting up the event set is to add the connection point to the dice control and
turn on the IConnectionPointContainer interface. The Implement Connection Point Wizard
added the CProxy_IClassicATLDiceControlEvents class to the dice control’s inheritance list,
which provides the IConnectionPoint implementation inside the control. An ATL class named
IConnectionPointContainerImpl provides the implementation of IConnectionPointContainer.
These two interfaces should be in the dice control’s inheritance list, like this:

class ATL_NO_VTABLE CClassicATLDiceControl :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CStockPropImpl<CClassicATLDiceControl, IClassicATLDiceControl>,
 public IPersistStreamInitImpl<CClassicATLDiceControl>,
 public IOleControlImpl<CClassicATLDiceControl>,
 public IOleObjectImpl<CClassicATLDiceControl>,
 public IOleInPlaceActiveObjectImpl<CClassicATLDiceControl>,
 public IViewObjectExImpl<CClassicATLDiceControl>,
 public IOleInPlaceObjectWindowlessImpl<CClassicATLDiceControl>,
 public ISupportErrorInfo,
 public IConnectionPointContainerImpl<CClassicATLDiceControl>,
 public CProxy_IClassicATLDiceControlEvents<CClassicATLDiceControl>,
 public IPersistStorageImpl<CClassicATLDiceControl>,
 public ISpecifyPropertyPagesImpl<CClassicATLDiceControl>,
 public IQuickActivateImpl<CClassicATLDiceControl>,
 public IDataObjectImpl<CClassicATLDiceControl>,
 public IProvideClassInfo2Impl<&CLSID_ClassicATLDiceControl,
 &__uuidof(_IClassicATLDiceControlEvents),
 &LIBID_ClassicATLDiceSvrLib>,
 public IPropertyNotifySinkCP<CClassicATLDiceControl>,
 public CComCoClass<CClassicATLDiceControl, &CLSID_ClassicATLDiceControl>,
 public CComControl<CClassicATLDiceControl>
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Having these classes in the inheritance list will insert the machinery in your control that makes
connection points work. When you want to fire an event to the container, all you need to do is
call one of the functions in the proxy. For example, a good time to fire these events is from
within the control’s OnTimer method—firing a DiceRolled event whenever the timer stops,
firing a SnakeEyes event whenever both die faces have the value 1, and firing a Doubles event
when both die faces are equal:

LRESULT CClassicATLDiceControl::OnTimer(UINT uMsg, WPARAM wParam,
 LPARAM lParam, BOOL& bHandled)
{
 if(m_nTimesRolled > m_nTimesToRoll) {
 m_nTimesRolled = 0;
 KillTimer(1);

 Fire_DiceRolled(m_nFirstDieValue, m_nSecondDieValue);

 if(m_nFirstDieValue == m_nSecondDieValue) {
 Fire_Doubles(m_nFirstDieValue);
 }

 if(m_nFirstDieValue == 1 &&
 m_nSecondDieValue == 1) {
 Fire_SnakeEyes();
 }

 } else {
 m_nFirstDieValue = (rand() % (MAX_DIEFACES)) + 1;
 m_nSecondDieValue = (rand() % (MAX_DIEFACES)) + 1;
 FireViewChange();
 m_nTimesRolled++;
 }
 bHandled = TRUE;
 return 0;
}

Finally, notice the connection map contains entries for the control’s connection points:

BEGIN_CONNECTION_POINT_MAP(CClassicATLDiceControl)
 CONNECTION_POINT_ENTRY(__uuidof(_IClassicATLDiceControlEvents))
END_CONNECTION_POINT_MAP()

The control uses this map to hand back connection points as the client requests them.

Using the Control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So, how do you use the control once you’ve written it? The beauty of COM is that as long as
the client and the object agree on their shared interfaces, they don’t need to know anything
else about each other. All the interfaces implemented within the dice control are well
understood by a number of programming environments. You’ve already seen how to use
ActiveX controls within an MFC-based dialog box. The control you just wrote will work fine
within an MFC-based dialog box—you just use the Customize Toolbox dialog box to add
controls to the Toolbox.

To insert the ClassicATLDiceControl component into your project, choose Customize
Toolbox from the Tools menu to open the Customize Toolbox dialog box. On the COM
Components tab, select the ClassicATLDiceControl Class check box. Visual C++ .NET will
read the dice control’s type information and insert all the necessary COM glue to make the
dialog box and the control talk with each other. (This includes all the OLE embedding
interfaces as well as the connection and event interfaces.) You can also just as easily use this
control from within a Visual Basic .NET form. When you’re working on a Visual Basic .NET
project, choose Add Reference from the Project menu, click on the COM tab, and select
ClassicATLDiceSvr 1.0 Type Library to add the dice control to the Visual Basic .NET project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an Attributed Control

In addition to classic ATL-style programming for creating ActiveX controls, Visual Studio
.NET also offers attributed ATL for programming controls. Recall from Chapter 22 and
Chapter 25 that COM development requires a fair amount of boilerplate code—code that
remains the same from one COM implementation to another. Attributed programming pushes
the boilerplate COM code (IUnknown implementations, DLL entry points, and so forth) out of
C++ templates and moves the boilerplate into injected code. That is, by declaring a few
attributes before some C++ code, you can have the compiler and linker provide the boilerplate
code.

If you go back and take a look at the listing for ClassicATLDiceControl, you’ll see
CComObjectRootEx and CComCoClass templates in the declaration. The following listing
shows the attributed version of the same control (the dice control).

// IAttributedATLDiceControl
[
 object,
 uuid(5321A066-9E3A-4412-A11A-32D5ED060146),
 dual,
 helpstring("IAttributedATLDiceControl Interface"),
 pointer_default(unique)
]
__interface IAttributedATLDiceControl : public IDispatch
{
 [propput, bindable, requestedit, id(DISPID_BACKCOLOR)]
 HRESULT BackColor([in]OLE_COLOR clr);
 [propget, bindable, requestedit, id(DISPID_BACKCOLOR)]
 HRESULT BackColor([out,retval]OLE_COLOR* pclr);
 [propget, id(1), helpstring("property DiceColor")]
 HRESULT DiceColor([out, retval] SHORT* pVal);
 [propput, id(1), helpstring("property DiceColor")]
 HRESULT DiceColor([in] SHORT newVal);
 [propget, id(2), helpstring("property TimesToRoll")]
 HRESULT TimesToRoll([out, retval] SHORT* pVal);
 [propput, id(2), helpstring("property TimesToRoll")]
 HRESULT TimesToRoll([in] SHORT newVal);
 [id(3), helpstring("method RollDice")] HRESULT RollDice(void);
};

// _IAttributedATLDiceControlEvents
[
 uuid("4AB0D205-044E-4641-A0A5-B606D8685FE5"),
 dispinterface,
 helpstring("_IAttributedATLDiceControlEvents Interface")
]
__interface _IAttributedATLDiceControlEvents
{
 [id(1), helpstring("method Doubles")] HRESULT Doubles(SHORT n);
 [id(2), helpstring("method SnakeEyes")] HRESULT SnakeEyes(void);
 [id(3), helpstring("method DiceRolled")] HRESULT DiceRolled

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [id(3), helpstring("method DiceRolled")] HRESULT DiceRolled
 (SHORT x, SHORT y);
};

// CAttributedATLDiceControl
[
 coclass,
 threading("apartment"),
 vi_progid("AttributedATLDiceSvr.AttributedATLDiceC"),
 progid("AttributedATLDiceSvr.AttributedATLDic.1"),
 version(1.0),
 uuid("48350572-BE82-4FBB-AA6F-B4691E30173A"),
 helpstring("AttributedATLDiceControl Class"),
 event_source("com"),
 support_error_info(IAttributedATLDiceControl),
 registration_script("control.rgs")
]
class ATL_NO_VTABLE CAttributedATLDiceControl :
 public CStockPropImpl<CAttributedATLDiceControl,
 IAttributedATLDiceControl>,
 public IPersistStreamInitImpl<CAttributedATLDiceControl>,
 public IOleControlImpl<CAttributedATLDiceControl>,
 public IOleObjectImpl<CAttributedATLDiceControl>,
 public IOleInPlaceActiveObjectImpl<CAttributedATLDiceControl>,
 public IViewObjectExImpl<CAttributedATLDiceControl>,
 public IOleInPlaceObjectWindowlessImpl<CAttributedATLDiceControl>,
 public IPersistStorageImpl<CAttributedATLDiceControl>,
 public ISpecifyPropertyPagesImpl<CAttributedATLDiceControl>,
 public IQuickActivateImpl<CAttributedATLDiceControl>,
 public IDataObjectImpl<CAttributedATLDiceControl>,
 public CComControl<CAttributedATLDiceControl>
{
public:

 __event __interface _IAttributedATLDiceControlEvents;
//Fire events:
 HRESULT Fire_Doubles(short x)
 {
 __raise Doubles(x);
 return S_OK;
 }

 HRESULT Fire_DiceRolled(short x, short y)
 {
 __raise DiceRolled(x, y);
 return S_OK;
 }

 HRESULT Fire_SnakeEyes()
 {
 __raise SnakeEyes();
 return S_OK;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The CComCoClass and the CComObjectRootEx template classes are missing from the
attributed version of the control. Other COM boilerplate code pulled in through the attributes
declared includes an implementation of ISupportErrorInfo, connection point support, and an
implementation of IProvideClassInfo2. Otherwise, the rest of the control is pretty much the
same with the exception of managing events.

Control Events in Attributed ATL

Take a look at the previous listing for the attributed ATL control. In addition to declaring the
main dice interface, the listing declares an event interface (the one with methods for telling the
client code about the dice being rolled, snake eyes, and doubles). To declare the
_IAttributedATLDiceControlEvents interface as the control’s event interface, attributed ATL
uses the keywords __event __interface together.

Unfortunately, the code wizards available from Class View’s properties window won’t write
the event proxies for you—that you must do by hand. Notice the hand-coded methods
Fire_DiceRolled, Fire_Doubles, and Fire_SnakeEyes in the previous code listing. To fire the
event off to the client code, you simply raise the event using the __raise keyword before
calling the event method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 27
The OLE DB Templates

The modern way to approach database access is through OLE DB. This chapter covers the
OLE DB templates—the mechanism that Microsoft Visual C++ .NET provides for accessing
data through OLE DB directly. OLE DB is designed to provide access to all types of data
within a system, and it uses the Component Object Model (COM) to accomplish this. OLE DB
is fairly flexible—it covers all the main SQL functionality, and it defines interfaces that are
suitable for gaining access to non-SQL types of data.

OLE DB data access has two major parts: consumers and providers. We’ll take a look at the
basic OLE DB architecture and then examine how the consumer templates work, and then
we’ll look at how the provider-side templates work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why OLE DB?

OLE DB exists to provide a uniform way to access all sorts of disparate data sources. For
example, imagine all the types of data sources you might find in a typical organization. These
might include sources as varied as production systems, file systems, spreadsheets, personal
databases (such as Xbase and Btrieve), and e-mail. The problem is that each of these sources
requires its own protocol. If you want to access data from a specific source, you have to learn
the protocol for managing the data source. (Ugh!) OLE DB is the middle layer that provides
uniform access to various data sources. With OLE DB, client-side developers have to
concentrate on only a few details to get access to data (instead of needing to know many
different database access protocols).

The most important thing to realize about OLE DB is that it is built on COM. In other words,
OLE DB is a set of interfaces for accessing data through COM. The OLE DB interfaces are
general enough to provide a uniform means of accessing data, regardless of the method that is
used to store the data. For example, developers use the same OLE DB interfaces to get to data
without having to be concerned about whether data is stored in a database management system
(DBMS) or a non-DBMS information source. At the same time, OLE DB lets developers
continue to take advantage of the benefits of the underlying database technology (such as
speed and flexibility) without having to move data around just to access those benefits.

As mentioned earlier, at the highest level the OLE DB architecture consists of consumers and
providers. A consumer is any bit of system or application code that uses an OLE DB interface.
This includes OLE DB components themselves. A provider is any software component that
exposes an OLE DB interface.

There are two types of OLE DB providers: data providers and service providers. The names
are pretty self-explanatory. Data providers own data and expose that data in a tabular form as a
rowset. (A rowset is just an abstraction for exposing data in a tabular form.) Examples of data
providers include relational DBMSs, storage managers, spreadsheets, and indexed sequential
access method (ISAM) databases.

A service provider is any OLE DB component that does not own data but encapsulates some
service by massaging data through OLE DB interfaces. In one sense, a service component is
both a consumer and a provider. For example, a heterogeneous query processor is a service
component. If a consumer tries to join data from tables in two different data sources, as a
consumer the query processor will retrieve rows from rowsets created over each of the base
tables, and as a provider the query processor will create a rowset from these rows and return it
to the consumer.

To sum up, there are many kinds of data and numerous ways of accessing that data in the real
world, and many developers understand how to manipulate data using standard database
management techniques. OLE DB defines an architecture that “componentizes” data access.
As a component DBMS, OLE DB offers greater efficiency than traditional DBMSs by
separating database functionality into the roles of consumers and producers. Because data
consumers generally require only a portion of the database management functionality, OLE
DB separates that functionality, thereby reducing client-side resource overhead.

OLE DB also reduces the burden on the provider side—providers need to worry only about
providing data (not about any client-side junk). For example, OLE DB allows a simple tabular

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

providing data (not about any client-side junk). For example, OLE DB allows a simple tabular
data provider to implement functionality that’s native to its data store and provide a singular
access protocol to get to the data. That way, a minimal implementation of a provider can
choose to use only the interfaces that expose data as tables. This allows for the development of
completely different query processor components that can consume tabular information from
any provider that exposes its data through OLE DB. In addition, SQL DBMSs can expose
their functionality in a more layered manner by using the OLE DB interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Basic OLE DB Architecture

In addition to defining a basic relationship between consumers and providers, OLE DB defines
the following components that make up the OLE DB architecture. (Each component is a COM
object.)

EnumeratorsEnumerators search for available data sources. Consumers that are not
hardwired for a particular data source employ enumerators to search for a data source to
use.

Data source objectsThese contain the machinery to connect to a data source (such as a
file or a DBMS). A data source object generates sessions.

Sessions Sessions represent connections to a database. For example, sessions provide a
context for database transactions. A single data source object can create multiple
sessions. Sessions generate transactions, commands, and rowsets.

Transaction objectsThese are used for managing database transactions in order to
maintain database security.

CommandsCommands execute text commands, such as SQL statements. If the text
command specifies a rowset, such as a SQL SELECT statement, the command will
generate rowsets. A single session can create multiple commands.

RowsetsRowsets expose data in a tabular format. A special case of a rowset is an index.
Rowsets can be created from the session or the command.

ErrorsErrors can be created by any interface on any OLE DB object. They contain
additional information about an error, including an optional custom error object.

Here’s an example of how you might apply these components to create an OLE DB consumer.
If you aren’t sure where the data source is, you might first use an enumerator to find it. Once
you’ve located a data source, you can create a session with it. The session will let you access
the data as rowsets as well as create commands that generate rowsets.

The upside of using the OLE DB architecture is that you get a homogenous way to access
heterogeneous data sources. The downside is that you have to implement a bunch of COM
interfaces to make that happen. That’s why the OLE DB templates exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Basic OLE DB Template Architecture

Now that you understand the basic architecture behind OLE DB, let’s look at a specific
implementation of the OLE DB interfaces (provided by the new OLE DB consumer and
provider templates). Like most other COM-based technologies, OLE DB involves
implementing a bunch of interfaces. Of course, just as with ActiveX controls, you can choose
to implement them by hand (which is often an inefficient approach—unless you’re just trying
to understand the technology inside-out) or you can find someone else to do most of the dirty
work. While OLE DB is a rich and powerful data access technology, getting it up and running
by hand is a somewhat tedious task.

Just as Visual C++ .NET provides a template library (the Active Template Library) for
implementing ActiveX controls, Visual C++ .NET provides a template library that helps you
manage OLE DB. The OLE DB template library provides classes that implement many of the
commonly used OLE DB interfaces. In addition, Visual C++ .NET provides great wizard
support for generating code to apply to common scenarios.

At a high level, you can divide the classes in this template library into the two groups defined
by OLE DB itself: the consumer classes and the provider classes. The consumer classes help
you implement database client (consumer) applications, and the provider classes help you
implement database server (provider) applications. Remember that OLE DB consumers are
applications that call the COM interfaces exposed by OLE DB service providers (regular
providers) to access data. OLE DB providers are COM servers that provide data and services
in a form that a consumer can understand.

The OLE DB Consumer Template Architecture

Microsoft has kept the top-layer classes in the OLE DB consumer templates as close to the
OLE DB specification as possible. That is, OLE DB templates don’t define another object
model. They simply wrap the existing OLE DB object model. For each of the consumer-
related components discussed in the previous section, you’ll find a corresponding C++
template class. This design philosophy leverages the flexibility of OLE DB and allows more
advanced features—such as multiple accessors on rowsets—to be available through the OLE
DB templates.

The OLE DB templates are small and flexible. They’re implemented using C++ templates and
multiple inheritance. Because OLE DB templates are close to the metal (they wrap only the
existing OLE DB architecture), each class mirrors an existing OLE DB component. For
example, CDataSource corresponds to the data source object in OLE DB.

The OLE DB consumer template architecture can be divided into three parts: the general data
source support classes, classes for supporting data access and rowset operations, and classes
for handling tables and commands. A quick summary of these classes follows.

General Data Source Support

The data source (where the data comes from) is the most fundamental concept underlying data
access using OLE DB. Of course, the OLE DB templates have support for data sources.
General data source support comprises three classes, as described in the following table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class Description

CDataSource This class represents the data source component and manages the connection
to a data source.

CEnumerator This class provides a way to select a provider by cycling through a list of
providers. Its functionality is equivalent to the SQLBrowseConnect and
SQLDriverConnect functions.

CSession This class handles transactions. You can use it to create rowsets, commands,
and many other objects. A CDataSource object creates a CSession object
using the CSession::Open method.

Data Access and Rowset Support

The OLE DB templates provide binding and rowset support through several classes. The
accessor classes talk to the data source, and the rowset manages the data in tabular form. The
data access and rowset components are implemented through the CAccessorRowset class.
CAccessorRowset is a template class that’s specialized on an accessor and a rowset. This class
can handle multiple accessors of different types.

The OLE DB template library defines the accessors listed in the following table.

Class Description

CAccessor This class is used when a record is statically bound to a data
source—it contains the preexisting data buffer and
understands the data format up front. You use CAccessor
when you know the structure and the type of the database
ahead of time.

CDynamicAccessor This class is used for retrieving data from a source whose
structure is not known at design time. This class uses
IColumnsInfo:: GetColumnInfo to get the database column
information. CDynamicAccessor creates and manages the
data buffer.

CDynamicParameterAccessor This class is similar to CDynamicAccessor except that it’s
used with commands. When used to prepare commands,
CDynamicParameterAccessor can get parameter
information from the ICommandWithParameters interface.
This is especially useful for handling unknown command
types.

CManualAccessor This class lets you access any data types you want as long
as the provider can convert the type. CManualAccessor
handles both result columns and command parameters.

Along with the accessors, the OLE DB templates define three types of rowsets: single-
fetching, bulk, and array. These are fairly self-explanatory. Clients use a function named
MoveNext to navigate through the data. The difference between the single-fetching, bulk, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MoveNext to navigate through the data. The difference between the single-fetching, bulk, and
array rowsets lies in the number of row handles retrieved when MoveNext is called. Single-
fetching rowsets retrieve a single rowset for each call to MoveNext, and bulk rowsets fetch
multiple rows. Array rowsets provide a convenient array syntax for fetching data. The OLE
DB templates provide the single row-fetching capability by default.

Table and Command Support

The final layer in the OLE DB consumer template architecture consists of two more classes:
table and command classes (CTable and CCommand). These classes are used to open the
rowset, execute commands, and initiate bindings. Both classes derive from CAccessorRowset.

The CTable class is a minimal class implementation that opens a table on a data source (which
you can specify programmatically). You should use this class when you need bare-bones
access to a source; CTable is designed for simple providers that do not support commands.

Other data sources do support commands. For those sources, you should use the OLE DB
templates’ CCommand class. As its name implies, CCommand is used mostly for executing
commands. This class has a function named Open that executes singular commands. This class
also has a function named Prepare for setting up a command to execute multiple times.

When you use the CCommand class, you specialize it using three template arguments: an
accessor, a rowset, and a third template argument (which defaults to CNoMultipleResults). If
you specify CMultipleResults for the third argument, the CCommand class will support the
IMultipleResults interface for a command that returns multiple rowsets.

The OLE DB Provider Template Architecture

Remember that OLE DB is really just a set of interfaces that specify a protocol for managing
data. OLE DB defines several interfaces (some mandatory and others optional) for the
following types of objects: data source, session, rowset, and command. Let’s discuss each type
in turn and look at code snippets that show how the templates bring in the correct functionality
for each component.

The Data Source Object

A data source object wraps most aspects of data access. For example, a data source consists of
actual data and its associated DBMS, the platform on which the DBMS exists, and the
network used to access that platform. A data source is just a COM object that implements a
bunch of interfaces, as shown in Table 27-1.

NOTE
The upcoming tables describing interface requirements were compiled from the
Visual Studio .NET MSDN Online Help.

Table 27-1. Data Source Object Interface
Requirements

Interface Required? Implemented?

IDBInitialize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDBInitialize

IDBCreateSession

IDBProperties

IPersist

IDBDataSourceAdmin

IDBInfo

IPersistFile

ISupportErrorInfo

Here’s a code snippet showing the code inserted by the ATL OLE DB Provider Wizard when
you create a data source for an OLE DB provider:

class ATL_NO_VTABLE CAProviderSource :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAProviderSource, &CLSID_AProvider>,
 public IDBCreateSessionImpl<CAProviderSource, CAProviderSession>,
 public IDBInitializeImpl<CAProviderSource>,
 public IDBPropertiesImpl<CAProviderSource>,
 public IPersistImpl<CAProviderSource>,
 public IInternalConnectionImpl<CAProviderSource>
{

};

Notice that this is a normal COM class (with ATL’s IUnknown implementation). The OLE DB
data source object brings in implementations of the IDBCreateSession, IDBInitialize,
IDBProperties, and IPersist interfaces through inheritance. Notice how the templates are
specialized on the CAProviderSource and CAProviderSession classes. If you decide to add
more functionality to your class, you can do so by inheriting from one of the OLE DB
interface implementation classes.

The Command Object

Providers that support building and executing queries expose a command object. Command
objects specify, prepare, and execute a database manipulation language (DML) query or data
definition language (DDL) definition and its associated properties. For example, the command
object translates a SQL-type command into an operation specific to the data source. A single
session can be associated with multiple commands. Table 27-2 lists the interfaces used in a
command object.

Here’s a code snippet showing the code that the ATL OLE DB Provider Wizard inserts to
implement a command object when you create an OLE DB provider:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ATL_NO_VTABLE CAProviderCommand :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IAccessorImpl<CAProviderCommand>,
 public ICommandTextImpl<CAProviderCommand>,
 public ICommandPropertiesImpl<CAProviderCommand>,
 public IObjectWithSiteImpl<CAProviderCommand>,
 public IConvertTypeImpl<CAProviderCommand>,
 public IColumnsInfoImpl<CAProviderCommand>,
 public IInternalCommandConnectionImpl<CAProviderCommand>

{

};

As with the data source, notice that this is just a regular COM class. This class brings in the
required interfaces through inheritance. (For example, IAccessor comes in through the
IAccessorImpl template.) A command object uses IAccessor to specify parameter bindings.
Consumers call IAccessor::CreateAccessor, passing an array of DBBINDING structures.
DBBINDING contains information on the column bindings (type, length, and so on). The
provider receives the structures and determines how the data should be transferred and
whether conversions are necessary.

The ICommandText interface provides a way to specify a text command. The
ICommandProperties interface handles all of the command properties.

The command class is the heart of the data provider. Most of the action happens within this
class.

Table 27-2. Command Object Interface Requirements
Interface Required? Implemented?

IAccessor

IColumnsInfo

ICommand

ICommandProperties

ICommandText

IConvertType

IColumnsRowset

ICommandPrepare

ICommandWithParameters

ISupportErrorInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Session Object

Session objects define the scope of a transaction and generate rowsets from the data source.
Session objects also generate command objects. The command object executes commands on
the rowset. For providers that support commands, the session acts as a command factory.
Calling IDBCreateSession::CreateSession creates a session from the data source object. A
single data source object can be associated with many sessions. Table 27-3 lists the interfaces
found on a session object.

Table 27-3. Session Object Interface Requirements
Interface Required? Implemented?

IGetDataSource

IOpenRowset

ISessionProperties

IDBCreateCommand

IDBSchemaRowset

IIndexDefinition

ISupportErrorInfo

ITableDefinition

ITransactionJoin

ITransactionLocal

ITransactionObject

Here’s a code snippet showing the code that the ATL OLE DB Provider Wizard inserts to
implement a session object when you create an OLE DB provider:

class ATL_NO_VTABLE CAProviderSession :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IGetDataSourceImpl<CAProviderSession>,
 public IOpenRowsetImpl<CAProviderSession>,
 public ISessionPropertiesImpl<CAProviderSession>,
 public IObjectWithSiteSessionImpl<CAProviderSession>,
 public IDBSchemaRowsetImpl<CAProviderSession>,
 public IDBCreateCommandImpl<CAProviderSession, CAProviderCommand>
{

};

The Rowset Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A rowset object represents tabular data. At the raw OLE DB level, rowsets are generated by
calling IOpenRowset::OpenRowset on the session. For providers that support commands,
rowsets are used to represent the results of row-returning queries. In addition to
IOpenRowset::OpenRowset, OLE DB has a number of other methods that return rowsets. For
example, the schema functions return rowsets. Single sessions can be associated with multiple
rowsets. In addition, single command objects can be associated with multiple rowsets. Table
27-4 lists the interfaces associated with the rowset object.

Table 27-4. Rowset Object Interface Requirements
Interface Required? Implemented?

IAccessor

IColumnsInfo

IConvertType

IRowset

IRowsetInfo

IColumnsRowset

IConnectionPointContainer (through ATL)

IRowsetChange

IRowsetIdentity (for Level 0)

IRowsetLocate

IRowsetResynch

IRowsetScroll

IRowsetUpdate

ISupportErrorInfo

Here’s a code snippet showing the code that the ATL OLE DB Provider Wizard inserts to
implement a rowset object when you create an OLE DB provider:

class CAProviderWindowsFile:
 public WIN32_FIND_DATA
{
public:

BEGIN_PROVIDER_COLUMN_MAP(CAProviderWindowsFile)
 PROVIDER_COLUMN_ENTRY("FileAttributes", 1, dwFileAttributes)
 PROVIDER_COLUMN_ENTRY("FileSizeHigh", 2, nFileSizeHigh)
 PROVIDER_COLUMN_ENTRY("FileSizeLow", 3, nFileSizeLow)
 PROVIDER_COLUMN_ENTRY_STR("FileName", 4, cFileName)
 PROVIDER_COLUMN_ENTRY_STR("AltFileName", 5, cAlternateFileName)
END_PROVIDER_COLUMN_MAP()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END_PROVIDER_COLUMN_MAP()

};

class CAProviderRowset :
 public CRowsetImpl< CAProviderRowset,
 CAProviderWindowsFile,
 CAProviderCommand>
{

};

The wizard-generated rowset object implements the IAccessor, IRowset, and IRowsetInfo
interfaces, among others. IAccessorImpl binds both output columns. The IRowset interface
fetches rows and data. The IRowsetInfo interface handles the rowset properties. The
CWindowsFile class represents the user record class. The class generated by the wizard is
really just a placeholder—it doesn’t do much. When you decide on the column format of your
data provider, this is the class you’ll modify.

How the Provider Parts Work Together

The purpose of the first part of the architecture—the data source—should be obvious. Every
provider must include a data source object. When a consumer application needs data, the
consumer calls CoCreateInstance to create the data source object and start the provider.
Within the provider, the data source object creates a session object using the
IDBCreateSession interface. The consumer uses this interface to connect to the data source
object.

The command object does most of the work. To make the data provider actually do something,
you modify the command class’s Execute function.

Like most COM-based protocols, the OLE DB protocol makes sense once you’ve examined it
for a while. Also, like most COM-based protocols, the OLE DB protocol involves a good
amount of code to get going—code that could be easily implemented by some sort of
framework. That’s what the data consumer and data provider templates are all about. The rest
of the chapter shows you what you need to do to create data consumers and data providers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an OLE DB Consumer

Creating an OLE DB consumer is pretty straightforward—most of the support comes through
the ATL OLE DB Consumer Wizard. You can see an example of a consumer in the Ex27
folder on the companion CD. Here are the steps for creating a consumer using the ATL OLE
DB Consumer Wizard:

1. Create an application or a control to drive the data consumption. For example, you
might want to create an ActiveX control.

2. While you’re in Visual Studio .NET, use the ATL OLE DB Consumer Wizard (shown
in Figure 27-1) to insert a data consumer. (Choose Add Class from the Project menu and
then select ATL OLE DB Consumer from the class templates.)

3. On the wizard’s only page, name the class, select the data source, and specify a table or
command object and the kinds of updates (change, insert, delete) to be supported in the
consumer.

Figure 27-1. The ATL OLE DB Consumer Wizard.

4. Click the Data Source button to configure the data consumer. Once you’ve selected a
data source, click OK. The wizard will create an OLE DB consumer template for you.

As an example, we took a Microsoft Access database named Biblio.mdb and made a data
consumer out of it. The Biblio database includes the titles and the authors of various
programming texts. Using the ATL OLE DB Consumer Wizard to create the OLE DB
consumer template for the authors in the database yielded these classes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Authors.h : Declaration of the CAuthors
#pragma once

// code generated on Wednesday, April 17, 2002, 10:25 AM
class CAuthorsAccessor
{
public:
 LONG m_Au_ID;
 TCHAR m_Author[51];
 SHORT m_YearBorn;

 // The following wizard-generated data members contain status
 // values for the corresponding fields in the column map. You
 // can use these values to hold NULL values that the database
 // returns or to hold error information when the compiler returns
 // errors. See Field Status Data Members in Wizard-Generated
 // Accessors in the Visual C++ documentation for more information
 // on using these fields.
 // NOTE: You must initialize these fields
 // before setting/inserting data!

 DBSTATUS m_dwAu_IDStatus;
 DBSTATUS m_dwAuthorStatus;
 DBSTATUS m_dwYearBornStatus;

 // The following wizard-generated data members contain length
 // values for the corresponding fields in the column map.
 // NOTE: For variable-length columns, you must initialize these
 // fields before setting/inserting data!

 DBLENGTH m_dwAu_IDLength;
 DBLENGTH m_dwAuthorLength;
 DBLENGTH m_dwYearBornLength;

 void GetRowsetProperties(CDBPropSet* pPropSet)
 {
 pPropSet->AddProperty(DBPROP_CANFETCHBACKWARDS,
 true, DBPROPOPTIONS_OPTIONAL);
 pPropSet->AddProperty(DBPROP_CANSCROLLBACKWARDS,
 true, DBPROPOPTIONS_OPTIONAL);
 pPropSet->AddProperty(DBPROP_IRowsetChange,
 true, DBPROPOPTIONS_OPTIONAL);
 pPropSet->AddProperty(DBPROP_UPDATABILITY,
 DBPROPVAL_UP_CHANGE │ DBPROPVAL_UP_INSERT
 │ DBPROPVAL_UP_DELETE);
 }

 HRESULT OpenDataSource()
 {
 CDataSource _db;
 HRESULT hr;
 // Here goes the _db.OpenFromInitializationString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (FAILED(hr))
 {
#ifdef _DEBUG
 AtlTraceErrorRecords(hr);
#endif
 return hr;
 }
 return m_session.Open(_db);
 }

 void CloseDataSource()
 {
 m_session.Close();
 }

 operator const CSession&()
 {
 return m_session;
 }

 CSession m_session;
 DEFINE_COMMAND_EX(CAuthorsAccessor, L" \
 SELECT \
 Au_ID, \
 Author, \
 'Year Born' \
 FROM Authors")

 BEGIN_COLUMN_MAP(CAuthorsAccessor)
 COLUMN_ENTRY_LENGTH_STATUS(1, m_Au_ID,
 m_dwAu_IDLength, m_dwAu_IDStatus)
 COLUMN_ENTRY_LENGTH_STATUS(2,
 m_Author, m_dwAuthorLength, m_dwAuthorStatus)
 COLUMN_ENTRY_LENGTH_STATUS(3,
 m_YearBorn, m_dwYearBornLength, m_dwYearBornStatus)
 END_COLUMN_MAP()
};

class CAuthors : public CCommand<CAccessor<CAuthorsAccessor> >
{
public:
 HRESULT OpenAll()
 {
 HRESULT hr;
 hr = OpenDataSource();
 if (FAILED(hr))
 return hr;
 __if_exists(GetRowsetProperties)
 {
 CDBPropSet propset(DBPROPSET_ROWSET);
 __if_exists(HasBookmark)
 {
 propset.AddProperty(DBPROP_IRowsetLocate, true);
 }
 GetRowsetProperties(&propset);
 return OpenRowset(&propset);
 }
 __if_not_exists(GetRowsetProperties)
 {
 __if_exists(HasBookmark)
 {
 CDBPropSet propset(DBPROPSET_ROWSET);
 propset.AddProperty(DBPROP_IRowsetLocate, true);
 return OpenRowset(&propset);
 }
 }
 return OpenRowset();
 }

 HRESULT OpenRowset(DBPROPSET *pPropSet = NULL)
 {
 HRESULT hr = Open(m_session, L"Authors", pPropSet);
#ifdef _DEBUG
 if(FAILED(hr))
 AtlTraceErrorRecords(hr);
#endif
 return hr;
 }

 void CloseAll()
 {
 Close();
 ReleaseCommand();
 CloseDataSource();
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

The CAuthorsAccessor class defines the structure of the author record. Notice that the class
includes an author ID field, a name field, and a field indicating when the author was born.

The CAuthors class represents the actual data consumer class that connects to the database.
Notice that it’s derived from CCommand. Remember that command objects represent a
command (such as a SQL statement) and generate rowsets. The COLUMN_MAP represents
data returned in the rowset. The PARAM_MAP represents parameter data for a command.

The column maps and the parameter maps represent the user’s view of the accessor. As with
many data structures in ATL and MFC, these maps are built up with macros. Here’s how the
maps work: Data returned by a database is contained in a contiguous block of memory. OLE
DB templates work with this block of memory to extract the data. The data members in the
entries represent offsets into that block of memory. The entries in the maps filter out the data
from the database. That way, the developer doesn’t have to worry about doing anything funky
like performing pointer arithmetic on the block to get information.

Using the OLE DB Consumer Code

Using the database consumer class is just about as easy as creating it. Here’s how to take
advantage of the database consumer class:

1. Declare an instance of CAuthors wherever you need to use it:

class CUseAuthors : public CDialog {
 CAuthors m_authors;

};

2. Open the Authors table by calling Open on the database consumer object:

CUseAuthors::OnInitDialog() {
 m_authors.Open();
}

3. Use member functions to navigate through and manipulate the database. Here’s a short
sampling of some of the things you can do:

CUseAuthors::OnNext() {
 m_authors.MoveNext();
}
CUseAuthors::OnFirst() {
 m_authors.MoveFirst();
}
CUseAuthors::OnLast() {
 m_authors.MoveLast();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}
CUseAuthors::OnInsert() {
 m_authors.Insert();
}

4. As you navigate through the database, the data will end up in the member variables. For
example, to find out the name of the next author in the database, you use code that looks
like this:

m_authors.MoveNext();
m_strAuthorName = m_authors.m_Author;

As you can see, using the templates greatly simplifies getting the data out of the database. All
you need to do is find the database, point the ATL OLE DB Consumer Wizard to it, and get
the wizard to generate your code. You can then use accessor class functions to move around
the database and fetch the data. The other half of the OLE DB template equation is the data
provider, which we’ll discuss next.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating an OLE DB Provider

It’s pretty obvious how OLE DB consumers are useful. You just ask a wizard to create a
wrapper for you, and you get a fairly easy way to access the data in a database. However, it
might be a bit less obvious why you’d want to create an OLE DB provider.

Writing an OLE DB provider allows you to insert a layer between a client of some data and
the data itself. Here are just a few reasons you might want to write a provider:

Writing an OLE DB provider means that clients don’t necessarily touch the data
directly. Therefore, you can add additional capabilities to your data, such as query
processing.

In some cases, writing an OLE DB provider allows you to increase data access
performance by controlling how the data is manipulated.

Adding an OLE DB provider layer increases the potential audience of your data. For
example, if you have a proprietary data format that can be accessed by only one
programming language, you have a single point of failure. OLE DB providers give you
a way to open that proprietary format to a wider variety of programmers, regardless of
the programming language they use.

Working with the OLE DB providers is similar to working with the OLE DB consumers. The
wizards do a lot of the work for you. You just need to know how to work with the generated
classes. The steps for creating an OLE DB provider are as follows:

1. Decide what you want the provider to do. Remember the philosophy behind OLE DB:
It’s all about providing a singular way to access multiple data sources. For example, you
might want to write a provider that recursively enumerates the contents of a structured
storage file. Or you might want a provider that sifts through e-mail folders and allows
clients database-style access to your e-mail system. The possibilities are nearly endless.

2. Use the ATL OLE DB Provider Wizard to create a provider. (Choose Add Class from
the Project menu, and then select ATL OLE DB Provider from the class templates.) The
wizard will ask you to provide a name for your object and will allow you to modify the
default names for the files it will create.

3. After you click Finish, the ATL OLE DB Provider Wizard will create the code for a
provider, including a data source, a rowset, and a session. A provider also supports one
or more properties, which are defined in property maps within the files created by the
wizard. When the wizard creates the files, it inserts maps for the properties belonging to
the OLE DB property group that was defined for the object or objects included in those
files. For example, the header file containing the data source object also contains the
property map for the data source properties. The session header file contains the
property map for the session properties. Finally, the rowset and command objects reside
in a single header file, which includes properties for the command object.

For example, let’s look at what the ATL OLE DB Provider Wizard produces for an OLE DB
provider named AProvider. First, the wizard creates a data source object, which lives in a file
named AProviderDS.h:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class ATL_NO_VTABLE CAProviderSource :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CAProviderSource, &CLSID_AProvider>,
 public IDBCreateSessionImpl<CAProviderSource, CAProviderSession>,
 public IDBInitializeImpl<CAProviderSource>,
 public IDBPropertiesImpl<CAProviderSource>,
 public IPersistImpl<CAProviderSource>,
 public IInternalConnectionImpl<CAProviderSource>
{
public:
 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return FInit();
 }

 void FinalRelease()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_APROVIDER)
BEGIN_COM_MAP(CAProviderSource)
 COM_INTERFACE_ENTRY(IDBCreateSession)
 COM_INTERFACE_ENTRY(IDBInitialize)
 COM_INTERFACE_ENTRY(IDBProperties)
 COM_INTERFACE_ENTRY(IPersist)
 COM_INTERFACE_ENTRY(IInternalConnection)
END_COM_MAP()

BEGIN_PROPSET_MAP(CAProviderSource)
 BEGIN_PROPERTY_SET(DBPROPSET_DATASOURCEINFO)
 PROPERTY_INFO_ENTRY(ACTIVESESSIONS)
 PROPERTY_INFO_ENTRY(DATASOURCEREADONLY)
 PROPERTY_INFO_ENTRY(BYREFACCESSORS)
 PROPERTY_INFO_ENTRY(OUTPUTPARAMETERAVAILABILITY)
 PROPERTY_INFO_ENTRY(PROVIDEROLEDBVER)
 PROPERTY_INFO_ENTRY(DSOTHREADMODEL)
 PROPERTY_INFO_ENTRY(SUPPORTEDTXNISOLEVELS)
 PROPERTY_INFO_ENTRY(USERNAME)
 END_PROPERTY_SET(DBPROPSET_DATASOURCEINFO)
 BEGIN_PROPERTY_SET(DBPROPSET_DBINIT)
 PROPERTY_INFO_ENTRY(AUTH_PASSWORD)
 PROPERTY_INFO_ENTRY(AUTH_PERSIST_SENSITIVE_AUTHINFO)
 PROPERTY_INFO_ENTRY(AUTH_USERID)
 PROPERTY_INFO_ENTRY(INIT_DATASOURCE)
 PROPERTY_INFO_ENTRY(INIT_HWND)
 PROPERTY_INFO_ENTRY(INIT_LCID)
 PROPERTY_INFO_ENTRY(INIT_LOCATION)
 PROPERTY_INFO_ENTRY(INIT_MODE)
 PROPERTY_INFO_ENTRY(INIT_PROMPT)
 PROPERTY_INFO_ENTRY(INIT_PROVIDERSTRING)
 PROPERTY_INFO_ENTRY(INIT_TIMEOUT)
 END_PROPERTY_SET(DBPROPSET_DBINIT)
 CHAIN_PROPERTY_SET(CAProviderSession)
 CHAIN_PROPERTY_SET(CAProviderCommand)
END_PROPSET_MAP()

public:
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

In addition to the data object, the ATL OLE DB Provider Wizard produces a command object
and a rowset that both live in AProviderRS.h:

class ATL_NO_VTABLE CAProviderCommand :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IAccessorImpl<CAProviderCommand>,
 public ICommandTextImpl<CAProviderCommand>,
 public ICommandPropertiesImpl<CAProviderCommand>,
 public IObjectWithSiteImpl<CAProviderCommand>,
 public IConvertTypeImpl<CAProviderCommand>,
 public IColumnsInfoImpl<CAProviderCommand>,
 public IInternalCommandConnectionImpl<CAProviderCommand>

{
public:

BEGIN_COM_MAP(CAProviderCommand)
 COM_INTERFACE_ENTRY(ICommand)
 COM_INTERFACE_ENTRY(IObjectWithSite)
 COM_INTERFACE_ENTRY(IAccessor)
 COM_INTERFACE_ENTRY(ICommandProperties)
 COM_INTERFACE_ENTRY2(ICommandText, ICommand)
 COM_INTERFACE_ENTRY(IColumnsInfo)
 COM_INTERFACE_ENTRY(IConvertType)
 COM_INTERFACE_ENTRY(IInternalConnection)
END_COM_MAP()

// ICommand
public:

 HRESULT FinalConstruct()
 {
 HRESULT hr = CConvertHelper::FinalConstruct();
 if (FAILED (hr))
 return hr;
 hr = IAccessorImpl<CAProviderCommand>::FinalConstruct();
 if (FAILED(hr))
 return hr;
 return CUtlProps<CAProviderCommand>::FInit();
 }
 void FinalRelease()
 {
 IAccessorImpl<CAProviderCommand>::FinalRelease();
 }

 HRESULT WINAPI Execute(IUnknown * pUnkOuter,
 REFIID riid, DBPARAMS * pParams,
 LONG * pcRowsAffected, IUnknown ** ppRowset);

 static ATLCOLUMNINFO* GetColumnInfo(CAProviderCommand* pv,
 ULONG* pcInfo)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ULONG* pcInfo)
 {
 return CAProviderWindowsFile::GetColumnInfo(pv, pcInfo);
 }

BEGIN_PROPSET_MAP(CAProviderCommand)
 BEGIN_PROPERTY_SET(DBPROPSET_ROWSET)
 PROPERTY_INFO_ENTRY(IAccessor)
 PROPERTY_INFO_ENTRY(IColumnsInfo)
 PROPERTY_INFO_ENTRY(IConvertType)
 PROPERTY_INFO_ENTRY(IRowset)
 PROPERTY_INFO_ENTRY(IRowsetIdentity)
 PROPERTY_INFO_ENTRY(IRowsetInfo)
 PROPERTY_INFO_ENTRY(IRowsetLocate)
 PROPERTY_INFO_ENTRY(BOOKMARKS)
 PROPERTY_INFO_ENTRY(BOOKMARKSKIPPED)
 PROPERTY_INFO_ENTRY(BOOKMARKTYPE)
 PROPERTY_INFO_ENTRY(CANFETCHBACKWARDS)
 PROPERTY_INFO_ENTRY(CANHOLDROWS)
 PROPERTY_INFO_ENTRY(CANSCROLLBACKWARDS)
 PROPERTY_INFO_ENTRY(LITERALBOOKMARKS)
 PROPERTY_INFO_ENTRY(ORDEREDBOOKMARKS)
 END_PROPERTY_SET(DBPROPSET_ROWSET)
END_PROPSET_MAP()

};

class CAProviderRowset :
 public CRowsetImpl< CAProviderRowset,
 CAProviderWindowsFile, CAProviderCommand>
{
public:

 HRESULT Execute(DBPARAMS * pParams, LONG* pcRowsAffected)
 {
 USES_CONVERSION;
 BOOL bFound = FALSE;
 HANDLE hFile;

 LPTSTR szDir =
 (m_strCommandText == _T("")) ? _T("*.*") :
 OLE2T(m_strCommandText);

 CAProviderWindowsFile wf;
 hFile = FindFirstFile(szDir, &wf);
 if (hFile == INVALID_HANDLE_VALUE)
 return DB_E_ERRORSINCOMMAND;
 LONG cFiles = 1;
 BOOL bMoreFiles = TRUE;
 while (bMoreFiles)
 {
 _ATLTRY
 {
 m_rgRowData.Add(wf);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 _ATLCATCH(e)
 {
 _ATLDELETEEXCEPTION(e)
 return E_OUTOFMEMORY;
 }
 bMoreFiles = FindNextFile(hFile, &wf);
 cFiles++;
 }
 FindClose(hFile);
 if (pcRowsAffected != NULL)
 *pcRowsAffected = cFiles;
 return S_OK;
 }
};

The wizard produces a session object in a file named AProviderSess.h, as shown in this code:

class ATL_NO_VTABLE CAProviderSession :
 public CComObjectRootEx<CComSingleThreadModel>,
 public IGetDataSourceImpl<CAProviderSession>,
 public IOpenRowsetImpl<CAProviderSession>,
 public ISessionPropertiesImpl<CAProviderSession>,
 public IObjectWithSiteSessionImpl<CAProviderSession>,
 public IDBSchemaRowsetImpl<CAProviderSession>,
 public IDBCreateCommandImpl<CAProviderSession, CAProviderCommand>
{
public:
 CAProviderSession()
 {
 }

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return FInit();
 }
 void FinalRelease()
 {
 }
 STDMETHOD(OpenRowset)(IUnknown *pUnk, DBID *pTID,
 DBID *pInID, REFIID riid,
 ULONG cSets, DBPROPSET rgSets[],
 IUnknown **ppRowset)
 {
 CAProviderRowset* pRowset;
 return CreateRowset(pUnk, pTID, pInID, riid, cSets,
 rgSets, ppRowset, pRowset);
 }

 void SetRestrictions(ULONG cRestrictions,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void SetRestrictions(ULONG cRestrictions,
 GUID* rguidSchema, ULONG* rgRestrictions)
 {
 for (ULONG l=0; l<cRestrictions; l++)
 {
 // We support restrictions on the table name but nothing else
 if (InlineIsEqualGUID(rguidSchema[l], DBSCHEMA_TABLES))
 rgRestrictions[l] = 0x04;
 else if (InlineIsEqualGUID(rguidSchema[l], DBSCHEMA_COLUMNS))
 rgRestrictions[l] = 0x04;
 else if (InlineIsEqualGUID(rguidSchema[l],
 DBSCHEMA_PROVIDER_TYPES))
 rgRestrictions[l] = 0x00;
 }
 }

BEGIN_PROPSET_MAP(CAProviderSession)
 BEGIN_PROPERTY_SET(DBPROPSET_SESSION)
 PROPERTY_INFO_ENTRY(SESS_AUTOCOMMITISOLEVELS)
 END_PROPERTY_SET(DBPROPSET_SESSION)
END_PROPSET_MAP()

BEGIN_COM_MAP(CAProviderSession)
 COM_INTERFACE_ENTRY(IGetDataSource)
 COM_INTERFACE_ENTRY(IOpenRowset)
 COM_INTERFACE_ENTRY(ISessionProperties)
 COM_INTERFACE_ENTRY(IObjectWithSite)
 COM_INTERFACE_ENTRY(IDBCreateCommand)
 COM_INTERFACE_ENTRY(IDBSchemaRowset)
END_COM_MAP()

BEGIN_SCHEMA_MAP(CAProviderSession)
 SCHEMA_ENTRY(DBSCHEMA_TABLES, CAProviderSessionTRSchemaRowset)
 SCHEMA_ENTRY(DBSCHEMA_COLUMNS, CAProviderSessionColSchemaRowset)
 SCHEMA_ENTRY(DBSCHEMA_PROVIDER_TYPES,
 CAProviderSessionPTSchemaRowset)
END_SCHEMA_MAP()

};

Modifying the Provider Code

As with most wizard-generated code, the OLE DB provider code generated by the ATL OLE
DB Provider Wizard is just boilerplate code—it doesn’t do very much. You must take several
steps to turn this boilerplate code into a real OLE DB provider. The two critical things you
must do are to add the user record and code to manage a dataset and to set up the data as rows
and columns.

The ATL OLE DB Provider Wizard provides a default user record named
CAProviderWindowsFile. You’ll probably want to scrap this user record and replace it with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CAProviderWindowsFile. You’ll probably want to scrap this user record and replace it with
something useful in your domain. As a simple example, imagine that you want to write an
OLE DB provider that enumerates a compound file. Your user record might look like this:

struct CStgInfo {
BEGIN_PROVIDER_COLUMN_MAP(CStgInfo)
 PROVIDER_COLUMN_ENTRY("StgName", 1, szName)
 PROVIDER_COLUMN_ENTRY("Size", 2, cbSizeLow)
 PROVIDER_COLUMN_ENTRY("Size", 2, cbSizeHigh)

END_PROVIDER_COLUMN_MAP()

 OLECHAR szName[256];
 long cbSizeLow;
 long cbSizeHigh;
};

This structure contains the data fields for the name and size of the substorage. The provider
column map macros map the data into columns. You can actually derive the structure from a
STATSTG structure (which is used to enumerate structured storages)—you just add entries to
the provider column map to handle the members.

The other important addition to the provider is the code for opening the data set. This happens
in the rowset’s Execute function. Many kinds of functionality can go in here. For example, if
you want to enumerate the top-level substorages in a compound file, you can open the storage
and then enumerate the contents as shown in the following code snippet:

class RStgInfoProviderRowset :
 public CRowsetImpl<RStgInfoProviderRowset,
 CStgInfo,
 CStgInfoProviderCommand>
{
public:
 HRESULT Execute(DBPARAMS * pParams, LONG* pcRowsAffected)
 {
 USES_CONVERSION;
 LPTSTR szFile =
 m_strCommandText == _T("")) ? _T("") :
 OLE2T(m_strCommandText);

 IStorage* pStg = NULL;

 HRESULT hr = StgOpenStorage(szFile, NULL,
 STGM_READ│STGM_SHARE_EXCLUSIVE,
 NULL, NULL, &pStg);

 if(FAILED(hr))
 return DB_E_ERRORSINCOMMAND;

 LONG cStgs = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IEnumSTATSTG* pEnumSTATSTG;

 hr = pStg->EnumElements(0, 0, 0, &pEnumSTATSTG);

 if(pEnumSTATSTG) {

 STATSTG rgSTATSTG[100];
 ULONG nFetched;

 hr = pEnumSTATSTG->Next(100, rgSTATSTG, &nFetched);

 for(ULONG i = 0; i < nFetched; i++) {
 CStgInfo stgInfo;
 stgInfo.cbSizeLow = rgSTATSTG[i].cbSize.LowPart;
 stgInfo.cbSizeHigh = rgSTATSTG[i].cbSize.HighPart;

 wcsncpy(stgInfo.szName,
 rgSTATSTG[i].pwcsName,
 255);

 CoTaskMemFree(rgSTATSTG[i].pwcsName);

 if (!m_rgRowData.Add(stgInfo))
 return E_OUTOFMEMORY;
 cStgs++;
 }
 pEnumSTATSTG->Release();
 }

 if(pStg)
 pStg->Release();

 if (pcRowsAffected != NULL)
 *pcRowsAffected = cStgs;
 return S_OK;
 }
}

When some client code tries to open the OLE DB data provider, the call will end up inside this
function. This function simply opens the structured storage file that was passed in as the
command text and uses the standard structured storage enumerator to find the top-level
substorages. The Execute function then stores the name of the substorage and the size of the
substorage in an array. The OLE DB provider uses this array to fulfill requests for the column
data.

Enhancing the Provider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Of course, you can do a lot to beef up this OLE DB provider. We’ve barely scratched the
surface of what you can do with a provider. When the ATL OLE DB Provider Wizard pumps
out the default provider, it’s a read-only provider—that is, users cannot change the contents of
the data. The OLE DB templates provide support for locating rowsets and setting bookmarks.
In most cases, enhancing the provider is a matter of tacking on implementations of COM
interfaces provided by the OLE DB templates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributed OLE DB Programming

Just as you can write ActiveX controls using attributed ATL, you can also write OLE DB
templates using attributes. Six attributes apply to OLE DB consumer template programming.
These are described in Table 27-5.

Table 27-5. OLE DB Consumer Attributes
Attribute Description

db_accessor Binds columns in a rowset and binds them to the corresponding accessor
maps

db_column Binds a specified column to the rowset

db_command Executes an OLE DB command

db_param Associates the specified member variable with an input or output parameter

db_source Creates and encapsulates a connection, through a provider, to a data source

db_table Opens an OLE DB table

Database development is another type of programming that involves a great deal of boilerplate
code, so it’s another great candidate for attributed programming. Remember that with
attributed programming, you declare program features using attributes, and the compiler and
linker inject code into your project. For example, here’s an OLE DB consumer template for
using the Titles table in the Biblio.mdb database:

// Titles.h : Declaration of the CTitles
#pragma once

[
 db_source(

),
 db_table(L"Titles")
]
class CTitles
{
public:
// This table/command contains column(s) that can be accessed
// via an ISequentialStream interface. Not all providers, however,
// support this feature, and even those that do support it, are
// often limited to just one ISequentialStream per rowset.
// If you want to use streams in this accessor, use the sample
// line(s) of code below, and set the DBPROP_ISequentialStream
// rowset property to true. You can than use the Read() method
// to read the data. For more information on
// ISequentialStream binding see the documentation
// [db_column(8, status=m_dwCommentsStatus,
// length=m_dwCommentsLength)] ISequentialStream* m_Comments;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [db_column(8, status=m_dwCommentsStatus,
 length=m_dwCommentsLength)] TCHAR m_Comments[8000];

 [db_column(5, status=m_dwDescriptionStatus,
 length=m_dwDescriptionLength)] TCHAR m_Description[51];

 [db_column(3, status=m_dwISBNStatus,
 length=m_dwISBNLength)] TCHAR m_ISBN[21];

 [db_column(6, status=m_dwNotesStatus,
 length=m_dwNotesLength)] TCHAR m_Notes[51];

 [db_column(4, status=m_dwPubIDStatus,
 length=m_dwPubIDLength)] LONG m_PubID;

 [db_column(7, status=m_dwSubjectStatus,
 length=m_dwSubjectLength)] TCHAR m_Subject[51];

 [db_column(1, status=m_dwTitleStatus,
 length=m_dwTitleLength)] TCHAR m_Title[256];

 [db_column(2, status=m_dwYearPublishedStatus,
 length=m_dwYearPublishedLength)] SHORT m_YearPublished;

 // The following wizard-generated data members contain status
 // values for the corresponding fields. You
 // can use these values to hold NULL values that the database
 // returns or to hold error information when the compiler returns
 // errors. See Field Status Data Members in Wizard-Generated
 // Accessors in the Visual C++ documentation for more information
 // on using these fields.
 // NOTE: You must initialize these fields before
 // setting/inserting data!

 DBSTATUS m_dwCommentsStatus;
 DBSTATUS m_dwDescriptionStatus;
 DBSTATUS m_dwISBNStatus;
 DBSTATUS m_dwNotesStatus;
 DBSTATUS m_dwPubIDStatus;
 DBSTATUS m_dwSubjectStatus;
 DBSTATUS m_dwTitleStatus;
 DBSTATUS m_dwYearPublishedStatus;

 // The following wizard-generated data members contain length
 // values for the corresponding fields.
 // NOTE: For variable-length columns, you must initialize these
 // fields before setting/inserting data!

 DBLENGTH m_dwCommentsLength;
 DBLENGTH m_dwDescriptionLength;
 DBLENGTH m_dwISBNLength;
 DBLENGTH m_dwNotesLength;
 DBLENGTH m_dwPubIDLength;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DBLENGTH m_dwPubIDLength;
 DBLENGTH m_dwSubjectLength;
 DBLENGTH m_dwTitleLength;
 DBLENGTH m_dwYearPublishedLength;

 void GetRowsetProperties(CDBPropSet* pPropSet)
 {
 pPropSet->AddProperty(DBPROP_CANFETCHBACKWARDS,
 true, DBPROPOPTIONS_OPTIONAL);
 pPropSet->AddProperty(DBPROP_CANSCROLLBACKWARDS,
 true, DBPROPOPTIONS_OPTIONAL);
 // pPropSet->AddProperty(DBPROP_ISequentialStream, true);
 pPropSet->AddProperty(DBPROP_IRowsetChange,
 true, DBPROPOPTIONS_OPTIONAL);
 pPropSet->AddProperty(DBPROP_UPDATABILITY,
 DBPROPVAL_UP_CHANGE │ DBPROPVAL_UP_INSERT
 │ DBPROPVAL_UP_DELETE);
 }
};

The code is a C++ class representing the Titles table in the Biblio database. Using attributes
shortens the code somewhat. Notice that the COLUMN_MAP that is present in the classic
ATL OLE DB consumer template is missing; it’s replaced by member variables of the CTitles
class, preceded by the db_column attribute. Also notice the absence of a CTitlesAccessor
class. (In the classic OLE DB consumer template, the CAuthorsAccessor class and the
CAuthors class were separate entities.) The accessor information and the CAuthors class are
wrapped up into one class: the CTitles class. Also notice that the database connection
information is included as a set of attributes preceding the entire CTitles class. (In the classic
OLE DB consumer example with the Authors table shown earlier, the database connection
information was hard-coded into the OpenDataSource method.)

Using the attributed CTitles class is similar to using the CAuthors class. Here’s how to use the
attributed database consumer class:

1. Declare an instance of CTitles wherever you need to use it:

class CUseTitles : public CDialog {
 CTitles m_titles;

};

2. Open the database by calling Open on the database consumer object:

CUseTitles::OnInitDialog() {
 m_titles.Open();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Use member functions to navigate through and manipulate the database. Here’s a
sampling of some of the things you can do:

CUseTitles::OnNext() {
 m_titles.MoveNext();
}
CUseTitles::OnFirst() {
 m_titles.MoveFirst();
}
CUseTitles::OnLast() {
 m_titles.MoveLast();
}
CUseTitles::OnInsert() {
 m_titles.Insert();
}

4. As you navigate through the database, the data will end up in the member variables. For
example, if you want to find out the name of the next title in the table, the code will look
like this:

m_titles.MoveNext();
m_strTitle = m_titles.m_Title;

Using attributed OLE DB consumer templates greatly reduces the programming area you work
with when you access OLE DB data sources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 28
Internet Essentials

There was a time when you could get along as a developer and not worry about how Internet
development differed from desktop development. These days, however, the Internet itself is
becoming a development platform (especially with Microsoft .NET, which we’ll look at in
Part VI of this book). To be successful as a modern developer, you have to understand how the
Internet works and how to write programs that can access other computers on the Internet.
Somewhere, sometime in the near future, your software will probably have to touch the
Internet. Of course, desktop-style programming will not be going away, but the Internet
provides such compelling connectivity that you’ll probably want to use it.

In this chapter, we’ll start with a primer on Transmission Control Protocol/Internet Protocol
(TCP/IP), which is used throughout the Internet, and then we’ll move up one level to examine
the workings of Hypertext Transfer Protocol (HTTP). Then it’ll be time to get something
running. We’ll assemble our own intranet (a local version of the Internet) and study an HTTP
client/server program based on Winsock, the fundamental API for TCP/IP. Finally, we’ll
move on to WinInet, which is a higher-level API than Winsock.

Classic Internet Development vs. .NET Development
Internet development can be divided roughly into two types: classic Internet
development and Internet development using .NET. This part of the book, Part V,
looks at classic Internet development. This chapter will examine how the Internet
works at the wire level. In Chapter 29, we’ll look at Dynamic HTML (DHTML),
which lets you apply a much more responsive feel to your Web applications.
Chapter 30 will cover ATL Server—a set of templates that provide low-level C++-
style access to the Internet protocols.

The last part of this book, Part VI, covers .NET technology—which is the
culmination of years of research and improvements with Internet development as its
primary focus. The underpinnings of Internet development remain the same all over
(even if you’re using UNIX and Apache servers), but the amount of raw code
necessary to get a Web site up and running is pretty phenomenal (as is the amount
of code necessary to get a simple SDK-style window up and running). .NET offers
a host of useful abstractions that hide the nitty-gritty of Web development—just as
MFC and Microsoft Visual Basic .NET hide much of the complexity of the
Windows API.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Internet Primer

You can’t write a good Winsock program without understanding the concept of a socket,
which is used to send and receive packets of data across the network. To fully understand
sockets, you need a thorough knowledge of the underlying Internet protocols. This section
contains a concentrated dose of Internet theory. It should be enough to get you going, but you
might want to refer to one of the TCP/IP textbooks if you want more theory.

Network Protocols and Layering

All networks use layering for their transmission protocols, and the collection of layers is often
called a stack. The application program talks to the top layer, and the bottom layer talks to the
network. Figure 28-1 shows the stack for a local area network (LAN) that’s running TCP/IP.
Each layer is logically connected to the corresponding layer at the other end of the
communications channel. The server program, which is shown at the right side of the figure,
continuously listens on one end of the channel, while the client program, shown on the left,
periodically connects with the server to exchange data. You can think of the server as an
HTTP-based World Wide Web (WWW) server, and you can think of the client as a browser
program running on your computer.

Figure 28-1. The stack for a LAN running TCP/IP.

IP

The IP layer is the best place to start in your quest to understand TCP/IP. The IP protocol
defines packets called datagrams that are fundamental units of Internet communication. These
packets, which are typically less than 1000 bytes in length, go bouncing all over the world
when you open a Web page, download a file, or send e-mail. Figure 28-2 shows a simplified
layout of an IP datagram.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-2. A simple IP datagram layout.

Notice that the IP datagram contains 32-bit addresses for both the source and destination
computers. These IP addresses uniquely identify computers on the Internet and are used by
routers (specialized computers that act like telephone switches) to direct the individual
datagrams to their destinations. The routers don’t care about what’s inside a datagram—
they’re interested only in the datagram’s destination address and total length. The routers’ job
is to resend the datagram as quickly as possible.

The IP layer doesn’t tell the sending program whether a datagram has successfully reached its
destination. That’s a job for the next layer up the stack. The receiving program can look only
at the checksum to determine whether the IP datagram header was corrupted.

UDP

The TCP/IP protocol should really be called TCP/UDP/IP because it includes User Datagram
Protocol (UDP), which is a peer of TCP. All IP-based transport protocols store their own
headers and data inside the IP data block. Figure 28-3 shows the UDP layout.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-3. A simple UDP layout

A complete UDP/IP datagram is shown in Figure 28-4.

Figure 28-4. The relationship between the IP datagram and the UDP datagram.

UDP is only a small step up from IP, but applications never use IP directly. Like IP, UDP
doesn’t tell the sender when the datagram has arrived. That’s up to the application. The sender
can, for example, require that the receiver send a response, and the sender can retransmit the
datagram if a response doesn’t arrive within, say, 20 seconds. UDP is good for simple, one-
shot messages and is used by the Internet Domain Name System (DNS), which we’ll look at
later in this chapter. (UDP is used for transmitting live audio and video, for which some lost or
out-of-sequence data is not a big problem.)

Figure 28-3 shows that the UDP header does convey some additional information—namely,
the source and destination port numbers. The application programs on each end use these 16-
bit numbers. For example, a datagram that a client program sends to a server could have a
source port number of 1701 and a destination port number of 1700. The server program will
listen for any datagram that includes 1700 in its destination port number, and when it finds
one, it can respond by sending another datagram back to the client, which will listen for a
datagram that includes 1701 in its destination port number.

IP Address Format: Network Byte Order

You know that IP addresses are 32-bits long. You might think that 232 (more than 4 billion)
uniquely addressed computers could exist on the Internet, but that’s not true. Part of the
address identifies the LAN on which the host computer is located, and part of it identifies the
host computer within the network. Most IP addresses are Class C addresses, which are
formatted as shown in Figure 28-5.

Figure 28-5. The layout of a Class C IP address.

This means that slightly more than 2 million networks can exist, and each of those networks
can have 28 (256) addressable host computers. The Class A and Class B IP addresses, which
allow more host computers on a network, are all used up.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Internet powers that be have recognized the shortage of IP addresses, so they
have proposed a new standard, the IPv6 protocol (sometimes referred to as IP Next
Generation, or IPng for short). IPv6 defines a new IP datagram format that uses
128-bit addresses instead of 32-bit addresses. With IPv6, you’ll be able, for
example, to assign a unique Internet address to each light switch in your house so
you can switch off your bedroom light from your portable computer from
anywhere in the world.

By convention, IP addresses are written in dotted-decimal format. The four parts of the
address refer to the individual byte values. An example of a Class C IP address is
192.168.198.201. In a computer with an Intel CPU, the address bytes are stored low-order-to-
the-left, in so-called little endian order. In most other computers, including the UNIX
machines that first supported the Internet, bytes are stored high-order-to-the-left, in big endian
order. Because the Internet imposes a machine-independent standard for data interchange, all
multibyte numbers must be transmitted in big endian order. This means that programs running
on Intel-based machines must convert between network byte order (big endian) and host byte
order (little endian). This rule applies to 2-byte port numbers as well as to 4-byte IP addresses.

TCP

You’ve learned about the limitations of UDP. What you really need is a protocol that supports
error-free transmission of large blocks of data. Obviously, you want the receiving program to
be able to reassemble the bytes in the exact sequence in which they were transmitted, even
though the individual datagrams might arrive in the wrong sequence. TCP is that protocol, and
it’s the principal transport protocol for all Internet applications, including HTTP and File
Transfer Protocol (FTP). Figure 28-6 shows the layout of a TCP segment. (It’s not called a
datagram.) The TCP segment fits inside an IP datagram, as shown in Figure 28-7.

Figure 28-6. A simple layout of a TCP segment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-7. The relationship between an IP datagram and a TCP segment.

The TCP protocol establishes a full-duplex, point-to-point connection between two computers,
and a program at each end of this connection uses its own port. The combination of an IP
address and a port number is called a socket. The connection is first established with a three-
way handshake. The initiating program sends a segment with the SYN flag set, the responding
program sends a segment with both the SYN and ACK flags set, and then the initiating program
sends a segment with the ACK flag set.

After the connection is established, each program can send a stream of bytes to the other
program. TCP uses the sequence number fields together with ACK flags to control this flow of
bytes. The sending program doesn’t wait for each segment to be acknowledged but instead
sends a number of segments together and then waits for the first acknowledgment. If the
receiving program has data to send back to the sending program, it can piggyback its
acknowledgment and outbound data together in the same segments.

The sending program’s sequence numbers are not segment indexes but rather indexes into the
byte stream. The receiving program sends back the sequence numbers (in the acknowledgment
number field) to the sending program, thereby ensuring that all bytes are received and
assembled in sequence. The sending program resends unacknowledged segments.

Each program closes its end of the TCP connection by sending a segment with the FIN flag
set, which must be acknowledged by the program on the other end. A program can no longer
receive bytes on a connection that has been closed by the program on the other end.

Don’t worry about the complexity of the TCP protocol. The Winsock and WinInet APIs hide
most of the details, so you don’t have to worry about ACK flags and sequence numbers. Your
program calls a function to transmit a block of data, and Windows takes care of splitting the
block into segments and stuffing them inside IP datagrams. Windows also takes care of
delivering the bytes on the receiving end, but that gets tricky, as you’ll see later in this chapter.

DNS

When we surf the Web, we don’t use IP addresses. Instead, we use human-friendly names
such as microsoft.com or www.cnn.com. A significant portion of Internet resources is
consumed when host names (such as microsoft.com) are translated into IP addresses that
TCP/IP can use. A distributed network of name server (domain server) computers performs
this translation by processing DNS queries. The entire Internet namespace is organized into
domains, starting with an unnamed root domain. Under the root is a series of top-level
domains such as com, edu, gov, and org.

NOTE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Don’t confuse Internet domains with Windows NT/2000/XP domains. The latter
are logical groups of networked computers that share a common security database.

Servers and Domain Names

Let’s look at the server end first. Suppose a company named Consolidated Messenger has two
host computers connected to the Internet, one for WWW service and the other for FTP service.
Following convention, these host computers are named www.consolidatedmessenger.com and
ftp.consolidatedmessenger.com, respectively, and both are members of the second-level
domain consolidatedmessenger, which Consolidated Messenger has registered with an
organization called InterNIC. (See http://www.internic.net.)

Now Consolidated Messenger must designate two (or more) host computers as its name
servers. Each name server for the com domain has a database entry for the
consolidatedmessenger domain, and that entry contains the names and IP addresses of
Consolidated Messenger’s two name servers. Each of the two consolidatedmessenger name
servers has database entries for both of Consolidated Messenger’s host computers. These
servers might also have database entries for hosts in other domains, and they might have
entries for name servers in third-level domains. Thus, if a name server can’t provide a host’s
IP address directly, it can redirect the query to a lower-level name server. Figure 28-8
illustrates Consolidated Messenger’s domain configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 28-8. Consolidated Messenger’s domain configuration.

NOTE
A top-level name server runs on its own host computer. InterNIC manages (at last
count) 13 computers that serve the root domain and top-level domains. Lower-
level name servers can be programs running on host computers anywhere on the
Internet. Consolidated Messenger’s Internet service provider (ISP), A.Datum
Corporation, can furnish one of Consolidated Messenger’s name servers. If the ISP
is running Windows NT/2000 Server, the name server is usually the DNS program
that comes bundled with the operating system. That name server might be
designated ns1.adatum.com.

Clients and Domain Names

Now for the client side. A user types http://www.consolidatedmessenger.com in the browser.
(The http:// prefix tells the browser to use the HTTP protocol when it eventually finds the host
computer.) The browser must then resolve www.consolidatedmessenger.com into an IP
address, so it uses TCP/IP to send a DNS query to the default gateway IP address for which
TCP/IP is configured. This default gateway address identifies a local name server, which
might have the needed host IP address in its cache. If not, the local name server relays the
DNS query up to one of the root name servers. The root server looks up
consolidatedmessenger in its database and sends the query back down to one of Consolidated
Messenger’s designated name servers. In the process, the IP address for
www.consolidatedmessenger.com is cached for later use if it was not cached already. If you
want to go the other way, name servers are also capable of converting an IP address to a name.

HTTP

We’ll do some Winsock programming soon, but just sending raw byte streams back and forth
isn’t very interesting. You need to use a higher-level protocol in order to be compatible with
existing Internet servers and browsers. HTTP is a good place to start because it’s the protocol
of the Web and it’s relatively simple.

HTTP is built on TCP, and this is the way it works: First, a server program listens on port 80.
Then a client program (typically a browser) connects to the server
(www.consolidatedmessenger.com in this case) after receiving the server’s IP address from a
name server. Using its own port number, the client sets up a two-way TCP connection to the
server. When the connection is established, the client sends a request to the server, which
might look like this:

GET /customers/newproducts.html HTTP/1.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The server identifies the request as a GET, the most common type, and it concludes that the
client wants a file named newproducts.html that’s located in a server directory known as
/customers (which might or might not be \customers on the server’s hard disk). Immediately
following are request headers, which mostly describe the client’s capabilities.

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
 image/x-jg, */*
Accept-Language: en
UA-pixels: 1024x768
UA-color: color8
UA-OS: Windows NT 5.0
UA-CPU: x86
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; AK; Windows NT 5.0)
Host: www.consolidatedmessenger.com
Connection: Keep-Alive
If-Modified-Since: Wed, 24 Apr 2002 20:23:04 GMT
(blank line)

The If-Modified-Since header tells the server not to bother to transmit newproducts.html unless
the file has been modified since April 24, 2002. This implies that the browser already has a
dated copy of this file stored in its cache. The blank line at the end of the request is crucial; it
provides the only way for the server to tell that it is time to stop receiving and start
transmitting, and that’s because the TCP connection stays open.

Now the server springs into action. It sends newproducts.html, but first it sends an OK
response:

HTTP/1.0 200 OK

This is immediately followed by some response header lines:

Server: Microsoft-IIS/6.0
Date: Thu, 25 Apr 2002 17:33:12 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, Apr 24 2002 20:23:04 GMT
Content-Length: 407
(blank line)

The contents of newproducts.html immediately follow the blank line:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html>
<head><title>Consolidated Messenger's New Products</title></head>
<body><body background="/images/clouds.png">
<h1><center>Welcome to Consolidated Messenger's New Products List
</center></h1><p>
Unfortunately, budget constraints have prevented Consolidated Messenger
 from introducing any new products this year. We suggest you keep
 enjoying the old products.<p>
Consolidated Messenger's Home Page<p>
</body>
</html>

You’re looking at elementary HTML code here, and the resulting Web page won’t win any
prizes. We won’t go into the details because dozens of HTML books are already available.
From these books, you’ll learn that HTML tags are contained in angle brackets and that there’s
often an end tag (with a / character) for every start tag. Some tags, such as <a> (hypertext
anchor), have attributes. In the example above, the following line creates a link to another
HTML file:

Consolidated Messenger's Home Page<p>

The user clicks on Consolidated Messenger’s Home Page, and the browser requests
default.htm from the original server.

Actually, newproducts.html references two server files, default.htm and /images/clouds.jpg.
The clouds.jpg file is a JPEG file that contains a background picture for the page. The browser
downloads each of these files as a separate transaction, establishing and closing a separate
TCP connection each time. The server just dishes out files to any client that asks for them. In
this case, the server doesn’t know or care whether the same client requested newproducts.html
and clouds.jpg. To the server, clients are simply IP addresses and port numbers. In fact, the
port number is different for each request from a client. For example, if 10 of your company’s
programmers are surfing the Web via your company’s proxy server (more on proxy servers
later), the server will see the same IP address for each client.

NOTE
Web pages typically use two graphics formats, GIF and JPEG. GIF files are
compressed images that retain all the detail of the original uncompressed image
but are usually limited to 256 colors. They support transparent regions and
animation. JPEG files are smaller, but they don’t carry all the detail of the original
file. GIF files are often used for small images such as buttons, and JPEG files are
often used for photographic images, for which detail is not critical. Visual C++
.NET can read, write, and convert both GIF and JPEG files, but the Win32 API
cannot handle these formats unless you supply a special
compression/decompression module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HTTP standard includes a PUT request type that enables a client program to upload a file
to the server. Client programs and server programs seldom implement PUT.

FTP

FTP handles the uploading and downloading of server files plus directory navigation and
browsing. A Windows command-line program called ftp (it doesn’t work through a Web
proxy server) lets you connect to an FTP server using UNIX-like keyboard commands.
Browser programs usually support the FTP protocol (for downloading files only) in a more
user-friendly manner. You can protect an FTP server’s directories with a username/password
combination, but both strings will be passed over the Internet as clear text. FTP is based on
TCP. Two separate connections are established between the client and server, one for control
and one for data.

Internet vs. Intranet

Up to now, we’ve assumed that client and server computers were connected to the Internet.
The fact is, you can run exactly the same client and server software on a local intranet. An
intranet is often implemented on a company’s LAN and is used for distributed applications.
Users see the familiar browser interface at their client computers, and server computers supply
simple Web-like pages or do complex data processing in response to user input.

An intranet offers a lot of flexibility. If, for example, you know that all your computers are
Intel-based, you can use ActiveX controls and ActiveX document servers that provide
ActiveX document support. If necessary, your server and client computers can run custom
TCP/IP software that allows communication beyond HTTP and FTP. To secure your
company’s data, you can separate your intranet completely from the Internet or you can
connect it through a firewall, which is a security system that protects your company’s network
from external threats.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building an Intranet

Building a Windows-based intranet is easy and cheap. Windows 95/98/Me and Windows
NT/2000/XP all contain the necessary networking capabilities. If you don’t want to spend the
money, you can build a free intranet within a single computer. All the code in this chapter will
run on this one-computer configuration.

NTFS vs. FAT File Systems

With Windows 95/98/Me, you’re restricted to one file system, File Allocation Table (FAT)—
or Virtual File Allocation Table (VFAT) for long filenames. With Windows NT/2000/XP, you
get the NT file system (NTFS). Your intranet will be much more secure using NTFS because
NTFS allows you to set user permissions for individual directories and files. Users log on to a
Windows server (or to an attached workstation) and supply a username and password.

Intranet and Internet clients participate in this operating system security scheme because the
server can log them on as if they were local users. Thus, you can restrict access to any server
directory or file to specific users who must supply passwords. If those user workstations are
Windows network clients (as would be the case with a LAN-based intranet), the username and
password are passed through from the user’s logon.

Network Hardware

You obviously need more than one computer to make a network. Your main development
computer will probably be a Pentium-based computer, but chances are you’ll have at least one
old computer hanging around. It makes sense to connect it to your main computer for intranet
testing and file backups.

You’ll need a network board for each computer, but 10-megabit-per-second Ethernet boards
are now extremely inexpensive. Choose a brand that comes with its own drivers for Windows
95/98/Me and Windows NT/2000/XP or is already supported by those operating systems. To
see a list of supported boards in Windows NT and Windows 95/98/Me, click on the Network
icon in Control Panel and then click the Add button to add an adapter. To see the list of
supported boards in Windows 2000 and Windows XP, click on the Network And Dial-up
Connections icon in Control Panel, right-click on any local area connection, click Properties,
and then select Install to add an adapter.

Most network boards have connectors for both thin coaxial (coax) and 10BaseT twisted pair
cable. With 10BaseT, you must buy a hub. Thin coax requires only coaxial cable (which is
available in precut lengths with connectors) plus terminator plugs. With coax, you daisy-chain
your computers together and put terminators on each end of the chain.

Follow the instructions that come with the network board. In most cases, you’ll have to run an
MS-DOS program that writes to the electrically erasable programmable read-only memory
(EEPROM) on the board. Write down the values you select—you’ll need them later.

Configuring Windows for Networking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Panel’s Network applet lets you configure network settings. During configuration, you
must select TCP/IP as one of your protocols if you want to run an intranet. You must also
install the Windows driver for your network board, ensuring that the IRQ and I/O address
values match what you put into the board’s EEPROM. You must also assign an IP address to
each of your network boards. If you’re not connected directly to the Internet, you can choose
any unique address you want.

That’s actually enough configuring for an intranet, but you’ll probably want to use your
network for sharing files and printers, too. For Windows NT, install Client And Server
Services and bind them to TCP/IP. For Windows 95/98/Me, install Client For Microsoft
Networks and File And Printer Sharing For Microsoft Networks. For Windows 2000/XP, the
File And Printer Sharing For Microsoft Networks component is installed and enabled by
default. If you have an existing network with another protocol installed (Novell IPX/SPX or
Microsoft NetBEUI, for example), you can continue to use that protocol on the network along
with TCP/IP. In that case, Windows file and print sharing will use the existing protocol and
your intranet will use TCP/IP. If you want one computer to share another computer’s
resources, you must enable sharing from Windows Explorer (for disk directories) or from the
Printers folder (for printers).

Intranet Host Names and the HOSTS File

Both Internet and intranet users expect their browsers to use host names, not IP addresses.
There are various methods of resolving names to addresses, including using your own DNS
server, which is an installable component of Windows NT/2000 Server. The easiest way to
map Internet host names to IP addresses, however, is to use the HOSTS file. In Windows
NT/2000/XP, this is a text file in the \Winnt\System32\DRIVERS\ETC directory. In Windows
95/98/Me, it’s in the \WINDOWS directory, in a prototype HOSTS.SAM file. Just copy that
file to HOSTS and make the entries with Notepad. Be sure to copy the edited HOSTS file to
all computers in the network.

Testing Your Intranet: The Ping Program

You can use the Windows Ping program to test your intranet. From the command line, type
ping, followed by the IP address (in dotted-decimal format) or the host name of another
computer on the network. If you get a positive response, you’ll know that TCP/IP is
configured correctly. If you get no response or an error message, proceed no further. Go back
and troubleshoot your network connections and configuration.

An Intranet for One Computer: The TCP/IP Loopback Address

The first line in the HOSTS file should be the following:

127.0.0.1 localhost

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the standard loopback IP address. If you start a server program to listen on this address,
client programs running on the same machine can connect to localhost to get a TCP/IP
connection to the server program. This works whether or not you have network boards
installed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Winsock Programming

Winsock is the lowest-level Windows API for TCP/IP programming. Part of the code (the
exported functions that your program calls) is located in Wsock32.dll, and part is inside the
Windows kernel. You can write both Internet server programs and Internet client programs
using the Winsock API. This API is based on the original Berkeley Sockets API for UNIX. A
new and much more complex version, Winsock 2, was included for the first time with
Windows NT 4.0, but we’ll stick with the old version because it’s available in all versions of
Windows.

Synchronous vs. Asynchronous Winsock Programming

Winsock was introduced first for Win16, which did not support multithreading. Consequently,
most developers used Winsock in the asynchronous mode. In that mode, all sorts of hidden
windows and PeekMessage calls enabled single-threaded programs to make Winsock send and
receive calls without blocking, thus keeping the user interface alive. Asynchronous Winsock
programs were complex. They often implemented “state machines” that processed callback
functions to try to figure out what to do next based on what had just happened. Well, we’re not
in 16-bit land anymore, so we can do modern multithreaded programming. If this scares you,
go back and review Chapter 11. Once you get used to multithreaded programming, you’ll love
it.

In this chapter, we’ll make the most of our Winsock calls from worker threads so the
program’s main thread can carry on with the user interface. The worker threads contain nice,
sequential logic consisting of blocking Winsock calls.

The MFC Winsock Classes

We’ve tried to use MFC classes where it makes sense to use them, but the MFC developers
have informed us that the CAsyncSocket and CSocket classes are not appropriate for 32-bit
synchronous programming. The Visual C++ .NET online help says you can use CSocket for
synchronous programming, but if you look at the source code you’ll see some ugly message-
based code left over from Win16.

The Blocking Socket Classes

Since we couldn’t use MFC, we had to write our own Winsock classes. CBlockingSocket is a
thin wrapping of the Winsock API, designed only for synchronous use in a worker thread. The
only fancy features are exception-throwing on errors and timeouts for sending and receiving
data. The exceptions help you write cleaner code because you don’t need to have error tests
after every Winsock call. The timeouts (which are implemented with the Winsock select
function) prevent a communication fault from blocking a thread indefinitely.

CHttpBlockingSocket is derived from CBlockingSocket and provides functions for reading
HTTP data. CSockAddr and CBlockingSocketException are helper classes.

The CSockAddr Helper Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many Winsock functions take socket address parameters. As you might remember, a socket
address consists of a 32-bit IP address plus a 16-bit port number. The actual Winsock type is a
16-byte sockaddr_in structure, which looks like this:

struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The IP address is stored as type in_addr, which looks like this:

struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
}

These are ugly structures, so we’ll derive a programmer-friendly C++ class from sockaddr_in.
The file \vcppnet\Ex28a\Blocksock.h on the companion CD contains the following code for
doing this, with inline functions included:

class CSockAddr : public sockaddr_in {
public:
 // constructors
 CSockAddr()
 {
 sin_family = AF_INET;
 sin_port = 0;
 sin_addr.s_addr = 0;
 } // Default
 CSockAddr(const SOCKADDR& sa) { memcpy(this, &sa,
 sizeof(SOCKADDR)); }
 CSockAddr(const SOCKADDR_IN& sin) { memcpy(this, &sin,
 sizeof(SOCKADDR_IN)); }
 CSockAddr(const ULONG ulAddr, const USHORT ushPort = 0)
 // parms are host byte ordered
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = htonl(ulAddr);
 }
 CSockAddr(const char* pchIP, const USHORT ushPort = 0)
 // dotted IP addr string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // dotted IP addr string
 {
 sin_family = AF_INET;
 sin_port = htons(ushPort);
 sin_addr.s_addr = inet_addr(pchIP);
 } // already network byte ordered
 // Return the address in dotted-decimal format
 CString DottedDecimal()
 { return inet_ntoa(sin_addr); }
 // constructs a new CString object
 // Get port and address (even though they're public)
 USHORT Port() const
 { return ntohs(sin_port); }
 ULONG IPAddr() const
 { return ntohl(sin_addr.s_addr); }
 // operators added for efficiency
 const CSockAddr& operator=(const SOCKADDR& sa)
 {
 memcpy(this, &sa, sizeof(SOCKADDR));
 return *this;
 }
 const CSockAddr& operator=(const SOCKADDR_IN& sin)
 {
 memcpy(this, &sin, sizeof(SOCKADDR_IN));
 return *this;
 }
 operator SOCKADDR()
 { return *((LPSOCKADDR) this); }
 operator LPSOCKADDR()
 { return (LPSOCKADDR) this; }
 operator LPSOCKADDR_IN()
 { return (LPSOCKADDR_IN) this; }
};

As you can see, this class has some useful constructors and conversion operators, which make
the CSockAddr object interchangeable with the type sockaddr_in and the equivalent types
SOCKADDR_IN, sockaddr, and SOCKADDR. There’s a constructor and a member function
for IP addresses in dotted-decimal format. The internal socket address is in network byte
order, but the member functions all use host byte order parameters and return values. The
Winsock functions htonl, htons, ntohs, and ntohl take care of the conversions between network
and host byte order.

The CBlockingSocketException Class

All the CBlockingSocket functions throw a CBlockingSocketException object when Winsock
returns an error. This class is derived from the MFC CException class and thus overrides the
GetErrorMessage function. This function gives the Winsock error number and a character
string that CBlockingSocket provided when it threw the exception.

The CBlockingSocket Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following code shows an excerpt from the header file for the CBlockingSocket class:

Blocksock.h
class CBlockingSocket : public CObject
{
 DECLARE_DYNAMIC(CBlockingSocket)
public:
 SOCKET m_hSocket;
 CBlockingSocket(); { m_hSocket = NULL; }
 void Cleanup();
 void Create(int nType = SOCK_STREAM);
 void Close();
 void Bind(LPCSOCKADDR psa);
 void Listen();
 void Connect(LPCSOCKADDR psa);
 BOOL Accept(CBlockingSocket& s, LPCSOCKADDR psa);
 int Send(const char* pch, const int nSize, const int nSecs);
 int Write(const char* pch, const int nSize, const int nSecs);
 int Receive(char* pch, const int nSize, const int nSecs);
 int SendDatagram(const char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 int ReceiveDatagram(char* pch, const int nSize, LPCSOCKADDR psa,
 const int nSecs);
 void GetPeerAddr(LPCSOCKADDR psa);
 void GetSockAddr(LPCSOCKADDR psa);
 static CSockAddr GetHostByName(const char* pchName,
 const USHORT ushPort = 0);
 static const char* GetHostByAddr(LPCSOCKADDR psa);
 operator SOCKET();
 { return m_hSocket; }
};

Here are the CBlockingSocket member functions, starting with the constructor:

ConstructorThe CBlockingSocket constructor makes an uninitialized object. You must
call the Create member function to create a Windows socket and connect it to the C++
object.

CreateThis function calls the Winsock socket function and then sets the m_hSocket data
member to the returned 32-bit SOCKET handle.

Parameter Description

nType A type of socket; should be SOCK_STREAM (the default value) or
SOCK_DGRAM

CloseThis function closes an open socket by calling the Winsock closesocket function.
The Create function must have been called previously. The destructor does not call this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Create function must have been called previously. The destructor does not call this
function because it would be impossible to catch an exception for a global object. Your
server program can call Close anytime for a socket that is listening.

BindThis function calls the Winsock bind function to bind a previously created socket to
a specified socket address. Before calling Listen, your server program calls Bind with a
socket address containing the listening port number and server’s IP address. If you
supply INADDR_ANY as the IP address, Winsock will decipher your computer’s IP
address.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

ListenThis TCP function calls the Winsock listen function. Your server program calls
Listen to begin listening on the port specified by the previous Bind call. The function
returns immediately.

AcceptThis TCP function calls the Winsock accept function. Your server program calls
Accept immediately after calling Listen. Accept returns when a client connects to the
socket, sending back a new socket (in a CBlockingSocket object that you provide) that
corresponds to the new connection.

Parameter Description

s A reference to an existing CBlockingSocket object for which Create has
not been called

psa A CSockAddr object or a pointer to a variable of type sockaddr for the
connecting socket’s address

Return
value

TRUE if successful

ConnectThis TCP function calls the Winsock connect function. Your client program
calls Connect after calling Create. Connect returns when the connection has been made.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

SendThis TCP function calls the Winsock send function after calling select to activate
the timeout. The number of bytes actually transmitted by each Send call depends on how
quickly the program at the other end of the connection can receive the bytes. Send will
throw an exception if the program at the other end closes the socket before it reads all
the bytes.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nSecs Timeout value in seconds

Return value The actual number of bytes sent

WriteThis TCP function calls Send repeatedly until all the bytes are sent or until the
receiver closes the socket.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

nSecs Timeout value in seconds

Return value The actual number of bytes sent

ReceiveThis TCP function calls the Winsock recv function after calling select to
activate the timeout. This function returns only the bytes that have been received. For
more information, see the description of the CHttpBlockingSocket class in the next
section.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming bytes

nSize The maximum number of bytes to receive

nSecs Timeout value in seconds

Return value The actual number of bytes received

Send DatagramThis UDP function calls the Winsock sendto function. The program on
the other end needs to call ReceiveDatagram. There is no need to call Listen, Accept, or
Connect for datagrams. You must have previously called Create with the parameter set
to SOCK_DGRAM.

Parameter Description

pch A pointer to a buffer that contains the bytes to send

nSize The size (in bytes) of the block to send

psa The datagram’s destination address (a CSockAddr object or a pointer to a
variable of type sockaddr)

nSecs Timeout value in seconds

Return
value

The actual number of bytes sent

Receive DatagramThis UDP function calls the Winsock recvfrom function. The function
returns when the program at the other end of the connection calls SendDatagram. You

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returns when the program at the other end of the connection calls SendDatagram. You
must have previously called Create with the parameter set to SOCK_DGRAM.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming bytes

nSize The size (in bytes) of the block to send

psa The datagram’s destination address (a CSockAddr object or a pointer to a
variable of type sockaddr)

nSecs Timeout value in seconds

Return
value

The actual number of bytes received

GetPeerAddrThis function calls the Winsock getpeername function. It returns the port
and IP address of the socket on the other end of the connection. If you’re connected to
the Internet through a Web proxy server, the IP address will be the proxy server’s IP
address.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

GetSockAddrThis function calls the Winsock getsockname function. It returns the
socket address that Winsock assigns to this end of the connection. If the other program
is a server on a LAN, the IP address will be the address assigned to this computer’s
network board. If the other program is a server on the Internet, your service provider
will assign the IP address when you dial in. In both cases, Winsock will assign the port
number, which is different for each connection.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

GetHostByNameThis static function calls the Winsock function gethostbyname. It
queries a name server and then returns the socket address corresponding to the host
name. The function times out by itself.

Parameter Description

pchName A pointer to a character array containing the host name to resolve

ushPort The port number (default value 0) that will become part of the returned
socket address

Return
value

The socket address containing the IP address from the DNS plus the port
number ushPort

GetHostByAddrThis static function calls the Winsock gethostbyaddr function. It queries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetHostByAddrThis static function calls the Winsock gethostbyaddr function. It queries
a name server and then returns the host name that corresponds to the socket address. The
function times out by itself.

Parameter Description

psa A CSockAddr object or a pointer to a variable of type sockaddr

Return
value

A pointer to a character array containing the host name; the caller should
not delete this memory

CleanupThis function closes the socket if it is open. It doesn’t throw an exception, so
you can call it inside an exception catch block.

operator SOCKETThis overloaded operator lets you use a CBlockingSocket object in
place of a SOCKET parameter.

The CHttpBlockingSocket Class

If you call CBlockingSocket::Receive, you’ll have a difficult time knowing when to stop
receiving bytes. Each call will return the bytes that are stacked up at your end of the
connection at that instant. If there are no bytes, the call will block, but if the sender closed the
socket, the call will return zero bytes.

In the earlier section on HTTP, you learned that the client sends a request terminated by a
blank line. The server is supposed to send the response headers and data as soon as it detects
the blank line, but the client must analyze the response headers before it reads the data. This
means that as long as a TCP connection remains open, the receiving program must process the
received data as it comes in. A simple but inefficient technique would be to call Receive for 1
byte at a time. A better way is to use a buffer.

The CHttpBlockingSocket class adds buffering to CBlockingSocket, and it provides two new
member functions. Here’s part of the \vcppnet\Ex28a\Blocksock.h file:

class CHttpBlockingSocket : public CBlockingSocket
{
public:
 DECLARE_DYNAMIC(CHttpBlockingSocket)
 enum {nSizeRecv = 1000}; // max receive buffer size (> hdr line
 // length)
 CHttpBlockingSocket();
 ~CHttpBlockingSocket();
 int ReadHttpHeaderLine(char* pch, const int nSize, const int nSecs);
 int ReadHttpResponse(char* pch, const int nSize, const int nSecs);
private:
 char* m_pReadBuf; // read buffer
 int m_nReadBuf; // number of bytes in the read buffer
};

The constructor and destructor take care of allocating and freeing a 1000-character buffer. The
two new member functions are as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReadHttpHeaderLineThis function returns a single header line, terminated with a <cr>
<lf> pair. ReadHttpHeaderLine inserts a terminating zero at the end of the line. If the
line buffer is full, the terminating zero is stored in the last position.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming line (zero-
terminated)

nSize The size of the pch buffer

nSecs Timeout value in seconds

Return
value

The actual number of bytes received, excluding the terminating zero

ReadHttpResponseThis function returns the remainder of the server’s response that’s
received when the socket is closed or when the buffer is full. Don’t assume that the
buffer will contain a terminating zero.

Parameter Description

pch A pointer to an existing buffer that will receive the incoming data

nSize The maximum number of bytes to receive

nSecs Time out value in seconds

Return value The actual number of bytes received

A Simplified HTTP Server Program

Now it’s time to use the blocking socket classes to write an HTTP server program. All the
frills have been eliminated, but the code actually works with a browser. This server doesn’t do
much except return some hard-coded headers and HTML statements in response to any GET
request. (See the Ex28a program later in this chapter for a more complete HTTP server.)

Initializing Winsock

Before making any Winsock calls, the program must initialize the Winsock library. The
following statements in the application’s InitInstance member function do the job:

WSADATA wsd;
WSAStartup(0x0101, &wsd);

Starting the Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The server starts in response to some user action, such as a menu choice. Here’s the command
handler:

CBlockingSocket g_sListen; // one-and-only global socket for listening
void CSocketView::OnInternetStartServer()
{
 try {
 CSockAddr saServer(INADDR_ANY, 80);
 g_sListen.Create();
 g_sListen.Bind(saServer);
 g_sListen.Listen();
 AfxBeginThread(ServerThreadProc, GetSafeHwnd());
 }
 catch(CBlockingSocketException* e) {
 g_sListen.Cleanup();
 // Do something about the exception
 e->Delete();
 }
}

Pretty simple, really. The handler creates a socket, starts listening on it, and then starts a
worker thread that waits for some client to connect to port 80. If something goes wrong, an
exception will be thrown. The global g_sListen object lasts for the life of the program and is
capable of accepting multiple simultaneous connections, each managed by a separate thread.

The Server Thread

Now let’s look at the ServerThreadProc function:

UINT ServerThreadProc(LPVOID pParam)
{
 CSockAddr saClient;
 CHttpBlockingSocket sConnect;
 char request[100];
 char headers[] = "HTTP/1.0 200 OK\r\n"
 "Server: Inside Visual C++ .NET SOCK01\r\n"
 "Date: %s\r\n"
 "Content-Type: text/html\r\n"
 "Accept-Ranges: bytes\r\n"
 "Content-Length: 187\r\n"
 "\r\n"; // the important blank line
 char html[] =
 "<html><head><title>Inside Visual C++ Server</title></head>\r\n"
 "<body><body background=\"/samples/images/usa1.jpg\">\r\n"
 "<h1><center>This is a custom home page</center></h1><p>\r\n"
 "</body></html>\r\n\r\n";
 try {
 if(!g_sListen.Accept(sConnect, saClient)) {
 // Handler in view class closed the listening socket

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Handler in view class closed the listening socket
 return 0;
 }
 AfxBeginThread(ServerThreadProc, pParam);
 // read request from client
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the first header
 if(strnicmp(request, "GET", 3) == 0) {
 do { // Process the remaining request headers
 sConnect.ReadHttpHeaderLine(request, 100, 10);
 TRACE("SERVER: %s", request); // Print the other headers
 } while(strcmp(request, "\r\n"));
 sConnect.Write(headers, strlen(headers), 10); // response hdrs
 sConnect.Write(html, strlen(html), 10); // HTML code
 }
 else {
 TRACE("SERVER: not a GET\n");
 // don't know what to do
 }
 sConnect.Close(); // Destructor doesn't close it
 }
 catch(CBlockingSocketException* e) {
 // Do something about the exception
 e->Delete();
 }
 return 0;
}

The most important function call is the Accept call. The thread will block until a client
connects to the server’s port 80, and then Accept will return with a new socket, sConnect. The
current thread will immediately start another thread.

In the meantime, the current thread must process the client’s request, which just came in on
sConnect. It first reads all the request headers by calling ReadHttpHeaderLine until it detects a
blank line. Then it calls Write to send the response headers and the HTML statements. Finally,
the current thread calls Close to close the connection socket. End of story for this connection.
The next thread will be sitting, blocked at the Accept call, waiting for the next connection.

Cleaning Up

To avoid a memory leak on exit, the program must ensure that all worker threads have been
terminated. The simplest way to do this is to close the listening socket. This forces any
thread’s pending Accept to return FALSE, causing the thread to exit.

try {
 g_sListen.Close();
 Sleep(340); // Wait for thread to exit
 WSACleanup(); // Terminate Winsock
}
catch(CUserException* e) {
 e->Delete();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

A problem might arise if a thread is in the process of fulfilling a client request. In this case, the
main thread should positively ensure that all threads have terminated before exiting.

A Simplified HTTP Client Program

Now for the client side of the story—a simple working program that does a blind GET request.
When a server receives a GET request with a slash, as shown below, it’s supposed to deliver
its default HTML file:

GET / HTTP/1.0

If you were to type http://www.consolidatedmessenger.com in a browser, the browser would
send the blind GET request.

This client program can use the same CHttpBlockingSocket class you’ve already seen, and it
must initialize Winsock the same way the server did. A command handler simply starts a
client thread with a call like this:

AfxBeginThread(ClientSocketThreadProc, GetSafeHwnd());

Here’s the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientSocketThreadProc(LPVOID pParam)
{
 CHttpBlockingSocket sClient;
 char* buffer = new char[MAXBUF];
 int nBytesReceived = 0;
 char request[] = "GET / HTTP/1.0\r\n";
 char headers[] = // Request headers
 "User-Agent: Mozilla/1.22 (Windows; U; 32bit)\r\n"
 "Accept: */*\r\n"
 "Accept: image/gif\r\n"
 "Accept: image/x-xbitmap\r\n"
 "Accept: image/jpeg\r\n"
 "\r\n"; // need this
 CSockAddr saServer, saClient;
 try {
 sClient.Create();
 saServer = CBlockingSocket::GetHostByName(g_strServerName, 80);
 sClient.Connect(saServer);
 sClient.Write(request, strlen(request), 10);
 sClient.Write(headers, strlen(headers), 10);
 do { // Read all the server's response headers
 nBytesReceived = sClient.ReadHttpHeaderLine(buffer, 100, 10);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nBytesReceived = sClient.ReadHttpHeaderLine(buffer, 100, 10);
 } while(strcmp(buffer, "\r\n")); // through the first blank line
 nBytesReceived = sClient.ReadHttpResponse(buffer, 100, 10);
 if(nBytesReceived == 0) {
 AfxMessageBox("No response received");
 }
 else {
 buffer[nBytesReceived] = '\0';
 AfxMessageBox(buffer);
 }
 }
 catch(CBlockingSocketException* e) {
 // Log the exception
 e->Delete();
 }
 sClient.Close();
 delete [] buffer;
 return 0; // The thread exits
}

This thread first calls CBlockingSocket::GetHostByName to get the server computer’s IP
address. Then it creates a socket and calls Connect on that socket. Now there’s a two-way
communication channel to the server. The thread sends its GET request followed by some
request headers, reads the server’s response headers, and then reads the response file itself,
which it assumes is a text file. After the thread displays the text in a message box, it exits.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Server Using CHttpBlockingSocket

If you need a Web server, your best bet is to buy one or to use Microsoft Internet Information
Services (IIS), which comes bundled with Windows NT/2000 Server. You can install it on
Windows 2000 Professional and on Windows XP as well. Of course, you’ll learn more if you
build your own server and you’ll also have a useful diagnostic tool. And what if you need
features that IIS can’t deliver? Suppose you want to add Web server capability to an existing
Windows application, or suppose you have a custom ActiveX control that sets up its own non-
HTTP TCP connection with the server. Take a good look at the server code in Ex28a. It might
work as a foundation for your next custom server application.

Ex28a Server Limitations

The server part of the Ex28a program honors GET requests for files, and it has logic for
processing POST requests. These are the two most common HTTP request types. Ex28a will
not, however, launch Common Gateway Interface (CGI) scripts or load Internet Server
Application Programming Interface (ISAPI) DLLs. Ex28a makes no provision for security,
and it doesn’t have FTP capabilities. Other than that, it’s a great server! If you want the
missing features, just write the code for them yourself.

Ex28a Server Architecture

You’ll soon see that Ex28a combines an HTTP server, a Winsock HTTP client, and two
WinInet HTTP clients. All three clients can talk to the built-in server or to any other server on
the Internet. Any client program, including the Telnet utility and standard browsers such as
Microsoft Internet Explorer, can communicate with the Ex28a server. You’ll examine the
client sections a little later in this chapter.

Ex28a is a standard MFC SDI document–view application with a view class derived from
CEditView. The main menu includes Start Server and Stop Server menu choices as well as a
Configuration command that brings up a tabbed dialog box for setting the home directory, the
default file for blind GETs, and the listening port number (usually 80).

The Start Server command handler starts a global socket listening and then launches a thread,
as in the simplified HTTP server described previously. Look at the ServerThreadProc function
included in the ServerThread.cpp file of the Ex28a project on the companion CD. Each time a
server thread processes a request, it logs the request by sending a message to the CEditView
window. It also sends messages for exceptions, such as bind errors.

The primary job of the server is to deliver files. It first opens a file, storing a CFile pointer in
pFile, and then it reads 5 KB (SERVERMAXBUF) blocks and writes them to the socket
sConnect, as shown in the code below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char* buffer = new char[SERVERMAXBUF];
DWORD dwLength = pFile->GetLength();
nBytesSent = 0;
DWORD dwBytesRead = 0;
UINT uBytesToRead;
while(dwBytesRead < dwLength) {
 uBytesToRead = min(SERVERMAXBUF, dwLength - dwBytesRead);
 VERIFY(pFile->Read(buffer, uBytesToRead) == uBytesToRead);
 nBytesSent += sConnect.Write(buffer, uBytesToRead, 10);
 dwBytesRead += uBytesToRead;
}

The server is programmed to respond to a GET request for a phony file named Custom. It
generates some HTML code that displays the client’s IP address, port number, and a
sequential connection number. This is one possibility for server customization.

The server normally listens on a socket bound to address INADDR_ANY. This is the server’s
default IP address determined by the Ethernet board or assigned during your connection to
your ISP. If your server computer has several IP addresses, you can force the server to listen to
one of them by filling in the Server IP Address box on the Advanced tab of the Configuration
dialog box. You can also change the server’s listening port number on the Server tab. If you
choose port 90, for example, browser users would connect to http://localhost:90.

The leftmost status bar indicator pane displays “Listening” when the server is running.

Using the Win32 TransmitFile Function

With Windows NT/2000/XP, you can make your server more efficient by using the Win32
TransmitFile function in place of the CFile::Read loop in the code excerpt shown above.
TransmitFile sends bytes from an open file directly to a socket and is highly optimized. The
Ex28a ServerThreadProc function contains the following line:

if (::TransmitFile(sConnect, (HANDLE) pFile >m_hFile, dwLength, 0,
 NULL, NULL, TF_DISCONNECT))

If you have Windows NT/2000/XP, uncomment the line

#define USE_TRANSMITFILE

at the top of ServerThread.cpp to activate the TransmitFile logic.

Building and Testing Ex28a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Open the Ex28a project in Visual C++ .NET, and then build the project. A directory under
Ex28a, called Website, contains some HTML files and is set up as the Ex28a server’s home
directory, which appears to clients as the server’s root directory.

NOTE
If you have another HTTP server running on your computer, stop it now. If you
have installed IIS along with Windows NT/2000 Server, it is probably running
now, so you must stop it. Ex28a reports a bind error (10048) if another server is
already listening on port 80.

Run the program from the debugger, and then choose Start Server from the Internet menu.
Now go to your Web browser and type localhost. You should see the Welcome To The Inside
Visual C++ .NET Home Page complete with all graphics. The Ex28a window should look like
this.

Look at the Visual C++ .NET debug window for a listing of the client’s request headers.

If you click the browser’s Refresh button, you might notice Ex28a error messages like this:

WINSOCK ERROR—SERVER: Send error #10054 — 10/05/99 04:34:10 GMT

This tells you that the browser read the file’s modified date from the server’s response header
and figured out that it didn’t need the data because it already had the file in its cache. The
browser then closed the socket, and the server detected an error. If the Ex28a server were
smarter, it would have checked the client’s If-Modified-Since request header before sending
the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Of course, you can test the server on your intranet. Start the server on one computer, and then
run the browser from another, typing in the server’s host name as it appears in the HOSTS file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Client Using CHttpBlockingSocket

If you had written your own Internet browser program a few years ago, you could have made a
billion dollars by now. But these days, you can download browsers for free, so it doesn’t make
sense to write one. It does make sense, however, to add Internet access features to your
Windows applications. Winsock is not the best tool if you need HTTP or FTP access only, but
it’s a good learning tool.

The Ex28a Winsock Client

The Ex28a program implements a Winsock client in the file
\vcppnet\Ex28a\ClientSockThread.cpp on the companion CD. The code is similar to the code
for the simplified HTTP client shown earlier. The client thread uses global variables set by the
Configuration dialog box, including server filename, server host name, server IP address and
port, and client IP address. The client IP address is necessary only if your computer supports
multiple IP addresses. When you run the client, it connects to the specified server and issues a
GET request for the file that you specified. The Winsock client logs error messages in the
Ex28a main window.

Ex28a Support for Proxy Servers

If your computer is connected to a LAN at work, chances are it’s not exposed directly to the
Internet but rather is connected through a proxy server. There are two kinds of proxy servers:
Web and Winsock. Web proxy servers, sometimes called CERN proxies, support only the
HTTP, FTP, and gopher protocols. (The gopher protocol, which predates HTTP, allows
character-mode terminals to access Internet files.) A Winsock client program must be specially
adapted to use a Web proxy server. A Winsock proxy server is more flexible and thus can
support protocols such as RealAudio. Instead of modifying your client program source code,
you link to a special remote Winsock DLL that can communicate with a Winsock proxy
server.

The Ex28a client code can communicate through a Web proxy if you select the Use Web
Proxy check box on the Client tab of the Configuration dialog box. In that case, you must
know and enter the name of your proxy server. From that point on, the client code will connect
to the proxy server instead of the real server. All GET and POST requests must then specify
the full URL for the file.

If you were connected directly to Consolidated Messenger’s server, for example, your GET
request might look like this:

GET /customers/newproducts.html HTTP/1.0

But if you were connected through a Web proxy server, the GET would look like this:

GET http://consolidatedmessenger.com/customers/newproducts.html HTTP/1.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GET http://consolidatedmessenger.com/customers/newproducts.html HTTP/1.0

Testing the Ex28a Winsock Client

The easiest way to test the Winsock client is by using the built-in Winsock server. Just start
the server as before, and then choose Request (Winsock) from the Internet menu. You should
see some HTML code in a message box. You can also test the client against IIS, the server
running in another Ex28a process on the same computer, the Ex28a server running on another
computer on the Net, and an Internet server. Ignore the Address URL in the dialog box bar for
the time being; it’s for one of the WinInet clients. You must enter the server name and
filename on the Client tab of the Configuration dialog box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WinInet

WinInet is a higher-level API than Winsock, but it works only for HTTP, FTP, and gopher
client programs in either asynchronous or synchronous mode. You can’t use it to build servers.
The WININET DLL is independent of the WINSOCK32 DLL. Internet Explorer uses
WinInet, and so do ActiveX controls.

WinInet’s Advantages over Winsock

WinInet far surpasses Winsock in the support it gives to a professional-level client program.
Here are just some of the WinInet benefits:

CachingJust like Internet Explorer, your WinInet client program will cach HTML files
and other Internet files. You don’t have to do a thing. The second time your client
requests a particular file, it will be loaded from a local disk instead of from the Internet.

SecurityWinInet supports basic authentication, Windows NT/2000/XP
challenge/response authentication, and Secure Sockets Layer (SSL).

Web proxy accessYou enter proxy server information through Control Panel, and it will
be stored in the Registry. WinInet reads the Registry and uses the proxy server when
required.

Buffered I/OWinInet’s read function doesn’t return until it can deliver the number of
bytes you asked for. (It will return immediately, of course, if the server closes the
socket.) Also, you can read individual text lines if you need to.

Easy APIStatus callback functions are available for user interface update and
cancellation. One function, CInternetSession::OpenURL, finds the server’s IP address,
opens a connection, and makes the file ready for reading, all in one call. Some functions
even copy Internet files directly to and from disk.

User-friendlinessWinInet parses and formats headers for you. If a server has moved a
file to a new location, it will send back the new URL in an HTTP Location header.
WinInet will seamlessly access the new server for you. In addition, it will put a file’s
modified date in the request header for you.

The MFC WinInet Classes

WinInet is a modern API available only for Win32. The MFC wrapping is quite good, which
means we didn’t have to write our own WinInet class library. Yes, MFC WinInet supports
blocking calls in multithreaded programs, and by now you know that makes us happy.

The MFC classes closely mirror the underlying WinInet architecture, and they add exception
processing. These classes are summarized in the following sections.

CInternetSession

You need only one CInternetSession object for each thread that accesses the Internet. After

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You need only one CInternetSession object for each thread that accesses the Internet. After
you have your CInternetSession object, you can establish HTTP, FTP, or gopher connections
or you can open remote files directly by calling the OpenURL member function. You can use
the CInternetSession class directly, or you can derive a class from it in order to support status
callback functions.

The CInternetSession constructor calls the WinInet InternetOpen function, which returns an
HINTERNET session handle that is stored inside the CInternetSession object. This function
initializes your application’s use of the WinInet library, and the session handle is used
internally as a parameter for other WinInet calls.

CHttpConnection

An object of class CHttpConnection represents a “permanent” HTTP connection to a
particular host. You know already that HTTP doesn’t support permanent connections and that
FTP doesn’t either. (The connections last only for the duration of a file transfer.) WinInet
gives the appearance of a permanent connection because it remembers the host name.

After you have your CInternetSession object, you call the GetHttpConnection member
function, which returns a pointer to a CHttpConnection object. (Don’t forget to delete this
object when you’re finished with it.)

The GetHttpConnection member function calls the WinInet InternetConnect function, which
returns an HINTERNET connection handle that’s stored inside the CHttpConnection object
and used for subsequent WinInet calls.

CFtpConnection and CGopherConnection

These classes are similar to CHttpConnection, but they use the FTP and gopher protocols. The
CFtpConnection member functions GetFile and PutFile allow you to transfer files directly to
and from your disk.

CInternetFile

With HTTP, FTP, or gopher, your client program reads and writes byte streams. The MFC
WinInet classes make these byte streams look like ordinary files. If you look at the class
hierarchy, you’ll see that CInternetFile is derived from CStdioFile, which is derived from
CFile. Therefore, CInternetFile and its derived classes override familiar CFile functions such
as Read and Write. For FTP files, you use CInternetFile objects directly, but for HTTP and
gopher files, you use objects of the derived classes CHttpFile and CGopherFile. You don’t
construct a CInternetFile object directly—you call CFtpConnection::OpenFile to get a
CInternetFile pointer.

If you have an ordinary CFile object, it has a 32-bit HANDLE data member that represents the
underlying disk file. A CInternetFile object uses the same m_hFile data member, but that data
member holds a 32-bit Internet file handle of type HINTERNET, which is not interchangeable
with a HANDLE. The CInternetFile overridden member functions use this handle to call
WinInet functions such as InternetReadFile and InternetWriteFile.

CHttpFile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This Internet file class has member functions that are unique to HTTP files, such as
AddRequestHeaders, SendRequest, and GetFileURL. You don’t construct a CHttpFile object
directly, but you call the CHttpConnection::OpenRequest function, which calls the WinInet
function HttpOpenRequest and returns a CHttpFile pointer. You can specify a GET or POST
request for this call.

Once you have your CHttpFile pointer, you call the CHttpFile::SendRequest member
function, which actually sends the request to the server. Then you call Read.

CFtpFileFind and CGopherFileFind

These classes let your client program explore FTP and gopher directories.

CInternetException

The MFC WinInet classes throw CInternetException objects that your program can process
with try/catch logic.

Internet Session Status Callbacks

WinInet and MFC provide callback notifications as a WinInet operation progresses, and these
status callbacks are available in both synchronous (blocking) and asynchronous modes. In
synchronous mode (which we’re using exclusively here), your WinInet calls will block even if
you have status callbacks enabled.

Callbacks are easy in C++. You simply derive a class and override selected virtual functions.
The base class for WinInet is CInternetSession. Now let’s derive a class named
CCallbackInternetSession:

class CCallbackInternetSession : public CInternetSession
{
public:
 CCallbackInternetSession(LPCTSTR pstrAgent = NULL,
 DWORD dwContext = 1,
 DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS,
 LPCTSTR pstrProxyName = NULL, LPCTSTR pstrProxyBypass = NULL,
 DWORD dwFlags = 0) { EnableStatusCallback() }
protected:
 virtual void OnStatusCallback(DWORD dwContext,
 DWORD dwInternalStatus,
 LPVOID lpvStatusInformation,
 DWORD dwStatusInformationLength);
};

The only coding that’s necessary is a constructor and a single overridden function,
OnStatusCallback. The constructor calls CInternetSession::EnableStatusCallback to enable
the status callback feature. Your WinInet client program makes its various Internet blocking
calls, and when the status changes, OnStatusCallback is called. Your overridden function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

calls, and when the status changes, OnStatusCallback is called. Your overridden function
quickly updates the user interface and returns, and then the Internet operation continues. For
HTTP, most of the callbacks originate in the CHttpFile::SendRequest function.

What kinds of events trigger callbacks? Here’s a list of the codes passed in the
dwInternalStatus parameter:

Code Passed Action Taken

INTERNET_STATUS_RESOLVING_NAME Looking up the IP address of the
supplied name. The name is now in
lpvStatusInformation.

INTERNET_STATUS_NAME_RESOLVED Successfully found the IP address.
The IP address is now in
lpvStatusInformation.

INTERNET_STATUS_CONNECTING_TO_SERVER Connecting to the socket.

INTERNET_STATUS_CONNECTED_TO_SERVER Successfully connected to the socket.

INTERNET_STATUS_SENDING_REQUEST Send the information request to the
server.

INTERNET_STATUS_REQUEST_SENT Successfully sent the information
request to the server.

INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to respond to a
request.

INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a response
from the server.

INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to the server.

INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the connection to
the server.

INTERNET_STATUS_HANDLE_CREATED Program can now close the handle.

INTERNET_STATUS_HANDLE_CLOSING Successfully terminated this handle
value.

INTERNET_STATUS_REQUEST_COMPLETE Successfully completed the
asynchronous operation.

You can use your status callback function to interrupt a WinInet operation. You can, for
example, test for an event set by the main thread when the user cancels the operation.

A Simplified WinInet Client Program

And now for the WinInet equivalent of our Winsock client program that implements a blind
GET request. Because you’re using WinInet in blocking mode, you must put the code in a
worker thread. That thread is started from a command handler in the main thread:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AfxBeginThread(ClientWinInetThreadProc, GetSafeHwnd());

Here’s the client thread code:

CString g_strServerName = "localhost"; // or some other host name
UINT ClientWinInetThreadProc(LPVOID pParam)
{
 CInternetSession session;
 CHttpConnection* pConnection = NULL;
 CHttpFile* pFile1 = NULL;
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;
 try {
 pConnection = session.GetHttpConnection(g_strServerName, 80);
 pFile1 = pConnection->OpenRequest(1, "/"); // blind GET
 pFile1->SendRequest();
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for message box
 char temp[10];
 if(pFile1->Read(temp, 10) != 0) {
 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");
 }
 AfxMessageBox(buffer);
 }
 catch(CInternetException* e) {
 // Log the exception
 e->Delete();
 }
 if(pFile1) delete pFile1;
 if(pConnection) delete pConnection;
 delete [] buffer;
 return 0;
}

The second Read call needs some explanation. It has two purposes. If the first Read doesn’t
read the whole file, that means that it was longer than MAXBUF - 1. The second Read will get
some bytes, and that lets you detect the overflow problem. If the first Read reads the whole
file, you still need the second Read to force WinInet to cache the file on your hard disk.
Remember that WinInet tries to read all the bytes you ask it to—through the end of the file.
Even so, you need to read 0 bytes after that.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Building a Web Client Using the MFC WinInet Classes

There are two ways to build a Web client with WinInet. The first method, using the
CHttpConnection class, is similar to the simplified WinInet client discussed in the previous
section. The second method, using CInternetSession::OpenURL, is even easier. We’ll start
with the CHttpConnection version.

The Ex28a WinInet Client #1: Using CHttpConnection

The Ex28a program implements a WinInet client in the file
\vcppnet\Ex28a\ClientInetThread.cpp on the companion CD. Besides allowing the use of an IP
address as well as a host name, the program uses a status callback function. That function,
CCallbackInternetSession::OnStatusCallback in the file \vcppnet\Ex28a\Utility.cpp, puts a
text string in a global variable g_pchStatus, using a critical section for synchronization. The
function then posts a user-defined message to the application’s main window. The message
triggers an Update Command UI handler (called by CWinApp::OnIdle), which displays the
text in the second status bar text pane.

Testing the WinInet Client #1

To test the WinInet client #1, you can follow the same procedure we used to test the Winsock
client. Note the status bar messages as the connection is made. Note that the file appears more
quickly the second time you request it.

The Ex28a WinInet Client #2: Using OpenURL

The Ex28a program implements a different WinInet client in the file ClientUrlThread.cpp on
the companion CD. This client uses the Address URL (that you type to access the Internet
site). Here’s the actual code:

CString g_strURL = "http:// ";

UINT ClientUrlThreadProc(LPVOID pParam)
{
 char* buffer = new char[MAXBUF];
 UINT nBytesRead = 0;

 CInternetSession session; // can't get status callbacks for OpenURL
 CStdioFile* pFile1 = NULL; // could call ReadString to get 1 line
 try {
 pFile1 = session.OpenURL(g_strURL, 0,
 INTERNET_FLAG_TRANSFER_BINARY
 │INTERNET_FLAG_KEEP_CONNECTION);
 // If OpenURL fails, we won't get past here
 nBytesRead = pFile1->Read(buffer, MAXBUF - 1);
 buffer[nBytesRead] = '\0'; // necessary for message box
 char temp[100];
 if(pFile1->Read(temp, 100) != 0) {
 // makes caching work if read complete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // makes caching work if read complete
 AfxMessageBox("File overran buffer — not cached");
 }
 ::MessageBox(::GetTopWindow(::GetDesktopWindow()), buffer,
 "URL CLIENT", MB_OK);
 }
 catch(CInternetException* e) {
 LogInternetException(pParam, e);
 e->Delete();
 }
 if(pFile1) delete pFile1;
 delete [] buffer;
 return 0;
}

Note that OpenURL returns a pointer to a CStdioFile object. You can use that pointer to call
Read as shown, or you can call ReadString to get a single line. The file class does all the
buffering. As in the previous WinInet client, it’s necessary to call Read a second time to cache
the file. The OpenURL INTERNET_FLAG_KEEP_CONNECTION parameter is necessary for
Windows NT/2000/XP challenge/response authentication. If you add the flag
INTERNET_FLAG_RELOAD, the program will bypass the cache just as the browser does
when you click the Refresh button.

Testing the WinInet Client #2

You can test the WinInet client #2 against any HTTP server. You run this client by typing in
the URL address, not by using the menu. You must include the protocol (http:// or ftp://) in the
URL address. Type http://localhost. You should see the same HTML code in a message box.
No status messages will appear here because the status callback doesn’t work with OpenURL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asynchronous Moniker Files

Just when you thought you knew all the ways to download a file from the Internet, you’re
going to learn about another one. With asynchronous moniker files, you’ll be doing all your
programming in your application’s main thread without blocking the user interface. Sounds
like magic, doesn’t it? The magic is inside the Windows URLMON DLL, which depends on
WinInet and is used by Internet Explorer. The MFC CAsyncMonikerFile class makes the
programming easy, but you should know a little theory first.

Monikers

A moniker is a “surrogate” COM object that holds the name (URL) of the “real” object, which
can be an embedded component but more often is just an Internet file (HTML, JPEG, GIF, and
so on). Monikers implement the IMoniker interface, which has two important member
functions: BindToObject and BindToStorage. The BindToObject function puts an object into
the running state, and the BindToStorage function provides an IStream or an IStorage pointer
from which the object’s data can be read. A moniker has an associated IBindStatusCallback
interface with member functions such as OnStartBinding and OnDataAvailable, which are
called during the process of reading data from a URL.

The callback functions are called in the thread that created the moniker. This means that the
URLMON DLL must set up an invisible window in the calling thread and send the calling
thread messages from another thread, which uses WinInet functions to read the URL. The
window’s message handlers call the callback functions.

The MFC CAsyncMonikerFile Class

Fortunately, MFC can shield you from the COM interfaces described above. The
CAsyncMonikerFile class is derived from CFile, so it acts like a regular file. Instead of
opening a disk file, the class’s Open member function gets an IMoniker pointer and
encapsulates the IStream interface that’s returned from a call to BindToStorage. Furthermore,
the class has virtual functions that are tied to the member functions of IBindStatusCallback.
Using this class is a breeze—you construct an object or a derived class and call the Open
member function, which returns immediately. Then you wait for calls to overridden virtual
functions such as OnProgress and OnDataAvailable (which are named, not coincidentally,
after their IBindStatusCallback equivalents).

Using the CAsyncMonikerFile Class in a Program

Suppose your application downloads data from a dozen URLs but has only one class derived
from CAsyncMonikerFile. The overridden callback functions must figure out where to put the
data. That means you must associate each derived class object with some user interface
element in your program. The following steps illustrate one of many ways to do this. Suppose
you want to list the text of an HTML file in an edit control that’s part of a form view. This is
what you can do:

1. Derive a class from CAsyncMonikerFile.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add a character pointer data member m_buffer. Invoke new for this pointer in the
constructor, and invoke delete in the destructor.

3. Add a public data member m_edit of class CEdit.

4. Override the OnDataAvailable function thus:

void CMyMonikerFile::OnDataAvailable(DWORD dwSize, DWORD bscfFlag)
{
 try {
 while (dwSize > 0){
 UINT nBytesRead = Read(m_buffer, MAXBUF - 1);
 dwSize -= nBytesRead;
 }
 }
 catch(CFileException* pe) {
 TRACE(_T("File exception %d\n"), pe->m_cause);
 pe->Delete();
 }
}

5. Embed an object of your new moniker file class in your view class.

6. In your view’s OnInitialUpdate function, attach the CEdit member to the edit control
like this:

m_myEmbeddedMonikerFile.m_edit.SubClassDlgItem(ID_MYEDIT, this);

7. In your view class, open the moniker file like this:

m_myEmbeddedMonikerFile.Open("http://host/filename");

For a large file, OnDataAvailable will be called several times, each time adding text to the edit
control. If you override OnProgress or OnStopBinding in your derived moniker file class, your
program can be alerted when the transfer is finished. You can also check the value of bscfFlag
in OnDataAvailable to determine whether the transfer completed. Note that everything here is
in your main thread and—most important—the moniker file object must exist for as long as
the transfer is in progress. That’s why it’s a data member of the view class.

Asynchronous Moniker Files vs. WinInet Programming

In the WinInet examples earlier in this chapter, you started a worker thread that made blocking
calls and sent a message to the main thread when it was finished. With asynchronous moniker
files, the same thing happens—the transfer takes place in another thread, which sends
messages to the main thread. You just don’t see the other thread. There is one very important

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages to the main thread. You just don’t see the other thread. There is one very important
difference, however, between asynchronous moniker files and WinInet programming: with
blocking WinInet calls, you need a separate thread for each transfer; with asynchronous
moniker files, only one extra thread handles all transfers together. For example, if you’re
writing a browser that must download 50 bitmaps simultaneously, using asynchronous
moniker files saves 49 threads, which makes the program much more efficient.

Of course, you have some extra control with WinInet, and it’s easier to get information from
the response headers, such as total file length. Therefore, your choice of programming tools
will depend on your application. The more you know about your options, the better the
choices you can make.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 29
Introducing Dynamic HTML

Dynamic HTML (DHTML), which was introduced as part of Microsoft Internet Explorer 4.0,
is a technology that provides significant benefits to Webmasters and developers. Why the buzz
about DHTML? For clients who use Internet Explorer as their browser of choice, DHTML
represents a dramatic change in how they experience the Web.

It began with the Internet Explorer 4.0 “HTML display engine”—sometimes called Trident in
Microsoft literature. As part of the design of Internet Explorer 4.0, Microsoft made Trident a
COM component that exposes many of its internal objects that are used for displaying HTML
pages in Internet Explorer 4.0. This feature allows you to traverse the portions of an HTML
page in script or code as if the HTML page were a data structure. Gone are the days of having
to parse HTML or write grotesque Common Gateway Interface (CGI) scripts to get to data in a
form. The real power of using DHTML, however, lies not in this ability to access the HTML
objects but in the ability to actually change and manipulate the HTML page on the fly—thus
the name Dynamic HTML.

Once you grasp the concept of DHTML, a million possible applications will come to mind.
For Webmasters, DHTML means that much of the logic that manipulates a Web page can live
in scripts that are downloaded to the client. C++ developers can embed DHTML in their
applications and use it as an embedded Web client or as a super-flexible, dynamic “form” that
their application can change on the fly.

Unfortunately, DHTML is so powerful and extensive that it requires a separate book to fill
you in on all of the copious details. For example, to really leverage DHTML you need to
understand all of the possible elements of an HTML page: forms, lists, style sheets, and so on.
Inside Dynamic HTML by Scott Isaacs (Microsoft Press, 1997) is a great resource for learning
the details of DHTML.

Instead of covering all aspects of DHTML, I’ll briefly introduce you to the DHTML object
model, show you how to work with the model from the scripting angle (as a reference), and
then show you how to work with the model from both the Microsoft Foundation Class (MFC)
Library and the Active Template Library (ATL). These features are all made possible by the
excellent DHTML support introduced in Microsoft Visual C++ .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DHTML Object Model

If you’ve been buried in a Visual C++ .NET project and haven’t yet had time to take a peek at
HTML, the first thing you should know is that HTML is an ASCII markup language format.
Here is the code for a very basic HTML page:

<html>
<head>
<title>
This is an example of a very basic HTML page!
</title>
</head>
<body>
<h1>This is some text with H1!
</h1>
<h3>
This is some text with H3!
</h3>
</body>
</html>

This basic HTML “document” is composed of the following elements:

A head (or header)In this example, the header contains a title: “This is an example of a
very basic HTML page!”

The body of the documentThe body in this example contains two text elements. The
first has the heading 1 (h1) style and reads, “This is some text with H1!” The second
text element has the heading 3 (h3) style and reads, “This is some text with H3!”

The end result is an HTML page that, when displayed in Internet Explorer, looks like Figure
29-1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-1. A very basic HTML page, as seen in Internet Explorer.

When Internet Explorer loads this sample HTML page, it creates an internal representation
that you can traverse, read, and manipulate through the DHTML object model. Figure 29-2, on
the following page, shows the basic hierarchy of the DHTML object model.

At the root of the object model is the window object. This object can be used from a script to
perform some action, such as popping up a dialog box. Here’s an example of some JScript that
accesses the window object:

<SCRIPT LANGUAGE="JScript">
function about()
{
 window.showModalDialog("about.htm","",
 "dialogWidth:25em;dialogHeight13em")
}
</SCRIPT>

When the about script function is called, it calls the showModalDialog function in the window
DHTML object to display a dialog box. This example also illustrates how scripts access the
object model—through globally accessible objects that map directly to the corresponding
object in the DTHML object model.

The window object has several “subobjects” that allow you to further manipulate portions of
Internet Explorer. The document object is what we’ll spend most of our time on in this chapter
because it gives us programmatic access to the various elements of the currently loaded
HTML document. On page 853, you’ll see some JScript that shows how to create basic
dynamic content that changes the document object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-2. The basic hierarchy of the DHTML object model.

<HTML>
<HEAD>
<TITLE>Welcome!</TITLE>
<SCRIPT LANGUAGE="JScript">
function changeMe() {
 document.all.MyHeading.outerHTML =
 "<H1 ID=MyHeading>Dynamic HTML is magic!</H1>";
 document.all.MyHeading.style.color = "green";
 document.all.MyText.innerText = "Presto Change-o! ";
 document.all.MyText.align = "center";
 document.body.insertAdjacentHTML("BeforeEnd",
 "<P ALIGN=\"center\">Open Sesame!</P>");
}
</SCRIPT>
<BODY onclick="changeMe()">
<H3 ID=MyHeading> Dynamic HTML demo!</H3>
<P ID=MyText>Click anywhere to see the power of DHTML!</P>
</BODY>
</HTML>

This script changes the MyHeading and MyText objects in the HTML documents on the fly.
Not only does it change the text, but it also changes attributes of the elements such as color
and alignment. If you want to see this script in action, you can find it in the Ex29_1.html file
on the companion CD.

Before we further deconstruct the DHTML object model, let’s examine the DHTML concept
of a collection. Collections in DHTML are logically equivalent to C++ data structures such as
linked lists. In fact, access to the DHTML object model is performed largely by iterating
through collections to search for a particular HTML element and then potentially iterating
through another subcollection to get to yet another element. Elements contain several methods,
such as contains and length, that you use to traverse the elements.

For example, one subelement of the document object is a collection named all that contains all
of the document’s elements. In fact, most of the subobjects of the document object are
collections. The following script (Ex29_2.html) shows how to iterate through the all collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

collections. The following script (Ex29_2.html) shows how to iterate through the all collection
and list the various items of a document:

<HTML>
<HEAD>
<TITLE>Iterating through the all collection.</TITLE>
<SCRIPT LANGUAGE="JScript">
function listAllElements() {
 var tag_names = "";
 for (i=0; i<document.all.length; i++)
 tag_names = tag_names + document.all(i).tagName + " ";
 alert("This document contains: " + tag_names);
}
</SCRIPT>
</HEAD>

<BODY onload="listAllElements()">
<H1>DHTML Rocks!</H1>
<P ID=MyText>This document is very short.</P>
</BODY>
</HTML>

Notice how easy it is to retrieve items with script. (The syntax calls for parentheses, much like
when you access an array in C++.) Also notice that each element in an HTML document has
properties such as tagName that allow you to programmatically “search” for various elements.
For example, if you want to write a script that filters out all bold items, you can scan the all
collection for an element with tagName equal to B.

Now you know the basics of the DHTML object model and you understand how to access
them through scripts from the Webmaster’s perspective. Let’s look at how Visual C++ .NET
lets us work with DHTML from an application developer’s perspective.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual C++ .NET and DHTML

Visual C++ .NET supports DHTML through both MFC and ATL. Both MFC and ATL give
you complete access to the DHTML object model. Unfortunately, access to the object model
from languages such as C++ is obtained through OLE Automation (IDispatch) and in many
cases isn’t as cut-and-dried as some of the scripts we looked at earlier.

The DHTML object model is exposed to C++ developers through a set of COM objects with
the prefix IHTML (IHTMLDocument, IHTMLWindow, IHTMLElement, IHTMLBodyElement,
and so on). In C++, once you obtain the document interface, you can use any of the
IHTMLDocument2 interface methods to obtain or to modify the document’s properties.

You can access the all collection by calling the IHTMLDocument2::get_all method. This
method returns an IHTMLElementCollection collection interface that contains all the elements
in the document. You can then iterate through the collection using the
IHTMLElementCollection::item method (similar to the parentheses in the script above). The
IHTMLElementCollection::item method supplies you with an IDispatch pointer that you can
call QueryInterface on, requesting the IID_IHTMLElement interface. This call to
QueryInterface will give you an IHTMLElement interface pointer that you can use to get or set
information for the HTML element.

Most elements also provide a specific interface for working with that particular element type.
These element-specific interface names take the form IHTMLXXXXElement, where XXXX is
the name of the element (IHTMLBodyElement, for example). You must call QueryInterface on
the IHTMLElement object to request the element-specific interface you need. This might
sound confusing (and it can be!). But don’t worry—you’ll see plenty of samples in this
chapter that demonstrate how it all ties together. You’ll be writing DHTML code in no time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex29a Example: MFC and DHTML

MFC’s support for DHTML starts with a new CView derivative, CHtmlView. CHtmlView
allows you to embed an HTML view inside frame windows or splitter windows, and with
some DHTML work it can act as a dynamic form. Example Ex29a demonstrates how to use
the new CHtmlView class in a vanilla MDI application.

Follow these steps to create the Ex29a example:

1. Run the MFC Application Wizard and create the Ex29a project.Make the project an SDI
application. Accept all the other defaults, except select CHtmlView as the base class on
the Generated Classes page.

2. Edit the URL to be loaded.In the CEx29aView::OnInitialUpdate function, you’ll see
this line:

Navigate2(_T("http://www.msdn.microsoft.com/visualc/"),NULL,NULL);

You can edit this line to have the application load a local page or a URL other than the
Visual C++ .NET page.

3. Compile and run the application.Figure 29-3 shows the application running with the
default Web page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 29-3. The Ex29a example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex29b Example: DHTML and MFC

Now let’s create a sample that really shows how to use DHTML with MFC. Ex29b creates a
CHtmlView object and a CListView object separated by a splitter. It then uses DHTML to
enumerate the HTML elements in the CHtmlView object and displays the results in the
CListView object. The end result is a DHTML explorer that you can use to view the DHTML
object model of any HTML file.

Here are the steps to create Ex29b:

1. Run the MFC Application Wizard and create the Ex29b project. Accept all the defaults
but three: Select Single Document and Windows Explorer on the Application Type
page, and select CHtmlView as the base class on the Generated Classes page.

2. Change the CLeftView to a CListView derivative. By default, the MFC Application
Wizard makes the CLeftView of the splitter window a CTreeView derivative. Open the
LeftView.h file, and do a global search for CTreeView and replace it with CListView.
Open LeftView.cpp, and do the same find and replace.

3. Edit the URL to be loaded. In the CEx29bView::OnInitialUpdate function, change the
URL to http://msdn.microsoft.com.

4. Add a DoDHTMLExplore function to CMainFrame. First add the following declaration
to the MainFrm.h file:

virtual void DoDHTMLExplore(void);

Then add the implementation for DoHTMLExplore to MainFrm.cpp:

void CMainFrame::DoDHTMLExplore(void)
{

 CLeftView *pListView =
 (CLeftView *)m_wndSplitter.GetPane(0,0);

 CEx29bView * pDHTMLView =
 (CEx29bView *)m_wndSplitter.GetPane(0,1);

 //Clear the listview
 pListView->GetListCtrl().DeleteAllItems();
 IDispatch* pDisp = pDHTMLView->GetHtmlDocument();

 if (pDisp != NULL)
 {
 IHTMLDocument2* pHTMLDocument2;
 HRESULT hr;

 hr = pDisp->QueryInterface(IID_IHTMLDocument2,
 (void**)&pHTMLDocument2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void**)&pHTMLDocument2);
 if (hr == S_OK)
 {
 IHTMLElementCollection* pColl = NULL;

 hr = pHTMLDocument2->get_all(&pColl);
 if (hr == S_OK && pColl != NULL)
 {
 LONG celem;
 hr = pColl->get_length(&celem);

 if (hr == S_OK)
 {
 for (int i=0; i<celem; i++)
 {
 VARIANT varIndex;
 varIndex.vt = VT_UINT;
 varIndex.lVal = i;
 VARIANT var2;
 VariantInit(&var2);
 IDispatch* pDisp;

 hr = pColl->item(varIndex, var2, &pDisp);
 if (hr == S_OK)
 {
 IHTMLElement* pElem;

 hr = pDisp->QueryInterface(
 IID_IHTMLElement,
 (void **)&pElem);
 if (hr == S_OK)
 {
 BSTR bstr;
 hr = pElem->get_tagName(&bstr);
 CString strTag (bstr);
 IHTMLImgElement* pImgElem;

 //Is it an image element?
 hr = pDisp->QueryInterface(
 IID_IHTMLImgElement,
 (void **)&pImgElem);
 if (hr == S_OK)
 {
 pImgElem->get_href(&bstr);
 strTag += " - ";
 strTag += bstr;
 pImgElem->Release();
 }
 else
 {
 IHTMLAnchorElement* pAnchElem;

 //Is it an anchor?
 hr = pDisp->QueryInterface(
 IID_IHTMLAnchorElement,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IID_IHTMLAnchorElement,
 (void **)&pAnchElem);
 if (hr == S_OK)
 {
 pAnchElem->get_href(&bstr);
 strTag += " - ";
 strTag += bstr;
 pAnchElem->Release();
 }
 }//end of else

 pListView->GetListCtrl().InsertItem(
 pListView->GetListCtrl()
 .GetItemCount(), strTag);
 pElem->Release();
 }
 pDisp->Release();
 }
 }
 }
 pColl->Release();
 }
 pHTMLDocument2->Release();
 }
 pDisp->Release();
 }
}

To “explore” the HTML document using DHTML, the DoHTMLExplore function first
gets pointers to the CListView and CHtmlView views in the splitter window. Then it
makes a call to GetHtmlDocument to get an IDispatch pointer to the DHTML document
object. Next, it gets the IHTMLDocument2 interface, retrieves the all collection, and
iterates through it. In each iteration, DoHTMLExplore checks the element type. If the
element is an image or an anchor, DoHTMLExplore retrieves additional information
such as the link for the image. The all collection loop then places the textual description
of the HTML element in the CListView object.

5. Be sure that Mainfrm.cpp includes mshtml.h. Add the following line to the top of
Mainfrm.cpp so the DoHTMLExplore code will compile:

#include <mshtml.h>

6. Add a call to DoHTMLExplore. For this example, we’ll change the
CEx29bApp::OnAppAbout function to call the DoDHTMLExplore function in the
Ex29b.cpp file. Replace the existing code with the following boldface code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void CEx29bApp::OnAppAbout()
{
 CMainFrame * pFrame = (CMainFrame*)AfxGetMainWnd();
 pFrame->DoDHTMLExplore();
}

7. Customize the list view. In the CLeftView::PreCreateWindow function (LeftView.cpp),
add this line:

cs.style │= LVS_LIST;

8. Compile and run the application. Press the ? toolbar item or choose Help/About to
invoke the explore function.

Figure 29-4 shows the Ex29b example in action.

Figure 29-4. The Ex29b example in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that you’ve seen how to use DHTML and MFC, let’s look at how ATL implements
DHMTL support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex29c Example: ATL and DHTML

ATL’s support for DHTML comes in the form of an HTML object that can be embedded in
any ATL ActiveX control. Ex29c creates an ATL control that illustrates DHTML support.

To create the example, follow these steps:

1. Run the ATL Project Wizard and create the Ex29c project.Select Executable as the
server type on the Application Settings page.

2. Insert an HTML control.From the Project menu, choose Add Class. Select ATL Control
from the list of templates, as shown here:

3. Fill in the C++ Short Name on the Names page and select DHTML Control on the
Options page, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE
If you look at the IDHTMLUI object, you’ll see this stock implementation of
the OnClick handler:

STDMETHOD(OnClick)(IDispatch* pdispBody, VARIANT varColor)
 {
 CComQIPtr<IHTMLBodyElement> spBody(pdispBody);
 if (spBody != NULL)
 spBody->put_bgColor(varColor);
 return S_OK;
 }

The default OnClick handler uses QueryInterface on the IDispatch pointer to
get the IHTMLBodyElement object. The handler then calls the put_bgColor
method to change the background color.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Compile, load, and run the control to see the ATL DHTML code in action.After you
build the project, run the ActiveX Control Test Container from the Tools menu. In the
test container, choose Insert New Control from the Edit menu and select CDHTML
Object from the list box. Figure 29-5 shows the resulting ActiveX control that uses
DHTML to change the background when the user clicks the button.

Figure 29-5. The Ex29c ActiveX control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For More Information

The possibilities for using DHTML in your Visual C++ .NET applications are endless: You
can create completely dynamic applications, applications that update from the Internet,
client/server ActiveX controls, and so on. If you’d like to learn more about DHTML, here are
some good resources:

Inside Dynamic HTML by Scott Isaacs (Microsoft Press, 1997)

Dynamic HTML in Action by William J. Pardi and Eric M. Schurman (Microsoft Press,
1998)

The Platform SDK (an excellent resource on DHTML and other Microsoft technologies)

msdn.microsoft.com (which discusses DHTML in several areas)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 30
ATL Server

In Chapter 28, we used a “homemade” intranet based on the Winsock APIs. In this chapter,
you’ll learn how to use and extend Microsoft Internet Information Services (IIS), which is
bundled with Microsoft Windows 2000 and Windows XP. IIS is actually three separate
services—one for HTTP (for the World Wide Web), one for FTP, and one for SMTP/NNTP.

This chapter tells you how to write HTTP server extensions using ATL Server. ATL Server is
a set of C++ classes that take the grunge work out of writing ISAPI DLLs. It uses a
combination of ISAPI DLLs and extension DLLs written using C++ templates and
substitutable tags to customize the content of your page. You’ll see how ATL Server
simplifies handling HTTP requests so you can write an interactive Web site more quickly than
if you program by hand.

This chapter assumes that you have Windows NT 2000/XP (with IIS installed). Let’s start by
taking a look at IIS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IIS

IIS is a high-performance Internet/intranet server that takes advantage of underlying Windows
NT features such as I/O completion ports, the Win32 function TransmitFile, file-handle
caching, and CPU scaling for threads.

When you install Windows NT 2000/XP, you’re given the option of installing IIS. If you
selected IIS at setup, the server will be running whenever Windows NT is running. IIS is a
special kind of Win32 program called a service (actually three services—HTTP, FTP, and
SMTP/NNTP—in one program called inetinfo.exe), which doesn’t appear on the taskbar. You
can control IIS from the Services icon in Control Panel, but you’ll probably want to use the
Internet Service Manager program instead.

Internet Service Manager

You can run Internet Service Manager from Control Panel using Administrative Tools. From
the Start menu, choose Settings, Control Panel. In Control Panel, select Administration. Then
select Internet Information Services. On Advanced Server, you can also get to the IIS manager
by choosing All Programs, Administrative Tools from the Start menu and then selecting
Internet Information Services.

NOTE
You can also run an HTML-based version of Internet Service Manager remotely
from a browser. That version allows you to change service parameters, but it won’t
let you turn services on and off.

Figure 30-1 shows the Internet Service Manager screen with the World Wide Web (WWW)
default site running and FTP services stopped.

You can select a service by clicking on its icon at the left. The Start Item and Stop Item
toolbar buttons (triangle and square, respectively) allow you to turn the selected service on or
off.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-1. The Internet Service Manager screen.

IIS Security

Now that a throng of users can potentially get to your Web site through the Internet, security
becomes a big deal. To configure IIS security, right-click on the Web site you want to control
and then choose Properties from the shortcut menu to display the Web site’s property sheet.
Then select the Directory Security property page, as shown in Figure 30-2. Click the Edit
button in the Anonymous Access And Authentication Control panel, and you’ll see the
Authentication Methods property sheet (shown in Figure 30-3). When a client browser
requests a file, the server will impersonate a local user for the duration of the request, and that
username will determine which files the client can access. Which local user will the server
impersonate? Usually the one you see in the Username field, as shown in Figure 30-4. (Click
the Edit button in the Authentication Methods dialog box to display the Anonymous User
Account dialog box.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-2. The IIS Directory Security property page.

Figure 30-3. The IIS Authentication Methods property sheet.

Figure 30-4. The Anonymous User Account dialog box.

Most Web page visitors don’t supply a username and password, so they’re considered
anonymous users. They have the same rights they’d have if they had logged on to your server
locally as IUSR_<MYMACHINENAME>. That means IUSR_<MYMACHINENAME> must
appear in the list of users that’s displayed when you run User Manager or User Manager For
Domains (from the Administrative Tools menu), and the passwords must match. (Note that the
MMC snap-in is named Computer Management.) The IIS Setup program normally defines this
anonymous user for you. You can define your own WWW anonymous username, but you
must be sure that the entry in the Anonymous User Account dialog box matches the entry in
the computer’s (or Windows NT domain’s) user list.

Note also the Authenticated Access options in the Authentication Methods property sheet. IIS
uses this username to get a security token when it runs a Web site that offers anonymous
access. For the time being, stick to the Anonymous Access option only, which means that all
Web users will be logged on as IUSR_<MYMACHINENAME.>

IIS Directories

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remember Consolidated Messenger’s Web site from Chapter 28? If you requested the URL
http://consolidatedmessenger.com/newproducts.html, the newproducts.html file would be
displayed from the consolidatedmessenger.com home directory. Each server needs a home
directory, even if that directory contains only subdirectories. The home directory does not
need to be the server computer’s root directory, however. As shown in Figure 30-5, the WWW
home directory is really C:\WebHome, so clients read the disk file
C:\WebHome\newproducts.html.

Figure 30-5. The \WebHome WWW home directory property page.

Your server could get by with a home directory only, but the IIS virtual directory feature
might be useful. Suppose Consolidated Messenger wants to allow Web access to the directory
\BF on the D drive. IIS lets you create a virtual directory, such as /BugsFixed, and map it to a
real directory, such as D:\BF. Clients can then access files in the D:\BF directory with a URL
similar to this: http://consolidatedmessenger.com/BugsFixed/file1.html.

NOTE
If your computer is configured for multiple IP addresses (see the Control Panel
Network icon), IIS will allow you to define virtual Web servers. Each virtual
server will have its own home directory (and virtual directories) attached to a
specified IP address, making it appear as if you have several server computers.
Unfortunately, the IIS Web server listens on all the computer’s IP addresses, so
you can’t run IIS simultaneously with the Ex28a server with both listening on port
80.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As described in Chapter 28, browsers can issue a blind request. The Documents tab of the
property sheet shown in Figure 30-5 lets you specify the file that a blind request selects,
usually Default.htm. If you select the Directory Browsing option on the Home Directory page
of the Web site’s property sheet, browser clients can see a hypertext list of files in the server’s
directory instead.

IIS Logging

IIS is capable of making log entries for all connections. You control logging from the Web
Site property page of the Web site’s property sheet. You can specify text log files, or you can
specify logging to an SQL/ODBC database. Log entries consist of date, time, client IP
address, file requested, query string, and so forth.

Testing IIS

It’s easy to test IIS with a browser or with any of the Ex30a clients. Just make sure that IIS is
running and that the Ex30a server is not running. The default IIS home directory is
\Winnt\System32\inetsrv\wwwroot (\inetpub\wwwroot on Windows XP), and some HTML
files are installed there. If you’re running a single machine, you can use the localhost host
name. For a network, use a name from the Hosts file. If you can’t access the server from a
remote machine, run ping to make sure the network is configured correctly. Don’t try to build
and run ISAPI DLLs until you have successfully tested IIS on your computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISAPI Server Extensions

An ISAPI server extension is a program (implemented as a DLL loaded by IIS) that runs in
response to a GET or POST request from a client program (browser). The browser can pass
parameters, which are often values that the browser user types into edit controls, selects from
list boxes, and so forth, to the program. The ISAPI server extension typically sends back
HTML code based on those parameter values. You’ll understand this process better when you
see an example.

CGI and ISAPI

Internet server programs were first developed for UNIX computers, so the standards were in
place long before Microsoft introduced IIS. The Common Gateway Interface (CGI) standard,
which is actually part of HTTP, evolved as a way for browser programs to interact with scripts
or separate executable programs running on the server. Without altering the HTTP/CGI
specifications, Microsoft designed IIS to allow any browser to load and run a server DLL.
DLLs are part of the IIS process and thus are faster than scripts that might need to load
separate executable programs. In this chapter, we’ll write an ISAPI DLL in C++ using ATL
Server. There are other ways to create Web pages, including writing PERL scripts, Active
Server Pages (ASP), and ASP.NET.

CGI shifts the programming burden to the server. Using CGI parameters, the browser sends
small amounts of information to the server computer, and the server can do absolutely
anything with this information, including access a database, generate images, and control
peripheral devices. The server sends a file (HTML or otherwise) back to the browser. The file
can be read from the server’s disk, or it can be generated by the program. No ActiveX controls
are necessary, and the browser can be running on any type of computer.

A Simple ISAPI Server Extension GET Request

Suppose an HTML file contains the following tag:

Idaho Weather Map<p>

When the user clicks on Idaho Weather Map, the browser will send the server a CGI GET
request like this:

GET scripts/maps.dll?State=Idaho HTTP/1.0

IIS will then load maps.dll from its scripts (virtual) directory, call a default function (often
named Default), and pass it the State parameter Idaho. The DLL will then go to work
generating a JPG file containing the up-to-the-minute satellite weather map for Idaho and send
it to the client.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If maps.dll has more than one function, the tag can specify the function name like this:

Idaho Weather Map<p>

In this case, the function GetMap will be called with two parameters, State and Res.

You’ll soon learn how to write an ISAPI server similar to maps.dll, but first you’ll need to
understand HTML forms because you don’t often see CGI GET requests by themselves.

HTML Forms: GET vs. POST

In the HTML code for the simple CGI GET request above, the state name is hard-coded in the
tag. Why not let the user select the state from a drop-down list? For that, you need a form, and
here’s a simple one that can do the job:

<html>
<head><title>Weathermap HTML Form</title>
</head>
<body>
<h1><center>Welcome to the Satellite Weathermap Service</center></h1>
<form action="scripts/maps.dll?GetMap" method=GET>
 <p>Select your state:
 <select name="State">
 <option> Alabama
 <option> Alaska
 <option> Idaho
 <option> Washington
 </select>
<p><input type="submit"><input type="reset">
</form>
</body></html>

If you look at this HTML file with a browser, you’ll see the form shown in Figure 30-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-6. The Weathermap HTML Form window.

The select tag provides the state name from a list of four states, and the all-important submit
input tag displays the pushbutton that sends the form data to the server in the form of a CGI
GET request that looks like this:

GET scripts/maps.dll?GetMap?State=Idaho HTTP/1.0
(various request headers)
(blank line)

Unfortunately, some early versions of the Netscape browser omit the function name in form-
originated GET requests, giving you two choices: provide only a default function in your
ISAPI DLL or use the POST method inside a form instead of the GET method.

If you want to use the POST option, you can change one HTML line in the form to the
following:

<form action="scripts/maps.dll?GetMap" method=POST>

Now here’s what the browser will send to the server:

POST scripts/maps.dll?GetMap
(various request headers)
(blank line)State=Idaho

Note that the parameter value is in the last line instead of in the request line.

NOTE
ISAPI DLLs are usually stored in a separate virtual directory on the server because
these DLLs must have execute permission but do not need read permission.
Clicking the Edit button shown in Figure 30-3 will allow you to access these
permissions from Internet Service Manager, or you can double-click on a directory
to change its properties.

You can use the Internet Services API to build high-performance Web applications with low-
level control under IIS. You write a DLL using C/C++, and IIS uses a DLL to filter incoming
requests or respond to them. These two kinds of ISAPI DLLs are called filters and extensions,
respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An ISAPI filter is a DLL that can receive event notifications from IIS as client requests are
being processed. The filter can then modify the standard behavior of IIS. Filters can be used to
provide compression, encryption, logging, and custom authentication schemes, among other
things.

An ISAPI extension is a DLL that can receive client requests and send responses. C++ code
can often generate the HTML that is sent to the client. The extension DLL must export the
GetExtensionVersion and HttpExtensionProc entry points (and optionally
TerminateExtension). For every client request, an EXTENSION_CONTROL_BLOCK structure
is passed from IIS to the ISAPI extension DLL through HttpExtensionProc. This structure is
used to get HTTP header information, call IIS helper functions, and read and write to the client
stream.

In a moment, you’ll see how ATL Server pushes the Extension Control Block (ECB, or
EXTENSION_CONTROL_BLOCK as defined in the last paragraph) processing into a set of
classes more akin to what C++ developers are used to seeing. As with most C++ code within
Microsoft libraries, the ECB is still directly available from within ATL Server.

With low-level ISAPI control comes responsibility. For example, useful ASP intrinsic objects
such as Session and Response are not available in ISAPI, although similar functions can
ultimately be accessed. Programming the ECB in a normal C or C++-based ISAPI DLL
involves manipulating buffers and other low-level elements. Furthermore, when you write an
ISAPI extension, you typically create a thread pool to respond to incoming client requests. For
more information on ISAPI, see the MSDN Online article “Developing ISAPI Extensions and
Filters.”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter ATL Server

MFC includes several classes to help you write ISAPI DLLs. These include CHttpServer,
CHttpServerContext, and CHtmlStream. In addition, you can see that the creators of some
real-world sites actually use MFC to write ISAPI DLLs for their sites.

There’s a good amount of documentation on writing ISAPI DLLs using MFC, including
earlier editions of this book. Suffice it to say that writing ISAPI DLLs by hand is a C++
process; as a result, it’s prone to C++ foibles such as memory leaks and null pointers. The
MFC classes make the process somewhat easier, and ATL Server makes the process easier
still.

The modern way to write ISAPI DLLs is to use ATL Server. ATL Server is not solely for
Web-based user interface development—it’s also useful for developing Web services
(programmable Web sites). Let’s start by taking a look at the ATL Server architecture.

ATL vs. ATL Server

In Chapter 25, we looked at ATL as a COM development tool—a set of class libraries that
hide the complexities of COM from the developer. In this chapter, we’re looking at ATL
Server, which actually has very little to do with COM. The ATL-based COM support is
generally independent of ATL Server’s support for ISAPI.

Where Does ATL Server Fit In?

There are many ways to handle an HTTP request on the Windows platform. They run the
gamut from writing ISAPI DLLs by hand to writing ASP code, writing PERL scripts, and
writing ASP.NET code. Each method has its advantages and disadvantages. For example,
when you write ISAPI DLLs by hand, you have complete control over how to handle each
request. However, you have little leverage over the response to the client. (That is, you have to
generate every little part of the response programmatically.) In addition, writing ISAPI DLLs
by hand means writing boilerplate code. On the other end of the spectrum is ASP, in which
each page is usually a mixture of HTML, some script code, and perhaps some COM objects.

ATL Server tries to sit between the two. Developing Web-based content and user interfaces
usually involves managing HTML tags (or perhaps some XML in the case of Web services)
and developing logic to drive dynamic content. The executable part of an ATL Server
application lives within some C++ classes. In this way, ATL Server provides performance
similar to when you code C++ ISAPI DLLs from scratch, and it also includes some of the
HTML management features of higher-level development tools such as ASP.NET. The ATL
Server classes encapsulate the request, the response, cookies, forms, and the execution
context. As a result, handling requests using ATL Server is much easier than when you use the
raw ECB.

In addition to a fundamental architecture for managing ISAPI executable code and HTML,
ATL Server includes other useful features such as a performance cache and a thread pool.

The ATL Server Architecture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the end of the day, your job as a Web developer (and who isn’t one these days, at least in
some capacity?) is to respond to HTTP requests and shove some content out to the client that’s
connected to your server. You’ve already seen how to write a server using sockets and the
MFC socket classes. Microsoft has already done the dirty work of managing port 80 by
providing a service that will watch the port for you: IIS. As an application developer, you need
to make IIS do something meaningful—generate well-formed HTML for the client. That’s
ATL Server’s job.

At a high level, ATL Server applications are divided into roughly two parts: a collection of
DLLs (both ISAPI extensions and application extension DLLs) and HTML generation
templates called Server Response Files (SRF files for short). ATL Server’s architecture clearly
separates the application presentation from the application logic. The basic content of your
page (the presentation) is laid out in SRF files, and then ATL Server uses the application
DLLs to replace well-marked HTML code (HTML with embedded code that ATL Server
understands) in the HTML text within the SRF files. An SRF file includes HTML content
interspersed with well-defined substitution tags. The SRF file is fed to the ISAPI extensions
and ATL Server DLLs (the application logic), which make substitutions for the tags.

From the C++ point of view, an ATL Server project comprises several DLLs: a single ISAPI
extension DLL and one or more ATL Server application DLLs. The ISAPI extension DLL
caches the loaded ATL Server DLLs and parsed SRF files. The ISAPI DLL also contains a
thread pool for responding to client requests. The ATL Server application DLL has the smarts
to parse the SRF files and replace SRF substitution tags with HTML.

The ISAPI DLL is responsible for hooking up to IIS, and the application DLLs contain code to
handle requests. In ATL Server, classes for handling requests derive from CRequestHandlerT
and contain whatever methods you write for replacing SRF substitution tags with HTML. In
many ways, ATL Server is much like the application wizards we looked at in Chapter 4.

ATL Server handler classes contain a pair of dictionaries to associate request handler classes
with request handler DLLs and to associate replacement methods with SRF tags. In addition to
the replacement dictionaries, CRequestHandlerT contains methods and member variables for
accessing standard Web application elements such as form variables, cookies, request streams,
and response streams. Figure 30-7 shows how ATL Server processes a client. It shows several
application DLLs and a single ISAPI extension DLL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 30-7. The ATL Server architecture.

Here’s the path that a request follows through an ATL Server application:

1. The client requests an SRF file via HTTP (for example, http://www
.consolidatedmessenger.com/default.srf).

2. IIS picks up the request and maps the extension to an ISAPI DLL. In the case of an ATL
Server application, this is the ISAPI DLL for the application (which implements
HttpExtensionProc).

3. The ISAPI DLL contains a thread pool and two caches: a DLL cache and a stencil
cache. The DLL cache contains loaded ATL Server request handler DLLs, and the
stencil cache contains loaded and token-parsed SRF files. The ISAPI DLL passes the
request to a thread pool. (The caches will be used shortly.)

4. One of the worker threads from the pool handles the queued request by opening the SRF
file to determine which application DLL should receive the request. (We’ll look at the
format of an SFR file in a moment.)

5. The worker thread expects to find a line in the SRF file indicating the application DLL
to load. If the DLL isn’t already loaded, the worker thread will load the DLL. The
application will then pass the request to the default request handler class.

6. The SRF file is parsed into tokens (if necessary) and rendered into HTML. Each time
the application encounters a token representing a substitution tag, it calls the
corresponding replacement method in a handler class that resides in one of the
application DLLs. The replacement method generates the output to the browser
dynamically.

7. IIS sends the entire response to the client.

Now let’s take a look at what those SRF files look like.

SRF Files

For the most part, SRF files are composed of HTML. The bulk of a response is usually the
HTML contained in an SRF file. The SRF file also includes simple flow control tags such as if
and while. SRF syntax also supports making method calls into C++ classes, and DLL function
mappings.

The SRF tags we’re about to look at actually make method calls into your C++ classes.
Naturally, the SRF file contains a list of the application DLLs it uses. These appear as handler
tags within the SRF file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an example, here’s a simple SRF file that prints a greeting:

{{handler MyFirstApplication.dll/Default}}
<html>
<head>
</head>
<body>
{{HelloHandler}}

</body>
</html>

Notice that the first line of the file names the application DLL (MyFirstApplication.dll) in
which the handler map lives. (The handler map relates tags to specific C++ code that handle
the tags.) The application DLL is used by the ISAPI extension to process the request. This line
specifies the handler class and the DLL it lives in.

The next line includes double curly braces, which identify server-side tags to interpret or
replace. The tag, HelloHandler, names the request handler method to invoke. The output from
the request handler named within the tag is injected into the HTML buffer. Here’s where the
separation between the user interface and the code happens. Web designers can modify the
HTML surrounding the handler tag without touching the C++ code.

Multiple Application DLLs

If you think about it, having a one-to-one mapping between application DLLs and SRF files
would not work very well in a dynamic environment. A single SRF file can be processed in
any number of ways, depending on the capabilities of the server. To support this, ATL Server
allows an SRF file to be served by more than one application DLL and by more than one
handler. The SRF file will include one default DLL, and the other DLLs will be named.
Named DLLs are given IDs within the request comment block. The SRF file uses the IDs
within the replacement tags to specify which hander and which method to call.

For example, the following code snippet shows an SRF file with two handlers:

{{handler HandlerOne.dll/Default}}
{{id=AlternateHandler handler=HandlerTwo.dll/OtherHandler}}
<html>
<body>
{{MainHandlerMethod}}

{{AlternateHandler.AlternateMethod}}
</body>
</html>

This code specifies the default request handler class living in the HandlerOne.dll file and an
alternate handler class named OtherHandler living within a second DLL named
HandlerTwo.dll.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A tag can include SRF keywords (for example, flow control keywords such as if and endif),
which we’ll look at in a bit. If the string within the tag is not an SRF keyword, it is passed to a
handler DLL for replacement. Look carefully at the example. Replacement tags devoid of IDs
are managed by the default handler. Tags with identifiers are handled by the specified DLL.
HandlerOne.dll interprets the MainHandlerMethod tag by mapping it to the default request
handler class, and it calls the replacement method associated with the MainHandlerMethod
tag. HandlerTwo.dll interprets the AlternateHandler.AlternateMethod tag by mapping it to the
request handler class named AlternateHandler, and it calls the replacement method associated
with the AlternateMethod tag.

Tag Handlers

Tag handlers are member functions of a handler class that lives within an application DLL.
The handler classes derive from CRequestHandlerT, as shown in the next code snippet. The
class includes a replacement method map. Notice that the snippet also includes a handler map
(at the DLL-level scope) that maps the class to a replacement string.

class CMainHandler : public CRequestHandlerT<CMainHandler>
{
 public:
 DWORD ValidateAndExchange();
 DWORD OnMainHandlerMethod();
 BEGIN_REPLACEMENT_METHOD_MAP(CMainHandler)
 REPLACEMENT_METHOD_ENTRY("MainHandlerMethod",
 OnMainHandlerMethod)
 END_REPLACEMENT_METHOD_MAP()
};

BEGIN_HANDLER_MAP()
 HANDLER_ENTRY("Default", CMainHandler)
 // Other handlers within this DLL are mapped here.
END_HANDLER_MAP()

Each tag replacement method looks something like this:

HTTP_CODE OnMainHandlerMethod()
{
 CWriteStreamHelper os(m_pStream);
 os << "This text was generated by the application DLL." << endl;
 return HTTP_SUCCESS;
}

The CWriteStreamHelper class encapsulates the output buffer that will eventually be sent to
the browser. If you’re an MFC developer, you’re probably familiar with the << streaming
syntax. The code simply inserts “This text was generated by the application DLL” into the
stream of text going back to the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control Flow

SRF files include replacement tags like those we’ve just seen. They also include keywords for
managing control flow.

The if, else, and endif keywords support branching. For example, here’s how to use branching
within an SRF file:

{{handler MyFirstApplication.dll/Default}}
<html>
<head>
</head>
<body>
{{if IsUserRegistered}}
{{HelloHandler}}

</body>
</html>

When the tag including if IsUserRegistered is encountered, execution flow ends up within a
replacement method in MyFirstApplication.dll (presumably called OnIsUserRegistered). This
method returns either HTTP_SUCCESS or HTTP_S_FALSE. For example, the replacement
method for IsUserRegistered might look something like this:

// Member of the default handler class
HTTP_CODE OnIsUserRegistered()
{
 if (LookupUserInDatabase())
 return HTTP_SUCCESS;
 else
 return HTTP_S_FALSE;
}

This method simply controls the execution flow based on the state of the database.

The while and endwhile keywords control looping. The while keyword uses a replacement
method’s return value as the conditional. For example:

{{handler MyFirstApplication.dll/Default}}
<html>
<head>
</head>
<body>
{{while CustomersInDatabase}}
{{ShowNextCustomerHandler}}

{{endwhile}}
</body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

Include Files

Finally, SRF files can include other files (SRF and HTML files)—as sort of a form of reuse.
The include keyword brings in another file. The include mechanism uses a URL to specify the
path to the file. A great use for include files is for managing standard user interface elements
such as headers and footers. For example, here’s how you might use the include statement in
an SRF file:

{{handler MyFirstApplication.dll/Default}}
{{include menu.srf}}
<html>
<head>
</head>
<body>
{{while CustomersInDatabase}}
{{ShowNextCustomerHandler}}

{{endwhile}}
</body>
</html>

Notice that ATL Server is mostly declarative. There’s only HTML and replacement tags.
There are no script blocks, no calls to CreateObject, and generally no executable code in the
page. It’s all in the code behind the page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex30a Example: An ATL Server Web Site

To see how ATL Server works, let’s run through an example. Ex30a is a simple example with
a couple of form elements on the page. Here are the steps for creating the example:

1. Create a new ATL Server project. Choose New from the File menu. Select ATL Server
Project. Type Ex30a as the project name. Select the Memory-Backed Session-State
Services option from the Session Services section of the Server Options page. Leave all
the other options as the defaults.

2. Examine the code. Notice that there are two subprojects for your ATL Server project:
Ex30a and Ex30Isapi. The former project is the application DLL. The latter is the ISAPI
DLL that IIS will use. Inside the Ex30a project is a file named Ex30a.srf. This is the
SRF file that will be used to process the Web page. Here’s the code from the SRF file:

{{// use MSDN's "ATL Server Response File Reference"
 to learn about SRF files.}}
{{handler Ex30a.dll/Default}}
This is a test: {{Hello}}

The handler code lives inside Ex30a.dll. The source code for the handler is a class
named CEx30aHandler that lives within the file Ex30a.h. Here’s the default source code
for the handler:

[request_handler("Default")]
class CEx30aHandler
{
// additional support goes here...
protected:
 // Here is an example of how to use a
 // replacement tag with the stencil processor
 [tag_name(name="Hello")]
 HTTP_CODE OnHello(void)
 {
 m_HttpResponse << "Hello World!";
 return HTTP_SUCCESS;
 }
}; // class CEx30aHandler

There are no templates appearing in this code because the ATL Server Project Wizard
supports attributed programming by default. One of the default options within the
wizard is to add deployment support. When this option is selected, Microsoft Visual
Studio adds a virtual directory named Ex30a. You can see it by opening up IIS and
expanding the Default Web Site node. The list of virtual directories is on the left side—
select Ex30a to display the list of application files on the right side. Right-click on the
file Ex30a.srf and choose Browse from the shortcut menu. Microsoft Internet Explorer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file Ex30a.srf and choose Browse from the shortcut menu. Microsoft Internet Explorer
will come up, and you should see a greeting within the browser that says, “This is a test:
Hello World!”

3. Add some form elements to the SRF file. Open Ex30a.srf in Visual Studio and view the
code in HTML mode. (There are Design and HTML tabs near the bottom of the editor
window.) Add the following boldface code to the file:

<html>
{{// use MSDN's "ATL Server Response File Reference" to learn about
 SRF files.}}
<head>
</head>
<body>
<p>{{handler Ex30a.dll/Default}}
</p>
<p>{{Hello}}
</p>
<form action="Ex30a.srf" method="post" id="Form1">
<div id="DIV1" ms_positioning="FlowLayout">
<table height="15" cellSpacing="0" cellPadding="0" width="70"
 border="0" ms_1d_layout="TRUE" id="Table1">
<tr>
<td>Name:</td>
</tr>
</table>
</div>
<input id="Name" type="text" name="Name">
<p><input id="Submit" type="submit" value="Button" name="Submit"></p>
</form></body>
</html>

This code adds a text box and a submit button to the form. If you switch back to HTML
view, you should see them.

Rebuild the application (or copy the new SRF file to the new virtual directory) and
browse the page again. You should see the elements on the page.

4. Add a handler to personalize the greeting. Add the following handler to the tag handler
class:

[tag_name(name="PersonalGreeting")]
HTTP_CODE OnPersonalGreeting(void)
{
 const CHttpRequestParams& FormFields =
 m_HttpRequest.GetFormVars();
 CString szName = FormFields.Lookup("Name");
 if (szName.Compare("") != 0) {
 m_HttpResponse << "You are " << szName;
 } else {
 m_HttpResponse << "I don't know you.";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_HttpResponse << "I don't know you.";
 }
 return HTTP_SUCCESS;
}

This handler checks to see whether the Name text box has been filled in. If so, you’ll see
a personalized greeting. Otherwise, the browser will display “I don’t know you.”

Add a call to OnPersonalGreeting by adding a PersonalGreeting tag to the SRF file.
You can do this in Design mode. Rebuild the application and browse the file. After you
type a name in the text box and click the submit button, you should see a personalized
greeting, as shown in Figure 30-8.

Figure 30-8. The ATL Server application in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 31
Microsoft .NET

You’ve no doubt heard a lot of buzz about Microsoft .NET. If you’re in the Microsoft camp,
there’s no way to ignore it. .NET is a framework of technologies whose major goals include
making software development for the PC much easier and connecting as much of the world as
possible through the Internet.

At the heart of .NET is the common language runtime. This chapter mainly focuses on how
the common language runtime works and the problems it solves. We’ll start with a
reevaluation of COM and DLL technology (Microsoft Windows component technology) and
identify some of the problems that still exist within COM. Chapter 22 covered the technical
details of COM but didn’t provide a full historical perspective. A full understanding of
component software evolution will help you understand the .NET common language runtime.
We’ll examine how the .NET common language runtime solves issues with COM, and in the
process we’ll look at such .NET features as cross-language integration, component versioning,
deployment, and the system library provided by the runtime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Component Technology

As you saw in Chapter 10 when we examined DLLs, one of the most important evolutionary
steps within software development has been that of component architectures. Component-
based development makes software production more manageable. By dividing an application
into components, you can isolate issues and find problems much more quickly. Let’s take a
look at component technology from a historical perspective.

Some Component History

In the world of classic Windows software development, DLLs are nearly synonymous with the
notion of components and code sharing. Before dynamic linking, the only way to share code
modules was by using static linking. The earliest PC applications were deployed as single
executables. Shipping an application usually involved shipping the executable and perhaps
some drivers along with it. Any code brought in from other sources came via raw source code
or a precompiled binary code that was glued to the end of the application. Static linking
enables you to partition your application into multiple segments, but it has one major
drawback: you have to manage buggy code. Attaching the library to the client application
forces you to rebuild and redeploy the entire application to fix the bug. The way around this
issue is through dynamic linking.

As you saw in Chapter 20, dynamic linking uses a single copy of a library available on disk.
The library is loaded on demand at run time by the client applications. If a copy of the library
is already loaded, Windows simply maps the code pages into the client’s memory space. At
any rate, only one copy of the DLL remains loaded at run time.

DLLs contain loadable, executable code and Windows resources. Remember from Chapter 20
that Windows supports two forms of dynamic linking: implicit linking and explicit linking.
Implicit linking involves linking your client application to the DLL’s import library. When the
linker links to an import library, it inserts a little bit of fix-up code for each function exported
by the DLL. When the client application finally runs, the first code that is executed by the
application is the set of address fix-ups stipulated by the import DLL. By contrast, explicit
linking involves a good deal more work for the client developer. Clients link to DLL entry
points by explicitly calling LoadLibrary, FreeLibrary, and GetProcAddress.

While DLLs provide the promise of real components—separate binaries that can be linked at
run time—they don’t quite make good on the promise.

What’s Wrong with DLLs

One of the main challenges with plain-vanilla DLLs is keeping all the clients and DLLs
synchronized as far as the exported functions are concerned. For applications that are
developed and deployed atomically, this is not a problem. A great example is Windows itself,
which is a set of atomically developed and deployed DLLs—user32.DLL, gdi32.dll,
kernel32.dll, and so on. However, dynamic linking does pose problems for software whose
modules are developed and deployed independently.

The promise of DLLs as a component technology lies in the ability it gives you to dynamically
compose software—to change components at run time. As long as all the function signatures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

within the DLL remain the same as the ones expected by the client, there’s no problem.
However, if any of the method signatures change (perhaps with the addition of a parameter or
the subtraction of a function) and the client application is not recompiled, the client application
might not load (at the very least) or might crash (in the worst case). In another scenario, an
older version of a popular library might be copied over a newer one, resulting in some sort of
function mismatch between the client and the DLL.

The basic problem is that the notion of typing is missing from the normal DLL loading
process. Type signatures are contained in the header files shared between the client and the
DLL, but they’re found nowhere else. If DLLs and clients are compiled with the different
header files, the application won’t work. This is one of the advantages COM provides: adding
formal type checking to the loading process.

The COM Technology

We looked at COM in detail in Chapter 22. By applying the discipline of interface-based
programming, COM introduces a layer of indirection between the client and the actual
component code. COM interfaces are collections of functions named by a GUID. The
interfaces are predictable and don’t vary in the same way that raw DLL entry points can. In
fact, COM programming stipulates a rule that interfaces not change once they’ve been
published. A normal Windows DLL might have a multitude of entry points, but a COM DLL
has only four standard DLL entry points: DllGetClassObject, DllCanUnloadNow,
DllRegisterServer, and DllUnregisterServer. The functionality of the DLL is described by one
or more COM interfaces. COM turns DLL loading into a typed operation. Code is loaded
based on type, and that type is an interface.

For a more in-depth discussion of COM, see Chapter 22. For now, just recall these points:

COM interfaces are collections of function signatures, usually described in Microsoft
Visual C++ as a struct. All COM interfaces include the same three function signatures at
the top: QueryInterface, AddRef, and Release. These three functions comprise the
IUnknown interface. Interfaces have unique names called GUIDs. Once an interface is
published and used widely, it should never change.

COM implementations give life and behavior to these interfaces.

COM class objects, or class factories, expose COM implementations to the system.
COM class objects are named using GUIDs and appear in the registry.

COM DLLs often include type information as a resource. This provides a level of
reflection so clients of the DLL can understand what’s inside the DLL.

COM clients use API functions to instantiate the COM object (CoCreateInstance,
CoGetClassObject/IClassFactory::CreateObject, or CoCreateInstanceEx). Visual Basic
clients simply need to use the New keyword. However, Visual Basic uses the API
functions underneath the hood.

COM clients are responsible for managing the interface pointers they acquire. That is,
they must call AddRef through an interface pointer when they duplicate the pointer, and
they must call Release through an interface pointer when they discard the interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

they must call Release through an interface pointer when they discard the interface.
Visual Basic developers don’t need to pay attention to this rule because the runtime
manages the interface pointers.

The Benefits of COM

COM is vastly superior to plain DLLs for composing software from components. In fact,
many enterprises have built their core systems using COM. For example, the back end to
Nasdaq.com is written using COM. COM works so well in so many cases for a number of
reasons.

One key to COM’s success is its emphasis on interfaces. Decoupling clients from the
implementations encourages component-based architectures. When your program accesses
services through interfaces instead of classes, it’s possible to change implementations easily
without breaking the client. This allows separate parties to develop software independently of
each other.

COM loads services using named types. The name is the GUID, and the type is the interface
definition. As you saw in Chapter 22, COM applications call CoCreateInstance, pass in the
GUID representing the types—the interface ID and the class ID—and you get an instance of
the class as well as a pointer to the interface. In addition, you can widen your connection at
run time and get even more types by using QueryInterface. COM replaces the plain-vanilla
LoadLibrary/GetProcAddress API calls with the single function CoCreateInstance and well-
defined extensible interfaces to the code in the DLL. In a nutshell, COM introduced the notion
of type into the DLL loading mechanism.

In addition to enforcing interface-based programming, COM adds the notion of reflection—
the DLL’s ability to describe itself. Think about how standard DLL functionality is exposed:
The only way you can learn about the contents of a plain-vanilla DLL is by reading some
documentation or a header file. COM DLLs include binary type information embedded within
the DLL. This type information advertises the types (data types and interface types) and
implementations (class IDs) contained within. Visual Basic and Visual C++ use this type
information to implement IntelliSense, and the COM runtime uses type information to set up
the proxy-stub pairs at run time.

The Drawbacks of COM

Although COM provides many benefits, it does come with its own issues. Some of COM’s
deficiencies are minor. For example, the names of the COM DLLs and accompanying
configuration information all go into the registry, which leads to an overburdened registry.
This is not the biggest problem in itself. However, because COM uses the registry (which is
visible to every application), there’s no way to isolate private components. If a new version of
a component is installed on the system, the new changes will ripple—perhaps to a client that’s
not interested in the change. The second issue with the registry is that it adds complexity to an
application’s install and uninstall procedures.

Another minor problem with COM is that for COM to work, both clients and DLLs have to
follow stringent rules. Some rules, such as calling AddRef and Release at appropriate times,
are there to prevent resource leaks. If a client developer fails to call these methods properly,
the client might suffer resource constraints. A more important rule is that interfaces must never
change once published. Changing an interface after it’s published undermines the reliability

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

change once published. Changing an interface after it’s published undermines the reliability
and predictability that using typed interfaces is supposed to provide. During COM’s lifetime,
most developers have followed these rules. However, it’s easy to forget to release an interface
pointer. And, indeed, in a few cases the interface consistency rule has been broken, resulting
in broken applications. These issues aren’t huge in themselves, but they can cause a certain
amount of angst for developers and system administrators.

COM also has the major problem of inconsistencies within COM data types. As an MFC/C++
developer, you’re used to developing code using pointers and perhaps object graphs such as
linked lists. COM Interface Definition Language (IDL) fully supports such complex
programming constructs. However, if your target audience includes users of Visual Basic
programs, you cannot use such constructs. In Chapter 23, we looked at IDispatch and
scriptable components, which allow you to target the Web with your software. Using
IDispatch limits your data type selection to include only those types that fit in a VARIANT. So
if you target your component for scripting, your available data types will decrease
dramatically. Finally, the contents of a DLL’s type library do not completely reflect the
contents of the DLL in some cases.

Ultimately, COM-based applications are still built out of DLLs (often written using different
development environments), and there will always be a boundary between the client and the
object. That boundary is bridged using function signatures. COM adds the notion of type to
the loader, adding some consistency and reliability to the loading process. However, COM
supports disparate type systems and imposes some complex rules. These issues are spelling the
end to COM’s reign as the premier component technology for Windows. The goal of the
common language runtime is to fix these issues.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Common Language Runtime

COM led to a lot of great software and some very useful systems over the years. However,
during its lifespan, the problems we just discussed emerged time and again (and we haven’t
even mentioned the problems with DCOM). The initial impetus behind COM was the question
“How can we compose already-compiled binary software that was developed using different
languages and tools?” The answer was “Build reliable, predictable bridges between separate
components.” COM concentrated on a well-established boundary—the one between the client
and the object. COM makes sure the boundary is well-defined and named so there’s no
ambiguity between the client and the object.

It eventually became evident that the boundary between the client and the object didn’t
necessarily have to exist at all. What if a runtime environment were available that dissolved
the boundary between the client and the object? That’s what the common language runtime is
all about—erasing the boundaries between components. The common language runtime
basically reframes the entire component development problem.

No Boundaries

Recall that one of the biggest problems with COM is that different development environments
work with different data types. The disparity in data types solidifies the boundary between the
client and the DLL.

As mentioned, the main idea behind the common language runtime is to erase the boundaries
between components. It does this in two ways: by providing a common runtime environment
for components to live in, and by establishing a common type system (CTS). Any components
targeted to live within the common language runtime must base themselves on the CTS.
(We’ll discuss CTS in detail later in this chapter.)

Figure 31-1 shows how COM components bridge DLL boundaries. Figure 31-2 shows how all
common language runtime objects live within the same runtime and don’t have to make
boundary crossings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-1. COM boundary crossings.

Figure 31-2. Common language runtime components don’t have to worry about boundary
crossings.

COM provided a modest amount of type information with its components, but the type
information was sometimes incomplete due to the disparities between programming
environments. The common language runtime and .NET development tools fix this. With the
common language runtime and its pervasive type system, components reflect themselves
accurately. You can know anything you want to about the code at run time and development
time.

As you’ll see later, the common language runtime provides garbage collection, memory layout
management, and security control. To perform these services effectively, it has to know
everything about the code that it’s hosting. In fact, types living within the runtime are called
managed types because all aspects of their creation and execution are managed by the runtime.

Mscoree.dll includes the basic functionality for the common language runtime. Another DLL,
Mscorlib.dll, comprises the runtime library. Mscoree.dll is an unmanaged DLL that provides
loading functionality and runtime services. Mscorlib.dll is a managed DLL that contains the
core types used throughout the system. Your own managed executables use both Mscoree.dll
and Mscorlib.dll.

It’s All About Type

In normal C development, type consciousness was optional—everything was basically some
form of an integer that you could cast any way you wanted to. C++ raised the bar of type-
consciousness. However, you could easily defeat the C++ type system using a cast.

In .NET, types are king. Everything is a well-defined type—from the lowliest integer to the
most complex class. All types within the common language runtime derive from a
fundamental system type named System.Object. This is a bit different than in classical
programming environments such as C++, whose types (primitives such as int, long, and char)
mostly denote memory usage. Common language runtime types have built-in reflection and
the facilities of System.Object at their disposal. System.Object is analogous to the VARIANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the facilities of System.Object at their disposal. System.Object is analogous to the VARIANT
commonly found in COM’s scripting interfaces, because a variant includes the data type (not
just the data). You can always interrogate a VARIANT to find out what kind of data it
represents. System.Object is also similar to MFC’s CObject class because System.Object
provides some fundamental services that are useful to both the runtime and developers. Some
of the more useful System.Object functions include Equals, GetType, ToString, Finalize, and
MemberwiseClone.

Equals determines whether two instances of a type are equal. GetType returns the type of an
instance at run time, in much the same way that the CObject::IsKindOf method works in
MFC. ToString returns a string representing the type of the instance. Finalize tells the object to
free up resources and carry out other cleanup operations before being swept away by the
garbage collector. MemberwiseClone is like the copy constructor in C++; it performs a deep
copy of an instance of a common language runtime type.

Classic C++ supports composing your own types using the typedef statement or by defining
structures and classes. When you define a type within the context of C++, you’re telling the
compiler about the structure of the type.

The common language runtime also supports composing your own types. But because custom
types also derive from System.Object, these custom types automatically include type
information and the other services provided by System.Object.

In summary, one of the most important goals of the common language runtime is to support
cross-language programming. To accomplish this, it extends the notion of type much further
than C++ or COM do. For example, types within a C++ program are restricted to that
language, and types within a Visual Basic program are restricted to the Visual Basic runtime.
Types within the common language runtime must adhere to the rules of the common type
system.

Common Language Runtime Types

As a C++ developer, you’re probably accustomed to using C++ types denoted by such
keywords as long, float, and class. However, if you met a Visual Basic 6.0 developer on the
street and began talking about C++ types, he would have a very different notion of what you
were talking about. Different development environments define their data types differently.
The .NET approach is to define types within the context of a common runtime environment.

In the mid-1990s, each software development environment had its own runtime support. For
example, Visual Basic 6.0 has its own runtime engine, Vbrun.dll. The data types within Visual
Basic 6.0 are managed by Vbrun.dll. MFC has its own runtime support DLL as well:
MFCxxx.dll (with xxx denoting whatever the current version is). The same goes for ATL,
which has its own support DLL. Rather than depend on a specific language or on runtime
support from a specialized library, .NET code relies on a single type system, a common
runtime engine, and a common class library. Component integration is much easier because all
the components of an application work with the same data types. Interop issues between .NET
components are virtually nonexistent.

The basis for the common language runtime is the fact that data types are the same for every
component running under the runtime. To enforce type compatibility between components,
types targeted for the common language runtime must adhere to the CTS at run time. The CTS
defines rules for various language implementations to follow.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CTS defines several types, including value types, reference types, enumerations, arrays,
delegates, interfaces, and classes. It also defines a pointer type for interoperating with
unmanaged code (code not running within the common language runtime). Following is a
rundown of each of these types.

Value Types

Value types represent flat values—data that takes up some flat memory as opposed to
reference types that “point” to other types. When value types are copied across function calls
as parameters, they are literally copied from the caller’s context to the callee’s context. The
.NET common language runtime supports two kinds of value types: built-in value types and
user-defined value types. Built-in value types include types such as System.Int32 and
System.Boolean. User-defined types are composed from primitive types and include structures.
A good example of a user-defined type is a collection of coordinates that define a shape.
Because value types simply define memory layout, they do not have the overhead associated
with class. Value types are handled very efficiently by the runtime.

Reference Types

Whereas a variable of value type contains a value of that type, a variable of reference type is
more akin to C++ pointers and contains a reference of that type. Reference types are managed
by the runtime and live on the garbage-collected heap.

Boxing and Unboxing

Because of how value types and reference types differ, you sometimes need to convert value
types to reference types. This process is known as boxing. Let’s say you run across a function
call that takes a reference type in the parameter list, and as the caller you hold only a value. If
you try to pass a value type where a reference type is required, you’ll encounter a runtime
error. You can box the object, which will clone the object and create a reference to it. When
boxed objects are copied back into the instance, this is known as unboxing. The managed C++
includes keywords for boxing and unboxing types, as you’ll see in Chapter 32.

Enumerations

As a seasoned C++ developer, you’re probably familiar with the C++ enum keyword, which
defines a sequence as a type in the C++ type system. Enumerations as defined by the CTS are
a special form of value type; they inherit from System.Enum. Enumerations are useful for
describing collections such as the days of the week (Monday, Tuesday, Wednesday, and so
forth) and months of the year (January, February, March, and so on). In classic C-style
programming, you’d probably assign the values 1 through 12 to represent the months of the
year, like so:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enum Months {
 January = 1,
 February,
 March,
 April,
 May,
 June,
 July,
 August,
 September,
 October,
 November,
 December
};

You can create variables of type Months, but the data type underlying the variable is an integer
so you can just as easily use the number 2 whenever the month February is required. Using
enumerations provides a higher level of type safety and code readability than when you use
primitive types. One problem in C++ is that there’s no way to relate the numbers of the month
to their names except by writing some extra code. The strongly typed enumerations available
in .NET get rid of this problem. When you declare an instance of a .NET enumeration, you
can assign it a value from the enumerators defined in enumerations. We’ll see an example of
enumerations in Chapter 32.

The methods available through .NET enumerations include all the members from
System.Object and the methods available from System.Enum. The System.Enum functions
include Format, GetNames, GetUnderlyingType, GetValues, IsDefined, Parse, and ToObject.

Arrays

Arrays are homogenous and can hold only elements of a single type. In the unmanaged world
we used to live in, arrays were just blocks of memory. Languages such as C and C++ provided
syntax for indexing into arrays. Class libraries such as MFC and the standard template library
(STL) provide useful classes for managing arrays without the headaches associated with
managing raw pointers. For example, MFC includes a CObArray class that includes methods
for adding and deleting objects from the array. Visual Basic 6.0 developers are used to
working with arrays, too. However, a Visual Basic array ends up as a SafeArray when it’s
described with type information. As a C++ developer, catering to the Visual Basic 6.0 crowd
means defining arrays using the COM SAFEARRAY structure (which is a self-describing
multidimensional array of type VARIANT).

The CTS defines an array type that works the same no matter what environment you’re
working in. .NET arrays derive from System.Array and work similarly to STL-based arrays
and MFC-based CObArrays. They grow as necessary and include functionality for adding and
deleting elements, counting elements, and getting elements from specific positions within the
array. You’ll see an example of a managed array in Chapter 32.

Delegates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any C++ developer who has worked with Windows for a while has dealt with function
pointers. When you define function pointer types in C++, you describe a call stack that the
compiler understands. In this way, you can have various sections of your code calling back
and forth.

Delegates inherit from System.Delegate. Within the context of the CTS, delegates serve a
similar purpose. Delegates point to .NET methods so you can execute them indirectly. They’re
managed types, so they’re fully type-safe. Delegates are different from C++ function pointers.
Many function pointers in C++ require special treatment. For example, normal C++ member
functions include a hidden first parameter called the this parameter, which is a pointer to the
instance of the class for which it is declared. Static and global functions do not have this
hidden pointer. .NET delegates can reference all kinds of methods of classes and objects:
static, virtual, and instance methods. You’ll find delegates used mostly within the context of
event handling and callbacks within .NET applications. Each instance of a delegate can
forward a call to one or more methods with matching signatures. That is, delegates can be used
to broadcast. You’ll see an example of a managed C++ delegate in Chapter 32.

Interfaces

Until the mid-1990s, nobody paid any attention to the discipline of interface-based
programming. As you saw when we looked at COM, one of most important contributions by
COM was that of the interface. Using interface-based programming, you can describe type
compatibility between different implementations. For example, you might define a shape
interface that includes several methods for describing shapes. You might then implement
several different shapes using the shape interface—for example, a square, a circle, and a line.
Each of these shapes behaves very differently. However, by abstracting the shape behavior
behind an interface, client code that deals only with the interface can work with all the shapes.
The shape interface denotes type compatibility. .NET fully supports interfaces. .NET
interfaces primarily serve to provide type compatibility for objects.

You’ll see an example of using a managed interface in Chapter 32.

Classes

Classes within .NET are similar to classes you’ve worked with using C++. They have data
members and methods. In .NET, data members are called the fields within a class. .NET
classes can have both virtual and nonvirtual methods. Virtual methods work the way you’d
expect them to—to ensure that the correct version of a function is called within a class
hierarchy. .NET classes can also implement interfaces, just like C++ classes can. All code
running within the common language runtime must somehow be scoped by a class.

.NET offers a bit more flexibility than C++ does as far as classes are concerned. .NET classes
can be sealed at some point, and new classes can no longer be derived from them. Also, whole
classes can be labeled as abstract, which means that new classes must be derived from them
before they’re used. .NET enforces visibility constraints for both the members within a class
and the class itself. .NET class members can be public, private, or protected. These visibility
modifiers have exactly the same meaning in .NET as they do in C++. .NET class members can
also be marked as being visible either within the assembly in which they live or outside that
assembly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You’ll see examples of .NET classes in the next three chapters.

Pointers

The final type available within .NET is the pointer type. The .NET runtime hides most of the
details related to pointers, and you never have to see a regular address when you work in
.NET. However, within the realm of managed C++, pointer types are available to you when
you need them.

The three kinds of .NET pointers are managed pointers, unmanaged pointers, and unmanaged
function pointers. When you work with managed code in the normal way (using C#, Visual
Basic .NET, or managed C++), the common language runtime is working with managed
pointers. For example, when reference types are passed as parameters or returned from
methods, the common language runtime uses managed pointers. Only managed pointers are
compliant with the Common Language Specification (CLS).

The common language runtime supports unmanaged pointers specifically to offer backward
compatibility (with unmanaged C++). As a C++ developer, you’re used to unmanaged
pointers—they’re just addresses in memory.

The most common use for pointers is for reading and writing raw data. When you’re using
managed references and pointers, you don’t see the actual memory you’re working with. If
you’re in a situation where you want to see raw memory, unmanaged pointers are the way to
go.

The Common Language Specification

One of the greatest draws of .NET is the wide variety of syntaxes for expressing functionality
within .NET applications. Official .NET languages coming from Microsoft include managed
C++, C#, and Visual Basic .NET. However, other companies are producing .NET-compatible
languages. There’s a version of PERL for .NET, and Fujitsu even has a COBOL compiler for
.NET!

As you’ve seen, the .NET Framework defines a pervasive type system that permeates all
executable code running under the common language runtime. Remember that one of the key
goals of .NET is to provide a high degree of interoperability among components—no matter
what languages they were written in. The common type system guarantees consistent data
typing between components. The CLS guarantees that languages follow the CTS.

The CLS is a set of rules defining the behavior of externally visible items. These rules are
necessary for software to interoperate within the common language runtime. Remember that
the runtime wants to treat all data and code in the same way. Types that adhere to the CLS are
completely interoperable. You can mark types as CLS-compliant using the
System.CLSCompliantAttribute.

Assemblies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All right, that’s enough talk about types. The next question is: Where does all this wonderful
common language runtime code live? Are there still DLLs in this new world? What do
executables look like? DLLs and executables are still around in the .NET Framework.
However, now they’re called assemblies and they contain Intermediate Language (IL)—not
native code.

We looked at normal executables, normal DLLs, and COM DLLs earlier in this book. When
we compiled that code, the compiler turned the source code directly into some native machine
code. .NET executables and DLLs work a bit differently. They’re compiled into assemblies.
Technically, an assembly is simply a collection of type definitions. Type definitions include
all the examples we covered earlier—code encapsulated within classes, enumerations, user-
defined types, and so forth. Assemblies can also contain resources, such as bitmaps, JPEG
files, and resource files.

Classic Windows development draws a strong distinction between DLLs and EXEs. A .NET
assembly can be either a DLL or an EXE. Assemblies are the fundamental unit of deployment
and include code that the runtime executes. All .NET code executed by the runtime must live
within an assembly. Assemblies have only one entry point: DllMain, WinMain, or Main.

Every type within a .NET application must appear in an assembly somewhere. It is denoted by
both the name of the assembly and the name of the type. However, once you get down to
working with a type within a development environment like managed C++, the development
environment usually takes care of managing the assembly name.

The native .NET types we’ve discussed already (such as System.Object and
System.ValueType) are contained within the System assembly. Because assemblies define the
type boundary within .NET, a type within the scope of one assembly is not the same as a type
loaded in the scope of another assembly—even if it shares the same name.

The assembly is the smallest versionable unit in the common language runtime. Assemblies
include type information and a section called the manifest, which describes the version
information and dependencies on other assemblies.

Built-in Type Information

Built-in type information was one of the most important contributions that COM made to
Windows programming. This is also known as reflection. DLLs or executables that have type
information included with them become self-describing, enabling both tools and runtime
environments to know and understand the contents of the module. For example, as you fill out
a COM function call into Visual C++’s edit window, IntelliSense immediately comes up,
showing you the function signature. IntelliSense works because there’s type information
included with the component. The MTS and COM+ runtimes use type information to
manufacture proxy stubs on the fly.

When you’re programming COM using C++, the way to get type information into the
executable or the DLL is to include some IDL with the project. The IDL is compiled into a
binary type library, and the type library is attached to the module as a resource. .NET includes
the same facility, but the type information is automatically included within the assembly.
There’s no more need for an intermediate IDL file—when a .NET compiler compiles your
code, it generates type information and adds it to the assembly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Manifest

In addition to the built-in type information, every assembly includes a section named the
manifest. .NET assembly manifests can include dependencies on other assemblies, versioning
information, and information relating to the culture and language for which the assembly was
intended. An assembly’s manifest is like a top-level directory for the assembly.

Like type information, manifests are integral to .NET development. The information within
the manifest tells the loader which assemblies to load when loading an application, which
version of an assembly to load, and so on. Manifests are generated automatically—no
intermediate steps are involved in creating a manifest.

By including the dependency information, .NET solves a long-standing issue with COM. With
COM, there’s no easy way to figure out DLL dependencies. The Platform SDK includes a tool
named Depends.exe that examines the import list of a DLL or EXE file to find out DLL
dependencies. However, because COM exposes its functionality through interfaces (rather
than standard DLL entry points) and because COM DLL loading information is mostly
contained within the registry, there’s no way to easily deduce DLL dependencies. .NET
manifests do include the dependencies of assemblies. Because the assembly includes
dependency information, the common language runtime loader makes sure all required
assemblies are loaded before executing the code within an assembly.

Private vs. Public Assemblies

In COM’s heyday, one of the most widely touted features of IUnknown was that it was
supposed to enable component versioning. A dynamically evolving software project cannot be
hardwired together. There must be some flexibility in the way the components connect. COM
forces applications to ask their components for interfaces (rather than assuming the interfaces
are there). When a new version of a component is dropped into an application (or perhaps an
older version of a component is inadvertently installed), the application gets fair warning of
the change. The problem with COM versioning is that despite the tremendous flexibility in
how components are connected together, the versioning mechanism still fails from time to
time. For example, if you install an old version of a component, clients expecting the new
component will be mighty disappointed.

The main reason for this versioning failure is that COM components are visible to every
application on the PC—they’re global in nature. That means that replacing a component
affects all the applications that depend on the component, in a ripple effect. All COM
components are referenced in the registry—and the registry is available to all applications. The
common language runtime solves this problem by distinguishing between public and private
assemblies.

The .NET component model prefers private assemblies. When you confine functionality to a
specific component and make it visible only to the client that needs it, you get rid of the ripple
effect when you replace the component. Only clients of that particular assembly are affected.
One main goal of .NET is to make deploying an application as easy as picking up the contents
of a directory and using a copying mechanism (such as XCOPY or FTP) to move the contents
to a new directory or machine. Because COM components rely so heavily on the registry,
installing and uninstalling components is a major issue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.NET component versioning works through an established directory structure. The directory
containing the application is referred to as the AppBase directory of that application. The
process of finding an assembly is called probing. The runtime performs several steps to locate
an assembly. It first looks in the AppBase directory and then in a subdirectory under AppBase
with the same name as the assembly, checking within the culture subdirectory if it does not
find the assembly immediately. The runtime searches for DLLs first and EXEs second. It stops
searching after it finds the first match. .NET provides a good amount of flexibility when
probing—you can modify the probe mechanism by modifying the application’s configuration
file (an XML file accompanying the application that is used for tweaking your application).

.NET also includes provisions for sharing components between applications. Shared
components are installed in the global assembly cache (GAC). The GAC is a special directory
on your machine that holds shared assemblies. The GAC can hold multiple versions of the
same DLL, thereby solving the versioning problem.

In COM, you name components uniquely using GUIDs.When you ask for a component via its
GUID, you’ll get the most current version of the component. In .NET, components are named
uniquely through strong naming.

A common language runtime assembly name consists of four parts: a simple text name, a
version number, culture information, and a strong name. A strong name is based on a pair of
keys—one public and one private. The unique name of an assembly is the conjunction of the
text name and the public key. You’ll see an example of signing an assembly in Chapter 32.

.NET Versioning

As you just saw, .NET prefers private components to public components. However, sharing a
component is sometimes essential. When you share code, versioning is very important. COM
didn’t quite get it right. Rather than hoping that the latest version of a component is available
on a machine, .NET allows multiple versions of a single component to reside on the same
machine. Naturally, this arrangement implies some form of versioning. .NET assemblies
deployed in the GAC require version information in the manifest. This is simple enough—you
just make sure the correct attributes are applied in the source code. Assembly references used
by client code contain the version number of the assembly that the client expects to see. You’ll
see this when we look at some assemblies using a tool named ILDASM in Chapter 32. The
runtime uses version numbers when binding to shared assemblies. Rather than hoping that a
DLL is compatible by name, .NET builds the version number into the name of the DLL.
Clients latch onto a specific DLL by binding to a specific version number.

Living Within the Common Language Runtime

We spent the first part of this book looking at how to write native-code Windows applications.
Programming native-code applications offers performance advantages and flexibility.
However, along with the freedom and flexibility comes a great deal of programmer
responsibility and hygiene when it comes to resource management and type safety. Writing
code to run under the common language runtime relieves you of many of the responsibilities
normally associated with native-code programming. For example, the common language
runtime takes care of programming responsibilities from array-bound checking to managing
memory, avoiding thread deadlocks, and securing components programmatically. This is a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

memory, avoiding thread deadlocks, and securing components programmatically. This is a
benefit that Visual Basic developers have enjoyed for years. Now the convenience of having
your code managed for you is available to C++ developers as well.

Intermediate Language and Just-in-Time Compiling

The traditional Windows-based applications we’ve been building throughout this book
compile down to native Intel code and run right on the chip. .NET and the common language
runtime work a bit differently—.NET assemblies compile down to IL. The common language
runtime’s execution engine (Mscoree.dll) compiles the IL into machine code immediately
before its execution in a process known as just-in-time (JIT) compiling. It adds one more layer
of indirection between the human-created source code and the chip the code is to run on. This
layer of indirection carries many advantages with it.

One of the primary advantages of using IL is that multiple syntaxes can be used for writing
.NET code. As long as the compiler can turn source code into IL, it does not matter which
programming language or environment you use. In this book, we’re using managed C++.
However, many .NET languages are available: C# and Visual Basic .NET from Microsoft and
even a version of COBOL.

Another advantage of using IL is type safety. How many times have you chased down pointer
bugs, array indexing bugs, or parameter-passing bugs because of mismatched data types or
incorrect type casting? It happens less in C++, but this sort of bug ran rampant in older C-style
coding. If you use IL between the source code and the final native executable, the runtime can
verify the code within an assembly during the final JIT compilation down to machine code.
The common language runtime verifies the code to make sure that it does not do anything
dangerous such as accessing memory directly. Adding IL between the source code and the
final native code allows a higher degree of protection than having pure native-code
applications around.

The final advantage of using IL is that it inherently decouples your EXEs and DLLs from the
operating system and hardware platform. When an EXE or DLL consists of intermediate code
(not native code), it is truly platform-independent. Right now, Microsoft has a version of the
common language runtime that runs on Windows 2000, Windows NT, and Windows 98. IL
allows for the possibility of deploying the runtime on other platforms that are not running
Windows or not running Intel processors.

.NET Garbage Collection

Living under the common language runtime means that code doesn’t have to look after itself.
Developers who use native C++ must track their resources vigilantly in order to not cause
leaks. .NET developers don’t have to pay attention to that—.NET uses garbage collection.

You can find more comprehensive discussions of .NET garbage collection out there, including
Applied Microsoft .NET Framework Programming by Jeffrey Richter (Microsoft Press, 2002).
However, I’ll give you a rundown of how memory lives within the common language runtime.

As a C++ developer, you’re aware of how a program allocates and manages memory because
you’re the one doing it. You allocate an object using the new operator and delete it when

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you’re the one doing it. You allocate an object using the new operator and delete it when
you’re done with it. You’re probably also aware of some of the other kinds of memory used
within your applications—those kinds of memory taken up by global and static variables.
Finally, many programs have local variables that live for a short time on the stack. .NET
applications also use all these types of memory allocation.

The difference with .NET is that the common language runtime keeps track of all these
resource allocations. All the memory allocation types mentioned earlier are referred to as an
application’s roots. The common language garbage collector watches all these memory
allocations and determines when they’re no longer referenced. When memory is no longer
referenced, it’s collected. This greatly simplifies programming.

One advantage of IL is that the JIT compiler knows about these references to the application’s
roots. The JIT compiler builds a list of root references and maintains it (with the help of the
common language runtime) as the program executes. When the garbage collector has to figure
out what memory is no longer referenced, the list of roots is the starting point.

While the program is running, garbage collection can occur in several situations: when an
allocation fails, during calls to the GC.Collect method, and at otherwise regular intervals.
When a garbage collection occurs, the common language runtime suspends all threads within
the process during specific safe points (a location in the executable code where the runtime
can safely suspend a thread), frees unreferenced objects, and collapses the managed heap.

While the threads are suspended, the garbage collector starts with application roots and walks
the object graphs within the system, figuring out which objects are referenced and which are
not. The runtime garbage collector is efficient and smart enough to detect cyclical references
using internal lists that track references.

After figuring out which objects can be removed, the garbage collector moves nongarbage
objects to the bottom of the heap to make room at the top. This makes subsequent memory
allocations very fast because the top of the runtime heap is always clear. By contrast, the C++
memory manager often creates a fragmented heap while allocating and deallocating blocks of
varying sizes.

The runtime then resumes the threads, and they’re returned to the original calling program.
The garbage collector updates any references to nongarbage objects if they’ve been moved.
The application will be unaware of any relocations once the threads resume. For the most part,
it’s very hard to detect when garbage collection happens.

Most of this memory allocation and deallocation happens behind the scenes, and you don’t
have to worry too much about it. Even if you deeply nest references, the garbage collector will
take good care of you and you can live a carefree existence as far as memory allocation is
concerned.

Finalization

In C++, we’re used to placing clean-up code within a destructor because we basically know
that an object will be destroyed when it’s no longer needed—the programmer is responsible
for deleting objects. However, in .NET the garbage collector is responsible for getting rid of
objects—and it often does so on its own schedule. You don’t know when (or sometimes even
if) an object will be freed. So instead of destructors, the common language runtime supports
finalizers. If an object needs to be notified before it’s being collected, a class can override the
virtual Finalize method (which is inherited from System.Object). When the collector classifies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

virtual Finalize method (which is inherited from System.Object). When the collector classifies
an object as garbage, the runtime invokes the object’s Finalize method before moving the
memory back to the heap.

The garbage collector has been tightly tuned by Microsoft. When the garbage collector is left
to its own devices, you’ll barely notice anything when garbage is collected. However, if you
end up overriding Finalize too often, you’ll impede the garbage collector. Whenever the
garbage collector finds an object with Finalize, it records the reference for consultation during
collection, thereby slowing the allocation. The garbage collector has to check the finalization
list and wait until Finalize is called to release the memory, thereby slowing collections.
Remember that you need to override Finalize only when an object holds on to unmanaged
resources. The common language runtime will manage nested references to managed objects
for you. Finalization is really there to help classes manage non-.NET resources such as file
references or other unmanaged resources.

Threading and the Common Language Runtime

Preemptive threading has been around since the earliest versions of Windows NT. Of course,
the common language runtime would be an incomplete platform if it were missing the
preemptive multitasking feature. Threading in the common language runtime is more
straightforward than when you use the raw API. The common language runtime includes types
for starting, stopping, and suspending threads.

AppDomains

The basic execution and resource boundary is the process space. Processes maintain their own
heaps and other resources, and Windows processes define a security and execution boundary.
The process space still exists for applications running under the common language runtime.
However, process spaces can be further divided into AppDomains, which also serves as a
security and execution boundary.

AppDomains are like logical process spaces within a real process space. Assemblies serve as
the logical (rather than physical) deployment model. A physical process can host separate
logical AppDomains to form separate fault-tolerance boundaries within a single process. That
way, it can protect parts of your application from each other (for example, if you don’t
completely trust a component). An AppDomain gives you many of the same advantages that
you get when you put your code into a separate process, but without the overhead of a process.
Figure 31-3 shows several common language runtime components distributed between two
AppDomains within a single process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 31-3. Common language runtime components distributed between multiple
AppDomains.

Interoperability

One hard lesson we’ve all learned is the importance of backward compatibility and being able
to link to older (“legacy”) code bases. In fact, Windows owes much of its own success to
backward compatibility. When people invest lots of money into applications, they’re not going
to simply toss them away just because a new operating system is available. Windows has
always fully supported older versions of applications. Keeping the old code running is very
important—just ask any COO or CTO. Companies are not going to rewrite all their code just
because of .NET. Often the most critical part of an application is a very old component that
nobody’s touched for years. So getting new code to work with older code is an extremely
important feature of .NET.

.NET provides three basic mechanisms to facilitate interoperability between new code and old
code: platform invoke (P/Invoke) , COM-callable wrappers for calling from COM code to
common language runtime code, and runtime-callable wrappers for calling from the runtime to
COM components.

Platform Invoke

As you’ve seen, client applications need a way to load library code dynamically and get to the
entry points. In Windows, these functions are LoadLibrary and GetProcAddress. If you find
yourself needing to call entry points within a specific legacy DLL, P/Invoke is the way to go.

To use P/Invoke, you prototype functions within your managed code and mark them using the
DllImport attribute. When the code compiles to an assembly, the functions will be understood
to be living in an external DLL. The common language runtime will call
LoadLibrary/GetProcAddress automatically. Using the DllImport attribute, you can specify
the calling convention, you can alias the method so it has a different name from the real DLL
function within your program, and you can control the character set that the function uses.

COM Interop: TLBIMP and TLBEXP

Of course, much of the code out there is COM code, so it’s important to be able to call back
and forth between COM code and common language runtime code. .NET provides facilities
for both situations: calling a legacy COM class from the common language runtime and
calling a common language runtime class from some existing COM code. The .NET
Framework provides two utilities to accommodate these situations: the Type Library Importer
(Tlbimp.exe) and the Type Library Exporter (Tlbexp.exe.). The Type Library Importer reads a
COM type library, emits common language runtime metadata, and creates a runtime-callable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM type library, emits common language runtime metadata, and creates a runtime-callable
wrapper. The Type Library Exporter reads common language runtime metadata and creates a
type library and a COM-callable wrapper. These utilities are fairly straightforward to use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 32
Managed C++

In the previous chapter, we looked at the heart of Microsoft .NET: the common language
runtime. A major goal of the common language runtime is to wipe away the boundaries we’ve
been dealing with throughout the history of the Microsoft platform. Writing code to run on
.NET means writing managed code that compiles down to Intermediate Language (IL) and is
later compiled to native code. In this chapter, you’ll learn what it takes to get code running
under the common language runtime using Managed Extensions for C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Common Language Runtime Is Your Friend

When Microsoft first started showing off its plans for .NET and for the common language
runtime, a good many developers from the C++ camp responded with raised eyebrows. All
right—so here we are, C++ developers, trained from the beginning to wring the most
performance possible from the platform. We also want the greatest control possible. To do
that, we manage our own memory, and we can program close to the hardware when we need
to. At first glance, the common language runtime looks as though it will rip us from our
foundations as C++ developers! That perspective definitely makes sense from the point of
view of developers whose eyes are trained on shipping solid, shrink-wrapped-quality
applications (either commercially or for the enterprise)—including the modern C++ Windows
developer.

However, another software development perspective is at play here: that of developers who
create software with high churn rates, fast deployment, and constant uptime as the primary
objectives. That describes today’s Web application market accurately, doesn’t it? Modern
Web-oriented software is supposed to evolve quickly, be ready to deploy after very short
business cycles (a couple months at most), and is supposed to run 24/7. You could create such
applications using C++, but perhaps there’s a better way. With .NET, the better way is the
common language runtime.

Having a runtime execution engine manage your code is a lifestyle that Visual Basic
developers have enjoyed for years. We C++ developers often look at the Visual Basic crowd
longingly (as they go home on time) or with disdain (“They wouldn’t know what real software
development is all about”). But think of the advantages a runtime engine gives you. First of
all, no lost pointers. Someone else keeps track of them and cleans them up for you. How about
misshapen pointers (for example, when you think a pointer is pointing at one kind of structure
and it’s really pointing to another kind of thing)? Having a runtime manage your code ensures
that all pointers are compatible. A managed runtime also gives your code the ability to reflect
on itself through the metadata. In C++, you need to use <dynamic_cast>. In the common
language runtime, you just call GetType on any object whose type you want to know—a
service of System.Object.

These types of services are just the ticket for writing quickly evolving software that needs to
remain deployed constantly. We tried to write that kind of software for the Web using COM,
but COM doesn’t quite fit the bill for the reasons we looked at in the previous chapter. One
reason is the disparate data typing between COM development environments. Another reason
that COM doesn’t work completely is because of the involved process of managing
components within the system. Finally, if you’ve ever tried to maintain a Web site using COM
components, you know that the Web site must often come down when you want to change
components because the DLLs are in use by the Web site. The common language runtime
solves all these issues.

The advantage we have as C++ developers over the Visual Basic crowd is that while we’re
perfectly capable of writing common language runtime–compliant code (as we’ll see in a
minute), we always have the option of dropping down to normal C++ (unmanaged code) at
any point for performance or control reasons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bottom line here is that the common language runtime is your friend, not your enemy—
particularly because by writing code to run under the runtime, you can also write code that
runs outside the runtime and mix the two freely

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why Use C++?

You saw in the last chapter that .NET introduces the notion of IL. As long you use a syntax
for which there is an IL compiler, you’re good to go in the .NET arena. The introduction of IL
means that a multiplicity of programming syntaxes can coexist easily on the same platform. Of
course, we’ll see in this chapter that C++ is a perfectly decent way to write code for .NET.
However, you have other choices as well. You’ve no doubt heard of something called C#. C#
is a curly-brace-oriented syntax that offers the conciseness of C++ and the convenience of the
nonpointer syntax of Visual Basic. Visual Basic is also a perfectly good way to write .NET
software. With such an abundance of syntax choices, why would you ever decide to write
.NET software in C++? There are actually a number of reasons, as we’ll see here.

We’ll see Managed Extensions for C++ up close in a minute. From far away, they’re mostly
special declarations and keywords that tell the compiler to emit IL instead of native code.
Here’s why you might want to use Managed Extensions for C++:

To move unmanaged C++ applications to the .NET Framework ASAPMost highest-
performing Windows-based applications these days are written in C++—and it’s all
unmanaged C++. Managed Extensions for C++ are easy to type into your code using the
keyboard, and they provide a seamless transition to the .NET Framework. Unmanaged
and managed code can easily exist in the same application—even in the same file. Once
you have the application running under .NET, you can take your time to reimplement
the code to take advantage of the .NET Framework. Another option is to keep your code
running as normal unmanaged C++ and use managed wrappers to make your C++ code
callable from common language runtime code.

To access .NET classes from unmanaged codeWith Managed Extensions, you can
directly create, and call, a .NET Framework class from your C++ code. You can also
write C++ code that treats a .NET Framework component like any other managed C++
class.

To access a C++ component from a common language runtime–compatible
languageManaged Extensions support calling a C++ class from any .NET Framework–
compatible language. This is made possible by writing a simple wrapper class using
Managed Extensions that exposes your C++ class and methods as a managed class. The
wrapper is a fully managed class and can be called from any .NET Framework–
compatible language. The wrapper class acts as a mapping layer between the managed
class and the unmanaged C++ class—it simply passes method calls directly into the
unmanaged class. Managed Extensions support calls to any unmanaged DLL or library,
as well as unmanaged classes.

To access common language runtime code from COMC++ is also useful for calling
common language runtime code from COM components. You can use either the
unmanaged COM support or the Managed Extensions to access common language
runtime components.

To use managed and unmanaged code in one executable fileThe Visual C++ .NET
compiler translates data, pointers, exceptions, and instruction flow between managed
and unmanaged contexts automatically and transparently. This process allows managed
code to interoperate seamlessly with unmanaged C++ code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managed Extensions for C++ are quite flexible, and you can apply them in many ways. For
example, you can apply managed extensions on an element-by-element basis (such as a class-
by-class basis).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managed C++ Extensions

The common language runtime defines two types of managed elements: managed code and
managed data. Managed code cooperates closely with the common language runtime. This
means simply that managed code provides the necessary metadata so the runtime can provide
its services. Remember that the runtime provides memory management services, cross-
language integration services, code access security services, and automatic lifetime control for
objects. The runtime needs to know everything about the code it’s hosting so it can provide
these services.

The common language runtime also manages your application’s data; that is, the runtime
manages object layout. It also manages object references within your applications, releasing
them when they’re no longer being used. These objects are known as managed data.

So how do you write managed code? A handful of new keywords, applied judiciously, get rid
of all the headaches associated with tracking pointers and memory and with mismatching
types accidentally.

Writing .NET code using C++ turns out to be fairly straightforward. All it takes is a few new
keywords and symbols placed in the correct place. Table 32-1 describes Managed Extensions
for C++.

Table 32-1. Managed Extensions for C++
Extension
Keyword

Functionality

__abstract Types declared as __abstract cannot be instantiated directly.

__box __value classes that apply the __box extension have a copy created on the
common language runtime heap.

__delegate Types declared as __delegate reference a unique method of a managed class
(like a function pointer).

__event Types declared using __event define an event method of a managed class.

__finally Code within a __finally block becomes associated with the previous try block.

__gc Types declared using __gc live on the managed heap.

__identifier Tokens that apply the __identifier extension allow C++ keywords to be used as
identifiers.

__interface Types that apply the __interface keyword are declared as managed interfaces.

__nogc Native C++ classes that apply the __nogc extension are not garbage-collected.

__pin Objects that apply the __pin extension are prevented from being moved by the
common language runtime during garbage collection.

__property Fields that use the __property extension declare a property member for a
managed class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public,
protected,
and private

Types that apply these extensions define their visibility outside of an
assembly. Fields (member variables and member functions) that use these
extensions define their visibility within an assembly.

__sealed __gc classes that use the __sealed extension cannot be used as a base class.
This extension also prevents methods from being overridden in a derived class.

__try_cast Using the __try_cast extension attempts the specified cast. The cast throws an
exception on failure.

__typeof This extension gets the System::Type of an instance of a type.

__value Types that apply the __value extension are of the value type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual C++ .NET and the Managed Extensions

You could create assemblies by hand using Notepad and makefiles, but Visual Studio .NET
provides a much more streamlined approach to creating projects using wizards. When you
open a new project, Visual Studio presents four templates for generating Managed C++
applications:

Managed C++ Application Generates source code for producing a standalone C++
application with support for Managed Extensions. (For example, the correct command-
line switches are flipped on to support Managed C++.) You use this project type for
applications that run on the client, such as Windows Forms applications.

Managed C++ Class Library Generates code that supports a C++ DLL using Managed
Extensions. Use this option for creating managed components within .NET Framework
applications.

Managed C++ Empty Project Generates an empty project with the compiler and linker
switches set correctly for supporting Managed C++ Extensions. This is an excellent
option for moving existing C++ source files to a managed environment.

Managed C++ Web Service Generates a Managed C++ Web service. (Web services
provide programmatic access to a Web site.)

The samples from the SDK provide two additional Managed C++ wizards: one for generating
Managed C++ Windows Forms applications and one for generating Managed C++ console
applications. Chapter 4 presented a wizard for creating ASP.NET applications using Managed
C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex32a Example: A Managed C++ DLL Assembly

To give you a feel for how Managed C++ types work, this chapter includes an example with a
potpourri of managed types. The example is Ex32a, which is generated using the Managed
C++ Class Library project template. In keeping with C++ style, the project wizard generates a
header file named Ex32a.h and a C++ implementation file named Ex32a.cpp. Even though the
wizard emits a C++ file, this example shows all of the managed functionality inline in the
header file. Here’s the source code showing the managed types expressed using C++. The
library includes a managed interface, a managed class, a managed structure, a managed
enumeration, and a managed delegate.

// Ex32a.h
#pragma once

#using <System.DLL>
#using <System.Drawing.DLL>
#using <System.Windows.Forms.DLL>
#using <System.Runtime.Remoting.DLL>

using namespace System;
using namespace System::Collections;

namespace Ex32a
{

// C++ Assembly full of managed types...
public __value enum DaysOfTheWeek {
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,
 Sunday
};

public __value struct AManagedValueStruct {
 int m_n;
 double m_x;
 String* m_str;

 AManagedValueStruct() {
 m_n = 0;
 m_x = 1.1;
 m_str=new String("Hi there from AManagedValueStruct");
 }

 void Method1() {
 Console::WriteLine("Called AManagedValueStruct::Method1()");
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

public __gc struct AManagedGcStruct {
 AManagedGcStruct() {
 m_str=new String("Hi there from AManagedGcStruct");
 }
 ~AManagedGcStruct() {
 System::Console::WriteLine("AManagedStruct Going Away\n");
 }
 void Method1() {
 Console::WriteLine("Called AManagedGcStruct::Method1()");
 }
 int m_n;
 double m_x;
 String* m_str;
};

public __gc __interface IPerson {
 void Eat();
 void Sleep();
 void Work();
};

public __gc class SoftwareDeveloper : public IPerson{
 ~SoftwareDeveloper() {
 System::Console::WriteLine
 ("Finalize called for SoftwareDeveloper");
 }
 void Eat() {
 System::Console::WriteLine("Eat pizza");
 }
 void Sleep() {
 System::Console::WriteLine("Sleep during the day");
 }
 void Work() {
 System::Console::WriteLine("Work during the night");
 }
};

public __gc class DotCOMVP : public IPerson {
 ~DotCOMVP() {
 System::Console::WriteLine("Finalize called for DotCOMVP");
 }
 void Eat() {
 System::Console::WriteLine("Eat to Schmooze");
 }
 void Sleep() {
 System::Console::WriteLine("Never sleep");
 }
 void Work() {
 System::Console::WriteLine("Work to get Venture Capital");
 }
};

public __gc class Bum : public IPerson {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public __gc class Bum : public IPerson {
 ~Bum() {
 System::Console::WriteLine("Finalize called for Bum");
 }
 void Eat() {
 System::Console::WriteLine("Eat sporadically");
 }
 void Sleep() {
 System::Console::WriteLine("Sleep whenever possible");
 }
 void Work() {
 System::Console::WriteLine("Work?");
 }
};
public __delegate void AManagedDelegate(String* strMessage);
public __gc __interface IAManagedInterface {
 void MethodA();
 int MethodB();
};

public __gc class AManagedClass : public IAManagedInterface {

 int m_n;
 int m_nSize;
 double m_f;
 String *m_str;

 DaysOfTheWeek m_DayOfWeek;
 ArrayList *m_rgManagedArray;

public:
 AManagedClass() {
 m_str = new String("This is AManagedClass\n");
 m_DayOfWeek = Friday;
 }

 ~AManagedClass() {
 System::Console::WriteLine("AManagedClass Going Away\n");
 }

 __property int get_Size() {
 return m_nSize;
 }

 __property void set_Size(int value) {
 m_nSize = value;
 }

 void MethodA() {
 Console::WriteLine
 ("Here's some managed C++ code. This is MethodA.");
 }

 int MethodB() {
 Console::WriteLine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Console::WriteLine
 ("Here's some managed C++ code. This is MethodB.");
 return 0;
 }

 void FillArray() {
 m_rgManagedArray = new ArrayList();

 Console::WriteLine("Creating a DotCOMVP");
 m_rgManagedArray->Add(new DotCOMVP());
 Console::WriteLine("Creating a Bum");
 m_rgManagedArray->Add(new Bum());
 Console::WriteLine("Creating a Software Developer");
 m_rgManagedArray->Add(new SoftwareDeveloper());
 }

 void ShowArray() {
 Console::WriteLine();
 if(m_rgManagedArray) {
 for(int i = 0; i < m_rgManagedArray->Count; i++) {
 Console::Write("Type: ");
 Console::WriteLine(
 (m_rgManagedArray->get_Item(i))->GetType()->ToString());
 IPerson* person;
 person = __try_cast<IPerson*>
 (m_rgManagedArray->get_Item(i));
 person->Eat();
 person->Work();
 person->Sleep();
 Console::WriteLine();
 }
 }
 }

 void UseDelegate(AManagedDelegate *d) {
 d->Invoke("This is called through the delegate...");
 }

};

}

The result of building this project is an assembly that contains the managed types. The .NET
Framework SDK provides a tool called the Intermediate Language Disassembler (ILDASM).
When you open an assembly using ILDASM, ILDASM shows you the contents of the
assembly. Figure 32-1 shows the Ex32a.dll assembly as viewed through ILDASM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 32-1. The Ex32a assembly as viewed through ILDASM.

ILDASM shows the internals of an assembly. Remember that all the type information for an
assembly is available. The common language runtime library includes classes and methods for
iterating through the contents of an assembly, which is actually very straightforward to do.
Writing an ILDASM-type browser also isn’t that hard to do. (It’s much simpler using .NET
than using COM’s ITypeLibrary and ITypeInfo interfaces, for example.) In the following
sections, we’ll look at the types available through Ex32a.

DaysOfTheWeek

C and C++ have always provided the enum keyword for naming the types of a collection (such
as months of the year or suits in a card deck), but the underlying structure behind the C and
C++ enum has simply been an integer. That means you can write source code that mixes
enumeration types (Monday, Tuesday, Wednesday, and so on) with raw integers. The
managed types of the common language runtime allow you to specify the enumeration as a
type, and the compiler enforces that typing, as shown in the following listing:

Void Afunction() {
 DaysOfTheWeek dow;
 dow = 3; // Would work in C and C++, but not
 // under Managed C++
 dow = Wednesday; // This is the only syntax
 // that works under Managed C++
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

AManagedValueStruct and AManagedGcStruct

AManagedValueStruct is a value struct that lives on the stack and more or less describes
formatted memory. AManagedGcStruct is a reference struct that describes a structure living on
the garbage-collected heap.

IAManagedInterface and IPerson

IAManagedInterface and IPerson describe two managed interfaces. IAManagedInterface has
two methods, MethodA and MethodB. IPerson describes a person type that eats, sleeps, and
works. Interfaces are useful for describing basic, abstract functionality. The DotComVP,
SoftwareDeveloper, and Bum classes (described shortly) implement the IPerson interfaces.
Managed interfaces are different from COM interfaces in that they don’t have the IUnknown
functions preceding them, and the interfaces are managed by the runtime.

DotCOMVP, SoftwareDeveloper, and Bum

The DotCOMVP, SoftwareDeveloper, and Bum classes all implement the IPerson interface.
However, they all do so in different ways. By expressing the functionality of these classes as
an interface, you can use them wherever a person can be used. (These classes are type-
compatible with IPerson.) You’ll see this in the FillArray method of AManagedClass.

AManagedDelegate

AManagedDelegate represents a function signature that can be passed around as a type.
You’ve seen examples of this throughout the C and C++ programming examples in this book.
However, in the common language runtime, these function pointers (delegates) are managed
types. Because the compiler enforces strict type checking, the possibility of a program error
due to passing an incorrect function signature or passing the wrong arguments in the function
goes away.

AManagedClass

The last type described in the Ex32a header file is AManagedClass, which implements
IAManagedInterface. Notice that AManagedClass has several member variables (a couple of
integers, a float type, a String, a DayOfTheWeek type, and an ArrayList). In addition,
AManagedClass implements IAManagedInterface and exercises the DotCOMVP,
SoftwareDeveloper, and Bum classes. Finally, notice the UseDelegate method, which passes
around a delegate (a function signature type).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Making the Assembly Usable

Once the assembly is compiled, it will include all the types listed in the source code. You can
use the assembly in a couple of ways. The first way is to deploy it as a private assembly. That
means any client application that wants to use the assembly gets its own copy of the assembly
(which will appear somewhere in the AppBase directory structure). To use Ex32a as a private
assembly, you need to do nothing else. Just make sure the client applications have access to it.

The second way to use the assembly is to deploy it as a global assembly. To do this, you need
to sign the assembly and then put it in the Global Assembly Cache (GAC). To sign the
assembly, you run the program named SN.exe using the following command line:

sn –k InsideVCNET.snk

Running the SN program generates a signature key file that includes private and public keys
that give the assembly a strong name (hence the name SN.exe). To include the signature in the
assembly, you include this line in the Assembly.cpp source code:

[assembly:AssemblyKeyFileAttribute("InsideVCNET.snk")];

The line adds the public and private keys to the assembly. You can then add the assembly to
the cache using the GACUTIL utility:

gacutil –i ex32a.dll

The final point regarding Ex32a is that the default source code generated by wizard updates
the version number over the assembly each time it’s compiled. The following line in
AssemblyInfo.cpp is responsible:

// You can specify all the values or you can default the Revision
// and Build numbers by using the '*' as shown below:
[assembly:AssemblyVersionAttribute("1.0.*")];

You can change this directive to use a specific version number, or you can let the compiler
build new versions with new numbers. Placing asterisks in the Build and Revision fields of the
version signature (the third and fourth places of the build signature) causes the compiler to use
date and time stamps for the build and revision numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ex32b Example: A Managed Client Executable

Let’s write a managed C++ executable to exercise the library. As you’ll see from this example,
writing C++ client code that uses managed types is fairly straightforward and nearly seamless.
The following listing, Ex32b, shows a simple console application that exercises the types
found in Ex32a:

// This is the main project file for a Visual C++ application
// generated using an application wizard.

#include "stdafx.h"

#using <mscorlib.dll>
#using <..\Ex32a\debug\ex32a.dll>
#include <tchar.h>

using namespace System;
using namespace Ex32a;

__gc class CDelegateHolder {
public:
 static void DelegateFn(String* str) {
 Console::WriteLine(str);
 }
};

void UseValueStruct() {
 Console::WriteLine("Working with AManagedValueStruct");
 AManagedValueStruct amvs;
 Console::WriteLine(amvs.m_str);
 amvs.Method1();

}

void UseGcStruct() {
 Console::WriteLine("Working with AManagedGcStruct");
 AManagedGcStruct *amgcs;
 amgcs = new AManagedGcStruct();
 Console::WriteLine(amgcs->m_str);
 amgcs->Method1();
}

// This is the entry point for this application
int _tmain(void)
{
 Console::WriteLine(
 "Creating and exercising an instance of AManagedClass");
 AManagedClass *amc = new AManagedClass();
 Console::WriteLine("Filling array");
 amc->FillArray();
 amc->ShowArray();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 amc->ShowArray();

 Console::WriteLine();

 Console::WriteLine("Creating and using a Delegate");
 CDelegateHolder *dh;
 dh = new CDelegateHolder();
 AManagedDelegate *amd;
 amd = new AManagedDelegate(dh, dh->DelegateFn);
 amc->UseDelegate(amd);
 Console::WriteLine();

 Console::WriteLine(
 "Talking to the object through IAManagedInterface");
 IAManagedInterface *ami;
 ami = amc;
 ami->MethodA();
 ami->MethodB();

 Console::WriteLine();
 UseGcStruct();

 Console::WriteLine();
 UseValueStruct();

 GC::Collect();

 return 0;
}

Before getting into the details of the code, take a look at the top of the previous listing. There’s
an include statement for stdafx.h. That’s normal, of course. The stdafx.h file includes a
reference to mscorlib.dll. Immediately following the include statement are a couple of #using
directives. The first one brings in a reference to the core runtime library. The second one
brings in a reference to the Ex32a assembly. The reference to Ex32a makes Ex32a’s types
available to the application. Following the #using compiler directives are two using statements
for specifying namespaces. These are for your convenience—you don’t have to completely
scope out every variable and object you use.

The structure of all console applications within the common language runtime is similar. The
assembly needs to include a single class. (You can call it anything you want.) The class needs
to include a single static method named Main. This is the entry point to the application.

The main thread to the application then instantiates various types living within Ex32a.dll and
exercises them. The first object is an instance of AManagedClass. Notice the calls to
FillArray and ShowArray. These methods fill an ArrayList (a data member within
AManagedClass), which is an array of IPerson implementations. ShowArray pulls each object
out of the array and asks the object what type it is and what exercises the IPerson Eat, Work,
and Sleep methods.

Notice the UseDelegate class near the top of the file. This class holds a function of the same
signature type declared by AManagedDelegate. The Ex32b application passes an instance of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

signature type declared by AManagedDelegate. The Ex32b application passes an instance of
this method to the AManagedClass UseDelegate method to illustrate using delegates.

Ex32b then casts the AManagedClass object to IAManagedInterface and talks to the object
through the interface. This shows how you can pare an object instance down to one of its
interfaces and use the class through the interface type.

Finally, the main thread creates instances of AManagedGcStruct and AManagedValueStruct to
show how managed versus reference types work. Notice that the value structure simply sits on
the stack, while the reference types live on the garbage-collected heap. (They’re instantiated
using the new operator.)

The final act of Ex32b is to execute the garbage collector by calling GC::Collect. Notice how
finalizers are called on the objects as they’re garbage collected.

Figure 32-2 shows the results of executing the Ex32b application.

Figure 32-2. Running the Ex32b console application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding Managed Extension Support

As you can see from the preceding examples, using managed types within C++ is quite easy.
Managed types look, taste, and feel very like normal C++ types. However, they’re a lot less
hassle to use.

Building managed C++ assemblies from scratch is a breeze using the Visual C++ project
wizards. However, sometimes you might need to add managed C++ support to your existing
C++ applications. Let’s look at how you go about converting a normal C++ application to a
managed C++ application.

First, you modify the project settings. Standard C++ applications don’t have the correct
compiler and linker settings to compile down to the common language runtime. You must add
the /clr option, which enables support for Managed Extensions and forces a link to the proper
library. To modify the project settings, right-click on the project node in Solution Explorer and
choose Properties. Click on the C/C++ folder in the left pane of the Property Pages dialog box.
Then click on the General folder under C/C++. Set the Compile As Managed property to
Assembly Support (/clr). If your application is an MFC application, you might need to tweak
some of the other options, such as turning off the Program Database For Edit & Continue
option (/ZI).

By default, the /clr compiler option is not in effect. When it is switched on, metadata is
generated for all code (wow!). Any code that can be compiled to managed code will be.
Naturally, some C++ constructs can be compiled to managed code. The following kinds of
unmanaged code will be generated automatically:

__asm blocks.

Functions that use any form of variant args in their parameter list.

Compiler-generated thunks or helper functions. Native thunks are generated for any
function call through a function pointer, including virtual function calls.

Functions that call setjmp.

Functions that directly manipulate machine resources. For example, __enable/__disable
and _ReturnAddress/_AddressOfReturnAddress cause a function to be compiled as
unmanaged native code.

Code that appears after a #pragma unmanaged directive.

Functions that reference aligned types (types declared using __declspec(align(...))

Using the /clr compiler option requires that the /MT compiler option be enabled. This causes
the compiler and linker to use the multi-threaded versions of the CRT runtime functions. This
is necessary because the common language runtime garbage-collects and calls object finalizers
on a thread that runs independently from the main execution thread.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once the target application has been built with Managed Extensions support, you can access
all .NET Framework features, including your own managed types and the .NET common
library. Notice that the example code for this chapter uses predefined system types (such as
String, ArrayList, and Console) as well as types defined within a custom assembly.

Of course, there are some caveats about using managed types with unmanaged types. You are
forbidden to nest managed types within unmanaged types. This makes sense—how should the
destructor of a class holding a managed type behave? You cannot derive a managed type from
an unmanaged type—a class has to be managed from the beginning. This means that it’s
generally impractical to use the Managed Extensions from within an MFC application. You
cannot keep a managed type as a member variable for a class. However, you can create an
instance of a managed type for the duration of a method call. For example, the following line
creates a managed ArrayList within some unmanaged code:

void UseAManagedType() {
 ArrayList* al;
 al = new ArrayList();
}

Remember that MFC redefines the new operator within the debug version of MFC to track
memory usage. That means you can’t use the managed version of new. You’ll get error
C3828: “Placement arguments not allowed while creating instances of managed classes.” To
get rid of this error, use the following pragmas to undefine the new operator temporarily:

void UseAManagedType() {
#pragma push_macro("new")
#undef new
 ArrayList* al;
 al = new ArrayList();
#pragma pop_macro("new")
}

This lets you use managed types within an unmanaged application. However, most modern
rich-client applications will be written using Windows Forms and ASP.NET, which we’ll look
at in the next two chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 33
Programming Windows Forms Using Managed C++

In the previous chapter, we looked at the fundamentals of writing managed code using the
Managed Extensions for C++. Now we can do something practical with that information. The
common language runtime provides many features and services. Two of the most prevalent
features include Windows Forms for creating desktop applications and ASP.NET for writing
Web applications. We’ll start off with Windows Forms. Another feature is managed data
access. We’ll look at managed data access using ADO.NET in Chapter 35.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows Forms

Earlier sections of this book covered classic Microsoft Windows development. We looked at
the Microsoft Foundation Classes (MFC) as the quickest way to write high-performance
Windows-based applications. For years, the best way to get the highest-performing, most
feature-filled desktop application was to use MFC. Microsoft .NET includes a desktop
application development framework named Windows Forms.

Although the .NET initiative emphasizes Internet-based development, normal client
applications will always be popular. The Windows user interface has been around a long time,
and the underpinnings are not likely to go away soon. Under the hood, Windows applications
will probably remain the same for the foreseeable future. You’ll probably always be able to
write Windows-based applications using WndProc functions and Petzold-style coding or using
MFC. Windows Forms provides the highest-level abstractions available for Windows
developers. They take a forms-based approach to development, much like Microsoft Visual
Basic. However, Windows Forms makes available to all developers (including those using
managed C++) the user interface facilities that Visual Basic developers have enjoyed for
years.

Beneath the Veneer

As an MFC programmer, you’re used to a single class library that works only under C++. The
.NET Windows Forms library is a bit different. The Windows Forms classes are built into the
.NET common language runtime. Earlier we looked at how MFC is basically a thin layer
above API-level programming. If you look through the MFC source code, you’ll find a
WinMain function and some message loops—the heart of any Windows-based program. In
fact, under the hood all Windows-based applications essentially work the same way.
Windows-based applications register window classes that tie a WndProc to a default window
style. Windows-based applications use the window classes to create instances of Windows
user interface elements. Windows has some basic window classes defined under the hood
(such as the BUTTON and the COMBOBOX classes).

In the earliest days of Windows programming, all applications were created from scratch, and
a large part of the developer’s time was spent getting the boilerplate code to work correctly.
Once the boilerplate code worked, you could add event handlers gradually to develop an
application by adding cases to a switch statement. MFC did away with requiring developers to
carve out all their own WinMain and WndProc functions. Windows Forms continues the trend
of eliminating programming details so you don’t have to spend as much time writing grunge
code.

The Windows Forms Structure

Windows Forms applications are structured much like Visual Basic applications, and
Windows Forms development is similar to standard Visual Basic forms-based development.
SDK-style applications interact directly with the Windows API. We saw earlier that MFC is
only a very thin veneer between the API and the C++ source code. Windows Forms
programming hides even more of the boilerplate details of Windows programming than MFC
did. Windows Forms applications have all the same general features of normal Windows-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

did. Windows Forms applications have all the same general features of normal Windows-
based applications. They respond to the usual events, such as mouse movements and menu
selections. Windows Forms can also render within the client area. However, the syntax for
managing these features is more abstract than the syntax in a program you write with the SDK
or even with MFC.

Windows Forms technology is useful for creating all the standard Windows applications
we’ve seen so far: Single Document Interface (SDI) applications, Multiple Document
Interface (MDI) applications, and dialog box applications. Much of Windows Forms
development involves managing a form (or forms) and defining a user interface in terms of
controls (combo boxes, labels, text boxes, and so forth). All these controls are found in the
common language runtime. Windows Forms aren’t limited to just form-based applications.
Windows Forms include a canvas on which you can draw anything you want—just as you’re
able to do with the standard GDI device context.

Windows Forms simplifies desktop user interface programming in many ways. For example,
Windows Forms define their appearance through properties. To move a Windows Form on the
screen programmatically, you set the Windows Form’s Location property. Remember that,
when programming in MFC, moving a window involved calling CWnd::MoveWindow.
Windows Forms manage their behavior with methods, and they also respond to events to
define their interaction with the user.

The classes comprising Windows Forms applications are found in the common language
runtime. The fundamental class behind a Windows Forms application is the
System::Windows::Forms::Form class. Writing a Windows Forms application is a matter of
tweaking its properties to get the windows to look the way you want them to look, and setting
up event handlers for mouse movements, menus, and command. Because a Windows Form is
a regular common language runtime–based class that fully supports inheritance, you can build
hierarchies of Windows Forms–based classes in a standard, object-oriented way. Right now,
the common language runtime contains only the most rudimentary classes for creating
applications. However, third parties are rapidly building Windows Forms components and
controls.

A Windows Forms Wizard

Microsoft Visual Studio .NET includes a wizard called the Managed C Windows Forms
Wizard for generating a Windows Forms application. You can find the wizard by searching on
“Custom Wizard Samples” in the Visual Studio online help. Click the
ManagedCWinFormWiz link and follow the instructions for installing the wizard. We’ll use
the wizard to create a simple Window Forms application so we can examine how Window
Forms work.

The Ex33a Example: A Basic Windows Forms Application with a Menu and a Status
Bar

You can look through the copy of Ex33a that comes with the companion CD, or you can use
the Managed C Windows Forms Wizard to generate the example. To use the wizard, be sure
it’s installed. (You can get information about installing the wizard when you download it.)
Choose New, Project from the File menu and then select the Managed C++ Windows Forms
project. Type Ex33a in the Name text box and click OK. Here’s the code produced by the
wizard:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Source.cpp
#using <mscorlib.dll>
using namespace System;

// required dlls for WinForms
#using "System.dll"
#using "System.Windows.Forms.dll"
#using "System.Drawing.dll"

// required namespaces for WinForms
using namespace System::ComponentModel;
using namespace System::Windows::Forms;
using namespace System::Drawing;

__gc class WinForm: public Form
{
private:
 StatusBar *statusBar;
 Button *closeButton;
 MainMenu *mainMenu;
 MenuItem *fileMenu;
 Label *todoLabel;

 String *caption; // Caption of the WinForm
 int width; // width of the WinForm
 int height; // height of the WinForm

public:
 WinForm()
 {
 // Set caption and size of the WinForm
 caption = "Default WinForm Example";
 width = 400;
 height = 500;

 InitForm();
 }

 void Dispose(bool disposing)
 {
 // Form is being destroyed. Do any
 // necessary clean-up here.
 Form::Dispose(disposing);
 }

 void InitForm()
 {
 // Setup controls here

 // Basic WinForm Settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Basic WinForm Settings
 Text = caption;
 Size = Drawing::Size(width, height);

 // Setup Menu
 mainMenu = new MainMenu();
 fileMenu = new MenuItem("&File");
 mainMenu->MenuItems->Add(fileMenu);
 fileMenu->MenuItems->Add(new MenuItem("E&xit",
 new EventHandler(this, &WinForm::OnFileExit)));
 Menu = mainMenu;

 // Label
 todoLabel = new Label();
 todoLabel->Text = "TODO: Place your controls here.";
 todoLabel->Size = Drawing::Size(150, 100);
 todoLabel->Location = Point (50, 50);
 Controls->Add(todoLabel);

 // Set status bar
 statusBar = new StatusBar();
 statusBar->Text = "Status Bar is Here";
 Controls->Add(statusBar);

 // Setup Close Button
 closeButton = new Button();
 closeButton->Text = "&Close";
 closeButton->Size = Drawing::Size(75, 23);
 closeButton->TabIndex = 0;
 closeButton->Location =
 Drawing::Point(width/2 - (75/2), height - 23 - 75);
 closeButton->Click +=
 (new EventHandler(this, &WinForm::OnCloseButtonClick));
 Controls->Add(closeButton);
 }

 void OnCloseButtonClick(Object *sender, EventArgs *e)
 {
 Close();
 }

 void OnFileExit(Object *sender, EventArgs *e)
 {
 Close();
 }

};

void main()
{
 // ds
 // This line creates an instance of WinForm, and
 // uses it as the Main Window of the application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // uses it as the Main Window of the application.
 Application::Run(new WinForm());
}

The code listed above has been changed slightly. By default, the “todo:” comments generated
by the wizard cover up the Close button generated by the wizard. The code listed above draws
these comments a bit smaller. We’ll look at the Form class in detail in a moment.

Figure 33-1 shows the Ex33a Windows Forms application in action.

Figure 33-1. The Ex33a sample in action.

The Form Class

Windows Forms applications are based upon a class derived from the common language
runtime Form class. Just as MFC used a C++ class library to hide the details necessary to
manage a Windows application, the common language runtime classes hide the same details.
That means no more defining WndProc functions, registering window classes, and running
message loops.

Note the #using directive at the top of the Ex33a Source.cpp listing. This directive brings in
the common language runtime, housed within mscorlib.dll. The namespace statements make
coding more convenient—they eliminate the necessity of scoping every single variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because this example is written in managed C++, the Form class is preceded by the __gc
declaration. Remember that Windows Forms are common language runtime–based
applications and are therefore required to live on the garbage-collected heap.

Any standard window can be represented by the Form class. You just need to make sure you
use the correct form class (for example, there’s an MdiClient class for supporting MDI
applications) and set the properties to get the window to look the way you want it to look. It’s
generally much simpler than using the raw Windows SDK or even MFC. You can manage all
these form properties at design time through the Visual Studio .NET Properties window, or
you can manage them programmatically at run time.

Windows Forms applications bring the simplicity of Visual Basic–style development to
developers who are using the common language runtime. Eventually we’ll start seeing a great
deal more consistency between applications because developers will be using the same
framework. This means no more differences between MFC-based applications, Visual Basic–
based applications, Windows SDK–based applications, and so on.

Handling Events

Windows is an event-driven operating system. Consequently, the main purpose of any
Windows user interface program is to handle the various Windows events. We’ve been
writing MFC code to handle all kinds of events, including mouse movement, mouse button
presses, and key presses. Windows Forms handle most events by plugging in an event handler
for each event that a program will handle. Notice how the earlier Ex33a Source.cpp program
listing intercepts the events generated by the File, Exit menu command and the Close button
control created on the fly by the program. By contrast, recall how MFC-based applications
intercept/receive their events and pipe them through a command-handling architecture using
message maps. Windows Forms use the same eventing mechanism for both commands and
Window messages: The Form class intercepts these events, and if there’s a handler plugged in
for that particular event, the form directs execution flow there.

Drawing

Any Windows programming framework requires you to draw on the screen. The Form class
defines an event named OnPaint that traps the WM_PAINT message. The Form class
intercepts the Paint event, and you can add a handler to draw on the form. Drawing on a
Windows Form is generally simpler than using the raw GDI. The drawing operations are
encapsulated in the Graphics object passed in OnPaint’s arguments.

The Ex33a sample application listed earlier simply places a Label control and a Button control
on the form. However, in the next example we’ll see how the Windows Forms painting model
supports many of the graphics primitives that Windows developers are used to.

The Ex33b Example: Handling the Paint Event

Ex33b illustrates handling the Paint event. The core code for this example was generated by
the Managed C Windows Forms Wizard mentioned earlier. Here’s the listing for Ex33b:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Source.cpp
#using <mscorlib.dll>
using namespace System;

// required dlls for WinForms
#using "System.dll"
#using "System.Windows.Forms.dll"
#using "System.Drawing.dll"

// required namespaces for WinForms
using namespace System::ComponentModel;
using namespace System::Windows::Forms;
using namespace System::Drawing;

__gc class Shape
{
public:
 Rectangle m_rect;
 Color m_PenColor;

 Shape()
 {
 m_rect.set_X(0);
 m_rect.set_Y(0);
 m_rect.set_Height(0);
 m_rect.set_Width(0);

 m_PenColor = Color::Black;
 }
 Shape(Rectangle r)
 {
 m_rect=r;
 m_PenColor = Color::Black;
 }
 virtual void Draw(System::Drawing::Graphics* g)
 {
 }
};

__gc class Line : public Shape
{
public:
 Line(Rectangle r) :
 Shape(r)
 {
 m_rect=r;
 }
 Line():
 Shape()
 {
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 void Draw(System::Drawing::Graphics* g)
 {
 g->DrawLine(new Pen(m_PenColor), m_rect.Left,
 m_rect.Top, m_rect.Right, m_rect.Bottom);
 }
};

__gc class Circle : public Shape
{
public:
 Circle(Rectangle r) :
 Shape(r)
 {
 m_rect=r;
 }
 Circle():
 Shape()
 {
 }
 void Draw(System::Drawing::Graphics* g)
 {
 g->DrawEllipse(new Pen(m_PenColor), m_rect.Left,
 m_rect.Top, m_rect.Right, m_rect.Bottom);
 }
};

__gc class Rect : public Shape
{
public:
 Rect(Rectangle r) :
 Shape(r)
 {
 m_rect=r;
 }
 Rect():
 Shape()
 {
 }
 void Draw(System::Drawing::Graphics* g)
 {
 g->DrawRectangle(new Pen(m_PenColor),
 m_rect.Left, m_rect.Top,
 m_rect.Right, m_rect.Bottom);
 }
};

__gc class WinForm: public Form
{
private:
 MainMenu *mainMenu;
 MenuItem *fileMenu;

 String *caption; // Caption of the WinForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String *caption; // Caption of the WinForm
 int width; // width of the WinForm
 int height; // height of the WinForm

 Shape* l; // line
 Shape* c; // circle
 Shape* r; // rectangle

 Shape* l2; // line
 Shape* c2; // circle
 Shape* r2; // rectangle

public:
 WinForm()
 {
 // Set caption and size of the WinForm
 caption = "Default WinForm Example";
 width = 400;
 height = 500;

 InitForm();
 }

 void Dispose(bool disposing)
 {
 // Form is being destroyed. Do any necessary clean-up here.
 Form::Dispose(disposing);
 }

 void CreateShapes()
 {
 int x = 10;
 int y = 30;

 l = new Line(Rectangle(x, y, 30, 60));
 x = x + 50;

 c = new Circle(Rectangle(x, y, 30, 60));
 x = x + 170;

 r = new Rect(Rectangle(x, y, 60, 60));

 y = 160;
 x = 10;
 l2 = new Line(Rectangle(x, y, 30, 60));
 l2->m_PenColor = Color::Red;
 x = x + 50;

 c2 = new Circle(Rectangle(x, y, 30, 60));
 c2->m_PenColor = Color::Blue;
 x = x + 170;

 r2 = new Rect(Rectangle(x, y, 60, 60));
 r2->m_PenColor = Color::Green;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 void DrawShapes(System::Drawing::Graphics* g)
 {
 l->Draw(g);
 c->Draw(g);
 r->Draw(g);

 l2->Draw(g);
 c2->Draw(g);
 r2->Draw(g);
 }

 void InitForm()
 {
 CreateShapes();

 // Setup controls here

 // Basic WinForm Settings
 Text = caption;
 Size = Drawing::Size(width, height);

 // Setup Menu
 mainMenu = new MainMenu();
 fileMenu = new MenuItem("&File");
 mainMenu->MenuItems->Add(fileMenu);
 fileMenu->MenuItems->Add(new MenuItem("E&xit",
 new EventHandler(this, &WinForm::OnFileExit)));
 Menu = mainMenu;

 //Paint Handler
 Paint += new PaintEventHandler(this, OnPaint);

 }

 void OnPaint(Object* sender, PaintEventArgs* e)
 {
 SolidBrush* b;
 b = new SolidBrush(Color::Black);

 e->Graphics->DrawString("Hello World",
 this->Font, b, System::Drawing::PointF(10, 10));
 DrawShapes(e->Graphics);
 }

 void OnFileExit(Object *sender, EventArgs *e)
 {
 Close();
 }

};

void main()
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 // This line creates an instance of WinForm, and
 // uses it as the Main Window of the application.
 Application::Run(new WinForm());
}

Graphical Output

The sample code produced by the wizard didn’t do much in the way of handling graphics.
Ex33b does include some graphics-rendering code. The rendering code in Ex33b uses GDI+,
an enhancement of the normal GDI we’ve already seen while working with MFC. Notice near
the top of Source.cpp the class hierarchy defining three shape objects—a line, a square, and a
circle—derived from a class named Shape. The Shape class has some attributes (a color and a
bounding rectangle) and a Draw method.

The Shape class and its descendents are all defined as __gc classes, so they live on the
garbage-collected heap. The Draw method takes an argument of type
System::Drawing::Graphics. This type wraps the GDI’s device context handle and manages
calls such as LineTo, Ellipse, and Rectangle.

The Form class has an event named Paint to which you can attach a handler. The form
attaches its Paint event handler in the InitForm method. Notice that InitForm creates several
instances of the Shape-derived classes. When Windows rerenders the form, the Paint handler
runs through the Shape objects and asks each one to render itself by calling the Draw method.

The Draw method extracts the Graphics object from the painting arguments and then draws
each shape appropriately using a GDI+ call on the Graphics object. The Line object uses
Graphics::DrawLine, the rectangle uses Graphics::DrawRectangle, and the circle uses
Graphics::DrawEllipse. It’s generally simpler to use GDI+ to render an object than it is to use
GDI to render an object.

Figure 33-2 shows Ex33b in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 33-2. The Ex33b sample in action.

The Ex33c Example: An Interactive Drawing Program

To fully illustrate how Windows Forms works, let’s take a look at a drawing program that
interactively draws the shape objects listed earlier—a line, a square, and a circle. Ex33c is a
slight variant of Ex33b. However, Ex33c handles mouse movement events and performs some
custom tweaking of device context within the Graphics object.

As with Ex33a and Ex33b, Ex33c was created using the Managed C Windows Forms Wizard.
I removed the “todo:” label and the Close button. Otherwise, it’s a stock Windows Forms
application. Here’s the listing for Ex33c:

Source.cpp
#include "stdafx.h"
#include "math.h"

#using <mscorlib.dll>
using namespace System;

// required dlls for WinForms
#using "System.dll"
#using "System.Windows.Forms.dll"
#using "System.Drawing.dll"

// required namespaces for WinForms
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Drawing;
using namespace System::Drawing::Drawing2D;

using namespace System::Diagnostics;

__value enum DrawingTypes
{
 None, Line, Circle, Rect
};
//
//
// shape hierarchy shown later…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// shape hierarchy shown later…
//
//
__gc class WinForm: public Form
{
private:
 StatusBar *statusBar;
 MainMenu *mainMenu;
 MenuItem *fileMenu;
 MenuItem *drawingMenu;
 MenuItem *circleMenu;
 MenuItem *lineMenu;
 MenuItem *rectMenu;
 MenuItem *helpMenu;

 DrawingTypes drawingtype;

 ArrayList *shapes;

 String *caption; // Caption of the WinForm
 int width; // width of the WinForm
 int height; // height of the WinForm

 Shape *currentShape;

public:
 WinForm()
 {
 // Set caption and size of the WinForm
 caption = "Default WinForm Example";
 width = 600;
 height = 500;

 InitForm();
 }

 void Dispose(bool disposing)
 {
 // Form is being destroyed. Do any
 // necessary clean-up here.
 Form::Dispose(disposing);
 }

 void InitForm()
 {
 // Setup controls here

 // Basic WinForm Settings
 this->set_BackColor(Color::White);

 Text = caption;
 Size = Drawing::Size(width, height);

 drawingtype = DrawingTypes::Line;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Setup Menu
 mainMenu = new MainMenu();
 fileMenu = new MenuItem("&File");
 mainMenu->MenuItems->Add(fileMenu);
 fileMenu->MenuItems->Add(
 new MenuItem("E&xit",
 new EventHandler(this, &WinForm::OnFileExit)));
 Menu = mainMenu;

 drawingMenu = new MenuItem("&Drawing");
 circleMenu =
 new MenuItem("&Circle",
 new EventHandler(this, OnDrawCircle));
 lineMenu = new MenuItem("&Line",
 new EventHandler(this, OnDrawLine));
 rectMenu =
 new MenuItem("&Rectangle",
 new EventHandler(this, OnDrawRect));
 drawingMenu->MenuItems->Add(lineMenu);
 drawingMenu->MenuItems->Add(circleMenu);
 drawingMenu->MenuItems->Add(rectMenu);
 mainMenu->MenuItems->Add(drawingMenu);

 helpMenu = new MenuItem("&Help");
 mainMenu->MenuItems->Add(helpMenu);
 helpMenu->MenuItems->Add(
 new MenuItem("&About",
 new EventHandler(this, OnHelpAbout)));

 // Set status bar
 statusBar = new StatusBar();
 statusBar->Text = "Status Bar is Here";
 Controls->Add(statusBar);

 MouseDown += new MouseEventHandler(this,
 MouseDownHandler);
 MouseMove += new MouseEventHandler(this,
 MouseMoveHandler);
 MouseUp += new MouseEventHandler(this,
 MouseUpHandler);

 Paint += new PaintEventHandler(this, OnPaint);

 shapes = new ArrayList();
 UIUpdate();
 }

 void UIUpdate()
 {
 // uncheck all items
 lineMenu->Checked = false;
 rectMenu->Checked = false;
 circleMenu->Checked = false;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 switch(drawingtype)
 {
 case DrawingTypes::Line:
 lineMenu->Checked = true;
 break;
 case DrawingTypes::Rect:
 rectMenu->Checked = true;
 break;
 case DrawingTypes::Circle:
 circleMenu->Checked = true;
 break;
 }
 }

 void OnDrawLine(Object* sender, EventArgs* e)
 {
 drawingtype = DrawingTypes::Line;
 UIUpdate();
 }

 void OnDrawCircle(Object* sender, EventArgs* e)
 {
 drawingtype = DrawingTypes::Circle;
 UIUpdate();
 }

 void OnDrawRect(Object* sender, EventArgs* e)
 {
 drawingtype = DrawingTypes::Rect;
 UIUpdate();
 }

 void OnFileExit(Object *sender, EventArgs *e)
 {
 Close();
 }

 void OnHelpAbout(Object* sender, EventArgs* e)
 {
 ::MessageBox(NULL,
 "WinForms Drawing Example",
 "About WinForms Drawing Example", MB_OK);
 }

 void MouseDownHandler(Object* sender, MouseEventArgs* e)
 {
 if(!this->Capture)
 return;

 switch(drawingtype)
 {
 case DrawingTypes::Line :
 currentShape = new Line();
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case DrawingTypes::Circle:
 currentShape = new Circle();
 break;
 case DrawingTypes::Rect:
 currentShape = new Rect();
 break;
 default:
 return;
 };

 try{
 currentShape->m_topLeft.X = e->X;
 currentShape->m_topLeft.Y = e->Y;
 currentShape->m_bottomRight.X = e->X;
 currentShape->m_bottomRight.Y = e->Y;

 this->Capture = true; // Capture the mouse
 // until button up
 }
 catch(Exception* ex) {
 Debug::WriteLine(ex->ToString());
 }

 }

 void MouseMoveHandler(Object* sender, MouseEventArgs* e)
 {
 if(!this->Capture)
 return;

 try{
 Graphics* g = CreateGraphics();

 Pen *p = new Pen(this->BackColor);
 currentShape->Erase(g);

 currentShape->m_bottomRight.X = e->X;
 currentShape->m_bottomRight.Y = e->Y;

 currentShape->Draw(g);
 }
 catch (Exception* ex) {
 Debug::WriteLine(ex->ToString());
 }
 }

 void MouseUpHandler(Object* sender, MouseEventArgs* e)
 {
 if(!currentShape)
 return;
 try{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try{
 shapes->Add(currentShape);
 currentShape = 0;
 this->Invalidate();
 Capture = false;
 }
 catch (Exception* ex) {
 Debug::WriteLine(ex->ToString());
 }

 }

 void DrawShapes(System::Drawing::Graphics* g)
 {
 for(int i = 0; i < shapes->Count; i++)
 {
 Shape* s = dynamic_cast<Shape*>(shapes->get_Item(i));
 s->Draw(g);
 }
 }

 void OnPaint(Object* sender, PaintEventArgs* e)
 {
 Graphics* g = e->Graphics;
 DrawShapes(g);
 }

};

void main()
{
 TextWriterTraceListener * myWriter = new
 TextWriterTraceListener(System::Console::Out);
 Debug::Listeners->Add(myWriter);

 // This line creates an instance of WinForm, and
 // uses it as the main window of the application.
 Application::Run(new WinForm());
}

To draw a shape, select a shape from the Drawing menu, click and hold the left mouse button
inside the form’s client area, and then drag the mouse to a new location and release the mouse
button. The shape is continually redrawn smaller or larger as you drag the mouse.

This application uses a variant of the shape hierarchy from Ex33b. The application manages a
list of Shape objects in an ArrayList (which you’ll notice declared within the Windows Form).
There are also a number of MenuItem objects declared and used. Let’s start by hooking up the
menu commands.

Intercepting Commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In MFC, window messages are mapped to handlers in C++ classes using a message map. The
Windows Forms model uses delegates to expose events. The first kind of event we’ll look at is
a command event—one that comes from a push button or a menu command.

This application builds the menu manually, adding each menu command separately.
Unfortunately, the current version of Visual Studio .NET doesn’t include the high level of
wizard integration for Windows Forms and managed C++ that we’re used to with MFC
applications. Each main menu command (File, Draw, and Help) is added to the top-level menu
structure, and then individual commands are added to the main menus. We need only supply
the string that appears on the menu, as well as a reference to a method that handles the menu
event.

This application includes a File menu for exiting the application, a Drawing menu for selecting
which shape to draw, and a Help menu. The Drawing menu sets an internal variable to indicate
the current shape (the shape that will be drawn next). Notice that the drawing handlers also set
the state of the menu commands with check marks to indicate which shape is about to be
drawn (a task we accomplished using MFC’s command architecture).

Intercepting Move Messages

In addition to intercepting command messages, Windows Forms applications usually intercept
other messages such as mouse movement. The Form class exposes the typical mouse events,
such as mouse down, mouse move, and mouse up.

Ex33c handles the mouse down event by capturing the mouse and creating an instance of the
current shape type. Once the mouse is captured by the application, all mouse messages are
sent to the captured form. Ex33c’s mouse move handler erases the current shape (more on that
in the next section) and then resets the coordinates of the current shape using the screen
coordinates passed to the handler as arguments. Finally, the mouse up handler completes the
shape and adds the shape object to its internal list of objects.

Advanced Graphics Rendering

If you look at the code for the shape hierarchy from Ex33c, you’ll notice that it’s a bit
different from the shape hierarchy from Ex33b. The reason for this difference is that Ex33b’s
shapes don’t continually redraw themselves as you drag the mouse. Ex33c handles the mouse
movement by constantly erasing and redrawing the shape at its new coordinates—certainly a
reasonable approach for a drawing program. When you release the mouse button, the residue
lines have to be cleared up. Here’s the shape hierarchy from Ex33c that accomplishes this
cleaning:

__gc class Shape
{
public:
 Point m_topLeft;
 Point m_bottomRight;

 Color m_PenColor;

 Shape()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Shape()
 {
 m_topLeft.X = 0;
 m_topLeft.Y = 0;
 m_bottomRight.X = 0;
 m_bottomRight.Y = 0;

 m_PenColor = Color::Black;
 }
 Shape(Point topLeft, Point bottomRight)
 {
 m_topLeft = topLeft;
 m_bottomRight = bottomRight;
 m_PenColor = Color::Black;
 }
 virtual void Draw(System::Drawing::Graphics* g)
 {
 }
 virtual void Erase(System::Drawing::Graphics* g)
 {
 }

 int SetROP(HDC hdc)
 {
 int nOldRop = ::SetROP2(hdc, R2_NOTXORPEN);
 return nOldRop;
 }

 void ResetROP(HDC hdc, int nOldRop)
 {
 ::SetROP2(hdc, nOldRop);
 }
};

__gc class Line : public Shape
{
public:
 Line(Point topLeft, Point bottomRight) :
 Shape(topLeft, bottomRight)
 {
 }
 Line():
 Shape()
 {
 }
 void Draw(System::Drawing::Graphics* g)
 {
 System:IntPtr hdc;
 hdc = g->GetHdc();

 ::MoveToEx((HDC)hdc.ToInt32(), m_topLeft.X,
 m_topLeft.Y, NULL);
 LineTo((HDC)hdc.ToInt32(), m_bottomRight.X,
 m_bottomRight.Y);
 g->ReleaseHdc(hdc);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 g->ReleaseHdc(hdc);
 }

 void Erase(System::Drawing::Graphics* g)
 {
 System:IntPtr hdc;
 hdc = g->GetHdc();

 int nOldROP = SetROP((HDC)hdc.ToInt32());
 ::MoveToEx((HDC)hdc.ToInt32(), m_topLeft.X,
 m_topLeft.Y, NULL);
 LineTo((HDC)hdc.ToInt32(), m_bottomRight.X,
 m_bottomRight.Y);
 ResetROP((HDC)hdc.ToInt32(), nOldROP);
 g->ReleaseHdc(hdc);
 }
};

__gc class Circle : public Shape
{
public:
 Circle(Point topLeft, Point bottomRight) :
 Shape(topLeft, bottomRight)
 {

 }
 Circle():
 Shape()
 {
 }
 void Draw(System::Drawing::Graphics* g)
 {
 // These are absolute coordiantes, so fixup

 System:IntPtr hdc;
 hdc = g->GetHdc();

 ::Ellipse((HDC)hdc.ToInt32(),
 m_topLeft.X,
 m_topLeft.Y,
 m_bottomRight.X,
 m_bottomRight.Y);
 g->ReleaseHdc(hdc);

 }
 void Erase(System::Drawing::Graphics* g)
 {
 System:IntPtr hdc;
 hdc = g->GetHdc();

 int nOldROP = SetROP((HDC)hdc.ToInt32());
 ::Ellipse((HDC)hdc.ToInt32(),
 m_topLeft.X, m_topLeft.Y,
 m_bottomRight.X,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_bottomRight.X,
 m_bottomRight.Y);
 ResetROP((HDC)hdc.ToInt32(), nOldROP);
 g->ReleaseHdc(hdc);
 }
};
__gc class Rect : public Shape
{
public:
 Rect(Point topLeft, Point bottomRight) :
 Shape(topLeft, bottomRight)
 {

 }
 Rect():
 Shape()
 {
 }
 void Draw(System::Drawing::Graphics* g)
 {
 System:IntPtr hdc;
 hdc = g->GetHdc();

 ::Rectangle((HDC)hdc.ToInt32(), m_topLeft.X,
 m_topLeft.Y, m_bottomRight.X, m_bottomRight.Y);
 g->ReleaseHdc(hdc);
 }
 void Erase(System::Drawing::Graphics* g)
 {
 System:IntPtr hdc;
 hdc = g->GetHdc();

 int nOldROP = SetROP((HDC)hdc.ToInt32());
 ::Rectangle((HDC)hdc.ToInt32(), m_topLeft.X, m_topLeft.Y,
 m_bottomRight.X, m_bottomRight.Y);
 ResetROP((HDC)hdc.ToInt32(), nOldROP);
 g->ReleaseHdc(hdc);
 }
};

To make the rubber-banding work within the application (rubber-banding is the effect of
stretching the shape as you move the mouse), you must make some standard GDI calls that
aren’t available within GDI+. Specifically, you need to call SetROP2 to set the binary raster
operations. When you drag one shape over another, by default Windows simply brute-forces
the pen to draw. Using the raster operations, you can set up the device context so it doesn’t
erase the current contents of the screen (drawn by a previous pen) as you draw new shapes.

Each Shape class (the line, the circle, and the rectangle) has an Erase method as well as a
Draw method. The Erase method uses the device context buried within the
System::Drawing::Graphics object to set the raster operations. Calling Graphics::GetHdc
gives you the same raw device context you get by calling the Win32 API method GetDC. The
result you get from Graphics::GetHdc is a managed system type (an Int32Ptr). To get the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result you get from Graphics::GetHdc is a managed system type (an Int32Ptr). To get the
actual device context, you must get the integer value (by calling ToInt32). You can then pass
the device context to any function that needs it (such as the SetROP2 method).

Finally, if you look at the Draw methods of each of the shapes, you’ll notice that they call the
standard Win32 API methods for drawing lines, ellipses, and rectangles. Mixing GDI+ with
classic GDI sometimes results in unpredictable side effects. In the case of setting up the raster
operations, the drawing code doesn’t erase the old lines correctly.

Figure 33-3 shows Ex33c in action.

Figure 33-3. The Ex33c sample in action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What’s Missing from Windows Forms

Windows Forms is still very much in its infancy. While the basic tools necessary to create a
Forms-based application using the common language runtime are all there, some of the
niceties we’re used to as MFC developers are missing. Windows Forms provides toolbar and
status bar support, but you have to wire them up by hand (just as we did with the menus in the
examples from this chapter).

Another missing piece is some sort of document/view architecture. We’ve got one as part of
the MFC library, but it’s not part of the common language runtime. However, writing some
document/view components is fairly straightforward. To get an idea of what’s involved, take a
look at the Managed C++ Windows Forms Scribble sample from Visual Studio .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 34
Programming ASP.NET Using Managed C++

Since Microsoft .NET was released to the world at large (and even a bit before), its adoption
rate has been staggering. Judging from seminar attendance, feedback on the .NET lists, and the
size of the community growing up around it, .NET is going to be huge. One of the most
compelling reasons to buy into the .NET movement is that it offers one of the easiest ways to
get a Web site up and running quickly.

One of the most important parts of .NET is ASP.NET, which consists of a set of common
language runtime classes. Chapter 28 and Chapter 30 introduced Microsoft Windows as a
viable Internet server platform using the sockets API and the WinInet API and using ATL
Server to write ISAPI DLLs. ASP.NET represents another way to intercept and process HTTP
requests. In this chapter, we’ll look at the ASP.NET architecture. The ASP.NET features we’ll
look at include the path a request takes from the time Microsoft Internet Information Services
(IIS) passes it to ASP.NET to the time the ASP.NET application renders its content. You’ll
also see examples of writing ASP.NET Web sites using managed C++ components.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Internet as a Development Platform

When you look at how software distribution technology has evolved, it’s obvious that the next
development platform will be the Internet itself. In the 1970s, most computing occurred
between terminals and a mainframe. During the PC revolution of the 1980s, PC-to-PC
networks connected offices together, allowing rich clients to share their files and resources.
During the 1990s, DCOM promised to make real distributed processing possible.

The Web revolution of the late 1990s connected computer users between enterprises via
human-oriented Web sites. However, while offices and companies (enterprises) were able to
connect their computers together, there was no way to connect computers between enterprises
programmatically. The main problem preventing DCOM from becoming a universal
connection protocol is that the DCOM protocol and wire format are not shared by all
computers. (DCOM is not the only network protocol/wire format out there.) However, there is
a connection protocol shared the world over: HTTP. In addition, XML is a wire format that’s
widely available and understood.

Getting the Internet working as a development platform has required both a standard, reliable
distributed user interface model and a widely used connection protocol to support
programmatic Web sites. The Web-based user interface model—HTML over HTTP—has
proven to be reliable and well-understood. Getting computers to work over the Internet
programmatically will involve sending XML over HTTP using a format called SOAP. The
latter protocol is often referred to as Web services.

Both of these communication standards and protocols (HTML and XML over HTTP) are
agreed upon. All that’s missing is a practical means of implementing these standards. This is
where ASP.NET comes in. It offers a practical way to do both Web-based user interface and
Web-based method calls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Evolution of ASP.NET

We covered the essentials of Internet connectivity and some development strategies in
previous chapters. To fully understand the impact of ASP.NET, you need a sense of the
evolution of the Web in the past few years. The Web of 1993 was very different from the Web
of today. In the earliest days, most Web sites were simply hyperlinked files and graphics.
These days, the Web represents a fully capable interactive computing platform.

As people began to get tired of looking at each other’s photo albums over the Web, HTML
began to develop into a markup language that could describe controls and interactive user
interface elements, not just simple formatting. This paved the way for dynamic content—Web
site content that changed at run time based on factors such as user selections, information in a
database, and so on.

The first dynamic Web sites were written using the Common Gateway Interface (CGI). CGI
launches a new process in response to each incoming HTTP request. The process emits some
customized HTML based on the request. CGI was fairly effective, but one major drawback
was the fact that each incoming HTTP request had to beget a new process, creating a huge
burden on the server. (Creating a new process for each request is pretty expensive.)

To make things more efficient for Microsoft Windows–based Web servers, Microsoft
implemented a programming interface named the Internet Server Application Programming
Interface (ISAPI), which you saw briefly in Chapter 30. As learned in that chapter, IIS fires up
a new instance of an ISAPI DLL that’s been mapped to a specific file extension. The DLL
renders specific HTML based on the incoming request. Unfortunately, when ISAPI DLLs
were introduced, the only effective way to write them was using C++. Microsoft introduced
Active Server Pages (ASP) to help developers develop Web pages more quickly.

Classic ASP is driven by a single DLL named Asp.dll. Asp.dll reads ASP files that combine
script and HTML and renders markup language back to the client. The code within the
scripting blocks controls the content coming from an ASP page. The script blocks usually
drive COM objects that perform such operations as accessing databases and processing
transactions. The ASP object model provides easily-accessed objects representing HTTP
requests and responses. For example, to emit the string Hello World to the browser connected
to your server, you just call Response.Write("Hello World") from within a server-side script
block.

When ASP came out in the late 1990s, it made Web-site development available to non-C++
developers. No longer were ISAPI DLLs the only way to get content out to a client browser.
However, classic ASP started showing some warts after developers began exercising it
extensively. First, many ASP pages ended up being very disorganized. ASP let you wantonly
mix user interface code and execution code in the same page, so many ASP pages end up
looking like spaghetti code.

Second, the ASP object model is fairly unstructured. ASP has numerous intrinsic, or global,
objects that seem to come out of nowhere. For example, when you write script code to
generate the content of an HTTP request, the Response object includes the methods for writing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

generate the content of an HTTP request, the Response object includes the methods for writing
text out to the client. Unfortunately, ASP doesn’t support state management very well. These
are just a couple of the issues faced by ASP developers—there are others. For example, classic
ASP code tends to mix user interface code with executable code, making the page hard to
maintain. If you want to run an ASP Web site over a Web farm, you need to manage
application state between each of the servers yourself. Managing the state of your
application’s user interface involves lots of mundane code to check the state of the user
interface between posts. ASP.NET has evolved to solve some of the most common problems
facing Web site developers.

Most of the improvement ASP.NET makes over classic ASP is evolutionary. For example,
ASP.NET includes similarly named objects (Response, Request, and Server) for managing
requests. ASP.NET provides an architecture for these objects—they don’t come out of
nowhere. (ASP intrinsic objects are attached to a thread’s context.) The syntactic similarity
between ASP and ASP.NET means that many ASP pages can easily be run as ASP.NET pages
if you rename them using the ASPX extension. (ASP.NET installs several file types in IIS
(ASPX, ASMX, ASCX, and ASHX) that redirect processing to ASP.NET.

However, ASP.NET is more than a simple evolution of classic ASP. Whereas classic ASP
leverages many features from IIS, ASP.NET generally uses IIS only to intercept the HTTP
request. Features generally provided by IIS and the Web Application Manager (WAM),
including such features as process isolation and security, are provided by the ASP.NET
infrastructure and by classes within the common language runtime.

Rather than being interpreted (as classic ASP applications are), ASP.NET applications are
compiled into common language runtime assemblies. Because ASP.NET applications are
compiled, you can use any .NET language to write the executable part of a page. Also,
because ASP.NET applications are compiled for the runtime, component integration within a
.NET application is much easier than with classic ASP applications (which use COM as the
component integration technology).

ASP.NET also includes some features completely absent from classic ASP, including server-
side controls, data binding, and Web services. Server-side controls vastly simplify Web user
interface programming by handling the mundane details of user interface state management
between postbacks. Data binding also simplifies user interface programming by managing the
details of rendering such collection-oriented user interface elements as combo boxes, list
boxes, and grids. Finally, ASP.NET represents a framework for intercepting and mapping
SOAP requests to individual methods written into your application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Role of IIS

Web programming involves processing HTTP requests, interpreting them, and delivering
responses. ASP.NET is just a tool for processing HTTP requests. Its main purpose is to service
HTTP requests and provide responses. Both ASP and ASP.NET process HTTP requests and
deliver responses, but ASP.NET relies much less on IIS than ASP does. The IIS architecture
has been around for a while, and it’s not going to disappear soon. IIS still fields the HTTP
request. However, if IIS detects an ASP.NET file extension in the request, it simply routes the
request to ASP.NET’s ISAPI DLL (Aspnet_isapi.dll) rather than the regular ASP DLL
(Asp.dll). We’ll get a closer look at how this works in a moment when we look at the HTTP
pipeline.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASP.NET’s Compilation Model

When IIS maps an HTTP request to ASP.NET, the ASP.NET runtime compiles the file into an
assembly and shadow-copies the assembly into a temporary directory. (On Windows 2000, the
directory is \Winnt\Microsoft.NET\Framework\v1.0.3705\Temporary ASP.NET Files.)
Whenever ASP.NET detects that the source files are newer than the already-compiled
assembly, it recompiles the assembly.

If you’ve ever worked with classic ASP, you might have come across a situation in which
you’ve had to shut down the entire site to replace components because the components were in
use. By performing the shadow copy described above, ASP.NET solves this problem. You can
simply copy new source code and components over the old code and components because the
files in your deployment directory are not locked. ASP.NET will recompile the new source
code into a new assembly, copy the assembly to the temporary directory, and use the new
assembly to service new requests.

Next, we’ll take a look at the most common kind of request: one for a file with an ASPX
extension.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Page Class

Most requests to an ASP.NET page start out as a URL that includes an ASPX extension in the
filename. The common language runtime class that handles this type of a request is
System::Web::UI::Page. To start, here’s the simplest “Hello World”-style ASP.NET page in a
file named HelloWorld.aspx:

<%@ Page %>

Hello World from ASP.NET

There’s not too much going on with this page—all it does is print out “Hello World from
ASP.NET” to the browser requesting the file. However, it illustrates the fundamental page
architecture behind ASP.NET. If you put this file in a virtual directory somewhere and then
surf to it using a browser, ASP.NET will generate an assembly based on the ASP.NET syntax.
If you start up ILDASM, you can find the assembly generated by ASP.NET. On Windows
2000, the assembly lands in the Winnt\Microsoft.NET\Framework\v1.0.3705\Temporary
ASP.NET Files directory. If you hunt around for the virtual directory hosting the file, you’ll
see something like \vcppnet\cc541602\245fc247\uiya6evk.dll. This is the assembly generated
by ASP.NET when a request is made for the page. Figure 34-1 shows ILDASM reflecting the
page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-1. A very simple ASPX page reflected by ILDASM.

When you pop open the nodes within ILDASM, you’ll notice that the assembly includes a
namespace called ASP and a class named HelloWorld_aspx. If you look even closer, you’ll see
that the class extends System::Web::UI::Page and includes various member functions that are
obviously necessary for rendering the page.

This exercise shows that when you surf to an ASPX page, ASP.NET automatically creates an
assembly for you and generates a class for you—and that class derives from
System::Web::UI::Page. The class is responsible for rendering HTML to the client. So, if
ASP.NET inserts the class for you, is there any way you can replace the
System::Web::UI::Page class with one of your own so you can provide your own processing?
Yes, you can—and the technique is known formally as the code-behind technique.

Code-Behind

Every ASPX file generates a corresponding assembly when a request is made for the file. The
ASP.NET page syntax includes a directive for defining the class that an ASPX page will use.
You’ve seen that by default an ASPX page uses a class derived from System::Web::UI::Page.
However, you can write your own page-derived class and insert it into the hierarchy.

The Ex34a Example: Defining an ASP.NET Code-Behind Page

This example project contains the code to define an ASP.NET code-behind page. To create the
project, choose New, Project from the File menu and select Managed C++ Class Library from
the list of project templates. (You can also use the wizard from Chapter 4, which generates a
simple ASPX file and a code-behind page class.) The application wizard generates a class
library project that will compile into an assembly that is similar to the assemblies we looked at
in Chapter 32. Here is the code produced by the wizard:

Ex34a.h
// Ex34a.h

#pragma once

#using <system.dll>
#using <system.web.dll>
using namespace System;
using namespace System::Web;
using namespace System::Web::UI;
using namespace System::Collections;

namespace Ex34a
{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 public __gc class ManagedCPPPage : public Page
 {
 protected:
 ArrayList* m_arrayList;

 void AssembleChoices()
 {
 m_arrayList = new ArrayList();
 String* str = "Just-in-time Compiling";
 m_arrayList->Add(str);
 str = "Common runtime environment";
 m_arrayList->Add(str);
 str = "Multiple language support";
 m_arrayList->Add(str);
 str = "Simplified component model";
 m_arrayList->Add(str);
 str = "Excellent backwards compatibility";
 m_arrayList->Add(str);
 str = "ASP.NET";
 m_arrayList->Add(str);
 }
 void DisplayFeatures()
 {
 for(int i = 0; i < m_arrayList->Count; i++)
 {
 Response->Write("");
 Response->Write(m_arrayList->get_Item(i));
 Response->Write("");
 Response->Write("</br>");
 }
 }

 void Page_Load(Object* o, EventArgs* ea)
 {
 AssembleChoices();
 }

 };
}

Recall that .NET managed code needs to live on the garbage-collected heap. The class listed
above is defined as a __gc class, and it derives from System::Web::UI::Page. The page
handles the Page_Load event by assembling a list of favorite .NET features into an ArrayList
(which is also a common language runtime class). Also notice the DisplayFeatures function,
which simply cycles through the array of features and directs the list of choices to the browser
that’s making the request through the Page.Response.Write method.

IMPORTANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code-behind assembly must live in the \bin directory beneath the virtual
directory hosting the page.

To use the code-behind assembly, you simply refer to the assembly within the Inherits
directive on the page. Here’s the ASP.NET page that uses the ManagedCPPPage class:

<%@ Page Language="c#" Inherits="Ex34a.ManagedCPPPage" %>

<html>
<body>

<h3> Favorite .NET Features </h3>

<% DisplayFeatures(); %>

</body>
</html>

Figure 34-2 shows the output to the browser.

Figure 34-2. Output generated by the code-behind page.

To confirm that ASP.NET brought your class in, you can look at the resulting assembly within
the Temporary ASP.NET Files directory. Figure 34-3 shows ILDASM reflecting the assembly
generated by ASP.NET. Notice that the class used to define the page derives from
Ex34a.ManagedCPPPage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-3. The code-behind DLL as reflected by ILDASM.

We cannot cover the entire scope of the Page class here. However, you should know that the
Page class is the basis for two of the most powerful and convenient features of ASP.NET:
Web Forms and server-side controls.

Web Forms

Traditionally, ASP development has involved a great deal of grunge code for coding a user
interface. The primary difficulty in getting a user interface to work correctly over the Web is
keeping track of the state of the user interfaces between posts. As an MFC developer, you’re
used to having all the user interface code for an application reside within a single process
space. That means, for example, that when you define a combo box in a window or dialog
box, the combo box will always show its correct state. For instance, if you select Oregon from
a combo box that lists states, the combo box will continue to show Oregon until you select
something else. (The combo box won’t pop back and show Alabama). Windows itself keeps
track of the state of the control.

The Web does not work this way. HTTP is a connectionless protocol, which means that once a
response is sent from the server back to the client, the connection (and any state associated
with that connection) disappears. (In a Windows-based desktop application, the state does not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with that connection) disappears. (In a Windows-based desktop application, the state does not
disappear.) The bottom line is that a browser only ever sees a snapshot of the state of the
server. So user interface programming over the Web becomes problematic because it involves
sending some HTML out to the client browser over a connection that doesn’t stick around.
The HTML that was sent to the browser can contain tags that will eventually render as
Windows-style controls (such as combo boxes and list boxes). However, the state of the
control (for example, which item in a combo box was selected) has to be handled manually.

The following listing is an example of some typical classic ASP-style code that maintains the
state of a combo box on a Web page. The file is in Ex34a and is named Raw.asp.

<%@ Language="javascript" %>

<html>
 <body>
 Feature: <select name="Feature">
 <option
 <% if (Request("Feature") == "Garbage collection") {
 Response.Write("selected");
 }%> >Garbage collection</option>
 <option
 <% if (Request("Feature") == "Multiple languages") {
 Response.Write("selected");
 }%> >Multiple languages</option>
 <option
 <% if (Request("Feature") == "No more GUIDS") {
 Response.Write("selected");
 }%> >No more GUIDS</option>

 </select>

 </body>
</html>

This code checks the request coming from the client, finds out which item in the combo box
was selected, and makes sure that it’s the item appearing in the combo box by including
selected with that option. When the browser gets the HTML back from the server, the browser
will render a combo box with the correct selection showing. This is just a simple example, but
it shows the kinds of machinations that ASP developers have had to go through to make even
simple user interfaces work.

It turns out that most of the code necessary to keep a user interface consistent over a
disconnected protocol can be pushed down into the runtime. That’s exactly what ASP.NET
Web Forms is designed to do—to handle control state management for you using server-side
controls.

In terms of ASP.NET syntax, the easiest way to use server-side controls is to include the
runat=server attribute in the tag, as shown in the following listing:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html><body>
<form runat=server>
 Feature: <select name="Feature" runat=server>
 <option>Garbage collection</option>
 <option>Multiple languages</option>
 <option>No more GUIDS</option>
 </select>
</form>
</body></html>

There are two other important points here. First, the select tag that runs at the server is
included between a form tag that also runs at the server. Second, the file includes an ASPX
extension. This file is named SelectMe.aspx in the Ex34a directory on the companion CD.

When ASP.NET processes the ASPX page, it creates an instance of the .NET Framework
class System::Web::UI::HtmlControls::HtmlSelect. The HtmlSelect control keeps track of the
state of the combo box between posts. (You can look up the class in the help system, and
you’ll see it’s just another .NET Framework class.) Two kinds of server-side controls ship
with ASP.NET: HTML controls and Web controls. We’ll look more closely at Web controls
here because they’re more consistent and flexible. Keep in mind, though, that the only thing
the browser ever really sees is some HTML. The HTML controls and Web controls are classes
that live on the server and are responsible for rendering HTML to the client. The Page
architecture and the server-side controls are known collectively as Web Forms.

With the Web Forms model of programming, you feel like you’re building a local user
interface (as you might when using MFC). However, in reality you’re programming a widely
distributed user interface that’s generated almost entirely by pushing HTML tags from the
server to the client browser. ASP.NET keeps track of the state of the controls for you.

The following listing shows the Ex34a.aspx enhanced to use some server-side controls:

<%@ Page Language="c#" Inherits="Ex34a.ManagedCPPPage" %>

<html>
<body>
<form runat=server>

<h3> Favorite .NET Features </h3>

<% DisplayFeatures(); %>

 </br>
 <asp:Label text="Type your name:" runat=server />
 <asp:TextBox id="m_name" runat=server/> </br> </br>
 <asp:Label Text="Select your favorite .NET feature:" runat=server /> </br>
 <asp:CheckBoxList id="m_cblFeatureList" runat=server/> </br></br>
 <asp:Button id="Submit" OnClick="SubmitInfo" Text="Submit" runat=server />
 </br>
 <asp:Label id="m_labelInfo" runat=server />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <asp:Label id="m_labelInfo" runat=server />

</form>
</body>
</html>

The page includes several Web controls: three asp:Label controls, an asp:TextBox control, an
asp:CheckBoxList control, and an asp:Button control. Notice that all the controls run at the
server, and that the button seems to be wired up to some sort of handler. Here’s the Ex34a
code-behind class modified to handle the new controls on the form:

// Ex34a.h
#pragma once

#using <system.dll>
#using <system.web.dll>
using namespace System;
using namespace System::Web;
using namespace System::Web::UI;
using namespace System::Web::UI::WebControls;
using namespace System::Collections;
using namespace System::ComponentModel;

namespace Ex34a
{
 public __gc class ManagedCPPPage : public Page
 {
 protected:
 ArrayList* m_arrayList;
 CheckBoxList* m_cblFeatureList;
 Label* m_labelInfo;
 TextBox* m_name;

 void AssembleChoices()
 {
 m_arrayList = new ArrayList();
 String* str = "Just-in-time compiling";
 m_arrayList->Add(str);
 str = "Common runtime environment";
 m_arrayList->Add(str);
 str = "Multiple language support";
 m_arrayList->Add(str);
 str = "Simplified component model";
 m_arrayList->Add(str);
 str = "Excellent backwards compatibility";
 m_arrayList->Add(str);
 str = "ASP.NET";
 m_arrayList->Add(str);
 }
 void DisplayFeatures()
 {
 for(int i = 0; i < m_arrayList->Count; i++)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Response->Write("");
 Response->Write(m_arrayList->get_Item(i));
 Response->Write("");
 }
 }

 void Page_Load(Object* o, EventArgs* ea)
 {
 AssembleChoices();
 if(!this->IsPostBack)
 {
 m_cblFeatureList->DataSource = m_arrayList;
 m_cblFeatureList->DataBind();

 }
 }
 void SubmitInfo(Object* o, EventArgs* ea)
 {
 String* s;

 s = s->Concat(S"Hello ", m_name->Text);
 s = s->Concat(s, S". You selected ");
 for(Int32 i = 0;
 i < m_cblFeatureList->Items->get_Count(); i++)
 {
 if(m_cblFeatureList->Items->get_Item(i)->get_Selected())
 {
 s = s->Concat(s, S"");
 s = s->Concat(s, m_cblFeatureList->Items->
 get_Item(i)->get_Text());
 s = s->Concat(s, S"");
 }
 }
 s = s->Concat(s, S"</br>");
 s = s->Concat(s, S" as your favorite .NET feature");
 m_labelInfo->Text=s;
 }
 };
}

The same list of features is displayed as with the earlier version of this example. However,
notice that there’s now a check box list from which to select your favorite feature, and a button
to submit your choice back to the server. The check box list (m_cblFeatureList) is populated
during the Page_Load event. Notice that the m_cblFeatureList includes a member named
DataSource to which is assigned the ArrayList containing the feature list. This is an example
of a data binding control. The check box list will render a check box tag for each element in
the data source. This cuts down on a great deal of coding.

The HTML rendered by this ASPX page places raw text, a text input box, some check box
tags, and a button on the browser. Clicking the Submit button causes a postback to the server,
and execution is routed to the SubmitInfo method on the page. (SubmitInfo is a member of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and execution is routed to the SubmitInfo method on the page. (SubmitInfo is a member of the
code-behind page.) Figure 34-4 shows the Web page in action.

Figure 34-4. Ex34a with server-side controls.

What Happened to ActiveX?

At this point, many people will ask, “Why is all this processing being pushed back to the
server? Won’t this severely restrict my ability to create rich interactive sites?” This question is
often followed by another one: “What happened to ActiveX?” The answers to these questions
lie in understanding the problem that ASP.NET is trying to solve: how to get software out to
as many people as possible using the wire that’s already there.

First, consider where rich user interfaces came from—the desktop. Users are accustomed to
rich GUI interfaces. A sophisticated user interface is almost a requirement for any site. One of
the most valuable assets consumers can provide for a company is their attention to the
company’s Web site. Naturally, companies want to create compelling, useful Web sites.
Therefore, Web users need sophisticated controls with which they can interact with the site.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most browsers support standard controls such as buttons and list boxes. However, the standard
controls can take you only so far. The earliest attempts to create sophisticated browser-centric
applications were centered around ActiveX controls on the Microsoft platform.

When the user hits a page containing an ActiveX control, the browser proceeds to download
an ActiveX DLL. You saw how ActiveX controls work in Chapter 9 and Chapter 26. The
browser calls CoCreateInstance on the object, negotiates some interfaces, and renders the
control in the host application. (In the case of the Internet, the host program is a browser.)

The ActiveX control approach has some specific advantages. The most significant advantage
is that you can provide much more natural and intuitive ways for the user and Web site to talk
to one another.

However, there’s a problem with extending the browser to enrich the user interface using
client-side technologies such as ActiveX: Client browsers have to support that technology. For
example, if you want the browser to use an ActiveX control to interact with the site, that
browser must have the infrastructure to support ActiveX controls, which is complex.

Ensuring that specific user interface technology (the COM infrastructure) is available on the
client machine is impossible, especially with the advent of Web-enabled personal digital
assistants (PDA)s and Web phones. A huge number of browsers are out there, and some might
not support a special user interface infrastructure required by your site. If you make ActiveX
controls integral to your Web site, you cannot reach certain clients.

This is why ASP.NET moves user interface’s generation to the server—to increase the
audience of your Web site by helping you manage (or eliminate) your Web site’s dependence
on a specific browser. The server can look out at the browser, figure out what kind of browser
it is, and send out the appropriate HTML based on information coming from the browser’s
headers. It’s also becoming much easier to develop sophisticated user interfaces based on
HTML tags.

Next, we’ll take a look at the HTTP pipeline and the lifetime of a request. Along the way,
you’ll see a couple of very useful extensibility points provided by ASP.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HTTP Pipeline

As with most HTTP requests handled by the Microsoft platform, the first stop for an
ASP.NET request is IIS. IIS intercepts the request and examines the file extension of the
request. IIS keeps a list of file extensions and the ISAPI DLLs that are supposed to handle the
associated files. When an extension such as ASPX shows up, IIS routes the request to a DLL
named Aspnet_isapi.dll. This DLL simply takes the request and pipes it into the ASP.NET
worker process Aspnet_wp.exe. ASP.NET examines the file and figures out whether the file
needs to be compiled (and, of course, compiles the file if necessary).

The HttpContext Object

Next, ASP.NET cooks up an instance of a .NET Framework class named HttpContext.
HttpContext represents the current request and includes almost anything you’d ever want to
know about the request. Inside HttpContext you’ll find the URL used to surf to the page, the
file path of the physical file, whether the user has been authenticated, whether the connection
is secure, and so on. The context also includes a reference to the Request and Response
objects. We’ll look at how the context is useful in a moment.

The HttpApplication Object

After wrapping up the information about the request in a context object, ASP.NET passes the
request through an instance of HttpApplication. Remember MFC’s CWinApp? CWinApp plays
the role of the singleton within an MFC application. It’s a rendezvous point for global
application-wide data and events. HttpApplication serves the same role within an ASP.NET
application. As the request is being processed, the HttpApplication object fires events to any
number of waiting HTTP modules.

The HttpModule Object

HTTP modules provide an opportunity for pre- and post-processing requests. Events fired by
the application object include BeginRequest, EndRequest, AuthenticateRequest, and
AuthorizeRequest. Any Web application that wants to intercept these events can install an
HTTP module. An HTTP module attaches itself to the application object and listens for these
various events.

The Ex34b Example: Creating an HTTP Module

Ex34b listens for the BeginRequest event and dumps some of the context information at the
beginning of every request. The module also rejects every other request, which of course is not
useful in real life. However, you can see how it might be useful to intercept some of these
events to do your own authentication or something like that. Here’s the listing for Ex34b:

Ex34b.h

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ex34b.h
// Ex34b.h
#pragma once

#using <system.dll>
#using <system.web.dll>
using namespace System;
using namespace System::Web;

namespace Ex34b
{
public __gc class RejectRequestModule :
 public IHttpModule
 {
 bool m_bRejectRequest;
 public:
 RejectRequestModule()
 {
 m_bRejectRequest = false;
 }
 void Init(HttpApplication* httpApp) {
 httpApp->
 add_BeginRequest(new EventHandler(this, OnBeginRequest));
 httpApp->
 add_EndRequest(new EventHandler(this, OnEndRequest));
 }

 void Dispose() {
 // Usually, nothing has to happen here. However, if
 // there's any clean up you need to take care of here,
 // Dispose is called before the module goes away.
 }

 // Event handlers
 void OnBeginRequest(Object* o, EventArgs* ea) {
 // showing how to get a reference to the application
 HttpApplication* httpApp = dynamic_cast<HttpApplication*>(o);
 // Getting the current context
 HttpContext* ctx;
 ctx = HttpContext::Current;
 ctx->Response->Write("Beginning Request
");
 ctx->Response->Write("URL Used to surf here: ");
 ctx->Response->Write(ctx->Request->Url);
 ctx->Response->Write("
");
 ctx->Response->Write("Authenticated? ");
 ctx->Response->Write
 (ctx->Request->IsAuthenticated.ToString());
 ctx->Response->Write("
");
 ctx->Response->Write("Using secure connection? ");
 ctx->Response->Write
 (ctx->Request->IsSecureConnection.ToString());
 ctx->Response->Write("
");
 if(m_bRejectRequest) {
 ctx->Response->Write
 ("
Stopping every other request...
");
 httpApp->CompleteRequest();
 ctx->Response->StatusCode = 500;
 ctx->Response->StatusDescription = "Server Error";
 }
 m_bRejectRequest = !m_bRejectRequest;
 }

 void OnEndRequest(Object* o, EventArgs* ea) {
 HttpApplication* httpApp = dynamic_cast<HttpApplication*>(o);
 HttpContext* ctx = HttpContext::Current;

 ctx->Response->Write("
");
 ctx->Response->Write("Ending Request
");
 }
 };
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Modules implement IHttpModule, an interface the ASP.NET infrastructure uses to tell the
modules to initialize themselves. Modules are listed in the Web.config file that accompanies
the application, as shown in the following listing:

<configuration>
 <system.web>
 <httpModules>
 <add type="Ex34b.RejectRequestModule, Ex34b"
 name="RejectRequestModule" />
 </httpModules>
 </system.web>
</configuration>

This configuration file tells ASP.NET to look for an implementation of IHttpModule. The file
should be put in the virtual directory hosting the site. The name of the module class is
Ex34b.RejectRequestModule, and the module should be found in the assembly Ex34b.dll.
Finally, the system name by which the module will be known is RejectRequestModule.
Modules are useful for implementing pre- and post-processing for various phases of an
application. In fact, ASP.NET’s session state, output caching, and various forms of
authentication are already built into ASP.NET via HttpModule. Figure 34-5 shows the
HttpModule in action.

Figure 34-5. The Ex34b module dumping context information and stopping every other
request.

After a request is routed through a pipeline of HTTP modules, it is ultimately routed to an
HTTP handler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HttpHandler Object

You’ve seen the System::Web::UI::Page class, which contains the infrastructure for rendering
normal Web pages with the help of server-side controls. However, ASP.NET is flexible
enough to provide other ways of handling requests.

Imagine, for example, that you have a small file (such as a log file or a source code file) whose
contents you want to make available to patrons of your Web site. However, you’re also
concerned about the performance and scalability of your application. If you look at the
System::Web::UI::Page class, you’ll notice that it’s crammed with stuff. It’s not a very
lightweight class to instantiate and run. One option is to write a lightweight handler to process
the request.

HttpHandler is simply a common language runtime class that implements IHttpHandler. It’s
listed in the application’s Web.config file (just as HttpModule is).

The Ex34c Example: Implementing a Lightweight HTTP Handler

This example implements a lightweight handler for printing out files with the CPP extension.
Here’s the listing:

Ex34c.h
// Ex34c.h

#pragma once

#using <system.dll>
#using <system.web.dll>
using namespace System;
using namespace System::Web;
using namespace System::IO;
namespace Ex34c
{
public __gc class SourceCodeHandler :
 public IHttpHandler
 {
 void ProcessRequest(HttpContext* context)
 {
 context->Response->Write("Viewing file: ");
 context->Response->Write(context->Request->PhysicalPath);
 context->Response->Write("
");
 try
 {
 StreamReader* sr;
 sr = new StreamReader(context->Request->PhysicalPath);
 String* str;
 do
 {
 str = sr->ReadLine();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 str = sr->ReadLine();
 context->Response->Write("<p>");
 context->Response->Write(str);
 context->Response->Write("</p>");
 } while (str != 0);
 }
 catch (FileNotFoundException*)
 {
 context->Response->Write("<h2>Sorry –");
 context->Response->Write("the file you ");
 context->Response->Write("requested is not");
 context->Response->Write(" available</h2>");
 }
 }

 __property bool get_IsReusable()
 {
 return true;
 }
 };
}

When a request comes into ASP.NET, ASP.NET looks in the application’s Web.config file to
figure out which component should handle the request. If the file type is not listed within the
application’s Web.config file, ASP.NET looks in the machine-wide Machine.config file. If
ASP.NET is successful in matching a file extension to a specific handler, it loads the handler
and implements IHttpHandler::ProcessRequest. This handler processes the request by
opening the requested file and dumping its contents for the browser on the other end.

When this source code is compiled and assembled, it must be installed in the \bin directory of
the virtual directory hosting the site and listed in Web.config, as shown in the next listing.
Look at the httpHandlers section in this file. The add element adds a handler to the list of
handlers for the application. Verb defines what kind of HTTP request (GET, PUT, POST, or *)
is processed by the handler. Notice that the path attribute specifies the file extension to match
to the handler and the type attribute lists the common language runtime type representing the
handler and the name of the assembly in which to find the class:

<configuration>
 <system.web>
 <httpHandlers>
 <add verb="*" path="*.cpp"
 type="Ex34c.SourceCodeHandler, Ex34c" />
 </httpHandlers>
 </system.web>
</configuration>

The last task to get this handler working is to let IIS know about the file extension for the
source code files you want to view. Right-click on the virtual directory within IIS and choose
Properties. Click the Configuration button to get a list of file mappings, as shown in Figure 34-
6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 34-6. The Application Configuration property sheet within IIS showing the list of file-
to-ISAPI DLL mappings.

Click the Add button to add a new extension. You’ll see a dialog box, as shown in Figure 34-
7.

Figure 34-7. Adding a new file extension to the list of file-to-ISAPI DLL mappings.

Add .cpp as the extension, and point the executable to Aspnet_isapi.dll. (In Windows 2000,
it’s at \Winnt\Microsoft.net\Framework\v1.0.3705.) Now, when you surf to a file with a .cpp
extension within that virtual directory, ASP.NET will load the handler. The handler will open
the file and send the contents out to the client browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASP.NET uses a handler to manage application-wide tracing. If you look inside the master
Machine.config file on your host and search for httpHandlers, you’ll see a file designation
Trace.axd that’s mapped to a system-provided class named
System.Web.Handlers.TraceHandler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Web Services

Most of this chapter has focused on using .NET as a tool for creating user-interface-based
Web sites for human consumption. However, there’s another use for the Internet on the
horizon: programmable Web sites, also known as Web services.

COM and the Common Object Request Broker Architecture (CORBA) failed to connect the
world together because DCOM and CORBA use very specialized connection protocols. As the
Internet has evolved, it’s become obvious that HTTP is a ubiquitous connection protocol,
available on almost any device from desktop PCs to laptop computers, phones, and PDAs. The
idea behind Web services is that a Web site can intercept more than just requests for HTML
snapshots—it should be able to receive a SOAP request (specially formatted XML), map the
contents of the request to a call stack, and execute the specified methods.

Web services will be big in the coming decade because they’ll streamline business
communication using common standards. Previous attempts at automating business
communications and services (most notably Electronic Data Interchange, or EDI) failed for
various reasons. One of the most problematic issues facing classic business communication
automation was agreeing on the format for exchanging data. Web services rely on XML,
which is widely understood by many computing platforms. When businesses need to
communicate programmatically (to order supplies, for example), they can send a SOAP
request to a Web site run by one of their suppliers. ASP.NET is probably the easiest way to
create a programmable Web site.

Web Services Using Managed C++

Visual Studio .NET offers a wizard for generating managed C++ Web services. Example
Ex34d shows how a managed C++ Web service provides calculator services over the Internet.
Visual Studio .NET generates the required source code and sets up a virtual directory for your
Web service.

There are three main parts to a managed C++ Web service: a header file, a source code file,
and an ASMX file. Let’s take a look at the header file first. Here’s the listing for the default
class (named Class1) generated by the wizard, with Add and Subtract methods included:

// Ex34d.h

#pragma once

#using <System.Web.Services.dll>

using namespace System;
using namespace System::Web;
using namespace System::Web::Services;

namespace Ex34d
{
 public __gc
 class Class1 : public WebService
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {

 public:
 [System::Web::Services::WebMethod]
 String __gc* HelloWorld();
 [System::Web::Services::WebMethod]
 int Add(int x, int y);
 [System::Web::Services::WebMethod]
 int Subtract(int x, int y);
 };
}

The most important part of this listing is the WebMethod attribute that precedes the function
definitions. HelloWorld (added by the wizard) and Add and Subtract are all declared as
WebMethods, which means they’ll be exposed to the outside world as Web services. Here’s
the listing for the implementation file for Class1:

#include "stdafx.h"
#include "Ex34d.h"
#include "Global.asax.h"

namespace Ex34d
{

 String __gc* Class1::HelloWorld()
 {

 // TODO: Add the implementation of your Web Service here

 return S"Hello World!";

 }

 int Class1::Add(int x, int y)
 {
 return x+y;
 }

 int Class1::Subtract(int x, int y)
 {
 return x-y;
 }

};

While these methods are admittedly simplistic functions, they’ll do nicely to illustrate how
Web services work. Notice that at this point, programming Web services is much like writing
a component that will run on your desktop. The last piece of the ASP.NET Web service is the
ASMX file (M standing for method). In this case, the listing is very short. It’s only job is to tie
the Web service to the Class1 listed earlier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<%@ WebService Class=Ex34d.Class1 %>

The WebService directive directs ASP.NET to use Class1 to run the Web service. Now that
the Web service is available, how do you call it? By finding out the capabilities of the Web
service through Web Services Description Language (WSDL).

WSDL and ASP.NET

Clients understand the services available from a Web service by reading WSDL. To get a copy
of a Web service’s WSDL code, an ASP.NET client requests the service’s file (the ASMX
file) and passes WSDL in the query string. Figure 34-8 shows a browser surfing to Ex34d and
asking the service for its description.

Figure 34-8. WSDL code generated by Ex34d.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you get the WSDL for a Web service, it’s easy to write a client proxy to call the Web
service.

Invoking Web Methods

There are a couple of ways to create a client-side proxy for a Web service. One way is to
create a Web reference using Visual Studio .NET. When you create an application using
Visual Basic .NET or C# (which is beyond the scope of this book), you can right-mouse-click
on the project in Visual Studio Solution Explorer and then choose Add Web Reference from
the shortcut menu. You basically point Visual Studio to the URL that’s hosting the Web
service you’re interested in, and Visual Studio will create a proxy for you that hides all the
details behind the underlying SOAP call.

The other way to create a proxy is to use the WSDL command-line tool and feed it the WSDL
for the service you’re interested in. Here’s the command line for generating a proxy for the
Ex34d Web service:

WSDL /language:CS Ex34d.wsdl

The WSDL tool generates C# code. (You can ask it to generate JScript or Visual Basic .NET
source code as well.) You can compile the source code into an assembly and start calling the
Web service right away. Because the resulting assembly is a common language runtime
assembly, you can easily call it from some managed C++ code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 35
Programming ADO.NET Using Managed C++

Over the last few years, the Microsoft platform has accommodated an alphabet soup of
acronyms representing various data access technologies, including ODBC (Open Database
Connectivity), DAO (Data Access Objects), OLE DB (OLE Database), and ADO (ActiveX
Data Objects), which until a few years ago was the preferred data access technology for the
Microsoft platform. .NET has changed that.

ADO.NET will undoubtedly be the data access technology of choice for modern applications
running under .NET. ADO.NET is the managed code alternative to traditional ADO. This
chapter is all about data access under .NET. We’ll look at connecting to databases, issuing
commands to databases, reading data out of databases, and managing data sets using
ADO.NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managed Providers

As you saw in Chapter 31, .NET is based on a common runtime engine for all software
running on the platform. The common language runtime takes good care of your code. It
manages memory for you, provides interop services for you, and makes your code execute
safely and securely.

The runtime doesn’t provide native data access functionality, but .NET ships with a pair of
managed database providers. The managed providers are represented by several classes that
are members of the common runtime class library. The data access classes are known
collectively as ADO.NET.

The ADO.NET DataReader class enables you to retrieve a forward-only and read-only stream
of data from a database. The DataSet class provides an in-memory copy of data retrieved from
a database. You can think of a DataSet object as a disconnected recordset in ADO. ADO.NET
currently has no provision for server-side cursors. Some applications don’t need this
capability. Any applications that require server-side cursors can use the classic ADO recordset
through the COM interop layer. The samples accompanying Visual Studio .NET include an
ADO interop example. The example is included in the Microsoft Visual Studio .NET
\FrameworkSDK\Samples\Technologies\Interop\Basic\ ASPXToADO directory.

.NET Managed Providers

As far as ADO.NET is concerned, there are basically two kinds of databases: Microsoft SQL
Server databases and all other databases that implement OLEDB. The SQL Server managed
provider classes run within the common language runtime; the OLEDB managed provider
uses native OLEDB and the COM interop layer to establish a connection to a data store.

ADO.NET includes the following basic functionality for working with databases: creating
datasets, connecting to databases, issuing commands, reading data streams, and using data
adapters to exchange data between a data source and a dataset. ADO.NET divides the
functionality into interfaces and implementations. That is, there’s a single connection
interface, a single command interface, and a single data adapter interface. However,
ADO.NET furnishes separate implementations of each of these interfaces. The managed data
providers are generally divided into the System::Data::SqlClient namespace and the
System::Data::OleDb namespace. Table 35-1 shows the ADO.NET interfaces and their
separate implementations.

Table 35-1. ADO.NET Interfaces and Their Implementations
Interface SQL Server Implementation OLEDB Implementation

IDbConnection SqlConnection OleDbConnection

IDataAdapter SqlDataAdapter OleDbDataAdapter

IDbCommand SqlCommand OleDbCommand

IDataReader SqlDataReader OleDbDataReader

IDataRecord SqlDataRecord OleDbDataRecord

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IDataParameter SqlDataParameter OleDbDataParameter

Figure 35-1 shows the relationship between the ADO.NET managed providers, SQL Server,
OLEDB providers, and COM.

Figure 35-1. The relationship between the ADO.NET managed providers, SQL Server,
OLEDB providers, and COM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Working with the Providers

Let’s take a look at what it takes to connect to a database and execute some code using
ADO.NET and managed C++. The general operating mode for ADO.NET is to connect to a
database, issue a command, and then examine the results. We’ll examine connecting to a
database first.

Connecting to the Database

The SqlConnection class and the OleDbConnection class implement IDbConnection, which
provides methods for opening a database connection and for starting local transactions
programmatically.

You saw in Chapter 31 that garbage collection is nondeterministic, which means you don’t
know when (or even if) a memory allocation will be collected. For that reason, you should
close ADO.NET connections explicitly when they’re no longer needed (rather then closing
them in a destructor somewhere). IDbConnection::Close is the method for accomplishing this
task. You can also call Dispose on the connection object, which will also close the connection.
Usually the Open and Close (or Dispose) calls live within a try/catch block.

The managed providers support modern database features such as connection pooling. The
OLEDB data provider uses OLEDB’s built-in connection pooling, which works through the
classic COM+ dispenser manager. The SQL Server data provider uses an internal pooling
architecture that behaves similarly to COM+ services’ object-pooling feature.

The following listing shows a simple console program that connects to a database and issues a
simple selection command. This example assumes that SQL Server is installed on the machine
and that a database named CompanyDB is available. The example also assumes that there’s a
table named Employees containing the Name and DeptID columns within the database.

// This is the main project file for VC++ application project
// generated using an Application Wizard.

#include "stdafx.h"

#using <mscorlib.dll>
#using <system.dll>
#using <system.data.dll>
#include <tchar.h>

using namespace System;
using namespace System::Data;
using namespace System::Data::SqlClient;
using namespace System::ComponentModel;

// This is the entry point for this application
int _tmain(void)
{
 // Create a connection object
 SqlConnection* conn;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SqlConnection* conn;
 conn = new SqlConnection
 (S"server=localhost;uid=sa;pwd=;database=CompanyDB");

 SqlCommand* command;
 command = new SqlCommand("select * from Employees", conn);
 IDataReader* rdr;

 try
 {
 conn->Open();
 rdr = command->ExecuteReader();

 while(rdr->Read())
 {
 Console::Write("Name: ");
 Console::Write(rdr->get_Item("Name"));
 Console::Write("Dept: ");
 Console::WriteLine(rdr->get_Item("DeptID"));
 }
 }
 catch (Exception* e)
 {
 System::Console::WriteLine(e->ToString());
 }
 __finally
 {
 conn->Dispose();
 }
 return 0;
}

Notice that the code creates an instance of the SqlConnection class and an instance of the
SqlCommand class. Also notice that the code initializes the instance of the SqlCommand class
with the connection object and a simple selection statement.

As long as the connection object and the command object work correctly, you can create a
data reader by calling SqlCommand::ExecuteReader. The data reader reads through each row.
You can use the data reader’s get_Item method to find a value within a specific column for
that row. (We’ll discuss data readers in detail later in this chapter.)

The connection is opened and the command is executed within a try block to catch any errors.
Errors that can occur include:

Invalid connection string (wrong account or password or a bad database name)

Wrong table name

Wrong column names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If any errors occur during the process of connecting to the database and executing the query,
ADO.NET will throw an exception. In the previous listing, the exception information is
simply printed to the screen.

Issuing Commands

Connecting to a database and issuing a simple query is pretty straightforward. However, in
real-world situations, collecting data is often much more involved. The command classes
(SqlCommand and OleDbCommand) included with the managed providers are fairly
sophisticated. You can use them to submit any valid SQL action statement or query to the
database (or you can use another command language supported by an OLEDB provider).

SqlCommand and OleDbCommand both implement the IDbCommand interface. You might
specify the command when you construct the command object, or you might set the command
by using the CommandText property. The command object is associated with a specific
connection object (as shown in the previous listing). The following listing shows how to
initialize an SqlCommand from an existing connection. Notice that this approach emphasizes
programming to the interfaces rather than to the actual classes.

IDbConnection* conn = dynamic_cast<IDbConnection*>(new SqlConnection(
 "server=localhost;uid=sa;pwd=;database=CompanyDB"));
IDbCommand* cmd2 = new SqlCommand(
 "select * from Depts",
 dynamic_cast<SqlConnection*>(conn));

You saw earlier that IDbCommand::ExecuteReader submits the command and retrieves results
through a DataReader class. IDbCommand also includes a method named ExecuteNonQuery
that returns only the number of rows affected.

When applying commands to a command object, an application can set the CommandText
property to a SQL command (or perhaps some other command language supported by an
OLEDB database) or a stored procedure name. The CommandType property indicates the
meaning of CommandText—whether it’s a plain-text command or a stored procedure.

Using Stored Procedures with a Command

You can use a command object to call stored procedures to perform database manipulation.
SqlCommand and OleDbComnand implement IDbCommand and support parameterized
statements through the Parameters property. The SqlParameter and the OleDbParameter
classes encapsulate the parameter functionality necessary for stored procedures. Both the
OleDbCommand and the SqlCommand include collections of parameters
—OleDbParameterCollection and SqlParameterCollection, respectively. The following
listing shows how to open an SqlConnection and associate it with an SqlCommand that
executes a parameterized stored procedure. This listing expects a database named
CompanyDB to be available, which includes a stored procedure named getByDeptID that
takes a single string parameter (designating the department ID).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void RunStoredProc()
{
 // Execute a stored procedure
 SqlConnection* conn = new SqlConnection(
 "server=localhost;uid=sa;pwd=;database=CompanyDB");
 SqlCommand* cmd = new SqlCommand("getByDeptID", conn);
 IDataReader* reader;

 try
 {
 conn->Open();
 cmd->Parameters->Add(
 new SqlParameter("@dept_id", SqlDbType::VarChar, 11));
 cmd->Parameters->get_Item("@dept_id")->Value = S"Engineering";

 cmd->CommandType = CommandType::StoredProcedure;
 reader = cmd->ExecuteReader();

 // Use the reader to examine result set
 }

 catch(Exception* e)
 {
 Console::WriteLine(e->ToString());
 }
 __finally
 {
 conn->Dispose();
 }

}

As you set up parameters, you can designate the direction of each parameter to be input,
output, inout, or return. Of course, the parameters you set up programmatically will need to
match the format of the parameters in the actual stored procedure (although strict type
checking for the parameters isn’t enforced).

Using Data Readers to Retrieve Data

You can use data readers to retrieve read-only, forward-only data streams. As mentioned, after
you create a command object, you can call IDbCommand::ExecuteReader to create a data
reader for retrieving rows from a data source. Most SQL commands and stored procedures
produce rectangular results. For example, when you issue Select * from Employees, you’re
asking to see everything within the Employees table. The result set you get back is a collection
of homogenous rows that you can examine with an implementation of IDataReader. Columns
within rows can contain only primitive data types, in accordance with the relational model.

Earlier, you saw an example of using a data reader to parse through a result set. The example
got only a single result set back. The IDataReader implementations in ADO.NET

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

got only a single result set back. The IDataReader implementations in ADO.NET
(SqlDataReader and OleDbDataReader) provide forward-reading access to the result set. As
you read through the result set using the reader, the reader always looks at the current row.
Each time you call Read on a reader, you get a new row. Read returns false when there are no
more rows to be read. The data readers in ADO.NET support multiple result sets.
IDataReader::NextResult advances the data reader to the next result set. Here’s an example of
getting multiple result sets back from a single query:

void MultipleResultSets()
{
 SqlConnection* conn = new SqlConnection(
 "server=localhost;uid=sa;pwd=;database=CompanyDB");
 SqlCommand* cmd = new SqlCommand(
 "select * from Employees;select * from Depts", conn);
 IDataReader* rdr;

 try
 {
 conn->Open();
 rdr = cmd->ExecuteReader();

 bool more = true;
 while (more)
 {
 while (rdr->Read())
 {
 Console::Write("Column 0 = ");
 // Get the first column
 Console::WriteLine(rdr->get_Item(0));
 // Get the second column
 Console::Write("Column 1 = ");
 Console::WriteLine(rdr->get_Item(1));
 }
 Console::WriteLine("End of result set");
 more = rdr->NextResult();
 }
 }
 catch(Exception* e)
 {
 e->ToString();
 }
 __finally
 {
 conn->Dispose();
 }
}

Error Handling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data access code you’ve seen so far has been wrapped in try/catch blocks. For simple
error handling, this is often sufficient. General errors will be caught by the generic exception
class. However, sometimes databases return additional error information or even a collection
of errors. To accommodate multiple errors, both SQL Server and OLEDB managed data
providers subclass their own exception class, which can return a collection of errors.

The OLEDB data provider’s OleDbException exposes an Errors collection that is similar to
the ADO’s Errors collection (which can be accessed through the OLEDB’s IErrorRecord
interface). Each error contains an error message, the provider’s native error, and an optional
SQLState. The OleDbException is derived from ExternalException.

The SQL Server data provider exposes an SqlException derived from SystemException. It
encapsulates a SqlErrorCollection collection that exposes a superset of ADO’s error
information. This includes SQL Server–specific error information. SqlError is created by the
SQL Server provider when an error occurs. It contains the SQL Server instance, the error
severity, and an optional stored procedure name and line number.

One problem with classic ADO is that severe errors (showstoppers) and SQL warning
messages (not showstoppers) are combined in the Errors collection. For example, one of these
messages might indicate that a database language has changed. The combination might affect
your result set, but it won’t stop the query from running. The ADO.NET architecture exposes
warnings as events, not as showstopping errors. You can watch the warnings or ignore them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ADO.NET Datasets

A forward-reading stream can be useful for collecting moderate amounts of data, but it’s not
always the best data access method—especially in high-volume situations or when you need
random access to the contents of a database. ADO.NET’s dataset answers these needs. The
ADO.NET DataSet class manages a collection of in-memory tables that represent a result set.
The dataset is similar to the classic ADO disconnected recordset, but provides more
functionality.

The dataset basically represents a snapshot of a result set (or possibly several result sets). A
dataset is not associated with a specific physical database. It contains one or more instances of
the DataTable class, and each table can be from a different data source. The dataset can
acquire data tables from several sources, including physical databases and XML files. You can
also create and fill data tables and data sets programmatically, as you’ll see in the following
section. Figure 35-2 shows the architecture of the ADO.NET DataSet.

Figure 35-2. The architecture of the ADO.NET DataSet.

To access a dataset’s tables, columns, and rows, you use a fairly regular collection syntax
involving iterative calls to the get_Item method of the DataTableCollection, the
DataColumnCollection, and the DataRowCollection. You can access any part of a dataset
either by name or by ordinal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the Data Adapter to Populate Datasets

ADO.NET includes classes that implement IDataAdapter, which is useful for loading datasets.
The data adapter classes encapsulate a connection object and a set of command objects and
take on the task of connecting to the database and constructing a dataset for you. The
following listing shows how to use the SqlDataAdapter to fill a dataset.

void UseDataAdapter()
{
 SqlDataAdapter* da = new SqlDataAdapter(
 "select * from Employees",
 "server=localhost;uid=sa;database=CompanyDB");
 DataSet* ds = new DataSet();
 da->Fill(ds, "Employees");
}

This listing assumes that a database named CompanyDB is available through SQL Server and
that there’s a table named Employees. The SqlDataAdapter will select every row and every
column from the Employees table and construct a dataset. The dataset will include a single
table named Employees. Once the dataset has been loaded, you can easily enumerate the
tables within the dataset and examine the contents of each row, as shown in the following
listing:

void EnumDataSet(DataSet* ds)
{
 Console::WriteLine("Enumerating Tables in DataSet:");
 for(int i = 0; i < ds->Tables->Count; i++)
 {
 Console::Write("Table Name: ");
 DataTable* dt = ds->Tables->get_Item(i);
 Console::WriteLine(dt->TableName);

 for(int j = 0; j < dt->Rows->Count; j++)
 {
 DataRow* dr = dt->Rows->get_Item(j);
 Console::Write("Column 1: ");
 Console::Write(dr->get_Item(0)->ToString());
 Console::Write(" Column 2: ");
 Console::WriteLine(dr->get_Item(1)->ToString());
 }
 }
}

Data adapters aren’t the only way to construct datasets. You can also create datasets in
memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating In-Memory Datasets

Most of the data your application will work with probably live in a database somewhere, but
sometimes it’s useful to cook up datasets on the fly. For example, perhaps you have a small
test scenario or you don’t have a database available. Datasets are simply in-memory instances
of table, row, and column collections, and you can construct them manually. The following
listing shows how to create an in-memory dataset manually without going out to a database:

DataSet* ManufactureDataSet()
{
 DataSet* ds;
 ds = new DataSet();
 DataTable* dt = new DataTable();

 String* strType = S"Name";
 Int32 n = 0;
 __box Int32* int32Type = __box(n);

 dt->Columns->Add("Name", strType->GetType());
 dt->Columns->Add("DeptID", int32Type->GetType());

 ds->Tables->Add(dt);

 DataRow* dr = dt->NewRow();
 dr->set_Item(0, S"George Shepherd");
 n = 132;
 int32Type = __box(n);
 dr->set_Item(1, int32Type);
 dt->Rows->Add(dr);

 dr = dt->NewRow();
 dr->set_Item(0, S"Helge Hoeing");
 n = 132;
 int32Type = __box(n);
 dr->set_Item(1, int32Type);
 dt->Rows->Add(dr);

 dr = dt->NewRow();
 dr->set_Item(0, S"Lisa Jacobson");
 n = 115;
 int32Type = __box(n);
 dr->set_Item(1, int32Type);
 dt->Rows->Add(dr);

 dr = dt->NewRow();
 dr->set_Item(0, S"Brian Burk");
 n = 115;
 int32Type = __box(n);
 dr->set_Item(1, int32Type);
 dt->Rows->Add(dr);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dr = dt->NewRow();
 dr->set_Item(0, S"Michael Allen");
 n = 115;
 int32Type = __box(n);
 dr->set_Item(1, int32Type);
 dt->Rows->Add(dr);

 return ds;
}

The code constructs a new dataset in the normal fashion. At this point, the dataset is empty.
Datasets are collections of data tables, and the first thing the dataset needs is to have a table
added to it. The data table is constructed in the normal fashion and added to the dataset’s table
collection. Once the table is added to the dataset, the code adds two columns to the table.
These data columns are constructed with a column name and a data type. Managed C++ is
finicky about how GetType is called (even though it is a static method). The previous code
listing works around the problem by creating actual instances of the types that are supposed to
make up the column. The rest of the code adds several rows to the table in the dataset.

Once the dataset has been constructed, you can march through its contents—just as you would
any other dataset, as shown in the following listing:

void UseDataSet()
{
 DataSet* ds = ManufactureDataSet();

 Console::WriteLine("Enumerating Tables in DataSet:");
 for(int i = 0; i < ds->Tables->Count; i++)
 {
 Console::Write("Table Name: ");
 DataTable* dt = ds->Tables->get_Item(i);
 Console::WriteLine(dt->TableName);

 for(int j = 0; j < dt->Rows->Count; j++)
 {
 DataRow* dr = dt->Rows->get_Item(j);
 Console::Write("Column 1: ");
 Console::Write(dr->get_Item(0)->ToString());
 Console::Write(" Column 2: ");
 Console::WriteLine(dr->get_Item(1)->ToString());
 }
 }

}

Writing XML from Datasets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fetching data from a database is one of the most common operations within modern
applications, but at times you’ll need to export your data for consumption by other
applications. In the late 1980s and the early 1990s, the way to import and export data was
through comma-delimited files. Comma-delimited files expressed their contents as lines of text
whose embedded elements were separated by commas.

But soon comma-delimited files were out and XML files were in. XML has become the
standard for expressing data in an interoperable format. ADO.NET’s dataset marshals
(serializes) as well-formed XML files and optionally as XML schema. To export a dataset’s
contents as XML, you simply call the DataSet’s WriteXML method, as shown in the following
listing:

void UseDataSet()
{
 DataSet* ds = ManufactureDataSet();

 ds->WriteXml(S"C:\\CompanyDB.xml", XmlWriteMode::IgnoreSchema);
 ds->WriteXmlSchema(S"C:\\CompanyDB.xsd");
}

Dumping a dataset as XML yields the following XML file, given the in-memory dataset
constructed in the previous section:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>
 <Table1>
 <Name>George Shepherd</Name>
 <DeptID>132</DeptID>
 </Table1>
 <Table1>
 <Name>Helge Hoeing</Name>
 <DeptID>132</DeptID>
 </Table1>
 <Table1>
 <Name>Lisa Jacobson</Name>
 <DeptID>115</DeptID>
 </Table1>
 <Table1>
 <Name>Brian Burk</Name>
 <DeptID>115</DeptID>
 </Table1>
 <Table1>
 <Name>Michael Allen</Name>
 <DeptID>115</DeptID>
 </Table1>
</NewDataSet>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to writing out XML files, the ADO.NET DataSet also serializes the schema so you
(or some data consumer) can understand what types the tables in the dataset are composed of.

<?xml version="1.0" standalone="yes"?>
<xs:schema id="NewDataSet" xmlns=""
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="NewDataSet" msdata:IsDataSet="true">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Table1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name"
 type="xs:string" minOccurs="0" />
 <xs:element name="DeptID"
 type="xs:int" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>

We’ve only scratched the surface of ADO.NET in this chapter. ADO.NET offers tremendous
data access capabilities for any application written for the .NET platform. For a complete
discussion of ADO.NET, see Microsoft ADO.NET (Core Reference) by David Sceppa
(Microsoft Press, 2002).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A
Message Map Functions in the MFC Library

MFC now uses a static_cast within the message map macros to improve type checking. The
type checking enforces return and parameter types. The stricter type checking produces error
messages when potentially unsafe message handlers are used. For example, here’s the
ON_COMMAND macro:

#define ON_COMMAND(id, memberFxn) \
 { WM_COMMAND, CN_COMMAND, (WORD)id, (WORD)id, AfxSigCmd_v, \
 static_cast<AFX_PMSG> (memberFxn) }

The following tables list the message map functions in the MFC library, including the handlers
for WM_COMMAND messages, child window notification messages, window notification
messages, and user-defined message codes.

Table 2-1. Handlers for WM_COMMAND Messages
Map Entry Function Prototype

ON_COMMAND (<id>, <memberFxn>) afx_msg void memberFxn();

ON_COMMAND_EX (<id>, <memberFxn>) afx_msg BOOL
memberFxn(UINT);

ON_COMMAND_EX_RANGE (<id>,<idLast>,
<memberFxn>)

afx_msg BOOL
memberFxn(UINT);

ON_COMMAND_RANGE (<id>, <idLast>,
<memberFxn>)

afx_msg void
memberFxn(UINT);

ON_UPDATE_COMMAND_UI (<id>, <memberFxn>) afx_msg void
memberFxn(CCmdUI*);

ON_UPDATE_COMMAND_UI_RANGE (<id>, <idLast>,
<memberFxn>)

afx_msg void
memberFxn(CCmdUI*);

ON_UPDATE_COMMAND_UI_REFLECT
(<memberFxn>)

afx_msg void
memberFxn(CCmdUI*);

Table 2-2. Handlers for Child Window Notification Messages
Map Entry Function Prototype

Generic Control Notification Codes

ON_CONTROL(<wNotifyCode>, <id>,
<memberFxn>)

afx_msg void memberFxn();

ON_CONTROL_RANGE(<wNotifyCode>, <id>, afx_msg void memberFxn(UINT);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<idLast>, <memberFxn>)

ON_CONTROL_REFLECT(<wNotifyCode>,
<memberFxn>)

afx_msg void memberFxn();

ON_CONTROL_REFLECT_EX (<wNotifyCode>,
<memberFxn>)

afx_msg BOOL memberFxn();

ON_NOTIFY(<wNotifyCode>, <id>,
<memberFxn>)

afx_msg void memberFxn(NMHDR*,
LRESULT*);

ON_NOTIFY_EX(<wNotifyCode>, <id>,
<memberFxn>)

afx_msg BOOL memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_EX_RANGE(<wNotifyCode>, <id>,
<idLast>, <memberFxn>)

afx_msg BOOL memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_RANGE(<wNotifyCode>, <id>,
<idLast>, <memberFxn>)

afx_msg void memberFxn(UINT,
NMHDR*, LRESULT*);

ON_NOTIFY_REFLECT(<wNotifyCode>,
<memberFxn>)

afx_msg void memberFxn(NMHDR*,
LRESULT*);

ON_NOTIFY_REFLECT_EX(<wNotifyCode>,
<memberFxn>)

afx_msg BOOL
memberFxn(NMHDR*, LRESULT*);

User Button Notification Codes

ON_BN_CLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_DOUBLECLICKED(<id>,
<memberFxn>)

afx_msg void memberFxn();

ON_BN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Combo Box Notification Codes

ON_CBN_CLOSEUP(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_DROPDOWN(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITUPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELENDCANCEL(<id>,
<memberFxn>)

afx_msg void memberFxn();

ON_CBN_SELENDOK(<id>, <memberFxn>) afx_msg void memberFxn();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_CBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Check List Box Notification Codes

ON_CLBN_CHKCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

Edit Control Notification Codes

ON_EN_CHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_HSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_MAXTEXT(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_UPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_VSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

List Box Notification Codes

ON_LBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SELCANCEL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

Static Control Notification Codes

ON_STN_CLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_STN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_STN_DISABLE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_STN_ENABLE(<id>, <memberFxn>) afx_msg void memberFxn();
Table 2-3. Handlers for Window Notification Messages

Map Entry Function Prototype

ON_WM_ACTIVATE() afx_msg void OnActivate(UINT, CWnd*,
BOOL);

ON_WM_ACTIVATEAPP() afx_msg void OnActivateApp(BOOL, HTASK);

ON_WM_ASKCBFORMATNAME() afx_msg void OnAskCbFormatName(UINT,
LPTSTR);

ON_WM_CANCELMODE() afx_msg void OnCancelMode();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_CAPTURECHANGED() afx_msg void OnCaptureChanged(CWnd*);

ON_WM_CHANGECBCHAIN() afx_msg void OnChangeCbChain(HWND,
HWND);

ON_WM_CHAR() afx_msg void OnChar(UINT, UINT, UINT);

ON_WM_CHARTOITEM() afx_msg int OnCharToItem(UINT, CListBox*,
UINT);

ON_WM_CHARTOITEM_REFLECT() afx_msg int CharToItem(UINT, UINT);

ON_WM_CHILDACTIVATE() afx_msg void OnChildActivate();

ON_WM_CLOSE() afx_msg void OnClose();

ON_WM_COMPACTING() afx_msg void OnCompacting(UINT);

ON_WM_COMPAREITEM() afx_msg int OnCompareItem(int,
LPCOMPAREITEMSTRUCT);

ON_WM_COMPAREITEM_REFLECT() afx_msg int CompareItem (LPCOMPAREITEM
STRUCT);

ON_WM_CONTEXTMENU() afx_msg void OnContextMenu(CWnd*, CPoint);

ON_WM_COPYDATA() afx_msg BOOL OnCopyData(CWnd*,
COPYDATASTRUCT*);

ON_WM_CREATE() afx_msg int OnCreate(LPCREATESTRUCT);

ON_WM_CTLCOLOR() afx_msg HBRUSH OnCtlColor(CDC*, CWnd*,
UINT);

ON_WM_CTLCOLOR_REFLECT() afx_msg HBRUSH CtlColor(CDC*, UINT);

ON_WM_DEADCHAR() afx_msg void OnDeadChar(UINT, UINT,
UINT);

ON_WM_DELETEITEM() afx_msg void OnDeleteItem(int,
LPDELETEITEMSTRUCT);

ON_WM_DELETEITEM_REFLECT() afx_msg void DeleteItem
(LPDELETEITEMSTRUCT);

ON_WM_DESTROY() afx_msg void OnDestroy();

ON_WM_DESTROYCLIPBOARD() afx_msg void OnDestroyClipboard();

ON_WM_DEVICECHANGE() afx_msg BOOL OnDeviceChange(UINT,
DWORD);

ON_WM_DEVMODECHANGE() afx_msg void OnDevModeChange(LPTSTR);

ON_WM_DRAWCLIPBOARD() afx_msg void OnDrawClipboard();

ON_WM_DRAWITEM() afx_msg void OnDrawItem(int,
LPDRAWITEMSTRUCT);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_DRAWITEM_REFLECT() afx_msg void DrawItem
(LPDRAWITEMSTRUCT);

ON_WM_DROPFILES() afx_msg void OnDropFiles(HDROP);

ON_WM_ENABLE() afx_msg void OnEnable(BOOL);

ON_WM_ENDSESSION() afx_msg void OnEndSession(BOOL);

ON_WM_ENTERIDLE() afx_msg void OnEnterIdle(UINT, CWnd*);

ON_WM_ENTERMENULOOP() afx_msg void OnEnterMenuLoop(BOOL);

ON_WM_ERASEBKGND() afx_msg BOOL OnEraseBkgnd(CDC*);

ON_WM_EXITMENULOOP() afx_msg void OnExitMenuLoop(BOOL);

ON_WM_FONTCHANGE() afx_msg void OnFontChange();

ON_WM_GETDLGCODE() afx_msg UINT OnGetDlgCode();

ON_WM_GETMINMAXINFO() afx_msg void OnGetMinMaxInfo
(MINMAXINFO*);

ON_WM_HELPINFO() afx_msg BOOL OnHelpInfo(HELPINFO*);

ON_WM_HSCROLL() afx_msg void OnHScroll(UINT, UINT,
CScrollBar*);

ON_WM_HSCROLL_REFLECT() afx_msg void HScroll(UINT, UINT);

ON_WM_HSCROLLCLIPBOARD() afx_msg void OnHScrollClipboard(CWnd*,
UINT, UINT);

ON_WM_ICONERASEBKGND() afx_msg void OnIconEraseBkgnd(CDC*);

ON_WM_INITMENU() afx_msg void OnInitMenu(CMenu*);

ON_WM_INITMENUPOPUP() afx_msg void OnInitMenuPopup(CMenu*,
UINT, BOOL);

ON_WM_KEYDOWN() afx_msg void OnKeyDown(UINT, UINT, UINT);

ON_WM_KEYUP() afx_msg void OnKeyUp(UINT, UINT, UINT);

ON_WM_KILLFOCUS() afx_msg void OnKillFocus(CWnd*);

ON_WM_LBUTTONDBLCLK() afx_msg void OnLButtonDblClk(UINT, CPoint);

ON_WM_LBUTTONDOWN() afx_msg void OnLButtonDown(UINT, CPoint);

ON_WM_LBUTTONUP() afx_msg void OnLButtonUp(UINT, CPoint);

ON_WM_MBUTTONDBLCLK() afx_msg void OnMButtonDblClk(UINT,
CPoint);

ON_WM_MBUTTONDOWN() afx_msg void OnMButtonDown(UINT, CPoint);

ON_WM_MBUTTONUP() afx_msg void OnMButtonUp(UINT, CPoint);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_MDIACTIVATE() afx_msg void OnMDIActivate(BOOL, CWnd*,
CWnd*);

ON_WM_MEASUREITEM() afx_msg void OnMeasureItem(int,
LPMEASUREITEMSTRUCT);

ON_WM_MEASUREITEM_REFLECT() afx_msg void MeasureItem
(LPMEASUREITEMSTRUCT);

ON_WM_MENUCHAR() afx_msg LRESULT OnMenuChar(UINT, UINT,
CMenu*);

ON_WM_MENUSELECT() afx_msg void OnMenuSelect(UINT, UINT,
HMENU);

ON_WM_MOUSEACTIVATE() afx_msg int OnMouseActivate(CWnd*, UINT,
UINT);

ON_WM_MOUSEMOVE() afx_msg void OnMouseMove(UINT, CPoint);

ON_WM_MOUSEWHEEL() afx_msg BOOL OnMouseWheel(UINT, short,
CPoint);

ON_WM_MOVE() afx_msg void OnMove(int, int);

ON_WM_MOVING() afx_msg void OnMoving(UINT, LPRECT);

ON_WM_NCACTIVATE() afx_msg BOOL OnNcActivate(BOOL);

ON_WM_NCCALCSIZE() afx_msg void OnNcCalcSize(BOOL,
NCCALCSIZE_PARAMS*);

ON_WM_NCCREATE() afx_msg BOOL OnNcCreate
(LPCREATESTRUCT);

ON_WM_NCDESTROY() afx_msg void OnNcDestroy();

ON_WM_NCHITTEST() afx_msg UINT OnNcHitTest(CPoint);

ON_WM_NCLBUTTONDBLCLK() afx_msg void OnNcLButtonDblClk(UINT,
CPoint);

ON_WM_NCLBUTTONDOWN() afx_msg void OnNcLButtonDown(UINT,
CPoint);

ON_WM_NCLBUTTONUP() afx_msg void OnNcLButtonUp(UINT, CPoint);

ON_WM_NCMBUTTONDBLCLK() afx_msg void OnNcMButtonDblClk(UINT,
CPoint);

ON_WM_NCMBUTTONDOWN() afx_msg void OnNcMButtonDown(UINT,
CPoint);

ON_WM_NCMBUTTONUP() afx_msg void OnNcMButtonUp(UINT, CPoint);

ON_WM_NCMOUSEMOVE() afx_msg void OnNcMouseMove(UINT, CPoint);

ON_WM_NCPAINT() afx_msg void OnNcPaint();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_WM_NCRBUTTONDBLCLK() afx_msg void OnNcRButtonDblClk(UINT,
CPoint);

ON_WM_NCRBUTTONDOWN() afx_msg void OnNcRButtonDown(UINT,
CPoint);

ON_WM_NCRBUTTONUP() afx_msg void OnNcRButtonUp(UINT, CPoint);

ON_WM_PAINT() afx_msg void OnPaint();

ON_WM_PAINTCLIPBOARD() afx_msg void OnPaintClipboard(CWnd*,
HGLOBAL);

ON_WM_PALETTECHANGED() afx_msg void OnPaletteChanged(CWnd*);

ON_WM_PALETTEISCHANGING() afx_msg void OnPaletteIsChanging(CWnd*);

ON_WM_PARENTNOTIFY() afx_msg void OnParentNotify(UINT, LPARAM);

ON_WM_PARENTNOTIFY_REFLECT() afx_msg void ParentNotify(UINT, LPARAM);

ON_WM_QUERYDRAGICON() afx_msg HCURSOR OnQueryDragIcon();

ON_WM_QUERYENDSESSION() afx_msg BOOL OnQueryEndSession();

ON_WM_QUERYNEWPALETTE() afx_msg BOOL OnQueryNewPalette();

ON_WM_QUERYOPEN() afx_msg BOOL OnQueryOpen();

ON_WM_RBUTTONDBLCLK() afx_msg void OnRButtonDblClk(UINT, CPoint);

ON_WM_RBUTTONDOWN() afx_msg void OnRButtonDown(UINT, CPoint);

ON_WM_RBUTTONUP() afx_msg void OnRButtonUp(UINT, CPoint);

ON_WM_RENDERALLFORMATS() afx_msg void OnRenderAllFormats();

ON_WM_RENDERFORMAT() afx_msg void OnRenderFormat(UINT);

ON_WM_SETCURSOR() afx_msg BOOL OnSetCursor(CWnd*, UINT,
UINT);

ON_WM_SETFOCUS() afx_msg void OnSetFocus(CWnd*);

ON_WM_SETTINGCHANGE() afx_msg void OnSettingChange(UINT,
LPCTSTR);

ON_WM_SHOWWINDOW() afx_msg void OnShowWindow(BOOL, UINT);

ON_WM_SIZE() afx_msg void OnSize(UINT, int, int);

ON_WM_SIZECLIPBOARD() afx_msg void OnSizeClipboard(CWnd*,
HGLOBAL);

ON_WM_SIZING() afx_msg void OnSizing(UINT, LPRECT);

ON_WM_SPOOLERSTATUS() afx_msg void OnSpoolerStatus(UINT, UINT);

ON_WM_STYLECHANGED() afx_msg void OnStyleChanged(int,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LPSTYLESTRUCT);

ON_WM_STYLECHANGING() afx_msg void OnStyleChanging(int,
LPSTYLESTRUCT);

ON_WM_SYSCHAR() afx_msg void OnSysChar(UINT, UINT, UINT);

ON_WM_SYSCOLORCHANGE() afx_msg void OnSysColorChange();

ON_WM_SYSCOMMAND() afx_msg void OnSysCommand(UINT,
LPARAM);

ON_WM_SYSDEADCHAR() afx_msg void OnSysDeadChar(UINT, UINT,
UINT);

ON_WM_SYSKEYDOWN() afx_msg void OnSysKeyDown(UINT, UINT,
UINT);

ON_WM_SYSKEYUP() afx_msg void OnSysKeyUp(UINT, UINT, UINT);

ON_WM_TCARD() afx_msg void OnTCard(UINT, DWORD);

ON_WM_TIMECHANGE() afx_msg void OnTimeChange();

ON_WM_TIMER() afx_msg void OnTimer(UINT);

ON_WM_VKEYTOITEM() afx_msg int OnVKeyToItem(UINT, CListBox*,
UINT);

ON_WM_VKEYTOITEM_REFLECT() afx_msg int VKeyToItem(UINT, UINT);

ON_WM_VSCROLL() afx_msg void OnVScroll(UINT, UINT,
CScrollBar*);

ON_WM_VSCROLL_REFLECT() afx_msg void VScroll(UINT, UINT);

ON_WM_VSCROLLCLIPBOARD() afx_msg void OnVScrollClipboard(CWnd*,
UINT, UINT);

ON_WM_WINDOWPOSCHANGED() afx_msg void OnWindowPosChanged
(WINDOWPOS*);

ON_WM_WINDOWPOSCHANGING() afx_msg void OnWindowPosChanging
(WINDOWPOS*);

ON_WM_WININICHANGE() afx_msg void OnWinIniChange(LPCTSTR);
Table 2-4. User-Defined Message Codes

Map Entry Function Prototype

ON_MESSAGE(<message>,<memberFxn>) afx_msg LRESULT
memberFxn(WPARAM, LPARAM);

ON_REGISTERED_MESSAGE
(<nMessageVariable>,<memberFxn>)

afx_msg LRESULT
memberFxn(WPARAM, LPARAM);

ON_REGISTERED_THREAD MESSAGE
(<nMessageVariable>, <memberFxn>)

afx_msg void
memberFxn(WPARAM, LPARAM);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON_THREAD_MESSAGE (<message>,
<memberFxn>)

afx_msg void
memberFxn(WPARAM, LPARAM);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B
MFC Library Runtime Class Identification and Dynamic Object
Creation

Long before runtime type information (RTTI) was added to the C++ language specification,
the MFC library designers realized that they needed runtime access to an object’s class name
and to the position of the class in the hierarchy. Also, the document-view architecture (and,
later, COM class factories) demanded that objects be constructed from a class specified at run
time. So the MFC team created an integrated macro-based class identification and dynamic
creation system that depends on the universal CObject base class. And in spite of the fact that
the Visual C++ .NET compiler supports the ANSI RTTI syntax, the MFC library continues to
use the original system, which actually has more features.

This appendix explains how the MFC library implements the class identification and dynamic
creation features. You’ll see how the DECLARE-_DYNAMIC, DECLARE_DYNCREATE, and
associated macros work, and you’ll learn about the RUNTIME_CLASS macro and the
CRuntimeClass structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Getting an Object’s Class Name at Run Time

If you want only an object’s class name, you’ll have an easy time, assuming that all your
classes are derived from a common base class, CObject. (Note that this example does not use
the real MFC CObject class.) Here’s how you get the class name:

class CObject
{
public:
 virtual char* GetClassName() const { return NULL; }
};

class CMyClass : public CObject
{
public:
 static char s_lpszClassName[];
 virtual char* GetClassName() const { return s_lpszClassName; }
};
char CMyClass::s_szClassName[] = "CMyClass";

Each derived class overrides the virtual GetClassName function, which returns a static string.
You get an object’s actual class name even if you use a CObject pointer to call GetClassName.
If you need the class name feature in many classes, you can save yourself some work by
writing macros. A DECLARE_CLASSNAME macro might insert the static data member and
the GetClassName function in the class declaration, and an IMPLEMENT_CLASSNAME
macro might define the class name string in the implementation file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MFC CRuntimeClass Structure and the RUNTIME_CLASS
Macro

In a real MFC program, an instance of the CRuntimeClass structure replaces the static
s_lpszClassName data member shown above. This structure has data members for the class
name and the object size; it also contains a pointer to a special static function, CreateObject,
that’s supposed to be implemented in the target class. Here’s a simplified version of
CRuntimeClass:

struct CRuntimeClass
{
 // Attributes
 LPCSTR m_lpszClassName;
 int m_nObjectSize;
 UINT m_wSchema; // Schema number of the loaded class
 CObject* (PASCAL* m_pfnCreateObject)(); // NULL => abstract class
#ifdef _AFXDLL
 CRuntimeClass* (PASCAL* m_pfnGetBaseClass)();
#else
 CRuntimeClass* m_pBaseClass;
#endif

 // Operations
 CObject* CreateObject();
 BOOL IsDerivedFrom(const CRuntimeClass* pBaseClass) const;

 // Dynamic name lookup and creation
 static CRuntimeClass* PASCAL FromName(LPCSTR lpszClassName);
 static CRuntimeClass* PASCAL FromName(LPCWSTR lpszClassName);
 static CObject* PASCAL CreateObject(LPCSTR lpszClassName);
 static CObject* PASCAL CreateObject(LPCWSTR lpszClassName);

 // Implementation
 void Store(CArchive& ar) const;
 static CRuntimeClass* PASCAL Load(CArchive& ar, UINT* pwSchemaNum);

 // CRuntimeClass objects linked together in simple list
 CRuntimeClass* m_pNextClass; // Linked list of registered classes
 const AFX_CLASSINIT* m_pClassInit;
};

NOTE
The real MFC CRuntimeClass structure has additional data members and functions
that navigate through the class’s hierarchy. This navigation feature is not
supported by the official C++ RTTI implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This structure supports not only class name retrieval but also dynamic creation. Each class you
derive from CObject has a static CRuntimeClass data member, provided you use the MFC
DECLARE_DYNAMIC, DECLARE_DYNCREATE, or DECLARE_SERIAL macro in the
declaration and the corresponding IMPLEMENT macro in the implementation file. The name
of the static data member is, by convention, class<class_name>. If your class were named
CMyClass, the CRuntimeClass data member would be named classCMyClass.

If you want a pointer to a class’s static CRuntimeClass object, you use the MFC
RUNTIME_CLASS macro, defined as follows:

#define _RUNTIME_CLASS(class_name)\
((CRuntimeClass*)(&class_name::class##class_name))
#ifdef _AFXDLL
#define RUNTIME_CLASS(class_name) (class_name::GetThisClass())
#else
#define RUNTIME_CLASS(class_name) _RUNTIME_CLASS(class_name)
#endif

Here’s how you use the macro to get the name string from a class name:

ASSERT(RUNTIME_CLASS(CMyClass)->m_lpszClassName == "CMyClass");

If you want the class name string from an object, you call the virtual
CObject::GetRuntimeClass function. The function simply returns a pointer to the class’s static
CRuntimeClass object, just as earlier the GetClassName function returned the name string.
Here’s the function for CMyClass:

virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCMyClass; }

And here’s how you call it:

ASSERT(pMyObject->GetRuntimeClass()->m_lpszClassName == "CMyClass");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dynamic Creation

You’ve learned that the DECLARE and IMPLEMENT macros add a static CRuntimeClass
object to a class. If you use the DECLARE_DYNCREATE or DECLARE-_SERIAL macro (and
the corresponding IMPLEMENT macro), you get an additional static member function
CreateObject (which is distinct from CRuntimeClass::CreateObject) in your class. Here’s an
example:

CObject* CMyClass::CreateObject()
{
 return new CMyClass;
}

Obviously, CMyClass needs a default constructor. This constructor is declared protected in
wizard-generated classes that support dynamic creation.

Now look at the (slightly abbreviated) code for the CRuntime-Class::CreateObject function:

CObject* CRuntimeClass::CreateObject()
{
 return (*m_pfnCreateObject)();
}

This function makes an indirect call to the CreateObject function in the target class. Here’s
how you dynamically construct an object of class CMyClass:

CRuntimeClass* pRTC = RUNTIME_CLASS(CMyObject);
CMyClass* pMyObject = (CMyClass*)pRTC->CreateObject();

Now you know how document templates work. A document template object has three
CRuntimeClass* data members initialized at construction to point to the static CRuntimeClass
data members for the document, frame, and view classes. When CWinApp::OnFileNew is
called, the framework calls the CreateObject functions for the three stored pointers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Sample Program

Here’s the code for a command-line program that dynamically constructs objects of two
classes. This isn’t real MFC code—the CObject class is a simplified version of the MFC
library CObject class. You can find this code in the dyncreat.cpp file in the \vcppnet\appendb
folder on the companion CD.

// dyncreat.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

#include <stdio.h>

#define RUNTIME_CLASS(class_name) (&class_name::class##class_name)

class CObject;

struct CRuntimeClass
{
 char m_lpszClassName[21];
 int m_nObjectSize;
 CObject* (*m_pfnCreateObject)();
 CObject* CreateObject();
};

// Not a true abstract class because there are no pure
// virtual functions, but user can't create CObject objects
// because of the protected constructor
class CObject
{
public:
 // not pure because derived classes don't necessarily
 // implement it
 virtual CRuntimeClass* GetRuntimeClass() const { return NULL; }

 // We never construct objects of class CObject, but in MFC we
 // use this to get class hierarchy information.
 static CRuntimeClass classCObject; // DYNAMIC
 virtual ~CObject() {}; // gotta have it
protected:
 CObject() { printf("CObject constructor\n"); }
};

CRuntimeClass CObject::classCObject = { "CObject",
 sizeof(CObject), NULL };

CObject* CRuntimeClass::CreateObject()
{
 return (*m_pfnCreateObject)(); // indirect function call
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

class CAlpha : public CObject
{
public:
 virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCAlpha; }
 static CRuntimeClass classCAlpha; // DYNAMIC
 static CObject* CreateObject(); // DYNCREATE
protected:
 CAlpha() { printf("CAlpha constructor\n"); }
};

CRuntimeClass CAlpha::classCAlpha = { "CAlpha",
 sizeof(CAlpha), CAlpha::CreateObject };

CObject* CAlpha::CreateObject() // static function
{
 return new CAlpha;
}

class CBeta : public CObject
{
public:
 virtual CRuntimeClass* GetRuntimeClass()
 const { return &classCBeta; }
 static CRuntimeClass classCBeta; // DYNAMIC
 static CObject* CreateObject(); // DYNCREATE
protected:
 CBeta() { printf("CBeta constructor\n"); }
};

CRuntimeClass CBeta::classCBeta = { "CBeta",
 sizeof(CBeta), CBeta::CreateObject };

CObject* CBeta::CreateObject() // static function
{
 return new CBeta;
}

int main()
{
 printf("Entering dyncreate main\n");

 CRuntimeClass* pRTCAlpha = RUNTIME_CLASS(CAlpha);
 CObject* pObj1 = pRTCAlpha->CreateObject();
 printf("class of pObj1 = %s\n",
 pObj1->GetRuntimeClass()->m_lpszClassName);

 CRuntimeClass* pRTCBeta = RUNTIME_CLASS(CBeta);
 CObject* pObj2 = pRTCBeta->CreateObject();
 printf("class of pObj2 = %s\n",
 pObj2->GetRuntimeClass()->m_lpszClassName);

 delete pObj1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delete pObj1;
 delete pObj2;
 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About the Author
When George Shepherd isn't writing .NET components for Syncfusion
(http://www.syncfusion.com), he teaches short courses with DevelopMentor
(http://www.develop.com). George is a contributing editor for MSDN magazine, and the
coauthor of several other books on working with Microsoft technologies. George now prefers
to play his Hamer Artist between compiles (although .NET's new JIT compiling doesn't leave
as much time for that).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

